

©2016 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. D1710

Short. Smart.
Seriously useful.

Free ebooks and reports from O’Reilly
at oreil.ly/webperf

Scheduling the Future at Cloud Scale

Kubernetes

David K. Rensin

DevOps
in Practice

J. Paul Reed

Docker
Security

Adrian Mouat

Using Containers Safely in Production

A New Excerpt from
High Performance Browser Networking

HTTP/2

Ilya Grigorik

DevOps
for Finance

Jim Bird

Reducing Risk Through Continuous Delivery

Get even more insights from industry experts
and stay current with the latest developments in
 web operations, DevOps, and web performance

with free ebooks and reports from O’Reilly.

oreil.ly/webperf

Ilya Grigorik

HTTP/2
A New Excerpt from High Performance

Browser Networking

978-1-491-93248-3

[LSI]

HTTP/2: A New Excerpt from High Performance Browser Networking
by Ilya Grigorik

Copyright © 2015 Ilya Grigorik. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Interior Designer: David Futato
Cover Designer: Karen Montgomery

May 2015: First Edition

Revision History for the First Edition
2015-05-01: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. HTTP/2: A New
Excerpt from High Performance Browser Networking and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Preface. vii

HTTP/2. 1
Brief History of SPDY and HTTP/2 2
Design and Technical Goals 4
Brief Introduction to Binary Framing 23
Next steps with HTTP/2 29

v

Preface

HTTP/2 is here. The standard is approved, all popular browsers
have committed to support it, or have already enabled it for their
users, and many popular sites are already leveraging HTTP/2 to
deliver improved performance. In fact, in a short span of just a few
months after the HTTP/2 and HPACK standards were approved in
early 2015, their usage on the web has already surpassed that of
SPDY! Which is to say, this is well tested and proven technology that
is ready for production.

So, what’s new in HTTP/2, and why or how will your application
benefit from it? To answer that we need to take an under the hood
look at the new protocol, its features, and talk about its implications
for how we design, deploy, and deliver our applications. Under‐
standing the design and technical goals of HTTP/2 will explain both
how, and why, some of our existing best practices are no longer rele‐
vant—sometimes harmful, even—and what new capabilities we have
at our disposal to further optimize our applications.

With that, there’s no time to waste, let’s dive in!

vii

HTTP/2

HTTP/2 will make our applications faster, simpler, and more robust
—a rare combination—by allowing us to undo many of the
HTTP/1.1 workarounds previously done within our applications
and address these concerns within the transport layer itself. Even
better, it also opens up a number of entirely new opportunities to
optimize our applications and improve performance!

The primary goals for HTTP/2 are to reduce latency by enabling full
request and response multiplexing, minimize protocol overhead via
efficient compression of HTTP header fields, and add support for
request prioritization and server push. To implement these require‐
ments, there is a large supporting cast of other protocol enhance‐
ments, such as new flow control, error handling, and upgrade mech‐
anisms, but these are the most important features that every web
developer should understand and leverage in their applications.

HTTP/2 does not modify the application semantics of HTTP in any
way. All of the core concepts, such as HTTP methods, status codes,
URIs, and header fields, remain in place. Instead, HTTP/2 modifies
how the data is formatted (framed) and transported between the cli‐
ent and server, both of whom manage the entire process, and hides
all the complexity from our applications within the new framing
layer. As a result, all existing applications can be delivered without
modification. That’s the good news.

However, we are not just interested in delivering a working applica‐
tion; our goal is to deliver the best performance! HTTP/2 enables a
number of new optimizations that our applications can leverage,

1

which were previously not possible, and our job is to make the best
of them. Let’s take a closer look under the hood.

Why not HTTP/1.2?
To achieve the performance goals set by the HTTP Working Group,
HTTP/2 introduces a new binary framing layer that is not back‐
ward compatible with previous HTTP/1.x servers and clients.
Hence the major protocol version increment to HTTP/2.

That said, unless you are implementing a web server or a custom
client by working with raw TCP sockets, you won’t see any differ‐
ence: all the new, low-level framing is performed by the client and
server on your behalf. The only observable differences will be
improved performance and availability of new capabilities like
request prioritization, flow control, and server push!

Brief History of SPDY and HTTP/2
SPDY was an experimental protocol, developed at Google and
announced in mid-2009, whose primary goal was to try to reduce
the load latency of web pages by addressing some of the well-known
performance limitations of HTTP/1.1. Specifically, the outlined
project goals were set as follows:

• Target a 50% reduction in page load time (PLT).
• Avoid the need for any changes to content by website authors.
• Minimize deployment complexity, avoid changes in network

infrastructure.
• Develop this new protocol in partnership with the open-source

community.
• Gather real performance data to (in)validate the experimental

protocol.

2 | HTTP/2

1 See “Latency as a Performance Bottleneck” at http://hpbn.co/latency-bottleneck

To achieve the 50% PLT improvement, SPDY aimed to
make more efficient use of the underlying TCP con‐
nection by introducing a new binary framing layer to
enable request and response multiplexing, prioritiza‐
tion, and header compression.1

Not long after the initial announcement, Mike Belshe and Roberto
Peon, both software engineers at Google, shared their first results,
documentation, and source code for the experimental implementa‐
tion of the new SPDY protocol:

So far we have only tested SPDY in lab conditions. The initial
results are very encouraging: when we download the top 25 web‐
sites over simulated home network connections, we see a signifi‐
cant improvement in performance—pages loaded up to 55% faster.

— Chromium Blog A 2x Faster Web

Fast-forward to 2012 and the new experimental protocol was sup‐
ported in Chrome, Firefox, and Opera, and a rapidly growing num‐
ber of sites, both large (e.g., Google, Twitter, Facebook) and small,
were deploying SPDY within their infrastructure. In effect, SPDY
was on track to become a de facto standard through growing indus‐
try adoption.

Observing this trend, the HTTP Working Group (HTTP-WG)
kicked off a new effort to take the lessons learned from SPDY, build
and improve on them, and deliver an official “HTTP/2” standard: a
new charter was drafted, an open call for HTTP/2 proposals was
made, and after a lot of discussion within the working group, the
SPDY specification was adopted as a starting point for the new
HTTP/2 protocol.

Over the next few years, SPDY and HTTP/2 would continue to
coevolve in parallel, with SPDY acting as an experimental branch
that was used to test new features and proposals for the HTTP/2
standard: what looks good on paper may not work in practice, and
vice versa, and SPDY offered a route to test and evaluate each pro‐
posal before its inclusion in the HTTP/2 standard. In the end, this
process spanned three years and resulted in a over a dozen inter‐
mediate drafts:

• Mar, 2012: Call for proposals for HTTP/2

Brief History of SPDY and HTTP/2 | 3

http://hpbn.co/latency-bottleneck

• Nov, 2012: First draft of HTTP/2 (based on SPDY)
• Aug, 2014: HTTP/2 draft-17 and HPACK draft-12 are published
• Aug, 2014: Working Group last call for HTTP/2
• Feb, 2015: IESG approved HTTP/2
• May, 2015: HTTP/2 and HPACK RFC’s (7540, 7541) are pub‐

lished

In early 2015 the IESG reviewed and approved the new HTTP/2
standard for publication. Shortly after that, the Google Chrome
team announced their schedule to deprecate SPDY and NPN exten‐
sion for TLS:

HTTP/2’s primary changes from HTTP/1.1 focus on improved per‐
formance. Some key features such as multiplexing, header com‐
pression, prioritization and protocol negotiation evolved from
work done in an earlier open, but non-standard protocol named
SPDY. Chrome has supported SPDY since Chrome 6, but since
most of the benefits are present in HTTP/2, it’s time to say good‐
bye. We plan to remove support for SPDY in early 2016, and to also
remove support for the TLS extension named NPN in favor of
ALPN in Chrome at the same time. Server developers are strongly
encouraged to move to HTTP/2 and ALPN.
We’re happy to have contributed to the open standards process that
led to HTTP/2, and hope to see wide adoption given the broad
industry engagement on standardization and implementation.

— Chromium Blog Hello HTTP/2, Goodbye SPDY

The coevolution of SPDY and HTTP/2 enabled server, browser, and
site developers to gain real-world experience with the new protocol
as it was being developed. As a result, the HTTP/2 standard is one
of the best and most extensively tested standards right out of the
gate. By the time HTTP/2 was approved by the IESG, there were
dozens of thoroughly tested and production-ready client and server
implementations. In fact, just weeks after the final protocol was
approved, many users were already enjoying its benefits as several
popular browsers, and many sites, deployed full HTTP/2 support.

Design and Technical Goals
First versions of the HTTP protocol were intentionally designed for
simplicity of implementation: HTTP/0.9 was a one-line protocol to
bootstrap the World Wide Web; HTTP/1.0 documented the popular

4 | HTTP/2

2 See “Brief History of HTTP” at http://hpbn.co/http-history

extensions to HTTP/0.9 in an informational standard; HTTP/1.1
introduced an official IETF standard2. As such, HTTP/0.9-1.x deliv‐
ered exactly what it set out to do: HTTP is one of the most ubiqui‐
tous and widely adopted application protocols on the Internet.

Unfortunately, implementation simplicity also came at the cost of
application performance: HTTP/1.x clients need to use multiple
connections to achieve concurrency and reduce latency; HTTP/1.x
does not compress request and response headers, causing unneces‐
sary network traffic; HTTP/1.x does not allow effective resource pri‐
oritization, resulting in poor use of the underlying TCP connection;
and so on.

These limitations were not fatal, but as the web applications contin‐
ued to grow in their scope, complexity, and importance in our
everyday lives, they imposed a growing burden on both the develop‐
ers and users of the Web, which is the exact gap that HTTP/2 was
designed to address:

HTTP/2 enables a more efficient use of network resources and a
reduced perception of latency by introducing header field compres‐
sion and allowing multiple concurrent exchanges on the same con‐
nection…. Specifically, it allows interleaving of request and
response messages on the same connection and uses an efficient
coding for HTTP header fields. It also allows prioritization of
requests, letting more important requests complete more quickly,
further improving performance.
The resulting protocol is more friendly to the network, because
fewer TCP connections can be used in comparison to HTTP/1.x.
This means less competition with other flows, and longer-lived
connections, which in turn leads to better utilization of available
network capacity. Finally, HTTP/2 also enables more efficient pro‐
cessing of messages through use of binary message framing.

— Draft 17 Hypertext Transfer Protocol version 2

It is important to note that HTTP/2 is extending, not replacing, the
previous HTTP standards. The application semantics of HTTP are
the same, and no changes were made to the offered functionality or
core concepts such as HTTP methods, status codes, URIs, and
header fields—these changes were explicitly out of scope for the
HTTP/2 effort. That said, while the high-level API remains the
same, it is important to understand how the low-level changes

Design and Technical Goals | 5

http://hpbn.co/http-history

address the performance limitations of the previous protocols. Let’s
take a brief tour of the binary framing layer and its features.

Binary Framing Layer
At the core of all of the performance enhancements of HTTP/2 is
the new binary framing layer (Figure 1-1), which dictates how the
HTTP messages are encapsulated and transferred between the client
and server.

Figure 1-1. HTTP/2 binary framing layer

The “layer” refers to a design choice to introduce a new optimized
encoding mechanism between the socket interface and the higher
HTTP API exposed to our applications: the HTTP semantics, such
as verbs, methods, and headers, are unaffected, but the way they are
encoded while in transit is what’s different. Unlike the newline
delimited plaintext HTTP/1.x protocol, all HTTP/2 communication
is split into smaller messages and frames, each of which is encoded
in binary format.

As a result, both client and server must use the new binary encoding
mechanism to understand each other: an HTTP/1.x client won’t
understand an HTTP/2 only server, and vice versa. Thankfully, our
applications remain blissfully unaware of all these changes, as the

6 | HTTP/2

3 See “TLS Record Protocol” at http://hpbn.co/tls-record

client and server perform all the necessary framing work on our
behalf.

The Pros and Cons of Binary Protocols
ASCII protocols are easy to inspect and get started with. However,
they are not as efficient and are typically harder to implement cor‐
rectly: optional whitespace, varying termination sequences, and
other quirks make it hard to distinguish the protocol from the pay‐
load and lead to parsing and security errors. By contrast, while
binary protocols may take more effort to get started with, they tend
to lead to more performant, robust, and provably correct imple‐
mentations.

HTTP/2 uses binary framing. As a result, you will need a tool that
understands it to inspect and debug the protocol—e.g., Wireshark
or equivalent. In practice, this is less of an issue than it seems, since
you would have to use the same tools to inspect the encrypted TLS
flows—which also rely on binary framing3—carrying HTTP/1.x
and HTTP/2 data.

Streams, Messages, and Frames
The introduction of the new binary framing mechanism changes
how the data is exchanged (Figure 1-2) between the client and
server. To describe this process, let’s familiarize ourselves with the
HTTP/2 terminology:

Stream
A bidirectional flow of bytes within an established connection,
which may carry one or more messages.

Message
A complete sequence of frames that map to a logical request or
response message.

Frame
The smallest unit of communication in HTTP/2, each contain‐
ing a frame header, which at a minimum identifies the stream to
which the frame belongs.

Design and Technical Goals | 7

http://hpbn.co/tls-record

4 See “Using Multiple TCP Connections” at http://hpbn.co/http-multiple-connections

Figure 1-2. HTTP/2 Streams, messages, and frames

• All communication is performed over a single TCP connection
that can carry any number of bidirectional streams.

• Each stream has a unique identifier and optional priority infor‐
mation that is used to carry bidirectional messages.

• Each message is a logical HTTP message, such as a request, or
response, which consists of one or more frames.

• The frame is the smallest unit of communication that carries a
specific type of data—e.g., HTTP headers, message payload, and
so on. Frames from different streams may be interleaved and
then reassembled via the embedded stream identifier in the
header of each frame.

In short, HTTP/2 breaks down the HTTP protocol communication
into an exchange of binary-encoded frames, which are then mapped
to messages that belong to a particular stream, all of which are mul‐
tiplexed within a single TCP connection. This is the foundation that
enables all other features and performance optimizations provided
by the HTTP/2 protocol.

Request and Response Multiplexing
With HTTP/1.x, if the client wants to make multiple parallel
requests to improve performance, then multiple TCP connections
must be used4. This behavior is a direct consequence of the

8 | HTTP/2

http://hpbn.co/http-multiple-connections

HTTP/1.x delivery model, which ensures that only one response can
be delivered at a time (response queuing) per connection. Worse,
this also results in head-of-line blocking and inefficient use of the
underlying TCP connection.

The new binary framing layer in HTTP/2 removes these limitations,
and enables full request and response multiplexing, by allowing the
client and server to break down an HTTP message into independent
frames (Figure 1-3), interleave them, and then reassemble them on
the other end.

Figure 1-3. HTTP/2 request and response multiplexing within a shared
connection

The snapshot in Figure 1-3 captures multiple streams in flight
within the same connection: the client is transmitting a DATA frame
(stream 5) to the server, while the server is transmitting an inter‐
leaved sequence of frames to the client for streams 1 and 3. As a
result, there are three parallel streams in flight!

The ability to break down an HTTP message into independent
frames, interleave them, and then reassemble them on the other end
is the single most important enhancement of HTTP/2. In fact, it
introduces a ripple effect of numerous performance benefits across
the entire stack of all web technologies, enabling us to:

• Interleave multiple requests in parallel without blocking on any
one

• Interleave multiple responses in parallel without blocking on
any one

• Use a single connection to deliver multiple requests and respon‐
ses in parallel

Design and Technical Goals | 9

5 See “Optimizing for HTTP/1.x” at http://hpbn.co/optimizing-http1x

• Remove unnecessary HTTP/1.x workarounds5, such as con‐
catenated files, image sprites, and domain sharding

• Deliver lower page load times by eliminating unnecessary
latency and improving utilization of available network capacity

• And much more…

The new binary framing layer in HTTP/2 resolves the head-of-line
blocking problem found in HTTP/1.x and eliminates the need for
multiple connections to enable parallel processing and delivery of
requests and responses. As a result, this makes our applications
faster, simpler, and cheaper to deploy.

Stream Prioritization
Once an HTTP message can be split into many individual frames,
and we allow for frames from multiple streams to be multiplexed,
the order in which the frames are interleaved and delivered both by
the client and server becomes a critical performance consideration.
To facilitate this, the HTTP/2 standard allows each stream to have
an associated weight and dependency:

• Each stream may be assigned an integer weight between 1 and
256

• Each stream may be given an explicit dependency on another
stream

The combination of stream dependencies and weights allows the cli‐
ent to construct and communicate a “prioritization tree”
(Figure 1-4) that expresses how it would prefer to receive the
responses. In turn, the server can use this information to prioritize
stream processing by controlling the allocation of CPU, memory,
and other resources, and once the response data is available, alloca‐
tion of bandwidth to ensure optimal delivery of high-priority
responses to the client.

10 | HTTP/2

http://hpbn.co/optimizing-http1x

Figure 1-4. HTTP/2 stream dependencies and weights

A stream dependency within HTTP/2 is declared by referencing the
unique identifier of another stream as its parent; if omitted the
stream is said to be dependent on the “root stream.” Declaring a
stream dependency indicates that, if possible, the parent stream
should be allocated resources ahead of its dependencies—e.g., please
process and deliver response D before response C.

Streams that share the same parent can be prioritized with respect to
each other by assigning a weight to each stream: the relative priority
of the stream is proportional to its weight as compared to its siblings
—e.g., resource A has a weight of 12, and B a weight of 4; A should
receive two-thirds of available resources.

Let’s work through a few hands-on examples in Figure 1-4. From left
to right:

1. Neither stream A nor B specify a parent dependency and are
said to be dependent on the implicit “root stream”; A has a
weight of 12, and B has a weight of 4. Thus, based on propor‐
tional weights: A should be assigned two-thirds of available
resources, and B should receive the remaining one-third.

2. D is dependent on the root stream; C is dependent on D. Thus,
D should receive full allocation of resources ahead of C. The
weights are inconsequential because C’s dependency communi‐
cates a stronger preference.

3. D should receive full allocation of resources ahead of C; C
should receive full allocation of resources ahead of A and B; A
should receive two-thirds of available resources, and B should
receive the remaining one-third.

Design and Technical Goals | 11

6 See “DOM, CSSOM, and JavaScript” at http://hpbn.co/dom-cssom-
javascript

4. D should receive full allocation of resources ahead of E and C; E
and C should receive equal allocation ahead of A and B; A and
B should receive proportional allocation based on their weights.

As the above examples illustrate, the combination of stream depen‐
dencies and weights provides an expressive language for resource
prioritization, which is a critical feature for improving browsing
performance where we have many resource types with different
dependencies and weights. Even better, the HTTP/2 protocol also
allows the client to update these preferences at any point, which ena‐
bles further optimizations in the browser—e.g., we can change
dependencies and reallocate weights in response to user interaction
and other signals.

Stream dependencies and weights express a transport
preference, not a requirement, and as such do not guar‐
antee a particular processing or transmission order.
That is, the client cannot force the server to process the
stream in particular order using stream prioritization.
While this may seem counter-intuitive, it is, in fact, the
desired behavior: we do not want to block the server
from making progress on a lower-priority resource if a
higher-priority resource is blocked.

Browser Request Prioritization and HTTP/2
Not all resources have equal priority when rendering a page in the
browser: the HTML document itself is critical to construct the
DOM; the CSS is required to construct the CSSOM; both DOM
and CSSOM construction can be blocked on JavaScript resources6;
and remaining resources, such as images, are often fetched with
lower priority.

To accelerate the load time of the page, all modern browsers priori‐
tize requests based on type of asset, their location on the page, and
even learned priority from previous visits—e.g., if the rendering
was blocked on a certain asset in a previous visit, then the same
asset may be prioritized higher in the future.

With HTTP/1.x, the browser has limited ability to leverage above
priority data: the protocol does not support multiplexing, and there

12 | HTTP/2

http://hpbn.co/dom-cssom-javascript
http://hpbn.co/dom-cssom-javascript

is no way to communicate request priority to the server. Instead, it
must rely on the use of parallel connections, which enables limited
parallelism of up to six requests per origin. As a result, requests are
queued on the client until a connection is available, which adds
unnecessary network latency. In theory, “HTTP Pipelining” in High
Performance Browser Networking tried to partially address this
problem, but in practice it has failed to gain adoption.

HTTP/2 resolves these inefficiencies: request queuing and head-of-
line blocking is eliminated because the browser can dispatch all
requests the moment they are discovered, and the browser can
communicate its stream prioritization preference via stream depen‐
dencies and weights, allowing the server to further optimize
response delivery.

One Connection Per Origin
With the new binary framing mechanism in place, HTTP/2 no
longer needs multiple TCP connections to multiplex streams in par‐
allel; each stream is split into many frames, which can be interleaved
and prioritized. As a result, all HTTP/2 connections are persistent,
and only one connection per origin is required, which offers numer‐
ous performance benefits.

For both SPDY and HTTP/2, the killer feature is arbitrary multi‐
plexing on a single well congestion controlled channel. It amazes
me how important this is and how well it works. One great metric
around that which I enjoy is the fraction of connections created
that carry just a single HTTP transaction (and thus make that
transaction bear all the overhead). For HTTP/1, 74% of our active
connections carry just a single transaction—persistent connections
just aren’t as helpful as we all want. But in HTTP/2 that number
plummets to 25%. That’s a huge win for overhead reduction.

— Patrick McManus HTTP/2 is Live in Firefox

Most HTTP transfers are short and bursty, whereas TCP is opti‐
mized for long-lived, bulk data transfers. By reusing the same con‐
nection, HTTP/2 is able to both make more efficient use of each
TCP connection and also significantly reduce the overall protocol
overhead. Further, the use of fewer connections reduces the memory
and processing footprint along the full connection path (i.e., client,
intermediaries, and origin servers), which reduces the overall opera‐
tional costs and improves network utilization and capacity. As a
result, the move to HTTP/2 should not only reduce the network

Design and Technical Goals | 13

7 See “Head-of-Line Blocking” at http://hpbn.co/tcp-hol

8 See “Congestion Avoidance” at http://hpbn.co/congestion-avoidance

latency, but also help improve throughput and reduce the opera‐
tional costs.

Reduced number of connections is a particularly
important feature for improving performance of
HTTPS deployments: this translates to fewer expensive
TLS handshakes, better session re-use, and an overall
reduction in required client and server resources.

Packet Loss, High-RTT Links, and HTTP/2 Performance
Wait, I hear you say, we listed the benefits of using one TCP con‐
nection per origin but aren’t there some potential downsides? Yes,
there are.

• We have eliminated head-of-line blocking from HTTP, but
there is still head-of-line blocking at the TCP level7.

• Effects of bandwidth-delay product may limit connection
throughput if TCP window scaling is disabled.

• When packet loss occurs, the TCP congestion window size is
reduced8, which reduces the maximum throughput of the
entire connection.

Each of the items in this list may adversely affect both the through‐
put and latency performance of an HTTP/2 connection. However,
despite these limitations, the move to multiple connections would
result in its own performance tradeoffs:

• Less effective header compression due to distinct compression
contexts

• Less effective request prioritization due to distinct TCP
streams

• Less effective utilization of each TCP stream and higher likeli‐
hood of congestion due to more competing flows

• Increased resource overhead due to more TCP flows

The above pros and cons are not an exhaustive list, and it is always
possible to construct specific scenarios where either one or more

14 | HTTP/2

http://hpbn.co/tcp-hol
http://hpbn.co/congestion-avoidance

9 See “Flow Control” at http://.co/flow-control

connections may prove to be beneficial. However, the experimental
evidence of deploying HTTP/2 in the wild showed that a single
connection is the preferred deployment strategy:

In tests so far, the negative effects of head-of-line blocking (espe‐
cially in the presence of packet loss) is outweighed by the benefits
of compression and prioritization.

— Draft 2 Hypertext Transfer Protocol version 2

As with all performance optimization processes, the moment you
remove one performance bottleneck, you unlock the next one. In
the case of HTTP/2, TCP may be it. Which is why, once again, a
well-tuned TCP stack on the server is such a critical optimization
criteria for HTTP/2.

There is ongoing research to address these concerns and to improve
TCP performance in general: TCP Fast Open, Proportional Rate
Reduction, increased initial congestion window, and more. Having
said that, it is important to acknowledge that HTTP/2, like its pred‐
ecessors, does not mandate the use of TCP. Other transports, such
as UDP, are not outside the realm of possibility as we look to the
future.

Flow Control
Flow control is a mechanism to prevent the sender from over‐
whelming the receiver with data it may not want or be able to pro‐
cess: the receiver may be busy, under heavy load, or may only be
willing to allocate a fixed amount of resources for a particular
stream. For example, the client may have requested a large video
stream with high priority, but the user has paused the video and the
client now wants to pause or throttle its delivery from the server to
avoid fetching and buffering unnecessary data. Alternatively, a
proxy server may have a fast downstream and slow upstream con‐
nections and similarly wants to regulate how quickly the down‐
stream delivers data to match the speed of upstream to control its
resource usage; and so on.

Do the above requirements remind you of TCP flow control? They
should, as the problem is effectively identical9. However, because the
HTTP/2 streams are multiplexed within a single TCP connection,
TCP flow control is both not granular enough, and does not provide

Design and Technical Goals | 15

http://.co/flow-control

10 See “Speed, Performance, and Human Perception” at http://hpbn.co/human-perception

the necessary application-level APIs to regulate the delivery of indi‐
vidual streams. To address this, HTTP/2 provides a set of simple
building blocks that allow the client and server to implement their
own stream- and connection-level flow control:

• Flow control is directional. Each receiver may choose to set any
window size that it desires for each stream and the entire con‐
nection.

• Flow control is credit-based. Each receiver advertises its initial
connection and stream flow control window (in bytes), which is
reduced whenever the sender emits a DATA frame and incremen‐
ted via a WINDOW_UPDATE frame sent by the receiver.

• Flow control cannot be disabled. When the HTTP/2 connection
is established the client and server exchange SETTINGS frames,
which set the flow control window sizes in both directions. The
default value of the flow control window is set to 65,535 bytes,
but the receiver can set a large maximum window size (231 − 1
bytes) and maintain it by sending a WINDOW_UPDATE frame
whenever any data is received.

• Flow control is hop-by-hop, not end-to-end. That is, an inter‐
mediary can use it to control resource use and implement
resource allocation mechanisms based on own criteria and heu‐
ristics.

HTTP/2 does not specify any particular algorithm for implementing
flow control. Instead, it provides the simple building blocks and
defers the implementation to the client and server, which can use it
to implement custom strategies to regulate resource use and alloca‐
tion, as well as implement new delivery capabilities that may help
improve both the real and perceived performance10 of our web
applications.

For example, application-layer flow control allows the browser to
fetch only a part of a particular resource, put the fetch on hold by
reducing the stream flow control window down to zero, and then
resume it later—e.g., fetch a preview or first scan of an image, dis‐
play it and allow other high priority fetches to proceed, and resume
the fetch once more critical resources have finished loading.

16 | HTTP/2

http://hpbn.co/human-perception

11 See “Resource Inlining” at http://hpbn.co/inlining

Server Push
Another powerful new feature of HTTP/2 is the ability of the server
to send multiple responses for a single client request. That is, in
addition to the response to the original request, the server can push
additional resources to the client (Figure 1-5), without the client
having to request each one explicitly!

Figure 1-5. Server initiates new streams (promises) for push resources

HTTP/2 breaks away from the strict request-response
semantics and enables one-to-many and server-
initiated push workflows that open up a world of new
interaction possibilities both within and outside the
browser. This is an enabling feature that will have
important long-term consequences both for how we
think about the protocol, and where and how it is
used.

Why would we need such a mechanism in a browser? A typical web
application consists of dozens of resources, all of which are discov‐
ered by the client by examining the document provided by the
server. As a result, why not eliminate the extra latency and let the
server push the associated resources ahead of time? The server
already knows which resources the client will require; that’s server
push.

In fact, if you have ever inlined a CSS, JavaScript, or any other asset
via a data URI11, then you already have hands-on experience with
server push! By manually inlining the resource into the document,
we are, in effect, pushing that resource to the client, without waiting

Design and Technical Goals | 17

http://hpbn.co/inlining

for the client to request it. With HTTP/2 we can achieve the same
results, but with additional performance benefits:

• Pushed resources can be cached by the client
• Pushed resources can be reused across different pages
• Pushed resources can be multiplexed alongside other resources
• Pushed resources can be prioritized by the server
• Pushed resources can be declined by the client

Each pushed resource is a stream that, unlike an inlined resource,
allows it to be individually multiplexed, prioritized, and processed
by the client. The only security restriction, as enforced by the
browser, is that pushed resources must obey the same-origin policy:
the server must be authoritative for the provided content.

PUSH_PROMISE 101
All server push streams are initiated via PUSH_PROMISE frames,
which signal the server’s intent to push the described resources to
the client, in addition to the response to the original request. The
PUSH_PROMISE frames contain just the HTTP headers of the prom‐
ised resource and are required to be sent ahead of the response (i.e.,
DATA frames) for the original request. This order is important
because it notifies the client of which resources the server intends
to send prior to the client initiating a request for same resources.

Once the client receives a PUSH_PROMISE frame, it has the option to
decline the stream (via a RST_STREAM frame) if it wants to (e.g., the
resource is already in cache), which is an important improvement
over HTTP/1.x. By contrast, the use of resource inlining, which is a
popular “optimization” for HTTP/1.x, is equivalent to a “forced
push”: the client cannot opt-out, cancel it, or process the inlined
resource individually.

With HTTP/2 the client remains in full control of how server push
is used. The client can limit the number of concurrently pushed
streams; adjust the initial flow control window to control how
much data is pushed when the stream is first opened; disable server
push entirely. These preferences are communicated via the SET
TINGS frames at the beginning of the HTTP/2 connection and may
be updated at any time.

18 | HTTP/2

12 See “Measuring and Controlling Protocol Overhead” at http://hpbn.co/protocol-
overhead

Header Compression
Each HTTP transfer carries a set of headers that describe the trans‐
ferred resource and its properties. In HTTP/1.x, this metadata is
always sent as plain text and adds anywhere from 500–800 bytes of
overhead per transfer, and sometimes kilobytes more if HTTP cook‐
ies are being used12. To reduce this overhead and improve perfor‐
mance, HTTP/2 compresses request and response header metadata
using the HPACK compression format that uses two simple but
powerful techniques:

1. It allows the transmitted header fields to be encoded via a static
Huffman code, which reduces their individual transfer size.

2. It requires that both the client and server maintain and update
an indexed list of previously seen header fields (i.e., establishes a
shared compression context), which is then used as a reference
to efficiently encode previously transmitted values.

Huffman coding allows the individual values to be compressed
when transferred, and the indexed list of previously transferred val‐
ues allows us to encode duplicate values (Figure 1-6) by transferring
index values that can be used to efficiently look up and reconstruct
the full header keys and values.

Figure 1-6. HPACK: Header Compression for HTTP/2

As one further optimization, the HPACK compression context con‐
sists of a static and dynamic tables: the static table is defined in the
specification and provides a list of common HTTP header fields that
all connections are likely to use (e.g., valid header names); the
dynamic table is initially empty and is updated based on exchanged
values within a particular connection. As a result, the size of each

Design and Technical Goals | 19

http://hpbn.co/protocol-overhead
http://hpbn.co/protocol-overhead

request is reduced by using static Huffman coding for values that
haven’t been seen before, and substitution of indexes for values that
are already present in the static or dynamic tables on each side.

The definitions of the request and response header
fields in HTTP/2 remain unchanged, with a few minor
exceptions: all header field names are lowercase, and
the request line is now split into individ‐
ual :method, :scheme, :authority, and :path pseudo-
header fields.

Security and Performance of HPACK
Early versions of HTTP/2 and SPDY used zlib, with a custom dic‐
tionary, to compress all HTTP headers, which delivered 85%–88%
reduction in the size of the transferred header data, and a signifi‐
cant improvement in page load time latency:

On the lower-bandwidth DSL link, in which the upload link is
only 375 Kbps, request header compression in particular led to
significant page load time improvements for certain sites (i.e.,
those that issued large number of resource requests). We found a
reduction of 45–1142 ms in page load time simply due to header
compression.

— chromium.org SPDY whitepaper

However, in the summer of 2012, a “CRIME” security attack was
published against TLS and SPDY compression algorithms, which
could result in session hijacking. As a result, the zlib compression
algorithm was replaced by HPACK, which was specifically designed
to address the discovered security issues, be efficient and simple to
implement correctly, and of course, enable good compression of
HTTP header metadata.

For full details of the HPACK compression algorithm, see https://
tools.ietf.org/html/draft-ietf-httpbis-header-compression.

Upgrading to HTTP/2
The switch to HTTP/2 cannot happen overnight: millions of servers
must be updated to use the new binary framing, and billions of cli‐
ents must similarly update their networking libraries, browsers, and
other applications.

20 | HTTP/2

https://tools.ietf.org/html/draft-ietf-httpbis-header-compression
https://tools.ietf.org/html/draft-ietf-httpbis-header-compression

13 See “Proxies, Intermediaries, TLS, and New Protocols on the Web” at http://hpbn.co/
new-protocols

14 See “TLS Handshake” and “Application Layer Protocol Negotiation (ALPN)” at http://
hpbn.co/tls-handshake, and http://hpbn.co/alpn

The good news is, all modern browsers have committed to support‐
ing HTTP/2, and most modern browsers use efficient background
update mechanisms, which have already enabled HTTP/2 support
with minimal intervention for a large proportion of existing users.
That said, some users will be stuck on legacy browsers, and servers
and intermediaries will also have to be updated to support HTTP/2,
which is a much longer, and labor- and capital-intensive, process.

HTTP/1.x will be around for at least another decade, and most
servers and clients will have to support both HTTP/1.x and HTTP/2
standards. As a result, an HTTP/2 client and server must be able to
discover and negotiate which protocol will be used prior to exchang‐
ing application data. To address this, the HTTP/2 protocol defines
the following mechanisms:

1. Negotiating HTTP/2 via a secure connection with TLS and
ALPN

2. Upgrading a plaintext connection to HTTP/2 without prior
knowledge

3. Initiating a plaintext HTTP/2 connection with prior knowledge

The HTTP/2 standard does not require use of TLS, but in practice it
is the most reliable way to deploy a new protocol in the presence of
large number of existing intermediaries13. As a result, the use of TLS
and ALPN is the recommended mechanism to deploy and negotiate
HTTP/2: the client and server negotiate the desired protocol as part
of the TLS handshake without adding any extra latency or round‐
trips14. Further, as an additional constraint, while all popular brows‐
ers have committed to supporting HTTP/2 over TLS, some have
also indicated that they will only enable HTTP/2 over TLS—e.g.,
Firefox and Google Chrome. As a result, TLS with ALPN negotia‐
tion is a de-facto requirement for enabling HTTP/2 in the browser.

Establishing an HTTP/2 connection over a regular, non-encrypted
channel is still possible, albeit perhaps not with a popular browser,
and with some additional complexity. Because both HTTP/1.x and
HTTP/2 run on the same port (80), in absence of any other infor‐

Design and Technical Goals | 21

http://hpbn.co/new-protocols
http://hpbn.co/new-protocols
http://hpbn.co/tls-handshake
http://hpbn.co/tls-handshake
http://hpbn.co/alpn

mation about server support for HTTP/2, the client has to use the
HTTP Upgrade mechanism to negotiate the appropriate protocol:

GET /page HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: h2c
HTTP2-Settings: (SETTINGS payload)

HTTP/1.1 200 OK
Content-length: 243
Content-type: text/html

(... HTTP/1.1 response ...)

 (or)

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

(... HTTP/2 response ...)

Initial HTTP/1.1 request with HTTP/2 upgrade header

Base64 URL encoding of HTTP/2 SETTINGS payload

Server declines upgrade, returns response via HTTP/1.1

Server accepts HTTP/2 upgrade, switches to new framing

Using the preceding Upgrade flow, if the server does not support
HTTP/2, then it can immediately respond to the request with
HTTP/1.1 response. Alternatively, it can confirm the HTTP/2
upgrade by returning the 101 Switching Protocols response in
HTTP/1.1 format and then immediately switch to HTTP/2 and
return the response using the new binary framing protocol. In either
case, no extra roundtrips are incurred.

Finally, if the client chooses to, it may also remember or obtain the
information about HTTP/2 support through some other means—
e.g., DNS record, manual configuration, and so on—instead of hav‐
ing to rely on the Upgrade workflow. Armed with this knowledge, it
may choose to send HTTP/2 frames right from the start, over an
unencrypted channel, and hope for the best. In the worst case, the
connection will fail, and the client will fall back to Upgrade work‐
flow or switch to a TLS tunnel with ALPN negotiation.

22 | HTTP/2

Secure communication between client and server,
server to server, and all other permutations, is a secu‐
rity best practice: all in-transit data should be encryp‐
ted, authenticated, and checked against tampering. In
short, use TLS with ALPN negotiation to deploy
HTTP/2.

Brief Introduction to Binary Framing
At the core of all HTTP/2 improvements is the new binary, length-
prefixed framing layer. Compared with the newline-delimited plain‐
text HTTP/1.x protocol, binary framing offers more compact repre‐
sentation that is both more efficient to process and easier to imple‐
ment correctly.

Once an HTTP/2 connection is established, the client and server
communicate by exchanging frames, which serve as the smallest unit
of communication within the protocol. All frames share a common
9-byte header (Figure 1-7), which contains the length of the frame,
its type, a bit field for flags, and a 31-bit stream identifier.

Figure 1-7. Common 9-byte frame header

• The 24-bit length field allows a single frame to carry up to 224
bytes of data.

• The 8-bit type field determines the format and semantics of the
frame.

• The 8-bit flags field communicates frame-type specific boolean
flags.

• The 1-bit reserved field is always set to 0.
• The 31-bit stream identifier uniquely identifies the HTTP/2

stream.

Brief Introduction to Binary Framing | 23

Technically, the length field allows payloads of up to
224 bytes (~16MB) per frame. However, the HTTP/2
standard sets the default maximum payload size of
DATA frames to 214 bytes (~16KB) per frame and allows
the client and server to negotiate the higher value. Big‐
ger is not always better: smaller frame size enables effi‐
cient multiplexing and minimizes head-of-line block‐
ing.

Given this knowledge of the shared HTTP/2 frame header, we can
now write a simple parser that can examine any HTTP/2 bytestream
and identify different frame types, report their flags, and report the
length of each by examining the first nine bytes of every frame. Fur‐
ther, because each frame is length-prefixed, the parser can skip
ahead to the beginning of the next frame both quickly and efficiently
—a big performance improvement over HTTP/1.x.

Once the frame type is known, the remainder of the frame can be
interpreted by the parser. The HTTP/2 standard defines the follow‐
ing types:

DATA

Used to transport HTTP message bodies

HEADERS

Used to communicate header fields for a stream

PRIORITY

Used to communicate sender-advised priority of a stream

RST_STREAM

Used to signal termination of a stream

SETTINGS

Used to communicate configuration parameters for the connec‐
tion

PUSH_PROMISE

Used to signal a promise to serve the referenced resource

PING

Used to measure the roundtrip time and perform “liveness”
checks

24 | HTTP/2

GOAWAY

Used to inform the peer to stop creating streams for current
connection

WINDOW_UPDATE

Used to implement flow stream and connection flow control

CONTINUATION

Used to continue a sequence of header block fragments

You will need some tooling to inspect the low-level
HTTP/2 frame exchange. Your favorite hex viewer is,
of course, an option. Or, for a more human-friendly
representation, you can use a tool like Wireshark,
which understands the HTTP/2 protocol and can cap‐
ture, decode, and analyze the exchange.

The good news is that the exact semantics of the preceding taxon‐
omy of frames is mostly only relevant to server and client imple‐
menters, who will need to worry about the semantics of flow con‐
trol, error handling, connection termination, and other details. The
application layer features and semantics of the HTTP protocol
remain unchanged: the client and server take care of the framing,
multiplexing, and other details, while the application can enjoy the
benefits of faster and more efficient delivery.

Having said that, even though the framing layer is hidden from our
applications, it is useful for us to go just one step further and look at
the two most common workflows: initiating a new stream and
exchanging application data. Having an intuition for how a request,
or a response, is translated into individual frames will give you the
necessary knowledge to debug and optimize your HTTP/2 deploy‐
ments. Let’s dig a little deeper.

Fixed vs. Variable Length Fields and HTTP/2
HTTP/2 uses fixed-length fields exclusively. The overhead of an
HTTP/2 frame is low (9-byte header for a data frame), and
variable-length encoding savings do not offset the required com‐
plexity for the parsers, nor do they have a significant impact on the
used bandwidth or latency of the exchange.

Brief Introduction to Binary Framing | 25

For example, if variable-length encoding could reduce the overhead
by 50%, for a 1,400-byte network packet, this would amount to just
4 saved bytes (0.3%) for a single frame.

Initiating a New Stream
Before any application data can be sent, a new stream must be cre‐
ated and the appropriate request metadata must be sent: optional
stream dependency and weight, optional flags, and the HPACK-
encoded HTTP request headers describing the request. The client
initiates this process by sending a HEADERS frame (Figure 1-8) with
all of the above.

Figure 1-8. Decoded HEADERS frame in Wireshark

Wireshark decodes and displays the frame fields in the
same order as encoded on the wire—e.g., compare the
fields in the common frame header to the frame layout
in Figure 1-7.

The HEADERS frame is used to declare and communicate metadata
about the new request. The application payload, if available, is deliv‐
ered independently within the DATA frames. This separation allows
the protocol to separate processing of “control traffic” from delivery

26 | HTTP/2

of application data—e.g., flow control is applied only to DATA frames,
and non-DATA frames are always processed with high priority.

Server-Initiated Streams via PUSH_PROMISE
HTTP/2 allows both client and server to initiate new streams. In
the case of a server-initiated stream, a PUSH_PROMISE frame is used
to declare the promise and communicate the HPACK-encoded
response headers. The format of the frame is similar to HEADERS,
except that it omits the optional stream dependency and weight,
since the server is in full control of how the promised data is deliv‐
ered.

To eliminate stream ID collisions between client- and server-
initiated streams, the counters are offset: client-initiated streams
have odd-numbered stream IDs, and server-initiated streams have
even-numbered stream IDs. As a result, because the stream ID in
Figure 1-8 is set to “1”, we can infer that it is a client-initiated
stream.

Sending Application Data
Once a new stream is created, and the HTTP headers are sent, DATA
frames (Figure 1-9) are used to send the application payload if one is
present. The payload can be split between multiple DATA frames,
with the last frame indicating the end of the message by toggling the
END_STREAM flag in the header of the frame.

Figure 1-9. DATA frame

Brief Introduction to Binary Framing | 27

The “End Stream” flag is set to “false” in Figure 1-9,
indicating that the client has not finished transmitting
the application payload; more DATA frames are coming.

Aside from the length and flags fields, there really isn’t much more
to say about the DATA frame. The application payload may be split
between multiple DATA frames to enable efficient multiplexing, but
otherwise it is delivered exactly as provided by the application—i.e.,
the choice of the encoding mechanism (plain text, gzip, or other
encoding formats) is deferred to the application.

Analyzing HTTP/2 Frame Data Flow
Armed with knowledge of the different frame types, we can now
revisit the diagram (Figure 1-10) we encountered earlier in “Request
and Response Multiplexing” on page 8 and analyze the HTTP/2
exchange:

Figure 1-10. HTTP/2 request and response multiplexing within a
shared connection

• There are three streams, with IDs set to 1, 3, and 5.
• All three stream IDs are odd; all three are client-initiated

streams.
• There are no server-initiated (“push”) streams in this exchange.
• The server is sending interleaved DATA frames for stream 1,

which carry the application response to the client’s earlier
request.

• The server has interleaved the HEADERS and DATA frames for
stream 3 between the DATA frames for stream 1—response mul‐
tiplexing in action!

28 | HTTP/2

• The client is transferring a DATA frame for stream 5, which indi‐
cates that a HEADERS frame was transferred earlier.

The above analysis is, of course, based on a simplified representation
of an actual HTTP/2 exchange, but it still illustrates many of the
strengths and features of the new protocol. By this point, you should
have the necessary knowledge to successfully record and analyze a
real-world HTTP/2 trace—give it a try!

Next steps with HTTP/2
As we said at the beginning of this excerpt, the good news is that all
of our existing applications can be delivered with HTTP/2 without
modification. The semantics and the core functionality of the HTTP
protocol remain unchanged.

However, we are not just interested in delivering a working applica‐
tion; our goal is to deliver the best performance! HTTP/2 enables a
number of new optimizations that fundamentally change, or elimi‐
nate the need for, many of today’s “performance best practices”. We
are no longer constrained by parallelism, requests are cheap, and we
can finally step back and re-architect our applications to take advan‐
tage of granular caching, leverage server push, and so much more.

So, where to from here? A few resources to help you on your quest:

• HTTP/2 and HPACK specs
• HTTP/2 FAQ
• Known implementations

And, of course, I would be remiss if I didn’t mention the full version
of “High Performance Browser Networking”! Pick up the print ver‐
sion, ebook, or check out the free online version for more hands-on
performance tips and recommendations on optimizing your appli‐
cation and server infrastructure for HTTP/2.

Next steps with HTTP/2 | 29

http://http2.github.io
http://http2.github.io/faq
http://github.com/http2/http2-spec/wiki/Implementations
http://hpbn.co

	Cover
	Copyright
	Table of Contents
	Preface
	Chapter 1. HTTP/2
	Brief History of SPDY and HTTP/2
	Design and Technical Goals
	Binary Framing Layer
	Streams, Messages, and Frames
	Request and Response Multiplexing
	Stream Prioritization
	One Connection Per Origin
	Flow Control
	Server Push
	Header Compression
	Upgrading to HTTP/2

	Brief Introduction to Binary Framing
	Initiating a New Stream
	Sending Application Data
	Analyzing HTTP/2 Frame Data Flow

	Next steps with HTTP/2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

