
9. Max-min problems

Let z = f(x, y) be a differentiatiable function. If f has a local min-
imum or maximum at (x0, y0) then fx(x0, y0) = 0 and fy(x0, y0) are
both zero. In this case the tangent plane is horizontal, since the tan-
gent plane is determined by the two tangent lines to the coordinate
cross-sections, and these are both horizontal. Equivalently, by the ap-
proximation formula, ∆f ≈ 0 (or even better, |∆f | is much smaller
than either |∆x or |∆y|).

We say that (x0, y0) is a critical point of f(x, y) if

fx(x0, y0) = 0 and fy(x0, y0) = 0.

Critical points come in three different flavours: a local minimum, a
local maximum or a saddle point.

Question 9.1. Find the critical points of

f(x, y) = 5x2 + 2xy + 10y2 + 18x− 16y + 30.

The partials are

fx(x, y) = 10x + 2y + 18 and fy(x, y) = 2x + 20y − 16.

If we set those equal to zero, we get the critical points. We get two
simultaneous linear equations,

5x + y = −9

x + 10y = 8.

Hence 49y = 49, y = 1 and so x = −2. (−2, 1) is the only critical
point. Note that

f(x, y) = (x + 3y − 1)2 + (2x− y + 5)2 + 4,

and so we have a minimum. The minimum value is 4. Note that we
have a paraboloid (shifted and rescaled).

Suppose that we want to maximise and minimise a function of two
variables. If we have a function of one variable on an interval we find
the critical points, check to see if they are maxima or minima (possibly
using the 2nd derivative test) and then compare these with the values
at the endpoints.

For a function of two variables we will do the same thing but note
that checking to see what happens at the endpoints now means checking
to see what happens on the boundary of the region.

Question 9.2. What is the maximum and minimum value of

f(x, y) = 5x2 + 2xy + 10y2 + 18x− 16y + 30.

over the region −3 ≤ x ≤ 3 and −2 ≤ y ≤ 2?
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The region is a rectangle with sides x = 3, −2 ≤ y ≤ 2; x = −33,
−2 ≤ y ≤ 2; −3 ≤ x ≤ 3, y = 2; −3 ≤ x ≤ 3, y = −2:
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Figure 1. Boundary of region in xy-plane

Since there is only one critical point, a local minimum inside the
boundary, we know the minimum is 4 (think about why this is true!),
but the maximum must occur on the boundary. When y = 2 we get

g(x) = f(x, 2) = 5x2 + 4x + 40 + 18x− 32 + 30 = 5x2 + 22x− 38,

a function of one variable. g(x) is a parabola, so has a local minimum.
The maximum of g(x) is at one of the endpoints, x = 3 or x = −3,
which correspond to P = (3, 2) and Q = (−3, 2) for f(x, y). A similar
analysis along the other three edges tells us the maximum must occur
at one of P , Q, R and S. Plugging in values we see that the maximum
is at R = (3,−2) and the maximum value is 189.

Suppose we have a bunch of data, a collection of pairs (xi, yi), 1 ≤
i ≤ n. We try to fit a curve to this data. Quite often we expect the
data to lie along a line. We posit that the data fits the equation,

y = ax + b.

Here a and b are unknowns and we try to find the best choice of a and
b. The deviations are

yi − (axi + b).

We choose a and b to minimise the sum of the squares of the deviations

D =
∑
i

(yi − (axi + b))2.

We find the critical points of D,

∂D

∂a
= 0 and

∂D

∂b
= 0.

This gives two equations∑
i

2(yi−(axi+b))(−xi) = 0 and
∑
i

2(yi−(axi+b))(−1) = 0.
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Collecting together terms in these expressions we get

(
∑
i

x2
i )a + (

∑
xi)b =

∑
i

xiyi

(
∑
i

xi)a + nb =
∑
i

yi.

The same method works when we try to fit data to other functions.
For example, imagine trying to fit data to exponential functions y =
ceax. In this case take logs of both sides to get

ln y = ln(ceax) = ln c + ax.

Put b = ln c and we are down to the method of least squares, with the
data (xi, ln yi).

For example, Moore’s law predicts that the number of transistors on
an integrated circuit doubles roughly every two years. The following
picture (source: wikipedia) plots the year against a log of the number
of the transitors. Note the almost uncanny fit.
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