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Problem 1. By using the same technique seen in class to bound n!, we have that

n∑
i=2

1

i log i
− 1

2 log 2
=

n∑
i=3

1

i log i
≤

∫ n

2

1

x log x
dx ≤

n−1∑
i=2

1

i log i
≤

n∑
i=2

1

i log i
.

The upper and lower bounds are represented in the Figure below.
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(a) Upper bound
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(b) Lower bound

Figure 1: The black curve is the function f(x) = 1
x log x , the blue rectangles are an upper bound

and the red rectangles are a lower bound.
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A simple calculation shows that∫ n

2

1

x log x
dx = log log n− log log 2.

Hence,

log log n− log log 2 ≤
n∑

i=2

1

i log i
≤ log log n− log log 2 +

1

2 log 2
. (1)

Note that log log 2 < 0. Then, log log n − log log 2 ≥ log log n, and, therefore, the lower

bound in (1) gives that
n∑

i=2

1

i log i
is Ω(log log n) (one suitable choice of the witnesses is C = 1

and k = 2). As − log log 2 +
1

2 log 2
< 2 and log log n > 2 for n > ee

2

, the upper bound in (1)

gives that

n∑
i=2

1

i log i
is O(log log n) (one suitable choice of the witnesses is C = 2 and k = ee

2

).

Therefore,

n∑
i=2

1

i log i
is Θ(log log n).

Problem 2.

a) For any f and g which attain only positive values, we have that

f(n) + g(n)

2
≤ max{f(n), g(n)} ≤ f(n) + g(n) ∀n ∈ N.

The lower bound allows us to prove that max{f(n), g(n)} is Ω(f(n) + g(n)) (one suitable
choice of the witnesses is C = 1/2 and k = 0). The upper bound allows us to prove that
max{f(n), g(n)} is O(f(n) + g(n)) (one suitable choice of the witnesses is C = 1 and k = 0).

b) The statement is false. For example, take f(n) = n+ 1 and g(n) = 1. Then,

min{f(n), g(n)} = 1 ∀n ≥ 0.

Clearly, n+ 2 is not Θ(1), because n+ 2 is not O(1).

Problem 3.

a) True. Indeed, 2n+1 = 2 · 2n. Hence, if we take C = 2 and k = 0, we have that 2n+1 ≤ C2n

for any n ≥ k. By definition, this implies the desired result.

b) False. Note that
22n

2n
= 2n.

Suppose that there exist C and k s.t. 22n ≤ C2n for any n ≥ k. Then, 2n ≤ C, but eventually
2n goes to +∞, which means that we cannot find such C. As a result, 22n is not O(2n).

c) False. Pick f(x) = 2x, g(x) = x, and h(x) = 2x. Then, clearly f(n) is O(g(n)), but,
according to the previous point, h(f(x)) is not O(h(g(x))).

Problem 4.

a) False. 3 is prime, 5 is prime, but 3 + 5 is not prime.

b) False. −
√
2 and

√
2 are irrational numbers, but −

√
2+

√
2 = 0, which is a rational number.
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c) False. 1/2 is a non-zero rational number, but (1/2)1/2 =
√
2/2 is irrational.

d) False. f(17) = 172 is not prime.

e) True. Both p and q are odd. Hence, pq + 1 is an even number, which implies that it cannot
be prime.

Problem 5.

a) 7× 8 = 56 ≡ 1 (mod 11). Hence the multiplicative inverse of 7 modulo 11 is 8.

b) Does not exist. The multiplicative inverse of a modulo m exists if and only if a and m are
coprime (i.e. if gcd(a,m) = 1) but gcd(6, 8) = 2.

c) 5× 5 = 25 ≡ 1 (mod 8). Hence the multiplicative inverse of 5 modulo 8 is 5 itself (note that
in this case since 5 and 8 are coprime the multiplicative inverse exists).

d) We want to find m such that 6m | 73! but 6m+1 ∤ 73!. Suppose the prime factorization of 73!
is 73! = 2α × 3β × other prime factors. Since 6m = 2m × 3m 6m divides 73! if and only if
m ≤ min{α, β}. So, by setting m = min{α, β}, 6m | 73! but 6m+1 ∤ 73!.
We first compute β: There are ⌊ 73

3 ⌋ = 24 multiples of 3, ⌊ 73
9 ⌋ = 8 multiples of 9 and ⌊ 73

27⌋ = 2
multiples of 27 in {1, 2, . . . , 73}. Thus β = 24 + 8 + 2 = 34.

Now, it is easy to see that α ≥ β since there are at least 36 even numbers in {1, 2, . . . , 73}.
Thus, min{α, β} = 34.

Therefore, the answer to the question is m = 34. 634 | 73! but 635 ∤ 73!.

e) Since 17 and 9 ∤ 17, 917−1 = 916 ≡ 1 (mod 17). Since 123456789 ≡ 5 (mod 16),

9123456789 = 916 × 916 × · · · × 916 × 95 ≡ 95 (mod 17)

thus
9123456789 ≡ 95 ≡ 8 (mod 17).

Problem 6. The proof is by contradiction. Suppose that there exists only a finite number of
primes. Let’s say that there are K primes, namely p1 < p2 < · · · < pK . Consider the number

n̄ =
K∏
i

pi + 1.

The remainder of the division of n̄ by pi is 1 for any i ∈ {1, · · · ,K}. Hence, pi ∤ n̄. This implies
that n̄ is coprime with pi for any i ∈ {1, · · · ,K}.

By assumption, p1, p2, · · · , pK are all the prime numbers. Therefore, n̄ is coprime with all
the prime numbers, which means that it is a prime number itself. As a result, we have found
another prime number different from p1, p2, · · · , pK . This is a contradiction.

Note that, in general, if you take the product of some primes and you add 1, you will not
necessarily obtain a prime number. Indeed, the result is only coprime with the prime numbers
that you choose to multiply!
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