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PREFACE

NEW TO THE SIXTH EDITION

= Use of modern Shader-Based OpenGL throughout
= No use of OpenGL functions deprecated with OpenGL 3.1

= Increased detail on implementing transformations and viewing in both appli-
cation code and shaders

= Consistency with OpenGL ES 2.0 and WebGL
®  Use of C++ instead of C

= Addition of vector and matrix classes to create application code compatible
with the OpenGL Shading Language (GLSL)

= Discussion of per-vertex and per-fragment lighting

= Addition of polygon and Delaunay triangularization

= Introduction to volume rendering

= All code examples redone to be compatible with OpenGL 3.1

= New co-author, Dave Shreiner, author of the OpenGL Programming Guide

his book is an introduction to computer graphics, with an emphasis on applica-

tions programming. The first edition, which was published in 1997, was some-
what revolutionary in using a standard graphics library and a top-down approach.
Over the succeeding 13 years and five editions, this approach has been adopted by
most introductory classes in computer graphics and by virtually all the competing
textbooks.

The major changes in graphics hardware over the past few years have led to major
changes in graphics software. For its first fifteen years, new OpenGL versions were
released with new versions always guaranteeing backward compatibility. The ability
to reuse code as the underlying software was upgraded was an important virtue, both
for developers of applications and for instructors of graphics classes. OpenGL 3.0
announced major changes, one of the key ones being that, starting with OpenGL 3.1,
many of the most common functions would be deprecated. This radical departure
from previous versions reflects changes needed to make use of the capabilities of the
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Preface

latest programmable graphics units (GPUs). These changes are also part of OpenGL
ES 2.0, which is being used to develop applications on mobile devices such as cell
phones and tablets, and WebGL, which is supported on most of the latest browsers.

As the authors of the previous five editions of this textbook (EA) and of the
OpenGL Programming Guide and OpenGL ES 2.0 Programming Guide (DS), we were
confronted with a dilemma as to how to react to these changes. We had been writ-
ing books and teaching introductory OpenGL courses at SIGGRAPH for many years.
We found that almost no one in the academic community, or application program-
mers outside the high-end game world, knew about these changes, and those of our
colleagues who did know about them did not think we could teach these concepts
at the beginning level. That was a challenge we couldn’t resist. We started by teach-
ing a half-day short course at SIGGRAPH, which convinced us that we could teach
someone without previous graphics programming experience how to write a non-
trivial shader-based OpenGL application program with just a little more work than
with earlier versions of OpenGL.

As we developed this edition, we discovered some other reasons that convinced
us that this approach is not only possible but even better for students learning com-
puter graphics. Only a short while ago, we touted the advantages OpenGL gave us
by being available for Windows, Linux, and Mac OS X so we could teach a course in
which students could work in the environment they preferred. With OpenGL ES and
WebGL they can now develop applications for their cell phones or Web browsers. We
believe that this will excite both students and instructors about computer graphics
and open up many new educational and commercial opportunities.

We feel that of even greater importance to the learning experience is the removal
of most defaults and the fixed function pipeline in these new versions of OpenGL. At
first glance, this removal may seem like it would make teaching a first course much
harder. Maybe a little harder; but we contend much better. The tendency of most
students was to rely on these functions and not pay too much attention to what the
textbook and instructor were trying to teach them. Why bother when they could use
built-in functions that did perspective viewing or lighting? Now that those functions
are gone and students have to write their own shaders to do these jobs, they have to
start by understanding the underlying principles and mathematics.

A Top-Down Approach

These recent advances and the success of the first five editions continue to reinforce
our belief in a top-down, programming-oriented approach to introductory computer
graphics. Although many computer science and engineering departments now sup-
port more than one course in computer graphics, most students will take only a single
course. Such a course is placed in the curriculum after students have already studied
programming, data structures, algorithms, software engineering, and basic mathe-
matics. A class in computer graphics allows the instructor to build on these topics
in a way that can be both informative and fun. We want these students to be pro-
gramming three-dimensional applications as soon as possible. Low-level algorithms,



such as those that draw lines or fill polygons, can be dealt with later, after students are
creating graphics.

John Kemeny, a pioneer in computer education, used a familiar automobile
analogy: You don’t have to know what’s under the hood to be literate, but unless
you know how to program, you'll be sitting in the back seat instead of driving. That
same analogy applies to the way we teach computer graphics. One approach—the
algorithmic approach—is to teach everything about what makes a car function: the
engine, the transmission, the combustion process. A second approach—the survey
approach—is to hire a chauffeur, sit back, and see the world as a spectator. The third
approach—the programming approach that we have adopted here—is to teach you
how to drive and how to take yourself wherever you want to go. As the old auto-rental
commercial used to say, “Let us put you in the driver’s seat.”

Programming with OpenGL and C++

When Ed began teaching computer graphics over 25 years ago, the greatest imped-
iment to implementing a programming-oriented course, and to writing a textbook
for that course, was the lack of a widely accepted graphics library or application pro-
grammer’s interface (API). Difficulties included high cost, limited availability, lack of
generality, and high complexity. The development of OpenGL resolved most of the
difficulties many of us had experienced with other APIs (such as GKS and PHIGS)
and with the alternative of using home-brewed software. OpenGL today is supported
on all platforms. It is bundled with Microsoft Windows and Mac OS X. Drivers are
available for virtually all graphics cards. There is also an OpenGL API called Mesa
that is included with most Linux distributions.

A graphics class teaches far more than the use of a particular API, but a good API
makes it easier to teach key graphics topics, including three-dimensional graphics,
lighting and shading, client—server graphics, modeling, and implementation algo-
rithms. We believe that OpenGL’s extensive capabilities and well-defined architecture
lead to a stronger foundation for teaching both theoretical and practical aspects of
the field and for teaching advanced concepts, including texture mapping, composit-
ing, and programmable shaders.

Ed switched his classes to OpenGL about 15 years ago, and the results astounded
him. By the middle of the semester, every student was able to write a moderately com-
plex three-dimensional program that required understanding of three-dimensional
viewing and event-driven input. In previous years of teaching computer graphics, he
had never come even close to this result. That class led to the first edition of this book.

This book is a textbook on computer graphics; it is not an OpenGL manual.
Consequently, it does not cover all aspects of the OpenGL API but rather explains
only what is necessary for mastering this book’s contents. It presents OpenGL at a
level that should permit users of other APIs to have little difficulty with the material.

Unlike previous editions, this one uses C++ rather than C as the dominant
programming language. The reason has to do with the OpenGL Shading Language
(GLSL) used to write shaders, the programs that control the GPU. GLSL is a C-like
language with atomic data types that include vectors and matrices, and overloaded
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basic operators to manipulate them. All the modern versions of OpenGL require ev-
ery application to provide two shaders; hence students need to use these features,
which are supported in C++. By using just this part of C++ (simple classes, con-
structors, overloaded operators), we can implement fundamental graphics concepts,
such as transformations and lighting, in either the application or in a shader with vir-
tually identical code. In addition, using the simple matrix and vector classes that are
provided on the book’s Web site leads to much clearer, shorter code. Students who
have started with Java or C should have little trouble with the code in the book.

Intended Audience

This book is suitable for advanced undergraduates and first-year graduate students
in computer science and engineering and for students in other disciplines who have
good programming skills. The book also will be useful to many professionals. Be-
tween us, we have taught well over 100 short courses for professionals; our experi-
ences with these nontraditional students have had a great influence on what we have
chosen to include in the book.

Prerequisites for the book are good programming skills in C++, Java, or C;
an understanding of basic data structures (linked lists, trees); and a rudimentary
knowledge of linear algebra and trigonometry. We have found that the mathematical
backgrounds of computer science students, whether undergraduates or graduates,
vary considerably. Hence, we have chosen to integrate into the text much of the linear
algebra and geometry that is required for fundamental computer graphics.

Organization of the Book

The book is organized as follows. Chapter 1 provides an overview of the field and in-
troduces image formation by optical devices; thus, we start with three-dimensional
concepts immediately. Chapter 2 introduces programming using OpenGL. Although
the first example program that we develop—each chapter has one or more complete
programming examples—is two-dimensional, it is embedded in a three-dimensional
setting and leads to a three-dimensional extension. We also introduce interactive
graphics and develop event-driven graphics programs. Chapters 3 and 4 concentrate
on three-dimensional concepts: Chapter 3 is concerned with defining and manipu-
lating three-dimensional objects, whereas Chapter 4 is concerned with viewing them.
Chapter 5 introduces light—material interactions and shading. These chapters should
be covered in order and can be taught in about 10 weeks of a 15-week semester.

The next six chapters can be read in almost any order. All six are somewhat open
ended and can be covered at a survey level, or individual topics can be pursued in
depth. Chapter 6 surveys rasterization. It gives one or two major algorithms for each
of the basic steps, including clipping, line generation, and polygon fill. Chapter 7 in-
troduces many of the new discrete capabilities that are now supported in graphics
hardware and by OpenGL. All these techniques involve working with various buffers.
It concludes with a short discussion of aliasing problems in computer graphics. Chap-
ters 6 and 7 conclude the discussion of the standard viewing pipeline used by all
interactive graphics systems.



Chapter 8 contains a number of topics that fit loosely under the heading of
hierarchical modeling. The topics range from building models that encapsulate the
relationships between the parts of a model, to high-level approaches to graphics over
the Internet. It includes an introduction to scene graphs and Open Scene Graph.
Chapter 9 introduces a number of procedural methods, including particle systems,
fractals, and procedural noise. Curves and surfaces, including subdivision surfaces,
are discussed in Chapter 10. Chapter 11 surveys alternate approaches to rendering.
It includes expanded discussions of ray tracing and radiosity, and an introduction to
image-based rendering and parallel rendering.

Programs, primarily from the first part of the book, are included in Appendix A.
They are also available online (see Support Materials). Appendices B and C contain
a review of the background mathematics. Appendix D contains a synopsis of the
OpenGL functions used in the book.

Changes from the Fifth Edition

The reaction of readers to the first five editions of this book was overwhelmingly pos-
itive, especially to the use of OpenGL and the top-down approach. Although each
edition added material to keep up with what was going on in the field, the fifth edi-
tion made a major change by introducing programmable shaders and the OpenGL
Shading Language. This material was somewhat optional because the existing ver-
sions of OpenGL were backward compatible. Most instructors chose to focus on the
first six chapters and didn’t get to programmable shaders.

As we pointed out at the beginning of this preface, with modern OpenGL, every
application must provide shaders. Most of the basic functions from earlier versions,
including those that specified geometry, transformations, and lighting parameters,
have been deprecated. Consequently, programmable shaders and GLSL need to be in-
troduced in Chapter 2. Many of the examples produce the same output as in previous
editions but the code is very different.

We decided to incorporate the core material on interactivity in Chapter 2 and
eliminate the separate chapter on input and interactivity. Thus, Chapter 2 became a
little longer, but compared to previous editions, we feel that the added material on
programmable shaders will only slightly delay the assignment of a first programming
exercise.

Programmable shaders give the application programmer a choice of where to
carry out most of the core graphics functionality. We have reorganized some of the
material so as to be able to show the options together for a particular topic. For
example, carrying out the lighting calculation in the application, in a vertex shader,
and in a fragment shader are all in Chapter 5.

Given the positive feedback we’ve received on the core material from Chapters 1-
6 in previous editions, we’ve tried to keep the changes to those chapters (now Chap-
ters 1-5) to a minimum. We still see Chapters 1-5 as the core of any introductory
course in computer graphics. Chapters 6-11 can be used in almost any order, either
as a survey in a one-semester course or as the basis of a two-semester sequence.
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Support Materials

The support for the book is on the Web, both through the author’s Web site www.cs
.unm.edu/~angel and Addison-Wesley’s site www.aw.com/cssupport. Support mate-
rial that is available to all readers of this book includes

= Sources of information on OpenGL

= Instructions on how to get started with OpenGL on the most popular systems
= Additional material on writing more robust OpenGL applications

= Program code

= Solutions to selected exercises

= PowerPoint lectures

= Figures from the book

Additional support materials, including solutions to all the nonprogramming
exercises, are available only to instructors adopting this textbook for classroom use.
Please contact your school’s Addison-Wesley representative for information on ob-
taining access to this material.
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GRAPHICS SYSTEMS
AND MODELS

It would be difficult to overstate the importance of computer and communication
technologies in our lives. Activities as wide-ranging as film making, publishing,
banking, and education have undergone revolutionary changes as these technologies
alter the ways in which we conduct our daily activities. The combination of comput-
ers, networks, and the complex human visual system, through computer graphics,
has been instrumental in these advances and has led to new ways of displaying in-
formation, seeing virtual worlds, and communicating with both other people and
machines.

Computer graphics is concerned with all aspects of producing pictures or im-
ages using a computer. The field began humbly 50 years ago, with the display of a few
lines on a cathode-ray tube (CRT); now, we can generate images by computer that
are indistinguishable from photographs of real objects. We routinely train pilots with
simulated airplanes, generating graphical displays of a virtual environment in real
time. Feature-length movies made entirely by computer have been successful, both
critically and financially.

In this chapter, we start our journey with a short discussion of applications of
computer graphics. Then we overview graphics systems and imaging. Throughout
this book, our approach stresses the relationships between computer graphics and
image formation by familiar methods, such as drawing by hand and photography. We
will see that these relationships can help us to design application programs, graphics
libraries, and architectures for graphics systems.

In this book, we introduce a particular graphics software system, OpenGL, which
has become a widely accepted standard for developing graphics applications. Fortu-
nately, OpenGL is easy to learn, and it possesses most of the characteristics of other
popular graphics systems. Our approach is top-down. We want you to start writing,
as quickly as possible, application programs that will generate graphical output. Af-
ter you begin writing simple programs, we shall discuss how the underlying graphics
library and the hardware are implemented. This chapter should give a sufficient over-
view for you to proceed to writing programs.




Chapter 1

Graphics Systems and Models

1.1 APPLICATIONS OF COMPUTER GRAPHICS

The development of computer graphics has been driven both by the needs of the user
community and by advances in hardware and software. The applications of computer
graphics are many and varied; we can, however, divide them into four major areas:

1. Display of information
2. Design
3. Simulation and animation

4. User interfaces

Although many applications span two or more of these areas, the development of the
field was based on separate work in each.

1.1.1 Display of Information

Classical graphics techniques arose as a medium to convey information among peo-
ple. Although spoken and written languages serve a similar purpose, the human vi-
sual system is unrivaled both as a processor of data and as a pattern recognizer. More
than 4000 years ago, the Babylonians displayed floor plans of buildings on stones.
More than 2000 years ago, the Greeks were able to convey their architectural ideas
graphically, even though the related mathematics was not developed until the Re-
naissance. Today, the same type of information is generated by architects, mechanical
designers, and draftspeople using computer-based drafting systems.

For centuries, cartographers have developed maps to display celestial and geo-
graphical information. Such maps were crucial to navigators as these people explored
the ends of the earth; maps are no less important today in fields such as geographic
information systems. Now, maps can be developed and manipulated in real time over
the Internet.

Over the past 100 years, workers in the field of statistics have explored techniques
for generating plots that aid the viewer in determining the information in a set of
data. Now, we have computer plotting packages that provide a variety of plotting
techniques and color tools that can handle multiple large data sets. Nevertheless, it
is still the human’s ability to recognize visual patterns that ultimately allows us to
interpret the information contained in the data. The field of information visualiza-
tion is becoming increasingly more important as we have to deal with understanding
complex phenomena from problems in bioinformatics to detecting security threats.

Medical imaging poses interesting and important data-analysis problems. Mod-
ern imaging technologies—such as computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound, and positron-emission tomography (PET)—generate
three-dimensional data that must be subjected to algorithmic manipulation to pro-
vide useful information. Color Plate 20 shows an image of a person’s head in which
the skin is displayed as transparent and the internal structures are displayed as
opaque. Although the data were collected by a medical imaging system, computer
graphics produced the image that shows the structures.



1.1 Applications of Computer Graphics

Supercomputers now allow researchers in many areas to solve previously in-
tractable problems. The field of scientific visualization provides graphical tools that
help these researchers to interpret the vast quantity of data that they generate. In fields
such as fluid flow, molecular biology, and mathematics, images generated by conver-
sion of data to geometric entities that can be displayed have yielded new insights into
complex processes. For example, Color Plate 19 shows fluid dynamics in the mantle
of the earth. The system used a mathematical model to generate the data. We present
various visualization techniques as examples throughout the rest of the text.

1.1.2 Design

Professions such as engineering and architecture are concerned with design. Starting
with a set of specifications, engineers and architects seek a cost-effective and esthetic
solution that satisfies the specifications. Design is an iterative process. Rarely in the
real world is a problem specified such that there is a unique optimal solution. Design
problems are either overdetermined, such that they possess no solution that satisfies
all the criteria, much less an optimal solution, or underdetermined, such that they
have multiple solutions that satisfy the design criteria. Thus, the designer works in an
iterative manner. She generates a possible design, tests it, and then uses the results as
the basis for exploring other solutions.

The power of the paradigm of humans interacting with images on the screen
of a CRT was recognized by Ivan Sutherland over 40 years ago. Today, the use of
interactive graphical tools in computer-aided design (CAD) pervades fields such as
architecture and the design of mechanical parts and of very-large-scale integrated
(VLSI) circuits. In many such applications, the graphics are used in a number of
distinct ways. For example, in a VLSI design, the graphics provide an interactive
interface between the user and the design package, usually by means of such tools
as menus and icons. In addition, after the user produces a possible design, other
tools analyze the design and display the analysis graphically. Color Plates 9 and 10
show two views of the same architectural design. Both images were generated with the
same CAD system. They demonstrate the importance of having the tools available to
generate different images of the same objects at different stages of the design process.

1.1.3 Simulation and Animation

Once graphics systems evolved to be capable of generating sophisticated images in
real time, engineers and researchers began to use them as simulators. One of the most
important uses has been in the training of pilots. Graphical flight simulators have
proved both to increase safety and to reduce training expenses. The use of special
VLSI chips has led to a generation of arcade games as sophisticated as flight simula-
tors. Games and educational software for home computers are almost as impressive.

The success of flight simulators led to the use of computer graphics for anima-
tion in the television, motion-picture, and advertising industries. Entire animated
movies can now be made by computer at a cost less than that of movies made with
traditional hand-animation techniques. The use of computer graphics with hand an-
imation allows the creation of technical and artistic effects that are not possible with
either alone. Whereas computer animations have a distinct look, we can also generate
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photorealistic images by computer. Images that we see on television, in movies, and
in magazines often are so realistic that we cannot distinguish computer-generated
or computer-altered images from photographs. In Chapter 5 we discuss many of the
lighting effects used to produce computer animations. Color Plates 23 and 16 show
realistic lighting effects that were created by artists and computer scientists using an-
imation software. Although these images were created for commercial animations,
interactive software to create such effects is widely available, Color Plate 14 shows
some of the steps used to create an animation. The images in Color Plates 15 and 16
also are realistic renderings.

The field of virtual reality (VR) has opened up many new horizons. A human
viewer can be equipped with a display headset that allows her to see separate images
with her right eye and her left eye so that she has the effect of stereoscopic vision. In
addition, her body location and position, possibly including her head and finger po-
sitions, are tracked by the computer. She may have other interactive devices available,
including force-sensing gloves and sound. She can then act as part of a computer-
generated scene, limited only by the image-generation ability of the computer. For
example, a surgical intern might be trained to do an operation in this way, or an as-
tronaut might be trained to work in a weightless environment. Color Plate 22 shows
one frame of a VR simulation of a simulated patient used for remote training of med-
ical personnel.

Simulation and virtual reality have come together in many exciting ways in the
film industry. Recently, stereo (3D) movies have become both profitable and highly
acclaimed by audiences. Special effects created using computer graphics are part of
virtually all movies, as are more mundane uses of computer graphics such as removal
of artifacts from scenes. Simulations of physics are used to create visual effects ranging
from fluid flow to crowd dynamics.

1.1.4 User Interfaces

Our interaction with computers has become dominated by a visual paradigm that in-
cludes windows, icons, menus, and a pointing device, such as a mouse. From a user’s
perspective, windowing systems such as the X Window System, Microsoft Windows,
and the Macintosh Operating System differ only in details. More recently, millions of
people have become users of the Internet. Their access is through graphical network
browsers, such as Firefox, Chrome, Safari, and Internet Explorer, that use these same
interface tools. We have become so accustomed to this style of interface that we often
forget that what we are doing is working with computer graphics.

Although we are familiar with the style of graphical user interface used on most
workstations,! advances in computer graphics have made possible other forms of in-

1. Although personal computers and workstations evolved by somewhat different paths, at present,
there is virtually no fundamental difference between them. Hence, we shall use the terms personal
computer and workstation synonymously.



1.2 A Graphics System

terfaces. Color Plate 13 shows the interface used with a high-level modeling package.
It demonstrates the variety both of the tools available in such packages and of the
interactive devices the user can employ in modeling geometric objects.

1.2 A GRAPHICS SYSTEM

A computer graphics system is a computer system; as such, it must have all the
components of a general-purpose computer system. Let us start with the high-level
view of a graphics system, as shown in the block diagram in Figure 1.1. There are six
major elements in our system:

1. Input devices

. Central Processing Unit

. Graphics Processing Unit
. Memory

. Frame buffer

A U1 s WN

. Output devices

This model is general enough to include workstations and personal computers,
interactive game systems, mobile phones, GPS systems, and sophisticated image-
generation systems. Although most of the components are present in a standard
computer, it is the way each element is specialized for computer graphics that char-
acterizes this diagram as a portrait of a graphics system.

1.2.1 Pixels and the Frame Buffer

Virtually all modern graphics systems are raster based. The image we see on the out-
put device is an array—the raster—of picture elements, or pixels, produced by the
graphics system. As we can see from Figure 1.2, each pixel corresponds to a location,

Central Graphics Frame

processor processor buffer
1 i
CPU GPU
Memory Memory

FIGURE 1.1 A graphics system.
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FIGURE 1.2 Pixels. (a) Image of Yeti the cat. (b) Detail of area around
one eye showing individual pixels.

or small area, in the image. Collectively, the pixels are stored in a part of mem-
ory called the frame buffer. The frame buffer can be viewed as the core element
of a graphics system. Its resolution—the number of pixels in the frame buffer—
determines the detail that you can see in the image. The depth, or precision, of the
frame buffer, defined as the number of bits that are used for each pixel, determines
properties such as how many colors can be represented on a given system. For exam-
ple, a 1-bit-deep frame buffer allows only two colors, whereas an 8-bit-deep frame
buffer allows 28 (256) colors. In full-color systems, there are 24 (or more) bits per
pixel. Such systems can display sufficient colors to represent most images realistically.
They are also called true-color systems, or RGB-color systems, because individual
groups of bits in each pixel are assigned to each of the three primary colors—red,
green, and blue—used in most displays. High dynamic range (HDR) systems use 12
or more bits for each color component. Until recently, frame buffers stored colors in
integer formats. Recent frame buffers use floating point and thus support HDR colors
more easily.

In a very simple system, the frame buffer holds only the colored pixels that are
displayed on the screen. In most systems, the frame buffer holds far more informa-
tion, such as depth information needed for creating images from three-dimensional
data. In these systems, the frame buffer comprises multiple buffers, one or more of
which are color buffers that hold the colored pixels that are displayed. For now, we
can use the terms frame buffer and color buffer synonymously without confusion.

1.2.2 The CPU and the GPU

In a simple system, there may be only one processor, the central processing unit
(CPU) of the system, which must do both the normal processing and the graphi-
cal processing. The main graphical function of the processor is to take specifications
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of graphical primitives (such as lines, circles, and polygons) generated by application
programs and to assign values to the pixels in the frame buffer that best represent
these entities. For example, a triangle is specified by its three vertices, but to display
its outline by the three line segments connecting the vertices, the graphics system
must generate a set of pixels that appear as line segments to the viewer. The conver-
sion of geometric entities to pixel colors and locations in the frame buffer is known
as rasterization, or scan conversion. In early graphics systems, the frame buffer was
part of the standard memory that could be directly addressed by the CPU. Today, vir-
tually all graphics systems are characterized by special-purpose graphics processing
units (GPUs), custom-tailored to carry out specific graphics functions. The GPU can
be either on the mother board of the system or on a graphics card. The frame buffer
is accessed through the graphics processing unit and usually is on the same circuit
board as the GPU.

GPUs have evolved to where they are as complex or even more complex than
CPUs. They are characterized by both special-purpose modules geared toward graph-
ical operations and a high degree of parallelism—recent GPUs contain over 100 pro-
cessing units, each of which is user programmable. GPUs are so powerful that they
can often be used as mini supercomputers for general purpose computing. We will
discuss GPU architectures in more detail in Section 1.7.

1.2.3 Output Devices

Until recently, the dominant type of display (or monitor) was the cathode-ray tube
(CRT). A simplified picture of a CRT is shown in Figure 1.3. When electrons strike the
phosphor coating on the tube, light is emitted. The direction of the beam is controlled
by two pairs of deflection plates. The output of the computer is converted, by digital-
to-analog converters, to voltages across the x and y deflection plates. Light appears
on the surface of the CRT when a sufficiently intense beam of electrons is directed at
the phosphor.

y deflect

Electron gun

FIGURE 1.3 The cathode-ray tube (CRT).
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If the voltages steering the beam change at a constant rate, the beam will trace
a straight line, visible to a viewer. Such a device is known as the random-scan,
calligraphic, or vector CRT, because the beam can be moved directly from any
position to any other position. If intensity of the beam is turned off, the beam can
be moved to a new position without changing any visible display. This configuration
was the basis of early graphics systems that predated the present raster technology.

A typical CRT will emit light for only a short time—usually, a few milliseconds—
after the phosphor is excited by the electron beam. For a human to see a steady,
flicker-free image on most CRT displays, the same path must be retraced, or re-
freshed, by the beam at a sufficiently high rate, the refresh rate. In older systems,
the refresh rate is determined by the frequency of the power system, 60 cycles per sec-
ond or 60 Hertz (Hz) in the United States and 50 Hz in much of the rest of the world.
Modern displays are no longer coupled to these low frequencies and operate at rates
up to about 85 Hz.

In a raster system, the graphics system takes pixels from the frame buffer and
displays them as points on the surface of the display in one of two fundamental
ways. In a noninterlaced system, the pixels are displayed row by row, or scan line
by scan line, at the refresh rate. In an interlaced display, odd rows and even rows
are refreshed alternately. Interlaced displays are used in commercial television. In an
interlaced display operating at 60 Hz, the screen is redrawn in its entirety only 30
times per second, although the visual system is tricked into thinking the refresh rate
is 60 Hz rather than 30 Hz. Viewers located near the screen, however, can tell the
difference between the interlaced and noninterlaced displays. Noninterlaced displays
are becoming more widespread, even though these displays process pixels at twice the
rate of the interlaced display.

Color CRTs have three different colored phosphors (red, green, and blue), ar-
ranged in small groups. One common style arranges the phosphors in triangular
groups called triads, each triad consisting of three phosphors, one of each primary.
Most color CRTs have three electron beams, corresponding to the three types of phos-
phors. In the shadow-mask CRT (Figure 1.4), a metal screen with small holes—the
shadow mask—ensures that an electron beam excites only phosphors of the proper
color.

Although CRTs are still common display devices, they are rapidly being replaced
by flat-screen technologies. Flat-panel monitors are inherently raster based. Although
there are multiple technologies available, including light-emitting diodes (LEDs),
liquid-crystal displays (LCDs), and plasma panels, all use a two-dimensional grid
to address individual light-emitting elements. Figure 1.5 shows a generic flat-panel
monitor. The two outside plates each contain parallel grids of wires that are oriented
perpendicular to each other. By sending electrical signals to the proper wire in each
grid, the electrical field at a location, determined by the intersection of two wires, can
be made strong enough to control the corresponding element in the middle plate.
The middle plate in an LED panel contains light-emitting diodes that can be turned
on and off by the electrical signals sent to the grid. In an LCD display, the electrical
field controls the polarization of the liquid crystals in the middle panel, thus turning
on and off the light passing through the panel. A plasma panel uses the voltages on
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Blue gun

Green gun ————

Shadow mask

FIGURE 1.4 Shadow-mask CRT.

Vertical grid

Light emitting elements

Horizontal grid

FIGURE 1.5 Generic flat-panel display.

the grids to energize gases embedded between the glass panels holding the grids. The
energized gas becomes a glowing plasma.

Most projection systems are also raster devices. These systems use a variety of
technologies, including CRTs and digital light projection (DLP). From a user perspec-
tive, they act as standard monitors with similar resolutions and precisions. Hard-copy
devices, such as printers and plotters, are also raster based but cannot be refreshed.

1.2.4 Input Devices

Most graphics systems provide a keyboard and at least one other input device. The
most common input devices are the mouse, the joystick, and the data tablet. Each
provides positional information to the system, and each usually is equipped with one
or more buttons to provide signals to the processor. Often called pointing devices,
these devices allow a user to indicate a particular location on the display.

Modern systems, such as game consoles, provide a much richer set of input
devices, with new devices appearing almost weekly. In addition, there are devices
which provide three- (and more) dimensional input. Consequently, we want to pro-
vide a flexible model for incorporating the input from such devices into our graphics
programs.
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We can think about input devices in two distinct ways. The obvious one is to look
at them as physical devices, such as a keyboard or a mouse, and to discuss how they
work. Certainly, we need to know something about the physical properties of our in-
put devices, so such a discussion is necessary if we are to obtain a full understanding
of input. However, from the perspective of an application programmer, we should not
need to know the details of a particular physical device to write an application pro-
gram. Rather, we prefer to treat input devices as logical devices whose properties are
specified in terms of what they do from the perspective of the application program. A
logical device is characterized by its high-level interface with the user program rather
than by its physical characteristics. Logical devices are familiar to all writers of high-
level programs. For example, data input and output in C are done through functions
such as printf, scanf, getchar, and putchar, whose arguments use the standard
C data types, and through input (cin) and output (cout) streams in C++. When we
output a string using printf, the physical device on which the output appears could
be a printer, a terminal, or a disk file. This output could even be the input to another
program. The details of the format required by the destination device are of minor
concern to the writer of the application program.

In computer graphics, the use of logical devices is slightly more complex because
the forms that input can take are more varied than the strings of bits or characters
to which we are usually restricted in nongraphical applications. For example, we can
use the mouse—a physical device—either to select a location on the screen of our
CRT or to indicate which item in a menu we wish to select. In the first case, an x, y
pair (in some coordinate system) is returned to the user program; in the second, the
application program may receive an integer as the identifier of an entry in the menu.
The separation of physical from logical devices allows us to use the same physical
devices in multiple markedly different logical ways. It also allows the same program
to work, without modification, if the mouse is replaced by another physical device,
such as a data tablet or trackball.

1.2.5 Physical Input Devices

From the physical perspective, each input device has properties that make it more
suitable for certain tasks than for others. We take the view used in most of the work-
station literature that there are two primary types of physical devices: pointing devices
and keyboard devices. The pointing device allows the user to indicate a position on
the screen and almost always incorporates one or more buttons to allow the user to
send signals or interrupts to the computer. The keyboard device is almost always a
physical keyboard but can be generalized to include any device that returns character
codes. We use the American Standard Code for Information Interchange (ASCII) in
our examples. ASCII assigns a single unsigned byte to each character. Nothing we do
restricts us to this particular choice, other than that ASCII is the prevailing code used.
Note, however, that other codes, especially those used for Internet applications, use
multiple bytes for each character, thus allowing for a much richer set of supported
characters.
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The mouse (Figure 1.6) and trackball (Figure 1.7) are similar in use and often
in construction as well. A typical mechanical mouse when turned over looks like a
trackball. In both devices, the motion of the ball is converted to signals sent back to
the computer by pairs of encoders inside the device that are turned by the motion of
the ball. The encoders measure motion in two orthogonal directions.

There are many variants of these devices. Some use optical detectors rather than
mechanical detectors to measure motion. Small trackballs are popular with portable
computers because they can be incorporated directly into the keyboard. There are
also various pressure-sensitive devices used in keyboards that perform similar func-
tions to the mouse and trackball but that do not move; their encoders measure the
pressure exerted on a small knob that often is located between two keys in the middle
of the keyboard.

We can view the output of the mouse or trackball as two independent values
provided by the device. These values can be considered as positions and converted—
either within the graphics system or by the user program—to a two-dimensional
location in a convenient coordinate system. If it is configured in this manner, we can
use the device to position a marker (cursor) automatically on the display; however,
we rarely use these devices in this direct manner.

It is not necessary that the output of the mouse or trackball encoders be inter-
preted as a position. Instead, either the device driver or a user program can interpret
the information from the encoder as two independent velocities. The computer can
then integrate these values to obtain a two-dimensional position. Thus, as a mouse
moves across a surface, the integrals of the velocities yield x, y values that can be con-
verted to indicate the position for a cursor on the screen, as shown in Figure 1.8.
By interpreting the distance traveled by the ball as a velocity, we can use the device
as a variable-sensitivity input device. Small deviations from rest cause slow or small
changes; large deviations cause rapid large changes. With either device, if the ball does
not rotate, then there is no change in the integrals and a cursor tracking the posi-
tion of the mouse will not move. In this mode, these devices are relative-positioning
devices because changes in the position of the ball yield a position in the user pro-
gram; the absolute location of the ball (or the mouse) is not used by the application
program.

Relative positioning, as provided by a mouse or trackball, is not always desirable.
In particular, these devices are not suitable for an operation such as tracing a diagram.
If, while the user is attempting to follow a curve on the screen with a mouse, she
lifts and moves the mouse, the absolute position on the curve being traced is lost.

FIGURE 1.8 Cursor positioning.

FIGURE 1.6 Mouse.

FIGURE 1.7 Trackball.
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FIGURE 1.9 Data tablet.
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FIGURE 1.10 Joystick.
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FIGURE 1.11
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Data tablets provide absolute positioning. A typical data tablet (Figure 1.9) has rows
and columns of wires embedded under its surface. The position of the stylus is
determined through electromagnetic interactions between signals traveling through
the wires and sensors in the stylus. Touch-sensitive transparent screens that can be
placed over the face of a CRT have many of the same properties as the data tablet.
Small, rectangular, pressure-sensitive touchpads are embedded in the keyboards of
many portable computers. These touchpads can be configured as either relative- or
absolute-positioning devices.

One other device, the joystick (Figure 1.10), is particularly worthy of mention.
The motion of the stick in two orthogonal directions is encoded, interpreted as two
velocities, and integrated to identify a screen location. The integration implies that if
the stick is left in its resting position, there is no change in the cursor position and that
the farther the stick is moved from its resting position, the faster the screen location
changes. Thus, the joystick is a variable-sensitivity device. The other advantage of
the joystick is that the device can be constructed with mechanical elements, such as
springs and dampers, that give resistance to a user who is pushing the stick. Such a
mechanical feel, which is not possible with the other devices, makes the joystick well
suited for applications such as flight simulators and games.

For three-dimensional graphics, we might prefer to use three-dimensional in-
put devices. Although various such devices are available, none have yet won the
widespread acceptance of the popular two-dimensional input devices. A spaceball
looks like a joystick with a ball on the end of the stick (Figure 1.11); however, the
stick does not move. Rather, pressure sensors in the ball measure the forces applied
by the user. The spaceball can measure not only the three direct forces (up—down,
front—back, left-right) but also three independent twists. The device measures six in-
dependent values and thus has six degrees of freedom. Such an input device could be
used, for example, both to position and to orient a camera.

The Nintendo Wiimote provides three-dimensional position and orientation of
a hand-held device by sending infrared light to the device, which then sends back
what it measures wirelessly to the host computer.

Other three-dimensional devices, such as laser-based structured-lighting systems
and laser-ranging systems, measure three-dimensional positions. Numerous tracking
systems used in virtual reality applications sense the position of the user. Virtual
reality and robotics applications often need more degrees of freedom than the 2 to
6 provided by the devices that we have described. Devices such as data gloves can
sense motion of various parts of the human body, thus providing many additional
input signals.

1.2.6 Logical Devices

We can now return to looking at input from inside the application program—that is,
from the logical point of view. Two major characteristics describe the logical behavior
of an input device: (1) the measurements that the device returns to the user program
and (2) the time when the device returns those measurements.
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The logical string device is the same as the use of character input through scanf
or cin. A physical keyboard will return a string of characters to an application pro-
gram; the same string might be provided from a file or the user may see a keyboard
displayed on the output and use the pointing device to generate the string of charac-
ters. Logically, all three methods are examples of a string device, and application code
for using such input can be the same regardless of which physical device is used.

The physical pointing device can be used in a variety of logical ways. As a locator
it can provide a position to the application in either a device-independent coordinate
system, such as world coordinates, as in OpenGL, or in screen coordinates, which the
application can then transform to another coordinate system. A logical pick device
returns the identifier of an object on the display to the application program. It is
usually implemented with the same physical device as a locator but has a separate
software interface to the user program.

A widget is a graphical interactive device, provided by either the window system
or a toolkit. Typical widgets include menus, scrollbars, and graphical buttons. Most
widgets are implemented as special types of windows. Widgets can be used to provide
additional types of logical devices. For example, a menu provides one of a number of
choices as may a row of graphical buttons. A logical valuator provides analog input
to the user program, usually through a widget such as a slidebar, although the same
logical input could be provided by a user typing numbers into a physical keyboard.

1.2.7 Input Modes

Besides the variety of types of input that characterize computer graphics, how the
input is provided to the application is more varied than with simple C and C++
programs that use only a keyboard. The manner by which physical and logical input
devices provide input to an application program can be described in terms of two
entities: a measure process and a device trigger. The measure of a device is what the
device returns to the user program. The trigger of a device is a physical input on
the device with which the user can signal the computer. For example, the measure of
a keyboard contains a string, and the trigger can be the Return or Enter key. For a
locator, the measure includes the position, and the associated trigger can be a button
on the pointing device.

We can obtain the measure of a device in three distinct modes. Each mode is
defined by the relationship between the measure process and the trigger. Once the
measure process is started, the measure is taken and placed in a buffer, even though
the contents of the buffer may not yet be available to the program. For example,
the position of a mouse is tracked continuously by the underlying window system,
regardless of whether the application program needs mouse input.

In request mode, the measure of the device is not returned to the program until
the device is triggered. This input mode is standard in nongraphical applications. For
example, if a typical C program requires character input, we use a function such as
scanf. When the program needs the input, it halts when it encounters the scanf
statement and waits while we type characters at our terminal. We can backspace
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to correct our typing, and we can take as long as we like. The data are placed in a
keyboard buffer, whose contents are returned to our program only after a particular
key, such as the Enter key (the trigger), is depressed. For a logical device, such as a
locator, we can move our pointing device to the desired location and then trigger
the device with its button; the trigger will cause the location to be returned to the
application program.

Sample-mode input is immediate. As soon as the function call in the application
program is encountered, the measure is returned. In sample mode, the user must have
positioned the pointing device or entered data using the keyboard before the function
call, because the measure is extracted immediately from the buffer.

One characteristic of both request- and sample-mode input in APIs that support
them is that the user must identify which device is to provide the input. Consequently,
we ignore any other information that becomes available from any input device other
than the one specified. Both request and sample modes are useful for situations where
the program guides the user, but they are not useful in applications where the user
controls the flow of the program. For example, a flight simulator or computer game
might have multiple input devices—such as a joystick, dials, buttons, and switches—
most of which can be used at any time. Writing programs to control the simulator
with only sample- and request-mode input is nearly impossible, because we do not
know what devices the pilot will use at any point in the simulation. More generally,
sample- and request-mode input are not sufficient for handling the variety of possible
human—computer interactions that arise in a modern computing environment.

Our third mode, event mode, can handle these other interactions. Suppose that
we are in an environment with multiple input devices, each with its own trigger
and each running a measure process. Each time that a device is triggered, an event
is generated. The device measure, including the identifier for the device, is placed
in an event queue. This process of placing events in the event queue is completely
independent of what the application program does with these events. One way that
the application program can work with events is shown in Figure 1.12. The user
program can examine the front event in the queue or, if the queue is empty, can wait
for an event to occur. If there is an event in the queue, the program can look at the
event’s type and then decide what to do.

Another approach is to associate a function called a callback with a specific type
of event. From the perspective of the window system, the operating system queries or
polls the event queue regularly and executes the callbacks corresponding to events in
the queue. We take this approach because it is the one currently used with the major
window systems and has proved effective in client—server environments.

Await
Trigger Measure Event — —~a——

rocess rocess veue ——
P P Measure 4 Event

Program
Trigger

FIGURE 1.12 Event-mode model.
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1.3 IMAGES: PHYSICAL AND SYNTHETIC

For many years, the pedagogical approach to teaching computer graphics started with
how to construct raster images of simple two-dimensional geometric entities (for
example, points, line segments, and polygons) in the frame buffer. Next, most text-
books discussed how to define two- and three-dimensional mathematical objects in
the computer and image them with the set of two-dimensional rasterized primitives.

This approach worked well for creating simple images of simple objects. In mod-
ern systems, however, we want to exploit the capabilities of the software and hardware
to create realistic images of computer-generated three-dimensional objects—a task
that involves many aspects of image formation, such as lighting, shading, and prop-
erties of materials. Because such functionality is supported directly by most present
computer graphics systems, we prefer to set the stage for creating these images here,
rather than to expand a limited model later.

Computer-generated images are synthetic or artificial, in the sense that the ob-
jects being imaged do not exist physically. In this chapter, we argue that the preferred
method to form computer-generated images is similar to traditional imaging meth-
ods, such as cameras and the human visual system. Hence, before we discuss the
mechanics of writing programs to generate images, we discuss the way images are
formed by optical systems. We construct a model of the image-formation process that
we can then use to understand and develop computer-generated imaging systems.

In this chapter, we make minimal use of mathematics. We want to establish a par-
adigm for creating images and to present a computer architecture for implementing
that paradigm. Details are presented in subsequent chapters, where we shall derive
the relevant equations.

1.3.1 Objects and Viewers

We live in a world of three-dimensional objects. The development of many branches
of mathematics, including geometry and trigonometry, was in response to the de-
sire to systematize conceptually simple ideas, such as the measurement of size of
objects and distance between objects. Often, we seek to represent our understand-
ing of such spatial relationships with pictures or images, such as maps, paintings,
and photographs. Likewise, the development of many physical devices—including
cameras, microscopes, and telescopes—was tied to the desire to visualize spatial re-
lationships among objects. Hence, there always has been a fundamental link between
the physics and the mathematics of image formation—one that we can exploit in our
development of computer image formation.

Two basic entities must be part of any image-formation process, be it mathe-
matical or physical: object and viewer. The object exists in space independent of any
image-formation process and of any viewer. In computer graphics, where we deal
with synthetic objects, we form objects by specifying the positions in space of various
geometric primitives, such as points, lines, and polygons. In most graphics systems,
a set of locations in space, or of vertices, is sufficient to define, or approximate, most
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FIGURE 1.14 Camera system.

(a) (b) (c)

FIGURE 1.13 Image seen by three different viewers. (a) A's view. (b) B's
view. (c) C's view.

objects. For example, a line can be specified by two vertices; a polygon can be spec-
ified by an ordered list of vertices; and a sphere can be specified by two vertices that
specify its center and any point on its circumference. One of the main functions of
a CAD system is to provide an interface that makes it easy for a user to build a syn-
thetic model of the world. In Chapter 2, we show how OpenGL allows us to build
simple objects; in Chapter 8, we learn to define objects in a manner that incorporates
relationships among objects.

Every imaging system must provide a means of forming images from objects.
To form an image, we must have someone or something that is viewing our objects,
be it a human, a camera, or a digitizer. It is the viewer that forms the image of our
objects. In the human visual system, the image is formed on the back of the eye. In a
camera, the image is formed in the film plane. It is easy to confuse images and objects.
We usually see an object from our single perspective and forget that other viewers,
located in other places, will see the same object differently. Figure 1.13(a) shows two
viewers observing the same building. This image is what is seen by an observer A
who is far enough away from the building to see both the building and the two other
viewers, B and C. From A’s perspective, B and C appear as objects, just as the building
does. Figures 1.13(b) and (c) show the images seen by B and C, respectively. All three
images contain the same building, but the image of the building is different in all
three.

Figure 1.14 shows a camera system viewing a building. Here we can observe that
both the object and the viewer exist in a three-dimensional world. However, the im-
age that they define—what we find on the projection plane—is two-dimensional. The
process by which the specification of the object is combined with the specification of
the viewer to produce a two-dimensional image is the essence of image formation,
and we shall study it in detail.

1.3.2 Light and Images

The preceding description of image formation is far from complete. For example, we
have yet to mention light. If there were no light sources, the objects would be dark,
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FIGURE 1.15 A camera system with an object and a light source.

and there would be nothing visible in our image. Nor have we indicated how color
enters the picture or what the effects of the surface properties of the objects are.

Taking a more physical approach, we can start with the arrangement in Fig-
ure 1.15, which shows a simple physical imaging system. Again, we see a physical
object and a viewer (the camera); now, however, there is a light source in the scene.
Light from the source strikes various surfaces of the object, and a portion of the re-
flected light enters the camera through the lens. The details of the interaction between
light and the surfaces of the object determine how much light enters the camera.

Light is a form of electromagnetic radiation. Taking the classical view, we look
at electromagnetic energy travels as waves’ that can be characterized by either their
wavelengths or their frequencies.” The electromagnetic spectrum (Figure 1.16) in-
cludes radio waves, infrared (heat), and a portion that causes a response in our visual
systems. This visible spectrum, which has wavelengths in the range of 350 to 780
nanometers (nm), is called (visible) light. A given light source has a color determined
by the energy that it emits at various wavelengths. Wavelengths in the middle of the
range, around 520 nm, are seen as green; those near 450 nm are seen as blue; and
those near 650 nm are seen as red. Just as with a rainbow, light at wavelengths be-
tween red and green, we see as yellow, and wavelengths shorter than blue generate
violet light.

Light sources can emit light either as a set of discrete frequencies or continuously.
A laser, for example, emits light at a single frequency, whereas an incandescent lamp
emits energy over a range of frequencies. Fortunately, in computer graphics, except
for recognizing that distinct frequencies are visible as distinct colors, we rarely need
to deal with the physical properties of light.

2. In Chaper 11, we will introduce photon mapping that is based on light being emitted in discrete
packets.

3. The relationship between frequency (f) and wavelength (1) is fA = ¢, where ¢ is the speed of light.
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X rays

350 Anm) 780
FIGURE 1.16 The electromagnetic spectrum.

Instead, we can follow a more traditional path that is correct when we are operat-
ing with sufficiently high light levels and at a scale where the wave nature of light is not
a significant factor. Geometric optics models light sources as emitters of light energy,
each of which have a fixed intensity. Modeled geometrically, light travels in straight
lines, from the sources to those objects with which it interacts. An ideal point source
emits energy from a single location at one or more frequencies equally in all direc-
tions. More complex sources, such as a light bulb, can be characterized as emitting
light over an area and by emitting more light in one direction than another. A partic-
ular source is characterized by the intensity of light that it emits at each frequency and
by that light’s directionality. We consider only point sources for now. More complex
sources often can be approximated by a number of carefully placed point sources.
Modeling of light sources is discussed in Chapter 5.

1.3.3 Imaging Models

There are multiple approaches to how we can form images from a set of objects,
the light-reflecting properties of these objects, and the properties of the light sources
in the scene. In this section, we introduce two physical approaches. Although these
approaches are not suitable for the real-time graphics that we ultimately want, they
will give us some insight into how we can build a useful imaging architecture. We
return to these approaches in Chapter 11.

We can start building an imaging model by following light from a source. Con-
sider the scene in Figure 1.17; it is illuminated by a single point source. We include
the viewer in the figure because we are interested in the light that reaches her eye.
The viewer can also be a camera, as shown in Figure 1.18. A ray is a semi-infinite line
that emanates from a point and travels to infinity in a particular direction. Because
light travels in straight lines, we can think in terms of rays of light emanating in all
directions from our point source. A portion of these infinite rays contributes to the
image on the film plane of our camera. For example, if the source is visible from the
camera, some of the rays go directly from the source through the lens of the camera
and strike the film plane. Most rays, however, go off to infinity, neither entering the
camera directly nor striking any of the objects. These rays contribute nothing to the
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FIGURE 1.17 Scene with a single point light source.

FIGURE 1.18 Ray interactions. Ray A enters camera directly. Ray B
goes off to infinity. Ray C is reflected by a mirror. Ray D goes through a
transparent sphere.

image, although they may be seen by some other viewer. The remaining rays strike
and illuminate objects. These rays can interact with the objects’ surfaces in a variety
of ways. For example, if the surface is a mirror, a reflected ray might—depending on
the orientation of the surface—enter the lens of the camera and contribute to the im-
age. Other surfaces scatter light in all directions. If the surface is transparent, the light
ray from the source can pass through it and may interact with other objects, enter the
camera, or travel to infinity without striking another surface. Figure 1.18 shows some
of the possibilities.



20

Chapter 1

Graphics Systems and Models

Ray tracing and photon mapping are image-formation techniques that are based
on these ideas and that can form the basis for producing computer-generated images.
We can use the ray-tracing idea to simulate physical effects as complex as we wish, as
long as we are willing to carry out the requisite computing. Although tracing rays can
provide a close approximation to the physical world, it is usually not well suited for
real-time computation.

Other physical approaches to image formation are based on conservation of
energy. The most important in computer graphics is radiosity. This method works
best for surfaces that scatter the incoming light equally in all directions. Even in this
case, radiosity requires more computation than can be done in real time. We defer
discussion of these techniques until Chapter 11.

1.4 IMAGING SYSTEMS

We now introduce two imaging systems: the pinhole camera and the human visual
system. The pinhole camera is a simple example of an imaging system that will enable
us to understand the functioning of cameras and of other optical imagers. We emu-
late it to build a model of image formation. The human visual system is extremely
complex but still obeys the physical principles of other optical imaging systems. We
introduce it not only as an example of an imaging system but also because under-
standing its properties will help us to exploit the capabilities of computer-graphics
systems.

1.4.1 The Pinhole Camera

The pinhole camera in Figure 1.19 provides an example of image formation that we
can understand with a simple geometric model. A pinhole camera is a box with a
small hole in the center of one side of the box; the film is placed inside the box on
the side opposite the pinhole. Suppose that we orient our camera along the z-axis,
with the pinhole at the origin of our coordinate system. We assume that the hole is
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FIGURE 1.19 Pinhole camera.
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d
FIGURE 1.20 Side view of pinhole camera.

so small that only a single ray of light, emanating from a point, can enter it. The film
plane is located a distance d from the pinhole. A side view (Figure 1.20) allows us to
calculate where the image of the point (x, y, z) is on the film plane z = —d. Using the
fact that the two triangles in Figure 1.20 are similar, we find that the y coordinate of
the image is at y,,, where

__2
o= z/d

A similar calculation, using a top view, yields

X

Xp = _Z/_d

The point (x,, y,, —d) is called the projection of the point (x, y, z). In our idealized
model, the color on the film plane at this point will be the color of the point (x, y, z).
The field, or angle, of view of our camera is the angle made by the largest object that
our camera can image on its film plane. We can calculate the field of view with the
aid of Figure 1.21.% If 1 is the height of the camera, the angle of view 6 is

0 =2tan"! i
2d

The ideal pinhole camera has an infinite depth of field: Every point within its field
of view is in focus. Every point in its field of view projects to a point on the back of
the camera. The pinhole camera has two disadvantages. First, because the pinhole is
so small—it admits only a single ray from a point source—almost no light enters the
camera. Second, the camera cannot be adjusted to have a different angle of view.

4. If we consider the problem in three, rather than two, dimensions, then the diagonal length of the
film will substitute for h.
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and cones

Optic nerve

FIGURE 1.22 The human vi-
sual system.

FIGURE 1.21 Angle of view.

The jump to more sophisticated cameras and to other imaging systems that have
lenses is a small one. By replacing the pinhole with a lens, we solve the two problems
of the pinhole camera. First, the lens gathers more light than can pass through the
pinhole. The larger the aperture of the lens, the more light the lens can collect.
Second, by picking a lens with the proper focal length—a selection equivalent to
choosing d for the pinhole camera—we can achieve any desired angle of view (up to
180 degrees). Lenses, however, do not have an infinite depth of field: Not all distances
from the lens are in focus.

For our purposes, in this chapter we can work with a pinhole camera whose focal
length is the distance d from the front of the camera to the film plane. Like the pinhole
camera, computer graphics produces images in which all objects are in focus.

1.4.2 The Human Visual System

Our extremely complex visual system has all the components of a physical imaging
system, such as a camera or a microscope. The major components of the visual
system are shown in Figure 1.22. Light enters the eye through the lens and cornea,
a transparent structure that protects the eye. The iris opens and closes to adjust the
amount of light entering the eye. The lens forms an image on a two-dimensional
structure called the retina at the back of the eye. The rods and cones (so named
because of their appearance when magnified) are light sensors and are located on
the retina. They are excited by electromagnetic energy in the range of 350 to 780 nm.

The rods are low-level-light sensors that account for our night vision and are not
color sensitive; the cones are responsible for our color vision. The sizes of the rods
and cones, coupled with the optical properties of the lens and cornea, determine the
resolution of our visual systems, or our visual acuity. Resolution is a measure of what
size objects we can see. More technically, it is a measure of how close we can place two
points and still recognize that there are two distinct points.

The sensors in the human eye do not react uniformly to light energy at different
wavelengths. There are three types of cones and a single type of rod. Whereas intensity
is a physical measure of light energy, brightness is a measure of how intense we
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perceive the light emitted from an object to be. The human visual system does not
have the same response to a monochromatic (single-frequency) red light as to a
monochromatic green light. If these two lights were to emit the same energy, they
would appear to us to have different brightness, because of the unequal response
of the cones to red and green light. We are most sensitive to green light, and least
sensitive to red and blue.

Brightness is an overall measure of how we react to the intensity of light. Human
color-vision capabilities are due to the different sensitivities of the three types of
cones. The major consequence of having three types of cones is that instead of having
to work with all visible wavelengths individually, we can use three standard primaries
to approximate any color that we can perceive. Consequently, most image-production
systems, including film and video, work with just three basic, or primary, colors. We
discuss color in depth in Chapter 2.

The initial processing of light in the human visual system is based on the same
principles used by most optical systems. However, the human visual system has a
back end much more complex than that of a camera or telescope. The optic nerves
are connected to the rods and cones in an extremely complex arrangement that has
many of the characteristics of a sophisticated signal processor. The final processing
is done in a part of the brain called the visual cortex, where high-level functions,
such as object recognition, are carried out. We shall omit any discussion of high-level
processing; instead, we can think simply in terms of an image that is conveyed from
the rods and cones to the brain.

1.5 THE SYNTHETIC-CAMERA MODEL

Our models of optical imaging systems lead directly to the conceptual foundation
for modern three-dimensional computer graphics. We look at creating a computer-
generated image as being similar to forming an image using an optical system. This
paradigm has become known as the synthetic-camera model. Consider the imaging
system shown in Figure 1.23. We again see objects and a viewer. In this case, the viewer
is a bellows camera.” The image is formed on the film plane at the back of the camera.
So that we can emulate this process to create artificial images, we need to identify a
few basic principles.

First, the specification of the objects is independent of the specification of the
viewer. Hence, we should expect that, within a graphics library, there will be separate
functions for specifying the objects and the viewer.

Second, we can compute the image using simple geometric calculations, just as
we did with the pinhole camera. Consider the side view of the camera and a simple
object in Figure 1.24. The view in part (a) of the figure is similar to that of the

5. In a bellows camera, the front plane of the camera, where the lens is located, and the back of the
camera, the film plane, are connected by flexible sides. Thus, we can move the back of the camera
independently of the front of the camera, introducing additional flexibility in the image-formation
process. We use this flexibility in Chapter 4.

23
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FIGURE 1.23 Imaging system.
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FIGURE 1.24 Equivalent views of image formation. (a) Image formed on
the back of the camera. (b) Image plane moved in front of the camera.

pinhole camera. Note that the image of the object is flipped relative to the object.
Whereas with a real camera we would simply flip the film to regain the original
orientation of the object, with our synthetic camera we can avoid the flipping by a
simple trick. We draw another plane in front of the lens (Figure 1.24(b)) and work in
three dimensions, as shown in Figure 1.25. We find the image of a point on the object
on the virtual image plane by drawing a line, called a projector, from the point to
the center of the lens, or the center of projection (COP). Note that all projectors
are rays emanating from the center of projection. In our synthetic camera, the virtual
image plane that we have moved in front of the lens is called the projection plane. The
image of the point is located where the projector passes through the projection plane.
In Chapter 4, we discuss this process in detail and derive the relevant mathematical
formulas.

We must also consider the limited size of the image. As we saw, not all objects
can be imaged onto the pinhole camera’s film plane. The angle of view expresses this
limitation. In the synthetic camera, we can move this limitation to the front by plac-
ing a clipping rectangle, or clipping window, in the projection plane (Figure 1.26).
This rectangle acts as a window, through which a viewer, located at the center of pro-
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FIGURE 1.25 Imaging with the synthetic camera.

(a) (b)
FIGURE 1.26 Clipping. (a) Window in initial position. (b) Window shifted.

jection, sees the world. Given the location of the center of projection, the location
and orientation of the projection plane, and the size of the clipping rectangle, we can
determine which objects will appear in the image.

1.6 THE PROGRAMMER'S INTERFACE

There are numerous ways that a user can interact with a graphics system. With
completely self-contained packages, such as those used in the CAD community, a
user develops images through interactions with the display using input devices, such
as a mouse and a keyboard. In a typical application, such as the painting program in
Figure 1.27, the user sees menus and icons that represent possible actions. By clicking
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FIGURE 1.27 Interface for a painting program.
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FIGURE 1.28 Application programmer’s model of graphics system.

on these items, the user guides the software and produces images without having to
write programs.

Of course, someone has to develop the code for these applications, and many
of us, despite the sophistication of commercial products, still have to write our own
graphics application programs (and even enjoy doing so).

The interface between an application program and a graphics system can be
specified through a set of functions that resides in a graphics library. These speci-
fications are called the application programming interface (API). The application
programmer’s model of the system is shown in Figure 1.28. The application program-
mer sees only the API and is thus shielded from the details of both the hardware and
the software implementation of the graphics library. The software drivers are respon-
sible for interpreting the output of the API and converting these data to a form that
is understood by the particular hardware. From the perspective of the writer of an
application program, the functions available through the API should match the con-
ceptual model that the user wishes to employ to specify images.
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1.6.1 The Pen-Plotter Model

Historically, most early graphics systems were two-dimensional systems. The concep-
tual model that they used is now referred to as the pen-plotter model, referencing the
output device that was available on these systems. A pen plotter (Figure 1.29) pro-
duces images by moving a pen held by a gantry, a structure that can move the pen in
two orthogonal directions across the paper. The plotter can raise and lower the pen as
required to create the desired image. Pen plotters are still in use; they are well suited
for drawing large diagrams, such as blueprints. Various APIs—such as LOGO and
PostScript—have their origins in this model. Although they differ from one another,
they have a common view of the process of creating an image as being similar to the
process of drawing on a pad of paper. The user works on a two-dimensional surface
of some size. She moves a pen around on this surface, leaving an image on the paper.
We can describe such a graphics system with two drawing functions:

moveto(x,y);
lineto(x,y);

Execution of the moveto function moves the pen to the location (x, y) on the paper
without leaving a mark. The 1ineto function moves the pen to (x, y) and draws a
line from the old to the new location of the pen. Once we add a few initialization
and termination procedures, as well as the ability to change pens to alter the drawing
color or line thickness, we have a simple—but complete—graphics system. Here is a
fragment of a simple program in such a system:

moveto (0, 0);
lineto(1, 0);
lineto(1, 1);
lineto(0, 1);
lineto(0, 0);

This fragment would generate the output in Figure 1.30(a). If we added the code

moveto (0, 1);
lineto(0.5, 1.866);
lineto(1.5, 1.866);
lineto(1.5, 0.866);
lineto(1, 0);
moveto (1, 1);
lineto(1.5, 1.866);

we would have the image of a cube formed by an oblique projection, as is shown in
Figure 1.30(b).

For certain applications, such as page layout in the printing industry, systems
built on this model work well. For example, the PostScript page-description language,
a sophisticated extension of these ideas, is a standard for controlling typesetters and
printers.

N

FIGURE 1.29 Pen plotter.

(b)

FIGURE 1.30 Output of pen-
plotter program for (a) a
square, and (b) a projection
of a cube.
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An alternate raster-based, but still limiting, two-dimensional model relies on
writing pixels directly into a frame buffer. Such a system could be based on a single
function of the form

write_pixel(x, y, color);

where x,y is the location of the pixel in the frame buffer and color gives the color
to be written there. Such models are well suited to writing the algorithms for rasteri-
zation and processing of digital images.

We are much more interested, however, in the three-dimensional world. The
pen-plotter model does not extend well to three-dimensional graphics systems. For
example, if we wish to use the pen-plotter model to produce the image of a three-
dimensional object on our two-dimensional pad, either by hand or by computer, then
we have to figure out where on the page to place two-dimensional points correspond-
ing to points on our three-dimensional object. These two-dimensional points are,
as we saw in Section 1.5, the projections of points in three-dimensional space. The
mathematical process of determining projections is an application of trigonometry.
We develop the mathematics of projection in Chapter 4; understanding projection
is crucial to understanding three-dimensional graphics. We prefer, however, to use
an API that allows users to work directly in the domain of their problems and to use
computers to carry out the details of the projection process automatically, without the
users having to make any trigonometric calculations within the application program.
That approach should be a boon to users who have difficulty learning to draw various
projections on a drafting board or sketching objects in perspective. More important,
users can rely on hardware and software implementations of projections within the
implementation of the API that are far more efficient than any possible implementa-
tion of projections within their programs would be.

1.6.2 Three-Dimensional APls

The synthetic-camera model is the basis for a number of popular APIs, including
OpenGL and Direct3D. If we are to follow the synthetic-camera model, we need
functions in the API to specity the following:

= Objects
= A viewer
= Light sources

= Material properties

Objects are usually defined by sets of vertices. For simple geometric objects—
such as line segments, rectangles, and polygons—there is a simple relationship be-
tween a list of vertices, or positions in space, and the object. For more complex
objects, there may be multiple ways of defining the object from a set of vertices. A cir-
cle, for example, can be defined by three points on its circumference, or by its center
and one point on the circumference.
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Most APIs provide similar sets of primitive objects for the user. These primi-
tives are usually those that can be displayed rapidly on the hardware. The usual sets
include points, line segments, polygons, and sometimes text. OpenGL programs de-
fine primitives through lists of vertices. The following code fragment specifies three
vertices:

float vertices[3][3];
vertices[0] [0] = /* vertex A */
vertices[1][0] =
vertices[2] [0] =
vertices[0] [1] =
vertices[1][1] =
vertices[2] [1] =
vertices[0] [2] =
vertices[1][2] =
vertices[2] [2] =

/* vertex B */

/* vertex C */

= O O Ok OO OO
O O O O O O O o o

In OpenGL, we could either send this array to the GPU each time that we want
it to be displayed or store it on the GPU for later display. Note that these three
vertices only give three locations in a three-dimensional space and do not specify
the geometric entity that they define. The locations could describe a triangle, as
in Figure 1.31, or we could use them to specify two line segments using the first
two locations to specify the first segment and the second and third locations to
specify the second segment. We could also use the three points to display three pixels
at locations in the frame buffer corresponding to the three vertices. We make this
choice on our application by setting a parameter corresponding to the geometric
entity we would like these locations to specify. For example, in OpenGL we would
use GL_TRIANGLES, GL_LINE_STRIP, or GL_POINTS for the three possibilities we
just described. Although we are not yet ready to describe all the details of how we
accomplish this task, we can note that regardless of which geometric entity we wish
our vertices to specify, we are specifying the geometry and leaving it to the graphics
system to determine which pixels to color in the frame buffer.

Some APIs let the user work directly in the frame buffer by providing functions
that read and write pixels. Additionally, some APIs provide curves and surfaces as
primitives; often, however, these types are approximated by a series of simpler prim-
itives within the application program. OpenGL provides access to the frame buffer.

We can define a viewer or camera in a variety of ways. Available APIs differ both
in how much flexibility they provide in camera selection and in how many different
methods they allow. If we look at the camera in Figure 1.32, we can identify four types
of necessary specifications:

1. Position The camera location usually is given by the position of the center
of the lens, which is the center of projection (COP).

FIGURE 1.31 A triangle.

FIGURE 1.32 Camera
specification.
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FIGURE 1.33 Two-point perspective of a cube.

2. Orientation Once we have positioned the camera, we can place a camera
coordinate system with its origin at the center of projection. We can then
rotate the camera independently around the three axes of this system.

3. Focal length The focal length of the lens determines the size of the image
on the film plane or, equivalently, the portion of the world the camera sees.

4. Filmplane The back of the camera has a height and a width. On the bellows
camera, and in some APIs, the orientation of the back of the camera can be
adjusted independently of the orientation of the lens.

These specifications can be satisfied in various ways. One way to develop the
specifications for the camera location and orientation uses a series of coordinate-
system transformations. These transformations convert object positions represented
in a coordinate system that specifies object vertices to object positions in a coordinate
system centered at the COP. This approach is useful, both for doing implementation
and for getting the full set of views that a flexible camera can provide. We use this
approach extensively, starting in Chapter 4.

Having many parameters to adjust, however, can also make it difficult to get a
desired image. Part of the problem lies with the synthetic-camera model. Classical
viewing techniques, such as are used in architecture, stress the relationship between
the object and the viewer, rather than the independence that the synthetic-camera
model emphasizes. Thus, the classical two-point perspective of a cube in Figure 1.33
is a two-point perspective because of a particular relationship between the viewer and
the planes of the cube (see Exercise 1.7). Although the OpenGL API allows us to set
transformations with complete freedom, it also provides helpful extra functions. For
example, consider the two function calls

LookAt(cop, at, up);
Perspective(field_of_view, aspect_ratio, near, far);

The first function call points the camera from the center of projection toward a
desired point (the at point), with a specified up direction for the camera. The second
selects a lens for a perspective view (the field of view) and how much of the world that
the camera should image (the aspect ratio and the near and far distances). However,
none of the APIs built on the synthetic-camera model provide functions for directly
specifying a desired relationship between the camera and an object.

Light sources are defined by their location, strength, color, and directionality.
APIs provide a set of functions to specify these parameters for each source. Material
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properties are characteristics, or attributes, of the objects, and such properties are
specified through a series of function calls at the time that each object is defined.
Both light sources and material properties depend on the models of light-material
interactions supported by the API. We discuss such models in Chapter 5.

1.6.3 A Sequence of Images

In Chapter 2, we begin our detailed discussion of the OpenGL API that we will use
throughout this book. The images defined by your OpenGL programs will be formed
automatically by the hardware and software implementation of the image-formation
process.

Here we look at a sequence of images that shows what we can create using the
OpenGL APIL. We present these images as an increasingly more complex series of
renderings of the same objects. The sequence not only loosely follows the order in
which we present related topics but also reflects how graphics systems have developed
over the past 30 years.

Color Plate 1 shows an image of an artist’s creation of a sunlike object. Color
Plate 2 shows the object rendered using only line segments. Although the object con-
sists of many parts, and although the programmer may have used sophisticated data
structures to model each part and the relationships among the parts, the rendered
object shows only the outlines of the parts. This type of image is known as a wire-
frame image because we can see only the edges of surfaces: Such an image would be
produced if the objects were constructed with stiff wires that formed a frame with no
solid material between the edges. Before raster-graphics systems became available,
wireframe images were the only type of computer-generated images that we could
produce.

In Color Plate 3, the same object has been rendered with flat polygons. Certain
surfaces are not visible, because there is a solid surface between them and the viewer;
these surfaces have been removed by a hidden-surface-removal (HSR) algorithm.
Most raster systems can fill the interior of polygons with a solid color in approxi-
mately the same time that they can render a wireframe image. Although the objects
are three-dimensional, each surface is displayed in a single color, and the image fails
to show the three-dimensional shapes of the objects. Early raster systems could pro-
duce images of this form.

In Chapters 2 and 3, we show you how to generate images composed of simple
geometric objects—points, line segments, and polygons. In Chapters 3 and 4, you
will learn how to transform objects in three dimensions and how to obtain a desired
three-dimensional view of a model, with hidden surfaces removed.

Color Plate 4 illustrates smooth shading of the polygons that approximate the
object; it shows that the object is three-dimensional and gives the appearance of a
smooth surface. We develop shading models that are supported by OpenGL in Chap-
ter 5. These shading models are also supported in the hardware of most recent work-
stations; generating the shaded image on one of these systems takes approximately
the same amount of time as does generating a wireframe image.
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Color Plate 5 shows a more sophisticated wireframe model constructed using
NURBS surfaces, which we introduce in Chapter 10. Such surfaces give the applica-
tion programmer great flexibility in the design process but are ultimately rendered
using line segments and polygons.

In Color Plates 6 and 7, we add surface texture to our object; texture is one
of the effects that we discuss in Chapter 6. All recent graphics processors support
texture mapping in hardware, so rendering of a texture-mapped image requires little
additional time. In Color Plate 6, we use a technique called bump mapping that gives
the appearance of a rough surface even though we render the same flat polygons as
in the other examples. Color Plate 7 shows an environment map applied to the surface
of the object, which gives the surface the appearance of a mirror. These techniques
will be discussed in detail in Chapter 7.

Color Plate 8 shows a small area of the rendering of the object using an environ-
ment map. The image on the left shows the jagged artifacts known as aliasing errors
that are due to the discrete nature of the frame buffer. The image on the right has been
rendered using a smoothing or antialiasing method that we shall study in Chapters 5
and 6.

Not only do these images show what is possible with available hardware and a
good API, but they are also simple to generate, as we shall see in subsequent chapters.
In addition, just as the images show incremental changes in the renderings, the
programs are incrementally different from one another.

1.6.4 The Modeling-Rendering Paradigm

In many situations—especially in CAD applications and in the development of com-
plex images, such as for movies—we can separate the modeling of the scene from
the production of the image, or the rendering of the scene. Hence, we can look at
image formation as the two-step process shown in Figure 1.34. Although the tasks
are the same as those we have been discussing, this block diagram suggests that we
might implement the modeler and the renderer with different software and hard-
ware. For example, consider the production of a single frame in an animation. We
first want to design and position our objects. This step is highly interactive, and we
do not need to work with detailed images of the objects. Consequently, we prefer to
carry out this step on an interactive workstation with good graphics hardware. Once
we have designed the scene, we want to render it, adding light sources, material prop-
erties, and a variety of other detailed effects, to form a production-quality image.
This step requires a tremendous amount of computation, so we might prefer to use a

Interface file
Modeler *—— = Renderer

FIGURE 1.34 The modeling-rendering pipeline.
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render farm, a cluster of computers configured for numerical computing. Not only is
the optimal hardware different in the modeling and rendering steps, but the software
that we use also may be different.

The interface between the modeler and renderer can be as simple as a file pro-
duced by the modeler that describes the objects and that contains additional infor-
mation important only to the renderer, such as light sources, viewer location, and
material properties. Pixar’s RenderMan Interface follows this approach and uses a
file format that allows modelers to pass models to the renderer in text format. One
of the other advantages of this approach is that it allows us to develop modelers
that, although they use the same renderer, are custom-tailored to particular applica-
tions. Likewise, different renderers can take as input the same interface file. It is even
possible, at least in principle, to dispense with the modeler completely and to use a
standard text editor to generate an interface file. For any but the simplest scenes, how-
ever, users cannot edit lists of information for a renderer. Rather, they use interactive
modeling software. Because we must have at least a simple image of our objects to
interact with a modeler, most modelers use the synthetic-camera model to produce
these images in real time.

This paradigm has become popular as a method for generating computer games
and images over the Internet. Models, including the geometric objects, lights, cam-
eras, and material properties, are placed in a data structure called a scene graph that
is passed to a renderer or game engine. We shall examine scene graphs in Chapter 8.

1.7 GRAPHICS ARCHITECTURES

On one side of the API is the application program. On the other is some combination
of hardware and software that implements the functionality of the API. Researchers
have taken various approaches to developing architectures to support graphics APIs.

Early graphics systems used general-purpose computers with the standard von
Neumann architecture. Such computers are characterized by a single processing unit
that processes a single instruction at a time. A simple model of these early graphics
systems is shown in Figure 1.35. The display in these systems was based on a calli-
graphic CRT display that included the necessary circuitry to generate a line segment
connecting two points. The job of the host computer was to run the application pro-
gram and to compute the endpoints of the line segments in the image (in units of the
display). This information had to be sent to the display at a rate high enough to avoid

Digital
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FIGURE 1.35 Early graphics system.
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FIGURE 1.36 Display-processor architecture.

flicker on the display. In the early days of computer graphics, computers were so slow
that refreshing even simple images, containing a few hundred line segments, would
burden an expensive computer.

1.7.1 Display Processors

The earliest attempts to build special-purpose graphics systems were concerned pri-
marily with relieving the general-purpose computer from the task of refreshing the
display continuously. These display processors had conventional architectures (Fig-
ure 1.36) but included instructions to display primitives on the CRT. The main ad-
vantage of the display processor was that the instructions to generate the image could
be assembled once in the host and sent to the display processor, where they were
stored in the display processor’s own memory as a display list, or display file. The
display processor would then execute repetitively the program in the display list, at
a rate sufficient to avoid flicker, independently of the host, thus freeing the host for
other tasks. This architecture has become closely associated with the client—server ar-
chitectures that are used in most systems.

1.7.2 Pipeline Architectures

The major advances in graphics architectures parallel closely the advances in work-
stations. In both cases, the ability to create special-purpose VLSI chips was the key
enabling technology development. In addition, the availability of inexpensive solid-
state memory led to the universality of raster displays. For computer-graphics appli-
cations, the most important use of custom VLSI circuits has been in creating pipeline
architectures.

The concept of pipelining is illustrated in Figure 1.37 for a simple arithmetic
calculation. In our pipeline, there is an adder and a multiplier. If we use this con-
figuration to compute a + (b * ¢), the calculation takes one multiplication and one
addition—the same amount of work required if we use a single processor to carry
out both operations. However, suppose that we have to carry out the same computa-
tion with many values of a, b, and c. Now, the multiplier can pass on the results of its
calculation to the adder and can start its next multiplication while the adder carries
out the second step of the calculation on the first set of data. Hence, whereas it takes
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FIGURE 1.37 Arithmetic pipeline.
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the same amount of time to calculate the results for any one set of data, when we are
working on two sets of data at one time, our total time for calculation is shortened
markedly. Here the rate at which data flows through the system, the throughput of
the system, has been doubled. Note that as we add more boxes to a pipeline, it takes
more time for a single datum to pass through the system. This time is called the la-
tency of the system; we must balance it against increased throughput in evaluating
the performance of a pipeline.

We can construct pipelines for more complex arithmetic calculations that will
afford even greater increases in throughput. Of course, there is no point in building a
pipeline unless we will do the same operation on many data sets. But that is just what
we do in computer graphics, where large sets of vertices and pixels must be processed
in the same manner.

1.7.3 The Graphics Pipeline

We start with a set of objects. Each object comprises a set of graphical primitives. Each
primitive comprises a set of vertices. We can think of the collection of primitive types
and vertices as defining the geometry of the scene. In a complex scene, there may be
thousands—even millions—of vertices that define the objects. We must process all
these vertices in a similar manner to form an image in the frame buffer. If we think in
terms of processing the geometry of our objects to obtain an image, we can employ
the block diagram in Figure 1.38, which shows the four major steps in the imaging
process:

1. Vertex processing

2. Clipping and primitive assembly
3. Rasterization

4. Fragment processing

In subsequent chapters, we discuss the details of these steps. Here we are content to
overview these steps and show that they can be pipelined.
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1.7.4 Vertex Processing

In the first block of our pipeline, each vertex is processed independently. The two
major functions of this block are to carry out coordinate transformations and to
compute a color for each vertex.

Many of the steps in the imaging process can be viewed as transformations be-
tween representations of objects in different coordinate systems. For example, in our
discussion of the synthetic camera, we observed that a major part of viewing is to
convert to a representation of objects from the system in which they were defined to
a representation in terms of the coordinate system of the camera. A further example
of a transformation arises when we finally put our images onto the output device.
The internal representation of objects—whether in the camera coordinate system or
perhaps in a system used by the graphics software—eventually must be represented
in terms of the coordinate system of the display. We can represent each change of
coordinate systems by a matrix. We can represent successive changes in coordinate
systems by multiplying, or concatenating, the individual matrices into a single ma-
trix. In Chapter 3, we examine these operations in detail. Because multiplying one
matrix by another matrix yields a third matrix, a sequence of transformations is an
obvious candidate for a pipeline architecture. In addition, because the matrices that
we use in computer graphics will always be small (4 x 4), we have the opportunity to
use parallelism within the transformation blocks in the pipeline.

Eventually, after multiple stages of transformation, the geometry is transformed
by a projection transformation. We shall see in Chapter 4 that we can implement this
step using 4 x 4 matrices, and thus projection fits in the pipeline. In general, we want
to keep three-dimensional information as long as possible, as objects pass through
the pipeline. Consequently, the projection transformation is somewhat more general
than the projections in Section 1.5. In addition to retaining three-dimensional infor-
mation, there is a variety of projections that we can implement. We shall see these
projections in Chapter 4.

The assignment of vertex colors can be as simple as the program specifying a
color or as complex as the computation of a color from a physically realistic lighting
model that incorporates the surface properties of the object and the characteristic
light sources in the scene. We shall discuss lighting models in Chapter 5.

1.7.5 Clipping and Primitive Assembly
The second fundamental block in the implementation of the standard graphics
pipeline is for clipping and primitive assembly. We must do clipping because of the
limitation that no imaging system can see the whole world at once. The human retina
has a limited size corresponding to an approximately 90-degree field of view. Cameras
have film of limited size, and we can adjust their fields of view by selecting different
lenses.

We obtain the equivalent property in the synthetic camera by considering a clip-
ping volume, such as the pyramid in front of the lens in Figure 1.25. The projections
of objects in this volume appear in the image. Those that are outside do not and
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are said to be clipped out. Objects that straddle the edges of the clipping volume are
partly visible in the image. Efficient clipping algorithms are developed in Chapter 6.

Clipping must be done on a primitive-by-primitive basis rather than on a vertex-
by-vertex basis. Thus, within this stage of the pipeline, we must assemble sets of
vertices into primitives, such as line segments and polygons, before clipping can take
place. Consequently, the output of this stage is a set of primitives whose projections
can appear in the image.

1.7.6 Rasterization

The primitives that emerge from the clipper are still represented in terms of their
vertices and must be converted to pixels in the frame buffer. For example, if three
vertices specify a triangle with a solid color, the rasterizer must determine which
pixels in the frame buffer are inside the polygon. We discuss this rasterization (or
scan-conversion) process in Chapter 6 for line segments and polygons. The output of
the rasterizer is a set of fragments for each primitive. A fragment can be thought of
as a potential pixel that carries with it information, including its color and location,
that is used to update the corresponding pixel in the frame buffer. Fragments can
also carry along depth information that allows later stages to determine if a particular
fragment lies behind other previously rasterized fragments for a given pixel.

1.7.7 Fragment Processing

The final block in our pipeline takes in the fragments generated by the rasterizer and
updates the pixels in the frame buffer. If the application generated three-dimensional
data, some fragments may not be visible because the surfaces that they define are
behind other surfaces. The color of a fragment may be altered by texture mapping or
bump mapping, as in Color Plates 6 and 7. The color of the pixel that corresponds to
a fragment can also be read from the frame buffer and blended with the fragment’s
color to create translucent effects. These effects will be covered in Chapter 7.

1.8 PROGRAMMABLE PIPELINES

Graphics architectures have gone through multiple design cycles in which the impor-
tance of special-purpose hardware relative to standard CPUs has gone back and forth.
However, the importance of the pipeline architecture has remained regardless of this
cycle. None of the other approaches—ray tracing, radiosity, photon mapping—can
achieve real-time behavior, that is, the ability to render complex dynamic scenes
so that the viewer sees the display without defects. However, the term real-time is
becoming increasingly difficult to define as graphics hardware improves. Although
some approaches such as ray tracing can come close to real time, none can achieve the
performance of pipeline architectures with simple application programs and simple
GPU programs. Hence, the commodity graphics market is dominated by graphics
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cards that have pipelines built into the graphics processing unit. All of these com-
modity cards implement the pipeline that we have just described, albeit with more
options, many of which we shall discuss in later chapters.

For many years, these pipeline architectures have had a fixed functionality. Al-
though the application program could set many parameters, the basic operations
available within the pipeline were fixed. Recently, there has been a major advance
in pipeline architectures. Both the vertex processor and the fragment processor are
now programmable by the application program. One of the most exciting aspects of
this advance is that many of the techniques that formerly could not be done in real
time because they were not part of the fixed-function pipeline can now be done in
real time. Bump mapping, which we illustrated in Color Plate 6, is but one example
of an algorithm that is now programmable but formerly could only be done off-line.

Vertex programs can alter the location or color of each vertex as it flows through
the pipeline. Thus, we can implement a variety of light—material models or create new
kinds of projections. Fragment programs allow us to use textures in new ways and to
implement other parts of the pipeline, such as lighting, on a per-fragment basis rather
than per vertex.

Programmability is now available at every level, including hand-held devices
such as cell phones. WebGL is being built into Web browsers. At the high end, the
speed and parallelism in programmable GPUs make them suitable for carrying out
high-performance computing that does not involve graphics. The latest versions of
OpenGL have responded to these advances first by adding programmability to the
standard as an option that an application programmer could use as an alternative to
the fixed-function pipeline and later through versions that require the application
to provide both a vertex shader and a fragment shader. We will follow these new
standards throughout. Although it will take a little more code for our first programs
because we will not use a fixed-function pipeline, the rewards will be significant as
our code will be efficient and easily extendable.

1.9 PERFORMANCE CHARACTERISTICS

There are two fundamentally different types of processing in our architecture. At
the front end, there is geometric processing, based on processing vertices through
the various transformations, vertex shading, clipping, and primitive assembly. This
processing is ideally suited for pipelining, and it usually involves floating-point cal-
culations. The geometry engine developed by Silicon Graphics, Inc. (SGI) was a VLSI
implementation for many of these operations in a special-purpose chip that became
the basis for a series of fast graphics workstations. Later, floating-point accelerator
chips put 4 x 4 matrix-transformation units on the chip, reducing a matrix multi-
plication to a single instruction. Nowadays, graphics workstations and commodity
graphics cards use graphics processing units (GPUs) that perform most of the graph-
ics operations at the chip level. Pipeline architectures are the dominant type of high-
performance system.



Summary and Notes

Beginning with rasterization and including many features that we discuss later,
processing involves a direct manipulation of bits in the frame buffer. This back-end
processing is fundamentally different from front-end processing, and we implement
it most effectively using architectures that have the ability to move blocks of bits
quickly. The overall performance of a system is characterized by how fast we can
move geometric entities through the pipeline and by how many pixels per second
we can alter in the frame buffer. Consequently, the fastest graphics workstations are
characterized by geometric pipelines at the front ends and parallel bit processors at
the back ends. Until about 10 years ago, there was a clear distinction between front-
and back-end processing and there were different components and boards dedicated
to each. Now commodity graphics cards use GPUs that contain the entire pipeline
within a single chip. The latest cards implement the entire pipeline using floating-
point arithmetic and have floating-point frame buffers. These GPUs are so powerful
that even the highest level systems—systems that incorporate multiple pipelines—use
these processors.

Pipeline architectures dominate the graphics field, especially where real-time
performance is of importance. Our presentation has made a case for using such
an architecture to implement the hardware in a system. Commodity graphics cards
incorporate the pipeline within their GPUs. Cards that cost less than $100 can render
millions of shaded texture-mapped polygons per second. However, we can also make
as strong a case for pipelining being the basis of a complete software implementation
of an API. The power of the synthetic-camera paradigm is that the latter works well
in both cases.

However, where realism is important, other types of renderers can perform bet-
ter at the expense of requiring more computation time. Pixar’s RenderMan interface
was created to interface to their off-line renderer. Physically based techniques, such
as ray tracing and radiosity, can create photorealistic images with great fidelity, but
usually not in real time.

SUMMARY AND NOTES

In this chapter, we have set the stage for our top-down development of computer
graphics. We presented the overall picture so that you can proceed to writing graphics
application programs in the next chapter without feeling that you are working in a
vacuum.

We have stressed that computer graphics is a method of image formation that
should be related to classical methods of image formation—in particular, to image
formation in optical systems, such as in cameras. In addition to explaining the pin-
hole camera, we have introduced the human visual system; both are examples of
imaging systems.

We described multiple image-formation paradigms, each of which has applica-
bility in computer graphics. The synthetic-camera model has two important conse-
quences for computer graphics. First, it stresses the independence of the objects and
the viewer—a distinction that leads to a good way of organizing the functions that
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will be in a graphics library. Second, it leads to the notion of a pipeline architecture,
in which each of the various stages in the pipeline performs distinct operations on
geometric entities and then passes on the transformed objects to the next stage.

We also introduced the idea of tracing rays of light to obtain an image. This para-
digm is especially useful in understanding the interaction between light and materials
that is essential to physical image formation. Because ray tracing and other physically
based strategies cannot render scenes in real time, we defer further discussion of them
until Chapter 11.

The modeling-rendering paradigm is becoming increasingly important. A stan-
dard graphics workstation can generate millions of line segments or polygons per
second at a resolution exceeding 2048 x 1546 pixels. Such a workstation can shade
the polygons using a simple shading model and can display only visible surfaces at this
rate. However, realistic images may require a resolution of up to 4000 x 6000 pixels
to match the resolution of film and may use light and material effects that cannot be
implemented in real time. Even as the power of available hardware and software con-
tinues to grow, modeling and rendering have such different goals that we can expect
the distinction between a modeling and a rendering to survive.

Our next step will be to explore the application side of graphics programming.
We use the OpenGL API, which is powerful, is supported on most platforms, and
has a distinct architecture that will allow us to use it to understand how computer
graphics works, from an application program to a final image on a display.

There are many excellent graphics textbooks. The book by Newman and Sproull
[New?73] was the first to take the modern point of view of using the synthetic-camera
model. The various versions of Foley et al. [Fol90, Fol94] have been the standard
references for over a decade. Other good texts include Hearn and Baker [Heall], Hill
[Hil07], and Shirley [Shi02].

Good general references include Computer Graphics, the quarterly journal of
SIGGRAPH (the Association for Computing Machinery’s Special Interest Group on
Graphics), IEEE Computer Graphics and Applications, and Visual Computer. The pro-
ceedings of the annual SIGGRAPH conference include the latest techniques. These
proceedings formerly were published as the summer issue of Computer Graphics.
Now, they are published as an issue of the ACM Transactions on Graphics and are
available on DVD. Of particular interest to newcomers to the field are the state-of-
the-art animations available from SIGGRAPH and the notes from tutorial courses
taught at that conference, both of which are now available on DVD or in ACM’s dig-
ital library.

Sutherland’s doctoral dissertation, published as Sketchpad: A Man—Machine
Graphical Communication System [Sut63] was probably the seminal paper in the de-
velopment of interactive computer graphics. Sutherland was the first person to realize
the power of the new paradigm in which humans interacted with images on a CRT
display. Videotape copies of film of his original work are still available.



Tufte’s books [Tuf83, Tuf90, Tuf97] show the importance of good visual design
and contain considerable historical information on the development of graphics. The
article by Carlbom and Paciorek [Car78] gives a good discussion of some of the
relationships between classical viewing, as used in fields such as architecture, and
viewing by computer.

Many books describe the human visual system. Pratt [Pra78] gives a good short
discussion for working with raster displays. Also see Glassner [Gla95], Wyszecki and
Stiles [Wys82], and Hall [Hal89].

EXERCISES

1.1  The pipeline approach to image generation is nonphysical. What are the main
advantages and disadvantages of such a nonphysical approach?

1.2 In computer graphics, objects such as spheres are usually approximated by
simpler objects constructed from flat polygons (polyhedra). Using lines of lon-
gitude and latitude, define a set of simple polygons that approximate a sphere
centered at the origin. Can you use only quadrilaterals or only triangles?

1.3 A different method of approximating a sphere starts with a regular tetrahe-
dron, which is constructed from four triangles. Find its vertices, assuming that
it is centered at the origin and has one vertex on the y-axis. Derive an algo-
rithm for obtaining increasingly closer approximations to a unit sphere, based
on subdividing the faces of the tetrahedron.

1.4  Consider the clipping of a line segment in two dimensions against a rectan-
gular clipping window. Show that you require only the endpoints of the line
segment to determine whether the line segment is not clipped, is partially vis-
ible, or is clipped out completely.

1.5 For aline segment, show that clipping against the top of the clipping rectangle
can be done independently of the clipping against the other sides. Use this
result to show that a clipper can be implemented as a pipeline of four simpler
clippers.

1.6  Extend Exercises 1.4 and 1.5 to clipping against a three-dimensional right
parallelepiped.

1.7  Consider the perspective views of the cube shown in Figure 1.39. The one on
the left is called a one-point perspective because parallel lines in one direction
of the cube—along the sides of the top—converge to a vanishing point in the
image. In contrast, the image on the right is a two-point perspective. Charac-
terize the particular relationship between the viewer, or a simple camera, and
the cube that determines why one is a two-point perspective and the other a
one-point perspective.

1.8 The memory in a frame buffer must be fast enough to allow the display to
be refreshed at a rate sufficiently high to avoid flicker. A typical workstation
display can have a resolution of 1280 x 1024 pixels. If it is refreshed 72 times

Exercises
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FIGURE 1.39 Perspective views of a cube.

1.9

1.13

per second, how fast must the memory be? That is, how much time can we take
to read one pixel from memory? What is this number for a 480 x 640 display
that operates at 60 Hz but is interlaced?

Movies are generally produced on 35 mm film that has a resolution of approx-
imately 2000 x 3000 pixels. What implication does this resolution have for
producing animated images for television as compared with film?

Consider the design of a two-dimensional graphical API for a specific appli-
cation, such as for VLSI design. List all the primitives and attributes that you
would include in your system.

It is possible to design a color CRT that uses a single electron gun and does not
have a shadow mask. The single beam is turned on and off at the appropriate
times to excite the desired phosphors. Why might such a CRT be more difficult
to design, as compared to the shadow-mask CRT?

In a typical shadow-mask CRT, if we want to have a smooth display, the width
of a pixel must be about three times the width of a triad. Assume that a monitor
displays 1280 x 1024 pixels, has a CRT diameter of 50 cm, and has a CRT depth
of 25 cm. Estimate the spacing between holes in the shadow mask.

An interesting exercise that should help you understand how rapidly graphics
performance has improved is to go to the Web sites of some of the GPU
manufacturers, such as NVIDIA, ATT, and Intel, and look at the specifications
for their products. Often the specs for older cards and GPUs are still there. How
rapidly has geometric performance improved? What about pixel processing?
How has the cost per rendered triangle decreased?



GRAPHICS PROGRAMMING

ur approach to computer graphics is programming oriented. Consequently, we

want you to get started programming graphics as soon as possible. To this end,
we will introduce a minimal application programming interface (API). This APT will
be sufficient to allow you to program many interesting two- and three-dimensional
problems and to familiarize you with the basic graphics concepts.

We regard two-dimensional graphics as a special case of three-dimensional
graphics. This perspective allows us to get started, even though we will touch on
three-dimensional concepts lightly in this chapter. Our two-dimensional code will
execute without modification on a three-dimensional system.

Our development will use a simple but informative problem: the Sierpinski gas-
ket. It shows how we can generate an interesting and, to many people, unexpectedly
sophisticated image using only a handful of graphics functions. We use OpenGL as
our AP], but our discussion of the underlying concepts is broad enough to encompass
most modern systems. The functionality that we introduce in this chapter is sufficient
to allow you to write basic two- and three-dimensional programs that do not require
user interaction.

2.1 THE SIERPINSKI GASKET

We will use as a sample problem the drawing of the Sierpinski gasket—an interesting
shape that has a long history and is of interest in areas such as fractal geometry. The
Sierpinski gasket is an object that can be defined recursively and randomly; in the
limit, however, it has properties that are not at all random. We start with a two-
dimensional version, but as we will see in Section 2.10, the three-dimensional version
is almost identical.

Suppose that we start with three points in space. As long as the points are not
collinear, they are the vertices of a unique triangle and also define a unique plane.
We assume that this plane is the plane z = 0 and that these points, as specified in
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FIGURE 2.1 Generation of
the Sierpinski gasket.

some convenient coordinate system,! are (x;, y;, 0), (x,, ¥,, 0), and (x5, y3, 0). The
construction proceeds as follows:

. Pick an initial point p = (x, y, 0) at random inside the triangle.
. Select one of the three vertices at random.

1
2
3. Find the point q halfway between p and the randomly selected vertex.
4

. Display q by putting some sort of marker, such as a small circle, at the corre-
sponding location on the display.

5. Replace p with q.
6. Return to step 2.

Thus, each time that we generate a new point, we display it on the output device. This
process is illustrated in Figure 2.1, where p,, is the initial point, and p, and p, are the
first two points generated by our algorithm.
Before we develop the program, you might try to determine what the resulting
image will be. Try to construct it on paper; you might be surprised by your results.
A possible form for our graphics program might be this:

main( )

{
initialize_the_system();
p = find_initial_point();

for (some_number_of_points)

{
q = generate_a_point(p);
display_the_point(q);
P =q;

}

cleanup();

This form can be converted into a real program fairly easily. However, even at
this level of abstraction, we can see two other alternatives. Consider the pseudocode

main( )

{
initialize_the_system();
p = find_initial_point();

1. In Chapter 3, we expand the concept of a coordinate system to the more general formulation of a
frame.
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for (some_number_of_points)
{
q = generate_a_point(p);
store_the_point(q);
P =4q;
}
display_all_points();
cleanup();

In this algorithm, we compute all the points first and put them into an array or
some other data structure. We then display all the points through a single function
call. This approach avoids the overhead of sending small amounts of data to the
graphics processor for each point we generate at the cost of having to store all the
data. The strategy used in the first algorithm is known as immediate mode graphics
and, until recently, was the standard method for displaying graphics, especially where
interactive performance was needed. One consequence of immediate mode is that
there is no memory of the geometric data. With our first example, if we want to
display the points again, we would have to go through the entire creation and display
process a second time.

In our second algorithm, because the data are stored in a data structure, we can
redisplay the data, perhaps with some changes such as altering the color or changing
the size of a displayed point, by resending the array without regenerating the points.
The method of operation is known as retained mode graphics and goes back to some
of the earliest special purpose graphics display hardware. The architecture of modern
graphics systems that employ a GPU leads to a third version of our program.

Our second approach has one major flaw. Suppose that, as we might in an
animation, we wish to redisplay the same objects. The geometry of the objects is
unchanged, but the objects may be moving. Displaying all the points involves sending
the data from the CPU to the GPU each time we wish to display the objects in a new
position. For large amounts of data, this data transfer is the major bottleneck in the
display process. Consider the following alternative scheme:

main( )

{
initialize_the_system();
p = find_initial_point();

for(some_number_of_points)

{
q = generate_a_point(p);
store_the_point(q);
p =49
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send_all_points_to_GPUQ);
display_data_on_GPUQ);
cleanup();

As before, we place data in an array, but now we have broken the display process into
two parts: storing the data on the GPU and displaying the data that has been stored.
If we only have to display our data once, there is no advantage over our previous
method, but if we want to animate the display, our data are already on the GPU and
redisplay does not require any additional data transfer, only a simple function call
that alters the location of some spatial data describing the objects that have moved.

Although our final OpenGL program will have a slightly different organization,
it will follow this third strategy. We develop the full program in stages. First, we
concentrate on the core: generating and displaying points. We must answer two
questions:

= How do we represent points in space?
= Should we use a two-dimensional, three-dimensional, or other representa-

tion?

Once we answer these questions, we will be able to place our geometry on the GPU in
a form that can be rendered. Then, we will be able to address how we view our objects
using the power of programmable shaders.

2.2 PROGRAMMING TWO-DIMENSIONAL APPLICATIONS

For two-dimensional applications, such as the Sierpinski gasket, although we could
use a pen-plotter API, such an approach would limit us. Instead, we choose to start
with a three-dimensional world; we regard two-dimensional systems, such as the one
on which we will produce our image, as special cases. Mathematically, we view the
two-dimensional plane, or a simple two-dimensional curved surface, as a subspace of
a three-dimensional space. Hence, statements—both practical and abstract—about
the larger three-dimensional world hold for the simpler two-dimensional world.

We can represent a point in the plane z=0 as p = (x, y, 0) in the three-
dimensional world, or as p = (x, y) in the two-dimensional plane. OpenGL, like most
three-dimensional graphics systems, allows us to use either representation, with the
underlying internal representation being the same, regardless of which form the user
chooses. We can implement representations of points in a number of ways, but the
simplest is to think of a three-dimensional point as being represented by a triplet
p = (x, ¥, z) or a column matrix
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whose components give the location of the point. For the moment, we can leave aside
the question of the coordinate system in which p is represented.

We use the terms vertex and point in a somewhat different manner in OpenGL.
A vertex is a position in space; we use two-, three-, and four-dimensional spaces in
computer graphics. We use vertices to specify the atomic geometric primitives that
are recognized by our graphics system. The simplest geometric primitive is a point
in space, which is usually specified by a single vertex. Two vertices can specify a line
segment, a second primitive object; three vertices can specify either a triangle or a
circle; four vertices can specify a quadrilateral; and so on. Two vertices can also specify
either a circle or a rectangle. Likewise, three vertices can also specify three points
or two connected line segments, and four vertices can specify a variety of objects
including two triangles.

The heart of our Sierpinski gasket program is generating the points. In order to
go from our third algorithm to a working OpenGL program, we need to introduce a
little more detail on OpenGL. We want to start with as simple a program as possible.
One simplification is to delay a discussion of coordinate systems and transformations
among them by putting all the data we want to display inside a cube centered at the
origin whose diagonal goes from (—1, —1, —1) and (1, 1, 1). This system known
as clip coordinates is the one that our vertex shader uses to send information to
the rasterizer. Objects outside this cube will be eliminated, or clipped, and cannot
appear on the display. Later, we will learn to specify geometry in our application
program in coordinates better suited for our application—object coordinates—and
use transformations to convert the data to a representation in clip coordinates.

We could write the program using a simple array of two elements to hold the
x- and y-values of each point. We will have far clearer code if we first define a two-
dimensional point type and operations for this type. We have created such classes
and operators and put them in a file vec.h. The types in vec.h and the other
types defined later in the three- and four-dimensional classes match the types in the
OpenGL Shading Language and so should make all our coding examples clearer than
if we had used ordinary arrays. In addition to defining these new types, vec.h and its
companion file mat2.h also define overloaded operators and constructors for these
types that match GLSL. Hence, code such as

vec2 a = vec2(1.0, 2.0);
vec2(3.0, 4.0);
vec2 ¢ = a + b;

vec2 b

can appear either in a shader or in the application. We can input and output points
using the usual stream operators cin and cout. We can access individual elements
using either the usual membership operator, e.g., p.x or p.y, or by indexing as we
would an array (p[0] and p[1]).

One small addition will make our applications even clearer. Rather than using
the GLSL vec2, we typedef a point2

typedef vec2 point2;
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Within vec.h, the type vec?2 is specified as a struct with two elements of type
GLfloat. In OpenGL, we often use basic OpenGL types, such as GLfloat and
GLint, rather than the corresponding C types float and int. These types are
defined in the OpenGL header files and usually in the obvious way—for example,

typedef float GLfloat;

However, use of the OpenGL types allows additional flexibility for implementations
where, for example, we might want to change floats to doubles without altering
existing application programs.

The following code generates 5000 points starting with the vertices of a triangle
that lie in the plane z = 0:

#include "vec.h" // include point types and operations
#include <stdlib.h> //includes random number generator

typedef vec2 point2; //defines a point2 type identical to a vec2

void init()

{
const int NumPoints = 5000;
point2 points[NumPoints];
// A triangle in the plane z= 0
point2 vertices[3]={point2(-1.0,-1.0), point2(0.0,1.0),
point2(1.0,-1.0)};
// An arbitrary initial point inside the triangle
points[0] = point2(0.25, 0.50);
// compute and store NumPoints-1 new points
for(int k = 1; k < NumPoints; k++)
{
int j = rand() % 3; // pick a vertex at random
// Compute the point halfway between selected
// vertex and previous point
points[k] = (points[k-1]+vertices[jl)/2.0;
}
}

Note that because every point we generate must lie inside the triangle determined by
these vertices, we know that none of the generated points will be clipped out.
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The function rand () is a standard random-number generator that produces a
new random integer each time it is called. We use the modulus operator to reduce
these random integers to the three integers 0, 1, and 2. For a small number of itera-
tions, the particular characteristics of the random-number generator are not crucial,
and any other random-number generator should work at least as well as rand.

We intend to generate the points only once and then place them on the GPU.
Hence, we make their creation part of an initialization function init.

We specified our points in two dimensions. We could have also specified them in
three dimensions by adding a z-coordinate, which is always zero through the three-
dimensional types in mat .h and vec.h. The changes to the code would be minimal.
We would have the code lines

#include "vec.h" // three-dimensional type

typedef vec3 point3;
and

point3 points [NumPoints];
point3 vertices[3] = {point3(-1.0,-1.0, 0.0), point3(0.0,1.0, 0.0),
point3(1.0,-1.0, 0.0)3};

as part of initialization. Although we still do not have a complete program, Figure 2.2
shows the output that we expect to see.

Note that because any three noncollinear points specify a unique plane, had we
started with three points (x, ¥}, 2;), (X5, ¥» Z,), and (x5, y3, z3) along with an initial
point in the same plane, then the gasket would be generated in the plane specified by
the original three vertices.

We have now written the core of the program. Although we have some data,
we have not placed these data on the GPU nor have we asked the GPU to display
anything. We have not even introduced a single OpenGL function. Before we can
display anything, we still have to address issues such as the following:

. In what colors are we drawing?

. Where on the display does our image appear?

. How large will the image be?

How do we create an area of the display—a window—for our image?

. How much of our infinite drawing surface will appear on the display?

N U R W N =

. How long will the image remain on the display?

The answers to all these questions are important, although initially they may appear
to be peripheral to our major concerns. As we will see, the basic code that we de-
velop to answer these questions and to control the placement and appearance of our
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FIGURE 2.2 The Sierpinski gasket as generated with 5000 random
points.

renderings will not change substantially across programs. Hence, the effort that we
expend now will be repaid later.

2.3 THE OPENGL APPLICATION PROGRAMMING INTERFACE

We have the heart of a simple graphics program; now, we want to gain control
over how our objects appear on the display. We also want to control the flow of
the program, and we have to interact with the window system. Before completing
our program, we describe the OpenGL Application Programming Interface (API) in
more detail. Because vertices are represented in the same manner internally, whether
they are specified as two- or three-dimensional entities, everything that we do here
will be equally valid in three dimensions. Of course, we can do much more in three
dimensions, but we are only getting started. In this chapter, we concentrate on how
to specify primitives to be displayed.

OpenGLs structure is similar to that of most modern APIs, such as DirectX.
Hence, any effort that you put into learning OpenGL will carry over to other soft-
ware systems. Although OpenGL is easy to learn, compared with other APIs, it is
nevertheless powerful. It supports the simple two- and three-dimensional programs
that we will develop in Chapters 2 through 5; it also supports the advanced rendering
techniques that we study in Chapters 7 through 11.

Our prime goal is to study computer graphics; we are using an API to help us
attain that goal. Consequently, we do not present all OpenGL functions, and we
omit many details. However, our sample programs will be complete. More detailed
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FIGURE 2.3 Graphics system as a black box.

information on OpenGL and on other APIs is given in the Suggested Readings section
at the end of the chapter.

2.3.1 Graphics Functions

Our basic model of a graphics package is a black box, a term that engineers use to
denote a system whose properties are described only by its inputs and outputs; we
may know nothing about its internal workings. We can think of the graphics system
as a box whose inputs are function calls from an application program; measurements
from input devices, such as the mouse and keyboard; and possibly other input, such
as messages from the operating system. The outputs are primarily the graphics sent
to our output devices. For now, we can take the simplified view of inputs as function
calls and outputs as primitives displayed on our monitor, as shown in Figure 2.3.

A graphics system performs multiple tasks to produce output and handle user
input. An API for interfacing with this system can contain hundreds of individual
functions. It will be helpful to divide these functions into seven major groups:

1. Primitive functions

. Attribute functions

. Viewing functions

. Transformation functions

. Input functions

A U s W

. Control functions
7. Query functions

Although we will focus on OpenGL as the particular system that we use, all graphics
APIs support similar functionality. What differs among APIs is where these functions
are supported. OpenGL is designed around a pipeline architecture, and modern ver-
sions are based on using programmable shaders. Consequently, OpenGL and other
APIs such as DirectX that support a similar architecture will have much in common,
whereas OpenGL and an API for a ray tracer will have less overlap. Nevertheless, re-
gardless of the underlying architecture and API, we still have to address all the seven
tasks.

The primitive functions define the low-level objects or atomic entities that our
system can display. Depending on the API, the primitives can include points, line
segments, polygons, pixels, text, and various types of curves and surfaces. OpenGL
supports a very limited set of primitives directly, only points, line segments, and
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triangles. Support for other primitives comes from the application approximating
them with the supported primitives. For the most important objects such as reg-
ular polyhedra, quadrics, and Bezier curves and surfaces that are not directly sup-
ported by OpenGL, there are libraries that provide the necessary code. Support for
expanded sets of primitives is usually done with great efficiency through program-
mable shaders.

If primitives are the what of an API—the primitive objects that can be
displayed—then attributes are the how. That is, the attributes govern the way that a
primitive appears on the display. Attribute functions allow us to perform operations
ranging from choosing the color with which we display a line segment, to picking a
pattern with which to fill the inside of a polygon, to selecting a typeface for the titles
on a graph. In OpenGL, we can set colors by passing the information from the appli-
cation to the shader or by having a shader compute a color, for example, through a
lighting model that uses data specifying light sources and properties of the surfaces
in our model.

Our synthetic camera must be described if we are to create an image. As we saw in
Chapter 1, we must describe the camera’s position and orientation in our world and
must select the equivalent of a lens. This process will not only fix the view but also
allow us to clip out objects that are too close or too far away. The viewing functions
allow us to specify various views, although APIs differ in the degree of flexibility they
provide in choosing a view. OpenGL does not provide any viewing functions but
relies on the use of transformations in the shaders to provide the desired view.

One of the characteristics of a good API is that it provides the user with a set of
transformation functions that allows her to carry out transformations of objects,
such as rotation, translation, and scaling. Our developments of viewing in Chap-
ter 4 and of modeling in Chapter 8 will make heavy use of matrix transformations.
In OpenGL, we carry out transformations by forming transformations in our appli-
cations and then applying them either in the application or in the shaders.

For interactive applications, an API must provide a set of input functions to
allow us to deal with the diverse forms of input that characterize modern graphics
systems. We need functions to deal with devices such as keyboards, mice, and data
tablets. Later in this chapter, we will introduce functions for working with different
input modes and with a variety of input devices.

In any real application, we also have to worry about handling the complexities of
working in a multiprocessing, multiwindow environment—usually an environment
where we are connected to a network and there are other users. The control functions
enable us to communicate with the window system, to initialize our programs, and
to deal with any errors that take place during the execution of our programs.

If we are to write device-independent programs, we should expect the imple-
mentation of the API to take care of differences between devices, such as how many
colors are supported or the size of the display. However, there are applications where
we need to know some properties of the particular implementation. For example, we
would probably choose to do things differently if we knew in advance that we were
working with a display that could support only two colors rather than millions of
colors. More generally, within our applications we can often use other information
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within the AP], including camera parameters or values in the frame buffer. A good
API provides this information through a set of query functions.

2.3.2 The Graphics Pipeline and State Machines

If we put together some of these perspectives on graphics APIs, we can obtain another
view, one closer to the way OpenGL, in particular, is actually organized and imple-
mented. We can think of the entire graphics system as a state machine, a black box
that contains a finite-state machine. This state machine has inputs that come from the
application program. These inputs may change the state of the machine or can cause
the machine to produce a visible output. From the perspective of the API, graphics
functions are of two types: those that specify primitives that flow through a pipeline
inside the state machine and those that either change the state inside the machine
or return state information. In OpenGL, there are very few functions that can cause
any output. Most set the state, either by enabling various OpenGL features—hidden-
surface removal, texture—or set parameters used for rendering.

Until recently, OpenGL defined many state variables and contained separate
functions for setting the values of individual variables. The latest versions have elim-
inated most of these variables and functions. Instead, the application program can
define its own state variables and use them or send their values to the shaders.

One important consequence of the state machine view is that most parame-
ters are persistent; their values remain unchanged until we explicitly change them
through functions that alter the state. For example, once we set a color, that color
remains the current color until it is changed through a color-altering function. An-
other consequence of this view is that attributes that we may conceptualize as bound
to objects—a red line or a blue circle—are in fact part of the state, and a line will be
drawn in red only if the current color state calls for drawing in red. Although within
our applications it is usually harmless, and often preferable, to think of attributes as
bound to primitives, there can be annoying side effects if we neglect to make state
changes when needed or lose track of the current state.

2.3.3 The OpenGL Interface

OpenGL functions are in a single library named GL (or OpenGL in Windows). Func-
tion names begin with the letters gl. Shaders are written in the OpenGL Shading
Language (GLSL), which has a separate specification from OpenGL, although the
functions to interface the shaders with the application are part of the OpenGL API.
To interface with the window system and to get input from external devices into
our programs, we need at least one more library. For each major window system there
is a system-specific library that provides the “glue” between the window system and
OpenGL. For the X Window System, this library is called GLX, for Windows, it is wgl,
and for the Macintosh, it is agl. Rather than using a different library for each system,
we use two readily available libraries, the OpenGL Extension Wrangler (GLEW) and
the OpenGL Utility Toolkit (GLUT). GLEW removes operating system dependencies.
GLUT provides the minimum functionality that should be expected in any modern
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FIGURE 2.4 Library organization.

windowing system.> We introduce a few of its functions in this chapter and describe
more of them in Chapter 3.

Figure 2.4 shows the organization of the libraries for an X Window System en-
vironment. For this window system, GLUT will use GLX and the X libraries. The
application program, however, can use only GLUT functions and thus can be recom-
piled with the GLUT library for other window systems.

OpenGL makes heavy use of defined constants to increase code readability and
avoid the use of magic numbers. Thus, strings such as GL_FILL and GL_POINTS are
defined in header (.h) files. In most implementations, one of the include lines

#include <GL/glut.h>
or
#include <GLUT/glut.h>

is sufficient to read in glut.h and gl .h.

Although OpenGL is not object oriented, it supports a variety of data types
through multiple forms for many functions. For example, we will use various forms
of the function glUniform to transfer data to shaders. If we transfer a floating-point
number such as a time value, we would use glUniform1f. We could use glUni-
form3iv to transfer an integer position in three dimensions through a pointer to a
three-dimensional array of ints. Later, we will use the form glUniformMatrix4fv
to transfer a 4 x 4 matrix of floats. We will refer to such functions using the
notation

glSomeFunction*();

where the * can be interpreted as either two or three characters of the formnt or ntv,
where n signifies the number of dimensions (2, 3, 4, or matrix); t denotes the data
type, such as integer (1), float (f), or double (d); and v, if present, indicates that the
variables are specified through a pointer to an array, rather than through an argument

2. A more up-to-date version of GLUT is provided by freeglut, which is available on the Web.
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list. We will use whatever form is best suited for our discussion, leaving the details
of the various other forms to the OpenGL Programming Guide [Shr10]. Regardless
of which form an application programmer chooses, the underlying representation is
the same, just as the plane on which we are constructing the gasket can be looked
at as either a two-dimensional space or the subspace of a three-dimensional space
corresponding to the plane z = 0. In Chapter 3, we will see that the underlying
representation is four-dimensional; however, we do not need to worry about that
fact yet. In general, the application programmer chooses the form to use that is best
suited for her application.

2.3.4 Coordinate Systems

At this point, if we look back at our Sierpinski gasket code, you may be puzzled about
how to interpret the values of %, y, and z in our specification of vertices. In what
units are they? Are they in feet, meters, microns? Where is the origin? In each case,
the simple answer is that it is up to you.

Originally, graphics systems required the user to specify all information, such as
vertex locations, directly in units of the display device. If that were true for high-level
application programs, we would have to talk about points in terms of screen locations
in pixels or centimeters from a corner of the display. There are obvious problems with
this method, not the least of which is the absurdity of using distances on the computer
screen to describe phenomena where the natural unit might be light years (such as
in displaying astronomical data) or microns (for integrated-circuit design). One of
the major advances in graphics software systems occurred when the graphics systems
allowed users to work in any coordinate system that they desired. The advent of
device-independent graphics freed application programmers from worrying about
the details of input and output devices. The user’s coordinate system became known
as the world coordinate system, or the application or object coordinate system.
Within the slight limitations of floating-point arithmetic on our computers, we can
use any numbers that fit our application.

We will refer to the units that the application program uses to specify vertex posi-
tions as vertex coordinates. In most applications, vertex coordinates will be the same
as object or world coordinates, but depending on what we choose to do or not do in
our shaders, vertex coordinates can be one of the other internal coordinate systems
used in the pipeline. We will discuss these other coordinate systems in Chapters 3
and 4.

Units on the display were first called physical-device coordinates or just device
coordinates. For raster devices, such as most CRT and flat panel displays, we use
the term window coordinates or screen coordinates.Window coordinates are always
expressed in some integer type, because the center of any pixel in the frame buffer
must be located on a fixed grid or, equivalently, because pixels are inherently discrete
and we specify their locations using integers.

At some point, the values in vertex coordinates must be mapped to window
coordinates, as shown in Figure 2.5. The graphics system, rather than the user, is
responsible for this task, and the mapping is performed automatically as part of the
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FIGURE 2.5 Mapping from vertex coordinates to screen coordinates.

rendering process. As we will see in the next few sections, to define this mapping the
user needs to specify only a few parameters—such as the area of the world that she
would like to see and the size of the display. However, between the application and the
frame buffer are the two shaders and rasterizer, and, as we shall see when we discuss
viewing, there are three other intermediate coordinate systems of importance.

2.4 PRIMITIVES AND ATTRIBUTES

Within the graphics community, there has been an ongoing debate about which
primitives should be supported in an API. The debate is an old one and has never
been fully resolved. On the minimalist side, the contention is that an API should
contain a small set of primitives that all hardware can be expected to support. In
addition, the primitives should be orthogonal, each giving a capability unobtainable
from the others. Minimal systems typically support lines, polygons, and some form of
text (strings of characters), all of which can be generated efficiently in hardware. On
the other end are systems that can also support a variety of primitives, such as circles,
curves, surfaces, and solids. The argument here is that users need more complex
primitives to build sophisticated applications easily. However, because few hardware
systems can be expected to support the large set of primitives that is the union of all
the desires of the user community, a program developed with such a system probably
would not be portable, because few implementations could be expected to support
the entire set of primitives.

As graphics hardware has improved and real-time performance has become mea-
sured in the tens of millions of polygons per second, the balance has tilted toward
supporting a minimum set of primitives. One reason is that GPUs achieve their speed
largely because they are optimized for points, lines, and triangles. We will develop
code later that will approximate various curves and surfaces with primitives that are
supported on GPUs.

We can separate primitives into two classes: geometric primitives and image,
or raster, primitives. Geometric primitives are specified in the problem domain and
include points, line segments, polygons, curves, and surfaces. These primitives pass
through a geometric pipeline, as shown in Figure 2.6, where they are subject to a series
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FIGURE 2.6 Simplified OpenGL pipeline.

of geometric operations that determine whether a primitive is visible, where on the
display it appears if it is visible, and the rasterization of the primitive into pixels in
the frame buffer. Because geometric primitives exist in a two- or three-dimensional
space, they can be manipulated by operations such as rotation and translation. In
addition, they can be used as building blocks for other geometric objects using these
same operations. Raster primitives, such as arrays of pixels, lack geometric properties
and cannot be manipulated in space in the same way as geometric primitives. They
pass through a separate parallel pipeline on their way to the frame buffer. We will
defer our discussion of raster primitives until Chapter 7.

The basic OpenGL geometric primitives are specified by sets of vertices. An
application starts by computing vertex data—positions and other attributes—and
putting the results into arrays that are sent to the GPU for display. When we want
to display some geometry, we execute functions whose parameters specify how the
vertices are to be interpreted. For example, we can display the vertices we computed
for the Sierpinski gasket, starting with the first vertex, as points through the function
call

glDrawArrays (GL_POINTS, 0, NumPoints);

after they have been placed on the GPU.

All OpenGL geometric primitives are variants of points, line segments, and tri-
angular polygons. A point can be displayed as a single pixel or a small group of pixels.
Finite sections of lines between two vertices, called line segments—in contrast to
lines that are infinite in extent—are of great importance in geometry and computer
graphics. You can use line segments to define approximations to curves, or you can
use a sequence of line segments to connect data values for a graph. You can also use
line segments to display the edges of closed objects, such as polygons, that have in-
teriors. Consequently, it is often helpful to think in terms of both vertices and line
segments.

If we wish to display points or line segments, we have a few choices in OpenGL
(Figure 2.7). The primitives and their type specifications include the following:

Points (GL_POINTS) Each vertex is displayed at a size of at least one pixel.

57



58 Chapter 2 Graphics Programming

i

A

FIGURE 2.8 Filled objects.

)

FIGURE 2.9 Methods of dis-
playing a polygon.

(a)

(b)
FIGURE 2.10 Polygons.
(a) Simple. (b) Nonsimple.

P2 P> P> P>
Pie * oP3 Pi, ™~P; P P; P P3
Poe oPy Po / / P4 Po P4 Po P4
P;® o °Ps P;~_ 'Ps P; Ps P7 Ps
P¢ P¢ Ps Ps
GL_POINTS GL_LINES GL_LINE STRIP GL_LINE_ LOOP

FIGURE 2.7 Point and line-segment types.

Line segments (GL_LINES) The line-segment type causes successive pairs of ver-
tices to be interpreted as the endpoints of individual segments. Note that successive
segments usually are disconnected because the vertices are processed on a pairwise
basis.

Polylines (GL_LINE_STRIP, GL_LINE_LOOP) If successive vertices (and line seg-
ments) are to be connected, we can use the line strip, or polyline form. Many curves
can be approximated via a suitable polyline. If we wish the polyline to be closed, we
can locate the final vertex in the same place as the first, or we can use the GL_LINE_
LOOP type, which will draw a line segment from the final vertex to the first, thus
creating a closed path.

2.4.1 Polygon Basics

Line segments and polylines can model the edges of objects, but closed objects have
interiors (Figure 2.8). Usually we reserve the name polygon for an object that has
a border that can be described by a line loop but also has a well-defined interior.?
Polygons play a special role in computer graphics because we can display them rapidly
and use them to approximate arbitrary surfaces. The performance of graphics systems
is characterized by the number of polygons per second that can be rendered.* We can
render a polygon in a variety of ways: We can render only its edges, we can render its
interior with a solid color or a pattern, and we can render or not render the edges, as
shown in Figure 2.9. Although the outer edges of a polygon are defined easily by an
ordered list of vertices, if the interior is not well defined, then the list of vertices may
not be rendered at all or rendered in an undesirable manner. Three properties will
ensure that a polygon will be displayed correctly: It must be simple, convex, and flat.

In two dimensions, as long as no two edges of a polygon cross each other, we have
a simple polygon. As we can see in Figure 2.10, simple two-dimensional polygons
have well-defined interiors. Although the locations of the vertices determine whether
or not a polygon is simple, the cost of testing is sufficiently high (see Exercise 2.12)
that most graphics systems require that the application program does any necessary

3. The term fill area is sometimes used instead of polygon.

4. Measuring polygon rendering speeds involves both the number of vertices and the number of
pixels inside.
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testing. We can ask what a graphics system will do if it is given a nonsimple polygon
to display and whether there is a way to define an interior for a nonsimple polygon.
We will examine these questions further in Chapter 6.

From the perspective of implementing a practical algorithm to fill the interior of
a polygon, simplicity alone is often not enough. Some APIs guarantee a consistent fill
from implementation to implementation only if the polygon is convex. An object is
convex if all points on the line segment between any two points inside the object, or
on its boundary, are inside the object. Thus, in Figure 2.11, p; and p, are arbitrary
points inside a polygon and the entire line segment connecting them is inside the
polygon. Although so far we have been dealing with only two-dimensional objects,
this definition makes reference neither to the type of object nor to the number of di-
mensions. Convex objects include triangles, tetrahedra, rectangles, circles, spheres,
and parallelepipeds (Figure 2.12). There are various tests for convexity (see Exer-
cise 2.19). However, like simplicity testing, convexity testing is expensive and usually
left to the application program.

In three dimensions, polygons present a few more difficulties because, unlike all
two-dimensional objects, all the vertices that specify the polygon need not lie in the
same plane. One property that most graphics systems exploit, and that is the basis of
OpenGL polygons, is that any three vertices that are not collinear determine both a
triangle and the plane in which that triangle lies. Hence, if we always use triangles, we
are safe—we can be sure that these objects will be rendered correctly. Often, we are
almost forced to use triangles because typical rendering algorithms are guaranteed to
be correct only if the vertices form a flat convex polygon. In addition, hardware and
software often support a triangle type that is rendered faster than is a polygon with
three vertices.

2.4.2 Polygons in OpenGL

Returning to the OpenGL types, the only OpenGL polygons (Figure 2.13) that
OpenGL supports are triangles. Triangles can be displayed in three ways: as points
corresponding to the vertices, as edges, or with the interiors filled. In OpenGL, we
use the function glPolygonMode to tell the renderer to generate only the edges or
just points for the vertices, instead of fill (the default). However, if we want to draw a
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FIGURE 2.12 Convex objects.
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polygon that is filled and to display its edges, then we have to render it twice, once in
each mode, or to draw a filled polygon and a line loop with the same vertices.
Here are the types:

Triangles (GL_TRIANGLES) The edges are the same as they would be if we used line
loops. Each successive group of three vertices specifies a new triangle.

Strips and Fans (GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN) These objects are
based on groups of triangles that share vertices and edges. In the triangle strip, for
example, each additional vertex is combined with the previous two vertices to define
a new triangle (Figure 2.14). A triangle fan is based on one fixed point. The next two
points determine the first triangle, and subsequent triangles are formed from one
new point, the previous point, and the first (fixed) point.

2.4.3 Approximating a Sphere

Fans and strips allow us to approximate many curved surfaces simply. For example,
one way to construct an approximation to a sphere is to use a set of polygons de-
fined by lines of longitude and latitude, as shown in Figure 2.15. We can do so very
efficiently using triangle strips. Consider a unit sphere. We can describe it by the fol-
lowing three equations:

x(6, ¢) = sin O cos ¢,
y(@, ¢) = cos b cos ¢,
z(0, ¢) = sin ¢.
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If we fix 6 and draw curves as we change ¢, we get circles of constant longitude.
Likewise, if we fix ¢ and vary 6, we obtain circles of constant latitude. By generating
points at fixed increments of § and ¢, we can specify quadrilaterals, as shown in
Figure 2.15. However, because OpenGL supports triangles, not quadrilaterals, we
generate the data for two triangles for each quadrilateral. Remembering that we must
convert degrees to radians for the standard trigonometric functions, the code for
the quadrilaterals corresponding to increments of 20 degrees in 6 and to 20 degrees
in ¢ is

const float DegreesToRadians = M_PI / 180.0; // M_PI = 3.14159...

point3 quad_datal[342]; // 8 rows of 18 quads

int k = 0;
for(float phi = -80.0; phi <= 80.0; phi += 20.0)
{

float phir = phi*DegreesToRadians;

float phir20

(phi + 20.0)*DegreesToRadians;

for(float theta = -180.0; theta <= 180.0; theta += 20.0)

{
float thetar = theta*DegreesToRadians;
quad_datalk] = point3(sin(thetar)*cos(phir),
cos(thetar)*cos(phir), sin(phir));
k++;
quad_datalk] = point3(sin(thetar)*cos(phir20),
cos(thetar) *cos(phir20), sin(phir20));
k++;
}

Later we can render these data using glDrawArrays(GL_LINE_LOOP,...) or
some other drawing function. However, we have a problem at the poles, where we can
no longer use strips because all lines of longitude converge there. We can, however,
use two triangle fans, one at each pole as follows:

const float DegreesToRadians = M_PI / 180.0; // M_PI = 3.14159...

int k = 0;
point3 strip_datal40];

strip_datalk] = point3(0.0, 0.0, 1.0);
k++;
float sin80 = sin(80.0*DegreesToRadians);
float cos80 = cos(80.0*DegreesToRadians);
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for(float theta = -180.0; theta <= 180.0; theta += 20.0)
{
float thetar = theta*DegreesToRadians;
strip_datal[k] = point3(sin(thetar)*cos80,
cos (thetar)*cos80, sin80);
kt++;

)

strip_datalk] = point3(0.0, 0.0, -1.0);
k++;
for(float theta = -180.0; theta <= 180.0; theta += 20.0)
{

float thetar = theta;

strip_datalk] = point3(sin(thetar)*cos80,

cos (thetar)*cos80, sin80);
k++;

’

These data could be rendered with glDrawArrays (GL_TRIANGLE_FAN, ....) or
another drawing function. Note that because triangle fans are polygons, if we want
to get the line segment display in Figure 2.15, we would first have to set the polygon
mode to lines instead of fill.

2.4.4 Triangulation

We have been using the terms polygon and triangle somewhat interchangeably. If we
are interested in objects with interiors, general polygons are problematic. A set of
vertices may not all lie in the same plane or specify a polygon that is neither simple
nor convex. Such problems do not arise with triangles. As long as the three vertices of
a triangle are not collinear, its interior is well defined and the triangle is simple, flat,
and convex. Consequently, triangles are easy to render, and for these reasons triangles
are the only fillable geometric entity that OpenGL recognizes. In practice, we need to
deal with more general polygons. The usual strategy is to start with a list of vertices
and generate a set of triangles consistent with the polygon defined by the list, a process
known as triangulation.

Figure 2.16 shows a convex polygon and two different triangulations. Although
every set of vertices can be triangulated, not all triangulations are equivalent. Con-
sider the quadrilateral in Figure 2.17. If we triangulate it as in Figure 2.17(b), we create
two long thin triangles rather than two triangles closer to being equilateral as in Fig-
ure 2.17(c). As we shall see when we discuss lighting in Chapter 5, long thin triangles
can lead to visual artifacts when rendered. There are some simple algorithms that
work for planar convex polygons. We can start with the first three vertices and form
a triangle. We can then remove the second vertex from the list of vertices and repeat
the process until we have only three vertices left, which form the final triangle. This
process is illustrated in Figure 2.18, but it does not guarantee a good set of triangles
nor can it handle concave polygons. In Chapter 6, we will discuss the triangulation of
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FIGURE 2.16 (a) Two-dimensional polygon. (b) A triangulation. (c)
Another triangulation.

(a) (b) (c)

FIGURE 2.17 (a) Quadrilateral. (b) A triangulation. (c) Another triangu-
lation.
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FIGURE 2.18 Recursive triangulation of a convex polygon.

simple but nonconvex polygons as part of rasterization. This technique will allows us
to render more general polygons than triangles.

We will delay a discussion of more general triangulation algorithms until we dis-
cuss curves and surfaces in Chapter 10. One reason for this delay is that there are a
number of related processes that arise when we consider modeling surfaces. For ex-
ample, laser-scanning technology allows us to gather millions of unstructured three-
dimensional vertices. We then have to form a surface from these vertices, usually in
the form of a mesh of triangles. The Delaunay triangulation algorithm finds a best
triangulation in the sense that if we consider the circle determined by any triangle, no
other vertex lies in this circle. Triangulation is a special case of the more general prob-
lem of tessellation, which divides a polygon into a polygonal mesh, not all of which
need be triangles. General tessellation algorithms are complex, especially when the
initial polygon may contain holes.
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FIGURE 2.19 Stroke text
(PostScript font).

2.4.5 Text

Graphical output in applications such as data analysis and display requires annota-
tion, such as labels on graphs. Although in nongraphical programs textual output is
the norm, text in computer graphics is problematic. In nongraphical applications, we
are usually content with a simple set of characters, always displayed in the same man-
ner. In computer graphics, however, we often wish to display text in a multitude of
fashions by controlling type styles, sizes, colors, and other parameters. We also want
to have available a choice of fonts. Fonts are families of typefaces of a particular style,
such as Times, Computer Modern, or Helvetica.

There are two forms of text: stroke and raster. Stroke text (Figure 2.19) is con-
structed as are other geometric objects. We use vertices to specify line segments or
curves that outline each character. If the characters are defined by closed boundaries,
we can fill them. The advantage of stroke text is that it can be defined to have all the
detail of any other object, and because it is defined in the same way as other graph-
ical objects are, it can be manipulated by our standard transformations and viewed
like any other graphical primitive. Using transformations, we can make a stroke char-
acter bigger or rotate it, retaining its detail and appearance. Consequently, we need
to define a character only once, and we can use transformations to generate it at the
desired size and orientation.

Defining a full 128- or 256-character stroke font, however, can be complex, and
the font can take up significant memory and processing time. The standard PostScript
fonts are defined by polynomial curves, and they illustrate all the advantages and dis-
advantages of stroke text. The various PostScript fonts can be used for both high- and
low-resolution applications. Often, developers mitigate the problem of slow render-
ing of such stroke characters by putting considerable processing power in the printer.

Raster text (Figure 2.20) is simple and fast. Characters are defined as rectangles
of bits called bit blocks. Each block defines a single character by the pattern of 0 and
1 bits in the block. A raster character can be placed in the frame buffer rapidly by a
bit-block-transfer (bitblt) operation, which moves the block of bits using a single
function call. We will discuss bitblt in Chapter 7.

You can increase the size of raster characters by replicating, or duplicating,
pixels, a process that gives larger characters a blocky appearance (Figure 2.21). Other
transformations of raster characters, such as rotation, may not make sense, because

FIGURE 2.20 Raster text.
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FIGURE 2.21 Raster-character replication.

the transformation may move the bits defining the character to locations that do not
correspond to the location of pixels in the frame buffer.

Because stroke and bitmap characters can be created from other primitives,
OpenGL does not have a text primitive. However, the GLUT library provides a few
predefined bitmap and stroke character sets that are defined in software and are
portable.

2.4.6 Curved Objects

The primitives in our basic set have all been defined through vertices. With the
exception of the point type, all consist of line segments or use line segments to define
the boundary of a region that can be filled with a solid color or a pattern. We can take
two approaches to creating a richer set of objects.

First, we can use the primitives that we have to approximate curves and surfaces.
For example, if we want a circle, we can use a regular polygon of # sides. Likewise,
we have approximated a sphere with triangles and quadrilaterals. More generally, we
approximate a curved surface by a mesh of convex polygons—a tessellation—which
can occur either at the rendering stage or within the user program.

The other approach, which we will explore in Chapter 10, is to start with the
mathematical definitions of curved objects and then build graphics functions to im-
plement those objects. Objects such as quadric surfaces and parametric polynomial
curves and surfaces are well understood mathematically, and we can specify them
through sets of vertices. For example, we can specify a sphere by its center and a point
on its surface, or we can specify a cubic polynomial curve using data at four points.

2.4.7 Attributes

Although we can describe a geometric object through a set of vertices, a given object
can be displayed in many different ways. Properties that describe how an object
should be rendered are called attributes. Available attributes depend on the type of
object. For example, a line could be black or green. It could be solid or dashed. A
polygon could be filled with a single color or with a pattern. We could display it as
filled or only by its edges. Several of these attributes are shown in Figure 2.22 for lines
and polygons.
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(a) (b)
FIGURE 2.22  Attributes for (a) lines and (b) polygons.

Attributes may be associated with, or bound to, geometric objects, such as the
color of a cube. Often we will find it better to model an object such as the cube by its
individual faces and to specify attributes for the faces. Hence, a cube would be green
because its six faces are green. Each face could then be described by two triangles so
ultimately a green cube would be rendered as 12 green triangles.

If we go one step further, we see that each of the triangles is specified through
three vertices. In a pipeline architecture, each vertex is processed independently
through a vertex shader. Hence, we can associate properties with each vertex. For
example, if we assign a different color to each vertex of a polygon, the rasterizer can
interpolate these vertex colors to obtain different colors for each fragment. These ver-
tex attributes may also be dependent on the application. For example, in a simulation
of heat distribution of some object, the application might determine a temperature
for each vertex defining the object. In Chapter 3, we will include vertex attribute data
in the array with our vertex locations that is sent to the GPU.

In systems that use immediate-mode graphics and a pipeline architecture, some
attributes are part of the state of the graphics systems. Hence, there would be a
current color that would be used to render all primitives until changed by some state-
changing function such as

set_current_color(color);

Likewise, there would be attribute-setting functions for a variety of attributes.?

Each geometric type has a set of attributes. For example, a point has a color
attribute and a size attribute. Line segments can have color, thickness, and pattern
(solid, dashed, or dotted). Filled primitives, such as polygons, have more attributes
because we must use multiple parameters to specify how the fill should be done. We
can fill with a solid color or a pattern. We can decide not to fill the polygon and to
display only its edges. If we fill the polygon, we might also display the edges in a color
different from that of the interior.

5. Earlier versions of OpenGL contained state-setting functions such as glColor, glLineWidth,

and glStipple. These deprecated attributes can be implemented in your shaders.
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FIGURE 2.23 Stroke-text attributes.

In systems that support stroke text as a primitive, there is a variety of attributes.
Some of these attributes are demonstrated in Figure 2.23; they include the direction
of the text string, the path followed by successive characters in the string, the height
and width of the characters, the font, and the style (bold, italic, underlined).

Although the notion of current state works well for interactive applications, it
is inconsistent with our physical intuition. A box is green or red. It either contains a
pattern on its surfaces or it doesn’t. Object-oriented graphics takes a fundamentally
different approach in which attributes are part of a geometric object. In Chapter 8,
we will discuss scene graphs, which are fundamental to systems such as Open Scene
Graph, and we will see that they provide another higher-level object-oriented ap-
proach to computer graphics.

2.5 COLOR

Color is one of the most interesting aspects of both human perception and computer
graphics. We can use the model of the human visual system from Chapter 1 to obtain
a simple but useful color model. Full exploitation of the capabilities of the human
visual system using computer graphics requires a far deeper understanding of the
human anatomy, physiology, and psychophysics. We will present a more sophisticated
development in Chapter 6.

A visible color can be characterized by a function C(1) that occupies wavelengths
from about 350 to 780 nm, as shown in Figure 2.24. The value for a given wavelength
A in the visible spectrum gives the intensity of that wavelength in the color.

Although this characterization is accurate in terms of a physical color whose
properties we can measure, it does not take into account how we perceive color. As
noted in Chapter 1, the human visual system has three types of cones responsible for
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FIGURE 2.25 Color formation. (a) Additive color.
(b) Subtractive color.

color vision. Hence, our brains do not receive the entire distribution C(%) for a given
color but rather three values—the tristimulus values—that are the responses of the
three types of cones to the color. This reduction of a color to three values leads to the
basic tenet of three-color theory: If two colors produce the same tristimulus values,
then they are visually indistinguishable.

A consequence of this tenet is that, in principle, a display needs only three
primary colors to produce the three tristimulus values needed for a human observer.
We vary the intensity of each primary to produce a color, as we saw for the CRT in
Chapter 1. The CRT is one example of the use of additive color, where the primary
colors add together to give the perceived color. Other examples that use additive color
include projectors and slide (positive) film. In such systems, the primaries are usually
red, green, and blue. With additive color, primaries add light to an initially black
display, yielding the desired color.

For processes such as commercial printing and painting, a subtractive color
model is more appropriate. Here we start with a white surface, such as a sheet of
paper. Colored pigments remove color components from light that is striking the
surface. If we assume that white light hits the surface, a particular point will be red
if all components of the incoming light are absorbed by the surface except for wave-
lengths in the red part of the spectrum, which are reflected. In subtractive systems, the
primaries are usually the complementary colors: cyan, magenta, and yellow (CMY;
Figure 2.25). We will not explore subtractive color here. You need to know only that
an RGB additive system has a dual with a CMY subtractive system (see Exercise 2.8).

We can view a color as a point in a color solid, as shown in Figure 2.26 and
in Color Plate 21. We draw the solid using a coordinate system corresponding to
the three primaries. The distance along a coordinate axis represents the amount of
the corresponding primary in the color. If we normalize the maximum value of each
primary to be 1, then we can represent any color that we can produce with this set of
primaries as a point in a unit cube. The vertices of the cube correspond to black (no
primaries on); red, green, and blue (one primary fully on); the pairs of primaries,
cyan (green and blue fully on), magenta (red and blue fully on), and yellow (red
and green fully on); and white (all primaries fully on). The principal diagonal of
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FIGURE 2.26 Color solid.

the cube connects the origin (black) with white. All colors along this line have equal
tristimulus values and appear as shades of gray.

There are many matters that we are not exploring fully here and will return to
in Chapter 6. Most concern the differences among various sets of primaries or the
limitations conferred by the physical constraints of real devices. In particular, the
set of colors produced by one device—its color gamut—is not the same as for other
devices, nor will it match the human’s color gamut. In addition, the tristimulus values
used on one device will not produce the same visible color as the same tristimulus
values used on another device.

2.5.1 RGB Color

Now we can look at how color is handled in a graphics system from the programmer’s
perspective—that is, through the API. There are two different approaches. We will
stress the RGB-color model because an understanding of it will be crucial for our
later discussion of shading. Historically, the indexed-color model (Section 2.5.2) was
easier to support in hardware because of its lower memory requirements and the
limited colors available on displays, but in modern systems RGB color has become
the norm.

In a three-primary-color, additive-color RGB system, there are conceptually sep-
arate buffers for red, green, and blue images. Each pixel has separate red, green, and
blue components that correspond to locations in memory (Figure 2.27). In a typical
system, there might be a 1280 x 1024 array of pixels, and each pixel might consist
of 24 bits (3 bytes): 1 byte for each of red, green, and blue. With present commodity
graphics cards having up to 12GB of memory, there is no longer a problem of storing
and displaying the contents of the frame buffer at video rates.

As programmers, we would like to be able to specify any color that can be
stored in the frame buffer. For our 24-bit example, there are 22 possible colors,
sometimes referred to as 16M colors, where M denotes 10242. Other systems may
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FIGURE 2.27 RGB color.

have as many as 12 (or more) bits per color or as few as 4 bits per color. Because
our API should be independent of the particulars of the hardware, we would like to
specify a color independently of the number of bits in the frame buffer and to let the
drivers and hardware match our specification as closely as possible to the available
display. A natural technique is to use the color cube and to specify color components
as numbers between 0.0 and 1.0, where 1.0 denotes the maximum (or saturated
value) of the corresponding primary and 0.0 denotes a zero value of that primary.

In applications in which we want to assign a color to each vertex, we can put
colors into a separate data structure, such as

typedef vec3 color3;

color3 colors[3] = {color3(1.0, 0.0, 0.0), color3(0.0, 1.0, 0.0),
color3(0.0, 0.0. 1.0)};

which holds the colors red, green, and blue, or we could create a single array that
contains both vertex locations and vertex colors. These data can be sent to the shaders,
where colors will be applied to pixels in the frame buffer.

Later, we shall be interested in a four-color (RGBA) system. The fourth color (A,
or alpha) also is stored in the frame buffer, as are the RGB values; it can be set with
four-dimensional versions of the color functions. In Chapter 7, we will see various
uses for alpha, such as combining images. Here we need to specify the alpha value as
part of the initialization of an OpenGL program. If blending is enabled (Chapter 7),
then the alpha value will be treated by OpenGL as either an opacity or transparency
value. Transparency and opacity are complements of each other. An opaque object
passes no light through it; a transparent object passes all light. Opacity values can
range from fully transparent (A=0.0) to fully opaque (A=1.0).

One of the first tasks that we must do in a program is to clear an area of the
screen—a drawing window—in which to display our output. We also must clear
this window whenever we want to draw a new frame. By using the four-dimensional
(RGBA) color system, the graphics and operating systems can interact to create effects
where the drawing window interacts with other windows that may be beneath it by
manipulating the opacity assigned to the window when it is cleared. The function call



glClearColor(1.0, 1.0, 1.0, 1.0);

specifies an RGB-color clearing color that is white, because the first three components
are set to 1.0, and is opaque, because the alpha component is 1.0. We can then use
the function glClear to make the window on the screen solid and white. Note
that by default blending is not enabled. Consequently, the alpha value can be set in
glClearColor to a value other than 1.0 and the default window will still be opaque.

2.5.2 Indexed Color

Early graphics systems had frame buffers that were limited in depth. For example,
we might have had a frame buffer with a spatial resolution of 1280 x 1024, but each
pixel was only 8 bits deep. We could divide each pixel’s 8 bits into smaller groups of
bits and assign red, green, and blue to each. Although this technique was adequate in
a few applications, it usually did not give us enough flexibility with color assignment.
Indexed color provided a solution that allowed applications to display a wide range of
colors as long as the application did not need more colors than could be referenced
by a pixel. Although indexed color is no longer part of recent versions of OpenGL,
this technique can be created within an application.

We follow an analogy with an artist who paints in oils. The oil painter can
produce an almost infinite number of colors by mixing together a limited number of
pigments from tubes. We say that the painter has a potentially large color palette. At
any one time, however, perhaps due to a limited number of brushes, the painter uses
only a few colors. In this fashion, she can create an image that, although it contains
a small number of colors, expresses her choices because she can select the few colors
from a large palette.

Returning to the computer model, we can argue that if we can choose for each
application a limited number of colors from a large selection (our palette), we should
be able to create good-quality images most of the time.

We can select colors by interpreting our limited-depth pixels as indices into a
table of colors rather than as color values. Suppose that our frame buffer has k bits
per pixel. Each pixel value or index is an integer between 0 and 2F — 1. Suppose that
we can display each color component with a precision of m bits; that is, we can choose
from 2" reds, 2™ greens, and 2" blues. Hence, we can produce any of 2" colors on the
display, but the frame buffer can specify only 2¥ of them. We handle the specification
through a user-defined color-lookup table that is of size 2K % 3m (Figure 2.28). The
user program fills the 2K entries (rows) of the table with the desired colors, using m
bits for each of red, green, and blue. Once the user has constructed the table, she can
specify a color by its index, which points to the appropriate entry in the color-lookup
table (Figure 2.29). For k = m = 8, a common configuration, she can choose 256 out
of 16 M colors. The 256 entries in the table constitute the user’s color palette.

In systems that support color-index mode, the present color is selected by a
function that selects a particular color out of the table. Setting and changing the
entries in the color-lookup table involves interacting with the window system. One
difficulty arises if the window system and underlying hardware support only a limited
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FIGURE 2.28 Color-lookup table.
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FIGURE 2.29 Indexed color.

number of colors because the window system may have only a single color table that
must be used for all its windows, or it might have to juggle multiple tables, one for
each window on the screen.

Historically, color-index mode was important because it required less memory
for the frame buffer and fewer other hardware components. However, cost is no
longer an issue, and color-index mode presents a few problems. When we work with
dynamic images that must be shaded, usually we need more colors than are provided
by color-index mode. In addition, the interaction with the window system is also
more complex than with RGB color. Consequently, for the most part, we will assume
that we are using RGB color.

The major exception is when we consider a technique called pseudocoloring,
where we start with a monochromatic image. For example, we might have scalar
values of a physical entity such as temperature that we wish to display in color. We
can create a mapping of these values to red, green, and blue that are identical to the
color-lookup tables used for indexed color.

2.5.3 Setting of Color Attributes

For our simple example program, we use RGB color. We have three attributes to set.
The first is the clear color, which is set to white by the following function call:
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glClearColor(1.0, 1.0, 1.0, 1.0);

Note this function uses RGBA color.
The color we use to render points is set in the shaders. We can set an RGB color
in the application such as

typedef vec3 color3;
color3 point_color = color3(1.0, 0.0, 0.0);

or as an RGBA color as

typedef vec4 color4;
color4 point_color = color4(1.0, 0.0, 0.0, 1.0);

and send this color to the vertex shader. We could also set the color totally in the
shader. We will see a few options later in this chapter. We can set the size of our
rendered points to be 2 pixels wide by using the following OpenGL function:

glPointSize(2.0);

Note that attributes, such as the point size® and line width, are specified in terms of
the pixel size. Hence, if two displays have different-sized pixels (due to their particular
screen dimensions and resolutions), then the rendered images may appear slightly
different. Certain graphics APIs, in an attempt to ensure that identical displays will be
produced on all systems with the same user program, specify all attributes in a device-
independent manner. Unfortunately, ensuring that two systems produce the same
display has proved to be a difficult implementation problem. OpenGL has chosen
a more practical balance between desired behavior and realistic constraints.

2.6 VIEWING

We can now put a variety of graphical information into our world, and we can
describe how we would like these objects to appear, but we do not yet have a method
for specifying exactly which of these objects should appear on the screen. Just as what
we record in a photograph depends on where we point the camera and what lens we
use, we have to make similar viewing decisions in our program.

A fundamental concept that emerges from the synthetic-camera model that we
introduced in Chapter 1 is that the specification of the objects in our scene is com-
pletely independent of our specification of the camera. Once we have specified both
the scene and the camera, we can compose an image. The camera forms an image
by exposing the film, whereas the computer system forms an image by carrying out

6. Note that point size is one of the few state variables that can be set using an OpenGL function in
the latest versions.
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a sequence of operations in its pipeline. The application program needs to worry
only about the specification of the parameters for the objects and the camera, just
as the casual photographer is concerned about the resulting picture, not about how
the shutter works or the details of the photochemical interaction of film with light.
There are default viewing conditions in computer image formation that are sim-
ilar to the settings on a basic camera with a fixed lens. However, a camera that has a
fixed lens and sits in a fixed location forces us to distort our world to take a picture.
We can create pictures of elephants only if we place the animals sufficiently far from
the camera, or we can photograph ants only if we put the insects relatively close to the
lens. We prefer to have the flexibility to change the lens to make it easier to form an
image of a collection of objects. The same is true when we use our graphics system.

2.6.1 The Orthographic View

The simplest and OpenGL’s default view is the orthographic projection. We discuss
this projection and others in detail in Chapter 4, but we introduce the orthographic
projection here so that you can get started writing three-dimensional programs.
Mathematically, the orthographic projection is what we would get if the camera in
our synthetic-camera model had an infinitely long telephoto lens and we could then
place the camera infinitely far from our objects. We can approximate this effect, as
shown in Figure 2.30, by leaving the image plane fixed and moving the camera far
from this plane. In the limit, all the projectors become parallel, and the center of
projection is replaced by a direction of projection.

Rather than worrying about cameras an infinite distance away, suppose that we
start with projectors that are parallel to the positive z-axis and the projection plane at
z =0, as shown in Figure 2.31. Note that not only are the projectors perpendicular or
orthogonal to the projection plane, but also we can slide the projection plane along
the z-axis without changing where the projectors intersect this plane.

For orthographic viewing, we can think of there being a special orthographic
camera that resides in the projection plane, something that is not possible for other
views. Perhaps more accurately stated, there is a reference point in the projection
plane from which we can make measurements of a view volume and a direction of
projection. In OpenGL, the reference point starts off at the origin and the camera
points in the negative z-direction, as shown in Figure 2.32. The orthographic pro-
jection takes a point (x, y, z) and projects it into the point (x, y, 0), as shown in
Figure 2.33. Note that if we are working in two dimensions with all vertices in the
plane z = 0, a point and its projection are the same; however, we can employ the
machinery of a three-dimensional graphics system to produce our image.

In OpenGL, an orthographic projection with a right-parallelepiped viewing vol-
ume is the default. The volume is the cube defined by the planes

x = =+1,
y==l,
z ==+1.



FIGURE 2.30 Creating an orthographic view by moving the camera
away from the projection plane.

The orthographic projection “sees” only those objects in the volume specified by
this viewing volume. Unlike a real camera, the orthographic projection can include
objects behind the camera. Thus, because the plane z = 0 is located between —1 and
1, the two-dimensional plane intersects the viewing volume.

In Chapters 3 and 4, we will learn to use transformations to create other views.
For now, we will scale and position our objects so those that we wish to view are inside
the default volume.

2.6 Viewing
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FIGURE 2.31 Orthographic projectors with projection plane z = 0.
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FIGURE 2.32 The default camera and an orthographic view volume.
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FIGURE 2.33 Orthographic projection.
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FIGURE 2.35 Two-dimensional viewing. (a) Objects before clipping.
(b) Image after clipping.

2.6.2 Two-Dimensional Viewing

Remember that, in our view, two-dimensional graphics is a special case of
three-dimensional graphics. Our viewing area is in the plane z = 0 within a three-
dimensional viewing volume, as shown in Figure 2.34.

We could also consider two-dimensional viewing directly by taking a rectangular
area of our two-dimensional world and transferring its contents to the display, as
shown in Figure 2.35. The area of the world that we image is known as the viewing
rectangle, or clipping rectangle. Objects inside the rectangle are in the image; objects
outside are clipped out and are not displayed. Objects that straddle the edges of the
rectangle are partially visible in the image. The size of the window on the display
and where this window is placed on the display are independent decisions that we
examine in Section 2.7.

2.6 Viewing
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2.7 CONTROL FUNCTIONS

We are almost done with our first program, but we must discuss the minimal inter-
actions with the window and operating systems. If we look at the details for a specific
environment, such as the X Window System on a Linux platform or Microsoft Win-
dows on a PC, we see that the programmer’s interface between the graphics system
and the operating and window systems can be complex. Exploitation of the pos-
sibilities open to the application programmer requires knowledge specific to these
systems. In addition, the details can be different for two different environments, and
discussing these differences will do little to enhance our understanding of computer
graphics.

Rather than deal with these issues in detail, we look at a minimal set of operations
that must take place from the perspective of the graphics application program. Earlier
we discussed the OpenGL Utility Toolkit (GLUT); it is a library of functions that
provides a simple interface between the systems. Details specific to the underlying
windowing or operating system are inside the implementation, rather than being
part of its API. Operationally, we add another library to our standard library search
path. GLUT will help us to understand the interactions that characterize modern
interactive graphics systems, including a wide range of APIs, operating systems, and
window systems. The application programs that we produce using GLUT should run
under multiple window systems.

2.7.1 Interaction with the Window System

The term window is used in a number of different ways in the graphics and worksta-
tion literature. We use window, or screen window, to denote a rectangular area of
our display. We are concerned only with raster displays. A window has a height and
width, and because the window displays the contents of the frame buffer, positions
in the window are measured in window or screen coordinates,” where the units are
pixels.

In a modern environment, we can display many windows on the monitor. Each
can have a different purpose, ranging from editing a file to monitoring our system.
We use the term window system to refer to the multiwindow environment provided by
systems such as the X Window System and Microsoft Windows. The window in which
the graphics output appears is one of the windows managed by the window system.
Hence, to the window system, the graphics window is a particular type of window—
one in which graphics can be displayed or rendered. References to positions in this
window are relative to one corner of the window. We have to be careful about which
corner is the origin. In science and engineering, the lower-left corner is the origin
and has window coordinates (0, 0). However, virtually all raster systems display

7. In OpenGL, window coordinates are three-dimensional, whereas screen coordinates are two-
dimensional. Both systems use units measured in pixels for x and y, but window coordinates retain
depth information.
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their screens in the same way as commercial television systems do—from top to
bottom, left to right. From this perspective, the top-left corner should be the origin.
Our OpenGL functions assume that the origin is bottom left, whereas information
returned from the windowing system, such as the mouse position, often has the
origin at the top left and thus requires us to convert the position from one coordinate
system to the other.

Although our display may have a resolution of, say, 1280 x 1024 pixels, the
window that we use can have any size. Thus, the frame buffer should have a resolution
at least equal to the display size. Conceptually, if we use a window of 300 x 400 pixels,
we can think of it as corresponding to a 300 x 400 frame buffer, even though it uses
only a part of the real frame buffer.

Before we can open a window, there must be interaction between the windowing
system and OpenGL. In GLUT, this interaction is initiated by the following function
call:

glutInit(int *argc, char **argv);

The two arguments allow the user to pass command-line arguments, as in the stan-
dard C main function, and are usually the same as in main. We can now open an
OpenGL window using the GLUT function

glutCreateWindow(char *title);

where the title at the top of the window is given by the string title.

The window that we create has a default size, a position on the screen, and
characteristics such as the use of RGB color. We can also use GLUT functions before
window creation to specify these parameters. For example, the code

glutInitDisplayMode (GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE) ;
glutInitWindowSize (640, 480);
glutInitWindowPosition(0, 0);

specifies a 640 width x 480 height window in the top-left corner of the display. We
specify RGB rather than indexed (GLUT_INDEX) color, a depth buffer for hidden-
surface removal, and double rather than single (GLUT_SINGLE) buffering. The de-
faults, which are all we need for now, are RGB color, no hidden-surface removal, and
single buffering. Thus, we do not need to request these options explicitly, but speci-
fying them makes the code clearer. Note that parameters are logically or’ed together
in the argument to glutInitDisplayMode.

2.7.2 Aspect Ratio and Viewports

The aspect ratio of a rectangle is the ratio of the rectangle’s width to its height.
The independence of the object, viewing, and workstation window specifications can
cause undesirable side effects if the aspect ratio of the viewing rectangle, specified
by camera parameters, is not the same as the aspect ratio of the window specified
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FIGURE 2.36 Aspect-ratio mismatch. (a) Viewing rectangle. (b) Display
window.

by glutInitWindowSize. If they differ, as depicted in Figure 2.36, objects are
distorted on the screen. This distortion is a consequence of our default mode of
operation, in which the entire clipping rectangle is mapped to the display window.
The only way that we can map the entire contents of the clipping rectangle to the
entire display window is to distort the contents of the former to fit inside the latter. We
can avoid this distortion if we ensure that the clipping rectangle and display window
have the same aspect ratio.

Another, more flexible, method is to use the concept of a viewport. A viewport
is a rectangular area of the display window. By default, it is the entire window, but it
can be set to any smaller size in pixels via the function

void glViewport(GLint x, GLint y, GLsizei w, GLsizei h);

where (x,y) is the lower-left corner of the viewport (measured relative to the lower-
left corner of the window) and w and h give the width and height, respectively.
The types are all integers that allow us to specify positions and distances in pixels.
Primitives are displayed in the viewport, as shown in Figure 2.37. For a given window,
we can adjust the height and width of the viewport to match the aspect ratio of the
clipping rectangle, thus preventing any object distortion in the image.

The viewport is part of the state. If we change the viewport between rendering
objects or rerender the same objects with the viewport changed, we achieve the effect
of multiple viewports with different images in different parts of the window. We will
see further uses of the viewport in Chapter 3, where we consider interactive changes
in the size and shape of the window.

2.7.3 The main, display, and init Functions

In principle, we should be able to combine the simple initialization code with our
code from Section 2.1 to form a complete OpenGL program that generates the Sier-
pinski gasket. Unfortunately, life in a modern system is not that simple. There are
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two problems: One is generic to all graphics systems; the second has more to do with
problems of interacting with the underlying windowing system.

Our basic mechanism for display will be to form a data structure that contains
all the geometry and attributes we need to specify a primitive and how we would like
it displayed. We then send this structure to the shaders that will process our data and
display the results. Once the application has sent the data to the shaders, it is free
to do other tasks. In an interactive application, we would continue to generate more
primitives.

However, for an application such as our sample program, we draw a few primi-
tives and are finished. As the application ends, the application window will disappear
from the display before we have had a chance to see our output. A simple solution for
this problem might be to insert a delay, for example, via a standard function such as
sleep(enough_time) to give us enough time to view our output. For any but the
most trivial applications, however, we need a more sophisticated mechanism.

The mechanism employed by most graphics and window systems is to use event
processing, which gives us interactive control in our programs. Events are changes
that are detected by the operating system and include such actions as a user pressing
a key on the keyboard, the user clicking a mouse button or moving the mouse, or the
user iconifying a window on the display. Events are varied, and usually only a subset
of them is important to graphics applications. An event may generate data that are
stored with the occurrence of the event. For example, if a key is pressed, the code for
the key will be stored.

When events occur they are placed in queue, the event queue, that can be ex-
amined by an application program or by the operating system. A given event can be
ignored or cause an action to take place. For example, an application that does not use
the keyboard will ignore all pressing and releasing of keys, whereas an application that
uses the keyboard might use keyboard events to control the flow of the application.

With GLUT, we can execute the function

glutMainLoop();
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to begin an event-processing loop. If there are no events to process, the program will
sit in a wait state, with our graphics on the screen, until we terminate the program
through some external means—say, by hitting a special key or a combination of keys,
such as Control-C—that terminates the execution of the program.

If there are events in the queue, our program responds to them through func-
tions called callbacks. A callback function is associated with a specific type of event.
Hence, a typical interactive application would use a mouse callback and perhaps a
keyboard callback. For our simple example, we need only a single callback called the
display callback. A display callback is generated when the application program or the
operating system determines that the graphics in a window need to be redrawn. One
of these times is when during initialization, the application creates a window on the
display. Hence, virtually every program must have a display callback function that is
executed when the callback occurs.

The display callback function is named through the GLUT function

void glutDisplayFunc(void (*func) (void));

and registered with the window system. Here the function named func will be called
whenever the windowing system determines that the OpenGL window needs to be
redisplayed. Because one of these times is when the window is first opened, if we
put all our graphics into this function (for our noninteractive example), func will
be executed once and our gasket will be drawn. Although it may appear that our
use of the display function is merely a convenience for organizing our program, the
display function is required by GLUT. A display callback is also invoked, for example,
when the window is moved from one location on the screen to another and when
a window in front of the OpenGL window is destroyed, making visible the whole
OpenGL window.
Following is a main function that works for most noninteractive applications:

#include <glew.h>
#include <GL/glut.h>

int main(int argc, char **argv)

{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize (500, 500);
glutInitWindowPosition(0, 0);
glutCreateWindow("simple OpenGL example");
glewInit();
glutDisplayFunc(display) ;
initO);
glutMainLoop(Q);
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We use an initialization function init () to set the OpenGL state variables dealing
with viewing and attributes—parameters that we prefer to set once, independently
of the display function. The standard include (.h) file for GLUT is loaded before
the beginning of the function definitions. In most implementations, the compiler
directive

#include <GL/glut.h>

will add in the header files for the GLUT library and the OpenGL library (gl.h).
The macro definitions for our standard values, such as GL_LINES and GL_RGB, are
in these files. If we are using the GLEW library, we usually need only add the include
file and execute glewInit.

2.7.4 Program Structure

Every program we write will have a similar structure to our gasket program. We will
always use the GLUT toolkit. The main function will then consist of calls to GLUT
functions to set up our window(s) and to make sure that the local environment sup-
ports the required display properties. The main will also name the required callbacks
and callback functions. Every program must have a display callback, and most will
have other callbacks to set up interaction. The init function will set up user options,
usually through OpenGL functions in the GL library. Although these options could
be set inmain, it is clearer to keep GLUT functions separate from OpenGL functions.
In the majority of programs, the graphics output will be generated in the display
callback.

Every application, no matter how simple, must provide both a vertex shader
and a fragment shader. Setting up the shaders requires a number of steps, including
reading the shader code from files, compiling the code, and linking the shaders with
the application. These steps are almost identical for most applications. Hence, we will
put this code into a function initShaders. These operations require a handful of
OpenGL functions that have little to do with graphics. Consequently, we place the
details of these functions in Appendix A.

2.8 THE GASKET PROGRAM

We can now complete our gasket program. We have already created the points and
put them in an array. Now we have to get these data to our GPU and render them.
We start by creating a vertex-array object that will allow us to bundle data associated
with a vertex array. Use of multiple vertex-array objects will make it easy to switch
among different vertex arrays. We use glGenVertexArray to find an unused name
for the buffer. The first time the function glBindVertexArray is executed for a
given name, the object is created. Subsequent calls to this function make the named
object active. For this example, we need only a single vertex array buffer that we set
up as follows:
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GLuint abuffer;

glGenVertexArrays(1l, &abuffer);
glBindVertexArray (abuffer) ;

Next, we create a buffer object on the GPU and place our data in that object. We need
three functions that we can call after we have generated our points:

GLuint buffer;

glGenBuffers(1l, &buffer);

glBindBuffer (GL_ARRAY_BUFFER, buffer);

glBufferData(GL_ARRAY_BUFFER, sizeof (points),
points, GL_STATIC_DRAW);

First, we use glGenBuffers to give us an unused identifier for our buffer object
that is put into the variable buffer. The function glBindBuffer creates the buffer
with the identifier from glGenBuffers. The type GL_ARRAY_BUFFER indicates that
the data in the buffer will be vertex attribute data rather than some one of the other
storage types that we will encounter later. Finally, with glBufferData, we allocate
sufficient memory on the GPU for our data and provide a pointer to the array holding
the data. Once data is in GPU memory, we might, as in this example, simply display
it once. But in more realistic applications we might alter the data, redisplay it many
times, and even read data back from the GPU to the CPU. Modern GPUs can alter
how they store data to increase efficiency depending on the type of application. The
final parameter in glBufferData gives a hint of how the application plans to use
the data. In our case, we are sending it once and displaying it so the choice of GL_
STATIC_DRAW is appropriate. The code to compute the points and create the buffer
object can be part of initialization.

2.8.1 Rendering the Points

When we want to display our points, we can use the function
glDrawArrays (GL_POINTS, 0, N);

which causes N data to be rendered starting with the first point. The value of the first
parameter, GL_POINTS, tells the GPU we want the data to be used to display distinct
points rather than other primitives such as lines or polygons that could be described
by the same data. Thus, a simple display callback is

void mydisplay(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glDrawArrays (GL_POINTS, 0, N);
glFlush();
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We clear the frame buffer and then render the point data that is on the GPU. The
glFlush ensures that all the data are rendered as soon as possible. If you leave it out,
the program should work correctly, but you notice a delay in a busy or networked
environment.

But this is just the beginning of the story. The rendering process must be carried
out by the pipeline of the vertex shader, the rasterizer, and the fragment shader in
order to get the proper pixels displayed in the frame buffer. Because our example uses
only points, we need only develop very simple shaders and put together the whole
application. Even though our shaders will be almost trivial, we must provide both
a vertex shader and fragment shader to have a complete application. There are no
default shaders.

2.8.2 The Vertex Shader

The only information that we put in our buffer object is the location of each point.
When we execute glDrawArrays, each of the NumPoints vertices generates an
execution of a vertex shader that we must provide. If we leave the color determination
to the fragment shader, all the vertex shader must do is pass the vertex’s location to
the rasterizer. Although we will see many more tasks that can be done in a vertex
shader, the absolute minimum it must do is send a vertex location to the rasterizer.

We write our shader using the OpenGL Shading Language (GLSL), which is a
C-like language with which we can write both vertex and fragment shaders. We will
discuss GLSL in more detail later when we want to write more sophisticated shaders,
but here is the code for a simple pass-through vertex shader:

in vec4 vPosition;

void main()
{

gl_Position = vPosition;

Each shader is a complete program with main as its entry point. GLSL expands
the C data types to include matrix and vector types. The type vec4 is equivalent to a
C++ class for a four-element array of £1oats. We have provided similar types for the
application side in vec.h and will introduce more in Chapter 3. The input vertex’s
location is given by the four-dimensional vector vPosition whose specification
includes the keyword in to signify that its value is input to the shader when the shader
is initiated. There is one special state variable in our shader: gl _Position, which is
the position that will be passed to the rasterizer and must be output by every vertex
shader. Because gl_Position is known to OpenGL, we need not declare it in the
shader.

In general, a vertex shader will transform the representation of a vertex location
from whatever coordinate system in which it is specified to a representation in clip
coordinates for the rasterizer. However, because we specified the values in our appli-
cation in clip coordinates, our shader does not have to make any changes to the values
input to the shader and merely passes them through via gl _Position.
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We still have to establish a connection between the array points in the applica-
tion and the input array vPosition in the shader. We will do this after we compile
and link our shaders. First, we look at the fragment shader.

2.8.3 The Fragment Shader

Each invocation of the vertex shader outputs a vertex that then goes through primitive
assembly and clipping before reaching the rasterizer. The rasterizer outputs fragments
for each primitive inside the clipping volume. Each fragment invokes an execution of
the fragment shader. At a minimum, each execution of the fragment shader must
output a color for the fragment unless the fragment is to be discarded. Here is a
minimum GLSL fragment shader:

void main()

{
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

All this shader does is assign a four-dimensional RGBA color to each fragment
through the built-in variable gl_FragColor. The A component of the color is its
opacity. We want our points to be opaque and not translucent, so we use A = 1.0.
Setting R to 1.0 and the other two components to 0.0 colors each fragment red.

2.8.4 Combining the Parts

We now have the pieces but need to put them together. In particular, we have to
compile the shaders, connect variables in the application with their counterparts in
the shaders, and link everything together. We start with the bare minimum. Shaders
must be compiled and linked. Most of the time we will do these operations as part of
initialization so we can put the necessary code in a function initShader that will
remain almost unchanged from application to application.

2.8.5 The initShader Function

A typical application contains three distinct parts: the application program, which
comprises a main function and other functions such as init, a vertex shader, and a
fragment shader. The first part is a set of C (or C++) functions, whereas the shaders
are written in GLSL. To obtain a module that we can execute, we have to connect
these entities, a process that involves reading source code from files, compiling the
individual parts, and linking everything together. We can control this process through
our application using a set of OpenGL functions that we will discuss in detail in
Chapter 3. Here it will be sufficient to describe the steps briefly.

Our first step is to create a container called a program object to hold our shaders
and two shader objects, one for each type of shader. The program object has an
integer identifier we can use to refer to it in the application. After we create these
objects, we can attach the shaders to the program object. Generally, the shader source
code will be in standard text files. We read them into strings that can be attached
to the program and compiled. If the compilation is successful, the application and
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shaders can be linked together. Assuming we have the vertex shader source in a file
vshader.glsl and the fragment shader in a file fshader.glsl, we can execute
the above steps by a function call of the form

GLuint program;

program = InitShader("vsource.glsl", "fsource.glsl");

in the main function of the application.

When we link the program object and the shaders, the names of shader variables
are bound to indices in tables that are created in the linking process. The function
glGetAttribLocation returns the index of an attribute variable, such as the vertex
location attribute vPosition in our vertex shader. From the perspective of the
application program, the client, we have to do two things. We have to enable the
vertex attributes that are in the shaders (glEnableVertexAttribArray), and we
must describe the form of the data in the vertex array (glVertexAttribPointer),
as in the code

GLuint loc;

loc = glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(loc);

glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET(0));

In glVertexAttribPointer, the second and third parameters specify that the
array points is a two-dimensional array of f1oats. The fourth parameter says that
we do not want the data normalized to be the range (0.0, 1.0), whereas the fifth states
that the values in the array are contiguous. We will deal with noncontiguous data in
later examples. The last parameter is the address in the buffer where the data begin.
In this example, we have only a single data array points so the zero value works. A
more robust strategy is to specify a buffer offset and use it as follows:

#define BUFFER_OFFSET (bytes) ((GLvoidx) (bytes))

glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET(0)) ;

Note that the data in points in the application consists of only x and y values,
whereas the array vPosition in the vertex shader is four dimensional. This dif-
ference does not create a problem, because we have described the data correctly in
our function parameters. The underlying reason for the differences is a fundamental
aspect of how our graphics systems work. We want our application programs to be as
close to the problem as possible. Some of our applications will be two dimensional;
most will be three dimensional, and some may even be four dimensional.



88 Chapter 2 Graphics Programming

FIGURE 2.38 Bisecting the
sides of a triangle.

A complete listing of this program, the initShader function and a function
for reading shader source code, as well as other example programs that we generate
in subsequent chapters, are given in Appendix A.

2.9 POLYGONS AND RECURSION

The output from our gasket program (Figure 2.2) shows considerable structure. If
we were to run the program with more iterations, then much of the randomness in
the image would disappear. Examining this structure, we see that regardless of how
many points we generate, there are no points in the middle. If we draw line segments
connecting the midpoints of the sides of the original triangle, dividing the original
triangle into four triangles, the middle one contains no points (Figure 2.38).

Looking at the other three triangles, we see that we can apply the same obser-
vation to each of them; that is, we can subdivide each of these triangles into four
triangles by connecting the midpoints of the sides, and each middle triangle will con-
tain no points.

This structure suggests a second method for generating the Sierpinski gasket—
one that uses polygons instead of points and does not require the use of a random-
number generator. One advantage of using polygons is that we can fill solid areas on
our display. Our strategy is to start with a single triangle, subdivide it into four smaller
triangles by bisecting the sides, and then to remove the middle triangle from further
consideration. We repeat this procedure on the remaining triangles until the size of
the triangles that we are removing is small enough—about the size of one pixel—that
we can draw the remaining triangles.

We can implement the process that we just described through a recursive pro-
gram. We start its development with a simple function that adds the locations of the
three vertices that specify a triangle to an array points:

#include "vec.h"
typedef vec2 point2;

void triangle(point2 a, point2 b, point2 c)
/* specify one triangle */

{

static int i = 0;

points[i] = a;
i++;
points[i] = b;
i++;

points[i]
i++;

1]
O



2.9 Polygons and Recursion

Hence, each time that triangle is called it adds three two-dimensional vertices to
the data array.
Suppose that the vertices of our original triangle are given by the following array:

point2 v[3];

Then the midpoints of the sides are given by the array mid [3], which can be com-
puted using the following code:

point2 mid[3];

mid[0] = (v[0] + v[1])/2.0;
mid[1] (v[o] + v[2])/2.0;
mid[2] (v[1] + v[2])/2.0;

With these six locations, we can use triangle to place the data for the three triangles
formed by (v[0], mid[0], mid[1]), (v[2], mid[1], mid[2]), and (v[1],
mid[2], mid[0]) in points. However, we do not simply want to draw these trian-
gles; we want to subdivide them. Hence, we make the process recursive. We specify a
recursive function

divide_triangle(point2 a, point2 b, point2 c, int k);

that will draw the triangles only if k is zero. Otherwise, it will subdivide the triangle
specified by a, b, and ¢ and decrease k. Here is the code:

void divide_triangle(point2 a, point2 b, point2 c, int k)

{
if(k > 0)
{
// compute midpoints of sides
point2 ab = (a + b)/2.0;
point2 ac = (a + ¢)/2.0;
point2 bc = (b + ¢)/2.0;

// subdivide all but inner triangle

divide_triangle(a, ab, ac, k-1);

divide_triangle(c, ac, bc, k-1);

divide_triangle(b, bc, ab, k-1);
}

else triangle(a,b,c); /* draw triangle at end of recursion */
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FIGURE 2.39 Triangles after five subdivisions.

The display function is now almost trivial. It uses a global® value of n determined
by the main program to fix the number of subdivision steps we would like, and it calls
divide_triangle once with the single function call

divide_triangle(v[0], v[1], v[2], Ndivisions);

where Ndivisions is the number of times we want to subdivide the original trian-
gle. If we do not account for vertices shared by two vertices and treat each triangle
independently, then each subdivision triples the number of vertices, giving us

Nvertices — 3Nd1v1sums+1‘

We set up the buffer object exactly as we did previously, and we can then render all
the triangles by

void display( void )

{
glClear (GL_COLOR_BUFFER_BIT) ;
glDrawArrays (GL_TRIANGLES, 0, Nvertices);
glFlush();
}

The rest of the program is almost identical to our previous gasket program. Output
for five subdivision steps is shown in Figure 2.39. The complete program is given in
Appendix A.

8. Note that often we have no convenient way to pass variables to GLUT callbacks other than through
global parameters. Although we prefer not to pass values in such a manner, because the form of these
functions is fixed, we have no good alternative.
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2.10 THE THREE-DIMENSIONAL GASKET

We have argued that two-dimensional graphics is a special case of three-dimensional
graphics, but we have not yet seen a complete three-dimensional program. Next,
we convert our two-dimensional Sierpinski gasket program to a program that will
generate a three-dimensional gasket; that is, one that is not restricted to a plane.
We can follow either of the two approaches that we used for the two-dimensional
gasket. Both extensions start in a similar manner, replacing the initial triangle with a
tetrahedron (Figure 2.40).

2.10.1 Use of Three-Dimensional Points

Because every tetrahedron is convex, the midpoint of a line segment between a vertex
and any point inside a tetrahedron is also inside the tetrahedron. Hence, we can
follow the same procedure as before, but this time, instead of the three vertices
required to specify a triangle, we need four initial vertices to specify the tetrahedron.
Note that as long as no three vertices are collinear, we can choose the four vertices of
the tetrahedron at random without affecting the character of the result.

The required changes are primarily in the function display. We declare and
initialize an array to hold the vertices as follows:

// vertices of an arbitrary tetrahedron

point3 vertices[4] = { point3(-1.0, -1.0, -1.0),
point3( 1.0, -1.0, -1.0),
point3( 0.0, 1.0, -1.0),
point3( 0.0, 0.0, 1.0) };

// arbitrary initial location inside tetrahedron
point3 p = point3(0.0, 0.0, 0.0);

We now use the array

point3 points[NumPoints];

to store the vertex data. We compute a new location as before but add a midpoint
computation for the z component:

// computes and plots a single new location
point3 p;
int rand();
int j = rand() % 4; // pick a vertex at random

// compute point halfway between a vertex and the old location

p = (p + vertices[j])/2.0;

FIGURE 2.40 Tetrahedron.
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We create vertex-array and buffer objects exactly as with the two-dimensional version
and can use the same display function.

One problem with the three-dimensional gasket that we did not have with the
two-dimensional gasket occurs because points are not restricted to a single plane;
thus, it may be difficult to envision the three-dimensional structure from the two-
dimensional image displayed, especially if we render each point in the same color.

To get around this problem, we can add a more sophisticated color-setting
process to our shaders, one that makes the color of each point depend on that point’s
location. We can map the color cube to the default view volume by noting that both
are cubes but that whereas x, y, and z range from —1 to 1, each color component
must be between 0 and 1. If we use the mapping

14+ x
r =

2
_I+y

2 b
_1+z

b ,
2

>

every point in the viewing volume maps to a distinct color. In the vertex shader, we
can set the color using the components of vPosition, so our shader becomes

in vec4 vPosition;
out vec4 color;

void main()

{
color = vec4((1.0 + vPosition.xyz)/2.0, 1.0);
gl_Position = vPosition;

}

This color is output to the rasterizer so the fragment shader can use it as input to set
the color of a fragment, so the fragment shader becomes

in vec4 color;
void main()
{
gl_FragColor = color;
}

Figure 2.41 shows that if we generate enough points, the resulting figure will look like
the initial tetrahedron with increasingly smaller tetrahedrons removed.

2.10.2 Use of Polygons in Three Dimensions

There is a more interesting approach to the three-dimensional Sierpinski gasket that
uses both polygons and subdivision of a tetrahedron into smaller tetrahedrons. Sup-
pose that we start with a tetrahedron and find the midpoints of its six edges and
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FIGURE 2.41 Three-dimensional Sierpinski
gasket.

connect these midpoints as shown in Figure 2.42. There are now four smaller tetra-
hedrons, one for each of the original vertices, and another area in the middle that we
will discard.

Following our second approach to a single triangle, we will use recursive sub-
division to subdivide the four tetrahedrons that we keep. Because the faces of a
tetrahedron are the four triangles determined by its four vertices, at the end of the
subdivisions, we can render each of the final tetrahedrons by drawing four triangles.

Most of our code is almost the same as in two dimensions. Our triangle routine
now uses points in three dimensions rather than in two dimensions:

#include "vec.h"
typedef vec3 point3;

void triangle(point3 a, point3 b, point3 c)
/* specify one triangle */

{

static int i = 0;

points[i]
i++;

s

a;

points[i] = b;
i++;
points[i]= c;
i++;

s

FIGURE 2.42 Subdivided
tetrahedron.
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We draw each tetrahedron, coloring each face with a different color by using the
following function:

void tetra(point3 a, point3 b, point3 c, point3 d)

{
triangle(a, b, c);
triangle(a, c, d);
triangle(a, d, b);
triangle(b, d, c);
}

We subdivide a tetrahedron in a manner similar to subdividing a triangle.
Our code for divide_triangle does the same:

void divide_tetra(point3 a, point3 b, point3 c, point3 d, int m)
{
if(m > 0)
{
point3 mid[6];

// compute six midpoints

mid[0] = (a + b)/2.0;
mid[1] = (a + ¢)/2.0;
mid[2] = (a + d)/2.0;
mid[3] = (b + ¢)/2.0;
mid[4] = (¢ + d4)/2.0;
mid[5] = (b + d)/2.0;

// create 4 tetrahedrons by subdivision

divide_tetra(a, mid[0], mid[1], mid[2], m-1);
divide_tetra(mid[0], b, mid[3], mid[5], m-1);
divide_tetra(mid[1], mid[3], c, mid[4], m-1);
divide_tetra(mid[2], mid[5], mid[5], d, m-1);

}

else tetra(a,b,c,d); /* draw tetrahedron at end of recursion */
We can now start with four vertices and do n subdivisions as follows:
divide_tetra(v[0], v[1], v[2], v[3], n);
There are two more problems that we must address before we have a useful three-
dimensional program. The first is how to deal with color. If we use just a single color

as in our first example, we won’t be able to see any of the three-dimensional structure.
Alternately, we could use the approach of our last example of letting the color of
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each fragment be determined by where the point is located in three dimensions. But
we would prefer to use a small number of colors and color the face of each triangle
with one of these colors. We can set this scheme by choosing some base colors in the
application, such as

typedef vec3 color3;
color3 base_colors[4] = {color3(1.0,

0.0, 0.0
color3(0.0, 0.0, 1.

), color3(0.0, , 0.0)
0) )

1.0, 0 s
, color3(0.0, 0.0, 0.0)%};
and then assigning colors to each point as it is generated. We set a color index as we
generate the triangles

int colorindex;
void tetra(point3 a, point3 b, point3 c, point3 d)

{
colorindex = O;
triangle(a,b,c);
colorindex = 1;
triangle(a,c,d);
colorindex = 2;
triangle(a,d,b);
colorindex = 3;
triangle(b,d,c);

}

and then form a color array with a color for each point:

color3 colors[NumVertices];
int i = 0; // number of vertices

void triangle(point3 a, point3 b, point3 c)

/* specify one triangle */

{
colors[i] = base_colors[colorindex];
points[i] = a;
i++;
colors[i] = base_colors[colorindex];
points[i] = b;
it++;
colors[i] = base_colors[colorindex];
points[i] = c;
it++;

¥

We send these colors to the GPU along with their associated vertices in a buffer
object. Inside of the buffer object, we’ll place the vertex data at the start of the buffer’s
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memory and then follow it with the color data. To do this, however, we’ll need to
first allocate a buffer large enough to contain all of the data, and then load data into
the buffer in two operations using the OpenGL function glBufferSubData. The
function glBufferSubData allows us to update parts of an existing buffer object
with new data. The first parameter specifies which array in the buffer we want to
update. The second parameter specifies which byte in the buffer to start writing
data at, and the third parameter specifies how many bytes to read from the memory
pointer, which is passed in using the fourth parameter. Consider the code:

GLuint buffer;

glGenBuffers(l, &buffer);
ngindBuffer(GL_ARRAY_BUFFER, buffer) ;

// Allocate a buffer of uninitialized data of the correct size
glBufferData(GL_ARRAY_BUFFER, sizeof (points) + sizeof(colors),
NULL, GL_STATIC_DRAW);

// Load the separate arrays of data

glBufferSubData(GL_ARRAY_BUFFER, O, sizeof (points), points );
glBufferSubData(GL_ARRAY_BUFFER, sizeof (points),
sizeof (colors), colors );

In the above example, the first call updates the bytes in the range
[0, sizeof (points)-1]. Since we need to write the data for the colors immedi-
ately after in the buffer, we start at the byte immediately following the vertex data,
which is just the length (in bytes) of the points array, which is sizeof (points).
We use that size as the starting offset in the second glBufferSubData call.

If in the shader the color is named vColor, the second vertex array can be set up
in the shader initialization:

loc2 = glGetAttribLocation(program, "vColor");

glEnableVertexAttribArray(loc2);

glVertexAttribPointer(loc2, 3, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET (sizeof (points)));

In the vertex shader, we use vColor to set a color to be sent to the fragment
shader.

2.10.3 Hidden-Surface Removal

If you execute the code in the previous section, you might be confused by the results.
The program draws triangles in the order that they are specified in the program.
This order is determined by the recursion in our program and not by the geometric
relationships among the triangles. Each triangle is drawn (filled) in a solid color and
is drawn over those triangles that have already been rendered to the display.
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Contrast this order to the way that we would see the triangles if we were to
construct the three-dimensional Sierpinski gasket out of small solid tetrahedra. We
would see only those faces of tetrahedra that were in front of all other faces as seen
by a viewer. Figure 2.43 shows a simplified version of this hidden-surface problem.
From the viewer’s position, quadrilateral A is seen clearly, but triangle B is blocked
from view, and triangle C is only partially visible. Without going into the details
of any specific algorithm, you should be able to convince yourself that given the
position of the viewer and the triangles, we should be able to draw the triangles such
that the correct image is obtained. Algorithms for ordering objects so that they are
drawn correctly are called visible-surface algorithms or hidden-surface-removal
algorithms, depending on how we look at the problem. We discuss such algorithms
in detail in Chapters 3 and 6.

For now, we can simply use a particular hidden-surface-removal algorithm,
called the z-buffer algorithm, that is supported by OpenGL. This algorithm can be
turned on (enabled) and off (disabled) easily. In our main program, we must request
the auxiliary storage, a z (or depth) buffer, by modifying the initialization of the
display mode to the following:

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

Note that the z-buffer is one of the buffers that make up the frame buffer. We enable
the algorithm by the function call

glEnable (GL_DEPTH_TEST) ;

either in main or in an initialization function such as init. Because the algorithm
stores information in the depth buffer, we must clear this buffer whenever we wish to
redraw the display; thus, we modify the clear procedure in the display function:

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
The display callback is as follows:

void display()

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays (GL_TRIANGLES, O, NumVertices);
glFlush();

}

The results are shown in Figure 2.44 for a recursion of four steps. The complete
program is given in Appendix A.

\

FIGURE 2.43 The hidden-
surface problem.
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FIGURE 2.44 Three-dimensional gasket after four recursion steps.

2.11 ADDING INTERACTION

In this section, we develop event-driven input through a set of simple examples that
use the callback mechanism that we introduced in Section 2.7. We examine various
events that are recognized by the window system, and, for those of interest to our
application, we write callback functions that govern how the application program
responds to these events.

2.11.1 Using the Pointing Device

We start by altering the main function in the gasket program. In the original ver-
sion, we used functions in the GLUT library to put a window on the screen and
then entered the event loop by executing the function glutMainLoop. We entered
the loop but could do nothing else because there were no callbacks other than the
display callback. We could not even terminate the program, except through an ex-
ternal system-dependent mechanism, such as pressing control-c. Our first example
will remedy this omission by using the pointing device to terminate a program. We
accomplish this task by having the program execute a standard termination function
called exit when a particular mouse button is depressed.

We discuss only those events recognized by GLUT. Standard window systems
such as the X Window System or Microsoft Windows recognize many more events,
which differ among systems. However, the GLUT library recognizes a small set of
events that is common to most window systems and is sufficient for developing
basic interactive graphics programs. Because GLUT has been implemented for the
major window systems, we can use our simple applications on multiple systems by
recompiling the application.
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Two types of events are associated with the pointing device, which is conven-
tionally assumed to be a mouse but could be a trackpad or a data tablet. A move
event is generated when the mouse is moved with one of the buttons depressed. If
the mouse is moved without a button being held down, this event is called a passive
move event. After a move event, the position of the mouse is made available to the
application program. A mouse event occurs when one of the mouse buttons is ei-
ther depressed or released. When a button is depressed, the action generates a mouse
down event. When it is released, a mouse up event is generated. The information re-
turned includes the button that generated the event, the state of the button after the
event (up or down), and the position of the cursor tracking the mouse in window
coordinates (with the origin in the upper-left corner of the window). We register the
mouse callback function, usually in the main function, by means of the GLUT func-
tion

glutMouseFunc (myMouse) ;
The mouse callback must have the form
void myMouse(int button, int state, int x, int y);

and is provided by the application programmer. Within the callback function, we
define the actions that we want to take place if the specified event occurs. There
may be multiple actions defined in the mouse callback function corresponding to the
many possible button and state combinations. For our simple example, we want the
depression of the left mouse button to terminate the program. The required callback
is the single-line function

void myMouse(int button, int state, int x, int y)

{
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
exit (0);

If any other mouse event—such as a depression of one of the other buttons—occurs,
no response action will occur, because no action corresponding to these events has
been defined in the callback function.

We will now develop an example that incorporates many of the aspects of CAD
programs and adds some interactivity. Along the way, we will introduce some addi-
tional callbacks. We start by developing a simple program that will display a single
triangle whose vertices are entered interactively using the pointing device. We will
use the same shaders so most of the code will be similar to our previous examples.

We specify a global array to hold the three two-dimensional vertices

point2 points[3];

929
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We can then use the mouse callback to capture the data each time the left mouse
button is depressed. Consider the code

int w, h;
int count = 0;

void mouse(int button, int state, int x, int y)

{
if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
{
exit (0);
}
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{
points[count] .x = (float) x / (w/2) - 1.0;
points[count] .y = (float) (h-y) / (h/2) - 1.0;
count++;
}
if (count == 3)
{
glutPostRedisplay () ;
count = O0;
}
}

The right mouse button is used to end the program. The left mouse button is used to
provide the vertex data for our triangle. We use the globals h and w to hold the height
and width of the OpenGL window. Hence, in our main we might see the code

w = 512;
h = 512;
glutInitWindowSize(w, h);

in our main function, which would give us the same 512 x 512 window we used
previously. The basic idea is that each time the left mouse button is depressed, we put
the scaled location of the mouse into points and then move on to the next vertex.
Scaling is necessary because the mouse callback returns the position of the mouse in
screen coordinates measured from the top-left corner of the window. Thus, for our
w x h window, the top-left corner has coordinates (0, 0) whereas the bottom right
corner has coordinates (w—1, h-1). This number of increasing y values from top to
bottom is common in window systems and has its origins in television systems that
display images top to bottom. The window we use in our application program has its
origin in the center, the bottom-left corner is at (—1.0, —1.0) and the top-right corner
has coordinates (1.0, 1.0). Because any primitives outside this region are clipped out,
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we want to scale the values returned by the mouse callback to this region and make
sure to flip the y values so that our triangles appear upright. The two lines

points[count] .x = (float) x / (w/2) - 1.0;
(float) (h-y) / (h/2) - 1.0;

points[count] .y

carry out this transformation of coordinates.

Once we have the data for three vertices, we can draw the triangle. We cause the
drawing of the triangle through the display callback. However, instead of invoking
the display callback directly through an execution of display, we instead use

glutPostRedisplay();

What this function does is set an internal flag indicating that the display needs to be
redrawn. Each time the system goes through the event loop, multiple events may oc-
cur whose callbacks require refreshing the display. Rather than each of these callbacks
explicitly executing the display function, each uses glutPostRedisplay to set the
display flag. Thus, at the end of the event loop, if the flag is set, the display callback
is invoked and the flag unset. This method prevents the display from being redrawn
multiple times in a single pass through the event loop.” Returning to our example,
we see that each successive three depressions of the left mouse button specifies a new
triangle that replaces the previous triangle on the display.

Although we have a program that has some interactivity, introducing a few more
callbacks will lead to a much more interesting program that can be expanded to a
painting or CAD program.

2.11.2 Window Events

Most window systems allow a user to resize the window interactively, usually by using
the mouse to drag a corner of the window to a new location. This event is called a
reshape event and is an example of a window event. Other window events include
iconifying a window and exposing a window that was covered by another window.
Each can have a callback that specified which actions to take if the event occurs.
Unlike most other callbacks, there is a default reshape callback that simply changes
the viewport to the new window size, an action that might not be what the user
desires. If the window size changes, we have to consider the three questions:

1. Do we redraw all the objects that were in the window before it was resized?

2. What do we do if the aspect ratio of the new window is different from that of
the old window?

3. Do we change the sizes or attributes of new primitives if the size of the new
window is different from that of the old?

9. Some interactive applications may need to execute the display callback directly.
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There is no single answer to any of these questions. If we are displaying the image
of a real-world scene, our reshape function probably should make sure that no shape
distortions occur. But this choice may mean that part of the resized window is unused
or that part of the scene cannot be displayed in the window. If we want to redraw
the objects that were in the window before it was resized, we need a mechanism for
storing and recalling them. Often we do this recall by encapsulating all drawing in a
single function, such as the display callback function used in our previous examples.
In interactive applications that is probably not the best choice, because we decide
what we draw interactively.

The reshape event returns in its measure the height and width of the new win-
dow. We can use these values to rescale the data that we use to specify the geometry.
Thus, we have the callback

GLint windowHeight, windowWidth;

void reshape(GLsizei w, GLsizei h)

{

windowWidth = w;

windowHeight = h;

glViewport(0, O, windowWidth, windowHeight);
}

This function creates a new viewport that covers the entire resized window and copies
the returned values of the new window width and height to the global variables
windowWidth and windowHeight so they can be used by the mouse callback. Note
that because the reshape callback generates a display callback, we do not need to call
glutPostRedisplay.

2.11.3 Keyboard Events

We can also use the keyboard as an input device. Keyboard events can be generated
when the mouse is in the window and one of the keys is depressed or released.!®
The GLUT function glutKeyboardFunc is the callback for events generated by
depressing a key, whereas glutKeyboardUpFunc is the callback for events generated
by release of a key.

When a keyboard event occurs, the ASCII code for the key that generated the
event and the location of the mouse are returned. All the key-press callbacks are
registered in a single callback function, such as

glutKeyboardFunc (myKey) ;
For example, if we wish to use the keyboard only to exit the program, we can use the

callback function

10. Depending on the operating system, the mouse focus may have to set by first clicking inside the
window before events are recognized.
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void myKey(unsigned char key, int x, int y)

{
if (key=='q' || key == 'Q') exit(0);
}

GLUT includes a function glutGetModifiers that allows the user to define actions
using the meta keys, such as the Control and Alt keys. These special keys can be
important when we are using one- or two-button mice because we can then define
the same functionality as having left, right, and middle buttons as we have assumed
in this chapter. More information about these functions is in the Suggested Readings
section at the end of the chapter.

2.11.4 The Idle Callback

The idle callback is invoked when there are no other events. Its default is the null
function pointer. A typical use of the idle callback is to continue to generate graphical
primitives through a display function while nothing else is happening. Another is to
produce an animated display.

Let’s do a simple extension to our triangle program that rotates the triangle about
the center of the window. Consider the two-dimensional rotation in Figure 2.45. A
point at (x, y) when rotated by ¢ degrees about the origin moves to a point (x’, y).
We obtain the equations of rotation by expressing both points in polar coordinates.
If the original point is at

x =r cos(f),

y =rsin(0),

then the rotated point is at

x'=rcos( + ¢) = r(cos() cos(¢) — sin() sin(¢)),
y' =r1sin(0 + ¢) = r(cos(0) sin(¢) + sin(8) cos(¢)),
or

x' =x cos(¢) — y sin(9),

y' = xsin(@) +y cos().

Instead of displaying a triangle using the entered vertex positions, first we will rotate
the positions by a small angle each time. The idle callback need only post a redisplay.
In main, we specify an idle callback,

glutIdleFunc(idle);

The display callback not only changes the vertex positions but must also send the new
vertex data to the GPU as in the code for which the angle is 1/1000 of a degree:

FIGURE 2.45 Two-dimensional
rotation.
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const float DegreesToRadians = M_PI / 180.0;

float angle = 0.001*DegreesToRadians; // small angle in radians

void display()

{

}

for( int i = 0; i < 3; i++)

{
float x = cos(angle)*points[i].x - sin(angle)*points[i].y;
float y = sin(angle)*points[i].x + cos(angle)*points[i].y;
points[i].x = x;
points[i]l.y = y;

}

glBufferData(GL_ARRAY_BUFFER, sizeof (points), points,
GL_STATIC_DRAW) ;

glClear (GL_COLOR_BUFFER_BIT); // clear the window

glDrawArrays (GL_TRIANGLES, 0, 3);

glFlush();

The idle function is just

void idle()

{

}

Alternately, we could have incremented the angle by a small amount in the idle
callback and always applied the rotation to the original points in the display callback.
We can change most callback functions during program execution by simply
specifying a new callback function. We can also disable a callback by setting its call-
back function to NULL. In our example, we want to stop the rotation while we are
collecting data and then restart it once a new triangle is completely specified. We can

glutPostRedisplay();

modify the display callback to accomplish this change:

void mouse(int button, int state, int x, int y)

{

if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

{
exit(0);

if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{
glutIdleFunc(NULL) ;
points[count] .x = (float) x / (w/2) - 1.0;
points[count] .y = (float) (h-y) / (h/2) - 1.0;
count++;
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if (count == 3)

{
glutIdleFunc(idle);
glutPostRedisplay();
count = O;

}

2.11.5 Double Buffering

Although we have a complete program, depending on the speed of your computer
and how much you increment the angle in the idle callback, you may see a display
that does not show a rotating triangle but rather a somewhat broken-up display with
pieces of the triangle showing. This problem can be far more severe if you try to
generate a display with many objects in motion.

The reason for this behavior is the decoupling of the automatic display of the
contents of the frame buffer from the application code that changes values in the
frame buffer. Typically the frame buffer is redisplayed at a regular rate, known as
the refresh rate, which is in the range of 60 to 100 Hz (or frames per second).
However, an application program operates asynchronously and can cause changes
to the frame buffer at any time. Hence, a redisplay of the frame buffer can occur
when its contents are still being altered by the application and the viewer will see
only a partially drawn display. There are a couple of solutions to this problem. Some
operating systems give the user a parameter to set that will couple or sync the drawing
into and display of the frame buffer.

The more common solution is double buffering. Instead of a single frame buffer,
the hardware has two frame buffers. One, called the front buffer, is one that is
displayed. The other, called the back buffer, is then available for constructing what
we would like to display. Once the drawing is complete, we swap the front and back
buffers. We then clear the new back buffer and can start drawing into it. Thus, rather
than using glFlush at the end of the display callback, we use

glutSwapBuffers();

We have to make one other change to use double buffering. In our initialization, we
have to request a double buffer. Hence, in main we use

glutInitDisplayMode (GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);

Note that the default in GLUT is equivalent to using GLUT_SINGLE rather than
GLUT_DOUBLE. However, modern graphics hardware has sufficient memory that we
can always use double rather than single buffering. Most graphics cards will also allow
you to synchronize the display refresh with the application program.
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FIGURE 2.46 Slidebar.

2.11.6 Window Management

GLUT also supports both multiple windows and subwindows of a given window. We
can open a second top-level window (with the label “second window”) by

uint id = glutCreateWindow("second window");

The returned integer value allows us to select this window as the current window into
which objects will be rendered by

glutSetWindow(id) ;

We can make this window have properties different from those of other windows by
invoking the glutInitDisplayMode before glutCreateWindow. Furthermore,
each window can have its own set of callback functions because callback specifications
refer to the present window.

2.12 MENUS

We could use our graphics primitives and our mouse callbacks to construct various
graphical input devices. For example, we could construct a slidebar (Figure 2.46)
using filled rectangles for the device, text for any labels, and the mouse to get the po-
sition. However, much of the code would be tedious to develop, especially if we tried
to create visually appealing and effective graphical devices (widgets). Most window
systems provide a toolkit that contains a set of widgets, but because our philosophy
is not to restrict our discussion to any particular window system, we shall not discuss
the specifics of such widget sets. Fortunately, GLUT provides one additional feature,
pop-up menus, that we can use with the mouse to create sophisticated interactive
applications.

Using menus involves taking a few simple steps. We must specify the actions
corresponding to each entry in the menu. We must link the menu to a particular
mouse button. Finally, we must register a callback function for each menu. We can
demonstrate simple menus with the example of a pop-up menu that has three entries.
The first selection allows us to exit our program. The second and third start and stop
the rotation. The function calls to set up the menu and to link it to the right mouse
button should be placed in our main function. They are

glutCreateMenu(demo_menu) ;
glutAddMenuEntry ("quit", 1);
glutAddMenuEntry("start rotation", 2);
glutAddMenuEntry ("stop rotation", 3);
glutAttachMenu(GLUT_RIGHT_BUTTON);

The function glutCreateMenu registers the callback function demo_menu.
The second argument in each entry’s definition is the identifier passed to the
callback when the entry is selected. Hence, our callback function is
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FIGURE 2.47 Structure of hierarchical menus.

void demo_menu(int id)
{

switch(id)

{

case 1:
exit(0);
break;

case 2:
glutIdleFunc(idle);
break;

case 3:
glutIdleFunc(NULL);
break;

}
glutPostRedisplay();

The call to glutPostRedisplay requests a redraw through the glutDisplayFunc
callback, so that the screen is drawn again without the menu.

GLUT also supports hierarchical menus, as shown in Figure 2.47. For example,
suppose that we want the main menu that we create to have only two entries. The first
entry still causes the program to terminate, but now the second causes a submenu to
pop up. The submenu contains the two entries for turning the rotation on and off.
The following code for the menu (which is in main) should be clear:

sub_menu = glutCreateMenu(rotation_menu) ;
glutAddMenuEntry("start rotation", 2);
glutAddMenuEntry ("stop rotation", 3);
glutCreateMenu (top_menu) ;

glutAddMenuEntry ("Quit", 1);
glutAddSubMenu("start/stop rotation", sub_menu);
glutAttachMenu (GLUT_RIGHT_BUTTON) ;

Writing the callback functions, rotation_menu and top_menu, should be a simple
exercise.

2.12 Menus
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SUMMARY AND NOTES

In this chapter, we introduced just enough of the OpenGL API to apply the basic
concepts that we learned in Chapter 1. Although the first application we used to
develop our first program was two dimensional, we took the path of looking at two-
dimensional graphics as a special case of three-dimensional graphics. We then were
able to extend the example to three dimensions with minimal work.

The Sierpinski gasket provides a nontrivial beginning application. A few exten-
sions and mathematical issues are presented in the exercises at the end of this chapter.
The texts in the Suggested Readings section provide many other examples of interest-
ing curves and surfaces that can be generated with simple programs.

The historical development of graphics APIs and graphical models illustrates the
importance of starting in three dimensions. The pen-plotter model from Chapter 1
was used for many years and is the basis of many important APIs, such as PostScript.
Work to define an international standard for graphics APIs began in the 1970s and
culminated with the adoption of GKS by the International Standards Organization
(ISO) in 1984. However, GKS had its basis in the pen-plotter model and as a two-
dimensional API was of limited utility in the CAD community. Although the standard
was extended to three dimensions with GKS-3D, the limitations imposed by the orig-
inal underlying model led to a standard that was lacking in many aspects. The PHIGS
and PHIGS+ APIs, started in the CAD community, are inherently three dimensional
and are based on the synthetic-camera model.

OpenGL is derived from the IrisGL API, which is based on implementing the
synthetic-camera model with a pipeline architecture. IrisGL was developed for Sil-
icon Graphics, Inc. (SGI) workstations, which incorporated a pipeline architecture
originally implemented with special-purpose VLSI chips. Hence, although PHIGS
and GL have much in common, GL was designed specifically for high-speed real-
time rendering. OpenGL was a result of application users realizing the advantages of
GL programming and wanting to carry these advantages to other platforms. Because
it removed input and windowing functions from GL and concentrated on rendering,
OpenGL emerged as a new API that was portable while retaining the features that
make GL such a powerful APL

Although most application programmers who use OpenGL prefer to program
in C, there is a fair amount of interest in higher-level interfaces. Using C++ rather
than C requires minimal code changes but does not provide a true object-oriented
interface to OpenGL. Among object-oriented programmers, there has been much
interest in both OpenGL and higher-level APIs. Although there is no official Java
binding to OpenGL, there have been multiple efforts to come up with one. The
problem is not simple, because application users want to make use of the object
orientation of Java and various Java toolkits, together with a non—object-oriented
OpenGL specification. There are a few bindings available on the Internet, and Sun
Microsystems recently released their Java bindings. Many Java programmers use the
JOGL bindings.



Suggested Readings

In Chapter 8, we will introduce scene graphs, which provide a much higher-level,
object-oriented interface to graphics hardware. Most scene graph APIs are built on
top of OpenGL.

Within the game community, the dominance of Windows makes it possible for
game developers to write code for a single platform. DirectX runs only on Windows
platforms and is optimized for speed on these systems. Although much DirectX code
looks like OpenGL code, the coder can use device-dependent features that are avail-
able in commodity graphics cards. Consequently, applications written in DirectX
do not have the portability and stability of OpenGL applications. Thus, we see Di-
rectX dominating the game world, whereas scientific and engineering applications
generally are written in OpenGL. For OpenGL programmers who want to use fea-
tures specific to certain hardware, OpenGL has an extension mechanism for accessing
these features but at the cost of portability. Programming pipelines that are accessi-
ble through the OpenGL Shading Language and Cg are leading to small performance
differences between OpenGL and DirectX for high-end applications.

Our examples and programs have shown how we describe and display geomet-
ric objects in a simple manner. In terms of the modeling—rendering paradigm that
we presented in Chapter 1, we have focused on the modeling. However, our mod-
els are completely unstructured. Representations of objects are lists of vertices and
attributes. In Chapter 8, we will learn to construct hierarchical models that can rep-
resent relationships among objects. Nevertheless, at this point, you should be able
to write interesting programs. Complete the exercises at the end of the chapter and
extend a few of the two-dimensional problems to three dimensions.

The Sierpinski gasket provides a good introduction to the mysteries of fractal geome-
try; there are good discussions in several texts [Bar93, Hil01, Man82, Pru90].

The pen-plotter API is used by PostScript [Ado85] and LOGO [Pap81]. LOGO
provides turtle graphics, an API that is both simple to learn and capable of describing
several of the two-dimensional mathematical curves that we use in Chapter 11 (see
Exercise 2.4).

GKS [ANSI85], GKS-3D [ISO88], PHIGS [ANSI88], and PHIGS+[PHI89] are
both U.S. and international standards. Their formal descriptions can be obtained
from the American National Standards Institute (ANSI) and from ISO. Numerous
textbooks use these APIs [Ang90, End84, Fol94, Hea04, Hop83, Hop91].

The X Window System [Sch88] has become the standard on UNIX workstations
and has influenced the development of window systems on other platforms. The
RenderMan interface is described in [Ups89].

The standard reference for OpenGL is the OpenGL Programming Guide [Shr10].
The OpenGL Reference Manual [Ope04] has the man pages for older versions. There
is also a formal specification of OpenGL [Seg92]. The OpenGL Shading Language is
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described in [Ros09]. The standards documents as well as many other references and
pointers to code examples are on the OpenGL Web site, www.opengl.org.

Starting with the second edition and continuing through the present edition,
the Programming Guide uses the GLUT library that was developed by Mark Kil-
gard [Kil94b]. The Programming Guide provides many more code examples using
OpenGL. GLUT was developed for use with the X Window System [Kil96], but there
are also versions for Windows and the Macintosh. Much of this information and
many of the example programs are available over the Internet. Representative sites
are listed at the beginning of Appendix A.

OpenGL: A Primer [Ang08], the companion book to this text, contains details of
the OpenGL functions used here and more example programs. Windows users can
find more examples in [Wrill] and [Fos97]. Details for Mac OS X users are [Kue08]

The graphics part of the DirectX API was originally known as Direct3D. The
present version is Version 11.0.

EXERCISES

2.1  Aslight variation on generating the Sierpinski gasket with triangular polygons
yields the fractal mountains used in computer-generated animations. After you
find the midpoint of each side of the triangle, perturb this location before sub-
division. Generate these triangles without fill. Later, you can do this exercise in
three dimensions and add shading. After a few subdivisions, you should have
generated sufficient detail that your triangles look like a mountain.

2.2 The Sierpinski gasket, as generated in Exercise 2.1, demonstrates many of the
geometric complexities that are studied in fractal geometry [Man82]. Suppose
that you construct the gasket with mathematical lines that have length but
no width. In the limit, what percentage of the area of the original triangle
remains after the central triangle has been removed after each subdivision?
Consider the perimeters of the triangles remaining after each central triangle
is removed. In the limit, what happens to the total perimeter length of all
remaining triangles?

2.3 At the lowest level of processing, we manipulate bits in the frame buffer.
OpenGL has pixel-oriented commands that allow users to access the frame
buffer directly. You can experiment with simple raster algorithms, such as
drawing lines or circles, through a function that generates a single point. Write
asmall library that will allow you to work in a virtual frame buffer that you cre-
ate in memory. The core functions should be WritePixel and ReadPixel.
Your library should allow you to set up and display your virtual frame buffer
and to run a user program that reads and writes pixels.

2.4  Turtle graphics is an alternative positioning system that is based on the concept
of a turtle moving around the screen with a pen attached to the bottom of its
shell. The turtle’s position can be described by a triplet (x, y, ), giving the
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FIGURE 2.48 Generation of the Koch snowflake.

2.5

2.6

2.7

2.8

2.9

location of the center and the orientation of the turtle. A typical API for such
a system includes functions such as the following:

init(x,y,theta); /* initialize position and orientation
of turtle */

forward(distance) ;

right (angle) ;

left(angle);

pen (up_down) ;

Implement a turtle-graphics library using OpenGL.

Use your turtle-graphics library from Exercise 2.4 to generate the Sierpinski
gasket and fractal mountains of Exercises 2.1 and 2.2.

Space-filling curves have interested mathematicians for centuries. In the limit,
these curves have infinite length, but they are confined to a finite rectangle
and never cross themselves. Many of these curves can be generated iteratively.
Consider the “rule” pictured in Figure 2.48 that replaces a single line segment
with four shorter segments. Write a program that starts with a triangle and
iteratively applies the replacement rule to all the line segments. The object that
you generate is called the Koch snowflake. For other examples of space-filling
curves, see [Hil07] and [Bar93].

You can generate a simple maze starting with a rectangular array of cells. Each
cell has four sides. You remove sides (except from the perimeter of all the
cells) until all the cells are connected. Then you create an entrance and an
exit by removing two sides from the perimeter. A simple example is shown in
Figure 2.49. Write a program using OpenGL that takes as input the two integers
N and M and then draws an N x M maze.

Describe how you would adapt the RGB-color model in OpenGL to allow you
to work with a subtractive color model.

We saw that a fundamental operation in graphics systems is to map a point
(x, y) that lies within a clipping rectangle to a point (x;, y,) that lies in the
viewport of a window on the screen. Assume that the two rectangles are de-
fined by the viewport specified by

glViewport(u, v, w, h);

and a viewing rectangle specified by

Exercises

2

FIGURE 2.49 Maze.
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FIGURE 2.50 Polygonal mesh.
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Find the mathematical equations that map (x, y) into (x;, y,).
Many graphics APIs use relative positioning. In such a system, the API contains
functions such as

move_rel (x,y);
line_rel(x,y);

for drawing lines and polygons. The move_rel function moves an internal
position, or cursor, to a new position; the 1ine_rel function moves the
cursor and defines a line segment between the old cursor position and the new
position. What are the advantages and disadvantages of relative positioning
as compared to the absolute positioning used in OpenGL? Describe how you
would add relative positioning to OpenGL.

In practice, testing each point in a polygon to determine whether it is inside
or outside the polygon is extremely inefficient. Describe the general strategies
that you might pursue to avoid point-by-point testing.

Devise a test to determine whether a two-dimensional polygon is simple.

Figure 2.50 shows a set of polygons called a mesh; these polygons share some
edges and vertices. Find one or more simple data structures that represent the
mesh. A good data structure should include information on shared vertices
and edges. Using OpenGL, find an efficient method for displaying a mesh
represented by your data structure. Hint: Start with an array or linked list that
contains the locations of the vertices.

In Section 2.4, we saw that in OpenGL we specify polygons using lists of ver-
tices. Why might it be better to define polygons by their edges? Hint: Consider
how you might represent a mesh efficiently.

In OpenGL, we can associate a color with each vertex. If the endpoints of a line
segment have different colors assigned to them, OpenGL will interpolate be-
tween the colors as it renders the line segment. It will do the same for polygons.
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Use this property to display the Maxwell triangle: an equilateral triangle whose
vertices are red, green, and blue. What is the relationship between the Maxwell
triangle and the color cube?

We can simulate many realistic effects using computer graphics by incorporat-
ing simple physics in the model. Simulate a bouncing ball in two dimensions
incorporating both gravity and elastic collisions with a surface. You can model
the ball with a closed polygon that has a sufficient number of sides to look
smooth.

An interesting but difficult extension of Exercise 2.16 is to simulate a game of
pool or billiards. You will need to have multiple balls that can interact with the
sides of the table and with one another. Hint: Start with two balls and consider
how to detect possible collisions.

A certain graphics system with a CRT display is advertised to display any four
out of 64 colors. What does this statement tell you about the frame buffer and
about the quality of the monitor?

Devise a test for the convexity of a two-dimensional polygon.

Another approach to the three-dimensional gasket is based on subdividing
only the faces of an initial tetrahedron. Write a program that takes this ap-
proach. How do the results differ from the program that we developed in
Section 2.10?

Each time that we subdivide the tetrahedron and keep only the four smaller
tetrahedrons corresponding to the original vertices, we decrease the volume
by a factor f. Find f. What is the ratio of the new surface area of the four
tetrahedrons to the surface area of the original tetrahedron?

Creating simple games is a good way to become familiar with interactive
graphics programming. Program the game of checkers. You can look at each
square as an object that can be picked by the user. You can start with a program
in which the user plays both sides.

Write an interactive program that will allow you to guide a graphical rat
through the maze you generated in Exercise 2.7. You can use the left and right
buttons to turn the rat and the middle button to move him forward.

Plotting packages offer a variety of methods for displaying data. Write an
interactive plotting application for two-dimensional curves. Your application
should allow the user to choose the mode (polyline display of the data, bar
chart, or pie chart), colors, and line styles.

The required refresh rate for CRT displays of 50 to 85 Hz is based on the use of
short-persistence phosphors that emit light for extremely short intervals when
excited. Long-persistence phosphors are available. Why are long-persistence
phosphors not used in most workstation displays? In what types of applica-
tions might such phosphors be useful?

Exercises
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e 1A

GEOMETRIC OBJECTS AND
TRANSFORMATIONS

We are now ready to concentrate on three-dimensional graphics. Much of this
chapter is concerned with such matters as how to represent basic geometric
types, how to convert between various representations, and what statements we can
make about geometric objects independent of a particular representation.

We begin with an examination of the mathematical underpinnings of computer
graphics. This approach should avoid much of the confusion that arises from a lack
of care in distinguishing among a geometric entity, its representation in a particular
reference system, and a mathematical abstraction of it.

We use the notions of affine and Euclidean vector spaces to create the necessary
mathematical foundation for later work. One of our goals is to establish a method for
dealing with geometric problems that is independent of coordinate systems. The ad-
vantages of such an approach will be clear when we worry about how to represent the
geometric objects with which we would like to work. The coordinate-free approach
will prove to be far more robust than one based on representing the objects in a par-
ticular coordinate system or frame. This coordinate-free approach also leads to the
use of homogeneous coordinates, a system that not only enables us to explain this
approach but also leads to efficient implementation techniques.

We use the terminology of abstract data types to reinforce the distinction be-
tween an object and its representation. Our development will show that the mathe-
matics arise naturally from our desire to manipulate a few basic geometric objects.
Much of what we present here is an application of vector spaces, geometry, and linear
algebra. Appendices B and C summarize the formalities of vector spaces and matrix
algebra, respectively.

In a vein similar to the approach we took in Chapter 2, we develop a simple
application program to illustrate the basic principles and to see how the concepts are
realized within an APL. In this chapter, our example is focused on the representation
and transformations of a cube. We also consider how to specify transformations
interactively and apply them smoothly. Because transformations are key to both
modeling and implementation, we will develop transformation capabilities that can
be carried out in both the application code and in the shaders.
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FIGURE 3.2
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3.1 SCALARS, POINTS, AND VECTORS

In computer graphics, we work with sets of geometric objects, such as lines, polygons,
and polyhedra. Such objects exist in a three-dimensional world and have properties
that can be described using concepts such as length and angles. As we discovered
working in two dimensions, we can define most geometric objects using a limited set
of simple entities. These basic geometric objects and the relationships among them
can be described using three fundamental types: scalars, points, and vectors.

Although we will consider each type from a geometric perspective, each of these
types also can be defined formally, as in Appendix B, as obeying a set of axioms.
Although ultimately we will use the geometric instantiation of each type, we want to
take great care in distinguishing between the abstract definition of each entity and any
particular example, or implementation, of it. By taking care here, we can avoid many
subtle pitfalls later. Although we will work in three-dimensional spaces, virtually all
our results will hold in #-dimensional spaces.

3.1.1 Geometric Objects

Our fundamental geometric object is a point. In a three-dimensional geometric sys-
tem, a point is a location in space. The only property that a point possesses is that
point’s location; a mathematical point has neither a size nor a shape.

Points are useful in specifying geometric objects but are not sufficient by them-
selves. We need real numbers to specify quantities such as the distance between two
points. Real numbers—and complex numbers, which we will use occasionally—are
examples of scalars. Scalars are objects that obey a set of rules that are abstractions
of the operations of ordinary arithmetic. Thus, addition and multiplication are de-
fined and obey the usual rules such as commutivity and associativity. Every scalar has
multiplicative and additive inverses, which implicitly define subtraction and division.

We need one additional type—the vector—to allow us to work with directions.!
Physicists and mathematicians use the term vector for any quantity with direction and
magnitude. Physical quantities, such as velocity and force, are vectors. A vector does
not, however, have a fixed location in space.

In computer graphics, we often connect points with directed line segments, as
shown in Figure 3.1. A directed line segment has both magnitude—its length—
and direction—its orientation—and thus is a vector. Because vectors have no fixed
position, the directed line segments shown in Figure 3.2 are identical because they
have the same direction and magnitude. We will often use the terms vector and
directed line segment synonymously.

Vectors can have their lengths altered by real numbers. Thus, in Figure 3.3(a),
line segment A has the same direction as line segment B, but B has twice the length

1. The types such as vec3 used by GLSL and that we have used in our classes are not geometric types

but rather storage types. Hence, we can use a vec3 to store information about a point, a vector, or a
color. Unfortunately, the choice of names by GLSL can cause some confusion.
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D=A+C

A

(a) (b)
FIGURE 3.3 (a) Parallel line segments. (b) Addition of line segments.

that A has, so we can write B = 2A. We can also combine directed line segments by
the head-to-tail rule, as shown in Figure 3.3(b). Here, we connect the head of vector
A to the tail of vector C to form a new vector D, whose magnitude and direction are
determined by the line segment from the tail of A to the head of C. We call this new
vector, D, the sum of A and C and write D = A + C. Because vectors have no fixed
positions, we can move any two vectors as necessary to form their sum graphically.
Note that we have described two fundamental operations: the addition of two vectors
and the multiplication of a vector by a scalar.

If we consider two directed line segments, A and E, as shown in Figure 3.4, with
the same length but opposite directions, their sum as defined by the head-to-tail
addition has no length. This sum forms a special vector called the zero vector, which
we denote 0, that has a magnitude of zero. Because it has no length, the orientation of
this vector is undefined. We say that E is the inverse of A and we can write E = —A.
Using inverses of vectors, scalar-vector expressions such as A + 2B — 3C make sense.

Although we can multiply a vector by a scalar to change its length, there are no
obvious sensible operations between two points that produce another point. Nor are
there operations between a point and a scalar that produce a point. There is, however,
an operation between points and directed line segments (vectors), as illustrated in
Figure 3.5. We can use a directed line segment to move from one point to another.
We call this operation point-vector addition, and it produces a new point. We write
this operation as P = Q + v. We can see that the vector v displaces the point Q to the
new location P.

Looking at things slightly differently, any two points define a directed line seg-
ment or vector from one point to the second. We call this operation point-point
subtraction, and we can write it as v = P — Q. Because vectors can be multiplied
by scalars, some expressions involving scalars, vectors, and points make sense, such
as P + 3v, or 2P — Q + 3v (because it can be written as P + (P — Q) + 3v, a sum of
a point and a vector), whereas others, such as P 4+ 3Q — v, do not.

3.1.2 Coordinate-Free Geometry

Points exist in space regardless of any reference or coordinate system. Thus, we do not
need a coordinate system to specify a point or a vector. This fact may seem counter

E=-A

FIGURE 3.4 Inverse vectors.

oP

Q

FIGURE 3.5 Point-vector
addition.
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(3,3)

(1,1

FIGURE 3.6 Object and
coordinate system.

>
2

FIGURE 3.7 Object without
coordinate system.

to your experiences, but it is crucial to understanding geometry and how to build
graphics systems. Consider the two-dimensional example shown in Figure 3.6. Here
we see a coordinate system defined by two axes, an origin, and a simple geometric
object, a square. We can refer to the point at the lower-left corner of the square as
having coordinates (1, 1) and note that the sides of the square are orthogonal to each
other and that the point at (3, 1) is 2 units from the point at (1, 1). Now suppose
that we remove the axes as shown in Figure 3.7. We can no longer specify where the
points are. But those locations were relative to an arbitrary location of the origin
and the orientation of the axes. What is more important is that the fundamental
geometric relationships are preserved. The square is still a square, orthogonal lines
are still orthogonal, and distances between points remain the same.

Of course, we may find it inconvenient, at best, to refer to a specific point as “that
point over there” or “the blue point to the right of the red one.” Coordinate systems
and frames (see Section 3.3) solve this reference problem, but for now we want to see
just how far we can get following a coordinate-free approach that does not require an
arbitrary reference system.

3.1.3 The Mathematical View: Vector and Affine Spaces

If we view scalars, points, and vectors as members of mathematical sets, then we
can look at a variety of abstract spaces for representing and manipulating these
sets of objects. Mathematicians have explored a variety of such spaces for applied
problems, ranging from the solution of differential equations to the approximation
of mathematical functions. The formal definitions of the spaces of interest to us—
vector spaces, affine spaces, and Euclidean spaces—are given in Appendix B. We are
concerned with only those examples in which the elements are geometric types.

We start with a set of scalars, any pair of which can be combined to form another
scalar through two operations, called addition and multiplication. If these operations
obey the closure, associativity, commutivity, and inverse properties described in Ap-
pendix B, the elements form a scalar field. Familiar examples of scalars include the
real numbers, complex numbers, and rational functions.

Perhaps the most important mathematical space is the (linear) vector space. A
vector space contains two distinct types of entities: vectors and scalars. In addition
to the rules for combining scalars, within a vector space, we can combine scalars and
vectors to form new vectors through scalar—vector multiplication and vectors with
vectors through vector—vector addition. Examples of mathematical vector spaces
include n-tuples of real numbers and the geometric operations on our directed line
segments.

In a linear vector space, we do not necessarily have a way of measuring a scalar
quantity. A Euclidean space is an extension of a vector space that adds a measure of
size or distance and allows us to define such things as the length of a line segment.

An affine space is an extension of the vector space that includes an additional
type of object: the point. Although there are no operations between two points or
between a point and a scalar that yield points, there is an operation of vector—point
addition that produces a new point. Alternately, we can say there is an operation
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called point—point subtraction that produces a vector from two points. Examples of
affine spaces include the geometric operations on points and directed line segments
that we introduced in Section 3.1.1.

In these abstract spaces, objects can be defined independently of any particular
representation; they are simply members of various sets. One of the major vector-
space concepts is that of representing a vector in terms of one or more sets of basis
vectors. Representation (Section 3.3) provides the tie between abstract objects and
their implementation. Conversion between representations leads us to geometric
transformations.

3.1.4 The Computer Science View

Although the mathematician may prefer to think of scalars, points, and vectors as
members of sets that can be combined according to certain axioms, the computer
scientist prefers to see them as abstract data types (ADTs). An ADT is a set of op-
erations on data; the operations are defined independently of how the data are rep-
resented internally or of how the operations are implemented. The notion of data
abstraction is fundamental to modern computer science. For example, the operation
of adding an element to a list or of multiplying two polynomials can be defined in-
dependently of how the list is stored or of how real numbers are represented on a
particular computer. People familiar with this concept should have no trouble dis-
tinguishing between objects (and operations on objects) and objects’ representations
(or implementations) in a particular system. From a computational point of view, we
should be able to declare geometric objects through code such as

vector u,v;

point p,q;
scalar a,b;

regardless of the internal representation or implementation of the objects on a partic-
ular system. In object-oriented languages, such as C++, we can use language features,
such as classes and overloading of operators, so we can write lines of code, such as

q = ptaxv;

using our geometric data types. Of course, first we must define functions that per-
form the necessary operations; so that we can write them, we must look at the math-
ematical functions that we wish to implement. First, we will define our objects. Then
we will look to certain abstract mathematical spaces to help us with the operations
among them.

3.1.5 Geometric ADTs

The three views of scalars, points, and vectors leave us with a mathematical and
computational framework for working with our geometric entities. In summary, for
computer graphics our scalars are the real numbers using ordinary addition and
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Q

FIGURE 3.8 Point—point
subtraction.

multiplication. Our geometric points are locations in space, and our vectors are
directed line segments. These objects obey the rules of an affine space. We can also
create the corresponding ADTs in a program.

Our next step is to show how we can use our types to form geometrical objects
and to perform geometric operations among them. We will use the following no-
tation:

= Greek letters o, B, y, . . . denote scalars;
= uppercase letters P, Q, R, . . . denote points;
= Jowercase letters u, v, w, . . . denote vectors.

We have not as yet introduced any reference system, such as a coordinate system; thus,
for vectors and points, this notation refers to the abstract objects, rather than to these
objects’ representations in a particular reference system. We use boldface letters for
the latter in Section 3.3. The magnitude of a vector v is a real number denoted by |v|.
The operation of vector—scalar multiplication (see Appendix B) has the property that

lav] = |al|v],

and the direction of v is the same as the direction of v if & is positive and the opposite
direction if « is negative.

We have two equivalent operations that relate points and vectors. First, there
is the subtraction of two points, P and Q—an operation that yields a vector v de-
noted by

v=P—Q.

As a consequence of this operation, given any point Q and vector v, there is a unique
point, P, that satisfies the preceding relationship. We can express this statement as
follows: Given a point Q and a vector v, there is a point P such that

P=Q+w.

Thus, P is formed by a point—vector addition operation. Figure 3.8 shows a visual
interpretation of this operation. The head-to-tail rule gives us a convenient way of
visualizing vector—vector addition. We obtain the sum u + v as shown in Figure 3.9(a)
by drawing the sum vector as connecting the tail of u to the head of v. However, we
can also use this visualization, as demonstrated in Figure 3.9(b), to show that for any
three points P, Q, and R,

P-Q+(Q—R=P—R.

3.1.6 Lines

The sum of a point and a vector (or the subtraction of two points) leads to the notion
of a line in an affine space. Consider all points of the form

P(a) =Py +ad,
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v Q-R

(a) (b)
FIGURE 3.9 Use of the head-to-tail rule. (a) For vectors. (b) For points.

where P, is an arbitrary point, d is an arbitrary vector, and « is a scalar that can
vary over some range of values. Given the rules for combining points, vectors, and
scalars in an affine space, for any value of &, evaluation of the function P(«) yields
a point. For geometric vectors (directed line segments), these points lie on a line, as
shown in Figure 3.10. This form is known as the parametric form of the line because
we generate points on the line by varying the parameter .. For o = 0, the line passes
through the point P, and as « is increased, all the points generated lie in the direction
of the vector d. If we restrict o to nonnegative values, we get the ray emanating from
P, and going in the direction of d. Thus, a line is infinitely long in both directions, a
line segment is a finite piece of a line between two points, and a ray is infinitely long
in one direction.

3.1.7 Affine Sums

Whereas in an affine space the addition of two vectors, the multiplication of a vector
by a scalar, and the addition of a vector and a point are defined, the addition of two
arbitrary points and the multiplication of a point by a scalar are not. However, there
is an operation called affine addition that has certain elements of these latter two
operations. For any point Q, vector v, and positive scalar «,

P=Q+av

describes all points on the line from Q in the direction of v, as shown in Figure 3.11.
However, we can always find a point R such that

v=R—-Q

thus,

P=Q+aR—Q) =aR+ (1—u)Q.

This operation looks like the addition of two points and leads to the equivalent form

P=o,R+a,Q,

‘
*Pla)

Fo

FIGURE 3.10 Line in an affine
space.

1 /’P(oz)
R

a =

FIGURE 3.11 Affine addition.
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R

Pla)

Q

FIGURE 3.12 Line segment
that connects two points.

N

FIGURE 3.13 Convex hull.

!

lul cos ®

FIGURE 3.14 Dot product
and projection.

where

at+a,=1

3.1.8 Convexity

A convex object is one for which any point lying on the line segment connecting any
two points in the object is also in the object. We saw the importance of convexity for
polygons in Chapter 2. We can use affine sums to help us gain a deeper understanding
of convexity. For 0 < « < 1, the affine sum defines the line segment connecting R and
Q, as shown in Figure 3.12; thus, this line segment is a convex object. We can extend
the affine sum to include objects defined by n points P, P,, ..., P,. Consider the
form

P=oaP,+o,Py+---+a,P,.
We can show, by induction (see Exercise 3.29), that this sum is defined if and only if
ata,+--t+a, =1

The set of points formed by the affine sum of # points, under the additional restric-
tion

is called the convex hull of the set of points (Figure 3.13). It is easy to verify that the
convex hull includes all line segments connecting pairs of points in {P;, P,, ..., P,}.
Geometrically, the convex hull is the set of points that we form by stretching a tight-
fitting surface over the given set of points—shrink-wrapping the points. It is the
smallest convex object that includes the set of points. The notion of convexity is
extremely important in the design of curves and surfaces; we will return to it in
Chapter 10.

3.1.9 Dot and Cross Products

Many of the geometric concepts relating the orientation between two vectors are in
terms of the dot (inner) and cross (outer) products of two vectors. The dot product
of u and v is written u - v (see Appendix B). If - v =0, u and v are said to be
orthogonal. In a Euclidean space, the magnitude of a vector is defined. The square of
the magnitude of a vector is given by the dot product

|u|2=u-u.

The cosine of the angle between two vectors is given by

In addition, |u| cos @ = u - v/|v| is the length of the orthogonal projection of u onto
v, as shown in Figure 3.14. Thus, the dot product expresses the geometric result that
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the shortest distance from a point (the end of the vector u) to the line segment v is
obtained by drawing the vector orthogonal to v from the end of u. We can also see
that the vector u is composed of the vector sum of the orthogonal projection of u on
v and a vector orthogonal to v.

In a vector space, a set of vectors is linearly independent if we cannot write one
of the vectors in terms of the others using scalar-vector addition. A vector space has a
dimension, which is the maximum number of linearly independent vectors that we
can find. Given any three linearly independent vectors in a three-dimensional space,
we can use the dot product to construct three vectors, each of which is orthogonal
to the other two. This process is outlined in Appendix B. We can also use two non-
parallel vectors, u and v, to determine a third vector » that is orthogonal to them
(Figure 3.15). This vector is the cross product

n=ux?mv.

Note that we can use the cross product to derive three mutually orthogonal vectors
in a three-dimensional space from any two nonparallel vectors. Starting again with u
and v, we first compute #n as before. Then, we can compute w by

w=1uXn,

and u, n, and w are mutually orthogonal.

The cross product is derived in Appendix C, using the representation of the
vectors that gives a direct method for computing it. The magnitude of the cross
product gives the magnitude of the sine of the angle 6 between u and v,

|u x v|

|ulv]

Note that the vectors u, v, and n form a right-handed coordinate system; that is, if
u points in the direction of the thumb of the right hand and v points in the direction
of the index finger, then # points in the direction of the middle finger.

| sin 0| =

3.1.10 Planes

A plane in an affine space can be defined as a direct extension of the parametric line.
From simple geometry, we know that three points not on the same line determine a
unique plane. Suppose that P, Q, and R are three such points in an affine space. The
line segment that joins P and Q is the set of points of the form

S(a) =aP + (1 —a)Q, 0<a<l.

Suppose that we take an arbitrary point on this line segment and form the line
segment from this point to R, as shown in Figure 3.16. Using a second parameter
B, we can describe points along this line segment as

T(B)=pBS+1- PR, 0<p=1

uXxyv

u

FIGURE 3.15 Cross product.

P Sla) Q

FIGURE 3.16 Formation of a
plane.
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FIGURE 3.17 Normal to a
plane.

Such points are determined by both « and $ and form the plane determined by P, Q,
and R. Combining the preceding two equations, we obtain one form of the equation
of a plane:

T(a, B) = BlaP + (1 —a)Q]+ (1 - B)R.
We can rearrange this equation in the following form:
T(a,p)=P+B1-)(Q—-P)+ (1= pR-P).

Noting that Q — P and R — P are arbitrary vectors, we have shown that a plane can
also be expressed in terms of a point, P, and two nonparallel vectors, u and v, as

T(a, B) =Py + au+ Bv.

If we write T as

T(er, ) = paP + (1 —a)Q+ (1— PR,
this form is equivalent to expressing T as
T(a,f,y)=a'P+ ' Q+ V'R,

as long as

o +B +y =1

The representation of a point by (&', 8/, ') is called its barycentric coordinate
representation.

We can also observe that for 0 < «, 8 < 1, all the points T'(«, B) lie in the triangle
formed by P, Q, and R. If a point P lies in the plane, then

P —Py=oau+ Bv.

We can find a vector w that is orthogonal to both u and v, as shown in Figure 3.17. If
we use the cross product

n=uxv,

then the equation of the plane becomes

n-(P—Py)=0.

The vector # is perpendicular, or orthogonal, to the plane; it is called the normal to
the plane. The forms P(), for the line, and T(«, B), for the plane, are known as

parametric forms because they give the value of a point in space for each value of the
parameters  and S.
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3.2 THREE-DIMENSIONAL PRIMITIVES

In a three-dimensional world, we can have a far greater variety of geometric objects
than we can in two dimensions. When we worked in a two-dimensional plane in
Chapter 2, we considered objects that were simple curves, such as line segments, and
flat objects with well-defined interiors, such as simple polygons. In three dimensions,
we retain these objects, but they are no longer restricted to lie in the same plane.
Hence, curves become curves in space (Figure 3.18), and objects with interiors can
become surfaces in space (Figure 3.19). In addition, we can have objects with vol-
umes, such as parallelepipeds and ellipsoids (Figure 3.20).

We face two problems when we expand our graphics system to incorporate all
these possibilities. First, the mathematical definitions of these objects can become
complex. Second, we are interested in only those objects that lead to efficient imple-
mentations in graphics systems. The full range of three-dimensional objects cannot
be supported on existing graphics systems, except by approximate methods.

Three features characterize three-dimensional objects that fit well with existing
graphics hardware and software:

1. The objects are described by their surfaces and can be thought of as being
hollow.

2. The objects can be specified through a set of vertices in three dimensions.

3. The objects either are composed of or can be approximated by flat, convex
polygons.

We can understand why we set these conditions if we consider what most mod-
ern graphics systems do best: They render triangles or meshes of triangles. Com-
modity graphics cards can render over 100 million small, flat triangles per second.
Performance measurements for graphics systems usually are quoted for small three-
dimensional triangles that can be generated by triangle strips. In addition, these
triangles are shaded, lit, and texture mapped, features that are implemented in the
hardware of modern graphics cards.

The first condition implies that we need only two-dimensional primitives to
model three-dimensional objects because a surface is a two- rather than a three-
dimensional entity. The second condition is an extension of our observations in
Chapters 1 and 2. If an object is specified by vertices, we can use a pipeline architec-
ture to process these vertices at high rates, and we can use the hardware to generate
the images of the objects only during rasterization. The final condition is an exten-
sion from our discussion of two-dimensional polygons. Most graphics systems are
optimized for the processing of points, line segments, and triangles. In three dimen-
sions, a triangle is specified by an ordered list of three vertices.

However, for general polygons specified with more than three vertices, the ver-
tices do not have to lie in the same plane. If they do not, there is no simple way to
define the interior of the object. Consequently, most graphics systems require that
the application either specify simple planar polygons or triangles. If a system allows

N
FIGURE 3.18 Curves in three
dimensions.

g
“0

FIGURE 3.19 Surfaces in
three dimensions.

_ S

A 4

FIGURE 3.20 Volumetric
objects.
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polygons and the application does not specify a flat polygon, then the results of ras-
terizing the polygon are not guaranteed to be what the programmer might desire.
Because triangular polygons are always flat, either the modeling system is designed to
always produce triangles, or the graphics system provides a method to divide, or tes-
sellate, an arbitrary polygon into triangular polygons. If we apply this same argument
to a curved object, such as a sphere, we realize that we should use an approximation
to the sphere composed of small, flat polygons. Hence, even if our modeling system
provides curved objects, we assume that a triangle mesh approximation is used for
implementation.

The major exception to this approach is constructive solid geometry (CSG). In
such systems, we build objects from a small set of volumetric objects through a set of
operations such as union and intersection. We consider CSG models in Chapter 8.
Although this approach is an excellent one for modeling, rendering CSG models
is more difficult than is rendering surface-based polygonal models. Although this
situation may not hold in the future, we discuss in detail only surface rendering.

All the primitives with which we work can be specified through a set of vertices.
As we move away from abstract objects to real objects, we must consider how we
represent points in space in a manner that can be used within our graphics systems.

3.3 COORDINATE SYSTEMS AND FRAMES

So far, we have considered vectors and points as abstract objects, without representing
them in an underlying reference system. In a three-dimensional vector space, we can
represent any vector w uniquely in terms of any three linearly independent vectors,
v}» V5, and v; (see Appendix B), as

W=V + oV, + o3v;.

The scalars «}, o,, and o5 are the components of w with respect to the basis v,, v,,
and v;. These relationships are shown in Figure 3.21. We can write the representation

V2
A
W =04V + OV + OgVy

i<—0t]—>i

Vi

V3

FIGURE 3.21 Vector derived from three basis vectors.
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of w with respect to this basis as the column matrix

o

o3

where boldface letters denote a representation in a particular basis, as opposed to the
original abstract vector w. We can also write this relationship as

Y1
w=al v, | = alv,
V3
where
1
v=| v,
V3

We usually think of the basis vectors, v}, v,, v3, as defining a coordinate system.
However, for dealing with problems using points, vectors, and scalars, we need a
more general method. Figure 3.22 shows one aspect of the problem. The three vectors
form a coordinate system that is shown in Figure 3.22(a) as we would usually draw
it, with the three vectors emerging from a single point. We could use these three
basis vectors as a basis to represent any vector in three dimensions. Vectors, however,
have direction and magnitude but lack a position attribute. Hence, Figure 3.22(b) is
equivalent, because we have moved the basis vectors, leaving their magnitudes and
directions unchanged. Most people find this second figure confusing, even though
mathematically it expresses the same information as the first figure. We are still left
with the problem of how to represent points—entities that have fixed positions.

(a) (b)

FIGURE 3.22 Coordinate systems. (a) Vectors emerging from a common
point. (b) Vectors moved.
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op=(x y 2

z

FIGURE 3.23 A dangerous
representation of a vector.

Because an affine space contains points, once we fix a particular reference
point—the origin—in such a space, we can represent all points unambiguously. The
usual convention for drawing coordinate axes as emerging from the origin, as shown
in Figure 3.22(a), makes sense in the affine space where both points and vectors have
representations. However, this representation requires us to know both the reference
point and the basis vectors. The origin and the basis vectors determine a frame.
Loosely, this extension fixes the origin of the vector coordinate system at some point
P,,. Within a given frame, every vector can be written uniquely as

W=V + v, +ozV; = alv,

just as in a vector space; in addition, every point can be written uniquely as
T

P=Py+ v+ Byv, + Bsvs =P, + b v.

Thus, the representation of a particular vector in a frame requires three scalars; the
representation of a point requires three scalars and the knowledge of where the origin
is located. As we will see in Section 3.3.4, by abandoning the more familiar notion of
a coordinate system and a basis in that coordinate system in favor of the less familiar
notion of a frame, we avoid the difficulties caused by vectors having magnitude and
direction but no fixed position. In addition, we are able to represent points and
vectors in a manner that will allow us to use matrix representations but that maintains
a distinction between the two geometric types.

Because points and vectors are two distinct geometric types, graphical represen-
tations that equate a point with a directed line segment drawn from the origin to that
point (Figure 3.23) should be regarded with suspicion. Thus, a correct interpretation
of Figure 3.23 is that a given vector can be defined as going from a fixed reference
point (the origin) to a particular point in space. Note that a vector, like a point, exists
regardless of the reference system, but as we will see with both points and vectors,
eventually we have to work with their representation in a particular reference system.

3.3.1 Representations and N-Tuples

Suppose that vectors e, e,, and e; form a basis. The representation of any vector, v, is
given by the component («, a,, a3) of a vector a where

v =056 + oye, + oze;.

The basis vectors? must themselves have representations that we can denote ey, e,,
and e;, given by

2. Many textbooks on vectors refer to these vectors as the unit basis i, j, k and write other vectors in
the form v = & i + a,j + ask.
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e, =(1,0,07,
e,=(0,1,07,
e;=(0,0, 7.

In other words, the 3-tuple (1, 0, 0) is the representation of the first basis vector.
Consequently, rather than thinking in terms of abstract vectors, we can work with
3-tuples and we can write the representation of any vector v as a column matrix a or
the 3-tuple (o}, o5, ar3), where

a=oue + e, + oze;.

The basis 3-tuples e,, e,, and e; are vectors in the familiar Euclidean space R®. The
vector space R? is equivalent (or homomorphic) to the vector space of our original
geometric vectors. From a practical perspective, it is almost always easier to work with
3-tuples (or more generally n-tuples) than with other representations.

3.3.2 Change of Coordinate Systems

Frequently, we are required to find how the representation of a vector changes when
we change the basis vectors. For example, in OpenGL, we specify our geometry using
the coordinate system or frame that is natural for the model, which is known as the
object or model frame. Models are then brought into the world frame. At some
point, we want to know how these objects appear to the camera. It is natural at that
point to convert from the world frame to the camera or eye frame. The conversion
from the object frame to the eye frame is done by the model-view matrix.

Let’s consider changing representations for vectors first. Suppose that
{vi> vy, v3} and {u), u,, u;} are two bases. Each basis vector in the second set can
be represented in terms of the first basis (and vice versa). Hence, there exist nine
scalar components, {viihs such that

Uy =y + ¥Yiva + Y133
Uy = Yo1V1+ Ya2Vs + V233
Uz = Y31V + VaoVy T VazVs

The 3 x 3 matrix

Yiu Y12 Vi3
M=\ vy Vn V3
V31 V3 Va3

is defined by these scalars, and
! "1
uz =M V2 >

Us V3

129
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or
u= Myv.

The matrix M contains the information to go from a representation of a vector in
one basis to its representation in the second basis. The inverse of M gives the matrix
representation of the change from {u,, u,, us} to {v,, v,, v3}. Consider a vector w that
has the representation {«, o,, a3} with respect to {v,, v,, v5}; that is,

W=V + o,V + o3v;.

Equivalently,
w=alv,
where
o
a=|a |,
L O3
Y1
v=| v,
L V3

Assume that b is the representation of w with respect to {1, u,, u3}; that s,

w = Bu; + Buy + Bsu;,

or
5!
w=b"| u, | =bTu,
Us
where
B
b=| 8,
Ps
Then, using our representation of the second basis in terms of the first, we find that
5! "1 "1
w=bT | u, | =b"M| v, | =al | v,

Uz V3 V3
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Thus,

a=MTb.

The matrix

T=m")"!

takes us from a to b, through the simple matrix equation
b =Ta.

Thus, rather than working with our original vectors, typically directed line segments,
we can work instead with their representations, which are 3-tuples or elements of
R3. This result is important because it moves us from considering abstract vectors to
working with column matrices of scalars—the vectors’ representations. The impor-
tant point to remember is that whenever we work with columns of real numbers as
“vectors,” there is an underlying basis of which we must not lose track, lest we end up
working in the wrong coordinate system.

These changes in basis leave the origin unchanged. We can use them to represent
rotation and scaling of a set of basis vectors to derive another basis set, as shown in
Figure 3.24. However, a simple translation of the origin, or change of frame as shown
in Figure 3.25, cannot be represented in this way. After we complete a simple example,
we introduce homogeneous coordinates, which allow us to change frames yet still use
matrices to represent the change.

FIGURE 3.24 Rotation and
scaling of a basis.

V3

FIGURE 3.25 Translation of a basis.
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3.3.3 Example Change of Representation
Suppose that we have a vector w whose representation in some basis is

1
a=| 2
3

We can denote the three basis vectors as v,, v,, and v5. Hence,
w=v,+ 2v, + 3v;.

Now suppose that we want to make a new basis from the three vectors vy, v,, and v
where

U=,

Uy =v;+ v,

Uz =v,+ v, +vs.

The matrix M is

1 00
M=|1 1 0
1 11

The matrix that converts a representation in v,, v,, and v; to one in which the basis
vectors are u, u,, and us is

T=mM")"!
r1 1 177!

=0 1 1
L0 0 1
"1 —1 0

=10 1 -1
L0 0 1

In the new system, the representation of w is

—1
b=Ta=| -1
3

That is,

W= —u; — u, + 3us.
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If we are working in the space of 3-tuples (R?), rather than in an abstract setting,
then we can associate v;, v,, and v; with the unit basis in R*:

1 0 0
e1= 0 5 622 1 s e3: 0
0 0 1

We can make this example a little more concrete by considering the following
variant. Suppose that we are working with the default (x, y, z) coordinate system,
which happens to be orthogonal. We are given the three direction vectors whose
representations are (1,0, 0), (1, 1, 0), and (1, 1, 1). Thus, the first vector points along
the x-axis, the second points in a direction parallel to the plane z = 0, and the third
points in a direction symmetric to the three basis directions. These three new vectors,
although they are not mutually orthogonal, are linearly independent and thus form
a basis for a new coordinate system that we can call the X', y’, z’ system. The original
directions have representations in the x’, y, z’ system given by the columns of the
matrix T.

3.3.4 Homogeneous Coordinates

The potential confusion between a vector and a point that we illustrated in Fig-
ure 3.23 still exists with a three-dimensional representation. Suppose that we start
with the frame defined by the point P, and the vectors v, v,, and v;. Usually, our first
inclination is to represent a point P located at (x, y, z) with the column matrix

x
P=17|>
z
where x, y, and z are the components of the basis vectors for this point, so that

P =Py +xv)+yv, + zvs.

If we represent the point this way, then its representation is of the same form as the
vector

W =XV + YV, + zvs.

Homogeneous coordinates avoid this difficulty by using a four-dimensional repre-
sentation for both points and vectors in three dimensions. In the frame specified by
(v}, vy, v3, Py), any point P can be written uniquely as

P=oaw, + a,v, +azv; + P,
If we agree to define the “multiplication” of a point by the scalars 0 and 1 as

0-P=0,
1-P=P,

133
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then we can express this relation formally, using a matrix product, as

Y1

V2
P=[a; o, a3 1]

Py

Strictly speaking, this expression is not a dot or inner product, because the elements
of the matrices are dissimilar; nonetheless, the expression is computed as though
it were an inner product by multiplying corresponding elements and summing the
results. The four-dimensional row matrix on the right side of the equation is the
homogeneous-coordinate representation of the point P in the frame determined by
V> ¥,» V3, and P,. Equivalently, we can say that P is represented by the column matrix

o
o
2
p:
3

1
In the same frame, any vector w can be written as

w =238y, + v, + 83,

=8 & 8 o0]f

There are numerous ways to interpret this formulation geometrically.
We simply note that we can carry out operations on points and vectors using their
homogeneous-coordinate representations and ordinary matrix algebra. Consider, for
example, a change of frames—a problem that caused difficulties when we used three-
dimensional representations. If (v, v,, v3, Py) and (u;, u,, u3, Q) are two frames,
then we can express the basis vectors and reference point of the second frame in terms
of the first as



Uy =y vy + Yio¥a + V133
Uy = Yo V1t Y22V + V233
Uz = Y31v1 + Y322 + V333

Qo =vuvi + Yaav + Vasvs + Py.

These equations can be written in the form

Uy 1

u v

2 2
=M N

Us V3

Qo Py

where now M is the 4 x 4 matrix

yu Y vz O
0
M — Va1 Y2 Va3
Y31 Y Vi3 0
Yar Ve Vaz 1

M is called the matrix representation of the change of frames.

3.3 Coordinate Systems and Frames

We can also use M to compute the changes in the representations directly. Sup-
pose that a and b are the homogeneous-coordinate representations either of two

points or of two vectors in the two frames. Then

u v, v,
u v V.

bT 2 — bTM 2 — aT 2
Us V3 V3
Qy I Py

Hence,

a=M"b.

When we work with representations, as is usually the case, we are interested in M,

which is of the form

0 Qpp Q3 Ay

o, o Oy o
M’ = 21 Gpp O3 Oy

O3 O3 033 O3y

0 0 0 1

and is determined by 12 coefficients.

135
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There are other advantages to using homogeneous coordinates that we explore
extensively in later chapters. Perhaps the most important is that all affine (line-
preserving) transformations can be represented as matrix multiplications in homo-
geneous coordinates. Although we have to work in four dimensions to solve three-
dimensional problems when we use homogeneous-coordinate representations, less
arithmetic work is involved. The uniform representation of all affine transformations
makes carrying out successive transformations (concatenation) far easier than in
three-dimensional space. In addition, modern hardware implements homogeneous-
coordinate operations directly, using parallelism to achieve high-speed calculations.

3.3.5 Example Change in Frames

Consider again the example of Section 3.3.3. If we again start with the basis vectors
v}» V5, and v3 and convert to a basis determined by the same u, u,, and u;, then the
three equations are the same:

Uy =,
Uy =v; + vy,

Uz =v;+ v, + vs.

The reference point does not change, so we add the equation
Q,=PF,.

Thus, the matrices in which we are interested are the matrix

[ I e )
S = = O
S = O O
—_ o O O

its transpose, and their inverses.

Suppose that in addition to changing the basis vectors, we also want to move
the reference point to the point that has the representation (1, 2, 3, 1) in the original
system. The displacement vector v = v, 4+ 2v, 4+ 3v; moves P, to Q. The fourth
component identifies this entity as a point. Thus, we add to the three equations from
the previous example the equation

Qo =Py +v,+2vy+ 3vs,

and the matrix M7 becomes

1
M’ = 2
3
1

S O O
S O =
O = =
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Its inverse is

1 -1 0 1

o 1 -1 1
T= (MT)—I —

0 0 1 -3

0 0 0 1

This pair of matrices allows us to move back and forth between representations in
the two frames. Note that T takes the point (1, 2, 3) in the original frame, whose
representation is

1
_2

P—3»

1
to

0

0

S

P—0>

1

the origin in the new system. However, the vector (1, 2, 3), which is represented as

S W N =

in the original system, is transformed to

-1
—1

b= 5
3

0

a transformation that is consistent with the results from our example of change
in coordinate systems and that also demonstrates the importance of distinguishing
between points and vectors.

3.3.6 Working with Representations

Application programs almost always work with representations rather than abstract
points. Thus, when we specify a point—for example, by putting its coordinates in
an array—we are doing so with respect to some frame. In our earlier examples, we
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avoided dealing with changes in frames by specifying data in clip coordinates, a
normalized system that OpenGL uses for its rendering. However, applications pro-
grams prefer to work in frames that have a relationship to the problem on which
they are working and thus want to place the origin, orient the axes, and scale the
units so they make sense in the problem space. Because OpenGL eventually needs
its data in clip coordinates, at least one change of representation is required. As
we shall see, in fact there are additional frames that we will find useful both for
modeling and rendering. Hence, we will carry out a sequence of changes in repre-
sentation.
Changes of representation are thus specified by a matrix of the form

a=Cb,

where a and b are the two representations of a point or vector in homogeneous
coordinates. As we have seen in Section 3.3.4, this matrix must be a homogeneous
form so C is the transpose of a matrix M and is given by

0y Qg Oy Oy
o, o Uy o
c=m!= 21 Opp Op3 Oy

31 O3 033 O3y
0 0 0 1

The problem is how to find C when we are working with representations. It turns out
to be quite easy. Suppose that we are working in some frame and we specify another
frame by its representation in this frame. Thus, if in the original system we specify a
frame by the representations of three vectors, u, v, and n, and give the origin of the
new frame as the point p, in homogeneous coordinates all four of these entities are
4-tuples or elements of R*.

Let’s consider the inverse problem. The matrix

T=C"!

converts from representations in the (u, v, n, p) frame to representations in the orig-
inal frame. Thus, we must have

[ R N
<
)
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Thus, the representation of a frame in terms of another frame gives us the inverse
of the matrix we need to convert from representations in the first frame to represen-
tations in the second. Of course, we must compute this inverse, but computing the
inverse of a 4 x 4 matrix of this form should not present a problem.

3.4 FRAMES IN OPENGL

As we have seen, OpenGL is based on a pipeline model, the first part of which is a
sequence of operations on vertices, many of which are geometric. We can characterize
such operations by a sequence of transformations or, equivalently, as a sequence of
changes of frames for the objects specified by an application program.
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In versions of OpenGL with a fixed-function pipeline and immediate-mode ren-
dering, six frames were specified in the pipeline. With programmable shaders, we
have a great deal of flexibility to add additional frames or avoid some traditional
frames. Although as we demonstrated in our first examples, we could use some
knowledge of how the pipeline functions to avoid using all these frames, that would
not be the best way to build our applications. Rather, each of the six frames we will
discuss will prove to be useful, either for developing our applications or for imple-
mentation of the pipeline. Some will be applied in the application code, others in our
shaders. Some may not be visible to the application. In each of these frames, a vertex
has different coordinates. The following is the usual order in which the frames occur
in the pipeline:

1. Object (or model) coordinates
. World coordinates
. Eye (or camera) coordinates
. Clip coordinates

. Normalized device coordinates

A U A W N

. Window (or screen) coordinates

Let’s consider what happens when an application program specifies a vertex. This
vertex may be specified directly in the application program or indirectly through an
instantiation of some object. In most applications, we tend to specify or use an object
with a convenient size, orientation, and location in its own frame called the model or
object frame. For example, a cube would typically have its faces aligned with axes
of the frame, its center at the origin, and have a side length of 1 or 2 units. The
coordinates in the corresponding function calls are in object or model coordinates.

An individual scene may comprise hundreds or even thousands of individual
objects. The application program generally applies a sequence of transformations
to each object to size, orient, and position it within a frame that is appropriate for
the particular application. For example, if we were using an instance of a square
for a window in an architectural application, we would scale it to have the correct
proportions and units, which would probably be in feet or meters. The origin of
application coordinates might be a location in the center of the bottom floor of the
building. This application frame is called the world frame, and the values are in
world coordinates. Note that if we do not model with predefined objects or apply
any transformations before we specify our geometry, object and world coordinates
are the same.

Object and world coordinates are the natural frames for the application pro-
gram. However, the image that is produced depends on what the camera or viewer
sees. Virtually all graphics systems use a frame whose origin is the center of the
camera’s lens® and whose axes are aligned with the sides of the camera. This frame

3. For a perspective view, the center of the lens is the center of projection (COP), whereas for an
orthogonal view, the direction of projection is aligned with the sides of the camera.
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is called the camera frame or eye frame. Because there is an affine transformation
that corresponds to each change of frame, there are 4 x 4 matrices that represent
the transformation from model coordinates to world coordinates and from world
coordinates to eye coordinates. These transformations usually are concatenated to-
gether into the model-view transformation, which is specified by the model-view
matrix. Usually, the use of the model-view matrix instead of the individual matrices
should not pose any problems for the application programmer. In Chapter 5, where
we discuss lighting and shading, we will see situations where we must separate the
two transformations.

The last three representations are used primarily in the implementation of the
pipeline, but, for completeness, we introduce them here. Once objects are in eye co-
ordinates, OpenGL must check whether they lie within the view volume. If an object
does not, it is clipped from the scene prior to rasterization. OpenGL can carry out this
process most efficiently if it first carries out a projection transformation that brings
all potentially visible objects into a cube centered at the origin in clip coordinates.
We will study this transformation in Chapter 4. After this transformation, vertices
are still represented in homogeneous coordinates. The division by the w component,
called perspective division, yields three-dimensional representations in normalized
device coordinates. The final transformation takes a position in normalized device
coordinates and, taking into account the viewport, creates a three-dimensional rep-
resentation in window coordinates. Window coordinates are measured in units of
pixels on the display but retain depth information. If we remove the depth coordi-
nate, we are working with two-dimensional screen coordinates.

The application programmer usually works with two frames: the eye frame and
the object frame. By concatenating them together to form the model-view matrix,
we have a transformation that positions the object frame relative to the eye frame.
Thus, the model-view matrix converts the homogeneous-coordinate representations
of points and vectors to their representations in the application space to their repre-
sentations in the eye frame.

Although an application does not require us to use the model-view matrix, the
model-view matrix is so important to most applications that we will almost always
include it in our examples. One of the issues we will discuss in some detail is where
we specify our transformations and where they are applied. For example, we could
specify a transformation in the application and apply it to the data there. We could
also define the parameters of a transformation in the application and send these
parameters to the shaders and let the GPU carry out the transformations. We examine
these approaches in the following sections.

Let’s assume that we allocate a model-view matrix in our applications and ini-
tialize it to an identity matrix. Now the object frame and eye frame are identical.
Thus, if we do not change the model-view matrix, we are working in eye coordi-
nates. As we saw in Chapter 2, the camera is at the origin of its frame, as shown in
Figure 3.26(a). The three basis vectors in eye space correspond to (1) the up direction
of the camera, the y direction; (2) the direction the camera is pointing, the negative
z direction; and (3) a third orthogonal direction, x, placed so that the x, y, z direc-
tions form a right-handed coordinate system. We obtain other frames in which to
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FIGURE 3.26 Camera and object frames. (a) In default positions. (b) After applying model-view matrix.

place objects by performing homogeneous coordinate transformations that specify
new frames relative to the camera frame. In Section 3.5, we will learn how to specify
these transformations; in Section 3.3, we used them to position the camera relative
to our objects.

Because frame changes are represented by model-view matrices that can be
stored, we can save frames and move between frames by changing the current model-
view matrix. In Chapter 7, we will see that creating a data structure such as a stack to
store transformations will be helpful in working with complex models.

When first working with multiple frames, there can be some confusion about
which frames are fixed and which are varying. Because the model-view matrix po-
sitions the camera relative to the objects, it is usually a matter of convenience as to
which frame we regard as fixed. Most of the time, we will regard the camera as fixed
and the other frames as moving relative to the camera, but you may prefer to adopt a
different view.

Before beginning a detailed discussion of transformations and how we use them
in OpenGL, we present two simple examples. In the default settings shown in Fig-



3.4 Frames in OpenGL

ure 3.26(a), the camera and object frames coincide with the camera pointing in the
negative z-direction. In many applications, it is natural to specify objects near the
origin, such as a square centered at the origin or perhaps a group of objects whose
center of mass is at the origin. It is also natural to set up our viewing conditions so
that the camera sees only those objects that are in front of it. Consequently, to form
images that contain all these objects, we must either move the camera away from the
objects or move the objects away from the camera. Equivalently, we move the cam-
era frame relative to the object frame. If we regard the camera frame as fixed and the
model-view matrix as positioning the object frame relative to the camera frame, then
the model-view matrix,

1 0 0 O
01 0 O
A= >
0 0 1 —d
00 0 1

moves a point (x, y, z) in the object frame to the point (x, y, z — d) in the camera
frame. Thus, by making d a suitably large positive number, we “move” the objects
in front of the camera by moving the world frame relative to the camera frame, as
shown in Figure 3.26(b). Note that, as far as the user—who is working in world
coordinates—is concerned, she is positioning objects as before. The model-view ma-
trix takes care of the relative positioning of the object and eye frames. This strategy is
almost always better than attempting to alter the positions of the objects by changing
their vertex positions to place them in front of the camera.

Let’s look at another example. When we define our objects using vertices, we
are working in the application frame (or world frame). The vertex positions spec-
ified there are the representation of points in that frame. Thus, we do not use the
world frame directly but rather implicitly by representing points (and vectors) in it.
Consider the situation illustrated in Figure 3.27.

z

FIGURE 3.27 Camera at (1, 0, 1) pointing toward the origin.
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Here we see the camera positioned in the object frame. Using homogeneous
coordinates, it is centered at a point p = (1, 0, 1, 1)T in world coordinates and points
at the origin in the world frame. Thus, the vector whose representation in the world
frame is n = (=1, 0, —1, 0)7 is orthogonal to the back of the camera and points
toward the origin. The camera is oriented so that its up direction is the same as the up
direction in world coordinates and has the representation v = (0, 1, 0, 0)T. We can
form an orthogonal coordinate system for the camera by using the cross product to
determine a third orthogonal direction for the camera, which is u = (1, 0, —1, 0)7.
We can now proceed as we did in Section 3.3.6 and derive the matrix M that converts
the representation of points and vectors in the world frame to their representations
in the camera frame. The transpose of this matrix in homogeneous coordinates is
obtained by the inverse of a matrix containing the coordinates of the camera,
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Note that the origin in the original frame is now one unit in the # direction from
the origin in the camera frame or, equivalently, at the point whose representation is
(0, 0, 1, 1) in the camera frame.

In OpenGL, we can set a model-view matrix by sending an array of 16 elements
to the vertex shader. For situations in which we have the representation of one frame
in terms of another through the specification of the basis vectors and the origin, it
is a direct exercise to find the required coefficients. However, such is not usually the
case. For most geometric problems, we usually go from one frame to another by a
sequence of geometric transformations such as rotations, translations, and scales. We
will follow this approach in subsequent sections. But first, we will introduce some
helpful C++ classes.

3.5 MATRIX AND VECTOR CLASSES

In Chapter 2, we saw how using some new data types could clarify our application
code and were necessary for GLSL. Let’s expand and formalize these notions by
introducing the C++ classes that we will use in our applications. The code is in two
files, mat .h and vec.h, that can both be included in your application through the
include line

#include "mat.h"

The basic types are mat2, mat3, mat4, vec2, vec3, and vec4. The matrix classes
are for 2 x 2, 3 x 3, and 4 x 4 matrices whereas the vector types are for 2-, 3-, and
4-element arrays. The arithmetic operators are overloaded, so we can write code
such as
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#include "mat.h"

vec4 x, y = vec4(1.0, 2.0, 3.0, 1.0); // use of comnstructor
x = 2.0%y;

x[2] = 5.
mat4 a, b
float s =
a[2] [1]

b = s*a;

mat4(vec4(y), vecd(x), vecd(y), vecd(x)); //matrix constructor

s

|
w N o
(G206

)

vecd z = b*x;
y = x*b;

Thus, we can reference individual elements of either type and carry out the standard
matrix operations, as described in Appendix B. Note that the products b*x and x*b
will, in general, yield different results. The first is the product of a 1 X 4 row matrix
times a 4 x 4 square matrix, whereas the second is the product of a 4 x 4 square
matrix times a 4 x 1 column matrix. Both yield four elements and so can be stored
as vecds.

In light of our previous definition of points and vectors, the use of the names
vec2, vec3, and vec4 may be a bit disconcerting. GLSL uses these types to store any
quantity that has three or four elements, including vectors (directions) and points in
homogeneous coordinates, colors (either RGB or RGBA), and, as we shall see later,
texture coordinates. The advantage is that we can write code for all these types that
uses the same operations. By using these same GLSL types in the classes in vec.h
and mat.h, the code that manipulates points, vectors, and transformations in our
applications will look similar to GLSL code. We will see that we will often have a
choice as to where we carry out our algorithms, in the application or in one of the
shaders. By having the same types available, we will be able to transfer an algorithm
easily from an application to one of the shaders.

One trick that can make the application code a little clearer is to use a typedef
to assign names to types that will make the code easier to understand. Some helpful
examples we will use are

typedef vec3 color3;
typedef vec4 color4;
typedef vec3 point3;
typedef vec4 point4;

Of course we have not really created any new classes, but we prefer code such as
color3 red = color3(1.0, 0.0, 0.0);
to

vec3 red = vec3(1.0, 0.0, 0.0);
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FIGURE 3.28 One frame of
cube animation.

3.6 MODELING A COLORED CUBE

We now have most of the basic conceptual and practical knowledge we need to build
three-dimensional graphical applications. We will use them to produce a program
that draws a rotating cube. One frame of an animation might be as shown in Fig-
ure 3.28. However, before we can rotate the cube, we will consider how we can
model it efficiently. Although three-dimensional objects can be represented, like two-
dimensional objects, through a set of vertices, we will see that data structures will help
us to incorporate the relationships among the vertices, edges, and faces of geometric
objects. Such data structures are supported in OpenGL through a facility called vertex
arrays, which we introduce at the end of this section.

After we have modeled the cube, we can animate it by using affine transforma-
tions. We introduce these transformations in Section 3.7 and then use them to alter
a model-view matrix. In Chapter 4, we use these transformations again as part of the
viewing process. Our pipeline model will serve us well. Vertices will flow through a
number of transformations in the pipeline, all of which will use our homogeneous-
coordinate representation. At the end of the pipeline awaits the rasterizer. At this
point, we can assume it will do its job automatically, provided we perform the pre-
liminary steps correctly.

3.6.1 Modeling the Faces

The cube is as simple a three-dimensional object as we might expect to model and
display. There are a number of ways, however, to model it. A CSG system would re-
gard it as a single primitive. At the other extreme, the hardware processes the cube as
an object defined by eight vertices. Our decision to use surface-based models implies
that we regard a cube either as the intersection of six planes or as the six polygons,
called facets, that define its faces. A carefully designed data structure should support
both the high-level application view of the cube and the low-level view needed for the
implementation.

We start by assuming that the vertices of the cube are available through an array
of vertices. We will work with homogeneous coordinates, so

point4 vertices[8] = {
point4(-1.0,-1.0,-1.0,1.0),point4(1.0,-1.0,-1.0,1.0),
point4(1.0,1.0,-1.0,1.0), point4(-1.0,1.0,-1.0,1.0),
point4(-1.0,-1.0,1.0,1.0), point4(1.0,-1.0,1.0,1.0)
point4(1.0,1.0,1.0,1.0), point4(-1.0,1.0,1.0,1.0)};

We can then use the list of points to specify the faces of the cube. For example,
one face is given by the sequence of vertices (0, 3, 2, 1). We can specify the other five
faces similarly.

3.6.2 Inward- and Outward-Pointing Faces

We have to be careful about the order in which we specify our vertices when we
are defining a three-dimensional polygon. We used the order 0, 3, 2, 1 for the first
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face. The order 1, 0, 3, 2 would be the same, because the final vertex in a polygon
specification is always linked back to the first. However, the order 0, 1, 2, 3 is different.
Although it describes the same boundary, the edges of the polygon are traversed in the
reverse order—0, 3, 2, 1—as shown in Figure 3.29. The order is important because
each polygon has two sides. Our graphics systems can display either or both of them.
From the camera’s perspective, we need a consistent way to distinguish between the
two faces of a polygon. The order in which the vertices are specified provides this
information.

We call a face outward facing if the vertices are traversed in a counterclockwise
order when the face is viewed from the outside. This method is also known as the
right-hand rule because if you orient the fingers of your right hand in the direction
the vertices are traversed, the thumb points outward.

In our example, the order 0, 3, 2, 1 specifies an outward face of the cube, whereas
the order 0, 1, 2, 3 specifies the back face of the same polygon. Note that each face of
an enclosed object, such as our cube, is an inside or outside face, regardless of from
where we view it, as long as we view the face from outside the object. By specifying
front and back carefully, we will be able to eliminate (or cull) faces that are not visible
or to use different attributes to display front and back faces. We will consider culling
further in Chapter 6.

3.6.3 Data Structures for Object Representation

We could now describe our cube through a set of vertex specifications. For example,
we could use a two-dimensional array of positions

point3 faces[6] [4];
or we could use a single array of 24 vertices
point3 cube_vertices[24];

where cube_vertices[i] contains the x, y, z coordinates of the ith vertex in the
list. Both of these methods work, but they both fail to capture the essence of the
cube’s topology, as opposed to the cube’s geometry. If we think of the cube as a
polyhedron, we have an object—the cube—that is composed of six faces. The faces
are each quadrilaterals that meet at vertices; each vertex is shared by three faces. In
addition, pairs of vertices define edges of the quadrilaterals; each edge is shared by
two faces. These statements describe the topology of a six-sided polyhedron. All are
true, regardless of the location of the vertices—that is, regardless of the geometry of
the object.*

Throughout the rest of this book, we will see that there are numerous advan-
tages to building for our objects data structures that separate the topology from the

4. We are ignoring special cases (singularities) that arise, for example, when three or more vertices
lie along the same line or when the vertices are moved so that we no longer have nonintersecting
faces.

FIGURE 3.29 Traversal of the
edges of a polygon.
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FIGURE 3.30 Vertex-list representation of a cube.

geometry. In this example, we use a structure, the vertex list, that is both simple and
useful and can be expanded later.

The data specifying the location of the vertices contain the geometry and can be
stored as a simple list or array, such as in vertices[8]—the vertex list. The top-
level entity is a cube; we regard it as being composed of six faces. Each face consists of
four ordered vertices. Each vertex can be specified indirectly through its index. This
data structure is shown in Figure 3.30. One of the advantages of this structure is that
each geometric location appears only once, instead of being repeated each time it is
used for a facet. If, in an interactive application, the location of a vertex is changed,
the application needs to change that location only once, rather than searching for
multiple occurrences of the vertex.

3.6.4 The Color Cube

We can use the vertex list to define a color cube. We use a function quad that takes
as input the indices of four vertices in outward pointing order and adds data to two
arrays, as in Chapter 2, to store the vertex positions and the corresponding colors for
each face in the arrays

vec4 quad_colors[36], vertices[36];

int 1 = 0; /* vertex and color index */

Note that because we can only display triangles, the quad function must generate
two triangles for each face and thus six vertices. If we want each vertex to have its own
color, then we need 24 vertices and 24 colors for our data. Using this quad function,
we can specify our cube through the function
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void colorcube()

{
quad(0,3,2,1);
quad(2,3,7,6);
quad(3,0,4,7);
quad(1,2,6,5);
quad(4,5,6,7);
quad(5,4,0,1);

We will assign the colors to the vertices using the colors of the corners of the
color solid from Chapter 2 (black, white, red, green, blue, cyan, magenta, yellow). We
assign a color for each vertex using the index of the vertex. Alternately, we could use
the first index of the first vertex specified by quad to fix the color for the entire face.
Here are the RGBA colors,

color4 colors[8] = {color4(0.0,0.0,0.0,1.0),
color4(1.0,0.0,0.0,1.0),
color4(1.0,1.0,0.0,1.0),
color4(0.0,1.0,0.0,1.0),
color4(0.0,0.0,1.0,1.0),
color4(1.0,0.0,1.0,1.0),
color4(0.0,1.0,1.0,1.0),
color4(1.0,1.0,1.0,1.0)};

and the vertices of a cube that corresponds to the clipping area in clip coordinates,

point4 vertices[8] = {point4(-1.0,-1.0,

1.0,1.0,1.0), point4(-1.0,1.0,1.0,1.0),
point4(1.0,1.0,1.0,1

1.0

0

.0), point4(1.0,-1.0,1.0,1.0),
0,1.0), point4(-1.0,1.0,-1.0,1.0),
1.0), point4(1.0,-1.0,-1.0,1.0)};

point4(-1.0,-1.0,-1.
point4(1.0,1.0,-1.0,

Here is the quad function that uses the first three vertices to specify one triangle
and the first, third, and fourth to specify the second:

int i = 0;

void quad(int a, int b, int c, int d)

{
quad_color[i] = colorsl[a];
points[i] = verticesl[al;
it++;
quad_color[i] = colors([b];
points[i] = vertices[b];
i++;

quad_color[i] = colors[c];
points[i] = verticesl[c];
it++;

)
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C]
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FIGURE 3.31 Interpolation
using barycentric coordinates.

quad_color[i] = colorsl[al;
points[i] = vertices[al;
it++;

quad_color[i] = colorsl[c];
points[i] = vertices[c];
it++;

quad_color[i] = colorsl[d];
points[i] = vertices[d];
i++;

)

Note the initialization of i outside the quad function. If, as in later examples, we
invoke quad multiple times, either because we change the colors or locations of the
same vertices or we have multiple cubes, we must be careful as to where we start
placing data in the points array. Our program is almost complete, but first we
examine how the colors and other vertex attributes can be assigned to fragments by
the rasterizer.

3.6.5 Interpolation

Although we have specified colors for the vertices of the cube, the graphics system
must decide how to use this information to assign colors to points inside the polygon.
There are many ways to use the colors of the vertices to fill in, or interpolate, colors
across a polygon. Probably the most common method used in computer graphics is
based on the barycentric coordinate representation of triangles that we introduced in
Section 3.1. One of the major reasons for this approach is that triangles are the key
object that we work with in rendering.

Consider the polygon shown in Figure 3.31. The colors C, C}, and C, are the
ones assigned to the vertices in the application program. Assume that we are using
RGB color and that the interpolation is applied individually to each primary color.
We first use linear interpolation to interpolate colors, along the edges between vertices
0 and 1, creating RGB colors along the edges through the parametric equations as
follows:

Coi(@) =1 —a)Cy + aC,.
As a goes from 0 to 1, we generate colors, C; () along this edge. For a given value

of a, we obtain the color C;. We can now interpolate colors along the line connecting
C; with the color C, at the third vertex as follows:

C32(,3) = (1 - ,3)C3 + ﬂCz,

which for a given value of 8 gives the color C, at an interior point. As the barycentric
coordinates o and § range from 0 to 1, we get interpolated colors for all the interior
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points and thus a color for each fragment generated by the rasterizer. The same
interpolation method can be used on any vertex attribute.?

We now have an object that we can display much as we did with the three-
dimensional Sierpinski gasket in Section 2.9, using a basic orthographic projection.
In Section 3.7, we introduce transformations, enabling us to animate the cube and
also to construct more complex objects. First, however, we introduce an OpenGL
feature that not only reduces the overhead of generating our cube but also gives us
a higher-level method of working with the cube and with other polyhedral objects.

3.6.6 Displaying the Cube

The complete program is given in Appendix A. The parts of the application program
to display the cube and the shaders are almost identical to the the code we used to
display the three-dimensional gasket in Chapter 2. The differences are entirely in how
we place data in the arrays for the vertex positions and vertex colors. The OpenGL
parts, including the shaders, are the same.

However, the display of the cube is not very informative. Because the sides of the
cube are aligned with the clipping volume, we see only the front face. The display also
occupies the entire window. We could get a more interesting display by changing the
data so that it corresponds to a rotated cube. We could scale the data to get a smaller
cube. For example, we could scale the cube by half by changing the vertex data to

point4 vertices[8] = {point4(-0.5,-0.5,0.5,1.0),
point4(-0.5,0.5,0.5,1.0),
point4(0.5,0.5,0.5,1.0),
point4(0.5,-0.5,0.5,1.0),
point4(-0.5,-0.5,-0.5,1.0),
point4(-0.5,0.5,-0.5,1.0),
point4(0.5,0.5,-0.5,1.0),
point4(0.5,-0.5,-0.5,1.0)};

but that would not be a very flexible solution. We could put the scale factor in the
quad function. A better solution might be to change the vertex shader to

in vec4 vPosition;
in vec4 vColor;
out vec4 color;

void main()

{
gl_Position = 0.5%vPosition;
color = vColor;

5. Modern graphics cards support interpolation methods that are correct under perspective viewing.
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FIGURE 3.32 Transformation.

Note that we also changed the vertex shader to use input data in four-dimensional
homogeneous coordinates. We also can simplify the fragment shader to

in vec4 color;
out vec4 fragColor;

void main()
{

fragColor = color;

}

Rather than looking at these ad hoc approaches, we will develop a transformation ca-
pability that will enable us to rotate, scale, and translate data either in the application
or in the shaders. We will also examine in greater detail how we convey data among
the application and shaders that enable us to carry out transformations in the GPU
and alter transformations dynamically.

3.7 AFFINE TRANSFORMATIONS

A transformation is a function that takes a point (or vector) and maps it into another
point (or vector). We can picture such a function by looking at Figure 3.32 or by
writing down the functional form

Q=T
for points, or
v =R(u)

for vectors. If we use homogeneous coordinate representations, then we can represent
both vectors and points as four-dimensional column matrices and we can define the
transformation with a single function,

q=f(p),
v=f(u),

that transforms the representations of both points and vectors in a given frame.

This formulation is too general to be useful, as it encompasses all single-valued
mappings of points and vectors. In practice, even if we were to have a convenient de-
scription of the function f, we would have to carry out the transformation on every
point on a curve. For example, if we transform a line segment, a general transforma-
tion might require us to carry out the transformation for every point between the two
endpoints.

Consider instead a restricted class of transformations. Let’s assume that we are
working in four-dimensional, homogeneous coordinates. In this space, both points
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and vectors are represented as 4-tuples.® We can obtain a useful class of transfor-
mations if we place restrictions on f. The most important restriction is linearity. A
function f is a linear function if and only if, for any scalars « and B and any two
vertices (or vectors) p and ¢,

flap+ Bqg) =af (p) + Bf ().

The importance of such functions is that if we know the transformations of p and
q, we can obtain the transformations of linear combinations of p and q by taking
linear combinations of their transformations. Hence, we avoid having to calculate
transformations for every linear combination.

Using homogeneous coordinates, we work with the representations of points and
vectors. A linear transformation then transforms the representation of a given point
(or vector) into another representation of that point (or vector) and can always be
written in terms of the two representations, u and v, as a matrix multiplication:

v =Cu,

where C is a square matrix. Comparing this expression with the expression we ob-
tained in Section 3.3 for changes in frames, we can observe that as long as C is
nonsingular, each linear transformation corresponds to a change in frame. Hence,
we can view a linear transformation in two equivalent ways: (1) as a change in the
underlying representation, or frame, that yields a new representation of our vertices,
or (2) as a transformation of the vertices within the same frame.

When we work with homogeneous coordinates, C is a 4 x 4 matrix that leaves
unchanged the fourth (w) component of a representation. The matrix C is of the
form

and is the transpose of the matrix M that we derived in Section 3.3.4. The 12 values
can be set arbitrarily, and we say that this transformation has 12 degrees of free-
dom. However, points and vectors have slightly different representations in our affine
space. Any vector is represented as

o

6. We consider only those functions that map vertices to other vertices and that obey the rules for
manipulating points and vectors that we have developed in this chapter and in Appendix B.
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Any point can be written as

By
B,
Bs

1

p:

If we apply an arbitrary C to a vector,
v=_Cu,

we see that only nine of the elements of C affect u, and thus there are only nine
degrees of freedom in the transformation of vectors. Affine transformations of points
have the full 12 degrees of freedom.

We can also show that affine transformations preserve lines. Suppose that we
write a line in the form

P(a) =Py + ad,
where P, is a point and d is a vector. In any frame, the line can be expressed as
p(@) =p, +ad,

where p, and d are the representations of P, and d in that frame. For any affine
transformation matrix A,

Cp(a) =Cp, + aCd.

Thus, we can construct the transformed line by first transforming p, and d and
using whatever line-generation algorithm we choose when the line segment must be
displayed. If we use the two-point form of the line,

p(a) =apy,+ (1—a)p;,

a similar result holds. We transform the representations of p, and p; and then con-
struct the transformed line. Because there are only 12 elements in C that we can select
arbitrarily, there are 12 degrees of freedom in the affine transformation of a line or
line segment.

We have expressed these results in terms of abstract mathematical spaces. How-
ever, their importance in computer graphics is practical. We need only to transform
the homogeneous-coordinate representation of the endpoints of a line segment to de-
termine completely a transformed line. Thus, we can implement our graphics systems
as a pipeline that passes endpoints through affine-transformation units and generates
the interior points at the rasterization stage.

Fortunately, most of the transformations that we need in computer graphics are
affine. These transformations include rotation, translation, and scaling. With slight
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modifications, we can also use these results to describe the standard parallel and
perspective projections discussed in Chapter 4.

3.8 TRANSLATION, ROTATION, AND SCALING

We have been going back and forth between looking at geometric objects as abstract
entities and working with their representation in a given frame. When we work with
application programs, we have to work with representations. In this section, first we
show how we can describe the most important affine transformations independently
of any representation. Then, we find matrices that describe these transformations by
acting on the representations of our points and vectors. In Section 3.8, we will see
how these transformations can be implemented in OpenGL.

We look at transformations as ways of moving the points that describe one or
more geometric objects to new locations. Although there are many transformations
that will move a particular point to a new location, there will almost always be only
a single way to transform a collection of points to new locations while preserving
the spatial relationships among them. Hence, although we can find many matrices
that will move one corner of our color cube from P, to Q, only one of them, when
applied to all the vertices of the cube, will result in a displaced cube of the same size
and orientation.

3.8.1 Translation

Translation is an operation that displaces points by a fixed distance in a given di-
rection, as shown in Figure 3.33. To specify a translation, we need only to specify a
displacement vector d, because the transformed points are given by

PP=P+d

for all points P on the object. Note that this definition of translation makes no
reference to a frame or representation. Translation has three degrees of freedom
because we can specify the three components of the displacement vector arbitrarily.

(a) (b)

FIGURE 3.33 Translation. (a) Object in original position. (b) Object
translated.
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FIGURE 3.34 Two-dimensional
rotation.

3.8.2 Rotation

Rotation is more difficult to specify than translation because we must specify more
parameters. We start with the simple example of rotating a point about the origin
in a two-dimensional plane, as shown in Figure 3.34. Having specified a particular
point—the origin—we are in a particular frame. A two-dimensional point at (x, y)
in this frame is rotated about the origin by an angle 6 to the position (x/, y'). We
can obtain the standard equations describing this rotation by representing (x, y) and
(«/, ') in polar form:

X = p cos ¢,
y =psin¢,
x'=pcos(® +¢),
¥y = psin(0 + ¢).

Expanding these terms using the trigonometric identities for the sine and cosine of
the sum of two angles, we find

x' =pcos¢pcosh — psingsind =xcos —ysinb,
Y =pcos¢sind + psingcosd =xsinb +ycosb.

These equations can be written in matrix form as

x' cosf® —sin0 x
y' | |sind cosb y |
We expand this form to three dimensions in Section 3.9.
Note three features of this transformation that extend to other rotations:

1. There is one point—the origin, in this case—that is unchanged by the ro-
tation. We call this point the fixed point of the transformation. Figure 3.35
shows a two-dimensional rotation about a fixed point in the center of the ob-
ject rather than about the origin of the frame.

2. Knowing that the two-dimensional plane is part of three-dimensional space,
we can reinterpret this rotation in three dimensions. In a right-handed sys-
tem, when we draw the x- and y-axes in the standard way, the positive z-axis
comes out of the page. Our definition of a positive direction of rotation is
counterclockwise when we look down the positive z-axis toward the origin.
We use this definition to define positive rotations about other axes.

3. Rotation in the two-dimensional plane z =0 is equivalent to a three-
dimensional rotation about the z-axis. Points in planes of constant z all rotate
in a similar manner, leaving their z values unchanged.
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FIGURE 3.35 Rotation about a fixed point.

z

FIGURE 3.36 Three-dimensional rotation.

We can use these observations to define a general three-dimensional rotation that
is independent of the frame. We must specify the three entities shown in Figure 3.36:
a fixed point (Pf), a rotation angle (0), and a line or vector about which to rotate.
For a given fixed point, there are three degrees of freedom: the two angles necessary
to specify the orientation of the vector and the angle that specifies the amount of
rotation about the vector.

Rotation and translation are known as rigid-body transformations. No combi-
nation of rotations and translations can alter the shape or volume of an object; they
can alter only the object’s location and orientation. Consequently, rotation and trans-
lation alone cannot give us all possible affine transformations. The transformations
shown in Figure 3.37 are affine, but they are not rigid-body transformations.
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FIGURE 3.38 Uniform and nonuniform scaling.

3.8.3 Scaling

Scaling is an affine non-rigid-body transformation by which we can make an object
bigger or smaller. Figure 3.38 illustrates both uniform scaling in all directions and
scaling in a single direction. We need nonuniform scaling to build up the full set of
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FIGURE 3.40 Reflection.

affine transformations that we use in modeling and viewing by combining a properly
chosen sequence of scalings, translations, and rotations.

Scaling transformations have a fixed point, as we can see from Figure 3.39.
Hence, to specify a scaling, we can specify the fixed point, a direction in which we
wish to scale, and a scale factor («). For « > 1, the object gets longer in the specified
direction; for 0 <« < 1, the object gets smaller in that direction. Negative values of «
give us reflection (Figure 3.40) about the fixed point, in the scaling direction. Scaling
has six degrees of freedom because we can specify an arbitrary fixed point and three
independent scaling factors.

3.9 TRANSFORMATIONS IN HOMOGENEOUS
COORDINATES

All graphics APIs force us to work within some reference system. Hence, we cannot
work with high-level expressions such as

Q=P+ av.

Instead, we work with representations in homogeneous coordinates and with expres-
sions such as

q=p+av.

Within a frame, each affine transformation is represented by a 4 x 4 matrix of the
form

FIGURE 3.39 Effect of scale
factor.
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O Oy O3 Oy
o, o Uy, o
A= 21 Qg O3 Oy

031 O3 033 O3y
0 0 0 1

3.9.1 Translation

Translation displaces points to new positions defined by a displacement vector. If we
move the point p to p’ by displacing by a distance d, then

p=p+d

Looking at their homogeneous-coordinate forms

x x o,
y Y o
P= 5 P/: , > d= 7 >
z z a,
1 1

we see that these equations can be written component by component as

X' =x+a,
y=y+a,
/

zZ =z+a,.

This method of representing translation using the addition of column matrices does
not combine well with our representations of other affine transformations. However,
we can also get this result using the matrix multiplication:

p' ="Tp,

where
1 0 0 «a,

TZOIan
00 1 a,
0 0 0 1

T is called the translation matrix. We sometimes write it as T'(«,., a, «,) to empha-
size the three independent parameters.

It might appear that using a fourth fixed element in the homogeneous represen-
tation of a point is not necessary. However, if we use the three-dimensional forms
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/

x x'
Q=17 | a=|y1,
z z

itis not possible to find a 3 x 3 matrix D such that ' = Dq for the given displacement
vector d. For this reason, the use of homogeneous coordinates is often seen as a clever
trick that allows us to convert the addition of column matrices in three dimensions
to matrix—matrix multiplication in four dimensions.

We can obtain the inverse of a translation matrix either by applying an inversion
algorithm or by noting that if we displace a point by the vector d, we can return to
the original position by a displacement of —d. By either method, we find that

I 0 0 —a,
! _T _ 01 0 —a,
(@ oy o) =T(—ay, —a,, —a,) = 00 1 —a

0 0 O 1

3.9.2 Scaling

For both scaling and rotation, there is a fixed point that is unchanged by the trans-
formation. We let the fixed point be the origin, and we show how we can concatenate
transformations to obtain the transformation for an arbitrary fixed point.

A scaling matrix with a fixed point of the origin allows for independent scaling
along the coordinate axes. The three equations are

x'=Bx,
y =By
7 =B,z

These three equations can be combined in homogeneous form as

P =Sp,
where
B, 0 0 O
0 B, 0 0
S= S(IB > /3 > ﬂ ) = /
x z 0 0 B, 0
0 0 0 1

As is true of the translation matrix and, indeed, of all homogeneous coordinate trans-
formations, the final row of the matrix does not depend on the particular transfor-
mation, but rather forces the fourth component of the transformed point to retain
the value 1.
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We obtain the inverse of a scaling matrix by applying the reciprocals of the scale
factors:

1 1 1
S_l > > Mz :S T T T .
(B> B> B) (ﬂx B, ﬁz>

3.9.3 Rotation

We first look at rotation with a fixed point at the origin. There are three degrees
of freedom corresponding to our ability to rotate independently about the three
coordinate axes. We have to be careful, however, because matrix multiplication is
not a commutative operation (Appendix C). Rotation about the x-axis by an angle
0 followed by rotation about the y-axis by an angle ¢ does not give us the same result
as the one that we obtain if we reverse the order of the rotations.

We can find the matrices for rotation about the individual axes directly from
the results of the two-dimensional rotation that we developed in Section 3.7.2. We
saw that the two-dimensional rotation was actually a rotation in three dimensions
about the z-axis and that the points remained in planes of constant z. Thus, in three
dimensions, the equations for rotation about the z-axis by an angle 6 are

x' =xcosf —ysin6,
y ' =xsinf +ycosb,
/

Z =z,

or, in matrix form,

P’ =R.p,
where
cosf —sinf 0 O
R —R.(6) = sinf cosé 0 O
S B! 0 10
0 0 0 1

We can derive the matrices for rotation about the x- and y-axes through an identical
argument. If we rotate about the x-axis, then the x values are unchanged, and we
have a two-dimensional rotation in which points rotate in planes of constant x; for
rotation about the y-axis, the y values are unchanged. The matrices are

0 0
cosf® —sinf
sinf  cosf

0 0

S O O =
—_ O O O
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cosf 0 sinf 0

R —R.(0) = 0 1 0 0
yor —sind 0 cosd O
0 0 0 1

The signs of the sine terms are consistent with our definition of a positive rotation in
a right-handed system.

Suppose that we let R denote any of our three rotation matrices. A rotation by 6
can always be undone by a subsequent rotation by —8; hence,

R71(0) =R(—6).

In addition, noting that all the cosine terms are on the diagonal and the sine terms
are off-diagonal, we can use the trigonometric identities

cos(—0) = cos 6
sin(—6@) = — sin 0
to find

R'(©) =RT(9).

In Section 3.10.1, we show how to construct any desired rotation matrix, with a
fixed point at the origin, as a product of individual rotations about the three axes

R=RRR,.

Using the fact that the transpose of a product is the product of the transposes in the
reverse order, we see that for any rotation matrix,

R '=RT,

A matrix whose inverse is equal to its transpose is called an orthogonal matrix.
Normalized orthogonal matrices correspond to rotations about the origin.

3.9.4 Shear

Although we can construct any affine transformation from a sequence of rota-
tions, translations, and scalings, there is one more affine transformation—the shear
transformation—that is of such importance that we regard it as a basic type rather
than deriving it from the others. Consider a cube centered at the origin, aligned with
the axes, and viewed from the positive z-axis, as shown in Figure 3.41. If we pull the
top to the right and the bottom to the left, we shear the object in the x-direction. Note
that neither the y nor the z values are changed by the shear, so we can call this op-
eration x shear to distinguish it from shears of the cube in other possible directions.
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FIGURE 3.42 Computation of
the shear matrix.

P S &

FIGURE 3.41 Shear.

Using simple trigonometry on Figure 3.42, we see that each shear is characterized by
a single angle 6; the equations for this shear are

X' =x+ycoth,
V=7
7 =z,

leading to the shearing matrix

1 cotf 0
0 1 0
0 0 1
0 0 0

H,(0) =

—_ o O O

We can obtain the inverse by noting that we need to shear in only the opposite
direction; hence,

H;'(0) = H, (-0).

Shearing in the x-direction followed by a shear in z-direction, leaves the y values
unchanged and can be regarded as a shear in the x — z plane.

3.10 CONCATENATION OF TRANSFORMATIONS

In this section, we create examples of affine transformations by multiplying together,
or concatenating, sequences of the basic transformations that we just introduced.
Using this strategy is preferable to attempting to define an arbitrary transformation
directly. The approach fits well with our pipeline architectures for implementing
graphics systems.

Suppose that we carry out three successive transformations on a point p, cre-
ating a new point q. Because the matrix product is associative, we can write the
sequence as
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p—» A — B — C —»q

FIGURE 3.43 Application of transformations one at a time.

q = CBAp,

without parentheses. Note that here the matrices A, B, and C (and thus M) can be
arbitrary 4 x 4 matrices, although in practice they will most likely be affine. The order
in which we carry out the transformations affects the efficiency of the calculation. In
one view, shown in Figure 3.43, we can carry out A, followed by B, followed by C—an
order that corresponds to the grouping

q = (C(B(Ap))).

If we are to transform a single point, this order is the most efficient because each
matrix multiplication involves multiplying a column matrix by a square matrix. If we
have many points to transform, then we can proceed in two steps. First, we calculate

M = CBA.

Then, we use this matrix on each point

q = Mp.

This order corresponds to the pipeline shown in Figure 3.44, where we compute M
first, then load it into a pipeline transformation unit. If we simply count operations,
we see that although we do a little more work in computing M initially, because M
may be applied to tens of thousands of points, this extra work is insignificant com-
pared with the savings we obtain by using a single matrix multiplication for each
point. We now derive examples of computing M.

3.10.1 Rotation About a Fixed Point

Our first example shows how we can alter the transformations that we defined with
a fixed point at the origin (rotation, scaling, shear) to have an arbitrary fixed point.
We demonstrate for rotation about the z-axis; the technique is the same for the other
cases.

Consider a cube with its center at p, and its sides aligned with the axes. We
want to rotate the cube about the z-axis, but this time about its center P which
becomes the fixed point of the transformation, as shown in Figure 3.45. If p; were
the origin, we would know how to solve the problem: We would simply use R, (6).
This observation suggests the strategy of first moving the cube to the origin. We can
then apply R, (¢) and finally move the object back such that its center is again at p;.
This sequence is shown in Figure 3.46. In terms of our basic affine transformations,

CBA

f

p—» M —»q

FIGURE 3.44 Pipeline trans-
formation.
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(a) (b)
FIGURE 3.45 Rotation of a cube about its center.

, y y Y
P
[ ]
P;
—_— —_— —_—
X X X X
Z/ Z/ V4

FIGURE 3.46 Sequence of transformations.

z

the first is T(—pf), the second is R,(6), and the final is T(pf). Concatenating them
together, we obtain the single matrix

M =T(p)R,(O)T(~p)).
If we multiply out the matrices, we find that
cosf —sinf

xf—xfc059+yfsin9

0 0 0

0

sinf  cosf 0 yp—xpsin€ — ycos0
1

0 0 0 1
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(a) (b)

FIGURE 3.47 Rotation of a cube about the z-axis. (a) Cube before
rotation. (b) Cube after rotation.

»

V4 z
(a) (b)
FIGURE 3.48 Rotation of a cube about the y-axis.

3.10.2 General Rotation

We now show that an arbitrary rotation about the origin can be composed of three
successive rotations about the three axes. The order is not unique (see Exercise 3.10),
although the resulting rotation matrix is. We form the desired matrix by first doing
a rotation about the z-axis, then doing a rotation about the y-axis, and concluding
with a rotation about the x-axis.

Consider the cube, again centered at the origin with its sides aligned with the
axes, as shown in Figure 3.47(a). We can rotate it about the z-axis by an angle « to
orient it, as shown in Figure 3.47(b). We then rotate the cube by an angle 8 about the
y-axis, as shown in a top view in Figure 3.48. Finally, we rotate the cube by an angle y
about the x-axis, as shown in a side view in Figure 3.49. Our final rotation matrix is

R=RRR,.
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) /
V"

FIGURE 3.50 Scene of simple
objects.

Yy Yy
7,
(a) (b)

FIGURE 3.49 Rotation of a cube about the x-axis.

A little experimentation should convince you that we can achieve any desired orien-
tation by proper choice of &, 8, and y, although, as we will see in the example of
Section 3.10.4, finding these angles can be tricky.

3.10.3 The Instance Transformation

Our example of a cube that can be rotated to any desired orientation suggests a
generalization appropriate for modeling. Consider a scene composed of many simple
objects, such as those shown in Figure 3.50. One option is to specify each of these
objects, through its vertices, in the desired location with the desired orientation and
size. An alternative is to specify each of the object types once at a convenient size, in
a convenient place, and with a convenient orientation. Each occurrence of an object
in the scene is an instance of that object’s prototype, and we can obtain the desired
size, orientation, and location by applying an affine transformation—the instance
transformation—to the prototype. We can build a simple database to describe a
scene from a list of object identifiers (such as 1 for a cube and 2 for a sphere) and
of the instance transformation to be applied to each object.

The instance transformation is applied in the order shown in Figure 3.51. Objects
are usually defined in their own frames, with the origin at the center of mass and
the sides aligned with the model frame axes. First, we scale the object to the desired
size. Then we orient it with a rotation matrix. Finally, we translate it to the desired
orientation. Hence, the instance transformation is of the form

M =TRS.

Modeling with the instance transformation works well not only with our pipeline
architectures but also with other methods for retaining objects such as scene graphs
that we will introduce in Chapter 8. A complex object that is used many times can
be loaded into the server once as a display list. Displaying each instance of it requires
only sending the appropriate instance transformation to the server before executing
the display list.
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—_— — — —
T
M=TRS¢ *R
A , T
T Ve
_ -

FIGURE 3.51 Instance transformation.

3.10.4 Rotation About an Arbitrary Axis

Our final rotation example illustrates not only how we can achieve a rotation about
an arbitrary point and line in space but also how we can use direction angles to specify
orientations. Consider rotating a cube, as shown in Figure 3.52. We need three entities
to specify this rotation. There is a fixed point p, that we assume is the center of the
cube, a vector about which we rotate, and an angle of rotation. Note that none of these
entities relies on a frame and that we have just specified a rotation in a coordinate-
free manner. Nonetheless, to find an affine matrix to represent this transformation,
we have to assume that we are in some frame.

The vector about which we wish to rotate the cube can be specified in various
ways. One way is to use two points, p, and p,, defining the vector

u=p; =P

Note that the order of the points determines the positive direction of rotation for 6
and that even though we draw u as passing through p,, only the orientation of u
matters. Replacing u with a unit-length vector

w |
V= — = o
ul g

o

in the same direction simplifies the subsequent steps. We say that v is the result of
normalizing u. We have already seen that moving the fixed point to the origin is
a helpful technique. Thus, our first transformation is the translation T(—p,), and
the final one is T(p,). After the initial translation, the required rotation problem
is as shown in Figure 3.53. Our previous example (see Section 3.10.2) showed that
we could get an arbitrary rotation from three rotations about the individual axes.
This problem is more difficult because we do not know what angles to use for the

z

FIGURE 3.52 Rotation of a
cube about an arbitrary axis.
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P, — Py
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z

FIGURE 3.53 Movement of the fixed point to the origin.

0 x —»x@ —X
X
__/\ 6
/ Hy z
zZ zZ zZ

FIGURE 3.54 Sequence of rotations.

FIGURE 3.55 Direction
angles.

individual rotations. Our strategy is to carry out two rotations to align the axis of
rotation, v, with the z-axis. Then we can rotate by 6 about the z-axis, after which we
can undo the two rotations that did the aligning. Our final rotation matrix will be of
the form

R =R, (—0,)R (—0,)R,(O)R (6, )R (0,).

This sequence of rotations is shown in Figure 3.54. The difficult part of the process is
determining 6, and 6.
We proceed by looking at the components of v. Because v is a unit-length vector,

2 2 2_
ax—l—ay—}—otz—l.

We draw a line segment from the origin to the point («,, «,,, ;). This line segment
has unit length and the orientation of v. Next, we draw the perpendiculars from the
point (e, s «,) to the coordinate axes, as shown in Figure 3.55. The three direction
angles—¢,, ¢, ¢,—are the angles between the line segment (or v) and the axes. The
direction cosines are given by
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cos ¢, = a,,
cos ¢}, =0,
cos p, =a,.

Only two of the direction angles are independent, because
cos? o, + cos? ¢y + cos? ¢, =1

We can now compute ¢, and 6, using these angles. Consider Figure 3.56. It shows that
the effect of the desired rotation on the point («,, a, ) is to rotate the line segment
into the plane y = 0. If we look at the projection of the line segment (before the
rotation) on the plane x = 0, we see a line segment of length d on this plane. Another
way to envision this figure is to think of the plane x = 0 as a wall and consider a distant
light source located far down the positive x-axis. The line that we see on the wall is the
shadow of the line segment from the origin to (e, a,, ;). Note that the length of the
shadow is less than the length of the line segment. We can say the line segment has

been foreshortened to d = /a} + . The desired angle of rotation is determined

by the angle that this shadow makes with the z-axis. However, the rotation matrix is
determined by the sine and cosine of 6,.. Thus, we never need to compute 6,; rather,
we need to compute only

1 0 0 0

R(6.) = 0 a,/d —ocy/d 0
R ) a,/d a,/d 0
0 0 0 1

We compute R, in a similar manner. Figure 3.57 shows the rotation. This angle is
clockwise about the y-axis; therefore, we have to be careful of the sign of the sine
terms in the matrix, which is

d 0 —o, 0

10 0
REI=10 0 0
00 0 1

Finally, we concatenate all the matrices to find
M = T(po)R,(—0,)R (—0,)R,(O)R,(6,)R, (0, T(~py).

Let’s look at a specific example. Suppose that we wish to rotate an object by
45 degrees about the line passing through the origin and the point (1, 2, 3). We
leave the fixed point at the origin. The first step is to find the point along the line
that is a unit distance from the origin. We obtain it by normalizing (1, 2, 3) to
(l/m, Z/m, 3/m), or (l/m, Z/m, 3/m, 1) in homogeneous coordi-

nates. The first part of the rotation takes this point to (0, 0, 1, 1). We first rotate about

FIGURE 3.56 Computation of
the x rotation.

FIGURE 3.57 Computation of
the y rotation.



172

Chapter 3 Geometric Objects and Transformations

the x-axis by the angle cos™! «/iﬁ. This matrix carries (1/4/14, 2/4/14, 3/4/14, 1) to

(1/+/14, 0, \/13/14, 1), which is in the plane y = 0. The y rotation must be by the
angle — cos~!(4/13/14). This rotation aligns the object with the z-axis, and now we
can rotate about the z-axis by the desired 45 degrees. Finally, we undo the first two
rotations. If we concatenate these five transformations into a single rotation matrix
R, we find that

3 13 13
R =R, (— cos™! ﬁ) R, (cos_l,/ﬁ) R,(45)R, (— cos‘ﬂ/E)

3
R, (cos™! —>
* ( V13

24132 2—v2-3V7  6=3V2+4J7 0
28 14 28
2—/2437 4452 6=3v2-V7
. 14 14 14
T 6=3v2-4v7  6-3V2+447 18452 0
28 14 28
0 0 0 1

This matrix does not change any point on the line passing through the origin and the
point (1, 2, 3). If we want a fixed point other than the origin, we form the matrix

M = T(p)RT(~py).

This example is not simple. It illustrates the powerful technique of applying
many simple transformations to get a complex one. The problem of rotation about
an arbitrary point or axis arises in many applications. The major variants lie in the
manner in which the axis of rotation is specified. However, we can usually employ
techniques similar to the ones that we have used here to determine direction angles
or direction cosines.

3.11 TRANSFORMATION MATRICES IN OPENGL

We can now focus on the implementation of a homogeneous-coordinate transforma-
tion package and of that package’s interface to the user. We have introduced a set of
frames, including the world frame and the camera frame, that should be important
for developing applications. In a shader-based implementation of OpenGL, the exis-
tence or nonexistence of these frames is entirely dependent on what the application
programmer decides to do.” In a modern implementation of OpenGL, the applica-
tion programmer not only can choose which frames to use but also where to carry out

7. In earlier versions of OpenGL that relied on the fixed-function pipeline, these frames were part of
the specification and their state was part of the environment.
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the transformations between frames. Some will best be carried out in the application,
others in a shader.

As we develop a method for specifying and carrying out transformations, we
should emphasize the importance of state. Although very few state variables are pre-
defined in OpenGL, once we specify various attributes and matrices, they effectively
define the state of the system. Thus, when a vertex is processed, how it is processed is
determined by the values of these state variables.

The two transformations we will use most often are the model-view transfor-
mation and the projection transformation. The model-view transformation brings
representations of geometric objects from application or model frame to the cam-
era frame. The projection matrix will both carry out the desired projection and also
change the representation to clip coordinates. We will use only the model-view matrix
in this chapter. The model-view matrix normally is an affine-transformation matrix
and has only 12 degrees of freedom, as discussed in Section 3.7. The projection ma-
trix, as we will see in Chapter 4, is also a 4 x 4 matrix, but it is not affine.

3.11.1 Current Transformation Matrices

The generalization common to most graphics systems is of a current transformation
matrix (CTM). The CTM is part of the pipeline (Figure 3.58); thus, if p is a vertex
specified in the application, then the pipeline produces Cp. Note that Figure 3.58 does
not indicate where in the pipeline the current transformation matrix is applied. If we
use a CTM, we can regard it as part of the state of the system.

First we will introduce a simple set of functions that we can use to form and
manipulate 4 x 4 affine transformation matrices. Let C denote the CTM (or any
other 4 x 4 affine matrix). Initially, we will set it to the 4 x 4 identity matrix; it
can be reinitialized as needed. If we use the symbol < to denote replacement, we can
write this initialization operation as

C <1

The functions that alter C are of two forms: those that load it with some matrix and
those that modify it by premultiplication or postmultiplication by a matrix. The three
transformations supported in most systems are translation, scaling with a fixed point
of the origin, and rotation with a fixed point of the origin. Symbolically, we can write
these operations in postmultiplication form as

C < CT,

C < CS,

Vertices | |
— CTM —

FIGURE 3.58 Current transformation matrix (CTM).
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C < CR,

and in load form as

C<«T,

C <SS,

C <R.

Most systems allow us to load the CTM with an arbitrary matrix M,
C<M,

or to postmultiply by an arbitrary matrix M,

C <~ CM.

Although we will occasionally use functions that set a matrix, most of the time
we will alter an existing matrix; that is, the operation

C < CR,
is more common than the operation

C < R.

3.11.2 Rotation, Translation, and Scaling

In our applications and shaders, the matrix that is most often applied to all vertices
is the product of the model-view matrix and the projection matrix. We can think of
the CTM as the product of these matrices (Figure 3.59), and we can manipulate each
individually by working with the desired matrix.

Using the matrix and vector classes, we can form affine matrices for rotation,
translation, and scaling by creating the following five functions:

RotateX(float xangle);

RotateY(float yangle);

RotateZ(float zangle);

Translate(float dx, float dy, float dz);
Scale(float sx, float sy, float sz);

Vertices Vertices
Model-view ——® Projection ————

[ |
[
CTM

FIGURE 3.59 Model-view and projection matrices.
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For example, the code for Rotatez is

mat4 Rotatez(const float theta)

{
float s = M_PI/180.0%theta; //convert degrees to radians
maté c; // an identity matrix
cl2][2] = c[3][3] = 1.0;
c[0][0] = c[1]1[1] = cos(s);
c[11[0] = sin(s);
cl0]l[1] = -cl11[0];
return c;
}

For rotation, the angles are specified in degrees and the rotations are for a fixed point
at the origin. In the translation function, the variables are the components of the
displacement vector; for scaling, the variables determine the scale factors along the
coordinate axes and the fixed point is the origin.

3.11.3 Rotation About a Fixed Point

In Section 3.10, we showed that we can perform a rotation about a fixed point, other
than the origin, by first moving the fixed point to the origin, then rotating about
the origin, and finally moving the fixed point back to its original location. Using the
example from Section 3.11, the following sequence sets the matrix mode, then forms
the required matrix for a 45-degree rotation about the line through the origin and
the point (1, 2, 3) with a fixed point of (4, 5, 6):

mat4 R, ctm;
float thetax, thetay;
const float Radians_To_Degrees = 180.0/M_PI;

thetax = Radians_To_Degrees*acos(3.0/sqrt(14.0));
thetay = Radians_To_Degrees*acos(sqrt(13.0/14.0));

R = RotateX(-thetax)*RotateY(-thetay)*RotateZ(-45.0)
*RotateY(-thetax)*RotateX (thetax);
ctm = Translate(4.0, 5.0, 6.0)*R* Translate(-4.0, -5.0, -6.0);

Because we want to do arbitrary rotations so often, it is a good exercise (Exercise 3.31)
to write functions Rotate (float theta, vec3 d) and Rotate(float theta,
float dx, float dy, float dz) that will form an arbitrary rotation matrix for a
rotation of theta degrees about a line in the direction of the vector d = (dx, dy, dz) 38

8. Although it is a good exercise to write the various matrix functions yourself, we also provide them
in a separate include file angel . h that can be downloaded from the book’s Web site.
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3.11.4 Order of Transformations

You might be bothered by what appears to be a reversal of the required function
calls. The rule in OpenGL is this: The transformation specified last is the one applied
first. A little examination shows that this order is a consequence of multiplying the
CTM on the right by the specified affine transformation and thus is both correct and
reasonable. The sequence of operations that we specified was

C <1,

C < CT (4.0, 5.0, 6.0),

C < CR(45.0, 1.0, 2.0, 3.0),
C < CT(—4.0, —5.0, —6.0).

In each step, we postmultiply at the end of the existing CTM, forming the matrix
C=T(4.0, 5.0, 6.0)R(45.0, 1.0, 2.0, 3.0)T(—4.0, —5.0, —6.0),

which is the matrix that we expect from Section 3.11. Each vertex p that is specified
after the model-view matrix has been set will be multiplied by C, thus forming the
new vertex

q = Cp.

There are other ways to think about the order of operations. One way is in terms
of a stack. Altering the CTM is similar to pushing matrices onto a stack; when we
apply the final transformation, the matrices are popped off the stack in the reverse
order in which they were placed there. The analogy is conceptual rather than exact
because when we use a transformation function, the matrix is altered immediately.

3.12 SPINNING OF THE CUBE

We will now examine how we can manipulate the color cube interactively. We will
take the cube that we defined in Section 3.6 and we rotate it using the three buttons
of the mouse. Our program will be based on the following three callback functions:

glutDisplayFunc(display) ;
glutIdleFunc(spincube) ;
glutMouseFunc (mouse)

We will examine two fundamentally different ways of doing the updates to the display.
In the first, we will form a new model-view matrix in the display callback and apply
it to the vertex data to get new vertex positions. We must then send the new data to
the GPU. In the second, we will send the model-view matrix to the vertex shader and
apply it there. The mouse and idle callbacks will be the same in both cases, so let’s
examine them first.
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The mouse callback selects the axis for rotation, using 0, 1, and 2 to denote
rotation about the x, y, and z axes, respectively:

int axis = O;

void mouse(int button, int state, int x, int y)

{
if (button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) axis = 0;
if (button == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN) axis = 1;
if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN) axis = 2;
¥

The idle callback increments the angle associated with the chosen axis by 0.1 degrees
each time:

void spinCube ()

{
theta[axis] += 0.1;
if ( thetalaxis] > 360.0 ) thetalaxis] —-= 360.0;
glutPostRedisplay();

¥

3.12.1 Updating in the Display Callback

The function display starts by clearing the frame and depth buffers and then forms
a model-view matrix using the values of three angles determined by the mouse call-
back

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
mat4 ctm = RotateX(thetal[O])*RotateY(theta[1l])*RotateZ(thetal[2]);

The problem is how to apply this matrix. Suppose that we set up the data arrays
as in our previous examples by executing the colorcube function as part of our
initialization. Thus, we have color and position data in the arrays quad_colors and
points for 36 vertices. We can use a second array

point4 new_points[36];
to hold the transformed points and then apply the rotations in the display callback
for(i=0; i<36; i++)

{

new_points[i] = ctm*points[i];

However, these transformed positions are on the CPU, not on the GPU. To get them
into the pipeline, we can initialize the vertex array to be new_points rather than
points initially,
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loc = glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(loc);

glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET (0)) ;

and then in the display callback send these points to the GPU:

glBindVertexArray(abuffer) ;

glBindBuffer (GL_ARRAY_BUFFER, buffers[0]);

glBufferData(GL_ARRAY_BUFFER, sizeof (new_points), new_points,
GL_STATIC_DRAW) ;

glDrawArrays (GL_TRIANGLES, 0, N);

glutSwapBuffers() ;

There is, however, a major weakness in this approach. We are applying the current
transformation in the application program and sending the vertex positions to the
GPU every time we want to update the display. Consequently, we are not using the
power of the GPU and having the performance determined by how fast we can send
data from the CPU to the GPU. In applications, where we have complex geometry,
this approach will lead to poor performance.

Our second approach will be to send the vertex data to the GPU once. Every time
we update the transformation matrix, we will send a new transformation matrix to
the GPU and update the vertex positions on the GPU. First, we must examine how to
get such data from the CPU to the GPU.

3.12.2 Uniform Variables

In a given application, a variable may change in a variety of ways. When we send
vertex attributes to a shader, these attributes can be different for each vertex in a
primitive. We may also want parameters that will remain the same for all vertices
in a primitive or equivalently for all the vertices that are displayed when we execute
a function such as glDrawArrays. Such variables are called uniform qualified vari-
ables. For example, in our present example, we want the same rotation matrix to
apply to all the vertices in the points array.

We set up uniform variables in much the same way as we did for vertex at-
tributes. Suppose that we want to send the elapsed time from the application to the
vertex shader. In the application, we can use GLUT to get the elapsed time in milli-
seconds

float etime;

etime = 0.001*glutGet (GLUT_ELAPSED_TIME) ;

In the vertex shader, we might have a corresponding variable time. For example, the
following shader varies the x component of each vertex sinusoidally:
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uniform float time;
attribute vec4 vPosition;

void main()
{

vPosition.x *= (1+sin(time));
gl_Position = vPosition;

We still must establish a connection between the corresponding time variables in the
application and the shader and get the values from the application to the shader.

After the shaders have been compiled and linked, we can get the correspondence
in the application in a manner similar to vertex attributes. We get the location by

GLint timeParam;

timeParam = glGetUniformLocation(program, "time");
Now whenever we want to send the elapsed time to the shader, we execute
glUniformlf (timeParam, etime);

There are forms of glUniform corresponding to all the types supported by GLSL,
including floats, ints, and two-, three-, and four-dimensional vectors and matrices.
For the 4 x 4 rotation matrix, we use the form

glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, ctm);
Here, matrix_loc is determined by

GLint matrix_loc;

matrix_loc = getUniformLocation(program, "rotation");
for the vertex shader

in vec4 vPosition;

in vec4 vColor;

out vec4 color;
uniform mat4 rotation;

void main()

{
gl_Position = rotation*vPosition;
color = vColor;
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The second parameter, glUniformMatrix, is the number of elements of ctm that
are sent. The third parameter declares that the data should be sent in row-major
order. The display callback is now

mat4 ctm;

void display()

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ctm = RotateX(thetal[0])*RotateY(theta[1])*RotateZ(thetal[2]);
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, ctm);
glDrawArrays (GL_TRIANGLES, 0, N);
glutSwapBuffers();

}

Alternately, we could have computed the rotation matrix in the vertex shader by
sending only the rotation angles to the vertex shader. A program that takes this
approach is in Appendix A.

3.13 INTERFACES TO THREE-DIMENSIONAL APPLICATIONS

In Section 3.12, we used a three-button mouse to control the direction of rotation of
our cube. This interface is limited. Rather than use all three mouse buttons to control
rotation, we might want to use mouse buttons to control functions, such as pulling
down a menu, that we would have had to assign to keys in our previous example.

In Section 3.10, we noted that there were many ways to obtain a given orienta-
tion. Rather than do rotations about the x-, y-, and z-axes in that order, we could do
a rotation about the x-axis, followed by a rotation about the y-axis, and finish with
another rotation about the x-axis. If we do our orientation this way, we can obtain
our desired orientation using only two mouse buttons. However, there is still a prob-
lem: Our rotations are in a single direction. It would be easier to orient an object if
we could rotate either forward or backward about an axis and could stop the rotation
once we reached a desired orientation.

GLUT allows us to use the keyboard in combination with the mouse. We could,
for example, use the left mouse button for a forward rotation about the x-axis and
the Control key in combination with the left mouse button for a backward rotation
about the x-axis.

However, neither of these options provides a good user interface, which should
be more intuitive and less awkward. Let’s consider a few options that provide a more
interesting and smoother interaction.

3.13.1 Using Areas of the Screen

Suppose that we want to use one mouse button for orienting an object, one for getting
closer to or farther from the object, and one for translating the object to the left or
right. We can use the motion callback to achieve all these functions. The callback
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returns which button has been activated and where the mouse is located. We can use
the location of the mouse to control how fast and in which direction we rotate or
translate and to move in or out.

As just noted, we need the ability to rotate about only two axes to achieve any
orientation. We could then use the left mouse button and the mouse position to
control orientation. We can use the distance from the center of the screen to control
the x and y rotations. Thus, if the left mouse button is held down but the mouse is
located in the center of the screen, there will be no rotation; if the mouse is moved up,
the object will be rotated about the y-axis in a clockwise manner; and if the mouse
is moved down, the object will be rotated about the y-axis in a counterclockwise
manner. Likewise, motion to the right or left will cause rotation about the x-axis.
The distance from the center can control the speed of rotation. Motion toward the
corners can cause simultaneous rotations about the x- and y-axes.

Using the right mouse button in a similar manner, we can translate the object
right to left and up to down. We might use the middle mouse button to move the
object toward or away from the viewer by having the mouse position control a trans-
lation in the z-direction. The code for such an interface is straightforward in GLUT;
we leave it as an exercise (Exercise 3.20).

3.13.2 A Virtual Trackball

The use of the mouse position to control rotation about two axes provides us with
most of the functionality of a trackball. We can go one step further and create a
graphical or virtual trackball using our mouse and the display. One of the benefits
of such a device is that we can create a frictionless trackball that, once we start
it rotating, will continue to rotate until stopped by the user. Thus, the device will
support continuous rotations of objects but will still allow changes in the speed
and orientation of the rotation. We can also do the same for translation and other
parameters that we can control from the mouse.

We start by mapping the position of a trackball to that of a mouse. Consider the
trackball shown in Figure 3.60. We assume that the ball has a radius of 1 unit. We can

FIGURE 3.60 Trackball frame.
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z

FIGURE 3.61 Projection of the trackball position to the plane.

map a position on its surface to the plane y = 0 by doing an orthogonal projection to
the plane, as shown in Figure 3.61. The position (x, y, z) on the surface of the ball is
mapped to (x, 0, z) on the plane. This projection is reversible because we know that
the three-dimensional point that is projected to the point on the plane must satisfy
the equation of the sphere

xz—i—yz—i—zz:l.

Thus, given the point on the plane (x, 0, z), the corresponding point on the hemi-
sphere must be (x, y, z), where

y=+v1—x>—22

We can compute the three-dimensional information and track it as the mouse
moves. Suppose that we have two positions on the hemisphere p, and p,; then the
vectors from the origin to these points determine the orientation of a plane, as shown
in Figure 3.62, whose normal is defined by their cross product

n=p; X Py

The motion of the trackball that moves from p, to p, can be achieved by a rotation
about n. The angle of rotation is the angle between the vectors p, and p,, which we
can compute using the magnitude of the cross product. Because both p, and p, have
unit length,

| sin 0] = |n]|.

If we are tracking the mouse at a high rate, then the changes in position that we detect
will be small; rather than use an inverse trigonometric function to find 6, we can use
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FIGURE 3.62 Computation of the plane of rotation.

the approximation
sinf ~ 0.

We can implement the virtual trackball through use of the idle, motion, and
mouse callbacks in GLUT. We can think of the process in terms of three logical
variables, or flags, that control the tracking of the mouse and of the display redrawing.
These are set initially as follows:’

bool trackingMouse = false;
bool trackballMove
bool redrawContinue = false;

false;

If redrawContinue is true, the idle function posts a redisplay. If tracking-
Mouse is true, we update the trackball position as part of the motion callback. If
trackballMove is true, we update the rotation matrix that we use in our display
routine.

The changes in these variables are controlled through the mouse callback. When
we push a mouse button—either a particular button or any button, depending on
exactly what we want—we start updating the trackball position by initializing it, and
then letting the motion callback update it and post redisplays in response to changes
in the position of the mouse. When the mouse button is released, we stop tracking the
mouse. We can use the two most recent mouse positions to define a velocity vector
so that we can continually update the rotation matrix. Thus, once the mouse button
is released, the object will continue to rotate at a constant velocity—an effect that we

9. If the compiler does not support the Boolean type, we can use typedef bool int; and then
define true and false as 1 and 0, respectively.
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could achieve with an ideal frictionless trackball but not directly with either a real
mouse or a real trackball.

3.13.3 Smooth Rotations

Our approach to orienting objects has been based on angles (the Euler angles) mea-
sured with respect to the three coordinate axes. This perspective led to our forming
rotation matrices by concatenating simple rotations about the x-, y-, and z-axes to
obtain a desired rotation about an arbitrary axis. Although OpenGL allows us to
rotate about an arbitrary axis, we usually employ our concatenation strategy to de-
termine this axis and the corresponding angle of rotation.'?

Consider what happens if we wish to move between two orientations as part of
an animation. In principle, we can determine an appropriate rotation matrix as the
product of rotations about the three axes,

R() =R, (6)R (6,)R,(0,).

If we want to create a sequence of images that move between the two orientations, we
can change the individual angles in small increments, either individually or simulta-
neously. Such a sequence would not appear smooth to a viewer; she would detect the
individual rotations about each of the three axes.

With a device such as the trackball, we saw that we could rotate the cube
smoothly about any axis. We did so by exploiting the equivalence between the two
orientations of the cube and two points on a unit circle. A smooth rotation between
the two orientations corresponds to a great circle on the surface of a sphere. This
circle corresponds to a single rotation about a suitable axis that is the normal to the
plane determined by the two points on the sphere and that sphere’s center. If we
increase this angle smoothly, our viewer will see a smooth rotation.

In one sense, what has failed us is our mathematical formulation, which relies
on the use of coordinate axes. However, a deeper and less axis-dependent method is
embedded within the matrix formulation. Suppose that we start with an arbitrary ro-
tation matrix R. All points on a line in the direction d are unaffected by the rotation.
Thus, for any such point p,

Rp=p.

In terms of the matrix R, the column matrix p is an eigenvector of the matrix
corresponding to the eigenvalue 1 (see Appendix C). In addition, for the direction d,

Rd =d,

10. This section and the next may be skipped on a first reading.
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so that its direction is unaffected by the rotation. Consequently, d is also an eigen-
vector of R corresponding to another eigenvalue of 1. The point p must be the fixed
point of the rotation, and the vector d must be the normal to a plane perpendicular
to the direction of rotation. In terms of the trackball, computing the axis of rota-
tion was equivalent to finding a particular eigenvector of the desired rotation matrix.
We could also go the other way. Given an arbitrary rotation matrix, by finding its
eigenvalues and eigenvectors, we also determine the axis of rotation and the fixed
point.

3.13.4 Incremental Rotation

Suppose that we are given two orientations of an object, such as a camera, and we
want to go smoothly from one to the other. One approach is to find the great circle
path as we did with the virtual trackball and make incremental changes in the angle
that rotates us along this path. Thus, we start with the axis of rotation, a start angle, a
final angle, and a desired increment in the angle determined by the number of steps
we wish to take. The main loop in the code will be of the following form:

mat4 ctm;
for(i=0, i<imax; i++)
{

thetax += dx;
thetay += dy;
thetaz += dz;
ctm = RotateXm(thetax)*RotateYm(thetay)*RotateZm(thetaz) ;
draw_object () ;

One problem with this approach is that the calculation of the rotation matrix
requires the evaluation of the sines and cosines of three angles. We would do better if
we compute the rotation matrix once and reuse it. We could also use the small angle
approximations
sinf ~ 0,
cos 6 ~ 1.

If we form an arbitrary rotation matrix through the Euler angles

R =R, ()R, ($)R,(©),

then we can use the approximations to write R as
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[(cosy —siny 0 0 cos¢p 0 sing 0
R= sinyy cosyy 0 O 0 1 0 0
0 0 1 0 —sing 0 cos¢p O
| 0 0 0 1 0 0 0 1
1 0 0 0
0 cos@ —sinf O
0 sinf cosf O
(0 0 0 1
1 =y ¢ 0
| v 1 -6 0
Tl 6 1 0
L0 0 0 1

3.14 QUATERNIONS

Quaternions are an extension of complex numbers that provide an alternative
method for describing and manipulating rotations. Although less intuitive than our
original approach, quaternions provide advantages for animation and hardware im-
plementation of rotation.

3.14.1 Complex Numbers and Quaternions

In two dimensions, the use of complex numbers to represent operations such as
rotation is well known to most students of engineering and science. For example,
suppose that we let i denote the pure imaginary number such that i> = —1. Recalling
Euler’s identity,

9:cos€+isin9,

el
we can write the polar representation of a complex number ¢ as

. i0
c=a-+ib=re",

where r = +/a2 + b2 and 0 =tan"' b/a.
If we rotate ¢ about the origin by ¢ to ¢/, then we can find ¢’ using a rotation
matrix, or we can use the polar representation to write

¢ = rel@F9) = elfi?

Thus, ¢! is a rotation operator in the complex plane and provides an alternative to
using transformations that may prove more efficient in practice.



However, we are really interested in rotations in a three-dimensional space. In
three dimensions, the problem is more difficult because to specify a rotation about
the origin we need to specify both a direction (a vector) and the amount of rotation
about it (a scalar). One solution is to use a representation that consists of both a vector
and a scalar. Usually, this representation is written as the quaternion

a=(qo> 91> 92> 93) = (qp> 9>

where q = (4}, 45> q3)- The operations among quaternions are based on the use of
three “complex” numbers i, j, and k with the properties

==K =ik=—-1

These numbers are analogous to the unit vectors in three dimensions, and we can
write q as

q=qi+ qyj + q5k.

Now we can use the relationships among 1, j, and k to derive quaternion addition and
multiplication. If the quaternion b is given by

b= (p> P)

then using the dot and cross products for vectors,
a+b=({py+qpp+a,

ab = (podo — 9 - P> 4P + Pod + 94 X P)-

We can also define a magnitude for quaternions in the normal manner as
jal’=g5+ai+ a4 +a3=a,+q-q.

Quaternions have a multiplicative identity, the quaternion (1, 0), and it is easy to
verify that the inverse of a quaternion is given by

o L

— |a|2(6]0> _q)

3.14.2 Quaternions and Rotation

So far, we have only defined a new mathematical object. For it to be of use to us,
we must relate it to our geometric entities and show how it can be used to carry out
operations such as rotation. Suppose that we use the vector part of a quaternion to
represent a point in space

p= ©, p).

3.14 Quaternions
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Thus, the components of p = (x, y, z) give the location of the point. Consider the
quaternion

( 6 . 6 )
r=|cos—,sin—-v|,
2 2

where v has unit length. We can then show that the quaternion r is a unit quaternion
(Ir] = 1), and therefore

. < 6 .0 )
r—'={(cos =, —sin-v|.
2 2

If we consider the quaternion product of the quaternion p that represents a point with
r, we obtain the quaternion

p =rpr L.

This quaternion has the form (0, p), where
0 0 0 0 0
p = cos? Ep + sin? E(p - V)V + 2 sin 2 cos E(v X p) — sin E(v XPp) XV

and thus p’ is the representation of a point. What is less obvious is that p’ is the result
of rotating the point p by 6 degrees about the vector v. However, we can verify that
this indeed is the case by comparing terms in p’ with those of the general rotation.
Before doing so, consider the implication of this result. Because we get the same
result, the quaternion product formed from r and p is an alternate to transformation
matrices as a representation of rotation with a fixed point of the origin about an
arbitrary axis. If we count operations, quaternions are faster and have been built into
both hardware and software implementations.

Let’s consider a few examples. Suppose that we consider the rotation about the z-
axis by 6 with a fixed point at the origin. The desired unit vector v is (0, 0, 1), yielding
the quaternion

0 0
r =cos — + sin — (0, 0, 1).
2 2

The rotation of an arbitrary point p = (x, y, z) yields the quaternion
p'=mpr ' =r0,p)r ' =(0,p),

where

p' = (xcos —ysind, xsinf + ycos b, z).

Thus, we get the expected result but with fewer operations. If we consider a sequence
of rotations about the coordinate axes that in matrix form yields the matrix R =
Rx(Gx)Ry(Qy)RZ (6,), we instead can use the product of the corresponding quaternions

to form TyTyl .
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Returning to the rotation about an arbitrary axis, in Section 3.10.4, we derived a
matrix of the form

M= T(pO)Rx(_ex)Ry(_gy)Rz (GZ)R}/ (Qy)Rx(gx)T(_pO) .

Because of the translations at the beginning and end, we cannot use quaternions
for the entire operation. We can, however, recognize that the elements of p’ = rpr=!
can be used to find the elements of the homogeneous coordinate rotation matrix
embedded in M. Thus, if again r = (cos %, sin %V), then

1 — 2 sin? %(v§+v§) 2 sin? %vxvy—ZCOS%sin %vz
R 2 sin? %vxv},—i-Zcos%sin %VZ 1 —2sin? %(Vi—i—vf)
- in2 ¢ _ 9 ¢ip & in2 @ 9 ¢in 2
28in” 3v,v, — 2 €os 5 sin 3y 2 sin 3V V2 + 2 cos 3 sin 5v,
0 0
2020 6 i 0
2sin” 3v,v, +2cos 3sin 3v, 0
in2 2 —_ 9 ¢in 8
2sin” 3v, v, —2cos 5 sin 3v, 0
22002 2
1—2sin 5(Vx+1/y) 0
0 1

This matrix can be made to look more familiar if we use the trigonometric identities

cos 6 = cos®

oD

%
Z —sin® =1—2sin2Q,
2 2

. 6 . 0
sin @ =2 cos — sin —,
2 2
and recall that v is a unit vector so that
vﬁ + v}% + vg =1

Thus, we can use quaternion products to form r and then form the rotation part
of M by matching terms between R and r. We then use our normal transformation
operations to add in the effect of the two translations.

Alternately, we can use the vec4 type to create quaternions either in the applica-
tion (Exercise 3.26) or in the shaders (Exercise 3.30). In either case, we can carry out
the rotation directly without converting back to a rotation matrix.

In addition to the efficiency of using quaternions instead of rotation matrices,
quaternions can be interpolated to obtain smooth sequences of rotations for ani-
mation.
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SUMMARY AND NOTES

In this chapter, we have presented two different—but ultimately complementary—
points of view regarding the mathematics of computer graphics. One is that mathe-
matical abstraction of the objects with which we work in computer graphics is nec-
essary if we are to understand the operations that we carry out in our programs. The
other is that transformations—and the techniques for carrying them out, such as
the use of homogeneous coordinates—are the basis for implementations of graphics
systems.

Our mathematical tools come from the study of vector analysis and linear alge-
bra. For computer-graphics purposes, however, the order in which we have chosen
to present these tools is the reverse of the order that most students learn them. In
particular, linear algebra is studied first, and then vector-space concepts are linked to
the study of n-tuples in R”. In contrast, our study of representation in mathematical
spaces led to our use of linear algebra as a tool for implementing abstract types.

We pursued a coordinate-free approach for two reasons. First, we wanted to
show that all the basic concepts of geometric objects and of transformations are inde-
pendent of the ways the latter are represented. Second, as object-oriented languages
become more prevalent, application programmers will work directly with the objects,
instead of with those objects’ representations. The references in Suggested Readings
contain examples of geometric programming systems that illustrate the potential of
this approach.

Homogeneous coordinates provided a wonderful example of the power of math-
ematical abstraction. By going to an abstract mathematical space—the affine space—
we were able to find a tool that led directly to efficient software and hardware
methods.

Finally, we provided the set of affine transformations supported in OpenGL and
discussed ways that we could concatenate them to provide all affine transformations.
The strategy of combining a few simple types of matrices to build a desired transfor-
mation is a powerful one; you should use it for a few of the exercises at the end of
this chapter. In Chapter 4, we build on these techniques to develop viewing for three-
dimensional graphics; in Chapter 8, we use our transformations to build hierarchical
models.

SUGGESTED READINGS

There are many texts on vector analysis and linear algebra, although most treat
the topics separately. Within the geometric-design community, the vector-space ap-
proach of coordinate-free descriptions of curves and surfaces has been popular; see
the book by Faux and Pratt [Fau80]. See DeRose [DeR88, DeR89] for an introduction
to geometric programming. Homogeneous coordinates arose in geometry [Max51]
and were later discovered by the graphics community [Rob63, Rie81]. Their use in
hardware started with Silicon Graphics’ Geometry Engine [Cla82]. Modern hard-



ware architectures use application-specific integrated circuits (ASICs) that include
homogeneous coordinate transformations.

Quaternions were introduced to computer graphics by Shoemake [Sho85] for
use in animation. See the book by Kuipers [Kui99] for many examples of the use of
rotation matrices and quaternions.

Software tools such as Mathematica [Wol91] and MATLAB [Mat95] are excellent
aids for learning to manipulate transformation matrices.

EXERCISES

3.1 Show that the following sequences commute:
a. A rotation and a uniform scaling
b. Two rotations about the same axis
c. Two translations

3.2 Twist is similar to rotation about the origin except that the amount of rotation
increases by a factor f the farther a point is from the origin. Write a program to
twist the triangle-based Sierpinski gasket by a user-supplied value of f. Observe
how the shape of the gasket changes with the number of subdivisions.

3.3  Write a library of functions that will allow you to do geometric programming.
Your library should contain functions for manipulating the basic geometric
types (points, lines, vectors) and operations on those types, including dot
and cross products. It should allow you to change frames. You can also create
functions to interface with OpenGL so that you can display the results of
geometric calculations.

3.4 If we are interested in only two-dimensional graphics, we can use three-
dimensional homogeneous coordinates by representing a point as p = [x y 1]7
and a vector as v = [a b 0]”. Find the 3 x 3 rotation, translation, scaling, and
shear matrices. How many degrees of freedom are there in an affine transfor-
mation for transforming two-dimensional points?

3.5  We can specify an affine transformation by considering the location of a small
number of points both before and after these points have been transformed. In
three dimensions, how many points must we consider to specify the transfor-
mation uniquely? How does the required number of points change when we
work in two dimensions?

3.6 How must we change the rotation matrices if we are working in a left-handed
system and we retain our definition of a positive rotation?

3.7 Show that any sequence of rotations and translations can be replaced by a
single rotation about the origin followed by a translation.

3.8 Derive the shear transformation from the rotation, translation, and scaling
transformations.

Exercises
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Symmetric ori-
entation of cube.

3.9

3.10

3.12
3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

In two dimensions, we can specify a line by the equation y = mx + h. Find an
affine transformation to reflect two-dimensional points about this line. Extend
your result to reflection about a plane in three dimensions.

In Section 3.10, we showed that an arbitrary rotation matrix could be com-
posed from successive rotations about the three axes. How many ways can we
compose a given rotation if we can do only three simple rotations? Are all three
of the simple rotation matrices necessary?

Add shear to the instance transformation. Show how to use this expanded
instance transformation to generate parallelepipeds from a unit cube.

Find a homogeneous-coordinate representation of a plane.

Determine the rotation matrix for a rotation of the form RnyRz' Assume that
the fixed point is the origin and the angles are 6,, 9),, and 0,.

Consider the solution of either constant-coefficient linear differential or dif-
ference equations (recurrences). Show that the solutions of the homogeneous
equations form a vector space. Relate the solution for a particular inhomoge-
neous equation to an affine space.

Write a program to generate a Sierpinski gasket as follows. Start with a white
triangle. At each step, use transformations to generate three similar triangles
that are drawn over the original triangle, leaving the center of the triangle white
and the three corners black.

Start with a cube centered at the origin and aligned with the coordinate axes.
Find a rotation matrix that will orient the cube symmetrically, as shown in
Figure 3.63.

We have used vertices in three dimensions to define objects such as three-
dimensional polygons. Given a set of vertices, find a test to determine whether
the polygon that they determine is planar.

Three vertices determine a triangle if they do not lie in the same line. Devise a
test for collinearity of three vertices.

We defined an instance transformation as the product of a translation, a rota-
tion, and a scaling. Can we accomplish the same effect by applying these three
types of transformations in a different order?

Write a program that allows you to orient the cube with one mouse button, to
translate it with a second, and to zoom in and out with a third.

Given two nonparallel, three-dimensional vectors u and v, how can we form
an orthogonal coordinate system in which u is one of the basis vectors?

An incremental rotation about the z-axis can be approximated by the matrix

—0

S O D
S

S = O O

—_ O O O



3.23

3.24

3.25
3.26

3.27

3.28

3.29

3.30

3.31

Exercises

What negative aspects are there if we use this matrix for a large number of
steps? Can you suggest a remedy? Hint: Consider points a distance of 1 from
the origin.

Find the quaternions for 90-degree rotations about the x- and y-axes. Deter-
mine their product.

Determine the rotation matrix R = R(GX)R(Oy)R(HZ). Find the corresponding
quaternion.

Redo the trackball program using quaternions instead of rotation matrices.

Using the vec4 class, create a set of quaternion operations that can be carried
out in an application. For example, you might start with the prototypes

typedef vec4 quaternion;

quaternion multq(const quaternion &, const quaternion &);
quaternion addq(const quaternion &, const quaternion &) ;
quaternion iverseq(const quaternion &);

point4 rotateq(float theta, const pointéd &);

Write a vertex shader that takes as input an angle and an axis of rotation and
rotates vertices about this axis.

In principle, an object-oriented system could provide scalars, vectors, and
points as basic types. None of the popular APIs does so. Why do you think
this is the case?

Show that the sum

P=aP,+a)Py+---+a,P,

n

is defined if and only if

o+, +--t+a, =1

Hint: Start with the first two terms and write them as

P=o P +o,P,+ - =P+ (0 + 0, — )Py + - -
=a,(P) =Py + (@ +a)Py+ -+,

and then proceed inductively.
Write a vertex shader whose input is a quaternion and rotates the input vertex
using quaternion rotation.

Write a function Rotate (float theta, vec3d) that will rotate by theta
degrees about the axis d with a fixed point at the origin.

193



This page intentionally left blank



VIEWING

e have completed our discussion of the first half of the synthetic camera
model—specifying objects in three dimensions. We now investigate the multi-
tude of ways in which we can describe our virtual camera. Along the way, we examine
related topics, such as the relationship between classical viewing techniques and com-
puter viewing and how projection is implemented using projective transformations.
There are three parts to our approach. First, we look at the types of views that we
can create and why we need more than one type of view. Then we examine how an
application program can specify a particular view within OpenGL. We will see that
the viewing process has two parts. In the first, we use the model-view matrix to switch
vertex representations from the object frame in which we defined our objects to their
representation in the eye frame, in which the camera is at the origin. This represen-
tation of the geometry will allow us to use canonical viewing procedures. The second
part of the process deals with the type of projection we prefer (parallel or perspec-
tive) and the part of the world we wish to image (the clipping or view volume). These
specifications will allow us to form a projection matrix that is concatenated with the
model-view matrix. Finally, we derive the projection matrices that describe the most
important parallel and perspective views and investigate how to carry out these pro-
jections in OpenGL.

4.1 CLASSICAL AND COMPUTER VIEWING

Before looking at the interface between computer-graphics systems and application
programs for three-dimensional viewing, we take a slight diversion to consider classi-
cal viewing. There are two reasons for examining classical viewing. First, many of the
jobs that were formerly done by hand drawing—such as animation in movies, archi-
tectural rendering, drafting, and mechanical-parts design—are now routinely done
with the aid of computer graphics. Practitioners of these fields need to be able to pro-
duce classical views—such as isometrics, elevations, and various perspectives—and
thus must be able to use the computer system to produce such renderings. Second,
the relationships between classical and computer viewing show many advantages of,
and a few difficulties with, the approach used by most APIs.
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FIGURE 4.1 Viewing.
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FIGURE 4.2 Movement of the center of projection (COP) to infinity.

When we introduced the synthetic-camera model in Chapter 1, we pointed
out the similarities between classical and computer viewing. The basic elements in
both cases are the same. We have objects, a viewer, projectors, and a projection
plane (Figure 4.1). The projectors meet at the center of projection (COP). The COP
corresponds to the center of the lens in the camera or in the eye, and in a computer-
graphics system, it is the origin of the camera frame for perspective views. All
standard graphics systems follow the model that we described in Chapter 1, which
is based on geometric optics. The projection surface is a plane, and the projectors are
straight lines. This situation is the one we usually encounter and is straightforward
to implement, especially with our pipeline model.

Both classical and computer graphics allow the viewer to be an infinite distance
from the objects. Note that as we move the COP to infinity, the projectors become
parallel and the COP can be replaced by a direction of projection (DOP), as shown
in Figure 4.2. Note also that as the COP moves to infinity, we can leave the projection
plane fixed and the size of the image remains about the same, even though the COP is
infinitely far from the objects. Views with a finite COP are called perspective views;
views with a COP at infinity are called parallel views. For parallel views, the origin
of the camera frame usually lies in the projection plane.



4.1 Classical and Computer Viewing

Color Plates 9 and 10 show a parallel and a perspective rendering, respectively.
These plates illustrate the importance of having both types of view available in appli-
cations such as architecture; in an API that supports both types of viewing, the user
can switch easily between various viewing modes. Most modern APIs support both
parallel and perspective viewing. The class of projections produced by these systems
is known as planar geometric projections because the projection surface is a plane
and the projectors are lines. Both perspective and parallel projections preserve lines;
they do not, in general, preserve angles. Although the parallel views are the limiting
case of perspective viewing, both classical and computer viewing usually treat them as
separate cases. For classical views, the techniques that people use to construct the two
types by hand are different, as anyone who has taken a drafting class surely knows.
From the computer perspective, there are differences in how we specify the two types
of views. Rather than looking at a parallel view as the limit of the perspective view,
we derive the limiting equations and use those equations directly to form the corre-
sponding projection matrix. In modern pipeline architectures, the projection matrix
corresponding to either type of view can be loaded into the pipeline.

Although computer-graphics systems have two fundamental types of viewing
(parallel and perspective), classical graphics appears to permit a host of different
views, ranging from multiview orthographic projections to one-, two-, and three-
point perspectives. This seeming discrepancy arises in classical graphics as a result of
the desire to show a specific relationship among an object, the viewer, and the projec-
tion plane, as opposed to the computer-graphics approach of complete independence
of all specifications.

4.1.1 Classical Viewing

When an architect draws an image of a building, she knows which side she wishes to
display and thus where she should place the viewer in relationship to the building.
Each classical view is determined by a specific relationship between the objects and
the viewer.

In classical viewing, there is the underlying notion of a principal face. The
types of objects viewed in real-world applications, such as architecture, tend to be
composed of a number of planar faces, each of which can be thought of as a principal
face. For a rectangular object, such as a building, there are natural notions of the
front, back, top, bottom, right, and left faces. In addition, many real-world objects
have faces that meet at right angles; thus, such objects often have three orthogonal
directions associated with them.

Figure 4.3 shows some of the main types of views. We start with the most re-
strictive view for each of the parallel and perspective types, and then move to the less
restrictive conditions.

4.1.2 Orthographic Projections

Our first classical view is the orthographic projection shown in Figure 4.4. In all or-
thographic (or orthogonal) views, the projectors are perpendicular to the projection
plane. In a multiview orthographic projection, we make multiple projections, in
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FIGURE 4.3 Classical views.

FIGURE 4.4 Orthographic projections.

each case with the projection plane parallel to one of the principal faces of the object.
Usually, we use three views—such as the front, top, and right—to display the object.
The reason that we produce multiple views should be clear from Figure 4.5. For a
box-like object, only the faces parallel to the projection plane appear in the image. A
viewer usually needs more than two views to visualize what an object looks like from
its multiview orthographic projections. Visualization from these images can require
skill on the part of the viewer. The importance of this type of view is that it preserves
both distances and angles, and because there is no distortion of either distance or
shape, multiview orthographic projections are well suited for working drawings.

4.1.3 Axonometric Projections

If we want to see more principal faces of our box-like object in a single view, we
must remove one of our restrictions. In axonometric views, the projectors are still
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C 1

FIGURE 4.5 Temple and three multiview orthographic projections.
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FIGURE 4.6 Axonometric projections. (a) Construction of trimetric-view
projections. (b) Top view. (c) Side view.

orthogonal to the projection plane, as shown in Figure 4.6, but the projection plane
can have any orientation with respect to the object. If the projection plane is placed
symmetrically with respect to the three principal faces that meet at a corner of our
rectangular object, then we have an isometric view. If the projection plane is placed
symmetrically with respect to two of the principal faces, then the view is dimetric.
The general case is a trimetric view. These views are shown in Figure 4.7. Note that
in an isometric view, a line segment’s length in the image space is shorter than its
length measured in the object space. This foreshortening of distances is the same
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FIGURE 4.7 Axonometric views.
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FIGURE 4.8 Oblique view. (a) Construction. (b) Top view. (c) Side view.

in the three principal directions, so we can still make distance measurements. In the
dimetric view, however, there are two different foreshortening ratios; in the trimetric
view, there are three. Also, although parallel lines are preserved in the image, angles
are not. A circle is projected into an ellipse. This distortion is the price we pay for the
ability to see more than one principal face in a view that can be produced easily either
by hand or by computer. Axonometric views are used extensively in architectural and
mechanical design.

4.1.4 Oblique Projections

The oblique views are the most general parallel views. We obtain an oblique projec-
tion by allowing the projectors to make an arbitrary angle with the projection plane,
as shown in Figure 4.8. Consequently, angles in planes parallel to the projection plane
are preserved. A circle in a plane parallel to the projection plane is projected into a cir-
cle, yet we can see more than one principal face of the object. Oblique views are the
most difficult to construct by hand. They are also somewhat unnatural. Most physi-
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cal viewing devices, including the human visual system, have a lens that is in a fixed
relationship with the image plane—usually, the lens is parallel to the plane. Although
these devices produce perspective views, if the viewer is far from the object, the views
are approximately parallel, but orthogonal, because the projection plane is parallel
to the lens. The bellows camera that we used to develop the synthetic-camera model
in Section 1.6 has the flexibility to produce approximations to parallel oblique views.
One use of such a camera is to create images of buildings in which the sides of the
building are parallel rather than converging as they would be in an image created
with an orthogonal view with the camera on the ground.

From the application programmer’s point of view, there is no significant differ-
ence among the different parallel views. The application programmer specifies a type
of view—parallel or perspective—and a set of parameters that describe the camera.
The problem for the application programmer is how to specify these parameters in
the viewing procedures so as best to view an object or to produce a specific classical
view.

4.1.5 Perspective Viewing
All perspective views are characterized by diminution of size. When objects are
moved farther from the viewer, their images become smaller. This size change gives
perspective views their natural appearance; however, because the amount by which a
line is foreshortened depends on how far the line is from the viewer, we cannot make
measurements from a perspective view. Hence, the major use of perspective views is
in applications such as architecture and animation, where it is important to achieve
natural-looking images.

In the classical perspective views, the viewer is located symmetrically with respect
to the projection plane, as shown in Figure 4.9. Thus, the pyramid determined by the
window in the projection plane and the center of projection is a symmetric or right

FIGURE 4.9 Perspective viewing.
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(b) (c)

FIGURE 4.10 Classical perspective views. (a) Three-point. (b) Two-point.
(c) One-point.

pyramid. This symmetry is caused by the fixed relationship between the back (retina)
and lens of the eye for human viewing, or between the back and lens of a camera
for standard cameras, and by similar fixed relationships in most physical situations.
Some cameras, such as the bellows camera, have movable film backs and can produce
general perspective views. The model used in computer graphics includes this general
case.

The classical perspective views are usually known as one-, two-, and three-point
perspectives. The differences among the three cases are based on how many of the
three principal directions in the object are parallel to the projection plane. Consider
the three perspective projections of the building shown in Figure 4.10. Any corner
of the building includes the three principal directions. In the most general case—
the three-point perspective—parallel lines in each of the three principal directions
converges to a finite vanishing point (Figure 4.10(a)). If we allow one of the principal
directions to become parallel to the projection plane, we have a two-point projection
(Figure 4.10(b)), in which lines in only two of the principal directions converge.
Finally, in the one-point perspective (Figure 4.10(c)), two of the principal directions
are parallel to the projection plane, and we have only a single vanishing point. As
with parallel viewing, it should be apparent from the programmer’s point of view that
the three situations are merely special cases of general perspective viewing, which we
implement in Section 4.4.

4.2 VIEWING WITH A COMPUTER

We can now return to three-dimensional graphics from a computer perspective. Be-
cause viewing in computer graphics is based on the synthetic-camera model, we
should be able to construct any of the classical views. However, there is a fundamen-
tal difference. All the classical views are based on a particular relationship among the
objects, the viewer, and the projectors. In computer graphics, we stress the indepen-
dence of the object specifications and camera parameters. Hence, to create one of the
classical views, the application program must use information about the objects to
create and place the proper camera.



4.2 Viewing with a Computer

Using OpenGL, we will have many options on how and where we carry out
viewing. All our approaches will use the powerful transformation capabilities of the
GPU. Because every transformation is equivalent to a change of frames, we can
develop viewing in terms of the frames and coordinate systems we introduced in
Chapter 3. In particular, we will work with object coordinates, camera coordinates,
and clip coordinates.

A good starting point is the output of the vertex shader. In Chapters 2 and 3, we
used the fact that as long as the vertices output by the vertex shader were within the
clipping volume, they continued onto the rasterizer. Hence, in Chapter 2 we were able
to specify vertex positions inside the default viewing cube. In Chapter 3, we learned
how to scale positions using affine transformations so they would be mapped inside
the cube. We also relied on the fact that objects that are sent to the rasterizer are
projected with a simple orthographic projection.

Hidden-surface removal, however, occurs after the fragment shader. Conse-
quently, although an object might be blocked from the camera by other objects, even
with hidden-surface removal enabled, the rasterizer will still generate fragments for
blocked objects within the clipping volume. However, we need more flexibility in
both how we specify objects and how we view them. There are four major additions
to address:

1. We need the ability to work in the units of the application.
2. We need to position the camera independently of the objects.

3. We want to be able to specify a clipping volume in units related to the appli-
cation.

4. We want to be able to do either parallel or perspective projections.

We can accomplish all these additions by careful use of transformations: the first three
using affine transformations, and the last using a process called perspective normal-
ization. All of these transformations must be carried out either in the application code
or in the vertex shader.

We approach all these tasks through the transformation capabilities we devel-
oped in Chapter 3. Of the frames that are used in OpenGL, three are important in the
viewing process: the object frame, the camera frame, and the clip coordinate frame.
In Chapters 2 and 3, we were able to avoid explicitly specifying the first two by using a
default in which all three frames were identical. We either directly specified vertex po-
sitions in clip coordinates or used an affine transformation to scale objects we wanted
to be visible to lie within the clipping cube in clip coordinates. The camera was fixed
to be at the origin and pointing in the negative z-direction in clip coordinates.!

To get a more flexible way to do viewing, we will separate the process into two
fundamental operations. First, we must position and orient the camera. This oper-
ation is the job of the model-view transformation. After vertices pass through this

1. The default camera can “see” objects behind it if they are in the clipping volume.
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FIGURE 4.11 Viewing transformations.

transformation, they will be represented in eye or camera coordinates. The second
step is the application of the projection transformation. This step applies the specified
projection—orthographic or perspective—to the vertices and puts objects within the
specified clipping volume into the same clipping cube in clip coordinates. One of the
functions of either projection will be to allow us to specify a view volume in camera
coordinates rather than having to scale our object to fit into the default view volume.
These transformations are shown in Figure 4.11.

What we have called the current transformation matrix will be the product of
two matrices: the model-view matrix and the projection matrix. The model-view
matrix will take vertices in object coordinates and convert them to a representation
in camera coordinates and thus must encapsulate the positioning and orientation
of the camera. The projection matrix will both carry out the desired projection—
either orthogonal or perspective—and convert a viewing volume specified in camera
coordinates to fit inside the viewing cube in clip coordinates.

4.3 POSITIONING OF THE CAMERA

In this section, we deal with positioning and orientation of the camera; in Section 4.4,
we discuss how we specify the desired projection. Although we will focus on an API
that will work well with OpenGL, we also will examine briefly a few other APIs to
specify a camera.

4.3.1 Positioning of the Camera Frame

As we saw in Chapter 3, we can specify vertices in any units we choose, and we can
define a model-view matrix by a sequence of affine transformations that repositions
these vertices. The model-view transformation is the concatenation of a modeling
transformation that takes instances of objects in object coordinates and brings them
into the world frame. The second part transforms world coordinates to eye coordi-
nates. Because we usually do not need to access world coordinates, we can use the
model-view matrix rather than separate modeling and viewing matrices.

Initially, we set the model-view matrix to an identity matrix, so the camera
frame and the object frame are identical. Hence, the camera is initially pointing in
the negative z-direction (Figure 4.12). In most applications, we model our objects
as being located around the origin, so a camera located at the default position with
the default orientation does not see all the objects in the scene. Thus, either we must
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FIGURE 4.13 Movement of the camera and object frames. (a) Initial
configuration. (b) Configuration after change in the model-view matrix.

move the camera away from the objects that we wish to have in our image, or the
objects must be moved in front of the camera. These are equivalent operations, as
either can be looked at as positioning the frame of the camera with respect to the
frame of the objects.

It might help to think of a scene in which we have initially specified several ob-
jects by specifying all vertices and putting their positions into an array. We start with
the model-view matrix set to an identity matrix. Changes to the model-view matrix
move the object frame relative to the camera and affect the camera’s view of all ob-
jects defined afterward, because their vertices are specified relative to the repositioned
object frame. Equivalently, in terms of the flow of an application program, the pro-
jection and model-view matrices are part of its state. We will either apply them to
the vertex positions in the application or, more likely, we will send them to the vertex
shader where they will be applied automatically whenever vertex data is sent to the
shader.

In either case, the sequence illustrated in Figure 4.13 shows the process. In part
(a), we have the initial configuration. A vertex specified at p has the same represen-
tation in both frames. In part (b), we have changed the model-view matrix to C by a
sequence of transformations. The two frames are no longer the same, although C
contains the information to move from the camera frame to the object frame or,
equivalently, contains the information that moves the camera away from its initial
position at the origin of the object frame. A vertex specified at q affer the change to
the model-view matrix is at q in the object frame. However, its position in the camera
frame is Cq and can be stored internally within the application or sent to the GPU,
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where it will be converted to camera coordinates. The viewing transformation will
assume that vertex data it starts with is in camera coordinates.

An equivalent view is that the camera is still at the origin of its own frame, and
the model-view matrix is applied to primitives specified in this system. In practice,
you can use either view. But be sure to take great care regarding where in your
program the primitives are specified relative to changes in the model-view matrix.

At any given time, the model-view matrix encapsulates the relationship between
the camera frame and the object frame. Although combining the modeling and view-
ing transformations into a single matrix may initially cause confusion, on closer ex-
amination this approach is a good one. If we regard the camera as an object with
geometric properties, then transformations that alter the position and orientation of
objects should also affect the position and orientation of the camera relative to these
objects.

The next problem is how we specify the desired position of the camera and then
implement camera positioning in OpenGL. We outline three approaches, one in this
section and two in Section 4.3.2. Two others are given as exercises (Exercises 4.2
and 4.3).

Our first approach is to specify the position indirectly by applying a sequence
of rotations and translations to the model-view matrix. This approach is a direct
application of the instance transformation that we presented in Chapter 3, but we
must be careful for two reasons. First, we usually want to specify the camera’s position
and orientation before we position any objects in the scene.? Second, the order of
transformations on the camera may appear to be backward from what you might
expect.

Consider an object centered at the origin. The camera is in its initial position,
also at the origin, pointing down the negative z-axis. Suppose that we want an image
of the faces of the object that point in the positive z-direction. We must move the
camera away from the origin. If we allow the camera to remain pointing in the
negative z-direction, then we want to move the camera backward along the positive
z-axis, and the proper transformation is

100 0
010 0
T= ,
00 1 —d
000 1

where d is a positive number.

Many people find it helpful to interpret this operation as moving the camera
frame relative to the object frame. This point of view has a basis in classical viewing.
In computer graphics, we usually think of objects as being positioned in a fixed frame,

2. In an animation, where in the program we specify the position of the camera depends on whether
we wish to attach the camera to a particular object or to place the camera in a fixed position in the
scene (see Exercise 4.3).
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and it is the viewer who must move to the right position to achieve the desired view.
In classical viewing, the viewer dominates. Conceptually, we do viewing by picking up
the object, orienting it as desired, and bringing it to the desired location. One con-
sequence of the classical approach is that distances are measured from the viewer to
the object, rather than—as in most physically based systems—from the object to the
viewer. Classical viewing often resulted in a left-handed camera frame. Early graphics
systems followed the classical approach by having modeling in right-handed coordi-
nates and viewing in left-handed coordinates—a decision that, although technically
correct, caused confusion among users. When we are working in camera coordinates,
we will measure distances from the camera, which is consistent with classical viewing.
In OpenGL, the internal frames are right handed. Fortunately, because the applica-
tion program works primarily in object coordinates, the application programmer
usually does not see any of the internal representations and thus does not have to
worry about these alternate perspectives on viewing.

Suppose that we want to look at the same object from the positive x-axis. Now,
not only do we have to move away from the object, but we also have to rotate the
camera about the y-axis, as shown in Figure 4.14. We must do the translation after
we rotate the camera by 90 degrees about the y-axis. In the program, the calls must
be in the reverse order, as we discussed in Section 3.11, so we expect to see code like
the following:

mat4 model_view;
model_view = Translate(0.0, 0.0, -d)*RotateX(-90.0);

In terms of the two frames, first we rotate the object frame relative to the camera
frame, and then we move the two frames apart.

In Chapters 2 and 3, we were able to show simple three-dimensional examples by
using an identity matrix as the default projection matrix. That default setting has the
effect of creating an orthographic projection with the camera at the origin, pointed
in the negative z-direction. In our cube example in Chapter 3, we rotated the cube to
see the desired faces. As we just discussed, rotating the cube is equivalent to rotating
the frame of the cube with respect to the frame of the camera; we could have achieved
the same view by rotating the camera relative to the cube. We can extend this strategy
of translating and rotating the camera to create other orthographic views. Perspective
views require changes to the default projection.

Consider creating an isometric view of the cube. Suppose that again we start with
a cube centered at the origin and aligned with the axes. Because the default camera
is in the middle of the cube, we want to move the camera away from the cube by a
translation. We obtain an isometric view when the camera is located symmetrically
with respect to three adjacent faces of the cube; for example, anywhere along the line
from the origin through the point (1, 1, 1). We can move the cube away from the
camera and then rotate the cube to achieve the desired view or, equivalently, move
the camera away from the cube and then rotate it to point at the cube.

Starting with the default camera, suppose that we are now looking at the cube
from somewhere on the positive z-axis. We can obtain one of the eight isometric

<
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FIGURE 4.14 Positioning of
the camera.
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FIGURE 4.15 Cube after rotation about x-axis. (a) View from positive
z-axis. (b) View from positive y-axis.

views—there is one for each vertex—Dby first rotating the cube about the x-axis until
we see the two faces symmetrically, as shown in Figure 4.15(a). Clearly, we obtain this
view by rotating the cube by 45 degrees. The second rotation is about the y-axis. We
rotate the cube until we get the desired isometric. The required angle of rotation is
—35.26 degrees about the y-axis. This second angle of rotation may not seem obvious.
Consider what happens to the cube after the first rotation. From our position on
the positive z-axis, the cube appears as shown in Figure 4.15(a). The original corner
vertex at (—1, 1, 1) has been transformed to (—1, 0, \/5). If we look at the cube from
the x-axis, as in Figure 4.15(b), we see that we want to rotate the right vertex to the
y-axis. The right triangle that determines this angle has sides of 1 and +/2, which
correspond to an angle of 35.26 degrees. However, we need a clockwise rotation, so
the angle must be negative. Finally, we move the camera away from the origin. Thus,
our strategy is first to rotate the frame of the camera relative to the frame of the object
and then to separate the two frames; the model-view matrix is of the form

M=TR,R,.

We obtain this model-view matrix for an isometric by multiplying the matrices
in homogeneous coordinates. The concatenation of the rotation matrices yields

1 0 0 0 V220 V272 0

R—RR — 0 V6/3 —3/3 0 0 1 0 o0
VLo V33 V63 0| | —v2/2 0 V2/2 0

0 0 0 1 0 0 0 1

V2/2 0 W22

V6/6  \6/3 —\6/6

—3/3 3/3 373
0 0 0

—_ O O O
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It is simple to verify that the original vertex (—1, 1, 1) is correctly transformed to
(0, 0, \/3) by this matrix. If we concatenate in the translation by (0, 0, —d), the
matrix becomes

V2/2 0 V22 0
V6/6  V6/3 —\6/6 0
—V3/3 V3/3 33 —d

0 0 0 1

TR =

In OpenGL, the code for setting the model-view matrix is as follows:

mat4 model_view;
model_view = Translate(0.0, 0.0, -d)*RotateX(35.26)*RotateY(45.0);

We have gone from a representation of our objects in object coordinates to one
in camera coordinates. Rotation and translation do not affect the size of an object
nor, equivalently, the size of its orthographic projection. However, these transforma-
tions can affect whether or not objects are clipped. Because the clipping volume is
measured relative to the camera, if, for example, we translate the object away from
the camera, it may no longer lie within the clipping volume. Hence, even though
the projection of the object is unchanged and the camera still points at it, the object
would not be in the image.

4.3.2 Two Viewing APIs

The construction of the model-view matrix for an isometric view is a little unsatis-
fying. Although the approach was intuitive, an interface that requires us to compute
the individual angles before specifying the transformations is a poor one for an ap-
plication program. We can take a different approach to positioning the camera—an
approach that is similar to that used by PHIGS, one of the original standard APIs for

three-dimensional graphics. Our starting point is again the object frame. We describe n_Vup
the camera’s position and orientation in this frame. The precise type of image that
we wish to obtain—perspective or parallel—is determined separately by the specifi- v

cation of the projection matrix. This second part of the viewing process is often called VRP

the normalization transformation. We approach this problem as one of a change in

frames. Again, we think of the camera as positioned initially at the origin, pointed

in the negative z-direction. Its desired location is centered at a point called the view- v
reference point (VRP; Figure 4.16), whose position is given in the object frame. The FIGURE 4.16 Camera frame.
user executes a function such as

set_view_reference_point(x, y, z);

to specify this position. Next, we want to specify the orientation of the camera. We
can divide this specification into two parts: specification of the view-plane normal
(VPN) and specification of the view-up vector (VUP). The VPN (n in Figure 4.16)
gives the orientation of the projection plane or back of the camera. The orientation
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VUP

FIGURE 4.17 Determination
of the view-up vector.

of a plane is determined by that plane’s normal, and thus part of the API is a function
such as

set_view_plane_normal (nx, ny, nz);

The orientation of the plane does not specify what direction is up from the camera’s
perspective. Given only the VPN, we can rotate the camera with its back in this plane.
The specification of the VUP fixes the camera and is performed by a function such as

set_view_up(vup_x, vup_y, vup_z);

We project the VUP vector on the view plane to obtain the up-direction vector v
(Figure 4.17). Use of the projection allows the user to specify any vector not parallel
to v, rather than being forced to compute a vector lying in the projection plane. The
vector v is orthogonal to n. We can use the cross product to obtain a third orthogonal
direction u. This new orthogonal coordinate system usually is referred to as either the
viewing-coordinate system or the u-v-n system. With the addition of the VRP, we
have the desired camera frame. The matrix that does the change of frames is the view-
orientation matrix and is equivalent to the viewing component of the model-view
matrix.

We can derive this matrix using rotations and translations in homogeneous
coordinates. We start with the specifications of the view-reference point,

—_— N R

the view-plane normal,

=

=
Il
=

=
N

o

and the view-up vector,

V“Px

v
V. = up Yy
V”Pz
0

We construct a new frame with the view-reference point as its origin, the view-
plane normal as one coordinate direction, and two other orthogonal directions that



4.3 Positioning of the Camera

we call u and v. Our default is that the original x, y, z axes become u, v, n, re-
spectively. The view-reference point can be handled through a simple translation
T(—x, —y, —z) from the viewing frame to the original origin. The rest of the model-
view matrix is determined by a rotation so that the model-view matrix V is of the
form

V =TR.

The direction v must be orthogonal to n; hence,

n-v=_0.

Figure 4.17 shows that v is the projection of v, into the plane formed by n and v,
and thus must be a linear combination of these two vectors,

v=an+ fv,,.

If we temporarily ignore the length of the vectors, then we can set 8 = 1 and solve for

V., -n
u
o=——P
n-n
and
Vyp 11
V=V, — n.
P
n-n

We can find the third orthogonal direction by taking the cross product
u=vxn.

These vectors do not generally have unit length. We can normalize each indepen-
dently, obtaining three unit-length vectors u’, v/, and n’. The matrix

/ / /

w, v, n, 0
/ / /

A w, v, n, 0
/ / /

w, v, n, 0

0 0 0 1

is a rotation matrix that orients a vector in the u'v'n’ system with respect to the
original system. However, we really want to go in the opposite direction to obtain the
representation of vectors in the original system in the u’v'n’ system. We want A~1,
but because A is a rotation matrix, the desired matrix R is

R=AT1=AT.
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Finally, multiplying by the translation matrix T, we have

! / / / / /
Wy W, U, =X — yu, — Zu

/ / / / / /

vl vVl —xvl— vl —zv

_ _ x y z x y z
V=RT= n. n, n —xnl —yn —zn
X y z X y y z

0O 0 O 1

Note that, in this case, the translation matrix is on the right, whereas in our first
derivation it was on the left. One way to interpret this difference is that in our first
derivation, we first rotated one of the frames and then pushed the frames apart in
a direction represented in the camera frame. In the second derivation, the camera
position was specified in the object frame. Another way to understand this difference
is to note that the matrices RT and TR have similar forms. The rotation parts of the
product—the upper-left 3 x 3 submatrices—are identical, as are the bottom rows.
The top three elements in the right column differ because the frame of the rotation
affects the translation coefficients in RT and does not affect them in TR. For our
isometric example,

-1

1
n= ,

0—

0]

1
Vap = 0

0_

The camera position must be along a diagonal in the original frame. If we use

—d

_ V3| d

I I I
1

we obtain the same model-view matrix that we derived in Section 4.3.1.

4.3.3 The Look-At Function

The use of the VRP, VPN, and VUP is but one way to provide an API for specifying
the position of a camera. In many situations, a more direct method is appropriate.
Consider the situation illustrated in Figure 4.18. Here a camera is located at a point e
called the eye point, specified in the object frame, and it is pointed at a second point
a, called the at point. These points determine a VPN and a VRP. The VPN is given by
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FIGURE 4.18 Look-at positioning.

the vector formed by point subtraction between the eyepoint and the at point,
vpn=a —e,
and normalizing it,
n=_P%
[vpn|

The view-reference point is the eye point. Hence, we need only to add the desired
up direction for the camera, and a function to construct the desired matrix LookAt
could be of the form?

mat4 LookAt(point4 eye, point4 at, vec4 up)
or the equivalent form

mat4 LookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez,
GLfloat atx, GLfloat aty, GLfloat atz,
GLfloat upx, GLfloat upy, GLfloat upz);

Note that once we have computed the vector vpn, we can proceed as we did with
forming the transformation in the previous section. A slightly simpler computation
would be to form a vector perpendicular to n and v, by taking their cross product
and normalizing it,

V“P X n

3. Because we are working in homogeneous coordinates, vup can be a vecé4 type if the fourth
component is a zero.
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FIGURE 4.20 Elevation and
azimuth.

z

Roll Pitch Yaw
FIGURE 4.19 Roll, pitch, and yaw.

Finally, we get the normalized projection of the up vector onto the camera plane by
taking a second cross product

nxu

B |nxu|'

Note that we can use the standard rotations, translations, and scalings as part of
defining our objects. Although these transformations will also alter the model-view
matrix, it is often helpful conceptually to consider the use of LookAt as positioning
the objects and subsequent operations that affect the model-view matrix as position-
ing the camera.

Note that whereas functions, such as LookAt, that position the camera alter
the model-view matrix and are specified in object coordinates, the functions that we
introduce to form the projection matrix will be specified in eye coordinates.

4.3.4 Other Viewing APIs

In many applications, neither of the viewing interfaces that we have presented is
appropriate. Consider a flight-simulation application. The pilot using the simulator
usually uses three angles—roll, pitch, and yaw—to specify her orientation. These
angles are specified relative to the center of mass of the vehicle and to a coordinate
system aligned along the axes of the vehicle, as shown in Figure 4.19. Hence, the
pilot sees an object in terms of the three angles and of the distance from the object
to the center of mass of her vehicle. A viewing transformation can be constructed
(Exercise 4.2) from these specifications from a translation and three simple rotations.

Viewing in many applications is most naturally specified in polar—rather than
rectilinear—coordinates. Applications involving objects that rotate about other ob-
jects fit this category. For example, consider the specification of a star in the sky. Its
direction from a viewer is given by its elevation and azimuth (Figure 4.20). The eleva-
tion is the angle above the plane of the viewer at which the star appears. By defining a
normal at the point that the viewer is located and using this normal to define a plane,
we define the elevation, regardless of whether or not the viewer is actually standing
on a plane. We can form two other axes in this plane, creating a viewing-coordinate
system. The azimuth is the angle measured from an axis in this plane to the projec-
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tion onto the plane of the line between the viewer and the star. The camera can still
be rotated about the direction it is pointed by a twist angle.

4.4 PARALLEL PROJECTIONS

A parallel projection is the limit of a perspective projection in which the center of
projection is infinitely far from the objects being viewed, resulting in projectors that
are parallel rather than converging at the center of projection. Equivalently, a parallel
projection is what we would get if we had a telephoto lens with an infinite focal length.
Rather than first deriving the equations for a perspective projection and computing
their limiting behavior, we will derive the equations for parallel projections directly
using the fact that we know in advance that the projectors are parallel and point in a
direction of projection.

4.4.1 Orthogonal Projections

Orthogonal or orthographic projections are a special case of parallel projections,
in which the projectors are perpendicular to the view plane. In terms of a camera,
orthogonal projections correspond to a camera with a back plane parallel to the lens,
which has an infinite focal length. Figure 4.21 shows an orthogonal projection with
the projection plane z = 0. As points are projected into this plane, they retain their x
and y values, and the equations of projection are

X, =X,
Vo=V
ZP=O.

We can write this result using our original homogeneous coordinates:

X, 1 0 0 O X
Vol 0 1 00 y
z, 0 0 0 O z

1 0 0 0 1 1

To prepare ourselves for a more general orthogonal projection, we can write this
expression as

q = Mlp,

where

—_— N = R

(X, Yi Z)
0

X

(xp, Ypr O)Z _

z

FIGURE 4.21 Orthogonal
projection.
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Iis a4 x 4 identity matrix, and

S O O =
S O = O
S O O O
—_ O O O

The projection described by M is carried out by the hardware after the vertex shader.
Hence, only those objects inside the cube of side length 2 centered at the origin will
be projected and possibly visible. If we want to change which objects are visible, we
can replace the identity matrix by a transformation N that we can carry out either in
the application or in the vertex shader, which will give us control over the clipping
volume. For example, if we replace I with a scaling matrix, we can see more or fewer
objects.

4.4.2 Parallel Viewing with OpenGL

We will focus on a single orthogonal viewing function in which the view volume is
a right parallelepiped, as shown in Figure 4.22. The sides of the clipping volume are
the four planes

x = right,
x = left,

y = top,

y = bottom.

The near (front) clipping plane is located a distance near from the origin, and the
far (back) clipping plane is at a distance far from the origin. All these values are in
camera coordinates. We will derive a function

mat4 Ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top,
GLfloat near, GLfloat far)

which will form the projection matrix N.*

Although mathematically we get a parallel view by moving the camera to infin-
ity, because the projectors are parallel, we can slide this camera in the direction of
projection without changing the projection. Consequently, it is helpful to think of an
orthogonal camera located initially at the origin in camera coordinates with the view
volume determined by

4. Users of Microsoft Windows may have to change the identifiers near and far because far is a

reserved word in Visual C++.
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FIGURE 4.22 Orthographic viewing.

x = =1,
y ==l
z==+1

as the default behavior. Equivalently, we are applying an identity projection matrix
for N. We will derive a nonidentity matrix N using translation and scaling that will
transform vertices in camera coordinates to fit inside the default view volume, a
process called projection normalization. This matrix is what will be produced by
Ortho. Note that we are forced to take this approach because the final projection
carried out by the GPU is fixed. Nevertheless, the normalization process is efficient
and will allow us to carry out parallel and perspective projections with the same
pipeline.

4.4.3 Projection Normalization

When we introduced projection in Chapter 1 and looked at classical projection earlier
in this chapter, we viewed it as a technique that took the specification of points
in three dimensions and mapped them to points on a two-dimensional projection
surface. Such a transformation is not invertible, because all points along a projector
map into the same point on the projection surface.

In computer graphics systems, we adopt a slightly different approach. First, we
work in four dimensions using homogeneous coordinates. Second, we retain depth
information—distance along a projector—as long as possible so that we can do
hidden-surface removal later in the pipeline. Third, we use projection normalization,
to convert all projections into orthogonal projections by first distorting the objects
such that the orthogonal projection of the distorted objects is the same as the de-
sired projection of the original objects. This technique is shown in Figure 4.23. The
concatenation of the normalization matrix, which carries out the distortion and the
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(a)

FIGURE 4.23 Predistortion of objects. (a) Perspective view. (b) Ortho-
graphic projection of distorted object.

Distort Orthographic

(normalize) projection

FIGURE 4.24 Normalization transformation.

simple orthogonal projection matrix from Section 4.4.2, as shown in Figure 4.24,
yields a homogeneous coordinate matrix that produces the desired projection.

One advantage of this approach is that we can design the normalization matrix
so that view volume is distorted into the canonical view volume, which is the cube
defined by the planes

x=*1,
yE1,
z+ 1.

Besides the advantage of having both perspective and parallel views supported by the
same pipeline by loading in the proper normalization matrix, the canonical view vol-
ume simplifies the clipping process because the sides are aligned with the coordinate
axes.

The normalization process defines what most systems call the projection matrix.
The projection matrix brings objects into four-dimensional clip coordinates, and
the subsequent perspective division converts vertices to a representation in three-
dimensional normalized device coordinates. Values in normalized device coordinates
are later mapped to window coordinates by the viewport transformation. Here we are
concerned with the first step—deriving the projection matrix.
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4.4.4 Orthogonal-Projection Matrices
Although parallel viewing is a special case of perspective viewing, we start with or-
thogonal parallel viewing and later extend the normalization technique to perspective
viewing.

In OpenGL, the default projection matrix is an identity matrix, or equivalently,
what we would get from the following code:

mat4 N = Ortho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

The view volume is in fact the canonical view volume. Points within the cube defined
by the sides x + 1, ¥ + 1, and z = 1 are mapped to the same cube. Points outside this
cube remain outside the cube. As trivial as this observation may seem, it indicates that
we can get the desired projection matrix for the general orthogonal view by finding a
matrix that maps the right parallelepiped specified by Ortho to this same cube.

Before we do so, recall that the last two parameters in Ortho are distances to
the near and far planes measured from a camera at the origin pointed in the negative
z-direction. Thus, the near plane is at z = 1.0, which is behind the camera, and the
far plane is at z = —1.0, which is in front of the camera. Although the projectors are
parallel and an orthographic projection is conceptually akin to having a camera with
a long telephoto lens located far from the objects, the importance of the near and far
distances in Ortho is that they determine which objects are clipped out.

Now suppose that, instead, we set the Ortho parameters by the following func-
tion call:

mat4 N = Ortho(left, right, bottom, top, near, far);

We now have specified a right parallelepiped view volume whose right side (relative
to the camera) is the plane x = left, whose left side is the plane x = right, whose top
is the plane y = top, and whose bottom is the plane y = bottom. The front is the near
clipping plane z = —near, and the back is the far clipping plane z = —far. The pro-
jection matrix that OpenGL sets up is the matrix that transforms this volume to the
cube centered at the origin with sides of length 2, which is shown in Figure 4.25. This
matrix converts the vertices that specify our objects to vertices within this canonical
view volume, by scaling and translating them. Consequently, vertices are transformed
such that vertices within the specified view volume are transformed to vertices within
the canonical view volume, and vertices outside the specified view volume are trans-
formed to vertices outside the canonical view volume. Putting everything together,
we see that the projection matrix is determined by the type of view and the view vol-
ume specified in Ortho, and that these specifications are relative to the camera. The
positioning and orientation of the camera are determined by the model-view matrix.
These two matrices are concatenated together, and objects have their vertices trans-
formed by this matrix product.

We can use our knowledge of affine transformations to find this projection ma-
trix. There are two tasks that we need to do. First, we must move the center of the
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FIGURE 4.25 Mapping a view volume to the canonical view volume.

—» Translate —m  Scale —»

FIGURE 4.26 Affine transformations for normalization.

specified view volume to the center of the canonical view volume (the origin) by do-
ing a translation. Second, we must scale the sides of the specified view volume to each
have a length of 2 (see Figure 4.25). Hence, the two transformations are

T = T(—(right + left) /2, —(top + bottom) /2, +(far + near)/2)

and

S = S(2/(right — left), 2/(top — bottom), 2/(near — far)),

and they can be concatenated together (Figure 4.26) to form the projection matrix

2 0 0 _ left+right
right —left right —left
0 2 0 top+bottom
N =ST = top—bottom " top—bottom
- - 0 0 2 far+near
" far—near " far—near
0 0 0 1
This matrix maps the near clipping plane, z = —near, to the plane z = —1 and the

far clipping plane, z = —far, to the plane z = 1. Because the camera is pointing in the
negative z-direction, the projectors are directed from infinity on the negative z-axis
toward the origin.

4.4.5 Oblique Projections

Using Ortho, we have only a limited class of parallel projections—namely, only those
for which the projectors are orthogonal to the projection plane. As we saw earlier in
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FIGURE 4.28 Oblique clipping volume.

this chapter, oblique parallel projections are useful in many fields.> We could develop
an oblique projection matrix directly; instead, however, we follow the process that
we used for the general orthogonal projection. We convert the desired projection to
a canonical orthogonal projection of distorted objects.

An oblique projection can be characterized by the angle that the projectors make
with the projection plane, as shown in Figure 4.27. In APIs that support general par-
allel viewing, the view volume for an oblique projection has the near and far clipping
planes parallel to the view plane, and the right, left, top, and bottom planes parallel
to the direction of projection, as shown in Figure 4.28. We can derive the equations
for oblique projections by considering the top and side views in Figure 4.29, which
shows a projector and the projection plane z = 0. The angles 6 and ¢ characterize the
degree of obliqueness. In drafting, projections such as the cavalier and cabinet pro-
jections are determined by specific values of these angles. However, these angles are
not the only possible interface (see Exercises 4.9 and 4.10).

If we consider the top view, we can find x,, by noting that

z
tan 6 = R
X, =X

and thus
X, =x+zcot 0.
Likewise,
Yp =y F+zcotd.

5. Note that without oblique projections we cannot draw coordinate axes in the way that we have
been doing in this book (see Exercise 4.15).

(x v, 2)
Y

z

FIGURE 4.27 Oblique
projection.
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(x, 2)

(z, y)
(x5 O)

(a) (b)
FIGURE 4.29 Oblique projection. (a) Top view. (b) Side view.

Using the equation for the projection plane

we can write these results in terms of a homogeneous-coordinate matrix

0 cotf O
1 cotgp O
0 0 0
0 0 1

S O O

Following our strategy of the previous example, we can break P into the product

1 0 0 O 1 0 cotf O
P=M, H®,¢) = 0 1 0 O 0 1 cotgp O ,

0 0 0O 0 0 1 0

0 0 0 1 0 0 0 1

where H(0, ¢) is a shearing matrix. Thus, we can implement an oblique projection
by first doing a shear of the objects by H(#, ¢) and then doing an orthographic
projection. Figure 4.30 shows the effect of H(@, ¢) on an object—a cube—inside an
oblique view volume. The sides of the clipping volume become orthogonal to the
view plane, but the sides of the cube become oblique as they are affected by the same
shear transformation. However, the orthographic projection of the distorted cube is
identical to the oblique projection of the undistorted cube.

We are not finished, because the view volume created by the shear is not our
canonical view volume. We have to apply the same scaling and translation matrices
that we used in Section 4.4.4. Hence, the transformation
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z

FIGURE 4.30 Effect of shear transformation.

_ 2 0 0 o rlZght—&-left
right —left right—left
0 2 0 N top+bottom
ST = top—bottom top—bottom
0 0 - far—z near _J;“;:ﬁ;;’:
0 0 0 1

must be inserted after the shear and before the final orthographic projection, so the
final matrix is

N=M,,STH.

The values of left, right, bottom, and top are the vertices of the right parallelepiped
view volume created by the shear. These values depend on how the sides of the
original view volume are communicated through the application program; they may
have to be determined from the results of the shear to the corners of the original view
volume. One way to do this calculation is shown in Figure 4.29.

The specification for an oblique projection can be through the angles 6 and ¥
that projectors make with the projection plane. The parameters near and far are not
changed by the shear. However, the x and y values of where the sides of the view
volume intersect the near plane are changed by the shear and become left, right, top,
and bottom. If these points of intersection are (x,;,» 17€ar), (X,.> 1€ar), (Voin»> 11€ar),
and (y,,.¢> 1ear), then our derivation of shear in Chapter 3 yields the relationships
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left = x,,;,, — near % cot 6,
right = x,,,, — near % cot 6,
t0p = ¥ ax — hear * cot ¢,

bottom =y, — near % cot ¢.

4.4.6 An Interactive Viewer

In this section, we extend the rotating cube program to include both the model-view
matrix and an orthogonal projection matrix whose parameters can be set interac-
tively. As in our previous examples with the cube, we have choices as to where to
apply our transformations. In this example, we will send the model-view and pro-
jection matrices to the vertex shader. Because the model-view matrix can be used to
both transform an object and position the camera, in this example we will not use the
mouse function and instead focus on camera position and the orthogonal projection.
It will be straightforward to bring back the mouse and idle callbacks later to restart
the rotation of the cube.

The colored cube is centered at the origin in object coordinates so wherever we
place the camera, the at point is at the origin. Let’s position the camera in polar
coordinates so the eye point has coordinates

r cos 6
eye= | rsinfcos¢ |,
7 sin 6 sin ¢
where the radius r is the distance from the origin. We can let the up direction be the y-
direction in object coordinates. These values specify a model-view matrix through the

LookAt function. In this example, we will send both a model-view and a projection
matrix to the vertex shader with the following display callback:

void display( )

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
eye[0] = radius*cos(theta);
eye[1] = radius*sin(theta)*cos(phi);
eye[2] = radius*sin(theta)*sin(phi);
model_view = LookAt(eye, at, up);
projection = Ortho(left, right, bottom, top, near, far);
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, model_view) ;
glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);
glDrawArrays (GL_TRIANGLES, 0, N);
glutSwapBuffers() ;

}

The corresponding vertex shader is



4.4 Parallel Projections

in vec4 vPosition;

in vec4 vColor;

out vec4 color;

uniform mat4 model_view;

uniform mat4 projection;

void main()

{
gl_Position = projection*model_viewxvPosition;
color = vColor;

We can use the keyboard callback to alter the projection matrix and the camera
position. The position of the camera is controlled by the r, o, and p keys, and the
sides of the viewing parallelpiped by the x, y, and z keys.

void mykey(unsigned char key, int mousex, int mousey)

{
float dr = M_PI/180.0%5.0; // 5 degrees in radians
if(key=='q'| |key=="'Q"') exit(0);
if(key == 'x') {left *= 1.1; right *= 1.1;}
if(key == 'X') {left *= 0.9; right *= 0.9;}
if(key == 'y') {bottom *= 1.1; top *= 1.1;}
if(key == 'Y') {bottom *= 0.9; top *= 0.9;}
if(key == 'z') {near #*= 1.1; far *= 1.1;}
if(key == 'Z') {near *= 0.9; far *= 0.9;}
if(key == 'r') radius *= 2.0;
if (key == 'R') radius *= 0.5;
if(key == 'o') theta += dr;
if(key == '0') theta -= dr;
if(key == 'p') phi += dr;
if(key == 'P') phi -= dr;
glutPostRedisplay();

}

Note that as we move the camera around, the size of the image of the cube does
not change, which is a consequence of using an orthogonal projection. However,
depending on the radius, some or even all of the cube can be clipped out. This
behavior is a consequence of the parameters in Ortho being measured relative to
the camera. Hence, if we move the camera back by increasing the radius but leave
the near and far distances unchanged, first the back of the cube will be clipped out.
Eventually, as the radius becomes larger, the entire cube will be clipped out.

Now consider what happens as we change the parameters in Ortho. As we in-
crease right and left, the cube elongates in the x-direction. A similar phenomenon
occurs when we increase bot tom and top in the y-direction. Although this distortion
of the cube’s image may be annoying, it is a consequence of using an x — y rectan-
gle in Ortho that is not square. This rectangle is mapped to the full viewport, which
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has been unchanged. We can alter the program so that we increase or decrease all of
left, right, bottom, and top simultaneously or we can alter the viewport as part
of any change to Ortho (see Exercise 4.28).

4.5 PERSPECTIVE PROJECTIONS

We now turn to perspective projections, which are what we get with a camera whose
lens has a finite focal length or, in terms of our synthetic camera model, the center of
projection is finite.

As with parallel projections, we will separate perspective viewing into two parts:
the positioning of the camera and the projection. Positioning will be done the same
way, and we can use the LookAt function. The projection part is equivalent to select-
ing a lens for the camera. As we saw in Chapter 1, it is the combination of the lens and
the size of the film (or of the back of the camera) that determines how much of the
world in front of a camera appears in the image. In computer graphics, we make an
equivalent choice when we select the type of projection and the viewing parameters.

With a physical camera, a wide-angle lens gives the most dramatic perspectives,
with objects near the camera appearing large compared to objects far from the lens.
A telephoto lens gives an image that appears flat and is close to a parallel view.

First, we consider the mathematics for a simple projection. We can extend our
use of homogeneous coordinates to the projection process, which allows us to char-
acterize a particular projection with a 4 x 4 matrix.

4.5.1 Simple Perspective Projections

Suppose that we are in the camera frame with the camera located at the origin,
pointed in the negative z-direction. Figure 4.31 shows two possibilities. In Fig-
ure 4.31(a), the back of the camera is orthogonal to the z-direction and is parallel
to the lens. This configuration corresponds to most physical situations, including
those of the human visual system and of simple cameras. The situation shown in
Figure 4.31(b) is more general; the back of the camera can have any orientation with
respect to the front. We consider the first case in detail because it is simpler. How-
ever, the derivation of the general result follows the same steps and should be a direct
exercise (Exercise 4.6).

As we saw in Chapter 1, we can place the projection plane in front of the center
of projection. If we do so for the configuration of Figure 4.32(a), we get the views
shown in Figure 4.33. A point in space (x, y, z) is projected along a projector into the
point (x,, ¥, z,). All projectors pass through the origin, and, because the projection
plane is perpendicular to the z-axis,
z,=d.

Because the camera is pointing in the negative z-direction, the projection plane is in
the negative half-space z < 0, and the value of d is negative.
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—Z —Z
COP COP
X X
(a) (b)
FIGURE 4.31 Two cameras. (a) Back parallel to front. (b) Back not parallel
to front.
, x,2) '
X, Y, Z (x_, d) H
/( Y ) |%z = d
ixp' Ypr Zp) I x
x z=d
V4 zZ
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FIGURE 4.32 Three views of perspective projection. (a) Three-dimensional view. (b) Top view. (c) Side view.

From the top view shown in Figure 4.32(b), we see two similar triangles whose
tangents must be the same. Hence,

x_%
=
and

S
P zyd

Using the side view shown in Figure 4.32(c), we obtain a similar result for y,:

-7
Ve z/d’
These equations are nonlinear. The division by z describes nonuniform foreshort-
ening: The images of objects farther from the center of projection are reduced in size
(diminution) compared to the images of objects closer to the COP.
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Perspective

—» Modelview —® Projection —m= "~
division

FIGURE 4.33 Projection pipeline.

We can look at the projection process as a transformation that takes points
(x, ¥, z) to other points (x,, Vp> zp). Although this perspective transformation pre-
serves lines, it is not affine. It is also irreversible. Because all points along a projector
project into the same point, we cannot recover a point from its projection. In Sec-
tions 4.7 and 4.8, we will develop an invertible variant of the projection transforma-
tion that preserves distances that are needed for hidden-surface removal.

We can extend our use of homogeneous coordinates to handle projections. When
we introduced homogeneous coordinates, we represented a point in three dimensions
(x, v, z) by the point (x, y, z, 1) in four dimensions. Suppose that, instead, we replace
(x, ¥, z) by the four-dimensional point

As long as w # 0, we can recover the three-dimensional point from its four-
dimensional representation by dividing the first three components by w. In this new
homogeneous-coordinate form, points in three dimensions become lines through
the origin in four dimensions. Transformations are again represented by 4 x 4 ma-
trices, but now the final row of the matrix can be altered—and thus w can be changed
by such a transformation.

Obviously, we would prefer to keep w = 1 to avoid the divisions otherwise nec-
essary to recover the three-dimensional point. However, by allowing w to change,
we can represent a larger class of transformations, including perspective projections.
Consider the matrix

S O O =
S O = O
S O O O

1/d

The matrix M transforms the point

i I
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to the point

At first glance, q may not seem sensible; however, when we remember that we have
to divide the first three components by the fourth to return to our original three-
dimensional space, we obtain the results

-
p_z/d)
-y
7p z/d
A
Pzid

which are the equations for a simple perspective projection. In homogeneous coor-
dinates, dividing q by its w component replaces q by the equivalent point

2/ *p

J
I z/d _ yp
1= d | |z
14
1 1

We have shown that we can do at least a simple perspective projection, by defin-
ing a 4 x 4 projection matrix that we apply after the model-view matrix. However,
we must perform a perspective division at the end. This division can be made a part
of the pipeline, as shown in Figure 4.33.

4.6 PERSPECTIVE PROJECTIONS WITH OPENGL

The projections that we developed in Section 4.4 did not take into account the proper-
ties of the camera—the focal length of its lens or the size of the film plane. Figure 4.34
shows the angle of view for a simple pinhole camera, like the one that we discussed in
Chapter 1. Only those objects that fit within the angle of view of the camera appear in
the image. If the back of the camera is rectangular, only objects within a semi-infinite
pyramid—the view volume—whose apex is at the COP can appear in the image. Ob-
jects not within the view volume are said to be clipped out of the scene. Hence, our
description of simple projections has been incomplete; we did not include the effects
of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 4.34 becomes
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FIGURE 4.35 Front and back clipping planes.

a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 4.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

4.6.1 Perspective Functions

We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
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FIGURE 4.36 Specification of a frustum.

loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

mat4 Frustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top,
GLfloat near, GLfloat far);

whose parameters are similar to those in Ortho. These parameters are shown in Fig-
ure 4.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to front and back clipping planes, both of which are
parallel to the plane z = 0. Because the camera is pointing in the negative z-direction,
the front (near) clipping plane is the plane z = —near and the back (far) clipping
plane is the plane z = —far. The left, right, top, and bottom values are measured in
the near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as
long as near # far, the resulting projection matrix is valid, although objects behind
the center of projection—the origin—will be inverted in the image if they lie between
the near and far planes.

Note that these specifications do not have to be symmetric with respect to the
z-axis and that the resulting frustum also does not have to be symmetric (a right
frustum). In Section 4.7, we show how the projection matrix for this projection can
be derived from the simple perspective-projection matrix.

In many applications, it is natural to specify the angle of view, or field of view.
However, if the projection plane is rectangular, rather than square, then we see a
different angle of view in the top and side views (Figure 4.37). The angle fovy is the
angle between the top and bottom planes of the clipping volume. The function

mat4 Perspective(GLfloat fovy, GLfloat aspect, GLfloat near, GLfloat far);
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fovy

z

FIGURE 4.37 Specification using the field of view.

allows us to specify the angle of view in the up (y) direction, as well as the aspect
ratio—width divided by height—of the projection plane. The near and far planes are
specified as in Frustum.

4.7 PERSPECTIVE-PROJECTION MATRICES

For perspective projections, we follow a path similar to the one that we used for
parallel projections: We find a transformation that allows us, by distorting the vertices
of our objects, to do a simple canonical projection to obtain the desired image.
Our first step is to decide what this canonical viewing volume should be. We then
introduce a new transformation, the perspective-normalization transformation,
that converts a perspective projection to an orthogonal projection. Finally, we derive
the perspective-projection matrix we will use in OpenGL.

4.7.1 Perspective Normalization
In Section 4.5, we introduced a simple perspective-projection matrix. For the pro-

jection plane at z = —1 and the center of the projection at the origin, the projection
matrix is

1 0 0 O

01 0 O
M=

0 0 0

00 =1 0

To form an image, we also need to specify a clipping volume. Suppose that we fix
the angle of view at 90 degrees by making the sides of the viewing volume intersect
the projection plane at a 45-degree angle. Equivalently, the view volume is the semi-
infinite view pyramid formed by the planes
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FIGURE 4.38 Simple perspective projection.

x==+z,

y ==z,

shown in Figure 4.38. We can make the volume finite by specifying the near plane to
be z = —near and the far plane to be z = —far, where both near and far, the distances
from the center of projection to the near and far planes, satisfy

0 < near < far.

Consider the matrix

(=
© o ~ ©
IS

o™ ©o o

which is similar to M but is nonsingular. For now, we leave « and 8 unspecified (but
nonzero). If we apply N to the homogeneous-coordinate pointp=[x y z 1],

we obtain the new pointq =[x’ y' 2z w']’, where

/

x =x,
V=,

7 =az+ B,
w=—z.

After dividing by w’, we have the three-dimensional point
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z":—<a+ﬁ).
z

If we apply an orthographic projection along the z-axis to N, we obtain the matrix
0
MorthN =

-1

S O O =
o O = O
S O O O

which is a simple perspective-projection matrix, and the projection of the arbitrary

point p is
X
P/ = Mortth =
—z
After we do the perspective division, we obtain the desired values for X, and V'
X
X, =—=,
4 z
4
Yp .

We have shown that we can apply a transformation N to points, and after an or-
thogonal projection, we obtain the same result as we would have for a perspective
projection. This process is similar to how we converted oblique projections to or-
thogonal projections by first shearing the objects.

The matrix N is nonsingular and transforms the original viewing volume into a
new volume. We choose « and 8 such that the new volume is the canonical clipping
volume. Consider the sides

x ==z
They are transformed by x” = —x/z to the planes
X ==+l

Likewise, the sides y = £z are transformed to

y' =+1.
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z=—far z=1
N -
Z = —hear
COP z=-—1
FIGURE 4.39 Perspective normalization of view volume.
The front clipping plane z = —near is transformed to the plane
"__ .3
Z'=—(a——]).
near
Finally, the far plane z = —far is transformed to the plane
" ( B )
Z'=—la——).
far
If we select
near + far
" near — far’
5= 2 % near x far
near — far
then the plane z = —near is mapped to the plane z” = —1, the plane z = —far is

mapped to the plane z” = 1, and we have our canonical clipping volume. Figure 4.39
shows this transformation and the distortion to a cube within the volume. Thus, N
has transformed the viewing frustum to a right parallelepiped, and an orthographic
projection in the transformed volume yields the same image as does the perspective
projection. The matrix N is called the perspective-normalization matrix. The map-

ping

z~=_(a+é)
z

is nonlinear but preserves the ordering of depths. Thus, if z; and z, are the depths of
two points within the original viewing volume and

z,> 25,
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z =—far

(right}top, —near)

(left, bottom, —near)

FIGURE 4.40 OpenGL perspective.

then their transformations satisfy
z{ > 2.
Consequently, hidden-surface removal works in the normalized volume, although

the nonlinearity of the transformation can cause numerical problems because the
depth buffer has a limited depth resolution. Note that although the original projec-

tion plane we placed at z = —1 has been transformed by N to the plane z” = 8 — «,
there is little consequence to this result because we follow N by an orthographic pro-
jection.

Although we have shown that both perspective and parallel transformations
can be converted to orthographic transformations, the effects of this conversion are
greatest in implementation. As long as we can put a carefully chosen projection
matrix in the pipeline before the vertices are defined, we need only one viewing
pipeline for all possible views. In Chapter 6, where we discuss implementation in
detail, we will see how converting all view volumes to right parallelepipeds by our
normalization process simplifies both clipping and hidden-surface removal.

4.7.2 OpenGL Perspective Transformations

The function Frustum does not restrict the view volume to a symmetric (or right)
frustum. The parameters are as shown in Figure 4.40. We can form the perspective
matrix by first converting this frustum to the symmetric frustum with 45-degree
sides (see Figure 4.39). The process is similar to the conversion of an oblique parallel
view to an orthogonal view. First, we do a shear to convert the asymmetric frustum
to a symmetric one. Figure 4.40 shows the desired transformation. The shear an-
gle is determined by our desire to skew (shear) the point ((left 4 right)/2, (top +
bottom) /2, —near) to (0, 0, —near). The required shear matrix is

left + rzght> cot™! (top + bottom)) ‘

—2near —2near

H®, ¢)=H <cot1 (

The resulting frustum is described by the planes
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e iright — leﬁ‘,
—2 x near

top — bottom
_ L top
—2 % near

Z = —near,

z = —far.

The next step is to scale the sides of this frustum to
x ==z,

y ==z,

without changing either the near plane or the far plane. The required scaling matrix
is S(—2 * near/(right — left), —2 % near /(top — bottom), 1). Note that this transfor-
mation is determined uniquely without reference to the location of the far plane
z = —far because in three dimensions, an affine transformation is determined by the
results of the transformation on four points. In this case, these points are the four
vertices where the sides of the frustum intersect the near plane.

To get the far plane to the plane z = —1 and the near plane to z = 1 after applying
a projection normalization, we use the projection-normalization matrix N:

0

o
-1

S O O =
S O = O
o™ © ©

with & and B as in Section 4.7.1. The resulting projection matrix is in terms of the
near and far distances,

2xnear 0 right+-left 0
right —left right —left
0 2snear top+Dbottom 0
P=NSH = top—bottom  top—bottom
0 0 _ far+near  —2farxnear
far—near far—near
0 0 -1 0

We obtain the projection matrix corresponding to Persective(fovy,
aspect, near, far) by using symmetry in P so

left = —right,
bottom = —top,

and simple trigonometry to determine
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top = near * tan(fovy),

right = top * aspect,

simplifying P to
w0 g 0
0 I 0 0
P=NSH= o
0 0 —far+near  —2farxnear
far—near far—near
0 0 -1 0

4.7.3 Perspective Example

We have to make almost no changes to our previous example to go from an orthogo-
nal projection to a perspective projection. We can substitute Frustum for Ortho and
the parameters are the same. However, for a perspective view we should have

far > near > 0.

Note that if we want to see the foreshortening we associate with perspective views, we
can either move the cube off the z-axis or add additional cubes to the right or left.
We can add the perspective division to our vertex shader, so it becomes

in vec4 vPosition;

in vec4 vColor;

out vec4 color;

uniform mat4 model_view;

uniform mat4 projection;

void main()

{
gl_Position = projection*model_view*vPosition/vPosition.w;
color = vColor;

The full program is in Appendix A.

4.8 HIDDEN-SURFACE REMOVAL

Before introducing a few additional examples and extensions of viewing, we need to
deepen our understanding of the hidden-surface—removal process. Let’s start with the
cube we have been using in our examples. When we look at a cube that has opaque
sides, depending on its orientation, we see only one, two, or three front-facing sides.
From the perspective of our basic viewing model, we can say that we see only these
faces because they block the projectors from reaching any other surfaces.
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From the perspective of computer graphics, however, all six faces of the cube
have been specified and travel down the graphics pipeline; thus, the graphics sys-
tem must be careful about which surfaces it displays. Conceptually, we seek algo-
rithms that either remove those surfaces that should not be visible to the viewer,
called hidden-surface-removal algorithms, or find which surfaces are visible, called
visible-surface algorithms. There are many approaches to the problem, several of
which we investigate in Chapter 6. OpenGL has a particular algorithm associated with
it, the z-buffer algorithm, to which we can interface through three function calls.
Hence, we introduce that algorithm here, and we return to the topic in Chapter 6.

Hidden-surface-removal algorithms can be divided into two broad classes.
Object-space algorithms attempt to order the surfaces of the objects in the scene
such that rendering surfaces in a particular order provides the correct image. For
example, for our cube, if we were to render the back-facing surfaces first, we could
“paint” over them with the front surfaces and would produce the correct image. This
class of algorithms does not work well with pipeline architectures in which objects
are passed down the pipeline in an arbitrary order. In order to decide on a proper
order in which to render the objects, the graphics system must have all the objects
available so it can sort them into the desired back-to-front order.

Image-space algorithms work as part of the projection process and seek to deter-
mine the relationship among object points on each projector. The z-buffer algorithm
is of the latter type and fits in well with the rendering pipeline in most graphics sys-
tems because we can save partial information as each object is rendered.

The basic idea of the z-buffer algorithm is shown in Figure 4.41. A projector from
the COP passes through two surfaces. Because the circle is closer to the viewer than to
the triangle, it is the circle’s color that determines the color placed in the color buffer
at the location corresponding to where the projector pierces the projection plane. The
difficulty is determining how we can make this idea work regardless of the order in
which the triangle and the circle pass through the pipeline.

Projection \\

plane ——

COp @

X

FIGURE 4.41 The z-buffer algorithm.
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Let’s assume that all the objects are polygons. If, as the polygons are rasterized,
we can keep track of the distance from the COP or the projection plane to the closest
point on each projector that already has been rendered, then we can update this
information as successive polygons are projected and filled. Ultimately, we display
only the closest point on each projector. The algorithm requires a depth buffer, or z-
buffer, to store the necessary depth information as polygons are rasterized. Because
we must keep depth information for each pixel in the color buffer, the z-buffer has
the same spatial resolution as the color buffers. Its depth resolution is usually 32 bits
with recent graphics cards that store this information as floating-point numbers. The
z-buffer is one of the buffers that constitute the frame buffer and is usually part of
the memory on the graphics card.

The depth buffer is initialized to a value that corresponds to the farthest distance
from the viewer. When each polygon inside the clipping volume is rasterized, the
depth of each fragment—how far the corresponding point on the polygon is from the
viewer—is calculated. If this depth is greater than the value at that fragment’s location
in the depth bulffer, then a polygon that has already been rasterized is closer to the
viewer along the projector corresponding to the fragment. Hence, for this fragment
we ignore the color of the polygon and go on to the next fragment for this polygon,
where we make the same test. If, however, the depth is less than what is already in the
z-buffer, then along this projector the polygon being rendered is closer than any one
we have seen so far. Thus, we use the color of the polygon to replace the color of the
pixel in the color buffer and update the depth in the z buffer.®

For the example shown in Figure 4.41, we see that if the triangle passes through
the pipeline first, its colors and depths will be placed in the color and z-buffers. When
the circle passes through the pipeline, its colors and depths will replace the colors and
depths of the triangle where they overlap. If the circle is rendered first, its colors and
depths will be placed in the buffers. When the triangle is rendered, in the areas where
there is overlap the depths of the triangle are greater than the depth of the circle, and
at the corresponding pixels no changes will be made to the color or depth buffers.

Major advantages of this algorithm are that its complexity is proportional to the
number of fragments generated by the rasterizer and that it can be implemented
with a small number of additional calculations over what we have to do to project
and display polygons without hidden-surface removal. We will return to this issue in
Chapter 6.

From the application programmer’s perspective, she must initialize the depth
buffer and enable hidden-surface removal by using

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glEnable (GL_DEPTH_TEST) ;

6. The color of the polygon is determined by shading (Chapter 5) and texture mapping (Chapter 7)
if these features are enabled.
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Here we use the GLUT library for the initialization and specify a depth buffer in
addition to our usual RGB color and double buffering. The programmer can clear
the color and depth buffers as necessary for a new rendering by using

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

4.8.1 Culling

For a convex object, such as the cube, faces whose normals point away from the viewer
are never visible and can be eliminated or culled before the rasterizer. We can turn on
culling in OpenGL by enabling it as follows:

glEnable (GL_CULL_FACE) ;

However, culling is guaranteed to produce a correct image only if we have a single
convex object. Often we can use culling in addition to the z-buffer algorithm (which
works with any collection of polygons). For example, suppose that we have a scene
composed of a collection of #n cubes. If we use only the z-buffer algorithm, we pass
6n polygons through the pipeline. If we enable culling, half the polygons can be
eliminated early in the pipeline, and thus only 3n polygons pass through all stages
of the pipeline. We consider culling further in Chapter 6.

4.9 DISPLAYING MESHES

We now have the tools to walk through a scene interactively by having the camera
parameters change in response to user input. Before introducing a simple interface,
let’s consider another example of data display: mesh plots. A mesh is a set of polygons
that share vertices and edges. A general mesh, as shown in Figure 4.42, may contain
polygons with any number of vertices and require a moderately sophisticated data
structure to store and display efficiently. Rectangular and triangular meshes, such as
we introduced in Chapter 2 for modeling a sphere, are much simpler to work with and
are useful for a wide variety of applications. Here we introduce rectangular meshes for
the display of height data. Height data determine a surface, such as terrain, through
either a function that gives the heights above a reference value, such as elevations
above sea level, or through samples taken at various points on the surface.
Suppose that the heights are given by y through a function

y:f(x) z),

where x and z are the points on a two-dimensional surface such as a rectangle.
Thus, for each x, z we get exactly one y, as shown in Figure 4.43. Such surfaces are
sometimes called 2-1/2—dimensional surfaces or height fields. Although all surfaces
cannot be represented this way, they have many applications. For example, if we use
an x, z coordinate system to give positions on the surface of the earth, then we can use
such a function to represent the height or altitude at each location. In many situations

FIGURE 4.42 Mesh.
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FIGURE 4.43 Height field

the function f is known only discretely, and we have a set of samples or measurements
of experimental data of the form

vi =f (x> 2)).
We assume that these data points are equally spaced such that

x;=xy+iAx, i=0,...,N,
zj=20+jAz, j=0,..., M,

where Ax and Az are the spacing between the samples in the x- and z-directions,
respectively. If f is known analytically, then we can sample it to obtain a set of discrete
data with which to work.

Probably the simplest way to display the data is to draw a line strip for each value
of x and another for each value of z, thus generating N + M line strips. Suppose
that the height data are in an array data. We can form a single array with the data
converted to vertices arranged by rows with the code

float datal[N][M];
point4 vertices[2xN*M]

int k =0;
for(int i = 0; i<N; i++) for(int j=0; j<M; j++)
{
vertices[k] = vec4(i, datali]l[jl, j, 1.0);
k++;

3

}

We can form an array for the vertices by column by switching roles of i and j as
follows:
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point4 vertices[N*M];

int k =0;
for(int i = 0; i<M; i++) for(int j=0; j<N; j++)
{
vertices[k] = point4(j, datalj][i],i,1.0);
k++;

s

We usually will want to scale the data to be over a convenient range, such as (0, 1),
and scale the x and z values to make them easier to display as part of the model-view
matrix or, equivalently, by adjusting the size of the view volume.

We can display these vertices by sending both arrays to the vertex shader. So in
the initialization we set up the vertex buffer object with the correct size but without
sending any data:

GLuint buffer;
glBindVertexArray (buffer);

loc = glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(loc);

glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET(0)) ;

glGenBuffers(l, &buffer);

glBindBuffer (GL_ARRAY_BUFFER, buffer);

glBufferData(GL_ARRAY_BUFFER, sizeof (vertices), NULL,
GL_DYNAMIC_DRAW)

In the display callback, we load the two vertex arrays successively and display them:
/* form array of vertices by row here */
glBufferData(GL_ARRAY_BUFFER, sizeof (vertices), vertices,
GL_DYNAMIC_DRAW) ;
glDrawArrays (GL_LINE_STRIP, 0, NxM);
/* form array of vertices by column here */
glBufferData(GL_ARRAY_BUFFER, sizeof (vertices), vertices,

GL_DYNAMIC_DRAW) ;
glDrawArrays (GL_LINE_STRIP, 0, N*M);

You should now be able to complete a program to display the data. Figure 4.44
shows a rectangular mesh from height data for a part of Honolulu, Hawaii. These data
are available on the Web site for the book. There are a few problems with this simple
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FIGURE 4.44 Mesh plot of Honolulu data using line strips.

approach. One is that we have to load data onto the GPU twice every time we want to
display the mesh and thus are wasting a lot of time moving data from the CPU to the
GPU. A second problem is that we are not doing any hidden-surface removal, so we
see the lines from parts of the original surface that should be hidden from the viewer.
Third, there are some annoying “extra” lines that appear from the end of one row (or
column) to the next row (or column). These lines are a consequence of putting all
rows (and columns) into a single line strip.

We can get around the last problem by assigning vertex colors carefully. The
first two problems can be avoided by displaying the data as a surface using polygons.
An added advantage in using polygons is that we will be able to extend our code to
displaying the mesh with lights and material properties in Chapter 5.

4.9.1 Displaying Meshes as a Surface

One simple way to generate a surface is through a triangular mesh. We can use the
four points y;j, i, i Yiq1, j+1 @nd y; j, to generate two triangles. Thus, the height
data specify a mesh of 2NM triangles.

The basic OpenGL program is straightforward. We can form the array of triangle
data in the main function or as part of initialization as in the following code, which
normalizes the data to be in the range (0, 1), the x values to be over (—1, 1), and the
z values to be over (—1, 0):

float datal[N][M]; // all values assumed non negative
float fmax; // maximum of data

point4 triangles[6*N*M] // vertex positions

float fn = float(N);

float fm = float(M);

int k =0;
for(i=0; i<N-1; i++) for(j=0; j<M-1;j++)
//NM quads, 2 triangles/quad
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{
triangles[k] = vec4(2.0%(i/fn-0.5), datali] [j]/fmax, -j/fm,
1.0); k++;
triangles[k] = vec4(2.0%((i+1)/fn-0.5), datali+1][j]/fmax,
-j/fm, 1.0); k++;
triangles[k] = vec4(2.0%((i+1)/fn-0.5), datali+1][j+1]/fmax,
-(j+1)/fm,1.0); k++;
triangles[k] = vec4(2.0%((i+1)/fn-0.5),datal[i+1][j]/fmax,
-j/fm, 1.0); k++;
triangles[k] = vec4(2.0%((i+1)/fn-0.5), datali+1] [j+1]/fmax,
-(G+1)/fm,1.0); k++;
triangles[k] = vec4(2.0%(i/fn-0.5), datalil [j+1]/fmax,
=(G+1)/fm, 1.0); k++;
}

We initialize the vertex array as before,
glBindVertexArray (abuffer) ;

loc = glGetAttribLocation(program, "vPosition");

glEnableVertexAttribArray(loc) ;

glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, O,
BUFFER_OFFSET(0)) ;

glGenBuffers (1, buffers);

glBindBuffer (GL_ARRAY_BUFFER, buffers[0]);

glBufferData(GL_ARRAY_BUFFER, sizeof(triangles), triangles,
GL_STATIC_DRAW) ;

and display it as

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
glDrawArrays (GL_TRIANGLES, O, 6*N*M);

If we integrate this code with our previous example using line strips, the output
will look almost identical. Although we have designed a surface, by choosing to
display only the edges by using a polygon mode of GL_LINE, we do not generate any
fragments corresponding to the inside of the polygon, and thus we see the edges of
polygons that would be hidden if the mode were GL_FILL. We can fix this problem
by rendering the data twice, first as a filled white surface and second as black lines.
Because the data are already on the GPU, we do not have to send any vertex data to
the GPU for the second rendering. We can specify two colors in the initialization that
we will send to the fragment shader

vec4(1.0, 1.0, 1.0, 1.0);
vec4 (0.0, 0.0, 0.0, 1.0);

color4 white
color4 black

color_loc = glGetUniformLocation(program, "fcolor");
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and then modify to the display callback to have the code

glPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
glUniform4fv(color_loc, 1, white);
glDrawArrays (GL_TRIANGLES, O, 6*N*M);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glUniform4fv(color_loc, 1, black);
glDrawArrays (GL_TRIANGLES, O, 6*N*M);

The modified fragment shader is

uniform vec4 fcolor;
void main()
{

gl_FragColor = fcolor;
}

4.9.2 Polygon Offset

There are interesting aspects to this OpenGL program, and we can make various
modifications. First, if we use all the data, the resulting plot may contain many small
polygons. The resulting density of lines in the display may be annoying and can
contain moiré patterns. Hence, we might prefer to subsample the data either by using
every kth point for some k or by averaging groups of data points to obtain a new set
of samples with smaller N and M.

There is one additional trick that we used in the display of Figure 4.44. If we
draw both a polygon and a line loop with the code in the previous section, then each
triangle is rendered twice in the same plane, once filled and once by its edges. Even
though the second rendering of just the edges is done with filled rendering, numer-
ical inaccuracies in the renderer often cause parts of second rendering to lie behind
the corresponding fragments in the first rendering. We can avoid this problem by
enabling the polygon offset mode and setting the offset parameters using glPoly-
gonOffset. Polygon fill offset moves fragments slightly away from the viewer, so all
the desired lines should be visible. In initialization, we can set up polygon offset by

glEnable (GL_POLYGON_OFFSET_FILL);
glPolygonOffset (1.0, 1.0);

The two parameters in Polygon0Offset are combined with the slope of the polygon
and an implementation-dependent constant. Consequently, you may have to do a
little experimentation to find the best values.

Perhaps the greatest weakness of our code is that we are sending too much data
to the GPU and not using the most efficient rendering method. Consider a mesh
consisting of a single row of N quadrilaterals. If we render it as 2N triangles using
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point4 vertices[6*N];

glDrawArrays (GL_TRIANGLES, 0, 6%N);

we send 6N vertices to the GPU. If we instead set our vertices as a triangle strip, then
these two lines of code become

point4 vertices[2#N-2];

glDrawArrays (GL_TRIANGLE_STRIP, 0, 2%N-2);

Not only are we sending less data and requiring less of the GPU’s memory, but the
GPU will render the triangles much faster as a triangle strip as opposed to individual
triangles. For a 1 x M mesh, we can easily construct the array for a triangle strip.
For an N x M mesh, the process is more complex. Although it would be simple
to repeat the process for the 1 x M mesh N times, setting up N triangle strips,
this approach would have us repeatedly sending data to the GPU. What we need
is a single triangle strip for the entire mesh. Exercises 4.22 and 4.23 outline two
approaches.

4.9.3 Walking Through a Scene

The next step is to specify the camera and add interactivity. In this version, we use
perspective viewing, and we allow the viewer to move the camera by pressing the x,
X, v Y, z, and Z keys on the keyboard, but we have the camera always pointing at
the center of the cube. The LookAt function provides a simple way to reposition and
reorient the camera.

The changes that we have to make to our previous program in Section 4.4 are
minor. We define an array viewer [3] to hold the camera position. Its contents are
altered by the simple keyboard callback function keys as follows:

void keys(unsigned char key, int x, int y)

{
if(key == 'x') viewer[0]-= 1.0;
if (key == 'X') viewer[0]+= 1.0;
if(key == 'y') viewer[1]-= 1.0;
if(key == 'Y') viewer[1]+= 1.0;
if(key == 'z') viewer[2]-= 1.0;
if(key == 'Z') viewer[2]+= 1.0;
glutPostRedisplay() ;

}

The display function calls LookAt using viewer for the camera position and uses the
origin for the at position. The cube is rotated, as before, based on the mouse input.
Note the order of the function calls in display that alter the model-view matrix:
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mat4 model_view;
void display()
{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

model_view = LookAt(viewer[0],viewer[1],viewer[2],
0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
*RotateX(theta[0])*RotateY(theta[1])*RotateZ(thetal[2]);

/* draw mesh or other objects here */

glutSwapBuffers();

We can invoke Frustum from the reshape callback to specify the camera lens through
the following code:

mat4 projection;

void myReshape(int w, int h)
{
glViewport(0, 0, w, h);

GLfloat left = -2.0, right = 2.0, bottom = -2.0, top = 2.0;
GLfloat aspect = (GLfloat) w / h;

if ( aspect <= 1.0 ) {
bottom /= aspect;
top /= aspect;

} else {
left *= aspect;
right *= aspect;

projection = Frustum(left, right, bottom, top, 2.0, 20.0);
glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);
}

Note that we chose the values of the parameters in Frustum based on the aspect ratio
of the window. Other than the added specification of a keyboard callback function in
main, the rest of the program is the same as the program in Section 4.4. If you run
this program, you should note the effects of moving the camera, the lens, and the
sides of the viewing frustum. Note what happens as you move toward the mesh. You
should also consider the effect of always having the viewer look at the center of the
mesh as she is moving.

Note that we could have used the mouse buttons to move the viewer. We could
use the mouse buttons to move the user forward or to turn her right or left (see
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Exercise 4.14). However, by using the keyboard for moving the viewer, we can use
the mouse to move the object as with the rotating cube in Chapter 3.

In this example, we are using direct positioning of the camera through LookAt.
There are other possibilities. One is to use rotation and translation matrices to alter
the model-view matrix incrementally. If we want to move the viewer through the
scene without having her looking at a fixed point, this option may be more appealing.
We could also keep a position variable in the program and change it as the viewer
moves. In this case, the model-view matrix would be computed from scratch rather
than changed incrementally. Which option we choose depends on the particular
application, and often on other factors as well, such as the possibility that numerical
errors might accumulate if we were to change the model-view matrix incrementally
many times.

The basic mesh rendering can be extended in many ways. In Chapter 5, we
will learn to add lights and surface properties to create a more realistic image; in
Chapter 7, we will learn to add a texture to the surface. The texture map might be
an image of the terrain from a photograph or other data that might be obtained by
digitization of a map. If we combine these techniques, we can generate a display in
which we can make the image depend on the time of day by changing the position
of the light source. It is also possible to obtain smoother surfaces by using the data
to define a smoother surface with the aid of one of the surface types that we will
introduce in Chapter 10.

4.10 PROJECTIONS AND SHADOWS

The creation of simple shadows is an interesting application of projection matrices.
Although shadows are not geometric objects, they are important components of
realistic images and give many visual clues to the spatial relationships among the
objects in a scene. Starting from a physical point of view, shadows require a light
source to be present. A point is in shadow if it is not illuminated by any light source
or, equivalently, if a viewer at that point cannot see any light sources. However, if the
only light source is at the center of projection, there are no visible shadows, because
any shadows are behind visible objects. This lighting strategy has been called the
“flashlight in the eye” model and corresponds to the simple lighting we have used
thus far.

To add physically correct shadows, we must understand the interaction between
light and materials, a topic that we investigate in Chapter 5. There we show that global
calculations are difficult; normally, they cannot be done in real time.

Nevertheless, the importance of shadows in applications such as flight simulators
led to a number of special approaches that can be used in many circumstances.
Consider the shadow generated by the point source in Figure 4.45. We assume for
simplicity that the shadow falls on the ground or the surface,

y=0.
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(x, y1 z)

z

FIGURE 4.45 Shadow from a single polygon.

Not only is the shadow a flat polygon, called a shadow polygon, but it also is the
projection of the original polygon onto the surface. Specifically, the shadow polygon
is the projection of the polygon onto the surface with the center of projection at the
light source. Thus, if we do a projection onto the plane of a surface in a frame in
which the light source is at the origin, we obtain the vertices of the shadow polygon.
These vertices must then be converted back to a representation in the object frame.
Rather than do the work as part of an application program, we can find a suitable
projection matrix and use it to compute the vertices of the shadow polygon.

Suppose that we start with a light source at (x;, y;, ), as shown in Figure 4.46(a).
If we reorient the figure such that the light source is at the origin, as shown in
Figure 4.46(b), by a translation matrix T(—x;, —y;, —z;), then we have a simple
perspective projection through the origin. The projection matrix is

1 0 0 0
0 1 0 0
M=
0 0 10
1
0 = 00

Finally, we translate everything back with T(x;, y;, z;). The concatenation of this
matrix and the two translation matrices projects the vertex (x, y, z) to
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(a) (b)

FIGURE 4.46 Shadow polygon projection. (a) From a light source.
(b) With source moved to the origin.

However, with an OpenGL program, we can alter the model-view matrix to form the
desired polygon as follows. If the light source is fixed, we can compute the shadow
projection matrix once as part of initialization. Otherwise, we need to recompute
it, perhaps in the idle callback function, if the light source is moving. The code for
setting up the matrix is as follows:

float 1light[3]; // location of light
mat4 m; // shadow projection matrix initially an identity matrix

m[3][1] = -1.0/1ight[1];

Let’s project a single square polygon parallel onto the plane y = 0. We can specify the
square through the vertices

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0), vec4(-0.5, 0.5, 0.5, 1.0),

vec4(0.5, 0.5, -0.5, 1.0), vec4(0.5, 0.5, 0.5, 1.0)};

Note that the vertices are ordered so that we can render them using a triangle strip.
We initialize a red color for the square and a black color for its shadow, which we will
send to the fragment shader. We initialize a vertex array and a buffer object, as we did
in our previous examples:
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GLuint abuffer,

buffer;

glGenVertexArrays(1l, &abuffer);
glBindVertexArray (abuffer);

int loc = glGetAttribLocation(program, "vPosition");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, O,

BUFFER_OFFSET(0)) ;

color_loc = glGetUniformLocation(program, "fcolor");

glGenBuffers(1,

&buffer) ;

ngindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(square), square,
GL_STATIC_DRAW) ;

If the data do not change, we can also set the projection matrix and model-view
matrix as part of initialization and send them to the vertex shader:

model_view =
projection =

LookAt (eye, at, up);
Ortho(left, right, bottom, top, near, far);

glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, model_view);
glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);

The core of the display callback is

void display()
{
mat4 mm;
// clear the

window

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// render red square

glUniform4fv(color_loc, 1, red);
ngrawArrays(GL_TRIANGLE_STRIP, 0, 4);

// matrix to compute vertices of shadow polygon

mm = model_view*Translate(light[0], light[1],
light [2])*m*Translate(-1ight [0], -light[1], -light[2]);
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, mm);

// render shadow polygon

glUniform4fv(color_loc, 1, black);
glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);
glutSwapBuffers() ;



Summary and Notes

Note that although we are performing a projection with respect to the light
source, the matrix that we use is the model-view matrix. We render the same polygon
twice: the first time as usual and the second time with an altered model-view matrix
that transforms the vertices. The same viewing conditions are applied to both the
polygon and its shadow polygon. The results of computing shadows for the colored
cube are shown in Color Plate 29.

For a simple environment, such as an airplane flying over flat terrain casting
a single shadow, this technique works well. It is also easy to convert from point
sources to distant (parallel) light sources (see Exercise 4.17). However, when objects
can cast shadows on other objects, this method becomes impractical. In Chapter 11,
we address more general, but slower, rendering methods that will create shadows
automatically as part of the rendering process.

SUMMARY AND NOTES

We have come a long way. We can now write complete, nontrivial, three-dimensional
applications. Probably the most instructive activity that you can do now is to write
such an application. Developing skill with manipulating the model-view and projec-
tion functions takes practice.

We have presented the mathematics of the standard projections. Although most
APIs obviate the application programmer from writing projection functions, under-
standing the mathematics leads to understanding a pipeline implementation based
on concatenation of 4 x 4 matrices. Until recently, application programs had to do
the projections within the applications, and most hardware systems did not support
perspective projections.

There are three major themes in the remainder of this book. First, we explore
modeling further by expanding our basic set of primitives. In Chapter 8, we incorpo-
rate more complex relationships between simple objects through hierarchical models.
In Chapter 9, we explore approaches to modeling that allow us to describe objects
through procedures rather than as geometric objects. This approach allows us to
model objects with only as much detail as is needed, to incorporate physical laws into
our models, and to model natural phenomena that cannot be described by polygons.
In Chapter 10, we leave the world of flat objects, adding curves and curved surfaces.
These objects are defined by vertices, and we can implement them by breaking them
into small flat primitives, so we can use the same viewing pipeline.

The second major theme is realism. Although more complex objects allow us
to build more realistic models, we also explore more complex rendering options. In
Chapter 5, we consider the interaction of light with the materials that characterize
our objects. We look more deeply at hidden-surface-removal methods, at shading
models, and in Chapter 7 at techniques such as texture mapping that allow us to create
complex images from simple objects using advanced rendering techniques.

Third, we look more deeply at implementation in Chapter 6. At this point, we
have introduced the major functional units of the graphics pipeline. We discuss the
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details of the algorithms used in each unit. We will also see additional possibilities for
creating images by working directly in the frame buffer.

SUGGESTED READINGS

Carlbom and Paciorek [Car78] discuss the relationships between classical and com-
puter viewing. Rogers and Adams [Rog90] give many examples of the projection
matrices corresponding to the standard views used in drafting. Foley et al. [Fol90],
Watt [Wat00], and Hearn and Baker [Hea04] derive canonical projection transfor-
mations. All follow a PHIGS orientation, so the API is slightly different from the
one used here, although Foley derives the most general case. The references differ
in whether they use column or row matrices, in where the COP is located, and in
whether the projection is in the positive or negative z-direction. See the OpenGL Pro-
gramming Guide [Shr10] for a further discussion of the use of the model-view and
projection matrices in OpenGL.

EXERCISES

4.1 Not all projections are planar geometric projections. Give an example of a
projection in which the projection surface is not a plane and another in which
the projectors are not lines.

4.2  Consider an airplane whose position is specified by the roll, pitch, and yaw and
by the distance from an object. Find a model-view matrix in terms of these
parameters.

4.3  Consider a satellite orbiting the earth. Its position above the earth is specified
in polar coordinates. Find a model-view matrix that keeps the viewer looking
at the earth. Such a matrix could be used to show the earth as it rotates.

4.4  Show how to compute u and v directions from the VPN, VRP, and VUP using
only cross products.

4.5 Can we obtain an isometric of the cube by a single rotation about a suitably
chosen axis? Explain your answer.

4.6  Derive the perspective-projection matrix when the COP can be at any point
and the projection plane can be at any orientation.

4.7  Show that perspective projection preserves lines.

4.8 Any attempt to take the projection of a point in the same plane as the COP

will lead to a division by zero. What is the projection of a line segment that has
endpoints on either side of the projection plane?

4.9 Define one or more APIs to specify oblique projections. You do not need to
write the functions; just decide which parameters the user must specify.

4.10 Derive an oblique-projection matrix from specification of front and back clip-
ping planes and top-right and bottom-left intersections of the sides of the
clipping volume with the front clipping plane.



4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23
4.24

Our approach of normalizing all projections seems to imply that we could
predistort all objects and support only orthographic projections. Explain any
problems we would face if we took this approach to building a graphics system.

How do the OpenGL projection matrices change if the COP is not at the
origin? Assume that the COP is at (0, 0, d) and the projection plane is z = 0.

We can create an interesting class of three-dimensional objects by extending
two-dimensional objects into the third dimension by extrusion. For example,
a circle becomes a cylinder, a line becomes a quadrilateral, and a quadrilateral
in the plane becomes a parallelepiped. Use this technique to convert the two-
dimensional maze from Exercise 2.7 to a three-dimensional maze.

Extend the maze program of Exercise 4.13 to allow the user to walk through
the maze. A click on the middle mouse button should move the user forward;
a click on the right or left button should turn the user 90 degrees to the right
or left, respectively.

If we were to use orthogonal projections to draw the coordinate axes, the x-
and y-axes would lie in the plane of the paper, but the z-axis would point out of
the page. Instead, we can draw the x- and y-axes meeting at a 90-degree angle,
with the z-axis going off at —135 degrees from the x-axis. Find the matrix that
projects the original orthogonal-coordinate axes to this view.

Write a program to display a rotating cube in a box with three light sources.
Each light source should project the cube onto one of the three visible sides of
the box.

Find the projection of a point onto the plane ax + by + cz + d = 0 from a light
source located at infinity in the direction (d,, dy, d,).

Using one of the three-dimensional interfaces discussed in Chapter 3, write a
program to move the camera through a scene composed of simple objects.

Write a program to fly through the three-dimensional Sierpinski gasket formed
by subdividing tetrahedra. Can you prevent the user from flying through walls?

In animation, often we can save effort by working with two-dimensional pat-
terns that are mapped onto flat polygons that are always parallel to the camera,
a technique known as billboarding. Write a program that will keep a simple
polygon facing the camera as the camera moves.

Stereo images are produced by creating two images with the viewer in two
slightly different positions. Consider a viewer who is at the origin but whose
eyes are separated by Ax units. What are the appropriate viewing specifications
to create the two images?

In Section 4.9, we displayed a mesh by drawing two line strips. How would
you alter this approach to not draw the extra line from the end of one row (or
column) to the begining of the next row (or column)?

Derive a method for displaying a mesh using a single triangle strip.

Construct a fragment shader that does polygon offset during a perspective
projection.

Exercises
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4.25
4.26

4.27

4.28

Write a shader that modifies the height of a mesh in the shader.

Render a rectangular mesh as a single triangle strip by creating a degenerate
triangle at the end of each row.

Write a program that will fly around above a mesh. Your program should allow
the user to look around at the hills and valleys rather than always looking at a
single point.

Write a reshape callback that does not distort the shape of objects as the win-
dow is altered.



LIGHTING AND SHADING

We have learned to build three-dimensional graphical models and to display
them. However, if you render one of our models, you might be disappointed
to see images that look flat and thus fail to show the three-dimensional nature of
the model. This appearance is a consequence of our unnatural assumption that each
surface is lit such that it appears to a viewer in a single color. Under this assumption,
the orthographic projection of a sphere is a uniformly colored circle, and a cube
appears as a flat hexagon. If we look at a photograph of a lit sphere, we see not a
uniformly colored circle but rather a circular shape with many gradations, or shades,
of color. It is these gradations that give two-dimensional images the appearance of
being three-dimensional.

What we have left out is the interaction between light and the surfaces in our
models. This chapter begins to fill that gap. We develop separate models of light
sources and of the most common light-material interactions. Our aim is to add
shading to a fast pipeline graphics architecture. Consequently, we develop only local
lighting models. Such models, as opposed to global lighting models, allow us to
compute the shade to assign to a point on a surface, independent of any other surfaces
in the scene. The calculations depend only on the material properties assigned to the
surface, the local geometry of the surface, and the locations and properties of the light
sources. In this chapter, we introduce the lighting models used most often in OpenGL
applications. We shall see that we have choices as to where to apply a given lighting
model: in the application, in the vertex shader, or in the fragment shader.

Following our previous development, we investigate how we can apply shading
to polygonal models. We develop a recursive approximation to a sphere that will allow
us to test our shading algorithms. We then discuss how light and material properties
are specified in OpenGL applications and can be added to our sphere-approximating
program.

We conclude the chapter with a short discussion of the two most important
methods for handling global lighting effects: ray tracing and radiosity.
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FIGURE 5.1 Reflecting surfaces.

5.1 LIGHT AND MATTER

In Chapters 1 and 2, we presented the rudiments of human color vision, delaying
until now any discussion of the interaction between light and surfaces. Perhaps the
most general approach to rendering is based on physics, where we use principles such
as conservation of energy to derive equations that describe how light is reflected from
surfaces.

From a physical perspective, a surface can either emit light by self-emission,
as a light bulb does, or reflect light from other surfaces that illuminate it. Some
surfaces may both reflect light and emit light from internal physical processes. When
we look at a point on an object, the color that we see is determined by multiple
interactions among light sources and reflective surfaces. These interactions can be
viewed as a recursive process. Consider the simple scene in Figure 5.1. Some light
from the source that reaches surface A is scattered. Some of this reflected light reaches
surface B, and some of it is then scattered back to A, where some of it is again reflected
back to B, and so on. This recursive scattering of light between surfaces accounts
for subtle shading effects, such as the bleeding of colors between adjacent surfaces.
Mathematically, the limit of this recursive process can be described using an integral
equation, the rendering equation, which in principle we could use to find the shading
of all surfaces in a scene. Unfortunately, this equation generally cannot be solved
analytically. Numerical methods for computing a solution are not fast enough for
real-time rendering. There are various approximate approaches, such as radiosity and
ray tracing, each of which is an excellent approximation to the rendering equation
for particular types of surfaces. Although ray tracing can render moderately complex
scenes in real time, these methods cannot render scenes at the rate at which we can
pass polygons through the modeling-projection pipeline. Consequently, we focus on
a simpler rendering model, based on the Phong reflection model, that provides a
compromise between physical correctness and efficient calculation. We will introduce
global methods in Section 5.10 and then consider the rendering equation, radiosity,
and ray tracing in greater detail in Chapter 11.



5.1 Light and Matter

FIGURE 5.2 Light and surfaces.

Rather than looking at a global energy balance, we follow rays of light from
light-emitting (or self-luminous) surfaces that we call light sources. We then model
what happens to these rays as they interact with reflecting surfaces in the scene. This
approach is similar to ray tracing, but we consider only single interactions between
light sources and surfaces. There are two independent parts of the problem. First, we
must model the light sources in the scene. Then we must build a reflection model that
deals with the interactions between materials and light.

To get an overview of the process, we can start following rays of light from a
point source, as shown in Figure 5.2. As we noted in Chapter 1, our viewer sees only
the light that leaves the source and reaches her eyes—perhaps through a complex
path and multiple interactions with objects in the scene. If a ray of light enters her
eye directly from the source, she sees the color of the source. If the ray of light hits
a surface visible to our viewer, the color she sees is based on the interaction between
the source and the surface material: She sees the color of the light reflected from the
surface toward her eyes.

In terms of computer graphics, we replace the viewer by the projection plane, as
shown in Figure 5.3. Conceptually, the clipping window in this plane is mapped to
the screen; thus, we can think of the projection plane as ruled into rectangles, each
corresponding to a pixel. The color of the light source and of the surfaces determines
the color of one or more pixels in the frame buffer.

We need to consider only those rays that leave the source and reach the viewer’s
eye, either directly or through interactions with objects. In the case of computer
viewing, these are the rays that reach the center of projection (COP) after passing
through the clipping rectangle. Note that in scenes for which the image shows a lot
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FIGURE 5.3 Light, surfaces, and computer imaging.

(a) (b) (c)

FIGURE 5.4 Light-material interactions. (a) Specular surface. (b) Diffuse
surface. (c) Translucent surface.

of the background, most rays leaving a source do not contribute to the image and are
thus of no interest to us. We make use of this observation in Section 5.10.

Figure 5.2 shows both single and multiple interactions between rays and objects.
It is the nature of these interactions that determines whether an object appears red or
brown, light or dark, dull or shiny. When light strikes a surface, some of it is absorbed
and some of it is reflected. If the surface is opaque, reflection and absorption account
for all the light striking the surface. If the surface is translucent, some of the light is
transmitted through the material and emerges to interact with other objects. These
interactions depend on wavelength. An object illuminated by white light appears red
because it absorbs most of the incident light but reflects light in the red range of
frequencies. A shiny object appears so because its surface is smooth. Conversely, a dull
object has a rough surface. The shading of objects also depends on the orientation of
their surfaces, a factor that we shall see is characterized by the normal vector at each
point. These interactions between light and materials can be classified into the three
groups depicted in Figure 5.4.



1. Specular surfaces appear shiny because most of the light that is reflected or
scattered is in a narrow range of angles close to the angle of reflection. Mirrors
are perfectly specular surfaces; the light from an incoming light ray may be
partially absorbed, but all reflected light from a given angle emerges at a single
angle, obeying the rule that the angle of incidence is equal to the angle of
reflection.

2. Diffuse surfaces are characterized by reflected light being scattered in all
directions. Walls painted with matte or flat paint are diffuse reflectors, as are
many natural materials, such as terrain viewed from an airplane or a satellite.
Perfectly diffuse surfaces scatter light equally in all directions, and thus a flat
perfectly diffuse surface appears the same to all viewers.

3. Translucent surfaces allow some light to penetrate the surface and to emerge
from another location on the object. This process of refraction characterizes
glass and water. Some incident light may also be reflected at the surface.

We shall model all these surfaces in Section 5.3. First, we consider light sources.

5.2 LIGHT SOURCES

Light can leave a surface through two fundamental processes: self-emission and re-
flection. We usually think of a light source as an object that emits light only through
internal energy sources. However, a light source, such as a light bulb, can also reflect
some light that is incident on it from the surrounding environment. We will usually
omit the emissive term in our simple models. When we discuss lighting in Section 5.7,
we will see that we can easily add a self-emission term.

If we consider a source such as the one in Figure 5.5, we can look at it as an
object with a surface. Each point (x, y, z) on the surface can emit light that is char-
acterized by the direction of emission (6, ¢) and the intensity of energy emitted at
each wavelength A. Thus, a general light source can be characterized by a six-variable
illumination function I(x, y, z, 6, ¢, A). Note that we need two angles to specify a
direction, and we are assuming that each frequency can be considered independently.
From the perspective of a surface illuminated by this source, we can obtain the total
contribution of the source (Figure 5.6) by integrating over its surface, a process that
accounts for the emission angles that reach this surface and must also account for the
distance between the source and the surface. For a distributed light source, such as a
light bulb, the evaluation of this integral is difficult, whether we use analytic or nu-
merical methods. Often, it is easier to model the distributed source with polygons,
each of which is a simple source, or with an approximating set of point sources.

We consider four basic types of sources: ambient lighting, point sources, spot-
lights, and distant light. These four lighting types are sufficient for rendering most
simple scenes.
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FIGURE 5.5 Light source.
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FIGURE 5.6 Adding the contribution from a source.

5.2.1 Color Sources
Not only do light sources emit different amounts of light at different frequencies,
but their directional properties can vary with frequency as well. Consequently, a
physically-correct model can be complex. However, our model of the human visual
system is based on three-color theory, which tells us we perceive three tristimulus
values rather than a full-color distribution. For most applications, we can thus model
light sources as having three components—red, green, and blue—and can use each of
the three color sources to obtain the corresponding color components that a human
observer sees.

We describe a source through a three-component intensity, or luminance, func-
tion

I= Ig N
I,

each of whose components is the intensity of the independent red, green, and blue
components. Thus, we use the red component of a light source for the calculation of
the red component of the image. Because light—material computations involve three
similar but independent calculations, we will tend to present a single scalar equation,
with the understanding that it can represent any of the three color components.

5.2.2 Ambient Light

In many rooms, such as classrooms or kitchens, the lights have been designed and
positioned to provide uniform illumination throughout the room. Such illumination
is often achieved through large sources that have diffusers whose purpose is to scatter
light in all directions. We could create an accurate simulation of such illumination,
at least in principle, by modeling all the distributed sources and then integrating the
illumination from these sources at each point on a reflecting surface. Making such a
model and rendering a scene with it would be a daunting task for a graphics system,
especially one for which real-time performance is desirable. Alternatively, we can
look at the desired effect of the sources: to achieve a uniform light level in the room.
This uniform lighting is called ambient light. If we follow this second approach, we
can postulate an ambient intensity at each point in the environment. Thus, ambient



FIGURE 5.7 Point source illuminating a surface.

illumination is characterized by an intensity, I, that is identical at every point in the
scene.
Our ambient source has three color components:

ar

We will use the scalar I, to denote any one of the red, green, or blue components of
I,. Although every point in our scene receives the same illumination from I, each
surface can reflect this light differently.

5.2.3 Point Sources

An ideal point source emits light equally in all directions. We can characterize a point
source located at a point p,, by a three-component color matrix:

Ir(p())
I(py) = | I;(py)
I, (py)

The intensity of illumination received from a point source is proportional to the
inverse square of the distance between the source and surface. Hence, at a point p
(Figure 5.7), the intensity of light received from the point source is given by the matrix

i(p, pp) = I(py)-

Ip — pol*
As with ambient light, we will use I(p,) to denote any of the components of I(p,).
The use of point sources in most applications is determined more by their ease
of use than by their resemblance to physical reality. Scenes rendered with only point
sources tend to have high contrast; objects appear either bright or dark. In the real
world, it is the large size of most light sources that contributes to softer scenes, as
we can see from Figure 5.8, which shows the shadows created by a source of finite
size. Some areas are fully in shadow, or in the umbra, whereas others are in partial
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FIGURE 5.8 Shadows created
by finite-size light source.
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FIGURE 5.12 Parallel light
source.

shadow, or in the penumbra. We can mitigate the high-contrast effect from point-
source illumination by adding ambient light to a scene.

The distance term also contributes to the harsh renderings with point sources.
Although the inverse-square distance term is correct for point sources, in practice it
is usually replaced by a term of the form (a + bd + cd®)~!, where d is the distance
between p and p,,. The constants a, b, and ¢ can be chosen to soften the lighting. Note
that if the light source is far from the surfaces in the scene, the intensity of the light
from the source is sufficiently uniform that the distance term is constant over each
surface.

5.2.4 Spotlights

Spotlights are characterized by a narrow range of angles through which light is emit-
ted. We can construct a simple spotlight from a point source by limiting the angles at
which light from the source can be seen. We can use a cone whose apex is at p,, which
points in the direction 1, and whose width is determined by an angle 6, as shown in
Figure 5.9. If 0 = 180, the spotlight becomes a point source.

More realistic spotlights are characterized by the distribution of light within the
cone—usually with most of the light concentrated in the center of the cone. Thus, the
intensity is a function of the angle ¢ between the direction of the source and a vector
s to a point on the surface (as long as this angle is less than 6; Figure 5.10). Although
this function could be defined in many ways, it is usually defined by cos® ¢, where the
exponent e (Figure 5.11) determines how rapidly the light intensity drops off.

As we shall see throughout this chapter, cosines are convenient functions for
lighting calculations. If u and v are any unit-length vectors, we can compute the
cosine of the angle 6 between them with the dot product

cosf =u-v,

a calculation that requires only three multiplications and two additions.

5.2.5 Distant Light Sources

Most shading calculations require the direction from the point on the surface to
the light source position. As we move across a surface, calculating the intensity at
each point, we should recompute this vector repeatedly—a computation that is a
significant part of the shading calculation. However, if the light source is far from
the surface, the vector does not change much as we move from point to point, just as
the light from the sun strikes all objects that are in close proximity to one another
at the same angle. Figure 5.12 illustrates that we are effectively replacing a point
source of light with a source that illuminates objects with parallel rays of light—a
parallel source. In practice, the calculations for distant light sources are similar to the
calculations for parallel projections; they replace the location of the light source with
the direction of the light source. Hence, in homogeneous coordinates, a point light
source at p, is represented internally as a four-dimensional column matrix:
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Po=

—_— N =R R

In contrast, the distant light source is described by a direction vector whose represen-
tation in homogeneous coordinates is the matrix

Po

o N =R

The graphics system can carry out rendering calculations more efficiently for distant
light sources than for near ones. Of course, a scene rendered with distant light sources
looks different from a scene rendered with near sources. Fortunately, our models will
allow both types of sources.

5.3 THE PHONG REFLECTION MODEL

Although we could approach light-material interactions through physical models, we
have chosen to use a model that leads to efficient computations, especially when we
use it with our pipeline-rendering model. The reflection model that we present was
introduced by Phong and later modified by Blinn. It has proved to be efficient and
to be a close-enough approximation to physical reality to produce good renderings
under a variety of lighting conditions and material properties.

The Phong model uses the four vectors shown in Figure 5.13 to calculate a color
for an arbitrary point p on a surface. If the surface is curved, all four vectors can
change as we move from point to point. The vector n is the normal at p; we discuss
its calculation in Section 5.4. The vector v is in the direction from p to the viewer
or COP. The vector 1 is in the direction of a line from p to an arbitrary point on the
source for a distributed light source or, as we are assuming for now, to the point-
light source. Finally, the vector r is in the direction that a perfectly reflected ray from
1 would take. Note that r is determined by n and 1. We calculate it in Section 5.4.

The Phong model supports the three types of material-light interactions—
ambient, diffuse, and specular—that we introduced in Section 5.1. Suppose that we
have a set of point sources. We assume that each source can have separate ambient,
diffuse, and specular components for each of the three primary colors. Although this
assumption may appear unnatural, remember that our goal is to create realistic shad-
ing effects in as close to real time as possible. We use a local model to simulate effects
that can be global in nature. Thus, our light-source model has ambient, diffuse, and
specular terms. We need nine coefficients to characterize these terms at any point p
on the surface. We can place these nine coefficients in a 3 x 3 illumination matrix for
the ith light source:

v

P

FIGURE 5.13 Vectors used by
the Phong model.
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L ira Liga L iba
Li=| Lig Ligg Lig
Lirs L igs Libs

The first row of the matrix contains the ambient intensities for the red, green, and
blue terms from source i. The second row contains the diffuse terms; the third con-
tains the specular terms. We assume that any distance-attenuation terms have not yet
been applied. This matrix is only a simple way of storing the nine lighting terms we
need. In practice, we will use constructs such as

vec3 light_i_ambient, light_i_diffuse, light_i_specular;
or
vec4 light_i_ambient, light_i_diffuse, light_i_specular;

for each source in our code. The four-dimensional form will be useful when we
consider lighting with materials that are not opaque.

We construct the model by assuming that we can compute how much of each
of the incident lights is reflected at the point of interest. For example, for the red
diffuse term from source i, L, 4, we can compute a reflection term R; 4, and the latter’s
contribution to the intensity at p is R; 4L;.4. The value of R; 4 depends on the material
properties, the orientation of the surface, the direction of the light source, and the
distance between the light source and the viewer. Thus, for each point, we have nine
coefficients that we can place in a matrix of reflection terms of the form

Rira Riga Riba
Ri=1 Riyg Riga Ripa
Rirs  Rigs  Rips

irs igs

We can then compute the contribution for each color source by adding the ambient,
diffuse, and specular components. For example, the red intensity that we see at p from
source i is

mwraira 1 IrsTIrs
= Iira + Iird + Iirs’
We obtain the total intensity by adding the contributions of all sources and, possibly,
a global ambient term. Thus, the red term is

I = Z(Iira + Lirg + Lix) + Ips
i

where I is the red component of the global ambient light.
We can simplify our notation by noting that the necessary computations are the
same for each source and for each primary color. They differ depending on whether
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we are considering the ambient, diffuse, or specular terms. Hence, we can omit the
subscripts 1, 1, g, and b. We write

I=I+1I4+1, =LR,+LiRy+ LR,

with the understanding that the computation will be done for each of the primaries
and each source; the global ambient term can be added at the end. As with the lighting
terms, when we get to code we will use forms such as

vec4 reflect_i_ambient, reflect_i_diffuse, reflect_i_specular;

Note that these terms are all for a single surface and in general we will have different
reflectivity properties for each material.

5.3.1 Ambient Reflection

The intensity of ambient light I is the same at every point on the surface. Some of this
light is absorbed and some is reflected. The amount reflected is given by the ambient
reflection coefficient, R, = k,. Because only a positive fraction of the light is reflected,
we must have

0<k,<1,
and thus

I, =k,L,

Here L, can be any of the individual light sources, or it can be a global ambient term.
A surface has, of course, three ambient coefficients—k,,, k,g, and k,,—and they

can differ. Hence, for example, a sphere appears yellow under white ambient light if

its blue ambient coefficient is small and its red and green coefficients are large.

5.3.2 Diffuse Reflection

A perfectly diffuse reflector scatters the light that it reflects equally in all directions.
Hence, such a surface appears the same to all viewers. However, the amount of
light reflected depends both on the material—because some of the incoming light
is absorbed—and on the position of the light source relative to the surface. Diffuse
reflections are characterized by rough surfaces. If we were to magnify a cross section
of a diffuse surface, we might see an image like that shown in Figure 5.14. Rays of
light that hit the surface at only slightly different angles are reflected back at markedly
different angles. Perfectly diffuse surfaces are so rough that there is no preferred angle
of reflection. Such surfaces, sometimes called Lambertian surfaces, can be modeled
mathematically with Lambert’s law.

Consider a diffuse planar surface, as shown in Figure 5.15, illuminated by the
sun. The surface is brightest at noon and dimmest at dawn and dusk because, ac-
cording to Lambert’s law, we see only the vertical component of the incoming light.

—
FIGURE 5.14 Rough surface.

(a) (b)

FIGURE 5.15 lllumination of
a diffuse surface. (a) At noon.
(b) In the afternoon.
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FIGURE 5.16 Vertical contributions by Lambert’s law. (a) At noon. (b) In
the afternoon.

One way to understand this law is to consider a small parallel light source striking
a plane, as shown in Figure 5.16. As the source is lowered in the (artificial) sky, the
same amount of light is spread over a larger area, and the surface appears dimmer.
Returning to the point source of Figure 5.15, we can characterize diffuse reflections
mathematically. Lambert’s law states that

R; o cos 6,

where 0 is the angle between the normal at the point of interest n and the direction
of the light source L. If both I and n are unit-length vectors,! then

cosf =1-n.

If we add in a reflection coefficient k; representing the fraction of incoming diffuse
light that is reflected, we have the diffuse reflection term:

If we wish to incorporate a distance term, to account for attenuation as the light
travels a distance d from the source to the surface, we can again use the quadratic
attenuation term:

kg
[,=—94 (1.0,
d a+bd+cd2( mkg

1. Direction vectors, such as 1 and n, are used repeatedly in shading calculations through the dot
product. In practice, both the programmer and the graphics software should seek to normalize all
such vectors as soon as possible.
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There is a potential problem with this expression because (I - n)L; will be neg-
ative if the light source is below the horizon. In this case, we want to use zero rather
than a negative value. Hence, in practice we use max((1 - n)L,, 0).

5.3.3 Specular Reflection

If we employ only ambient and diffuse reflections, our images will be shaded and will
appear three-dimensional, but all the surfaces will look dull, somewhat like chalk.
What we are missing are the highlights that we see reflected from shiny objects. These
highlights usually show a color different from the color of the reflected ambient and
diffuse light. For example, a red plastic ball viewed under white light has a white
highlight that is the reflection of some of the light from the source in the direction
of the viewer (Figure 5.17).

Whereas a diffuse surface is rough, a specular surface is smooth. The smoother
the surface is, the more it resembles a mirror. Figure 5.18 shows that as the surface
gets smoother, the reflected light is concentrated in a smaller range of angles centered
about the angle of a perfect reflector—a mirror or a perfectly specular surface. Mod-
eling specular surfaces realistically can be complex because the pattern by which the
light is scattered is not symmetric. It depends on the wavelength of the incident light,
and it changes with the reflection angle.

Phong proposed an approximate model that can be computed with only a slight
increase over the work done for diffuse surfaces. The model adds a term for specular
reflection. Hence, we consider the surface as being rough for the diffuse term and
smooth for the specular term. The amount of light that the viewer sees depends on
the angle ¢ between r, the direction of a perfect reflector, and v, the direction of the
viewer. The Phong model uses the equation

I,=kJL, cos” ¢.

The coefficient k; (0 < k; < 1) is the fraction of the incoming specular light that is
reflected. The exponent « is a shininess coefficient. Figure 5.19 shows how, as « is
increased, the reflected light is concentrated in a narrower region centered on the
angle of a perfect reflector. In the limit, as & goes to infinity, we get a mirror; values in
the range 100 to 500 correspond to most metallic surfaces, and smaller values (< 100)
correspond to materials that show broad highlights.

The computational advantage of the Phong model is that if we have normalized r
and n to unit length, we can again use the dot product, and the specular term becomes

I, = kLamax((r - v)%, 0).

We can add a distance term, as we did with diffuse reflections. What is referred to as
the Phong model, including the distance term, is written

1

I= m(dedmax(l -n, 0) + kLamax((r - v)%, 0)) + k,L,.

This formula is computed for each light source and for each primary.

FIGURE 5.17 Specular high-
lights.

FIGURE 5.18 Specular sur-
face.
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FIGURE 5.19 Effect of shininess coefficient.

It might seem to make little sense either to associate a different amount of ambi-
ent light with each source or to allow the components for specular and diffuse lighting
to be different. Because we cannot solve the full rendering equation, we must use var-
ious tricks in an attempt to obtain realistic renderings.

Consider, for example, an environment with many objects. When we turn on a
light, some of that light hits a surface directly. These contributions to the image can
be modeled with specular and diffuse components of the source. However, much of
the rest of the light from the source is scattered from multiple reflections from other
objects and makes a contribution to the light received at the surface under considera-
tion. We can approximate this term by having an ambient component associated with
the source. The shade that we should assign to this term depends on both the color of
the source and the color of the objects in the room—an unfortunate consequence of
our use of approximate models. To some extent, the same analysis holds for diffuse
light. Diffuse light reflects among the surfaces, and the color that we see on a partic-
ular surface depends on other surfaces in the environment. Again, by using carefully
chosen diffuse and specular components with our light sources, we can approximate
a global effect with local calculations.

We have developed the Phong model in object space. The actual shading, how-
ever, is not done until the objects have passed through the model-view and projection
transformations. These transformations can affect the cosine terms in the model (see
Exercise 5.19). Consequently, to make a correct shading calculation, we must either
preserve spatial relationships as vertices and vectors pass through the pipeline, per-
haps by sending additional information through the pipeline from object space, or
go backward through the pipeline to obtain the required shading information.

5.3.4 The Modified Phong Model

If we use the Phong model with specular reflections in our rendering, the dot product
r - v should be recalculated at every point on the surface. We can obtain an interesting
approximation by using the unit vector halfway between the viewer vector and the
light-source vector:



5.4 Computation of Vectors 271

14wV
N+v|

Figure 5.20 shows all five vectors. Here we have defined ¢ as the angle between n and
h, the halfway angle. When v lies in the same plane as do 1, n, and r, we can show
(see Exercise 5.7) that

20 = ¢.

If we replace r - v with n - h, we avoid calculation of r. However, the halfway angle ¢
is smaller than ¢, and if we use the same exponent e in (n - h)° that we used in (r - v)¢,
then the size of the specular highlights will be smaller. We can mitigate this problem
by replacing the value of the exponent e with a value ¢ so that (n - h) is closer to
(r - v)°. It is clear that avoiding recalculation of r is desirable. However, to appreciate
fully where savings can be made, you should consider all the cases of flat and curved
surfaces, near and far light sources, and near and far viewers (see Exercise 5.8).

When we use the halfway vector in the calculation of the specular term, we
are using the Blinn-Phong, or modified Phong, lighting model. This model is the
default in systems with a fixed-function pipeline and is the one we will use in our
first shaders that carry out lighting.

Color Plate 17 shows a group of Utah teapots (Section 10.10) that have been ren-
dered in OpenGL using the modified Phong model. Note that it is only our ability to
control material properties that makes the teapots appear different from one another.
The various teapots demonstrate how the modified Phong model can create a variety
of surface effects, ranging from dull surfaces to highly reflective surfaces that look like
metal.

5.4 COMPUTATION OF VECTORS

The illumination and reflection models that we have derived are sufficiently general
that they can be applied to either curved or flat surfaces, to parallel or perspective
views, and to distant or near surfaces. Most of the calculations for rendering a scene
involve the determination of the required vectors and dot products. For each special
case, simplifications are possible. For example, if the surface is a flat polygon, the
normal is the same at all points on the surface. If the light source is far from the
surface, the light direction is the same at all points.

In this section, we examine how the vectors are computed for the general case. In
Section 5.5, we see what additional techniques can be applied when our objects are
composed of flat polygons. This case is especially important because most renderers,
including OpenGL, render curved surfaces by approximating those surfaces with
many small, flat polygons.

FIGURE 5.20 Determination
of the halfway vector.
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5.4.1 Normal Vectors

For smooth surfaces, the vector normal to the surface exists at every point and gives
the local orientation of the surface. Its calculation depends on how the surface is
represented mathematically. Two simple cases—the plane and the sphere—illustrate
both how we compute normals and where the difficulties lie.

A plane can be described by the equation

ax+by+cz+d=0.

As we saw in Chapter 3, this equation could also be written in terms of the normal to
the plane, n, and a point, p,, known to be on the plane as

n'(P_pO):O:

where p is any point (x, y, z) on the plane. Comparing the two forms, we see that the
vector n is given by

or, in homogeneous coordinates,

-2
b

I

0

However, suppose that instead we are given three noncollinear points—p, p;, p,—
that are in this plane and thus are sufficient to determine it uniquely. The vectors
P, — Py and p; — p, are parallel to the plane, and we can use their cross product to
find the normal

n=(p, — Py) X (P; — Py)-

We must be careful about the order of the vectors in the cross product: Reversing
the order changes the surface from outward pointing to inward pointing, and that
reversal can affect the lighting calculations. Some graphics systems use the first three
vertices in the specification of a polygon to determine the normal automatically.
OpenGL does not do so, but as we shall see in Section 5.5, forcing users to compute
normals creates more flexibility in how we apply our lighting model.

For curved surfaces, how we compute normals depends on how we represent the
surface. In Chapter 10, we discuss three different methods for representing curves
and surfaces. We can see a few of the possibilities by considering how we represent a
unit sphere centered at the origin. The usual equation for this sphere is the implicit
equation
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fx,y,2)=x*+y*+22—1=0,
or in vector form,
fp)=p-p—1=0.

The normal is given by the gradient vector, which is defined by the column matrix

of
ox 2x
of
n=| 5 = 2y | =2p
af 2z
0z

The sphere could also be represented in parametric form. In this form, the x, y,
and z values of a point on the sphere are represented independently in terms of two
parameters # and v:

x=x(u,v),
y=yu,v),
z=2z(u, v).

As we shall see in Chapter 10, this form is preferable in computer graphics, especially
for representing curves and surfaces; although, for a particular surface, there may be
multiple parametric representations. One parametric representation for the sphere is

x(u, v) = cos u sin v,
y(u, v) = cos u cos v, A
z(u, v) = sin u.

As uand v vary in the range —7/2 < u < /2, —w < v < 7, we get all the points on v

the sphere. When we are using the parametric form, we can obtain the normal from

the tangent plane, shown in Figure 5.21, ata point p(u, v) = [x(u, v) y(u, v) z(u, ]’ FIGURE 5.21 Tangent plane
on the surface. The tangent plane gives the local orientation of the surface at a point; ~ to sphere.

we can derive it by taking the linear terms of the Taylor series expansion of the surface

at p. The result is that at p, lines in the directions of the vectors represented by

ax ax

ou av

_|w P _ | oy
= N =

ou du ov v

9z dz

ou av

lie in the tangent plane. We can use their cross product to obtain the normal

n=0, %
ou v

For our sphere, we find that
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FIGURE 5.22 A mirror.

Cos u sin v
n=cosu | cosucosv | =(cosu)p.

sin u

We are interested in only the direction of n; thus, we can divide by cos u to obtain the
unit normal to the sphere

n=p.

In Section 5.9, we use this result to shade a polygonal approximation to a sphere.

Within a graphics system, we usually work with a collection of vertices, and the
normal vector must be approximated from some set of points close to the point where
the normal is needed. The pipeline architecture of real-time graphics systems makes
this calculation difficult because we process one vertex at a time, and thus the graphics
system may not have the information available to compute the approximate normal at
a given point. Consequently, graphics systems often leave the computation of normals
to the user program.

In OpenGL, we will usually set up a normal as a vertex attribute by a mechanism
such as

typedef normal vec4;

normal n = vec4(nx, ny, nz, 0.0);

and then send the normal as needed to a vertex shader as an attribute qualified
variable.

5.4.2 Angle of Reflection

Once we have calculated the normal at a point, we can use this normal and the
direction of the light source to compute the direction of a perfect reflection. An ideal
mirror is characterized by the following statement: The angle of incidence is equal
to the angle of reflection. These angles are as pictured in Figure 5.22. The angle of
incidence is the angle between the normal and the light source (assumed to be a point
source); the angle of reflection is the angle between the normal and the direction in
which the light is reflected. In two dimensions, there is but a single angle satisfying
the angle condition. In three dimensions, however, our statement is insufficient to
compute the required angle: There is an infinite number of angles satistying our
condition. We must add the following statement: At a point p on the surface, the
incoming light ray, the reflected light ray, and the normal at the point must all lie in
the same plane. These two conditions are sufficient for us to determine r from n and
1. Our primary interest is the direction, rather than the magnitude, of r. However,
many of our rendering calculations will be easier if we deal with unit-length vectors.
Hence, we assume that both I and n have been normalized such that

Il =In| =1
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We also want

[r| = 1.

If 6, = 6,, then

cos 0; = cos ,.

Using the dot product, the angle condition is
cosf;=1-n=cosf,=n-r.

The coplanar condition implies that we can write r as a linear combination of 1
and n:

r=oal+ Bn.
Taking the dot product with n, we find that
n-r=al-n+pg=1-n.

We can get a second condition between « and f from our requirement that r also be
of unit length; thus,

l=r-r=a’+2epl-n+ g2
Solving these two equations, we find that
r=2(1-n)n—1

Some of the shaders we develop will use this calculation to compute a reflection
vector for use in the application; others that need the reflection vector only in a shader
can use the GLSL reflect function to compute it. Methods such as environment
maps will use the reflected-view vector (see Exercise 5.26) that is used to determine
what a viewer would see if she looked at a reflecting surface such as a highly polished
sphere.

5.5 POLYGONAL SHADING

Assuming that we can compute normal vectors, given a set of light sources and a
viewer, the lighting models that we have developed can be applied at every point on
a surface. Unfortunately, even if we have simple equations to determine normal vec-
tors, as we did in our example of a sphere (Section 5.4), the amount of computation
required can be large. We have already seen many of the advantages of using polyg-
onal models for our objects. A further advantage is that for flat polygons, we can
significantly reduce the work required for shading. Most graphics systems, including
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FIGURE 5.24 Distant source and viewer.

OpenGL, exploit the efficiencies possible for rendering flat polygons by decomposing
curved surfaces into many small, flat polygons.

Consider a polygonal mesh, such as that shown in Figure 5.23, where each poly-
gon is flat and thus has a well-defined normal vector. We consider three ways to shade
the polygons: flat shading, smooth or Gouraud shading, and Phong shading.

5.5.1 Flat Shading

The three vectors—I, n, and v—can vary as we move from point to point on a surface.
For a flat polygon, however, n is constant. If we assume a distant viewer, v is constant
over the polygon. Finally, if the light source is distant, 1 is constant. Here distant
could be interpreted in the strict sense of meaning that the source is at infinity. The
necessary adjustments, such as changing the location of the source to the direction of
the source, could then be made to the shading equations and to their implementation.
Distant could also be interpreted in terms of the size of the polygon relative to how far
the polygon is from the source or viewer, as shown in Figure 5.24. Graphics systems
or user programs often exploit this definition.

If the three vectors are constant, then the shading calculation needs to be carried
out only once for each polygon, and each point on the polygon is assigned the same
shade. This technique is known as flat, or constant, shading.

Flat shading will show differences in shading among the polygons in our mesh.
If the light sources and viewer are near the polygon, the vectors 1 and v will be dif-
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FIGURE 5.25 Flat shading of polygonal mesh.

ferent for each polygon. However, if our polygonal mesh has been designed to model
a smooth surface, flat shading will almost always be disappointing because we can
see even small differences in shading between adjacent polygons, as shown in Fig-
ure 5.25. The human visual system has a remarkable sensitivity to small differences
in light intensity, due to a property known as lateral inhibition. If we see an increas-
ing sequence of intensities, as is shown in Figure 5.26, we perceive the increases in
brightness as overshooting on one side of an intensity step and undershooting on
the other, as shown in Figure 5.27. We see stripes, known as Mach bands, along the
edges. This phenomenon is a consequence of how the cones in the eye are connected
to the optic nerve, and there is little that we can do to avoid it, other than to look for
smoother shading techniques that do not produce large differences in shades at the
edges of polygons.

5.5.2 Smooth and Gouraud Shading

In our rotating-cube example of Section 3.12, we saw that the rasterizer interpolates
colors assigned to vertices across a polygon. Suppose that the lighting calculation
is made at each vertex using the material properties and the vectors n, v, and 1
computed for each vertex. Thus, each vertex will have its own color that the rasterizer
can use to interpolate a shade for each fragment. Note that if the light source is
distant, and either the viewer is distant or there are no specular reflections, then
smooth (or interpolative) shading shades a polygon in a constant color.

Perceived intensity~_

Actual intensity

FIGURE 5.27 Perceived and actual intensities at an edge.

FIGURE 5.26 Step chart.
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1 / N

FIGURE 5.28 Normals near
interior vertex.

If we consider our mesh, the idea of a normal existing at a vertex should cause
concern to anyone worried about mathematical correctness. Because multiple poly-
gons meet at interior vertices of the mesh, each of which has its own normal, the
normal at the vertex is discontinuous. Although this situation might complicate the
mathematics, Gouraud realized that the normal at the vertex could be defined in such
away as to achieve smoother shading through interpolation. Consider an interior ver-
tex, as shown in Figure 5.28, where four polygons meet. Each has its own normal. In
Gouraud shading, we define the normal at a vertex to be the normalized average of
the normals of the polygons that share the vertex. For our example, the vertexnormal
is given by

_ nt+nm+n;+ny
Iy + 1, + 0+ 0|

From an OpenGL perspective, Gouraud shading is deceptively simple. We need only
to set the vertex normals correctly. Often, the literature makes no distinction between
smooth and Gouraud shading. However, the lack of a distinction causes a problem:
How do we find the normals that we should average together? If our program is lin-
ear, specifying a list of vertices (and other properties), we do not have the necessary
information about which polygons share a vertex. What we need, of course, is a data
structure for representing the mesh. Traversing this data structure can generate the
vertices with the averaged normals. Such a data structure should contain, at a mini-
mum, polygons, vertices, normals, and material properties. One possible structure is
the one shown in Figure 5.29. The key information that must be represented in the
data structure is which polygons meet at each vertex.

Color Plates 4 and 5 show the shading effects available in OpenGL. In Color
Plate 4, there is a single light source, but each polygon has been rendered with a
single shade (constant shading), computed using the Phong model. In Color Plate 5,

Polygons

Vertices

FIGURE 5.29 Mesh data structure.
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FIGURE 5.30 Edge normals.

normals have been assigned to all the vertices. OpenGL has then computed shades
for the vertices and has interpolated these shades over the faces of the polygons.

Color Plate 21 contains another illustration of the smooth shading provided
by OpenGL. We used this color cube as an example in both Chapters 2 and 3, and
the programs are in Appendix A. The eight vertices are colored black, white, red,
green, blue, cyan, magenta, and yellow. Once smooth shading is enabled, OpenGL
interpolates the colors across the faces of the polygons automatically.

5.5.3 Phong Shading

Even the smoothness introduced by Gouraud shading may not prevent the appear-
ance of Mach bands. Phong proposed that instead of interpolating vertex intensities,
as we do in Gouraud shading, we interpolate normals across each polygon. Consider
a polygon that shares edges and vertices with other polygons in the mesh, as shown
in Figure 5.30. We can compute vertex normals by interpolating over the normals of
the polygons that share the vertex. Next, we can use interpolation, as we did in Chap-
ter 3, to interpolate the normals over the polygon. Consider Figure 5.31. We can use
the interpolated normals at vertices A and B to interpolate normals along the edge
between them:

n-(a) = (1 — a)n, + ang.

We can do a similar interpolation on all the edges. The normal at any interior point
can be obtained from points on the edges by

n(a, B) = (1— ,B)HC + ,BHD~

Once we have the normal at each point, we can make an independent shading calcu-
lation. Usually, this process can be combined with rasterization of the polygon. Until
recently, Phong shading could only be carried out off-line because it requires the in-
terpolation of normals across each polygon. In terms of the pipeline, Phong shading

FIGURE 5.31 Interpolation of
normals in Phong shading.
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requires that the lighting model be applied to each fragment, hence, the name per-
fragment shading. We will implement Phong shading through a fragment shader.

5.6 APPROXIMATION OF A SPHERE
BY RECURSIVE SUBDIVISION

We have used the sphere as an example curved surface to illustrate shading calcu-
lations. However, the sphere is not an object supported within OpenGL, so we will
generate approximations to a sphere using triangles through a process known as re-
cursive subdivision, a technique we introduced in Chapter 2 for constructing the
Sierpinski gasket. Recursive subdivision is a powerful technique for generating ap-
proximations to curves and surfaces to any desired level of accuracy. The sphere
approximation provides a basis for us to write simple programs that illustrate the
interactions between shading parameters and polygonal approximations to curved
surfaces.

Our starting point is a tetrahedron, although we could start with any regular
polyhedron whose facets could be divided initially into triangles.” The regular tetra-
hedron is composed of four equilateral triangles, determined by four vertices. We
start with the four vertices (0, 0, 1), (0, 2\/5/3, —1/3), (—\/6/3, —«/f/3, —1/3),and
(\/6/ 3, —«/f/ 3, —1/3). All four lie on the unit sphere, centered at the origin. (Exer-
cise 5.6 suggests one method for finding these points.)

We get a first approximation by drawing a wireframe for the tetrahedron. We
specify the four vertices as follows:

point4 v[4]= {vec4(0.0, 0.0, 1.0, 1.0),
vec4 (0.0, 0.942809, -0.333333, 1.0),
vecd4(-0.816497, -0.471405, -0.333333, 1.0),
vec4(0.816497, -0.471405, -0.333333, 1.0)};

We then put the vertices into an array
point4 data[12];

so we can display the triangles using line loops. Each triangle adds three points to this
array using the function

static int k = O;
void triangle(point4 a, point4 b, point4d c)

{
datalk]= a;

2. The regular icosahedron is composed of 20 equilateral triangles; it makes a nice starting point for

generating spheres. See [Shr10].
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k++;
data[k]
k++;

datalk]
k++

]
o

1]
(e}

}
All the data for the tetrahedron is put into data as follows:

void tetrahedron()

{
triangle(v[0], v[1]l, v[2]);
triangle(v[3], v[2], v[1]);
triangle(v([0], v[3], v[1]);
triangle(v[0], v[2], v[3]);
}

The order of vertices obeys the right-hand rule, so we can convert the code to draw
shaded polygons with little difficulty. If we add the usual code for initialization, set-
ting up a vertex buffer object and drawing the array, our program will generate an
image such as that in Figure 5.32: a simple regular polyhedron, but a poor approxi-
mation to a sphere.

We can get a closer approximation to the sphere by subdividing each facet of the
tetrahedron into smaller triangles. Subdividing into triangles will ensure that all the
new facets will be flat. There are at least three ways to do the subdivision, as shown
in Figure 5.33. We can bisect each of the angles of the triangle and draw the three
bisectors, which meet at a common point, thus generating three new triangles. We
can also compute the center of mass (centroid) of the vertices by simply averaging
them and then draw lines from this point to the three vertices, again generating three
triangles. However, these techniques do not preserve the equilateral triangles that
make up the regular tetrahedron. Instead—recalling a construction for the Sierpinski
gasket of Chapter 2—we can connect the bisectors of the sides of the triangle, forming
four equilateral triangles, as shown in Figure 5.33(c). We use this technique for our
example.

After we have subdivided a facet as just described, the four new triangles will
still be in the same plane as the original triangle. We can move the new vertices that

(a) (b) (c)

FIGURE 5.33 Subdivision of a triangle by (a) bisecting angles,
(b) computing the centroid, and (c) bisecting sides.

FIGURE 5.32 Tetrahedron.



282

Chapter 5 Lighting and Shading

we created by bisection to the unit sphere by normalizing each bisected vertex, using
the normalization function normalize in vec.h. We can now subdivide a single
triangle, defined by the vertices a, b, and c:

point4 v1, v2, v3;

vl = normalize(a + b);
v2 = normalize(a + c);
v3 = normalize(b + c);

triangle(a, v2, vl);
triangle(c, v3, v2);
triangle(b, vi, v3);
triangle(vl, v2, v3);

We can use this code in our tetrahedron routine to generate 16 triangles rather than
4, but we would rather be able to repeat the subdivision process # times to generate
successively closer approximations to the sphere. By calling the subdivision routine
recursively, we can control the number of subdivisions.

First, we make the tetrahedron routine depend on the depth of recursion by
adding an argument n:

void tetrahedron(int n)

{
divide_triangle(v[0], v[1], v[2], n);
divide_triangle(v[3], v[2], v[1], n);
divide_triangle(v[0], v[3], v[1], n);
divide_triangle(v[0], v[2], v[3], n);
}

The divide_triangle function calls itself to subdivide further if n is greater than
zero but generates triangles if n has been reduced to zero. Here is the code:

void divide_triangle(point4 a, point4 b, point4 c, int n)
{
point4 v1, v2, v3;
if (n>0)
{
vl = normalize(v[a]l + v[b]l);
v2 = normalize(v[al + v[c]);
v3 = normalize(v[b] + vlcl);
divide_triangle(a ,v2, vl, n-1);
divide_triangle(c ,v3, v2, n-1);
divide_triangle(b ,vl, v3, n-1);
divide_triangle(vl ,v2, v3, n-1);

}

else triangle(a, b, c);
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Figure 5.34 shows an approximation to the sphere drawn with this code. We now turn
to adding lighting and shading to our sphere approximation.

5.7 SPECIFYING LIGHTING PARAMETERS

For many years, the Blinn-Phong lighting model was the standard in computer
graphics. It was implemented in hardware and was specified as part of the OpenGL
fixed-functionality pipeline. With the present emphasis on shaders, we are free to im-
plement other lighting models with no loss of efficiency. We can also choose where
to apply a light model. Consequently, we must specify a group of lighting and mate-
rial parameters and then either use them in the application code or send them to the
shaders.

5.7.1 Light Sources

In Section 5.2. we introduced four types of light sources: ambient, point, spotlight,
and distant. However, because spotlights and distant light sources can be derived
from a point source, we will focus on point sources and ambient light. An ideal point
source emits light uniformly in all directions. To get a spotlight from a point source,
we need only limit the directions of the point source and make the light emissions
follow a desired profile. To get a distant source from a point source, we need to allow
the location of the source to go to infinity so the position of the source becomes
the direction of the source. Note that this argument is similar to the argument that
parallel viewing is the limit of perspective viewing as the center of projection moves
to infinity. As we argued in deriving the equations for parallel projections, we will
find it easier to derive the equations for lighting with distant sources directly rather
than by taking limits.

Although the contribution of ambient light is the same everywhere in a scene,
ambient light is dependent on the sources in the environment. For example, consider
a closed room with a single white point source. When the light is turned off, there is
no light in the room of any kind. When the light is turned on, at any point in the room
that can see the light source there is a contribution from the light hitting surfaces
directly contributing to the diffuse or specular reflection we see at that point. There
is also a contribution from the white light bouncing off of multiple surfaces in the
room and giving a contribution that is almost the same at every point in the room. It
is this latter contribution that we call ambient light. Its color depends not only on the
color of the source but also on the reflective properties of the surfaces in the room.
Thus if the room has red walls, we would expect the ambient component to have a
dominant red component. However, the existence of an ambient component to the
shade we see on a surface is ultimately tied to the light sources in the environment
and hence becomes part of the specification of the sources.

For every light source, we must specify its color and either its location or its
direction. As in Section 5.2, the color of a source will have three components—
diffuse, specular, and ambient—that we can specify for a single light as
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colord light_diffuse, light_specular, light_ambient;
We can specify the position of the light as follows:
point4 light_position;

For a point source, its position will be in homogeneous coordinates, so a light might
be specified as

point4 light_position = vec4(1.0, 2.0, 3.0, 1.0);
If the fourth component is changed to zero as in
point4 light_position = vec4(1.0, 2.0, 3.0, 0.0);

the source becomes a directional source in the direction (1.0, 2.0, 3.0).

For positional light sources, we may also want to account for the attenuation
of light received due to its distance from the source. Although for an ideal source the
attenuation is inversely proportional to the square of the distance d, we can gain more
flexibility by using the distance-attenuation model,

1

H=—
f@ a+ bd + cd?

which contains constant, linear, and quadratic terms. We can use three floats for these
values,

float attenuation_constant, attenuation_linear, attenuation_quadratic;

and use them in the application or send them to the shaders as uniform variables.

We can also convert a positional source to a spotlight by setting its direction, the
angle of the cone or the spotlight cutoff, and the drop off rate or spotlight exponent.
These three parameters can be specified by three floats.

5.7.2 Materials

Material properties should match up directly with the supported light sources and
with the chosen reflection model. We may also want the flexibility to specify different
material properties for the front and back faces of a surface.

For example, we might specify ambient, diffuse, and specular reflectivity coef-
ficients (k,, kg, k) for each primary color through three colors using either RGB or
RGBA colors as

color3 ambient = color3(0.2, 0.2, 0.2);
color3 diffuse = color3(1.0, 0.8, 0.0);
color3 specular = color3(1.0, 1.0, 1.0);
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or, assuming the surface is opaque,

color4 ambient = color4(0.2, 0.2, 0.2, 1.0);
color4 diffuse = color4(1.0, 0.8, 0.0, 1.0);
color4 specular = color4(1.0, 1.0, 1.0, 1.0);

Here we have defined a small amount of white ambient reflectivity, yellow diffuse
properties, and white specular reflections. Note that often the diffuse and specular
reflectivity are the same. For the specular component, we also need to specify its
shininess:

float shininess;

If we have different reflectivity properties for the front and back faces, we can also
specify three additional parameters,

color4 back_ambient, back_diffuse, back_specular;

that can be used to render the back faces.

We also want to allow for scenes in which a light source is within the view volume
and thus might be visible. For example, for an outdoor night scene, we might see the
moon in an image. We could model the moon with a simple polygonal approximation
to a circle. However, when we render the moon, its color should be constant and
not be affected by other light sources. We can create such effects by including an
emissive component that models self-luminous sources. This term is unaffected by
any of the light sources, and it does not affect any other surfaces. It adds a fixed color
to the surfaces and is specified in a manner similar to other material properties. For
example,

color4 emission = color4(0.0, 0.3, 0.3, 1.0);

specfies a small amount of blue-green (cyan) emission.

From an application programmer’s perspective, we would like to have material
properties that we can specify with a single function call. We can achieve this goal by
defining material objects in the application using structs or classes. For example,
consider the typedef

typedef struct materialStruct {
color4 ambient;
color4 diffuse;
color4 specular;
color4 emission;
float shininess;
} materialStruct;

We can now define materials by code such as
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materialStruct brassMaterials =

{
{0.33, 0.22, 0.03, 1.0},
{0.78, 0.57, 0.11, 1.0},
{0.99, 0.91, 0.81, 1.0},
{0.0, 0.0, 0.0, 1.0},
27.8

}s

and access this code through a pointer,

currentMaterial = &brassMaterials;

5.8 IMPLEMENTING A LIGHTING MODEL

Thus far, we have only looked at parameters that we might use in a light model. We
have yet to build a particular model. Nor have we worried about where to apply
a lighting model. We focus on a simple version of the Blinn-Phong model using a
single point source. Because light from multiple sources is additive, we can repeat the
calculation for each source and add up the individual contributions. We have three
choices as to where we do the calculation: in the application, in the vertex shader,
or in the fragment shader. Although the basic model can be the same for each, there
will major differences both in efficiency and appearance, depending on where the
calculation is done.

5.8.1 Applying the Lighting Model in the Application

We have used two methods to assign colors to filled triangles. In the first, we sent
a single color for each polygon to the shaders as a uniform variable and used this
color for each fragment. In the second, we assigned a color to each vertex as a vertex
attribute. The rasterizer then interpolated these vertex colors across the polygon.
Both these approaches can be applied to lighting. In constant or flat shading, we
apply a lighting model once for each polygon and use the computed color for the
entire polygon. In the interpolative shading, we apply the model at each vertex to
compute a vertex color attribute. The vertex shader can then output these colors and
the rasterizer will interpolate them to determine a color for each fragment.

Let’s do a simple example with ambient, diffuse, and specular lighting. Assume
that the following parameters have been specified for a single point light source:

color4 light_ambient, light_diffuse, light_specular;
point4 light_position;

Also assume that there is a single material whose parameters are

color4 reflect_ambient, reflect_diffuse, reflect_specular;
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The color we need to compute is the sum of the ambient, diffuse, and specular
contributions:

color4 color_out, ambient, diffuse, specular;

color_out = ambient + diffuse + specular;

Each component of the ambient term is the product of the corresponding terms from
the ambient light source and the material reflectivity. We can use the function

vec4 product(vec4 a, vecd b)

{
return vec4(al[0]*b[0], a[1lxb[1], a[2]*b[2], al[3]*b[3]);
}
Hence,
ambient = product(light_ambient, reflect_ambient);

We need the normal to compute the diffuse term. Because we are working with
triangles, we have the three vertices and these vertices determine a unique plane and
its normal. Suppose that we have three vertices v0, v1, and v2. The cross product
of v1-v0 and v2-v1 is perpendicular to the plane determined by the three vertices.
Thus, we get the desired unit normal as follows:

vecd v0, vl, v2;

vec4d n = normalize(cross(vl-v0, v2-v1));

Note that the direction of the normal depends on the order of the vertices and
assumes we are using the right-hand rule to determine an outward face.

Next, we need to take the dot product of the unit normal with the vector in the
direction of the light source. There are four cases we must consider:

1. Constant shading with a distant source

2. Interpolative shading with a distant source
3. Constant shading with a finite source

4. Interpolative shading with a finite source

For constant shading, we only need to compute a single diffuse color for each
triangle. For a distant source, we have the direction of the source that is the same
for all points on the triangle. Hence, we can simply take the dot product of the unit
normal with a normalized source direction. The diffuse contribution is then

colord diffuse = product(light_diffuse, reflect_ambient)*dot(n, normalize(light_position));
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There is one additional step we should take. The diffuse term only makes sense if the
dot product is nonnegative, so we must modify the calculation to

color4d diffuse;

float d = dot(n, normalize(light_position));
if (d>0) diffuse = product(light_diffuse, reflect_ambient)x*d;
else diffuse = vec4(0.0, 0.0, 0.0, 1.0);

For a distant light source, the diffuse contribution at each vertex is identical,
so we need do only one diffuse calculation per polygon, and thus interpolative and
constant diffuse shading are the same.

For a finite or near source, we have two choices: We either compute a single
diffuse contribution for the entire polygon and use constant shading, or we compute
the diffuse term at each vertex and use interpolative shading. Because we are working
with triangles, the normal is the same at each vertex, but with a near source the vector
from any point on the polygon to the light source will be different. If we use a single
color, we can use the point at the center of the triangle to compute the direction:

point4d v = (1.0/3.0)* (vO + vl + v2);

vector4d light_vector = light_position - v;

float d = dot(n, normalize(light_vector));

if (d>0) diffuse = product(light_diffuse, reflect_ambient)x*d;
else diffuse = vec4(0.0, 0.0, 0.0, 1.0);

The calculation for the specular term appears to be similar to the calculation for
the diffuse, but there is one tricky issue. We need to compute the halfway vector. For
a distance source, the light position becomes a direction, so

vec4d half = normalize(light_position + view_direction);

The view direction is a vector from a point on the surface to the eye. The default is
that the camera is at the origin in object space, so for a vertex v, the vector is

vec4 origin = vec4(0.0, 0.0, 0.0, 1.0);
vec4 view_direction = v - origin;

Thus, even though each triangle has a single normal, there is a different halfway
vector for each vertex, and consequently the specular term will vary across the surface
as the rasterizer interpolates the vertex shades. The specular term for vertex v can be
computed as

color4 specular;

float s = dot(half, n);
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if (s>0.0) specular =
pow(s, material_shininess)*product(light_specular, material_specular);
else specular = vec4(0.0, 0.0, 0.0, 1.0);

where the expression exp(material_shininess*log(s)) evaluates s to the
power material_shininess.

5.8.2 Efficiency

For a static scene, the lighting computation is done once so we can send the vertex
positions and vertex colors to the GPU once. Consider what happens if we add
lighting to our rotating-cube program. Each time the cube rotates about a coordinate
axis, the normal to four of the faces changes as does the position of each of the six
vertices. Hence, we must recompute the diffuse and specular components at each of
the vertices. If we do all the calculations in the CPU, both the vertex positions and
colors must then be sent to the GPU. For large data sets, this process is extremely
inefficient. Not only are we doing a lot of computation on the CPU, but we are
also causing a potential bottleneck by sending so much vertex data to the GPU.
Consequently, we will almost always want to do lighting calculation in the shaders.
Before examining shaders for lighting, there are a few other efficiency measures
we can employ, either in the application or in a shader. We can obtain many efficien-
cies if we assume that either or both of the viewer and the light source are far from the
polygon we are rendering. Hence, even if the source is a point source with a finite lo-
cation, it might be far enough away that the distances from the vertices to the source
are all about the same. In this case, the diffuse term at each vertex would be identical
and we would need do only one calculation per polygon. Note that a definition of far
and near in this context depends both on the distance to the light source and the size
of the polygon. A small polygon will not show much variation in the diffuse compo-
nent even if the source is fairly close to the polygon. The same argument holds for the

specular term when we consider the distance between vertices and the viewer. We can
add parameters that allow the application to specify if it wants to use these simplified
calculations.

FIGURE 5.35 Shading of con-

In Chapter 3, we saw that a surface has both a front face and a back face. For vex objects.

polygons, we determine front and back by the order in which the vertices are spec-
ified, using the right-hand rule. For most objects, we see only the front faces, so we
are not concerned with how OpenGL shades the back-facing surfaces. For example,
for convex objects, such as a sphere or a parallelepiped (Figure 5.35), the viewer can
never see a back face, regardless of where she is positioned. However, if we remove a
side from a cube or slice the sphere, as shown in Figure 5.36, a properly placed viewer
may see a back face; thus, we must shade both the front and back faces correctly. In
many situations, we can ignore all back faces by either culling them out in the appli-
cation or by not rendering any face whose normal does not point toward the viewer.
If we render back faces, they may have different material properties than the front
faces, so we must specify a set of back face properties.

j

FIGURE 5.36 Visible back
surfaces.
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Light sources are special types of geometric objects and have geometric at-
tributes, such as position, just like polygons and points. Hence, light sources can
be affected by transformations. We can specify them at the desired position or specify
them in a convenient position and move them to the desired position by the model-
view transformation. The basic rule governing object placement is that vertices are
converted to eye coordinates by the model-view transformation in effect at the time
the vertices are defined. Thus, by careful placement of the light-source specifications
relative to the definition of other geometric objects, we can create light sources that
remain stationary while the objects move, light sources that move while objects re-
main stationary, and light sources that move with the objects.

We also have choices as to which coordinate system to use for lighting computa-
tions. For now, we will do our lighting calculations in object coordinates. Depending
on whether or not the light source or objects are moving, it may be more efficient to
use eye coordinates. Later when we add texture mapping to our skills, we will intro-
duce lighting methods that will use local coordinate systems.

5.8.3 Lighting in the Vertex Shader

When we presented transformations, we saw that a transformation such as the
model-view transformation could be carried out either in the application or the
vertex shader, but for most applications it was far more efficient to implement
the transformation in the shader. The same is true for lighting. To implement lighting
in the vertex shader, we must carry out three steps.

First, we must choose a lighting model. Do we use the Blinn-Phong or some
other model? Do we include distance attenuation? Do we want two-sided lighting?
Once we make these decisions, we can write a vertex shader to implement the model.
Finally, we have to transfer the necessary data to the shader. Some data can be trans-
ferred using uniform variables, and other data can be transferred as vertex attributes.

Let’s go through the process for the model we just developed, the Blinn-Phong
model without distance attenuation with a single point light source. We can transfer
the ambient, diffuse, and specular components of the source plus its position as
uniform variables. We can do likewise for the material properties. Rather than writing
the application code first, because we know how to transfer information to a shader,
first we will write the vertex shader.

The vertex shader must output a vertex position in clip coordinates and a vertex
color to the rasterizer. If we send a model-view matrix and a projection matrix to the
shader, then the computation of the vertex position is identical to our examples from
Chapters 3 and 4. Hence, this part of the code will look something like

in vec4 vPosition;
uniform mat4 ModelView;
uniform mat4 Projection;
void main()

{

gl_Position = Projection*ModelView*vPosition;
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The output color is the sum of the ambient, diffuse, and specular contributions,

out vec4 color
vec4 ambient, diffuse, specular;

color = ambient + diffuse + specular;
so the part we must address is computation of these three terms.

Rather than sending all the reflectivity and light colors separately to the shader,
we send only the product term for each contribution. Thus, in the ambient computa-
tion, we use the products of the red, green, and blue ambient light with the red, green,
and blue ambient reflectivities. We can compute these products and send them to the
shader as the uniform vector
in vec4 AmbientProduct;

We can do the same for the diffuse and specular products:
uniform vec4 DiffuseProduct, SpecularProduct;
The ambient term is then simply
ambient = AmbientProduct;
The diffuse term requires a normal for each vertex. Because triangles are flat, the
normal is the same for each vertex in a triangle so we can send the normal to the
shader as a uniform variable.> We can use the normalize function to get a unit-
length normal from the vec4 type we used in the application:
uniform vec4 Normal;
vec3 N = normalize(Normal.xyz);
The unit vector in the direction of the light source is given by
vec3 L = normalize(LightPosition - vPosition).xyz;
The diffuse term is then
diffuse = max(dot(L, N), 0.0)*DiffuseProduct;
The specular term is computed in a similar manner. Because the viewer is at the origin

in object coordinates, the normalized vector in the direction of the viewer is

3.In Section 5.9, we will consider methods that assign a different normal to each vertex of a polygon.
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vec3 E = -normalize(vPosition.xyz);

and the halfway vector is

vec3 H = normalize(L+E);

The specular term is then

specular = pow(max(dot(N, H), 0.0), Shininess)*SpecularProduct;

However, if the light source is behind the surface, there cannot be a specular term, so
we add a simple test:

specular = max(pow(max(dot(N, H), 0.0), Shininess)
*SpecularProduct, 0.0);

Here is the full shader:

in vec4 vPosition;

in vec4 Normal;

out vecd color;

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform mat4 Projection;

uniform vec4 LightPosition;

uniform float Shininess;

void main()

{

vec4 ambient, diffuse, specular;

gl_Position = Projection*ModelView*vPosition;

vec3 N = normalize(Normal.xyz);

vec3 L = normalize(LightPosition.xyz - (ModelViewxvPosition).xyz);

vec3 E = -normalize((ModelViewxvPosition) .xyz) ;

vec3 H = normalize(L+E);

float Kd = max(dot(L, N), 0.0);

float Ks = pow(max(dot(N, H), 0.0), Shininess);

ambient = AmbientProduct;

diffuse = Kd*DiffuseProduct;

specular = max(pow(max(dot(N, H), 0.0), Shininess)

xSpecularProduct, 0.0);

color = vec4((ambient + diffuse + specular).xyz, 1.0);

}

Because the colors are set in the vertex shader, the simple fragment shader that we
have used previously,
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in vec4 color;
void main()
{
gl_FragColor = color;
}

will take the interpolated colors from the rasterizer and assign them to fragments.
Let’s return to the cube-shading example. The main change we have to make is to

set up uniform variables for the light and material parameters. Thus, for the ambient

component we might have an ambient light term and an ambient reflectivity given as

colord light_ambient = color4(0.2, 0.2, 0.2, 1.0);
color4 material_ambient = color4(1.0, 0.0, 1.0, 1.0);

We compute the ambient product
color4 ambient_product = product(light_ambient, material_ambient);
We get these values to the shader as follows:

GLuint ambient_product_loc;
ambient_product_loc = glGetUniformLocation(program, "AmbientProduct");
glUniform4fv(ambient_product_loc, 4, ambient_product);

We can do the same for the rest of the uniform variables in the vertex shader. Note
that the normal vector depends on more than one vertex and so cannot be computed
in the shader, because the shader has the position information only for the vertex that
initiated its execution.

There is an additional issue that has to do with the fact that the cube is rotating.
As the cube rotates, the positions of all the vertices and all the normals to the surface
change. When we first developed the program, we applied the rotation transforma-
tion in the application, and each time that the rotation matrix was updated we resent
the vertices to the GPU. Later, we argued that it was far more efficient to send the
rotation matrix to the shader and let the transformation be carried out in the GPU.
The same is true with this example. We can send a projection matrix and a model-
view matrix as uniform variables. This example has only one object, the cube, and
thus the rotation matrix and the model-view matrix are identical. If we want to apply
the rotation to the normal vector in the GPU, then we need to make the following
change to the shader:

vecd4d NN = ModelView*Normal;
vec3 N = normalize(NN.xyz);

The complete program is in Appendix A.
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FIGURE 5.37 Shaded sphere
model.

However, if there are multiple objects in the scene or the viewing parameters
change, we have to be a little careful with this construct. Suppose that there is a sec-
ond, nonrotating cube in the scene and we also use nondefault viewing parameters.
Now we have two different model-view matrices, one for each cube. One is constant
and the other is changing as one of the cubes rotates. What is really changing is the
modeling part of the model-view matrix and not the viewing part that positions the
camera. We can handle this complication in a number of ways. We could compute
the two model-view matrices in the application and send them to the vertex shader
each time there is a rotation. We could also use separate modeling and viewing trans-
formations and send only the modeling matrix—the rotation matrix—to the shader
after initialization. We would then form the model-view matrix in the shader. We
could also just send the rotation angles to the shader and do all the work there. If the
light source is also changing its position, we have even more options.

5.9 SHADING OF THE SPHERE MODEL

The rotating cube is a simple example to demonstrate lighting, but because there are
only six faces and they meet at right angles, it is not a good example for testing the
smoothness of a lighting model. Consider instead the sphere model that we developed
in Section 5.6. Although the model comprises many small triangles, unlike the cube,
we do not want to see the edges. Rather, we want to shade the polygons so that we
cannot see the edges where triangles meet and the smoother the shading, the fewer
polygons we need to model the sphere.

To shade the sphere model, we can start with the same shaders we used for
the rotating cube. The differences are in the application program. We replace the
generation of the cube with the tetrahedron subdivision from Section 5.6, adding the
computation of the normals, which are sent to the vertex shader as attribute qualified
variables. The result is shown in Figure 5.37. Note that even as we increase the number
of subdivisions so that the interiors of the spheres appear smooth, we can still see
edges of polygons around the outside of the sphere image. This type of outline is
called a silhouette edge.

The differences in this example between constant shading and smooth shading
are minor. Because each triangle is flat, the normal is the same at each vertex. If the
source is far from the object, the diffuse component will be constant for each triangle.
Likewise, if the camera is far from the viewer, the specular term will be constant for
each triangle. However, because two adjacent triangles will have different normals
and thus are shaded with different colors, we still can see the lack of smoothness even
if we create many triangles.

One way to get an idea of how smooth a display we can get with relatively few
triangles is to use the actual normals of the sphere for each vertex in the approxima-
tion. In Section 5.4, we found that for the sphere centered at the origin, the normal
at a point p is simply p. Hence, in the triangle function, the position of a vertex
gives the normal:
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void triangle(point4 a, point4 b, point4d c)
{

normals[k] = a;

datalk]= a;

k++;

normals[k] = b;

datalk] = b;

k++;
normals[k] = c;
datalk] = c;
k++;

The results of this definition of the normals are shown in Figure 5.38 and Color
Plate 29.

Although using the true normals produces a rendering more realistic than flat
shading, the example is not a general one, because we have used normals that are
known analytically. We also have not provided a true Gouraud-shaded image. Sup-
pose we want a Gouraud-shaded image of our approximate sphere. At each vertex, we
need to know the normals of all polygons incident at the vertex. Our code does not
have a data structure that contains the required information. Try Exercises 5.9 and
5.10, in which you construct such a structure. Note that six polygons meet at a vertex
created by subdivision, whereas only three polygons meet at the original vertices of
the tetrahedron.

5.10 PER-FRAGMENT LIGHTING

There is another option we can use to obtain a smoother shading. We can do the light-
ing calculation on a per-fragment basis rather than on a per-vertex basis. When we
did all our lighting calculations in the vertex shader, visually there was no advantage
over doing the same computation in the application and then sending the computed
vertex colors to the vertex shader, which would then pass them on to the rasterizer.
Thus, whether we did lighting in the vertex shader or in the application, the rasterizer
interpolated the same vertex colors to obtain fragment colors.

With a fragment shader, we can do an independent lighting calculation for each
fragment. The fragment shader needs to get the interpolated values of the normal
vector, light source position, and eye position from the rasterizer. The vertex shader
can compute these values and output them to the rasterizer. In addition, the vertex
shader must output the vertex position in clip coordinates. Here is the vertex shader:

in vec4 vPosition;
in vec4 Normal;

uniform mat4 ModelView;
uniform vec4 LightPosition;
uniform mat4 Projection;

FIGURE 5.38 Shading of the
sphere with the true normals.
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out vec3 N;
out vec3 L;
out vec3 E;

void main()

{
gl_Position = Projection*ModelView*vPosition;
N = Normal.xyz;
L = LightPosition.xyz - vPosition.xyz;
if (LightPosition.w == 0.0) L = LightPosition.xyz;
E = vPosition.xyz;
b

The fragment shader can now apply the Blinn-Phong lighting model to each fragment
using the light and material parameters passed in from the application as uniform
variables and the interpolated vectors from the rasterizer. The following shader cor-
responds to the vertex shader we used in the previous example:

uniform vec4 AmbientProduct, DiffuseProduct, SpecularProduct;
uniform mat4 ModelView;

uniform vec4 LightPosition;

uniform float Shininess;

in vec3 N;
in vec3 L;
in vec3 E;

void main()
{
vec3 NN = normalize(N);
vec3 EE = normalize(E);
vec3 LL = normalize(L);
vec4 ambient, diffuse, specular;
vec3 H = normalize(LL+EE);
float Kd = max(dot(LL, NN), 0.0);
Kd = dot(LL, NN);
float Ks = pow(max(dot(NN, H), 0.0), Shininess);
ambient = AmbientProduct;
diffuse = Kd*DiffuseProduct;
if (dot(LL, NN) < 0.0) specular = vec4(0.0, 0.0, 0.0, 1.0);
else specular = Ks*SpecularProduct;
gl_FragColor = vec4((ambient + diffuse + specular).xyz, 1.0);

Note that we normalize vectors in the fragment shader rather than in the vertex
shaders. If we were to normalize a variable such as the normals in the vertex shader, it
would not guarantee that the interpolated normals produced by the rasterizer would
have the unit magnitude needed for the lighting computation.
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5.10.1 Nonphotorealistic Shading

Programmable shaders make it possible to not only incorporate more realistic light-
ing models in real time but also to create interesting nonphotorealistic effects. Two
such examples are the use of only a few colors and emphasizing the edges in objects.
Both these effects are techniques that we might want to use to obtain a cartoonlike
effect in an image.

Suppose that we use only two colors in a vertex shader:

vec4 colorl = vec4(1.0, 1.0, 0.0, 1.0); // yellow
vecd color2 = vec4(1.0, 0.0, 0.0, 1.0); // red

We could then switch between the colors based, for example, on the magnitude of the
diffuse color. Using the light and normal vectors, we could assign colors as

if (dot(lightv, norm) > 0.5) gl_FrontColor = coloril;
else gl_FrontColor = color2;

Although we could have used two colors in simpler ways, by using the diffuse color to
determine a threshold, the color of the object changes with its shape and the position
of the light source.

We can also try to draw the silhouette edge of an object. One way to identify
such edges is to look at sign changes in dot (1ightv, norm). This value should be
positive for any vertex facing the viewer and negative for a vertex pointed away from
the viewer. Thus, we can test for small values of this value and assign a color such as
black to the vertex:

vecd color3 = vec4(0.0, 0.0, 0.0, 1.0); // black

if (abs(dot(viewv, norm) < 0.01)) glFrontColor = color3;

5.11 GLOBAL ILLUMINATION

There are limitations imposed by the local lighting model that we have used. Con-
sider, for example, an array of spheres illuminated by a distant source, as shown in
Figure 5.39(a). The spheres close to the source block some of the light from the source
from reaching the other spheres. However, if we use our local model, each sphere is
shaded independently; all appear the same to the viewer (Figure 5.39(b)). In addi-
tion, if these spheres are specular, some light is scattered among spheres. Thus, if the
spheres were very shiny, we should see the reflection of multiple spheres in some of
the spheres and possibly even the multiple reflections of some spheres in themselves.
Our lighting model cannot handle this situation. Nor can it produce shadows, except
by using the tricks for some special cases, as we saw in Chapter 4.

All of these phenomena—shadows, reflections, blockage of light—are global
effects and require a global lighting model. Although such models exist and can be
quite elegant, in practice they are incompatible with the pipeline model. With the
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FIGURE5.40 Polygon blocked
from light source.

(a) (b)

FIGURE 5.39 Array of shaded spheres. (a) Global lighting model.
(b) Local lighting model.

pipeline model, we must render each polygon independently of the other polygons,
and we want our image to be the same regardless of the order in which the application
produces the polygons. Although this restriction limits the lighting effects that we can
simulate, we can render scenes very rapidly.

There are alternative rendering strategies, including ray tracing and radiosity,
that can handle global effects. Each is best at different lighting conditions. Ray trac-
ing starts with the synthetic-camera model but determines for each projector that
strikes a polygon if that point is indeed illuminated by one or more sources before
computing the local shading at each point. Thus, in Figure 5.40, we see three poly-
gons and a light source. The projector shown intersects one of the polygons. A local
renderer might use the modified Phong model to compute the shade at the point of
intersection. The ray tracer would find that the light source cannot strike the point of
intersection directly but that light from the source is reflected from the third polygon
and this reflected light illuminates the point of intersection. In Chapter 11, we shall
show how to find this information and make the required calculations.

A radiosity renderer is based upon energy considerations. From a physical point
of view, all the light energy in a scene is conserved. Consequently, there is an energy
balance that accounts for all the light that radiates from sources and is reflected by
various surfaces in the scene. A radiosity calculation thus requires the solution of
a large set of equations involving all the surfaces. As we shall see in Chapter 11, a
ray tracer is best suited to a scene consisting of highly reflective surfaces, whereas
a radiosity renderer is best suited for a scene in which all the surfaces are perfectly
diffuse.

Although a pipeline renderer cannot take into account many global phenomena
exactly, this observation does not mean we cannot produce realistic imagery with
OpenGL or another API that is based upon a pipeline architecture. What we can do
is use our knowledge of OpenGL and of the effects that global lighting produces to
approximate what a global renderer would do. For example, our use of projective
shadows in Chapter 4 shows that we can produce simple shadows. Many of the most
exciting advances in computer graphics over the past few years have been in the use of
pipeline renderers for global effects. We will study many such techniques in the next
few chapters, including mapping methods, multipass rendering, and transparency.



Summary and Notes

SUMMARY AND NOTES

We have developed a lighting model that fits well with our pipeline approach to
graphics. With it, we can create a variety of lighting effects, and we can employ
different types of light sources. Although we cannot create the global effects of a
ray tracer, a typical graphics workstation can render a polygonal scene using the
modified Phong reflection model and smooth shading in the same amount of time
as it can render a scene without shading. From the perspective of an application
program, adding shading requires setting parameters that describe the light sources
and materials and can be implemented with programmable shaders. In spite of the
limitations of the local lighting model that we have introduced, our simple renderer
performs remarkably well; it is the basis of the reflection model supported by most
APIs.

Programmable shaders have changed the picture considerably. Not only can we
create new methods of shading each vertex, we can use fragment shaders to do the
lighting calculation for each fragment, thus avoiding the need to interpolate colors
across each polygon. Methods such as Phong shading that were not possible within
the standard pipeline can now be programmed by the user and will execute in about
the same amount of time as the modified Phong shader. It is also possible to create a
myriad of new shading effects.

The recursive-subdivision technique that we used to generate an approximation
to a sphere is a powerful one that will reappear in various guises in Chapter 10, where
we use variants of this technique to render curves and surfaces. It will also arise when
we introduce modeling techniques that rely on the self-similarity of many natural
objects.

This chapter concludes our development of polygonal-based graphics. You
should now be able to generate scenes with lighting and shading. Techniques for
creating even more sophisticated images, such as texture mapping and compositing,
involve using the pixel-level capabilities of graphics systems—topics that we consider
in Chapter 7.

Now is a good time for you to write an application program. Experiment with
various lighting and shading parameters. Try to create light sources that move, either
independently or with the objects in the scene. You will probably face difficulties
in producing shaded images that do not have small defects, such as cracks between
polygons through which light can enter. Many of these problems are artifacts of small
numerical errors in rendering calculations. There are many tricks of the trade for
mitigating the effects of these errors. Some you will discover on your own; others
are given in the Suggested Readings for this chapter.

We turn to rasterization issues in Chapter 6. Although we have seen some of
the ways in which the different modules in the rendering pipeline function, we have
not yet seen the details. As we develop these details, you will see how the pieces fit
together such that each successive step in the pipeline requires only a small increment
of work.
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SUGGESTED READINGS

The use of lighting and reflection in computer graphics has followed two parallel
paths: the physical and the computational. From the physical perspective, Kajiya’s
rendering equation [Kaj86] describes the overall energy balance in an environment
and requires knowledge of the reflectivity function for each surface. Reflection mod-
els, such as the Torrance-Sparrow model [Tor67] and Cook-Torrance model [Co082],
are based on modeling a surface with small planar facets. See Hall [Hal89] and Foley
[Fol90] for discussions of such models.

Phong [Pho75] is credited with putting together a computational model that in-
cluded ambient, diffuse, and specular terms. The use of the halfway vector was first
suggested by Blinn [Bli77]. The basic model of transmitted light was used by Whit-
ted [Whi80]. It was later modified by Heckbert and Hanrahan [Hec84]. Gouraud
[Gou71] introduced interpolative shading.

The OpenGL Programming Guide [Shr10] contains many good hints on effec-
tive use of OpenGL's rendering capabilities and discusses the fixed-function lighting
pipeline that uses functions that have been deprecated in shader-based OpenGL.

EXERCISES

5.1  Most graphics systems and APIs use the simple lighting and reflection models
that we introduced for polygon rendering. Describe the ways in which each of
these models is incorrect. For each defect, give an example of a scene in which
you would notice the problem.

5.2  Often, when a large polygon that we expect to have relatively uniform shading
is shaded by OpenGL, it is rendered brightly in one area and more dimly in
others. Explain why the image is uneven. Describe how you can avoid this
problem.

5.3 In the development of the Phong reflection model, why do we not consider
light sources being obscured from the surface by other surfaces in our reflec-
tion model?

5.4 How should the distance between the viewer and the surface enter the render-
ing calculations?

5.5  We have postulated an RGB model for the material properties of surfaces. Give
an argument for using a subtractive color model instead.

5.6  Find four points equidistant from one another on a unit sphere. These points
determine a tetrahedron. Hint: You can arbitrarily let one of the points be at

(0, 1, 0) and let the other three be in the plane y = —d for some positive value
of d.

5.7 Show that if v lies in the same plane as 1, n, and r, then the halfway angle
satisfies

20 = .



5.8

5.9

5.10
5.11

5.12

5.13

5.14

5.15

5.16

5.17
5.18

5.19

What relationship is there between the angles if v is not coplanar with the other
vectors?

Consider all the combinations of near or far viewers, near or far light sources,
flat or curved surfaces, and diffuse and specular reflections. For which cases
can you simplify the shading calculations? In which cases does the use of the
halfway vector help? Explain your answers.

Construct a data structure for representing the subdivided tetrahedron. Tra-
verse the data structure such that you can Gouraud-shade the approximation
to the sphere based on subdividing the tetrahedron.

Repeat Exercise 5.9 but start with an icosahedron instead of a tetrahedron.

Construct a data structure for representing meshes of quadrilaterals. Write a
program to shade the meshes represented by your data structure.

Write a program that does recursive subdivisions on quadrilaterals and quadri-
lateral meshes.

Consider two materials that meet along a planar boundary. Suppose that the
speed of light in the two materials are v; and v,. Show that Snell’s law is a
statement that light travels from a point in one material to a point in the second
material in the minimum time.

Show that the halfway vector h is at the angle at which a surface must be
oriented so that the maximum amount of reflected light reaches the viewer.

Although we have yet to discuss frame-buffer operations, you can start con-
structing a ray tracer using a single routine of the form write_pixel(x, y,
color) that places the value of color (either an RGB color or an intensity)
at the pixel located at (x, y) in the frame buffer. Write a pseudocode routine
ray that recursively traces a cast ray. You can assume that you have a function
available that will intersect a ray with an object. Consider how to limit how far
the original ray will be traced.

If you have a pixel-writing routine available on your system, write a ray tracer
that will ray-trace a scene composed of only spheres. Use the mathematical
equations for the spheres rather than a polygonal approximation.

Add light sources and shading to the maze program in Exercise 2.23.

Using the sphere-generation program in Appendix A as a starting point, con-
struct an interactive program that will allow you to position one or more light
sources and to alter material properties. Use your program to try to generate
images of surfaces that match familiar materials, such as various metals, plas-
tic, and carbon.

As geometric data pass through the viewing pipeline, a sequence of rotations,
translations, scalings, and a projection transformation is applied to the vectors
that determine the cosine terms in the Phong reflection model. Which, if any,
of these operations preserve(s) the angles between the vectors? What are the
implications of your answer for implementation of shading?

Exercises
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5.20

5.21

5.22

5.23

5.24

5.25

5.26

Estimate the amount of extra calculations required for Phong shading as com-
pared to Gouraud shading. Take into account the results of Exercise 5.19.

If the light position is altered by an affine transformation, such as a modeling
transformation, how must the normal vector be transformed so that the angle
between the normal and the light vector remains unchanged?

Redo the implementation of the Blinn-Phong shading model so the calcula-
tions are carried out in eye coordinates.

Generalize the shadow-generation algorithm (Section 4.10) to handle flat sur-
faces at arbitrary orientations.

Convert the shadow-generation algorithm (Section 4.10) to an algorithm for
distant sources. Hint: The perspective projection should become a parallel
projection.

Compare the shadow-generation algorithm of Section 4.10 to the generation
of shadows by a global-rendering method. What types of shadows can be
generated by one method but not the other?

Consider a highly reflective sphere centered at the origin with a unit radius. Ifa
viewer is located at p, describe the points she would see reflected in the sphere
at a point on its surface.



FROM VERTICES TO
FRAGMENTS

e now turn to the next steps in the pipeline: clipping, rasterization, and

hidden-surface removal. Although we have yet to consider some major parts
of OpenGL that are available to the application programmer, including discrete
primitives, texture mapping, and curves and surfaces, there are several reasons for
considering these topics at this point. First, you may be wondering how your pro-
grams are processed by the system that you are using: how lines are drawn on the
screen, how polygons are filled, and what happens to primitives that lie outside the
viewing volumes defined in your program. Second, our contention is that if we are
to use a graphics system efficiently, we need to have a deeper understanding of the
implementation process: which steps are easy, and which tax our hardware and soft-
ware. Third, our discussion of implementation will open the door to new capabilities
that are supported by the latest hardware.

Learning implementation involves studying algorithms. As when we study any
algorithm, we must be careful to consider such issues as theoretical versus practical
performance, hardware versus software implementations, and the specific character-
istics of an application. Although we can test whether an OpenGL implementation
works correctly in the sense that it produces the correct pixels on the screen, there
are many choices for the algorithms employed. We focus on the basic operations that
are both necessary to implement a standard API and required whether the rendering
is done by a pipeline architecture or by another method, such as ray tracing. Conse-
quently, we present a variety of the basic algorithms for each of the principal tasks in
an implementation.

In this chapter, we are concerned with the basic algorithms that are used to im-
plement the rendering pipeline employed by OpenGL. We shall focus on three issues:
clipping, rasterization, and hidden-surface removal. Clipping involves eliminating
objects that lie outside the viewing volume and thus cannot be visible in the image.
Rasterization produces fragments from the remaining objects. These fragments can
contribute to the final image. Hidden-surface removal determines which fragments
correspond to objects that are visible, namely, those that are in the view volume and
are not blocked from view by other objects closer to the camera.
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Application Graphics Frame
program system buffer

FIGURE 6.1 High-level view of the graphics process.

6.1 BASIC IMPLEMENTATION STRATEGIES

Let us begin with a high-level view of the implementation process. In computer
graphics, we start with an application program, and we end with an image. We
can again consider this process as a black box (Figure 6.1) whose inputs are the
vertices and states defined in the program—geometric objects, attributes, camera
specifications—and whose output is an array of colored pixels in the frame buffer.

Within the black box, we must do many tasks, including transformations, clip-
ping, shading, hidden-surface removal, and rasterization of the primitives that can
appear on the display. These tasks can be organized in a variety of ways, but regard-
less of the strategy that we adopt, we must always do two things: We must pass every
geometric object through the system, and we must assign a color to every pixel in the
color buffer that is displayed.

Suppose that we think of what goes into the black box in terms of a single
program that carries out the entire process. This program takes as input a set of
vertices specifying geometric objects and produces as output pixels in the frame
buffer. Because this program must assign a value to every pixel and must process
e