
2. Cross products

Let’s suppose you want to calculate the area of a polygon in the
plane. Nothing easier, break the polygon into triangles and calculate
the area of each triangle.

Question 2.1. What is the area of a triangle, with two sides deter-
mined by the vectors ~u and ~v?

~u

~v

Figure 1. Area of parallelogram

The area of a triangle is 1/2 base × height, which is half of the area
of the corresponding parallelogram, where |~u| is the base and the length
of the green line is the height, |~v| sin θ. The area of the parallelogram is
|~u||~v| sin θ. How to get our hands on sin θ? One could use the identity,

cos2 θ + sin2 θ = 1,

to get a formula for sin θ in terms of cos θ and use the dot product, but
it is pretty clear that it is going to give an ugly formula.

We prefer cosines to sines, since cosines turn up in dot products. If
we have the complementary angle

φ =
π

2
− θ,

then we could use the fact that

sin θ = cos(
π

2
− θ) = cosφ.

In essence we want to rotate the vector ~u through π/2 radians coun-
terclockwise, Suppose the vector we get this way is ~u′.

Note that the angle between ~u′ and ~v is φ, which is what we want.
On the other hand, ~u and ~u′ have the same length. It follows that the
area of the parallelogram is

|~u||~v| sin θ = |~u′||~v| cosφ = ~u′ · ~v.
Question 2.2. If ~u = 〈a1, a2〉, then what is the vector ~u′?
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~u

~u′

Figure 2. Rotated vector

Well by trial and error ~u′ = 〈−a2, a1〉 is at right angles to ~u (the dot
product is zero). The vector ı̂ = 〈1, 0〉 gets sent to ̂ = 〈0, 1〉, which is
the right orientation (counterclockwise versus clockwise).

So the answer is ~u′ = 〈−a2, a1〉.

~u

~u′

Figure 3. ~u and ~u′

If ~v = 〈b1, b2〉, then putting all of this together, the formula for the
area of the parallelogram is simply

a1b2 − a2b1.
Let

A =

(
a1 a2
b1 b2

)
be a 2× 2 matrix. The determinant of A is

detA =

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ = a1b2 − a2b1.

So the determinant of the matrix A is the ± the area of the par-
allelogram determined by the first and second row, ~u = 〈a1, a2〉 and
~v = 〈b1, b2〉. The sign depends on whether or not ~u comes before or
after ~v (clockwise versus anticlockwise).

Now suppose we are given three vectors in R3,

~u = 〈a1, a2, a3〉 ~v = 〈b1, b2, b3〉 and ~w = 〈c1, c2, c3〉.
Put them into a 3 × 3 matrix, whose rows are the three vectors ~u, ~v
and ~w,

A =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 .
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The determinant of A is

detA =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2 ∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ .
It is ± the volume of the parallelepiped determined by the three vectors
~u, ~v and ~w. The sign of the determinant is determined by whether or
not the three vectors ~u, ~v and ~w form a right handed set.

Rule 2.3 (Right hand rule). The three vectors ~u, ~v and ~w form a right
handed set if when you point your right hand in the direction of ~u,
curl your fingers in the direction of ~v then your thumb points in the
direction of ~w.

The cross product of two vectors ~v and ~w is the vector given by the
formula

~v × ~w =

∣∣∣∣∣∣
ı̂ ̂ k̂
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = ı̂

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− ̂ ∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ k̂

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ .
Geometrically, ~v × ~w is the vector whose length is the area of the

parallelogram with sides ~v and ~w and whose direction is orthogonal to
the plane spanned by ~v and ~w, such that ~v, ~w and ~v × ~w form a right
handed set.

Question 2.4. What is ı̂× ̂?
Here are the algebraic rules to manipulate the cross product:

(1) ~v × ~w = −~w × ~v.
(2) (~u+ ~v)× ~w = ~u× ~w + ~v × ~w.
(3) (λ~u)× ~v = λ(~u× ~v).

Note that ~w×~v = −~v× ~w. In particular ~v×~v = ~0. One of the most
useful features of the cross product is that the cross product ~v × ~w is
orthogonal to both ~v and ~w.

Question 2.5. What is the equation of the plane containing P1 =
(1, 1, 1), P2 = (1, 2, 3) and P3 = (−1,−2, 1)?

I will give you two methods to answer this question, the first using
determinants the second using the cross product.

Two vectors in the plane are

~v =
−−→
P1P2 = 〈0, 1, 2〉 and ~w =

−−→
P1P3 = 〈−2,−3, 0〉.

Let P = (x, y, z) be a general point of space. P belongs to the plane
if and only if the vector

−−→
P1P = 〈x− 1, y − 1, z − 1〉,
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lies in the plane. But this is the case if and only if the volume of the
parallelepiped spanned by ~v, ~w and 〈x− 1, y− 1, z − 1〉 is zero, that is
when ∣∣∣∣∣∣

x− 1 y − 1 z − 1
0 1 2
−2 −3 0

∣∣∣∣∣∣ = 0.

If we expand the determinant, we get

(x−1)

∣∣∣∣ 1 2
−3 0

∣∣∣∣−(y−1)

∣∣∣∣ 0 2
−2 0

∣∣∣∣+(z−1)

∣∣∣∣ 0 1
−2 −3

∣∣∣∣ = 6(x−1)−4(y−1)+2(z−1).

So
3(x− 1)− 2(y − 1) + (z − 1) = 0,

and expanding we get
3x− 2y + z = 2.

Here is the second method. The plane is specified by fixing one point
P1 in the plane and requiring that every vector in the plane with tail
P1 is orthogonal to a fixed vector ~n, a normal vector to the plane.
~n is orthogonal to ~v and ~w, so we could take ~n to be the cross product.

~v× ~w =

∣∣∣∣∣∣
ı̂ ̂ k̂
0 1 2
−2 −3 0

∣∣∣∣∣∣ = ı̂

∣∣∣∣ 1 2
−3 0

∣∣∣∣−̂ ∣∣∣∣ 0 2
−2 0

∣∣∣∣+k̂ ∣∣∣∣ 0 1
−2 −3

∣∣∣∣ = 6ı̂−4̂+2k̂.

Therefore ~n = 3ı̂− 2̂+ k̂ is a normal vector to the plane. P lies in the

plane if and only if
−−→
P1P is orthogonal to ~n, if and only if

〈x− 1, y − 1, z − 1〉 · 〈3,−2, 1〉 = 0.

Expanding gives the same equation as before.
There is one more product, which is sometimes useful. Given three

vectors, ~u, ~v and ~w, the scalar triple product is the scalar

~u · (~v × ~w).

It is the signed volume of the parallelepiped determined by ~u, ~v and ~w
(the sign is positive if ~u, ~v and ~w form a right handed set and negative
if they form a left handed set).
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