
6. Velocity and Acceleration

A particle moving in space sweeps out a curve. The position vector

~r(t) = x(t)̂ı+ y(t)̂+ z(t)k̂ = 〈x(t), y(t), z(t)〉,

is naturally a function of time t. For example, the cycloid

~r(t) = 〈t− sin t, 1− cos t〉.

The velocity vector is simply the derivative of the position vector
with respect to time

~v(t) =
d~r

dt
= 〈dx

dt
,
dy

dt
〉.

Notice that velocity is a vector; it has a magnitude and a direction. In
the case of the cycloid,

~v(t) = 〈1− cos t, sin t〉.

At time t = 0, the rotation and the motion of the wheel cancel

~v(0) = 〈0, 0〉,

and at time t = π

~v(π) = 〈2, 0〉,
they combine.

The magnitude of the velocity is the speed |~v|. For the cycloid, the
speed is

|〈1− cos t, sin t〉| = ((1− cos t)2 + sin2 t)1/2 =
√

2(1− cos t)1/2.

At t = 0 the speed is zero and at t = π the speed is 2.
The acceleration vector is simply the derivative of the velocity vector

with respect to time,

~a =
d~v

dt
.

For the cycloid the acceleration vector is

~a = 〈sin t, cos t〉.

Question 6.1. What is the speed?

It is

|d~r
dt
|.

It is not
d|~r|
dt

.
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For example, imagine going around a circle. Then |~r| is constant, so
that the second expression is zero. But you can speed up and slow
down even if you are going around a circle.

Let s be the distance travelled along the path. Then

ds

dt
= |~v|,

is the speed. So we can recover the distance travelled by integrating
the speed. However it is not always so easy to do this. For the cycloid,
one full revolution is

s =

∫ 2π

0

√
2− 2 cos t dt.

If one uses the trigonometric identity,

1− cos t = 2 sin2(t/2),

one see that the integrand is

2 sin(t/2),

at least when sin(t/2) ≥ 0. So the integral is

4

∫ π/2

0

2 sin(t/2) dt = 4 [−4 cos(t/2)]π/20 = 4− 23/2.

Most of the time it is not possible to calculate the integral. s is called
the arclength parameter.

The unit tangent vector is the direction of the velocity,

T̂ =
~v

|~v|
.

In fact
d~r

dt
=
d~r

ds

ds

dt
= T̂

ds

dt
= |~v|T̂ .

Based on some astronomical observations of Tycho Brahe, Johannes
Kepler formulated three laws of planetary motion. The second law
states that the area swept out by the vector from the sun to the planet
sweeps out equal area in equal time. Newton derived all of Kepler’s
laws from calculus and his universal theory of gravitation.

It is relatively easy to derive Kepler’s second law using vector calcu-
lus.

The area swept out in time ∆t is approximately

1

2
|~r ×∆~r| ≈ 1

2
|~r × ~v|∆t.
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Figure 1. Area swept out in time ∆t

So Kepler’s second law may be restated as saying

dA

dt
=

1

2
|~r × ~v|,

is constant. Now ~r × ~v is perpendicular to the plane of motion, so the
direction of the cross product ~r × ~v is constant. Putting all of this
together, Kepler’s second law says that the cross product

~r × ~v
is a constant vector.

The usual Leibniz rule applies to both the dot and the cross product.

d(~a ·~b)
dt

= ~a · d
~b

dt
+
d~a

dt
·~b,

and
d(~a×~b)

dt
= ~a× d~b

dt
+
d~a

dt
×~b.

For dot products, we don’t need to be careful about the order but the
order is important for the cross product.

~0 =
d(~r × ~v)

dt

= ~r × d~v

dt
+
d~r

dt
× ~v.

= ~r × ~a+ ~v × ~v.
= ~r × ~a.

It follows that r×~v is constant if and only if the acceleration vector
is parallel to ~r. Note that Newton’s second law has a vector form

~F = m~a.

So the acceleration ~a is parallel to ~r if and only if the force ~F is parallel
to ~r. In other words, Kepler’s second law is equivalent to the statement
that the force is directed to the sun.

3


	6. Velocity and Acceleration

