27. VECTOR FIELDS IN SPACE
A vector field in space is given by
F = Pi+Qj+ Rk =(P,Q,R).

Here the components, P, () and R are scalar functions of z, y and z.
F" could be a force field;
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is the force due to gravity. There is both an electric E and a magnetic

field B. There are velocity fields ¢ and gradient vector fields.

In space, we can measure the flux of F' across a surface S,

//ﬁ-ﬁds.
S

Here n is a unit normal to the surface. There are two choices of n; we
have to choose an orientation, a direction which we decide is positive.
Notation:

dS = nds.
Suppose that F represents the velocity vector field of some fluid. The
amount of water that crosses a small piece of surface in unit time is
approximately a parallelepiped with area of base AS and height F - n,

F-nAS.
Suppose
F = zi+yj+ zk,
and S is the surface of a sphere of radius a, centred at the origin. Orient
the surface S so that the unit normal points outwards,

n = a(x,y, z).
In this case
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Now suppose we work with F = zk. Then
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Hence



So the flux is
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The inner integral is
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The outer integral is
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In general, it can be quite hard to parametrise a surface. We will
need two parameters to describe the surface and we must express

F-7ds,
in terms of them. We must also orient the surface:
Question 27.1. Can one always orient a surface?

In fact, somewhat surprisingly, the answer is no. The Mobius band
is a surface that cannot be oriented.
To begin with, here are some easy special cases:

(1) If z = a is a horizontal plane then
dS = kdz dy,

(here we choose the upwards orientation).
(2) For the surface of a sphere of radius a centred at the origin then

dS = na®sin ¢ do do,
where
n = 5(337 Y, Z>a

so that
dS = asin¢(x,y, z) dp d6.
(3) For a cylinder of radius a centred on the z-axis, use z, 0.
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which points radially out of the cylinder.

dS =adzdb,

so that
dS = (z,y,0) dzd6.
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(4) For the graph of a function f(z,y),
dS = (~fu, = f,, )dz dy.
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