
1. Vectors and the dot product

A vector ~v in R3 is an arrow. It has a direction and a length (aka
the magnitude), but the position is not important. Given a coordinate
axis, where the x-axis points out of the board, a little towards the left,
the y-axis points to the right and the z-axis points upwards, there are
three standard vectors ı̂, ̂ and k̂, which have unit length and point
in the direction of the x-axis, the y-axis and z-axis. Any vector in R3

may be written uniquely as a combination of these three vectors. For
example, the vector ~v = 3ı̂− 2̂+ 4k̂ represents the vector obtained by
moving 3 units along the x-axis, two units backwards along the y-axis
and four units upwards.

If we imagine moving the vector so it’s tail is at the origin then the
endpoint P determines the vector. The point P = (x, y, z) determines

the vector ~P = 〈x, y, z〉 starting at the origin and ending at the point
P . Obviously,

〈x, y, z〉 = xı̂+ ŷ+ zk̂ so that 〈3,−2, 4〉 = 3ı̂− 2̂+ 4k̂.

One advantage of this algebraic approach is that we can write down
vectors in R4, for example, 〈2, 1,−3, 5〉, 〈π, sin 2,−3, e3〉.

Question 1.1. What is the direction of the zero vector which starts
and ends at the origin?

We will adopt the convention that the zero vector points in every
direction. In coordinates the zero vector in R3 is given by 〈0, 0, 0〉.

The length of the vector ~v = 〈a, b, c〉 is the scalar

|~v| = (a2 + b2 + c2)1/2.

This is what you get if you apply Pythagoras’ Theorem, twice.
One can add vectors in R3. If you want to add ~u and ~v, move the

starting point of ~v to the endpoint of ~u; the sum is the arrow you get
by first going along ~u and then along ~v. To subtract two vectors is even
easier. The vector ~v− ~u is the vector starting at the endpoint of ~u and
ending at the endpoint of ~v.
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Figure 1. Addition and subtraction of vectors
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Algebraically, it is easy to add vectors, add them component by
component:

(3ı̂− 2̂+ 5k̂) + (−4ı̂+ 4̂+ 3k̂) = (3− 4)̂ı+ (−2 + 4)̂+ (5 + 3)k̂

= −ı̂+ 2̂+ 8k̂.

More compactly,

〈3,−2, 5〉+ 〈−4, 4, 3〉 = 〈−1, 2, 8〉.
Note that it doesn’t make sense to add a vector in R2 and a vector

in R3. You can see this either algebraically or geometrically.
One can also multiply a scalar λ by a vector ~v. λ~v is the vector

which is λ times as long as ~v. If λ > 0, λ~v has the same direction as ~v
and if λ < 0, then λ~v has the opposite direction. Either way, we will
say that λ~v is parallel to ~v.

Algebraically, it is again easy to multiply a scalar by a vector,

λ〈a, b, c〉 = 〈λa, λb, λc〉 so that − 3〈1, 2,−3〉 = 〈−3,−6, 9〉.
The direction is what is left after you remove the length,

û =
~v

|~v|
.

Note that û is a unit vector; it’s length is one. Vectors will always have
arrows on top of them, unit vectors hats.

We can always write a vector as a product of its length times its
direction,

~v = |~v|
(
~v

|~v|

)
.

For example,

〈1,−2, 2〉 = 3〈1/3,−2/3, 2/3〉 and 〈3, 4〉 = 5〈3/5, 4/5〉.

Question 1.2. Let M be the midpoint of the line segment AB. Find
the vector ~M in terms of the vectors ~A and ~B.

To get to M , from A, one has to go half way from A to B. The

vector from A to B is
−→
AB = ~B − ~A. Halfway means

1

2
( ~B − ~A),

and so this is the vector from A to M . Therefore

~M = ~A+
−−→
AM =

−→
A +

1

2
( ~B − ~A) =

1

2
( ~A+ ~B).

Question 1.3. Show that the diagonals of a parallelogram bisect each
other.
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Let’s give names to the usual suspects. Let’s call the vertices of the
parallelogram A, B, C and D. Let X and Y be the midpoints of the
diagonals. It is enough to show that X = Y (naming the midpoints
of the diagonals is the sneakiest part of the solution to this problem).
What do we know? Well, since we have a parallelogram,

−→
AB =

−−→
CD

~B − ~A = ~D − ~C

~B + ~C = ~A+ ~D.

(assuming we have labelled the vertices appropriately). We have

~X =
1

2
( ~A+ ~D) and ~Y =

1

2
( ~B + ~C).

So

~Y =
1

2
( ~B + ~C)

=
1

2
( ~A+ ~D)

= ~X.

Since the vectors ~X and ~Y both start at the origin we must have
X = Y , which is what we want.

Question 1.4. How do we multiply two vectors?

Actually there are two answers to this question. The first answer is
to take the dot product. If the vectors are

~v1 = 〈a1, b1, c1〉 and ~v2 = 〈a2, b2, c2〉,

then the dot product is the scalar

~v1 · ~v2 = a1a2 + b1b2 + c1c2.

For example,

〈1,−2, 4〉 · 〈3, 1,−2〉 = 1 · 3 + 1 · −2 + 4 · −2 = 3− 2− 8 = −7.

Note that

~v · ~v = |v|2.
The usual rules of algebra apply to the dot product:

(1) ~u · ~v = ~v · ~u.
(2) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.
(3) (λ~u) · ~v = λ(~u · ~v).
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Theorem 1.5 (Geometric interpretation of the dot product). If θ is
the angle between the two vectors ~u and ~v, then

~u · ~v = |~u||~v| cos θ.

Proof. If either ~u or ~v is the zero vector, then both sides are zero, and
we certainly have equality (and we can take θ to be any angle we please,
which is consistent with our convention that the zero vector points in
every direction). So we may assume that ~u and ~v are both non-zero. If
~u and ~v are parallel, then θ = 0 or π and it is straightforward to check
that both sides are equal.

Otherwise, let ~w = ~v − ~u, the third side of the triangle with sides
given by ~u and ~v. Then the square of the length of the third side is

|~w|2 = ~w · ~w
= (~v − ~u) · (~v − ~u)

= |~v|2 + |~u|2 − 2~u · ~v.

Compare this with the formula given by the cosine rule. If the lengths
of the three sides are are u, v and w, the cosine rule says,

w2 = u2 + v2 − 2uv cos θ.

Now u = |~u|, v = |~v| and w = |~w|, so putting these two formulae side
by side, we see

w2 = u2 + v2 − 2~u · ~v
w2 = u2 + v2 − 2uv cos θ,

so that subtracting we get

0 = 2(~u · ~v − uv cos θ),

whence the result. �

The virtue of (1.5) is that we can use it to find the angle between
two vectors.

Question 1.6. Consider the triangle in space with vertices A = (1, 0, 0),
B = (1, 1,−1) and C = (−1, 1, 0).
What is the angle at A?
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Let ~u =
−→
AB = 〈0, 1,−1〉 and ~v =

−→
AC = 〈−2, 1, 0〉. We want the

angle θ between ~u and ~v. Well,

cos θ =
~u · ~v
|~u||~v|

=
〈0, 1,−1〉 · 〈−2, 1, 0〉
|〈0, 1,−1〉||〈−2, 1, 0〉|

=
1√

2 ·
√

5

=
1√
10
.

In this case

θ = cos−1(
1√
10

) ≈ 1.25

radians, which in degrees is about 71.57.
What can we say about the sign of

~u · ~v
|~u||~v|

?

If this is positive we have an angle less than π/2 and if this is negative
an angle greater than π/2. It is zero if and only if the angle is π/2 and
the vectors are orthogonal.

Question 1.7. Fix a point Q and a vector ~n. What is the set of points

P = (x, y, z) such that the vector
−→
PQ is orthogonal to a vector ~n?

This is a plane.

Question 1.8. What is the set of points where 2x− y + 3z = 0?

One way to answer this question is to guess using an analogy. If we
were to drop a variable, we’d get 2x − y = 0, which represents a line
through the origin in R2. A reasonable guess is that this represents a
plane through the origin.

Suppose we put ~n = 〈2,−1, 3〉. Let P = (x, y, z) so that ~P =
〈x, y, z〉. Then

~P · ~n = 〈x, y, z〉 · 〈2,−1, 3〉 = 2x− y + 3z.

The condition that this is zero, represents the condition that the vector
~P is orthogonal to ~n. So this represents the plane through the origin
orthogonal to the vector 〈2,−1, 3〉.

Let ~F represent a force. Notice that this makes sense; forces have a
direction and a magnitude.
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Question 1.9. What is the component of the force ~F in the direction
û (this is a direction, so û is a unit vector)?

This is a scalar, a number. If one draws a triangle, with hypotenuse
given by ~F and one side parallel to û and θ is the angle between ~F
and û we want the length of the adjacent side. By the usual rules for
trigonometry this is the length of the hypotenuse times the cosine of
the angle θ, that is |~F | cos θ. But û has length one, so that |û| = 1. So

the component of ~F in the direction û is the dot product ~F · û.
Even if ~F is not a force, one can always take the component of ~F in

the direction of ~u.
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