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1. The statement is true. The proof follows.

Since f1 = ©(f2), there exists xg and constants ¢; > 0 and ¢z s.t. for all z > g,

cilfo(2)| < [fi(@)] < cof fa ()]

Since fi(z) > 0, then 62 > 0 Indeed, if co < 0, the inequality above cannot be satisfied.
As the function h(x) = 27! is decreasing for all > 0, we obtain that

hal f2(2)]) = h(| f1(2)]) = h(eal f2(2)]),

which implies that

(c2)” P (1 f2(@)) 7 < (@) < () (L))

Consequently, there exists z(, and constants ¢j > 0 and ¢, s.t. for all x > xf,

A f2(2)) 7 < (@)™ < (| f2(2)) 7.

Indeed, it is enough to take (), = zq, ¢} = (c2) ™3 > 0, and ¢} = (1) 713,

2. The statement is false. Indeed, pick fi(z) = x and fo(x) = 2z. Then, clearly fi(z) =
O(f2). By definition g;(z) = 11%, and go(z) = 112® = 121%. Therefore, it is not true that

g1 = Q(g2).

15.
Base step. If n = 0, the left hand side and the right hand side of the equality are both O.
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Induction step. Assume that E i3 = m Then,
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