
Regular
Expressions

Powerful Techniques for Perl and Other Tools

Jeffrey E. F. Friedl

Mastering

Ta ble of Contents

Preface ... xv

1: Introduction to Regular Expressions .. 1

Solving Real Problems .. 2

Regular Expressions as a Language ... 4

The Filename Analogy ... 4

The Language Analogy .. 5

The Regular-Expr ession Frame of Mind .. 6

If You Have Some Regular-Expr ession Experience 6

Searching Text Files: Egrep ... 6

Egr ep Metacharacters .. 8

Start and End of the Line ... 8

Character Classes .. 9

Matching Any Character with Dot ... 11

Alter nation .. 13

Ignoring Differ ences in Capitalization .. 14

Word Boundaries .. 15

In a Nutshell ... 16

Optional Items .. 17

Other Quantifiers: Repetition .. 18

Par entheses and Backrefer ences ... 20

The Great Escape ... 22

Expanding the Foundation ... 23

Linguistic Diversification .. 23

The Goal of a Regular Expression .. 23

vii

5 May 2003 08:41

viii Table of Contents

A Few More Examples ... 23

Regular Expression Nomenclature .. 27

Impr oving on the Status Quo .. 30

Summary ... 32

Personal Glimpses .. 33

2: Extended Introductor y Examples .. 35

About the Examples .. 36

A Short Introduction to Perl .. 37

Matching Text with Regular Expressions ... 38

Toward a More Real-World Example .. 40

Side Effects of a Successful Match .. 40

Intertwined Regular Expressions ... 43

Inter mission .. 49

Modifying Text with Regular Expressions ... 50

Example: Form Letter ... 50

Example: Prettifying a Stock Price .. 51

Automated Editing .. 53

A Small Mail Utility ... 53

Adding Commas to a Number with Lookaround 59

Text-to-HTML Conversion ... 67

That Doubled-Word Thing ... 77

3: Over view of Regular Expression Features and Flavors 83

A Casual Stroll Across the Regex Landscape ... 85

The Origins of Regular Expressions .. 85

At a Glance ... 91

Car e and Handling of Regular Expressions ... 93

Integrated Handling ... 94

Pr ocedural and Object-Oriented Handling ... 95

A Search-and-Replace Example ... 97

Search and Replace in Other Languages .. 99

Car e and Handling: Summary ... 101

Strings, Character Encodings, and Modes .. 101

Strings as Regular Expressions .. 101

Character-Encoding Issues ... 105

Regex Modes and Match Modes .. 109

Common Metacharacters and Features .. 112

Character Representations ... 114

5 May 2003 08:41

Ta ble of Contents ix

Character Classes and Class-Like Constructs .. 117

Anchors and Other “Zero-Width Assertions” .. 127

Comments and Mode Modifiers .. 133

Gr ouping, Capturing, Conditionals, and Control 135

Guide to the Advanced Chapters ... 141

4: The Mechanics of Expression Processing .. 143

Start Your Engines! .. 143

Two Kinds of Engines .. 144

New Standards .. 144

Regex Engine Types ... 145

Fr om the Department of Redundancy Department 146

Testing the Engine Type .. 146

Match Basics .. 147

About the Examples ... 147

Rule 1: The Match That Begins Earliest Wins ... 148

Engine Pieces and Parts ... 149

Rule 2: The Standard Quantifiers Are Greedy .. 151

Regex-Dir ected Versus Text-Dir ected .. 153

NFA Engine: Regex-Directed .. 153

DFA Engine: Text-Dir ected ... 155

First Thoughts: NFA and DFA in Comparison .. 156

Backtracking .. 157

A Really Crummy Analogy ... 158

Two Important Points on Backtracking .. 159

Saved States .. 159

Backtracking and Greediness .. 162

Mor e About Greediness and Backtracking .. 163

Pr oblems of Greediness ... 164

Multi-Character “Quotes” ... 165

Using Lazy Quantifiers ... 166

Gr eediness and Laziness Always Favor a Match 167

The Essence of Greediness, Laziness, and Backtracking 168

Possessive Quantifiers and Atomic Grouping .. 169

Possessive Quantifiers, ?+, ++, ++, and {m,n}+ ... 172

The Backtracking of Lookaround .. 173

Is Alternation Greedy? .. 174

Taking Advantage of Ordered Alternation .. 175

NFA, DFA, and POSIX ... 177

5 May 2003 08:41

x Table of Contents

“The Longest-Leftmost” .. 177

POSIX and the Longest-Leftmost Rule ... 178

Speed and Efficiency .. 179

Summary: NFA and DFA in Comparison .. 180

Summary .. 183

5: Practical Regex Techniques .. 185

Regex Balancing Act ... 186

A Few Short Examples .. 186

Continuing with Continuation Lines ... 186

Matching an IP Addr ess ... 187

Working with Filenames .. 190

Matching Balanced Sets of Parentheses .. 193

Watching Out for Unwanted Matches ... 194

Matching Delimited Text .. 196

Knowing Your Data and Making Assumptions 198

Stripping Leading and Trailing Whitespace .. 199

HTML-Related Examples .. 200

Matching an HTML Tag ... 200

Matching an HTML Link .. 201

Examining an HT TP URL .. 203

Validating a Hostname ... 203

Plucking Out a URL in the Real World .. 205

Extended Examples .. 208

Keeping in Sync with Your Data ... 208

Parsing CSV Files .. 212

6: Crafting an Efficient Expression ... 221

A Sobering Example ... 222

A Simple Change—Placing Your Best Foot Forward 223

Ef ficiency Verses Correctness .. 223

Advancing Further—Localizing the Greediness 225

Reality Check .. 226

A Global View of Backtracking .. 228

Mor e Work for a POSIX NFA ... 229

Work Required During a Non-Match .. 230

Being More Specific ... 231

Alter nation Can Be Expensive ... 231

Benchmarking ... 232

5 May 2003 08:41

Ta ble of Contents xi

Know What You’r e Measuring ... 234

Benchmarking with Java .. 234

Benchmarking with VB.NET .. 236

Benchmarking with Python ... 237

Benchmarking with Ruby .. 238

Benchmarking with Tcl .. 239

Common Optimizations .. 239

No Free Lunch .. 240

Everyone’s Lunch is Differ ent .. 240

The Mechanics of Regex Application .. 241

Pr e-Application Optimizations ... 242

Optimizations with the Transmission .. 245

Optimizations of the Regex Itself .. 247

Techniques for Faster Expressions ... 252

Common Sense Techniques .. 254

Expose Literal Text ... 255

Expose Anchors .. 255

Lazy Versus Greedy: Be Specific ... 256

Split Into Multiple Regular Expressions .. 257

Mimic Initial-Character Discrimination .. 258

Use Atomic Grouping and Possessive Quantifiers 259

Lead the Engine to a Match ... 260

Unr olling the Loop .. 261

Method 1: Building a Regex From Past Experiences 262

The Real “Unrolling-the-Loop” Pattern ... 263

Method 2: A Top-Down View ... 266

Method 3: An Internet Hostname .. 267

Observations ... 268

Using Atomic Grouping and Possessive Quantifiers 268

Short Unrolling Examples .. 270

Unr olling C Comments .. 272

The Freeflowing Regex ... 277

A Helping Hand to Guide the Match .. 277

A Well-Guided Regex is a Fast Regex ... 279

Wrapup ... 280

In Summary: Think! .. 281

5 May 2003 08:41

xii Table of Contents

7: Perl ... 283

Regular Expressions as a Language Component ... 285

Perl’s Greatest Strength .. 286

Perl’s Greatest Weakness ... 286

Perl’s Regex Flavor .. 286

Regex Operands and Regex Literals ... 288

How Regex Literals Are Parsed ... 292

Regex Modifiers .. 292

Regex-Related Perlisms ... 293

Expr ession Context .. 294

Dynamic Scope and Regex Match Effects ... 295

Special Variables Modified by a Match ... 299

The qr/˙˙˙/ Operator and Regex Objects .. 303

Building and Using Regex Objects .. 303

Viewing Regex Objects .. 305

Using Regex Objects for Efficiency ... 306

The Match Operator .. 306

Match’s Regex Operand ... 307

Specifying the Match Target Operand ... 308

Dif ferent Uses of the Match Operator ... 309

Iterative Matching: Scalar Context, with /g ... 312

The Match Operator’s Environmental Relations 316

The Substitution Operator .. 318

The Replacement Operand .. 319

The /e Modifier .. 319

Context and Return Value .. 321

The Split Operator .. 321

Basic Split ... 322

Retur ning Empty Elements .. 324

Split’s Special Regex Operands ... 325

Split’s Match Operand with Capturing Parentheses 326

Fun with Perl Enhancements ... 326

Using a Dynamic Regex to Match Nested Pairs 328

Using the Embedded-Code Construct ... 331

Using local in an Embedded-Code Construct 335

A War ning About Embedded Code and my Variables 338

Matching Nested Constructs with Embedded Code 340

Overloading Regex Literals .. 341

Pr oblems with Regex-Literal Overloading .. 344

5 May 2003 08:41

Ta ble of Contents xiii

Mimicking Named Capture .. 344

Perl Efficiency Issues .. 347

“Ther e’s Mor e Than One Way to Do It” ... 348

Regex Compilation, the /o Modifier, qr/˙˙˙/, and Efficiency 348

Understanding the “Pre-Match” Copy ... 355

The Study Function .. 359

Benchmarking .. 360

Regex Debugging Information .. 361

Final Comments .. 363

8: Java .. 365

Judging a Regex Package ... 366

Technical Issues ... 366

Social and Political Issues .. 367

Object Models ... 368

A Few Abstract Object Models .. 368

Gr owing Complexity .. 372

Packages, Packages, Packages ... 372

Why So Many “Perl5” Flavors? ... 375

Lies, Damn Lies, and Benchmarks .. 375

Recommendations .. 377

Sun’s Regex Package .. 378

Regex Flavor ... 378

Using java.util.regex ... 381

The Pattern.compile() Factory .. 383

The Matcher Object ... 384

Other Pattern Methods .. 390

A Quick Look at Jakarta-ORO ... 392

ORO’s Perl5Util ... 392

A Mini Perl5Util Refer ence .. 393

Using ORO’s Underlying Classes ... 397

9: .NET .. 399

.NET’s Regex Flavor ... 400

Additional Comments on the Flavor ... 402

Using .NET Regular Expressions ... 407

Regex Quickstart .. 407

Package Overview .. 409

Cor e Object Overview ... 410

5 May 2003 08:41

xiv Table of Contents

Cor e Object Details ... 412

Cr eating Regex Objects .. 413

Using Regex Objects ... 415

Using Match Objects ... 421

Using Group Objects ... 424

Static “Convenience” Functions .. 425

Regex Caching .. 426

Support Functions ... 426

Advanced .NET .. 427

Regex Assemblies ... 428

Matching Nested Constructs .. 430

Capture Objects ... 431

Index ... 433

5 May 2003 08:41

F O R LM
F u m i e

For putting up with me.

And for the years I worked on this book,

for putting up without me.

Preface

This book is about a powerful tool called “regular expressions”. It teaches you how
to use regular expressions to solve problems and get the most out of tools and
languages that provide them. Most documentation that mentions regular expres-
sions doesn’t even begin to hint at their power, but this book is about mastering
regular expressions.

Regular expressions are available in many types of tools (editors, word processors,
system tools, database engines, and such), but their power is most fully exposed
when available as part of a programming language. Examples include Java and
JScript, Visual Basic and VBScript, JavaScript and ECMAScript, C, C++, C#, elisp, Perl,
Python, Tcl, Ruby, PHP, sed, and awk. In fact, regular expressions are the very
heart of many programs written in some of these languages.

Ther e’s a good reason that regular expressions are found in so many diverse lan-
guages and applications: they are extr emely power ful. At a low level, a regular
expr ession describes a chunk of text. You might use it to verify a user’s input, or
perhaps to sift through large amounts of data. On a higher level, regular expres-
sions allow you to master your data. Control it. Put it to work for you. To master
regular expressions is to master your data.

The Need for This Book
I finished the first edition of this book in late 1996, and wrote it simply because
ther e was a need. Good documentation on regular expressions just wasn’t avail-
able, so most of their power went untapped. Regular-expr ession documentation
was available, but it centered on the “low-level view.” It seemed to me that they
wer e analogous to showing someone the alphabet and expecting them to learn to
speak.

xv

27 April 2003 17:10

xvi Preface

Why I’ve Written the Second Edition
In the five and a half years since the first edition of this book was published, the
world of regular expressions expanded considerably. The regular expressions of
almost every tool and language became more power ful and expressive. Perl,
Python, Tcl, Java, and Visual Basic all got new regular-expr ession backends. New
languages with regular expression support, like Ruby, PHP, and C#, were devel-
oped and became popular. During all this time, the basic core of the book — how
to truly understand regular expressions and how to get the most from them —
remained as important and relevant as ever.

Gradually, the first edition started to show its age. It needed updating to reflect the
new languages and features, as well as the expanding role that regular expressions
play in today’s Internet world. When I decided to update the first edition, it was
with a promise to my wife that it would take no more than three months. Two
years later, luckily still married, almost the entire book has been rewritten from
scratch. It’s good, though, that it took so long, for it brought me into 2002, a par-
ticularly active year for regular expressions. In early 2002, both Java 1.4 (with
java.util.regex) and Microsoft’s .NET wer e released, and Perl 5.8 was released
that summer. They are all covered fully in this book.

Intended Audience
This book will interest anyone who has an opportunity to use regular expressions.
If you don’t yet understand the power that regular expressions can provide, you
should benefit greatly as a whole new world is opened up to you. This book
should expand your understanding, even if you consider yourself an accomplished
regular-expr ession expert. After the first edition, it wasn’t uncommon for me to
receive an email that started “I thought I knew regular expressions until I read
Mastering Regular Expressions. Now I do.”

Pr ogrammers working on text-related tasks, such as web programming, will find
an absolute gold mine of detail, hints, tips, and understanding that can be put to
immediate use. The detail and thoroughness is simply not found anywhere else.

Regular expressions are an idea—one that is implemented in various ways by vari-
ous utilities (many, many more than are specifically presented in this book). If you
master the general concept of regular expressions, it’s a short step to mastering a
particular implementation. This book concentrates on that idea, so most of the
knowledge presented here transcends the utilities and languages used to present
the examples.

27 April 2003 17:10

How to Read This Book
This book is part tutorial, part refer ence manual, and part story, depending on
when you use it. Readers familiar with regular expressions might feel that they can
immediately begin using this book as a detailed refer ence, flipping directly to the
section on their favorite utility. I would like to discourage that.

To get the most out of this book, read the first six chapters as a story. I have found
that certain habits and ways of thinking can be a great help to reaching a full
understanding, but such things are absorbed over pages, not merely memorized
fr om a list.

This book tells a story, but one with many details. Once you’ve read the story to
get the overall picture, this book is also useful as a refer ence. The last three chap-
ters (covering specifics of Perl, Java, and .NET) rely heavily on your having read
the first six chapters. To help you get the most from each part, I’ve used cross ref-
er ences liberally, and I’ve worked hard to make the index as useful as possible.
(Cr oss refer ences ar e often presented as “+” followed by a page number.)

Until you read the full story, this book’s use as a refer ence makes little sense.
Befor e reading the story, you might look at one of the tables, such as the chart on
page 91, and think it presents all the relevant information you need to know. But
a great deal of background information does not appear in the charts themselves,
but rather in the associated story. Once you’ve read the story, you’ll have an
appr eciation for the issues, what you can remember off the top of your head, and
what is important to check up on.

Organization
The nine chapters of this book can be logically divided into roughly three parts.
Her e’s a quick overview:

The Introduction
Chapter 1 introduces the concept of regular expressions.
Chapter 2 takes a look at text processing with regular expressions.
Chapter 3 provides an overview of features and utilities, plus a bit of history.

The Details
Chapter 4 explains the details of how regular expressions work.
Chapter 5 works through examples, using the knowledge from Chapter 4.
Chapter 6 discusses efficiency in detail.

Tool-Specific Infor mation
Chapter 7 covers Perl regular expressions in detail.
Chapter 8 looks at regular-expr ession packages for Java.
Chapter 9 looks at .NET’s language-neutral regular-expr ession package.

Preface xvii

27 April 2003 17:10

xviii Preface

The Introduction
The introduction elevates the absolute novice to “issue-aware” novice. Readers
with a fair amount of experience can feel free to skim the early chapters, but I par-
ticularly recommend Chapter 3 even for the grizzled expert.

• Chapter 1, Intr oduction to Regular Expressions, is gear ed toward the complete
novice. I introduce the concept of regular expressions using the widely avail-
able program egr ep, and offer my perspective on how to think regular expres-
sions, instilling a solid foundation for the advanced concepts presented in later
chapters. Even readers with former experience would do well to skim this first
chapter.

• Chapter 2, Extended Introductory Examples, looks at real text processing in a
pr ogramming language that has regular-expr ession support. The additional
examples provide a basis for the detailed discussions of later chapters, and
show additional important thought processes behind crafting advanced regular
expr essions. To provide a feel for how to “speak in regular expressions,” this
chapter takes a problem requiring an advanced solution and shows ways to
solve it using two unrelated regular-expr ession–wielding tools.

• Chapter 3, Overview of Regular Expression Features and Flavors, provides an
overview of the wide range of regular expressions commonly found in tools
today. Due to their turbulent history, current commonly-used regular-expr es-
sion flavors can differ greatly. This chapter also takes a look at a bit of the his-
tory and evolution of regular expressions and the programs that use them. The
end of this chapter also contains the “Guide to the Advanced Chapters.” This
guide is your road map to getting the most out of the advanced material that
follows.

The Details
Once you have the basics down, it’s time to investigate the how and the why. Like
the “teach a man to fish” parable, truly understanding the issues will allow you to
apply that knowledge whenever and wherever regular expressions are found.

• Chapter 4, The Mechanics of Expression Processing, ratchets up the pace sev-
eral notches and begins the central core of this book. It looks at the important
inner workings of how regular expression engines really work from a practi-
cal point of view. Understanding the details of how regular expressions are
handled goes a very long way toward allowing you to master them.

• Chapter 5, Practical Regex Techniques, then puts that knowledge to high-level,
practical use. Common (but complex) problems are explor ed in detail, all with
the aim of expanding and deepening your regular-expr ession experience.

27 April 2003 17:10

• Chapter 6, Crafting an Efficient Expression, looks at the real-life efficiency
ramifications of the regular expressions available to most programming lan-
guages. This chapter puts information detailed in Chapters 4 and 5 to use for
exploiting an engine’s strengths and stepping around its weaknesses.

Tool-Specific Infor mation
Once the lessons of Chapters 4, 5, and 6 are under your belt, there is usually little
to say about specific implementations. However, I’ve devoted an entire chapter to
each of three popular systems:

• Chapter 7, Perl, closely examines regular expressions in Perl, arguably the
most popular regular-expr ession–laden pr ogramming language in use today. It
has only four operators related to regular expressions, but their myriad of
options and special situations provides an extremely rich set of programming
options — and pitfalls. The very richness that allows the programmer to move
quickly from concept to program can be a minefield for the uninitiated. This
detailed chapter clears a path.

• Chapter 8, Java, surveys the landscape of regular-expr ession packages avail-
able for Java. Points of comparison are discussed, and two packages with
notable strengths are cover ed in more detail.

• Chapter 9, .NET, is the documentation for the .NET regular-expr ession library
that Microsoft neglected to provide. Whether using VB.NET, C#, C++, JScript,
VBscript, ECMAScript, or any of the other languages that use .NET components,
this chapter provides the details you need to employ .NET regular-expr essions
to the fullest.

Typog raphical Conventions
When doing (or talking about) detailed and complex text processing, being pre-
cise is important. The mere addition or subtraction of a space can make a world of
dif ference, so I’ve used the following special conventions in typesetting this book:

• A regular expression generally appears like !this ". Notice the thin corners
which flag “this is a regular expression.” Literal text (such as that being
searched) generally appears like ‘this’. At times, I’ll leave off the thin corners
or quotes when obviously unambiguous. Also, code snippets and screen shots
ar e always presented in their natural state, so the quotes and corners are not
used in such cases.

• I use visually distinct ellipses within literal text and regular expressions. For
example [˙˙˙] repr esents a set of square brackets with unspecified contents,
while [. . .] would be a set containing three periods.

Preface xix

27 April 2003 17:10

xx Preface

• Without special presentation, it is virtually impossible to know how many
spaces are between the letters in “a b”, so when spaces appear in regular
expr essions and selected literal text, they are presented with the ‘ ’ symbol.
This way, it will be clear that there are exactly four spaces in ‘a b’.

I also use visual tab, newline, and carriage-retur n characters. Here’s a sum-
mary of the four:

a space character
2 a tab character
1 a newline character
| a carriage-r eturn character

• At times, I use underlining or shade the background to highlight parts of literal
text or a regular expression. In this example the underline shows where in the
text the expression actually matches:

Because !cat " matches ‘It indicates your cat is˙˙˙’ instead of the
word ‘cat’, we realize . . .

In this example the underlines highlight what has just been added to an
expr ession under discussion:

To make this useful, we can wrap !Subject;Date " with parentheses,
and append a colon and a space. This yields !(Subject;Date): ".

• This book is full of details and examples, so to help you get the most out of it,
I’ve provided an extensive set of cross refer ences. They often appear in the
text in a “+123” notation, which means “see page 123.” For example, it might
appear like “ . . . is described in Table 8-1 (+ 373).”

Exer cises
Occasionally, and particularly in the early chapters, I’ll pose a question to highlight
the importance of the concept under discussion. They’re not there just to take up
space; I really do want you to try them before continuing. Please. So as not to
dilute their importance, I’ve sprinkled only a few throughout the entire book. They
also serve as checkpoints: if they take more than a few moments, it’s probably
best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I’ve
made checking the answers a breeze: just turn the page. Answers to questions
marked with v ar e always found by turning just one page. This way, they’re out
of sight while you think about the answer, but are within easy reach.

27 April 2003 17:10

Links, Code, Errata, and Contacts
I lear ned the hard way with the first edition that URLs change more quickly than a
printed book can be updated, so rather than providing an appendix of URLs, I’ll
pr ovide just one:

http://regex.info/

Ther e you can find regular-expr ession links, many of the code snippets from this
book, a searchable index, and much more. In the unlikely event this book con-
tains an error :-), the errata will be available as well.

If you find an error in this book, or just want to drop me a note, you can contact
me at jfriedl@regex.info.

The publisher can be contacted at:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
bookquestions@oreilly.com

For more infor mation about books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Personal Comments and
Acknowledgments
Writing the first edition of this book was a grueling task that took two and a half
years and the help of many people. After the toll it took on my health and sanity, I
pr omised that I’d never put myself through such an experience again.

I’ve many people to thank for helping me break that promise. Foremost is my
wife, Fumie. If you find this book useful, thank her; without her support and
understanding, I would have never had the sanity to make it through what turned
out to be almost a two year complete rewrite.

I also appreciate the support of Yahoo! Inc., where I have enjoyed slinging regular
expr essions for five years, and my manager Mike Bennett. His flexibility and
understanding allowed this project to happen.

Preface xxi

27 April 2003 17:10

xxii Preface

While researching and writing this book, many people helped educate me on lan-
guages or systems I didn’t know, and more still reviewed and corrected drafts as
the manuscript developed. In particular, I’d like to thank my brother, Stephen
Friedl, for his meticulous and detailed reviews of the manuscript. The book is
much better because of them.

I’d also like to thank William F. Maton, Dean Wilson, Derek Balling, Jarkko
Hietaniemi, Jeremy Zawodny, Ethan Nicholas, Kasia Trapszo, Jeffr ey Papen, Dr.
Yadong Li, Daniel F. Savar ese, David Flanagan, Kristine Rudkin, Shawn Purcell,
Josh Woodward, Ray Goldberger, and my editor, Andy Oram. Also thanks to
O’Reilly’s Linda Mui for navigating this book through the pre-publication minefield
and keeping the troops rallied, and Jessamyn Reed for creating the new figures
this edition requir ed.

Special thanks for providing an insider’s look at Java go to Mike “madbot”
McCloskey, Mark Reinhold, and Dr. Clif f Click, all of Sun Microsystems. For .NET

insight, I’d like to thank David Gutierrez and Kit George, of Microsoft.

I’d like to thank Dr. Ken Lunde of Adobe Systems, who created custom characters
and fonts for a number of the typographical aspects of this book. The Japanese
characters are from Adobe Systems’ Heisei Mincho W3 typeface, while the Korean
is from the Korean Ministry of Culture and Sports Munhwa typeface. It’s also Ken
who originally gave me the guiding principle that governs my writing: “you do the
research so your readers don’t have to.”

For help in setting up the server for http://regex.info, I’d like to thank Jeffr ey
Papen and Peak Web Hosting (http://www.PeakWebhosting.com/).

27 April 2003 17:10

1
Introduction to

Regular Expressions

Her e’s the scenario: you’re given the job of checking the pages on a web server
for doubled words (such as “this this”), a common problem with documents sub-
ject to heavy editing. Your job is to create a solution that will:

• Accept any number of files to check, report each line of each file that has
doubled words, highlight (using standard ANSI escape sequences) each dou-
bled word, and ensure that the source filename appears with each line in the
report.

• Work across lines, even finding situations where a word at the end of one line
is repeated at the beginning of the next.

• Find doubled words despite capitalization differ ences, such as with ‘The
the˙˙˙’, as well as allow differing amounts of whitespace (spaces, tabs, new-
lines, and the like) to lie between the words.

• Find doubled words even when separated by HTML tags. HTML tags are for
marking up text on World Wide Web pages, for example, to make a word
bold: ‘˙˙˙it is very very important˙˙˙’.

That’s certainly a tall order! But, it’s a real problem that needs to be solved. At one
point while working on the manuscript for this book, I ran such a tool on what I’d
written so far and was surprised at the way numerous doubled words had crept in.
Ther e ar e many programming languages one could use to solve the problem, but
one with regular expression support can make the job substantially easier.

Regular expressions ar e the key to powerful, flexible, and efficient text processing.
Regular expressions themselves, with a general pattern notation almost like a mini
pr ogramming language, allow you to describe and parse text. With additional sup-
port provided by the particular tool being used, regular expressions can add,
remove, isolate, and generally fold, spindle, and mutilate all kinds of text and data.

1

27 April 2003 17:11

2 Chapter 1: Introduction to Regular Expressions

It might be as simple as a text editor’s search command or as powerful as a full
text processing language. This book shows you the many ways regular expres-
sions can increase your productivity. It teaches you how to think regular expres-
sions so that you can master them, taking advantage of the full magnitude of their
power.

A full program that solves the doubled-word problem can be implemented in just
a few lines of many of today’s popular languages. With a single regular-expr ession
search-and-r eplace command, you can find and highlight doubled words in the
document. With another, you can remove all lines without doubled words (leaving
only the lines of interest left to report). Finally, with a third, you can ensure that
each line to be displayed begins with the name of the file the line came from.
We’ll see examples in Perl and Java in the next chapter.

The host language (Perl, Java, VB.NET, or whatever) provides the peripheral pro-
cessing support, but the real power comes from regular expressions. In harnessing
this power for your own needs, you learn how to write regular expressions to
identify text you want, while bypassing text you don’t. You can then combine your
expr essions with the language’s support constructs to actually do something with
the text (add appropriate highlighting codes, remove the text, change the text, and
so on).

Solving Real Problems
Knowing how to wield regular expressions unleashes processing powers you
might not even know were available. Numerous times in any given day, regular
expr essions help me solve problems both large and small (and quite often, ones
that are small but would be large if not for regular expressions).

Showing an example that provides the key to solving a large and important prob-
lem illustrates the benefit of regular expressions clearly, but perhaps not so obvi-
ous is the way regular expressions can be used throughout the day to solve rather
“uninter esting” pr oblems. I use “uninteresting” in the sense that such problems are
not often the subject of bar-r oom war stories, but quite interesting in that until
they’r e solved, you can’t get on with your real work.

As a simple example, I needed to check a lot of files (the 70 or so files comprising
the source for this book, actually) to confirm that each file contained ‘SetSize’
exactly as often (or as rarely) as it contained ‘ResetSize’. To complicate matters, I
needed to disregard capitalization (such that, for example, ‘setSIZE’ would be
counted just the same as ‘SetSize’). Inspecting the 32,000 lines of text by hand
certainly wasn’t practical.

27 April 2003 17:11

Even using the normal “find this word” search in an editor would have been ardu-
ous, especially with all the files and all the possible capitalization differ ences.

Regular expressions to the rescue! Typing just a single, short command, I was able
to check all files and confirm what I needed to know. Total elapsed time: perhaps
15 seconds to type the command, and another 2 seconds for the actual check of
all the data. Wow! (If you’re inter ested to see what I actually used, peek ahead to
page 36.)

As another example, I was once helping a friend with some email problems on a
remote machine, and he wanted me to send a listing of messages in his mailbox
file. I could have loaded a copy of the whole file into a text editor and manually
removed all but the few header lines from each message, leaving a sort of table of
contents. Even if the file wasn’t as huge as it was, and even if I wasn’t connected
via a slow dial-up line, the task would have been slow and monotonous. Also, I
would have been placed in the uncomfortable position of actually seeing the text
of his personal mail.

Regular expressions to the rescue again! I gave a simple command (using the com-
mon search tool egr ep described later in this chapter) to display the From: and
Subject: line from each message. To tell egr ep exactly which kinds of lines I
wanted to see, I used the regular expression !ˆ(From;Subject): ".

Once he got his list, he asked me to send a particular (5,000-line!) message. Again,
using a text editor or the mail system itself to extract just the one message would
have taken a long time. Rather, I used another tool (one called sed) and again
used regular expressions to describe exactly the text in the file I wanted. This way,
I could extract and send the desired message quickly and easily.

Saving both of us a lot of time and aggravation by using the regular expression
was not “exciting,” but surely much more exciting than wasting an hour in the text
editor. Had I not known regular expressions, I would have never considered that
ther e was an alternative. So, to a fair extent, this story is repr esentative of how
regular expressions and associated tools can empower you to do things you might
have never thought you wanted to do.

Once you learn regular expressions, you’ll realize that they’re an invaluable part of
your toolkit, and you’ll wonder how you could ever have gotten by without them.†

A full command of regular expressions is an invaluable skill. This book provides
the information needed to acquire that skill, and it is my hope that it provides the
motivation to do so, as well.

† If you have a TiVo, you already know the feeling!

Solving Real Problems 3

27 April 2003 17:11

4 Chapter 1: Introduction to Regular Expressions

Regular Expressions as a Language
Unless you’ve had some experience with regular expressions, you won’t under-
stand the regular expression !ˆ(From;Subject): " fr om the last example, but
ther e’s nothing magic about it. For that matter, ther e is nothing magic about magic.
The magician merely understands something simple which doesn’t appear to be
simple or natural to the untrained audience. Once you learn how to hold a card
while making your hand look empty, you only need practice before you, too, can
“do magic.” Like a foreign language — once you learn it, it stops sounding like
gibberish.

The Filename Analogy
Since you have decided to use this book, you probably have at least some idea of
just what a “regular expression” is. Even if you don’t, you are almost certainly
alr eady familiar with the basic concept.

You know that report.txt is a specific filename, but if you have had any experience
with Unix or DOS/Windows, you also know that the pattern “+.txt” can be used
to select multiple files. With filename patterns like this (called file globs or wild-
car ds), a few characters have special meaning. The star means “match anything,”
and a question mark means “match any one character.” So, with the file glob
“+.txt”, we start with a match-anything ! + " and end with the literal ! .txt ", so we
end up with a pattern that means “select the files whose names start with anything
and end with .txt”.

Most systems provide a few additional special characters, but, in general, these
filename patterns are limited in expressive power. This is not much of a shortcom-
ing because the scope of the problem (to provide convenient ways to specify
gr oups of files) is limited, well, simply to filenames.

On the other hand, dealing with general text is a much larger problem. Prose and
poetry, program listings, reports, HTML, code tables, word lists... you name it, if a
particular need is specific enough, such as “selecting files,” you can develop some
kind of specialized scheme or tool to help you accomplish it. However, over the
years, a generalized pattern language has developed, which is powerful and
expr essive for a wide variety of uses. Each program implements and uses them
dif ferently, but in general, this powerful pattern langua ge and the patterns them-
selves are called regular expressions.

27 April 2003 17:11

The Language Analog y
Full regular expressions are composed of two types of characters. The special
characters (like the + fr om the filename analogy) are called metacharacters, while
the rest are called literal, or nor mal text characters. What sets regular expressions
apart from filename patterns are the advanced expressive powers that their meta-
characters provide. Filename patterns provide limited metacharacters for limited
needs, but a regular expression “language” provides rich and expressive metachar-
acters for advanced uses.

It might help to consider regular expressions as their own language, with literal
text acting as the words and metacharacters as the grammar. The words are com-
bined with grammar according to a set of rules to create an expression that com-
municates an idea. In the email example, the expression I used to find lines
beginning with ‘From:’ or ‘Subject:’ was !ˆ(From;Subject):". The metachar-
acters are underlined; we’ll get to their interpretation soon.

As with learning any other language, regular expressions might seem intimidating
at first. This is why it seems like magic to those with only a superficial understand-
ing, and perhaps completely unapproachable to those who have never seen it at
all. But, just as abcdefghi!† would soon become clear to a student of
Japanese, the regular expression in

s!<emphasis>([0-9]+(\.[0-9]+){3})</emphasis>!<inet>$1</inet>!

will soon become crystal clear to you, too.

This example is from a Perl language script that my editor used to modify a
manuscript. The author had mistakenly used the typesetting tag <emphasis> to
mark Internet IP addr esses (which are sets of periods and numbers that look like
209.204.146.22). The incantation uses Perl’s text-substitution command with the
regular expression

!<emphasis>([0-9]+(\.[0-9]+){3})</emphasis> "

to replace such tags with the appropriate <inet> tag, while leaving other uses of
<emphasis> alone. In later chapters, you’ll learn all the details of exactly how this
type of incantation is constructed, so you’ll be able to apply the techniques to
your own needs, with your own application or programming language.

† “Regular expressions are easy!” A somewhat humorous comment about this: as Chapter 3 explains,
the term regular expression originally comes from formal algebra. When people ask me what my
book is about, the answer “regular expressions” draws a blank face if they are not already familiar
with the concept. The Japanese word for regular expression, abcd, means as little to the average
Japanese as its English counterpart, but my reply in Japanese usually draws a bit more than a blank
star e. You see, the “regular” part is unfortunately pronounced identically to a much more common
word, a medical term for “repr oductive organs.” You can only imagine what flashes through their
minds until I explain!

Regular Expressions as a Language 5

27 April 2003 17:11

6 Chapter 1: Introduction to Regular Expressions

The goal of this book

The chance that you will ever want to replace <emphasis> tags with <inet> tags
is small, but it is very likely that you will run into similar “replace this with that”
pr oblems. The goal of this book is not to teach solutions to specific problems, but
rather to teach you how to think regular expressions so that you will be able to
conquer whatever problem you may face.

The Regular-Expression Frame of Mind
As we’ll soon see, complete regular expressions are built up from small building-
block units. Each individual building block is quite simple, but since they can be
combined in an infinite number of ways, knowing how to combine them to
achieve a particular goal takes some experience. So, this chapter provides a quick
overview of some regular-expr ession concepts. It doesn’t go into much depth, but
pr ovides a basis for the rest of this book to build on, and sets the stage for impor-
tant side issues that are best discussed before we delve too deeply into the regular
expr essions themselves.

While some examples may seem silly (because some ar e silly), they repr esent the
kind of tasks that you will want to do — you just might not realize it yet. If each
point doesn’t seem to make sense, don’t worry too much. Just let the gist of the
lessons sink in. That’s the goal of this chapter.

If You Have Some Regular-Expression Experience
If you’re alr eady familiar with regular expressions, much of this overview will not
be new, but please be sure to at least glance over it anyway. Although you may be
awar e of the basic meaning of certain metacharacters, perhaps some of the ways
of thinking about and looking at regular expressions will be new.

Just as there is a dif ference between playing a musical piece well and making
music, ther e is a differ ence between knowing about regular expressions and really
understanding them. Some of the lessons present the same information that you
ar e alr eady familiar with, but in ways that may be new and which are the first
steps to really understanding.

Sear ching Te xt Files: Egre p
Finding text is one of the simplest uses of regular expressions — many text editors
and word processors allow you to search a document using a regular-expr ession
patter n. Even simpler is the utility egr ep. Give egr ep a regular expression and some
files to search, and it attempts to match the regular expression to each line of each
file, displaying only those lines in which a match is found. egr ep is freely available

27 April 2003 17:11

for many systems, including DOS, MacOS, Windows, Unix, and so on. See this
book’s web site, http://regex.info, for links on how to obtain a copy of egr ep
for your system.

Retur ning to the email example from page 3, the command I actually used to gen-
erate a makeshift table of contents from the email file is shown in Figure 1-1. egr ep
interpr ets the first command-line argument as a regular expression, and any
remaining arguments as the file(s) to search. Note, however, that the single quotes
shown in Figure 1-1 are not part of the regular expression, but are needed by my
command shell.† When using egr ep, I usually wrap the regular expression with sin-
gle quotes. Exactly which characters are special, in what contexts, to whom (to the
regular-expr ession, or to the tool), and in what order they are interpr eted ar e all
issues that grow in importance when you move to regular-expr ession use in full-
fledged programming languages—something we’ll see starting in the next chapter.

quotes for the shellcommand
shell’s
prompt

first command-line argument

% egrep ’^(From|Subject): ’ mailbox-file

regular expression passed to egrep

Figur e 1-1: Invoking egr ep fr om the command line

We’ll start to analyze just what the various parts of the regex mean in a moment,
but you can probably already guess just by looking that some of the characters
have special meanings. In this case, the parentheses, the !ˆ ", and the !;" characters
ar e regular-expr ession metacharacters, and combine with the other characters to
generate the result I want.

On the other hand, if your regular expression doesn’t use any of the dozen or so
metacharacters that egr ep understands, it effectively becomes a simple “plain text”
search. For example, searching for !cat " in a file finds and displays all lines with
the three letters c ⋅ a ⋅ t in a row. This includes, for example, any line containing
vacation.

† The command shell is the part of the system that accepts your typed commands and actually exe-
cutes the programs you request. With the shell I use, the single quotes serve to group the command
argument, telling the shell not to pay too much attention to what’s inside. If I didn’t use them, the
shell might think, for example, a ‘+’ that I intended to be part of the regular expression was really
part of a filename pattern that it should interpret. I don’t want that to happen, so I use the quotes to
“hide” the metacharacters from the shell. Windows users of COMMAND.COM or CMD.EXE should prob-
ably use double quotes instead.

The Regular-Expression Frame of Mind 7

27 April 2003 17:11

8 Chapter 1: Introduction to Regular Expressions

Even though the line might not have the wor d cat, the c ⋅ a ⋅ t sequence in
vacation is still enough to be matched. Since it’s there, egr ep goes ahead and dis-
plays the whole line. The key point is that regular-expr ession searching is not
done on a “word” basis — egr ep can understand the concept of bytes and lines in a
file, but it generally has no idea of English’s (or any other language’s) words, sen-
tences, paragraphs, or other high-level concepts.

Eg rep Metacharacter s
Let’s start to explore some of the egr ep metacharacters that supply its regular-
expr ession power. I’ll go over them quickly with a few examples, leaving the
detailed examples and descriptions for later chapters.

Typographical Conventions Befor e we begin, please make sure to review the
typographical conventions explained in the preface, on page xix. This book forges
a bit of new ground in the area of typesetting, so some of my notations may be
unfamiliar at first.

Star t and End of the Line
Pr obably the easiest metacharacters to understand are !ˆ " (car et) and !$ " (dollar),
which repr esent the start and end, respectively, of the line of text as it is being
checked. As we’ve seen, the regular expression !cat " finds c ⋅ a ⋅ t anywher e on the
line, but !ˆcat " matches only if the c ⋅ a ⋅ t is at the beginning of the line — the !ˆ " is
used to effectively anchor the match (of the rest of the regular expression) to the
start of the line. Similarly, !cat$ " finds c ⋅ a ⋅ t only at the end of the line, such as a
line ending with scat.

It’s best to get into the habit of interpreting regular expressions in a rather literal
way. For example, don’t think

!ˆcat " matches a line with cat at the beginning
but rather:

!ˆcat " matches if you have the beginning of a line, followed immediately
by c, followed immediately by a, followed immediately by t.

They both end up meaning the same thing, but reading it the more literal way
allows you to intrinsically understand a new expression when you see it. How
would egr ep interpr et !ˆcat$ ", !ˆ$ ", or even simply !ˆ " alone? v Turn the page to
check your interpretations.

The caret and dollar are special in that they match a position in the line rather than
any actual text characters themselves. Of course, there are various ways to actually
match real text. Besides providing literal characters like !cat " in your regular
expr ession, you can also use some of the items discussed in the next few sections.

27 April 2003 17:11

Character Classes
Matching any one of several character s

Let’s say you want to search for “grey,” but also want to find it if it were spelled
“gray.” The regular-expr ession construct ![˙˙˙]", usually called a character class, lets
you list the characters you want to allow at that point in the match. While !e "

matches just an e, and !a " matches just an a, the regular expression ![ea]" matches
either. So, then, consider !gr[ea]y ": this means to find “ g, followed by r, followed
by either an e or an a, all followed by y .” Because I’m a really poor speller, I’m
always using regular expressions like this against a huge list of English words to
figur e out proper spellings. One I use often is !sep[ea]r[ea]te ", because I can
never remember whether the word is spelled “seperate,” “separate,” “separ ete,” or
what. The one that pops up in the list is the proper spelling; regular expressions
to the rescue.

Notice how outside of a class, literal characters (like the !g " and !r " of !gr[ae]y ")
have an implied “and then” between them — “match !g " and then match !r " . . .” It’s
completely opposite inside a character class. The contents of a class is a list of
characters that can match at that point, so the implication is “or.”

As another example, maybe you want to allow capitalization of a word’s first letter,
such as with ![Ss]mith ". Remember that this still matches lines that contain smith

(or Smith) embedded within another word, such as with blacksmith. I don’t
want to harp on this throughout the overview, but this issue does seem to be the
source of problems among some new users. I’ll touch on some ways to handle this
embedded-word problem after we examine a few more metacharacters.

You can list in the class as many characters as you like. For example, ![123456] "

matches any of the listed digits. This particular class might be useful as part of
!<H[123456]> ", which matches <H1>, <H2>, <H3>, etc. This can be useful when
searching for HTML headers.

Within a character class, the character-class metacharacter ‘-’ (dash) indicates a
range of characters: !<H[1-6]> " is identical to the previous example. ![0-9] " and
![a-z] " ar e common shorthands for classes to match digits and English lowercase
letters, respectively. Multiple ranges are fine, so ![0123456789abcdefABCDEF] " can
be written as ![0-9a-fA-F] " (or, perhaps, ![A-Fa-f0-9] ", since the order in which
ranges are given doesn’t matter). These last three examples can be useful when
pr ocessing hexadecimal numbers. You can freely combine ranges with literal char-
acters: ![0-9A-ZR!.?] " matches a digit, uppercase letter, underscor e, exclamation
point, period, or a question mark.

Note that a dash is a metacharacter only within a character class — otherwise it
matches the normal dash character. In fact, it is not even always a metacharacter
within a character class. If it is the first character listed in the class, it can’t possibly

Eg rep Metacharacter s 9

27 April 2003 17:11

10 Chapter 1: Introduction to Regular Expressions

Reading !ˆcat$ " , !ˆ$ " , and !ˆ "
v Answers to the questions on page 8.

!ˆcat$ " Literally means: matches if the line has a beginning-of-line (which, of
course, all lines have), followed immediately by c ⋅ a ⋅ t, and then fol-
lowed immediately by the end of the line.

Ef fectively means: a line that consists of only cat — no extra words,
spaces, punctuation... just ‘cat’.

!ˆ$ " Literally means: matches if the line has a beginning-of-line, followed
immediately by the end of the line.

Ef fectively means: an empty line (with nothing in it, not even
spaces).

!ˆ " Literally means: matches if the line has a beginning-of-line.

Ef fectively meaningless ! Since every line has a beginning, every line
will match—even lines that are empty!

indicate a range, so it is not considered a metacharacter. Along the same lines, the
question mark and period at the end of the class are usually regular-expr ession
metacharacters, but only when not within a class (so, to be clear, the only special
characters within the class in ![0-9A-ZR!.?]" ar e the two dashes).

Consider character classes as their own mini language. The rules regard-
ing which metacharacters are supported (and what they do) are com-
pletely differ ent inside and outside of character classes.

We’ll see more examples of this shortly.

Negated character classes

If you use ![ˆ˙˙˙]" instead of ![˙˙˙]", the class matches any character that isn’t listed.
For example, ![ˆ1-6] " matches a character that’s not 1 thr ough 6. The leading ˆ in
the class “negates” the list, so rather than listing the characters you want to include
in the class, you list the characters you don’t want to be included.

You might have noticed that the ˆ used here is the same as the start-of-line caret
intr oduced on page 8. The character is the same, but the meaning is completely
dif ferent. Just as the English word “wind” can mean differ ent things depending on
the context (sometimes a strong breeze, sometimes what you do to a clock), so
can a metacharacter. We’ve already seen one example, the range-building dash. It
is valid only inside a character class (and at that, only when not first inside the
class). ˆ is a line anchor outside a class, but a class metacharacter inside a class
(but, only when it is immediately after the class’s opening bracket; otherwise, it’s

27 April 2003 17:11

not special inside a class). Don’t fear — these are the most complex special cases;
others we’ll see later aren’t so bad.

As another example, let’s search that list of English words for odd words that have
q followed by something other than u. Translating that into a regular expression, it
becomes !q[ˆu] ". I tried it on the list I have, and there certainly weren’t many. I did
find a few, including a number of words that I didn’t even know were English.

Her e’s what happened. (What I typed is in bold.)

% egrep ’q[ˆu]’ word.list
Iraqi
Iraqian
miqra
qasida
qintar
qoph
zaqqum%

Two notable words not listed are “Qantas”, the Australian airline, and “Iraq”.
Although both words are in the wor d.list file, neither were displayed by my egr ep
command. Why? v Think about it for a bit, and then turn the page to check your
reasoning.

Remember, a negated character class means “match a character that’s not listed”
and not “don’t match what is listed.” These might seem the same, but the Iraq

example shows the subtle differ ence. A convenient way to view a negated class is
that it is simply a shorthand for a normal class that includes all possible characters
except those that are listed.

Matching Any Character with Dot
The metacharacter ! ." (usually called dot or point) is a shorthand for a character
class that matches any character. It can be convenient when you want to have an
“any character here” placeholder in your expression. For example, if you want to
search for a date such as 03/19/76, 03-19-76, or even 03.19.76, you could go
to the trouble to construct a regular expression that uses character classes to
explicitly allow ‘/’, ‘-’, or ‘.’ between each number, such as !03[-./]19[-./]76 ".
However, you might also try simply using !03.19.76 ".

Quite a few things are going on with this example that might be unclear at first. In
!03[-./]19[-./]76 ", the dots are not metacharacters because they are within a
character class. (Remember, the list of metacharacters and their meanings are dif-
fer ent inside and outside of character classes.) The dashes are also not class meta-
characters in this case because each is the first thing after [or [ˆ. Had they not
been first, as with ![.-/] ", they would be the class range metacharacter, which
would be a mistake in this situation.

Eg rep Metacharacter s 11

27 April 2003 17:11

12 Chapter 1: Introduction to Regular Expressions

Quiz Answer
v Answer to the question on page 11.

Why doesn’t !q[ˆu] " match ‘Qantas’ or ‘Iraq’?

Qantas didn’t match because the regular expression called for a lowercase q,
wher eas the Q in Qantas is uppercase. Had we used !Q[ˆu] " instead, we
would have found it, but not the others, since they don’t have an uppercase
Q. The expression ![Qq][ˆu] " would have found them all.

The Iraq example is somewhat of a trick question. The regular expression
calls for q followed by a character that’s not u, which precludes matching q
at the end of the line. Lines generally have newline characters at the very
end, but a little fact I neglected to mention (sorry!) is that egr ep strips those
befor e checking with the regular expression, so after a line-ending q, ther e’s
no non-u to be matched.

Don’t feel too bad because of the trick question.† Let me assure you that had
egr ep not automatically stripped the newlines (many other tools don’t strip
them), or had Iraq been followed by spaces or other words or whatnot, the
line would have matched. It is important to eventually understand the little
details of each tool, but at this point what I’d like you to come away with
fr om this exercise is that a character class, even negated, still requir es a char-
acter to match.

With !03.19.76 ", the dots ar e metacharacters — ones that match any character
(including the dash, period, and slash that we are expecting). However, it is
important to know that each dot can match any character at all, so it can match,
say, ‘lottery numbers: 19 203319 7639’.

So, !03[-./]19[-./]76 " is more precise, but it’s more dif ficult to read and write.
!03.19.76 " is easy to understand, but vague. Which should we use? It all depends
upon what you know about the data being searched, and just how specific you
feel you need to be. One important, recurring issue has to do with balancing your
knowledge of the text being searched against the need to always be exact when
writing an expression. For example, if you know that with your data it would be
highly unlikely for !03.19.76 " to match in an unwanted place, it would certainly
be reasonable to use it. Knowing the target text well is an important part of wield-
ing regular expressions effectively.

† Once, in fourth grade, I was leading the spelling bee when I was asked to spell “miss.” My answer
was “m ⋅ i ⋅ s ⋅ s.” Miss Smith relished in telling me that no, it was “M ⋅ i ⋅ s ⋅ s” with a capital M, that I
should have asked for an example sentence, and that I was out. It was a traumatic moment in a
young boy’s life. After that, I never liked Miss Smith, and have since been a very poor speler.

27 April 2003 17:11

Alter nation
Matching any one of several subexpressions

A very convenient metacharacter is ! ; ", which means “or.” It allows you to combine
multiple expressions into a single expression that matches any of the individual
ones. For example, !Bob " and !Robert " ar e separate expressions, but !Bob;Robert " is
one expression that matches either. When combined this way, the subexpressions
ar e called alter natives.

Looking back to our !gr[ea]y " example, it is interesting to realize that it can be
written as !grey;gray ", and even !gr(a;e)y ". The latter case uses parentheses to
constrain the alternation. (For the record, parentheses are metacharacters too.)
Note that something like !gr[a;e]y " is not what we want — within a class, the ‘;’
character is just a normal character, like !a " and !e ".

With !gr(a;e)y ", the parentheses are requir ed because without them, !gra;ey "

means “ !gra " or !ey " ,” which is not what we want here. Alternation reaches far, but
not beyond parentheses. Another example is !(First;1st) [Ss]treet ".† Actually,
since both !First " and !1st " end with !st ", the combination can be shortened to
!(Fir;1)st [Ss]treet ". That’s not necessarily quite as easy to read, but be sure to
understand that !(first;1st) " and !(fir;1)st " ef fectively mean the same thing.

Her e’s an example involving an alternate spelling of my name. Compare and con-
trast the following three expressions, which are all effectively the same:

!Jeffrey;Jeffery "

!Jeff(rey;ery) "

!Jeff(re;er)y "

To have them match the British spellings as well, they could be:

!(Geoff;Jeff)(rey;ery) "

!(Geo;Je)ff(rey;ery) "

!(Geo;Je)ff(re;er)y "

Finally, note that these three match effectively the same as the longer (but simpler)
!Jeffrey;Geoffery;Jeffery;Geoffrey ". They’r e all differ ent ways to specify the
same desired matches.

Although the !gr[ea]y " versus !gr(a;e)y " examples might blur the distinction, be
car eful not to confuse the concept of alternation with that of a character class. A
character class can match just a single character in the target text. With alternation,
since each alternative can be a full-fledged regular expression in and of itself, each

† Recall from the typographical conventions on page xx that “ ” is how I sometimes show a space
character so it can be seen easily.

Eg rep Metacharacter s 13

27 April 2003 17:11

14 Chapter 1: Introduction to Regular Expressions

alter native can match an arbitrary amount of text. Character classes are almost like
their own special mini-language (with their own ideas about metacharacters, for
example), while alternation is part of the “main” regular expression language.
You’ll find both to be extremely useful.

Also, take care when using caret or dollar in an expression that has alternation.
Compar e !ˆFrom<Subject<Date: " with !ˆ(From<Subject<Date): ". Both appear
similar to our earlier email example, but what each matches (and therefor e how
useful it is) differs greatly. The first is composed of three alternatives, so it matches
“ !ˆFrom " or !Subject " or !Date: ",” which is not particularly useful. We want the
leading caret and trailing !: " to apply to each alternative. We can accomplish this
by using parentheses to “constrain” the alternation:

!ˆ(From;Subject;Date): "

The alternation is constrained by the parentheses, so literally, this regex means
“match the start of the line, then one of !From ", !Subject ", or !Date ", and then match
!: ".” Effectively, it matches:

1) start-of-line, followed by F ⋅ r ⋅ o ⋅ m, followed by ‘: ’
or 2) start-of-line, followed by S ⋅ u ⋅ b ⋅ j ⋅ e ⋅ c ⋅ t, followed by ‘: ’
or 3) start-of-line, followed by D ⋅ a ⋅ t ⋅ e, followed by ‘: ’

Putting it less literally, it matches lines beginning with ‘From: ’, ‘Subject: ’, or
‘Date: ’, which is quite useful for listing the messages in an email file.

Her e’s an example:

% egrep ’ˆ(From<Subject<Date): ’ mailbox
From: elvis@tabloid.org (The King)
Subject: be seein’ ya around
Date: Thu, 22 Aug 2002 11:04:13
From: The Prez <president@whitehouse.gov>
Date: Tue, 27 Aug 2002 8:36:24
Subject: now, about your vote˙˙˙

+
+
+

Ignor ing Differences in Capitalization
This email header example provides a good opportunity to introduce the concept
of a case-insensitive match. The field types in an email header usually appear with
leading capitalization, such as “Subject” and “From,” but the email standard actually
allows mixed capitalization, so things like “DATE” and “from” are also allowed.
Unfortunately, the regular expression in the previous section doesn’t match those.

One approach is to replace !From " with ![Ff][Rr][Oo][Mm] " to match any form of
“fr om,” but this is quite cumbersome, to say the least. Fortunately, there is a way to
tell egr ep to ignore case when doing comparisons, i.e., to perfor m the match in a
case insensitive manner in which capitalization differ ences ar e simply ignored. It is

27 April 2003 17:11

not a part of the regular-expr ession language, but is a related useful feature many
tools provide. egr ep’s command-line option “-i” tells it to do a case-insensitive
match. Place -i on the command line before the regular expression:

% egrep -i ’ˆ(From;Subject;Date): ’ mailbox

This brings up all the lines we matched before, but also includes lines such as:

SUBJECT: MAKE MONEY FAST

I find myself using the -i option quite frequently (perhaps related to the footnote
on page 12!) so I recommend keeping it in mind. We’ll see other convenient sup-
port features like this in later chapters.

Word Boundar ies
A common problem is that a regular expression that matches the word you want
can often also match where the “word” is embedded within a larger word. I men-
tioned this briefly in the cat, gray, and Smith examples. It turns out, though, that
some versions of egr ep of fer limited support for word recognition: namely the abil-
ity to match the boundary of a word (where a word begins or ends).

You can use the (perhaps odd looking) metasequences !\<" and !\>" if your version
happens to support them (not all versions of egr ep do). You can think of them as
word-based versions of !ˆ " and !$ " that match the position at the start and end of a
word, respectively. Like the line anchors caret and dollar, they anchor other parts
of the regular expression but don’t actually consume any characters during a
match. The expression !\<cat\> " literally means “ match if we can find a start-of-
word position, followed immediately by c ⋅ a ⋅ t, followed immediately by an end-
of-word position .” Mor e naturally, it means “find the word cat.” If you wanted,
you could use !\<cat " or !cat\> " to find words starting and ending with cat.

Note that !<" and !>" alone are not metacharacters — when combined with a back-
slash, the sequences become special. This is why I called them “metasequences.”
It’s their special interpretation that’s important, not the number of characters, so
for the most part I use these two meta-words interchangeably.

Remember, not all versions of egr ep support these word-boundary metacharacters,
and those that do don’t magically understand the English language. The “start of a
word” is simply the position where a sequence of alphanumeric characters begins;
“end of word” is where such a sequence ends. Figure 1-2 on the next page shows
a sample line with these positions marked.

The word-starts (as egr ep recognizes them) are marked with up arrows, the word-
ends with down arrows. As you can see, “start and end of word” is better phrased
as “start and end of an alphanumeric sequence,” but perhaps that’s too much of a
mouthful.

Eg rep Metacharacter s 15

27 April 2003 17:11

16 Chapter 1: Introduction to Regular Expressions

- positions where \> is true- positions where \< is true

That dang- tootin’ #@!%* varmint’s cost me $199.95!

Figur e 1-2: Start and end of “word” positions

In a Nutshell
Table 1-1 summarizes the metacharacters we have seen so far.

Table 1-1: Summary of Metacharacters Seen So Far

Metacharacter Name Matches

. dot any one character
[˙˙˙] character class any character listed
[ˆ˙˙˙] negated character class any character not listed

ˆ car et the position at the start of the line
$ dollar the position at the end of the line
\< backslash less-than †the position at the start of a word
\> backslash greater-than †the position at the end of a word

†not supported by all versions of egrep

; or; bar matches either expression it separates
(˙˙˙) par entheses used to limit scope of !;", plus additional uses

yet to be discussed

In addition to the table, important points to remember include:

• The rules about which characters are and aren’t metacharacters (and exactly
what they mean) are dif ferent inside a character class. For example, dot is a
metacharacter outside of a class, but not within one. Conversely, a dash is a
metacharacter within a class (usually), but not outside. Moreover, a car et has
one meaning outside, another if specified inside a class immediately after the
opening [, and a third if given elsewhere in the class.

• Don’t confuse alternation with a character class. The class ![abc]" and the alter-
nation !(a;b;c) " ef fectively mean the same thing, but the similarity in this
example does not extend to the general case. A character class can match
exactly one character, and that’s true no matter how long or short the speci-
fied list of acceptable characters might be.

27 April 2003 17:11

Alter nation, on the other hand, can have arbitrarily long alternatives, each tex-
tually unrelated to the other: !\<(1,000,000;million;thousand thou)\>".
However, alter nation can’t be negated like a character class.

• A negated character class is simply a notational convenience for a normal
character class that matches everything not listed. Thus, ![ˆx]" doesn’t mean
“ match unless there is an x ,” but rather “ match if there is something that is
not x .” The differ ence is subtle, but important. The first concept matches a
blank line, for example, while ![ˆx] " does not.

• The useful -i option discounts capitalization during a match (+ 15).†

What we have seen so far can be quite useful, but the real power comes from
optional and counting elements, which we’ll look at next.

Optional Items
Let’s look at matching color or colour. Since they are the same except that one
has a u and the other doesn’t, we can use !colou?r " to match either. The metachar-
acter !? " (question mark) means optional. It is placed after the character that is
allowed to appear at that point in the expression, but whose existence isn’t actu-
ally requir ed to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question mark attaches only
to the immediately-preceding item. Thus, !colou?r " is interpreted as “ !c " then !o "

then !l " then !o " then !u? " then !r ". ”

The !u? " part is always successful: sometimes it matches a u in the text, while other
times it doesn’t. The whole point of the ?-optional part is that it’s successful either
way. This isn’t to say that any regular expression that contains ? is always success-
ful. For example, against ‘semicolon’, both !colo " and !u? " ar e successful (matching
colo and nothing, respectively). However, the final !r " fails, and that’s what dis-
allows semicolon, in the end, from being matched by !colou?r ".

As another example, consider matching a date that repr esents July fourth, with the
“July” part being either July or Jul, and the “fourth” part being fourth, 4th, or
simply 4. Of course, we could just use !(July;Jul) (fourth;4th;4)", but let’s
explor e other ways to express the same thing.

First, we can shorten the !(July;Jul) " to !(July?)". Do you see how they are effec-
tively the same? The removal of the !;" means that the parentheses are no longer
really needed. Leaving the parentheses doesn’t hurt, but with them removed,
!July? " is a bit less cluttered. This leaves us with !July? (fourth;4th;4)".

† Recall from the typographical conventions (page xx) that something like “+ 15” is a shorthand for a
refer ence to another page of this book.

Eg rep Metacharacter s 17

27 April 2003 17:11

18 Chapter 1: Introduction to Regular Expressions

Moving now to the second half, we can simplify the !4th;4 " to !4(th)? ". As you
can see, !? " can attach to a parenthesized expression. Inside the parentheses can be
as complex a subexpression as you like, but “from the outside” it is considered a
single unit. Grouping for !? " (and other similar metacharacters which I’ll introduce
momentarily) is one of the main uses of parentheses.

Our expression now looks like !July? (fourth<4(th)?)". Although there are a
fair number of metacharacters, and even nested parentheses, it is not that difficult
to decipher and understand. This discussion of two essentially simple examples
has been rather long, but in the meantime we have covered tangential topics that
add a lot, if perhaps only subconsciously, to our understanding of regular expres-
sions. Also, it’s given us some experience in taking differ ent appr oaches toward
the same goal. As we advance through this book (and through to a better under-
standing), you’ll find many opportunities for creative juices to flow while trying to
find the optimal way to solve a complex problem. Far from being some stuffy sci-
ence, writing regular expressions is closer to an art.

Other Quantifier s: Repetition
Similar to the question mark are !+ " (plus) and ! + " (an asterisk, but as a regular-
expr ession metacharacter, I prefer the term star). The metacharacter !+ " means “one
or more of the immediately-preceding item,” and ! + " means “any number, including
none, of the item.” Phrased differ ently, ! ˙˙˙+ " means “try to match it as many times
as possible, but it’s okay to settle for nothing if need be.” The construct with plus,
! ˙˙˙+ ", is similar in that it also tries to match as many times as possible, but differ ent
in that it fails if it can’t match at least once. These three metacharacters, question
mark, plus, and star, are called quantifiers because they influence the quantity of
what they govern.

Like ! ˙˙˙? ", the ! ˙˙˙+ " part of a regular expression always succeeds, with the only issue
being what text (if any) is matched. Contrast this to ! ˙˙˙+ ", which fails unless the
item matches at least once.

For example, ! ? " allows a single optional space, but ! + " allows any number of
optional spaces. We can use this to make page 9’s <H[1-6]> example flexible. The
HTML specification† says that spaces are allowed immediately before the closing >,
such as with <H3 > and <H4 >. Inserting ! + " into our regular expression where
we want to allow (but not requir e) spaces, we get !<H[1-6] +>". This still matches
<H1>, as no spaces are requir ed, but it also flexibly picks up the other versions.

† If you are not familiar with HTML, never fear. I use these as real-world examples, but I provide all the
details needed to understand the points being made. Those familiar with parsing HTML tags will
likely recognize important considerations I don’t address at this point in the book.

27 April 2003 17:11

Exploring further, let’s search for an HTML tag such as <HR SIZE=14>, which indi-
cates that a line (a Horizontal Rule) 14 pixels thick should be drawn across the
scr een. Like the <H3> example, optional spaces are allowed before the closing
angle bracket. Additionally, they are allowed on either side of the equal sign.
Finally, one space is requir ed between the HR and SIZE, although more are
allowed. To allow more, we could just add ! + " to the ! " alr eady ther e, but instead
let’s change it to ! + ". The plus allows extra spaces while still requiring at least one,
so it’s effectively the same as ! + ", but more concise. All these changes leave us
with !<HR + SIZE , = , 14 ,>".

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only one particular
size such as 14, we want to find them all. To accomplish this, we replace the !14 "

with an expression to find a general number. Well, in this case, a “number” is one
or more digits. A digit is ![0-9] ", and “one or more” adds a plus, so we end up
replacing !14 " by ![0-9]+ ". (A character class is one “unit,” so can be subject directly
to plus, question mark, and so on, without the need for parentheses.)

This leaves us with !<HR + SIZE , = , [0-9]+ ,>", which is certainly a mouthful
even though I’ve presented it with the metacharacters bold, added a bit of spacing
to make the groupings more appar ent, and am using the “visible space” symbol ‘ ’
for clarity. (Luckily, egr ep has the -i case-insensitive option, + 15, which means I
don’t have to use ![Hh][Rr] " instead of !HR ".) The unadorned regular expression
!<HR +SIZE += +[0-9]+ +>" likely appears even more confusing. This example
looks particularly odd because the subjects of most of the stars and pluses are
space characters, and our eye has always been trained to treat spaces specially.
That’s a habit you will have to break when reading regular expressions, because
the space character is a normal character, no dif ferent from, say, j or 4. (In later
chapters, we’ll see that some other tools support a special mode in which white-
space is ignored, but egr ep has no such mode.)

Continuing to exploit a good example, let’s consider that the size attribute is
optional, so you can simply use <HR> if the default size is wanted. (Extra spaces
ar e allowed before the >, as always.) How can we modify our regular expression
so that it matches either type? The key is realizing that the size part is optional
(that’s a hint). v Turn the page to check your answer.

Take a good look at our latest expression (in the answer box) to appreciate the
dif ferences among the question mark, star, and plus, and what they really mean in
practice. Table 1-2 on the next page summarizes their meanings.

Note that each quantifier has some minimum number of matches requir ed to suc-
ceed, and a maximum number of matches that it will ever attempt. With some, the
minimum number is zero; with some, the maximum number is unlimited.

Eg rep Metacharacter s 19

27 April 2003 17:11

20 Chapter 1: Introduction to Regular Expressions

Making a Subexpression Optional
v Answer to the question on page 19.

In this case, “optional” means that it is allowed once, but is not requir ed.
That means using !? ". Since the thing that’s optional is larger than one charac-
ter, we must use parentheses: !(˙˙˙)? ". Inserting into our expression, we get:

!<HR(+SIZE += +[0-9]+)? +>"

Note that the ending ! + " is kept outside of the !(˙˙˙)? ". This still allows some-
thing such as <HR >. Had we included it within the parentheses, ending
spaces would have been allowed only when the size component was
pr esent.

Similarly, notice that the ! + " befor e SIZE is included within the parentheses.
Were it left outside them, a space would have been requir ed after the HR,
even when the SIZE part wasn’t there. This would cause ‘<HR>’ to not match.

Table 1-2: Summary of Quantifier “Repetition Metacharacters”

Minimum Maximum
Required to Tr y Meaning

? none 1 one allowed; none requir ed (“one optional ”)
+ none no limit unlimited allowed; none requir ed (“any amount okay ”)
+ 1 no limit unlimited allowed; one requir ed (“at least one ”)

Defined range of matches: intervals

Some versions of egr ep support a metasequence for providing your own minimum
and maximum: ! ˙˙˙{min,max}". This is called the interval quantifier. For example,
! ˙˙˙{3,12} " matches up to 12 times if possible, but settles for three. One might use
![a-zA-Z]{1,5} " to match a US stock ticker (from one to five letters). Using this
notation, {0,1} is the same as a question mark.

Not many versions of egr ep support this notation yet, but many other tools do, so
it’s covered in Chapter 3 when we look in detail at the broad spectrum of meta-
characters in common use today.

Parentheses and Backreferences
So far, we have seen two uses for parentheses: to limit the scope of alternation, !;",
and to group multiple characters into larger units to which you can apply quanti-
fiers like question mark and star. I’d like to discuss another specialized use that’s
not common in egr ep (although GNU’s popular version does support it), but which
is commonly found in many other tools.

27 April 2003 17:11

In many regular-expr ession flavors, parentheses can “remember” text matched by
the subexpression they enclose. We’ll use this in a partial solution to the doubled-
word problem at the beginning of this chapter. If you knew the the specific dou-
bled word to find (such as “the” earlier in this sentence — did you catch it?), you
could search for it explicitly, such as with !the the ". In this case, you would also
find items such as the theory, but you could easily get around that problem if
your egr ep supports the word-boundary metasequences !\<˙˙˙\>" mentioned on
page 15: !\<the the\> ". We could use ! + " for the space for even more flexibility.

However, having to check for every possible pair of words would be an impossi-
ble task. Wouldn’t it be nice if we could match one generic word, and then say
“now match the same thing again”? If your egr ep supports backr efer encing, you
can. Backrefer encing is a regular-expr ession featur e that allows you to match new
text that is the same as some text matched earlier in the expression.

We start with !\<the +the\> " and replace the initial !the " with a regular expression
to match a general word, say ![A-Za-z]+ ". Then, for reasons that will become clear
in the next paragraph, let’s put parentheses around it. Finally, we replace the sec-
ond ‘the’ by the special metasequence !\1 ". This yields !\<([A-Za-z]+) +\1\>".

With tools that support backrefer encing, par entheses “r emember” the text that the
subexpr ession inside them matches, and the special metasequence !\1 " repr esents
that text later in the regular expression, whatever it happens to be at the time.

Of course, you can have more than one set of parentheses in a regular expression.
Use !\1 ", !\2 ", !\3 ", etc., to refer to the first, second, third, etc. sets. Pairs of parenthe-
ses are number ed by counting opening parentheses from the left, so with
!([a-z])([0-9])\1\2 ", the !\1 " refers to the text matched by ![a-z] ", and !\2 " refers
to the text matched by ![0-9] ".

With our ‘the the’ example, ![A-Za-z]+ " matches the first ‘the’. It is within the
first set of parentheses, so the ‘the’ matched becomes available via !\1 ". If the fol-
lowing ! + " matches, the subsequent !\1 " will requir e another ‘the’. If !\1 " is success-
ful, then !\> " makes sure that we are now at an end-of-word boundary (which we
wouldn’t be were the text ‘the theft’). If successful, we’ve found a repeated
word. It’s not always the case that that is an error (such as with “that” in this sen-
tence), but that’s for you to decide once the suspect lines are shown.

When I decided to include this example, I actually tried it on what I had written so
far. (I used a version of egr ep that supports both !\<˙˙˙\>" and backrefer encing.) To
make it more useful, so that ‘The the’ would also be found, I used the case-insen-
sitive -i option mentioned on page 15.†

† Be awar e that some versions of egr ep, including the popular GNU version, have a bug with the -i
option such that it doesn’t apply to backrefer ences. Thus, it finds “the the” but not “The the.”

Eg rep Metacharacter s 21

27 April 2003 17:11

22 Chapter 1: Introduction to Regular Expressions

Her e’s the command I ran:

% egrep -i ’\<([a-z]+) +\1\>’ files˙˙˙

I was surprised to find fourteen sets of mistakenly ‘doubled doubled’ words! I
corr ected them, and since then have built this type of regular-expr ession check
into the tools that I use to produce the final output of this book, to ensure none
cr eep back in.

As useful as this regular expression is, it is important to understand its limitations.
Since egr ep considers each line in isolation, it isn’t able to find when the ending
word of one line is repeated at the beginning of the next. For this, a more flexible
tool is needed, and we will see some examples in the next chapter.

The Great Escape
One important thing I haven’t mentioned yet is how to actually match a character
that a regular expression would normally interpret as a metacharacter. For exam-
ple, if I searched for the Internet hostname ega.att.com using !ega.att.com ", it
could end up matching something like megawatt computing. Remember, ! ." is a
metacharacter that matches any character, including a space.

The metasequence to match an actual period is a period preceded by a backslash:
!ega\.att\.com ". The sequence !\." is described as an escaped period or escaped
dot, and you can do this with all the normal metacharacters, except in a character-
class.†

A backslash used in this way is called an “escape” — when a metacharacter is
escaped, it loses its special meaning and becomes a literal character. If you like,
you can consider the sequence to be a special metasequence to match the literal
character. It’s all the same.

As another example, you could use !\([a-zA-Z]+\)" to match a word within
par entheses, such as ‘(very)’. The backslashes in the !\(" and !\)" sequences
remove the special interpretation of the parentheses, leaving them as literals to
match parentheses in the text.

When used before a non-metacharacter, a backslash can have differ ent meanings
depending upon the version of the program. For example, we have already seen
how some versions treat !\< ", !\>", !\1 ", etc. as metasequences. We will see many
mor e examples in later chapters.

† Most programming languages and tools allow you to escape characters within a character class as
well, but most versions of egr ep do not, instead treating ‘\’ within a class as a literal backslash to be
included in the list of characters.

27 April 2003 17:11

Expanding the Foundation
I hope the examples and explanations so far have helped to establish the basis for
a solid understanding of regular expressions, but please realize that what I’ve pro-
vided so far lacks depth. There’s so much more out there.

Linguistic Diver sification
I mentioned a number of regular expression features that most versions of egr ep
support. There are other features, some of which are not supported by all ver-
sions, which I’ll leave for later chapters.

Unfortunately, the regular expression language is no differ ent fr om any other in
that it has various dialects and accents. It seems each new program employing reg-
ular expressions devises its own “improvements.” The state of the art continually
moves forward, but changes over the years have resulted in a wide variety of reg-
ular expression “flavors.” We’ll see many examples in the following chapters.

The Goal of a Regular Expression
Fr om the broadest top-down view, a regular expression either matches within a
lump of text (with egr ep, each line) or it doesn’t. When crafting a regular expres-
sion, you must consider the ongoing tug-of-war between having your expression
match the lines you want, yet still not matching lines you don’t want.

Also, while egr ep doesn’t care wher e in the line the match occurs, this concern is
important for many other regular-expr ession uses. If your text is something such as

...zip is 44272. If you write, send $4.95 to cover postage and...

and you merely want to find lines matching ![0-9]+ ", you don’t care which num-
bers are matched. However, if your intent is to do something with the number
(such as save to a file, add, replace, and such — we will see examples of this kind
of processing in the next chapter), you’ll care very much exactly which numbers
ar e matched.

A Few More Examples
As with any language, experience is a very good thing, so I’m including a few
mor e examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches
when and where you want them. The other half is to not match when and where
you don’t want. In practice, both are important, but for the moment, I would like
to concentrate on the “getting successful matches” aspect. Even though I don’t
take these examples to their fullest depths, they still provide useful insight.

Expanding the Foundation 23

27 April 2003 17:11

24 Chapter 1: Introduction to Regular Expressions

Variable names

Many programming languages have identifiers (variable names and such) that are
allowed to contain only alphanumeric characters and underscores, but which may
not begin with a digit. They are matched by ![a-zA-ZR][a-zA-ZR0-9]+ ". The first
character class matches what the first character can be, the second (with its accom-
panying star) allows the rest of the identifier. If ther e is a limit on the length of an
identifier, say 32 characters, you might replace the star with !{0,31}" if the
!{min,max}" notation is supported. (This construct, the interval quantifier, was briefly
mentioned on page 20.)

A str ing within double quotes

A simple solution to matching a string within double quotes might be: !"[ˆ"]+""

The double quotes at either end are to match the opening and closing double
quotes of the string. Between them, we can have anything... except another dou-
ble quote! So, we use ![ˆ"] " to match all characters except a double quote, and
apply using a star to indicate we can have any number of such non double-quote
characters.

A mor e useful (but more complex) definition of a double-quoted string allows
double quotes within the string if they are escaped with a backslash, such as in
"nail the 2\"x4\" plank". We’ll see this example several times in future chap-
ters while covering the many details of how a match is actually carried out.

Dollar amount (with optional cents)

One approach to matching a dollar amount is: !\$[0-9]+(\.[0-9][0-9])? "

Fr om a top-level perspective, this is a simple regular expression with three parts:
!\$ " and ! ˙˙˙+ " and !(˙˙˙)? ", which might be loosely paraphrased as “a literal dollar
sign, a bunch of one thing, and finally perhaps another thing.” In this case, the
“one thing” is a digit (with a bunch of them being a number), and “another thing”
is the combination of a decimal point followed by two digits.

This example is a bit naïve for several reasons. For example, it considers dollar
amounts like $1000, but not $1,000. It does allow for optional cents, but frankly,
that’s not really very useful when applied with egr ep. egr ep never cares exactly
how much is matched, but merely whether ther e is a match. Allowing something
optional at the end never changes whether there’s an overall match to begin with.

But, if you need to find lines that contain just a price, and nothing else, you can
wrap the expression with !ˆ˙˙˙$ ". In this case, the optional cents part becomes
important since it might or might not come between the dollar amount and the

27 April 2003 17:11

end of the line, and allowing or disallowing it makes the differ ence in achieving
an overall match.

One type of value our expression doesn’t match is ‘$.49’. To solve this, you might
be tempted to change the plus to a star, but that doesn’t work. As to why, I’ll leave
it as a teaser until we look at this example again in Chapter 5 (+ 194).

An HTTP/HTML URL

The format of web URLs can be complex, so constructing a regular expression to
match any possible URL can be equally complex. However, relaxing your standards
slightly can allow you to match most common URLs with a fairly simple expres-
sion. One common reason I might do this, for example, would be to search my
email archive for a URL that I vaguely remember having received, but which I
think I might recognize when I see it.

The general form of a common HT TP/HTML URL is along the lines of

http://hostname/path.html

although ending with .htm is common as well.

The rules about what can and can’t be a hostname (computer name, such as
www.yahoo.com) are complex, but for our needs we can realize that if it follows
‘http://’, it’s probably a hostname, so we can make do with something simple,
such as ![-a-z0-9R.]+ ". The path part can be even more varied, so we’ll use
![-a-z0-9R:@&?=+,.!/˜+’%$]+ " for that. Notice that these classes have the dash
first, to ensure that it’s taken as a literal character and included in the list, as
opposed to part of a range (+ 9).

Putting these all together, we might use as our first attempt something like:

% egrep -i ’\<http://[-a-z0-9R.:]+/[-a-z0-9R:@&?=+,.!/˜+’%$]+\.html?\>’ files

Again, since we’ve taken liberties and relaxed what we’ll match, we could well
match something such as ‘http:// /foo.html’, which is certainly not a
valid URL. Do we car e about this? It all depends on what you’re trying to do. For
my scan of my email archive, it doesn’t really matter if I get a few false matches.
Heck, I could probably get away with even something as simple as:

% egrep -i ’\<http://[ˆ]+\.html?\>’ files...

As we’ll learn when getting deeper into how to craft an expression, knowing the
data you’ll be searching is an important aspect of finding the balance between
complexity and completeness. We’ll visit this example again, in more detail, in the
next chapter.

Expanding the Foundation 25

27 April 2003 17:11

26 Chapter 1: Introduction to Regular Expressions

An HTML tag

With a tool like egr ep, it doesn’t seem particularly common or useful to simply
match lines with HTML tags. But, exploring a regular expression that matches HTML

tags exactly can be quite fruitful, especially when we delve into more advanced
tools in the next chapter.

Looking at simple cases like ‘<TITLE>’ and ‘<HR>’, we might think to try !<.+>".
This simplistic approach is a frequent first thought, but it’s certainly incorrect. Con-
verting !<.+>" into English reads “match a ‘<’, followed by as much of anything as
can be matched, followed by ‘>’.” Well, when phrased that way, it shouldn’t be sur-
prising that it can match more than just one tag, such as the marked portion of
‘this <I>short</I> example’.

This might have been a bit surprising, but we’re still in the first chapter, and our
understanding at this point is only superficial. I have this example here to high-
light that regular expressions are not a difficult subject, but they can be tricky if
you don’t truly understand them. Over the next few chapters, we’ll look at all the
details requir ed to understand and solve this problem.

Time of day, such as “9:17 am” or “12:30 pm”

Matching a time can be taken to varying levels of strictness. Something such as

![0-9]?[0-9]:[0-9][0-9] (am;pm)"

picks up both 9:17 am and 12:30 pm, but also allows something nonsensical like
99:99 pm.

Looking at the hour, we realize that if it is a two-digit number, the first digit must
be a one. But, !1?[0-9] " still allows an hour of 19 (and also an hour of 0), so
maybe it is better to break the hour part into two possibilities: !1[012]" for two-
digit hours and ![1-9] " for single-digit hours. The result is !(1[012]<[1-9])".

The minute part is easier. The first digit should be ![0-5]". For the second, we can
stick with the current ![0-9] ". This gives !(1[012];[1-9]):[0-5][0-9] (am;pm)"

when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from
0 thr ough 23? As a challenge, allow for a leading zero, at least through to 09:59.

v Try building your solution, and then turn the page to check mine.

27 April 2003 17:11

Regular Expression Nomenclature
Regex

As you might guess, using the full phrase “regular expression” can get a bit tiring,
particularly in writing. Instead, I normally use “regex.” It just rolls right off the
tongue (it rhymes with “FedEx,” with a hard g sound like “regular” and not a soft
one like in “Regina”) and it is amenable to a variety of uses like “when you
regex...,” “budding regexers,” and even “regexification.”† I use the phrase “regex
engine” to refer to the part of a program that actually does the work of carrying
out a match attempt.

Matching

When I say a regex “matches” a string, I really mean that it matches in a string.
Technically, the regex !a " doesn’t match cat, but matches the a in cat. It’s not
something that people tend to confuse, but it’s still worthy of mention.

Metacharacter

Whether a character is a metacharacter (or “metasequence”—I use the words inter-
changeably) depends on exactly where in the regex it’s used. For example, ! + " is a
metacharacter, but only when it’s not within a character class and when not
escaped. “Escaped” means that it has a backslash in front of it—usually. The star is
escaped in !\+ ", but not in !\\+ " (wher e the first backslash escapes the second),
although the star “has a backslash in front of it” in both examples.

Depending upon the regex flavor, ther e ar e various situations when certain charac-
ters are and aren’t metacharacters. Chapter 3 discusses this in more detail.

Flavor

As I’ve hinted, differ ent tools use regular expressions for many differ ent things,
and the set of metacharacters and other features that each support can differ. Let’s
look at word boundaries again as an example. Some versions of egr ep support the
\<˙˙˙\> notation we’ve seen. However, some do not support the separate word-
start and word-end, but one catch-all !\b " metacharacter (which we haven’t seen
yet — we’ll see it in the next chapter). Still others support both, and many others
support neither.

I use the term “flavor” to describe the sum total of all these little implementation
decisions. In the language analogy, it’s the same as a dialect of an individual
speaker. Super ficially, this concept refers to which metacharacters are and aren’t

† You might also come across the decidedly unsightly “regexp.” I’m not sure how one would pro-
nounce that, but those with a lisp might find it a bit easier.

Expanding the Foundation 27

27 April 2003 17:11

28 Chapter 1: Introduction to Regular Expressions

Extending the Time Regex to Handle a 24-Hour Clock
v Answer to the question on page 26.

Ther e ar e various solutions, but we can use similar logic as before. This time,
I’ll break the task into three groups: one for the morning (hours 00 thr ough
09, with the leading zero being optional), one for the daytime (hours 10
thr ough 19), and one for the evening (hours 20 thr ough 23). This can be
render ed in a pretty straightforward way: !0?[0-9]<1[0-9]<2[0-3] ".

Actually, we can combine the first two alternatives, resulting in the shorter
![01]?[0-9]<2[0-3] ". You might need to think about it a bit to convince
yourself that they’ll really match exactly the same text, but they do. The fig-
ur e below might help, and it shows another approach as well. The shaded
gr oups repr esent numbers that can be matched by a single alternative.

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23

01 02 03 04 05 06 07 08 09

0800

00

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23

 1 2 3 4 5 6 7 8 9

0800

 0

[01]?[0-9]|2[0-3] [01]?[4-9]|[012]?[0-3]

supported, but there’s much more to it. Even if two programs both support
!\<˙˙˙\> ", they might disagree on exactly what they do and don’t consider to be a
word. This concern is important when you use the tool.

Don’t confuse “flavor” with “tool.” Just as two people can speak the same dialect,
two completely differ ent pr ograms can support exactly the same regex flavor.
Also, two programs with the same name (and built to do the same task) often
have slightly (and sometimes not-so-slightly) differ ent flavors. Among the various
pr ograms called egr ep, ther e is a wide variety of regex flavors supported.

In the late 1990s, the particularly expressive flavor offer ed by the Perl program-
ming language was widely recognized for its power, and soon other languages
wer e of fering Perl-inspir ed regular expressions (many even acknowledging the
inspirational source by labeling themselves “Perl-compatible”). The adopters
include Python, many Java regex packages, Microsoft’s .NET Framework, Tcl, and a
variety of C libraries, to name a few. Yet, all are dif ferent in important respects. On
top of this, Perl’s regular expressions themselves are evolving and growing (some-
times, now, in response to advances seen with other tools). As always, the overall
landscape continues to become more varied and confusing.

27 April 2003 17:11

Subexpression

The term “subexpr ession” simply refers to part of a larger expression, although it
often refers to some part of an expression within parentheses, or to an alternative
of !;". For example, with !ˆ(Subject;Date): ", the !Subject;Date " is usually
referr ed to as a subexpression. Within that, the alternatives !Subject " and !Date " ar e
each referr ed to as subexpressions as well. But technically, !S " is a subexpression,
as is !u ", and !b ", and !j", . . .

Something such as 1-6 isn’t considered a subexpression of !H[1-6] + ", since the
‘1-6’ is part of an unbreakable “unit,” the character class. But, !H ", ![1-6]", and ! + "

ar e all subexpressions of !H[1-6] + ".

Unlike alternation, quantifiers (star, plus, and question mark) always work with the
smallest immediately-preceding subexpression. This is why with !mis+pell ", the +

gover ns the !s ", not the !mis " or !is ". Of course, when what immediately precedes a
quantifier is a parenthesized subexpression, the entire subexpr ession (no matter
how complex) is taken as one unit.

Character

The word “character” can be a loaded term in computing. The character that a
byte repr esents is merely a matter of interpretation. A byte with such-and-such a
value has that same value in any context in which you might wish to consider it,
but which character that value repr esents depends on the encoding in which it’s
viewed. As a concrete example, two bytes with decimal values 64 and 53 repr e-
sent the characters “@” and “5” respectively, if considered in the ASCII encoding,
yet on the other hand are completely differ ent if considered in the EBCDIC encod-
ing (they are a space and some kind of a control character).

On the third hand, if those two bytes are consider ed in one of the popular encod-
ings for Japanese characters, together they repr esent the single character a. Yet,
to repr esent this same character in another of the Japanese encodings requir es two
completely differ ent bytes. Those two differ ent bytes, by the way, yield the two
characters “Àµ” in the popular Latin-1 encoding, but yield the one Korean charac-
ter k in one of the Unicode encodings.† The point is this: how bytes are to be
interpr eted is a matter of perspective (called an encoding), and to be successful,
you’ve got to make sure that your perspective agrees with the perspective taken
by the tool you’re using.

† The definitive book on multiple-byte encodings is Ken Lunde’s CJKV Information Processing, also
published by O’Reilly & Associates. The CJKV stands for Chinese, Japanese, Kor ean, and Vietnamese,
which are languages that tend to requir e multiple-byte encodings. Ken and Adobe kindly provided
many of the special fonts used in this book.

Expanding the Foundation 29

27 April 2003 17:11

30 Chapter 1: Introduction to Regular Expressions

Until recently, text-processing tools generally treated their data as a bunch of
ASCII bytes, without regard to the encoding you might be intending. Recently,
however, mor e and more systems are using some form of Unicode to process data
inter nally (Chapter 3 includes an introduction to Unicode + 105). On such sys-
tems, if the regular-expr ession subsystem has been implemented properly, the user
doesn’t normally have to pay much attention to these issues. That’s a big “if,”
which is why Chapter 3 looks at this issue in depth.

Improving on the Status Quo
When it comes down to it, regular expressions are not difficult. But, if you talk to
the average user of a program or language that supports them, you will likely find
someone that understands them “a bit,” but does not feel secure enough to really
use them for anything complex or with any tool but those they use most often.

Traditionally, regular expression documentation tends to be limited to a short and
incomplete description of one or two metacharacters, followed by a table of the
rest. Examples often use meaningless regular expressions like !a+((ab)+;b+)", and
text like ‘a xxx ce xxxxxx ci xxx d’. They also tend to completely ignore subtle
but important points, and often claim that their flavor is the same as some other
well-known tool, almost always forgetting to mention the exceptions where they
inevitably differ. The state of regex documentation needs help.

Now, I don’t mean to imply that this chapter fills the gap for all regular expres-
sions, or even for egr ep regular expressions. Rather, this chapter merely provides
the foundation upon which the rest of this book is built. It may be ambitious, but I
hope this book does fill the gaps for you. I received many gratifying responses to
the first edition, and have worked very hard to make this one even better, both in
br eadth and in depth.

Perhaps because regular-expr ession documentation has traditionally been so lack-
ing, I feel the need to make the extra effort to make things particularly clear.
Because I want to make sure you can use regular expressions to their fullest
potential, I want to make sure you really, really understand them.

This is both good and bad.

It is good because you will learn how to think regular expressions. You will learn
which differ ences and peculiarities to watch out for when faced with a new tool
with a differ ent flavor. You will know how to express yourself even with a weak,
stripped-down regular expression flavor. You will understand what makes one
expr ession mor e ef ficient than another, and will be able to balance tradeoffs
among complexity, efficiency, and match results. When faced with a particularly
complex task, you will know how to work through an expression the way the

27 April 2003 17:11

pr ogram would, constructing it as you go. In short, you will be comfortable using
regular expressions to their fullest.

The problem is that the learning curve of this method can be rather steep, with
thr ee separate issues to tackle:

• How regular expressions are used Most programs use regular expressions in
ways that are mor e complex than egr ep. Befor e we can discuss in detail how
to write a really useful expression, we need to look at the ways regular
expr essions can be used. We start in the next chapter.

• Regular expression features Selecting the proper tool to use when faced with
a problem seems to be half the battle, so I don’t want to limit myself to only
using one utility throughout this book. Differ ent pr ograms, and often even dif-
fer ent versions of the same program, provide differ ent featur es and metachar-
acters. We must survey the field before getting into the details of using them.
This is the subject of Chapter 3.

• How regular expressions really work Befor e we can learn from useful (but
often complex) examples, we need to “look under the hood” to understand
just how a regular expression search is conducted. As we’ll see, the order in
which certain metacharacters are checked can be very important. In fact, regu-
lar expression engines can be implemented in differ ent ways, so differ ent pr o-
grams sometimes do differ ent things with the same expression. We examine
this meaty subject in Chapters 4, 5, and 6.

This last point is the most important and the most difficult to address. The discus-
sion is unfortunately sometimes a bit dry, with the reader chomping at the bit to
get to the fun part — tackling real problems. However, understanding how the
regex engine really works is the key to really understanding.

You might argue that you don’t want to be taught how a car works when you sim-
ply want to know how to drive. But, learning to drive a car is a poor analogy for
lear ning about regular expressions. My goal is to teach you how to solve problems
with regular expressions, and that means constructing regular expressions. The
better analogy is not how to drive a car, but how to build one. Before you can
build a car, you have to know how it works.

Chapter 2 gives more experience with driving. Chapter 3 takes a short look at the
history of driving, and a detailed look at the bodywork of a regex flavor. Chapter 4
looks at the all-important engine of a regex flavor. Chapter 5 shows some
extended examples, Chapter 6 shows you how to tune up certain kinds of
engines, and the chapters after that examine some specific makes and models. Par-
ticularly in Chapters 4, 5, and 6, we’ll spend a lot of time under the hood, so make
sur e to have your coveralls and shop rags handy.

Expanding the Foundation 31

27 April 2003 17:11

32 Chapter 1: Introduction to Regular Expressions

Summar y
Table 1-3 summarizes the egr ep metacharacters we’ve looked at in this chapter.

Table 1-3: Egr ep Metacharacter Summary

Items to Match a Single Character
Metacharacter Matches

. dot Matches any one character
[˙˙˙] character class Matches any one character listed
[ˆ˙˙˙] negated character class Matches any one character not listed
\char escaped character When char is a metacharacter, or the escaped

combination is not otherwise special, matches
the literal char

Items Appended to Provide “Counting” : The Quantifiers

? question One allowed, but it is optional
+ star Any number allowed, but all are optional
+ plus At least one requir ed; additional are optional
{min,max} specified range † Min requir ed, max allowed

Items That Match a Position

ˆ car et Matches the position at the start of the line
$ dollar Matches the position at the end of the line
\< wor d boundary † Matches the position at the start of a word
\> wor d boundary † Matches the position at the end of a word

Other

; alter nation Matches either expression it separates
(˙˙˙) par entheses Limits scope of alternation, provides grouping

for the quantifiers, and “captures” for
backr efer ences

\1, \2, ... backr efer ence † Matches text previously matched within first,
second, etc., set of parentheses.

†not supported by all versions of egrep

In addition, be sure that you understand the following points:

• Not all egr ep pr ograms ar e the same. The metacharacters supported, as well as
their exact meanings, are often differ ent — see your local documentation
(+ 23).

• Thr ee reasons for using parentheses are constraining alternation (+ 13),
gr ouping (+ 14), and capturing (+ 21).

• Character classes are special, and have their own set of metacharacters totally
distinct from the “main” regex language (+ 10).

27 April 2003 17:11

• Alter nation and character classes are fundamentally differ ent, pr oviding unr e-
lated services that appear, in only one limited situation, to overlap (+ 13).

• A negated character class is still a “positive assertion” — even negated, a char-
acter class must match a character to be successful. Because the listing of char-
acters to match is negated, the matched character must be one of those not
listed in the class (+ 12).

• The useful -i option discounts capitalization during a match (+ 15).

• Ther e ar e thr ee types of escaped items:

1. The pairing of !\" and a metacharacter is a metasequence to match the
literal character (for example, !\+ " matches a literal asterisk).

2. The pairing of !\" and selected non-metacharacters becomes a
metasequence with an implementation-defined meaning (for example, !\<"

often means “start of word”).

3. The pairing of !\" and any other character defaults to simply matching the
character (that is, the backslash is ignored).

Remember, though, that a backslash within a character class is not special at
all with most versions of egr ep, so it provides no “escape services” in such a
situation.

• Items governed by a question mark or star don’t need to actually match any
characters to “match successfully.” They are always successful, even if they
don’t match anything (+ 17).

Personal Glimpses
The doubled-word task at the start of this chapter might seem daunting, yet regu-
lar expressions are so power ful that we could solve much of the problem with a
tool as limited as egr ep, right here in the first chapter. I’d like to fill this chapter
with flashy examples, but because I’ve concentrated on the solid foundation for
the later chapters, I fear that someone completely new to regular expressions
might read this chapter, complete with all the warnings and cautions and rules and
such, and feel “why bother?”

Recently, my brothers were teaching some friends how to play schaf fkopf, a card
game that’s been in my family for generations. It is much more exciting than it
appears at first glance, but has a rather steep learning curve. After about half an
hour, my sister-in-law Liz, normally the quintessence of patience, got frustrated
with the seemingly complex rules and said “Can’t we just play rummy?” Yet, as it
tur ned out, they ended up playing late into the night. Once they were able to get

Personal Glimpses 33

27 April 2003 17:11

34 Chapter 1: Introduction to Regular Expressions

over the initial hump of the learning curve, a first-hand taste of the excitement was
all it took to hook them. My brothers knew it would, but it took some time and
work to get to the point where Liz and the others new to the game could appreci-
ate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you
get a real taste of the excitement by using them to solve your pr oblems, it might
all feel just a bit too academic. If so, I hope you will resist the desire to “play
rummy.” Once you understand the power that regular expressions provide, the
small amount of work spent learning them will feel trivial indeed.

27 April 2003 17:11

2
Extended

Introductor y Examples

Remember the doubled-word problem from the first chapter? I said that a full solu-
tion could be written in just a few lines in a language like Perl. Such a solution
might look like:

$/ = ".\n";
while (<>) {
next if !s/\b([a-z]+)((?:\s<<[ˆ>]+>)+)(\1\b)/\e[7m$1\e[m$2\e[7m$3\e[m/ig;
s/ˆ(?:[ˆ\e],\n)+//mg; # Remove any unmarked lines.
s/ˆ/$ARGV: /mg; # Ensur e lines begin with filename.
print;

}

Yup, that’s the whole pr ogram.

Even if you’re familiar with Perl, I don’t expect you to understand it (yet!). Rather,
I wanted to show an example beyond what egr ep can allow, and to whet your
appetite for the real power of regular expressions.

Most of this program’s work revolves around its three regular expressions:

• !\b([a-z]+)((?:\s;<[ˆ>]+>)+)(\1\b) "

• !ˆ(?:[ˆ\e]+\n)+ "

• !ˆ "

Though this is a Perl example, these three regular expressions can be used verba-
tim (or with only a few changes) in many other languages, including Python, Java,
Visual Basic .NET, Tcl, and more.

Now, looking at these, that last !ˆ " is certainly recognizable, but the other expres-
sions have items unfamiliar to our egr ep-only experience. This is because Perl’s
regex flavor is not the same as egr ep ’s. Some of the notations are dif ferent, and
Perl (as well as most modern tools) tend to provide a much richer set of metachar-
acters than egr ep. We’ll see many examples throughout this chapter.

35

29 April 2003 20:21

36 Chapter 2: Extended Introductor y Examples

About the Examples
This chapter takes a few sample problems — validating user input; working with
email headers; converting plain text to HTML — and wanders through the regular
expr ession landscape with them. As I develop them, I’ll “think out loud” to offer a
few insights into the thought processes that go into crafting a regex. During our
jour ney, we’ll see some constructs and features that egr ep doesn’t have, and we’ll
take plenty of side trips to look at other important concepts as well.

Toward the end of this chapter, and in subsequent chapters, I’ll show examples in
a variety of languages including Java and Visual Basic .NET, but the examples
thr oughout most of this chapter are in Perl. Any of these languages, and most oth-
ers for that matter, allow you to employ regular expressions in much more com-
plex ways than egr ep, so using any of them for the examples would allow us to
see interesting things. I choose to start with Perl primarily because it has the most
ingrained, easily accessible regex support among the popular languages. Also, Perl
pr ovides many other concise data-handling constructs that alleviate much of the
“dirty work” of our example tasks, letting us concentrate on regular expressions.

Just to quickly demonstrate some of these powers, recall the file-check example
fr om page 2, where I needed to ensure that each file contained ‘ResetSize’
exactly as many times as ‘SetSize’. The utility I used was Perl, and the com-
mand was:

% perl -0ne ’print "$ARGV\n" if s/ResetSize//ig != s/SetSize//ig’ +

(I don’t expect that you understand this yet — I hope merely that you’ll be
impr essed with the brevity of the solution.)

I like Perl, but it’s important not to get too caught up in its trappings here.
Remember, this chapter concentrates on regular expressions. As an analogy, con-
sider the words of a computer science professor in a first-year course: “You’r e
going to learn computer-science concepts here, but we’ll use Pascal to show you.”†

Since this chapter doesn’t assume that you know Perl, I’ll be sure to intr oduce
enough to make the examples understandable. (Chapter 7, which looks at all the
nitty-gritty details of Perl, does assume some basic knowledge.) Even if you have
experience with a variety of programming languages, normal Perl may seem quite
odd at first glance because its syntax is very compact and its semantics thick. In
the interest of clarity, I won’t take advantage of much that Perl has to offer, instead
pr esenting pr ograms in a more generic, almost pseudo-code style. While not “bad,”
the examples are not the best models of The Perl Way of programming. But, we
will see some great uses of regular expressions.

† Pascal is a traditional programming language originally designed for teaching. Thanks to William F.
Maton, and his professor, for the analogy.

29 April 2003 20:21

A Shor t Introduction to Perl
Perl is a powerful scripting language first developed in the late 1980s, drawing
ideas from many other programming languages and tools. Many of its concepts of
text handling and regular expressions are derived from two specialized languages
called awk and sed, both of which are quite differ ent fr om a “traditional” language
such as C or Pascal.

Perl is available for many platforms, including DOS/Windows, MacOS, OS/2, VMS,
and Unix. It has a powerful bent toward text handling, and is a particularly com-
mon tool used for Web-r elated pr ocessing. See www.perl.com for information on
how to get a copy of Perl for your system.

This book addresses the Perl language as of Version 5.8, but the examples in this
chapter are written to work with versions as early as Version 5.005.

Let’s look at a simple example:

$celsius = 30;
$fahrenheit = ($celsius + 9 / 5) + 32; # calculate Fahrenheit
print "$celsius C is $fahrenheit F.\n"; # report both temperatures

When executed, this produces:

30 C is 86 F.

Simple variables, such as $fahrenheit and $celsius, always begin with a dollar
sign, and can hold a number or any amount of text. (In this example, only num-
bers are used.) Comments begin with # and continue for the rest of the line.

If you’re used to languages such as C, C#, Java, or VB.NET, perhaps most surpris-
ing is that in Perl, variables can appear within a double-quoted string. With the
string "$celsius C is $fahrenheit F.\n", each variable is replaced by its
value. In this case, the resulting string is then printed. (The \n repr esents a
newline.)

Perl offers control structures similar to other popular languages:

$celsius = 20;
while ($celsius <= 45)
{

$fahrenheit = ($celsius + 9 / 5) + 32; # calculate Fahrenheit
print "$celsius C is $fahrenheit F.\n";
$celsius = $celsius + 5;

}

The body of the code controlled by the while loop is executed repeatedly so long
as the condition (the $celsius <= 45 in this case) is true. Putting this into a file,
say temps, we can run it directly from the command line.

About the Examples 37

29 April 2003 20:21

38 Chapter 2: Extended Introductor y Examples

Her e’s how a run looks:

% perl -w temps
20 C is 68 F.
25 C is 77 F.
30 C is 86 F.
35 C is 95 F.
40 C is 104 F.
45 C is 113 F.

The -w option is neither necessary nor has anything directly to do with regular
expr essions. It tells Perl to check your program more car efully and issue warnings
about items it thinks to be dubious, (such as using uninitialized variables and the
like — variables do not normally need to be predeclar ed in Perl). I use it here
mer ely because it is good practice to always do so.

Well, that’s it for the general introduction to Perl. We’ll move on now to see how
Perl allows us to use regular expressions.

Matching Text with Regular Expressions
Perl uses regular expressions in many ways, the simplest being to check if a regex
matches text (or some part thereof) held in a variable. This snippet checks the
string held in variable $reply and reports whether it contains only digits:

if ($reply =˜ m/ˆ[0-9]+$/) {
print "only digits\n";

} else {
print "not only digits\n";

}

The mechanics of the first line might seem a bit strange: the regular expression is
!ˆ[0-9]+$ ", while the surrounding m/˙˙˙/ tells Perl what to do with it. The m means
to attempt a regular expression match, while the slashes delimit the regex itself.†

The preceding =˜ links m/˙˙˙/ with the string to be searched, in this case the con-
tents of the variable $reply.

Don’t confuse =˜ with = or ==. The operator == tests whether two numbers are
the same. (The operator eq, as we will soon see, is used to test whether two
strings ar e the same.) The = operator is used to assign a value to a variable, as
with $celsius = 20. Finally, =˜ links a regex search with the target string to be
searched. In the example, the search is m/ˆ[0-9]+$/ and the target is $reply.
Other languages approach this differ ently, and we’ll see examples in the next
chapter.

† In many situations, the m is optional. This example can also appear as $reply =˜ /ˆ[0-9]+$/,
which some readers with past Perl experience may find to be more natural. Personally, I feel the m is
descriptive, so I tend to use it.

29 April 2003 20:21

It might be convenient to read =˜ as “matches,” such that

if ($reply =˜ m/ˆ[0-9]+$/)

becomes:
if the text contained in the variable $reply matches the regex !ˆ[0-9]+$ ",
then ...

The whole result of $reply =˜ m/ˆ[0-9]+$/ is a true value if the !ˆ[0-9]+$ "

matches the string held in $reply, a false value otherwise. The if uses this true
or false value to decide which message to print.

Note that a test such as $reply =˜ m/[0-9]+/ (the same as before except the
wrapping caret and dollar have been removed) would be true if $reply contained
at least one digit anywher e. The surrounding !ˆ˙˙˙$ " ensur es that the entire $reply

contains only digits.

Let’s combine the last two examples. We’ll prompt the user to enter a value, accept
that value, and then verify it with a regular expression to make sure it’s a number.
If it is, we calculate and display the Fahrenheit equivalent. Otherwise, we issue a
war ning message:

print "Enter a temperature in Celsius:\n";
$celsius = <STDIN>; # this reads one line from the user
chomp($celsius); # this removes the ending newline from $celsius

if ($celsius =˜ m/ˆ[0-9]+$/) {
$fahrenheit = ($celsius + 9 / 5) + 32; # calculate Fahrenheit
print "$celsius C is $fahrenheit F\n";

} else {
print "Expecting a number, so I don’t understand \"$celsius\".\n";

}

Notice in the last print how we escaped the quotes to be printed, to distinguish
them from the quotes that delimit the string? As with literal strings in most lan-
guages, there are occasions to escape some items, and this is very similar to escap-
ing a metacharacter in a regex. The relationship between a string and a regex isn’t
quite as important with Perl, but is extremely important with languages like Java,
Python, and the like. The section “A short aside — metacharacters galore” (+ 44)
discusses this in a bit more detail. (One notable exception is VB.NET, which
requir es ‘""’ rather than ‘\"’ to get a double quote into a string literal.)

If we put this program into the file c2f, we might run it and see:

% perl -w c2f
Enter a temperature in Celsius:
22
22 C is 71.599999999999994316 F

Oops. As it turns out (at least on some systmes), Perl’s simple print is not always
so good when it comes to floating-point numbers.

Matching Text with Regular Expressions 39

29 April 2003 20:21

40 Chapter 2: Extended Introductor y Examples

I don’t want to get bogged down describing all the details of Perl in this chapter,
so I’ll just say without further comment that you can use printf (“print format-
ted”) to make this look better:

printf "%.2f C is %.2f F\n", $celsius, $fahrenheit;

The printf function is similar to the C language’s printf, or the format of Pas-
cal, Tcl, elisp, and Python. It doesn’t change the values of the variables, but merely
how they are displayed. The is are now much nicer:

Enter a temperature in Celsius:
22
22.00 C is 71.60 F

To ward a More Real-World Example
Let’s extend this example to allow negative and fractional temperature values. The
math part of the program is fine — Perl normally makes no distinction between
integers and floating-point numbers. We do, however, need to modify the regex to
let negative and floating-point values pass. We can insert a leading !-? " to allow a
leading minus sign. In fact, we may as well make that ![-+]? " to allow a leading
plus sign, too.

To allow an optional decimal part, we add !(\.[0-9],)? ". The escaped dot
matches a literal period, so !\.[0-9]+ " is used to match a period followed by any
number of optional digits. Since !\.[0-9]+ " is enclosed by !(˙˙˙)? ", the whole subex-
pr ession becomes optional. (Realize that this is very differ ent fr om !\.?[0-9]+ ",
which incorrectly allows additional digits to match even if !\." does not match.)

Putting this all together, we get

if ($celsius =˜ m/ˆ[-+]?[0-9]+(\.[0-9]+)?$/) {

as our check line. It allows numbers such as 32, -3.723, and +98.6. It is actually
not quite perfect: it doesn’t allow a number that begins with a decimal point (such
as .357). Of course, the user can just add a leading zero to allow it to match (e.g.,
0.357), so I don’t consider it a major shortcoming. This floating-point problem can
have some interesting twists, and I look at it in detail in Chapter 5 (+ 194).

Side Effects of a Successful Match
Let’s extend the example further to allow someone to enter a value in either
Fahr enheit or Celsius. We’ll have the user append a C or F to the temperature
enter ed. To let this pass our regular expression, we can simply add ![CF]" after the
expr ession to match a number, but we still need to change the rest of the program
to recognize which kind of temperature was entered, and to compute the other.

In Chapter 1, we saw how some versions of egr ep support !\1 ", !\2 ", !\3 ", etc. as
metacharacters to refer to the text matched by parenthesized subexpressions

29 April 2003 20:21

earlier within the regex (+ 21). Perl and most other modern regex-endowed lan-
guages support these as well, but also provide a way to refer to the text matched
by parenthesized subexpressions from code outside of the regular expression, after
a match has been successfully completed.

We’ll see examples of how other languages do this in the next chapter (+ 135),
but Perl provides the access via the variables $1, $2, $3, etc., which refer to the
text matched by the first, second, third, etc., parenthesized subexpression. As odd
as it might seem, these ar e variables. The variable names just happen to be num-
bers. Perl sets them every time the application of a regex is successful.

To summarize, use the metacharacter !\1 " within the regular expression to refer to
some text matched earlier during the same match attempt, and use the variable $1

in subsequent code to refer to that same text after the match has been successfully
completed.

To keep the example uncluttered and focus on what’s new, I’ll remove the frac-
tional-value part of the regex for now, but we’ll retur n to it again soon. So, to see
$1 in action, compare:

$celsius =˜ m/ˆ[-+]?[0-9]+[CF]$/
$celsius =˜ m/ˆ([-+]?[0-9]+)([CF])$/

Do the added parentheses change the meaning of the expression? Well, to answer
that, we need to know whether they provide grouping for star or other quantifiers,
or provide an enclosure for !;" . The answer is no on both counts, so what matches
remains unchanged. However, they do enclose two subexpressions that match
“inter esting” parts of the string we are checking. As Figure 2-1 illustrates, $1 will
receive the number entered, and $2 will receive the C or F enter ed. Referring to
the flowchart in Figure 2-2 on the next page, we see that this allows us to easily
decide how to proceed after the match.

pairs with

$celsius =~ m/^([-+]?[0-9]+)([CF])$/

entire regular expression

will fill $2will fill $1

first parenthesis

second parenthesis

 pairs with

Figur e 2-1: Capturing par entheses

Matching Text with Regular Expressions 41

29 April 2003 20:21

42 Chapter 2: Extended Introductor y Examples

regex
match

get
user
input

validate
input

(with regex)

note temperature
and type from

validation match

type is
Celsius?

no
match

calculate
Celsius

calculate
Fahrenheit

no

yes

display
results

display
error message

Figur e 2-2: Temperatur e-conversion pr ogram’s logic flow

Temperatur e-conversion pr ogram

print "Enter a temperature (e.g., 32F, 100C):\n";
$input = <STDIN>; # This reads one line from the user.
chomp($input); # This removes the ending newline from $input.

if ($input =˜ m/ˆ([-+]?[0-9]+)([CF])$/)
{

If we get in here, we had a match. $1 is the number, $2 is "C" or "F".
$InputNum = $1; # Save to named variables to make the ...
$type = $2; # ... rest of the program easier to read.

if ($type eq "C") { # ‘eq’ tests if two strings are equal
The input was Celsius, so calculate Fahrenheit
$celsius = $InputNum;
$fahrenheit = ($celsius + 9 / 5) + 32;

} else {
If not "C", it must be an "F", so calculate Celsius
$fahrenheit = $InputNum;
$celsius = ($fahrenheit - 32) + 5 / 9;

}
At this point we have both temperatures, so display the results:
printf "%.2f C is %.2f F\n", $celsius, $fahrenheit;

} else {
The initial regex did not match, so issue a warning.
print "Expecting a number followed by \"C\" or \"F\",\n";
print "so I don’t understand \"$input\".\n";

}

29 April 2003 20:21

If the program shown on the facing page is named convert, we can use it like this:

% perl -w convert
Enter a temperature (e.g., 32F, 100C):
39F
3.89 C is 39.00 F
% perl -w convert
Enter a temperature (e.g., 32F, 100C):
39C
39.00 C is 102.20 F
% perl -w convert
Enter a temperature (e.g., 32F, 100C):
oops
Expecting a number followed by "C" or "F",
so I don’t understand "oops".

Inter twined Regular Expressions
With advanced programming languages like Perl, regex use can become quite
intertwined with the logic of the rest of the program. For example, let’s make three
useful changes to our program: allow floating-point numbers as we did earlier,
allow for the f or c enter ed to be lowercase, and allow spaces between the num-
ber and letter. Once all these changes are done, input such as ‘98.6 f’ will be
allowed.

Earlier, we saw how we can allow floating-point numbers by adding !(\.[0-9]+)? "

to the expression:

if ($input =˜ m/ˆ([-+]?[0-9]+(\.[0-9]+)?)([CF])$/)

Notice that it is added inside the first set of parentheses. Since we use that first set
to capture the number to compute, we want to make sure that they capture the
fractional portion as well. However, the added set of parentheses, even though
ostensibly used only to group for the question mark, also has the side effect of
capturing into a variable. Since the opening parenthesis of the pair is the second
(fr om the left), it captures into $2. This is illustrated in Figure 2-3.

$input =~ m/^([-+]?[0-9]+(\.[0-9]*)?)([CF])$/

matches into $1

1st open parenthesis 2nd open parenthesis 3 rd open parenthesis

into $2 into $3

Figur e 2-3: Nesting par entheses

Matching Text with Regular Expressions 43

29 April 2003 20:21

44 Chapter 2: Extended Introductor y Examples

Figur e 2-3 illustrates how closing parentheses nest with opening ones. Adding a
set of parentheses earlier in the expression doesn’t influence the meaning of ![CF]"

dir ectly, but it does so indirectly because the parentheses surrounding it have now
become the third pair. Becoming the third pair means that we need to change the
assignment to $type to refer to $3 instead of $2 (but see the sidebar on the facing
page for an alternative approach).

Next, allowing spaces between the number and letter is easier. We know that an
unador ned space in a regex requir es exactly one space in the matched text, so ! + "

can be used to allow any number of spaces (but still not requir e any):

if ($input =˜ m/ˆ([-+]?[0-9]+(\.[0-9]+)?) +([CF])$/)

This does give a limited amount of flexibility to the user of our program, but since
we are trying to make something useful in the real world, let’s construct the regex
to also allow for other kinds of whitespace as well. Tabs, for instance, are quite
common. Writing ! 2+ ", of course, doesn’t allow for spaces, so we need to construct
a character class to match either one: ![2]+ ".

Compar e that with !(+;2+)" and see if you can recognize how they are fundamen-
tally differ ent? v After considering this, turn the page to check your thoughts.

In this book, spaces and tabs are easy to notice because of the and 2 typesetting
conventions I’ve used. Unfortunately, it is not so on-screen. If you see something
like []+, you can guess that it is probably a space and a tab, but you can’t be
sur e until you check. For convenience, Perl regular expressions provide the !\t "

metacharacter. It simply matches a tab — its only benefit over a literal tab is that it
is visually apparent, so I use it in my expressions. Thus, ![2]+ " becomes ![\t]+ ".

Some other Perl convenience metacharacters are !\n " (newline), !\f " (ASCII for m-
feed), and !\b " (backspace). Well, actually, !\b " is a backspace in some situations,
but in others, it matches a word boundary. How can it be both? The next section
tells us.

A shor t aside—metacharacter s galore

We saw \n in earlier examples, but in those cases, it was in a string, not a regular
expr ession. Like most languages, Perl strings have metacharacters of their own,
and these are completely distinct from regular expression metacharacters. It is a
common mistake for new programmers to get them confused. (VB.NET is a
notable language that has very few string metacharacters.) Some of these string
metacharacters conveniently look exactly the same as some comparable regex
metacharacters. You can use the string metacharacter \t to get a tab into your
string, while you can use the regex metacharacter !\t " to insert a tab-matching ele-
ment into your regex.

29 April 2003 20:21

Non-Captur ing Parentheses: !(?:˙˙˙) "
In Figure 2-3, we use the parentheses of the !(\.[0-9]+)? " part for their
gr ouping pr operty, so we could apply a question mark to the whole of
!\.[0-9]+ " and make it optional. Still, as a side effect, text matched within
these parentheses is captured and saved to $2, which we don’t use. Wouldn’t
it be better if there wer e a type of parentheses that we could use for group-
ing which didn’t involve the overhead (and possible confusion) of capturing
and saving text to a variable that we never intend to use?

Perl, and recently some other regex flavors, do provide a way to do this.
Rather than using !(˙˙˙)", which group and capture, you can use the special
notation !(?:˙˙˙)", which group but do not capture. With this notation, the
“opening parentheses” is the three-character sequence (?:, which certainly
looks odd. This use of ‘?’ has no relation to the “optional” !? " metacharacter.
(Peek ahead to page 90 for a note about why this odd notation was chosen.)

So, the whole expression becomes:

if ($input =˜ m/ˆ([-+]?[0-9]+(?:\.[0-9]+)?)([CF])$/)

Now, even though the parentheses surrounding ![CF] " ar e ostensibly the third
set, the text they match goes to $2 since, for counting purposes, the !(?:˙˙˙)"
set doesn’t, well, count.

The benefits of this are twofold. One is that by avoiding the unnecessary
capturing, the match process is more efficient (efficiency is something we’ll
look at in great detail in Chapter 6). Another is that, overall, using exactly the
type of parentheses needed for each situation may be less confusing later to
someone reading the code who might otherwise be left wondering about the
exact nature of each set of parentheses.

On the other hand, the !(?:˙˙˙)" notation is somewhat unsightly, and perhaps
makes the expression more dif ficult to grasp at a glance. Are the benefits
worth it? Well, personally, I tend to use exactly the kind of parentheses I
need, but in this particular case, it’s probably not worth the confusion. For
example, efficiency isn’t really an issue since the match is done just once (as
opposed to being done repeatedly in a loop).

Thr oughout this chapter, I’ll tend to use !(˙˙˙)" even when I don’t need their
capturing, just for their visual clarity.

The similarity is convenient, but I can’t stress enough how important it is to main-
tain the distinction between the differ ent types of metacharacters. It may not seem
important for such a simple example as \t, but as we’ll later see when looking at
numer ous dif ferent languages and tools, knowing which metacharacters are being
used in each situation is extremely important.

Matching Text with Regular Expressions 45

29 April 2003 20:21

46 Chapter 2: Extended Introductor y Examples

Quiz Answer
v Answer to the question on page 44.

How do ![2], " and ! ,<2, " compare?

!(+;2+)" allows either ! + " or ! 2+ " to match, which allows either some spaces
(or nothing) or some tabs (or nothing). It doesn’t, however, allow a combi-
nation of spaces and tabs.

On the other hand, ![2]+ " matches ![2]" any number of times. With a string
such as ‘2 ’ it matches three times, a tab the first time and spaces the rest.

![2]+ " is logically equivalent to !(;2)+ ", although for reasons shown in
Chapter 4, a character class is often much more efficient.

We have already seen multiple sets of metacharacters conflict. In Chapter 1, while
working with egr ep, we generally wrapped our regular expressions in single
quotes. The whole egr ep command line is written at the command-shell prompt,
and the shell recognizes several of its own metacharacters. For example, to the
shell, the space is a metacharacter that separates the command from the arguments
and the arguments from each other. With many shells, single quotes are metachar-
acters that tell the shell to not recognize other shell metacharacters in the text
between the quotes. (DOS uses double quotes.)

Using the quotes for the shell allows us to use spaces in our regular expression.
Without the quotes, the shell would interpret the spaces in its own way instead of
passing them through to egr ep to interpret in its way. Many shells also recognize
metacharacters such as $, +, ?, and so on—characters that we are likely to want to
use in a regex.

Now, all this talk about other shell metacharacters and Perl’s string metacharacters
has nothing to do with regular expressions themselves, but it has everything to do
with using regular expressions in real situations. As we move through this book,
we’ll see numerous (sometimes complex) situations where we need to take advan-
tage of multiple levels of simultaneously interacting metacharacters.

And what about this !\b " business? This is a regex thing: in Perl regular expres-
sions, !\b " nor mally matches a word boundary, but within a character class, it
matches a backspace. A word boundary would make no sense as part of a class,
so Perl is free to let it mean something else. The warnings in the first chapter
about how a character class’s “sub language” is differ ent fr om the main regex lan-
guage certainly apply to Perl (and every other regex flavor as well).

29 April 2003 20:21

Gener ic “whitespace” with \s

While discussing whitespace, we left off with ![\t]+ ". This is fine, but many regex
flavors provide a useful shorthand: !\s ". While it looks similar to something like !\t "

which simply repr esents a literal tab, the metacharacter !\s " is a shorthand for a
whole character class that matches any “whitespace character.” This includes
(among others) space, tab, newline, and carriage retur n. With our example, the
newline and carriage retur n don’t really matter one way or the other, but typing
!\s+ " is easier than ![\t]+ ". After a while, you get used to seeing it, and !\s+ "

becomes easy to read even in complex regular expressions.

Our test now looks like:

$input =˜ m/ˆ([-+]?[0-9]+(\.[0-9]+)?)\s+([CF])$/

Lastly, we want to allow a lowercase letter as well as uppercase. This is as easy as
adding the lowercase letters to the class: ![CFcf] ". However, I’d like to show
another way as well:

$input =˜ m/ˆ([-+]?[0-9]+(\.[0-9]+)?)\s+([CF])$/i

The added i is called a modifier, and placing it after the m/˙˙˙/ instructs Perl to do
the match in a case-insensitive manner. It’s not actually part of the regex, but part
of the m/˙˙˙/ syntactic packaging that tells Perl what you want to do (apply a
regex), and which regex to do it with (the one between the slashes). We’ve seen
this type of thing before, with egr ep ’s -i option (+ 15).

It’s a bit too cumbersome to say “the i modifier” all the time, so normally “/i” is
used even though you don’t add an extra / when actually using it. This /i nota-
tion is one way to specify modifiers in Perl — in the next chapter, we’ll see other
ways to do it in Perl, and also how other languages allow for the same functional-
ity. We’ll also see other modifiers as we move along, including /g (“global match”)
and /x (“fr ee-form expr essions”) later in this chapter.

Well, we’ve made a lot of changes. Let’s try the new program:

% perl -w convert
Enter a temperature (e.g., 32F, 100C):
32 f
0.00 C is 32.00 F
% perl -w convert
Enter a temperature (e.g., 32F, 100C):
50 c
10.00 C is 50.00 F

Oops! Did you notice that in the second try we thought we were entering 50° Cel-
sius, yet it was interpreted as 50° Fahrenheit? Looking at the program’s logic, do
you see why?

Matching Text with Regular Expressions 47

29 April 2003 20:21

48 Chapter 2: Extended Introductor y Examples

Let’s look at that part of the program again:

if ($input =˜ m/ˆ([-+]?[0-9]+(\.[0-9]+)?)\s+([CF])$/i)
{

+
+
+

$type = $3; # save to a named variable to make rest of program more readable

if ($type eq "C") { # ‘eq’ tests if two strings are equal

+
+
+

} else {
+
+
+

Although we modified the regex to allow a lowercase f, we neglected to update
the rest of the program appropriately. As it is now, if $type isn’t exactly ‘C’, we
assume the user entered Fahrenheit. Since we now also allow ‘c’ to mean Celsius,
we need to update the $type test:

if ($type eq "C" or $type eq "c") {

Actually, since this is a book on regular expressions, perhaps I should use:

if ($type =˜ m/c/i) {

In either case, it now works as we want. The final program is shown below. These
examples show how the use of regular expressions can become intertwined with
the rest of the program.

Temperatur e-conversion pr ogram – final listing

print "Enter a temperature (e.g., 32F, 100C):\n";
$input = <STDIN>; # This reads one line from the user.
chomp($input); # This removes the ending newline from $input.

if ($input =˜ m/ˆ([-+]?[0-9]+(\.[0-9]+)?)\s+([CF])$/i)
{

If we get in here, we had a match. $1 is the number, $3 is "C" or "F".
$InputNum = $1; # Save to named variables to make the ...
$type = $3; # ... rest of the program easier to read.

if ($type =˜ m/c/i) { # Is it "c" or "C"?
The input was Celsius, so calculate Fahrenheit
$celsius = $InputNum;
$fahrenheit = ($celsius + 9 / 5) + 32;

} else {
If not "C", it must be an "F", so calculate Celsius
$fahrenheit = $InputNum;
$celsius = ($fahrenheit - 32) + 5 / 9;

}
At this point we have both temperatures, so display the results:
printf "%.2f C is %.2f F\n", $celsius, $fahrenheit;

} else {
The initial regex did not match, so issue a warning.
print "Expecting a number followed by \"C\" or \"F\",\n";
print "so I don’t understand \"$input\".\n";

}

29 April 2003 20:21

Inter mission
Although we have spent much of this chapter coming up to speed with Perl,
we’ve encountered a lot of new information about regexes:

1. Most tools have their own particular flavor of regular expressions. Perl’s
appear to be of the same general type as egr ep ’s, but has a richer set of meta-
characters. Many other languages, such as Java, Python, the .NET languages,
and Tcl, have flavors similar to Perl’s.

2. Perl can check a string in a variable against a regex using the construct
$variable =˜ m/rege x/. The m indicates that a match is requested, while the
slashes delimit (and are not part of) the regular expression. The whole test,
as a unit, is either true or false.

3. The concept of metacharacters — characters with special interpretations — is
not unique to regular expressions. As discussed earlier about shells and dou-
ble-quoted strings, multiple contexts often vie for interpretation. Knowing the
various contexts (shell, regex, and string, among others), their metacharacters,
and how they can interact becomes more important as you learn and use
Perl, Java, Tcl, GNU Emacs, awk, Python, or other advanced languages. (And
of course, within regular expressions, character classes have their own mini
language with a distinct set of metacharacters.)

4. Among the more useful shorthands that Perl and many other flavors of regex
pr ovide (some of which we haven’t seen yet) are:

\t a tab character
\n a newline character
\r a carriage-r eturn character
\s matches any “whitespace” character (space, tab, newline, formfeed, and such)
\S anything not !\s "
\w ![a-zA-Z0-9R]" (useful as in !\w+ ", ostensibly to match a word)
\W anything not !\w ", i.e., ![ˆa-zA-Z0-9R]"
\d ![0-9]", i.e., a digit
\D anything not !\d ", i.e., ![ˆ0-9] "

5. The /i modifier makes the test case-insensitive. Although written in prose as
“/i”, only “i” is actually appended after the match operator’s closing
delimiter.

6. The somewhat unsightly !(?:˙˙˙)" non-capturing parentheses can be used for
gr ouping without capturing.

7. After a successful match, Perl provides the variables $1, $2, $3, etc., which
hold the text matched by their respective !(˙˙˙)" par enthesized subexpr essions
in the regex. In concert with these variables, you can use a regex to pluck
infor mation fr om a string. (Other languages provide the same type of infor-
mation in other ways; we’ll see many examples in the next chapter.)

Matching Text with Regular Expressions 49

29 April 2003 20:21

50 Chapter 2: Extended Introductor y Examples

Subexpr essions ar e number ed by counting open parentheses from the left,
starting with one. Subexpressions can be nested, as in !(Washington(DC)?)".
Raw !(˙˙˙)" par entheses can be intended for grouping only, but as a byproduct,
they still capture into one of the special variables.

Modifying Text with Regular Expressions
So far, the examples have centered on finding, and at times, “plucking out” infor-
mation from a string. Now we look at substitution (also called sear ch and
replace), a regex feature that Perl and many tools offer.

As we have seen, $var =˜ m/rege x/ attempts to match the given regular expres-
sion to the text in the given variable, and retur ns true or false appropriately. The
similar construct $var =˜ s/rege x/replacement/ takes it a step further: if the regex
is able to match somewhere in the string held by $var, the text actually matched
is replaced by replacement. The regex is the same as with m/˙˙˙/, but the replace-
ment (between the middle and final slash) is treated as a double-quoted string.
This means that you can include refer ences to variables, including $1, $2, and so
on to refer to parts of what was just matched.

Thus, with $var =˜ s/˙˙˙/˙˙˙/ the value of the variable is actually changed. (If
ther e is no match to begin with, no replacement is made and the variable is left
unchanged.) For example, if $var contained Jeff Friedl and we ran

$var =˜ s/Jeff/Jeffrey/;

$var would end up with Jeffrey Friedl. And if we did that again, it would end
up with Jeffreyrey Friedl. To avoid that, perhaps we should use a word-
boundary metacharacter. As mentioned in the first chapter, some versions of egr ep
support !\< " and !\> " for their start-of-wor d and end-of-wor d metacharacters. Perl,
however, provides the catch-all !\b ", which matches either:

$var =˜ s/\bJeff\b/Jeffrey/;

Her e’s a slightly tricky quiz: like m/˙˙˙/, the s/˙˙˙/˙˙˙/ operation can use modifiers,
such as the /i fr om page 47. (The modifier goes after the replacement.) Practically
speaking, what does

$var =˜ s/\bJeff\b/Jeff/i;

accomplish? v Flip the page to check your answer.

Example: For m Letter
Let’s look at a rather humorous example that shows the use of a variable in the
replacement string. I can imagine a form-letter system that might use a letter tem-
plate with markers for the parts that must be customized for each letter.

29 April 2003 20:21

Her e’s an example:

Dear =FIRST=,
You have been chosen to win a brand new =TRINKET=! Free!
Could you use another =TRINKET= in the =FAMILY= household?
Yes =SUCKER=, I bet you could! Just respond by.....

To process this for a particular recipient, you might have the program load:

$given = "Tom";
$family = "Cruise";
$wunderprize = "100% genuine faux diamond";

Once prepar ed, you could then “fill out the form” with:

$letter =˜ s/=FIRST=/$given/g;
$letter =˜ s/=FAMILY=/$family/g;
$letter =˜ s/=SUCKER=/$given $family/g;
$letter =˜ s/=TRINKET=/fabulous $wunderprize/g;

Each substitution’s regex looks for a simple marker, and when found, replaces it
with the text wanted in the final message. The replacement part is actually a Perl
string in its own right, so it can refer ence variables, as each of these do. For exam-
ple, the marked portion of s/=TRINKET=/fabulous $wunderprize/g is inter-
pr eted just like the string "fabulous $wunderprize". If you just had the one
letter to generate, you could forego using variables in the replacement string alto-
gether, and just put the desired text directly. But, using this method makes
automation possible, such as when reading names from a list.

We haven’t seen the /g “global replacement” modifier yet. It instructs the s/˙˙˙/˙˙˙/

to continue trying to find more matches, and make more replacements, after (and
fr om wher e) the first substitution completes. This is needed if each string we
check could contain multiple instances of the text to be replaced, and we want
each substitution to replace them all, not just one.

The results are predictable, but rather humorous:

Dear Tom,
You have been chosen to win a brand new fabulous 100% genuine faux diamond! Free!
Could you use another fabulous 100% genuine faux diamond in the Cruise household?
Yes Tom Cruise, I bet you could! Just respond by

Example: Prettifying a Stock Price
As another example, consider a problem I faced while working on some stock-
pricing software with Perl. I was getting prices that looked like “9.0500000037272”.
The price was obviously 9.05, but because of how a computer repr esents the num-
ber internally, Perl sometimes prints them this way unless special formatting is
used. Normally, I would just use printf to display the price with exactly two dec-
imal digits as I did in the temperature-conversion example, but that was not

Modifying Text with Regular Expressions 51

29 April 2003 20:21

52 Chapter 2: Extended Introductor y Examples

Quiz Answer
v Answer to the question on page 50.

Just what does $var =˜ s/\bJeff\b/Jeff/i do?

It might be tricky because of the way I posed it. Had I used !\bJEFF\b " or
!\bjeff\b " or perhaps !\bjEfF\b " as the regex, the intent might have been
mor e obvious. Because of /i, the word “Jeff” will be found without regard to
capitalization. It will then be replaced by ‘Jeff’, which has exactly the capi-
talization you see. (/i has no effect on the replacement text, although there
ar e other modifiers examined in Chapter 7 that do.)

The end result is that “jeff”, in any capitalization, is replaced by exactly
‘Jeff’.

appr opriate in this case. At the time, stock prices were still given as fractions, and
a price that ended with, say, 1/8, should be shown with three decimals (“.125”),
not two.

I boiled down my needs to “always take the first two digits after the decimal point,
and take the third digit only if it is not zero. Then, remove any other digits.” The
result is that 12.3750000000392 or the already correct 12.375 is retur ned as
“12.375”, yet 37.500 is reduced to “37.50”. Just what I wanted.

So, how would we implement this? The variable $price contains the string in
question, so let’s use:

$price =˜ s/(\.\d\d[1-9]?)\d+/$1/

(Reminder: !\d " was introduced on page 49, and matches a digit.)

The initial !\. " causes the match to start at the decimal point. The subsequent !\d\d "

then matches the first two digits that follow. The ![1-9]? " matches an additional
non-zer o digit if that’s what follows the first two. Anything matched so far is what
we want to keep, so we wrap it in parentheses to capture to $1. We can then use
$1 in the replacement string. If this is the only thing that matches, we replace
exactly what was matched with itself — not very useful. However, we go on to
match other items outside the $1 par entheses. They don’t find their way to the
replacement string, so the effect is that they’re removed. In this case, the “to be
removed” text is any extra digits, the !\d+ " at the end of the regex.

Keep this example in mind, as we’ll come back to it in Chapter 4 when looking at
the important mechanics of just what goes on behind the scenes during a match.
Some very interesting lessons can be learned by playing with this example.

29 April 2003 20:21

Automated Editing
I encounter ed another simple yet real-world example while working on this chap-
ter. I was logged in to a machine across the Pacific, but the network was particu-
larly slow. Just getting a response from hitting RETURN took more than a minute,
but I needed to make a few small changes to a file to get an important program
going. In fact, all I wanted to do was change every occurrence of sysread to
read. Ther e wer e only a few such changes to make, but with the slow response,
the idea of starting up a full-screen editor was impractical.

Her e’s all I did to make all the changes I needed:

% perl -p -i -e ’s/sysread/read/g’ file

This runs the Perl program s/sysread/read/g. (Yes, that’s the whole program —
the -e flag indicates that the entire program follows right there on the command
line.) The -p flag results in the substitution being done for every line of the named
file, and the -i flag causes any changes to be written back to the file when done.

Note that there is no explicit target string for the substitute command to work on
(that is, no $var =˜ ˙˙˙) because conveniently, the -p flag implicitly applies the
pr ogram, in turn, to each line of the file. Also, because I used the /g modifier, I’m
sur e to replace multiple occurrences that might be in a line.

Although I applied this to only one file, I could have easily listed multiple files on
the command line and Perl would have applied my substitution to each line of
each file. This way, I can do mass editing across a huge set of files, all with one
simple command. The particular mechanics with which this was done are unique
to Perl, but the moral of the story is that regular expressions as part of a scripting
language can be very powerful, even in small doses.

A Small Mail Utility
Let’s work on another example tool. Let’s say we have an email message in a file,
and we want to prepar e a file for a reply. During the preparation, we want to
quote the original message so we can easily insert our own reply to each part. We
also want to remove unwanted lines from the header of the original message, as
well as prepar e the header of our own reply.

The sidebar on the next page shows an example. The header has interesting fields
— date, subject, and so on — but also much that we are not interested in that we’ll
want to remove. If the script we’re about to write is called mkr eply, and the origi-
nal message is in the file king.in, we would make the reply template with:

% perl -w mkreply king.in > king.out

(In case you’ve forgotten, the -w option enables extra Perl warnings + 38.)

Modifying Text with Regular Expressions 53

29 April 2003 20:21

54 Chapter 2: Extended Introductor y Examples

A Sample Email Message
From elvis Fri Feb 29 11:15 2002
Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: jfriedl@regex.info (Jeffrey Friedl)
From: elvis@tabloid.org (The King)
Date: Fri, Feb 29 2002 11:15
Message-Id: <2002022939939.KA8CMY@tabloid.org>
Subject: Be seein’ ya around
Reply-To: elvis@hh.tabloid.org
X-Mailer: Madam Zelda’s Psychic Orb [version 3.7 PL92]

Sorry I haven’t been around lately. A few years back I checked
into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
The Duke says "hi".

Elvis

We want the resulting file, king.out, to contain something like:

To: elvis@hh.tabloid.org (The King)
From: jfriedl@regex.info (Jeffrey Friedl)
Subject: Re: Be seein’ ya around

On Fri, Feb 29 2002 11:15 The King wrote:
;> Sorry I haven’t been around lately. A few years back I checked
;> into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
;> The Duke says "hi".
;> Elvis

Let’s analyze this. To print out our new header, we need to know the destination
addr ess (in this case elvis@hh.tabloid.org, derived from the Reply-To field of
the original), the recipient’s real name (The King), our own address and name, as
well as the subject. Additionally, to print out the introductory line for the message
body, we need to know the message date.

The work can be split into three phases:

1. Extract information from the message header
2. Print out the reply header
3. Print out the original message, indented by ‘;> ’

I’m getting a bit ahead of myself — we can’t worry about processing the data until
we determine how to read the data into the program. Fortunately, Perl makes this
a breeze with the magic “<>” operator. This funny-looking construct gives you the
next line of input when you assign from it to a normal $variable, as with
“$variable = <>”. The input comes from files listed after the Perl script on the
command line (from king.in in the previous example).

Don’t confuse the two-character operator <> with the shell’s “> filename” redir ec-
tion or Perl’s greater-than/less-than operators. It is just Perl’s funny way to express
a kind of a getline() function.

29 April 2003 20:21

Once all the input has been read, <> conveniently retur ns an undefined value
(which is interpreted as a Boolean false), so an entire file can be processed with:

while ($line = <>) {
... work with $line here ...

}

We’ll use something similar for our email processing, but the nature of email
means we need to process the header specially. The header includes everything
befor e the first blank line; the body of the message follows. To read only the
header, we might use:

Pr ocess the header
while ($line = <>) {

if ($line =˜ m/ˆ\s,$/) {
last; # stop processing within this while loop, continue below

}
... process header line here ...

}
... processing for the rest of the message follows ...

+
+
+

We check for the header-ending blank line with the expression !ˆ\s+$ ". It checks
to see whether the target string has a beginning (as all do), followed by any num-
ber of whitespace characters (although we aren’t really expecting any except the
newline character that ends each line), followed by the end of the string.† The
keyword last br eaks out of the enclosing while loop, stopping the header-line
pr ocessing.

So, inside the loop, after the blank-line check, we can do whatever work we like
with each header line. In this case, we need to extract information, such as the
subject and date of the message.

To pull out the subject, we can employ a popular technique we’ll use often:

if ($line =˜ m/ˆSubject: (.,)/i) {
$subject = $1;

}

This attempts to match a string beginning with ‘Subject: ’, having any capitaliza-
tion. Once that much of the regex matches, the subsequent ! .+ " matches whatever
else is on the rest of the line. Since the ! .+ " is within parentheses, we can later use
$1 to access the text of the subject. In our case, we just save it to the variable
$subject. Of course, if the regex doesn’t match the string (as it won’t with most),
the result for the if is false and $subject isn’t set for that line.

† I use the word “string” instead of “line” because, although it’s not really an issue with this particular
example, regular expressions can be applied to a string that contains a multiline chunk of text. The
car et and dollar anchors (normally) match only at the start and end of the string as a whole (we’ll
see a counter example later in this chapter). In any case, the distinction is not vital here because, due
to the nature of our algorithm, we know that $line never has more than one logical line.

Modifying Text with Regular Expressions 55

29 April 2003 20:21

56 Chapter 2: Extended Introductor y Examples

A War ning About !.+ "
The expression ! .+ " is often used to mean “a bunch of anything,” since dot
can match anything (with some tools, anything except newlines) and star
means that any amount is allowed, but none requir ed. This can be quite
useful.

However, some hidden “gotchas” can bite the user who doesn’t fully under-
stand the implications of how it works when used as part of a larger expres-
sion. We’ve already seen one example (+ 26), and will see many more in
Chapter 4 when this topic is discussed in depth (+ 164).

Similarly, we can look for the Date and Reply-To fields:

if ($line =˜ m/ˆDate: (.,)/i) {
$date = $1;

}
if ($line =˜ m/ˆReply-To: (.,)/i) {

$replyRaddress = $1;
}

The From: line involves a bit more work. First, we want the one that begins with
‘From:’, not the more cryptic first line that begins with ‘From ’. We want:

From: elvis@tabloid.org (The King)

It has the originating address, as well as the name of the sender in parentheses;
our goal is to extract the name.

To match up through the address, we can use !ˆFrom: (\S+) ". As you might guess,
!\S " matches anything that’s not whitespace (+ 49), so !\S+ " matches up until the
first whitespace (or until the end of the target text). In this case, that’s the originat-
ing address. Once that’s matched, we want to match whatever is in parentheses.
Of course, we also need to match the parentheses themselves. This is done using
!\(" and !\) ", escaping the parentheses to remove their special metacharacter mean-
ing. Inside the parentheses, we want to match anything — anything except another
par enthesis! That’s accomplished with ![ˆ()]+ ". Remember, the character-class
metacharacters are dif ferent from the “normal” regex metacharacters; inside a char-
acter class, parentheses are not special and do not need to be escaped.

So, putting this all together we get:

!ˆFrom: (\S+) \(([ˆ()]+)\) ".

At first it might be a tad confusing with all those parentheses, so Figure 2-4 on the
facing page shows it more clearly.

29 April 2003 20:21

^From: (\S+) \(([^()]*)\)

“non-parentheses” character class

capture to $1 capture to $2

literal parentheses

Figur e 2-4: Nested par entheses; $1 and $2

When the regex from Figure 2-4 matches, we can access the sender’s name as $2,
and also have $1 as a possible retur n addr ess:

if ($line =˜ m/ˆFrom: (\S+) \(([ˆ()],)\)/i) {
$replyRaddress = $1;
$fromRname = $2;

}

Since not all email messages come with a Reply-To header line, we use $1 as a
pr ovisional retur n addr ess. If there tur ns out to be a Reply-To field later in the
header, we’ll overwrite $replyRaddress at that point. Putting this all together, we
end up with:

while ($line = <>)
{

if ($line =˜ m/ˆ\s+$/) { # If we have an empty line...
last; # this immediately ends the ‘while’ loop.

}

if ($line =˜ m/ˆSubject: (.,)/i) {
$subject = $1;

}

if ($line =˜ m/ˆDate: (.,)/i) {
$date = $1;

}

if ($line =˜ m/ˆReply-To: (\S+)/i) {
$replyRaddress = $1;

}

if ($line =˜ m/ˆFrom: (\S+) \(([ˆ()],)\)/i) {
$replyRaddress = $1;
$fromRname = $2;

}
}

Each line of the header is checked against all the regular expressions, and if it
matches one, some appropriate variable is set. Many header lines won’t be
matched by any of the regular expressions, and so end up being ignored.

Modifying Text with Regular Expressions 57

29 April 2003 20:21

58 Chapter 2: Extended Introductor y Examples

Once the while loop is done, we are ready to print out the reply header:†

print "To: $replyRaddress ($fromRname)\n";
print "From: Jeffrey Friedl <jfriedl\@regex.info>\n";
print "Subject: Re: $subject\n";
print "\n" ; # blank line to separate the header from message body.

Notice how we add the Re: to the subject to informally indicate that it is a reply.
Finally, after the header, we can introduce the body of the reply with:

print "On $date $fromRname wrote:\n";

Now, for the rest of the input (the body of the message), we want to print each
line with ‘;> ’ prepended:

while ($line = <>) {
print ";> $line";

}

Her e, we don’t need to provide a newline because we know that $line contains
one from the input.

It is interesting to see that we can rewrite the code to prepend the quoting marker
using a regex construct:

$line =˜ s/ˆ/;> /;
print $line;

The substitute searches for !ˆ ", which of course immediately matches at the begin-
ning of the string. It doesn’t actually match any characters, though, so the substi-
tute “replaces” the “nothingness” at the beginning of the string with ‘;> ’. In effect,
it inserts ‘;> ’ at the beginning of the string. It’s a novel use of a regular expres-
sion that is gross overkill in this particular case, but we’ll see similar (but much
mor e useful) examples later in this chapter.

Real-world problems, real-world solutions

It’s hard to present a real-world example without pointing out its real-world short-
comings. First, as I have commented, the goal of these examples is to show regu-
lar expressions in action, and the use of Perl is simply a vehicle to do so. The Perl
code I’ve used here is not necessarily the most efficient or even the best approach,
but, hopefully, it clearly shows the regular expressions at work.

Also, real-world email messages are far more complex than indicated by the sim-
ple problem addressed here. A From: line can appear in various differ ent for mats,
only one of which our program can handle. If it doesn’t match our pattern exactly,
the $fromRname variable never gets set, and so remains undefined (which is a
kind of “no value” value) when we attempt to use it. The ideal fix would be to
update the regex to handle all the differ ent addr ess/name for mats, but as a first

† In Perl regular expressions and double-quoted strings, most ‘@’ must be escaped (+ 77).

29 April 2003 20:21

step, after checking the original message (and before printing the reply template),
we can put:

if (not defined($replyRaddress)
or not defined($fromRname)
or not defined($subject)
or not defined($date))

{
die "couldn’t glean the required information!";

}

Perl’s defined function indicates whether the variable has a value, while the die

function issues an error message and exits the program.

Another consideration is that our program assumes that the From: line appears
befor e any Reply-To: line. If the From: line comes later, it overwrites the
$replyRaddress we took from the Reply-To: line.

The “real” real world

Email is produced by many differ ent types of programs, each following their own
idea of what they think the standard is, so email can be tricky to handle. As I dis-
cover ed once while attempting to write some code in Pascal, it can be extr emely
dif ficult without regular expressions. So much so, in fact, that I found it easier to
write a Perl-like regex package in Pascal than attempt to do everything in raw Pas-
cal! I had taken the power and flexibility of regular expressions for granted until I
enter ed a world without them. I certainly didn’t want to stay in that world long.

Adding Commas to a Number with Lookaround
Pr esenting large numbers with commas often makes reports more readable. Some-
thing like

print "The US population is $pop\n";

might print out “The US population is 281421906,” but it would look more natural
to most English speakers to use “281,421,906” instead. How might we use a regu-
lar expression to help?

Well, when we insert commas mentally, we count sets of digits by threes from the
right, and insert commas at each point where ther e ar e still digits to the left. It’d be
nice if we could apply this natural process directly with a regular expression, but
regular expressions generally work left-to-right. However, if we distill the idea of
wher e commas should be inserted as “locations having digits on the right in exact
sets of three, and at least some digits on the left,” we can solve this problem easily
using a set of relatively new regex features collectively called lookar ound.

Lookar ound constructs are similar to word-boundary metacharacters like !\b " or the
anchors !ˆ " and !$ " in that they don’t match text, but rather match positions within

Modifying Text with Regular Expressions 59

29 April 2003 20:21

60 Chapter 2: Extended Introductor y Examples

the text. But, lookaround is a much more general construct than the special-case
word boundary and anchors.

One type of lookaround, called lookahead, peeks forward in the text (toward the
right) to see if its subexpression can match, and is successful as a regex compo-
nent if it can. Positive lookahead is specified with the special sequence !(?=˙˙˙)",
such as with !(?=\d)", which is successful at positions where a digit comes next.
Another type of lookaround is lookbehind, which looks back (toward the left). It’s
given with the special sequence !(?<=˙˙˙)", such as !(?<=\d) ", which is successful at
positions with a digit to the left (i.e., at positions after a digit).

Lookaround doesn’t “consume” text

An important thing to understand about lookahead and other lookaround con-
structs is that although they go through the motions to see if their subexpression is
able to match, they don’t actually “consume” any text. That may be a bit confus-
ing, so let me give an example. The regex !Jeffrey " matches

˙˙˙ by Jeffrey Friedl.

but the same regex within lookahead, !(?=Jeffrey) ", matches only the marked
location in:

˙˙˙ by Jeffrey Friedl.

Lookahead uses its subexpression to check the text, but only to find a location in
the text at which it can be matched, not the actual text it matches. But, combining
it with something that does match text, such as !Jeff ", allows us to be more spe-
cific than !Jeff " alone. The combined expression, !(?=Jeffrey)Jeff ", illustrated in
the figure on the facing page, effectively matches “Jeff” only if it is part of “Jeffr ey.”
It does match:

˙˙˙ by Jeffrey Friedl.

just like !Jeff " alone would, but it doesn’t match on this line:

˙˙˙ by Thomas Jefferson

By itself, !Jeff " would easily match this line as well, but since there’s no position
at which !(?=Jeffrey) " can match, they fail as a pair. Don’t worry too much if the
benefit of this doesn’t seem obvious at this point. Concentrate now on the
mechanics of what lookahead means — we’ll soon see realistic examples that illus-
trate their benefit more clearly.

It might be insightful to realize that !(?=Jeffrey)Jeff " is effectively the same as
!Jeff(?=rey) ". Both match “Jeff” only if it is part of “Jeffr ey.”

It’s also interesting to realize that the order in which they’re combined is very
important. !Jeff(?=Jeffrey) " doesn’t match any of these examples, but rather
matches “Jeff” only if followed immediately by “Jeffr ey.”

29 April 2003 20:21

"by Jeffrey Friedl"

(?=Jeffrey)Jeff

Actual match

Regex

Result of lookahead

Matched while checking
lookahead

Figur e 2-5: How !(?=Jeffrey)Jeff " is applied

Another important thing to realize about lookaround constructs concerns their
somewhat ungainly notation. Like the non-capturing parentheses “(?:˙˙˙)” intr o-
duced on page 45, these constructs use special sequences of characters as their
“open parenthesis.” Ther e ar e a number of such special “open parenthesis”
sequences, but they all begin with the two-character sequence “(?”. The character
following the question mark tells what special function they perfor m. We’ve
alr eady seen the group-but-don’t-captur e “(?:˙˙˙)”, lookahead “(?=˙˙˙)”, and look-
behind “(?<=˙˙˙)” constructs, and we will see more as we go along.

A few more lookahead examples

We’ll get to adding commas to numbers soon, but first let’s see a few more exam-
ples of lookaround. We’ll start by making occurrences of “Jeffs” possessive by
replacing them with “Jeff ’s”. This is easy to solve without any kind of lookaround,
with s/Jeffs/Jeff’s/g. (Remember, the /g is for “global replacement” + 51.)
Better yet, we can add word-boundary anchors: s/\b Jeffs\b/Jeff’s/g.

We might even use something fancy like s/\b(Jeff)(s)\b/$1’$2/g, but this
seems gratuitously complex for such a simple task, so for the moment we’ll stick
with s/\b Jeffs\b/Jeff’s/g. Now, compare this with:

s/\bJeff(?=s\b)/Jeff’/g

The only change to the regular expression is that the trailing !s\b " is now within
lookahead. Figure 2-6 on the next page illustrates how this regex matches. Corre-
sponding to the change in the regex, the ‘s’ has been removed from the replace-
ment string.

After !Jeff " matches, the lookahead is attempted. It is successful only if !s\b " can
match at that point (i.e., if ‘s’ and a word boundary is what follows ‘Jeff’). But,
because the !s\b " is part of a lookahead subexpression, the ‘s’ it matches isn’t actu-
ally considered part of the final match. Remember, while !Jeff " selects text, the
lookahead part merely “selects” a position. The only benefit, then, to having the

Modifying Text with Regular Expressions 61

29 April 2003 20:21

62 Chapter 2: Extended Introductor y Examples

"see Jeffs book"

\b Jeff (?=s\b)

Actual match

Regex

Result of lookahead

Matched while checking lookahead

Figur e 2-6: How !\b Jeff(?=s\b) " is applied

lookahead in this situation is that it can cause the whole regex to fail in some
cases where it otherwise wouldn’t. Or, another way to look at it, it allows us to
check the entire !Jeffs " while pretending to match only !Jeff ".

Why would we want to pretend to match less than we really did? In many cases,
it’s because we want to recheck that same text by some later part of the regex, or
by some later application of the regex. We see this in action in a few pages when
we finally get to the number commafication example. The current example has a
dif ferent reason: we want to check the whole of !Jeffs " because that’s the situa-
tion where we want to add an apostrophe, but if we actually match only ‘Jeff’,
that allows the replacement string to be smaller. Since the ‘s’ is no longer part of
the match, it no longer needs to be part of what is replaced. That’s why it’s been
removed from the replacement string.

So, while both the regular expressions and the replacement string of each example
ar e dif ferent, in the end their results are the same. So far, these regex acrobatics
may seem a bit academic, but I’m working toward a goal. Let’s take the next step.

When moving from the first example to the second, the trailing !s " was moved from
the “main” regex to lookahead. What if we did something similar with the leading
!Jeff ", putting it into lookbehind ? That would be !(?<=\b Jeff)(?=s\b) ", which
reads as “find a spot where we can look behind to find ‘Jeff’, and also look
ahead to find ‘s’.” It exactly describes where we want to insert the apostrophe. So,
using this in our substitution gives:

s/(?<=\b Jeff)(?=s\b)/’/g

Well, this is getting interesting. The regex doesn’t actually match any text, but
rather matches at a position wher e we wish to insert an apostrophe. At such loca-
tions, we then “replace” the nothingness we just matched with an apostrophe. Fig-
ur e 2-7 illustrates this. We saw this exact type of thing just a few pages ago with
the s/ˆ/;> / used to prepend ‘;> ’ to the line.

29 April 2003 20:21

"see Jeffs book"

(?<=\b Jeff)(?=s\b)

Actual match point

Regex

Result of lookaheadResult of lookbehind

Matched while checking lookahead

Figur e 2-7: How !(?<=\b Jeff)(?=s\b) " is applied

Would the meaning of the expression change if the order of the two lookaround
constructs was switched? That is, what does s/(?=s\b)(?<=\b Jeff)/’/g do?

v Turn the page to check your answer.

“Jeffs” summary Table 2-1 summarizes the various approaches we’ve seen to
replacing Jeffs with Jeff’s.

Table 2-1: Appr oaches to the “Jeffs” Problem

Solution Comments

s/\b Jeffs\b/Jeff’s/g The simplest, most straightforward, and efficient solution; the

one I’d use if I weren’t trying to show other interesting ways to

appr oach the same problem. Without lookaround, the regex

“consumes” the entire ‘Jeffs’.

s/\b(Jeff)(s)\b/$1’$2/g Complex without benefit. Still consumes entire ‘Jeffs’.

s/\bJeff(?=s\b)/Jeff’/g Doesn’t actually consume the ‘s’, but this not of much practical

value here except to illustrate lookahead.

s/(?<=\b Jeff)(?=s\b)/’/g This regex doesn’t actually “consume” any text. It uses both

lookahead and lookbehind to match positions of interest, at

which a comma is inserted. Very useful to illustrate lookaround.

s/(?=s\b)(?<=\b Jeff)/’/g This is exactly the same as the one above, but the two

lookar ound tests are reversed. Because the tests don’t consume

text, the order in which they’re applied makes no differ ence to

whether there’s a match.

Befor e moving back to the adding-commas-to-numbers example, let me ask one
question about these expressions. If I wanted to find “Jeffs” in a case-insensitive
manner, but preserve the original case after the conversion, which of the expres-
sions could I add /i to and have it work properly? I’ll give you a hint: it won’t

Modifying Text with Regular Expressions 63

29 April 2003 20:21

64 Chapter 2: Extended Introductor y Examples

Quiz Answer
v Answer to the question on page 63.

What does s/(?=s\b)(?<=\b Jeff)/’/g do?

In this case, it doesn’t matter which order !(?=s\b)" and !(?<=\b Jeff) " ar e
arranged. Whether “checking on the right, then the left” or the other way
ar ound, the key is that both checks must succeed at the same position for
the combination of the two checks to succeed. For example, in the string
‘Thomas Jefferson’, both !(?=s\b) " and !(?<=\b Jeff) " can match (at the
two locations marked), but since there is no one position where both can be
successful, the combination of the two cannot match.

It’s fine for now to use the somewhat vague phrase “combination of the two”
to talk about this, as the meaning is fairly intuitive in this case. There are
times, however, when exactly how a regex engine goes about applying a
regex may not necessarily be quite so intuitive. Since how it works has
immediate practical effects on what our regular expressions really mean,
Chapter 4 discusses this in explicit detail.

work properly with two of them. v Think about which ones would work, and
why, and then turn the page to check your answer.

Back to the comma example . . .

You’ve probably already realized that the connection between the “Jeffs” example
and the comma example lies in our wanting to insert something at a location that
we can describe with a regular expression.

Earlier, we realized that we wanted to insert commas at “locations having digits on
the right in exact sets of three, and at least some digits on the left.” The second
requir ement is simple enough with lookbehind. One digit on the left is enough to
fulfill the “some digits on the left” requir ement, and that’s !(?<=\d)".

Now for “locations having digits on the right in exact sets of three.” An exact set of
thr ee digits is !\d\d\d ", of course. We can wrap it with !(˙˙˙)+ " to allow more than
one (the “sets” of our requir ement), and append !$ " to ensure that nothing follows
(the “exact” of our requir ement). Alone, !(\d\d\d)+$ " matches sets of triple digits
to the end of the string, but when inserted into the !(?=˙˙˙)" lookahead construct, it
matches at locations that are even sets of triple digits from the end of the string,
such as at the marked locations in ‘123456789’. That’s actually more than we want
—we don’t want to put a comma before the first digit—so we add !(?<=\d)" to fur-
ther limit the match locations.

29 April 2003 20:21

This snippet:

$pop =˜ s/(?<=\d)(?=(\d\d\d)+$)/,/g;
print "The US population is $pop\n";

indeed prints “The US population is 281,421,906” as we desire. It might, however,
seem a bit odd that the parentheses surrounding !\d\d\d " ar e capturing parenthe-
ses. Here, we use them only for grouping, to apply the plus to the set of three dig-
its, and so don’t need their capture-to-$1 functionality.

I could have used !(?:˙˙˙)", the non-capturing parentheses introduced in the sidebar
on page 45. This would leave the regex as !(?<=\d)(?=(?:\d\d\d)+$)". This is
“better” in that it’s more specific — someone reading this later won’t have to won-
der if or where the $1 associated with capturing parentheses might be used. It’s
also just a bit more efficient, since the engine doesn’t have to bother remembering
the captured text. On the other hand, even with !(˙˙˙)" the expression can be a bit
confusing to read, and with !(?:˙˙˙)" even more so, so I chose the clearer presenta-
tion this time. These are common tradeoffs one faces when writing regular expres-
sions. Personally, I like to use !(?:˙˙˙)" everywher e it naturally applies (such as this
example), but opt for clarity when trying to illustrate other points (as is usually the
case in this book).

Word boundar ies and negative lookaround

Let’s say that we wanted to extend the use of this expression to commafying num-
bers that might be included within a larger string. For example:

$text = "The population of 281421906 is growing";
+
+
+

$text =˜ s/(?<=\d)(?=(\d\d\d)+$)/,/g;
print "$text\n";

As it stands, this doesn’t work because the !$ " requir es that the sets of three digits
line up with the end of the string. We can’t just remove it, since that would have it
insert a comma everywhere that there was a digit on the left, and at least three
digits on the right—we’d end up with “ . . . of 2,8,1,4,2,1,906 is . . .”!

It might seem odd at first, but we could replace !$ " with something to match a
word boundary, !\b ". Even though we’re dealing with numbers only, Perl’s concept
of “words” helps us out. As indicated by !\w " (+ 49), Perl and most other programs
consider alphanumerics and underscore to be part of a word. Thus, any location
with those on one side (such as our number) and not those on the other side
(e.g., the end of the line, or the space after a number) is a word boundary.

This “such-and-such on one side, and this-and-that on the other” certainly sounds
familiar, doesn’t it? It’s exactly what we did in the “Jeffs” example. One differ ence
her e is that one side must not match something. It turns out that what we’ve so far
been calling lookahead and lookbehind should really be called positive lookahead

Modifying Text with Regular Expressions 65

29 April 2003 20:21

66 Chapter 2: Extended Introductor y Examples

Quiz Answer
v Answer to the question on page 64.

Which “Jeffs” solutions would preser ve case when applied with /i?

To preserve case, you’ve got to either replace the exact characters consumed
(rather than just always inserting ‘Jeff’s’), or not consume any letters. The
second solution listed in Table 2-1 takes the first approach, capturing what is
consumed and using $1 and $2 to put it back. The last two solutions in the
table take the “don’t consume anything” approach. Since they don’t consume
text, they have nothing to preserve.

The first and third solutions hard-code the replacement string. If applied with
/i, they don’t preserve case. They end up incorrectly replacing JEFFS with
Jeff’s and Jeff’S, respectively.

and positive lookbehind, since they are successful at positions where their subex-
pr ession is able to match. As Table 2-2 shows, their converse, negative lookahead
and negative lookbehind, are also available. As their name implies, they are suc-
cessful as positions where their subexpression is not able to match.

Table 2-2: Four Types of Lookaround

Type Regex Successful if the enclosed subexpression . . .

Positive Lookbehind (?<=......) successful if can match to the left
Negative Lookbehind (?<!......) successful if can not match to the left

Positive Lookahead (?=......) successful if can match to the right
Negative Lookahead (?!......) successful if can not match to the right

So, if a word boundary is a position with !\w " on one side and not !\w " on the other,
we can use !(?<!\w)(?=\w) " as a start-of-word boundary, and its complement
!(?<=\w)(?!\w) " as an end-of-word boundary. Putting them together, we could use
!(?<!\w)(?=\w)<(?<=\w)(?!\w) " as a replacement for !\b ". In practice, it would be
silly to do this for languages that natively support \b (\b is much more dir ect and
ef ficient), but the individual alternatives may indeed be useful (+ 132).

For our comma problem, though, we really need only !(?!\d)" to cap our sets of
thr ee digits. We use that instead of !\b " or !$ ", which leaves us with:

$text =˜ s/(?<=\d)(?=(\d\d\d)+(?!\d))/,/g;

This now works on text like “ . . . tone of 12345Hz,” which is good, but unfortu-
nately it also matches the year in “ . . . the 1970s . . .” Actually, any of these match
“ . . . in 1970 . . . ,” which is not good. There’s no substitute for knowing the data

29 April 2003 20:21

you intend to apply a regex to, and knowing when that application is appropriate
(and if your data has year numbers, this regex is probably not appropriate).

Thr oughout this discussion of boundaries and what we don’t want to match, we
used negative lookahead, !(?!\w) " or !(?!\d)". You might remember the “something
not a digit” metacharacter !\D " fr om page 49 and think that perhaps this could be
used instead of !(?!\d) ". That would be a mistake. Remember, in !\D "’s meaning of
“something not a digit,” something is requir ed, just something that’s not a digit. If
ther e’s nothing in the text being searched after the digit, !\D " can’t match. (We saw
something similar to this back in the sidebar on page 12.)

Commafication without lookbehind

Lookbehind is not as widely supported (nor as widely used) as lookahead. Look-
ahead support was introduced to the world of regular expressions years before
lookbehind, and though Perl now has both, this is not yet true for many lan-
guages. Therefor e, it might be instructive to consider how to solve the commafica-
tion problem without lookbehind. Consider:

$text =˜ s/(\d)(?=(\d\d\d)+(?!\d))/$1,/g;

The change from the previous example is that the positive lookbehind that had
been wrapped around the leading !\d " has been replaced by capturing parentheses,
and the corresponding $1 has been inserted into the replacement string, just
befor e the comma.

What about if we don’t have lookahead either? We can put the !\b " back for the
!(?!\d) ", but does the technique used to eliminate the lookbehind also work for
the remaining lookahead? That is, does the following work?

$text =˜ s/(\d)((\d\d\d)+\b)/$1,$2/g;

v Turn the page to check your answer.

Te xt-to-HTML Conversion
Let’s write a little tool to convert plain text to HTML. It’s difficult to write a general
tool that’s useful for every situation, so for this section we’ll just write a simple tool
whose main goal is to be a teaching vehicle.

In all our examples to this point, we’ve applied regular expressions to variables
containing exactly one line of text. For this project, it is easier (and more inter est-
ing) if we have the entire text we wish to convert available as one big string. In
Perl, we can easily do this with:

undef $/; # Enter "file-slurp" mode.
$text = <>; # Slurp up the first file given on the command line.

Modifying Text with Regular Expressions 67

29 April 2003 20:21

68 Chapter 2: Extended Introductor y Examples

Quiz Answer
v Answer to the question on page 67.

Does $text =˜ s/(\d)((\d\d\d)+\b)/$1,$2/g "commaify" a number?

This won’t work the way we want. It leaves results such as “281,421906.” This
is because the digits matched by !(\d\d\d)+ " ar e now actually part of the
final match, and so are not left “unmatched” and available to the next itera-
tion of the regex via the /g.

When one iteration ends, the next picks up the inspection of the text at the
point where the previous match ended. We’d like that to be the point where
the comma was inserted so we can go ahead and check to see whether addi-
tional commas need to be inserted later in the same number. But, in this
case, that restarting point is at the end of all the digits. The whole point of
using lookahead was to get the positional check without actually having the
inspected text check count toward the final “string that matched.”

Actually, this expression can still be used to solve this problem. If the expres-
sion is applied repeatedly by the host language, such as via a while loop, the
newly-modified text is completely revisited each time. With each such appli-
cation, one more comma is added (to each number in the target string, due
to the /g modifier). Here’s an example:

while ($text =˜ s/(\d)((\d\d\d)+\b)/$1,$2/g) {
Nothing to do inside the body of the while -- we merely want to reapply the regex until it fails

}

If our sample file contains the three short lines

This is a sample file.
It has three lines.
That’s all

the variable $text will then contain

This is a sample file.1It has three lines.1That’s all1

although depending on the system, it could instead be

This is a sample file.|1It has three lines.|1That’s all|1

since most systems use a newline to end lines, but some (most notably Windows)
use a carriage-retur n/newline combination. We’ll be sure that our simple tool
works with either.

Cooking special character s

Our first step is to make any ‘&’, ‘<’, and ‘>’ characters in the original text “safe” by
converting them to their proper HTML encodings, ‘&’, ‘<’, and ‘>’
respectively. Those characters are special to HTML, and not encoding them

29 April 2003 20:21

pr operly can cause display problems. I call this simple conversion “cooking the
text for HTML,” and it’s fairly simple:

$text =˜ s/&/&/g; # Make the basic HTML . . .
$text =˜ s/</</g; # . . . characters &, <, and > . . .
$text =˜ s/>/>/g; # . . . HTML safe.

Her e again, we’re using /g so that all of target characters will be converted (as
opposed to just the first of each in the string if we didn’t use /g). It’s important to
convert & first, since all three have ‘&’ in the replacement.

Separating parag raphs

Next, we’ll mark paragraphs by separating them with the <p> paragraph-separator
HTML tag. An easy way to identify paragraphs is to consider them separated by
blank lines. There are a number of ways that we might try to identify a blank line.
At first you might be tempted to use

$text =˜ s/ˆ$/<p>/g;

to match a “start-of-line position followed immediately by an end-of-line position.”
Indeed, as we saw in the answer on page 10, this would work in a tool like egr ep
wher e the text being searched is always considered in chunks containing a single
logical line. It would also work in Perl in the context of the earlier email example
wher e we knew that each string contained exactly one logical line.

But, as I mentioned in the footnote on page 55, !ˆ " and !$ " nor mally refer not to log-
ical line positions, but to the absolute start- and end-of-string positions.† So, now
that we have multiple logical lines embedded within our target string, we need to
do something differ ent.

Luckily, most regex-endowed languages give us an easy solution, an enhanced
line anchor match mode in which the meaning of !ˆ " and !$ " to change from string
related to the logical-line related meaning we need for this example. With Perl,
this mode is specified with the /m modifier:

$text =˜ s/ˆ$/<p>/mg;

Notice how /m and /g have been combined. (When using multiple modifiers, you
can combine them in any order.) We’ll see how other languages handle modifiers
in the next chapter.

Thus, if we start with ‘˙˙˙chapter.1 1Thus˙˙˙’ in $text, we will end up with
‘˙˙˙chapter.1<p>1Thus˙˙˙’ as we want.

It won’t work, however, if ther e ar e spaces or other whitespace on the “blank”
line. To allow for spaces, we can use !ˆ +$ ", or perhaps !ˆ[\t\r]+$ " to allow for

† Actually, !$ " is often a bit more complex than simply “end of string,” although that’s not important to
us for this example. For details, see the discussion of end-of-line anchors on page 127.

Modifying Text with Regular Expressions 69

29 April 2003 20:21

70 Chapter 2: Extended Introductor y Examples

spaces, tabs, and the carriage retur n that some systems have before the line-end-
ing newline. These are fundamentally differ ent fr om !ˆ$ " alone in that these now
match actual characters, while !ˆ$ " matches only a position. But, since we don’t
need those spaces, tabs, and carriage retur ns in this case, it’s fine to match them
(and then replace them with our paragraph tag).

If you remember !\s " fr om page 47, you might be inclined to use !ˆ\s+$ ", just as we
did in the email example on page 55. If we use !\s " instead of ![\t\r] ", the fact
that !\s " can match a newline means that the overall meaning changes from “find
lines that are blank except for whitespace” to “find spans of lines that are blank
except for whitespace.” This means that if we have several blank lines in a row,
!ˆ\s+$ " is able to match them all in one shot. The fortunate result is that the
replacement leaves just one <p> instead of the several in a row we would other-
wise end up with.

Ther efor e, if we have the string

˙˙˙ with.1 1 1 2 1Therefore ˙˙˙

in the variable $text, and we use

$text =˜ s/ˆ[\t\r]+$/<p>/mg;

we’ll end up with:

˙˙˙ with.1<p><p><p>1Therefore ˙˙˙

But, if we use

$text =˜ s/ˆ\s+$/<p>/mg;

we’ll end up instead with the more desirable:

˙˙˙ with.1<p>1Therefore ˙˙˙

So, we’ll stick with !ˆ\s+$ " in our final program.

“Linkizing” an email address

The next step in our text-to-HTML converter is to recognize an email address, and
tur n it into a “mailto” link. This would convert something like “jfriedl@oreilly.com”
to jfriedl@oreilly.com.

It’s a common desire to match or validate an email address with a regular expres-
sion. The official address specification is quite complex, so to do it exactly is diffi-
cult, but we can use something less complex that works for most email addresses
we might run into. The basic form of an email address is “user name@hostname ”.
Befor e looking at just what regular expression to use for each of those parts, let’s
look at the context we’ll use them in:

$text =˜ s/\b(username regex\@hostname regex)\b/$1<\/a>/g;

The first things to notice are the two marked backslash characters, one in the
regex (‘\@’) and one toward the end of the replacement string. Each is there for a

29 April 2003 20:21

dif ferent reason. I’ll defer the discussion of \@ until a bit later (+ 77), for the
moment merely saying that Perl requir es @ symbols to be escaped when used in a
regex literal.

The backslash before the ‘/’ in the replacement string is a bit more useful to talk
about at the moment. We’ve seen that the basic form of a Perl search-and-r eplace
is s/regex/replacement/modifiers, with the forward slashes delimiting the parts. Now, if
we wish to include a forward slash within one of the parts, Perl requir es us to
escape it to indicate that it should not be taken as a delimiter, but rather included
as part of the regex or replacement string. This means that we would need to use
<\/a> if we wish to get into the replacement string, which is just what we
did here.

This works, but it’s a little ugly, so Perl allows us to pick our own delimiters. For
instance, s!regex!string!modifiers or s{regex}{string}modifiers. With either, since the slash
in the replacement string no longer conflicts with the delimiter, it no longer needs
to be escaped. The delimiters for the regex and string parts pair up nicely in the
second example, so I’ll use that form from now on.

Retur ning to the code snippet, notice how the entire addr ess part is wrapped in
!\b˙˙˙\b ". Adding these word boundaries help to avoid an embedded match like in
‘jfriedl@oreilly.compiler’. Although running into a nonsensical string like
that is probably rare, it’s simple enough to use the word boundaries to guard
against matching it when we do, so I use them. Notice also that the entire addr ess
part is wrapped in parentheses. These are to captur e the matched address, making
it available to the replacement string ‘$1’.

Matching the username and hostname
Now we turn our attention to actually matching an email address by building
those user name and hostname regular expressions. Hostnames, like regex.info

and www.oreilly.com, consist of dot-separated parts ending with ‘com’, ‘edu’,
‘info’, ‘uk’, or other selected sequences. A simplistic approach to matching an
email address could be !\w+\@\w+(\.\w+)+ ", which allows !\w+ " for the username
and the same for each part of the hostname. In practice, though, you’ll need
something a little more specific. For usernames, you’ll run into some with periods
and dashes in them (although rarely does a username start with one of these). So,
rather than !\w+ ", we’ll try !\w[-.\w]+ ". This requir es the name to start with a !\w "

character, but then allows periods and dashes as well. (Notice how we are sur e to
put the dash first in the class, to ensure that it’s taken as a literal dash, and not the
part of an a-z type of range? With many flavors, a range like .-\w is almost
certainly wrong, yielding a fairly random set of letters, numbers, and punctuation
that’s dependent on the program and the computer’s native character encoding.
Perl handles .-\w in a class just fine, but being careful with dash in a class is a
good habit to get into.)

Modifying Text with Regular Expressions 71

29 April 2003 20:21

72 Chapter 2: Extended Introductor y Examples

The hostname part is a bit more complex in that the dots are strictly separators,
which means that there must be something in between for them to separate. This
is why even in the simplistic version earlier, the hostname part uses !\w+(\.\w+)+ "

instead of ![\w.]+ ". The latter incorrectly matches ‘..x..’. But, even the former
matches in ‘Artichokes 4@1.00’, so we still need to be more specific.

One approach is to specifically list what the last component can be, along the
lines of !\w+(\.\w+),\.(com<edu<info) ". (That list of alternatives really should
be com<edu<gov<int<mil<net<org<biz<info<name<museum<coop<aero<[a-z][a-z], but I’ll
use the shorter list to keep the example uncluttered.) This allows a leading !\w+ "

part, along with optional additional !\.\w+ " parts, finally followed by one of the
specific ending parts we’ve listed.

Actually, !\w " is not quite appropriate. It allows ASCII letters and digits, which is
good, but with some systems may allow non-ASCII letters such as à, ç, Ξ, Æ, and
with most flavors, an underscore as well. None of these extra characters are
allowed in a hostname. So, we probably should use ![a-zA-Z0-9] ", or perhaps
![a-z0-9] " with the /i modifier (for a case-insensitive match). Hostnames can also
have a dash as well, so we’ll use ![-a-z0-9] " (again, being careful to put the dash
first). This leaves us with ![-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info) " for
the hostname part.

As with all regex examples, it’s important to remember the context in which they
will be used. By itself, ![-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info) " could
match, say ‘run C:\\startup.command at startup’, but once we drop it into
the context of our program, we’ll be sure that it matches where we want, and not
wher e we don’t. In fact, I’d like to drop it right into the

$text =˜ s{\b(username regex\@hostname regex)\b}{$1}gi;

for m mentioned earlier (updated here with the s{˙˙˙}{˙˙˙} delimiters, and the /i

modifier), but there’s no way I could get it to fit onto the page. Perl, of course,
doesn’t care if it fits nicely or looks pretty, but I do. That’s why I’ll now introduce
the /x modifier, which allows us to rewrite that regex as:

$text =˜ s{
\b
Captur e the address to $1 . . .
(

username regex
\@
hostname regex

)
\b

}{$1}gix;

Wow, that’s differ ent! The /x modifier appears at the end of that snippet (along
with the /g and /i modifiers), and does two simple but powerful things for the

29 April 2003 20:21

regular expression. First, it causes most whitespace to be ignored, so you can
“fr ee-format” the expression for readability. Secondly, it allows comments with a
leading #.

Specifically, /x tur ns most whitespace into an “ignore me” metacharacter, and #

into an “ignore me, and everything else up to the next newline” metacharacter
(+ 110). They aren’t taken as metacharacters within a character class (which
means that classes are not fr ee-format, even with /x), and as with other metachar-
acters, you can escape whitespace and # that you want to be taken literally. Of
course, you can always use !\s " to match whitespace, as in m/<a \s+ href=˙˙˙>/x.

Realize that /x applies only to the regular expression, and not to the replacement
string. Also, even though we’ve now switched to using the s{˙˙˙}{˙˙˙} for m, wher e
the modifiers come after the final ‘}’ (e.g., ‘}x’), in conversation we still refer to
“the x modifier” as “/x”.

Putting it together
Well, now we can drop in our username and hostname parts, combined with what
we developed earlier, to leave us with the program so far:

undef $/; # Enter "file-slurp" mode.
$text = <>; # Slurp up the first file given on the command line.

$text =˜ s/&/&/g; # Make the basic HTML . . .
$text =˜ s/</</g; # . . . characters &, <, and > . . .
$text =˜ s/>/>/g; # . . . HTML safe.

$text =˜ s/ˆ\s+$/<p>/mg; # Separate paragraphs.

Turn email addresses into links . . .
$text =˜ s{

\b
Captur e the address to $1 . . .
(

\w[-.\w]+ # user name
\@
[-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info) # hostname

)
\b

}{$1}gix;

print $text; # Finally, display the HTML-ized text.

All the regular expressions work with the same multiline string, but notice that
only the expression to separate paragraphs requir es the /m modifier, since only
that expression has !ˆ " or !$ ". Using /m on the others wouldn’t hurt (well, except to
make the reader wonder why it was there).

Modifying Text with Regular Expressions 73

29 April 2003 20:21

74 Chapter 2: Extended Introductor y Examples

“Linkizing” an HT TP URL

Finally, let’s turn our attention to recognizing a normal HT TP URL, tur ning it into a
link to itself. This would convert something like “http://www.yahoo.com/” to
http://www.yahoo.com/.

The basic form of an HT TP URL is “http://hostname/path”, wher e the /path part is
optional. This gives us a form of:

$text =˜ s{
\b
Captur e the URL to $1 . . .
(

http:// hostname
(

/ path
)?

)
}{$1}gix;

For the hostname part, we can use the same subexpression we used for the email
addr ess. The path part of a URL can consist of a variety of characters, and in the
pr evious chapter we used ![-a-z0-9R:@&?=+,.!/˜+’%$]+ " (+ 25), which is most
ASCII characters except whitespace, control characters, and things like <>(){} .

Ther e’s one other thing we must do before using it with Perl, and that’s escape the
@ and $ characters. Again, I’ll defer on the explanation until a bit later (+ 77).
Now, let’s plug in our hostname and path parts:

$text =˜ s{
\b
Captur e the URL to $1 . . .
(

http:// [-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info) \b # hostname
(

/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # optional path
)?

)
}{$1}gix;

You’ll notice that there’s no !\b " after the path, since it’s perfectly allowable for a
URL to end with punctuation, such as the URL for O’Reilly’s page on this book:

http://www.oreilly.com/catalog/regex2/

Using !\b " at the end would disallow a URL ending this way.

That being said, in practice we probably want to put some artificial restrictions on
what the URL can end with. Consider the following text:

Read "odd" news at http://dailynews.yahoo.com/h/od, and
maybe some tech stuff at http://www.slashdot.com!

29 April 2003 20:21

Our current regex matches the marked text, although it’s obvious that the trailing
punctuation in each really shouldn’t be part of the URL. When trying to match URLs
embedded in English text, it seems to make sense to not include an ending
![.,?!] " as part of the URL. (This isn’t part of any standard, but just a heuristic I’ve
come up with that seems to work most of the time.) Well, that’s as easy as adding
a “can’t be any of ![.,?!] "” negative lookbehind, !(?<![.,?!])", to the end of the
path part. The effect is that after we’ve matched what we intend to take as the
URL, the lookbehind peeks back to ensure that the last character is appropriate. If
not, the engine must reevaluate what’s taken as the URL so that this final condition
is fulfilled. That means it’s forced to leave off the offending punctuation so the
final lookbehind can match. (We’ll see a differ ent way to solve this problem in
Chapter 5 + 205.)

Inserting this, we can now try the full program:

undef $/; # Enter "file-slurp" mode
$text = <>; # Slurp up the first file given on the command line.

$text =˜ s/&/&/g; # Make the basic HTML . . .
$text =˜ s/</</g; # . . . characters &, <, and > . . .
$text =˜ s/>/>/g; # . . . HTML safe.

$text =˜ s/ˆ\s+$/<p>/mg; # Separate paragraphs.

Turn email addresses into links . . .
$text =˜ s{

\b
Captur e the address to $1 . . .
(

\w[-.\w]+ # user name
\@
[-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info) # hostname

)
\b

}{$1}gix;

Turn HTTP URLs into links . . .
$text =˜ s{

\b
Captur e the URL to $1 . . .
(

http:// [-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info) \b # hostname
(

/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # Optional path
(?<![.,?!]) # Not allowed to end with [.,?!]

)?
)

}{$1}gix;

print $text; # Finally, display the HTML-ized text.

Modifying Text with Regular Expressions 75

29 April 2003 20:21

76 Chapter 2: Extended Introductor y Examples

Building a regex librar y
Note that the same expression is used for each of the two hostnames, which
means that if we ever update one, we have to be sure to update the other. Rather
than keeping that potential source of confusion, consider the three instances of
$HostnameRegex in this modified snippet from our program:

$HostnameRegex = qr/[-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info)/i;

Turn email addresses into links . . .
$text =˜ s{

\b
Captur e the address to $1 . . .
(

\w[-.\w]+ # user name
\@
$HostnameRegex # hostname

)
\b

}{$1}gix;

Turn HTTP URLs into links . . .
$text =˜ s{

\b
Captur e the URL to $1 . . .
(

http:// $HostnameRegex \b # hostname
(

/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # Optional path
(?<![.,?!]) # not allowed to end with [.,?!]

)?
)

}{$1}gix;

The first line introduces Perl’s qr operator. It’s similar to the m and s operators in
that it takes a regular expression (i.e., used as qr/˙˙˙/, just like m/˙˙˙/ and
s/˙˙˙/˙˙˙/), but rather than immediately applying it to some text in search of a
match, it converts the regex provided into a regex object, which you can save to a
variable. Later, you can use that object in place of a regular expression, or even as
a subexpr ession of some other regex (as we’ve done here, using the regex object
assigned to $HostnameRegex as part of the regex of the two substitutions). This is
very convenient because it makes things clearer. As a bonus, we then need only
one “master source” to specify the regex to match a hostname, which we can then
use as often as we like. There are additional examples of building this type of
“r egex library” in Chapter 6 (+ 277), and a detailed discussion in Chapter 7
(+ 303).

Other languages offer ways to create their own regex objects; several languages
ar e explor ed briefly in the next chapter, with Java packages and .NET discussed in
detail in Chapters 8 and 9.

29 April 2003 20:21

Why ‘$’ and ‘@’ sometimes need to be escaped
You’ll notice that the same ‘$’ is used as both the end-of-string metacharacter, and
to request interpolation (inclusion) of a variable. Normally, there’s no ambiguity to
what ‘$’ means, but within a character class it gets a bit tricky. Since it can’t possi-
bly mean end-of-string within a class, in that situation Perl considers it a request to
interpolate (include from) a variable, unless it’s escaped. If escaped, the ‘$’ is just
included as a member of the class. That’s what we want this time, so that’s why
we have to escape the dollar sign in the path part of the URL-matching regex.

It’s somewhat similar for @. Perl uses @ at the beginning of array names, and Perl
string or regex literals allow arrays to be interpolated. If we wish a literal @ to be
part of a regex, we must escape it so that it’s not taken as an array interpolation.

Some languages don’t allow variable interpolation (Java, VB.NET, C, C#, Emacs,
and awk, for instance). Some do allow variable interpolation (including Perl, PHP,
Python, Ruby, and Tcl), but each has their own way to do it. This is discussed fur-
ther in the next chapter (+ 101).

That Doubled-Word Thing
The doubled-word problem in Chapter 1 hopefully whetted your appetite for the
power of regular expressions. I teased you at the start of this chapter with a cryp-
tic bunch of symbols I called a solution:

$/ = ".\n";
while (<>) {

next if !s/\b([a-z]+)((?:\s<<[ˆ>]+>)+)(\1\b)/\e[7m$1\e[m$2\e[7m$3\e[m/ig;
s/ˆ(?:[ˆ\e],\n)+//mg; # Remove any unmarked lines.
s/ˆ/$ARGV: /mg; # Ensur e lines begin with filename.
print;

}

Now that you’ve seen a bit of Perl, you hopefully understand at least the general
for m — the <>, the three s/˙˙˙/˙˙˙/, and the print. Still, it’s rather heady stuff! If
this chapter has been your only exposure to Perl (and these chapters your only
exposur e to regular expressions), this example is probably a bit beyond what you
want to be getting into at this point.

However, when it comes down to it, I don’t think the regex is really so difficult.
Befor e looking at the program again, it might be good to review the specification
found on page 1, and to see a sample run:

% perl -w FindDbl ch01.txt
ch01.txt: check for doubled words (such as thisthis thisthis), a common problem with
ch01.txt: + Find doubled words despite capitalization differences, such as with ‘TheThe
ch01.txt: thethe ˙˙˙’, as well as allow differing amounts of whitespace (space, tabs,
ch01.txt: /\<(1,000,000;million;thousandthousand thousandthousand)/. But alternation can’t be
ch01.txt: of this chapter. If you knew thethe thethe specific doubled word to find (such

+
+
+

Modifying Text with Regular Expressions 77

29 April 2003 20:21

78 Chapter 2: Extended Introductor y Examples

Let’s look at the program now, first in Perl. We’ll then briefly look at a solution in
Java to see a differ ent appr oach for working with regular expressions. This time,
the listing below uses the s{regex}{replacement}modifiers for m of the substitution. It
also uses the /x modifier to make the listing clearer (and with the extra room,
now uses the more readable ‘next unless’ instead of ‘next if !’). Otherwise, it
is identical to the short version at the start of this chapter.

Double-wor d example in Perl

$/ = ".\n"; Ê # Sets a special ‘‘chunk-mode’’; chunks end with a period-newline combination

while (<>) Ë
{

next unless s{Ì# (r egex starts here)

Need to match one word:
\b # Start of word
([a-z]+) # Grab word, filling $1 (and \1).

Now need to allow any number of spaces and/or <TAGS>
(# Save what intervenes to $2.

(?: # (Non-capturing parens for grouping the alternation)
\s # Whitespace (includes newline, which is good).

; # -or-
<[ˆ>]+> # Item like <TAG>.

)+ # Need at least one of the above, but allow more.
)

Now match the first word again:
(\1\b) # \b ensures not embedded. This copy saved to $3.

#(r egex ends here)
}
Above is the regex. The replacement string is below, followed by the modifiers, /i, /g, and /x
{\e[7m$1\e[m$2\e[7m$3\e[m}igx; Í

s/ˆ(?:[ˆ\e]+\n)+//mg; Î # Remove any unmarked lines.
s/ˆ/$ARGV: /mg; Ï # Ensur e lines begin with filename.
print;

}

This short program does use a fair number of things we haven’t seen yet. Let me
briefly explain it and some of the logic behind it, but I direct you to the Perl man
page for details (or, if regex-r elated, to Chapter 7). In the description that follows,
“magic” means “because of a feature of Perl that you may not be familiar with yet.”

Ê Because the doubled-word problem must work even when the doubled
words are split across lines, I can’t use the normal line-by-line processing I
used with the mail utility example. Setting the special variable $/ (yes, that’s
a variable) as shown puts the subsequent <> into a magic mode such that it
retur ns not single lines, but more-or-less paragraph-sized chunks. The value
retur ned is just one string, but a string that could potentially contain many of
what we would consider to be logical lines.

29 April 2003 20:21

Ë Did you notice that I don’t assign the value from <> to anything? When used
as the conditional of a while like this, <> magically assigns the string to a
special default variable.† That same variable holds the default string that
s/˙˙˙/˙˙˙/ works on, and that print displays. Using these defaults makes the
pr ogram less cluttered, but also less understandable to someone new to the
language, so I recommend using explicit operands until you’re comfortable.

Ì The next unless befor e the substitute command has Perl abort processing on
the current string (to continue with the next) if the substitution doesn’t actu-
ally do anything. There’s no need to continue working on a string in which
no doubled words are found.

Í The replacement string is really just "$1 $2 $3" with intervening ANSI escape
sequences that provide highlighting to the two doubled words, but not to
whatever separates them. These escape sequences are \e[7m to begin high-
lighting, and \e[m to end it. (\e is Perl’s regex and string shorthand for the
ASCII escape character, which begins these ANSI escape sequences.)

Looking at how the parentheses in the regex are laid out, you’ll realize that
"$1$2$3" repr esents exactly what was matched in the first place. So, other
than adding in the escape sequences, this whole substitute command is
essentially a (slow) no-op.

We know that $1 and $3 repr esent matches of the same word (the whole
point of the program!), so I could probably get by with using just one or the
other in the replacement. However, since they might differ in capitalization, I
use both variables explicitly.

Î The string may contain many logical lines, but once the substitution has
marked all the doubled words, we want to keep only logical lines that have
an escape character. Removing those that don’t leaves only the lines of inter-
est in the string. Since we used the enhanced line anchor match mode (the
/m modifier) with this substitution, the regex !ˆ([ˆ\e]+\n)+ " can find logical
lines of non-escapes. Use of this regex in the substitute causes those
sequences to be removed. The result is that only logical lines that have an
escape remain, which means that only logical lines that have doubled words
in them remain.‡

Ï The variable $ARGV magically provides the name of the input file. Combined
with /m and /g, this substitution tacks the input filename to the beginning of
each logical line remaining in the string. Cool!

† The default variable is $R (yes, that’s a variable too). It’s used as the default operand for many func-
tions and operators.

‡ This logic assumes that the input file doesn’t have an ASCII escape character itself. If it did, this pro-
gram could report lines in error.

Modifying Text with Regular Expressions 79

29 April 2003 20:21

80 Chapter 2: Extended Introductor y Examples

Finally, the print spits out what’s left of the string, escapes and all. The while

loop repeats the same processing for all the strings (paragraph-sized chunks of
text) that are read from the input.

Moving bits around: operator s, functions, and objects

As I emphasized earlier, I use Perl in this chapter as a tool to show the concepts. It
happens to be a very useful tool, but I again want to stress that this problem can
be easily solved with regular expressions in many other languages.

Still, the task of showing the concepts is made a bit easier due to a Perl feature
unique among advanced languages, which is that regular expressions are a “first
class,” low-level feature of the language. This means that there are basic operators
that work with regular expressions in the same way that + and - work with num-
bers. This reduces the amount of “syntactic baggage” needed to wield regular
expr essions.

Most languages do not provide this. For reasons that are discussed in Chapter 3
(+ 93), many modern languages instead provide functions or objects for manipu-
lating and applying regular expressions. There might be a function, for example,
that accepts a string to be interpreted as a regular expression, as well as text to be
searched, and retur ns a true or false depending on whether the regular expression
matches the text. More commonly, though, these two tasks (first, interpreting a
string as a regular expression, and second, applying the regular expression to text)
ar e br oken up into two or more separate functions, as seen in the Java listing on
the facing page. The code uses the java.util.regex package that comes stan-
dard as of Java 1.4.

You can see near the top the same three regular expressions we used in the Perl
example, passed as strings to the three Pattern.compile routines. A direct com-
parison shows that the Java version has a few extra backslashes, but that’s just a
side effect of Java’s requir ement that regular expressions be provided as strings.
Backslashes intended for the regular expression must be escaped to prevent Java’s
string parser from interpreting the backslashes in its own way (+ 44).

You’ll also notice that the regular expressions are located not in the main text-pro-
cessing part of the program, but at the start, in the initialization section. The
Pattern.compile function merely analyzes the string as a regular expression, and
builds an internal “compiled version” that is assigned to a Pattern variable
(regex1, etc.). Then, in the main text-processing part of the program, that com-
piled version is applied to text with regex1.matcher(text), the result of which
is used to do the replacement. Again, we’ll get into the details in the next chapter,
but the point here is that when learning any regex-enabled language, there are
two parts to the story: the regex flavor itself, and how the language lets you wield
the regular expressions.

29 April 2003 20:21

Double-wor d example in Java

import java.io.+;
import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class TwoWord
{
public static void main(String [] args)
{
Pattern regex1 = Pattern.compile(

"\\b([a-z]+)((?:\\s<\\<[ˆ>]+\\>)+)(\\1\\b)",
Pattern.CASERINSENSITIVE);

String replace1 = "\033[7m$1\033[m$2\033[7m$3\033[m";
Pattern regex2 = Pattern.compile("ˆ(?:[ˆ\\e],\\n)+", Pattern.MULTILINE);
Pattern regex3 = Pattern.compile("ˆ([ˆ\\n]+)", Pattern.MULTILINE);

// For each command-line argument....
for (int i = 0; i < args.length; i++)
{

try {
BufferedReader in = new BufferedReader(new FileReader(args[i]));
String text;

// For each paragraph of each file.....
while ((text = getPara(in)) != null)
{

// Apply the three substitutions
text = regex1.matcher(text).replaceAll(replace1);
text = regex2.matcher(text).replaceAll("");
text = regex3.matcher(text).replaceAll(args[i] + ": $1");

// Display results
System.out.print(text);

}
} catch (IOException e) {
System.err.println("can’t read ["+args[i]+"]: " + e.getMessage());

}
}

}

// Routine to read next "paragraph" and return as a string
static String getPara(BufferedReader in) throws java.io.IOException
{
StringBuffer buf = new StringBuffer();
String line;

while ((line = in.readLine()) != null &&
(buf.length() == 0 ;; line.length() != 0))

{
buf.append(line + "\n");

}
return buf.length() == 0 ? null : buf.toString();

}
}

Modifying Text with Regular Expressions 81

29 April 2003 20:21

3
Over view of

Regular Expression
Features and Flavors

Now that you have a feel for regular expressions and a few diverse tools that use
them, you might think we’re ready to dive into using them wherever they’re
found. But even a simple comparison among the egr ep versions of the first chapter
and the Perl and Java in the previous chapter shows that regular expressions and
the way they’re used can vary wildly from tool to tool.

When looking at regular expressions in the context of their host language or tool,
ther e ar e thr ee br oad issues to consider:

• What metacharacters are supported, and their meaning. Often called the regex
“flavor.”

• How regular expressions “interface” with the language or tool, such as how to
specify regular-expr ession operations, what operations are allowed, and what
text they operate on.

• How the regular-expr ession engine actually goes about applying a regular
expr ession to some text. The method that the language or tool designer uses
to implement the regular-expr ession engine has a strong influence on the
results one might expect from any given regular expression.

Regular Expressions and Cars

The considerations just listed parallel the way one might think while shopping for
a car. With regular expressions, the metacharacters are the first thing you notice,
just as with a car it’s the body shape, shine, and nifty features like a CD player and
leather seats. These are the types of things you’ll find splashed across the pages of
a glossy brochur e, and a list of metacharacters like the one on page 32 is the reg-
ular-expr ession equivalent. It’s important information, but only part of the story.

83

29 April 2003 09:19

84 Chapter 3: Over view of Regular Expression Features and Flavors

How regular expressions interface with their host program is also important. The
inter face is partly cosmetic, as in the syntax of how to actually provide a regular
expr ession to the program. Other parts of the interface are mor e functional, defin-
ing what operations are supported, and how convenient they are to use. In our car
comparison, this would be how the car “interfaces” with us and our lives. Some
issues might be cosmetic, such as what side of the car you put gas in, or whether
the windows are power ed. Others might be a bit more important, such as if it has
an automatic or manual transmission. Still others deal with functionality: can you
fit the thing in your garage? Can you transport a king-size mattress? Skis? Five
adults? (And how easy is it for those five adults to get in and out of the car—easier
with four doors than with two.) Many of these issues are also mentioned in the
glossy brochur e, although you might have to read the small print in the back to
get all the details.

The final concern is about the engine, and how it goes about its work to turn the
wheels. Here is wher e the analogy ends, because with cars, people tend to under-
stand at least the minimum requir ed about an engine to use it well: if it’s a gaso-
line engine, they won’t put diesel fuel into it. And if it has a manual transmission,
they won’t forget to use the clutch. But, in the regular-expr ession world, even the
most minute details about how the regex engine goes about its work, and how
that influences how expressions should be crafted and used, are usually absent
fr om the documentation. However, these details are so important to the practical
use of regular expressions that the entire next chapter is devoted to them.

In This Chapter

As the title might suggest, this chapter provides an overview of regular expression
featur es and flavors. It looks at the types of metacharacters commonly available,
and some of the ways regular expressions interface with the tools they’re part of.
These are the first two points mentioned at the chapter’s opening. The third point
— how a regex engine goes about its work, and what that means to us in a practi-
cal sense—is covered in the next few chapters.

One thing I should say about this chapter is that it does not try to provide a refer-
ence for any particular tool’s regex features, nor does it teach how to use regexes
in any of the various tools and languages mentioned as examples. Rather, it
attempts to provide a global perspective on regular expressions and the tools that
implement them. If you lived in a cave using only one particular tool, you could
live your life without caring about how other tools (or other versions of the same
tool) might act differ ently. Since that’s not the case, knowing something about
your utility’s computational pedigree adds interesting and valuable insight.

29 April 2003 09:19

A Casual Stroll Across the Regex Landscape
I’d like to start with the story about the evolution of some regular expression fla-
vors and their associated programs. So, grab a hot cup (or frosty mug) of your
favorite brewed beverage and relax as we look at the sometimes wacky history
behind the regular expressions we have today. The idea is to add color to our
regex understanding, and to develop a feeling as to why “the way things are” are
the way things are. There are some footnotes for those that are inter ested, but for
the most part, this should be read as a light story for enjoyment.

The Origins of Regular Expressions
The seeds of regular expressions were planted in the early 1940s by two neuro-
physiologists, Warr en McCulloch and Walter Pitts, who developed models of how
they believed the nervous system worked at the neuron level.† Regular expressions
became a reality several years later when mathematician Stephen Kleene formally
described these models in an algebra he called regular sets. He devised a simple
notation to express these regular sets, and called them regular expressions.

Thr ough the 1950s and 1960s, regular expressions enjoyed a rich study in theoreti-
cal mathematics circles. Robert Constable has written a good summary‡ for the
mathematically inclined.

Although there is evidence of earlier work, the first published computational use
of regular expressions I have actually been able to find is Ken Thompson’s 1968
article Regular Expression Search Algorithm § in which he describes a regular-
expr ession compiler that produced IBM 7094 object code. This led to his work on
qed, an editor that formed the basis for the Unix editor ed.

ed ’s regular expressions were not as advanced as those in qed, but they were the
first to gain widespread use in non-technical fields. ed had a command to display
lines of the edited file that matched a given regular expression. The command,
“ g/Regular Expression/p ”, was read “Global Regular Expr ession Print.” This particu-
lar function was so useful that it was made into its own utility, gr ep (after which
egr ep —extended gr ep —was later modeled).

† “A logical calculus of the ideas imminent in nervous activity,” first published in Bulletin of Math. Bio-
physics 5 (1943) and later reprinted in Embodiments of Mind (MIT Pr ess, 1965). The article begins
with an interesting summary of how neurons behave (did you know that intra-neuron impulse
speeds can range from 1 all the way to 150 meters per second?), and then descends into a pit of for-
mulae that is, literally, all Greek to me.

‡ Robert L. Constable, “The Role of Finite Automata in the Development of Modern Computing The-
ory,” in The Kleene Symposium, Eds. Barwise, Keisler, and Kunen (North-Holland Publishing Com-
pany, 1980), 61–83.

§ Communications of the ACM, Vol.11, No. 6, June 1968.

A Casual Stroll Across the Regex Landscape 85

29 April 2003 09:19

86 Chapter 3: Over view of Regular Expression Features and Flavors

Grep ’s metacharacter s

The regular expressions supported by gr ep and other early tools were quite limited
when compared to egr ep ’s. The metacharacter + was supported, but + and ? wer e
not (the latter’s absence being a particularly strong drawback). gr ep ’s capturing
metacharacters were \(˙˙˙\), with unescaped parentheses repr esenting literal text.†

gr ep supported line anchors, but in a limited way. If ˆ appear ed at the beginning
of the regex, it was a metacharacter matching the beginning of the line. Otherwise,
it wasn’t a metacharacter at all and just matched a literal circumflex (also called a
“car et”). Similarly, $ was the end-of-line metacharacter only at the end of the
regex. The upshot was that you couldn’t do something like !end$;ˆstart ". But
that’s okay, since alternation wasn’t supported either!

The way metacharacters interact is also important. For example, perhaps gr ep ’s
largest shortcoming was that star could not be applied to a parenthesized expres-
sion, but only to a literal character, a character class, or dot. So, in gr ep, par enthe-
ses were useful only for capturing matched text, and not for general grouping. In
fact, some early versions of gr ep didn’t even allow nested parentheses.

Grep evolves

Although many systems have gr ep today, you’ll note that I’ve been using past
tense. The past tense refers to the flavor of the old versions, now upwards of 30
years old. Over time, as technology advances, older programs are sometimes
retr ofitted with additional features, and gr ep has been no exception.

Along the way, AT&T Bell Labs added some new features, such as incorporating
the \{min,max\} notation from the program lex. They also fixed the -y option,
which in early versions was supposed to allow case-insensitive matches but
worked only sporadically. Around the same time, people at Berkeley added start-
and end-of-word metacharacters and renamed -y to -i. Unfortunately, you still
couldn’t apply star or the other quantifiers to a parenthesized expression.

Eg rep evolves

By this time, Alfred Aho (also at AT&T Bell Labs) had written egr ep, which pro-
vided most of the richer set of metacharacters described in Chapter 1. More impor-
tantly, he implemented them in a completely differ ent (and generally better) way.
Not only were !+ " and !? " added, but they could be applied to parenthesized expres-
sions, greatly increasing egr ep expr essive power.

† Historical trivia: ed (and hence gr ep) used escaped parentheses rather than unadorned parentheses as
delimiters because Ken Thompson felt regular expressions would be used to work primarily with C
code, where needing to match raw parentheses would be more common than backrefer encing.

29 April 2003 09:19

Alter nation was added as well, and the line anchors were upgraded to “first-class”
status so that you could use them almost anywhere in your regex. However, egr ep
had problems as well—sometimes it would find a match but not display the result,
and it didn’t have some useful features that are now popular. Nevertheless, it was
a vastly more useful tool.

Other species evolve

At the same time, other programs such as awk, lex, and sed, were growing and
changing at their own pace. Often, developers who liked a feature from one pro-
gram tried to add it to another. Sometimes, the result wasn’t pretty. For example, if
support for plus was added to gr ep, + by itself couldn’t be used because gr ep had
a long history of a raw ‘+’ not being a metacharacter, and suddenly making it one
would have surprised users. Since ‘\+’ was probably not something a gr ep user
would have otherwise normally typed, it could safely be subsumed as the “one or
mor e” metacharacter.

Sometimes new bugs were intr oduced as features were added. Other times, added
featur es wer e later removed. There was little to no documentation for the many
subtle points that round out a tool’s flavor, so new tools either made up their own
style, or attempted to mimic “what seemed to work” with other tools.

Multiply that by the passage of time and numerous programmers, and the result is
general confusion (particularly when you try to deal with everything at once).†

POSIX— An attempt at standardization

POSIX, short for Portable Operating System Interface, is a wide-ranging standard
put forth in 1986 to ensure portability across operating systems. Several parts of
this standard deal with regular expressions and the traditional tools that use them,
so it’s of some interest to us. None of the flavors covered in this book, however,
strictly adhere to all the relevant parts. In an effort to reorganize the mess that reg-
ular expressions had become, POSIX distills the various common flavors into just
two classes of regex flavor, Basic Regular Expressions (BREs), and Extended Regu-
lar Expressions (EREs). POSIX pr ograms then support one flavor or the other. Table
3-1 on the next page summarizes the metacharacters in the two flavors.

One important feature of the POSIX standard is the notion of a locale, a collection
of settings that describe language and cultural conventions for such things as the
display of dates, times, and monetary values, the interpretation of characters in the
active encoding, and so on. Locales aim to allow programs to be internationalized.
They are not a regex-specific concept, although they can affect regular-expr ession
use. For example, when working with a locale that describes the Latin-1

† Such as when writing a book about regular expressions — ask me, I know!

A Casual Stroll Across the Regex Landscape 87

29 April 2003 09:19

88 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-1: Overview of POSIX Regex Flavors

Regex feature BREs EREs

dot, ˆ, $, [˙˙˙], [ˆ˙˙˙] 3 3

“any number” quantifier + +

+ and ? quantifiers + ?

range quantifier \{min,max\} {min,max}

gr ouping \(˙˙˙\) (˙˙˙)

can apply quantifiers to parentheses 3 3

backr efer ences \1 thr ough \9

alter nation 3

(ISO-8859-1) encoding, à and À (characters with ordinal values 224 and 160,
respectively) are consider ed “letters,” and any application of a regex that ignores
capitalization would know to treat them as identical.

Another example is !\w ", commonly provided as a shorthand for a “word-con-
stituent character” (ostensibly, the same as ![a-zA-Z0-9R]" in many flavors). This
featur e is not requir ed by POSIX, but it is allowed. If supported, !\w " would know
to allow all letters and digits defined in the locale, not just those in ASCII.

Note, however, that the need for this aspect of locales is mostly alleviated when
working with tools that support Unicode. Unicode is discussed further beginning
on page 106.

Henr y Spencer’s regex package

Also first appearing in 1986, and perhaps of more importance, was the release by
Henry Spencer of a regex package, written in C, which could be freely incorpo-
rated by others into their own programs — a first at the time. Every program that
used Henry’s package — and there wer e many — pr ovided the same consistent
regex flavor unless the program’s author went to the explicit trouble to change it.

Perl evolves

At about the same time, Larry Wall started developing a tool that would later
become the language Perl. He had already greatly enhanced distributed software
development with his patch pr ogram, but Perl was destined to have a truly monu-
mental impact.

Larry released Perl Version 1 in December 1987. Perl was an immediate hit
because it blended so many useful features of other languages, and combined
them with the explicit goal of being, in a day-to-day practical sense, useful.

29 April 2003 09:19

One immediately notable feature was a set of regular expression operators in the
tradition of the specialty tools sed and awk — a first for a general scripting lan-
guage. For the regular expression engine, Larry borrowed code from an earlier
pr oject, his news reader rn (which based its regular expression code on that in
James Gosling’s Emacs).† The regex flavor was considered powerful by the day’s
standards, but was not nearly as full-featured as it is today. Its major drawbacks
wer e that it supported at most nine sets of parentheses, and at most nine alterna-
tives with !;", and worst of all, !;" was not allowed within parentheses. It did not
support case-insensitive matching, nor allow !\w " within a class (it didn’t support
!\s " or !\d " anywher e). It didn’t support the !{min,max}" range quantifier.

Perl 2 was released in June 1988. Larry had replaced the regex code entirely, this
time using a greatly enhanced version of the Henry Spencer package mentioned in
the previous section. You could still have at most nine sets of parentheses, but
now you could use !;" inside them. Support for !\d " and !\s " was added, and support
for !\w " was changed to include an underscore, since then it would match what
characters were allowed in a Perl variable name. Furthermor e, these metachar-
acters were now allowed inside classes. (Their opposites, !\D ", !\W ", and !\S ", wer e
also newly supported, but wer en’t allowed within a class, and in any case some-
times didn’t work correctly.) Importantly, the /i modifier was added, so you could
now do case-insensitive matching.

Perl 3 came out more than a year later, in October 1989. It added the /e modifier,
which greatly increased the power of the replacement operator, and fixed some
backr efer ence-r elated bugs from the previous version. It added the !{min,max}" range
quantifiers, although unfortunately, they didn’t always work quite right. Worse still,
with Version 3, the regular expression engine couldn’t always work with 8-bit data,
yielding unpredictable results with non-ASCII input.

Perl 4 was released a year and a half later, in March 1991, and over the next two
years, it was improved until its last update in February 1993. By this time, the bugs
wer e fixed and restrictions expanded (you could use !\D " and such within character
classes, and a regular expression could have virtually unlimited sets of parenthe-
ses). Work also went into optimizing how the regex engine went about its task,
but the real breakthr ough wouldn’t happen until 1994.

Perl 5 was officially released in October 1994. Overall, Perl had undergone a mas-
sive overhaul, and the result was a vastly superior language in every respect. On
the regular-expr ession side, it had more inter nal optimizations, and a few meta-
characters were added (including !\G ", which increased the power of iterative

† James Gosling would later go on to develop his own language, Java, which somewhat ironically does
not natively support regular expressions. Java 1.4 however, does include a wonderful regular expres-
sion package, covered in depth in Chapter 8.

A Casual Stroll Across the Regex Landscape 89

29 April 2003 09:19

90 Chapter 3: Over view of Regular Expression Features and Flavors

matches + 128), non-capturing parentheses (+ 45), lazy quantifiers (+ 140), look-
ahead (+ 60), and the /x modifier† (+ 72).

Mor e important than just for their raw functionality, these “outside the box” modi-
fications made it clear that regular expressions could really be a powerful pro-
gramming language unto themselves, and were still ripe for further development.

The newly-added non-capturing parentheses and lookahead constructs requir ed a
way to be expressed. None of the grouping pairs — (˙˙˙), [˙˙˙], <˙˙˙>, or
{˙˙˙} — wer e available to be used for these new features, so Larry came up with
the various ‘(?’ notations we use today. He chose this unsightly sequence because
it previously would have been an illegal combination in a Perl regex, so he was
fr ee to give it meaning. One important consideration Larry had the foresight to rec-
ognize was that there would likely be additional functionality in the future, so by
restricting what was allowed after the ‘(?’ sequences, he was able to reserve them
for future enhancements.

Subsequent versions of Perl grew more robust, with fewer bugs, more inter nal
optimizations, and new features. I like to believe that the first edition of this book
played some small part in this, for as I researched and tested regex-r elated fea-
tur es, I would send my results to Larry and the Perl Porters group, which helped
give some direction as to where impr ovements might be made.

New regex features added over the years include limited lookbehind (+ 60),
“atomic” grouping (+ 137), and Unicode support. Regular expressions were
br ought to the next level by the addition of conditional constructs (+ 138), allow-
ing you to make if-then-else decisions right there as part of the regular expression.
And if that wasn’t enough, there are now constructs that allow you to intermingle
Perl code within a regular expression, which takes things full circle (+ 327). The
version of Perl covered in this book is 5.8.

A par tial consolidation of flavors

The advances seen in Perl 5 were per fectly timed for the World Wide Web revolu-
tion. Perl was built for text processing, and the building of web pages is just that,
so Perl quickly became the language for web development. Perl became vastly
mor e popular, and with it, its powerful regular expression flavor did as well.

Developers of other languages were not blind to this power, and eventually regu-
lar expression packages that were “Perl compatible” to one extent or another were
cr eated. Among these were packages for Tcl, Python, Microsoft’s .NET suite of lan-
guages, Ruby, PHP, C/C++, and many packages for Java.

† My claim to fame is that Larry added the /x modifier after seeing a note from me discussing a long
and complex regex. In the note, I had “pretty printed” the regular expression for clarity. Upon seeing
it, he thought that it would be convenient to do so in Perl code as well, so he added /x.

29 April 2003 09:19

Versions as of this book

Table 3-2 shows a few of the version numbers for programs and libraries that I
talk about in the book. Older versions may well have fewer features and more
bugs, while newer versions may have additional features and bug fixes (and new
bugs of their own).

Because Java did not originally come with regex support, numerous regex libraries
have been developed over the years, so anyone wishing to use regular expres-
sions in Java needed to find them, evaluate them, and ultimately select one to use.
Chapter 6 looks at seven such packages, and ways to evaluate them. For reasons
discussed there, the regex package that Sun eventually came up with (their
java.util.regex, now standard as of Java 1.4) is what I use for most of the Java
examples in this book.

Table 3-2: Versions of Some Tools Mentioned in This Book

GNU awk 3.1 MySQL 3.23.49 Pr ocmail 3.22

GNU egr ep/gr ep 2.4.2 .NET Framework 2002 (1.0.3705) Python 2.2.1

GNU Emacs 21.2.1 PCRE 3.8 Ruby 1.6.7

flex 2.5.4 Perl 5.8 GNU sed 3.02

java.util.regex (Java 1.4.0) PHP (preg routines) 4.0.6 Tcl 8.4

At a Glance
A chart showing just a few aspects of some common tools gives a good clue to
how differ ent things still are. Table 3-3 provides a very superficial look at a few
aspects of the regex flavors of a few tools.

Table 3-3: A (Very) Superficial Look at the Flavor of a Few Common Tools

Moder n Moder n GNU Sun’s JavaFeature gr ep egr ep Emacs Tcl Perl .NET packa ge

+, ˆ, $, [˙˙˙] 3 3 3 3 3 3 3

? + ; \? \+ \; ? + ; ? + \; ? + ; ? + ; ? + ; ? + ;

gr ouping \(˙˙˙\) (˙˙˙) \(˙˙˙\) (˙˙˙) (˙˙˙) (˙˙˙) (˙˙˙)

(?:˙˙˙) 3 3 3

word boundary \< \> \< \> \b,\B \m, \M, \y \b,\B \b,\B \b,\B

\w, \W 3 3 3 3 3 3

backr efer ences 3 3 3 3 3 3

3 supported

A Casual Stroll Across the Regex Landscape 91

29 April 2003 09:19

92 Chapter 3: Over view of Regular Expression Features and Flavors

A chart like Table 3-3 is often found in other books to show the differ ences among
tools. But, this chart is only the tip of the iceberg — for every feature shown, there
ar e a dozen important issues that are overlooked.

For emost is that programs change over time. For example, Tcl used to not support
backr efer ences and word boundaries, but now does. It first supported word
boundaries with the ungainly-looking ![:<:] " and ![:>:] ", and still does, although
such use is deprecated in favor of its more-r ecently supported !\m ", !\M ", and !\y "

(start of word boundary, end of word boundary, or either).

Along the same lines, programs such as gr ep and egr ep, which aren’t from a single
pr ovider but rather can be provided by anyone who wants to create them, can
have whatever flavor the individual author of the program wishes. Human nature
being what is, each tends to have its own features and peculiarities. (The GNU ver-
sions of many common tools, for example, are often more power ful and robust
than other versions.)

And perhaps as important as the easily visible features are the many subtle (and
some not-so-subtle) differ ences among flavors. Looking at the table, one might
think that regular expressions are exactly the same in Perl, .NET, and Java, which
is certainly not true. Just a few of the questions one might ask when looking at
something like Table 3-3 are:

• Ar e star and friends allowed to quantify something wrapped in parentheses?

• Does dot match a newline? Do negated character classes match it? Do either
match the null character?

• Ar e the line anchors really line anchors (i.e., do they recognize newlines that
might be embedded within the target string)? Are they first-class metachar-
acters, or are they valid only in certain parts of the regex?

• Ar e escapes recognized in character classes? What else is or isn’t allowed
within character classes?

• Ar e par entheses allowed to be nested? If so, how deeply (and how many
par entheses ar e even allowed in the first place)?

• If backrefer ences ar e allowed, when a case-insensitive match is requested, do
backr efer ences match appropriately? Do backrefer ences “behave” reasonably
in fringe situations?

• Ar e octal escapes such as !\123 " allowed? If so, how do they reconcile the syn-
tactic conflict with backrefer ences? What about hexadecimal escapes? Is it
really the regex engine that supports octal and hexadecimal escapes, or is it
some other part of the utility?

29 April 2003 09:19

• Does !\w " match only alphanumerics, or additional characters as well? (Among
the programs shown supporting \w in Table 3-3, there are several differ ent
interpr etations). Does !\w " agr ee with the various word-boundary metachar-
acters on what does and doesn’t constitute a “word character”? Do they
respect the locale, or understand Unicode?

Many issues must be kept in mind, even with a tidy little summary like Table 3-3
as a superficial guide. (As another example, peek ahead to Table 8-1 on
page 373 for a look at a chart showing some differ ences among Java packages.) If
you realize that there’s a lot of dirty laundry behind that nice façade, it’s not too
dif ficult to keep your wits about you and deal with it.

As mentioned at the start of the chapter, much of this is just superficial syntax, but
many issues go deeper. For example, once you understand that something such as
!(Jul;July) " in egr ep needs to be written as !\(Jul\;July\)" for GNU Emacs, you
might think that everything is the same from there, but that’s not always the case.
The differ ences in the semantics of how a match is attempted (or, at least, how it
appears to be attempted) is an extremely important issue that is often overlooked,
yet it explains why these two apparently identical examples would actually end up
matching differ ently: one always matches ‘Jul’, even when applied to ‘July’.
Those very same semantics also explain why the opposite, !(July;Jul)" and
!\(July\;Jul\) ", do match the same text. Again, the entire next chapter is devoted
to understanding this.

Of course, what a tool can do with a regular expression is often more important
than the flavor of its regular expressions. For example, even if Perl’s expressions
wer e less powerful than egr ep ’s, Perl’s flexible use of regexes provides for more
raw usefulness. We’ll look at a lot of individual features in this chapter, and in
depth at a few languages in later chapters.

Care and Handling of
Regular Expressions
The second concern outlined at the start of the chapter is the syntactic packaging
that tells an application “Hey, here’s a regex, and this is what I want you to do
with it.” egr ep is a simple example because the regular expression is expected as
an argument on the command line. Any extra syntactic sugar, such as the single
quotes I used throughout the first chapter, are needed only to satisfy the command
shell, not egr ep. Complex systems, such as regular expressions in programming
languages, requir e mor e complex packaging to inform the system exactly what the
regex is and how it should be used.

The next step, then, is to look at what you can do with the results of a match.
Again, egr ep is simple in that it pretty much always does the same thing (displays

Care and Handling of Regular Expressions 93

29 April 2003 09:19

94 Chapter 3: Over view of Regular Expression Features and Flavors

lines that contain a match), but as the previous chapter began to show, the real
power is in doing much more inter esting things. The two basic actions behind
those interesting things are match (to check if a regex matches in a string, and to
perhaps pluck information from the string), and sear ch-and-replace, to modify a
string based upon a match. There are many variations of these actions, and many
variations on how individual languages let you perfor m them.

In general, a programming language can take one of three approaches to regular
expr essions: integrated, procedural, and object-oriented. With the first, regular
expr ession operators are built directly into the language, as with Perl. In the other
two, regular expressions are not part of the low-level syntax of the language.
Rather, nor mal strings are passed as arguments to normal functions, which then
interpr et the strings as regular expressions. Depending on the function, one or
mor e regex-r elated actions are then perfor med. One derivative or another of this
style is use by most (non-Perl) languages, including Java, the .NET languages, Tcl,
Python, PHP, Emacs lisp, and Ruby.

Integ rated Handling
We’ve already seen a bit of Perl’s integrated approach, such as this example from
page 55:

if ($line =˜ m/ˆSubject: (.+)/i) {
$subject = $1;

}

Her e, for clarity, variable names I’ve chosen are in italic, while the regex-r elated
items are bold, and the regular expression itself is underlined. We know that Perl
applies the regular expression !ˆSubject: (.+)" to the text held in $line, and if a
match is found, executes the block of code that follows. In that block, the variable
$1 repr esents the text matched within the regular expression’s parentheses, and
this gets assigned to the variable $subject.

Another example of an integrated approach is when regular expressions are part
of a configuration file, such as for pr ocmail (a Unix mail-processing utility.) In the
configuration file, regular expressions are used to route mail messages to the sec-
tions that actually process them. It’s even simpler than with Perl, since the
operands (the mail messages) are implicit.

What goes on behind the scenes is quite a bit more complex than these examples
show. An integrated approach simplifies things to the programmer because it hides
in the background some of the mechanics of preparing the regular expression, set-
ting up the match, applying the regular expression, and deriving results from that
application. Hiding these steps makes the normal case very easy to work with, but
as we’ll see later, it can make some cases less efficient or clumsier to work with.

29 April 2003 09:19

But, before getting into those details, let’s uncover the hidden steps by looking at
the other methods.

Procedural and Object-Oriented Handling
Pr ocedural and object-oriented handling are fairly similar. In either case, regex
functionality is provided not by built-in regular-expr ession operators, but by nor-
mal functions (procedural) or constructors and methods (object-oriented). In this
case, there are no true regular-expr ession operands, but rather normal string argu-
ments that the functions, constructors, or methods choose to interpret as regular
expr essions.

The next sections show examples in Java, VB.NET, and Python.

Regex handling in Java

Let’s look at the equivalent of the “Subject” example in Java, using Sun’s
java.util.regex package. (Java is covered in depth in Chapter 8.)

import java.util.regex.,; // Make regex classes easily available

+
+
+

Ê Pattern r = Pattern.compile("ˆSubject: (.+)", Pattern.CASEQINSENSITIVE);
Ë Matcher m = r.matcher(line);
Ì if (m.find()) {
Í subject = m.group(1);

}

Variable names I’ve chosen are again in italic, the regex-r elated items are bold, and
the regular expression itself is underlined. Well, to be precise, what’s underlined is
a nor mal string literal to be interpreted as a regular expression.

This example shows an object-oriented approach with regex functionality supplied
by two classes in Sun’s java.util.regex package: Pattern and Matcher. The
actions perfor med ar e:

Ê Inspect the regular expression and compile it into an internal form that
matches in a case-insensitive manner, yielding a “Pattern” object.

Ë Associate it with some text to be inspected, yielding a “Matcher” object.

Ì Actually apply the regex to see if there is a match in the previously-associ-
ated text, and let us know the result.

Í If there is a match, make available the text matched within the first set of
capturing parentheses.

Actions similar to these are requir ed, explicitly or implicitly, by any program wish-
ing to use regular expressions. Perl hides most of these details, and this Java
implementation usually exposes them.

Care and Handling of Regular Expressions 95

29 April 2003 09:19

96 Chapter 3: Over view of Regular Expression Features and Flavors

A procedural example. Sun’s Java regex package does, however, provide a few
pr ocedural-appr oach “convenience functions” that hide much of the work. Rather
than requir e you to first create a regex object, then use that object’s methods to
apply it, these static functions create a temporary object for you, throwing it away
once done. Here’s an example showing the Pattern.matches(˙˙˙) function:

if (! Pattern.matches("\\s+", line))
{

// . . . line is not blank . . .
}

This function wraps an implicit !ˆ˙˙˙$ " ar ound the regex, and retur ns a Boolean indi-
cating whether it can match the input string. It’s common for a package to provide
both procedural and object-oriented interfaces, just as Sun did here. The differ-
ences between them often involve convenience (a procedural interface can be eas-
ier to work with for simple tasks, but more cumbersome for complex tasks),
functionality (procedural interfaces generally have less functionality and options
than their object-oriented counterparts), and efficiency (in any given situation, one
is likely to be more efficient than the other — a subject covered in detail in
Chapter 6).

Ther e ar e many regex packages for Java (half a dozen are discussed in Chapter 8),
but Sun is in a position to integrate theirs with the language more than anyone
else. For example, they’ve integrated it with the string class; the previous example
can actually be written as:

if (! line.matches("\\s+",))
{

// . . . line is not blank . . .
}

Again, this is not as efficient as a properly-applied object-oriented approach, and
so is not appropriate for use in a time-critical loop, but it’s quite convenient for
“casual” use.

Regex handling in VB and other .NET languages

Although all regex engines perfor m essentially the same basic tasks, they differ in
how those tasks and services are exposed to the programmer, even among imple-
mentations sharing the same approach. Here’s the “Subject” example in VB.NET
(.NET is covered in detail in Chapter 9):

Imports System.Text.RegularExpressions ’ Make regex classes easily available

+
+
+

Dim R as Regex = New Regex("ˆSubject: (.+)", RegexOptions.IgnoreCase)
Dim M as Match = R.Match(line)
If M.Success

subject = M.Groups(1).Value
End If

29 April 2003 09:19

Overall, this is generally similar to the Java example, except that .NET combines
steps Ë and Ì , and requir es an extra Value in Í . Why the differ ences? One is
not inherently better or worse — each was just chosen by the developers who
thought it was the best approach at the time. (More on this in a bit.)

.NET also provides a few procedural-appr oach functions. Here’s one to check for a
blank line:

If Not Regex.IsMatch(Line, "ˆ\s+$") Then
’ . . . line is not blank . . .

End If

Unlike Sun’s Pattern.matches function, which adds an implicit !ˆ˙˙˙$ " ar ound the
regex, Microsoft chose to offer this more general function. It’s just a simple wrap-
per around the core objects, but it involves less typing and variable corralling for
the programmer, at only a small efficiency expense.

Regex handling in Python

As a final example, let’s look at the !Subject " example in Python:

import re;
+
+
+

R = re.compile("ˆSubject: (.+)", re.IGNORECASE);
M = R.search(line)
if M:

subject = M.group(1)

Again, this looks very similar to what we’ve seen before.

Why do approaches differ?

Why does one language do it one way, and another language another? There may
be language-specific reasons, but it mostly depends on the whim and skills of the
engineers that develop each package. In fact, there are many unrelated regular-
expr ession packages for Java (see Chapter 8), each written by someone who
wanted the functionality that Sun didn’t originally provide. Each has its own
str engths and weaknesses, but it’s interesting to note that they all provide their
functionality in quite differ ent ways from each other, and from what Sun eventu-
ally decided to implement themselves.

A Sear ch-and-Replace Example
The “Subject” example is pretty simple, so the various approaches really don’t
have an opportunity to show how differ ent they really are. In this section, we’ll
look at a somewhat more complex example, further highlighting the differ ent
designs.

Care and Handling of Regular Expressions 97

29 April 2003 09:19

98 Chapter 3: Over view of Regular Expression Features and Flavors

In the previous chapter (+ 73), we saw this Perl search-and-r eplace to “linkize” an
email address:

$text =˜ s{
\b
Captur e the address to $1 . . .
(

\w[-.\w]+ # user name
@
[-\w]+(\.[-\w]+)+\.(com;edu;info) # hostname

)
\b

}{$1}gix;

Let’s see how this is done in other languages.

Sear ch-and-replace in Java

Her e’s the search-and-r eplace example with Sun’s java.util.regex package:

import java.util.regex.,; // Make regex classes easily available

+
+
+

Pattern r = Pattern.compile(
"\\b \n"+
"# Captur e the address to $1 . . . \n"+
"(\n"+
" \\w[-.\\w]+ # user name \n"+
" @ \n"+
" [-\\w]+(\\.[-\\w]+)+\\.(com;edu;info) # hostname \n"+
") \n"+
"\\b \n",
Pattern.CASEQINSENSITIVE<Pattern.COMMENTS);

Matcher m = r.matcher(text);
String result = m.replaceAll("$(1)");
System.out.println(result);

Ther e ar e a number of things to note. Perhaps the most important is that each ‘\’
wanted in the regular expression requir es ‘\\’ in the string literal. Thus, using ‘\\w’
in the string literal results in ‘\w’ in the regular expression. This is because regular
expr essions ar e pr ovided as normal Java string literals, which as we’ve seen before
(+ 44), requir e special handling. For debugging, it might be useful to use

System.out.println(P.pattern());

to display the regular expression as the regex function actually received it. One
reason that I include newlines in the regex is so that it displays nicely when
printed this way. Another reason is that each ‘#’ intr oduces a comment that goes
until the next newline; so, at least some of the newlines are requir ed to restrain
the comments.

Perl uses notations like /g, /i, and /x to signify special conditions (these are the
modifiers for replace all, case-insensitivity, and fr ee for matting modes + 133), but

29 April 2003 09:19

java.util.regex uses either differ ent functions (replaceAll vs. replace) or
flag arguments passed to the function (e.g., Pattern.CASERINSENSITIVE and
Pattern.COMMENTS).

Sear ch-and-replace in VB.NET

The general approach in VB.NET is similar:

Dim R As Regex = New Regex R
("\b " & R
"(?# Captur e the address to $1 . . .) " & R
"(" & R
" \w[-.\w]+ (?# user name) " & R
" @ " & R
" [-\w]+(\.[-\w]+)+\.(com;edu;info) (?# hostname) " & R
") " & R
"\b ", R
RegexOptions.IgnoreCase Or RegexOptions.IgnorePatternWhitespace)

Dim Copy As String = R.Replace(text, "${1}")
Console.WriteLine(Copy)

Due to the inflexibility of VB.NET string literals (they can’t span lines, and it’s diffi-
cult to get newline characters into them), longer regular expressions are not as
convenient to work with as in some other languages. On the other hand, because
‘\’ is not a string metacharacter in VB.NET, the expression can be less visually clut-
ter ed. A double quote is a metacharacter in VB.NET string literals: to get one dou-
ble quote into the string’s value, you need two double quotes in the string literal.

Sear ch and Replace in Other Languages
Let’s quickly look at a few examples from other traditional tools and languages.

Awk

Awk uses an integrated approach, /rege x/, to per form a match on the current
input line, and uses “var ˜ ˙˙˙” to per form a match on other data. You can see
wher e Perl got its notation for matching. (Perl’s substitution operator, however, is
modeled after sed’s.) The early versions of awk didn’t support a regex substitution,
but modern versions have the sub(˙˙˙) operator:

sub(/mizpel/, "misspell")

This applies the regex !mizpel " to the current line, replacing the first match with
misspell. Note how this compares to Perl’s (and sed’s) s/mizpel/misspell/.

To replace all matches within the line, awk does not use any kind of /g modifier,
but a differ ent operator altogether: gsub(/mizpel/, "misspell").

Care and Handling of Regular Expressions 99

29 April 2003 09:19

100 Chapter 3: Over view of Regular Expression Features and Flavors

Tc l

Tcl takes a procedural approach that might look confusing if you’re not familiar
with Tcl’s quoting conventions. To corr ect our misspellings with Tcl, we might use:

regsub mizpel $var misspell newvar

This checks the string in the variable var, and replaces the first match of !mizpel "

with misspell, putting the now possibly-changed version of the original string
into the variable newvar (which is not written with a dollar sign in this case). Tcl
expects the regular expression first, the target string to look at second, the replace-
ment string third, and the name of the target variable fourth. Tcl also allows
optional flags to its regsub, such as -all to replace all occurrences of the match
instead of just the first:

regsub -all mizpel $var misspell newvar

Also, the -nocase option causes the regex engine to ignore the differ ence
between uppercase and lowercase characters (just like egr ep ’s -i flag, or Perl’s /i
modifier).

GNU Emacs

The powerful text editor GNU Emacs (just “Emacs” from here on) supports elisp
(Emacs lisp) as a built-in programming language. It provides a procedural regex
inter face with numerous functions providing various services. One of the main
ones is re-search-forward, which accepts a normal string as an argument and
interpr ets it as a regular expression. It then starts searching the text from the “cur-
rent position,” stopping at the first match, or aborting if no match is found. (This
function is invoked when one invokes a “regexp search” while using the editor.)

As Table 3-3 (+ 91) shows, Emacs’ flavor of regular expressions is heavily laden
with backslashes. For example, !\<\([a-z]+\)\([\n \t]\;<[ˆ>]+>\)+\1\> " is
an expression for finding doubled words, similar to the problem in the first chap-
ter. We couldn’t use this regex directly, however, because the Emacs regex engine
doesn’t understand \t and \n. Emacs double-quoted strings, however, do, and
convert them to the tab and newline values we desire befor e the regex engine
ever sees them. This is a notable benefit of using normal strings to provide regular
expr essions. One drawback, particularly with elisp’s regex flavor’s propensity for
backslashes, is that regular expressions can end up looking like a row of scattered
toothpicks. Here’s a small function for finding the next doubled word:

(defun FindNextDbl ()
"move to next doubled word, ignoring <˙˙˙> tags" (interactive)
(re-search-forward "\\<\\([a-z]+\\)\\([\n \t]\\;<[ˆ>]+>\\)+\\1\\>")

)

Combine that with (define-key global-map "\C-x\C-d" ’FindNextDbl) and you
can use the “Control-x Contr ol-d” sequence to quickly search for doubled words.

29 April 2003 09:19

Care and Handling: Summary
As you can see, there’s a wide range of functionalities and mechanics for achiev-
ing them. If you are new to these languages, it might be quite confusing at this
point. But, never fear! When trying to learn any one particular tool, it is a simple
matter to learn its mechanisms.

Str ings, Character Encodings, and Modes
Befor e getting into the various type of metacharacters generally available, there are
a number of global issues to understand: regular expressions as strings, character
encodings, and match modes.

These are simple concepts, in theory, and in practice, some indeed are. With most,
though, the small details, subtleties, and inconsistencies among the various imple-
mentations sometimes makes it hard to pin down exactly how they work in prac-
tice. The next sections cover some of the common and sometimes complex issues
you’ll face.

Str ings as Regular Expressions
The concept is simple: in most languages except Perl, awk, and sed, the regex
engine accepts regular expressions as normal strings — strings that are often pro-
vided as string literals like "ˆFrom:(.+)". What confuses many, especially early
on, is the need to deal with the language’s own string-literal metacharacters when
composing a string to be used as a regular expression.

Each language’s string literals have their own set of metacharacters, and some lan-
guages even have more than one type of string literal, so there’s no one rule that
works everywhere, but the concepts are all the same. Many languages’ string liter-
als recognize escape sequences like \t, \\, and \x2A, which are interpr eted while
the string’s value is being composed. The most common regex-r elated aspect of
this is that each backslash in a regex requir es two backslashes in the correspond-
ing string literal. For example, "\\n" is requir ed to get the regex !\n ".

If you forgot the extra backslash for the string literal and used "\n", with many
languages you’d then get ! 1 ", which just happens to do exactly the same thing as
!\n ". Well, actually, if the regex is in an /x type of free-spacing mode, ! 1 " becomes
empty, while !\n " remains a regex to match a newline. So, you can get bitten if you
forget. Table 3-4 on the next page shows a few examples involving \t and \x2A

(2A is the ASCII code for ‘+’.) The second pair of examples in the table show the
unintended results when the string-literal metacharacters aren’t taken into account.

Every language’s string literals are dif ferent, but some are quite differ ent in that ‘\’
is not a metacharacter. For example. VB.NET’s string literals have only one

Str ings, Character Encodings, and Modes 101

29 April 2003 09:19

102 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-4: A Few String-Literal Examples

Str ing literal "[\t\x2A]" "[\\t\\x2A]" "\t\x2A" "\\t\\x2A"

Str ing value ‘[2+]’ ‘[\t\x2A]’ ‘2+’ ‘\t\x2A’

As regex ![2+]" ![\t\x2A] " ! 2+ " !\t\x2A "

Matches any number tabs tab followed by startab or star tab or star

tab followed by starIn /x mode tab or star tab or star err or

metacharacter, a double quote. The next sections look at the details of several
common languages’ string literals. Whatever the individual string-literal rules, the
question on your mind when using them should be “what will the regular expres-
sion engine see after the language’s string processing is done?”

Str ings in Java

Java string literals are like those presented in the introduction, in that they are
delimited by double quotes, and backslash is a metacharacter. Common combina-
tions such as ‘\t’ (tab), ‘\n’ (newline), ‘\\’ (literal backslash), etc. are supported.
Using a backslash in a sequence not explicitly supported by literal strings results in
an error.

Str ings in VB.NET

String literals in VB.NET are also delimited by double quotes, but otherwise are
quite differ ent fr om Java’s. VB.NET strings recognize only one metasequence: a
pair of double quotes in the string literal add one double quote into the string’s
value. For example, "he said ""hi""\." results in !he said "hi"\. "

Str ings in C#

Although all the languages of Microsoft’s .NET Framework share the same regular
expr ession engine internally, each has its own rules about the strings used to cre-
ate the regular-expr ession arguments. We just saw Visual Basic’s simple string liter-
als. In contrast, Microsoft’s C# language has two types of string literals.

C# supports the common double-quoted string similar to the kind discussed in this
section’s introduction, except that "" rather than \" adds a double quote into the
string’s value. However, C# also supports “verbatim strings,” which look like @"˙˙˙".
Verbatim strings recognize no backslash sequences, but instead, just one special
sequence: a pair of double quotes inserts one double quote into the target value.
This means that you can use "\\t\\x2A" or @"\t\x2A" to create the !\t\x2A "

example. Because of this simpler interface, one would tend to use these @"˙˙˙" ver-
batim strings for most regular expressions.

29 April 2003 09:19

Str ings in PHP

PHP also offers two types of strings, yet both differ from either of C#’s types. With
PHP’s double-quoted strings, you get the common backslash sequences like ‘\n’,
but you also get variable interpolation as we’ve seen with Perl (+ 77), and also the
special sequence {˙˙˙} which inserts into the string the result of executing the code
between the braces.

These extra features of PHP double-quoted strings mean that you’ll tend to insert
extra backslashes into regular expressions, but there’s one additional feature that
helps mitigate that need. With Java and C# string literals, a backslash sequence
that isn’t explicitly recognized as special within strings results in an error, but with
PHP double-quoted strings, such sequences are simply passed through to the
string’s value. PHP strings recognize \t, so you still need "\\t" to get !\t ", but if
you use "\w", you’ll get !\w " because \w is not among the sequences that PHP dou-
ble-quoted strings recognize. This extra feature, while handy at times, does add
yet another level of complexity to PHP double-quoted strings, so PHP also offers its
simpler single-quoted strings.

PHP single-quoted strings offer uncluttered strings on the order of VB.NET’s
strings, or C#’s @"˙˙˙" strings, but in a slightly differ ent way. Within a PHP single-
quoted string, the sequence \’ includes one single quote in the target value, and a
\\ at the end of the string allows the target value to end with a backslash. Any
other character (including any other backslash) is not considered special, and is
copied to the target value verbatim. This means that ’\t\x2A’ cr eates !\t\x2A ".
Because of this simplicity, single-quoted strings are the most convenient for PHP

regular expressions.

Str ings in Python

Python offers a number of string-literal types. You can use either single quotes or
double quotes to create strings, but unlike PHP, ther e is no differ ence between the
two. Python also offers “triple-quoted” strings of the form ’’’˙˙˙’’’ and """˙˙˙""",
which are dif ferent in that they may contain unescaped newlines. All four types
of fer the common backslash sequences such as \n, but have the same twist that
PHP has in that unrecognized sequences are left in the string verbatim. Contrast
this with Java and C# strings, for which unrecognized sequences cause an error.

Like PHP and C#, Python offers a more literal type of string, its “raw string.” Similar
to C#’s @"˙˙˙" notation, Python uses an ‘r’ befor e the opening quote of any of the
four quote types. For example, r"\t\x2A" yields !\t\x2A ". Unlike the other lan-
guages, though, with Python’s raw strings, all backslashes are kept in the string,
including those that escape a double quote (so that the double quote can be
included within the string): r"he said \"hi\"\." results in !he said \"hi\"\. ".
This isn’t really a problem when using strings for regular expressions, since

Str ings, Character Encodings, and Modes 103

29 April 2003 09:19

104 Chapter 3: Over view of Regular Expression Features and Flavors

Python’s regex flavor treats !\"" as !"", but if you like, you can bypass the issue by
using one of the other types of raw quoting: r’he said "hi"\.’

Str ings in Tcl

Tcl is dif ferent from anything else in that it doesn’t really have string literals at all.
Rather, command lines are broken into “words,” which Tcl commands can then
consider as strings, variable names, regular expressions, or anything else as appro-
priate to the command. While a line is being parsed into words, common back-
slash sequences like \n ar e recognized and converted, and backslashes in
unknown combinations are simply dropped. You can put double quotes around
the word if you like, but they aren’t requir ed unless the word has whitespace in it.

Tcl also has a raw literal type of quoting similar to Python’s raw strings, but Tcl
uses braces, {˙˙˙}, instead of r’˙˙˙’. Within the braces, everything except a back-
slash-newline combination is kept as-is, so you can use {\t\x2A} to get !\t\x2A ".

Within the braces, you can have additional sets of braces so long as they nest.
Those that don’t nest must be escaped with a backslash, although the backslash
does remain in the string’s value.

Regex literals in Perl

In the Perl examples we’ve seen so far in this book, regular expressions have been
pr ovided as literals (“regular-expr ession literals”). As it turns out, you can also pro-
vide them as strings. For example:

$str =˜ m/(\w+)/;

can also be written as:

$regex = ’(\w+)’;
$str =˜ $regex;

or perhaps:

$regex = "(\\w+)";
$str =˜ $regex;

(although using a regex literal can be much more efficient + 242, 348).

When a regex is provided as a literal, Perl provides extra features that the regular-
expr ession engine itself does not, including:

• The interpolation of variables (incorporating the contents of a variable as part
of the regular expression).

• Support for a literal-text mode via !\Q˙˙˙\E " (+ 112).

• Optional support for a \N{name} construct, which allows you to specify char-
acters via their official Unicode names. For example, you can match ‘¡Hola!’
with !\N{INVERTED EXCLAMATION MARK}Hola! ".

29 April 2003 09:19

In Perl, a regex literal is parsed like a very special kind of string. In fact, these fea-
tur es ar e also available with Perl double-quoted strings. The point to be aware of
is that these features are not pr ovided by the regular-expr ession engine. Since the
vast majority of regular expressions used within Perl are as regex literals, most
think that !\Q˙˙˙\E " is part of Perl’s regex language, but if you ever use regular
expr essions read from a configuration file (or from the command line, etc.), it’s
important to know exactly what features are provided by which aspect of the lan-
guage.

Mor e details are available in Chapter 7, starting on page 288.

Character-Encoding Issues
A character encoding is merely an explicit agreement on how bytes with various
values should be interpreted. A byte with the decimal value 110 is interpreted as
the character ‘n’ with the ASCII encoding, but as ‘>’ with EBCDIC. Why? Because
that’s what someone decided — ther e’s nothing intrinsic about those values and
characters that makes one encoding better than the other. The byte is the same;
only the interpretation changes.

ASCII defines characters for only half the values that a byte can hold. The encoding
ISO-8859-1 (commonly called Latin-1) fills in the blank spots with accented char-
acters and special symbols, making an encoding usable by a larger set of lan-
guages. With this encoding, a byte with a decimal value of 234 is to be interpreted
as ê, instead of being undefined as it is with ASCII.

The important question for us is this: when we intend for a certain set of bytes to
be consider ed in the light of a particular encoding, does the program actually treat
them that way? For example, if we have four bytes with the values 234, 116, 101,
and 115 that we intend to be considered as Latin-1 (repr esenting the French word
“êtes”), we’d like the regex !ˆ\w+$ " or !ˆ\b " to match. This happens if the program’s
\w and \b know to treat those bytes as Latin-1 characters, and probably doesn’t
happen otherwise.

Richness of encoding-related support

Ther e ar e many encodings. When you’re concer ned with a particular one, impor-
tant questions you should ask include:

• Does the program understand this encoding?

• How does it know to treat this data as being of that encoding?

• How rich is the regex support for this encoding?

Str ings, Character Encodings, and Modes 105

29 April 2003 09:19

106 Chapter 3: Over view of Regular Expression Features and Flavors

The richness of an encoding’s support has several important issues, including:

• Ar e characters that are encoded with multiple bytes recognized as such? Do
expr essions like dot and [ˆx] match single characters, or single bytes ?

• Do \w, \d, \s, \b, etc., properly understand all the characters in the encoding?
For example, even if ê is known to be a letter, do \w and \b tr eat it as such?

• Does the program try to extend the interpretation of class ranges? Is ê

matched by [a-z]?

• Does case-insensitive matching work properly with all the characters? For
example, are ê and Ê equal?

Sometimes things are not as simple as they might seem. For example, the \b of
Sun’s java.util.regex package properly understands all the word-related char-
acters of Unicode, but its \w does not (it understands only basic ASCII). We’ll see
mor e examples of this later in the chapter.

Unicode

Ther e seems to be a lot of misunderstanding about just what “Unicode” is. At the
most basic level, Unicode is a character set or a conceptual encoding — a logical
mapping between a number and a character. For example, the Korean character
k is mapped to the number 49,333. The number, called a code point, is nor mally
shown in hexadecimal, with “U+” prepended. 49,333 in hex is C0B5, so k is
referr ed to as U+C0B5. Included as part of the Unicode concept is a set of attributes
for many characters, such as “3 is a digit” and “É is an uppercase letter whose low-
ercase equivalent is é.”

At this level, nothing is yet said about just how these numbers are actually
encoded as data on a computer. Ther e ar e a variety of ways to do so, including
the UCS-2 encoding (all characters encoded with two bytes), the UCS-4 encoding
(all characters encoded with four bytes), UTF-16 (most characters encoded with
two bytes, but some with four), and the UTF-8 encoding (characters encoded with
one to six bytes). Exactly which (if any) of these encodings a particular program
uses internally is usually not a concern to the user of the program. The user’s con-
cer n is usually limited to how to convert external data (such as data read from a
file) from a known encoding (ASCII, Latin-1, UTF-8, etc.) to whatever the program
uses. Programs that work with Unicode usually supply various encoding and
decoding routines for doing the conversion.

Regular expressions for programs that work with Unicode often support a \unum

metasequence that can be used to match a specific Unicode character (+ 116).
The number is usually given as a four-digit hexadecimal number, so \uC0B5

matches k. It’s important to realize that \uC0B5 is saying “match the Unicode
character U+C0B5,” and says nothing about what actual bytes are to be compar ed,

29 April 2003 09:19

which is dependent on the particular encoding used internally to repr esent Uni-
code code points. If the program happens to use UTF-8 internally, that character
happens to be repr esented with three bytes. But you, as someone using the Uni-
code-enabled program, don’t really need to care.

But, there are some related issues that you may need to be aware of...

Character s versus combining-character sequences. What a person considers a
“character” doesn’t always agree with what Unicode or a Unicode-enabled
pr ogram (or regex engine) considers to be a character. For example, most would
consider à to be a single character, but in Unicode, it’s composed of two code
points, U+0061 (a) combined with the grave accent U+0300 (`). Unicode offers a
number of combining characters that are intended to follow (and be combined
with) a base character. This makes things a bit more complex for the regular-
expr ession engine — for example, should dot match just one code point, or the
entir e U+0061 plus U+0300 combination?

In practice, it seems that many programs treat “character” and “code point” as syn-
onymous, which means that dot matches each code point individually, whether it
is base character or one of the combining characters. Thus, à (U+0061 plus U+0300)
is matched by !ˆ..$ ", and not by !ˆ.$ ".

Perl happens to support the \X metasequence, which fulfills what many might
expect from dot (“match one character ”) in that it matches a base character fol-
lowed by any number of combining characters. See more on page 125.

It’s important to keep combining characters in mind when using a Unicode-
enabled editor to input Unicode characters directly into regular-expr essions. If an
accented character, say Å, ends up in a regular expression as ‘A’ plus ‘˚’, it likely
can’t match a string containing the single code point version of Å (single code
point versions are discussed in the next section). Also, it appears as two distinct
characters to the regular-expr ession engine itself, so specifying ![˙˙˙Å˙˙˙]" adds the
two characters to the class, just as the explicit ![˙˙˙A˚˙˙˙]" does. If followed by a
quantifier, such an Å has the quantifier applying only to the accent, just as with an
explicit ! A˚+ ".

Multiple code points for the same character. In theory, Unicode is supposed to
be a one-to-one mapping between code points and characters, but there are many
situations where one character can have multiple repr esentations. In the previous
section I note that à is U+0061 followed by U+0300. It is, however, also encoded
separately as the single code point U+00E0. Why is it encoded twice? To maintain
easier conversion between Unicode and Latin-1. If you have Latin-1 text that you
convert to Unicode, à will likely be converted to U+00E0. But, it could well be
converted to a U+0061, U+0300 combination. Often, there’s nothing you can do to
automatically allow for these differ ent ways of expressing characters, but Sun’s

Str ings, Character Encodings, and Modes 107

29 April 2003 09:19

108 Chapter 3: Over view of Regular Expression Features and Flavors

java.util.regex package provides a special match option, CANONREQ, which
causes characters that are “canonically equivalent” to match the same, even if their
repr esentations in Unicode differ (+ 380).

Somewhat related is that differ ent characters can look virtually the same, which
could account for some confusion at times among those creating the text you’re
tasked to check. For example, the Roman letter I (U+0049) could be confused with
{, the Greek letter Iota (U+0399). Add dialytika to that to get Ï or {̈, and it can be
encoded four differ ent ways (U+00CF; U+03AA; U+0049 U+0308; U+0399 U+0308).
This means that you might have to manually allow for these four possibilities
when constructing a regular expression to match Ï. Ther e ar e many examples
like this.

Also plentiful are single characters that appear to be more than one character. For
example, Unicode defines a character called “SQUARE HZ” (U+3390), which appears
as ?. This looks very similar to the two normal characters Hz (U+0048 U+007A).

Although the use of special characters like ? is minimal now, their adoption over
the coming years will increase the complexity of programs that scan text, so those
working with Unicode would do well to keep these issues in the back of their
mind. Along those lines, one might already expect, for example, the need to allow
for both normal spaces (U+0020) and no-break spaces (U+00A0), and perhaps also
any of the dozen or so other types of spaces that Unicode defines.

Unicode 3.1+ and code points beyond U+FFFF. With the release of Unicode
Version 3.1 in mid 2001, characters with code points beyond U+FFFF wer e added.
(Pr evious versions of Unicode had built in a way to allow for characters at those
code points, but until Version 3.1, none were actually defined.) For example, there
is a character for musical symbol C Clef defined at U+1D121. Older programs built
to handle only code points U+FFFF and below won’t be able to handle this. Most
pr ograms’ \unum indeed allow only a four-digit hexadecimal number.

One program that can handle characters at these new code points is Perl. Rather
than \unum, it has \x{num} wher e the number can be any number of digits. You
can then use \x{1D121} to match the C Clef character.

Unicode line terminator. Unicode defines a number of characters (and one
sequence of two characters) that are to be consider ed line terminators, shown in
Table 3-5.

When fully supported, line terminators influence how lines are read from a file
(including, in scripting languages, the file the program is being read from). With
regular expressions, they can influence both what dot matches (+ 110), and where
!ˆ ", !$ ", and !\Z " match (+ 111).

29 April 2003 09:19

Table 3-5: Unicode Line Ter minators

Character s Descr iption

LF U+000A ASCII Line Feed
VT U+000B ASCII Vertical Tab
FF U+000C ASCII For m Feed
CR U+000D ASCII Carriage Return
CR/LF U+000D U+000A ASCII Carriage Return / Line Feed sequence
NEL U+0085 Unicode NEXT LINE

LS U+2028 Unicode LINE SEPARATOR

PS U+2029 Unicode PARAGRAPH SEPARATOR

Regex Modes and Match Modes
Most regex engines support a number of differ ent modes for how a regular
expr ession is interpreted or applied. We’ve seen an example of each with Perl’s /x
modifier (regex mode that allows free whitespace and comments + 72) and /i

modifier (match mode for case-insensitive matching + 47).

Modes can generally be applied globally to the whole regex, or in many modern
flavors, partially, to specific subexpressions of the regex. The global application is
achieved through modifiers or options, such as Perl’s /i or java.util.regex’s
Pattern.CASERINSENSITIVE flag (+ 98). If supported, the partial application of a
mode is achieved with a regex construct that looks like !(?i)" to turn on case-in-
sensitive matching, or !(?-i) " to turn it off. Some flavors also support !(?i:˙˙˙)" and
!(?-i:˙˙˙)", which turn on and off case-insensitive matching for the subexpression
enclosed.

How these modes are invoked within a regex is discussed later in this chapter
(+ 133). In this section, we’ll merely review some of the modes commonly avail-
able in most systems.

Case-insensitive match mode

The almost ubiquitous case-insensitive match mode ignores letter case during
matching, so that !b " matches both ‘b’ and ‘B’. This feature relies upon proper char-
acter encoding support, so all the cautions mentioned earlier apply.

Historically, case-insensitive matching support has been surprisingly fraught with
bugs. Most have been fixed over the years, but some still linger. As we saw in the
first chapter, GNU egr ep ’s case-insensitive matching doesn’t apply to backrefer-
ences. Ruby’s case-insensitive matching doesn’t apply to octal and hex escapes.

Ther e ar e special Unicode-related issues with case-insensitive matching (which
Unicode calls “loose matching”). For starters, not all alphabets have the concept of
upper and lower case, and some have an additional title case used only at the start

Str ings, Character Encodings, and Modes 109

29 April 2003 09:19

110 Chapter 3: Over view of Regular Expression Features and Flavors

of a word. Sometimes there’s not a straight one-to-one mapping between upper
and lower case. A common example is that a Greek Sigma, Σ, has two lowercase
versions, ς and σ; all three should mutually match in case-insensitive mode. (Of
the systems I’ve tested, only Perl does this correctly.)

Another issue is that sometimes a single character maps to a sequence of multiple
characters. One well known example is that the uppercase version of ß is the two-
character combination “SS”. Ther e ar e also Unicode-manufactured problems. One
example is that while there’s a single character : (U+01F0), it has no single-charac-
ter uppercase version. Rather, J̌ requir es a combining sequence (+ 107), U+004A

and U+030C. Yet, : and J̌ should match in a case-insensitive mode. There are even
examples like this that involve one-to-three mappings. Luckily, most of these do
not involve commonly-used characters.

Free-spacing and comments regex mode

In this mode, whitespace outside of character classes is mostly ignored. White-
space within a character class still counts (except in java.util.regex), and com-
ments are allowed between # and a newline. We’ve already seen examples of this
for Perl (+ 72), Java (+ 98), and VB.NET (+ 99).

It’s not quite true that all whitespace outside of classes is ignored. It’s more as if
whitespace is turned into a do-nothing metacharacter. The distinction is important
with something like !\12 3 ", which in this mode is taken as !\12 " followed by !3 ",
and not !\123 ", as some might expect.

Of course, just what is and isn’t “whitespace” is subject to the character encoding
in effect, and its fullness of support. Most programs recognize only ASCII

whitespace.

Dot-matches-all match mode (a.k.a., “single-line mode”)

Usually, dot does not match a newline. The original Unix regex tools worked on a
line-by-line basis, so the thought of matching a newline wasn’t even an issue until
the advent of sed and lex. By that time, ! .+ " had become a common idiom to
match “the rest of the line,” so the new languages disallowed it from crossing line
boundaries in order to keep it familiar.† Thus, tools that could work with multiple
lines (such as a text editor) generally disallow dot from matching a newline.

For modern programming languages, a mode in which dot matches a newline can
be as useful as one where dot doesn’t. Which of these is most convenient for a
particular situation depends, well, on the situation. Many programs now offer ways
for the mode to be selected on a per-r egex basis.

† As Ken Thompson (ed ’s author) explained it to me, it kept ! .+ " fr om becoming “too unwieldy.”

29 April 2003 09:19

Ther e ar e a few exceptions to the common standard. Unicode-enabled systems,
such as Sun’s Java regex package, may expand what dot normally does not match
to include any of the single-character Unicode line terminators (+ 108). Tcl’s nor-
mal state is that its dot matches everything, but in its special “newline-sensitive”
and “partial newline-sensitive” matching modes, both dot and a negated character
class are prohibited from matching a newline.

An unfor tunate name. When first introduced by Perl with its /s modifier, this
mode was called “single-line mode.” This unfortunate name continues to cause no
end of confusion because it has nothing whatsoever to do with !ˆ " and !$ ", which
ar e influenced by the “multiline mode” discussed in the next section. “Single-line
mode” merely means that dot has no restrictions and can match any character.

Enhanced line-anchor match mode (a.k.a., “multiline mode”)

An enhanced line-anchor match mode influences where the line anchors, !ˆ " and
!$ ", match. The anchor !ˆ " nor mally does not match at embedded newlines, but
rather only at the start of the string that the regex is being applied to. However, in
enhanced mode, it can also match after an embedded newline, effectively having
!ˆ " tr eat the string as multiple logical lines if the string contains newlines in the
middle. We saw this in action in the previous chapter (+ 69) while developing a
Perl program to converting text to HTML. The entire text document was within a
single string, so we could use the search-and-r eplace s/ˆ$/<p>/mg to convert
“ . . . tags. 1 1 It’s . . .” to “ . . . tags. 1<p>1 It’s . . .” The substitution replaces empty
“lines” with paragraph tags.

It’s much the same for !$ ", although the basic rules about when !$ " can normally
match can be a bit more complex to begin with (+ 127). However, as far as this
section is concerned, enhanced mode simply includes locations before an embed-
ded newline as one of the places that !$ " can match.

Pr ograms that offer this mode often offer !\A " and !\Z ", which normally behave the
same as !ˆ " and !$ " except they are not modified by this mode. This means that !\A "

and !\Z " never match at embedded newlines. Some implementations also allow !$ "

and !\Z " to match before a string-ending newline. Such implementations often offer
!\z ", which disregards all newlines and matches only at the very end of the string.
See page 127 for details.

As with dot, there are exceptions to the common standard. A text editor like GNU

Emacs normally lets the line anchors match at embedded newlines, since that
makes the most sense for an editor. On the other hand, lex has its !$ " match only
befor e a newline (while its !ˆ " maintains the common meaning.)

Unicode-enabled systems, such as Sun’s java.util.regex, may allow the line
anchors in this mode to match at any line terminator (+ 108). Ruby’s line anchors

Str ings, Character Encodings, and Modes 111

29 April 2003 09:19

112 Chapter 3: Over view of Regular Expression Features and Flavors

nor mally do match at any embedded newline, and Python’s !\Z " behaves like its
!\z ", rather than its normal !$ ".

Tr a d i t i o n a l l y , this mode has been called “multiline mode.” Although it is unrelated
to “single-line mode,” the names confusingly imply a relation. One simply modi-
fies how dot matches, while the other modifies how !ˆ " and !$ " match. Another
pr oblem is that they approach newlines from differ ent views. The first changes the
concept of how dot treats a newline from “special” to “not special,” while the
other does the opposite and changes the concept of how !ˆ " and !$ " tr eat newlines
fr om “not special” to “special.” †

Literal-text regex mode

A “literal text” mode is one that doesn’t recognize most or all regex metachar-
acters. For example, a literal-text mode version of ![a-z]+ " matches the string
‘[a-z]+’. A fully literal search is the same as a simple string search (“find this
string” as opposed to “find a match for this regex”), and programs that offer regex
support also tend to offer separate support for simple string searches. A regex lit-
eral-text mode becomes more inter esting when it can be applied to just part of a
regular expression. For example, Perl regex literals offer the special sequence
\Q˙˙˙\E, the contents of which have all metacharacters ignored (except the \E

itself, of course).

Common Metacharacter s and Features
The following overview of current regex metacharacters covers common items and
concepts. It doesn’t discuss every issue, and no one tool includes everything pre-
sented here. In one respect, this is just a summary of much of what you’ve seen in
the first two chapters, but in light of the wider, mor e complex world presented at
the beginning of this chapter. During your first pass through this section, a light
glance should allow you to continue on to the next chapters. You can come back
her e to pick up details as you need them.

Some tools add a lot of new and rich functionality and some gratuitously change
common notations to suit their whim or special needs. Although I’ll sometimes
comment about specific utilities, I won’t address too many tool-specific concerns
her e. Rather, in this section I’ll just try to cover some common metacharacters and
their uses, and some concerns to be aware of. I encourage you to follow along
with the manual of your favorite utility.

† Tcl normally lets its dot match everything, so in one sense it’s more straightforward than other lan-
guages. In Tcl regular expressions, newlines are not normally treated specially in any way (neither to
dot nor to the line anchors), but by using match modes, they become special. However, since other
systems have always done it another way, Tcl could be considered confusing to those used to those
other ways.

29 April 2003 09:19

The following is an outline of the constructs covered in this section, with pointers
to the page where each sub-section starts:

Character Representations
Character Shorthands: \n, \t, \e, ...+ 114
Octal Escapes: \num+ 115
Hex/Unicode Escapes: \xnum, \x{num}, \unum, \Unum, ...+ 116
Contr ol Characters: \cchar+ 116

Character Classes and class-like constructs
Nor mal classes: [a-z] and [ˆa-z]+ 117
Almost any character: dot+ 118
Class shorthands: \w, \d, \s, \W, \D, \S+ 119
Unicode properties, blocks, and categories: \p{Pr op}, \P{Pr op}+ 119
Class set operations: [[a-z]&&[ˆaeiou]]+ 123
Unicode Combining Character Sequence: \X+ 125
POSIX bracket-expr ession “character class”: [[:alpha:]]+ 125
POSIX bracket-expr ession “collating sequences”: [[.span-ll.]]>+ 126
POSIX bracket-expr ession “character equivalents”: [[=n=]]+ 126
Emacs syntax classes+ 127

Anchors and Other “Zero-Width Assertions”
Start of line/string: ˆ, \A+ 127
End of line/string: $, \Z, \z+ 127
Start of match (or end of previous match): \G+ 128
Word boundaries: \b, \B, \<, \>, ...+ 131
Lookahead (?=˙˙˙), (?!˙˙˙); Lookbehind, (?<=˙˙˙), (?<!˙˙˙)+ 132

Comments and mode-modifiers
Mode modifier: (?modifier), such as (?i) or (?-i)+ 133
Mode-modified span: (?modifier:˙˙˙), such as (?i:˙˙˙)+ 134
Comments: (?#˙˙˙) and #˙˙˙+ 134
Literal-text span: \Q˙˙˙\E+ 134

Gr ouping, Capturing, Conditionals, and Control
Capturing/gr ouping par entheses: (˙˙˙), \1, \2, ...+ 135
Gr ouping-only par entheses: (?:˙˙˙)+ 136
Named capture: (?<Name>˙˙˙)+ 137
Atomic grouping: (?>˙˙˙)+ 137
Alter nation: ˙˙˙<˙˙˙<˙˙˙+ 138
Conditional: (? if then < else)+ 138
Gr eedy quantifiers: ,, +, ?, {num,num}+ 139
Lazy quantifiers: ,?, +?, ??, {num,num}?+ 140
Possessive quantifiers: ,+, ++, ?+, {num,num}++ 140

Common Metacharacter s and Features 113

29 April 2003 09:19

114 Chapter 3: Over view of Regular Expression Features and Flavors

Character Representations
This group of metacharacters provides visually pleasing ways to match specific
characters that are otherwise difficult to repr esent.

Character shorthands

Many utilities provide metacharacters to repr esent certain control characters that
ar e sometimes machine-dependent, and which would otherwise be difficult to
input or to visualize:

\a Aler t (e.g., to sound the bell when “printed”) Usually maps to the ASCII

<BEL> character, 007 octal.

\b Backspace Usually maps to the ASCII <BS> character, 010 octal. (Note !\b "

often is a word-boundary metacharacter instead, as we’ll see later.)

\e Escape character Usually maps to the ASCII <ESC> character, 033 octal.

\f Form feed Usually maps to the ASCII <FF> character, 014 octal.

\n Newline On most platforms (including Unix and DOS/Windows), usually
maps to the ASCII <LF> character, 012 octal. On MacOS systems, usually
maps to the ASCII <CR> character, 015 octal. With Java or any .NET lan-
guage, always the ASCII <LF> character regardless of platform.

\r Car ria ge retur n Usually maps to the ASCII <CR> character. On MacOS sys-
tems, usually maps to the ASCII <LF> character. With Java or any .NET lan-
guage, always the ASCII <CR> character regardless of platform.

\t Nor mal (hor izontal) ta b Usually maps to the ASCII <HT> character, 011

octal.

\v Vertical tab Usually maps to the ASCII <VT> character, 013 octal.

Table 3-6 lists a few common tools and some of the character shorthands they pro-
vide. As discussed earlier, some languages also provide many of the same short-
hands for the string literals they support. Be sure to review that section (+ 101) for
some of the associated pitfalls.

These are machine dependent?

As noted in the list, \n and \r ar e operating-system dependent in many tools,† so,
it’s best to choose carefully when you use them. When you need, for example, “a

† If the tool itself is written in C or C++, and converts its regex backslash escapes into C backslash
escapes, the resulting value is dependent upon the compiler used, since the C standard leaves the
actual values to the discretion of the compiler vendor. In practice, compilers for any particular plat-
for m ar e standardized around newline support, so it’s safe to view these as operating-system depen-
dent. Further more, it seems that only \n and \r vary across operating systems , so the others can be
consider ed standard across all systems.

29 April 2003 09:19

Table 3-6: A Few Utilities and Some of the Shorthand Metacharacters They Provide

(w
o

rd
b

o
u

n
d

ar
 y)

(b
ac

ks
p

ac
e)

(a
la

r m
)

(A
SC

II
es

ca
p

e)

(f
o

r m
fe

ed
)

(n
ew

lin
e)

(c
ar

 ri
a g

e
re

tu
r n

)

(t
a b

)

(v
er

 ti
ca

lt
a b

)

\b \b \a \e \f \n \r \t \v

Program Character shorthands

Python 3 3C 3 3 3 3 3 3

Tcl as \y 3 3 3 3 3 3 3 3

Perl 3 3C 3 3 3 3 3 3

Java 3X X 3 3 3SR 3SR 3SR 3SR 3

GNU awk 3 3 3 3 3 3 3

GNU sed 3 3

GNU Emacs 3 S S S S S S S S

.NET 3 3C 3 3 3 3 3 3 3

PHP 3 3C 3 3 3 3 3 3

MySQL

GNU grep/egr ep 3

flex 3 3 3 3 3 3 3

Ruby 3 3C 3 3 3 3 3 3 3

3 supported 3C supported in class only See page 91 for version information

3SR supported (also supported by string literals)
3X supported (but string literals have a differ ent meaning for the same sequence)

X not supported (but string literals have a differ ent meaning for the same sequence)

S not supported (but supported by string literals)
This table assumes the most regex-friendly type of string per application (+ 101)

newline” for whatever system your script will happen to run on, use \n. When
you need a character with a specific value, such as when writing code for a
defined protocol like HT TP, use \012 or whatever the standard calls for. (\012 is
an octal escape.) If you wish to match DOS line-ending characters, use !\015\012 ".
To match either DOS or Unix line-ending characters, use !\015?\012 ". (These actu-
ally match the line-ending characters — to match at the start or end of a line, use a
line anchor + 127).

Octal escape—\num

Implementations supporting octal (base 8) escapes generally allow two- and three-
digit octal escapes to be used to indicate a byte or character with a particular
value. For example, !\015\012 " matches an ASCII CR/LF sequence. Octal escapes

Common Metacharacter s and Features 115

29 April 2003 09:19

116 Chapter 3: Over view of Regular Expression Features and Flavors

can be convenient for inserting hard-to-type characters into an expression. In Perl,
for instance, you can use !\e " for the ASCII escape character, but you can’t in awk.
Since awk does support octal escapes, you can use the ASCII code for the escape
character directly: !\033 ".

Table 3-7 shows the octal escapes some tools support.

Some implementations, as a special case, allow !\0 " to match a null byte. Some
allow all one-digit octal escapes, but usually don’t if backrefer ences such as !\1 " ar e
supported. When there’s a conflict, backrefer ences generally take precedence over
octal escapes. Some allow four-digit octal escapes, usually to support a requir e-
ment that any octal escape begin with a zero (such as with java.util.regex).

You might wonder what happens with out-of-range values like \565 (8-bit octal
values range from \000 to \377). It seems that half the implementations leave it as
a larger-than-byte value (which may match a Unicode character if Unicode is sup-
ported), while the other half strip it to a byte. In general, it’s best to limit octal
escapes to \377 and below.

Hex and Unicode escapes: \xnum, \x{num}, \unum, \Unum, ...

Similar to octal escapes, many utilities allow a hexadecimal (base 16) value to be
enter ed using \x, \u, or sometimes \U. If allowed with \x, for example,
!\x0D\x0A " matches the CR/LF sequence. Table 3-7 shows the hex escapes that
some tools support.

Besides the question of which escape is used, you must also know how many dig-
its they recognize, and if braces may be (or must be) used around the digits.
These are also indicated in Table 3-7.

Control character s: \cchar

Many flavors offer the !\cchar " sequence to match contr ol characters with encoding
values less than 32 (some allow a wider range). For example, !\cH " matches a Con-
tr ol-H, which repr esents a backspace in ASCII, while !\cJ " matches an ASCII linefeed
(which is often also matched by !\n ", but sometimes by !\r ", depending on the plat-
for m + 114).

Details aren’t uniform among systems that offer this construct. You’ll always be
safe using uppercase English letters as in the examples. With most implementa-
tions, you can use lowercase letters as well, but Sun’s Java regex package, for
example, does not support them. And what exactly happens with non-alphabetics
is very flavor-dependent, so I recommend using only uppercase letters with \c.

Related Note: GNU Emacs supports this functionality, but with the rather ungainly
metasequence !?\ˆchar " (e.g., !?\ˆH " to match an ASCII backspace).

29 April 2003 09:19

Table 3-7: A Few Utilities and the Octal and Hex Regex Escapes Their Regexes Support

Back-
references Octal escapes Hex escapes

Python 3 \0, \07, \377 \xFF

Tcl 3 \0, \77, \777 \x˙˙˙ \uFFFF; \UFFFFFFFF

Perl 3 \0, \77, \377 \xFF; \x{˙˙˙}

Java 3 \07, \077, \0377 \xFF; \uFFFF

GNU awk \7, \77, \377 \x˙˙˙

GNU sed 3

GNU Emacs 3

.NET 3 \0, \77, \377 \xFF, \uFFFF

PHP 3 \77, \377 \xF, \xFF

MySQL

GNU egr ep 3

GNU gr ep

flex \7, \77, \377 \xF, \xFF

Ruby 3 \0, \77, \377, \0377 \xF, \xFF

\0 – !\0 " matches a null byte, but other one-digit octal escapes are not supported
\7, \77 – one- and two- digit octal escapes are supported
\07 – two-digit octal escapes are supported if leading digit is a zero
\077 – thr ee-digit octal escapes are supported if leading digit is a zero
\377 – thr ee-digit octal escapes are supported, until \377
\0377 – four-digit octal escapes are supported, until \0377
\777 – thr ee-digit octal escapes are supported, until \777
\x˙˙˙ – \x allows any number of digits
\x{˙˙˙} – \x{˙˙˙} allows any number of digits
\xF, \xFF – one- and two- digit hex escape is allowed with \x

\uFFFF – four-digit hex escape allowed with \u

\UFFFF – four-digit hex escape allowed with \U

\UFFFFFFFF – eight-digit hex escape allowed with \U (See page 91 for version information.)

Character Classes and Class-Like Constr ucts
Moder n flavors provide a number of ways to specify a set of characters allowed at
a particular point in the regex, but the simple character class is ubiquitous.

Nor mal classes: [a-z] and [ˆa-z]

The basic concept of a character class has already been well covered, but let me
emphasize again that the metacharacter rules change depending on whether
you’r e in a character class or not. For example, ! + " is never a metacharacter within
a class, while !-" usually is. Some metasequences, such as !\b ", sometimes have a
dif ferent meaning within a class than outside of one (+ 115).

Common Metacharacter s and Features 117

29 April 2003 09:19

118 Chapter 3: Over view of Regular Expression Features and Flavors

With most systems, the order that characters are listed in a class makes no differ-
ence, and using ranges instead of listing characters is irrelevant to the execution
speed (e.g., [0-9] should be no differ ent fr om [9081726354]). However, some
implementations don’t completely optimize classes (Sun’s Java regex package
comes to mind), so it’s usually best to use ranges, which tend to be faster, wher-
ever possible.

A character class is always a positive assertion. In other words, it must always
match a character to be successful. A negated class must still match a character,
but one not listed. It might be convenient to consider a negated character class to
be a “class to match characters not listed.” (Be sure to see the warning about dot
and negated character classes, in the next section.) It used to be true that some-
thing like ![ˆLMNOP] " was the same as ![\x00-KQ-\xFF] ". In strictly eight-bit sys-
tems, it still is, but in a system such as Unicode where character ordinals go
beyond 255 (\xFF), a negated class like ![ˆLMNOP] " suddenly includes all the tens
of thousands of characters in the encoding—all except L, M, N, O, and P.

Be sure to understand the underlying character set when using ranges. For exam-
ple, ![a-Z] " is likely an error, and in any case certainly isn’t “alphabetics.” One
specification for alphabetics is ![a-zA-Z] ", at least for the ASCII encoding. (See
\p{L} in “Unicode properties” + 119.) Of course, when dealing with binary data,
ranges like ‘\x80-\xFF’ within a class make perfect sense.

Almost any character: dot

In some tools, dot is a shorthand for a character class that can match any charac-
ter, while in most others, it is a shorthand to match any character except a newline.
It’s a subtle differ ence that is important when working with tools that allow target
text to contain multiple logical lines (or to span logical lines, such as in a text edi-
tor). Concerns about dot include:

• In some Unicode-enabled systems, such as Sun’s Java regex package, dot nor-
mally does not match a Unicode line terminator (+ 108).

• A match mode (+ 110) can change the meaning of what dot matches.

• The POSIX standard dictates that dot not match a null (a character with the
value zero), although all the major scripting languages allow nulls in their text
(and dot matches them).

Dot ver sus a negated character class
When working with tools that allow multiline text to be searched, take care to
note that dot usually does not match a newline, while a negated class like ![ˆ"]"

usually does. This could yield surprises when changing from something such as
!".+"" to !"[ˆ"]+"". The matching qualities of dot can often be changed by a match
mode—see “Dot-matches-all match mode” on page 110.

29 April 2003 09:19

Class shorthands: \w, \d, \s, \W, \D, \S

Support for the following shorthands is quite common:

\d Dig it Generally the same as ![0-9] " or, in some Unicode-enabled tools, all
Unicode digits.

\D Non-dig it Generally the same as ![ˆ\d]"

\w Part-of-word character Often the same as ![a-zA-Z0-9R]", although some
tools omit the underscore, while others include all the extra alphanumer-
ics characters in the locale (+ 87). If Unicode is supported, !\w " usually
refers to all alphanumerics (notable exception: Sun’s Java regex package,
whose !\w " is exactly ![a-zA-Z0-9R]").

\W Non-word character Generally the same as ![ˆ\w] ".

\s Whitespace character On ASCII-only systems, this is often the same as
![\f\n\r\t\v] ". Unicode-enabled systems sometimes also include the
Unicode “next line” control character U+0085, and sometimes the “white-
space” property !\p{Z} " (described in the next section).

\S Non-whitespace character Generally the same as ![ˆ\s] ".

As described on page 87, a POSIX locale could influence the meaning of these
shorthands (in particular, !\w "). Unicode-enabled programs likely have !\w " match a
much wider scope of characters, such as !\p{L} " (discussed in the next section)
plus an underscore.

Unicode proper ties, scr ipts, and blocks: \p{Prop}, \P{Prop}

On its surface, Unicode is a mapping (+ 106), but the Unicode Standard offers
much more. It also defines qualities about each character, such as “this character is
a lowercase letter,” “this character is meant to be written right-to-left,” “this charac-
ter is a mark that’s meant to be combined with another character,” etc.

Regular-expr ession support for these qualities varies, but many Unicode-enabled
pr ograms support matching via at least some of them with !\p{quality}" (matches
characters that have the quality) and !\P{quality}" (matches characters without it).
One example is !\p{L} ", wher e ‘L’ is the quality meaning “letter” (as opposed to
number, punctuation, accents, etc.). !\p{L}" is an example of a general property
(also called a category). We’ll soon see other “qualities” that can be tested by
!\p{˙˙˙}" and !\P{˙˙˙}", but the most commonly supported are the general properties.

The general properties are shown in Table 3-8. Each character (each code point
actually, which includes those that have no characters defined) can be matched by
just one general property. The general property names are one character (‘L’ for
Letter, ‘S’ for symbol, etc.), but some systems support a more descriptive synonym
(‘Letter’, ‘Symbol’, etc.) as well. Perl, for example, supports these.

Common Metacharacter s and Features 119

29 April 2003 09:19

120 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-8: Basic Unicode Properties

Class Synonym and description

\p{L} \p{Letter} – Things considered letters.

\p{M} \p{Mark} – Various characters that are not meant to appear by themselves,
but with other base characters (accent marks, enclosing boxes, . . .).

\p{Z} \p{Separator} – Characters that separate things, but have no visual
repr esentation (various kinds of spaces . . .).

\p{S} \p{Symbol} – Various types of Dingbats and symbols.

\p{N} \p{Number} – Any kind of numeric character.

\p{P} \p{Punctuation} – Punctuation characters.

\p{C} \p{Other} – Catch-all for everything else (rarely used for normal characters).

With some systems, single-letter property names may be refer enced without the
curly braces (e.g., using !\pL " instead of !\p{L} "). Some systems may requir e (or
simply allow) ‘In’ or ‘Is’ to prefix the letter (e.g., !\p{IsL} "). As we look at addi-
tional qualities, we’ll see examples of where an Is/In pr efix is requir ed.†

Each one-letter general Unicode property can be further subdivided into a set of
two-letter sub-properties, as shown in Table 3-9. Additionally, some implementa-
tions support a special composite sub-property, !\p{L&}", which is a shorthand for
all “cased” letters: ![\p{Lu}\p{Ll}\p{Lt}] ".

Also shown are the full-length synonyms (e.g., “LowercaseRLetter” instead of
“Ll”), which may be supported by some implementations. The standard suggests
that a variety of forms be accepted (‘LowercaseLetter’, ‘LOWERCASERLETTER’,
‘Lowercase Letter’, ‘lowercase-letter’, etc.), but I recommend, for consis-
tency, always using the form shown in Table 3-9.

Scr ipts. Some systems have support for matching via a script (writing system)
name with !\p{˙˙˙}". For example, if supported, !\p{Hebrew} " matches characters
that are specifically part of the Hebrew writing system. (A script does not match
common characters that might be used by other writing systems as well, such as
spaces and punctuation.)

Some scripts are language-based (such as Gujarati, Thai, Cherokee, ...). Some
span multiple languages (e.g., Latin, Cyrillic), while some languages are com-
posed of multiple scripts, such as Japanese, which uses characters from the
Hiragana, Katakana, Han (“Chinese Characters”), and Latin scripts. See your sys-
tem’s documentation for the full list.

† As we’ll see (and is illustrated in the table on page 123), the whole Is/In pr efix business is some-
what of a mess. Previous versions of Unicode recommend one thing, while early implementations
often did another. During Perl 5.8’s development, I worked with the development group to simplify
things for Perl. The rule in Perl now is simply “You don’t need to use ‘Is’ or ‘In’ unless you specifi-
cally want a Unicode Block (+ 122), in which case you must prepend ‘In’.”

29 April 2003 09:19

Table 3-9: Basic Unicode Sub-Properties

Proper ty Synonym and description

\p{Ll} \p{LowercaseQLetter} – Lowercase letters.
\p{Lu} \p{UppercaseQLetter} – Uppercase letters.
\p{Lt} \p{TitlecaseQLetter} – Letters that appear at the start of a word (e.g., the

character Dž is the title case of the lowercase dž and of the uppercase DŽ).
\p{L&} A composite shorthand matching all \p{Ll}, \p{Lu}, and \p{Lt} characters.
\p{Lm} \p{ModifierQLetter} – A small set of letter-like special-use characters.
\p{Lo} \p{OtherQLetter} – Letters that have no case, and aren’t modifiers, including

letters from Hebrew, Arabic, Bengali, Tibetan, Japanese, ...

\p{Mn} \p{NonQSpacingQMark} – “Characters” that modify other characters, such as
accents, umlauts, certain “vowel signs,” and tone marks.

\p{Mc} \p{SpacingQCombiningQMark} – Modification characters that take up space of
their own (mostly “vowel signs” in languages that have them, including Bengali,
Gujarati, Tamil, Telugu, Kannada, Malayalam, Sinhala, Myanmar, and Khmer).

\p{Me} \p{EnclosingQMark} – A small set of marks that can enclose other characters,
such as circles, squares, diamonds, and “keycaps.”

\p{Zs} \p{SpaceQSeparator} – Various kinds of spacing characters, such as a normal
space, non-break space, and various spaces of specific widths.

\p{Zl} \p{LineQSeparator} – The LINE SEPARATOR character (U+2028).
\p{Zp} \p{ParagraphQSeparator} – The PARAGRAPH SEPARATOR character (U+2029).

\p{Sm} \p{MathQSymbol} – +, ÷, a fraction slash, 0, ...
\p{Sc} \p{CurrencyQSymbol} – $, ¢, ¥, P, ...
\p{Sk} \p{ModifierQSymbol} – Mostly versions of the combining characters, but as

full-fledged characters in their own right.
\p{So} \p{OtherQSymbol} – Various Dingbats, box-drawing symbols, Braille patterns,

non-letter Chinese characters, ...

\p{Nd} \p{DecimalQDigitQNumber} – Zer o thr ough nine, in various scripts (not
including Chinese, Japanese, and Korean).

\p{Nl} \p{LetterQNumber} – Mostly Roman numerals.
\p{No} \p{OtherQNumber} – Numbers as superscripts or symbols; characters repr e-

senting numbers that aren’t digits (Chinese, Japanese, and Korean not included).

\p{Pd} \p{DashQPunctuation} – Hyphens and dashes of all sorts.
\p{Ps} \p{OpenQPunctuation} – Characters like (, N, and 4, ...
\p{Pe} \p{CloseQPunctuation} – Characters like), O, 5, ...
\p{Pi} \p{InitialQPunctuation} – Characters like «, 7, 8, ...
\p{Pf} \p{FinalQPunctuation} – Characters like », 6, 9, ...
\p{Pc} \p{ConnectorQPunctuation} – A few punctuation characters with special

linguistic meaning, such as an underscore.
\p{Po} \p{OtherQPunctuation} – Catch-all for other punctuation: !, &, ⋅, :,, ...

\p{Cc} \p{Control} – The ASCII and Latin-1 control characters (TAB, LF, CR, ...)
\p{Cf} \p{Format} – Non-visible characters intended to indicate some basic formatting

(zer o width joiner, activate Arabic form shaping, ...)
\p{Co} \p{PrivateQUse} – Code points allocated for private use (company logos, etc.).
\p{Cn} \p{Unassigned} – Code points that have no characters assigned.

Common Metacharacter s and Features 121

29 April 2003 09:19

122 Chapter 3: Over view of Regular Expression Features and Flavors

A script does not include all characters used by the particular writing system, but
rather, all characters used only (or predominantly) by that writing system. Com-
mon characters, such as spacing and punctuation marks, are not included within
any script, but rather are included as part of the catch-all pseudo-script IsCommon,
matched by !\p{IsCommon} ". A second pseudo-script, Inherited, is composed of
certain combining characters that inherit the script from the base character that
they follow.

Blocks. Similar (but inferior) to scripts, blocks refer to ranges of code points on
the Unicode character map. For example, the Tibetan block refers to the 256
code points from U+0F00 thr ough U+0FFF. Characters in this block are matched
with \p{InTibetan} in Perl and java.util.regex, and with \p{IsTibetan} in
.NET. (Mor e on this in a bit.)

Ther e ar e many blocks, including blocks for most systems of writing (Hebrew,
Tamil, BasicRLatin, HangulRJamo, Cyrillic, Katakana, ...), and for special
character types (Currency, Arrows, BoxRDrawing, Dingbats, ...).

Tibetan is one of the better examples of a block, since all characters in the block
that are defined relate to the Tibetan language, and there are no Tibetan-specific
characters outside the block. Block qualities, however, are inferior to script quali-
ties for a number of reasons:

• Blocks can contain unassigned code points. For example, about 25% of the
code points in the Tibetan block have no characters assigned to them.

• Not all characters that would seem related to a block are actually part of that
block. For example, the Currency block does not contain the universal cur-
rency symbol ‘¤’, nor such notable currency symbols as $, ¢, £, P, and ¥.
(Luckily, in this case, you can use the currency property, \p{Sc}, in its place.)

• Blocks often have unrelated characters in them. For example, ¥ (Yen symbol)
is found in the LatinR1RSupplement block.

• What might be considered one script may be included within multiple blocks.
For example, characters used in Greek can be found in both the Greek and
GreekRExtended blocks.

Support for block qualities is more common than for script qualities. There is
ample room for getting the two confused because there is a lot of overlap in the
naming (for example, Unicode provides for both a Tibetan script and a Tibetan
block).

Further more, as Table 3-10 on the facing page shows, the nomenclature has not
yet been standardized. With Perl and java.util.regex, the Tibetan block is
!\p{InTibetan} ", but in the .NET Framework, it’s !\p{IsTibetan} " (which, to add
to the confusion, Perl allows as an alternate repr esentation for the Tibetan script).

29 April 2003 09:19

Other proper ties/qualities. Not everything talked about so far is universally
supported. Table 3-10 gives a few details about what’s been covered so far.

Additionally, Unicode defines many other qualities that might be accessible via the
!\p{˙˙˙}" construct, including ones related to how a character is written (left-to-right,
right-to-left, etc.), vowel sounds associated with characters, and more. Some
implementations even allow you to create your own properties on the fly. See
your program’s documentation for details on what’s supported.

Table 3-10: Pr operty/Script/Block Featur es

Feature Perl Java .NET

3 Basic Properties like \p{L} 3 3 3

3 Basic Properties shorthand like \pL 3 3

Basic Properties longhand like \p{IsL} 3 3

3 Basic Properties full like \p{Letter} 3

3 Composite \p{L&} 3

3 Script like \p{Greek} 3

Script longhand like \p{IsGreek} 3

3 Block like \p{Cyrillic} if no script 3

3 Block longhand like \p{InCyrillic} 3 3

Block longhand like \p{IsCyrillic} 3

3 Negated \P{˙˙˙} 3 3 3

Negated \p{ˆ˙˙˙} 3

3 \p{Any} 3 as \p{all}
3 \p{Assigned} 3 as \P{Cn} as \P{Cn}
3 \p{Unassigned} 3 as \p{Cn} as \p{Cn}

Lefthand checkmarks are recommended for new implementations. (See page 91 for version information)

Class set operations: [[a-z]&&[ˆaeiou]]

Sun’s Java regex package supports set operations within character classes. For
example, you can match all non-vowel English letters with “[a-z] minus
[aeiou]”. The nomenclature for this may seem a bit odd at first — it’s written as
[[a-z]&&[ˆaeiou]], and read aloud as “this and not that.” Befor e looking at that
in more detail, let’s look at the two basic class set operations, OR and AND.

OR allows you to add characters to the class by including what looks like an
embedded class within the class: [abcxyz] can also be written as [[abc][xyz]],
[abc[xyz]], or [[abc]xyz], among others. OR combines sets, creating a new set
that is the sum of the argument sets. Conceptually, it’s similar to the “bitwise or”
operator that many languages have via a ‘;’ or ‘or’ operator. In character classes,
OR is mostly a notational convenience, although the ability to include negated
classes can be useful in some situations.

Common Metacharacter s and Features 123

29 April 2003 09:19

124 Chapter 3: Over view of Regular Expression Features and Flavors

AND does a conceptual “bitwise AND” of two sets, keeping only those characters
found in both sets. It is achieved by inserting the special class metasequence &&

between two sets of characters. For example, [\p{InThai}&&\P{Cn}] matches all
assigned code points in the Thai block. It does this by taking the intersection
between (i.e., keeping only characters in both) \p{InThai} and \P{Cn}. Remem-
ber, \P{˙˙˙} with a capital ‘P’, matches everything not part of the quality, so \P{Cn}

matches everything not un assigned, which in other words, means is assigned.
(Had Sun supported the Assigned quality, I could have used \p{Assigned}

instead of \P{Cn} in this example.)

Be careful not to confuse OR and AND. How intuitive these names feel depends on
your point of view. For example, [[this][that]] in normally read “accept char-
acters that match [this] or [that],” yet it is equally true if read “the list of char-
acters to allow is [this] and [that].” Two points of view for the same thing.

AND is less confusing in that [\p{InThai}&&\P{Cn}] is normally read as “match
only characters matchable by \p{InThai} and \P{Cn},” although it is sometimes
read as “the list of allowed characters is the intersection of \p{InThai} and
\P{Cn}.”

These differing points of view can make talking about this confusing: what I call
OR and AND, some might choose to call AND and INTERSECTION.

Class subtraction. Thinking further about the [\p{InThai}&&\P{Cn}] example,
it’s useful to realize that \P{Cn} is the same as [ˆ\p{Cn}], so the whole thing can
be rewritten as the somewhat more complex looking [\p{InThai}&&[ˆ\p{Cn}]].
Further more, matching “assigned characters in the Thai block” is the same as
“characters in the Thai block, minus unassigned characters.” The double negative
makes it a bit confusing, but it shows that [\p{InThai}&&[ˆ\p{Cn}]] means
“\p{InThai} minus \p{Cn}.”

This brings us back to the ![[a-z]&&[ˆaeiou]]" example from the start of the sec-
tion, and shows how to do class subtraction. The pattern is that ![this &&[ˆthat]]"

means “[this] minus [that].” I find that the double negatives of && and [ˆ˙˙˙] tend
to make my head swim, so I just remember the ![˙˙˙ &&[ˆ˙˙˙]]" patter n.

Mimicking class set operations with lookaround. If your program doesn’t
support class set operations, but does support lookaround (+ 132), you can mimic
the set operations. With lookahead, ![\p{InThai}&&[ˆ\p{Cn}]]" can be rewritten
as !(?!\p{Cn})\p{InThai} ".† Although not as efficient as well-implemented class

† Actually, in Perl, this particular example could probably be written simply as !\p{Thai}", since in Perl
\p{Thai} is a script, which never contains unassigned characters. Other differ ences between the
Thai script and block are subtle. It’s beneficial to have the documentation as to what is actually cov-
er ed by any particular script or block. In this case, the script is actually missing a few special charac-
ters that are in the block.

29 April 2003 09:19

set operations, using lookaround can be quite flexible. This example can be
written four differ ent ways (substituting IsThai for InThai in .NET + 123):

(?!\p{Cn})\p{InThai}
(?=\P{Cn})\p{InThai}
\p{InThai}(?<!\p{Cn})
\p{InThai}(?<=\P{Cn})

Unicode combining character sequence: \X

Perl supports !\X " as a shorthand for !\P{M}\p{M}+ ", which is like an extended ! ."

(dot). It matches a base character (anything not !\p{M} ", followed by any number
(including none) of combining characters (anything that is !\p{M} ").

As discussed earlier (+ 107), Unicode uses a system of base and combining char-
acters which, in combination, create what look like single, accented characters like
à (‘a’ U+0061 combined with the grave accent ‘`’ U+0300). You can use more than
one combining character if that’s what you need to create the final result. For
example, if for some reason you need ‘ç̆’, that would be ‘c’ followed by a combin-
ing cedilla ‘¸’ and a combining breve ‘˘’ (U+0063 followed by U+0327 and U+0306).

If you wanted to match either “francais” or “français,” it wouldn’t be safe to just use
!fran.ais " or !fran[cç]ais ", as those assume that the ‘ç’ is render ed with the sin-
gle Unicode code point U+00C7, rather than ‘c’ followed by the cedilla (U+0063 fol-
lowed by U+0327). You could perhaps use !fran(c¸?;ç)ais " if you needed to be
very specific, but in this case, !fran\Xais " is a good substitute for !fran.ais ".

Besides the fact that !\X " matches trailing combining characters, there are two dif-
fer ences between it and dot. One is that !\X " always matches a newline and other
Unicode line terminators (+ 108), while dot is subject to dot-matches-all match-
mode (+ 110), and perhaps other match modes depending on the tool. Another
dif ference is that a dot-matches-all dot is guaranteed to match all characters at all
times, while !\X " doesn’t match a leading combining character.

POSIX bracket-expression “character class”: [[:alpha:]]

What we normally call a character class, the POSIX standard calls a bracket expres-
sion. POSIX uses the term “character class” for a special feature used within a
bracket expression† that we might consider to be the precursor to Unicode’s char-
acter properties.

A POSIX character class is one of several special metasequences for use within a
POSIX bracket expression. An example is [:lower:], which repr esents any lower-
case letter within the current locale (+ 87). For English text, [:lower:] is

† In general, this book uses “character class” and “POSIX bracket expression” as synonyms to refer to
the entire construct, while “POSIX character class” refers to the special range-like class feature
described here.

Common Metacharacter s and Features 125

29 April 2003 09:19

126 Chapter 3: Over view of Regular Expression Features and Flavors

comparable to a-z. Since this entire sequence is valid only within a bracket
expr ession, the full class comparable to ![a-z]" is ![[:lower:]]". Yes, it’s that ugly.
But, it has the advantage over ![a-z] " of including other characters, such as ö, ñ,
and the like if the locale actually indicates that they are “lowercase letters.”

The exact list of POSIX character classes is locale dependent, but the following are
usually supported:

[:alnum:] alphabetic characters and numeric character
[:alpha:] alphabetic characters
[:blank:] space and tab
[:cntrl:] contr ol characters
[:digit:] digits
[:graph:] non-blank characters (not spaces, control characters, or the like)
[:lower:] lowercase alphabetics
[:print:] like [:graph:], but includes the space character
[:punct:] punctuation characters
[:space:] all whitespace characters ([:blank:], newline, carriage retur n, and the like)
[:upper:] uppercase alphabetics
[:xdigit:] digits allowed in a hexadecimal number (i.e., 0-9a-fA-F).

Systems that support Unicode properties (+ 119) may or may not extend that Uni-
code support to these POSIX constructs. The Unicode property constructs are mor e
power ful, so those should generally be used if available.

POSIX bracket-expression “collating sequences”: [[.span-ll.]]

A locale can have collating sequences to describe how certain characters or sets of
characters should be ordered. For example, in Spanish, the two characters ll (as
in tortilla) traditionally sort as if it were one logical character between l and m,
and the German ß is a character that falls between s and t, but sorts as if it were
the two characters ss. These rules might be manifested in collating sequences
named, for example, span-ll and eszet.

A collating sequence that maps multiple physical characters to a single logical
character, such as the span-ll example, is considered “one character” to a fully
compliant POSIX regex engine. This means that something like ![ˆabc] " matches
the ‘ll’ sequence.

A collating sequence element is included within a bracket expression using a
[.˙˙˙.] notation: !torti[[.span-ll.]]a " matches tortilla. A collating sequence
allows you to match against those characters that are made up of combinations of
other characters. It also creates a situation where a bracket expression can match
mor e than one physical character.

POSIX bracket-expression “character equivalents”: [[=n=]]

Some locales define character equivalents to indicate that certain characters should
be considered identical for sorting and such. For example, a locale might define

29 April 2003 09:19

an equivalence class ‘n’ as containing n and ñ, or perhaps one named ‘a’ as con-
taining a, à, and á. Using a notation similar to [:˙˙˙:], but with ‘=’ instead of a
colon, you can refer ence these equivalence classes within a bracket expression:
![[=n=][=a=]]" matches any of the characters just mentioned.

If a character equivalence with a single-letter name is used but not defined in the
locale, it defaults to the collating sequence of the same name. Locales normally
include normal characters as collating sequences — [.a.], [.b.], [.c.], and so
on—so in the absence of special equivalents, ![[=n=][=a=]]" defaults to ![na]".

Emacs syntax classes

GNU Emacs doesn’t support the traditional !\w ", !\s ", etc.; rather, it uses special
sequences to refer ence “syntax classes”:

\schar matches characters in the Emacs syntax class as described by char

\Schar matches characters not in the Emacs syntax class

!\sw " matches a “word constituent” character, and !\s- " matches a “whitespace char-
acter.” These would be written as !\w " and !\s " in many other systems.

Emacs is special because the choice of which characters fall into these classes can
be modified on the fly, so, for example, the concept of which characters are word
constituents can be changed depending upon the kind of text being edited.

Anchor s and Other “Zero-Width Assertions”
Anchors and other “zero-width assertions” don’t match actual text, but rather posi-
tions in the text.

Star t of line/string: ˆ, \A

Car et !ˆ " matches at the beginning of the text being searched, and, if in an
enhanced line-anchor match mode (+ 111), after any newline. In some systems,
an enhanced-mode !ˆ " can match after Unicode line terminators, as well (+ 108).

When supported, !\A " always matches only at the start of the text being searched,
regardless of any match mode.

End of line/string: $, \Z, \z

As Table 3-11 on the next page shows, the concept of “end of line” can be a bit
mor e complex than its start-of-line counterpart. !$ " has a variety of meanings
among differ ent tools, but the most common meaning is that it matches at the end
of the target string, and before a string-ending newline, as well. The latter is com-
mon, to allow an expression like !s$ " (ostensibly, to match “a line ending with s”)
to match ‘˙˙˙s1’, a line ending with s that’s capped with an ending newline.

Common Metacharacter s and Features 127

29 April 2003 09:19

128 Chapter 3: Over view of Regular Expression Features and Flavors

Two other common meanings for !$ " ar e to match only at the end of the target text,
and to match after any newline. In some Unicode systems, the special meaning of
newline in these rules are replaced by Unicode line terminators (+ 108).

A match mode (+ 111) can change the meaning of !$ " to match before any embed-
ded newline (or Unicode line terminator as well).

When supported, !\Z " usually matches what the “unmoded” !$ " matches, which
often means to match at the end of the string, or before a string-ending newline.
To complement these, !\z " matches only at the end of the string, period, without
regard to any newline. See Table 3-11 for a few exceptions.

Table 3-11: Line Anchors for Some Scripting Languages

Concer n Ja va Perl PHP Python Ruby Tcl .NET

Nor mally . . .

ˆ matches at start of string 3 3 3 3 3 3 3

ˆ matches after any newline 32

$ matches at end of string 3 3 3 3 3 3 3

$ matches before string-ending newline 31 3 3 3 3 3

$ matches before any newline 32

Has enhanced line-anchor mode (+111) 3 3 3 3 3 3

In enhanced line-anchor mode . . .

ˆ matches at start of string 3 3 3 3 N/A 3 3

ˆ matches after any newline 31 3 3 3 N/A 3 3

$ matches at end of string 3 3 3 3 N/A 3 3

$ matches before any newline 31 3 3 3 N/A 3 3

\A always matches like normal ˆ 3 3 3 3 •4 3 3

\Z always matches like normal $ 31 3 3 •3 •5 3 3

\z always matches only at end of string 3 3 3 N/A N/A 3 3

Notes: 1. Sun’s Java regex package supports Unicode’s line terminator (+ 108) in these cases.

2. Ruby’s $ and ˆ match at embedded newlines, but its \A and \Z do not.

3. Python’s \Z matches only at the end of the string.

4. Ruby’s \A, unlike its ˆ, matches only at the start of the string.

5. Ruby’s \Z, unlike its $, matches at the end of the string, or before a string-ending newline.

(See page 91 for version information.)

Star t of match (or end of previous match): \G

!\G " was first introduced by Perl to be useful when doing iterative matching with /g

(+ 51), and ostensibly matches the location where the previous match left off. On
the first iteration, !\G " matches only at the beginning of the string, just like !\A ".

29 April 2003 09:19

If a match is not successful, the location at which !\G " matches is reset back to the
beginning of the string. Thus, when a regex is applied repeatedly, as with Perl’s
!s/˙˙˙/˙˙˙/g " or other’s “match all” function, the failure that causes the “match all” to
fail also resets the location for !\G " for the next time a match of some sort is
applied.

Perl’s !\G " has three unique aspects that I find quite interesting and useful:

• The location associated with !\G " is an attribute of each target string, not of the
regexes that are setting that location. This means that multiple regexes can
match against a string, in turn, each using !\G " to ensure that they pick up
exactly where one of the others left off.

• Perl’s regex operators have an option (Perl’s /c modifier + 315) that indicates
a failing match should not reset the !\G " location, but rather to leave it where it
was. This works well with the first point to allow tests with a variety of
expr essions to be perfor med at one point in the target string, advancing only
when there’s a match.

• That location associated with !\G " can be inspected and modified by non-regex
constructs (Perl’s pos function + 313). One might want to explicitly set the
location to “prime” a match to start at a particular location, and match only at
that location. Also, if the language supports this point, the functionality of the
pr evious point can be mimicked with this feature, if it’s not already supported
dir ectly.

See the sidebar on the next page for an example of these features in action.
Despite these convenient features, Perl’s !\G " does have a problem in that it works
reliably only when it’s the first thing in the regex. Luckily, that’s where it’s most-
naturally used.

End of previous match, or start of the current match?
One detail that differs among implementations is whether !\G " actually matches the
“start of the current match” or “end of the previous match.” In the vast majority of
cases, the two meanings are the same, so it’s a non-issue most of the time.
Uncommonly, they can differ. Ther e is a realistic example of how this might arise
on page 215, but the issue is easiest to understand with a contrived example:
consider applying !x? " to ‘abcde’. The regex can match successfully at ‘abcde’, but
doesn’t actually match any text. In a global search-and-r eplace situation, where the
regex is applied repeatedly, picking up each time from where it left off, unless the
transmission does something special, the “where it left off” will always be the
same as where it started. To avoid an infinite loop, the transmission forcefully
bumps along to the next character (+ 148) when it recognizes this situation. You
can see this by applying s/x?/!/g to ‘abcde’, yielding ‘!a!b!c!d!e!’.

Common Metacharacter s and Features 129

29 April 2003 09:19

130 Chapter 3: Over view of Regular Expression Features and Flavors

Advanced Use of \G with Perl
Her e’s the outline of a snippet that perfor ms simple validation on the HTML
in the variable $html, ensuring that it contains constructs from among only a
very limited subset of HTML (simple and <A> tags are allowed, as well
as simple entities like >). I’ve used this method at Yahoo!, for example, to
validate that a user’s HTML submission met certain guidelines.

This code relies heavily on the behavior of Perl’s m/˙˙˙/gc match operator,
which applies the regular expression to the target string once, picking up
fr om wher e the last successful match left off, but not resetting that position if
it fails (+ 315).

Using this feature, the various expressions used below all “tag team” to work
their way through the string. It’s similar in theory to having one big alterna-
tion with all the expressions, but this approach allows program code to be
executed with each match, and to include or exclude expressions on the fly.

my $needRcloseRanchor = 0; # True if we’ve seen <A>, but not its closing .

while (not $html =˜ m/\G\z/gc) # While we haven’t worked our way to the end . . .
{

if ($html =˜ m/\G(\w+)/gc) {
. . . have a word or number in $1 -- can now check for profanity, for example . . .

} elsif ($html =˜ m/\G[ˆ<>&\w]+/gc) {
Other non-HTML stuff -- simply allow it.

} elsif ($html =˜ m/\G<img\s+([ˆ>]+)>/gci) {
. . . have an image tag -- can check that it’s appropriate . . .

+
+
+

} elsif (not $needRcloseRanchor and $html =˜ m/\G<A\s+([ˆ>]+)>/gci) {
. . . have a link anchor — can validate it . . .

+
+
+

$needRcloseRanchor = 1; # Note that we now need
} elsif ($needRcloseRanchor and $html =˜ m{\G}gci){
$needRcloseRanchor = 0; # Got what we needed; don’t allow again

} elsif ($html =˜ m/\G&(#\d+<\w+);/gc){
Allow entities like > and {

} else {
Nothing matched at this point, so it must be an error. Note the locationn, and grab a dozen or so
characters from the HTML so that we can issue an informative error message.
my $location = pos($html); # Note where the unexpected HTML starts.
my ($badstuff) = $html =˜ m/\G(.{1,12})/;
die "Unexpected HTML at position $location: $badstuff\n";

}
}

Make sure ther e’s no dangling <A>
if ($needRcloseRanchor) {

die "Missing final "
}

29 April 2003 09:19

One side effect of the transmission having to step in this way is that the “end of
the previous match” then differs from “the start of the current match.” When this
happens, the question becomes: which of the two locations does !\G " match? In
Perl, actually applying s/\Gx?/!/g to ‘abcde’ yields just ‘!abcde’, so in Perl, !\G "

really does match only the end of the previous match. If the transmission does the
artificial bump-along, Perl’s !\G " is guaranteed to fail.

On the other hand, applying the same search-and-r eplace with some other tools
yields the original ‘!a!b!c!d!e!’, showing that their !\G " matches successfully at
the start of each current match, as decided after the artificial bump-along.

You can’t always rely on the documentation that comes with a tool to tell you
which is which, as I’ve found that both Microsoft’s .NET and Sun’s Java documen-
tation are incorr ect. My testing has shown that java.util.regex and Ruby have
!\G " match at the start of the current match, while Perl and the .NET languages have
it match at the end of the previous match. (Sun tells me that the next release of
java.util.regex will have its !\G " behavior match the documentation.)

Word boundar ies: \b, \B, \<, \>, ...

Like line anchors, word-boundary anchors match a location in the string. There are
two distinct approaches. One provides separate metasequences for start- and end-
of-wor d boundaries (often \< and \>), while the other provides ones catch-all
wor d boundary metasequence (often \b). Either generally provides a not-wor d-
boundary metasequence as well (often \B). Table 3-12 shows a few examples.
Tools that don’t provide separate start- and end-of-word anchors, but do support
lookar ound, can mimic word-boundary anchors with the lookaround. In the table,
I’ve filled in the otherwise empty spots that way, wherever practical.

A word boundary is generally defined as a location where ther e is a “word charac-
ter” on one side, and not on the other. Each tool has its own idea of what consti-
tutes a “word character,” as far as word boundaries go. It would make sense if the
word boundaries agree with \w, but that’s not always the case. With Sun’s Java
regex package, for example, \w applies only to ASCII and not the full Unicode that
Java supports, so in the table I’ve used lookaround with the Unicode letter prop-
erty \pL (which is a shorthand for !\p{L} " + 119).

Whatever the word boundaries consider to be “word characters,” word boundary
tests are always a simple test of adjoining characters. No regex engine actually
does linguistic analysis to decide about words: all consider “NE14AD8” to be a
word, but not “M.I.T.”

Common Metacharacter s and Features 131

29 April 2003 09:19

132 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-12: A Few Utilities and Their Wor d Boundary Metacharacters

Word Not word-
Program Star t-of-word . . . End-of-word boundar y boundar y

GNU egr ep \< . . . \> \b \B

GNU Emacs \< . . . \> \b \B

GNU awk \< . . . \> \y \B

MySQL [[:<:]] . . . [[:>:]] [[:<:]]<[[:>:]]

Perl (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

PHP (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

Python (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

Ruby \b \B

GNU sed \< . . . \> \b \B

Java (?<!\pL)(?=\pL) . . . (?<=\pL)(?!\pL) \b \B

Tcl \y \Y\m . . . \M

.NET (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

Lookahead (?=˙˙˙), (?!˙˙˙); Lookbehind, (?<=˙˙˙), (?<!˙˙˙)

Lookahead and lookbehind constructs (collectively, lookar ound) are discussed
with an extended example in the previous chapter’s “Adding Commas to a Num-
ber with Lookaround” (+ 59). One important issue not discussed there relates to
what kind of expression can appear within either of the lookbehind constructs.
Most implementations have restrictions about the length of text matchable within
lookbehind (but not within lookahead, which is unrestricted).

The most restrictive rule exists in Perl and Python, where the lookbehind can
match only fixed-length strings. For example, (?<!\w) and (?<!this<that) ar e
allowed, but (?<!books?) and (?<!ˆ\w+:) ar e not, as they can match a variable
amount of text. In some cases, such as with (?<!books?), you can accomplish
the same thing by rewriting the expression, as with !(?<!book)(?<!books) ",
although that’s certainly not easy to read at first glance.

The next level of support allows alternatives of differ ent lengths within the look-
behind, so (?<!books?) can be written as (?<!book<books). PCRE (and the
pcre routines in PHP) allows this.

The next level allows for regular expressions that match a variable amount of text,
but only if it’s of a finite length. This allows (?<!books?) dir ectly, but still dis-
allows (?<!ˆ\w+:) since the \w+ is open-ended. Sun’s Java regex package sup-
ports this level.

29 April 2003 09:19

When it comes down to it, these first three levels of support are really equivalent,
since they can all be expressed, although perhaps somewhat clumsily, with the
most restrictive fixed-length matching level of support. The intermediate levels are
just “syntactic sugar” to allow you to express the same thing in a more pleasing
way. The fourth level, however, allows the subexpression within lookbehind to
match any amount of text, including the (?<!ˆ\w+:) example. This level, sup-
ported by Microsoft’s .NET languages, is truly superior to the others, but does carry
a potentially huge efficiency penalty if used unwisely. (When faced with look-
behind that can match any amount of text, the engine is forced to check the look-
behind subexpression from the start of the string, which may mean a lot of wasted
ef fort when requested from near the end of a long string.)

Comments and Mode Modifier s
With many flavors, the regex modes and match modes described earlier (+ 109)
can be modified within the regex (on the fly, so to speak) by the following
constructs.

Mode modifier: (?modifier), such as (?i) or (?-i)

Many flavors now allow some of the regex and match modes (+ 109) to be set
within the regular expression itself. A common example is the special notation
!(?i) ", which turns on case-insensitive matching, and !(?-i) ", which turns it off. For
example, !(?i)very(?-i) " has the !very " part match with case insensitiv-
ity, while still keeping the tag names case-sensitive. This matches ‘VERY’
and ‘Very’, for example, but not ‘Very’.

This example works with most systems that support !(?i) ", including Perl,
java.util.regex, Ruby, and the .NET languages. But, some systems have differ-
ent semantics. With Python, for example, the appearance of !(?i)" anywher e in the
regex turns on case-insensitive matching for the entire regex, and Python doesn’t
support turning it off with !(?-i) ". Tcl’s case-insensitive matching is also all-or-
nothing, but Tcl requir es the !(?i)" to be at the beginning of the regex — anywher e
else is an error. Ruby has a bug whereby sometimes !(?i) " doesn’t apply to !;"-sepa-
rated alternatives that are lowercase (but does if they’re uppercase). PHP has the
special case that if !(?i) " is used outside of all parentheses, it applies to the entire
regex. So, in PHP, we’d have to write our example with an extra set of “constrain-
ing” parentheses: !(?:(?i)very(?-i)) ".

Actually, that last PHP example can be simplified a bit because with many imple-
mentations (including PHP’s), when !(?i) " is used within any type of parentheses,
its effects are limited by the parentheses (i.e., turn off at the closing parentheses).
So, the !(?-i) " can simply be eliminated: !(?:(?i)very) ".

Common Metacharacter s and Features 133

29 April 2003 09:19

134 Chapter 3: Over view of Regular Expression Features and Flavors

The mode-modifier constructs support more than just ‘i’. With most systems, you
can use at least those shown in Table 3-13.

Table 3-13: Common Mode Modifiers

Letter Mode

i case-insensitivity match mode (+109)

x free-spacing and comments regex mode (+110)

s dot-matches-all match mode (+110)

m enhanced line-anchor match mode (+111)

Some systems have additional letters for additional functions. Tcl has a number of
dif ferent letters for turning its various modes on and off — see its documentation
for the complete list.

Mode-modified span: (?modifier:˙˙˙), such as (?i:˙˙˙)

The example from the previous section can be made even simpler for systems that
support a mode-modified span. Using a syntax like !(?i:˙˙˙)", a mode-modified
span turns on the mode only for what’s matched within the parentheses. Using
this, the !(?:(?i)very)" example is simplified to !(?i:very)".

When supported, this form generally works for all mode-modifier letters the sys-
tem supports. Tcl and Python are two examples that support the !(?i) " for m, but
not the mode-modified span !(?i:˙˙˙)" for m.

Comments: (?#˙˙˙) and #˙˙˙

Some flavors support comments via !(?#˙˙˙)". In practice, this is rarely used, in favor
of the free-spacing and comments regex mode (+ 110). However, this type of
comment is particularly useful in languages for which it’s difficult to get a newline
into a string literal, such as VB.NET (+ 99, 414).

Literal-text span: \Q˙˙˙\E

First introduced with Perl, the special sequence \Q˙˙˙\E tur ns of f all regex meta-
characters between them, except for \E itself. (If the \E is omitted, they are tur ned
of f until the end of the regex.) It allows what would otherwise be taken as normal
metacharacters to be treated as literal text. This is especially useful when including
the contents of a variable while building a regular expression.

For example, to respond to a web search, you might accept what the user types as
$query, and search for it with m/$query/i. As it is, this would certainly have
unexpected results if $query wer e to contain, say, ‘C:\WINDOWS\’, which results in

29 April 2003 09:19

a run-time error because the search term contains something that isn’t a valid regu-
lar expression (the trailing lone backslash). To get around this, you could use
m/\Q$query\E/i, which effectively turns ‘C:\WINDOWS\’ into ‘C:\\WINDOWS\\’,
resulting in a search that finds ‘C:\WINDOWS\’ as the user expects.

This kind of feature is less useful in systems with procedural and object-oriented
handling (+ 95), as they accept normal strings. While building the string to be
used as a regular expression, it’s fairly easy to call a function to make the value
fr om the variable “safe” for use in a regular expression. In VB, for example, one
would use the Regex.Escape method.

Curr ently, the only regex engine I know of that fully supports !\Q˙˙˙\E " is Sun’s
java.util.regex engine. Considering that I just mentioned that this was intro-
duced with Perl (and I gave an example in Perl), you might wonder why I don’t
include Perl in that statement. Perl supports \Q˙˙˙\E within regex literals (r egular
expr essions typed directly in the program), but not within the contents of variables
that might be interpolated into them. See Chapter 7 (+ 290) for details.

Grouping, Capturing, Conditionals, and Control
Captur ing/Grouping Parentheses: (˙˙˙) and \1, \2, ...

Common, unadorned parentheses generally perfor m two functions, grouping and
capturing. Common parentheses are almost always of the form !(˙˙˙)", but a few fla-
vors use !\(˙˙˙\) ". These include GNU Emacs, sed, vi, and gr ep.

Capturing parentheses are number ed by counting their opening parentheses from
the left, as shown in figures on pages 41, 43, and 57. If backr efer ences ar e avail-
able, the text matched via an enclosed subexpression can itself be matched later in
the same regular expression with !\1 ", !\2 ", etc.

One of the most common uses of parentheses is to pluck data from a string. The
text matched by a parenthesized subexpression (also called “the text matched by
the parentheses”) is made available after the match in differ ent ways by differ ent
pr ograms, such as Perl’s $1, $2, etc. (A common mistake is to try to use the !\1 "

syntax outside the regular expression; something allowed only with sed and vi.)

Table 3-14 on the next page shows how a number of programs make the captured
text available after a match. It shows how to access the text matched by the whole
expr ession, and the text matched by a set of capturing parentheses.

Common Metacharacter s and Features 135

29 April 2003 09:19

136 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-14: A Few Utilities and Their Access to Captured Text

Program Entire match Fir st set of parentheses

GNU egr ep N/A N/A

GNU Emacs (match-string 0)

(\& within replacement string)

(match-string 1)

(\1 within replacement string)

GNU awk \1 (within gensub replacement)substr($text, RSTART, RLENGTH)

(\& within replacement string)

MySQL N/A N/A

Perl $& $1+ 41

PHP $Matches[0] $Matches[1]

Python MatchObj.group(0) MatchObj.group(1)+ 97

Ruby $& $1

GNU sed & (in replacement string only) \1 (in replacement and regex only)

Java MatcherObj.group() MatcherObj.group(1)+ 95

Tcl set to user-selected variables via regexp command

VB.NET MatchObj.Groups(0) MatchObj.Groups(1)+ 96

C# MatchObj.Groups[0] MatchObj.Groups[1]

vi & \1

(See page 91 for version information.)

Grouping-only parentheses: (?:˙˙˙)

Now supported by many common flavors, grouping-only parentheses !(?:˙˙˙)" don’t
captur e, but just group regex components for alternation and the application of
quantifiers. Grouping-only parentheses are not counted as part of $1, $2, etc. After
a successful match of !(1;one)(?:and;or)(2;two)", for example, $1 contains ‘1’
or ‘one’, while $2 contains ‘2’ or ‘two’. Grouping-only parentheses are also called
non-capturing par entheses.

Non-capturing parentheses are useful for a number of reasons. They can help
make the use of a complex regex more clear in that the reader doesn’t need to
wonder if what’s matched by what they group is accessed elsewhere by $1 or the
like. They can also be more efficient — if the regex engine doesn’t need to keep
track of the text matched for capturing purposes, it can work faster and use less
memory. (Efficiency is covered in detail in Chapter 6.)

Non-capturing parentheses are useful when building up a regex from parts. Recall
the example from page 76, where the variable $HostnameRegex holds a regex to
match a hostname. Imagine now using that to pluck out the whitespace around a
hostname, as in the Perl snippet m/(\s+)$HostnameRegex(\s+)/. After this, you

29 April 2003 09:19

might expect $1 to hold any leading whitespace, and $2 to hold trailing white-
space, but that’s not the case: the trailing whitespace is actually in $4 because the
definition of $HostnameRegex uses two sets of capturing par entheses:

$HostnameRegex = qr/[-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info)/i;

Were those sets of parentheses non-capturing instead, $HostnameRegex could be
used without generating this surprise:

$HostnameRegex = qr/[-a-z0-9]+(?:\.[-a-z0-9]+)+\.(?:com;edu;info)/i;

Another way to avoid the surprise, although not available in Perl, is to use named
captur e, discussed next.

Named capture: (?<Name>˙˙˙)

Python and .NET languages support captures to named locations. Python uses the
syntax !(?P<name>˙˙˙)", while the .NET languages offer a syntax that I prefer,
!(?<name>˙˙˙)". Her e’s an example:

!\b(?<Area>\d\d\d\)-(?<Exch>\d\d\d)-(?<Num>\d\d\d\d)\b "

This “fills the names” Ar ea, Exch, and Num with the components of a phone num-
ber. The program can then refer to each matched substring through its name, for
example, RegexObj.Groups("Area") in VB.NET and most other .NET languages,
RegexObj.Groups["Area"] in C#, and RegexObj.group("Area") in Python. The
result is clearer code.

Within the regular expression itself, the captured text is available via !\k<Area> "

with .NET, and !(?P=Area) " in Python.

You can use the same name more than once within the same expression. For
example, to match an area code that looks like ‘(###)’ as well as ‘###-’, you might
use ! ˙˙˙(?:\((?<Area>\d\d\d) \)<(?<Area>\d\d\d)-)˙˙˙". When either matches,
the three-digit code is saved to the name Ar ea.

Atomic grouping: (?>˙˙˙)

Atomic grouping, !(?>˙˙˙)", will be very easy to explain once the important details
of how the regex engine carries out its work is understood (+ 169). Here, I’ll just
say that once the parenthesized subexpression matches, what it matches is fixed
(becomes atomic, unchangeable) for the rest of the match, unless it turns out that
the whole set of atomic parentheses needs to be abandoned or revisited. A simple
example helps to illustrate this indivisible, “atomic” nature of text matched by
these parentheses.

The regex !¡.+!" matches ‘¡Hola!’, but that string is not matched if the ! .+ " is
wrapped with atomic grouping, !¡(?>.+)!". In either case, the ! .+ " first internally
matches as much as it can (‘¡Hola!’), but in the first case, the ending !!" forces the

Common Metacharacter s and Features 137

29 April 2003 09:19

138 Chapter 3: Over view of Regular Expression Features and Flavors

! .+ " to give up some of what it had matched (the final ‘!’) to complete the overall
match. In the second case, the ! .+ " is inside atomic grouping (which never “give
up” anything once the matching leaves them), so nothing is left for the final !!", and
it can never match.

This example gives no hint to the usefulness of atomic grouping, but atomic
gr ouping has important uses. In particular, they can help make matching more
ef ficient (+ 171), and can be used to finely control what can and can’t be matched
(+ 269).

Alter nation: ˙˙˙<˙˙˙<˙˙˙

Alter nation allows several subexpressions to be tested at a given point. Each
subexpr ession is called an alter native. The !;" symbol is called various things, but
or and bar seem popular. Some flavors use !\;" instead.

Alter nation is a high-level construct (one that has very low precedence) in almost
all regex flavors. This means that !this and;or that " has the same meaning as
!(this and);(or that) ", and not !this (and;or) that ", even though visually,
the and;or looks like a unit.

Most flavors allow an empty alternative, like with !(this;that;)". The empty
subexpr ession means to always match, so this example is logically comparable to
!(this;that)? ".† The POSIX standard disallows an empty alternative, as does lex
and most versions of awk. I think it’s useful for its notational convenience or clar-
ity. As Larry Wall explained to me once, “It’s like having a zero in your numbering
system.”

Conditional: (? if then |else)

This construct allows you to express an if/then/else within a regex. The if part is a
special kind of conditional expression discussed in a moment. Both the then and
else parts are nor mal regex subexpressions. If the if part tests true, the then
expr ession is attempted. Otherwise, the else part is attempted. (The else part may
be omitted, and if so, the ‘;’ befor e it may be omitted as well.)

The kinds of if tests available are flavor-dependent, but most implementations
allow at least special refer ences to capturing subexpressions and lookaround.

† Actually, to be pedantic, !(this;that;)" is logically comparable to !((?:this;that)?)". With either of
these, the subexpression within the capturing parentheses is always able to match (although it may
match nothingness, but that’s the whole point of the empty alternative or the question mark quanti-
fier). On the other hand, with !(this;that)? ", it may be that the whole set of capturing parentheses
does not match. The differ ence may seem minor, but some languages provide a way to find out if a
certain set of capturing parentheses participated in the match, and with !(this;that;)" the answer is
always yes, but with !(this;that)? ", the answer could be no.

29 April 2003 09:19

Using a special reference to capturing parentheses as the test. If the if part is a
number in parentheses, it evaluates to “true” if that numbered set of capturing
par entheses has participated in the match to this point. Here’s an example that
matches an HTML tag, either alone, or surrounded by <A>˙˙˙ link tags.
It’s shown in a free-spacing mode with comments, and the conditional construct
(which in this example has no else part) is bold:

(<A\s+[ˆ>]+> \s+)? # Match leading <A> tag, if there.
<IMG\s+[ˆ>]+> # Match tag.
(?(1)\s+) # Match a closing , if we’d matched an <A> before.

The (1) in !(?(1)˙˙˙)" tests whether the first set of capturing parentheses partici-
pated in the match. “Participating in the match” is very differ ent fr om “actually
matched some text,” as a simple example illustrates...

Consider these two approaches to matching a word optionally wrapped in “<˙˙˙>”:
!(<)?\w+(?(1)>)" works, but !(<?)\w+(?(1)>)" does not. The only differ ence
between them is the location of the first question mark. In the first (correct)
appr oach, the question mark governs the capturing parentheses, so the parenthe-
ses (and all they contain) are optional. In the flawed second approach, the captur-
ing parentheses are not optional — only the !<" matched within them is, so they
“participate in the match” regardless of a ‘<’ being matched or not. This means that
the if part of !(?(1)˙˙˙)" always tests “true.”

If named capture (+ 137) is supported, you can generally use the name in paren-
theses instead of the number.

Using lookaround as the test. A full lookaround construct, such as !(?=˙˙˙)" and
!(?<=˙˙˙)", can be used as the if test. If the lookaround matches, it evaluates to
“true,” and so the then part is attempted. Otherwise, the else part is attempted. A
somewhat contrived example that illustrates this is !(?(?<=NUM:)\d+<\w+)", which
attempts !\d+ " at positions just after !NUM:", but attempts !\w+ " at other positions. The
lookbehind conditional is underlined.

Other tests for the conditional. Perl adds an interesting twist to this conditional
construct by allowing arbitrary Perl code to be executed as the test. The retur n
value of the code is the test’s value, indicating whether the then or else part should
be attempted. This is covered in Chapter 7, on page 327.

Greedy quantifier s: ,, +, ?, {num,num}

The quantifiers (star, plus, question mark, and intervals—metacharacters that affect
the quantity of what they govern) have already been discussed extensively. How-
ever, note that in some tools, !\+ " and !\? " ar e used instead of !+ " and !? ". Also, with
some older tools, quantifiers can’t be applied to a backrefer ence or to a set of
par entheses.

Common Metacharacter s and Features 139

29 April 2003 09:19

140 Chapter 3: Over view of Regular Expression Features and Flavors

Inter vals—{min,max} or \{min,max\}
Intervals can be considered a “counting quantifier” because you specify exactly the
minimum number of matches you wish to requir e, and the maximum number of
matches you wish to allow. If only a single number is given (such as in ![a-z]{3} "

or ![a-z]\{3\} ", depending upon the flavor), it matches exactly that many of the
item. This example is the same as ![a-z][a-z][a-z] " (although one may be more
or less efficient than the other + 251).

One caution: don’t think you can use something like !X{0,0}" to mean “there must
not be an X her e.” !X{0,0} " is a meaningless expression because it means “ no
requir ement to match !X ", and, in fact, don’t even bother trying to match any.
Period. ” It’s the same as if the whole !X{0,0}" wasn’t there at all — if there is an X

pr esent, it could still be matched by something later in the expression, so your
intended purpose is defeated.† Use negative lookahead for a true “must not be
her e” construct.

Lazy quantifier s: ,?, +?, ??, {num,num}?

Some tools offer the rather ungainly looking +?, +?, ??, and {min,max}?. These are
the lazy versions of the quantifiers. (They are also called minimal matching, non-
gr eedy, and ungr eedy.) Quantifiers are nor mally “gr eedy,” and try to match as
much as possible. Conversely, these non-greedy versions match as little as possi-
ble, just the bare minimum needed to satisfy the match. The differ ence has far-
reaching implications, covered in detail in the next chapter (+ 159).

Possessive quantifier s: ,+, ++, ?+, {num,num}+

Curr ently supported only by java.util.regex, but likely to gain popularity, pos-
sessive quantifiers ar e like normally greedy quantifiers, but once they match some-
thing, they never “give it up.” Like the atomic grouping to which they’re related,
understanding possessive quantifiers is much easier once the underlying match
pr ocess is understood (which is the subject of the next chapter).

In one sense, possessive quantifiers are just syntactic sugar, as they can be mim-
icked with atomic grouping. Something like ! .++ " has exactly the same result as
!(?>.+)", although a smart implementation can optimize possessive quantifiers
mor e than atomic grouping (+ 250).

† In theory, what I say about {0,0} is correct. In practice, what actually happens is even worse — it’s
almost random! In many programs (including GNU awk, GNU gr ep, and older versions of Perl) it
seems that {0,0} means the same as +, while in many others (including most versions of sed that
I’ve seen, and some versions of gr ep) it means the same as ?. Crazy!

29 April 2003 09:19

Guide to the Advanced Chapters
Now that we’re familiar with metacharacters, flavors, syntactic packaging, and the
like, it’s time to start getting into the nitty-gritty details of the third concern raised
at the start of this chapter, the specifics of how a tool’s regex engine goes about
applying a regex to some text. In Chapter 4, The Mechanics of Expression Process-
ing, we see how the implementation of the match engine influences whether a
match is achieved, which text is matched, and how much time the whole thing
takes. We’ll look at all the details. As a byproduct of this knowledge, you’ll find it
much easier to craft complex expressions with confidence. Chapter 5, Practical
Regex Techniques helps to solidify that knowledge with extended examples.

That brings us to Chapter 6, Crafting an Efficient Expression. Once you know the
basics about how an engine works, you can learn techniques to take full advan-
tage of that knowledge. Chapter 6 looks at regex pitfalls that often lead to unwel-
come surprises, and turns the tables to put them to use for us.

Chapters 4, 5, and 6 are the central core of this book. These first three chapters
mer ely lead up to them, and the discussions in the tool-specific chapters that fol-
low rely on them. They’re not necessarily what you would call “light reading,” but
I’ve taken great care to stay away from math, algebra, and all that stuff that’s just
mumbo-jumbo to most of us. As with any large amount of new information, it
likely takes time to sink in and internalize.

Guide to the Advanced Chapters 141

29 April 2003 09:19

4
The Mechanics

of Expression
Processing

The previous chapter started with an analogy between cars and regular expres-
sions. The bulk of the chapter discussed features, regex flavors, and other “glossy
br ochure” issues of regular expressions. This chapter continues with that analogy,
talking about the all-important regular-expr ession engine, and how it goes about
its work.

Why would you care how it works? As we’ll see, there are several types of regex
engines, and the type most commonly used — the type used by Perl, Tcl, Python,
the .NET languages, Ruby, PHP, all Java packages I’ve seen, and more — works in
such a way that how you craft your expression can influence whether it can match
a particular string, wher e in the string it matches, and how quickly it finds the
match or reports the failure. If these issues are important to you, this chapter is
for you.

Star t Your Engines!
Let’s see how much I can milk this engine analogy. The whole point of having an
engine is so that you can get from Point A to Point B without doing much work.
The engine does the work for you so you can relax and enjoy the sound system.
The engine’s primary task is to turn the wheels, and how it does that isn’t really a
concer n of yours. Or is it?

143

29 April 2003 09:21

144 Chapter 4: The Mechanics of Expression Processing

Tw o Kinds of Engines
Well, what if you had an electric car? They’ve been around for a long time, but
they aren’t as common as gas cars because they’re hard to design well. If you had
one, though, you would have to remember not to put gas in it. If you had a gaso-
line engine, well, watch out for sparks! An electric engine more or less just runs,
but a gas engine might need some babysitting. You can get much better perfor-
mance just by changing little things like your spark plug gaps, air filter, or brand of
gas. Do it wrong and the engine’s perfor mance deteriorates, or, worse yet, it stalls.

Each engine might do its work differ ently, but the end result is that the wheels
tur n. You still have to steer properly if you want to get anywhere, but that’s an
entir ely dif ferent issue.

New Standards
Let’s stoke the fire by adding another variable: the California Emissions Standards.†

Some engines adhere to Califor nia’s strict pollution standards, and some engines
don’t. These aren’t really differ ent kinds of engines, just new variations on what’s
alr eady ar ound. The standard regulates a result of the engine’s work, the emis-
sions, but doesn’t say anything about how the engine should go about achieving
those cleaner results. So, our two classes of engine are divided into four types:
electric (adhering and non-adhering) and gasoline (adhering and non-adhering).

Come to think of it, I bet that an electric engine can qualify for the standard with-
out much change— the standard just “blesses” the clean results that are alr eady par
for the course. The gas engine, on the other hand, needs some major tweaking
and a bit of re-tooling before it can qualify. Owners of this kind of engine need to
pay particular care to what they feed it — use the wrong kind of gas and you’re in
big trouble.

The impact of standards

Better pollution standards are a good thing, but they requir e that the driver exer-
cise more thought and foresight (well, at least for gas engines). Frankly, however,
the standard doesn’t impact most people since all the other states still do their own
thing and don’t follow California’s standard.

So, you realize that these four types of engines can be classified into three groups
(the two kinds for gas, and electric in general). You know about the differ ences,
and that in the end they all still turn the wheels. What you don’t know is what the
heck this has to do with regular expressions! More than you might imagine.

† Califor nia has rather strict standards regulating the amount of pollution a car can produce. Because
of this, many cars sold in America come in “California” and “non-California” models.

29 April 2003 09:21

Regex Eng ine Types
Ther e ar e two fundamentally differ ent types of regex engines: one called “DFA”
(the electric engine of our story) and one called “NFA” (the gas engine). The
details of what NFA and DFA mean follow shortly (+ 156), but for now just con-
sider them names, like Bill and Ted. Or electric and gas.

Both engine types have been around for a long time, but like its gasoline counter-
part, the NFA type seems to be used more often. Tools that use an NFA engine
include the .NET languages, Ruby, Perl, Python, GNU Emacs, ed, sed, PHP, vi, most
versions of gr ep, and even a few versions of egr ep and awk. On the other hand, a
DFA engine is found in almost all versions of egr ep and awk, as well as lex and
flex . Some systems have a multi-engine hybrid system, using the most appropriate
engine for the job (or even one that swaps between engines for differ ent parts of
the same regex, as needed to get the best combination of features and speed). Ta-
ble 4-1 lists a few common programs and the regex engine that most versions use.
If your favorite program is not in the list, the section “Testing the Engine Type” on
the next page can help you find out which it is.

Table 4-1: Some Tools and Their Regex Engines

Eng ine type Programs

DFA awk (most versions), egr ep (most versions), flex, lex, MySQL, Procmail

Traditional NFA GNU Emacs, Java, gr ep (most versions), less, mor e, .NET languages,
PCRE library, Perl, PHP (pcr e routines), Python, Ruby,
sed (most versions), vi

POSIX NFA mawk, Mortice Kern Systems’ utilities, GNU Emacs (when requested)

Hybrid NFA/DFA GNU awk, GNU gr ep /egr ep, Tcl

As Chapter 3 illustrated, 20 years of development with both DFAs and NFAs
resulted in a lot of needless variety. Things were dirty. The POSIX standard came
in to clean things up by clearly specifying not only which metacharacters and fea-
tur es an engine should support, as mentioned in the previous chapter, but also
exactly the results you could expect from them. Super ficial details aside, the DFAs
(our electric engines) were alr eady well suited to adhere to this new standard, but
the kind of results an NFA traditionally provided were dif ferent, so changes were
needed. As a result, broadly speaking, there are thr ee types of regex engines:

• DFA (POSIX or not—similar either way)
• Traditional NFA (most common: Perl, .NET, Java, Python, . . .)
• POSIX NFA

Her e, we use “POSIX” to refer to the match semantics — the expected operation of
a regex that the POSIX standard specifies (which we’ll get to later in this chapter).
Don’t confuse this use of “POSIX” with uses surrounding regex featur es intr oduced

Star t Your Engines! 145

29 April 2003 09:21

146 Chapter 4: The Mechanics of Expression Processing

in that same standard (+ 125). Many programs support the features without sup-
porting the full match semantics.

Old (and minimally featured) programs like egr ep, awk, and lex wer e nor mally
implemented with the electric DFA engine, so the new standard primarily just con-
fir med the status quo — no big changes. However, ther e wer e some gas-powered
versions of these programs which had to be changed if they wanted to be POSIX-
compliant. The gas engines that passed the California Emission Standards tests
(POSIX NFA) wer e fine in that they produced results according to the standard, but
the necessary changes only increased how fickle they were to proper tuning.
Wher e befor e you might get by with slightly misaligned spark plugs, you now
have absolutely no tolerance. Gasoline that used to be “good enough” now causes
knocks and pings. But, so long as you know how to maintain your baby, the
engine runs smoothly and cleanly.

Fr om the Depar tment of Redundancy Depar tment
At this point, I’ll ask you to go back and review the story about engines. Every
sentence there rings with some truth about regular expressions. A second reading
should raise some questions. Particularly, what does it mean that an electric DFA

regex engine more or less “just runs?” What affects a gas-powered NFA? How can I
tune my regular expressions to run as I want on an NFA? What special concerns
does an emissions-controlled POSIX NFA have? What’s a “stalled engine” in the
regex world?

Testing the Engine Type
Because the type of engine used in a tool influences the type of features it can
of fer, and how those features appear to work, we can often learn the type of
engine a tool has merely by checking to see how it handles a few test expressions.
(After all, if you can’t tell the differ ence, the differ ence doesn’t matter.) At this
point in the book, I wouldn’t expect you to understand why the following test
results indicate what they do, but I want to offer these tests now so that if your
favorite tool is not listed in Table 4-1, you can investigate before continuing with
this and the subsequent chapters.

Tr aditional NFA or not?

The most commonly used engine is a Traditional NFA, and spotting it is easy. First,
ar e lazy quantifiers (+ 140) supported? If so, it’s almost certainly a Traditional NFA.
As we’ll see, lazy quantifiers are not possible with a DFA, nor would they make
any sense with a POSIX NFA. However, to make sure, simply apply the regex
!nfa;nfa not " to the string ‘nfa not’ — if only ‘nfa’ matches, it’s a Traditional NFA.
If the entire ‘nfa not’ matches, it’s either a POSIX NFA or a DFA.

29 April 2003 09:21

DFA or POSIX NFA?

Dif ferentiating between a POSIX NFA and a DFA is sometimes just as simple. Cap-
turing parentheses and backrefer ences ar e not supported by a DFA, so that can be
one hint, but there are systems that are a hybrid mix between the two engine
types, and so may end up using a DFA if there are no capturing parentheses.

Her e’s a simple test that can tell you a lot. Apply !X(.+)+X " to a string like
‘=XX======================’, as with this egr ep command:

echo =XX=== ; egrep ’X(.+)+X’

If it takes a long time to finish, it’s an NFA (and if not a Traditional NFA as per the
test in the previous section, it must be a POSIX NFA). If it finishes quickly, it’s either
a DFA or an NFA with some advanced optimization. Does it display a warning mes-
sage about a stack overflow or long match aborted? If so, it’s an NFA.

Match Basics
Befor e looking at the differ ences among these engine types, let’s first look at their
similarities. Certain aspects of the drive train are the same (or for all practical pur-
poses appear to be the same), so these examples can cover all engine types.

About the Examples
This chapter is primarily concerned with a generic, full-function regex engine, so
some tools won’t support exactly everything presented. In my examples, the dip-
stick might be to the left of the oil filter, while under your hood it might be behind
the distributor cap. Your goal is to understand the concepts so that you can drive
and maintain your favorite regex package (and ones you find interest in later).

I’ll continue to use Perl’s notation for most of the examples, although I’ll occasion-
ally show others to remind you that the notation is superficial and that the issues
under discussion transcend any one tool or flavor. To cut down on wordiness
her e, I’ll rely on you to check Chapter 3 (+ 113) if I use an unfamiliar construct.

This chapter details the practical effects of how a match is carried out. It would be
nice if everything could be distilled down to a few simple rules that could be
memorized without needing to understand what is going on. Unfortunately, that’s
not the case. In fact, with all this chapter offers, I identify only two all-encompass-
ing rules:

1. The match that begins earliest (leftmost) wins.

2. The standard quantifiers (! + ", !+ ", !? ", and !{m,n}") are greedy.

We’ll look at these rules, their effects, and much more thr oughout this chapter.
Let’s start by diving into the details of the first rule.

Match Basics 147

29 April 2003 09:21

148 Chapter 4: The Mechanics of Expression Processing

Rule 1: The Match That Begins Earliest Wins
This rule says that any match that begins earlier (leftmost) in the string is always
pr eferr ed over any plausible match that begins later. This rule doesn’t say anything
about how long the winning match might be (we’ll get into that shortly), merely
that among all the matches possible anywhere in the string, the one that begins
leftmost in the string is chosen. Actually, since more than one plausible match can
start at the same earliest point, perhaps the rule should read “a match...” instead of
“the match...,” but that sounds odd.

Her e’s how the rule comes about: the match is first attempted at the very begin-
ning of the string to be searched (just before the first character). “Attempted”
means that every permutation of the entire (perhaps complex) regex is tested start-
ing right at that spot. If all possibilities are exhausted and a match is not found,
the complete expression is re-tried starting from just before the second character.
This full retry occurs at each position in the string until a match is found. A “no
match” result is reported only if no match is found after the full retry has been
attempted at each position all the way to the end of the string (just after the last
character).

Thus, when trying to match !ORA " against FLORAL, the first attempt at the start of the
string fails (since !ORA " can’t match FLO). The attempt starting at the second charac-
ter also fails (it doesn’t match LOR either). The attempt starting at the third posi-
tion, however, does match, so the engine stops and reports the match: FLORAL.

If you didn’t know this rule, results might sometimes surprise you. For example,
when matching !cat " against

The dragging belly indicates your cat is too fat

the match is in indicates, not at the word cat that appears later in the line. This
word cat could match, but the cat in indicates appears earlier in the string, so
it is the one matched. For an application like egr ep, the distinction is irrelevant
because it cares only whether ther e is a match, not wher e the match might be. For
other uses, such as with a search-and-r eplace, the distinction becomes paramount.

Her e’s a (hopefully simple) quiz: where does !fat;cat;belly;your " match in the
string ‘The dragging belly indicates your cat is too fat’? v Turn the
page to check your answer.

The “transmission” and the bump-along

It might help to think of this rule as the car’s transmission, connecting the engine
to the drive train while adjusting for the gear you’re in. The engine itself does the
real work (turning the crank); the transmission transfers this work to the wheels.

29 April 2003 09:21

The transmission’s main work: the bump-along
If the engine can’t find a match starting at the beginning of the string, it’s the
transmission that bumps the regex engine along to attempt a match at the next
position in the string, and the next, and the next, and so on. Usually. For instance,
if a regex begins with a start-of-string anchor, the transmission can realize that any
bump-along would be futile, for only the attempt at the start of the string could
possibly be successful. This and other internal optimizations are discussed in
Chapter 6.

Eng ine Pieces and Par ts
An engine is made up of parts of various types and sizes. You can’t possibly hope
to truly understand how the whole thing works if you don’t know much about the
individual parts. In a regex, these parts are the individual units — literal characters,
quantifiers (star and friends), character classes, parentheses, and so on, as
described in Chapter 3 (+ 113). The combination of these parts (and the engine’s
tr eatment of them) makes a regex what it is, so looking at ways they can be com-
bined and how they interact is our primary interest. First, let’s take a look at some
of the individual parts:

Literal text (e.g., a \+ ! M ...)
With a literal, non-metacharacter like !z " or !!", the match attempt is simply
“Does this literal character match the current text character?” If your regex is
only literal text, such as !usa ", it is treated as “ !u " and then !s " and then !a ". ” It’s
a bit more complicated if you have the engine do a case-insensitive match,
wher e !b " matches B and vice-versa, but it’s still pretty straightforward. (With
Unicode, there are a few additional twists + 109.)

Character classes, dot, Unicode proper ties, and the like
Matching dot, character classes, Unicode properties, and the like (+ 117) is
usually a simple matter: regardless of the length of the character class, it still
matches just one character.†

Dot is just a shorthand for a large character class that matches almost any
character (+ 110), so its actions are simple, as are the other shorthand conve-
niences such as !\w ", !\W ", and !\d ".

Captur ing parentheses
Par entheses used only for capturing text (as opposed to those used for
gr ouping) don’t change how the match is carried out.

† Actually, as we saw in the previous chapter (+ 126), a POSIX collating sequence can match multiple
characters, but this is not common. Also, certain Unicode characters can match multiple characters
when applied in a case-insensitive manner (+ 109), although most implementations do not sup-
port this.

Match Basics 149

29 April 2003 09:21

150 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 148.

Remember, the regex is tried completely each time, so !fat;cat;belly;your "
matches ‘The dragging belly indicates your cat is too fat’ rather
than fat, even though !fat " is listed first among the alternatives.

Sur e, the regex could conceivably match fat and the other alternatives, but
since they are not the earliest possible match (the match starting furthest to
the left), they are not the one chosen. The entire regex is attempted com-
pletely from one spot before moving along the string to try again from the
next spot, and in this case that means trying each alternative !fat ", !cat ",
!belly ", and !your " at each position before moving on.

Anchor s (e.g., !ˆ " !\Z " !(?<=\d) " ...)
Ther e ar e two basic types of anchors: simple ones (ˆ, $, \G, \b, ... + 127)
and complex ones (lookahead and lookbehind + 132). The simple ones are
indeed simple in that they test either the quality of a particular location in the
target string (ˆ, \Z, ...), or compare two adjacent characters (\<, \b, ...). On
the other hand, the lookaround constructs can contain arbitrary sub-expres-
sions, and so can be arbitrarily complex.

No “electric” parentheses, backreferences, or lazy quantifier s

I’d like to concentrate here on the similarities among the engines, but as foreshad-
owing of what’s to come in this chapter, I’ll point out a few interesting differ ences.
Capturing parentheses (and the associated backrefer ences and $1 type functional-
ity) are like a gas additive — they affect a gasoline (NFA) engine, but are irr elevant
to an electric (DFA) engine. The same thing applies to lazy quantifiers. The way a
DFA engine works completely precludes these concepts.† This explains why tools
developed with DFAs don’t provide these features. You’ll notice that awk, lex, and
egr ep don’t have backrefer ences or any $1 type functionality.

You might, however, notice that GNU’s version of egr ep does support backrefer-
ences. It does so by having two complete engines under the hood! It first uses a
DFA engine to see whether a match is likely, and then uses an NFA engine (which
supports the full flavor, including backrefer ences) to confirm the match. Later in
this chapter, we’ll see why a DFA engine can’t deal with backrefer ences or captur-
ing, and why anyone ever would want to use such an engine at all. (It has some
major advantages, such as being able to match very quickly.)

† This does not mean that there can’t be some mixing of technologies to try to get the best of both
worlds. This is discussed in a sidebar on page 183.

29 April 2003 09:21

Rule 2: The Standard Quantifier s Are Greedy
So far, we have seen features that are quite straightforward. They are also rather
boring — you can’t do much without involving more-power ful metacharacters such
as star, plus, alternation, and so on. Their added power requir es mor e infor mation
to understand them fully.

First, you need to know that the standard quantifiers (?, +, +, and {min,max}) are
gr eedy. When one of these governs a subexpression, such as !a " in !a? ", the !(expr)"

in !(expr)+ ", or ![0-9] " in ![0-9]+ ", ther e is a minimum number of matches that are
requir ed befor e it can be considered successful, and a maximum number that it
will ever attempt to match. This has been mentioned in earlier chapters — what’s
new here concer ns the rule that they always attempt to match as much as possi-
ble. (Some flavors provide other types of quantifiers, but this section is concerned
only with the standard, greedy ones.)

To be clear, the standard quantifiers settle for something less than the maximum
number of allowed matches if they have to, but they always attempt to match as
many times as they can, up to that maximum allowed. The only time they settle
for anything less than their maximum allowed is when matching too much ends
up causing some later part of the regex to fail. A simple example is using
!\b\w+s\b " to match words ending with an ‘s’, such as ‘regexes’. The !\w+ " alone is
happy to match the entire word, but if it does, it leaves nothing for the !s " to
match. To achieve the overall match, the !\w+ " must settle for matching only
‘regexes’, thereby allowing !s\b " (and thus the full regex) to match.

If it turns out that the only way the rest of the regex can succeed is when the
gr eedy construct in question matches nothing, well, that’s perfectly fine, if zero
matches are allowed (as with star, question, and {0,max} intervals). However, it
tur ns out this way only if the requir ements of some later subexpression force the
issue. It’s because the greedy quantifiers always (or, at least, try to) take more than
they minimally need that they are called greedy.

Gr eediness has many useful (but sometimes troublesome) implications. It explains,
for example, why ![0-9]+ " matches the full number in March 1998. Once the ‘1’
has been matched, the plus has fulfilled its minimum requir ement, but it’s greedy,
so it doesn’t stop. So, it continues, and matches the ‘998’ befor e being forced to
stop by the end of the string. (Since ![0-9] " can’t match the nothingness at the end
of the string, the plus finally stops.)

A subjective example

Of course, this method of grabbing things is useful for more than just numbers.
Let’s say you have a line from an email header and want to check whether it is the
subject line. As we saw in earlier chapters (+ 55), you simply use !ˆSubject: ".

Match Basics 151

29 April 2003 09:21

152 Chapter 4: The Mechanics of Expression Processing

However, if you use !ˆSubject: (.+) ", you can later access the text of the subject
itself via the tool’s after-the-fact parenthesis memory (for example, $1 in Perl).†

Befor e looking at why ! .+ " matches the entire subject, be sure to understand that
once the !ˆSubject: " part matches, you’re guaranteed that the entire regular
expr ession will eventually match. You know this because there’s nothing after
!ˆSubject: " that could cause the expression to fail; ! .+ " can never fail, since the
worst case of “no matches” is still considered successful for star.

So, why do we even bother adding ! .+ "? Well, we know that because star is
gr eedy, it attempts to match dot as many times as possible, so we use it to “fill”
$1. In fact, the parentheses add nothing to the logic of what the regular expression
matches—in this case we use them simply to capture the text matched by ! .+ " .

Once ! .+ " hits the end of the string, the dot isn’t able to match, so the star finally
stops and lets the next item in the regular expression attempt to match (for even
though the starred dot could match no further, perhaps a subexpression later in
the regex could). Ah, but since it turns out that there is no next item, we reach the
end of the regex and we know that we have a successful match.

Being too greedy

Let’s get back to the concept of a greedy quantifier being as greedy as it can be.
Consider how the matching and results would change if we add another ! .+ " :
!ˆSubject: (.+).+ ". The answer is: nothing would change. The initial ! .+ " (inside
the parentheses) is so greedy that it matches all the subject text, never leaving any-
thing for the second ! .+ " to match. Again, the failure of the second ! .+ " to match
something is not a problem, since the star does not requir e a match to be success-
ful. Wer e the second ! .+ " in parentheses as well, the resulting $2 would always be
empty.

Does this mean that after ! .+ ", a regular expression can never have anything that is
expected to actually match? No, of course not. As we saw with the !\w+s " example,
it is possible for something later in the regex to for ce something previously greedy
to give back (that is, relinquish or conceptually “unmatch”) if that’s what is neces-
sary to achieve an overall match.

Let’s consider the possibly useful !ˆ.+([0-9][0-9]) ", which finds the last two dig-
its on a line, wherever they might be, and saves them to $1. Her e’s how it works:
at first, ! .+ " matches the entire line. Because the following !([0-9][0-9]) " is
requir ed, its initial failure to match at the end of the line, in effect, tells ! .+ " “Hey,
you took too much! Give me back something so that I can have a chance to

† This example uses capturing as a forum for presenting greediness, so the example itself is appropri-
ate only for NFAs (because only NFAs support capturing). The lessons on greediness, however, apply
to all engines, including the non-capturing DFA.

29 April 2003 09:21

match.” Greedy components first try to take as much as they can, but they always
defer to the greater need to achieve an overall match. They’re just stubborn about
it, and only do so when forced. Of course, they’ll never give up something that
hadn’t been optional in the first place, such as a plus quantifier’s first match.

With this in mind, let’s apply !ˆ.+([0-9][0-9]) " to ‘about 24 characters long’.
Once ! .+ " matches the whole string, the requir ement for the first ![0-9]" to match
forces ! .+ " to give up ‘g’ (the last thing it had matched). That doesn’t, however,
allow ![0-9] " to match, so ! .+ " is again forced to relinquish something, this time the
‘n’. This cycle continues 15 more times until ! .+ " finally gets around to giving up ‘4’.

Unfortunately, even though the first ![0-9]" can then match that ‘4’, the second still
cannot. So, ! .+ " is forced to relinquish once more in an attempt fo find an overall
match. This time ! .+ " gives up the ‘2’, which the first ![0-9] " can then match. Now,
the ‘4’ is free for the second ![0-9] " to match, and so the entire expr ession matches
‘about 24 char˙˙˙’, with $1 getting ‘24’.

First come, fir st ser ved

Consider now using !ˆ.+([0-9]+) ", ostensibly to match not just the last two digits,
but the last whole number, however long it might be. When this regex is applied
to ‘Copyright 2003.’, what is captured? v Turn the page to check your answer.

Getting down to the details

I should clear up a few things here. Phrases like “ the ! .+ " gives up...” and “ the
![0-9] " for ces...” are slightly misleading. I used these terms because they’re easy to
grasp, and the end result appears to be the same as reality. However, what really
happens behind the scenes depends on the basic engine type, DFA or NFA. So, it’s
time to see what these really are.

Regex-Directed Ver sus Te xt-Directed
The two basic engine types reflect a fundamental differ ence in algorithms available
for applying a regular expression to a string. I call the gasoline-driven NFA engine
“r egex-dir ected,” and the electric-driven DFA “text-dir ected.”

NFA Eng ine: Regex-Directed
Let’s consider one way an engine might match !to(nite;knight;night) " against
the text ‘˙˙˙tonight˙˙˙’. Starting with the !t ", the regular expression is examined one
component at a time, and the “current text” is checked to see whether it is
matched by the current component of the regex. If it does, the next component is
checked, and so on, until all components have matched, indicating that an overall
match has been achieved.

Regex-Directed Ver sus Te xt-Directed 153

29 April 2003 09:21

154 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 153.

When !ˆ.,([0-9]+) " is applied to ‘Copyright 2003.’, what is captured by
the parentheses?

The desire is to get the last whole number, but it doesn’t work. As before,
! .+ " is forced to relinquish some of what it had matched because the subse-
quent ![0-9]+ " requir es a match to be successful. In this example, that means
unmatching the final period and ‘3’, which then allows ![0-9] " to match.
That’s governed by !+ ", so matching just once fulfills its minimum, and now
facing ‘.’ in the string, it finds nothing else to match.

Unlike before, though, there’s then nothing further that must match, so ! .+ " is
not forced to give up the 0 or any other digits it might have matched. Wer e
! .+ " to do so, the ![0-9]+ " would certainly be a grateful and greedy recipient,
but nope, first come first served. Greedy constructs give up something
they’ve matched only when forced. In the end, $1 gets only ‘3’.

If this feels counter-intuitive, realize that ![0-9]+ " is at most one match away
fr om ![0-9]+ ", which is in the same league as ! .+ ". Substituting that into
!ˆ.+([0-9]+) ", we get !ˆ.+(.+)" as our regex, which looks suspiciously like
the !ˆSubject: (.+).+ " example from page 152, where the second ! .+ " was
guaranteed to match nothing.

With the !to(nite;knight;night) " example, the first component is !t ", which
repeatedly fails until a ‘t’ is reached in the target string. Once that happens, the !o "

is checked against the next character, and if it matches, control moves to the next
component. In this case, the “next component” is !(nite;knight;night) " which
really means “ !nite " or !knight " or !night ". ” Faced with three possibilities, the
engine just tries each in turn. We (humans with advanced neural nets between our
ears) can see that if we’re matching tonight, the third alternative is the one that
leads to a match. Despite their brainy origins (+ 85), a regex-dir ected engine can’t
come to that conclusion until actually going through the motions to check.

Attempting the first alternative, !nite ", involves the same component-at-a-time
tr eatment as before: “ Try to match !n ", then !i ", then !t ", and finally !e ". ” If this fails,
as it eventually does, the engine tries another alternative, and so on until it
achieves a match or must report failure. Control moves within the regex from com-
ponent to component, so I call it “regex-dir ected.”

29 April 2003 09:21

The control benefits of an NFA eng ine

In essence, each subexpression of a regex in a regex-dir ected match is checked
independently of the others. Other than backrefer ences, ther e’s no interrelation
among subexpressions, except for the relation implied by virtue of being thrown
together to make a larger expression. The layout of the subexpressions and regex
contr ol structur es (e.g., alternation, parentheses, and quantifiers) controls an
engine’s overall movement through a match.

Since the regex directs the NFA engine, the driver (the writer of the regular expres-
sion) has considerable opportunity to craft just what he or she wants to happen.
(Chapters 5 and 6 show how to put this to use to get a job done correctly and effi-
ciently.) What this really means may seem vague now, but it will all be spelled
out soon.

DFA Eng ine: Te xt-Directed
Contrast the regex-dir ected NFA engine with an engine that, while scanning the
string, keeps track of all matches “currently in the works.” In the tonight exam-
ple, the moment the engine hits t, it adds a potential match to its list of those cur-
rently in progr ess:

in string in regex

after ˙˙˙tonight˙˙˙ possible matches: !to(nite;knight;night) "

Each subsequent character scanned updates the list of possible matches. After a
few more characters are matched, the situation becomes

in string in regex

after ˙˙˙tonight˙˙˙ possible matches: !to(nite;knight;night) "

with two possible matches in the works (and one alternative, knight, ruled out).
With the g that follows, only the third alternative remains viable. Once the h and t

ar e scanned as well, the engine realizes it has a complete match and can retur n
success.

I call this “text-directed” matching because each character scanned from the text
contr ols the engine. As in the example, a partial match might be the start of any
number of differ ent, yet possible, matches. Matches that are no longer viable are
pruned as subsequent characters are scanned. There are even situations where a
“partial match in progr ess” is also a full match. If the regex were !to(˙˙˙)? ", for
example, the parenthesized expression becomes optional, but it’s still greedy, so
it’s always attempted. All the time that a partial match is in progr ess inside those
par entheses, a full match (of ‘to’) is already confirmed and in reserve in case the
longer matches don’t pan out.

Regex-Directed Ver sus Te xt-Directed 155

29 April 2003 09:21

156 Chapter 4: The Mechanics of Expression Processing

If the engine reaches a character in the text that invalidates all the matches in the
works, it must revert to one of the full matches in reserve. If there are none, it
must declare that there are no matches at the current attempt’s starting point.

First Thoughts: NFA and DFA in Comparison
If you compare these two engines based only on what I’ve mentioned so far, you
might conclude that the text-directed DFA engine is generally faster. The regex-
dir ected NFA engine might waste time attempting to match differ ent subexpr es-
sions against the same text (such as the three alternatives in the example).

You would be right. During the course of an NFA match, the same character of the
target might be checked by many differ ent parts of the regex (or even by the same
part, over and over). Even if a subexpression can match, it might have to be
applied again (and again and again) as it works in concert with the rest of the
regex to find a match. A local subexpression can fail or match, but you just never
know about the overall match until you eventually work your way to the end of
the regex. (If I could find a way to include “It’s not over until the fat lady sings.” in
this paragraph, I would.) On the other hand, a DFA engine is deter ministic — each
character in the target is checked once (at most). When a character matches, you
don’t know yet if it will be part of the final match (it could be part of a possible
match that doesn’t pan out), but since the engine keeps track of all possible
matches in parallel, it needs to be checked only once, period.

The two basic technologies behind regular-expr ession engines have the somewhat
imposing names Nondeter ministic Finite Automaton (NFA) and Deter ministic Finite
Automaton (DFA). With mouthfuls like this, you see why I stick to just “NFA” and
“DFA.” We won’t be seeing these phrases spelled out again.†

Consequences to us as users

Because of the regex-dir ected natur e of an NFA, the details of how the engine
attempts a match are very important. As I said before, the writer can exercise a fair
amount of control simply by changing how the regex is written. With the tonight

example, perhaps less work would have been wasted had the regex been written
dif ferently, such as in one of the following ways:

• !to(ni(ght;te)<knight)"

• !tonite;toknight;tonight "

• !to(k?night;nite) "

† I suppose I could explain the underlying theory that goes into these names, if I only knew it! As I
hinted, the word deter ministic is pretty important, but for the most part the theory is not relevant, so
long as we understand the practical effects. By the end of this chapter, we will.

29 April 2003 09:21

With any given text, these all end up matching exactly the same thing, but in
doing so direct the engine in differ ent ways. At this point, we don’t know enough
to judge which of these, if any, are better than the others, but that’s coming soon.

It’s the exact opposite with a DFA — since the engine keeps track of all matches
simultaneously, none of these differ ences in repr esentation matter so long as in
the end they all repr esent the same set of possible matches. There could be a hun-
dr ed dif ferent ways to achieve the same result, but since the DFA keeps track of
them all simultaneously (almost magically — mor e on this later), it doesn’t matter
which form the regex takes. To a pur e DFA, even expressions that appear as differ-
ent as !abc " and ![aa-a](b;b{1};b)c " ar e utterly indistinguishable.

Thr ee things come to my mind when describing a DFA engine:

• DFA matching is very fast.
• DFA matching is very consistent.
• Talking about DFA matching is very boring.

I’ll eventually expand on all these points.

The regex-dir ected natur e of an NFA makes it interesting to talk about. NFAs pro-
vide plenty of room for creative juices to flow. There are great benefits in crafting
an expression well, and even greater penalties for doing it poorly. A gasoline
engine is not the only engine that can stall and conk out completely. To get to the
bottom of this, we need to look at the essence of an NFA engine: backtracking.

Backtracking
The essence of an NFA engine is this: it considers each subexpression or compo-
nent in turn, and whenever it needs to decide between two equally viable options,
it selects one and remembers the other to retur n to later if need be.

Situations where it has to decide among courses of action include anything with a
quantifier (decide whether to try another match), and alternation (decide which
alter native to try, and which to leave for later).

Whichever course of action is attempted, if it’s successful and the rest of the regex
is also successful, the match is finished. If anything in the rest of the regex eventu-
ally causes failure, the regex engine knows it can backtrack to where it chose the
first option, and can continue with the match by trying the other option. This way,
it eventually tries all possible permutations of the regex (or at least as many as
needed until a match is found).

Backtracking 157

29 April 2003 09:21

158 Chapter 4: The Mechanics of Expression Processing

A Really Crummy Analog y
Backtracking is like leaving a pile of bread crumbs at every fork in the road. If the
path you choose turns out to be a dead end, you can retrace your steps, giving up
gr ound until you come across a pile of crumbs that indicates an untried path.
Should that path, too, turn out to be a dead end, you can backtrack further, retrac-
ing your steps to the next pile of crumbs, and so on, until you eventually find a
path that leads to your goal, or until you run out of untried paths.

Ther e ar e various situations when the regex engine needs to choose between two
(or more) options — the alternation we saw earlier is only one example. Another
example is that upon reaching ! ˙˙˙x?˙˙˙ ", the engine must decide whether it should
attempt !x ". Upon reaching ! ˙˙˙x+˙˙˙ ", however, ther e is no question about trying to
match !x " at least once — the plus requir es at least one match, and that’s non-nego-
tiable. Once the first !x " has been matched, though, the requir ement is lifted and it
then must decide to match another !x ". If it decides to match, it must decide if it
will then attempt to match yet another... and another... and so on. At each of these
many decision points, a virtual “pile of crumbs” is left behind as a reminder that
another option (to match or not to match, whichever wasn’t chosen at each point)
remains viable at that point.

A crummy little example

Let’s look at a full example using our earlier !to(nite;knight;night)" regex on
the string ‘hot tonic tonight!’ (silly, yes, but a good example). The first com-
ponent, !t ", is attempted at the start of the string. It fails to match h, so the entire
regex fails at that point. The engine’s transmission then bumps along to retry the
regex from the second position (which also fails), and again at the third. This time
the !t " matches, but the subsequent !o " fails to match because the text we’re at is
now a space. So, again, the whole attempt fails.

The attempt that eventually starts at ˙˙˙tonic˙˙˙ is more inter esting. Once the to has
been matched, the three alternatives become three available options. The regex
engine picks one to try, remembering the others (“leaving some bread crumbs”) in
case the first fails. For the purposes of discussion, let’s say that the engine first
chooses !nite ". That expression breaks down to “!n " + !i " + !t " ...,” which gets to
˙˙˙tonic˙˙˙ befor e failing. Unlike the earlier failures, this failure doesn’t mean the
end of the overall attempt because other options — the as-of-yet untried alterna-
tives — still remain. (In our analogy, we still have piles of breadcrumbs we can
retur n to.) The engine chooses one, we’ll say !knight ", but it fails right away
because !k " doesn’t match ‘n’. That leaves one final option, !night ", but it too even-
tually fails. Since that was the final untried option, its failure means the failure of
the entire attempt starting at ˙˙˙tonic˙˙˙, so the transmission kicks in again.

29 April 2003 09:21

Once the engine works its way to attempt the match starting at ˙˙˙tonight!, it gets
inter esting again. This time, the !night " alter native successfully matches to the end
(which means an overall match, so the engine can report success at that point).

Tw o Impor tant Points on Backtracking
The general idea of how backtracking works is fairly simple, but some of the
details are quite important for real-world use. Specifically, when faced with multi-
ple choices, which choice should be tried first? Secondly, when forced to back-
track, which saved choice should the engine use? The answer to that first question
is this important principle:

In situations where the decision is between “make an attempt” and “skip
an attempt,” as with items governed by quantifiers, the engine always
chooses to first make the attempt for gr eedy quantifiers, and to first skip
the attempt for lazy (non-gr eedy) ones.

This has far-r eaching repercussions. For starters, it helps explain why the greedy
quantifiers are greedy, but it doesn’t explain it completely. To complete the pic-
tur e, we need to know which (among possibly many) saved options to use when
we backtrack. Simply put:

The most recently saved option is the one retur ned to when a local fail-
ur e forces backtracking. They’re used LIFO (last in first out).

This is easily understood in the crummy analogy — if your path becomes blocked,
you simply retrace your steps until you come back across a pile of bread crumbs.
The first you’ll retur n to is the one most recently laid. The traditional analogy for
describing LIFO also holds: like stacking and unstacking dishes, the most-recently
stacked will be the first unstacked.

Saved States
In NFA regular expression nomenclature, the piles of bread crumbs are known as
saved states. A state indicates where matching can restart from, if need be. It
reflects both the position in the regex and the point in the string where an untried
option begins. Because this is the basis for NFA matching, let me show the implica-
tions of what I’ve already said with some simple but verbose examples. If you’re
comfortable with the discussion so far, feel free to skip ahead.

Backtracking 159

29 April 2003 09:21

160 Chapter 4: The Mechanics of Expression Processing

A match without backtracking

Let’s look at a simple example, matching !ab?c " against abc. Once the !a " has
matched, the curr ent state of the match is reflected by:

at ‘abc’ matching !ab? c "

However, now that !b? " is up to match, the regex engine has a decision to make:
should it attempt the !b ", or skip it?. Well, since ? is greedy, it attempts the match.
But, so that it can recover if that attempt fails or eventually leads to failure, it adds

at ‘abc’ matching !ab?c "

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match in the regex just after the !b? ", picking up in the text from just
befor e the b (that is, where it is now). Thus, in effect, skipping the !b " as the ques-
tion mark allows.

Once the engine carefully places that pile of crumbs, it goes ahead and checks the
!b ". With the example text, it matches, so the new current state becomes:

at ‘abc’ matching !ab?c "

The final !c " matches as well, so we have an overall match. The one saved state is
no longer needed, so it is simply forgotten.

A match after backtracking

Now, if ‘ac’ had been the text to match, everything would have been the same
until the !b " attempt was made. Of course, this time it wouldn’t match. This means
that the path that resulted from actually attempting the ! ˙˙˙? " failed. Since there is a
saved state available to retur n to, this “local failure” does not mean overall failure.
The engine backtracks, meaning that it takes the most recently saved state as its
new current state. In this case, that would be the

at ‘ac’ matching !ab?c "

state that had been saved as the untried option before the !b " had been attempted.
This time, the !c " and c match up, so the overall match is achieved.

A non-match

Now let’s look at the same expression, but against ‘abX’. Before the !b " is
attempted, the question mark causes this state to be saved:

at ‘abX’ matching !ab?c "

29 April 2003 09:21

The !b " matches, but that avenue later turns out to be a dead end because the !c "

fails to match X. The failure results in a backtrack to the saved state. The engine
next tests !c " against the b that the backtrack effectively “unmatched.” Obviously,
this test fails, too. If there wer e other saved states, another backtrack would occur,
but since there aren’t any, the overall match at the current starting position is
deemed a failure.

Ar e we done? Nope. The engine’s transmission still does its “bump along the string
and retry the regex,” which might be thought of as a pseudo-backtrack. The match
restarts at:

at ‘abX’ matching !ab?c "

The whole match is attempted again from the new spot, and like before, all paths
lead to failure. After the next two attempts (from abX and abX) similarly fail, over-
all failure is finally reported.

A lazy match

Let’s look at the original example, but with a lazy quantifier, matching !ab??c "

against ‘abc’. Once the !a " has matched, the state of the match is reflected by:

at ‘abc’ matching !a b??c "

Now that !b?? " is next to be applied, the regex engine has a decision to make:
attempt the !b " or skip it? Well, since ?? is lazy, it specifically chooses to first skip
the attempt, but, so that it can recover if that attempt fails or eventually leads to
failur e, it adds

at ‘abc’ matching !a bc "

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match by making the attempt of !b ", in the text from just before the b.
(We know it will match, but the regex engine doesn’t yet know that, or even know
if it will ever need to get as far as making the attempt.) Once the state has been
saved, it goes ahead and continues from after its skip-the-attempt decision:

at ‘abc’ matching !ab??c "

The !c " fails to match ‘b’, so indeed the engine must backtrack to its one saved
state:

at ‘abc’ matching !a bc "

Of course, it matches this time, and the subsequent !c " matches ‘c’. The same final
match we got with the greedy !ab?c " is achieved, although via a differ ent path.

Backtracking 161

29 April 2003 09:21

162 Chapter 4: The Mechanics of Expression Processing

Backtracking and Greediness
For tools that use this NFA regex-dir ected backtracking engine, understanding how
backtracking works with your regular expression is the key to writing expressions
that accomplish what you want, and accomplish it quickly. We’ve seen how !? "

gr eediness and !?? " laziness works, so now let’s look at star and plus.

Star, plus, and their backtracking

If you consider !x+ " to be more or less the same as !x?x?x?x?x?x?˙˙˙ " (or, mor e
appr opriately, !(x(x(x(x˙˙˙?)?)?)?)? "),† it’s not too differ ent fr om what we have
alr eady seen. Before checking the item quantified by the star, the engine saves a
state indicating that if the check fails (or leads to failure), the match can pick up
after the star. This is done repeatedly, until an attempt via the star actually
does fail.

Thus, when matching ![0-9]+ " against ‘a 1234 num’, once ![0-9]" fails to match the
space after the 4, ther e ar e four saved states corresponding to locations to which
the plus can backtrack:

a 1234 num
a 1234 num
a 1234 num
a 1234 num

These repr esent the fact that the attempt of ![0-9] " had been optional at each of
these positions. When ![0-9] " fails to match the space, the engine backtracks to the
most recently saved state (the last one listed), picking up at ‘a 1234 num’ in the
text and at ![0-9]+ " in the regex. Well, that’s at the end of the regex. Now that
we’r e actually there and notice it, we realize that we have an overall match.

Note that ‘a 1234 num’ is not in the list of positions, because the first match using
the plus quantifier is requir ed, not optional. Would it have been in the list had the
regex been ![0-9]+ " ? (hint: it’s a trick question) v Turn the page to check your
answer.

Revisiting a fuller example

With our more detailed understanding, let’s revisit the !ˆ.+([0-9][0-9]) " example
fr om page 152. This time, instead of just pointing to “greediness” to explain why
the match turns out as it does, we can use our knowledge of NFA mechanics to
explain why in precise terms.

I’ll use ‘CA 95472, USA’ as an example. Once the ! .+ " has successfully matched to
the end of the string, there are a baker’s dozen saved states accumulated from the

† Just for comparison, remember that a DFA doesn’t care much about the form you use to express
which matches are possible; the three examples ar e identical to a DFA.

29 April 2003 09:21

star-gover ned dot matching 13 things that are (if need be) optional. These states
note that the match can pick up in the regex at !ˆ.+([0-9][0-9]) ", and in the
string at each point where a state was created.

Now that we’ve reached the end of the string and pass control to the first ![0-9]",
the match obviously fails. No problem: we have a saved state to try (a baker’s
dozen of them, actually). We backtrack, resetting the current state to the one most
recently saved, to just before wher e ! .+ " matched the final A. Skipping that match
(or “unmatching” it, if you like) gives us the opportunity to try that A against the
first ![0-9] ". But, it fails.

This backtrack-and-test cycle continues until the engine effectively unmatches the
2, at which point the first ![0-9] " can match. The second can’t, however, so we
must continue to backtrack. It’s now irrelevant that the first ![0-9]" matched during
the previous attempt; the backtrack resets the current state to before the first
![0-9] ". As it tur ns out, the same backtrack resets the string position to just before
the 7, so the first ![0-9] " can match again. This time, so can the second (matching
the 2). Thus, we have a match: ‘CA 95472, USA’, with $1 getting ‘72’.

A few observations: first, backtracking entails not only recalculating our position
within the regex and the text, but also maintaining the status of the text being
matched by the subexpression within parentheses. Each backtrack caused the
match to be picked up before the parentheses, at !ˆ.+([0-9][0-9]) ". As far as the
simple match attempt is concerned, this is the same as !ˆ.+[0-9][0-9] ", so I used
phrases such as “picks up before the first ![0-9]".” However, moving in and out of
the parentheses involves updating the status of what $1 should be, which also has
an impact on efficiency.

One final observation that may already be clear to you: something governed by
star (or any of the greedy quantifiers) first matches as much as it can without
regar d to what might follow in the regex. In our example, the ! .+ " does not magi-
cally know to stop at the first digit, or the second to the last digit, or any other
place until what’s governed by the greedy quantifier — the dot — finally fails. We
saw this earlier when looking at how !ˆ.+([0-9]+) " would never have more than
a single digit matched by the ![0-9]+ " part (+ 153).

More About Greediness
and Backtracking
Many concerns (and benefits) of greediness are shar ed by both an NFA and a DFA.
(A DFA doesn’t support laziness, which is why we’ve concentrated on greediness
up to this point.) I’d like to look at some ramifications of greediness for both, but
with examples explained in terms of an NFA. The lessons apply to a DFA just as
well, but not for the same reasons. A DFA is greedy, period, and there’s not much

More About Greediness and Backtracking 163

29 April 2003 09:21

164 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 162.

When matching ![0-9], " against ‘a 1234 num’, would ‘a 1234 num’ be par t of
a saved state?

The answer is “no.” I posed this question because the mistake is commonly
made. Remember, a component that has star applied can always match. If
that’s the entire regex, it can always match anywhere. This certainly includes
the attempt when the transmission applies the engine the first time, at the
start of the string. In this case, the regex matches at ‘a 1234 num’ and that’s
the end of it— it never even gets as far the digits.

In case you missed this, there’s still a chance for partial credit. Had there
been something in the regex after the ![0-9]+ " that kept an overall match
fr om happening before the engine got to:

at ‘a 1234˙˙˙’ matching ![0-9]+˙˙˙ "

then indeed, the attempt of the ‘1’ also creates the state:

at ‘a 1234˙˙˙’ matching ![0-9]+˙˙˙ "

mor e to say after that. It’s very easy to use, but pretty boring to talk about. An NFA,
however, is inter esting because of the creative outlet its regex-dir ected natur e pr o-
vides. Besides lazy quantifiers, there are a variety of extra features an NFA can sup-
port, including lookaround, conditionals, backrefer ences, and atomic grouping.
And on top of these, an NFA af fords the regex author direct control over how a
match is carried out, which can be a benefit when used properly, but it does cre-
ate some efficiency-r elated pitfalls (discussed in Chapter 6.)

Despite these differ ences, the match results are often similar. For the next few
pages, I’ll talk of both engine types, but describe effects in terms of the regex-
dir ected NFA. By the end of this chapter, you’ll have a firm grasp of just when the
results might differ, as well as exactly why.

Problems of Greediness
As we saw with the last example, ! .+ " always marches to the end of the line.† This
is because ! .+ " just thinks of itself and grabs what it can, only later giving up some-
thing if it is requir ed to achieve an overall match.

† With a tool or mode where a dot can match a newline, ! .+ " applied to strings that contain multiline
data matches through all the logical lines to the end of the whole string.

29 April 2003 09:21

Sometimes this can be a real pain. Consider a regex to match text wrapped in
double quotes. At first, you might want to write !".+"", but knowing what we
know about ! .+ ", guess where it matches in:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, since we understand the mechanics of matching, we don’t need to guess,
because we know. Once the initial quote matches, ! .+ " is free to match, and imme-
diately does so all the way to the end of the string. It backs off (or, perhaps more
appr opriately, is backed off by the regex engine) only as much as is needed until
the final quote can match. In the end, it matches

The name "McDonald’s" is said "makudonarudo" in Japanese

which is obviously not the double-quoted string that was intended. This is one
reason why I caution against the overuse of ! .+ ", as it can often lead to surprising
results if you don’t pay careful attention to greediness.

So, how can we have it match "McDonald’s" only? The key is to realize that we
don’t want “anything” between the quotes, but rather “anything except a quote.” If
we use ![ˆ"]+ " rather than ! .+ ", it won’t overshoot the closing quote.

The regex engine’s basic approach with !"[ˆ"]+"" is exactly the same as before.
Once the initial double quote matches, ![ˆ"]+ " gets a shot at matching as much as
it can. In this case, that’s up to the double quote after McDonald’s, at which point
it finally stops because ![ˆ"] " can’t match the quote. At that point, control moves to
the closing !"". It happily matches, resulting in overall success:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, there could be one unexpected change, and that’s because in most fla-
vors, ![ˆ"] " can match a newline, while dot doesn’t. If you want to keep the regex
fr om cr ossing lines, use ![ˆ"\n]".

Multi-Character “Quotes”
In the first chapter, I talked a bit about matching HTML tags, such as the sequence
very that renders the “very” in bold if the browser can do so. Attempting
to match a ˙˙˙ sequence seems similar to matching a quoted string, except
the “quotes” in this case are the multi-character sequences and . Like the
quoted string example, multiple sets of “quotes” cause problems if we use ! .+ ":

˙˙˙Billions and Zillions of suns˙˙˙

With ! .+ ", the greedy ! .+ " causes the match in progr ess to zip to the end of
the line, backtracking only far enough to allow the !" to match, matching the
last on the line instead of the one corresponding to the opening !" at the
start of the match.

More About Greediness and Backtracking 165

29 April 2003 09:21

166 Chapter 4: The Mechanics of Expression Processing

Unfortunately, since the closing delimiter is more than one character, we can’t
solve the problem with a negated class as we did with double-quoted strings. We
can’t expect something like ![ˆ]+ " to work. A character class repr e-
sents only one character and not the full sequence that we want. Don’t let
the apparent structure of ![ˆ] " fool you. It is just a class to match one charac-
ter — any one except <, >, /, and B. It is the same as, say ![ˆ/<>B]", and certainly
doesn’t work as an “anything not ” construct. (With lookahead, you can insist
that ! " not match at a particular point; we’ll see this in action in the next
section.)

Using Lazy Quantifier s
These problems arise because the standard quantifiers are greedy. Some NFAs sup-
port lazy quantifiers (+ 140), with +? being the lazy version of +. With that in
mind, let’s apply !.,?" to:

˙˙˙Billions and Zillions of suns˙˙˙

After the initial ! " has matched, ! .+? " immediately decides that since it doesn’t
requir e any matches, it lazily doesn’t bother trying to perfor m any. So, it immedi-
ately passes control to the following !<":

at ‘˙˙˙Bi l l i o n s˙˙˙’ matching !.+? "

The !<" doesn’t match at that point, so control retur ns back to ! .+? " wher e it still has
its untried option to attempt a match (to attempt multiple matches, actually). It
begrudgingly does so, with the dot matching the underlined B in ˙˙˙Billions˙˙˙.
Again, the +? has the option to match more, or to stop. It’s lazy, so it first tries
stopping. The subsequent !<" still fails, so ! .+? " has to again exercise its untried
match option. After eight cycles, ! .+? " eventually matches Billions, at which
point the subsequent !<" (and the whole !" subexpr ession) is finally able to
match:

˙˙˙Billions and Zillions of suns˙˙˙

So, as we’ve seen, the greediness of star and friends can be a real boon at times,
while troublesome at others. Having non-greedy, lazy versions is wonderful, as
they allow you to do things that are otherwise very difficult (or even impossible).
Still, I’ve often seen inexperienced programmers use lazy quantifiers in inappropri-
ate situations. In fact, what we’ve just done may not be appropriate. Consider
applying ! .+? " to:

˙˙˙Billions and Zillions of suns˙˙˙

It matches as shown, and while I suppose it depends on the exact needs of the sit-
uation, I would think that in this case that match is not desired. However, ther e’s
nothing about ! .+? " to stop it from marching right past the Zillion’s to its .

29 April 2003 09:21

This is an excellent example of why a lazy quantifier is often not a good replace-
ment for a negated class. In the !".+"" example, using ![ˆ"]" as a replacement for
the dot specifically disallows it from marching past a delimiter — a quality we wish
our current regex had.

However, if negative lookahead (+ 132) is supported, you can use it to create
something comparable to a negated class. Alone, !(?!)" is a test that is success-
ful if is not at the current location in the string. Those are the locations that
we want the dot of ! .+? " to match, so changing that dot to !((?!).)"

cr eates a regex that matches where we want it, but doesn’t match where we don’t.
Assembled all together, the whole thing can become quite confusing, so I’ll show
it here in a free-spacing mode (+ 110) with comments:

 # Match the opening
(# Now, only as many of the following as needed . . .

(?!) # If not . . .
. # . . . any character is okay

)+? #
 # . . . until the closing delimiter can match

With one adjustment to the lookahead, we can put the quantifier back to a normal
gr eedy one, which may be less confusing to some:

 # Match the opening
(# Now, only as many of the following as needed . . .

(?! </?B>) # If not , and not . . .
. # . . . any character is okay

)+ #
 # . . . until the closing delimiter can match.

Now, the lookahead prohibits the main body to match beyond as well as
, which eliminates the problem we tried to solve with laziness, so the laziness
can be removed. This expression can still be improved; we’ll see it again during
the discussion on efficiency in Chapter 6 (+ 270).

Greediness and Laziness Always Favor a Match
Recall the price display example from Chapter 2 (+ 51). We’ll examine this exam-
ple in detail at a number of points during this chapter, so I’ll recap the basic issue:
due to floating-point repr esentation pr oblems, values that should have been
“1.625” or “3.00” were sometimes coming out like “1.62500000002828” and
“3.00000000028822”. To fix this, I used

$price =˜ s/(\.\d\d[1-9]?)\d+/$1/;

to lop off all but the first two or three decimal digits from the value stored in the
variable $price. The !\.\d\d " matches the first two decimal digits regardless,
while the ![1-9]? " matches the third digit only if it is non-zero.

More About Greediness and Backtracking 167

29 April 2003 09:21

168 Chapter 4: The Mechanics of Expression Processing

I then noted:
Anything matched so far is what we want to keep, so we wrap it in paren-
theses to capture to $1. We can then use $1 in the replacement string. If this
is the only thing that matches, we replace exactly what was matched with
itself — not very useful. However, we go on to match other items outside the
$1 par entheses. They don’t find their way to the replacement string, so the
ef fect is that they’re removed. In this case, the “to be removed” text is any
extra digits, the !\d+ " at the end of the regex.

So far so good, but let’s consider what happens when the contents of the variable
$price is already well formed. When it is 27.625, the !(\.\d\d[1-9]?) " part
matches the entire decimal part. Since the trailing !\d+ " doesn’t match anything, the
substitution replaces the ‘.625’ with ‘.625’ — an effective no-op.

This is the desired result, but wouldn’t it be just a bit more efficient to do the
replacement only when it would have some real effect (that is, do the replacement
only when !\d+ " actually matches something) ? Well, we know how to write “at
least one digit”! Simply replace !\d, " with !\d+ ":

$price =˜ s/(\.\d\d[1-9]?)\d+/$1/

With crazy numbers like “1.62500000002828”, it still works as before, but with
something such as “9.43”, the trailing !\d+ " isn’t able to match, so rightly, no substi-
tution occurs. So, this is a great modification, yes? No! What happens with a three-
digit decimal value like 27.625? We want this value to be left alone, but that’s not
what happens. Stop for a moment to work through the match of 27.625 yourself,
with particular attention to how the ‘5’ interacts with the regex.

In hindsight, the problem is really fairly simple. Picking up in the action once
!(\.\d\d[1-9]?)\d+ " has matched 27.625, we find that !\d+ " can’t match. That’s
no problem for the overall match, though, since as far as the regex is concerned,
the match of ‘5’ by ![1-9] " was optional and there is still a saved state to try. This
state allows ![1-9]? " to match nothing, leaving the 5 to fulfill the must-match-one
requir ement of !\d+ ". Thus, we get the match, but not the right match: .625 is
replaced by .62, and the value becomes incorrect.

What if ![1-9]? " wer e lazy instead? We’d get the same match, but without the inter-
vening “match the 5 but then give it back” steps, since the lazy ![1-9]?? " first skips
the match attempt. So, laziness is not a solution to this problem.

The Essence of Greediness, Laziness,
and Backtracking
The lesson of the preceding section is that it makes no differ ence whether there
ar e gr eedy or lazy components to a regex; an overall match takes precedence over
an overall non-match. This includes taking from what had been greedy (or giving
to what had been lazy) if that’s what is requir ed to achieve a match, because when

29 April 2003 09:21

a “local failure” is hit, the engine keeps going back to the saved states (retracing
steps to the piles of bread crumbs), trying the untested paths. Whether greedily or
lazily, every possible path is tested before the engine admits failure.

The order that the paths are tested is differ ent between greedy and lazy quantifiers
(after all, that’s the whole point of having the two!), but in the end, if no match is
to be found, it’s known only after testing every possible path.

If, on the other hand, there exists just one plausible match, both a regex with a
gr eedy quantifier and one with a lazy quantifier find that match, although the
series of paths they take to get there may be wildly differ ent. In these cases,
selecting greedy or lazy doesn’t influence what is matched, but merely how long
or short a path the engine takes to get there (which is an efficiency issue, the sub-
ject of Chapter 6).

Finally, if there is mor e than one plausible match, understanding greediness, lazi-
ness, and backtracking allows you to know which is selected. The !".+"" example
has three plausible matches:

The name "McDonald’s" is said "makudonarudo" in Japanese

We know that !".+"", with the greedy star, selects the longest one, and that !".+?"",
with the lazy star, selects the shortest.

Possessive Quantifier s and Atomic Grouping
The ‘.625’ example on the facing page shows important insights about NFA match-
ing as we know it, and how with that particular example our naïve intents were
thwarted. Some flavors do provide tools to help us here, but before looking at
them, it’s absolutely essential to fully understand the preceding section, “The
Essence of Greediness, Laziness, and Backtracking.” Be sur e to review it if you
have any doubts.

So, continuing with the ‘.625’ example and recalling what we really want to hap-
pen, we know that if the matching can successfully get to the marked position in
!(\.\d\d[1-9]?)\d+ ", we never want it to go back. That is, we want ![1-9]" to
match if possible, but if it does, we don’t want that match to be given up. Saying it
mor e forcefully, we would rather have the entire match attempt fail, if need be,
befor e giving up something matched by the ![1-9] ". (As you’ll recall, the problem
befor e when this regex was applied to ‘.625’ was that it indeed didn’t fail, but
instead went back to try the remaining skip-me alternative.)

Well, what if we could somehow eliminate that skip-me alternative (eliminate the
state that !? " saves before it makes the attempt to match ![1-9] ") ? If ther e was no
state to go back to, a match of ![1-9] " wouldn’t be given up. That’s what we want!
Ah, but if there was no skip-me state to go back to, what would happen if we

More About Greediness and Backtracking 169

29 April 2003 09:21

170 Chapter 4: The Mechanics of Expression Processing

applied the regex to ‘.5000’? The ![1-9] " couldn’t match, and in this case, we do
want it to go back and skip the ![1-9] " so that the subsequent !\d+ " can match dig-
its to be removed.

It sounds like we have two conflicting desires, but thinking about it, what we
really want is to eliminate the skip-me alternative only if the match-me alternative
succeeds. That is, if ![1-9] " is indeed able to match, we’d like to get rid of the skip-
me saved state so that it is never given up. This is possible, with regex flavors that
support !(?>˙˙˙)" atomic grouping (+ 137), or possessive quantifiers like ![1-9]?+ "

(+ 140). We’ll look at atomic grouping first.

Atomic grouping with !(?>˙˙˙) "

In essence, matching within !(?>˙˙˙)" carries on normally, but if and when matching
is able to exit the construct (that is, get past its closing parenthesis), all states that
had been saved while within it are thr own away. In practice, this means that once
the atomic grouping has been exited, whatever text was matched within it is now
one unchangeable unit, to be kept or given back only as a whole. All saved states
repr esenting untried options within the parentheses are eliminated, so backtrack-
ing can never undo any of the decisions made within (at least not once they’re
“locked in” when the construct is exited).

So, let’s consider !(\.\d\d(?>[1-9]?))\d+ ". Quantifiers work normally within
atomic grouping, so if ![1-9] " is not able to match, the regex retur ns to the skip-me
saved state the !? " had left. That allows matching to leave the atomic grouping and
continue on to the !\d+ ". In this case, there are no saved states to flush when con-
tr ol leaves the atomic grouping (that is, there are no saved states remaining that
had been created within it).

However, when ![1-9] " is able to match, matching can exit the atomic grouping,
but this time, the skip-me state is still there. Since it had been created within the
atomic grouping we’re now exiting, it is thrown away. This would happen when
matching against both ‘.625’, and, say, ‘.625000’. In the latter case, having elimi-
nated the state turns out not to matter, since the !\d+ " has the ‘.625000’ to match,
after which that regex is done. With ‘.625’ alone, the inability of !\d+ " to match has
the regex engine wanting to backtrack, but it can’t since that skip-me alternative
was thrown away. The lack of any state to backtrack to results in the overall match
attempt failing, and ‘.625’ is left undisturbed as we wish.

The essence of atomic grouping
The section “The Essence of Greediness, Laziness, and Backtracking,” starting on
page 168, makes the important point that neither greediness nor laziness influence
which paths can be checked, but merely the or der in which they are checked. If
no match is found, whether by a greedy or a lazy ordering, in the end, every
possible path will have been checked.

29 April 2003 09:21

Atomic grouping, on the other hand, is fundamentally differ ent because it actually
eliminates possible paths. Eliminating states can have a number of differ ent conse-
quences, depending on the situation:

• No Effect If a match is reached before one of the eliminated states would
have been called upon, there is no effect on the match. We saw this a moment
ago with the ‘.625000’ example. A match was found before the eliminated
state would have come into play.

• Prohibit Match The elimination of states can mean that a match that would
have otherwise been possible now becomes impossible. We saw this with the
‘.625’ example.

• Dif ferent Match In some cases, it’s possible to get a dif ferent match due to
the elimination of states.

• Faster Failure It’s possible for the elimination of states to do nothing more
than allow the regex engine, when no match is to be found, report that fact
mor e quickly. This is discussed right after the quiz.

Her e’s a little quiz: what does the construct !(?>.,?)" do? What kind of things do
you expect it can match? v Turn the page to check your answer.

Some states may remain. When the engine exits atomic grouping during a
match, only states that had been created while inside the atomic grouping ar e
eliminated. States that might have been there befor e still remain after, so the entire
text matched by the atomic subexpression may be unmatched, as a whole, if
backtracking later reverts to one of those previous states.

Faster failures with atomic grouping. Consider !ˆ\w+: " applied to ‘Subject’. We
can see, just by looking at it, that it will fail because the text doesn’t have a colon
in it, but the regex engine won’t reach that conclusion until it actually goes
thr ough the motions of checking.

So, by the time !:" is first checked, the !\w+ " will have marched to the end of the
string. This results in a lot of states — one “skip me” state for each match of !\w " by
the plus (except the first, since plus requir es one match). When then checked at
the end of the string, !:" fails, so the regex engine backtracks to the most recently
saved state:

at ‘Su b j e ct’ matching !ˆ\w+:"

at which point the !:" fails again, this time trying to match ‘t’. This backtrack-test-
fail cycle happens all the way back to the oldest state:

at ‘Subject’ matching !ˆ\w+:"

After the attempt from the final state fails, overall failure can finally be announced.

More About Greediness and Backtracking 171

29 April 2003 09:21

172 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 171.

What does !(?>.,?)" match?

It can never match, anything. At best, it’s a fairly complex way to accomplish
nothing! ! +? " is the lazy ! + ", and governs a dot, so the first path it attempts is
the skip-the-dot path, saving the try-the-dot state for later, if requir ed. But the
moment that state has been saved, it’s thrown away because matching exits
the atomic grouping, so the skip-the-dot path is the only one ever taken. If
something is always skipped, it’s as if it’s not there at all.

All that backtracking is a lot of work that after just a glance we know to be unnec-
essary. If the colon can’t match after the last letter, it certainly can’t match one of
the letters the !+ " is forced to give up!

So, knowing that none of the states left by !\w+ ", once it’s finished, could possibly
lead to a match, we can save the regex engine the trouble of checking them:
!ˆ(?>\w+):" By adding the atomic grouping, we use our global knowledge of the
regex to enhance the local working of !\w+ " by having its saved states (which we
know to be useless) thrown away. If there is a match, the atomic grouping won’t
have mattered, but if there’s not to be a match, having thrown away the useless
states lets the regex come to that conclusion more quickly. (An advanced imple-
mentation may be able to apply this optimization for you automatically + 251.)

As we’ll see in the Chapter 6 (+ 269), this technique shows a very valuable use of
atomic grouping, and I suspect it will become the most common use as well.

Possessive Quantifier s, ?+, ++, ++, and {m,n}+

Possessive quantifiers are much like greedy quantifiers, but they never give up a
partial amount of what they’ve been able to match. Once a plus, for example, fin-
ishes its run, it has created quite a few saved states, as we saw with the !ˆ\w+ "

example. A possessive plus simply throws those states away (or, mor e likely,
doesn’t bother creating them in the first place).

As you might guess, possessive quantifiers are closely related to atomic grouping.
Something possessive like !\w++ " appears to match in the same way as !(?>\w+)";
one is just a notational convenience for the other.† With possessive quantifiers,
!ˆ(?>\w+):" can be rewritten as !ˆ\w++:", and !(\.\d\d(?>[1-9]?))\d+ " can be
rewritten as !(\.\d\d[1-9]?+)\d+ ".

† A smart implementation may be able to make the possessive version a bit more efficient than its
atomic-gr ouping counterpart (+ 250).

29 April 2003 09:21

Be sure to understand the differ ence between !(?> M)+ " and !(?> M+) ". The first one
thr ows away unused states created by !M ", which is not very useful since !M " doesn’t
cr eate any states. The second one throws away unused states created by !M+ ",
which certainly can be useful.

When phrased as a comparison between !(?> M)+ " and !(?> M+)", it’s perhaps clear
that the second one is the one comparable to !M++ ", but when converting some-
thing more complex like !(\\";[ˆ"])++ " fr om possessive quantifiers to atomic
gr ouping, it’s tempting to just add ‘?>’ to the parentheses that are alr eady ther e:
!(?>\\";[ˆ"])++ ". The new expression might happen to achieve your goal, but be
clear that is not comparable to the original possessive-quantifier version; it’s as if
changing !M++ " to !(?>M)+ ". Rather, to be comparable, remove the possessive plus,
and then wrap what remains in atomic grouping: !(?>(\\";[ˆ"])+)".

The Backtracking of Lookaround
It might not be apparent at first, but lookaround (introduced in Chapter 2 + 59) is
closely related to atomic grouping and possessive quantifiers. There are four types
of lookaround: positive and negative flavors of lookahead and lookbehind. They
simply test whether their subexpression can and can’t match starting at the current
location (lookahead), or ending at the current location (lookbehind).

Looking a bit deeper, how does lookaround work in our NFA world of saved states
and backtracking? As a subexpression within one of the lookaround constructs is
being tested, it’s as if it’s in its own little world. It saves states as needed, and
backtracks as necessary. If the entire subexpr ession is able to match successfully,
what happens? With positive lookar ound, the construct, as a whole, is considered a
success, and with negative lookar ound, it’s considered a failure. In either case,
since the only concern is whether there’s a match (and we just found out that, yes,
ther e’s a match), the “little world” of the match attempt, including any saved states
that might have been left over from that attempt, is thrown away.

What about when the subexpression within the lookaround can’t match? Since it’s
being applied in its “own little world,” only states created within the current look-
ar ound construct are available. That is, if the regex finds that it needs to backtrack
further, beyond where the lookaround construct started, it’s found that the current
subexpr ession can not match. For positive lookahead, this means failure, while for
negative lookahead, it means success. In either case, there are no saved states left
over (had there been, the subexpression match would not have finished), so
ther e’s no “little world” left to throw away.

So, we’ve seen that in all cases, once the lookaround construct has finished, there
ar e no saved states left over from its application. Any states that might have been
left over, such as in the case of successful positive lookahead, are thr own away.

More About Greediness and Backtracking 173

29 April 2003 09:21

174 Chapter 4: The Mechanics of Expression Processing

Well, where else have we seen states being thrown away? With atomic grouping
and possessive quantifiers, of course.

Mimicking atomic grouping with positive lookahead

It’s perhaps mostly academic for flavors that support atomic grouping, but can be
quite useful for those that don’t: if you have positive lookahead, and if it supports
capturing parentheses within the lookahead (most flavors do, but Tcl’s lookahead,
for example, does not), you can mimic atomic grouping and possessive quanti-
fiers. !(?>regex)" can be mimicked with !(?=(regex))\1 ". For example, compare
!ˆ(?>\w+): " with !ˆ(?=(\w+))\1: ".

The lookahead version has !\w+ " gr eedily match as much as it can, capturing an
entir e word. Because it’s within lookahead, the intermediate states are thr own
away when it’s finished (just as if, incidentally, it had been within atomic group-
ing). Unlike atomic grouping, the matched word is not included as part of the
match (that’s the whole point of lookahead), but the word does remain captured.
That’s a key point because it means that when !\1 " is applied, it’s actually being
applied to the very text that filled it, and it’s certain to succeed. This extra step of
applying !\1 " is simply to move the regex past the matched word.

This technique is a bit less efficient than real atomic grouping because of the extra
time requir ed to rematch the text via !\1 ". But, since states are thr own away, it fails
mor e quickly than a raw !\w+: " when the !:" can’t match.

Is Alternation Greedy?
How alternation works is an important point because it can work in fundamentally
dif ferent ways with differ ent regex engines. When alternation is reached, any num-
ber of the alternatives might be able to match at that point, but which will? Put
another way, if more than one can match, which will? If it’s always the one that
matches the most text, one might say that alternation is greedy. If it’s always the
shortest amount of text, one might say it’s lazy? Which (if either) is it?

Let’s look at the Traditional NFA engine used in Perl, Java packages, .NET lan-
guages, and many others (+ 145). When faced with alternation, each alternative is
checked in the left-to-right order given in the expression. With the example regex
of !ˆ(Subject;Date): ", when the !Subject;Date " alter nation is reached, the first
alter native, !Subject ", is attempted. If it matches, the rest of the regex (the subse-
quent !: ") is given a chance. If it turns out that it can’t match, and if other alterna-
tives remain (in this case, !Date "), the regex engine backtracks to try them. This is
just another case of the regex engine backtracking to a point where untried options
ar e still available. This continues until an overall match is achieved, or until all
options (in this case, all alternatives) are exhausted.

29 April 2003 09:21

So, with that common Traditional NFA engine, what text is actually matched by
!tour;to;tournament " when applied to the string ‘three tournaments won’ ? All
the alternatives are attempted (and fail) during attempts starting at each character
position until the transmission starts the attempt at ‘three tournaments won’.
This time, the first alternative, !tour ", matches. Since the alternation is the last thing
in the regex, the moment the !tour " matches, the whole regex is done. The other
alter natives ar e not even tried again.

So, we see that alternation is neither greedy nor lazy, but or dered, at least for a
Traditional NFA. This is more power ful than greedy alternation because it allows
mor e contr ol over just how a match is attempted — it allows the regex author to
expr ess “try this, then that, and finally try that, until you get a match.”

Not all flavors have ordered alternation. DFAs and POSIX NFAs do have greedy
alter nation, always matching with the alternative that matches the most text
(!tournament " in this case). But, if you’re using Perl, a .NET language, virtually any
Java regex package, or any other system with a Traditional NFA engine (list + 145),
your alternation is or dered.

Taking Advantage of Ordered Alternation
Let’s revisit the !(\.\d\d[1-9]?)\d+ " example from page 167. If we realize that
!\.\d\d[1-9]? ", in effect, says “allow either !\.\d\d " or !\.\d\d[1-9] " ”, we can
rewrite the entire expr ession as !(\.\d\d<\.\d\d[1-9])\d+ ". (Ther e is no com-
pelling reason to make this change — it’s merely a handy example.) Is this really
the same as the original? If alternation is truly greedy, then it is, but the two are
quite differ ent with ordered alternation.

Let’s consider it as ordered for the moment. The first alternative is selected and
tested, and if it matches, control passes to the !\d+ " that follows the alternation. If
ther e ar e digits remaining, the !\d+ " matches them, including any initial non-zero
digit that was the root of the original example’s problem (if you’ll recall the origi-
nal problem, that’s a digit we want to match only within the parentheses, not by
the !\d+ " after the parentheses). Also, realize that if the first alternative can’t match,
the second alternative will certainly not be able to, as it begins with a copy of the
entir e first alternative. If the first alternative doesn’t match, though, the regex
engine nevertheless expends the effort for the futile attempt of the second.

Inter estingly, if we swap the alternatives and use !(\.\d\d[1-9]<\.\d\d)\d+ ",
we do effectively get a replica of the original greedy !(\.\d\d[1-9]?)\d+ ". The
alter nation has meaning in this case because if the first alternative fails due to the
trailing ![1-9] ", the second alternative still stands a chance. It’s still ordered alterna-
tion, but now we’ve selected the order to result in a greedy-type match.

More About Greediness and Backtracking 175

29 April 2003 09:21

176 Chapter 4: The Mechanics of Expression Processing

When first distributing the ![1-9]? " to two alternatives, in placing the shorter one
first, we fashioned a non-greedy !? " of sorts. It ends up being meaningless in this
particular example because there is nothing that could ever allow the second alter-
native to match if the first fails. I see this kind of faux-alternation often, and it is
invariably a mistake. In one book I’ve read, !a+((ab)+<b+)" is used as an example
in explaining something about regex parentheses. It’s a pointless example because
the first alternative, !(ab)+ ", can never fail, so any other alternatives are utterly
meaningless. You could add

!a+((ab)+;b+;.+;partridge in a pear tree;[a-z])"

and it wouldn’t change the meaning a bit. The moral is that with ordered alterna-
tion, when more than one alternative can potentially match the same text, care
must be taken when selecting the order of the alternatives.

Ordered alternation pitfalls

Order ed alter nation can be put to your advantage by allowing you to craft just the
match you want, but it can also lead to unexpected pitfalls for the unaware. Con-
sider matching a January date of the form ‘Jan 31’. We need something more
sophisticated than, say, !Jan [0123][0-9] ", as that allows “dates” such as ‘Jan 00’,
‘Jan 39’, and disallows, ‘Jan 7’.

One way to match the date part is to attack it in sections. To match from the first
thr ough the ninth, using !0?[1-9] " allows a leading zero. Adding ![12][0-9] "

allows for the tenth through the 29th, and !3[01]" rounds it out. Putting it all
together, we get !Jan (0?[1-9]<[12][0-9]<3[01])".

Wher e do you think this matches in ‘Jan 31 is Dad’s birthday’? We want it to
match ‘Jan 31’, of course, but ordered alternation actually matches only ‘Jan 3’.
Surprised? During the match of the first alternative, !0?[1-9] ", the leading !0? " fails,
but the alternative matches because the subsequent ![1-9]" has no trouble match-
ing the 3. Since that’s the end of the expression, the match is complete.

When the order of the alternatives is adjusted so that the alternative that can
potentially match a shorter amount of text is placed last, the problem goes away.
This works: !Jan ([12][0-9]<3[01]<0?[1-9])".

Another approach is !Jan (31<[123]0<[012]?[1-9])". Like the first solution,
this requir es car eful arrangement of the alternatives to avoid the problem. Yet, a
third approach is !Jan (0[1-9]<[12][0-9]?<3[01]?<[4-9])", which works
pr operly regardless of the ordering. Comparing and contrasting these three expres-
sions can prove quite interesting (an exercise I’ll leave for your free time, although
the sidebar on the facing page should be helpful).

29 April 2003 09:21

A Few Ways to Slice and Dice a Date
A few approaches to the date-matching problem posed on page 176. The
calendar associated with each regex shows what can be matched by each
alter native color-coded within the regex.

 4

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31

 1 2 3 5 6 7 8 9

08

31|[123]0|[012]?[1-9]

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31

 1 2 3 4 5 6 7 8 9

08

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31

01 02 3 4 5 6 7 8 9

08 [12][0-9]|3[01]|0?[1-9]

0[1-9]|[12][0-9]?|3[01]?|[4-9]

NFA, DFA, and POSIX
“T he Longest-Leftmost”
Let me repeat what I’ve said before: when the transmission starts a DFA engine
fr om some particular point in the string, and there exists a match or matches to be
found at that position, the DFA finds the longest possible match, period. Since it’s
the longest from among all possible matches that start equally furthest to the left,
it’s the “longest-leftmost” match.

Really, the longest

Issues of which match is longest aren’t confined to alternation. Consider how an
NFA matches the (horribly contrived) !one(self)?(selfsufficient)? " against the
string oneselfsufficient. An NFA first matches !one " and then the greedy
!(self)? ", leaving !(selfsufficient)? " left to try against sufficient. It doesn’t
match, but that’s okay since it is optional. So, the Traditional NFA retur ns
oneselfsufficient and discards the untried states. (A POSIX NFA is another story
that we’ll get to shortly.)

NFA, DFA, and POSIX 177

29 April 2003 09:21

178 Chapter 4: The Mechanics of Expression Processing

On the other hand, a DFA finds the longer oneselfsufficient. An NFA would
also find that match if the initial !(self)? " wer e to somehow go unmatched, as that
would leave !(selfsufficient)? " then able to match. A Traditional NFA doesn’t
do that, but the DFA finds it nevertheless, since it’s the longest possible match
available to the current attempt. It can do this because it keeps track of all matches
simultaneously, and knows at all times about all possible matches.

I chose this silly example because it’s easy to talk about, but I want you to realize
that this issue is important in real life. For example, consider trying to match con-
tinuation lines. It’s not uncommon for a data specification to allow one logical line
to extend across multiple real lines if the real lines end with a backslash before the
newline. As an example, consider the following:

SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c \
missing.c msg.c node.c re.c version.c

You might normally want to use !ˆ\w+ = .+ " to match this kind of “var = value”
assignment line, but this regex doesn’t consider the continuation lines. (I’m assum-
ing for the example that the tool’s dot won’t match a newline.) To match continua-
tion lines, you might consider appending !(\\\n.+)+ " to the regex, yielding
!ˆ\w+ = .+(\\\n.+)+ ". Ostensibly, this says that any number of additional logical
lines are allowed so long as they each follow an escaped newline. This seems rea-
sonable, but it will never work with a traditional NFA. By the time the original ! .+ "

has reached the newline, it has already passed the backslash, and nothing in what
was added forces it to backtrack (+ 152). Yet, a DFA finds the longer multiline
match if available, simply because it is, indeed, the longest.

If you have lazy quantifiers available, you might consider using them, such as with
!ˆ\w+ = .,?(\\ \n .,?)+ ". This allows the escaped newline part to be tested each
time before the first dot actually matches anything, so the thought is that the !\\"

then gets to match the backslash before the newline. Again, this won’t work. A
lazy quantifier actually ends up matching something optional only when forced to
do so, but in this case, everything after the ! = " is optional, so there’s nothing to
force the lazy quantifiers to match anything. Our lazy example matches only
‘SRC=’, so it’s certainly not the answer.

Ther e ar e other approaches to solving this problem; we’ll continue with this exam-
ple in the next chapter (+ 186).

POSIX and the Longest-Leftmost Rule
The POSIX standard requir es that if you have multiple possible matches that start at
the same position, the one matching the most text must be the one retur ned.

The POSIX standard document uses the phrase “longest of the leftmost.” It doesn’t
say you have to use a DFA, so if you want to use an NFA when creating a POSIX

29 April 2003 09:21

tool, what’s a programmer to do? If you want to implement a POSIX NFA, you’d
have to find the full oneselfsufficient and all the continuation lines, despite
these results being “unnatural” to your NFA.

A Traditional NFA engine stops with the first match it finds, but what if it were to
continue to try options (states) that might remain? Each time it reached the end of
the regex, it would have another plausible match. By the time all options are
exhausted, it could simply report the longest of the plausible matches it had
found. Thus, a POSIX NFA.

An NFA applied to the first example would, in matching !(self)? ", have saved an
option noting that it could pick up matching !one(self)?(selfsufficient)? " at
oneselfsufficient. Even after finding the oneselfsufficient that a Tradi-
tional NFA stops at, a POSIX NFA continues to exhaustively check the remaining
options, eventually realizing that yes, there is a way to match the longer (and in
fact, longest) oneselfsufficient.

In Chapter 7, we’ll see a method to trick Perl into mimicking POSIX semantics, hav-
ing it report the longest match (+ 335).

Speed and Efficienc y
If efficiency is an issue with a Traditional NFA (and with backtracking, believe me,
it can be), it is doubly so with a POSIX NFA since there can be so much more back-
tracking. A POSIX NFA engine really does have to try every possible permutation of
the regex, every time. Examples in Chapter 6 show that poorly written regexes can
suf fer extr emely sever e per formance penalties.

DFA efficienc y

The text-directed DFA is a really fantastic way around all the inefficiency of back-
tracking. It gets its matching speed by keeping track of all possible ongoing
matches at once. How does it achieve this magic?

The DFA engine spends extra time and memory when it first sees the regular
expr ession, befor e any match attempts are made, to analyze the regular expression
mor e thor oughly (and in a differ ent way) from an NFA. Once it starts actually
attempting a match, it has an internal map describing “If I read such-and-such a
character now, it will be part of this-and-that possible match.” As each character of
the string is checked, the engine simply follows the map.

Building that map can sometimes take a fair amount of time and memory, but
once it is done for any particular regular expression, the results can be applied to
an unlimited amount of text. It’s sort of like charging the batteries of your electric
car. First, your car sits in the garage for a while, plugged into the wall, but when
you actually use it, you get consistent, clean power.

NFA, DFA, and POSIX 179

29 April 2003 09:21

180 Chapter 4: The Mechanics of Expression Processing

NFA: Theor y Versus Reality
The true mathematical and computational meaning of “NFA” is dif ferent from
what is commonly called an “NFA regex engine.” In theory, NFA and DFA
engines should match exactly the same text and have exactly the same fea-
tur es. In practice, the desire for richer, mor e expr essive regular expressions
has caused their semantics to diverge. An example is the support for
backr efer ences.

The design of a DFA engine precludes backrefer ences, but it’s a relatively
small task to add backrefer ence support to a true (mathematically speaking) NFA
engine. In doing so, you create a more power ful tool, but you also make it
decidedly nonr egular (mathematically speaking). What does this mean? At most,
that you should probably stop calling it an NFA, and start using the phrase
“nonr egular expr essions,” since that describes (mathematically speaking) the new
situation. No one has actually done this, so the name “NFA” has lingered,
even though the implementation is no longer (mathematically speaking) an NFA.

What does all this mean to you, as a user? Absolutely nothing. As a user, you
don’t care if it’s regular, nonr egular, unr egular, irr egular, or incontinent. So
long as you know what you can expect from it (something this chapter
shows you), you know all you need to care about.

For those wishing to learn mor e about the theory of regular expressions, the
classic computer-science text is chapter 3 of Aho, Sethi, and Ullman’s Com-
pilers — Principles, Techniques, and Tools (Addison-Wesley, 1986), commonly
called “The Dragon Book” due to the cover design. More specifically, this is
the “red dragon.” The “green dragon” is its predecessor, Aho and Ullman’s
Principles of Compiler Design.

The work done when a regex is first seen (the once-per-r egex overhead) is called
compiling the regex. The map-building is what a DFA does. An NFA also builds an
inter nal repr esentation of the regex, but an NFA’s repr esentation is like a mini pro-
gram that the engine then executes.

Summar y: NFA and DFA in Comparison
Both DFA and NFA engines have their good and bad points.

DFA versus NFA: Differences in the pre-use compile

Befor e applying a regex to a search, both types of engines compile the regex to an
inter nal for m suited to their respective match algorithms. An NFA compile is gener-
ally faster, and requir es less memory. There’s no real differ ence between a Tradi-
tional and POSIX NFA compile.

29 April 2003 09:21

DFA versus NFA: Differences in match speed

For simple literal-match tests in “normal” situations, both types match at about the
same rate. A DFA’s match speed is generally unrelated to the particular regex, but
an NFA’s is directly related.

A Traditional NFA must try every possible permutation of the regex before it can
conclude that there’s no match. This is why I spend an entire chapter (Chapter 6)
on techniques to write NFA expr essions that match quickly. As we’ll see, an NFA

match can sometimes take forever. If it’s a Traditional NFA, it can at least stop if
and when it finds a match.

A POSIX NFA, on the other hand, must always try every possible permutation of the
regex to ensure that it has found the longest possible match, so it generally takes
the same (possibly very long) amount of time to complete a successful match as it
does to confirm a failur e. Writing efficient expressions is doubly important for a
POSIX NFA.

In one sense, I speak a bit too strongly, since optimizations can often reduce the
work needed to retur n an answer. We’ve already seen that an optimized engine
doesn’t try !ˆ "-anchor ed regexes beyond the start of the string (+ 149), and we’ll
see many more optimizations in Chapter 6.

The need for optimizations is less pressing with a DFA since its matching is so fast
to begin with, but for the most part, the extra work done during the DFA’s pre-use
compile affords better optimizations than most NFA engines take the trouble to do.

Moder n DFA engines often try to reduce the time and memory used during the
compile by postponing some work until a match is attempted. Often, much of the
compile-time work goes unused because of the nature of the text actually
checked. A fair amount of time and memory can sometimes be saved by postpon-
ing the work until it’s actually needed during the match. (The technobabble term
for this is lazy evaluation.) It does, however, create cases where ther e can be a
relationship among the regex, the text being checked, and the match speed.

DFA versus NFA: Differences in what is matched

A DFA (or anything POSIX) finds the longest leftmost match. A Traditional NFA

might also, or it might find something else. Any individual engine always treats the
same regex/text combination in the same way, so in that sense, it’s not “random,”
but other NFA engines may decide to do slightly differ ent things. Virtually all Tradi-
tional NFA engines I’ve seen work exactly the way I’ve described here, but it’s not
something absolutely guaranteed by any standard.

NFA, DFA, and POSIX 181

29 April 2003 09:21

182 Chapter 4: The Mechanics of Expression Processing

DFA versus NFA: Differences in capabilities

An NFA engine can support many things that a DFA cannot. Among them are:

• Capturing text matched by a parenthesized subexpression. Related features are
backr efer ences and after-match information saying wher e in the matched text
each parenthesized subexpression matched.

• Lookar ound, and other complex zero-width assertions† (+ 132).

• Non-gr eedy quantifiers and ordered alternation. A DFA could easily support a
guaranteed shortest overall match (although for whatever reason, this option
never seems to be made available to the user), but it cannot implement the
local laziness and ordered alternation that we’ve talked about.

• Possessive quantifiers (+ 140) and atomic grouping (+ 137).

DFA versus NFA: Differences in ease of implementation

Although they have limitations, simple versions of DFA and NFA engines are easy
enough to understand and to implement. The desire for efficiency (both in time
and memory) and enhanced features drives the implementation to greater and
gr eater complexity.

With code length as a metric, consider that the NFA regex support in the Version 7
(January 1979) edition of ed was less than 350 lines of C code. (For that matter,
the entir e source for gr ep was a scant 478 lines.) Henry Spencer’s 1986 freely avail-
able implementation of the Version 8 regex routines was almost 1,900 lines of C,
and Tom Lord’s 1992 POSIX NFA package rx (used in GNU sed, among other tools)
is a stunning 9,700 lines.

For DFA implementations, the Version 7 egr ep regex engine was a bit over 400
lines long, while Henry Spencer’s 1992 full-featured POSIX DFA package is over
4,500 lines long.

To provide the best of both worlds, GNU egr ep Version 2.4.2 utilizes two fully
functional engines (about 8,900 lines of code), and Tcl’s hybrid DFA/NFA engine
(see the sidebar on the facing page) is about 9,500 lines of code.

Some implementations are simple, but that doesn’t necessarily mean they are short
on features. I once wanted to use regular expressions for some text processing in
Pascal. I hadn’t used Pascal since college, but it still didn’t take long to write a sim-
ple NFA regex engine. It didn’t have a lot of bells and whistles, and wasn’t built for
maximum speed, but the flavor was relatively full-featured and was quite useful.

† lex has trailing context, which is exactly the same thing as zero-width positive lookahead at the end
of the regex, but it can’t be generalized and put to use for embedded lookahead.

29 April 2003 09:21

DFA Speed with NFA Capabilities: Regex Nir vana?
I’ve said several times that a DFA can’t provide capturing parentheses or
backr efer ences. This is quite true, but it certainly doesn’t preclude hybrid
appr oaches that mix technologies in an attempt to reach regex nirvana. The
sidebar on page 180 told how NFAs have diverged from the theoretical
straight and narrow in search of more power, and it’s only natural that the
same happens with DFAs. A DFA’s construction makes it more dif ficult, but
that doesn’t mean impossible.

GNU gr ep takes a simple but effective approach. It uses a DFA when possible,
reverting to an NFA when backrefer ences ar e used. GNU awk does something
similar— it uses GNU gr ep ’s fast shortest-leftmost DFA engine for simple “does
it match” checks, and reverts to a differ ent engine for checks where the
actual extent of the match must be known. Since that other engine is an NFA,
GNU awk can conveniently offer capturing parentheses, and it does via its
special gensub function.

Tcl’s regex engine is a true hybrid, custom built by Henry Spencer (whom
you may remember having played an important part in the early develop-
ment and popularization of regular expressions + 88). The Tcl engine some-
times appears to be an NFA — it has lookaround, capturing parentheses, back-
refer ences, and lazy quantifiers. Yet, it has true POSIX longest-leftmost match
(+ 177), and doesn’t suffer from some of the NFA pr oblems that we’ll see in
Chapter 6. It really seems quite wonderful.

Curr ently, this engine is available only to Tcl, but Henry tells me that it’s on
his to-do list to break it out into a separate package that can be used by
others.

Summar y
If you understood everything in this chapter the first time you read it, you proba-
bly didn’t need to read it in the first place. It’s heady stuff, to say the least. It took
me quite a while to understand it, and then longer still to understand it. I hope
this one concise presentation makes it easier for you. I’ve tried to keep the expla-
nation simple without falling into the trap of oversimplification (an unfortunately
all-too-common occurrence which hinders true understanding). This chapter has a
lot in it, so I’ve included a lot of page refer ences in the following summary, for
when you’d like to quickly check back on something.

Ther e ar e two underlying technologies commonly used to implement a regex
match engine, “regex-dir ected NFA” (+ 153) and “text-directed DFA” (+ 155). The
abbr eviations ar e spelled out on page 156.

Summar y 183

29 April 2003 09:21

184 Chapter 4: The Mechanics of Expression Processing

Combine the two technologies with the POSIX standard (+ 178), and for practical
purposes, there are thr ee types of engines:

• Traditional NFA (gas-guzzling, power-on-demand)
• POSIX NFA (gas-guzzling, standard-compliant)
• DFA (POSIX or not) (electric, steady-as-she-goes)

To get the most out of a utility, you need to understand which type of engine it
uses, and craft your regular expressions appropriately. The most common type is
the Traditional NFA, followed by the DFA. Table 4-1 (+ 145) lists a few common
tools and their engine types, and the section “Testing the Engine Type” (+ 146)
shows how you can test the type yourself.

One overriding rule regardless of engine type: matches starting sooner take prece-
dence over matches starting later. This is due to how the engine’s “transmission”
tests the regex at each point in the string (+ 148).

For the match attempt starting at any given spot:

DFA Te xt-Directed Engines
Find the longest possible match, period. That’s it. End of discussion (+ 177).
Consistent, very fast (+ 179), and boring to talk about.

NFA Regex-Directed Engines
Must “work through” a match. The soul of NFA matching is backtracking
(+ 157, 162). The metacharacters control the match: the standard quantifiers
(star and friends) are gr eedy (+ 151), while others may be lazy or possessive
(+ 169). Alternation is ordered (+ 174) in a traditional NFA, but greedy with a
POSIX NFA.

POSIX NFA Must find the longest match, period. But, it’s not boring, as you
must worry about efficiency (the subject of Chapter 6).

Tr aditional NFA Is the most expressive type of regex engine, since you can
use the regex-dir ected natur e of the engine to craft exactly the match
you want.

Understanding the concepts and practices covered in this chapter is the foundation
for writing correct and efficient regular expressions, which just happens to be the
subject of the next two chapters.

29 April 2003 09:21

5
Practical Regex Techniques

Now that we’ve covered the basic mechanics of writing regular expressions, I’d
like to put that understanding to work in handling situations more complex than
those in earlier chapters. Every regex strikes a balance between matching what
you want, but not matching what you don’t want. We’ve already seen plenty of
examples where greediness can be your friend if used skillfully, and how it can
lead to pitfalls if you’re not careful, and we’ll see plenty more in this chapter.

For an NFA engine, another part of the balance, discussed primarily in the next
chapter, is efficiency. A poorly designed regex—even one that would otherwise be
consider ed corr ect—can cripple an engine.

This chapter is comprised mostly of examples, as I lead you through my thought
pr ocesses in solving a number of problems. I encourage you to read through them
even if a particular example seems to offer nothing toward your immediate needs.

For instance, even if you don’t work with HTML, I encourage you to absorb the
examples that deal with HTML. This is because writing a good regular expression is
mor e than a skill — it’s an art. One doesn’t teach or learn this art with lists or rules,
but rather, thr ough experience, so I’ve written these examples to illustrate for you
some of the insight that experience has given me over the years.

You’ll still need your own experience to internalize that insight, but spending time
with the examples in this chapter is a good first step.

185

29 April 2003 09:22

186 Chapter 5: Practical Regex Techniques

Regex Balancing Act
Writing a good regex involves striking a balance among several concerns:

• Matching what you want, but only what you want

• Keeping the regex manageable and understandable

• For an NFA, being efficient (creating a regex that leads the engine quickly to a
match or a non-match, as the case may be)

These concerns are often context-dependent. If I’m working on the command line
and just want to gr ep something quickly, I probably don’t care if I match a bit
mor e than I need, and I won’t usually be too concerned to craft just the right
regex for it. I’ll allow myself to be sloppy in the interest of time, since I can
quickly peruse the output for what I want. However, when I’m working on an
important program, it’s worth the time and effort to get it right: a complex regular
expr ession is okay if that’s what it takes. There is a balance among all these issues.

Ef ficiency is context-dependent, even in a program. For example, with an NFA,
something long like !ˆ-(display;geometry;cemap; ˙˙˙;quick24;random;raw)$ "

to check command-line arguments is inefficient because of all that alternation, but
since it is only checking command-line arguments (something done perhaps a few
times at the start of the program) it wouldn’t matter if it took 100 times longer than
needed. It’s just not an important place to worry much about efficiency. Wer e it
used to check each line of a potentially large file, the inefficiency would penalize
you for the duration of the program.

A Few Shor t Examples
Continuing with Continuation Lines
With the continuation-line example from the previous chapter (+ 178), we found
that !ˆ\w+ = .+(\\ \n.,), " applied with a Traditional NFA doesn’t properly match
both lines of:

SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c \
missing.c msg.c node.c re.c version.c

The problem is that the first ! .+ " matches past the backslash, pulling it out from
under the !(\\\n.+)+ " that we want it to be matched by. Well, here’s the first les-
son of the chapter: if we don’t want to match past the backslash, we should say
that in the regex. We can do this by changing each dot to ![ˆ\n \\] ". (Notice how
I’ve made sure to include \n in the negated class? You’ll remember that one of the
assumptions of the original regex was that dot didn’t match a newline, and we
don’t want its replacement to match a newline either + 118.)

29 April 2003 09:22

Making that change, we get:

!ˆ\w+ =[ˆ\n \\]+(\\ \n[ˆ\n \\]+)+ "

This now works, properly matching continuation lines, but in solving one prob-
lem, we have perhaps introduced another: we’ve now disallowed backslashes
other than those at the end of lines. This is a problem if the data to which it will
be applied could possibly have other backslashes. We’ll assume it could, so we
need to accommodate the regex to handle them.

So far, our approaches have been along the lines of “match the line, then try to
match a continuation line if there.” Let’s change that approach to one that I find
often works in general: concentrate on what is really allowed to match at any par-
ticular point. As we match the line, we want either normal (non-backslash, non-
newline) characters, or a backslash-anything combination. If we use !\\. " for the
backslash-anything combination, and apply it in a dot-matches-all mode, it also
can match the backslash-newline combination.

So, the expression becomes !ˆ\w+ =([ˆ\n \\]<\\ .), " in a dot-matches-all mode.
Due to the leading !ˆ ", an enhanced line anchor match mode (+ 111) may be use-
ful as well, depending on how this expression is used.

But, we’re not quite done with this example yet—we’ll pick it up again in the next
chapter where we work on its efficiency (+ 270).

Matching an IP Address
As another example that we’ll take much further, let’s match an IP (Inter net Pr oto-
col) address: four numbers separated by periods, such as 1.2.3.4. Often, the
numbers are padded to three digits, as in 001.002.003.004. If you want to check
a string for one of these, you could use ![0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ ", but
that’s so vague that it even matches ‘and then?’. Look at the regex: it
doesn’t even requir e any numbers — its only requir ements ar e thr ee periods (with
nothing but digits, if anything, between).

To fix this regex, we first change the star to a plus, since we know that each num-
ber must have at least one digit. To ensur e that the entire string is only the IP

addr ess, we wrap the regex with !ˆ˙˙˙$ ". This gives us:

!ˆ[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$ "

Using !\d " instead of ![0-9] ", it becomes !ˆ\d+\.\d+\.\d+\.\d+$ ", which you may
find to be more easily readable,† but it still matches things that aren’t IP addr esses,

† Or maybe not — it depends on what you are used to. In a complex regex, I find !\d " mor e readable
than ![0-9] ", but note that on some systems, the two might not be exactly the same. Systems that sup-
port Unicode, for example, may have their !\d " match non-ASCII digits as well (+ 119).

A Few Shor t Examples 187

29 April 2003 09:22

188 Chapter 5: Practical Regex Techniques

like ‘1234.5678.9101112.131415’. (IP addr esses have each number in the range
of 0–255.) As a start, you can enforce that each number be three digits long, with
!ˆ\d\d\d\.\d\d\d\.\d\d\d\.\d\d\d$ ". but now we are too specific. We still
need to allow one- and two-digit numbers (as in 1.234.5.67). If the flavor sup-
ports {min,max}, you can use !ˆ\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$ ". If not,
you can always use !\d\d?\d? " or !\d(\d\d?)? " for each part. These allow one to
thr ee digits, each in a slightly differ ent way.

Depending on your needs, you might be happy with some of the various degrees
of vagueness in the expressions so far. If you really want to be strict, you have to
worry that !\d{1,3} " can match 999, which is above 255, and thus an invalid com-
ponent of an IP addr ess.

Several approaches would ensure that only numbers from 0 to 255 appear. One
silly approach is !0;1;2;3;˙˙˙253;254;255". Actually, this doesn’t allow the zero-
padding that is allowed, so you really need !0;00;000;1;01;001;˙˙˙", whose length
becomes even more ridiculous. For a DFA engine, it is ridiculous only in that it’s so
long and verbose — it still matches just as fast as any regex describing the same
text. For an NFA, however, all the alternation kills efficiency.

A realistic approach concentrates on which digits are allowed in a number, and
wher e. If a number is only one or two digits long, there is no worry as to whether
the value is within range, so !\d;\d\d " takes care of it. There’s also no worry about
the value for a three-digit number beginning with a 0 or 1, since such a number is
in the range 000–199 and is perfectly valid. This lets us add ![01]\d\d ", leaving us
with !\d<\d\d<[01]\d\d ". You might recognize this as being similar to the time
example in Chapter 1 (+ 28), and date example of the previous chapter (+ 177).

Continuing with our regular expression, a three-digit number beginning with a 2 is
allowed if the number is 255 or less, so a second digit less than 5 means the num-
ber is valid. If the second digit is 5, the third must be less than 6. This can all be
expr essed as !2[0-4]\d<25[0-5] ".

This may seem confusing at first, but the approach should make sense upon
reflection. The result is !\d<\d\d<[01]\d\d<2[0-4]\d<25[0-5] ". Actually, we can
combine the first three alternatives to yield ![01]?\d\d?<2[0-4]\d<25[0-5]".
Doing so is more efficient for an NFA, since any alternative that fails results in a
backtrack. Note that using !\d\d? " in the first alternative, rather than !\d?\d ", allows
an NFA to fail just a bit more quickly when there is no digit at all. I’ll leave the
analysis to you—walking through a simple test case with both should illustrate the
dif ference. We could do other things to make this part of the expression more effi-
cient, but I’ll leave that for the next chapter.

29 April 2003 09:22

Now that we have a subexpression to match a single number from 0 through 255,
we can wrap it in parentheses and insert it in place of each !\d{1,3} " in the earlier
regex. This gives us (broken across lines to fit the width of the page):

!ˆ([01]?\d\d?<2[0-4]\d<25[0-5])\.([01]?\d\d?<2[0-4]\d<25[0-5])\.

([01]?\d\d?<2[0-4]\d<25[0-5])\.([01]?\d\d?<2[0-4]\d<25[0-5])$ "

Quite a mouthful! Was it worth the trouble? You have to decide for yourself based
upon your own needs. It matches only syntactically correct IP addr esses, but it can
still match semantically incorr ect ones, such as 0.0.0.0 (invalid because all the
digits are zer o). With lookahead (+ 132), you can disallow that specific case by
putting !(?!0+\.0+\.0+\.0+$) " after !ˆ ", but at some point, you have to decide
when being too specific causes the cost/benefit ratio to suffer from diminishing
retur ns. Sometimes it’s better to take some of the work out of the regex. For exam-
ple, if you go back to !ˆ\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$ " and wrap
each component in parentheses to stuff the numbers into the program’s version of
$1, $2, $3, and $4, you can then validate them by other programming constructs.

Know your context

It’s important to realize that the two anchors, !ˆ " and !$ ", are requir ed to make this
regex work. Without them, it can match ip=72123.3.21.993, or for a Traditional
NFA, even ip=123.3.21.223.

In that second case, the expression does not even fully match the final 223 that
should have been allowed. Well, it is allowed, but there’s nothing (such as a sepa-
rating period, or the trailing anchor) to force that match. The final group’s first
alter native, ![01]?\d\d? ", matched the first two digits, and without the trailing !$ ",
that’s the end of the regex. As with the date-matching problem in the previous
chapter (+ 176), we can arrange the order of the alternatives to achieve the
desir ed result. In this case, we would put the alternatives matching three digits
first, so any proper three-digit number is matched in full before the two-digit-okay
alter native is given a chance. (DFAs and POSIX NFAs don’t requir e the reordering,
of course, since they choose the longest match, regardless.)

Rearranged or not, that first mistaken match is still a problem. “Ah!” you might
think, “I can use word boundary anchors to solve this problem.” Unfortunately,
that’s probably not enough, since such a regex could still match 1.2.3.4.5.6. To
disallow embedded matches, you must ensure that the surrounding context has at
least no alphanumerics or periods. If you have lookaround, you can wrap the
regex in !(?<![\w.])˙˙˙(?![\w.])" to disallow matches that follow just after (or
end just before) where ![\w.] " can match. If you don’t have lookaround, simply
wrapping it in !(ˆ;)˙˙˙(;$) " might be satisfactory for some situations.

A Few Shor t Examples 189

29 April 2003 09:22

190 Chapter 5: Practical Regex Techniques

Working with Filenames
Working with file and path names, like /usr/local/bin/perl on Unix, or per-
haps something like \Program Files\Yahoo!\Messenger on Windows, can pro-
vide many good regular-expr ession examples. Since “using” is more inter esting
than “reading,” I’ll sprinkle in a few examples coded in Perl, Java, and VB.NET. If
you’r e not interested in these particular languages, feel free to skip the code snip-
pets—it’s the regex concepts used in them that are important.

Removing the leading path from a filename

As a first example, let’s remove the leading path from a filename, turning
/usr/local/bin/gcc, for instance, into gcc. Stating problems in a way that
makes solutions amenable is half of the battle. In this case, we want to remove
anything up to (and including) the final slash (backslash for Windows pathnames).
If there is no slash, it’s fine as is, and nothing needs to be done. I’ve said a num-
ber of times that ! .+ " is often overused, but its greediness is desired here. With
!ˆ.+/", the ! .+ " consumes the whole line, but then backs off (that is, backtracks) to
the last slash to achieve the match.

Her e’s code to do it in our three test languages, ensuring that a filename in the
variable f has no leading path. First, for Unix filenames:

Langua ge Code Snippet

Perl $f =˜ s{ˆ.+/}{};

java.util.regex f = f.replaceFirst("ˆ.+/", "");

VB.NET f = Regex.Replace(f, "ˆ.+/", "")

The regular expression (or string to be interpreted as a regular expression) is
underlined, and regex components are bold.

For comparison, here they are for Windows filenames:

Langua ge Code Snippet

Perl $f =˜ s/ˆ.+\\//;

java.util.regex f = f.replaceFirst("ˆ.+\\\\", "");

VB.NET f = Regex.Replace(f, "ˆ.+\\", "")

It’s interesting to compare the differ ences needed for each language when going
fr om one example to the other, particularly the quadruple backslashes needed in
Java (+ 101).

Please keep in mind this key point: always consider what will happen if there is
no match. In this case, if there is no slash in the string, no substitution is done and
the string is left unchanged. That’s just what we want.

29 April 2003 09:22

For efficiency’s sake, it’s important to remember how the regex engine goes about
its work, if it is NFA-based. Let’s consider what happens if we omit the leading
car et (something that’s easy to forget) and match against a string that doesn’t hap-
pen to have a slash. As always, the regex engine starts the search at the beginning
of the string. The ! .+ " races to the end of the string, but must back off to find a
match for the slash or backslash. It eventually backs off everything that ! .+ " had
gobbled up, yet there’s still no match. So, the regex engine decides that there is no
possible match when starting from the beginning of the string, but it’s not
done yet!

The transmission kicks in and retries the whole regex from the second character
position. In fact, it needs (in theory) to go through the whole scan-and-backtrack
routine for each possible starting position in the string. Filenames tend to be short,
so it’s probably not such a big deal in this case, but the principle applies to many
situations. Wer e the string long, there’s a potential for a lot of backtracking. (A DFA

has no such problem, of course.)

In practice, a reasonably optimized transmission realizes that almost any regex
starting with ! .+ " that fails at the beginning of the string can never match when
started from anywhere else, so it can shift gears and attempt the regex only the
one time, at the start of the string (+ 246). Still, it’s smarter to write that into our
regex in the first place, as we originally did.

Accessing the filename from a path

Another approach is to bypass the path and simply match the trailing filename part
without the path. The final filename is everything at the end that’s not a slash:
![ˆ/]+$ ". This time, the anchor is not just an optimization; we really do need dollar
at the end. We can now do something like this, shown with Perl:

$WholePath =˜ m{([ˆ/]+)$ }; # Check variable $WholePath with regex.
$FileName = $1; # Note text matched

You’ll notice that I don’t check to see whether the regex actually matches, because
I know it will match every time. The only requir ement of that expression is that
the string has an end to match dollar, and even an empty string has an end. Thus,
when I use $1 to refer ence the text matched within the parenthetical subexpres-
sion, I’m assured it will have some value (although that value will be empty when
the filename ends with a slash).

Another comment on efficiency: with an NFA, ![ˆ/]+$ " is very inefficient. Carefully
run through how the NFA engine attempts the match and you see that it can
involve a lot of backtracking. Even the short sample ‘/usr/local/bin/perl’
backtracks over 40 times before finally matching. Consider the attempt that starts

A Few Shor t Examples 191

29 April 2003 09:22

192 Chapter 5: Practical Regex Techniques

at ˙˙˙local/˙˙˙. Once ![ˆ/]+ " matches through to the second l and fails on the
slash, the !$ " is tried (and fails) for each l, a, c, o, l saved state. If that’s not
enough, most of it is repeated with the attempt that starts at ˙˙˙local/˙˙˙, and then
again ˙˙˙local/˙˙˙, and so on.

It shouldn’t concern us too much with this particular example, as filenames tend to
be short. (And 40 backtracks is nothing — 40 million is when they really matter!)
Again, it’s important to be aware of the issues so the general lessons here can be
applied to your specific needs.

This is a good time to point out that even in a book about regular expressions,
regular expressions aren’t always The Best Answer. For example, most program-
ming languages provide non-regex routines for dealing with filenames. But, for the
sake of discussion, I’ll forge ahead.

Both leading path and filename

The next logical step is to pick apart a full path into both its leading path and file-
name component. There are many ways to do this, depending on what we want.
Initially, you might want to use !ˆ(.+)/(.+)$ " to fill $1 and $2 with the requisite
parts. It looks like a nicely balanced regular expression, but knowing how greedi-
ness works, we are guaranteed that the first ! .+ " does what we want, never leaving
anything with a slash for $2. The only reason the first ! .+ " leaves anything at all is
due to the backtracking done in trying to match the slash that follows. This leaves
only that “backtracked” part for the later ! .+ ". Thus, $1 is the full leading path and
$2 the trailing filename.

One thing to note: we are relying on the initial !(.+)/" to ensure that the second
!(.+)" does not capture any slash. We understand greediness, so this is okay. Still I
like to be specific when I can, so I’d rather use ![ˆ/]+ " for the filename part. That
gives us !ˆ(.+)/([ˆ/]+)$ ". Since it shows exactly what we want, it acts as docu-
mentation as well.

One big problem is that this regex requir es at least one slash in the string, so if we
try it on something like file.txt, ther e’s no match, and thus no information. This
can be a feature if we deal with it properly:

if ($WholePath =˜ m!ˆ(.+)/([ˆ/]+)$!) {
Have a match -- $1 and $2 are valid
$LeadingPath = $1;
$FileName = $2;

} else {
No match, so there’s no ‘/’ in the filename
$LeadingPath = "."; # so "file.txt" looks like ". / file.txt" ("." is the current directory)
$FileName = $WholePath;

}

29 April 2003 09:22

Matching Balanced Sets of Parentheses
Matching balanced sets of parentheses, brackets, and the like presents a special
dif ficulty. Wanting to match balanced parentheses is quite common when parsing
many kinds of configuration files, programs, and such. Imagine, for example, that
you want to do some processing on all of a function’s arguments when parsing a
language like C. Function arguments are wrapped in parentheses following the
function name, and may themselves contain parentheses resulting from nested
function calls or math grouping. At first, ignoring that they may be nested, you
might be tempted to use !\b foo\([ˆ)]+\)", but it won’t work.

In hallowed C tradition, I use foo as the example function name. The marked part
of the expression is ostensibly meant to match the function’s arguments. With
examples such as foo(2, 4.0) and foo(somevar, 3.7), it works as expected.
Unfortunately, it also matches foo(bar(somevar), 3.7), which is not as we
want. This calls for something a bit “smarter” than ![ˆ)]+ ".

To match the parenthesized expression part, you might consider the following reg-
ular expressions, among others:

1. \(.+\) literal parentheses with anything in between
2. \([ˆ)]+\) fr om an opening parenthesis to the next closing parenthesis
3. \([ˆ()]+\) fr om an opening parenthesis to the next closing parenthesis, but

no other opening parentheses allowed in between

Figur e 5-1 illustrates where these match against a sample line of code.

val = foo(bar(this), 3.7) + 2 * (that - 1);

desired match

regex #2 would match

regex #1 would match

Figur e 5-1: Match locations of our sample regexes

We see that regex #1 matches too much,† and regex #2 matches too little. Regex #3
doesn’t even match successfully. In isolation, #3 would match ‘(this)’, but
because it must come immediately after the foo, it fails. So, none of these work.

† The use of ! .+ " should set off war ning alar ms. Always pay particular attention to decide whether dot
is really what you want to apply star to. Sometimes that is exactly what you need, but ! .+ " is often
used inappropriately.

A Few Shor t Examples 193

29 April 2003 09:22

194 Chapter 5: Practical Regex Techniques

The real problem is that on the vast majority of systems, you simply can’t match
arbitrarily nested constructs with regular expressions. For a long time, this was uni-
versally true, but recently, both Perl and .NET of fer constructs that make it possi-
ble. (See pages 328 and 430, respectively.) But, even without these special
constructs, you can still build a regex to match things nested to a certain depth,
but not to an arbitrary level of nesting. Just one level of nesting requir es

!\([ˆ()]+(\([ˆ()]+\)[ˆ()]+),\) "

so the thought of having to worry about further levels of nesting is frightening.
But, here’s a little Perl snippet that, given a $depth, creates a regex to match up to
that many levels of parentheses beyond the first. It uses Perl’s “string x count”
operator, which replicates string by count times:

$regex = ’\(’ . ’(?:[ˆ()];\(’ x $depth . ’[ˆ()]+’ . ’\))+’ x $depth . ’\)’;

I’ll leave the analysis for your free time.

Watching Out for Unwanted Matches
It’s easy to forget what happens if the text is not formed just as you expect. Let’s
say you are writing a filter to convert a text file to HTML, and you want to replace
a line of hyphens by <HR>, which repr esent a horizontal rule (a line across the
page). If you used a s/-+/<HR>/ search-and-r eplace command, it would replace
the sequences you wanted, but only when they’re at the beginning of the line.
Surprised? In fact, s/-+/<HR>/ adds <HR> to the beginning of every line, whether
they begin with a sequence of hyphens or not!

Remember, anything that isn’t requir ed is always considered successful. The first
time !-+ " is attempted at the start of the string, it matches any hyphens that might
be there. However, if ther e ar en’t any, it is still happy to successfully match noth-
ing. That’s what star is all about.

Let’s look at a similar example I once saw in a book by a respected author, in
which he describes a regular expression to match a number, either integer or float-
ing-point. As his expression is constructed, such a number has an optional leading
minus sign, any number of digits, an optional decimal point, and any number of
digits that follow. His regex is !-?[0-9]+\.?[0-9]+ ".

Indeed, this matches such examples as 1, -272.37, 129238843., .191919,
and even something like -.0. This is all good, and as expected.

However, how do you think it matches in a string like ‘this has no number’,
‘nothing here’, or even an empty string? Look at the regex closely — everything is
optional. If a number is there, and if it is at the beginning of the string, it is
matched, but nothing is requir ed. This regex can match all three non-number

29 April 2003 09:22

examples, matching the nothingness at the beginning of the string each time. In
fact, it even matches nothingness at the beginning of an example like ‘num 123’,
since that nothingness matches earlier than the number would.

So, it’s important to say what you really mean. A floating-point number must have
at least one digit in it, or it’s not a number (!). To construct our regex, let’s first
assume there is at least one digit before the decimal point. (We’ll remove this
requir ement later.) If so, we need to use plus for those digits: !-?[0-9]+ ".

Writing the subexpression to match an optional decimal point (and subsequent
digits) hinges on the realization that any numbers after the decimal point are con-
tingent upon there being a decimal point in the first place. If we use something
naïve like !\.?[0-9]+ ", the ![0-9]+ " gets a chance to match regardless of the deci-
mal point’s presence.

The solution is, again, to say what we mean. A decimal point (and subsequent dig-
its, if any) is optional: !(\.[0-9]+)? ". Her e, the question mark no longer quantifies
(that is, governs or controls) only the decimal point, but instead the entire combi-
nation of the decimal point plus any following digits. Within that combination, the
decimal point is requir ed; if it is not there, ![0-9]+ " is not even reached.

Putting this all together, we have !-?[0-9]+(\.[0-9]+)? ". This still doesn’t allow
something like ‘.007’, since our regex requir es at least one digit before the deci-
mal point. If we change that part to allow zero digits, we have to change the other
so it doesn’t, since we can’t allow all digits to be optional (the problem we are try-
ing to correct in the first place).

The solution is to add an alternative that allows for the uncovered situation:
!-?[0-9]+(\.[0-9]+)?<-?\.[0-9]+ ". This now also allows just a decimal point
followed by (this time not optional) digits. Details, details. Did you notice that I
allowed for the optional leading minus in the second alternative as well? That’s
easy to forget. Of course, you could instead bring the !-? " out of the alternation, as
in !-?([0-9]+(\.[0-9]+)?<\.[0-9]+)".

Although this is an improvement on the original, it’s still more than happy to
match at ‘2003.04.12’. Knowing the context in which a regex is intended to be
used is an important part of striking the balance between matching what you
want, and not matching what you don’t want. Our regex for floating-point num-
bers requir es that it be constrained somehow by being part of a larger regex, such
as being wrapped by !ˆ˙˙˙$ ", or perhaps !num\s+=\s+˙˙˙$ ".

A Few Shor t Examples 195

29 April 2003 09:22

196 Chapter 5: Practical Regex Techniques

Matching Delimited Text
Matching a double-quoted string and matching an IP addr ess ar e just two exam-
ples of a whole class of matching problem that often arises: the desire to match
text delimited (or perhaps separated) by some other text. Other examples include:

• Matching a C comment, which is surrounded by ‘/+’ and ‘+/’.

• Matching an HTML tag, which is text wrapped by <˙˙˙>, such as <CODE>.

• Extracting items between HTML tags, such as the ‘super exciting’ of the
HTML ‘a <I>super exciting</I> offer!’

• Matching a line in a .mailr c file. This file gives email aliases, where each line
is in the form of

alias shorthand full-address

such as ‘alias jeff jfriedl@regex.info’. (Here, the delimiters are the
whitespace between each item, as well as the ends of the line.)

• Matching a quoted string, but allowing it to contain quotes if they are escaped,
as in ‘a passport needs a "2\"x3\" likeness" of the holder.’

• Parsing CSV (comma-separated values) files.

In general, the requir ements for such tasks can be phrased along the lines of:

1. Match the opening delimiter

2. Match the main text
(which is really “match anything that is not the closing delimiter”)

3. Match the closing delimiter

As I mentioned earlier, satisfying these requir ements can become complicated
when the closing delimiter has more than one character, or when it may appear
within the main text.

Allowing escaped quotes in double-quoted strings

Let’s look at the 2\"x3\" example, where the closing delimiter is a quote, yet can
appear within the main part if escaped. It’s easy enough to match the opening and
closing quotes; the trick is to match the main text without overshooting the closing
quote. Thinking clearly about which items the main text allows, we know that if a
character is not a double quote (in other words, if it’s ![ˆ"]"), it is certainly okay.
However, if it is a double quote, it is okay if preceded by a backslash. Translating
that literally, using lookbehind (+ 132) for the “if preceded” part, it becomes
!"([ˆ"]<(?<=\\)")+"", which indeed properly matches our 2\"x3\" example.

29 April 2003 09:22

This is a perfect example to show how unintended matches can sneak into a
seemingly proper regex, because as much as it seems to be correct, it doesn’t
always work. We want it to match the marked part of this silly example:

Darth Symbol: "/-;-\\" or "[ˆ-ˆ]"

but it actually matches:

Darth Symbol: "/-;-\\" or "[ˆ-ˆ]"

This is because the final quote of the first string indeed has a backslash before it.
That backslash is itself escaped, so it doesn’t escape the quote that follows (which
means the quote that follows does end the string). Our lookbehind doesn’t recog-
nize that the preceding backslash has been itself escaped, and considering that
ther e may be any number of preceding ‘\\’ sequences, it’s a can of worms to try
to solve this with lookbehind. The real problem is that a backslash that escapes a
quote is not being recognized as an escaping backslash when we first process it,
so let’s try a differ ent appr oach that tackles it from that angle.

Concentrating again at what kinds of things we want to match between the open-
ing and closing delimiter, we know that something escaped is okay (!\\. "), as well
as anything else other than the closing quote (![ˆ"]"). This yields !"(\\.<[ˆ"])+"".
Wonder ful, we’ve solved the problem! Unfortunately, not yet. Unwanted matches
can still creep in, such as with this example for which we expect no match
because the closing quote has been forgotten:

"You need a 2\"x3\" photo.

Why does it match? Recall the lessons from “Greediness and Laziness Always
Favor a Match” (+ 167). Even though our regex initially matches past that last
quote, as we want, it still backtracks after it finds that there is no ending quote, to:

at ‘˙˙˙2x\"3\" ˙˙˙’ matching !(\\.;[ˆ"]) "

Fr om that point, the ![ˆ"] " matches the backslash, leaving us at what the regex
can consider an ending quote.

An important lesson to take from this example is:

When backtracking can cause undesired matches in relation to alterna-
tion, it’s likely a sign that any success is just a happenstance due to the
ordering of the alternatives.

In fact, had our original regex had its alternatives reversed, it would match incor-
rectly in every string containing an escaped double quote. The problem is that one
alter native can match something that is supposed to be handled by the other.

So, how can we fix it? Well, just as in the continuation-lines example on page 186,
we must make sure that there’s no other way for that backslash to be matched,
which means changing ![ˆ"] ", to ![ˆ\\"] ", . This recognizes that both a double

A Few Shor t Examples 197

29 April 2003 09:22

198 Chapter 5: Practical Regex Techniques

quote and a backslash are “special” in this context, and must be handled accord-
ingly. The result is !"(\\.<[ˆ\\"])+"", which works just fine. (Although this regex
now works, it can still be improved so that it is much more efficient for NFA

engines; we’ll see this example quite a bit in the next chapter + 222.)

This example shows a particularly important moral:

Always consider the “odd” cases in which you don’t want a regex to
match, such as with “bad” data.

Our fix is the right one, but it’s interesting to note that if you have possessive
quantifiers (+ 140) or atomic grouping (+ 137), this regex can be written as
!"(\\.<[ˆ"]),+"" and !"(?>(\\.<[ˆ"])+)"" respectively. They don’t really fix the
pr oblem so much as hide it, disallowing the engine from backtracking back to
wher e the problem could show itself. Either way, they get the job done well.

Understanding how possessive quantifiers and atomic grouping help in this situa-
tion is extremely valuable, but I would still go ahead and make the previous fix
anyway, as it is more descriptive to the reader. Actually, in this case, I would want
to use possessive quantifiers or atomic grouping as well —not to solve the previous
pr oblem, but for efficiency, so that a failure fails more quickly.

Knowing Your Data and Making Assumptions
This is an opportune time to highlight a general point about constructing and
using regular expressions that I’ve briefly mentioned a few times. It is important to
be aware of the assumptions made about the kind of data with which, and situa-
tions in which, a regular expression will be used. Even something as simple as !a "

assumes that the target data is in the same character encoding (+ 105) as the
author intends. This is pretty much common sense, which is why I haven’t been
too picky about saying these things.

However, many assumptions that might seem obvious to one person are not nec-
essarily obvious to another. For example, the solution in the previous section
assumes that escaped newlines shouldn’t be matched, or that it will be applied in
a dot-matches-all mode (+ 110). If we really want to ensure that dot can match a
newline, we should write that by using !(?s:.)", if supported by the flavor.

Another assumption made in the previous section is the type of data to which the
regex will be applied, as it makes no provisions for any other uses of double
quotes in the data. If you apply it to source code from almost any programming
language, for example, you’ll find that it breaks because there can be double
quotes within comments.

Ther e is nothing wrong with making assumptions about your data, or how you
intend a regex to be used. The problems, if any, usually lie in overly optimistic

29 April 2003 09:22

assumptions and in misunderstandings between the author’s intentions and how
the regex is eventually used. Documenting the assumptions can help.

Str ipping Leading and Trailing Whitespace
Removing leading and trailing whitespace from a line is not a challenging prob-
lem, but it’s one that seems to come up often. By far the best all-around solution is
the simple use of two substitutions:

s/ˆ\s+//;
s/\s+$//;

As a measure of efficiency, these use !+ " instead of ! + ", since there’s no benefit to
doing the substitution unless there is actually whitespace to remove.

For some reason, it seems to be popular to try to find a way to do it all in one
expr ession, so I’ll offer a few methods for comparison. I don’t recommend them,
but it’s educational to understand why they work, and why they’re not desirable.

s/\s+(.+?)\s+$/$1/s

This used to be given as a great example of lazy quantifiers, but not any
mor e, because people now realize that it’s so much slower than the simple
appr oach. (In Perl, it’s about 5× slower). The lack of speed is due to the need
to check !\s+$ " befor e each application of the lazy-quantified dot. That
requir es a lot of backtracking.

s/ˆ\s+((?:.+\S)?)\s+$/$1/s

This one looks more complex than the previous example, but its matching is
mor e straightforward, and is only twice as slow as the simple approach. After
the initial !ˆ\s+ " has bypassed any leading whitespace, the ! .+ " in the middle
matches all the way to the end of the text. The !\S " that follows forces it to
backtrack to the last non-whitespace in the text, thereby leaving the trailing
whitespace matched by the final !\s+$ ", outside of the capturing parentheses.

The question mark is needed so that this expression works properly on a line
that has only whitespace. Without it, it would fail to match, leaving the white-
space-filled line unchanged.

s/ˆ\s+;\s+$//g

This is a commonly thought-up solution that, while not incorrect (none of
these are incorr ect), it has top-level alternation that removes many optimiza-
tions (covered in the next chapter) that might otherwise be possible.

The /g modifier is requir ed to allow each alternative to match, to remove
both leading and trailing whitespace. It seems a waste to use /g when we
know we intend at most two matches, and each with a differ ent subexpr es-
sion. This is about 4× slower than the simple approach.

A Few Shor t Examples 199

29 April 2003 09:22

200 Chapter 5: Practical Regex Techniques

I’ve mentioned the relative speeds as I tested them, but in practice, the actual rela-
tive speeds are dependent upon the tool and the data. For example, if the target
text is very, very long, but has relatively little whitespace on either end, the middle
appr oach can be somewhat faster than the simple approach. Still, in my programs,
I use the language’s equivalent of

s/ˆ\s+//;
s/\s+$//;

because it’s almost always fastest, and is certainly the easiest to understand.

HTML-Related Examples
In Chapter 2, we saw an extended example that converted raw text to HTML

(+ 67), including regular expressions to pluck out email addresses and http URLs
fr om the text. In this section, we’ll do a few other HTML-r elated tasks.

Matching an HTML Tag
It’s common to see !<[ˆ>]+> " used to match an HTML tag. It usually works fine,
such as in this snippet of Perl that strips tags:

$html =˜ s/<[ˆ>]+>//g;

However, it matches improperly if the tag has ‘>’ within it, as with this perfectly
valid HTML: <input name=dir value=">">. Although it’s not common or recom-
mended, HTML allows a raw ‘<’ and ‘>’ to appear within a quoted tag attribute.
Our simple !<[ˆ>]+> " doesn’t allow for that, so, we must make it smarter.

Allowed within the ‘<˙˙˙>’ are quoted sequences, and “other stuff” characters that
may appear unquoted. This includes everything except ‘>’ and quotes. HTML

allows both single- and double-quoted strings. It doesn’t allow embedded quotes
to be escaped, which allows us to use simple regexes !"[ˆ"]+"" and !’[ˆ’]+’" to
match them.

Putting these together with the “other stuff” regex ![ˆ’">] ", we get:

!<("[ˆ"]+"<’[ˆ’]+’<[ˆ’">]),>"

That may be a bit confusing, so how about the same thing shown with comments
in a free-spacing mode:

< # Opening "<"
(# Any amount of . . .

"[ˆ"]+" # double-quoted string,
; # or . . .
’[ˆ’]+’ # single-quoted string,
; # or . . .
[ˆ’">] # "other stuff"

)+ #
> # Closing ">"

29 April 2003 09:22

The overall approach is quite elegant, as it treats each quoted part as a unit, and
clearly indicates what is allowed at any point in the match. Nothing can be
matched by more than one part of the regex, so there’s no ambiguity, and hence
no worry about unintended matches “sneaking in,” as with some earlier examples.

Notice that ! + " rather than !+ " is used within the quotes of the first two alternatives?
A quoted string may be empty (e.g., ‘alt=""’), so ! + " is used within each pair of
quotes to reflect that. But don’t use ! + " or !+ " in the third alternative, as the ![ˆ’">]"

is already directly subject to a quantifier via the wrapping !(˙˙˙)+ ". Adding another
quantifier, yielding an effective !([ˆ’">]+)+ ", could cause a very rude surprise that
I don’t expect you to understand at this point; it’s discussed in great detail in the
next chapter (+ 226).

One thought about efficiency when used with an NFA engine: since we don’t use
the text captured by the parentheses, we can change them to non-capturing paren-
theses (+ 136). And since there is indeed no ambiguity among the alternatives, if it
tur ns out that the final !>" can’t match when it’s tried, there’s no benefit going back
and trying the remaining alternatives. Where one of the alternatives matched
befor e, no other alternative can match now from the same spot. So, it’s okay to
thr ow away any saved states, and doing so affords a faster failure when no match
can be had. This can be done by using !(?>˙˙˙)" atomic grouping instead of the
non-capturing parentheses (or a possessive star to quantify whichever parentheses
ar e used).

Matching an HTML Link
Let’s say that now we want to match sets of URL and link text from a document,
such as pulling the marked items from:

˙˙˙O’Reilly And Associates˙˙˙

Because the contents of an <A> tag can be fairly complex, I would approach this
task in two parts. The first is to pluck out the “guts” of the <A> tag, along with the
link text, and then pluck the URL itself from those <A> guts.

A simplistic approach to the first part is a case-insensitive, dot-matches-all applica-
tion of !<a\b([ˆ>]+)>(.+?) ", which features the lazy star quantifier. This puts
the <A> guts into $1 and the link text into $2. Of course, as earlier, instead of
![ˆ>]+ " I should use what we developed in the previous section. Having said that,
I’ll continue with this simpler version, for the sake of keeping that part of the
regex shorter and cleaner for the discussion.

Once we have the <A> guts in a string, we can inspect them with a separate regex.
In them, the URL is the value for the href=value attribute. HTML allows spaces on
either side of the equal sign, and the value can be quoted or not, as described in

HTML-Related Examples 201

29 April 2003 09:22

202 Chapter 5: Practical Regex Techniques

the previous section. A solution is shown as part of this Perl snippet to report on
links in the variable $Html:

Note: the regex in the while(...) is overly simplistic — see text for discussion

while ($Html =˜ m{<a\b([ˆ>]+)>(.+?)}ig)
{

my $Guts = $1; # Save results from the match above, to their own . . .
my $Link = $2; # . . . named variables, for clarity below.

if ($Guts =˜ m{
\b HREF # "href" attribute
\s+ = \s+ # "=" may have whitespace on either side
(?: # Value is˙˙˙

"([ˆ"]+)" # double-quoted string,
; # or˙˙˙

’([ˆ’]+)’ # single-quoted string,
; # or˙˙˙

([ˆ’">\s]+) # "other stuff"
) #

}xi)
{
my $Url = $+; # Gives the highest-numbered actually-filled $1, $2, etc.
print "$Url with link text: $Link\n";

}
}

Some notes about this:

• This time, I added parentheses to each value-matching alternative, to capture
the exact value matched.

• Because I’m using some of the parentheses to capture, I’ve used non-captur-
ing parentheses where I don’t need to capture, both for clarity and efficiency.

• This time, the “other stuff” component excludes whitespace in addition to
quotes and ‘>’, as whitespace separates “attribute=value” pairs.

• This time, I do use !+ " in the “other stuff” alternative, as it’s needed to capture
the whole href value. Does this cause the same “rude surprise” as if we used
!+ " in the “other stuff” alternative on page 200? No, because there’s no outer
quantifier that directly influences the class being repeated. Again, this is cov-
er ed in detail in the next chapter.

Depending on the text, the actual URL may end up in $1, $2, or $3. The others
will be empty or undefined. Perl happens to support a special variable $+ which is
the value of the highest-numbered $1, $2, etc. that actually captured text. In this
case, that’s exactly what we want as our URL.

Using $+ is convenient in Perl, but other languages offer other ways to isolate the
captur ed URL. Nor mal pr ogramming constructs can always be used to inspect the
captur ed gr oups, using the one that has a value. If supported, named capturing
(+ 137) is perfect for this, as shown in the VB.NET example on page 204. (It’s
good that .NET of fers named capture, because its $+ is broken + 418.)

29 April 2003 09:22

Examining an HT TP URL

Now that we’ve got a URL, let’s see if it’s an http URL, and if so, pluck it apart into
its hostname and path components. Since we know we have something intended
to be a URL, our task is made much simpler than if we had to identify a URL fr om
among random text. That much more dif ficult task is investigated a bit later in this
chapter.

So, given a URL, we mer ely need to be able to recognize the parts. The hostname
is everything after !ˆhttp:// " but before the next slash (if there is another slash),
and the path is everything else: !ˆhttp://([ˆ/]+)(/.+)?$ "

Actually, a URL may have an optional port number between the hostname and the
path, with a leading colon: !ˆhttp://([ˆ/:]+)(:(\d+))?(/.+)?$ "

Her e’s a Perl snippet to report about a URL:

if ($url =˜ m{ˆhttp://([ˆ/:]+)(:(\d+))?(/.+)?$}i)
{

my $host = $1;
my $port = $3 ;; 80; # Use $3 if it exists; otherwise default to 80.
my $path = $4 ;; "/"; # Use $4 if it exists; otherwise default to "/".
print "host: $host\n";
print "port: $port\n";
print "path: $path\n";

} else {
print "not an http url\n";

}

Validating a Hostname
In the previous example, we used ![ˆ/:]+ " to match a hostname. Yet, in Chapter 2
(+ 76), we used the more complex ![-a-z]+(\.[-a-z]+)+\.(com;edu;˙˙˙;info)".
Why the differ ence in complexity for finding ostensibly the same thing?

Well, even though both are used to “match a hostname,” they’r e used quite differ-
ently. It’s one thing to pluck out something from a known quantity (e.g., from
something you know to be a URL), but it’s quite another to accurately and unam-
biguously pluck out that same type of something from among random text. Specif-
ically, in the previous example, we made the assumption that what comes after the
‘http://’ is a hostname, so the use of ![ˆ/:]+ " mer ely to fetch it is reasonable. But
in the Chapter 2 example, we use a regex to find a hostname in random text, so it
must be much more specific.

Now, for a third angle on matching a hostname, we can consider validating host-
names with regular expressions. In this case, we want to check whether a string is
a well-for med, syntactically correct hostname. Officially, a hostname is made up of
dot-separated parts, where each part can have ASCII letters, digits, and hyphens,
but a part can’t begin or end with a hyphen. Thus, one part can be matched with

HTML-Related Examples 203

29 April 2003 09:22

204 Chapter 5: Practical Regex Techniques

Link Checker in VB.NET
This Program reports on links within the HTML in the variable Html:

Imports System.Text.RegularExpressions
+
+
+

’ Set up the regular expressions we’ll use in the loop
Dim ARRegex as Regex = New Regex(R

"<a\b(?<guts>[ˆ>]+)>(?<Link>.+?)", R
RegexOptions.IgnoreCase)

Dim GutsRegex as Regex = New Regex(R
"\b HREF (?# ’href’ attribute)" & R
"\s+ = \s+ (?# ’=’ with optional whitespace)" & R
"(?: (?# Value is ...)" & R
" ""(?<url>[ˆ""]+)"" (?# double-quoted string,)" & R
" ; (?# or ...)" & R
" ’(?<url>[ˆ’]+)’ (?# single-quoted string,)" & R
" ; (?# or ...)" & R
" (?<url>[ˆ’"">\s]+) (?# ’other stuff’)" & R
") (?#)", R
RegexOptions.IgnoreCase OR RegexOptions.IgnorePatternWhitespace)

’ Now check the ’Html’ Variable . . .
Dim CheckA as Match = ARRegex.Match(Html)

’ For each match within . . .
While CheckA.Success

’ We matched an <a> tag, so now check for the URL.
Dim UrlCheck as Match = R

GutsRegex.Match(CheckA.Groups("guts").Value)
If UrlCheck.Success

’ We’ve got a match, so have a URL/link pair
Console.WriteLine("Url " & UrlCheck.Groups("url").Value & R

" WITH LINK " & CheckA.Groups("Link").Value)
End If
CheckA = CheckA.NextMatch

End While

A few things to notice:

• VB.NET programs using regular expressions requir e that first Imports
line to tell the compiler what object libraries to use.

• I’ve used !(?#˙˙˙)" style comments because it’s inconvenient to get a new-
line into a VB.NET string, and normal ‘#’ comments carry on until the
next newline or the end of the string (which means that the first one
would make the entire rest of the regex a comment). To use normal !#˙˙˙"
comments, add &chr(10) at the end of each line (+ 414).

• Each double quote in the regex requir es ‘""’ in the literal string (+ 102).

• Named capturing is used in both expressions, allowing the more descrip-
tive Groups("url") instead of Groups(1), Groups(2), etc.

29 April 2003 09:22

a case-insensitive application of ![a-z0-9]<[a-z0-9][-a-z0-9]+[a-z0-9] ". The
final suffix part (‘com’, ‘edu’, ‘uk’, etc.) has a limited set of possibilities, mentioned
in passing in the Chapter 2 example. Using that here, we’re left with the following
regex to match a syntactically valid hostname:

ˆ
(?i) # apply this regex in a case-insensitive manner.
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]+[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;name;museum;coop;aero;[a-z][a-z])
$

Something matching this regex isn’t necessarily valid quite yet, as there’s a length
limitation: individual parts may be no longer than 63 characters. That means that
the ![-a-z0-9]+" in there should be ![-a-z0-9]{0,61}".

Ther e’s one final change, just to be official. Officially, a name consisting of only
one of the suffixes (e.g., ‘com’, ‘edu’, etc.) is also syntactically valid. Current prac-
tice seems to be that these “names” don’t actually have a computer answer to
them, but that doesn’t always seem to be the case for the two-letter country suf-
fixes. For example, Anguilla’s top-level domain ‘ai’ has a web server: http://ai/
shows a page. A few others like this that I’ve seen include cc, co, dk, mm, ph, tj,
tv, and tw.

So, if you wish to allow for these special cases, change the central !(?:˙˙˙)+ " to
!(?:˙˙˙), ". These changes leave us with:

ˆ
(?i) # apply this regex in a case-insensitive manner.
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;name;museum;coop;aero;[a-z][a-z])
$

This now works just dandy to validate a string containing a hostname. Since this is
the most specific of the three hostname-related regexes we’ve developed, you
might think that if you remove the anchors, it could be better than the regex we
came up with earlier for plucking out hostnames from random text. That’s not the
case. This regex matches any two-letter word, which is why the less-specific regex
fr om Chapter 2 is better in practice. But, it still might not be good enough for
some purposes, as the next section shows.

Plucking Out a URL in the Real World
Working for Yahoo! Finance, I write programs that process incoming financial
news and data feeds. News articles are usually provided to us in raw text, and my
pr ograms convert them to HTML for a pleasing presentation. (Read financial news

HTML-Related Examples 205

29 April 2003 09:22

206 Chapter 5: Practical Regex Techniques

at http://finance.yahoo.com and see how I’ve done.) It’s often a daunting task
due to the random “formatting” (or lack thereof) of the data we receive, and
because it’s much more dif ficult to recognize things like hostnames and URLs in
raw text than it is to validate them once you’ve got them. The previous section
alluded to this; in this section, I’ll show you code we actually use at Yahoo! to
solve the issues we’ve faced.

We look for several types of URLs to pluck from the text — mailto, http, https,
and ftp URLs. If we find ‘http://’ in the text, we’re pretty certain that’s the start
of a URL, so we can use something simple like !http://[-\w]+(\.\w[-\w]+)+ " to
match up through the hostname part. We’r e using the knowledge of the text (raw
English text provided as ASCII) to realize that it’s probably okay to use !-\w " instead
of ![-a-z0-9] ". !\w " also matches an underscore, and in some systems also matches
the whole of Unicode letters, but we know that neither of these really matter to us
in this particular situation.

However, often, a URL is given without the http:// or mailto: pr efix, such as:

˙˙˙visit us at www.oreilly.com or mail to orders@oreilly.com.

In this case, we need to be much more car eful. What we use is quite similar to the
regex from the previous section, but it differs in a few ways:

(?i: [a-z0-9] (?:[-a-z0-9]+[a-z0-9])? \.)+ # sub domains
Now ending .com, etc. For these, we requir e lower case
(?-i: com\b

; edu\b
; biz\b
; org\b
; gov\b
; in(?:t;fo)\b # .int or .info
; mil\b
; net\b
; name\b
; museum\b
; coop\b
; aero\b
; [a-z][a-z]\b # two-letter country codes

)

In this regex, !(?i:˙˙˙)" and !(?-i:˙˙˙)" ar e used to explicitly enable and disable case-
insensitivity for specific parts of the regex (+ 134). We want to match a URL like
‘www.OReilly.com’, but not a stock symbol like ‘NT.TO’ (the stock symbol for
Nortel Networks on the Tor onto Stock Exchange — remember, we process financial
news and data, which has a lot of stock symbols). Officially, the ending part of a
URL (e.g., ‘.com’) may be upper case, but we simply won’t recognize those. That’s
the balance we’ve struck among matching what we want (pretty much every URL

we’r e likely to see), not matching what we don’t want (stock symbols), and sim-
plicity. I suppose we could move the !(?-i:˙˙˙)" to wrap only the country codes
part, but in practice, we just don’t get uppercased URLs, so we’ve left this as it is.

29 April 2003 09:22

Her e’s a framework for finding URLs in raw text, into which we can insert the
subexpr ession to match a hostname:

\b
Match the leading part (proto://hostname, or just hostname)
(

ftp://, http://, or https:// leading part
(ftp;https?)://[-\w]+(\.\w[-\w]+)+

;
or, try to find a hostname with our more specific sub-expression
full-hostname-regex

)

Allow an optional port number
(: \d+)?

The rest of the URL is optional, and begins with / . . .
(

/ path-part
)?

I haven’t talked yet about the path part of the regex, which comes after the host-
name (e.g., the underlined part of http://www.oreilly.com/catalog/regex/).
The path part turns out to be the most difficult text to match properly, as it
requir es some guessing to do a good job. As discussed in Chapter 2, what often
comes after a URL in the text is also allowed as part of a URL. For example, with

Read his comments at http://www.oreilly.com/askRtim/index.html. He ...

we can look and realize that the period after ‘index.html’ is English punctuation
and should not be considered part of the URL, yet the period within ‘index.html’
is part of the URL.

Although it’s easy for us humans to differ entiate between the two, it’s quite diffi-
cult for a program, so we’ve got to come up with some heuristics that get the job
done as best we can. The approach taken with the Chapter 2 example is to use
negative lookbehind to ensure that a URL can’t end with sentence-ending punctua-
tion characters. What we’ve been using at Yahoo! Finance was originally written
befor e negative lookbehind was available, and so is more complex than the Chap-
ter 2 approach, but in the end it has the same effect. It’s shown in the listing on
the next page. The approach taken for the path part is differ ent in a number of
respects, and the comparison with the Chapter 2 example on page 75 should be
inter esting. In particular, the Java version of this regex in the sidebar on page 209
pr ovides some insight as to how it was built.

In practice, I doubt I’d actually write out a full monster like this, but instead I’d
build up a “library” of regular expressions and use them as needed. A simple
example of this is shown with the use of $HostnameRegex on page 76, and also
in the sidebar on page 209.

HTML-Related Examples 207

29 April 2003 09:22

208 Chapter 5: Practical Regex Techniques

Regex to pluck a URL fr om financial news

\b
Match the leading part (proto://hostname, or just hostname)
(

ftp://, http://, or https:// leading part
(ftp;https?)://[-\w]+(\.\w[-\w]+)+

;
or, try to find a hostname with our more specific sub-expression
(?i: [a-z0-9] (?:[-a-z0-9]+[a-z0-9])? \.)+ # sub domains
Now ending .com, etc. For these, requir e lower case
(?-i: com\b

; edu\b
; biz\b
; gov\b
; in(?:t;fo)\b # .int or .info
; mil\b
; net\b
; org\b
; [a-z][a-z]\b # two-letter country codes

)
)

Allow an optional port number
(: \d+)?

The rest of the URL is optional, and begins with / . . .
(

/
The rest are heuristics for what seems to work well
[ˆ.!,?;"’<>()\[\]{}\s\x7F-\xFF]+
(?:

[.!,?]+ [ˆ.!,?;"’<>()\[\]{}\s\x7F-\xFF]+
)+

)?

Extended Examples
The next few examples illustrate some important techniques about regular expres-
sions. The discussions are longer, and show more of the thought processes and
mistaken paths that eventually lead to a working conclusion.

Keeping in Sync with Your Data
Let’s look at a lengthy example that might seem a bit contrived, but which illus-
trates some excellent points on why it’s important to keep in sync with what
you’r e trying to match (and provides some methods to do so).

Let’s say that your data is a series of five-digit US postal codes (ZIP codes) that are
run together, and that you need to retrieve all that begin with, say, 44. Her e is a
sample line of data, with the codes we want to retrieve in bold:

03824531449411615213441829503544272752010217443235

29 April 2003 09:22

Building Up a Regex Through Var iables in Java
String SubDomain = "(?i:[a-z0-9];[a-z0-9][-a-z0-9]+[a-z0-9])";
String TopDomains = "(?x-i:com\\b \n" +

" ;edu\\b \n" +
" ;biz\\b \n" +
" ;in(?:t;fo)\\b \n" +
" ;mil\\b \n" +
" ;net\\b \n" +
" ;org\\b \n" +
" ;[a-z][a-z]\\b \n" + // country codes
") \n";

String Hostname = "(?:" + SubDomain + "\\.)+" + TopDomains;

String NOTRIN = ";\"’<>()\\[\\]\\{\\}\\s\\x7F-\\xFF";
String NOTREND = "!.,?";
String ANYWHERE = "[ˆ" + NOTRIN + NOTREND + "]";
String EMBEDDED = "[" + NOTREND + "]";
String UrlPath = "/"+ANYWHERE + "+("+EMBEDDED+"+"+ANYWHERE+"+)+";

String Url =
"(?x: \n"+
" \\b \n"+
" ## match the hostname part \n"+
" (\n"+
" (?: ftp ; http s?): // [-\\w]+(\\.\\w[-\\w]+)+ \n"+
" ; \n"+
" " + Hostname + " \n"+
") \n"+
" # allow optional port \n"+
" (?: \\d+)? \n"+
" \n"+
" # rest of url is optional, and begins with / \n"+
" (?: " + UrlPath + ")? \n"+
")";

// Now convert string we’ve built up into a real regex object
Pattern UrlRegex = Pattern.compile(Url);
// Now ready to apply to raw text to find urls . . .

+
+
+

As a starting point, consider that !\d\d\d\d\d " can be used repeatedly to match all
the ZIP codes. In Perl, this is as simple as @zips = m/\d\d\d\d\d/g; to create a
list with one ZIP code per element. (To keep these examples less cluttered, they
assume the text to be matched is in Perl’s default target variable $Q + 79.) With
other languages, it’s usually a simple matter to call the regex “find” method in a
loop. I’d like to concentrate on the regular expression rather than that mechanics
particular to each language, so will continue to use Perl to show the examples.

Back to !\d\d\d\d\d ". Her e’s a point whose importance will soon become appar-
ent: the regex never fails until the entire list has been parsed—ther e ar e absolutely

Extended Examples 209

29 April 2003 09:22

210 Chapter 5: Practical Regex Techniques

no bump-and-retries by the transmission. (I’m assuming we’ll have only proper
data, an assumption that is very situation specific.)

So, it should be apparent that changing !\d\d\d\d\d " to !44\d\d\d " in an attempt
to find only ZIP codes starting with 44 is silly — once a match attempt fails, the
transmission bumps along one character, thus putting the match for the !44˙˙˙" out of
sync with the start of each ZIP code. Using !44\d\d\d " incorr ectly finds a match at
‘˙˙˙5314494116˙˙˙’.

You could, of course, put a caret or !\A " at the head of the regex, but they allow a
target ZIP code to match only if it’s the first in the string. We need to keep the
regex engine in sync manually by writing our regex to pass over undesired ZIP

codes as needed. The key here is that it must pass over full ZIP codes, not single
characters as with the automatic bump-along.

Keeping the match in sync with expectations

The following are a few ways to pass over undesired ZIP codes. Inserting them
befor e what we want (!(44\d\d\d) ") achieves the desired effect. Non-capturing
!(?:˙˙˙)" par entheses ar e used to match undesired ZIP codes, effectively allowing us
to pass them over on the way toward matching a desired ZIP code within the $1

capturing parentheses:

!(?:[ˆ4]\d\d\d\d<\d[ˆ4]\d\d\d)+˙˙˙ "

This brute-force method actively skips ZIP codes that start with something
other than 44. (Well, it’s probably better to use ![1235-9] " instead of ![ˆ4] ",
but as I said earlier, I am assuming properly formatted data.) By the way,
we can’t use !(?:[ˆ4][ˆ4]\d\d\d)+ ", as it does not match (and thus does
not pass over) undesired ZIP codes like 43210.

!(?:(?!44)\d\d\d\d\d)+˙˙˙ "

This method, which uses negative lookahead, actively skips ZIP codes that
do not start with 44. This English description sounds virtually identical to
the previous one, but when render ed into a regular expression looks quite
dif ferent. Compare the two descriptions and related expressions. In this
case, a desired ZIP code (beginning with 44) causes !(?!44) " to fail, thus
causing the skipping to stop.

!(?:\d\d\d\d\d)+?˙˙˙ "

This method uses a lazy quantifier to skip ZIP codes only when needed. We
use it before a subexpr ession matching what we do want, so that if that
subexpr ession fails, this one matches a ZIP. It’s the laziness of !(˙˙˙)+? " that
allows this to happen. Because of the lazy quantifier, !(?:\d\d\d\d\d) " is
not even attempted until whatever follows has failed. The star assures that it
is repeatedly attempted until whatever follows finally does match, thus
ef fectively skipping only what we want to skip.

29 April 2003 09:22

Combining this last method with !(44\d\d\d) " gives us

@zips = m/(?:\d\d\d\d\d)+?(44\d\d\d)/g;

and picks out the desired ‘44xxx ’ codes, actively skipping undesired ones that
intervene. (In this “@array = m/˙˙˙/g” situation, Perl fills the array with what’s
matched by capturing parentheses during each match attempt + 311.) This regex
can work repeatedly on the string because we know each match always leaves the
“curr ent match position” at the start of the next ZIP code, thereby priming the next
match to start at the beginning of a ZIP code as the regex expects.

Maintaining sync after a non-match as well

Have we really ensur ed that the regex is always applied only at the start of a ZIP

code? No! We have manually skipped intervening undesir ed ZIP codes, but once
ther e ar e no more desir ed ones, the regex finally fails. As always, the bump-along-
and-r etry happens, thereby starting the match from a position within a ZIP code —
something our approach relies on never happening.

Let’s look at our sample data again:

03824531449411615213441829503544272752010217443235

Her e, the matched codes are bold (the third of which is undesired), the codes we
actively skipped are underlined, and characters skipped via bump-along-and-retry
ar e marked. After the match of 44272, no mor e target codes are able to be
matched, so the subsequent attempt fails. Does the whole match attempt end? Of
course not. The transmission bumps along to apply the regex at the next character,
putting us out of sync with the real ZIP codes. After the fourth such bump-along,
the regex skips 10217 as it matches 44323, reporting it falsely as a desired code.

Any of our three expressions work smoothly so long as they are applied at the
start of a ZIP code, but the transmission’s bump-along defeats them. This can be
solved by ensuring that the transmission doesn’t bump along, or that a bump-
along doesn’t cause problems.

One way to ensure that the transmission doesn’t bump along, at least for the first
two methods, is to make !(44\d\d\d\) " gr eedily optional by appending !? ". This
plays off the knowledge that the prepended !(?:(?!44)\d\d\d\d\d)+˙˙˙ " or
!(?:[ˆ4]\d\d\d\d<\d[ˆ4]\d\d\d)+˙˙˙ " finish only when at a desired code, or
when there are no mor e codes (which is why it can’t be used for the third, non-
gr eedy method.) Thus, !(44\d\d\d)? " matches the desired ZIP code if it’s there, but
doesn’t force a backtrack if it’s not.

Ther e ar e some problems with this solution. One is that because we can now have
a regex match even when we don’t have a target ZIP code, the handling code must
be a bit more complex. However, to its benefit, it is fast, since it doesn’t involve
much backtracking, nor any bump-alongs by the transmission.

Extended Examples 211

29 April 2003 09:22

212 Chapter 5: Practical Regex Techniques

Maintaining sync with \G

A mor e general approach is to simply prepend !\G " (+ 128) to any of the three
methods’ expressions. Because we crafted each to explicitly end on a ZIP code
boundary, we’re assur ed that any subsequent match that has had no intervening
bump-along begins on that same ZIP boundary. And if there has been a bump-
along, the leading !\G " fails immediately, because with most flavors, it’s successful
only when there’s been no intervening bump-along. (This is not true for Ruby and
other flavors whose !\G " means “start of the current match” instead of “end of the
pr evious match” + 129.)

So, using the second expression, we end up with

@zips = m/\G(?:(?!44)\d\d\d\d\d)+(44\d\d\d\d)/g;

without the need for any special after-match checking.

This example in perspective

I’ll be the first to admit that this example is contrived, but nevertheless, it shows a
number of valuable lessons about how to keep a regex in sync with the data. Still,
wer e I really to need to do this in real life, I would probably not try to solve it
completely with regular expressions. I would simply use !\d\d\d\d\d " to grab
each ZIP code, then discard it if it doesn’t begin with ‘44’. In Perl, this looks like:

@zips = (); # Ensur e the array is empty

while (m/(\d\d\d\d\d)/g) {
$zip = $1;
if (substr($zip, 0, 2) eq "44") {

push @zips, $zip;
}

}

Also, see the sidebar on page 130 for a particularly interesting use of !\G ", although
one available at the time of this writing only in Perl.

Parsing CSV Files
As anyone who’s ever tried to parse a CSV (Comma Separated Values) file can tell
you, it can be a bit tricky. The biggest problem is that it seems every program that
pr oduces a CSV file has a differ ent idea of just what the format should be. In this
section, I’ll start off with methods to parse the kind of CSV file that Microsoft Excel
generates, and we’ll move from there to look at some other format permutations.†

Luckily, the Microsoft format is one of the simplest. The values, separated by com-
mas, are either “raw” (just sitting there between the commas), or within double

† The final code for processing the Microsoft style CSV files is presented in Chapter 6 (+ 271) after the
ef ficiency issues discussed in that chapter are taken into consideration.

29 April 2003 09:22

quotes (and within the double quotes, a double quote itself is repr esented by a
pair of double quotes in a row).

Her e’s an example:

Ten Thousand,10000, 2710 ,,"10,000","It’s ""10 Grand"", baby",10K

This row repr esents seven fields:

Ten Thousand
10000
2710

an empty field

10,000
It’s "10 Grand", baby
10K

So, to parse out the fields from a line, we need an expression to cover each of two
field types. The non-quoted ones are easy — they contain anything except commas
and quotes, so they are matched by ![ˆ",]+ " .

A double-quoted field can contain commas, spaces, and in fact anything except a
double quote. It can also contain the two quotes in a row that repr esent one quote
in the final value. So, a double-quoted field is matched by any number of ![ˆ"];"""

between !"˙˙˙"", which gives us !"(?:[ˆ"]<"")+"". (Actually, for efficiency, I can use
atomic grouping, !(?>˙˙˙)" instead of !(?:˙˙˙)", but I’ll leave that discussion until the
next chapter; + 259.)

Putting this all together results in ![ˆ",]+<"(?:[ˆ"];"")+"" to match a single
field. That might be getting a bit hard to read, so I’ll rewrite it in a free-spacing
mode (+ 110):

Either some non-quote/non-comma text . . .
[ˆ",]+
. . . or . . .

;
. . . a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
(?: [ˆ"] ; "")+

" # field’s closing quote

Now, to use this in practice, we can apply it repeatedly to a string containing a
CSV row, but if we want to actually do anything productive with the results of the
match, we should know which alternative matched. If it’s the double-quoted field,
we need to remove the outer quotes and replace internal paired double quotes
with one double quote to yield the original data.

I can think of two approaches to this. One is to just look at the text matched and
see whether the first character is a double quote. If so, we know that we must
strip the first and last characters (the double quotes) and replace any internal ‘""’

Extended Examples 213

29 April 2003 09:22

214 Chapter 5: Practical Regex Techniques

by ‘"’. That’s simple enough, but it’s even simpler if we are clever with capturing
par entheses. If we put capturing parentheses around each of the subexpressions
that match actual field data, we can inspect them after the match to see which
gr oup has a value:

Either some non-quote/non-comma text . . .
([ˆ",]+)
. . . or . . .

;
. .. a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
((?: [ˆ"] ; "")+)
" # field’s closing quote

Now, if we see that the first group captured, we can just use the value as is. If the
second group captured, we merely need to replace any ‘""’ with ‘"’ and we can
use the value.

I’ll show the example now in Perl, and a bit later (after we flush out some bugs) in
Java and VB.NET. Her e’s the snippet in Perl, assuming our line is in $line and has
had any newline removed from the end (we don’t want the newline to be part of
the last field!):

while ($line =˜ m{
Either some non-quote/non-comma text . . .
([ˆ",]+)
. . . or . . .

;
. . . a double-quoted field ("" allowed inside)
" # field’s opening quote
((?: [ˆ"] ; "")+)
" # field’s closing quote

}gx)
{

if (defined $1) {
$field = $1;

} else {
$field = $2;
$field =˜ s/""/"/g;

}
print "[$field]"; # print the field, for debugging
Can work with $field now . . .

}

Applying this against our test data, the output is:

[Ten Thousand][10000][2710][10,000][It’s "10 Grand", baby][10K]

This looks mostly good, but unfortunately doesn’t give us anything for that empty
fourth field. If the program’s “work with $field” is to save the field value to an
array, once we’re all done, we’d want access to the fifth element of the array to
yield the fifth field (“10,000”). That won’t work if we don’t fill an element of the
array with an empty value for each empty field.

29 April 2003 09:22

The first idea that might come to mind for matching an empty field is to change
![ˆ",]+ " to ![ˆ",], ". Well, that may seem obvious, but does it really work?

Let’s test it. Here’s the output:
[Ten Thousand][][10000][][2710][][][][10,000][][][It’s "10 Grand", . . .

Oops, we somehow got a bunch of extra fields! Well, in retr ospect, we shouldn’t
be surprised. By using !(˙˙˙)+ " to match a field, we don’t actually requir e anything
to match. That works to our advantage when we have an empty field, but consider
after having matched the first field, the next application of the regex starts at
‘Ten Thousand,10000˙˙˙’. If nothing in the regex can match that raw comma (as is
the case), yet an empty match is considered successful, the empty match will
indeed be successful at that point. In fact, it could be successful an infinite num-
ber of times at that point if the regex engine doesn’t realize, as modern ones do,
that it’s in such a situation and force a bump-along so that two zero-width matches
don’t happen in a row (+ 129). That’s why there’s one empty match between each
valid match, and one more empty match before each quoted field (and although
not shown, there’s an empty match at the end).

Distr usting the bump-along

The problem here stems from us having relied on the transmission’s bump-along
to get us past the separating commas. To solve it, we need to take that control into
our own hands. Two approaches come to mind:

1. We could try to match the commas ourselves. If we take this approach, we
must be sure to match a comma as part of matching a regular field, using it to
“pace ourselves” through the string.

2. We could check to be sure that each match start is consistent with locations
that we know can start a field. A field starts either at the beginning of the
line, or after a comma.

Perhaps even better, we can combine the two. Starting with the first approach
(matching the commas ourselves), we can simply requir e a comma before each
field except the first. Alternatively, we can requir e a comma after each field except
the last. We can do this by prepending !ˆ;," or appending !$;," to our regex, with
appr opriate par entheses to control the scope. Let’s try prepending, which gives us:

(?: ̂<,)
(?:

Either some non-quote/non-comma text....
([ˆ",]+)

˙˙˙ or˙˙˙

<
˙˙˙ a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
((?: [ˆ"] ; "")+)

" # field’s closing quote
)

Extended Examples 215

29 April 2003 09:22

216 Chapter 5: Practical Regex Techniques

This really sounds like it should work, but plugging it into our test program, the
result is disappointing:

[Ten Thousand][10000][2710][][][000][][baby][10K]

Remember, we’r e expecting:
[Ten Thousand][10000][2710][][10,000][It’s "10 Grand", baby][10K]

Why didn’t this one work? It seems that the double-quoted fields didn’t come out
right, so the problem must be with the part that matches a double-quoted field,
right? No, the problem is before that. Perhaps the moral from page 176 can help:
when more than one alternative can potentially match from the same point, care
must be taken when selecting the order of the alternatives. Since the first alternative,
![ˆ",]+ ", requir es nothing to be successful, the second alternative never gets a
chance to match unless forced by something that must match later in the regex.
Our regex doesn’t have anything after these alternatives, so as it’s written, the sec-
ond alternative is never even reached. Doh!

Wow, you’ve really got to keep your wits about you. Okay, let’s swap the alterna-
tives and try again:

(?: ̂;,)
(?: # Now, match either a double-quoted field (inside, paired double quotes are allowed) . . .

" # (double-quoted field’s opening quote)
((?: [ˆ"] ; "")+)

" # (double-quoted field’s closing quote)
;
. . . or, some non-quote/non-comma text . . .

([ˆ",]+)
)

Now, it works! Well, at least for our test data. Could it fail with other data? This
section is named “Distrusting the bump-along,” and while nothing takes the place
of some thought backed up with good testing, we can use !\G " to ensure that each
match begins exactly at the point that the previous match ended. We believe that
should be true already because of how we’ve constructed and apply our regex. If
we start out the regex with !\G ", we disallow any match after the engine’s transmis-
sion is forced to bump along. We hope it will never matter, but doing so may
make an error more appar ent. Had we done this with our previously-failing regex
that had given us

[Ten Thousand][10000][2710][][][000][][baby][10K]

we would have gotten
[Ten Thousand][10000][2710][][]

instead. This perhaps would have made the error more appar ent, had we missed it
the first time.

29 April 2003 09:22

CSV Processing in Java
Her e’s the CSV example with Sun’s java.util.regex. This is designed to be
clear and simple—a mor e ef ficient version is given in Chapter 8 (+ 386).

import java.util.regex.+;
+
+
+

Pattern fieldRegex = Pattern.compile(
"\\G(?:ˆ;,) \n"+
"(?: \n"+
" # Either a double-quoted field ... \n"+
" \" # field’s opening quote \n"+
" ((?: [ˆ\"]++ ; \"\")++) \n"+
" \" # field’s closing quote \n"+
" # ... or ... \n"+
" ; \n"+
" # ... some non-quote/non-comma text ... \n"+
" ([ˆ\",]+) \n"+
") \n", Pattern.COMMENTS);

Pattern quotesRegex = Pattern.compile("\"\"");
+
+
+

// Given the string in ’line’, find all the fields . . .

Matcher m = fieldRegex.matcher(line);
while (m.find())
{

String field;
if (m.group(1) != null) {

field = quotesRegex.matcher(m.group(1)).replaceAll("\"");
} else {

field = m.group(2);
}
// We can now work with the field . . .
System.out.println("[" + field + "]");

}

Another approach. The beginning of this section noted two approaches to
ensuring we stay properly aligned with the fields. The other is to be sure that a
match begins only where a field is allowed. On the surface, this is similar to
pr epending !ˆ;,", except using lookbehind as with !(?<=ˆ<,)".

Unfortunately, as the section in Chapter 3 explains (+ 132), even if lookbehind is
supported, variable-length lookbehind sometimes isn’t, so this approach may not
work. If the variable length is the issue, we could replace !(?<=ˆ<,)" with
!(?:ˆ<(?<=,))", but this seems overly complex considering that we already have
the first approach working. Also, it reverts to relying on the transmission’s bump-
along to bypass the commas, so if we’ve made a mistake elsewhere, it could allow
a match to begin at a location like ‘˙˙˙"10,000"˙˙˙’. All in all, it just seems safer to
use the first approach.

Extended Examples 217

29 April 2003 09:22

218 Chapter 5: Practical Regex Techniques

However, we can use a twist on this approach—requiring a match to end befor e a
comma (or before the end of the line). Adding !(?=$;,)" to the end of our regex
adds yet another assurance that it won’t match where we don’t want it to. In prac-
tice, would I do add this? Well, frankly, I feel pretty comfortable with what we
came up with before, so I’d probably not add it in this exact situation, but it’s a
good technique to have on hand when you need it.

One change for the sake of eff icienc y

Although I don’t concentrate on efficiency until the next chapter, I’d like to make
one efficiency-r elated change now, for systems that support atomic grouping
(+ 137). If supported, I’d change the part that matches the values of double-
quoted fields from !(?: [ˆ"];"")+ " to !(?>[ˆ"]+;"")+ ". The VB.NET example in
the sidebar below shows this.

CSV Processing in VB.NET
Imports System.Text.RegularExpressions

+
+
+

Dim FieldRegex as Regex = New Regex(R
"(?:ˆ;,) " & R
"(?: " & R
" (?# Either a doublequoted field ...) " & R
" "" (?# field’s opening quote) " & R
" ((?> [ˆ""]+ ; """")+) " & R
" "" (?# field’s closing quote) " & R
" (?# ... or ...) " & R
" ; " & R
" (?# ... some non-quote/non-comma text ...) " & R
" ([ˆ"",]+) " & R
")", RegexOptions.IgnorePatternWhitespace)

Dim QuotesRegex as Regex = New Regex(""" "" ") ’A string with two double quotes

+
+
+

Dim FieldMatch as Match = FieldRegex.Match(Line)
While FieldMatch.Success

Dim Field as String
If FieldMatch.Groups(1).Success

Field = QuotesRegex.Replace(FieldMatch.Groups(1).Value, """")
Else

Field = FieldMatch.Groups(2).Value
End If

Console.WriteLine("[" & Field & "]")
’ Can now work with ’Field’.˙˙˙

FieldMatch = FieldMatch.NextMatch
End While

29 April 2003 09:22

If possessive quantifiers (+ 140) are supported, as they are with Sun’s Java regex
package, they can be used instead. The sidebar with the Java CSV code shows this.

The reasoning behind these changes is discussed in the next chapter, and eventu-
ally we end up with a particularly efficient version, shown on page 271.

Other CSV formats

Micr osoft’s CSV for mat is popular because it’s Microsoft’s CSV for mat, but it’s not
necessarily what other programs use. Here are some twists I’ve seen:

• Using another character, such as ‘;’ or a tab, as the separator (which makes
one wonder why the format is still called “comma-separated values”).

• Allowing spaces after the separators, but not counting them as part of the
value.

• Using backslashes to escape quotes (e.g., using ‘\"’ rather than ‘""’ to include
a quote within the value). This usually means that a backslash is allowed (and
ignor ed) befor e any character.

These changes are easily accommodated. Do the first by replacing each comma in
the regex with the desired separator; the second by adding !\s+ " after the first sep-
arator, e.g., starting out with !(?: ̂;,\s,)".

For the third, we can use what we developed earlier (+ 198), replacing ![ˆ"]+;"""

with ![ˆ"\\]+;\\. ". Of course, we’d also have to change the subsequent
s/""/"/g to the more general s/\\(.)/$1/g, or our target language’s equivalent.

Extended Examples 219

29 April 2003 09:22

6
Crafting an Efficient Expression

With the regex-dir ected natur e of an NFA engine, as is found in Perl, Java pack-
ages, the .NET languages, Python, and PHP (just to name a few; see the table on
page 145 for more), subtle changes in an expression can have major effects on
what or how it matches. Issues that don’t matter with a DFA engine become
paramount. The fine control an NFA engine affords allows you to really craft an
expr ession, although it can sometimes be a source of confusion to the unaware.
This chapter helps you learn this art.

At stake are both correctness and efficiency: matching just what you want and no
mor e, and doing it quickly. Chapters 4 and 5 examined correctness; here we’ll
look at the efficiency-r elated issues of NFA engines, and how to make them work
to our advantage. (DFA-r elated issues are mentioned when appropriate, but this
chapter is primarily concerned with NFA-based engines.) In a nutshell, the key is to
understand the full implications of backtracking, and to learn techniques to avoid
it where possible. Armed with the detailed understanding of the processing
mechanics, not only will you maximize the speed of matches, you will also be
able to write more complex expressions with confidence.

In This Chapter To arm you well, this chapter first illustrates just how important
these issues can be, then prepar es you for some of the more advanced techniques
pr esented later by reviewing the basic backtracking described in the previous
chapters with a strong emphasis on efficiency and backtracking’s global ramifica-
tions. Then we’ll look at some of the common internal optimizations that can have
a fairly substantial impact on efficiency, and on how expressions are best written
for implementations that employ them. Finally, I bring it all together with some
killer techniques to construct lightning-fast NFA regexes.

221

29 April 2003 20:38

222 Chapter 6: Crafting an Efficient Expression

Tests and Backtracks
The examples we’ll see here illustrate common situations you might meet when
using regular expressions. When examining a particular example’s efficiency, I’ll
sometimes report the number of individual tests that the regex engine does during
the course of a match. For example, in matching !marty " against smarty, ther e ar e
six individual tests — the initial attempt of !m " against s (which fails), then the
matching of !m " against m, !a " against a, and so on. I also often report the number of
backtracks (zero in this example, although the implicit backtrack by the regex
engine’s transmission to retry the regex at the second character position could be
counted as one).

I use these exact numbers not because the precision is important, but rather to be
mor e concr ete than words such as “lots,” “few,” “many,” “better,” “not too much,”
and so forth. I don’t want to imply that using regular expressions with an NFA is an
exercise in counting tests or backtracks; I just want to acquaint you with the rela-
tive qualities of the examples.

Another important thing to realize is that these “precise” numbers probably differ
fr om tool to tool. It’s the basic relative perfor mance of the examples that I hope
will stay with you. One important variation among tools is the optimizations they
might employ. A smart enough implementation completely bypasses the applica-
tion of a particular regex if it can decide beforehand that the target string cannot
possibly match (in cases, for instance, when the string lacks a particular character
that the engine knows beforehand must be there for any match to be successful). I
discuss these important optimizations in this chapter, but the overall lessons are
generally more important than the specific special cases.

Tr aditional NFA versus POSIX NFA
It’s important to keep in mind the target tool’s engine type, Traditional NFA or
POSIX NFA, when analyzing efficiency. As we’ll see in the next section, some con-
cer ns matter to one but not the other. Sometimes a change that has no effect on
one has a great effect on the other. Again, understanding the basics allows you to
judge each situation as it arises.

A Sober ing Example
Let’s start with an example that really shows how important a concern backtrack-
ing and efficiency can be. On page 198, we came up with !"(\\.<[ˆ"\\]),"" to
match a quoted string, with internal quotes allowed if escaped. This regex works,
but if it’s used with an NFA engine, the alternation applied at each character is very
inef ficient. With every “normal” (non-escape, non-quote) character in the string,
the engine has to test !\\. ", fail, and backtrack to finally match with ![ˆ"\\]". If
used where efficiency matters, we would certainly like to be able to speed this
regex up a bit.

29 April 2003 20:38

A Simple Change—Placing Your Best Foot Forward
Since the average double-quoted string has more nor mal characters than escaped
ones, one simple change is to swap the order of the alternatives, putting ![ˆ"\\]"

first and !\\. " second. By placing ![ˆ"\\]" first, alternation backtracking need be
done only when there actually is an escaped item in the string (and once for when
the star fails, of course, since all alternatives must fail for the alternation as a
whole to stop). Figure 6-1 illustrates this differ ence visually. The reduction of
arr ows in the bottom half repr esents the increased number of times when the first
alter native matches. That means less backtracking.

"(\\.|[^"\\])*" "2\"x3\" likeness"

"([^"\\]|\\.)*" "2\"x3\" likeness"

Regular Expression Literal String

- Positions at which an alternation-backtrack occurs

Figur e 6-1: Effects of alternative order (Traditional NFA)

In evaluating this change, consider:

• Does this change benefit a Traditional NFA, POSIX NFA, or both?

• Does this change offer the most benefit when the text matches, when the
match fails, or at all times?

v Consider these questions and flip the page to check your answers. Make sure
that you have a good grasp of the answers (and reasons) before continuing on to
the next section.

Efficienc y Verses Correctness
The most important question to ask when making any change for efficiency’s sake
is whether the change affects the correctness of a match. Reordering alternatives,
as we did earlier, is okay only if the ordering is not relevant to the success of a
match. Consider !"(\\.<[ˆ"])+"", which is an earlier (+ 197) but flawed version
of the regex in the previous section. It’s missing the backslash in the negated char-
acter class, and so can match data that should not be matched. If the regex is only
ever applied to valid data that should be matched, you’d never know of the prob-

A Sober ing Example 223

29 April 2003 20:38

224 Chapter 6: Crafting an Efficient Expression

Effects of a Simple Change
v Answers to the questions on page 223.

Ef fect for which type of engine? The change has virtually no effect whatso-
ever for a POSIX NFA engine. Since it must eventually try every permutation
of the regex anyway, the order in which the alternatives are tried is irrele-
vant. For a Traditional NFA, however, ordering the alternatives in such a way
that quickly leads to a match is a benefit because the engine stops once the
first match is found.

Ef fect during which kind of result? The change results in a faster match only
when there is a match. An NFA can fail only after trying all possible permuta-
tions of the match (and again, the POSIX NFA tries them all anyway). So if
indeed it ends up failing, every permutation must have been attempted, so
the order does not matter.

The following table shows the number of tests (“tests”) and backtracks (“b.t.”)
for several cases (smaller numbers are better):

Tr aditional NFA POSIX NFA

!"(\\.;[ˆ"\\])+"" !"([ˆ"\\];\\.)+" " either
Sample string tests b.t. tests b.t. tests b.t.

"2\"x3\" likeness" 32 14 22 4 48 30
"makudonarudo" 28 14 16 2 40 26
"very...99 more chars...long" 218 109 111 2 325 216

"No \"match\" here 124 86 124 86 124 86

As you can see, the POSIX NFA results are the same with both expressions,
while the Traditional NFA’s perfor mance incr eases (backtracks decrease) with
the new expression. Indeed, in a non-match situation (the last example in
the table), since both engine types must evaluate all possible permutations,
all results are the same.

lem. Thinking that the regex is good and reordering alternatives now to gain more
ef ficiency, we’d be in real trouble. Swapping the alternatives so that ![ˆ"] " is first
actually ensures that it matches incorrectly every time the target has an escaped
quote:

"You need a 2\"3\" photo."

So, be sure that you’re comfortable with the correctness of a match before you
worry too much about efficiency.

29 April 2003 20:38

Advancing Further—Localizing the Greediness
Figur e 6-1 makes it clear that in either expression, the star must iterate (or cycle, if
you like) for each normal character, entering and leaving the alternation (and the
par entheses) over and over. These actions involve overhead, which means extra
work—extra work that we’d like to eliminate if possible.

Once while working on a similar expression, I realized that I could optimize it by
taking into account that since ![ˆ"\\] " matches the “normal” (non-quote, non-
backslash) case, using ![ˆ"\\]+ " instead allows one iteration of (˙˙˙)+ to read as
many normal characters as there are in a row. For strings without any escapes, this
would be the entire string. This allows a match with almost no backtracking, and
also reduces the star iteration to a bare minimum. I was very pleased with myself
for making this discovery.

We’ll look at this example in more depth later in this chapter, but a quick look at
some statistics clearly shows the benefit. Figure 6-2 looks at this example for a Tra-
ditional NFA. In comparison to the original !"(\\.<[ˆ"\\])," " (the top of the
upper pair of Figure 6-2), alternation-r elated backtracks and star iterations are both
reduced. The lower pair in Figure 6-2 illustrates that perfor mance is enhanced
even further when this change is combined with our previous reordering.

"(\\.|[^"\\]+)*" "2\"x3\" likeness"

"([^"\\]+|\\.)*" "2\"x3\" likeness"

- Positions at which an alternation-backtrack occurs

Regular Expression Literal String

"(\\.|[^"\\])*" "2\"x3\" likeness"

"([^"\\]|\\.)*" "2\"x3\" likeness"

Figur e 6-2: Effects of an added plus (Traditional NFA)

The big gain with the addition of plus is the resulting reduction in the number of
alter nation backtracks, and, in turn, the number of iterations by the star. The star
quantifies a parenthesized subexpression, and each iteration entails some amount

A Sober ing Example 225

29 April 2003 20:38

226 Chapter 6: Crafting an Efficient Expression

of overhead as the parentheses are enter ed and exited, because the engine needs
to keep tabs on what text is matched by the enclosed subexpression. (This is dis-
cussed in depth later in this chapter.)

Table 6-1 is similar to the one in the answer block on page 224, but with differ ent
expr essions and has information about the number of iterations requir ed by star.
In each case, the number of individual tests and backtracks increases ever so
slightly, but the number of cycles is drastically reduced. This is a big savings.

Table 6-1: Match Efficiency for a Traditional NFA

!"([ˆ"\\]<\\.)+"" !"([ˆ"\\]+<\\.)+""

Sample String tests b.t. +-cycles tests b.t. +-cycles

"makudonarudo" 16 2 13 17 3 2
"2\"x3\" likeness" 22 4 15 25 7 6
"very...99 more chars...long" 111 2 108 112 3 2

Reality Check
Yes, I was quite pleased with myself for this discovery. However, as wonder ful as
this “enhancement” might seem, it is really a disaster waiting to happen. You’ll
notice that when extolling its virtues, I didn’t give statistics for a POSIX NFA engine.
If I had, you might have been surprised to find the "very ˙˙˙ long" example
requir es over thr ee hundr ed thousand million billion trillion backtracks (for the
record, the actual count would be 324,518,553,658,426,726,783,156,020,576,256, or
about 325 nonillion). Putting it mildly, that is a LOT of work. This would take well
over 50 quintillion years, take or leave a few hundred trillion millennia.†

Quite surprising indeed! So, why does this happen? Briefly, it’s because something
in the regex is subject to both an immediate plus and an enclosing star, with noth-
ing to differ entiate which is in control of any particular target character. The result-
ing nondeterminism is the killer. The next section explains a bit more.

“Exponential” matches

Befor e adding the plus, ![ˆ"\\] " was subject to only the star, and the number of
possible ways for the effective !([ˆ"\\]), " to divvy up the line was limited. It
matched one character, then another, and so forth, until each character in the tar-
get text had been matched at most one time. It may not have matched everything
in the target, but at worst, the number of characters matched was directly propor-
tional to the length of the target string. The possible amount of work rose in step
with the length of the target string.

† The reported time is an estimation based on other benchmarks; I did not actually run the test that long.

29 April 2003 20:38

With the new regex’s effective !([ˆ"\\]+), ", the number of ways that the plus and
star might divvy up the string explodes exponentially. If the target string is
makudonarudo, should it be considered 12 iterations of the star, wher e each inter-
nal ![ˆ"\\]+ " matches just one character (as might be shown by ‘makudonarudo’)?
Or perhaps one iteration of the star, wher e the internal ![ˆ"\\]+ " matches every-
thing (‘makudonarudo’)? Or, perhaps 3 iterations of the star, wher e the internal
![ˆ"\\]+ " matches 5, 3, and 4 characters respectively (‘makudonarudo’). Or per-
haps 2, 2, 5, and 3 characters respectively (‘makudonarudo’). Or, perhaps...

Well, you get the idea — ther e ar e a lot of possibilities (4,096 in this 12-character
example). For each extra character in the string, the number of possible combina-
tions doubles, and the POSIX NFA must try them all before retur ning its answer.
That’s why these are called “exponential matches.” Another appealing phrase I’ve
heard for these types of matches is super-linear.

However called, it means backtracking, and lots of it!† Twelve characters’ 4,096
combinations doesn’t take long, but 20 characters’ million-plus combinations take
mor e than a few seconds. By 30 characters, the billion-plus combinations take
hours, and by 40, it’s well over a year. Obviously, this is not good.

“Ah,” you might think, “but a POSIX NFA is not all that common. I know my tool
uses a Traditional NFA, so I’m okay.” Well, the major differ ence between a POSIX

and Traditional NFA is that the latter stops at the first full match. If there is no full
match to be had, even a Traditional NFA must test every possible combination
befor e it finds that out. Even in the short "No \"match\" here example from the
pr evious answer block, 8,192 combinations must be tested before the failure can
be reported.

When the regex engine crunches away on one of these neverending matches, the
tool just seems to “lock up.” The first time I experienced this, I thought I’d discov-
er ed a bug in the tool, but now that I understand it, this kind of expression is part
of my regular-expr ession benchmark suite, used to indicate the type of engine a
tool implements:

• If one of these regexes is fast even with a non-match, it’s likely a DFA.

• If it’s fast only when there’s a match, it’s a Traditional NFA.

• If it’s slow all the time, it’s a POSIX NFA.

I used “likely” in the first bullet point because NFAs with advanced optimizations
can detect and avoid these exponentially-painful neverending matches. (More on
this later in this chapter + 250.) Also, we’ll see a number of ways to augment or
rewrite this expression such that it’s fast for both matches and failures alike.

† For readers into such things, the number of backtracks done on a string of length n is 2n+1. The num-
ber of individual tests is 2n+1+ 2n.

A Sober ing Example 227

29 April 2003 20:38

228 Chapter 6: Crafting an Efficient Expression

As the previous list indicates, at least in the absence of certain advanced optimiza-
tions, the relative perfor mance of a regex like this can tell you about the type of
regex engine. That’s why a form of this regex is used in the “Testing the Engine
Type” section in Chapter 4 (+ 146).

Certainly, not every little change has the disastrous effects we’ve seen with this
example, but unless you know the work going on behind an expression, you will
simply never know until you run into the problem. Toward that end, this chapter
looks at the efficiency concerns and ramifications of a variety of examples. As with
most things, a firm grasp of the underlying basic concepts is essential to an under-
standing of more advanced ideas, so before looking at ways to get around expo-
nential matches, I’d like to review backtracking in explicit detail.

A Global View of Backtracking
On a local level, backtracking is simply the retur n to attempt an untried option.
That’s simple enough to understand, but the global implications of backtracking
ar e not as easily grasped. In this section, we’ll take an explicit look at the details
of backtracking, both during a match and during a non-match, and we’ll try to
make some sense out of the patterns we see emerge.

Let’s start by looking closely at some examples from the previous chapters. From
page 165, if we apply !".+"" to

The name "McDonald’s" is said "makudonarudo" in Japanese

we can visualize the matching action as shown in Figure 6-3.

The regex is attempted starting at each string position in turn, but because the
initial quote fails immediately, nothing interesting happens until the attempt start-
ing at the location marked A. At this point, the rest of the expression is attempted,
but the transmission (+ 148) knows that if the attempt turns out to be a dead end,
the full regex can still be tried at the next position.

The ! .+ " then matches to the end of the string, where the dot is unable to match
the nothingness at the end of the string and so the star finally stops. None of the
46 characters matched by ! .+ " is requir ed, so while matching them, the engine
accumulated 46 more situations to where it can backtrack if it turns out that it
matched too much. Now that ! .+ " has stopped, the engine backtracks to the last of
those saved states, the “ try !".+"" at ˙˙˙anese ” state.

This means that we try to match the closing quote at the end of the string. Well, a
quote can match nothingness no better than dot, so this fails too. The engine
backtracks again, this time trying to match the closing quote at ˙˙˙Japanese, which
also fails.

29 April 2003 20:38

B

Match of: ".*"
backtrack-and-attempt, but fail
successful match of regex component

KEY

attempt-but-fail

The name "McDonald’s" is said "makudonarudo" in Japanese
A

C

E

G

I

D

F

H

POSIX NFA only

Figur e 6-3: Successful match of !".+" "

The remember ed states accumulated while matching from A to B ar e tried in
reverse (latest first) order as we move from B to C. After trying only about a dozen
of them, the state that repr esents “ try !".+"" at ˙˙˙arudo" in Japa˙˙˙ ” is reached,
point C. This can match, bringing us to D and an overall match:

The name "McDonald’s" is said "makudonarudo" in Japanese

If this is a Traditional NFA, the remaining unused states are simply discarded and
the successful match is reported.

More Work for a POSIX NFA

For POSIX NFA, the match noted earlier is remember ed as “the longest match we’ve
seen so far,” but all remaining states must still be explored to see whether they
could come up with a longer match. We know this won’t happen in this case, but
the regex engine must find that out for itself.

So, the states are tried and immediately discarded except for the remaining two sit-
uations where ther e is a quote in the string available to match the final quote.
Thus, the sequences D-E-F and F-G-H ar e similar to B-C-D, except the matches at
F and H ar e discarded as being shorter than a previously found match at D

By I, the only remaining backtrack is the “bump along and retry” one. However,
since the attempt starting at A was able to find a match (three in fact), the POSIX

NFA engine is finally done and the match at D is reported.

A Global View of Backtracking 229

29 April 2003 20:38

230 Chapter 6: Crafting an Efficient Expression

Work Required During a Non-Match
We still need to look at what happens when there is no match. Let’s look at
!".+"! ". We know this won’t match our example text, but it comes close on a num-
ber of occasions throughout the match attempt. As we’ll see, that results in much
mor e work.

Figur e 6-4 illustrates this work. The A-I sequence looks similar to that in Figure
6-3. One differ ence is that this time it does not match at point D (because the end-
ing exclamation point can’t match). Another differ ence is that the entire sequence
in Figure 6-4 applies to both Traditional and POSIX NFA engines: finding no match,
the Traditional NFA must try as many possibilities as the POSIX NFA— all of them.

Match of: ".*"!
backtrack-and-attempt, but fail
successful match of regex component

KEY

attempt-but-fail

A B
C

E

G

I

D

F

J K
L

N

P

M

O

Q R
S

U
T

V W
X

Y

Sub-attempt

Sub-attempt

Sub-attempt

Sub-attempt

H

The name "McDonald’s" is said "makudonarudo" in Japanese

Figur e 6-4: Failing attempt to match !".+"! "

Since there is no match from the overall attempt starting at A and ending at I, the
transmission bumps along to retry the match. Attempts eventually starting at points
J, Q, and V look promising, but fail similarly to the attempt at A. Finally at Y, ther e
ar e no more positions for the transmission to try from, so the overall attempt fails.
As Figure 6-4 shows, it took a fair amount of work to find this out.

29 April 2003 20:38

Being More Specific
As a comparison, let’s replace the dot with ![ˆ"]". As discussed in the previous
chapter, this gives less surprising results because it is more specific, and the end
result is that with it, the new regex is more efficient to boot. With !"[ˆ"]+"!", the
![ˆ"]+ " can’t get past the closing quote, eliminating much matching and subse-
quent backtracking.

Figur e 6-5 shows the failing attempt (compare to Figur e 6-4). As you can see,
much less backtracking is needed. If the differ ent results suit your needs, the
reduced backtracking is a welcome side effect.

The name "McDonald’s" is said "makudonarudo" in Japanese

Match of: "[^"]*"!
backtrack-and-attempt, but fail
successful match of regex component

KEY

attempt-but-fail

A G

I
H

J N

P
O

Q S

U
T

V W
X

Y

Sub-attempt

Sub-attempt

Sub-attempt

Sub-attempt

Figur e 6-5: Failing attempt to match !"[ˆ"]+"! "

Alter nation Can Be Expensive
Alter nation can be a leading cause of backtracking. As a simple example, let’s use
our makudonarudo test string to compare how !u;v;w;x;y;z " and ![uvwxyz] " go
about matching. A character class is usually a simple test,† so ![uvwxyz] " suf fers
only the bump-along backtracks (34 of them) until we match at:

The name "McDonald’s" is said "makudonarudo" in Japanese

† Some implementations are not as efficient as others, but it’s safe to assume that a class is always
faster than the equivalent alternation.

A Global View of Backtracking 231

29 April 2003 20:38

232 Chapter 6: Crafting an Efficient Expression

With !u;v;w;x;y;z ", however, six backtracks are requir ed at each starting position,
eventually totaling 204 before we achieve the same match. Obviously, not every
alter nation is replaceable, and even when it is, it’s not necessarily as easily as with
this example. In some situations, however, certain techniques that we’ll look at
later can greatly reduce the amount of alternation-r elated backtracking requir ed for
a match.

Understanding backtracking is perhaps the most important facet of NFA ef ficiency,
but it’s still only part of the equation. A regex engine’s optimizations can gr eatly
impr ove ef ficiency. Later in this chapter, we’ll look in detail at what a regex engine
needs to do, and how it can optimize its perfor mance.

Benchmarking
Because this chapter talks a lot about speed and efficiency, and I often mention
benchmarks I’ve done, I’d like to mention a few principles of benchmarking. I’ll
also show simple ways to benchmark in a few languages.

Basic benchmarking is simply timing how long it takes to do some work. To do
the timing, get the system time, do the work, get the system time again, and report
the differ ence between the times as the time it took to do the work. As an exam-
ple, let’s compare !ˆ(a;b;c;d;e;f;g)+$ " with !ˆ[a-g]+$ ". We’ll first look at
benchmarking in Perl, but will see it in other languages in a bit. Here’s a simple
(but as we’ll see, somewhat lacking) Perl script:

use Time::HiRes ’time’; # So time() gives a high-resolution value.

$StartTime = time();
"abababdedfg" =˜ m/ˆ(a;b;c;d;e;f;g)+$/;
$EndTime = time();
printf("Alternation takes %.3f seconds.\n", $EndTime - $StartTime);

$StartTime = time();
"abababdedfg" =˜ m/ˆ[a-g]+$/;
$EndTime = time();
printf("Character class takes %.3f seconds.\n", $EndTime - $StartTime);

It looks (and is) simple, but there are some important points to keep in mind
while constructing a test for benchmarking:

• Time only “interesting” work Time as much of the “work” as possible, but as
little “non-work” as possible. If there is some initialization or other setup that
must be done, do it before the starting time is taken. If there’s cleanup, do it
after the ending time is taken.

• Do “enough” work Often, the time it takes to do what you want to test is
very short, and a computer’s clock doesn’t have enough granularity to give
meaning to the timing.

29 April 2003 20:38

When I run the simple Perl test on my system, I get

Alternation takes 0.000 seconds.
Character class takes 0.000 seconds.

which really doesn’t tell me anything other than both are faster than the short-
est time that can be measured. So, if something is fast, do it twice, or 10 times,
or even 10,000,000 times—whatever is requir ed to make “enough” work. What
is “enough” depends on the granularity of the system clock, but most systems
now have clocks accurate down to 1/100th of a second, and in such cases, tim-
ing even half a second of work may be sufficient for meaningful results.

• Do the “right” work Doing a very fast operation ten million times involves
the overhead of ten million updates of a counter variable in the block being
timed. If possible, it’s best to increase the amount of real work being done in
a way that doesn’t increase the over head work. In our Perl example, the regu-
lar expressions are being applied to fairly short strings: if applied to much
longer strings, they’d do more “real” work each time.

So, taking these into account, here’s another version:

use Time::HiRes ’time’; # So time() gives a high-resolution value.
$TimesToDo = 1000; # Simple setup
$TestString = "abababdedfg" x 1000; # Makes a huge string

$Count = $TimesToDo;
$StartTime = time();
while ($Count-- > 0) {

$TestString =˜ m/ˆ(a;b;c;d;e;f;g)+$/;
}
$EndTime = time();
printf("Alternation takes %.3f seconds.\n", $EndTime - $StartTime);

$Count = $TimesToDo;
$StartTime = time();
while ($Count-- > 0) {

$TestString =˜ m/ˆ[a-g]+$/;
}
$EndTime = time();
printf("Character class takes %.3f seconds.\n", $EndTime - $StartTime);

Notice how the $TestString and $Count ar e initialized before the timing starts?
($TestString is initialized with Perl’s convenient x operator, which replicates the
string on its left as many times as the number on its right.) On my system, with
Perl 5.8, this prints:

Alternation takes 7.276 seconds.
Character class takes 0.333 seconds.

So, with this test case, one is about 22× faster than the other. The benchmark
should be executed a few times, with the fastest times taken, to lessen the impact
of sporadic background system activity.

Benchmarking 233

29 April 2003 20:38

234 Chapter 6: Crafting an Efficient Expression

Know What You’re Measur ing
It might be interesting to see what happens when the initialization is changed to:

$TimesToDo = 1000000;
$TestString = "abababdedfg";

Now, the test string is 1,000× shorter, but the test is done 1,000× more times. The
total number of characters tested and matched by each regex remains the same,
and so conceptually, one might think that the amount of “work” should also
remain the same the same. Howver, the results are quite differ ent:

Alternation takes 18.167 seconds.
Character class takes 5.231 seconds.

Both are now much slower than before. This is due to all the extra “non-work”
overhead — the update and testing of $Count, and the setup of the regex engine,
now each happen 1,000× more than before.

The extra overhead adds almost five seconds to the faster test, but more than 10
seconds to the alternation test. Why is the alternation test affected so much more?
It’s mostly due to the extra overhead of the capturing parenthses (which requir e
their own extra processing before and after each test, and doing that 1,000× more
adds up).

In any case, the point of this change is to illustrate that the results are str ongly
influenced by how much real work vs. non-work overtime is part of the timing.

Benchmarking with Java
Benchmarking Java can be a slippery science, for a number of reasons. Let’s first
look at a somewhat naïve example, and then look at why it’s naïve, and at what
can be done to make it less so. The listing on the facing page shows the bench-
mark example with Java, using Sun’s java.util.regex.

Notice how the regular expressions are compiled in the initialization part of the
pr ogram? We want to benchmark the matching speed, not the compile speed.

Speed is dependent upon which virtual machine (VM) is used. Sun standard JRE†

comes with two virtual machines, a client VM optimized for fast startup, and a
server VM optimized for heavy-duty long-haul work.

† I had to use a shorter string for this test to run on my Linux system, as a longer string somehow tick-
les a problem with the VM, causing the test to abort. Engineers at Sun tell me it’s due to an unex-
pected interaction between the aggressively optimizing C compiler used to build the VM (gcc), and
an overly conservative use of Linux’s stack-monitoring hooks. It may be fixed as early as Java 1.4.1.
To compensate for the shortened string in the current test, I’ve increased the number of times the
loop executes the match, so these results should be comparable to the original.

29 April 2003 20:38

Benchmarking with java.util.regex

import java.util.regex.+;
public class JavaBenchmark {
public static void main(String [] args)
{
Matcher regex1 = Pattern.compile("ˆ(a;b;c;d;e;f;g)+$").matcher("");
Matcher regex2 = Pattern.compile("ˆ[a-g]+$").matcher("");
long timesToDo = 4000;

StringBuffer temp = new StringBuffer();
for (int i = 250; i > 0; i--)

temp.append("abababdedfg");
String testString = temp.toString();

// Time first one . . .
long count = timesToDo;
long startTime = System.currentTimeMillis();
while (--count > 0)

regex1.reset(testString).find();
double seconds = (System.currentTimeMillis() - startTime)/1000.0;
System.out.println("Alternation takes " + seconds + " seconds");

// Time second one . . .
count = timesToDo;
startTime = System.currentTimeMillis();
while (--count > 0)

regex2.reset(testString).find();
seconds = (System.currentTimeMillis() - startTime)/1000.0;
System.out.println("Character Class takes " + seconds + " seconds");

}
}

On my system, running the benchmark on the client VM pr oduces:

Alternation takes 19.318 seconds
Character Class takes 1.685 seconds

while the server VM yields:

Alternation takes 12.106 seconds
Character Class takes 0.657 seconds

What makes benchmarking slippery, and this example somewhat naïve, is that the
timing can be highly dependent on how well the automatic pre-execution com-
piler works, or how the run-time compiler interacts with the code being tested.
Some VM have a JIT (Just-In-T ime compiler), which compiles code on the fly, just
befor e it’s needed.

Sun’s Java 1.4 has what I call a BLTN (Better-Late-Than-Never) compiler, which
kicks in during execution, compiling and optimizing heavily-used code on the fly.
The nature of a BLTN is that it doesn’t “kick in” until it senses that some code is
“hot” (being used a lot). A VM that’s been running for a while, such as in a server
envir onment, will be “warmed up,” while our simple test ensures a “cold” server
(nothing yet optimized by the BLTN).

Benchmarking 235

29 April 2003 20:38

236 Chapter 6: Crafting an Efficient Expression

One way to see “warmed up” times is to run the benchmarked parts in a loop:

// Time first one . . .
for (int i = 4; i > 0; i--)
{

long count = timesToDo;
long startTime = System.currentTimeMillis();
while (--count > 0)

regex1.reset(testString).find();
double seconds = (System.currentTimeMillis() - startTime)/1000.0;
System.out.println("Alternation takes " + seconds + " seconds");

}

If the extra loop runs enough times (say, for 10 seconds), the BLTN will have opti-
mized the hot code, leaving the last times reported as repr esentative of a warmed-
up system. Testing again with the server VM, these times are indeed a bit faster by
about 8% and 25%:

Alternation takes 11.151 seconds
Character Class takes 0.483 seconds

Another issue that makes Java benchmarking slippery is the unpredictable nature
of thread scheduling and garbage collection. Again, running the test long enough
helps amortize their unpredictable influence.

Benchmarking with VB.NET
The benchmark example in VB.NET is shown in the listing on the facing page. On
my system, it produces:

Alternation takes 13.311 seconds
Character Class takes 1.680 seconds

The .NET Framework allows a regex to be compiled to an even more efficient
for m, by providing RegexOptions.Compiled as a second argument to each
Regex constructor (+ 404). Doing that results in:

Alternation takes 5.499 seconds
Character Class takes 1.157 seconds

Both tests are faster using the Compiled option, but alternation sees a greater rela-
tive benefit (its almost 3× faster when Compiled, but the class version is only
about 1.5× faster), so it seems that alternation benefits from the more efficient
compilation relatively more than a character class does.

29 April 2003 20:38

Benchmarking with VB.NET

Option Explicit On
Option Strict On

Imports System.Text.RegularExpressions

Module Benchmark
Sub Main()

Dim Regex1 as Regex = New Regex("ˆ(a;b;c;d;e;f;g)+$")
Dim Regex2 as Regex = New Regex("ˆ[a-g]+$")
Dim TimesToDo as Integer = 1000
Dim TestString as String = ""
Dim I as Integer
For I = 1 to 1000

TestString = TestString & "abababdedfg"
Next

Dim StartTime as Double = Timer()
For I = 1 to TimesToDo

Regex1.Match(TestString)
Next
Dim Seconds as Double = Math.Round(Timer() - StartTime, 3)
Console.WriteLine("Alternation takes " & Seconds & " seconds")

StartTime = Timer()
For I = 1 to TimesToDo

Regex2.Match(TestString)
Next
Seconds = Math.Round(Timer() - StartTime, 3)
Console.WriteLine("Character Class takes " & Seconds & " seconds")

End Sub
End Module

Benchmarking with Python
The benchmark example in Python is shown in the listing on the next page.

For Python’s regex engine, I had to cut the size of the string a bit because the
original causes an internal error (“maximum recursion limit exceeded”) within the
regex engine. To compensate, I increased the number of times the test is done by
a proportional amount.

On my system, the benchmark produces:

Alternation takes 10.357 seconds
Character Class takes 0.769 seconds

Benchmarking 237

29 April 2003 20:38

238 Chapter 6: Crafting an Efficient Expression

Benchmarking with Python

import re
import time
import fpformat

Regex1 = re.compile("ˆ(a;b;c;d;e;f;g)+$")
Regex2 = re.compile("ˆ[a-g]+$")

TimesToDo = 1250;
TestString = ""
for i in range(800):

TestString += "abababdedfg"

StartTime = time.time()
for i in range(TimesToDo):

Regex1.search(TestString)
Seconds = time.time() - StartTime
print "Alternation takes " + fpformat.fix(Seconds,3) + " seconds"

StartTime = time.time()
for i in range(TimesToDo):

Regex2.search(TestString)
Seconds = time.time() - StartTime
print "Character Class takes " + fpformat.fix(Seconds,3) + " seconds"

Benchmarking with Ruby
Her e’s the benchmark example in Ruby:

TimesToDo=1000
testString=""
for i in 1..1000

testString += "abababdedfg"
end

Regex1 = Regexp::new("ˆ(a;b;c;d;e;f;g)+$");
Regex2 = Regexp::new("ˆ[a-g]+$");

startTime = Time.new.toRf
for i in 1..TimesToDo

Regex1.match(testString)
end
print "Alternation takes %.3f seconds\n" % (Time.new.toRf - startTime);

startTime = Time.new.toRf
for i in 1..TimesToDo

Regex2.match(testString)
end
print "Character Class takes %.3f seconds\n" % (Time.new.toRf - startTime);

On my system, it produces:

Alternation takes 16.311 seconds
Character Class takes 3.479 seconds

29 April 2003 20:38

Benchmarking with Tcl
Her e’s the benchmark example in Tcl:

set TimesToDo 1000
set TestString ""
for {set i 1000} {$i > 0} {incr i -1} {

append TestString "abababdedfg"
}

set Count $TimesToDo
set StartTime [clock clicks -milliseconds]
for {} {$Count > 0} {incr Count -1} {

regexp {ˆ(a;b;c;d;e;f;g)+$} $TestString
}
set EndTime [clock clicks -milliseconds]
set Seconds [expr ($EndTime - $StartTime)/1000.0]
puts [format "Alternation takes %.3f seconds" $Seconds]

set Count $TimesToDo
set StartTime [clock clicks -milliseconds]
for {} {$Count > 0} {incr Count -1} {

regexp {ˆ[a-g]+$} $TestString
}
set EndTime [clock clicks -milliseconds]
set Seconds [expr ($EndTime - $StartTime)/1000.0]
puts [format "Character class takes %.3f seconds" $Seconds]

On my system, this benchmark produces:

Alternation takes 0.362 seconds
Character class takes 0.352 seconds

Wow, they’re both about the same speed! Well, recall from the table on
page 145 that Tcl has a hybrid NFA/DFA engine, and these regular expressions are
exactly the same to a DFA engine. Most of what this chapter talks about simply
does not apply to Tcl. See the sidebar on page 243 for more.

Common Optimizations
A smart regex implementation has many ways to optimize how quickly it produces
the results you ask of it. Optimizations usually fall into two classes:

• Doing something faster Some types of operations, such as !\d+ ", are so com-
mon that the engine might have special-case handling set up to execute them
faster than the general engine mechanics would.

• Av oiding work If the engine can decide that some particular operation is
unneeded in producing a correct result, or perhaps that some operation can
be applied to less text than originally thought, skipping those operations can
result in a time savings. For example, a regex beginning with !\A " (start-of-line)
can match only when started at the beginning of the string, so if no match is
found there, the transmission need not bother checking from other positions.

Common Optimizations 239

29 April 2003 20:38

240 Chapter 6: Crafting an Efficient Expression

Over the next dozen or so pages, we’ll look at many of the differ ent and inge-
nious optimizations that I’ve seen. No one language or tool has them all, or even
the same mix as another language or tool, and I’m sure that there are plenty of
other optimizations that I’ve not yet seen, but this chapter should leave you much
mor e empower ed to take advantage of whatever optimizations your tool offers.

No Free Lunch
Optimizations often result in a savings, but not always. There’s a benefit only if the
amount of time saved is more than the extra time spent checking to see whether
the optimization is applicable in the first place. In fact, if the engine checks to see
if an optimization is applicable and the answer is “no,” the overall result is slower
because it includes the fruitless check on top of the subsequent normal application
of the regex. So, there’s a balance among how much time an optimization takes,
how much time it saves, and importantly, how likely it is to be invoked.

Let’s look at an example. The expression !\b\B " (wor d boundary at the same loca-
tion as a non-wor d boundary) can’t possibly match. If an engine were to realize
that a regex contained !\b\B " in such a way that it was requir ed for any match, the
engine would know that the overall regex could never match, and hence never
have to actually apply that regex. Rather, it could always immediately report fail-
ur e. If applied to long strings, the savings could be substantial.

Yet, no engine that I know of actually uses this optimization. Why not? Well, first
of all, it’s not necessarily easy to decide whether it applies to a particular regex.
It’s certainly possible for a regex to have !\b\B " somewher e in it, yet still match,† so
the engine has to do extra work ahead of time to be absolutely certain. Still, the
savings could be truly substantial, so it could be worth doing the extra work if
!\b\B " was expected to be common. But, it’s not common (I think it’s silly!), so
even though the savings could be huge, it’s not worth slowing every other regex
by the extra overhead requir ed to do the check.

Ever yone’s Lunch is Different
Keep this in mind when looking at the various kinds of optimizations that this
chapter discusses. Even though I’ve tried to pick simple, clean names for each
one, it may well be that every engine that implements it does so in a differ ent
way. A seemingly innocuous change in a regex can cause it to become substan-
tially faster with one implementation, but substantially slower with another.

† I’ve used !\b\B " befor e to cause one part of a larger expression to fail, during testing. For example, I
might insert it at the marked point of ! ˙˙˙(this ;this other)˙˙ "̇ to guaranteed failure of the first alter-
native. These days, when I need a “must fail” component, I use !(?!)". You can see an interesting
Perl-specific example of this on page 333.

29 April 2003 20:38

The Mechanics of Regex Application
Befor e looking at the ways advanced systems optimize their regex perfor mance,
and ways we can take advantage of those optimizations, it’s important to first
understand the basics of regex application. We’ve already covered the details
about backtracking, but in this short section, we’ll step back a bit to look at the
br oader pictur e.

Her e ar e the main steps taken in applying a regular expression to a target string:

1. Regex Compilation The regex is inspected for errors, and if valid, compiled
into an internal form.

2. Tr ansmission Begins The transmission “positions” the engine at the start of
the target string.

3. Component Tests The engine works through the regex and the text, moving
fr om component to component in the regex, as described in Chapter 4. We’ve
alr eady cover ed backtracking for NFAs in great detail, but there are a few
additional points to mention:

• With components next to each other, as with the !S ", !u ", !b ", !j", !e " . . . , of
!Subject ", each component is tried in turn, stopping only if one fails.

• With quantifiers, control jumps between the quantifier (to see whether
the quantifier should continue to make additional attempts) and the com-
ponent quantified (to test whether it matches).

• Ther e is some overhead when control enters or exits a set of capturing
par entheses. The actual text matched by the parentheses must be remem-
ber ed so that $1 and the like are supported. Since a set of parentheses
may be “backtracked out of,” the state of the parentheses is part of the
states used for backtracking, so entering and exiting capturing parenthe-
ses requir es some modification of that state.

4. Finding a Match If a match is found, a Traditional NFA “locks in” the current
state and reports overall success. On the other hand, a POSIX NFA mer ely
remembers the possible match if it is the longest seen so far, and continues
with any saved states still available. Once no more states are left, the longest
match that was seen is the one reported.

5. Tr ansmission Bump-Along If no match is found, the transmission bumps the
engine along to the next character in the text, and the engine applies the
regex all over again (going back to step 3).

6. Overall Failure If no match is found after having applied the engine at every
character in the target string (and after the last character as well), overall fail-
ur e must be reported.

Common Optimizations 241

29 April 2003 20:38

242 Chapter 6: Crafting an Efficient Expression

The next few sections discuss the many ways this work can be reduced by smart
implementations, and taken advantage of by smart users.

Pre-Application Optimizations
A good regex engine implementation can reduce the amount of work that needs
to be done before the actual application of a regex, and sometimes can even
decide quickly beforehand that the regex can never match, thereby avoiding the
need to even apply the regex in the first place.

Compile caching

Recall the mini mail program from Chapter 2 (+ 57). The skeleton of the main
loop, which processes every line of the header, looks like:

while (˙˙˙) {
if ($line =˜ m/ˆ\s,$/) ˙˙˙

if ($line =˜ m/ˆSubject: (.,)/) ˙˙˙

if ($line =˜ m/ˆDate: (.,)/) ˙˙˙

if ($line =˜ m/ˆReply-To: (\S+)/)˙˙˙

if ($line =˜ m/ˆFrom: (\S+) \(([ˆ()],)\)/)˙˙˙

+
+
+

}

The first thing that must be done before a regular expression can be used is that it
must be inspected for errors, and compiled into an internal form. Once compiled,
that internal form can be used in checking many strings, but will it? It would cer-
tainly be a waste of time to recompile each regex each time through the loop.
Rather, it is much more time efficient (at the cost of some memory) to save, or
cache, the internal form after it’s first compiled, and then use that same internal
for m for each subsequent application during the loop.

The extent to which this can be done depends on the type of regular-expr ession
handling the application offers. As described starting on page 93, the three types
of handling are integrated, pr ocedural, and object-oriented.

Compile caching in the integrated approach
An integrated approach, like Perl’s and awk’s, allows compile caching to be done
with ease. Internally, each regex is associated with a particular part of the code,
and the compiled form can be associated with the code the first time it’s executed,
and merely refer enced subsequent times. This provides for the maximum opti-
mization of speed at the cost of the memory needed to hold all the cached
expr essions.

The ability to interpolate variables into the regex operand (that is, use the contents
of a variable as part of the regular expression) throws somewhat of a monkey
wr ench into the caching plan. When variables are interpolated, as with something
like m/ˆSubject: \Q$DesiredSubject\E\s+$/, the actual regular expression

29 April 2003 20:38

DFAs, Tcl, and Hand-Tuning Regular Expressions
For the most part, the optimizations described in this chapter simply don’t
apply to DFAs. The compile caching optimization, discussed on page 242,
does apply to all types of engines, but none of the techniques for hand-tun-
ing discussed throughout this chapter apply to DFAs. As Chapter 4 makes
clear (+ 157), expressions that are logically equivalent — !this;that " and
!th(is;at) ", for example — ar e equivalent to a DFA. It’s because they’re not
necessarily equivalent to an NFA that this chapter exists.

But what about Tcl, which has a hybrid DFA/NFA engine? Tcl’s regex engine
was custom built for Tcl by regular-expr ession legend Henry Spencer (+ 88),
who has done a fantastic job blending the best of both DFA and NFA worlds.
Henry noted himself in an April 2000 Usenet posting:

In general, the Tcl RE-matching engine is much less sensitive to the exact
for m of the RE than traditional matching engines. Things that it does
quickly will be fast no matter how you write them; things that it does
slowly will be slow no matter how you write them. The old folklore about
hand-optimizing your REs simply does not apply.

Henry’s Tcl regex engine is an important step forward. If this technology
wer e mor e widespr ead, much of this chapter would not be needed.

may change from iteration to iteration because it depends on the value in the vari-
able, which can change from iteration to iteration. If it changes every time, the
regex must be compiled every time, so nothing can be reused.

Well, the regular expression might change with each iteration, but that doesn’t
mean it needs to be recompiled each time. An intermediate optimization is to
check the results of the interpolation (the actual value to be used as the regular
expr ession), and recompile only if it’s differ ent fr om the previous time. If the value
actually changes each time, there’s no optimization, as the regex indeed must be
recompiled each time. But, if it changes only sporadically, the regular expression
need only be checked (but not compiled) most times, yielding a handsome
optimization.

Compile caching in the procedural approach
With an integrated approach, regex use is associated with a particular location in a
pr ogram, so the compiled version of the regex can be cached and used the next
time that location in the program is executed. But, with a procedural approach,
ther e is just a general “apply this regex” function that is called as needed. This
means that there’s no location in a program with which to associate the compiled
for m, so the next time the function is called, the regex must be compiled from
scratch again. That’s how it works in theory, but in practice, it’s much too

Common Optimizations 243

29 April 2003 20:38

244 Chapter 6: Crafting an Efficient Expression

inef ficient to abandon all attempts at caching. Rather, what’s often done is that a
mapping of recently used regex patterns is maintained, linking each pattern to its
resulting compiled form.

When the apply-this-regex function is called, it compares the pattern argument
with those in the cache of saved regular expressions, and uses the cached version
if it’s there. If it’s not, it goes ahead and compiles the regex, saving it to the cache
(and perhaps flushing an old one out, if the cache has a size limit). When the
cache has become full and a compiled form must be thrown out, it’s usually the
least recently used one.

GNU Emacs keeps a cache of 20 expressions, while Tcl keeps 30. A large cache
size is important because if more regular expressions are used within a loop than
the size of the cache, by the time the loop restarts, the first regex will have been
flushed from the cache, guaranteeing that every expression will have to be com-
piled from scratch every time.

Compile caching in the object-oriented approach
The object-oriented approach puts control of when a regex is compiled directly
into the programmer’s hands. Compilation of the regex is exposed to the user via
object constructors such as New Regex, re.compile, and Pattern.compile

(which are from .NET, Python, and java.util.regex). In the simple examples
fr om Chapter 3 where these are intr oduced (starting on page 95), the compilation
is done just before the regex is actually used, but there’s no reason that they can’t
be done earlier (such as sometime before a loop, or even at program initialization)
and then used freely as needed. This is done, in the benchmarking examples on
pages 234, 236, and 237.

The object-oriented approach also affords the programmer control over when a
compiled form is thr own away, via the object’s destructor. Being able to immedi-
ately throw away compiled forms that will no longer be needed saves memory.

Pre-check of required character/substr ing optimization

Searching a string for a particular character (or perhaps some literal substring) is a
much “lighter” operation than applying a full NFA regular expression, so some sys-
tems do extra analysis of the regex during compilation to determine if there are
any characters or substrings that are requir ed to exist in the target for a possible
match. Then, before actually applying the regex to a string, the string is quickly
checked for the requir ed character or string — if it’s not found, the entire applica-
tion of the regex can be bypassed.

For example, with !ˆSubject: (.+)", the string ‘Subject: ’ is requir ed. A pro-
gram can look for the entire string, perhaps using the Boyer-Moor e search algo-
rithm (which is a fast way to search for literal strings within text — the longer the

29 April 2003 20:38

literal string, the more efficient the search). A program not wishing to implement
the Boyer-Moor e algorithm can still gain a benefit by picking a requir ed character
and just checking every character in the target text. Picking a character less likely
to be found in the target (such as picking ‘:’ over ‘t’ from our ‘Subject: ’ exam-
ple) is likely to yield better results.

While it’s trivial for a regex engine to realize what part of !ˆSubject: (.+)" is a
fixed literal string requir ed for any match, it’s more work to recognize that ‘th’ is
requir ed for any match of !this;that;other ", and most don’t do it. It’s not exactly
black and white — an implementation not realizing that ‘th’ is requir ed may well
still be able to easily realize that ‘h’ and ‘t’ are requir ed, so at least do a one-char-
acter check.

Ther e is a great variety in how well differ ent applications can recognize requir ed
characters and strings. Most are thwarted by the use of alternation. With such sys-
tems, using !th(is;at) " can provide an improvement over !this;that ". Also, be
sur e to see the related section “Initial character/class/substring discrimination” on
the next page.

Length-cognizance optimization

!ˆSubject: (.+)" can match arbitrarily long text, but any match is certainly at least
nine characters long. Therefor e, the engine need not be started up and applied to
strings shorter than that length. Of course, the benefit is more pronounced with a
regex with a longer requir ed length, such as !:\d{79}: " (81 characters in any
match).

Also see the length-cognizance transmission optimization on page 247.

Optimizations with the Transmission
If the regex engine can’t decide ahead of time that a particular string can never
match, it may still be able to reduce the number of locations that the transmission
actually has to apply the regex.

Star t of string/line anchor optimization

This optimization recognizes that any regex that begins with !ˆ " can match only
when applied where !ˆ " can match, and so need be applied at those locations only.

The comments in the “Pre-check of requir ed character/substring” section on the
facing page about the ability of the regex engine to derive just when the optimiza-
tion is applicable to a regex is also valid here. Any implementation attempting this
optimization should be able to recognize that !ˆ(this;that) " can match starting

Common Optimizations 245

29 April 2003 20:38

246 Chapter 6: Crafting an Efficient Expression

only at locations where !ˆ " can match, but many won’t come to the same realiza-
tion with !ˆthis;ˆthat ". In such situations, writing !ˆ(this;that)" or (even better)
!ˆ(?:this;that) " can allow a match to be perfor med much faster.

Similar optimizations involve !\A ", and for repeated matches, !\G ".

Implicit-anchor optimization

An engine with this optimization realizes that if a regex begins with ! .+ " or ! .+ ",
and has no global alternation, an implicit !ˆ " can be prepended to the regex. This
allows the start of string/line anchor optimization of the previous section to be
used, which can provide a lot of savings.

Mor e advanced systems may realize that the same optimization can also be
applied when the leading ! .+ " or ! .+ " is within parentheses, but care must be taken
when the parentheses are capturing. For example, the regex !(.+)X\1 " finds loca-
tions where a string is repeated on either side of ‘X’, and an implicit leading !ˆ "

causes it to improperly not match ‘1234X2345’.†

End of string/line anchor optimization

This optimization recognizes that some regexes ending with !$ " or other end
anchors (+ 127) have matches that start within a certain number of bytes from the
end of the string. For example, with !regex(es)?$ ", any match must start no more
than eight‡ characters from the end of the string, so the transmission can jump
dir ectly to that spot, potentially bypassing many positions if the target string
is long.

Initial character/c lass/substring discrimination optimization

A mor e generalized version of the pr e-check of requir ed character/string optimiza-
tion, this optimization uses the same information (that any match by the regex
must begin with a specific character or literal substring) to let the transmission use
a fast substring check so that it need apply the regex only at appropriate spots in
the string. For example !this;that;other " can match only at locations beginning
with ![ot] ", so having the transmission pre-check each character in the string and
applying the regex only at matching positions can afford a huge savings. The
longer the substring that can be pre-checked, the fewer “false starts” are likely.

† It’s interesting to note that Perl had this over-optimization bug unnoticed for over 10 years until Perl
developer Jeff Pinyan discovered (and fixed) it in early 2002. Apparently, regular expressions like
!(.+)X\1 " ar en’t used often, or the bug would have been discovered sooner. Most regex engines don’t
have this bug because they don’t have this optimization, but some still do have the bug. These
include Ruby, PCRE, and tools that use PCRE, such as PHP.

‡ I say eight characters rather than seven because in many flavors, !$ " can match before a string-ending
newline (+ 127).

29 April 2003 20:38

Embedded literal string check optimization

This is almost exactly like the initial string discrimination optimization, but is
mor e advanced in that it works for literal strings embedded a known distance into
any match. !\b(perl;java)\.regex\.info\b ", for example, has ‘.regex.info’
four characters into any match, so a smart transmission can use a fast Boyer-Moor e
literal-string check to find ‘.regex.info’, and then actually apply the regex start-
ing four characters before.

In general, this works only when the literal string is embedded a fixed distance
into any match. It doesn’t apply to !\b(vb;java)\.regex\.info\b ", which does
have a literal string, but one that’s embedded either two or four characters into
any match. It also doesn’t apply to !\b(\w+)\.regex\.info\b ", whose literal
string is embedded any number of characters into any match.

Length-cognizance transmission optimization

Dir ectly related to the Length-cognizance optimization on page 245, this optimiza-
tion allows the transmission to abandon the attempt if it’s gotten too close to the
end of the string for a match to be possible.

Optimizations of the Regex Itself
Literal string concatenation optimization

Perhaps the most basic optimization is that !abc " can be treated by the engine as
“one part,” rather than the three parts “ !a " then !b " then !c ".” If this is done, the one
part can be applied by one iteration of the engine mechanics, avoiding the over-
head of three separate iterations.

Simple quantifier optimization

Uses of star, plus, and friends that apply to simple items, such as literal characters
and character classes, are often optimized such that much of the step-by-step over-
head of a normal NFA engine is removed. The main control loop inside a regex
engine must be general enough to deal with all the constructs the engine supports.
In programming, “general” often means “slow,” so this important optimization
makes simple quantifiers like ! .+ " into one “part,” replacing the general engine
mechanics of quantifier processing with fast, specialized processing. Thus, the
general engine is short-circuited for these tests.

For example, ! .+ " and !(?:.)+ " ar e logically identical, but for systems with this opti-
mization, the simple ! .+ " is substantially faster than !(?:.)+ ". A few examples: with
Sun’s Java regex package, it’s about 10% faster, but with Ruby and the .NET lan-
guages, it’s about two and a half times faster. With Python, it’s about 50 times
faster, and with PCRE/PHP, it’s about 150 times faster. Because Perl has the

Common Optimizations 247

29 April 2003 20:38

248 Chapter 6: Crafting an Efficient Expression

optimization discussed in the next section, both ! .+ " and !(?:.)+ " ar e the same
speed. (Be sure to see the sidebar below for a discussion on how to interpret
these numbers.)

Needless parentheses elimination

If an implementation can realize that !(?:.)+ " is exactly the same as ! .+ ", it opens
up the latter to the previous optimization.

Under standing Benchmarks in This Chapter
For the most part, benchmarks in this chapter are reported as relative ratios
for a given language. For example, on page 247, I note that a certain opti-
mized construct is 10% faster than the unoptimized construct, at least with
Sun’s Java regex package. In the .NET Framework, the optimized and unopti-
mized constructs differ by a factor of two and a half, but in PCRE, it’s a factor
of about whopping 150×. In Perl, it’s a factor of one (i.e., they are the same
speed—no differ ence).

Fr om this, what can you infer about the speed of one language compared to
another? Absolutely nothing. The 150× speedup for the optimization in PCRE
may mean that the optimization has been implemented particularly well, rel-
ative to the other languages, or it may mean that the unoptimized version is
particularly slow. For the most part, I report very little timing information
about how languages compare against each other, since that’s of interest
mostly for bragging rights among language developers.

But, for what it’s worth, it may be interesting to see the details behind such
dif ferent results as Java’s 10% speedup and PCRE’s 150× speedup. It turns out
that PCRE’s unoptimized !(?:.)+ " is about 11 times slower than Java’s, but its
optimized ! .+ " is about 13 times faster. Java’s and Ruby’s optimized versions
ar e about the same speed, but Ruby’s unoptimized version is about 2.5 times
slower than Java’s unoptimized version. Ruby’s unoptimized version is only
about 10% slower than Python’s unoptimized version, but Python’s optimized
version is about 20 times faster than Ruby’s optimized version.

All of these are slower than Perl’s. Both Perl’s optimized and unoptimized
versions are 10% faster than Python’s fastest. Note that each language has its
own strong points, and these numbers are for only one specific test case.

For an example of a head-to-head comparison, see “War ning: Benchmark
results can cause drowsiness!” in Chapter 8 (+ 376).

29 April 2003 20:38

Needless character class elimination

A character class with a single character in it is a bit silly because it invokes the
pr ocessing overhead of a character class, but without any benefits of one. So, a
smarter implementation internally converts something like ![.] " to !\.".

Character following lazy quantifier optimization

With a lazy quantifier, as in !"(.+?)" ", the engine normally must jump between
checking what the quantifier controls (the dot) with checking what comes after
(!""). For this and other reasons, lazy quantifiers are generally much slower than
gr eedy ones, especially for greedy ones that are optimized with the simple quanti-
fier optimization discussed two sections ago. Another factor is that if the lazy
quantifier is inside capturing parentheses, control must repeatedly jump in and out
of the capturing, which causes additional overhead.

So, this optimization involves the realization that if a literal character follows the
lazy quantifier, the lazy quantifier can act like a normal greedy quantifier so long
as the engine is not at that literal character. Thus, implementations with this opti-
mization switch to specialized lazy quantifier processing for use in these situations,
which quickly checks the target text for the literal character, bypassing the normal
“skip this attempt” if the target text is not at that special literal character.

Variations on this optimization might include the ability to pre-check for a class of
characters, rather than just a specific literal character (for instance, a pre-check for
![’"] " with ![’"](.+?)["’] " , which is similar to the initial character discrimina-
tion optimization discussed on page 246).

“Excessive” backtracking detection

The problem revealed with the “Reality Check” on page 226 is that certain combi-
nations of quantifiers, such as !(.+)+ ", can create an exponential amount of back-
tracking. One simple way to avoid this is to keep a count of the backtracking, and
abort the match when there’s “too much.” This is certainly useful in the reality-
check situation, but it puts an artificial limit on the amount of text that some regu-
lar expressions can be used with.

For example, if the limit is 10,000 backtracks, ! .+? " can never match text longer
than 10,000 characters, since each character matched involves a backtrack. Work-
ing with these amounts of text is not all that uncommon, particularly when work-
ing with, say, web pages, so the limitation is unfortunate.

For differ ent reasons, some implementations have a limit on the size of the back-
track stack (on how many saved states there can be at any one time). For exam-
ple, Python allows at most 10,000. Like a backtrack limit, it limits the length of text
some regular-expr essions can work with.

Common Optimizations 249

29 April 2003 20:38

250 Chapter 6: Crafting an Efficient Expression

This issue made constructing some of the benchmarks used while researching this
book rather difficult. To get the best results, the timed portion of a benchmark
should do as much of the target work as possible, so I created huge strings and
compar ed the time it took to execute, say, !"(.+)"", !"(.)+"", !"(.)+?"", and
!"([ˆ"])+?" ". To keep meaningful results, I had to limit the length of the strings so
as not to trip the backtrack-count or stack-size limitations. You can see an example
on page 237.

Exponential (a.k.a, super-linear) short-cir cuiting

A better solution to avoid matching forever on an exponential match is to detect
when the match attempt has gone super-linear. You can then make the extra effort
to keep track of the position at which each quantifier’s subexpression has been
attempted, and short-circuit repeat attempts.

It’s actually fairly easy to detect when a match has gone super-linear. A quantifier
should rarely “iterate” (loop) more times than there are characters in the target
string. If it does, it’s a good sign that it may be an exponential match. Having been
given this clue that matching may go on forever, it’s a more complex issue to
detect and eliminate redundant matches, but since the alternative is matching for a
very, very long time, it’s probably a good investment.

One negative side effect of detecting a super-linear match and retur ning a quick
failur e is that a truly inefficient regex now has its inefficiency mostly hidden. Even
with exponential short-circuiting, these matches are much slower than they need
to be, but no longer slow enough to be easily detected by a human (instead of fin-
ishing long after the sun has gone dormant, it may take 1/100 of a second — quick
to us, but still an eternity in computer time).

Still, the overall benefit is probably worth it. There are many people who don’t
car e about regex efficiency — they’r e scar ed of regular expressions and just want
the thing to work, and don’t care how. (You may have been this way before, but I
hope reading this book emboldens you, like the title says, to master the use of
regular expressions.)

State-suppression with possessive quantifier s

After something with a normal quantifier has matched, a number of “try the non-
match option” states have been created (one state per iteration of the quantifier).
Possessive quantifiers (+ 140) don’t leave those states around. This can be accom-
plished by removing the extra states after the quantifier has run its course, or, it
can be done more efficiently by removing the previous iteration’s state while
adding the current iteration’s. (During the matching, one state is always requir ed
so that the regex can continue once the quantified item can no longer match.)

29 April 2003 20:38

The reason the on-the-fly removal is more efficient is because it takes less mem-
ory. Applying ! .+ " leaves one state per character matched, which could consume a
vast amount of memory if the string is long.

Automatic “Possessification”
Recall the example from Chapter 4 (+ 171) where !ˆ\w+: " is applied to
‘Subject’. Once !\w+ " matches to the end of the string, the subsequent colon
can’t match, and the engine must waste the effort of trying !:" at each position
wher e backtracking forces !\w+ " to give up a character. The example then
concluded that we could have the engine avoid that extra work by using
atomic grouping, !ˆ(?>\w+):", or possessive quantifiers, !ˆ\w++: ".

A smart implementation should be able to do this for you. When the regex is
first compiled, the engine can see that what follows the quantifier can’t be
matched by what is quantified, so the quantifier can be automatically turned
into a possessive one.

Although I know of no system that currently has this optimization, I include
it here to encourage developers to consider it, for I believe it can have a sub-
stantial positive impact.

Small quantifier equivalence

Some people like to write !\d\d\d\d " dir ectly, while some like to use a small quan-
tifier and write !\d{4} ". Is one more efficient than the other? For an NFA, the
answer is almost certainly “yes,” but which is faster depends on the tool. If the
tool’s quantifier has been optimized, the !\d{4} " version is likely faster unless the
version without the quantifier can somehow be optimized more. Sound a bit con-
fusing? It is.

My tests show that with Perl, Python, PCRE, and .NET, !\d{4} " is faster by as much
as 20%. On the other hand, with Ruby and Sun’s Java regex package, !\d\d\d\d " is
faster — sometimes several times faster. So, this seems to make it clear that the
small quantifier is better for some, but worse for others. But, it can be more com-
plex than that.

Compar e !==== " with !={4} ". This is a quite differ ent example because this time, the
subject of the repetition is a literal character, and perhaps using !==== " dir ectly
makes it easier for the regex engine to recognize the literal substring. If it can, the
highly effective initial character/substring discrimination optimization (+ 246) can
kick in, if supported. This is exactly the case for Python and Sun’s Java regex
package, for whom the !==== " version can be up to 100× faster than !={4} ".

Common Optimizations 251

29 April 2003 20:38

252 Chapter 6: Crafting an Efficient Expression

Mor e advanced still, Perl, Ruby, and .NET recognize this optimization with either
!==== " or !={4} ", and as such, both are equally fast (and in either case, can be hun-
dr eds or thousands of times faster than the !\d\d\d\d " and !\d{4}" counterparts).
On the other hand, PCRE doesn’t recognize it in either case.

Need cognizance

One simple optimization is if the engine realizes that some aspect of the match
result isn’t needed (say, the capturing aspect of capturing parentheses), it can elim-
inate the work to support them. The ability to detect such a thing is very language
dependent, but this optimization can be gained as easily as allowing an extra
match-time option to disable various high-cost features.

One example of a system that has this optimization is Tcl. Its capturing parenthe-
ses don’t actually capture unless you explicitly ask. Conversely, the .NET Frame-
work regular expressions have an option that allows the programmer to indicate
that capturing parentheses shouldn’t capture.

Techniques for Faster Expressions
The previous pages list the kinds of optimizations that I’ve seen implemented in
Traditional NFA engines. No one program has them all, and whichever ones your
favorite program happens to have now, they’re certain to change sometime in the
futur e. But, just understanding the kinds of optimizations that can be done gives
you an edge in writing more efficient expressions. Combined with the understand-
ing of how a Traditional NFA engine works, this knowledge can be applied in
thr ee power ful ways:

• Wr ite to the optimizations Compose expressions such that known optimiza-
tions (or ones that might be added in the future) can kick in. For example,
using !xx+ " instead of !x+ " can allow a variety of optimizations to more readily
kick in, such as the check of a requir ed character or string (+ 244), or initial-
character discrimination (+ 246).

• Mimic the optimizations Ther e ar e situations where you know your program
doesn’t have a particular optimization, but by mimicking the optimization
yourself, you can potentially see a huge savings. As an example that we’ll
expand on soon, consider adding !(?=t) " to the start of !this;that ", to some-
what mimic the initial-character discrimination (+ 246) in systems that don’t
alr eady deter mine fr om the regex that any match must begin with ‘t’.

• Lead the engine to a match Use your knowledge of how a Traditional NFA

engine works to lead the engine to a match more quickly. Consider the
!this;that " example. Each alternative begins with !th "; if the first’s alternative
can’t match its !th ", the second alternative’s !th " certainly can’t match, so the

29 April 2003 20:38

attempt to do so is wasted. To avert that, you can use !th(?:is;at)" instead.
That way, the !th " is tested only once, and the relatively expensive alternation
is avoided until it’s actually needed. And as a bonus, the leading raw-text !th "

of !th(?:is;at) " is exposed, potentially allowing a number of other optimiza-
tions to kick in.

It’s important to realize that efficiency and optimizations can sometimes be touchy.
Ther e ar e a number of issues to keep in mind as you read through the rest of this
section:

• Making a change that would seem to be certainly helpful can, in some situa-
tions, slow things down because you’ve just untweaked some other optimiza-
tion that you didn’t know was being applied.

• If you add something to mimic an optimization that you know doesn’t exist, it
may well turn out that the work requir ed to process what you added actually
takes more time than it saves.

• If you add something to mimic an optimization that you know doesn’t cur-
rently exist, it may defeat or duplicate the real optimization if it’s later added
when the tool is upgraded.

• Along the same lines, contorting an expression to try to pique one kind of
optimization today may prohibit some future, more advantageous optimization
fr om kicking in when the tool is upgraded.

• Contorting an expression for the sake of efficiency may make the expression
mor e dif ficult to understand and maintain.

• The magnitude of the benefit (or harm) a particular change can have is almost
certainly strongly dependent on the data it’s applied to. A change that is bene-
ficial with one set of data may actually be harmful with another type of data.

Let me give a somewhat crazy example: you find !(000;999)$ " in a Perl script, and
decide to turn those capturing parentheses into non-capturing parentheses. This
should make things a bit faster, you think, since the overhead of capturing can
now be eliminated. But surprise, this small and seemingly beneficial change can
slow this regex down by several orders of magnitude (thousands and thousands of
times slower). What!? It turns out that a number of factors come together just right
in this example to cause the end of string/line anchor optimization (+ 246) to be
tur ned of f when non-capturing parentheses are used. I don’t want to dissuade you
fr om using non-capturing parentheses with Perl — their use is beneficial in the vast
majority of cases—but in this particular case, it’s a disaster.

So, testing and benchmarking with the kind of data you expect to use in practice
can help tell you how beneficial or harmful any change will be, but you’ve still got
to weigh all the issues for yourself. That being said, I’ll touch on some techniques
that can be used toward squeezing out the last bit of efficiency out of an engine.

Techniques for Faster Expressions 253

29 April 2003 20:38

254 Chapter 6: Crafting an Efficient Expression

Common Sense Techniques
Some of the most beneficial things you can do requir e only common sense.

Avoid recompiling

Compile or define the regular expression as few times as possible. With object-ori-
ented handling (+ 95), you have the explicit control to do this. If, for example,
you want to apply a regex in a loop, create the regex object outside of the loop,
then use it repeatedly inside the loop.

With a procedural approach, as with GNU Emacs and Tcl, try to keep the number
of regular expressions used within a loop below the cached threshold of the tool
(+ 243).

With an integrated approach like Perl, try not to use variable interpolation within a
regex inside a loop, because at a minimum, it causes the regex value to be reeval-
uated at each iteration, even if you know the value never changes. (Perl does,
however, provide efficient ways around the problem + 348.)

Use non-capturing parentheses

If you don’t use the capturing aspect of capturing parentheses, use non-capturing
!(?:˙˙˙)" par entheses (+ 45). Besides the direct savings of not having to capture,
ther e can be residual savings because it can make the state needed for backtrack-
ing less complex, and hence faster. It can also open up additional optimizations,
such as needless-parentheses elimination (+ 248).

Don’t add superfluous parentheses

Use parentheses as you need them, but adding them otherwise can prohibit opti-
mizations from kicking in. Unless you need to know the last character matched by
! .+ ", don’t use !(.)+ ". This may seem obvious, but after all, this is the “common
sense techniques” section.

Don’t use superfluous character classes

This may seem to be overly obvious as well, but I’ve often seen expressions like
!ˆ.+[:] " fr om novice programmers. I’m not sure why one would ever use a class
with a single character in it — it incurs the processing overhead of a class without
gaining any multi-character matching benefits of a class. I suppose that when the
character is a metacharacter, such as ![.] " and ![+]", it’s probably because the author
didn’t know about escaping, as with !\." and !\+ ". I see this most often with white-
space in a free-spacing mode (+ 110).

29 April 2003 20:38

Somewhat related, users of Perl that read the first edition of this book may some-
times write something like !ˆ[Ff][Rr][Oo][Mm]: " instead of a case-insensitive use
of !ˆfrom: ". Old versions of Perl were very inefficient with their case-insensitive
matching, so I recommended the use of classes like this in some cases. That rec-
ommendation has been lifted, as the case-insensitive inefficiency has been fixed
for some years now.

Use leading anchors

Except in the most rare cases, any regex that begins with ! .+ " should probably
have !ˆ " or !\A " (+ 127) added to the front. If such a regex can’t match when
applied at the beginning of the string, it won’t be able to match any better when
the bump-along applies it starting at the second character, third character, and so
on. Adding the anchor (either explicitly, or auto-added via an optimization + 246)
allows the common start-of-line anchor optimization to kick in, saving a lot of
wasted effort.

Expose Literal Text
Many of the native optimizations we’ve seen in this chapter hinge on the regex
engine’s ability to recognize that there is some span of literal text that must be part
of any successful match. Some engines are better at figuring this out than others,
so here are some hand-optimization techniques that help “expose” literal text,
incr easing the chances that an engine can recognize more of it, allowing the vari-
ous literal-text optimizations to kick in.

“Factor out” required components from quantifier s

Using !xx+ " instead of !x+ " exposes ‘x’ as being requir ed. The same logic applies to
the rewriting of !-{5,7} " as !------{0,2} ".

“Factor out” required components from the front of alternation

Using !th(?:is;at) " rather than !(?:this;that) " exposes that !th " is requir ed. You
can also “factor out” on the right side, when the common text follows the differing
text: !(?:optim;standard)ization ". As the next section describes, these can be
particularly important when what is being factored out includes an anchor.

Expose Anchors
Some of the most fruitful internal regex optimizations are those that take advan-
tage of anchors (like !ˆ ", !$ ", and !\G ") that tie the expression to one end of the target
string or another. Some engines are not as good as others at understanding when
such an optimization can take place, but there are techniques you can use to help.

Techniques for Faster Expressions 255

29 April 2003 20:38

256 Chapter 6: Crafting an Efficient Expression

Expose ˆ and \G at the front of expressions

!ˆ(?:abc;123) " and !ˆabc;ˆ123 " ar e logically the same expression, but many more
regex engines can apply the Start of string/line anchor optimization (+ 245) with
the first than the second. So, choosing to write it the first way can make it much
mor e ef ficient. PCRE (and tools that use it) is efficient with either, but most other
NFA tools are much more efficient with the exposed version.

Another differ ence can be seen by comparing !(ˆabc)" and !ˆ(abc) ". The former
doesn’t have many redeeming qualities, as it both “hides” the anchor, and causes
the capturing parentheses to be entered before the anchor is even checked, which
can be inefficient with some systems. Some systems (PCRE, Perl, the .NET lan-
guages) are efficient with either, but others (Ruby and Sun’s Java regex library)
recognize the optimization only with the exposed version.

Python doesn’t seem to have the anchor optimization, so these techniques don’t
curr ently matter for it. Of course, most optimizations in this chapter don’t apply to
Tcl (+ 243).

Expose $ at the end of expressions

This is conceptually very similar to the previous section, where !abc$;123$ " and
!(?:abc;123)$ " ar e logically the same expression, but can be treated differ ently by
the optimizers. Currently, there is a dif ference only for Perl, as only Perl currently
has the End of string/line anchor optimization (+ 246). The optimization kicks in
with !(˙˙˙;˙˙˙)$ " but not with !(˙˙˙$;˙˙˙$)".

Lazy Ver sus Greedy: Be Specific
Usually, the choice between lazy and greedy quantifiers is dictated by the specific
needs of the regex. For example, !ˆ.,:" dif fers substantially from !ˆ.,?:" in that the
for mer one matches until the final colon, while the latter one matches until the
first. But, suppose that you knew that your target data had exactly one colon on it.
If that’s the case, the semantics of both are the same (“match until the colon”), so
it’s probably smart to pick the one that will run fastest.

It’s not always obvious which is best, but as a rule of thumb when the target
strings are long, if you expect the colon to generally be near the start of the string,
using the lazy quantifier allows the engine to find the colon sooner. Use the
gr eedy quantifier if you expect the colon to be toward the end of the string. If the
data is random, and you have no idea which will be more likely, use a greedy
quantifier, as they are generally optimized a bit better than non-greedy quantifier,
especially when what follows in the regex disallows the character following lazy
quantifier optimization (+ 249).

29 April 2003 20:38

When the strings to be tested are short, it becomes even less clear. When it comes
down to it, either way is pretty fast, but if you need every last bit of speed, bench-
mark against repr esentative data.

A somewhat related issue is in situations where either a lazy quantifier or a
negated class can be used (such as !ˆ.+?:" vs. !ˆ[ˆ:]+:"), which should be used?
Again, this is dependent on the data and the language, but with most engines,
using a negated class is much more efficient than a lazy quantifier. One exception
is Perl, because it has that character following lazy quantifier optimization.

Split Into Multiple Regular Expressions
Ther e ar e cases where it’s much faster to apply many small regular expressions
instead of one large one. For a somewhat contrived example, if you wanted to
check a large string to see if it had any of the month names, it would probably be
much faster to use separate checks of !January ", !February ", !March ", etc., than to
use one !January;February;March;˙˙˙ ". With the latter, ther e’s no literal text
known to be requir ed for any match, so an embedded literal string check optimiza-
tion (+ 247) is not possible. With the all-in-one regex, the mechanics of testing
each subexpression at each point in the text can be quite slow.

Her e’s an interesting situation I ran into at about the same time that I was writing
this section. When working with a Perl data-handling module, I realized that I had
a bug with my client program that caused it to sent bogus data that looked like
‘HASH(0x80f60ac)’ instead of the actual data. So, I thought I’d augment the mod-
ule to look for that kind of bogus data and report an error. The straightforward
regex for what I wanted is !\b(?:SCALAR<ARRAY<˙˙˙<HASH)\(0x [0-9a-fA-F]+ \) ".

This was a situation where efficiency was extremely important. Would this be fast?
Perl has a debugging mode that can tell you about some of the optimizations it
uses with any particular regex (+ 361), so I checked. I hoped to find that the pr e-
check of requir ed string optimization (+ 244) would kick in, since an advanced
enough engine should be able to figure out that ‘(0x’ is requir ed in any match.
Knowing the data that I’d apply this to would almost never have ‘(0x’, I knew that
such a pre-check would eliminate virtually every line. Unfortunately, Perl didn’t
pick this out, so I was left with a regex that would entail a lot of alternation at
every character of every target string. That’s slower than I wanted.

Since I was in the middle of researching and writing about optimizations, I
thought hard about how I could rewrite the regex to garner some of the better
optimizations. One thought I had was to rewrite it along the form of the somewhat
complex !\(0x(?<=(?:SCALAR;˙˙˙;HASH)\(0x)[0-9a-fA-F]+ \) ". The approach
her e is that once !\(0x " has matched, the positive lookbehind (underlined for clar-
ity) makes sure that what came before is allowed, and then checks that what

Techniques for Faster Expressions 257

29 April 2003 20:38

258 Chapter 6: Crafting an Efficient Expression

comes after is expected as well. The whole reason to go through these regex gym-
nastics is to get the regex to lead with non-optional literal text !\(0x ", which allows
a lot of good optimizations to kick in. In particular, I’d expect that pr e-check of
requir ed string optimization to kick in, as well as the initial character/substring
discrimination optimization (+ 246). I’m sure that these would have made it very
fast, but Perl doesn’t allow variable-length lookbehind (+ 132), so I was back to
squar e one.

However, I realized that since Perl wasn’t doing the pre-check for !\(0x " for me, I
could just do it myself:

if ($data =˜ m/\(0x/
and
$data =˜ m/(?:SCALAR;ARRAY;˙˙˙;HASH)\(0x[0-9a-fA-F]+\)/)

{
warn about bogus data˙˙˙

}

The check of !\(0x " eliminates virtually every line, so this leaves the check of the
relatively slow full regex for only when the likelihood of a match is high. This cre-
ated a wonderful balance of efficiency (very high) and readability (very high).†

Mimic Initial-Character Discrimination
If the initial-character discrimination optimization (+ 246) is not done by your
implementation, you can mimic it yourself by adding appropriate lookahead
(+ 132) to the start of the regex. The lookahead can “pre-check” that you’re at an
appr opriate starting character before you let the rest of the regex match. For exam-
ple, for !Jan;Feb;˙˙˙;Dec ", use !(?=[JFMASOND])(?:Jan;Feb;˙˙˙;Dec)". The leading
![JFMASOND] " repr esents letters that can begin the month names in English. This
must be done with care, though, because the added overhead of the lookahead
may overshadow the savings. In this particular example, where the lookahead is
pr e-checking for many alternatives that are likely to fail, it is beneficial for most
systems I’ve tested (Java, Perl, Python, Ruby, .NET languages, and PCRE), none of
which apparently are able to derive ![JFMASOND] " fr om !Jan;Feb;˙˙˙;Dec " them-
selves. (PCRE can do it with the use of pcreRstudy, and Tcl, of course, can do it
per fectly + 243.)

A behind-the-scenes check of ![JFMASOND] " by an engine’s native optimization is
certainly faster than the same check explicitly added by us to the regex proper. Is
ther e a way we can modify the regex so that the engine will check natively? Well,
with many systems, you can by using the horribly contorted:

![JFMASOND](?:(?<=J)an<(?<=F)eb<˙˙˙<(?<=D)ec)"

† You can see this in action for yourself. The module in question, DBIx::DWIW (available on CPAN),
allows very easy access to a MySQL database. Jeremy Zawodny and I developed it at Yahoo!.

29 April 2003 20:38

I don’t expect you to be able to understand that regex at first sight, but taking the
time to understand what it does, and how, is a good exercise. The simple class
leading the expression can be picked up by most systems’ initial-character dis-
crimination optimization, thereby allowing the transmission itself to effectively
pr e-check ![JFMASOND] ". If the target string has few matching characters, the result
can be substantially faster than the !Jan;˙˙˙;Dec " original, or our prepended-look-
ahead. But, if the target string has many first-character matches, the extra overhead
of all the added lookbehind can actually make things slower. On top of this worry,
it’s certainly a much less readable regular expression. But, the exercise is interest-
ing and instructive nevertheless.

Don’t do this with Tcl

The previous example shows how hand tweaking has the potential to really make
things worse. The sidebar on page 243 notes that regular expressions in Tcl are
mostly immune to the form of the expression, so for the most part attempts to
hand optimize are meaningless. Well, here’s an example where it does matter.
Adding the explicit !(?=[JFMASOND]) " pr e-check causes Tcl to slow down by a fac-
tor of about 100× in my tests.

Use Atomic Grouping and Possessive Quantifier s
Ther e ar e many cases when atomic grouping (+ 137) and possessive quantifiers
(+ 140) can greatly increase the match speed, even though they don’t change the
kind of matches that are possible. For example, if !ˆ[ˆ:]+:" can’t match the first
time the colon is attempted, it certainly can’t match after backtracking back into
the ![ˆ:]+ ", since any character “given up” by that backtracking, by definition, can’t
match a colon. The use of atomic grouping !ˆ(?>[ˆ:]+):" or a possessive quanti-
fier !ˆ[ˆ:]++:" causes the states from the plus to be thrown away, or not created in
the first place. Since this leaves nothing for the engine to backtrack to, it ensures
that it doesn’t backtrack unfruitfully. (The sidebar on page 251 suggests that this
can be done automatically by a smart enough engine.)

However, I must stress that misusing either of these constructs can inadvertently
change what kind of matches are allowed, so great care must be taken. For exam-
ple, using them with !ˆ.+:", as with !ˆ(?>.+):", guarantees failure. The entire line is
matched by ! .+ ", and this includes any colon that the later !:" needs. The atomic
gr ouping removes the ability for the backtracking requir ed to let !:" match, so fail-
ur e is guaranteed.

Techniques for Faster Expressions 259

29 April 2003 20:38

260 Chapter 6: Crafting an Efficient Expression

Lead the Engine to a Match
One concept that goes a long way toward more efficient NFA regular expressions
is pushing “control” issues as far back in the matching process as possible. One
example we’ve seen already is the use of !th(?:is;at)" instead of !this;that ".
With the latter, the alternation is a top-level control issue, but with the former, the
relatively expensive alternation is not considered until !th " has been matched.

The next section, “Unrolling the Loop,” is an advanced form of this, but there are a
few simple techniques I can mention here.

Put the most likely alter native fir st

Thr oughout the book, we’ve seen a number of situations where the order in
which alternatives are presented matters greatly (+ 28, 176, 189, 216). In such situ-
ations, the correctness of the match take precedence over optimization, but other-
wise, if the order doesn’t matter to the correctness, you can gain some efficiency
by placing the most-likely alternatives first.

For example, when building a regex to match a hostname (+ 205) and listing the
final domain parts, some might find it appealing to list them in alphabetical order,
as with !(?:aero;biz;com;coop;˙˙˙)". However, some of those early in the list are
new and not currently popular, so why waste the time to check for them first
when you know they will likely fail most of the time? An arrangement with the
mor e popular first, such as !(?:com;edu;org;net;˙˙˙)", is likely to lead to a match
mor e quickly, more often.

Of course, this matters only for a Traditional NFA engine, and then, only for when
ther e is a match. With a POSIX NFA, or with a failure, all alternatives must be
checked and so the ordering doesn’t matter.

Distr ibute into the end of alternation

Continuing with a convenient example, compare !(?:com<edu<˙˙˙<[a-z][a-z])\b "

with !com\b;edu\b;˙˙˙\b;[a-z][a-z]\b ". In the latter, the !\b " after the alternation
has been distributed onto the end of each alternative. The possible benefit is that
it may allow an alternative that matches, but whose match would have been
undone by the !\b " after the alternation, to fail a bit quicker, inside the alternation.
This allows the failure to be recognized before the overhead of exiting the alterna-
tion is needed.

This is perhaps not the best example to show the value of this technique, since it
shows promise only for the specific situation when an alternative is likely to
match, but what comes right after is likely to fail. We’ll see a better example of this
concept later in this chapter—look for the discussion of $OTHER+ on page 280.

29 April 2003 20:38

This optimization can be dangerous. One very important concern in applying
this hand optimization is that you take care not to defeat more profitable native
optimizations. For example, if the “distributed” subexpression is literal text, as with
the distribution of the colon from !(?:this<that):)" to !this:;that:", you’r e
dir ectly conflicting with some of the ideas in the “Expose Literal Text” section
(+ 255). All things being equal, I think that those optimizations would be much
mor e fruitful, so be careful not to defeat them in favor of this one.

A similar warning applies to distributing a regex-ending !$ " on systems that benefit
fr om an exposed end-anchor (+ 256). On such systems, !(?:com<edu<˙˙˙)$ " is
much faster than the distributed !com$;edu$;˙˙˙$ ". (Among the many systems I
tested, only Perl currently supports this.)

Unrolling the Loop
Regardless of what native optimizations a system may support, perhaps the most
important gains are to be had by understanding the basics of how the engine
works, and writing expressions that help lead the engine to a match. So, now that
we’ve reviewed the basics in excruciating detail, let’s step up to the big leagues
with a technique I call “unrolling the loop.” It’s effective for speeding up certain
common expressions. Using it, for example, to transform the neverending match
fr om near the start of this chapter (+ 226) results in an expression that actually fin-
ishes a non-match in our lifetime, and as a bonus is faster with a match as well.

The “loop” in the name is the implicit loop imparted by the star in an expression
that fits a !(this;that;˙˙˙)+ " patter n. Indeed, our earlier !"(\\.;[ˆ"\\]+),"" nev-
er ending match fits this pattern. Considering that it takes approximately forever to
report a non-match, it’s a good example to try to speed up!

Ther e ar e two competing roads one can take to arrive at this technique:

1. We can examine which parts of !(\\.<[ˆ"\\]+), " actually succeed during a
variety of sample matches, leaving a trail of used subexpressions in its wake.
We can then reconstruct an efficient expression based upon the patterns we
see emerge. The (perhaps far-fetched) mental image I have is that of a big
ball, repr esenting a !(˙˙˙)+ " regex, being rolled over some text. The parts inside
(˙˙˙) that are actually used then stick to the text they match, leaving a trail of
subexpr essions behind like a dirty ball rolling across the carpet.

2. Another approach takes a higher-level look at the construct we want to
match. We’ll make an informed assumption about the likely target strings,
allowing us to take advantage of what we believe will be the common situa-
tion. Using this point of view, we can construct an efficient expression.

Either way, the resulting expressions are identical. I’ll begin from the “unrolling”
point of view, and then converge on the same result from the higher-level view.

Unrolling the Loop 261

29 April 2003 20:38

262 Chapter 6: Crafting an Efficient Expression

To keep the examples as uncluttered and as widely usable as possible, I’ll use !(˙˙˙)"

for all parentheses. If !(?:˙˙˙)" non-capturing parentheses are supported, their use
imparts a further efficiency benefit. Later, we’ll also look at using atomic grouping
(+ 137) and possessive quantifiers (+ 140).

Method 1: Building a Regex From Past Experiences
In analyzing !"(\\.;[ˆ"\\]+)+"", it’s instructive to look at some matching strings
to see exactly which subexpressions are used during the overall match. For exam-
ple, with ‘"hi"’, the expression effectively used is just !"[ˆ"\\]+ " ". This illustrates
that the overall match used the initial !"", one application of the alternative
![ˆ"\\]+ ", and the closing !"". With

"he said \"hi there\" and left"

it is !"[ˆ"\\]+ \\.\\.[ˆ"\\]+ \\.\\.[ˆ"\\]+"". In this example, as well as in Table
6-2, I’ve marked the expressions to make the patterns apparent. It would be nice if
we could construct a specific regex for each particular input string. That’s not pos-
sible, but we can still identify common patterns to construct a more efficient, yet
still general, regular expression.

Table 6-2: Unr olling-the-Loop Example Cases
Target String Effective Expression

"hi there" "[ˆ"\\]+"

"just one \" here" "[ˆ"\\]+\\.\\.[ˆ"\\]+"

"some \"quoted\" things" "[ˆ"\\]+\\.\\.[ˆ"\\]+\\"\\"[ˆ"\\]+"

"with \"a\" and \"b\"." "[ˆ"\\]+\\.\\.[ˆ"\\]+\\.\\.[ˆ"\\]+\\.\\.[ˆ"\\]+\\.\\.[ˆ"\\]+"

"\"ok\"\n" "\\.\\.[ˆ"\\]+\\.\\.\\.\\."

"empty \"\" quote" "[ˆ"\\]+\\.\\.\\.\\.[ˆ"\\]+"

For the moment, let’s concentrate on the first four examples in Table 6-2. I’ve
underlined the portions that refer to “an escaped item, followed by further normal
characters.” This is the key point: in each case, the expression between the quotes
begins with ![ˆ"\\]+ " and is followed by some number of !\\.\\.[ˆ"\\]+ " sequences.
Rephrasing this as a regular expression, we get ![ˆ"\\]+ (\\.\\.[ˆ"\\]+)+ ". This is
a specific example of a general pattern that can be used for constructing many
useful expressions.

Constr ucting a general “unrolling-the-loop” pattern

In matching the double-quoted string, the quote itself and the escape are “special”
— the quote because it can end the string, and the escape because it means that
whatever follows won’t end the string. Everything else, ![ˆ"\\]", is “nor mal.” Look-
ing at how these were combined to create ![ˆ"\\]+ (\\.\\.[ˆ"\\]+)+ ", we can see
that it fits the general pattern !nor mal+(specialspecial normal+)+ ".

29 April 2003 20:38

Adding in the opening and closing quote, we get !"[ˆ"\\]+ (\\.\\.[ˆ"\\]+)+"".
Unfortunately, this won’t match the last two examples in Table 6-2. The problem,
essentially, is that our current expression’s two ![ˆ"\\]+ " requir e a nor mal charac-
ter at the start of the string and after any special character. As the examples show,
that’s not always appropriate — the string might start or end with an escaped item,
or there might be two escaped items in a row.

We could try changing the two pluses to stars: !"[ˆ"\\],(\\.\\.[ˆ"\\],)+"". Does
this have the desired effect? More importantly, does it have any undesirable
ef fects?

As far as desirable effects, it is easy to see that all the examples now match. In
fact, even a string such as "\"\"\"" now matches. This is good. However, we
can’t make such a major change without being quite sure ther e ar e no undesirable
ef fects. Could anything other than a legal double-quoted string match? Can a legal
double-quoted string not match? What about efficiency?

Let’s look at !"[ˆ"\\]+(\\.\\.[ˆ"\\]+)+"" car efully. The leading !"[ˆ"\\]+ " is
applied only once and doesn’t seem dangerous: it matches the requir ed opening
quote and any normal characters that might follow. No danger there. The subse-
quent !(\\.\\.[ˆ"\\]+)+ " is wrapped by (˙˙˙),, so is allowed to match zero times.
That means that removing it should still leave a valid expression. Doing so, we get
!"[ˆ"\\]+"", which is certainly fine — it repr esents the common situation where
ther e ar e no escaped items.

On the other hand, if !(\\.\\.[ˆ"\\]+)+ " matches once, we have an effective
!"[ˆ"\\]+ \\.\\. [ˆ"\\]+"". Even if the trailing ![ˆ"\\]+ " matches nothing (making it
an effective !"[ˆ"\\]+ \\.\\.""), there are no problems. Continuing the analysis in a
similar way (if I can remember my high school algebra, it’s “by induction”), we
find that there are, indeed, no problems with the proposed changes.

So, that leaves us with the final expression to match a double-quoted string with
escaped double quotes inside:

!"[ˆ"\\],(\\.\\.[ˆ"\\],)+""

The Real “Unrolling-the-Loop” Patter n
Putting it all together, then, our expression to match a double-quoted string with
escaped-items is !"[ˆ"\\]+(\\.[ˆ"\\]+)+"". This matches exactly the same
strings as our alternation version, and it fails on the same strings that the alterna-
tion version fails on. But, this unrolled version has the added benefit of finishing
in our lifetime because it is much more efficient and avoids the neverending-match
pr oblem.

Unrolling the Loop 263

29 April 2003 20:38

264 Chapter 6: Crafting an Efficient Expression

The general pattern for unrolling the loop is:

! opening normal+ (specialspecial normal+)+ closing "

Avoiding the neverending match

Thr ee extr emely important points prevent !"[ˆ"\\]+(\\.\\.[ˆ"\\]+)+"" fr om
becoming a neverending match:

The star t of special and normal must never inter sect
The special and nor mal subexpr essions must be written such that they can never
match at the same point. With our ongoing example, where nor mal is ![ˆ"\\]" and
special is !\\. ", it’s clear that they can never begin a match at the same character
since the latter one requir es a leading backslash, while the former one explicitly
disallows a leading backslash.

On the other hand, !\\. " and ![ˆ"] " can both match starting at ‘"Hello\n"’, so they
ar e inappr opriate as special or nor mal. If ther e is a way they can match starting at
the same location, it’s not clear which should be used at such a point, and the
non-deter minism cr eates a never ending match. The ‘makudonarudo’ example illus-
trates this graphically (+ 227). A failing match (or any kind of match attempt with
POSIX NFA engines) has to test all these possibilities and permutations. That’s too
bad, since the whole reason to re-engineer in the first place was to avoid this.

If we ensure that special and nor mal can never match at the same point, special
acts to checkpoint the nondeterminism that would arise when multiple applica-
tions of nor mal could, by differ ent iterations of the !(˙˙˙)+ " loop, match the same
text. If we ensure that special and nor mal can never match at the same point,
ther e is exactly one “sequence” of specials and nor mals in which a particular tar-
get string matches. Testing this one sequence is much faster than testing a hundred
million of them, and thus a neverending match is avoided.

Special must not match nothingness
The second important point is that special must always match at least one charac-
ter if it matches anything at all. If it were able to match without consuming charac-
ters, adjacent normal characters would be able to be matched by differ ent
iterations of !(specialspecial normal+), ", bringing us right back to the basic (˙˙˙+)+

pr oblem.

For example, choosing a special of !(\\.)+ " violates this point. In trying to match
the ill-fated !"[ˆ"\\]+((\\.),(\\.),[ˆ"\\]+)+"" against ‘"Tubby’ (which fails), the
engine must try every permutation of how multiple ![ˆ"\\]+ " might match ‘Tubby’
befor e concluding that the match is a failure. Since special can match nothingness,
it doesn’t act as the checkpoint it purports to be.

29 April 2003 20:38

Special must be atomic
Text matched by one application of special must not be able to be matched by
multiple applications of special. Consider matching a string of optional Pascal { ˙˙˙}

comments and spaces. A regex to match the comment part is !\{[ˆ}]+\}", so the
whole (neverending) expression becomes !(\{[ˆ}]+\}< +)+ ". With this regex, you
might consider special and nor mal to be:

special normal

! + " !\{[ˆ}]+\}"

Plugging this into the !nor mal+(specialspecial normal+)+ " patter n we’ve developed, we
get: !(\{[ˆ}]+\})+(++(\{[ˆ}]+\})+)+ ". Now, let’s look at a string:

{comment} {another}

A sequence of multiple spaces could be matched by a single ! + ", by many ! + "

(each matching a single space), or by various combinations of ! + " matching differ-
ing numbers of spaces. This is directly analogous to our ‘makudonarudo’ problem.

The root of the problem is that special is able to match a smaller amount of text
within a larger amount that it could also match, and is able to do so multiple times
thanks to (˙˙˙)+. The nondeterminism opens up the “many ways to match the
same text” can of worms.

If there is an overall match, it is likely that only the all-at-once ! + " will happen just
once, but if no match is possible (such as might happen if this is used as a subex-
pr ession of a larger regex that could possibly fail), the engine must work through
each permutation of the effective !(+)+ " to each series of multiple spaces. That
takes time, but without any hope for a match. Since special is supposed to act as
the checkpoint, there is nothing to check its nondeter minism in this situation.

The solution is to ensure that special can match only a fixed number of spaces.
Since it must match at least one, but could match more, we simply choose ! " and
let multiple applications of special match multiple spaces via the enclosing !(˙˙˙)+ ".

This example is useful for discussion, but in real-life use, it’s probably more effi-
cient to swap the nor mal and special expr essions to come up with

! +(\{[ˆ}]+\}\{[ˆ}]+\} +)+ "

because I would suspect that a Pascal program has more spaces than comments,
and it’s more efficient to have nor mal be the most common case.

General things to look out for

Once you internalize these rules (which might take several readings and some
practical experience), you can generalize them into guidelines to help identify reg-
ular expressions susceptible to a neverending match. Having multiple levels of

Unrolling the Loop 265

29 April 2003 20:38

266 Chapter 6: Crafting an Efficient Expression

quantifiers, such as !(˙˙˙+)+ ", is an important warning sign, but many such expres-
sions are per fectly valid. Examples include:

• !(Re: +)+ ", to match any number of ‘Re:’ sequences (such as might be used to
clean up a ‘Subject: Re: Re: Re: hey’ subject line).

• !(+\$[0-9]+)+ ", to match dollar amounts, possibly space-separated.

• !(.+\n)+ ", to match one or more lines. (Actually, if dot can match a newline,
and if there is anything following this subexpression that could cause it to fail,
this would become a quintessential neverending match.)

These are okay because each has something to checkpoint the match, keeping a
lid on the “many ways to match the same text” can of worms. In the first, it’s !Re: ",
in the second it’s !\$ ", and in the third (when dot doesn’t match newline), it’s !\n ".

Method 2: A Top-Down View
Recall that I said that there wer e two paths to the same “unrolling the loop”
expr ession. In this second path, we start by matching only what’s most common in
the target, then adding what’s needed to handle the rare cases. Let’s consider what
the neverending !(\\.\\.<[ˆ"\\]+), " attempts to accomplish and where it will likely
be used. Normally, I would think, a quoted string would have more regular char-
acters than escaped items, so ![ˆ"\\]+ " does the bulk of the work. The !\\. " is
needed only to take care of the occasional escaped item. Using alternation to
allow either makes a useful regex, but it’s too bad that we need to compromise
the efficiency of the whole match for the sake of a few (or more commonly, no)
escaped characters.

If we think that ![ˆ"\\]+ " will normally match most of the body of the string, we
know that once it finishes we can expect either the closing quote or an escaped
item. If we have an escape, we want to allow one more character (whatever it
might be), and then match more of the bulk with another ![ˆ"\\]+ ". Every time
![ˆ"\\]+ " ends, we are in the same position we were befor e: expecting either the
closing quote or another escape.

Expr essing this naturally as a single expression, we arrive at the same expression
we had early in Method 1: !"[ˆ"\\]+ (\\.\\.[ˆ"\\]+)+"". Each time the matching
reaches the point marked by , we know that we’re expecting either a backslash
or a closing quote. If the backslash can match, we take it, the character that fol-
lows, and more text until the next “expecting a quote or backslash” point.

As in the previous method, we need to allow for when the initial non-quote seg-
ment, or inter-quote segments, are empty. We can do this by changing the two
pluses to stars, which results in the same expression as we ended up with on
page 263.

29 April 2003 20:38

Method 3: An Internet Hostname
I promised two methods to arrive at the unr olling-the-loop technique, but I’d like
to present something that can be considered a third. It struck me while working
with a regex to match a hostname such as www.yahoo.com. A hostname is essen-
tially dot-separated lists of subdomain names, and exactly what’s allowed for one
subdomain name is fairly complex to match (+ 203), so to keep this example less
clutter ed, we’ll just use ![a-z]+ " to match a subdomain.

If a subdomain is ![a-z]+ " and we want a dot-separated list of them, we need to
match one subdomain first. After that, further subdomains requir e a leading
period. Expressing this literally, we get: ![a-z]+ (\.[a-z]+)+ ". Now, if I add an
underline and some gray, ![a-z]+ (\.\.[a-z]+)+ ", it sur e looks like it almost fits a
very familiar pattern, doesn’t it!

To illustrate the similarity, let’s try to map this to our double-quoted string exam-
ple. If we consider a string to be sequences of our nor mal ![ˆ\\"]", separated by
special !\\. ", all within ‘"˙˙˙"’, we can plug them into our unrolling-the-loop pattern
to form !"[ˆ\\"]+ (\\.\\. [ˆ\\"]+)+"", which is exactly what we had at one point
while discussing Method 1. This means that conceptually, we can take the view
we used with a hostname — stuf f separated by separators — and apply it to double-
quoted strings, to give us “sequences of non-escaped stuff separated by escaped
items.” This might not seem intuitive, but it yields an interesting path to what
we’ve already seen.

The similarity is interesting, but so are the differ ences. With Method 1, we went on
to change the regex to allow empty spans of nor mal befor e and after each special,
but we don’t want to do that here because a subdomain part cannot be empty. So,
even though this example isn’t exactly the same as the previous ones, it’s in the
same class, showing that the unrolling technique is powerful and flexible.

Ther e ar e two differ ences between this and the subdomain example:

• Domain names don’t have delimiters at their start and end.

• The nor mal part of a subdomain can never be empty (meaning two periods
ar e not allowed in a row, and can neither start nor end the match). With a
double-quoted string, there is no requir ement that there be any nor mal parts
at all, even though they are likely, given our assumptions about the data.
That’s why we were able to change the ![ˆ\\"]+ " to ![ˆ\\"]+ ". We can’t do
that with the subdomain example because special repr esents a separator,
which is requir ed.

Unrolling the Loop 267

29 April 2003 20:38

268 Chapter 6: Crafting an Efficient Expression

Obser vations
Recapping the double-quoted string example, I see many benefits to our expres-
sion, !"[ˆ"\\]+(\\.[ˆ"\\]+)+"", and few pitfalls.

Pitfalls:

• Reada bility The biggest pitfall is that the original !"([ˆ"\\];\\.)+"" is
pr obably easier to understand at first glance. We’ve traded a bit of readability
for efficiency.

• Maintaina bility Maintaining !"[ˆ"\\]+(\\.[ˆ"\\]+)+"" might be more dif fi-
cult, since the two copies of ![ˆ"\\] " must be kept identical across any
changes. We’ve traded a bit of maintainability for efficiency.

Benefits:

• Speed The new regex doesn’t buckle under when no match is possible, or
when used with a POSIX NFA. By car efully crafting the expression to allow
only one way for any particular span of text to be matched, the engine quickly
comes to the conclusion that non-matching text indeed does not match.

• More speed The regex “flows” well, a subject taken up in “The Freeflowing
Regex” (+ 277). In my benchmarks with a Traditional NFA, the unrolled ver-
sion is consistently faster than the old alternation version. This is true even for
successful matches, where the old version did not suffer the lockup problem.

Using Atomic Grouping and Possessive Quantifier s
The problem with our original neverending match regex, !"(\\.;[ˆ"\\]+)+"", is
that it bogs down when there is no match. When there is a match, though, it’s
quite fast. It’s quick to find the match because the ![ˆ"\\]+ " component is what
matches most of the target string (the nor mal in the previous discussion). Because
![˙˙˙]+ " is usually optimized for speed (+ 247), and because this one component
handles most of the characters, the overhead of the alternation and the outer
!(˙˙˙)+ " quantifier is greatly reduced.

So, the problem with !"(\\.;[ˆ"\\]+)+"", is that it bogs down on a non-match,
backtracking over and over to what we know will always be unfruitful states. We
know they’re unfruitful because they’re just testing differ ent per mutations of the
same thing. (If !abc " doesn’t match ‘foo’, neither will !abc " or !abc " (or !abc ", !abc ", or
!abc ", for that matter). So, if we could throw those states away, this regex would
report the non-match quickly.

Ther e ar e two ways to actually throw away (or otherwise ignore) states: atomic
gr ouping (+ 137) and possessive quantifiers (+ 140). At the time of this writing,
only Sun’s regex package for Java supports possessive quantifiers, but I believe
they’ll gain popularity soon, so I’ll cover them here.

29 April 2003 20:38

Befor e I get into the elimination of the backtracking, I’d like to swap the order of
the alternatives from !"(\\.<[ˆ"\\]+),"" to !"([ˆ"\\]+<\\.),"", as this places
the component matching “normal” text first. As has been noted a few times in the
last several chapters, when two or more alter natives can potentially match at the
same location, care must be taken when selecting their order, as that order can
influence what exactly is matched. But if, as in this case, all alternatives are mutu-
ally exclusive (none can match at a point where another can match), the order
doesn’t matter from a correctness point of view, so the order can be chosen for
clarity or efficiency.

Making a neverending match safe with possessive quantifier s

Our neverending regex !"([ˆ"\\]+<\\.),"" has two quantifiers. We can make
one possessive, the other possessive, or both possessive. Does it matter? Well,
most of the backtracking troubles were due to the states left by the ![˙˙˙]+ ", so mak-
ing that possessive is my first thought. Doing so yields a regex that’s pretty fast,
even when there’s no match. However, making the outer !(˙˙˙)+ " possessive throws
away all the states from inside the parentheses, which includes both those of
![˙˙˙]+ " and of the alternation, so if I had to pick one, I’d pick that one.

But I don’t have to pick one because I can make both possessive. Which of the
thr ee situations is fastest probably depends a lot on how optimized possessive
quantifiers are. Currently, they are supported only by Sun’s Java regex package, so
my testing has been limited, but I’ve run all three combinations through tests with
it, and found examples where one combination or the other is faster. I would
expect the situation where both are possessive could be the fastest, so these
results tend to make me believe that Sun hasn’t yet optimized them to their fullest.

Making a neverending match safe with atomic grouping

Looking to add atomic grouping to !"([ˆ"\\]+<\\.),"", it’s tempting to replace
the normal parentheses with atomic ones: !"(?>[ˆ"\\]+<\\.),"". It’s important
to realize that !(?>˙˙˙;˙˙˙)+ " is very differ ent fr om the possessive !(˙˙˙;˙˙˙)++ " in the
pr evious section when it comes to the states that are thr own away.

The possessive !(˙˙˙;˙˙˙)++ " leaves no states when it’s done. On the other hand, the
atomic grouping in !(?>˙˙˙;˙˙˙)+ " mer ely eliminates any states left by each alterna-
tive, and by the alternation itself. The star is outside the atomic grouping, so is
unaf fected by it and still leaves all its “can try skipping this match” states. That
means that the individual matches can still be undone via backtracking. We want
to eliminate the outer quantifier’s states as well, so we need an outer set of atomic
gr ouping. That’s why !(?>(˙˙˙;˙˙˙)+)" is needed to mimic the possessive !(˙˙˙;˙˙˙)++ ".

Unrolling the Loop 269

29 April 2003 20:38

270 Chapter 6: Crafting an Efficient Expression

!(˙˙˙;˙˙˙)++ " and !(?>˙˙˙;˙˙˙)+ " ar e both certainly helpful in solving the neverending
match, but which states are thr own away, and when, are dif ferent. (For more on
the differ ence between the two, see page 173.)

Shor t Unrolling Examples
Now that we’ve got the basic idea of unrolling under our belt, let’s look at some
examples from earlier in the book, and see how unrolling applies to them.

Unrolling “multi-character” quotes

In Chapter 4 on page 167, we saw this example:

 # Match the opening
(# Now, only as many of the following as needed . . .
(?! </?B>) # If not , and not . . .
. # . . . any character is okay

)+ #
 # . . . until the closing delimiter can match.

With a nor mal of ![ˆ<] " and a special of !(?! </?B>) < ", her e’s the unrolled version:

 # Match the opening
(?> [ˆ<]+) # Now match any "normal" . . .
(?> # Any amount of . . .

(?! </? B>) # if not at or ,
< # match one "special"
[ˆ<]+ # and then any amount of "normal"

)+ #
 # And finally the closing

The use of atomic grouping is not requir ed, but does make the expression faster
when there’s only a partial match.

Unrolling the continuation-line example

The continuation-line example from the start of the previous chapter (+ 186) left
of f with !ˆ\w+ =([ˆ\n \\]<\\ .), ". Well, that certainly looks ripe for unrolling:

ˆ \w+ = # leading field name and ’=’
Now read (and capture) the value . . .
(

(?> [ˆ\n\\]+) # "nor mal"*
(?> \\. [ˆ\n\\]+)+ # ("special" "normal"*)*

)

As with earlier examples of unrolling, the atomic grouping is not requir ed for this
to work, but helps to allow the engine to announce a failure mor e quickly.

29 April 2003 20:38

Unrolling the CSV rege x

Chapter 5 has a long discussion of CSV pr ocessing, which finally worked its way to
this snippet, from page 216:

(?: ̂;,)
(?: # Now, match either a double-quoted field (inside, paired double quotes are allowed) . . .

" # (double-quoted field’s opening quote)
((?: [ˆ"] ; "")+)

" # (double-quoted field’s closing quote)
;
. . . or, some non-quote/non-comma text . . .

([ˆ",]+)
)

The text then went on to suggest adding !\G " to the front, just to be sure that the
bump-along didn’t get us in trouble as it had throughout the example, and some
other efficiency suggestions. Now that we know about unrolling, let’s see where in
this example we can apply it.

Well, the part to match a Microsoft CSV string, !(?: [ˆ"];"")+ ", certainly looks
inviting. In fact, the way it’s presented already has our nor mal and special picked
out for us: ![ˆ"] " and !"" ". Her e’s how it looks with that part unrolled, plugged back
into the original Perl snippet to process each field:

while ($line =˜ m{
\G(?: ̂;,)
(?:

Either a double-quoted field (with "" for each ")˙˙˙

" # field’s opening quote
((?> [ˆ"],) (?> "" [ˆ"],),)

" # field’s closing quote
..or˙˙˙

;
˙˙˙ some non-quote/non-comma text....
([ˆ",]+)

)
}gx)

{
if (defined $2) {

$field = $2;
} else {

$field = $1;
$field =˜ s/""/"/g;

}
print "[$field]"; # print the field, for debugging
Can work with $field now . . .

}

As with the other examples, the atomic grouping is not requir ed, but may help
with efficiency.

Unrolling the Loop 271

29 April 2003 20:38

272 Chapter 6: Crafting an Efficient Expression

Unrolling C Comments
I’d like to give an example of unrolling the loop with a somewhat more complex
target. In the C language, comments begin with /,, end with ,/, and can span
acr oss lines, but can’t be nested. (C++, Java, and C# also allow this type of com-
ment.) An expression to match such a comment might be useful in a variety of sit-
uations, such as in constructing a filter to remove them. It was when working on
this problem that I first came up with my unrolling technique, and the technique
has since become a staple in my regex arsenal.

To unroll or to not unroll . . .

I originally developed the regex that is the subject of this section back in the early
1990s. Prior to that, matching C comments with a regular expression was consid-
er ed dif ficult at best, if not impossible, so when I developed something that
worked, it became the standard way to match C comments. But, when Perl intro-
duced lazy quantifiers, a much simpler approach became evident: a dot-matches-
all application of !/\+.+?\+/".

Had lazy quantifiers been around when I first developed the unrolling technique, I
might not have bothered to do so, for the need wouldn’t have been so apparent.
Yet, such a solution was still valuable because with that first version of Perl sup-
porting lazy quantifiers, the unrolled version is faster than the lazy-quantifier ver-
sion by a significant amount (in the variety of tests I’ve done, anywhere from
about 50% faster, to 3.6× faster).

Yet, with today’s Perl and its differ ent mix of optimizations, those numbers go the
other way, with the lazy-quantifier version running anywhere from about 50%
faster to 5.5× faster. So, with modern versions of Perl, I’d just use !/\+.+?\+/" to
match C comments and be done with it.

Does this mean that the unrolling-the-loop technique is no longer useful for
matching C comments? Well, if an engine doesn’t support lazy quantifiers, the abil-
ity to use the unrolling technique certainly becomes appealing. And not all regex
engines have the same mix of optimizations: the unrolling technique is faster with
every other language I’ve tested — in my tests, up to 60 times faster! The unrolling
technique is definitely useful, so the remainder of this example explores how to
apply it to matching C comments.

Since there are no escapes to be recognized within a C comment the way \" must
be recognized within a double-quoted string, one might think that this should
make things simpler, but actually, it’s much more complex. This is because +/, the
“ending quote,” is mor e than one character long. The simple !/\+[ˆ+]+\+/" might
look good, but that doesn’t match /,+ some comment here +,/ because it has a
‘+’ within. It should be matched, so we need a new approach.

29 April 2003 20:38

Avoiding regex headaches
You might find that !/\+[ˆ+]+\+/" is a bit difficult to read, even with the subtle
easy-on-the-eyes spacing I’ve used in typesetting this book. It is unfortunate for
our eyes that one of the comment’s delimiting characters, ‘+’, is also a regex meta-
character. The resulting backslashes are enough to give me a headache. To make
things more readable during this example, we’ll consider /x ˙˙˙x/, rather than
/+ ˙˙˙ +/, to be our target comment. This superficial cosmetic change allows
!/\+[ˆ+]+\+/" to be written as the more readable !/x [ˆx]+ x/". As we work
thr ough the example and the expression becomes more complex, our eyes will
thank us for the reprieve.

A direct approach

In Chapter 5 (+ 196), I gave a standard formula for matching delimited text:

1. Match the opening delimiter

2. Match the main text: really “match anything that is not the ending delimiter”

3. Match the ending delimiter

Our pseudo comments, with /x and x/ as our opening and closing delimiters,
appear to fit into this pattern. Our difficulties begin when we try to match “any-
thing that is not the ending delimiter.” When the ending delimiter is a single char-
acter, we can use a negated character class to match all characters except that
delimiter. A character class can’t be used for multi-character subexpressions, but if
you have negative lookahead, you can use something like !(?: (?!x/).)+ ". This is
essentially !(anything not x/)+ ".

Using that, we get !/x(?: (?!x/).)+x/" to match comments. It works perfectly
well, but it can be quite slow (in some of my tests, hundreds of times slower than
what we’ll develop later in this section). This approach can be useful, but it’s of lit-
tle use in this particular case because any flavor that supports lookahead almost
certainly supports lazy quantifiers, so if efficiency is not an issue, you can just use
!/x .+?x/" and be done with it.

So, continuing with the direct, three-step approach, is there another way to match
until the first x/? Two ideas might come to mind. One method is to consider x to
be the start of the ending delimiter. That means we’d match anything not x, and
allow an x if it is followed by something other than a slash. This makes the “any-
thing that is not the ending delimiter” one of:

• Anything that is not x: ![ˆx] "

• x, so long as not followed by a slash: !x[ˆ/] "

This yields !([ˆx]<x[ˆ/])+ " to match the main text, and !/x([ˆx]<x[ˆ/])+x/" to
match the entire pseudo comment. As we’ll see, this doesn’t work.

Unrolling the Loop 273

29 April 2003 20:38

274 Chapter 6: Crafting an Efficient Expression

Another approach is to consider a slash as the ending delimiter, but only if pre-
ceded by x. This makes the “anything not the ending delimiter” one of:

• Anything that is not a slash: ![ˆ/]"

• A slash, so long as not preceded by x: ![ˆx]/"

This yields !([ˆ/]<[ˆx]/)+ " to match the main text, and !/x([ˆ/]<[ˆx]/)+x/" to
match the whole comment.

Unfortunately, it also doesn’t work.

For !/x([ˆx]<x[ˆ/])+x/ ", consider ‘/xx foo xx/’ — after matching ‘foo ’, the
first closing x is matched by !x[ˆ/] ", which is fine. But then, !x[ˆ/] " matches xx/,
which is the x that should be ending the comment. This opens the door for the
next iteration’s ![ˆx] " to match the slash, thereby errantly matching past the closing
x/.

As for !/x([ˆ/]<[ˆx]/)+x/ ", it can’t match ‘/x/ foo /x/’ (the whole of which is
a comment and should be matched). In other cases, it can march past the end of a
comment that has a slash immediately after its end (in a way similar to the other
method). In such a case, the backtracking involved is perhaps a bit confusing, so it
should be instructive to understand why !/x([ˆ/]<[ˆx]/)+x/" matches

years = days /x divide x//365; /x assume non-leap year x/

as it does (an investigation I’ll leave for your free time).

Making it work

Let’s try to fix these regexes. With the first one, where !x[ˆ/]" inadvertently
matches the comment-ending ˙˙˙xx/, consider !/x([ˆx]<x+[ˆ/])+x/". The added
plus will, we think, have !x+[ˆ/] " match a row of x’s ending with something other
than a slash. Indeed it will, but due to backtracking, that “something other than a
slash” can still be x. At first, the greedy !x+ " matches that extra x as we want, but
backtracking will reclaim an x if needed to secure an overall match. So, it still
matches too much of:

/xx A xx/ foo() /xx B xx/

The solution comes back to something I’ve said before: say what you mean. If we
want “some x, if not followed by a slash” to imply that the non-slash also doesn’t
include an x, we should write exactly that: !x+[ˆ/x]". As we want, this stops it
fr om eating ‘˙˙˙xxx/’, the final x of a row of x that ends the comment. In fact, it has
the added effect of not matching any comment-ending x, so it leaves us at ‘˙˙˙xxx/’
to match the ending delimiter. Since the ending delimiter part had been expecting
just the one x, it won’t match until we insert !x+/" to allow this final case.

29 April 2003 20:38

Tr anslating Between English and Regex
On page 273, when discussing two ways one might consider the C comment
“anything that is not the ending delimiter,” I presented one idea as

“ x, so long as not followed by a slash: !x[ˆ/]" ”
and another as:

“ a slash, so long as not preceded by x: ![ˆx]/ " ”

In doing so, I was being informal— the English descriptions are actually quite
dif ferent from the regexes. Do you see how?

To see the differ ence, consider the first case with the string ‘regex’ — it cer-
tainly has an x not followed by a slash, but it would not be matched by
match !x[ˆ/] ". The character class requir es a character to match, and
although that character can’t be a slash, it still must be something, and there’s
nothing after the x in ‘regex’. The second situation is analogous. As it turns
out, what I need at that point in the discussion are those specific expres-
sions, so it’s the English that is in error.

If you have lookahead, “x, so long as not followed by a slash” is simply
!x(?!/) ". If you don’t, you might try to get by with !x([ˆ/]<$)". It still
matches a character after the x, but can also match at the end of the line. If
you have lookbehind, “slash, so long as not preceded by x” becomes
!(?<!x)/ ". If you don’t have it, you have to make due with !(ˆ<[ˆx])/".

We won’t use any of these while working with C comments, but it’s good to
understand the issue.

This leaves us with: !/x([ˆx]<x+[ˆ/x])+x+/" to match our pseudo comments.

Phew! Somewhat confusing, isn’t it? Real comments (with + instead of x) requir e
!/\+([ˆ+]<\++[ˆ/+])+\++/ " which is even more confusing. It’s not easy to read;
just remember to keep your wits about you as you carefully parse complex
expr essions in your mind.

Unrolling the C loop

For efficiency’s sake, let’s look at unrolling this regex. Table 6-3 on the next page
shows the expressions we can plug in to our unrolling-the-loop pattern.

Like the subdomain example, the !nor mal+ " is not actually free to match nothing-
ness. With subdomains, it was because the normal part was not allowed to be
empty. In this case, it’s due to how we handle the two-character ending delimiter.
We ensur e that any nor mal sequence ends with the first character of the ending
delimiter, allowing special to pick up the ball only if the following character does
not complete the ending.

Unrolling the Loop 275

29 April 2003 20:38

276 Chapter 6: Crafting an Efficient Expression

Table 6-3: Unr olling-the-Loop Components for C Comments

!opening normal+ (specialspecial normal+)+ closing "

Item What We Want Regex

opening start of comment /x
nor mal+ comment text up to, and including, one or more ‘x’ [ˆx]+x+
special something other than the ending slash (and also not ‘x’) [ˆ/x]
closing trailing slash /

So, plugging these in to the general unrolling pattern, we get:

!/x[ˆx]+x+([ˆ/x][ˆ/x] [ˆx]+x+)+/".

Notice the spot marked with ? The regex engine might work to that spot in two
ways (just like the expression on page 266). The first is by progr essing to it after
the leading !/x[ˆx]+x+ ". The second is by looping due to the (˙˙˙)+. Via either
path, once we’re at that spot we know we’ve matched x and are at a pivotal point,
possibly on the brink of the comment’s end. If the next character is a slash, we’re
done. If it’s anything else (but an x, of course), we know the x was a false alarm
and we’re back to matching normal stuff, again waiting for the next x. Once we
find it, we’re right back on the brink of excitement at the marked spot.

Retur n to reality
!/x[ˆx]+x+([ˆ/x][ˆx]+x+)+/" is not quite ready to be used. First, of course,
comments are /+ ˙˙˙ +/ and not /x ˙˙˙x/. This is easily fixed by substituting each x

with \+ (or, within character classes, each x with +) :

!/\+[ˆ+]+\++([ˆ/+][ˆ+]+\++)+/"

A use-r elated issue is that comments often span across lines. If the text being
matched contains the entire multiline comment, this expression should work. With
a strictly line-oriented tool such as egr ep, though, there is no way to apply a regex
to the full comment. With most utilities mentioned in this book, you can, and this
expr ession might be useful for, say, removing comments.

In practical use, a larger problem arises. This regex understands C comments, but
does not understand other important aspects of C syntax. For example, it can
falsely match where ther e is no comment:

const char +cstart = "/+", +cend = "+/";

We’ll develop this example further, right in the next section.

29 April 2003 20:38

The Freef lowing Regex
We just spent some time constructing a regex to match a C comment, but left off
with the problem of how to stop comment-like items within strings from being
matched. Using Perl, we might mistakenly try to remove comments with:

$prog =˜ s{/\+[ˆ+]+\++(?:[ˆ/+][ˆ+]+\++)+/}{}g; # remove C comments (and more!)

Text in the variable $prog that is matched by our regex is removed (that is,
replaced by nothing). The problem with this is that there’s nothing to stop a match
fr om starting within a string, as in this C snippet:

char +CommentStart = "/+"; /, start of comment ,/
char +CommentEnd = "+/"; /, end of comment ,/

Her e, the underlined portions are what the regex finds, but the bold portions are
what we wish to be found. When the engine is searching for a match, it tries to
match the expression at each point in the target. Since it is successful only from
wher e a comment begins (or where it looks like one begins), it doesn’t match at
most locations, so the transmission bump-along bumps us right into the double-
quoted string, whose contents look like the start of a comment. It would be nice if
we could tell the regex engine that when it hits a double-quoted string, it should
zip right on past it. Well, we can.

A Helping Hand to Guide the Match
Consider:

$COMMENT = qr{/\+[ˆ+]+\++(?: [ˆ/+][ˆ+]+\++)+/}; # regex to match a comment
$DOUBLE = qr{"(?:\\.;[ˆ"\\])+"}; # regex to match double-quoted string
$text =˜ s/$DOUBLE;$COMMENT//g;

Ther e ar e two new things here. One is that this time the regex operand,
$DOUBLE;$COMMENT, is made up of two variables, each of which is constructed
with Perl’s special qr/˙˙˙/ regex-style “double-quoted string” operator. As discussed
at length in Chapter 3 (+ 101), one must be careful when using strings that are
meant to be interpreted as regular expressions. Perl alleviates this problem by pro-
viding the qr/˙˙˙/ operator, which treats its operand as a regular expression, but
doesn’t actually apply it. Rather, it retur ns a “regex object” value that can later be
used to build up a larger regular expression. It’s extremely convenient, as we saw
briefly in Chapter 2 (+ 76). Like m/˙˙˙/ and s/˙˙˙/˙˙˙/, you can pick delimiters to
suit your needs (+ 71), as we’ve done here using braces.

The other new thing here is the matching of double-quoted strings via the
$DOUBLE portion. When the transmission has brought us to a position where the
$DOUBLE part can match, it will do so, thereby bypassing the whole string in one
fell swoop. It is possible to have both alternatives because they are entir ely

The Freeflowing Regex 277

29 April 2003 20:38

278 Chapter 6: Crafting an Efficient Expression

unambiguous with respect to each other. When applied to a string, as you read
fr om the beginning, any point in the text that you start at is:

• Matchable by the comment part, thereby skipping immediately to the end of
the comment, or...

• Matchable by the double-quoted string part, thereby skipping immediately to
the end of the string, or...

• Not matchable by either, causing the attempt to fail. This means that the nor-
mal bump-along will skip only the one, uninteresting character.

This way, the regex will never be started fr om within a string or comment, the
key to its success. Well, actually, right now it isn’t helpful yet, since it removes the
strings as well as the comments, but a slight change puts us back on track.

Consider:

$COMMENT = qr{/\+[ˆ+]+\++(?: [ˆ/+][ˆ+]+\++)+/}; # regex to match a comment
$DOUBLE = qr{"(?:\\.;[ˆ"\\])+"}; # Regex to match double-quoted string
$text =˜ s/($DOUBLE);$COMMENT/$1/g;

The only differ ences ar e that we’ve:

• Added the parentheses to fill $1 if the match is via the string alternative. If the
match is via the comment alternative, $1 is left empty.

• Made the replacement value that same $1. The effect is that if a double-quoted
string is matched, the replacement is that same double-quoted string — the
string is not removed and the substitute becomes an effective no-op (but has
the side effect of getting us past the string, which is the reason to add it in the
first place). On the other hand, if the comment alternative is the one that
matches, the $1 is empty, so the comment is replaced by nothingness just as
we want.†

Finally, we need to take care of single-quoted C constants such as ’\t’ and the
like. This is easy — we simply add another alternative inside the parentheses. If we
would like to remove C++/Java/C# style // comments too, that’s as simple as
adding !//[ˆ\n]+ " as a fourth alternative, outside the parentheses:

$COMMENT = qr{/\+[ˆ+]+\++(?: [ˆ/+][ˆ+]+\++)+/}; # regex to match a comment
$COMMENT2 = qr{//[ˆ\n]+}; # regex to match a C++ // comment
$DOUBLE = qr{"(?:\\.;[ˆ"\\])+"}; # regex to match double-quoted string
$SINGLE = qr{’(?:\\.;[ˆ’\\])+’}; # regex to match single-quoted string

$text =˜ s/($DOUBLE;$SINGLE);$COMMENT;$COMMENT2/$1/g;

† In Perl, if $1 is not filled during the match, it’s given a special “no value” value “undef”. When used
in the replacement value, undef is treated as an empty string, so it works as we want. But, if you
have Perl warnings turned on (as every good programmer should), the use of an undef value in this
way causes a warning to be printed. To avoid this, you can use the ‘no warnings;’ pragma before
the regular expression is used, or use this special Perl form of the substitute operator:

$text =˜ s/($DOUBLE);$COMMENT/defined($1) ? $1 : ""/ge;

29 April 2003 20:38

The basic premise is quite slick: when the engine checks the text, it quickly grabs
(and if appropriate, removes) these special constructs. On my system, this Perl
snippet took about 16.4 seconds to remove all the comments from a 16-megabyte,
500,000-line test file. This is fast, but we’ll speed it up considerably.

A Well-Guided Regex is a Fast Regex
With just a little hand holding, we can help direct the flow of the regex engine’s
attention to match much faster. Let’s consider the long spans of normal C code
between the comments and strings. For each such character, the regex engine has
to try each of the four alternatives to see whether it’s something that should be
gobbled up, and only if all four fail does it bump-along to bypass the character as
uninter esting. This is a lot of work that we really don’t need to do.

We know, for example, that for any of the alternatives to have a chance at match-
ing, the lead character must be a slash, a single quote, or a double quote. One of
these doesn’t guarantee a match, but not being one does guarantee a non-match.
So, rather than letting the engine figure this out the slow and painful way, let’s just
tell it directly by adding ![ˆ’"/] " as an alternative. In fact, any number of such
characters in a row can be scooped right up, so let’s use ![ˆ’"/]+ " instead. If you
remember the neverending match, you might feel worried about the added plus.
Indeed, it could be of great concern if it wer e within some kind of (˙˙˙)+ loop, but
in this stand-alone case it’s quite fine (there’s nothing that follows that could force
it to backtrack at all). So, adding:

$OTHER = qr{[ˆ"’/]}; # Stuf f that couldn’t possibly begin one of the other alternatives

+
+
+

$text =˜ s/($DOUBLE;$SINGLE;$OTHER+);$COMMENT;$COMMENT2/$1/g;

For reasons that will become apparent after a bit, I’ve put the plus quantifier after
$OTHER, rather than part of the contents of $OTHER.

So, I retry my benchmarks, and wow, this one change cuts the time by over 75%!
We’ve crafted the regex to remove most of the overhead of having to try all the
alter natives so often. There are still a few cases where none of the alternatives can
match (such as at ‘c / 3.14’), and at such times, we’ll have to be content with
the bump-along to get us by.

However, we’r e not done yet—we can still help the engine flow to a faster match:

• In most cases, the most popular alternative will be !$OTHER+ ", so let’s put that
first inside the parentheses. This isn’t an issue for a POSIX NFA engine because
it must always check all alternatives anyway, but for a Traditional NFA, which
stops once a match has been found, why make it check for relatively rare
matches before checking the one we believe will match most often?

The Freeflowing Regex 279

29 April 2003 20:38

280 Chapter 6: Crafting an Efficient Expression

• After one of the quoted items matches, it will likely be followed by some
$OTHER befor e another string or a comment is found. If we add !$OTHER+ " after
each item, we tell the engine that it can immediately flow right into matching
$OTHER without bothering with the /g looping. This is similar to the unrolling-
the-loop technique. In fact, unrolling the loop gains much of its speed from
the way it leads the regex engine to a match, using our global knowledge to
cr eate the local optimizations that feed the engine just what it needs to work
quickly.

Note that it is very important that this $OTHER, added after each string-match-
ing subexpression, be quantified with star, while the previous $OTHER (the one
we moved to the head of the alternation) be quantified by plus. If it’s not
clear, consider what could happen if the appended $OTHER had plus and there
wer e, say, two double-quoted strings right in a row. Also, if the leading
$OTHER used star, it would always match!

These changes yield

!($OTHER+;$DOUBLE$OTHER+;$SINGLE$OTHER+)<$COMMENT<$COMMENT2 "

as the regex, and further cuts the time by an additional five percent.

Let’s step back and think about these last two changes. If we go to the trouble of
scooping up $OTHER+ after each quoted string, there are only two situations in
which the original $OTHER+ (which we moved to be the first alternative) can
match: 1) at the very start of the whole s/˙˙˙/˙˙˙/g, befor e any of the quoted strings
get a chance to match, and 2) after any comment. You might be tempted to think
“Hey, to take care of point #2, let’s just add $OTHER+ after the comments as well!”
This would be nice, except everything we want to keep must be inside that first
set of parentheses — putting it after the comments would throw out the baby code
with the comment bathwater.

So, if the original $OTHER+ is useful primarily only after a comment, do we really
want to put it first? I guess that depends on the data — if there are mor e comments
than quoted strings, then yes, placing it first makes sense. Otherwise, I’d place it
later. As it tur ns out with my test data, placing it first yields better results. Placing it
later takes away about half the gains we achieved in the last step.

Wrapup
We’r e not quite done yet. Don’t forget, each of the quoted-string subexpressions is
ripe for unrolling — heck, we spent a long section of this chapter on that very
topic. So, as a final change, let’s replace the two string subexpressions with:

29 April 2003 20:38

$DOUBLE = qr{"[ˆ"\\]+(?:\\.[ˆ"\\]+)+"};
$SINGLE = qr{’[ˆ’\\]+(?:\\.[ˆ’\\]+)+’};

This change yields yet another 15 percent gain. Just a few changes has sped things
up from 16.4 seconds to 2.3 seconds—a speedup of over 7×.

This last change also shows how convenient a technique it can be to use variables
to build up a regular expression. Individual components, such as $DOUBLE, can be
consider ed in relative isolation, and can be changed without having to wade into
the full expression. There are still some overall issues (the counting of capturing
par entheses, among others) that must be kept in mind, but it’s a wonderful
technique.

One of the features that makes it so convenient in this case is Perl’s qr/˙˙˙/ opera-
tor, which acts like a regex-r elated type of “string.” Other languages don’t have this
exact functionality, but many languages do have string types that are amenable to
building regular expressions. See “Strings as Regular Expressions” starting on
page 101.

You’ll particularly appreciate the building up of regular expressions this way when
you see the raw regex. Here it is, broken across lines to fit the page:

([ˆ"\’/]+;"[ˆ"\\]+(?:\\.[ˆ"\\]+)+"[ˆ"\’/]+;’[ˆ’\\]+
(?:\\.[ˆ’\\]+)+’[ˆ"\’/]+);/\+[ˆ+]+\++(?:[ˆ/+][ˆ+]+\++)+/;//[ˆ\n]+

In Summary: Think!
I’d like to end this chapter with a story that illustrates just how much benefit a lit-
tle thought can go when using NFA regular expressions. Once when using GNU

Emacs, I wanted a regex to find certain kinds of contractions such as “don’t,” “I’m,”
“we’ll,” and so on, but to ignore other situations where a single quote might be
next to a word. I came up with a regex to match a word, !\<\w+ ", followed by the
Emacs equivalent of !’([tdm];re;ll;ve)". It worked, but I realized that using
!\<\w+ " was silly when I needed only \w. You see, if there is a \w immediately
befor e the apostrophe, \w+ is certainly there too, so having the regex check for
something we know is there doesn’t add any new information unless I want the
exact extent of the match (which I didn’t, I merely wanted to get to the area).
Using \w alone made the regex more than 10 times faster.

Yes, a little thought can go a long way. I hope this chapter has given you a little to
think about.

In Summary: Think! 281

29 April 2003 20:38

7
Perl

Perl has been featured prominently in this book, and with good reason. It is popu-
lar, extr emely rich with regular expressions, freely and readily obtainable, easily
appr oachable by the beginner, and available for a remarkably wide variety of plat-
for ms, including pretty much all flavors of Windows, Unix, and the Mac.

Some of Perl’s programming constructs superficially resemble those of C or other
traditional programming languages, but the resemblance stops there. The way you
wield Perl to solve a problem — The Perl Way — is differ ent fr om traditional lan-
guages. The overall layout of a Perl program often uses traditional structured and
object-oriented concepts, but data processing often relies heavily on regular
expr essions. In fact, I believe it is safe to say that regular expressions play a key
role in virtually all Perl programs. This includes everything from huge 100,000-line
systems, right down to simple one-liners, like

% perl -pi -e ’s{([-+]?\d+(\.\d+)?)F\b}{sprintf "%.0fC",($1-32)+5/9}eg’ +.txt

which goes through +.txt files and replaces Fahrenheit values with Celsius ones
(r eminiscent of the first example from Chapter 2).

In This Chapter
This chapter looks at everything regex about Perl,† including details of its regex
flavor and the operators that put them to use. This chapter presents the regex-r ele-
vant details from the ground up, but I assume that you have at least a basic famil-
iarity with Perl. (If you’ve read Chapter 2, you’re alr eady familiar enough to at
least start using this chapter.) I’ll often use, in passing, concepts that have not yet
been examined in detail, and I won’t dwell much on non-regex aspects of the lan-
guage. It might be a good idea to keep the Perl documentation handy, or perhaps
O’Reilly’s Pr ogramming Perl.

† This book covers features of Perl as of Version 5.8.

283

29 April 2003 20:47

284 Chapter 7: Perl

Perhaps more important than your current knowledge of Perl is your desir e to
understand more. This chapter is not light reading by any measure. Because it’s
not my aim to teach Perl from scratch, I am afforded a luxury that general books
about Perl do not have: I don’t have to omit important details in favor of weaving
one coherent story that progr esses unbr oken thr ough the whole chapter. Some of
the issues are complex, and the details thick; don’t be worried if you can’t take it
all in at once. I recommend first reading the chapter through to get the overall pic-
tur e, and retur ning in the future to use it as a refer ence as needed.

To help guide your way, here’s a quick rundown of how this chapter is organized:

• “Perl’s Regex Flavor” (+ 286) looks at the rich set of metacharacters supported
by Perl regular expressions, along with additional features afforded to raw
regex literals.

• “Regex Related Perlisms” (+ 293) looks at some aspects of Perl that are of par-
ticular interest when using regular expressions. Dynamic scoping and expr es-
sion context ar e cover ed in detail, with a strong bent toward explaining their
relationship with regular expressions.

• Regular expressions are not useful without a way to apply them, so the follow-
ing sections provide all the details to Perl’s sometimes magical regex controls:

“The qr/˙˙˙/ Operator and Regex Objects” (+ 303)
“The Match Operator” (+ 306)
“The Substitution Operator” (+ 318)
“The Split Operator” (+ 321)

• “Fun with Perl Enhancements” (+ 326) goes over a few Perl-only enhance-
ments to Perl’s regular-expr ession repertoir e, including the ability to execute
arbitrary Perl code during the application of a regular expression.

• “Perl Efficiency Issues” (+ 347) delves into an area close to every Perl pro-
grammer’s heart. Perl uses a Traditional NFA match engine, so you can feel
fr ee to start using all the techniques from Chapter 6 right away. There are, of
course, Perl-specific issues that can greatly affect in what way, and how
quickly, Perl applies your regexes. We’ll look at them here.

Perl in Earlier Chapters
Perl is touched on throughout most of this book:

• Chapter 2 contains an introduction to Perl, with many regex examples.

• Chapter 3 contains a section on Perl history (+ 88), and touches on numerous
regex-r elated issues that apply to Perl, such as character-encoding issues
(including Unicode + 105), match modes (+ 109), and a long overview of
metacharacters (+ 112).

29 April 2003 20:47

• Chapter 4 is a key chapter that demystifies the Traditional NFA match engine
found in Perl. Chapter 4 is extremely important to Perl users.

• Chapter 5 contains many examples, discussed in the light of Chapter 4. Many
of the examples are in Perl, but even those not presented in Perl apply to Perl.

• Chapter 6 is an important chapter to the user of Perl interested in efficiency.

In the interest of clarity for those not familiar with Perl, I often simplified Perl
examples in these earlier chapters, writing in as much of a self-documenting
pseudo-code style as possible. In this chapter, I’ll try to present examples in a
mor e Perlish style of Perl.

Regular Expressions as a Language
Component
An attractive feature of Perl is that regex support is so deftly built in as part of the
language. Rather than providing stand-alone functions for applying regular expres-
sions, Perl provides regular-expr ession operators that are meshed well with the
rich set of other operators and constructs that make up the Perl language.

With as much regex-wielding power as Perl has, one might think that it’s over-
flowing with differ ent operators and such, but actually, Perl provides only four
regex-r elated operators, and a small handful of related items, shown in Table 7-1.

Table 7-1: Overview of Perl’s Regex-Related Items

Regex-Related Operator s Modifier s Modify How . . .

m/regex/mods (+ 306) /x /o regex is interpreted (+ 292, 348)

s/regex/replacement/mods (+ 318) /s /m /i engine considers target text (+ 292)

qr/regex/mods (+ 303) /g /c /e other (+ 311, 315, 319)

split(˙˙˙) (+ 321) After-Match Var iables (+ 299)

Related Pragmas $1, $2, etc. captured text

use charnames ’:full’; (+ 290) $ˆN $+ latest/highest filled $1, $2, . . .

use overload; (+ 341) @- @+ arrays of indices into target

use re ’eval’; (+ 337) $‘ $& $’
- -

text before, of, and after match

use re ’debug’; (+ 361) (best to avoid—see “Perl Efficiency Issues” + 356)

Related Functions Related Var iables

lc lcfirst uc ucfirst (+ 290) $R default search target (+ 308)

pos (+ 313) quotemeta (+ 290) $ˆR embedded-code result (+ 302)

reset (+ 308) study (+ 359)

Regular Expressions as a Language Component 285

29 April 2003 20:47

286 Chapter 7: Perl

Perl is extremely powerful, but all that power in such a small set of operators can
be a dual-edged sword.

Perl’s Greatest Strength
The richness of variety and options among Perl’s operators and functions is per-
haps its greatest feature. They can change their behavior depending on the context
in which they’re used, often doing just what the author naturally intends in each
dif fering situation. In fact, O’Reilly’s Pr ogramming Perl goes so far as to boldly
state “In general, Perl operators do exactly what you want....” The regex match
operator m/regex/, for example, offers an amazing variety of differ ent functionality
depending upon where, how, and with which modifiers it is used.

Perl’s Greatest Weakness
This concentrated richness in expressive power is also one of Perl’s least-attractive
featur es. Ther e ar e innumerable special cases, conditions, and contexts that seem
to change out from under you without warning when you make a subtle change
in your code—you’ve just hit another special case you weren’t aware of.† The Pr o-
gramming Perl quote in the previous paragraph continues “...unless you want
consistency.” Certainly, when it comes to computer science, there is a certain
appr eciation to boring, consistent, dependable interfaces. Perl’s power can be a
devastating weapon in the hands of a skilled user, but it sometimes seems with
Perl, you become skilled by repeatedly shooting yourself in the foot.

Perl’s Regex Flavor
Table 7-2 on the facing page summarizes Perl’s regex flavor. It used to be that Perl
had many metacharacters that no other system supported, but over the years,
other systems have adopted many of Perl’s innovations. These common features
ar e cover ed by the overview in Chapter 3, but there are a few Perl-specific items
discussed later in this chapter. (Table 7-2 has refer ences to where each item is
discussed.)

The following notes supplement the table:

• !\b " matches a backspace only in class; otherwise, it’s a word boundary.

• Octal escapes accept two- and three-digit numbers.

• The !\xnum " hex escape accepts two-digit numbers (and one-digit numbers,
but with a warning if warnings are tur ned on). The !\x{num}" syntax accepts a
hexadecimal number of any length.

† That they’re innumerable doesn’t stop this chapter from trying to cover them all!

29 April 2003 20:47

Table 7-2: Overview of Perl’s Regular-Expr ession Flavor

Character Shorthands

+ 114 (c) \a \b \e \f \n \r \t \octal \xhex \x{hex} \cchar

Character Classes and Class-Like Constr ucts

+ 117 Classes: [˙˙˙] [ˆ˙˙˙] (may contain POSIX-like [:alpha:] notation)

+ 118 Any character except newline: dot (with /s, any character at all)

+ 328 Forced match of single byte (can be dangerous): \C

+ 125 Unicode combining sequence: \X

+ 119 (c) Class shorthands: \w \d \s \W \D \S

+ 119 (c) Unicode properties, scripts, and blocks: \p{Pr op} \P{Pr op}

Anchor s and other Zero-Width Tests

+ 127 Start of line/string: ˆ \A

+ 127 End of line/string: $ \z \Z

+ 315 End of previous match: \G

+ 131 Word boundary: \b \B

+ 132 Lookar ound: (?=˙˙˙) (?!˙˙˙) (?<=˙˙˙) (?<!˙˙˙)

Comments and Mode Modifiers

+ 133 Mode modifiers: (?mods-mods) Modifiers allowed: x s m i (+ 292)

+ 134 Mode-modified spans: (?mods-mods:˙˙˙)

+ 134 Comments: (?# ˙˙˙) # ˙˙˙ (fr om ‘#’ until newline, or end of regex)

Grouping, Capturing, Conditional, and Control

+ 135 Capturing parentheses: (˙˙˙) \1 \2 . . .

+ 136 Gr ouping-only par entheses: (?:˙˙˙)

+ 137 Atomic grouping: (?>˙˙˙)

+ 138 Alter nation: <

+ 139 Gr eedy quantifiers: , + ? {n} {n,} {x,y}

+ 140 Lazy quantifiers: ,? +? ?? {n}? {n,}? {x,y}?

+ 138 Conditional: (?if then <else) – “if ” can be embedded code, lookaround, or (num)

+ 327 Embedded code: (?{˙˙˙})

+ 327 Dynamic regex: (??{˙˙˙})

In Regex Literals Only

+ 289 (c) Variable interpolation: $name @name

+ 290 (c) Fold next character’s case: \l \u

+ 290 (c) Case-folding span: \U \L . . . \E

+ 290 (c) Literal-text span: \Q . . . \E

+ 290 (c) Named Unicode character: \N{name} – optional; see page 290

(c) – may be used within a character class

Perl’s Regex Flavor 287

29 April 2003 20:47

288 Chapter 7: Perl

• Perl’s Unicode support is for Unicode Version 3.2.

• dot tr eats Unicode combining characters as separate characters (+ 107). Also
see !\X " (+ 125).

• !\w ", !\d ", and !\s " fully support Unicode.

• Perl’s !\s " does not match an ASCII vertical tab character (+ 114).

• Unicode Scripts are supported. Script and property names may have the ‘Is’
pr efix, but they don’t requir e it (+ 123). Block names may have the ‘In’ pre-
fix, but requir e it only when a block name conflicts with a script name.

The !\p{L&} " pseudo-pr operty is supported, as well as !\p{Any} ", !\p{All} ",
!\p{Assigned} ", and !\p{Unassigned} ".

The long property names like !\p{Letter} " ar e supported. Names may have a
space, underscore, or nothing between the word parts of a name (for example
!\p{LowercaseRLetter} " may also be written as !\p{LowercaseLetter} " or
!\p{Lowercase Letter} ".) For consistency, I recommend using the long
names as shown in the table on page 121.

• !\p{ˆ˙˙˙}" is the same as !\P{˙˙˙}".

• Word boundaries fully support Unicode.

• Lookar ound may have capturing parentheses.

• Lookbehind is limited to subexpressions that always match fixed-width text.

• The /x modifier recognizes only ASCII whitespace. The /m modifier affects
only newlines, and not the full list of Unicode line terminators.

Not all metacharacters are created equal. Some “regex metacharacters” are not
even supported by the regex engine, but by the prepr ocessing Perl gives to regex
literals.

Regex Operands and Regex Literals
The final items in Table 7-2 are marked “regex literals only.” A regex literal is the
“regex ” part of m/rege x/, and while casual conversation refers to that as “the regu-
lar expression,” the part between the ‘/’ delimiters is actually parsed using its own
unique rules. In Perl jargon, a regex literal is treated as a “regex-awar e double-
quoted string,” and it’s the result of that processing that’s passed to the regex
engine. This regex-literal processing offers special functionality in building the reg-
ular expression.

For example, a regex literal offers variable interpolation. If the variable $num con-
tains 20, the code m/:.{$num}:/ pr oduces the regex !:.{20} :". This way, you can

29 April 2003 20:47

build regular expressions on the fly. Another service given to regex literals is auto-
matic case folding, as with \U˙˙˙\E to ensure letters are uppercased. As a silly
example, m/abc\Uxyz\E/ cr eates the regex !abcXYZ ". This example is silly because
if someone wanted !abcXYZ " they could just type m/abcXYZ/ dir ectly, but its value
becomes apparent when combined with variable interpolation: if the variable $tag

contains the string “title”, the code m{ </\U$tag\E>} pr oduces !</TITLE>".

What’s the opposite of a regex literal? You can also use a string (or any expres-
sion) as a regex operand. For example:

$MatchField = "ˆSubject:"; # Nor mal string assignment

+
+
+

if ($text =˜ $MatchField) {
+
+
+

When $MatchField is used as an operand of =˜, its contents are interpr eted as a
regular expression. That “interpretation” is as a plain vanilla regex, so variable
interpolation and things like \Q˙˙˙\E ar e not supported as they would be for a
regex literal.

Her e’s something interesting: if you replace

$text =˜ $MatchField

with

$text =˜ m/$MatchField/

the result is exactly the same. In this case, there’s a regex literal, but it’s composed
of just one thing — the interpolation of the variable $MatchField. The contents of
a variable interpolated by a regex literal are not tr eated as a regex literal, and so
things like \U˙˙˙\E and $var within the value interpolated are not recognized.
(Details on exactly how regex literals are processed are cover ed on page 292.)

If used more than once during the execution of a program, there are important
ef ficiency issues with regex operands that are raw strings, or that use variable
interpolation. These are discussed starting on page 348.

Features supported by regex literals

The following features are offer ed by regex literals:

• Variable Interpolation Variable refer ences beginning with $ and @ ar e inter-
polated into the value to use for the regex. Those beginning with $ insert a
simple scalar value. Those beginning with @ insert an array or array slice into
the value, with elements separated by spaces (actually, by the contents of the
$" variable, which defaults to a space).

In Perl, ‘%’ intr oduces a hash variable, but inserting a hash into a string doesn’t
make much sense, so interpolation via % is not supported.

Perl’s Regex Flavor 289

29 April 2003 20:47

290 Chapter 7: Perl

• Named Unicode Character s If you have “use charnames ’:full’;” in the
pr ogram, you can refer to Unicode characters by name using the \N{name}

sequence. For instance, \N{LATIN SMALL LETTER SHARP S} matches “ß”. The list of
Unicode characters that Perl understands can be found in Perl’s unicor e dir ec-
tory, in the file UnicodeData.txt. This snippet shows the file’s location:

use Config;
print "$Config{privlib}/unicore/UnicodeData.txt\n";

It’s easy to forget “use charnames ’:full’;”, or the colon before ‘full’, but
if you do, \N{˙˙˙} won’t work. Also, \N{˙˙˙} doesn’t work if you use regex
overloading, described later in this list.

• Case-Folding Prefix The special sequences \l and \u cause the character that
follows to be made lowercase and uppercase, respectively. This is usually
used just before variable interpolation to force the case on the first character
br ought in from the variable. For example, if the variable $title contains
“mr.”, the code m/˙˙˙\u$title˙˙˙/ cr eates the regex ! ˙˙˙Mr.˙˙˙". The same func-
tionality is provided by the Perl functions lcfirst() and ucfirst().

• Case-Folding Span The special sequences \L and \U cause characters that fol-
low to be made lowercase and uppercase, respectively, until the end of the
regex literal, or until the special sequence \E. For example, with the same
$title as before, the code m/˙˙˙\U$title\E˙˙˙/ cr eates the regex ! ˙˙˙MR.˙˙˙ ". The
same functionality is provided by the Perl functions lc() and uc().

You can combine a case-folding prefix with a case-folding span: the code
m/˙˙˙\L \u $title\E˙˙˙/ ensur es ! ˙˙˙Mr.˙˙˙" regardless of the original capitalization.

• Literal-Text Span The sequence \Q “quotes” regex metacharacters (i.e., puts a
backslash in front of them) until the end of the string, or until a \E sequence.
It quotes regex metacharacters, but not quote regex-literal items like variable
interpolation, \U, and, of course, the \E itself. Oddly, it also does not quote
backslashes that are part of an unknown sequence, such as in \F or \H. Even
with \Q˙˙˙\E, such sequences still produce “unrecognized escape” warnings.

In practice, these restrictions are not that big a drawback, as \Q˙˙˙\E is nor-
mally used to quote interpolated text, where it properly quotes all metachar-
acters. For example, if $title contains “Mr.”, the code m/˙˙˙\Q$title\E˙˙˙/

cr eates the regex ! ˙˙˙Mr\.˙˙˙", which is what you’d want if you wanted to match
the text in $title, rather than the regex in $title.

This is particularly useful if you want to incorporate user input into a regex.
For example, m/\Q$UserInput\E/i does a case-insensitive search for the
characters (as a string, not a regex) in $UserInput.

The \Q˙˙˙\E functionality is also provided by the Perl function quotemeta().

29 April 2003 20:47

• Overloading You can pre-pr ocess the literal parts of a regex literal in any
way you like with overloading. It’s an interesting concept, but one with severe
limitations as currently implemented. Overloading is covered in detail, starting
on page 341.

Picking your own regex delimiter s

One of the most bizarre (yet, most useful) aspects of Perl’s syntax is that you can
pick your own delimiters for regex literals. The traditional delimiter is a forward
slash, as with m/˙˙˙/, s/˙˙˙/˙˙˙/, and qr/˙˙˙/, but you can actually pick any non-
alphanumeric, non-whitespace character. Some commonly used examples include:

m!˙˙˙! m{˙˙˙}

m,˙˙˙, m<˙˙˙>

s;˙˙˙;˙˙˙; m[˙˙˙]

qr#˙˙˙# m(˙˙˙)

The four on the right are among the special-case delimiters:

• The four examples on the right side of the list above have differ ent opening
and closing delimiters, and may be nested (that is, may contain copies of the
delimiters so long as the opens and closes pair up properly). Because paren-
theses and square brackets are so prevalent in regular expressions, m(˙˙˙) and
m[˙˙˙] ar e pr obably not as appealing as the others. In particular, with the /x

modifier, something such as the following becomes possible:

m{
regex # comments
here # here

}x;

If one of these pairs is used for the regex part of a substitute, another pair (the
same as the first, or, if you like, differ ent) is used for the replacement string.
Examples include:

s{˙˙˙}{˙˙˙}

s{˙˙˙}!˙˙˙!

s<˙˙˙>(˙˙˙)

s[˙˙˙]/˙˙˙/

If this is done, you can put whitespace and comments between the two pairs
of delimiters. More on the substitution operator’s replacement string operand
can be found on page 319.

• For the match operator only, a question mark as a delimiter has a little-used
special meaning (suppress additional matches) discussed in the section on the
match operator (+ 308).

Perl’s Regex Flavor 291

29 April 2003 20:47

292 Chapter 7: Perl

• As mentioned on page 288, a regex literal is parsed like a “regex-awar e dou-
ble-quoted string.” If a single quote is used as the delimiter, however, those
featur es ar e inhibited. With m’˙˙˙’, variables are not interpolated, and the con-
structs that modify text on the fly (e.g., \Q˙˙˙\E) do not work, nor does the
\N{˙˙˙} construct. m’˙˙˙’ might be convenient for a regex that has many @, to
save having to escape them.

For the match operator only, the m may be omitted if the delimiter is a slash or a
question mark. That is,

$text =˜ m/˙˙˙/;
$text =˜ /˙˙˙/;

ar e the same. My prefer ence is to always explicitly use the m.

How Regex Literals Are Par sed
For the most part, one “just uses” the regex-literal features just discussed, without
the need to understand the exact details of how Perl converts them to a raw regu-
lar expression. Perl is very good at being intuitive in this respect, but there are
times when a more detailed understanding can help. The following lists the order
in which processing appears to happen:

1. The closing delimiter is found, and the modifiers (such as /i, etc.) are read.
The rest of the processing then knows if it’s in /x mode.

2. Variables are interpolated.

3. If regex overloading is in effect, each part of the literal is given to the over-
load routine for processing. Parts are separated by interpolated variables; the
values interpolated are not made available to overloading.

If regex overloading is not in effect, \N{˙˙˙} sequences are processed.

4. Case-folding constructs (e.g., \Q˙˙˙\E) are applied.

5. The result is presented to the regex engine.

This describes how the processing appears to the programmer, but in reality, the
inter nal pr ocessing done by Perl is quite complicated. Even step #2 must under-
stand the regular-expr ession metacharacters, so as not to, for example, treat the
underlined portion of !this$;that$ " as a variable refer ence.

Regex Modifier s
Perl’s regex operators allow regex modifiers, placed after the closing delimiter of
the regex literal (like the i in m/˙˙˙/i, s/˙˙˙/˙˙˙/i, or qr/˙˙˙/i). There are five core
modifiers that all regex operators support, shown in Table 7-3.

The first four, described in Chapter 3, can also be used within a regex itself as a
mode-modifier (+ 133) or mode-modified span (+ 134). When used both within

29 April 2003 20:47

Table 7-3: The Core Modifiers Available to All Regex Operators

/i +109 Ignore letter case during match

/x +110 Free-spacing and comments regex mode

/s +110 Dot-matches-all match mode

/m +111 Enhanced line anchor match mode

/o +348 Compile only once

the regex, and as part of one of the match operators, the in-regex versions take
pr ecedence for the part of the regex they control. (Another way to look at it is that
once a modifier has been applied to some part of a regex, nothing can “unmodify”
that part of a regex.)

The fifth core modifier, /o, has mostly to do with efficiency. It is discussed later in
this chapter, starting on page 348.

If you need more than one modifier, group the letters together and place them in
any order after the closing delimiter, whatever it might be.† Keep in mind that the
slash is not part of the modifier — you can write m/<title>/i as m<<title><i, or
perhaps m{<title>}i, or even m<<title>>i. Nevertheless, when discussing
modifiers, it’s common to always write them with a slash, e.g., “the /i modifier.”

Regex-Related Perlisms
A variety of general Perl concepts pertain to our study of regular expressions. The
next few sections discuss:

• Context An important concept in Perl is that many functions and operators
respond to the context they’r e used in. For example, Perl expects a scalar
value as the conditional of a while loop, but a list of values as the arguments
to a print statement. Since Perl allows expressions to “respond” to the con-
text in which they’re in, identical expressions in each case might produce
wildly differ ent results.

• Dynamic Scope Most programming languages support the concept of local
and global variables, but Perl provides an additional twist with something
known as dynamic scoping. Dynamic scoping temporarily “protects” a global
variable by saving a copy of its value and automatically restoring it later. It’s
an intriguing concept that’s important for us because it affects $1 and other
match-r elated variables.

† Because modifiers can appear in any order, a large portion of a programmer’s time is spent adjusting
the order to achieve maximum cuteness. For example, learn/by/osmosis is valid code (assuming
you have a function called learn). The osmosis ar e the modifiers. Repeating modifiers is allowed,
but meaningless (except for the substitution-operator’s /e modifier, discussed later).

Regex-Related Perlisms 293

29 April 2003 20:47

294 Chapter 7: Perl

Expression Context
The notion of context is important throughout Perl, and in particular, to the match
operator. An expr ession might find itself in one of three contexts, list, scalar, or
void, indicating the type of value expected from the expression. Not surprisingly, a
list context is one where a list of values is expected of an expression. A scalar
context is one where a single value is expected. These two are very common and
of great interest to our use of regular expressions. Void context is one in which no
value is expected.

Consider the two assignments:

$s = expression one;
@a = expression two;

Because $s is a simple scalar variable (it holds a single value, not a list), it expects
a simple scalar value, so the first expression, whatever it may be, finds itself in a
scalar context. Similarly, because @a is an array variable and expects a list of val-
ues, the second expression finds itself in a list context. Even though the two
expr essions might be exactly the same, they might retur n completely differ ent val-
ues, and cause completely differ ent side effects while they’re at it. Exactly what
happens depends on each expression.

For example, the localtime function, if used in a list context, retur ns a list of val-
ues repr esenting the current year, month, date, hour, etc. But if used in a scalar
context, it retur ns a textual version of the current time along the lines of ‘Mon Jan
20 22:05:15 2003’.

As another example, an I/O operator such as <MYDATA> retur ns the next line of the
file in a scalar context, but retur ns a list of all (remaining) lines in a list context.

Like localtime and the I/O operator, many Perl constructs respond to their con-
text. The regex operators do as well — the match operator m/˙˙˙/, for example,
sometimes retur ns a simple true/false value, and sometimes a list of certain match
results. All the details are found later in this chapter.

Contor ting an expression

Not all expressions are natively context-sensitive, so Perl has rules about what
happens when a general expression is used in a context that doesn’t exactly match
the type of value the expression normally retur ns. To make the square peg fit into
a round hole, Perl “contorts” the value to make it fit. If a scalar value is retur ned in
a list context, Perl makes a list containing the single value on the fly. Thus,
@a = 42 is the same as @a = (42).

29 April 2003 20:47

On the other hand, there’s no general rule for converting a list to a scalar. If a lit-
eral list is given, such as with

$var = ($this, &is, 0xA, ’list’);

the comma-operator retur ns the last element, ’list’, for $var. If an array is
given, as with $var = @array, the length of the array is retur ned.

Some words used to describe how other languages deal with this issue are cast,
pr omote, coer ce, and convert, but I feel they are a bit too consistent (boring?) to
describe Perl’s attitude in this respect, so I use “contort.”

Dynamic Scope and Regex Match Effects
Perl’s two types of storage (global and private variables) and its concept of
dynamic scoping ar e important to understand in their own right, but are of partic-
ular interest to our study of regular expressions because of how after-match infor-
mation is made available to the rest of the program. The next sections describe
these concepts, and their relation to regular expressions.

Global and private var iables

On a broad scale, Perl offers two types of variables: global and private. Private
variables are declar ed using my(˙˙˙). Global variables are not declared, but just pop
into existence when you use them. Global variables are always visible from any-
wher e and everywhere within the program, while private variables are visible, lex-
ically, only to the end of their enclosing block. That is, the only Perl code that can
dir ectly access the private variable is the code that falls between the my declaration
and the end of the block of code that encloses the my.

The use of global variables is normally discouraged, except for special cases, such
as the myriad of special variables like $1, $R, and @ARGV. Regular user variables
ar e global unless declared with my, even if they might “look” private. Perl allows
the names of global variables to be partitioned into groups called packages, but
the variables are still global. A global variable $Debug within the package
Acme::Widget has a fully qualified name of $Acme::Widget::Debug, but no
matter how it’s refer enced, it’s still the same global variable. If you use strict;,
all (non-special) globals must either be refer enced via fully-qualified names, or via
a name declared with our (our declar es a name, not a new variable — see the Perl
documentation for details).

Dynamically scoped values

Dynamic scoping is an interesting concept that few programming languages pro-
vide. We’ll see the relevance to regular expressions soon, but in a nutshell, you
can have Perl save a copy of the value of a global variable that you intend to

Regex-Related Perlisms 295

29 April 2003 20:47

296 Chapter 7: Perl

modify within a block, and restor e the original copy automatically at the time
when the block ends. Saving a copy is called cr eating a new dynamic scope, or
localizing.

One reason that you might want to do this is to temporarily update some kind of
global state that’s maintained in a global variable. Let’s say that you’re using a
package, Acme::Widget, and it provides a debugging flag via the global variable
$Acme::Widget::Debug. You can temporarily ensure that debugging is turned on
with code like:

+
+
+

{
local($Acme::Widget::Debug) = 1; # Ensur e it’s turned on
work with Acme::Widget while debugging is on

+
+
+

}
$Acme::Widget::Debug is now back to whatever it had been before

+
+
+

It’s that extremely ill-named function local that creates a new dynamic scope. Let
me say up front that the call to local does not create a new variable. local is an
action, not a declaration. Given a global variable, local does three things:

1. Saves an internal copy of the variable’s value

2. Copies a new value into the variable (either undef, or a value assigned to the
local)

3. Slates the variable to have its original value restor ed when execution runs off
the end of the block enclosing the local

This means that “local” refers only to how long any changes to the variable will
last. The localized value lasts as long as the enclosing block is executing. Even if a
subr outine is called from within that block, the localized value is seen. (After all,
the variable is still a global variable.) The only differ ence fr om a non-localized
global variable is that when execution of the enclosing block finally ends, the pre-
vious value is automatically restor ed.

An automatic save and restor e of a global variable’s value is pretty much all there
is to local. For all the misunderstanding that has accompanied local, it’s no
mor e complex than the snippet on the right of Table 7-4 illustrates.

As a matter of convenience, you can assign a value to local($SomeVar), which is
exactly the same as assigning to $SomeVar in place of the undef assignment. Also,
the parentheses can be omitted to force a scalar context.

As a practical example, consider having to call a function in a poorly written
library that generates a lot of “Use of uninitialized value” warnings. You use Perl’s
-w option, as all good Perl programmers should, but the library author apparently
didn’t. You are exceedingly annoyed by the warnings, but if you can’t change the

29 April 2003 20:47

Table 7-4: The Meaning of local

Nor mal Perl Equivalent Meaning

{ {

local($SomeVar); # save copy my $TempCopy = $SomeVar;
$SomeVar = undef;

$SomeVar = ’My Value’; $SomeVar = ’My Value’;

•
•
•
•

•
•
•

$SomeVar = $TempCopy;
} #Value automatically restor ed }

library, what can you do short of stop using -w altogether? Well, you could set a
local value of $ˆW, the in-code debugging flag (the variable name ˆW can be
either the two characters, caret and ‘W’, or an actual control-W character):

{
local $ˆW = 0; # Ensur e war nings ar e of f.
UnrulyFunction(˙˙˙);

}
Exiting the block restor es the original value of $ˆW.

The call to local saves an internal copy of the value of the global variable $ˆW,
whatever it might be. Then that same $ˆW receives the new value of zero that we
immediately scribble in. When UnrulyFunction is executing, Perl checks $ˆW and
sees the zero we wrote, so doesn’t issue warnings. When the function retur ns, our
value of zero is still in effect.

So far, everything appears to work just as if local isn’t used. However, when the
block is exited right after the subroutine retur ns, the original value of $ˆW is
restor ed. Your change of the value was local, in time, to the life of the block.
You’d get the same effect by making and restoring a copy yourself, as in Table 7-4,
but local conveniently takes care of it for you.

For completeness, let’s consider what happens if I use my instead of local.† Using
my cr eates a new variable with an initially undefined value. It is visible only within
the lexical block it is declared in (that is, visible only by the code written between
the my and the end of the enclosing block). It does not change, modify, or in any
other way refer to or affect other variables, including any global variable of the
same name that might exist. The newly created variable is not visible elsewhere in
the program, including from within UnrulyFunction. In our example snippet, the
new $ˆW is immediately set to zero but is never again used or refer enced, so it’s
pr etty much a waste of effort. (While executing UnrulyFunction and deciding
whether to issue warnings, Perl checks the unrelated global variable $ˆW.)

† Perl doesn’t allow the use of my with this special variable name, so the comparison is only academic.

Regex-Related Perlisms 297

29 April 2003 20:47

298 Chapter 7: Perl

A better analogy: clear transparencies

A useful analogy for local is that it provides a clear transparency (like used with
an overhead projector) over a variable on which you scribble your own changes.
You (and anyone else that happens to look, such as subroutines and signal han-
dlers) will see the new values. They shadow the previous value until the point in
time that the block is finally exited. At that point, the transparency is automatically
removed, in effect, removing any changes that might have been made since the
local.

This analogy is actually much closer to reality than saying “an internal copy is
made.” Using local doesn’t actually make a copy, but instead puts your new
value earlier in the list of those checked whenever a variable’s value is accessed
(that is, it shadows the original). Exiting a block removes any shadowing values
added since the block started. Values are added manually, with local, but here’s
the whole reason we’ve been looking localization: regex side-ef fect var iables have
their values dynamically scoped automatically.

Regex side effects and dynamic scoping

What does dynamic scoping have to do with regular expressions? A lot. A number
of variables like $& (r efers to the text matched) and $1 (r efers to the text matched
by the first parenthesized subexpression) are automatically set as a side effect of a
successful match. They are discussed in detail in the next section. These variables
have their value dynamically scoped automatically upon entry to every block.

To see the benefit of this design choice, realize that each call to a subroutine
involves starting a new block, which means a new dynamic scope is created for
these variables. Because the values before the block are restor ed when the block
exits (that is, when the subroutine retur ns), the subroutine can’t change the values
that the caller sees.

As an example, consider:

if (m/(˙˙˙)/)
{

DoSomeOtherStuff();
print "the matched text was $1.\n";

}

Because the value of $1 is dynamically scoped automatically upon entering each
block, this code snippet neither cares, nor needs to care, whether the function
DoSomeOtherStuff changes the value of $1 or not. Any changes to $1 by the
function are contained within the block that the function defines, or perhaps
within a sub-block of the function. Therefor e, they can’t affect the value this snip-
pet sees with the print after the function retur ns.

29 April 2003 20:47

The automatic dynamic scoping is helpful even when not so apparent:

if ($result =˜ m/ERROR=(.+)/) {
warn "Hey, tell $Config{perladmin} about $1!\n";

}

The standard library module Config defines an associative array %Config, of
which the member $Config{perladmin} holds the email address of the local
Perlmaster. This code could be very surprising if $1 wer e not automatically
dynamically scoped, because %Config is actually a tied variable. That means any
refer ence to it involves a behind-the-scenes subroutine call, and the subroutine
within Config that fetches the appropriate value when $Config{˙˙˙} is used
invokes a regex match. That match lies between your match and your use of $1,
so if $1 wer e not dynamically scoped, it would be destroyed before you used it.
As it is, any changes in $1 during the $Config{˙˙˙} pr ocessing ar e safely hidden
by dynamic scoping.

Dynamic scoping ver sus lexical scoping

Dynamic scoping provides many rewards if used effectively, but haphazard
dynamic scoping with local can create a maintenance nightmare, as readers of a
pr ogram find it difficult to understand the increasingly complex interactions among
the lexically disperse local, subr outine calls, and refer ences to localized variables.

As I mentioned, the my(˙˙˙) declaration creates a private variable with lexical scope.
A private variable’s lexical scope is the opposite of a global variable’s global
scope, but it has little to do with dynamic scoping (except that you can’t local
the value of a my variable). Remember, local is just an action, while my is both an
action and, importantly, a declaration.

Special Var iables Modified by a Match
A successful match or substitution sets a variety of global, read-only variables that
ar e always automatically dynamically scoped. These values never change if a
match attempt is unsuccessful, and are always set when a match is successful.
When appropriate, they are set to the empty string (a string with no characters in
it), or undefined (a “no value” value, similar to, yet testably distinct from, an
empty string). Table 7-5 shows examples.

In more detail, here are the variables set after a match:

$& A copy of the text successfully matched by the regex. This variable (along
with $‘ and $’, described next) is best avoided for perfor mance reasons.
(See the discussion on page 356.) $& is never undefined after a successful
match, although it can be an empty string.

Regex-Related Perlisms 299

29 April 2003 20:47

300 Chapter 7: Perl

Table 7-5: Example Showing After-Match Special Variables

After the match of

"Pi is 3.14159, roughly" =˜ m/\b(
1
(
2
tasty;fattening)

2
;(

3
\d+(

4
\.\d+)

4
?)

3
)
1
\b/;

the following special variables are given the values shown.

Variable Meaning Value

$‘ Text before match Pi is

$& Text matched 3.14159

$’ Text after match , roughly

$1 Text matched within 1st set of parentheses 3.14159

$2 Text matched within 2nd set of parentheses undef

$3 Text matched within 3rd set of parentheses 3.14159

$4 Text matched within 4th set of parentheses .14159

$+ Text from highest-numbered $1, $2, etc. .14159

$ˆN Text from most recently closed $1, $2, etc. 3.14159

@- Array of match-start indices into target text (6, 6, undef, 6, 7)

@+ Array of match-end indices into target text (13, 13, undef, 13, 13)

$‘ A copy of the target text in front of (to the left of) the match’s start. When
used in conjunction with the /g modifier, you might wish $‘ to be the text
fr om start of the match attempt, but it’s the text from the start of the whole
string, each time. $‘ is never undefined after a successful match.

$’ A copy of the target text after (to the right of) the successfully matched text.
$’ is never undefined after a successful match. After a successful match, the
string "$‘$&$’" is always a copy of the original target text.†

$1, $2, $3, etc.
The text matched by the 1st, 2nd, 3rd, etc., set of capturing parentheses. (Note
that $0 is not included here — it is a copy of the script name and not related
to regular expressions.) These are guaranteed to be undefined if they refer
to a set of parentheses that doesn’t exist in the regex, or to a set that wasn’t
actually involved in the match.

These variables are available after a match, including in the replacement
operand of s/˙˙˙/˙˙˙/. They can also be used within the code parts of an
embedded-code or dynamic-regex construct (+ 327). Otherwise, it makes
little sense to use them within the regex itself. (That’s what !\1 " and friends
ar e for.) See “Using $1 Within a Regex?” on page 303.

The differ ence between !(\w+)" and !(\w)+ " can be seen in how $1 is set.
Both regexes match exactly the same text, but they differ in what

† Actually, if the original target is undefined, but the match successful (unlikely, but possible),
"$‘$&$’" would be an empty string, not undefined. This is the only situation where the two differ.

29 April 2003 20:47

subexpr ession falls within the parentheses. Matching against the string
‘tubby’, the first one results in $1 having the full ‘tubby’, while the latter
one results in it having only ‘y’ : with !(\w)+ ", the plus is outside the paren-
theses, so each iteration causes them to start capturing anew, leaving only
the last character in $1.

Also, note the differ ence between !(x)? " and !(x?)". With the former, the
par entheses and what they enclose are optional, so $1 would be either ‘x’
or undefined. But with !(x?) ", the parentheses enclose a match — what is
optional are the contents. If the overall regex matches, the contents matches
something, although that something might be the nothingness !x? " allows.
Thus, with !(x?) " the possible values of $1 ar e ‘x’ and an empty string. The
following table shows some examples:

Sample Match Resulting $1 Sample Match Resulting $1

"::" =˜ m/:(A?):/ "::" =˜ m/:(\w+):/empty string empty string

"::" =˜ m/:(A)?:/ undefined "::" =˜ m/:(\w)+:/ undefined

":A:" =˜ m/:(A?):/ A ":Word:" =˜ m/:(\w+):/ Word

":A:" =˜ m/:(A)?:/ A ":Word:" =˜ m/:(\w)+:/ d

When adding parentheses just for capturing, as was done here, the decision
of which to use is dependent only upon the semantics you want. In these
examples, since the added parentheses have no affect on the overall match
(they all match the same text), the only differ ences among them is in the
side effect of how $1 is set.

$+ This is a copy of the highest numbered $1, $2, etc. explicitly set during the
match. This might be useful after something like

$url =˜ m{
href \s+ = \s+ # Match the "href = " part, then the value . . .
(?: "([ˆ"]+)" # a double-quoted value, or . . .

; ’([ˆ’]+)’ # a single-quoted value, or . . .
; ([ˆ’"<>]+)) # an unquoted value.

}ix;

to access the value of the href. Without $+, you would have to check each
of $1, $2, and $3 and use the one that’s not undefined.

If there are no capturing parentheses in the regex (or none are used during
the match), it becomes undefined.

$ˆN A copy of the most-recently-closed $1, $2, etc. explicitly set during the
match (i.e., the $1, $2, etc., associated with the final closing parenthesis). If
ther e ar e no capturing parentheses in the regex (or none used during the
match), it becomes undefined. A good example of its use is given starting
on page 344.

Regex-Related Perlisms 301

29 April 2003 20:47

302 Chapter 7: Perl

@- and @+

These are arrays of starting and ending offsets (string indices) into the target
text. They might be a bit confusing to work with, due to their odd names.
The first element of each refers to the overall match. That is, the first ele-
ment of @-, accessed with $-[0], is the offset from the beginning of the tar-
get string to where the match started. Thus, after

$text = "Version 6 coming soon?";
+
+
+

$text =˜ m/\d+/;

the value of $-[0] is 8, indicating that the match started eight characters
into the target string. (In Perl, indices are counted started at zero.)

The first element of @+, accessed with $+[0], is the offset to the end of the
match. With this example, it contains 9, indicating that the overall match
ended nine characters from the start of the string. So, using them together,
substr($text, $-[0], $+[0] - $-[0]) is the same as $& if $text has not
been modified, but doesn’t have the perfor mance penalty that $& has
(+ 356). Here’s an example showing a simple use of @-:

1 while $line =˜ s/\t/’ ’ x (8 - $-[0] % 8)/e;

Given a line of text, it replaces tabs with the appropriate number of spaces.†

Subsequent elements of each array are the starting and ending offsets for
captur ed gr oups. The pair $-[1] and $+[1] ar e the offsets into the target
text where $1 was taken, $-[2] and $+[2] for $2, and so on.

$ˆR This variable holds the resulting value of the most recently executed
embedded-code construct, except that an embedded-code construct used as
the if of a !(? if then < else)" conditional (+ 138) does not set $ˆR. When used
within a regex (within the code parts of embedded-code and dynamic-regex
constructs; + 327), it is automatically localized to each part of the match, so
values of $ˆR set by code that gets “unmatched” due to backtracking are
pr operly forgotten. Put another way, it has the “most recent” value with
respect to the match path that got the engine to the current location.

When a regex is applied repeatedly with the /g modifier, each iteration sets these
variables afresh. That’s why, for instance, you can use $1 within the replacement
operand of s/˙˙˙/˙˙˙/g and have it repr esent a new slice of text with each match.

† This tab-replacement snippet has the limitation that it works only with “traditional” western text. It
doesn’t produce correct results with wide characters like M, which is one character but takes up two
spaces, nor some Unicode renditions of accented characters like à (+ 107).

29 April 2003 20:47

Using $1 within a regex?

The Perl man page makes a concerted effort to point out that !\1 " is not available
as a backrefer ence outside of a regex. (Use the variable $1 instead.) The variable
$1 refers to a string of static text matched during some previously completed suc-
cessful match. On the other hand, !\1 " is a true regex metacharacter that matches
text similar to that matched within the first parenthesized subexpression at the time
that the regex-dir ected NFA reaches the !\1 ". What it matches might change over the
course of an attempt as the NFA tracks and backtracks in search of a match.

The opposite question is whether $1 and other after-match variables are available
within a regex operand. They are commonly used within the code parts of embed-
ded-code and dynamic-regex constructs (+ 327), but otherwise make little sense
within a regex. A $1 appearing in the “regex part” of a regex operand is treated
exactly like any other variable: its value is interpolated before the match or substi-
tution operation even begins. Thus, as far as the regex is concerned, the value of
$1 has nothing to do with the current match, but rather is left over from some pre-
vious match.

The qr/˙˙˙/ Operator and Regex Objects
Intr oduced briefly in Chapter 2 and Chapter 6 (+ 76; 277), qr/˙˙˙/ is a unary oper-
ator that takes a regex operand and retur ns a regex object. The retur ned object can
then be used as a regex operand of a later match, substitution, or split, or can
be used as a sub-part of a larger regex.

Regex objects are used primarily to encapsulate a regex into a unit that can be
used to build larger expressions, and for efficiency (to gain control over exactly
when a regex is compiled, discussed later).

As described on page 291, you can pick your own delimiters, such as qr{˙˙˙} or
qr!˙˙˙!. It supports the core modifiers /i, /x, /s, /m, and /o.

Building and Using Regex Objects
Consider the following, with expressions adapted from Chapter 2 (+ 76):

my $HostnameRegex = qr/[-a-z0-9]+(?:\.[-a-z0-9]+)+\.(?:com;edu;info)/i;

my $HttpUrl = qr{
http:// $HostnameRegex \b # Hostname
(?:

/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # Optional path
(?<![.,?!]) # Not allowed to end with [.,?!]

)?
}ix;

The qr/˙˙˙/ Operator and Regex Objects 303

29 April 2003 20:47

304 Chapter 7: Perl

The first line encapsulates our simplistic hostname-matching regex into a regular-
expr ession object, and saves it to the variable $HostnameRegex. The next lines
then use that in building a regex object to match an HT TP URL, saved to the vari-
able $HttpUrl. Once constructed, they can be used in a variety of ways, such as

if ($text =˜ $HttpUrl) {
print "There is a URL\n";

}

to merely inspect, or perhaps

while ($text =˜ m/($HttpUrl)/g) {
print "Found URL: $1\n";

}

to find and display all HT TP URLs.

Now, consider changing the definition of $HostnameRegex to this, derived from
Chapter 5 (+ 205):

my $HostnameRegex = qr{
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;˙˙˙;aero;[a-z][a-z])
}xi;

This is intended to be used in the same way as our previous version (for example,
it doesn’t have a leading !ˆ " and trailing !$ ", and has no capturing parentheses), so
we’r e fr ee to use it as a drop-in replacement. Doing so gives us a stronger
$HttpUrl.

Match modes (or lack thereof) are ver y sticky

qr/˙˙˙/ supports the core modifiers described on page 292. Once a regex object is
built, the match modes of the regex it repr esents can’t be changed, even if that
regex object is used inside a subsequent m/˙˙˙/ that has its own modifiers. For
example, the following does not work:

my $WordRegex = qr/\b \w+ \b/; # Oops, missing the /x modifier!

+
+
+

if ($text =˜ m/ˆ($WordRegex)/x) {
print "found word at start of text: $1\n";

}

The /x modifiers are used here ostensibly to modify how $WordRegex is applied,
but this does not work because the modifiers (or lack thereof) are locked in by the
qr/˙˙˙/ when $WordRegex is cr eated. So, the appropriate modifiers must be used
at that time.

29 April 2003 20:47

Her e’s a working version of the previous example:

my $WordRegex = qr/\b \w+ \b/x; # This works!

+
+
+

if ($text =˜ m/ˆ($WordRegex)/) {
print "found word at start of text: $1\n";

}

Now, contrast the original snippet with the following:

my $WordRegex = ’\b \w+ \b’; # Nor mal string assignment

+
+
+

if ($text =˜ m/ˆ($WordRegex)/x) {
print "found word at start of text: $1\n";

}

Unlike the original, this one works even though no modifiers are associated with
$WordRegex when it is created. That’s because in this case, $WordRegex is a nor-
mal variable holding a simple string that is interpolated into the m/˙˙˙/ regex literal.
Building up a regex in a string is much less convenient than using regex objects,
for a variety of reasons, including the problem in this case of having to remember
that this $WordRegex must be applied with /x to be useful.

Actually, you can solve that problem even when using strings by putting the regex
into a mode-modified span (+ 134) when creating the string:

my $WordRegex = ’(?x:\b \w+ \b)’; # Nor mal string assignment

+
+
+

if ($text =˜ m/ˆ($WordRegex)/) {
print "found word at start of text: $1\n";

}

In this case, after the m/˙˙˙/ regex literal interpolates the string, the regex engine is
pr esented with !ˆ((?x:\b \w+ \b))", which works the way we want.

In fact, this is what logically happens when a regex object is created, except that a
regex object always explicitly defines the “on” or “off” for each of the /i, /x, /m,
and /s modes. Using qr/\b \w+ \b/x cr eates !(?x-ism:\b \w+ \b)". Notice how
the mode-modified span, !(?x-ism:˙˙˙)", has /x tur ned on, while /i, /s, and /m ar e
tur ned of f. Thus, qr/˙˙˙/ always “locks in” each mode, whether given a modifier
or not.

Viewing Regex Objects
The previous paragraph talks about how regex objects logically wrap their regular
expr ession with mode-modified spans like !(?x-ism:˙˙˙)". You can actually see this
for yourself, because if you use a regex object where Perl expects a string, Perl
kindly gives a textual repr esentation of the regex it repr esents. For example:

% perl -e ’print qr/\b \w+ \b/x, "\n"’
(?x-ism:\b \w+ \b)

The qr/˙˙˙/ Operator and Regex Objects 305

29 April 2003 20:47

306 Chapter 7: Perl

Her e’s what we get when we print the $HttpUrl fr om page 304:

(?ix-sm:
http:// (?ix-sm:
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;˙˙˙;aero;[a-z][a-z])
) \b # hostname

(?:
/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # Optional path

(?<![.,?!]) # Not allowed to end with [.,?!]
)?

)

The ability to turn a regex object into a string is very useful for debugging.

Using Regex Objects for Efficienc y
One of the main reasons to use regex objects is to gain control, for efficiency rea-
sons, of exactly when Perl compiles a regex to an internal form. The general issue
of regex compilation was discussed briefly in Chapter 6, but the more complex
Perl-r elated issues, including regex objects, are discussed in “Regex Compilation,
the /o Modifier, qr/˙˙˙/, and Efficiency” (+ 348).

The Match Operator
The basic match

$text =˜ m/regex/

is the core of Perl regular-expr ession use. In Perl, a regular-expr ession match is an
operator that takes two operands, a target string operand and a regex operand,
and retur ns a value.

How the match is carried out, and what kind of value is retur ned, depend on the
context the match is used in (+ 294), and other factors. The match operator is
quite flexible — it can be used to test a regular expression against a string, to pluck
data from a string, and even to parse a string part by part in conjunction with
other match operators. While powerful, this flexibility can make mastering it more
complex. Some areas of concern include:

• How to specify the regex operand

• How to specify match modifiers, and what they mean

• How to specify the target string to match against

• A match’s side effects

• The value retur ned by a match

• Outside influences that affect the match

29 April 2003 20:47

The general form of a match is:

StringOperand =˜ RegexOperand

Ther e ar e various shorthand forms, and it’s interesting to note that each part is
optional in one shorthand form or another. We’ll see examples of all forms
thr oughout this section.

Match’s Regex Operand
The regex operand can be a regex literal or a regex object. (Actually, it can be a
string or any arbitrary expression, but there is little benefit to that.) If a regex lit-
eral is used, match modifiers may also be specified.

Using a regex literal

The regex operand is most often a regex literal within m/˙˙˙/ or just /˙˙˙/. The lead-
ing m is optional if the delimiters for the regex literal are forward slashes or ques-
tion marks (delimiters of question marks are special, discussed in a bit). For
consistency, I prefer to always use the m, even when it’s not requir ed. As described
earlier, you can choose your own delimiters if the m is present (+ 291).

When using a regex literal, you can use any of the core modifiers described on
page 292. The match operator also supports two additional modifiers, /g and /c,
discussed in a bit.

Using a regex object

The regex operand can also be a regex object, created with qr/˙˙˙/. For example:

my $regex = qr/regex/;
+
+
+

if ($text =˜ $regex) {
+
+
+

You can use m/˙˙˙/ with a regex object. As a special case, if the only thing within
the “regex literal” is the interpolation of a regex object, it’s exactly the same as
using the regex object alone. This example’s if can be written as:

if ($text =˜ m/$regex/) {
+
+
+

This is convenient because it perhaps looks more familiar, and also allows you to
use the /g modifier with a regex object. (You can use the other modifiers that
m/˙˙˙/ supports as well, but they’re meaningless in this case because they can
never override the modes locked in a regex object + 304.)

The Match Operator 307

29 April 2003 20:47

308 Chapter 7: Perl

The default regex

If no regex is given, such as with m// (or with m/$SomeVar/ wher e the variable
$SomeVar is empty or undefined), Perl reuses the regular expression most recently
used successfully within the enclosing dynamic scope. This used to be useful for
ef ficiency reasons, but is now obsolete with the advent of regex objects (+ 303).

Special match-once ?˙˙˙?

In addition to the special cases for the regex-literal delimiters described earlier, the
match operator treats the question mark as a special delimiter. The use of a ques-
tion mark as the delimiter (as with m?˙˙˙?) enables a rather esoteric feature such
that after the successfully m?˙˙˙? matches once, it cannot match again until the
function reset is called in the same package. Quoting from the Perl Version 1
manual page, this features was “a useful optimization when you only want to see
the first occurrence of something in each of a set of files,” but for whatever reason,
I have never seen it used in modern Perl.

The question mark delimiters are a special case like the forward slash delimiters,
in that the m is optional: ?˙˙˙? by itself is treated as m?˙˙˙?.

Specifying the Match Target Operand
The normal way to indicate “this is the string to search” is using =˜, as with
$text =˜ m/˙˙˙/. Remember that =˜ is not an assignment operator, nor is it a com-
parison operator. It is mer ely a funny-looking way of linking the match operator
with one of its operands. (The notation was adapted from awk.)

Since the whole “ expr =˜ m/˙˙˙/ ” is an expr ession itself, you can use it wherever
an expression is allowed. Some examples (each separated by a wavy line):

$text =˜ m/˙˙˙/; # Just do it, presumably, for the side effects.

if ($text =˜ m/˙˙˙/) {
Do code if match is successful

+
+
+

$result = ($text =˜ m/˙˙˙/); # Set $result to result of match against $text
$result = $text =˜ m/˙˙˙/ ; # Same thing; =˜ has higher precedence than =

$copy = $text; # Copy $text to $copy ...
$copy =˜ m/˙˙˙/; # ... and perfor m match on $copy

($copy = $text) =˜ m/˙˙˙/; # Same thing in one expression

The default target

If the target string is the variable $R, you can omit the “ $Q =˜ ” parts altogether. In
other words, the default target operand is $R.

29 April 2003 20:47

Something like

$text =˜ m/regex/;

means “ Apply regex to the text in $text, ignoring the retur n value but doing the
side effects. ” If you forget the ‘˜’, the resulting

$text = m/regex/;

becomes “Apply regex to the text in $R, do the side effects, and retur n a true or
false value that is then assigned to $text.” In other words, the following are
the same:

$text = m/regex/;
$text = ($R =˜ m/regex/);

Using the default target string can be convenient when combined with other con-
structs that have the same default (as many do). For example, this is a common
idiom:

while (<>)
{

if (m/˙˙˙/) {
+
+
+

} elsif (m/˙˙˙/) {
+
+
+

In general, though, relying on default operands can make your code less
appr oachable by less experienced programmers.

Negating the sense of the match

You can also use !˜ instead of =˜ to logically negate the sense of the retur n value.
(Retur n values and side effects are discussed soon, but with !˜, the retur n value is
always a simple true or false value.) The following are identical:

if ($text !˜ m/˙˙˙/)

if (not $text =˜ m/˙˙˙/)

unless ($text =˜ m/˙˙˙/)

Personally, I prefer the middle form. With any of them, the normal side effects,
such as the setting of $1 and the like, still happen. !˜ is merely a convenience in
an “if this doesn’t match” situation.

Different Uses of the Match Operator
You can always use the match operator as if it retur ns a simple true/false indicat-
ing the success of the match, but there are ways you can get additional informa-
tion about a successful match, and to work in conjunction with other match
operators. How the match operator works depends primarily on the context in
which it’s used (+ 294), and whether the /g modifier has been applied.

The Match Operator 309

29 April 2003 20:47

310 Chapter 7: Perl

Nor mal “does this match?”—scalar context without /g

In a scalar context, such as the test of an if, the match operator retur ns a simple
true or false:

if ($target =˜ m/˙˙˙/) {
. . . processing after successful match . . .

+
+
+

} else {
. . . processing after unsuccessful match . . .

+
+
+

}

You can also assign the result to a scalar for inspection later:

my $success = $target =˜ m/˙˙˙/;
+
+
+

if ($success) {
+
+
+

}

Nor mal “pluck data from a string”—list context, without /g

A list context without /g is the normal way to pluck information from a string. The
retur n value is a list with an element for each set of capturing parentheses in the
regex. A simple example is processing a date of the form 69/8/31, using:

my ($year, $month, $day) = $date =˜ m{ˆ (\d+) / (\d+) / (\d+) $}x;

The three matched numbers are then available in the three variables (and $1, $2,
and $3 as well). There is one element in the retur n-value list for each set of cap-
turing parentheses, or an empty list upon failure.

It is possible for a set of capturing parentheses to not participate in the final suc-
cess of a match. For example, one of the sets in m/(this)<(that)/ is guaranteed
not to be part of the match. Such sets retur n the undefined value undef. If ther e
ar e no sets of capturing parentheses to begin with, a successful list-context match
without /g retur ns the list (1).

A list context can be provided in a number of ways, including assigning the results
to an array, as with:

my @parts = $text =˜ m/ˆ(\d+)-(\d+)-(\d+)$/;

If you’re assigning to just one scalar variable, take care to provide a list context to
the match if you want the captured parts instead of just a Boolean indicating the
success. Compare the following tests:

my ($word) = $text =˜ m/(\w+)/;
my $success = $text =˜ m/(\w+)/;

The parentheses around the variable in the first example cause its my to provide a
list context to the assignment (in this case, to the match). The lack of parentheses

29 April 2003 20:47

in the second example provides a scalar context to the match, so $success

mer ely gets a true/false result.

This example shows a convenient idiom:

if (my ($year, $month, $day) = $date =˜ m{ˆ (\d+) / (\d+) / (\d+) $}x) {
Pr ocess for when we have a match: $year and such are available

} else {
her e if no match . . .

}

The match is in a list context (provided by the “my (˙˙˙) =”), so the list of variables
is assigned their respective $1, $2, etc., if the match is successful. However, once
that’s done, since the whole combination is in the scalar context provided by the
if conditional, Perl must contort the list to a scalar. To do that, it takes the num-
ber of items in the list, which is conveniently zero if the match wasn’t successful,
and non-zero (i.e., true) if it was.

“Pluck all matches”—list context, with the /g modifier

This useful construct retur ns a list of all text matched within capturing parentheses
(or if there are no capturing parentheses, the text matched by the whole expres-
sion), not only for one match, as in the previous section, but for all matches in the
string.

A simple example is the following, to fetch all integers in a string:

my @nums = $text =˜ m/\d+/g;

If $text contains an IP addr ess like ‘64.156.215.240’, @nums then receives four
elements, ‘64’, ‘156’, ‘215’, and ‘240’. Combined with other constructs, here’s an
easy way to turn an IP addr ess into an eight-digit hexadecimal number such as
‘409cd7f0’, which might be convenient for creating compact log files:

my $hexRip = join ’’, map { sprintf("%02x", $R) } $ip =˜ m/\d+/g;

You can convert it back with a similar technique:

my $ip = join ’.’, map { hex($R) } $hexRip =˜ m/../g

As another example, to match all floating-point numbers on a line, you might use:

my @nums = $text =˜ m/\d+(?:\.\d+)?;\.\d+/g;

The use of non-capturing parentheses here is very important, since adding captur-
ing ones changes what is retur ned. Her e’s an example showing how one set of
capturing parentheses can be useful:

my @Tags = $Html =˜ m/<(\w+)/g;

This sets @Tags to the list of HTML tags, in order, found in $Html, assuming it con-
tains no stray ‘<’ characters.

The Match Operator 311

29 April 2003 20:47

312 Chapter 7: Perl

Her e’s an example with multiple sets of capturing parentheses: consider having
the entire text of a Unix mailbox alias file in a single string, where logical lines
look like:

alias Jeff jfriedl@regex.info
alias Perlbug perl5-porters@perl.org
alias Prez president@whitehouse.gov

To pluck an alias and full address from one of the logical lines, you can use
m/ˆalias\s+(\S+)\s+(.+)/m (without /g). In a list context, this retur ns a list of
two elements, such as (’Jeff’, ’jfriedl@regex.info’). Now, to match all
such sets, add /g. This retur ns a list like:

(’Jeff’, ’jfriedl@regex.info’, ’Perlbug’,
’perl5-porters@perl.org’, ’Prez’, ’president@whitehouse.gov’)

If the list happens to fit a key/value pair pattern as in this example, you can actu-
ally assign it directly to an associative array. After running

my %alias = $text =˜ m/ˆalias\s+(\S+)\s+(.+)/mg;

you can access the full address of ‘Jeff’ with $alias{Jeff}.

Iterative Matching: Scalar Context, with /g
A scalar-context m/˙˙˙/g is a special construct quite differ ent fr om the others. Like a
nor mal m/˙˙˙/, it does just one match, but like a list-context m/˙˙˙/g, it pays atten-
tion to where previous matches occurred. Each time a scalar-context m/˙˙˙/g is
reached, such as in a loop, it finds the “next” match. If it fails, it resets the “current
position,” causing the next application to start again at the beginning of the string.

Her e’s a simple example:

$text = "WOW! This is a SILLY test.";

$text =˜ m/\b([a-z]+\b)/g;
print "The first all-lowercase word: $1\n";

$text =˜ m/\b([A-Z]+\b)/g;
print "The subsequent all-uppercase word: $1\n";

With both scalar matches using the /g modifier, it results in:

The first all-lowercase word: is
The subsequent all-uppercase word: SILLY

The two scalar-/g matches work together: the first sets the “current position” to
just after the matched lowercase word, and the second picks up from there to find
the first uppercase word that follows. The /g is requir ed for either match to pay
attention to the “current position,” so if either didn’t have /g, the second line
would refer to ‘WOW’.

29 April 2003 20:47

A scalar context /g match is quite convenient as the conditional of a while loop.
Consider:

while ($ConfigData =˜ m/ˆ(\w+)=(.,)/mg) {
my($key, $value) = ($1, $2);

+
+
+

}

All matches are eventually found, but the body of the while loop is executed
between the matches (well, after each match). Once an attempt fails, the result is
false and the while loop finishes. Also, upon failure, the /g state is reset, which
means that the next /g match starts over at the start of the string.

Compar e

while ($text =˜ m/(\d+)/) { # danger ous!
print "found: $1\n";

}

and:

while ($text =˜ m/(\d+)/g) {
print "found: $1\n";

}

The only differ ence is /g, but it’s a huge differ ence. If $text contained, say, our
earlier IP example, the second prints what we want:

found: 64
found: 156
found: 215
found: 240

The first, however, prints “found: 64” over and over, for ever. Without the /g, the
match is simply “find the first !(\d+) " in $text,” which is ‘64’ no matter how many
times it’s checked. Adding the /g to the scalar-context match turns it into “find the
next !(\d+) " in $text,” which finds each number in turn.

The “cur rent match location” and the pos() function

Every string in Perl has associated with it a “current match location” at which the
transmission first attempts the match. It’s a property of the string, and not associ-
ated with any particular regular expression. When a string is created or modified,
the “current match location” starts out at the beginning of the string, but when a
/g match is successful, it’s left at the location where the match ended. The next
time a /g match is applied to the string, the match begins inspecting the string at
that same “current match location.”

The Match Operator 313

29 April 2003 20:47

314 Chapter 7: Perl

You have access to the target string’s “current match location” via the pos(˙˙˙)

function. For example:

my $ip = "64.156.215.240";
while ($ip =˜ m/(\d+)/g) {

printf "found ’$1’ ending at location %d\n", pos($ip);
}

This produces:

found ’64’ ending at location 2
found ’156’ ending at location 6
found ’215’ ending at location 10
found ’240’ ending at location 14

(Remember, string indices are zer o-based, so “location 2” is just before the 3rd

character into the string.) After a successful /g match, $+[0] (the first element of
@+ + 302) is the same as the pos of the target string.

The default argument to the pos() function is the same default argument for the
match operator: the $R variable.

Pre-setting a string’s pos

The real power of pos() is that you can write to it, to tell the regex engine where
to start the next match (if that next match uses /g, of course). For example, the
web server logs I work with at Yahoo! are in a custom format that contains 32
bytes of fixed-width data, followed by the page being requested, followed by
other information. One way to pick out the page is to use !ˆ.{32} " to skip over the
fixed-width data:

if ($logline =˜ m/ˆ.{32}(\S+)/) {
$RequestedPage = $1;

}

This brute-force method isn’t elegant, and forces the regex engine to work to skip
the first 32 bytes. That’s less efficient and less clear than doing it explicitly ourself:

pos($logline) = 32; # The page starts at the 32nd character, so start the next match there . . .
if ($logline =˜ m/(\S+)/g) {

$RequestedPage = $1;
}

This is better, but isn’t quite the same. It has the regex start wher e we want it to
start, but doesn’t requir e a match at that position the way the original does. If for
some reason the 32nd character can’t be matched by !\S ", the original version cor-
rectly fails, but the new version, without anything to anchor it to a particular posi-
tion in the string, is subject to the transmission’s bump-along. Thus, it could retur n,
in error, a match of !\S+ " fr om later in the string. Luckily, the next section shows
that this is an easy problem to fix.

29 April 2003 20:47

Using !\G "

!\G " is the “anchor to where the previous match ended” metacharacter. It’s exactly
what we need to solve the problem in the previous section:

pos($logline) = 32; # The page starts at the 32nd character, so start the next match there . . .
if ($logline =˜ m/\G(\S+)/g) {

$RequestedPage = $1;
}

!\G " tells the transmission “don’t bump-along with this regex — if you can’t match
successfully right away, fail.”

Ther e ar e discussions of !\G " in previous chapters: see the general discussion in
Chapter 3 (+ 128), and the extended example in Chapter 5 (+ 212).

Note that Perl’s !\G " is restricted in that it works predictably only when it is the first
thing in the regex, and there is no top-level alternation. For example, in Chapter 6
when the CSV example is being optimized (+ 271), the regex begins with
!\G(?: ̂;,)˙˙˙ ". Because there’s no need to check for !\G " if the more restrictive !ˆ "

matches, you might be tempted to change this to !(?: ̂;\G,)˙˙˙ ". Unfortunately, this
doesn’t work in Perl; the results are unpr edictable.†

“Tag-team” matching with /gc

Nor mally, a failing m/˙˙˙/g match attempt resets the target string’s pos to the start
of the string, but adding the /c modifier to /g intr oduces a special twist, causing a
failing match to not reset the target’s pos. (/c is never used without /g, so I tend
to refer to it as /gc.)

m/˙˙˙/gc is most commonly used in conjunction with !\G " to create a “lexer” that
tokenizes a string into its component parts. Here’s a simple example to tokenize
the HTML in variable $html:

while (not $html =˜ m/\G\z/gc) # While we haven’t worked to the end . . .
{

if ($html =˜ m/\G(<[ˆ>]+>)/xgc) { print "TAG: $1\n" }
elsif ($html =˜ m/\G(&\w+;)/xgc) { print "NAMED ENTITY: $1\n" }
elsif ($html =˜ m/\G(&\#\d+;)/xgc) { print "NUMERIC ENTITY: $1\n" }
elsif ($html =˜ m/\G([ˆ<>&\n]+)/xgc) { print "TEXT: $1\n" }
elsif ($html =˜ m/\G \n /xgc) { print "NEWLINE\n" }
elsif ($html =˜ m/\G(.)/xgc) { print "ILLEGAL CHAR: $1\n" }
else {

die "$0: oops, this shouldn’t happen!";
}

}

† This would work with most other flavors that support !\G ", but even so, I would generally not recom-
mend using it, as the optimization gains by having !\G " at the start of the regex usually outweigh the
small gain by not testing !\G " an extra time (+ 245).

The Match Operator 315

29 April 2003 20:47

316 Chapter 7: Perl

The bold part of each regex matches one type of HTML construct. Each is checked
in turn starting from the current position (due to /gc), but can match only at the
curr ent position (due to !\G "). The regexes are checked in order until the construct
at that current position has been found and reported. This leaves $html’s pos at
the start of the next token, which is found during the next iteration of the loop.

The loop ends when m/\G\z/gc is able to match, which is when the current posi-
tion (!\G ") has worked its way to the very end of the string (!\z ").

An important aspect of this approach is that one of the tests must match each time
thr ough the loop. If one doesn’t (and if we don’t abort), there would be an infinite
loop, since nothing would be advancing or resetting $html’s pos. This example
has a final else clause that will never be invoked as the program stands now, but if
we were to edit the program (as we will soon), we could perhaps introduce a mis-
take, so keeping the else clause is prudent. As it is now, if the data contains a
sequence we haven’t planned for (such as ‘<>’), it generates one warning message
per unexpected character.

Another important aspect of this approach is the ordering of the checks, such as
the placement of !\G(.) " as the last check. Or, consider extending this application
to recognize <script> blocks with:

$html =˜ m/\G (<script[ˆ>],>.,?</script>)/xgcsi

(Wow, we’ve used five modifiers!) To work properly, this must be inserted into the
pr ogram befor e the currently-first !<[ˆ>]+>". Otherwise, !<[ˆ>]+> " would match the
opening <script> tag “out from under” us.

Ther e’s a somewhat more advanced example of /gc in Chapter 3 (+ 130).

Pos-related summary

Her e’s a summary of how the match operator interacts with the target string’s pos:

Type of match Where match star ts pos upon success pos upon failure

m/˙˙˙/ start of string (pos ignor ed) reset to undef reset to undef

m/˙˙˙/g starts at target’s pos set to end of match reset to undef

m/˙˙˙/gc starts at target’s pos set to end of match left unchanged

Also, modifying a string in any way causes its pos to be reset to undef (which is
the initial value, meaning the start of the string).

The Match Operator’s Environmental Relations
The following sections summarize what we’ve seen about how the match operator
influences the Perl environment, and vice versa.

29 April 2003 20:47

The match operator’s side effects

Often, the side effects of a successful match are mor e important than the actual
retur n value. In fact, it is quite common to use the match operator in a void con-
text (i.e., in such a way that the retur n value isn’t even inspected), just to obtain
the side effects. (In such a case, it acts as if given a scalar context.) The following
summarizes the side effects of a successful match attempt:

• After-match variables like $1 and @+ ar e set for the remainder of the current
scope (+ 299).

• The default regex is set for the remainder of the current scope (+ 308).

• If m?˙˙˙? matches, it (the specific m?˙˙˙? operator) is marked as unmatchable, at
least until the next call of reset in the same package (+ 308).

Again, these side effects occur only with a match that is successful—an unsuccess-
ful match attempt has no influence on them. However, the following side effects
happen with any match attempt:

• pos is set or reset for the target string (+ 313).

• If /o is used, the regex is “fused” to the operator so that re-evaluation does
not occur (+ 352).

Outside influences on the match operator

What a match operator does is influenced by more than just its operands and
modifiers. This list summarizes the outside influences on the match operator:

context
The context that a match operator is applied in (scalar, array, or void) has a
large influence on how the match is perfor med, as well as on its retur n
value and side effects.

pos(˙˙˙)

The pos of the target string (set explicitly or implicitly by a previous match)
indicates where in the string the next /g-gover ned match should begin. It is
also where !\G " matches.

default regex
The default regex is used if the provided regex is empty (+ 308).

study

It has no effect on what is matched or retur ned, but if the target string has
been studied, the match might be faster (or slower). See “The Study Func-
tion” (+ 359).

m?˙˙˙? and reset

The invisible “has/hasn’t matched” status of m?˙˙˙? operators is set when
m?˙˙˙? matches or reset is called (+ 308).

The Match Operator 317

29 April 2003 20:47

318 Chapter 7: Perl

Keeping your mind in context (and context in mind)

Befor e leaving the match operator, I’ll put a question to you. Particularly when
changing among the while, if, and foreach contr ol constructs, you really need
to keep your wits about you. What do you expect the following to print?

while ("Larry Curly Moe" =˜ m/\w+/g) {
print "WHILE stooge is $&.\n";

}
print "\n";

if ("Larry Curly Moe" =˜ m/\w+/g) {
print "IF stooge is $&.\n";

}
print "\n";

foreach ("Larry Curly Moe" =˜ m/\w+/g) {
print "FOREACH stooge is $&.\n";

}

It’s a bit tricky. v Turn the page to check your answer.

The Substitution Operator
Perl’s substitution operator s/˙˙˙/˙˙˙/ extends a match to a full match-and-replace.
The general form is:

$text =˜ s/regex/replacement/modifiers

In short, the text first matched by the regex operand is replaced by the value of
the replacement operand. If the /g modifier is used, the regex is repeatedly
applied to the text following the match, with additional matched text replaced
as well.

As with the match operator, the target text operand and the connecting =˜ ar e
optional if the target is the variable $R. But unlike the match operator’s m, the sub-
stitution’s s is never optional.

We’ve seen that the match operator is fairly complex — how it works, and what it
retur ns, is dependent upon the context it’s called in, the target string’s pos, and
the modifiers used. In contrast, the substitution operator is simple: it always
retur ns the same information (an indication of the number of substitutions done),
and the modifiers that influence how it works are easy to understand.

You can use any of the core modifiers described on page 292, but the substitution
operator also supports two additional modifiers: /g and, described in a bit, /e.

29 April 2003 20:47

The Replacement Operand
With the normal s/˙˙˙/˙˙˙/, the replacement operand immediately follows the regex
operand, using a total of three instances of the delimiter rather than the two of
m/˙˙˙/. If the regex uses balanced delimiters (such as <˙˙˙>), the replacement
operand then has its own independent pair of delimiters (yielding a total of four).
For example, s{˙˙˙}{˙˙˙} and s[˙˙˙]/˙˙˙/ and s<˙˙˙>’˙˙˙’ ar e all valid. In such cases,
the two sets may be separated by whitespace, and if so, by comments as well. Bal-
anced delimiters are commonly used with /x or /e:

$text =˜ s{
...some big regex here, with lots of comments and such...

} {
...a Perl code snippet to be evaluated to produce the replacement text...

}ex;

Take care to separate in your mind the regex and replacement operands. The
regex operand is parsed in a special regex-specific way, with its own set of special
delimiters (+ 291). The replacement operand is parsed and evaluated as a normal
double-quoted string. The evaluation happens after the match (and with /g, after
each match), so $1 and the like are available to refer to the proper match slice.

Ther e ar e two situations where the replacement operand is not parsed as a dou-
ble-quoted string:

• When the replacement operand’s delimiters are single quotes, it is parsed as a
single-quoted string, which means that no variable interpolation is done.

• If the /e modifier (discussed in the next section) is used, the replacement
operand is parsed like a little Perl script instead of like a double-quoted string.
The little Perl script is executed after each match, with its result being used as
the replacement.

The /e Modifier
The /e modifier causes the replacement operand to be evaluated as a Perl code
snippet, as if with eval {˙˙˙}. The code snippet’s syntax is checked to ensure it’s
valid Perl when the script is loaded, but the code is evaluated afresh after each
match. After each match, the replacement operand is evaluated in a scalar context,
and the result of the code is used as the replacement. Here’s a simple example:

$text =˜ s/-time-/localtime/ge;

This replaces occurrences of !-time- " with the results of calling Perl’s localtime

function in a scalar context (which retur ns a textual repr esentation of the current
time, such as “Wed Sep 25 18:36:51 2002”).

Since the evaluation is done after each match, you can refer to the text just
matched with the after-match variables like $1. For example, special characters

The Substitution Operator 319

29 April 2003 20:47

320 Chapter 7: Perl

Quiz Answer
v Answer to the question on page 318.

The question snippets on page 318 produce:

WHILE stooge is Larry.
WHILE stooge is Curly.
WHILE stooge is Moe.

IF stooge is Larry.

FOREACH stooge is Moe.
FOREACH stooge is Moe.
FOREACH stooge is Moe.

Note that if the print within the foreach loop had referr ed to $R rather
than $&, its results would have been the same as the while’s. In this
foreach case, however, the result retur ned by the m/˙˙˙/g, (’Larry’,
’Curly’, ’Moe’), goes unused. Rather, the side effect $& is used, which
almost certainly indicates a programming mistake, as the side effects of a list-
context m/˙˙˙/g ar e not often useful.

that might not otherwise be allowed in a URL can be encoded using % followed by
their two-digit hexadecimal repr esentation. To encode all non-alphanumerics this
way, you can use

$url =˜ s/([ˆa-zA-Z0-9])/sprintf(’%%%02x’, ord($1))/ge;

and to decode back to the original, you can use:

$url =˜ s/%([0-9a-f][0-9a-f])/pack("C", hex($1))/ige;

In short, sprintf(’%%%02x’, ord(character)) converts characters to their numeric
URL repr esentation, while pack("C", value) does the opposite; consult your
favorite Perl documentation for more infor mation.

Multiple uses of /e

Nor mally, repeating a modifier with an operator doesn’t hurt (except perhaps to
confuse the reader), but repeating the /e modifier actually changes how the
replacement is done. Normally, the replacement operand is evaluated once, but if
mor e than one ‘e’ is given, the results of the evaluation are themselves evaluated
as Perl, over and over, for as many extra ‘e’ as are provided. This is perhaps useful
mostly for an Obfuscated Perl Contest.

Still, it can be useful. Consider interpolating variables into a string manually (such
as if the string is read from a configuration file). That is, you have a string that
looks like ‘˙˙˙ $var ˙˙˙’ and you want to replace the substring ‘$var’ with the value
of the variable $var.

29 April 2003 20:47

A simple approach uses:

$data =˜ s/(\$[a-zA-ZR]\w+)/$1/eeg;

Without any /e, this would simply replace the matched ‘$var’ with itself, which is
not very useful. With one /e, it evaluates the code $1, yielding ‘$var’, which
again, effectively replaces the matched text with itself (which is again, not very
useful). But with two /e, that ‘$var’ is itself evaluated, yielding its contents. Thus,
this mimics the interpolation of variables.

Context and Return Value
Recall that the match operator retur ns dif ferent values based upon the particular
combination of context and /g. The substitution operator, however, has none of
these complexities— it always retur ns either the number of substitutions perfor med
or, if none were done, an empty string.

Conveniently, when interpreted as a Boolean (such as for the conditional of an
if), the retur n value is taken as true if any substitutions are done, false if not.

The Split Operator
The multifaceted split operator (often called a function in casual conversation) is
commonly used as the converse of a list-context m/˙˙˙/g (+ 311). The latter retur ns
text matched by the regex, while a split with the same regex retur ns text sepa-
rated by matches. The normal match $text =˜ m/:/g applied against a $text of
‘IO.SYS:225558:95-10-03:-a-sh:optional’, retur ns the four-element list

(’:’, ’:’, ’:’, ’:’)

which doesn’t seem useful. On the other hand, split(/:/, $text) retur ns the
five-element list:

(’IO.SYS’, ’225558’, ’95-10-03’, ’-a-sh’, ’optional’)

Both examples reflect that !:" matches four times. With split, those four matches
partition a copy of the target into five chunks, which are retur ned as a list of five
strings.

That example splits the target string on a single character, but you can split on any
arbitrary regular expression. For example,

@Paragraphs = split(m/\s+<p>\s+/i, $html);

splits the HTML in $html into chunks, at <p> or <P>, surr ounded by optional
whitespace. You can even split on locations, as with

@Lines = split(m/ˆ/m, $lines);

to break a string into its logical lines.

In its most simple form with simple data like this, split is as easy to understand
as it is useful. However, ther e ar e many options, special cases, and special

The Split Operator 321

29 April 2003 20:47

322 Chapter 7: Perl

situations that complicate things. Before getting into the details, let me show two
particularly useful special cases:

• The special match operand // causes the target string to be split into its com-
ponent characters. Thus, split(//, "short test") retur ns a list of ten ele-
ments: ("s", "h", "o", ˙˙˙, "s", "t").

• The special match operand " " (a normal string with a single space) causes
the target string to be split on whitespace, similar to using m/\s+/ as the
operand, except that any leading and trailing whitespace are ignor ed. Thus,
split(" ", " a short test ") retur ns the strings ‘a’, ‘short’, and ‘test’.

These and other special cases are discussed a bit later, but first, the next sections
go over the basics.

Basic Split
split is an operator that looks like a function, and takes up to three operands:

split(match operand, target string, chunk-limit operand)

The parentheses are optional. Default values (discussed later in this section) are
pr ovided for operands left off the end.

split is always used in a list context. Common usage patterns include:

($var1, $var2, $var3, ˙˙˙) = split(˙˙˙);

@array = split(˙˙˙);

for my $item (split(˙˙˙)) {
+
+
+

}

Basic match operand

The match operand has several special-case situations, but it is normally the same
as the regex operand of the match operator. That means that you can use /˙˙˙/ and
m{˙˙˙} and the like, a regex object, or any expression that can evaluate to a string.
Only the core modifiers described on page 292 are supported.

If you need parentheses for grouping, be sure to use the !(?:˙˙˙)" non-capturing
kind. As we’ll see in a few pages, the use of capturing parentheses with split

tur ns on a very special feature.

Target string operand

The target string is inspected, but is never modified by split. The content of $R is
the default if no target string is provided.

29 April 2003 20:47

Basic chunk-limit operand

In its primary role, the chunk-limit operand specifies a limit to the number of
chunks that split partitions the string into. With the sample data from the first
example, split(/:/, $text, 3) retur ns:

(’IO.SYS’, ’225558’, ’95-10-03:-a-sh:optional’)

This shows that split stopped after /:/ matched twice, resulting in the
requested three-chunk partition. It could have matched additional times, but that’s
irr elevant because of this example’s chunk limit. The limit is an upper bound, so
no more than that many elements will ever be retur ned (unless the regex has cap-
turing parentheses, which is covered in a later section). You may still get fewer
elements than the chunk limit; if the data can’t be partitioned enough to begin
with, nothing extra is produced to “fill the count.” With our example data,
split(/:/, $text, 99) still retur ns only a five-element list. However, ther e is an
important differ ence between split(/:/, $text) and split(/:/, $text, 99)

which does not manifest itself with this example — keep this in mind when the
details are discussed later.

Remember that the chunk -limit operand refers to the chunks between the
matches, not to the number of matches themselves. If the limit were to refer to the
matches themselves, the previous example with a limit of three would produce

(’IO.SYS’, ’225558’, ’95-10-03’, ’-a-sh:optional’)

which is not what actually happens.

One comment on efficiency: let’s say you intended to fetch only the first few
fields, such as with:

($filename, $size, $date) = split(/:/, $text);

As a perfor mance enhancement, Perl stops splitting after the fields you’ve
requested have been filled. It does this by automatically providing a chunk limit of
one more than the number of items in the list.

Advanced split

split can be simple to use, as with the examples we’ve seen so far, but it has
thr ee special issues that can make it somewhat complex in practice:

• Retur ning empty elements

• Special regex operands

• A regex with capturing parentheses

The next sections cover these in detail.

The Split Operator 323

29 April 2003 20:47

324 Chapter 7: Perl

Retur ning Empty Elements
The basic premise of split is that it retur ns the text separated by matches, but
ther e ar e times when that retur ned text is an empty string (a string of length zero,
e.g., ""). For example, consider

@nums = split(m/:/, "12:34::78");

This retur ns

("12", "34", "", "78")

The regex !:" matches three times, so four elements are retur ned. The empty third
element reflects that the regex matched twice in a row, with no text in between.

Tr ailing empty elements

Nor mally, trailing empty elements are not retur ned. For example,

@nums = split(m/:/, "12:34::78:::");

sets @nums to the same four elements

("12", "34", "", "78")

as the previous example, even though the regex was able to match a few extra
times at the end of the string. By default, split does not retur n empty elements at
the end of the list. However, you can have split retur n all trailing elements by
using an appropriate chunk-limit operand . . .

The chunk-limit operand’s second job

In addition to possibly limiting the number of chunks, any non-zero chunk-limit
operand also preserves trailing empty items. (A chunk limit given as zero is exactly
the same as if no chunk limit is given at all.) If you don’t want to limit the number
of chunks retur ned, but do want to leave trailing empty elements intact, simply
choose a very large limit. Or, better yet, use -1, because a negative chunk limit is
taken as an arbitrarily large limit: split(/:/, $text, -1) retur ns all elements,
including any trailing empty ones.

At the other extreme, if you want to remove all empty items, you could put
grep {length} befor e the split. This use of grep lets pass only list elements with
non-zer o lengths (in other words, elements that aren’t empty):

my @NonEmpty = grep { length } split(/:/, $text);

Special matches at the ends of the string

A match at the very beginning normally produces an empty element:

@nums = split(m/:/, ":12:34::78");

29 April 2003 20:47

That sets @nums to:

("", "12", "34", "", "78")

The initial empty element reflects the fact that the regex matched at the beginning
of the string. However, as a special case, if the regex doesn’t actually match any
text when it matches at the start or end of the string, leading and/or trailing empty
elements are not pr oduced. A simple example is split(/\b/, "a simple test"),
which can match at the six marked locations in ‘a simple test’. Even though it
matches six times, it doesn’t retur n seven elements, but rather only the five ele-
ments: ("a", " ", "simple", " ", "test"). Actually, we’ve already seen this spe-
cial case, with the @Lines = split(m/ˆ/m, $lines) example on page 321.

Split’s Special Regex Operands
split’s match operand is normally a regex literal or a regex object, as with the
match operator, but there are some special cases:

• An empty regex for split does not mean “Use the current default regex,” but
to split the target string into a list of characters. We saw this before at the start
of the split discussion, noting that split(//, "short test") retur ns a list
of ten elements: ("s", "h", "o", ˙˙˙, "s", "t").

• A match operand that is a string (not a regex) consisting of exactly one space
is a special case. It’s almost the same as /\s+/, except that leading whitespace
is skipped. This is all meant to simulate the default input-record-separator
splitting that awk does with its input, although it can certainly be quite useful
for general use.

If you’d like to keep leading whitespace, just use m/\s+/ dir ectly. If you’d like
to keep trailing whitespace, use -1 as the chunk-limit operand.

• If no regex operand is given, a string consisting of one space (the special case
in the previous point) is used as the default. Thus, a raw split without any
operands is the same as split(’ ’, $Q, 0).

• If the regex !ˆ " is used, the /m modifier (for the enhanced line-anchor match
mode) is automatically supplied for you. (For some reason, this does not hap-
pen for !$ ".) Since it’s so easy to just use m/ˆ/m explicitly, I would recommend
doing so, for clarity. Splitting on m/ˆ/m is an easy way to break a multiline
string into individual lines.

Split has no side effects

Note that a split match operand often looks like a match operator, but it has
none of the side effects of one. The use of a regex with split doesn’t affect the
default regex for later match or substitution operators. The variables $&, $’, $1,

The Split Operator 325

29 April 2003 20:47

326 Chapter 7: Perl

and so on are not set or otherwise affected by a split. A split is completely iso-
lated from the rest of the program with respect to side effects.†

Split’s Match Operand with Capturing Parentheses
Capturing parentheses change the whole face of split. When they are used, the
retur ned list has additional, independent elements interjected for the item(s) cap-
tur ed by the parentheses. This means that some or all text normally not retur ned
by split is now included in the retur ned list.

For example, as part of HTML pr ocessing, split(/(<[ˆ>]+>)/) tur ns

˙˙˙ and very very much effort˙˙˙

into:

(’... and ’, ’’, ’very ’, ’’,
’very’, ’’, ’ much’, ’’, ’ effort...’)

With the capturing parentheses removed, split(/<[ˆ>]+>/) retur ns:

(’... and ’, ’very ’, ’very’, ’ much’, ’ effort...’)

The added elements do not count against a chunk limit. (The chunk limit limits the
chunks that the original string is partitioned into, not the number of elements
retur ned.)

If there are multiple sets of capturing parentheses, multiple items are added to the
list with each match. If there are sets of capturing parentheses that don’t contribute
to a match, undef elements are inserted for them.

Fun with Perl Enhancements
Many regular-expr ession concepts that are now available in other languages were
first made available only in Perl. Examples include non-capturing parentheses,
lookahead, (and later, lookbehind), free-spacing mode, (most modes, actually —
and with them comes !\A ", !\z ", and !\Z "), atomic grouping, !\G ", and the conditional
construct. However, these are no longer Perl specific, so they are all covered in
the main chapters of this book.

Still, Perl developers remain innovative, so there are some major concepts avail-
able at this time only in Perl. One of the most interesting is the ability to execute
arbitrary code during the match attempt. Perl has long featured strong integration
of regular expressions into code, but this brings integration to a whole new level.

† Actually, there is one side effect remaining from a feature that has been deprecated for many years,
but has not actually been removed from the language yet. If split is used in a scalar or void con-
text, it writes its results to the @R variable (which is also the variable used to pass function argu-
ments, so be careful not to use split in these contexts by accident). use warnings or the -w com-
mand-line argument warns you if split is used in either context.

29 April 2003 20:47

We’ll continue with a short overview about this and other innovations available
curr ently only in Perl, followed by the details.

The dynamic regex constr uct !(??{ perl code })"

Each time this construct is reached during the application of the regex in
which it’s found, the perl code is executed. The result of that execution
(either a regex object or a string that’s then interpreted as a regex) is applied
right then, as part of the current match.

This simple example !ˆ(\d+)(??{ "X{$1}" })$ " is shown with the dynamic
regex construct underlined. Overall, this regex matches a number at the
beginning of the line, followed by exactly that many ‘X’ until the end of the
line. It matches ‘3XXX’ and ‘12XXXXXXXXXXXX’, for example, but not ‘3X’ or
‘7XXXX’. If we trace though the ‘3XXX’ example, the leading !(\d+) " part
matches ‘3XXX’, setting $1 to ‘3’. The regex engine then reaches the dynamic
regex construct, which executes the code "X{$1}", resulting in the value
‘X{3}’. This is then interpreted as !X{3} ", and applied as part of the current
regex (matching the ‘3XXX’). Once that’s done, the trailing !$ " then matches at
‘3XXX’, resulting in an overall match.

As we’ll see in the examples that follow, a dynamic regex is particularly use-
ful for matching arbitrarily nested constructs.

The embedded-code constr uct !(?{ arbitrary perl code })"

Like the dynamic regex construct, this construct also executes the Perl code
each time it’s reached during the application of a regex, but this construct is
mor e general in that the code doesn’t need to retur n any specific result. Usu-
ally, the retur n value is not even used. (But in case it is needed later in the
same regex, the retur n value is available in the $ˆR variable + 302).

Ther e’s one case where the value produced by the code is used: when an
embedded-code construct is used as the if of an !(? if then < else)" conditional
(+ 138). In this case, the result is interpreted as a Boolean value, upon
which either the then or else part will be applied.

Embedded code can be used for many things, but it’s particularly useful for
debugging. Here’s a simple example that displays a message every time the
regex is actually applied, with the embedded-code construct underlined:

"have a nice day" =˜ m{
(?{ print "Starting match.\n" })
\b(?: the ; an ; a)\b

}x;

The regex matches fully just once in this test, but the message is shown six
times, reflecting that the regex was at least partially applied by the transmis-
sion at the five character positions prior to the sixth time, at which point it
matches fully.

Fun with Perl Enhancements 327

29 April 2003 20:47

328 Chapter 7: Perl

Regex-literal overloading
Regex-literal overloading lets you add your own custom pre-pr ocessing of
regex literals, before they’r e given to the regex engine. You can use this to
ef fectively add features to Perl’s regex flavor. For example, Perl doesn’t have
separate start-of-word and end-of-word metacharacters (it has a catch-all \b
word boundary), but you might want to have it recognize \< and \>, con-
verting these constructs behind the scenes to ones Perl does know.

Regex overloading has some important limitations that severely restrict its
usefulness. We’ll look at this, as well as examples like the \< and \> idea,
later in this section.

Force match of single byte
One other feature I should mention in this list is that the !\C " metacharacter
matches one byte, even if that byte is just one of several that might encode a
single character. This is dangerous — its misuse can cause internal errors, so
it shouldn’t be used unless you really know what you’re doing. I can’t think
of a good use for it, so I won’t mention it further.

When working with Perl code embedded within a regex (either in a dynamic
regex construct or an embedded-code construct), it’s best to use only global vari-
ables until you understand the important issue related to my variables discussed
starting on page 338.

Using a Dynamic Regex to Match Nested Pair s
A dynamic regex’s main use is to allow a regex to match arbitrarily nested con-
structs (something long thought to be impossible with regular expressions). Its
quintessential example is to match content with arbitrarily nested parentheses. To
see how a dynamic regex is useful for this, let’s first look at why it’s not possible
with traditional constructs.

This simple regex matches a parenthesized run of text: !\(([ˆ()]),\)". It doesn’t
allow parentheses within the outer parentheses, so it doesn’t allow any nesting
(that is, it supports zero levels of nesting). We can put it into a regex object and
use it like this:

my $Level0 = qr/ \(([ˆ()])+ \) /x; # Par enthesized text

+
+
+

if ($text =˜ m/\b(\w+$Level0)/x) {
print "found function call: $1\n";

}

This would match “substr($str, 0, 3)”, but not “substr($str, 0, (3+2))”
because it has nested parentheses. Let’s expand our regex to handle it. That means
accommodating one level of nesting.

29 April 2003 20:47

Allowing one level of nesting means allowing parenthesized text within the outer
par entheses. So, we need to expand on the subexpression that matches between
them, which is currently ![ˆ()]", by adding a subexpression that matches parenthe-
sized text. Well, we just created that: $Level0 holds such a regex. Using it, we can
cr eate the next level:

my $Level0 = qr/ \(([ˆ()])+ \) /x; # Par enthesized text
my $Level1 = qr/ \(([ˆ()]; $Level0)+ \) /x; # One level of nesting

The $Level0 her e is the same as before; what’s new is its use in building
$Level1, which matches its own set of parentheses, plus those of $Level0. That’s
one level of nesting.

To match another level, we can use the same approach, creating a $Level2 that
uses $Level1 (which still uses $Level0):

my $Level0 = qr/ \(([ˆ()])+ \) /x; # Par enthesized text
my $Level1 = qr/ \(([ˆ()] ; $Level0)+ \) /x; # One level of nesting
my $Level2 = qr/ \(([ˆ()] ; $Level1)+ \) /x; # Two levels of nesting

We can continue this indefinitely:

my $Level3 = qr/ \(([ˆ()] ; $Level2)+ \) /x; # Thr ee levels of nesting
my $Level4 = qr/ \(([ˆ()] ; $Level3)+ \) /x; # Four levels of nesting
my $Level5 = qr/ \(([ˆ()] ; $Level4)+ \) /x; # Five levels of nesting

+
+
+

Figur e 7-1 shows the first few levels graphically.

\(([^()])* \)

\(([^()]|)* \)Level 0

\(([^()]|)* \)Level 1

\(([^()]|)* \)Level 2Level 3

Level 2

Level 1

Level 0

Figur e 7-1: Matching a few levels of parentheses

It’s interesting to see the result of all those levels. Here’s what $Level3 boils
down to:

\(([ˆ()];\(([ˆ()];\(([ˆ()];\(([ˆ()])+\))+\))+\))+\)

Wow, that’s ugly.

Fun with Perl Enhancements 329

29 April 2003 20:47

330 Chapter 7: Perl

Luckily, we don’t have to interpret it directly (that’s the regex engine’s job). The
appr oach with the Level variables is easy enough to work with, but its drawback
is that nesting is limited to however many $Level variables we build. This
appr oach doesn’t allow us to match to an arbitrary level. (Murphy’s Law being
what it is, if we happen to pick X levels to support, we’ll run into data with X+1
levels of nesting.)

Luckily, we can use a dynamic regex to handle nesting to an arbitrary level. To get
ther e, realize that each of the $Level variables beyond the first is constructed
identically: when it needs to match an additional level of nesting, it includes the
$Level variable below it. But if the $Level variables are all the same, it could just
as well include the $Level above it. In fact, if they’re all the same, it could just
include itself. If it could somehow include itself when it wanted to match another
level of nesting, it would recursively handle any level of nesting.

And that’s just what we can do with a dynamic regex. If we create a regex object
comparable to one of the $Level variables, we can refer to it from within a
dynamic regex. (A dynamic-regex construct can contain arbitrary Perl code, so
long as its results can be interpreted as a regular expression; Perl code that merely
retur ns a pre-existing regex object certainly fits the bill.) If we put our $Level-like
regex object into $LevelN, we can refer to it with !(??{ $LevelN }) ", like this:

my $LevelN; # This must be predeclar ed because it’s used in its own definition.
$LevelN = qr/ \(([ˆ()] ; (??{ $LevelN }))+ \) /x;

This matches arbitrarily nested parenthesized text, and can be used just like
$Level0 was used earlier:

if ($text =˜ m/\b(\w+$LevelN)/x) {
print "found function call: $1\n";

}

Phew! It’s not necessarily easy to wrap one’s brain around this, but once it “clicks,”
it’s a valuable tool.

Now that we have the basic approach worked out, I’d like to make a few tweaks
for efficiency’s sake. I’ll replace the capturing parentheses with atomic grouping
(ther e’s no need to capture, nor to backtrack), and once that’s done, I can change
![ˆ()] " to ![ˆ()]+ " for added efficiency. (Don’t make this change without using
atomic grouping, or you’ll set yourself up for a neverending match + 226.)

Finally, I’d like to move the !\(" and !\)" so that they directly surround the dynamic
regex. This way, the dynamic regex construct isn’t invoked by the engine until it’s
sur e that there’s something for it to match. Here’s the revised version:

$LevelN = qr/ (?> [ˆ()]+ ; \((??{ $LevelN }) \))+ /x;

Since this no longer has outer !\(˙˙˙\)", we need to include them ourselves when
invoking $LevelN.

29 April 2003 20:47

As a side effect of that, we have the flexibility to apply it where ther e may be sets
of parentheses, not just where ther e ar e sets of parentheses:

if ($text =˜ m/\b(\w+ \($LevelN \))/x) {
print "found function call: $1\n";

}

if (not $text =˜ m/ˆ $LevelN $/x) {
print "mismatched parentheses!\n";

}

You can see another example of $LevelN in action on page 343.

Using the Embedded-Code Construct
The embedded-code construct is particularly useful for regex debugging, and for
accumulating information about a match while it’s happening. The next few pages
walk through a series of examples that eventually lead to a method for mimicking
POSIX match semantics. The journey there is perhaps more inter esting than the
actual destination (unless you need POSIX match semantics, of course) because of
the useful techniques and insight we gain along the way.

We’ll start with some simple regex debugging techniques.

Using embedded code to display match-time infor mation

This code:

"abcdefgh" =˜ m{
(?{ print "starting match at [$‘;$’]\n" })
(?:d;e;f)

}x;

pr oduces:

starting match at [;abcdefgh]
starting match at [a;bcdefgh]
starting match at [ab;cdefgh]
starting match at [abc;defgh]

The embedded-code construct is the first thing in the regex, and so executes

print "starting match at [$‘;$’]\n"

whenever the regex starts a new match attempt. The displayed string uses the $‘

and $’ variables (+ 300)† to print the target text being matched, with ‘;’ inserted
to mark the current location in the match (which in this case is where the match
attempt is starting). From the result, you can tell that the regex was applied four
times by the transmission (+ 148) before it was successful.

† Nor mally, I recommend against using the special match variables $‘, $&, and $’, as they can inflict a
major efficiency penalty on the entire program (+ 356), but they’re fine for temporary debugging.

Fun with Perl Enhancements 331

29 April 2003 20:47

332 Chapter 7: Perl

In fact, if we were to add

(?{ print "matched at [$‘<$&>$’]\n" })

just before the end of the regex, it would show the match:

matched at [abc<d>efgh]

Now, compare the first example with the following, which is identical except that
the “main” regex is now ![def] " rather than !(?:d;e;f)":

"abcdefgh" =˜ m{
(?{ print "starting match at [$‘;$’]\n" })
[def]

}x;

In theory, the results should be identical, yet this produces only:

starting match at [abc;defgh]

Why the differ ence? Perl is smart enough to apply the initial class discrimination
optimization (+ 246) to the regex with ![def]", ther eby allowing the transmission
to bypass attempts it felt were obviously destined to fail. As it turns out, it was
able to bypass all attempts except the one that resulted in a match, and the
embedded-code construct allows us to see that happen.

panic: top_env
If you’re working with embedded code or a dynamic regex, and your pro-
gram suddenly ends with an unceremonial

panic: topRenv

it is likely due to a syntax error in the code part of the regex. Perl currently
doesn’t handle certain kinds of broken syntax well, and the panic is the
result. The solution, of course, is to correct the syntax.

Using embedded code to see all matches

Perl has a Traditional NFA engine, so it stops the moment a match is found, even
though there may be additional possible matches. With the clever use of embed-
ded code, we can trick Perl into showing us all possible matches. To see how,
let’s revisit the silly ‘oneself’ example from page 177:

"oneselfsufficient" =˜ m{
one(self)?(selfsufficient)?

(?{ print "matched at [$‘<$&>$’]\n" })
}x;

29 April 2003 20:47

As might be expected, this displays

matched at [<oneself>sufficient]

indicating that ‘oneselfsufficient’ had been matched at that point in the regex.

It’s important to realize that despite the “matched” in the message, the print is
not actually showing “the match,” but rather the match to that point. The distinc-
tion is academic with this example because the embedded-code construct is the
last thing in the regex. We know that the regex does indeed finish the moment the
embedded-code construct has finished, reporting that same result as the actual
match.

What if we added !(?!) " just after the embedded-code construct? !(?!)" is a negative
lookahead that always fails. When it fails just after the embedded code is pro-
cessed (just after a “matched” message is printed), it forces the engine to backtrack
in search of a (new) match. The failure is forced after every “match” is printed, so
we end up exploring every path to a match, and thus see all possible matches:

matched at [<oneself>sufficient]
matched at [<oneselfsufficient>]
matched at [<one>selfsufficient]

What we’ve done ensures that the overall match attempt actually fails, but in doing
so we’ve got the regex engine to report all the possible matches. Without the
!(?!) ", Perl retur ns the first match found, but with it, we can see the remaining
per mutations.

With that in mind, what do you think the following prints?

"123" =˜ m{
\d+
(?{ print "matched at [$‘<$&>$’]\n" })
(?!)

}x;

It displays:

matched at [<123>]
matched at [<12>3]
matched at [<1>23]
matched at [1<23>]
matched at [1<2>3]
matched at [12<3>]

Hopefully at least the first three were expected, but the rest might be unexpected
if you’re not on your toes. The (?!) forces backtracking and the eventual appear-
ance of the 2nd and 3rd lines. When the attempt at the start of the line fails, the
transmission reapplies the regex again starting just before the 2nd character. (Chap-
ter 4 explains this in great detail.) The 4th and 5th lines shown are from that second
attempt, and the last line shown is from the third attempt.

Fun with Perl Enhancements 333

29 April 2003 20:47

334 Chapter 7: Perl

So, adding the (?!) really does cause it to show all possible matches, not just all
of them from a particular starting point. It may be useful to see only the possible
matches from a particular starting point; we’ll look into that in a bit.

Finding the longest match

Now, instead of showing all the matches, let’s find and save the longest match. We
can do this by using a variable to keep track of the longest match seen so far and
comparing each new “almost match” against it. Here is the solution with the
‘oneself’ example:

$longestRmatch = undef; # We’ll keep track of the longest match here

"oneselfsufficient" =˜ m{
one(self)?(selfsufficient)?
(?{

Check to see if the current match ($&) is the longest so far
if (not defined($longestRmatch)

or
length($&) > length($longestRmatch))

{
$longestRmatch = $&;

}
})
(?!) # For ce failur e so we’ll backtrack to find further "matches"

}x;

Now report the accumulated result, if any
if (defined($longestRmatch)) {

print "longest match=[$longestRmatch]\n";
} else {

print "no match\n";
}

Not surprisingly, this shows ‘longest match=[oneselfsufficient]’. That bit of
embedded code is pretty long, and something we’ll likely use in the future, so let’s
encapsulate it and the !(?!) " into their own regex object:

my $RecordPossibleMatch = qr{
(?{

Check to see if the current match ($&) is the longest so far
if (not defined($longestRmatch)

or
length($&) > length($longestRmatch))

{
$longestRmatch = $&;

}
})
(?!) # For ce failur e so we’ll backtrack to find further "matches"

}x;

29 April 2003 20:47

Her e’s a simple example that finds ‘9938’, the longest match overall :

$longestRmatch = undef; # We’ll keep track of the longest match here

"800-998-9938" =˜ m{ \d+ $RecordPossibleMatch }x;

Now report the accumulated result, if any
if (defined($longestRmatch)) {

print "longest match=[$longestRmatch]\n";
} else {

print "no match\n";
}

Finding the longest-leftmost match

Now that we know how to find the longest match overall, let’s restrict it to finding
the longest-leftmost match. That just happens to be the match that a POSIX NFA

would find (+ 177). To accomplish this, we need to disable the transmission’s
bump-ahead if we’ve seen a match so far. That way, once we find the first match,
nor mal backtracking still brings us to any other matches available from the same
starting location (allowing us to keep track of the longest match), but the disabled
bump-ahead inhibits the finding of matches that start later in the string.

Perl doesn’t give us direct hooks into the transmission, so we can’t disable the
bump-ahead directly, but we can get the same effect by not allowing the regex to
pr oceed past the start if $longestRmatch is already defined. The test for that is
!(?{ defined $longestRmatch})", but that alone not enough, since it’s just a test.
The key to using the results of the test lies in a conditional.

Using embedded code in a conditional
To have the regex engine respond to the results of our test, we use the test as the
if of an !(? if then < else)" conditional (+ 138). Since we want the regex to stop if the
test is true, we use a fail-now (?!) as the then part. (We don’t need an else part,
so we just omit it.) Here’s a regex object that encapsulates the conditional:

my $BailIfAnyMatch = qr/(?(?{ defined $longestRmatch})(?!))/;

The if part is underlined, and the then part is shown in bold. Here it is in action,
combined with the $RecordPossibleMatch defined on the facing page:

"800-998-9938" =˜ m{ $BailIfAnyMatch \d+ $RecordPossibleMatch }x;

This finds ‘800’, the POSIX “longest of all leftmost matches” match.

Using local in an Embedded-Code Construct
The use of local within an embedded-code construct takes on special meaning.
Understanding it requir es a good understanding of dynamic scoping (+ 295) and
of the “crummy analogy” from the Chapter 4’s discussion of how a regex-dir ected
NFA engine goes about its work (+ 158). The following contrived (and, as we’ll
see, flawed) example helps to illustrate why, without a lot of extraneous clutter. It

Fun with Perl Enhancements 335

29 April 2003 20:47

336 Chapter 7: Perl

checks to see if a line is composed of only !\w+ " and !\s+ ", but counts how many of
the !\w+ " ar e really !\d+\b ":

my $Count = 0;

$text =˜ m{
ˆ (?> \d+ (?{ $Count++ }) \b < \w+ < \s+)+ $

}x;

When this is matched against a string like ‘123 abc 73 9271 xyz’, the $Count

variable is left with a value of three. However, when applied to ‘123 abc 73xyz’
it’s left with a value of two, even though it should be left with a value of just one.
The problem is that $Count is updated after matching ‘73’, something that is
matched by !\d+ " but later “unmatched” via backtracking because the subsequent
!\b " can’t match. The problem arises because the code executed via the embedded-
code construct is not somehow “unexecuted” when its part of the regex is
“unmatched” via backtracking.

In case you have any confusion with the use of !(?>˙˙˙)" atomic grouping (+ 137)
and the backtracking going on here, I’ll mention that the atomic grouping is used
to prevent a neverending-match (+ 269), and does not affect backtracking within
the construct, only backtracking back into the construct after it’s been exited. So
the !\d+ " is free to be “unmatched” if the subsequent !\b " cannot match.

The easy solution for this contrived example is to put the !\b " befor e incr ementing
$Count, to ensur e that it is incremented only when it won’t be undone. However,
I’d like to show a solution using local, to illustrate its effect within Perl executed
during the application of a regex. With that in mind, consider this new version:

our $Count = 0;

$text =˜ m{
ˆ (?> \d+ (?{ local($Count) = $Count + 1 }) \b < \w+ < \s+)+ $
}x;

The first change to notice is that $Count changed from a my variable to a global
one (if you use strict, as I always recommend, you can’t use an unqualified
global variable unless you “declare” it with Perl’s our declarator).

The other change is that the increment of $Count has been localized. Here’s the
key behavior: when a variable is localized within a regex, the original value is
replaced (the new value is lost) if the code with the local is “unmatched” because
of backtracking. So, even though local($Count) = $Count + 1 is executed
after ‘73’ is matched by !\d+ ", changing $Count fr om one to two, that change is
“localized to the success of the path” that the regex is on when local is called.
When the !\b " fails, the regex engine logically backtracks to before the local, and
$Count reverts to its original value of one. And that’s the value it ends up having
when the end of the regex is eventually reached.

29 April 2003 20:47

Interpolating Embedded Perl
As a security measure, Perl doesn’t normally allow an embedded-code con-
struct !(?{˙˙˙}) " or a dynamic-subexpression construct !(??{˙˙˙})" to be interpo-
lated into the regex from a string variable. (They are allowed, though, from a
regex object, as with $RecordPossibleMatch on page 334.) That is,

m{ (?{ print "starting\n" }) some regex˙˙˙ }x;

is allowed, but

my $ShowStart = ’(?{ print "starting\n" })’;
+
+
+

m{ $ShowStart some regex˙˙˙ }x;

is not. This limitation is imposed because it has long been common to
include user input as part of a regex, and the introduction of these constructs
suddenly allowing such a regex to run arbitrary code creates a huge security
hole. So, the default is that it’s disallowed.

If you’d like to allow this kind of interpolation, the declaration:

use re ’eval’;

lifts the restriction. (With differ ent arguments, the use re pragma can also
be used for debugging; + 361.)

Sanitizing user input for interpolation

If you use this and do allow user input to be interpolated, be sure that it has
no embedded-Perl or dynamic-regex constructs. You can do this by checking
against !\(\s+\?+[p{] ". If this matches the input, it’s not safe to use in a
regex. The !\s+ " is needed because the /x modifier allows spaces after the
opening parentheses. (I’d think that they shouldn’t be allowed there, but
they are.) The plus quantifies !\? " so that both constructs are recognized.
Finally, the p is included to catch the now-deprecated !(?p{˙˙˙})" construct,
the forerunner of !(??{˙˙˙}) ".

I think it would be useful if Perl supported a modifier of some sort that
allowed or prohibited embedded code on a per-r egex or subexpression
basis, but until one is introduced, you’ll have to check for it yourself, as
described above.

So, local is requir ed to keep $Count consistent until the end of the regex. If we
wer e to put !(?{ print "Final count is $Count.\n" }) " at the end of the
regex, it would report the proper count. Since we want to use $Count after the
match, we need to save it to a non-localized variable at some point before the
match officially ends. This is because all values that had been localized during the
match are lost when the match finishes.

Fun with Perl Enhancements 337

29 April 2003 20:47

338 Chapter 7: Perl

Her e’s an example:

my $Count = undef;
our $TmpCount = 0;

$text =˜ m{
ˆ (?> \d+ (?{ local($TmpCount) = $TmpCount + 1 }) \b < \w+ < \s+)+ $
(?{ $Count = $TmpCount }) # Save the "ending" $Count to a non-localized variable

}x;
if (defined $Count) {

print "Count is $Count.\n";
} else {

print "no match\n";
}

This seems like a lot of work for something so simple, but again, this is a con-
trived example designed just to show the mechanics of localized variables within a
regex. We’ll see practical use in “Mimicking Named Capture” on page 344.

A War ning About Embedded Code and my Variables
If you have a my variable declared outside a regex, but refer to it from inside regex
embedded code, you must be very careful about a subtle issue with Perl’s variable
binding that has a very unsubtle impact. Before describing the issue, I’ll note up
fr ont that if you use only global variables within regex embedded code, you don’t
have to worry about this issue, and you can safely skip this section. War ning: this
section is not light reading.

This contrived example illustrates the problem:

sub CheckOptimizer
{

my $text = shift; # The first argument is the text to check.
my $start = undef; # We’ll note here wher e the regex is first applied.

my $match = $text =˜ m{
(?{ $start = $-[0] if not defined $start}) # Save the first starting position
\d # This is the regex being tested

}x;

if (not defined $start) {
print "The whole match was optimized away.\n";
if ($match) {

This can’t possibly happen!
print "Whoa, but it matched! How can this happen!?\n";

}
} elsif ($start == 0) {

print "The match start was not optimized.\n";
} else {

print "The optimizer started the match at character $start.\n"
}

}

This code has three my variables, but only one, $start, is related to this issue (the
others are not refer enced fr om within embedded code, so are not at issue). It

29 April 2003 20:47

works by first setting $start to the undefined value, then applying a match in
which the leading component is an embedded-code construct that sets $start to
the starting location of the attempt, but only if it hasn’t already been set. The
“starting location of the attempt” is derived from $-[0] (the first element of
@- + 302).

So, when this function is called with

CheckOptimizer("test 123");

the result is:

The optimizer started the match at character 5.

That’s okay, but if we invoke the exact same call again, the second time shows:

The whole match was optimized away.
Whoa, but it matched! How can this happen!?

Even though the text checked by the regex is the same (as is the regex itself, for
that matter), the result is differ ent, and seems to be wrong. Why? The problem is
that the second time through, the $start that the embedded code is updating is
the one that existed the first time through, when the regex was compiled. The
$start that the rest of the function uses is actually a new variable created afresh
when the my is executed at the start of each function call.

The key to this issue is that my variables in embedded code are “locked in”
(bound, in programming terminology) to the specific instance of the my variable
that is active at the time the regex is compiled. (Regex compilation is discussed in
detail starting on page 348.) Each time CheckOptimizer is called, a new instance
of $start is created, but for esoteric reasons, the $start inside the embedded
code still refers to the first instance that is now long gone. Thus, the instance of
$start that the rest of the function uses doesn’t receive the value ostensibly writ-
ten to it within the regex.

This type of instance binding is called a closur e, and books like Pr ogramming Perl
and Object Oriented Perl discuss why it’s a valuable feature of the language. There
is debate in the Perl community, however, as to just how much of a “feature” it is
in this case. To most people, it’s very unintuitive.

The solution is to not refer to my variables from within a regex unless you know
that the regex literal will be compiled at least as often as the my instances are
refr eshed. For example, the my variable $NestedStuffRegex is used within the
SimpleConvert subr outine in the listing on page 346, but we know this is not a
pr oblem because there’s only ever one instance of $NestedStuffRegex. Its my is
not in a function or a loop, so it’s created just once when the script is loaded, with
that same instance existing until the program ends.

Fun with Perl Enhancements 339

29 April 2003 20:47

340 Chapter 7: Perl

Matching Nested Constructs with Embedded Code
The example on page 328 shows how to match arbitrarily nested pairs using a
dynamic regex. That’s generally the easiest way to do it, but it’s instructive to see a
method using only embedded-code constructs, so I’d like to show it to you here.

The approach is simply this: keep a count of how many open parentheses we’ve
seen that have not yet been closed, and allow a closing parenthesis only if there
ar e outstanding opens. We’ll use embedded code to keep track of the count as we
match through the text, but before looking at that, let’s look at a (not yet working)
skeleton the expression:

my $NestedGuts = qr{
(?>
(?:

Stuf f not parenthesis
[ˆ()]+
An opening parenthesis
; \(
A closing parenthesis
; \)

)+
)

}x;

The atomic grouping is requir ed for efficiency, to keep the !([˙˙˙]+ ; ˙˙˙), " fr om
becoming a neverending match (+ 226) if $NestedGuts is used as part of some
larger expression that could cause backtracking. For example, if we used it as part
of m/ˆ\($NestedGuts \)$/x and applied it to ‘(this is missing the close’,
it would track and backtrack for a long time if atomic grouping didn’t prune the
redundant states.

To incorporate the counting, we need these four steps:

Ê Befor e beginning, the count must be initialized to zero:

(?{ local $OpenParens = 0 })

Ë When an open parenthesis is seen, we increment the count to indicate that
one more set of parentheses has yet to balance.

(?{ $OpenParens++ })

Ì When a close parenthesis is seen, we check the count, and if it’s currently
positive, we decrement the count to recognize that one less set remains
unbalanced. On the other hand, if the count is zero, we can’t allow the match
to continue (because the close parenthesis does not balance with an open),
so we apply !(?!) " to force failure:

(?(?{ $OpenParens }) (?{ $OpenParens-- }) ; (?!))

This uses an !(? if then < else)" conditional (+ 138), with an embedded-code
construct checking the count as the if.

29 April 2003 20:47

Í Finally, once matching has completed, we check the count to be sure it’s
zer o. If it’s not, there wer en’t enough close parentheses to balance the opens,
so we should fail:

(?(?{ $OpenParens != 0 })(?!))

Adding these items to the skeleton expression gives us:

my $NestedGuts = qr{
(?{ local $OpenParens = 0 }) # Ê Counts the number of nested opens waiting to close.
(?> # atomic-gr ouping for efficiency

(?:
Stuf f not parenthesis

[ˆ()]+
Ë An opening parenthesis
; \((?{ $OpenParens++ })
Ì Allow a closing parenthesis, if we’re expecting any
; \) (?(?{ $OpenParens != 0 }) (?{ $OpenParens-- }) ; (?!))

)+
)
(?(?{ $OpenParens != 0 })(?!)) # Í If there are any open parens left, don’t finish

}x;

This can now be used just like $LevelN on page 330.

The local is used as a precaution to isolate this regex’s use of $OpenParens fr om
any other use the global variable might have within the program. Unlike local’s
use in the previous section, it’s not needed for backtracking protection because
the atomic grouping in the regex ensures that once an alternative has been
matched, it can’t ever be “unmatched.” In this case, the atomic grouping is used for
both efficiency and to absolutely ensure that the text matched near one of the
embedded-code constructs can’t be unmatched by backtracking (which would
br eak the sync between the value of $OpenParens and the number of parentheses
actually matched).

Overloading Regex Literals
You can pre-pr ocess the literal parts of a regex literal in any way you like with
overloading. The next sections show examples.

Adding start- and end-of-word metacharacter s

Perl doesn’t support !\< " and !\>" as start- and end-of-word metacharacters, and
that’s probably because it’s rare that !\b " doesn’t suffice. However, if we wish to
have them, we can support them ourselves using overloading to replace ‘\<’ and
‘\>’ in a regex by !(?<!\w)(?=\w) " and !(?<=\w)(?!\w) ", respectively.

Fun with Perl Enhancements 341

29 April 2003 20:47

342 Chapter 7: Perl

First, we’ll create a function, say, MungeRegexLiteral, that does the desired
pr eprocessing:

sub MungeRegexLiteral($)
{

my ($RegexLiteral) = @R; # Ar gument is a string
$RegexLiteral =˜ s/\\</(?<!\\w)(?=\\w)/g; # Mimic \< as start-of-word boundary
$RegexLiteral =˜ s/\\>/(?<=\\w)(?!\\w)/g; # Mimic \> as end-of-word boundary
return $RegexLiteral; # Retur n possibly-modified string

}

When this function is passed a string like ‘˙˙˙\<˙˙˙’, it converts it and retur ns the
string ‘˙˙˙(?<!\w)(?=\w)˙˙˙’. Remember, because the replacement part of a substitu-
tion is like a double-quoted string, it needs ‘\\w’ to get ‘\w’ into the value.

Now, to install this so that it gets called automatically on each literal part of a
regex literal, we put it into a file, say MyRegexStuf f.pm, with the Perl mechanics for
overloading:

package MyRegexStuff; # Best to call the package something unique
use strict; # Good practice to always use this
use warnings; # Good practice to always use this
use overload; # Allows us to invoke Perl’s overloading mechanism
Have our regex handler installed when we’re use’d
sub import { overload::constant qr => \&MungeRegexLiteral }

sub MungeRegexLiteral($)
{

my ($RegexLiteral) = @R; # Ar gument is a string
$RegexLiteral =˜ s/\\</(?<!\\w)(?=\\w)/g; # Mimic \< as start-of-word boundary
$RegexLiteral =˜ s/\\>/(?<=\\w)(?!\\w)/g; # Mimic \> as end-of-word boundary
return $RegexLiteral; # Retur n possibly-modified string

}

1; # Standar d idiom so that a ’use’ of this file retur ns something true

If we place MyRegexStuf f.pm in the Perl library path (see PERLLIB in the Perl docu-
mentation), we can then invoke it from Perl script files in which we want the new
featur es made available. For testing, though, we can just leave it in the same direc-
tory as the test script, invoking it with:

use lib ’.’; # Look for library files in the current directory
use MyRegexStuff; # We now have our new functionality available!

+
+
+

$text =˜ s/\s+\</ /g; # Nor malize any type of whitespace before a wordbefore a word to a single space

+
+
+

We must use MyRegexStuff in any file in which we want this added support for
regex literals, but the hard work of building MyRegexStuf f.pm need be done only
once. (The new support isn’t available in MyRegexStuf f.pm itself because it doesn’t
use MyRegexStuff — something you wouldn’t want to do.)

29 April 2003 20:47

Adding support for possessive quantifier s

Let’s extend MyRegexStuf f.pm to add support for possessive quantifiers like !x++ "

(+ 140). Possessive quantifiers work like normal greedy quantifiers, except they
never give up (never “unmatch”) what they’ve matched. They can be mimicked
with atomic grouping by simply removing the final ‘+’ and wrapping everything in
atomic quotes, e.g., by changing !regex ++ " to !(?> regex +)" (+ 173).

The regex part can be a parenthesized expression, a metasequence like !\w " or
!\x{1234} ", or even just a normal character. Handling all possible cases is difficult,
so to keep the example simple for the moment, let’s concentrate on ?+, ++, or ++
quantifying only a parenthesized expression. Using $LevelN fr om page 330, we
can add

$RegexLiteral =˜ s/(\($LevelN \)[++?])\+/(?>$1)/gx;

to the MungeRegexLiteral function.

That’s it. Now, with it part of our overloaded package, we can use a regex literal
with possessive quantifiers, like this example from page 198:

$text =˜ s/"(\\.;[ˆ"])++"//; # Remove double-quoted strings

Extending this beyond just parenthesized expressions is tricky because of the vari-
ety of things that can be in a regular expression. Here’s one attempt:

$RegexLiteral =˜ s{
(
Match something that can be quantified . . .
(?: \\[\\abCdDefnrsStwWX] # \n, \w, etc.

; \\c. # \cA
; \\x[\da-fA-F]{1,2} # \xFF
; \\x\{[\da-fA-F]+\} # \x{1234}
; \\[pP]\{[ˆ{}]+\} # \p{Letter}
; \[\]?[ˆ]]+\] # "poor man’s" class
; \\\W # \+
; \($LevelN \) # (˙˙˙)
; [ˆ()++?\\] # almost anything else

)
. . . and is quantified . . .
(?: [++?] ; \{\d+(?:,\d+)?\})

)
\+ # . . . and has an extra ’+’ after the quantifier.
}{(?>$1)}gx;

The general form of this regex is the same as before: match something quantified
possessively, remove the ‘+’, and wrap the result in !(?>˙˙˙)". It’s only a half-hearted
attempt to recognize the complex syntax of Perl regular expressions. The part to
match a class is particularly needy, in that it doesn’t recognize escapes within the
class. Even worse, the basic approach is flawed because it doesn’t understand
every aspect of Perl regular expressions. For example, if faced with ‘\(blah\)++’,
it doesn’t properly ignore the opening literal parenthesis, so it thinks the !++ " is
applied to more than just !\) ".

Fun with Perl Enhancements 343

29 April 2003 20:47

344 Chapter 7: Perl

These problems can be overcome with great effort, perhaps using a technique that
car efully walks through the regex from start to finish (similar to the approach
shown in the sidebar on page 130). I’d like to enhance the part that matches a
character class, but in the end, I don’t feel it’s worth it to address the other issues,
for two reasons. The first is that the situations in which it doesn’t already work
well are fairly contrived, so just fixing the character class part is probably enough
to make it acceptable in practice. But in the end, Perl’s regex overloading currently
has a fatal flaw, discussed in the next section, which renders it much less useful
than it might otherwise be.

Problems with Regex-Literal Overloading
Regex-literal overloading can be extremely powerful, at least in theory, but unfor-
tunately, it’s not very useful in practice. The problem is that it applies to only the
literal part of a regex literal, and not the parts that are interpolated. For example,
with the code m/($MyStuff),+/ our MungeRegexLiteral function is called
twice, once with the literal part of the regex before the variable interpolation (“(”),
and once with the part after (“),+”). (It’s never even given the contents of
$MyStuff.) Since our function requir es both parts at the same time, variable inter-
polation effectively disables it.

This is less of an issue with the support for \< and \> we added earlier, since
they’r e not likely to be broken up by variable interpolation. But since overloading
doesn’t affect the contents of an interpolated variable, a string or regex object con-
taining ‘\<’ or ‘\>’ would not be processed by overloading. Also, as the previous
section touched on, when a regex literal is processed by overloading, it’s not easy
to be complete and accurate every time. Even something as simple as our support
for \> gets in the way when given ‘\\>’, ostensibly to match a ‘\’ followed by ‘>’.

Another problem is that there’s no way for the overload processing to know about
the modifiers that the regex was applied with. In particular, it may be crucial to
know whether /x was specified, but there’s currently no way to know that.

Finally, be warned that using overloading disables the ability to include characters
by their Unicode name (!\N{name}" + 290).

Mimicking Named Capture
Despite the shortcomings of overloading, I think it’s instructive to see a complex
example bringing together many special constructs. Perl doesn’t offer named cap-
tur e (+ 137), but it can be mimicked with capturing parentheses and the $ˆN vari-
able (+ 301), which refer ences the text matched by the most-recently-closed set of
capturing parentheses. (I put on the hat of a Perl developer and added $ˆN sup-
port to Perl expressly to allow named-capture to be mimicked.)

29 April 2003 20:47

As a simple example, consider:

!href\s+=\s+($HttpUrl)(?{ $url = $ˆN }) "

This uses the $HttpUrl regex object developed on page 303. The underlined part
is an embedded-code construct that saves the text matched by $HttpUrl to the
variable $url. In this simple situation, it seems overkill to use $ˆN instead of $1,
or to even use the embedded-code construct in the first place, since it seems so
easy to just use $1 after the match. But consider encapsulating part of that into a
regex object, and then using it multiple times:

my $SaveUrl = qr{
($HttpUrl) # Match an HTTP URL . . .
(?{ $url = $ˆN }) # . . . and save to $url

}x;

$text =˜ m{
http \s+=\s+ ($SaveUrl)

; src \s+=\s+ ($SaveUrl)
}xi;

Regardless of which matches, $url is set to the URL that matched. Again, in this
particular use, you could use other means (such as the $+ variable + 301), but as
$SaveUrl is used in more complex situations, the other solutions become more
dif ficult to maintain, so saving to a named variable can be much more convenient.

One problem with this example is that values written to $url ar e not “unwritten”
when the construct that wrote to them is unmatched via backtracking. So, we need
to modify a localized temporary variable during the initial match, writing to the
“r eal” variable only after an overall match has been confirmed, just as we did in
the example on page 338.

The listing on the next page shows one way to solve this. From the user’s point of
view, after using !(?< Num >\d+)", the number matched by !\d+ " is available in the
global hash %ˆN, as $ˆN{Num}. Although future versions of Perl could decide to
tur n %ˆN into a special system variable of some sort, it’s not currently special, so
we’r e fr ee to use it.

I could have chosen a name like %NamedCapture, but instead chose %ˆN for a few
reasons. One is that it’s similar to $ˆN. Another is that it’s not requir ed to be pre-
declar ed with our when used under use strict. Finally, it’s my hope that Perl
will eventually add named capture natively, and I think adding it via %ˆN would
be a fine idea. If that happens, %ˆN would likely be automatically dynamically
scoped like the rest of the regex-r elated special variables (+ 299). But as of now,
it’s a normal global variable, so is not dynamically scoped automatically.

Again, even this more-involved approach suffers from the same problems as any-
thing using regex-literal overloading, such as an incompatibility with interpolated
variables.

Fun with Perl Enhancements 345

29 April 2003 20:47

346 Chapter 7: Perl

Mimicking Named Capture
package MyRegexStuff;
use strict;
use warnings;
use overload;
sub import { overload::constant(’qr’ => \&MungeRegexLiteral) }

my $NestedStuffRegex; # This should be predeclar ed, because it’s used in its own definition.
$NestedStuffRegex = qr{
(?>

(?: # Stuf f not parens, not ’#’, and not an escape . . .
[ˆ()\#\\]+
Escaped stuff . . .

; (?s: \\.)
Regex comment . . .

; \#.+\n
Matching parens, with more nested stuff inside . . .

; \((??{ $NestedStuffRegex }) \)
)+

)
}x;

sub SimpleConvert($); # This must be predeclar ed, as it’s used recursively
sub SimpleConvert($)
{

my $re = shift; # Regex to mangle
$re =˜ s{

\(\? # "(?"
< ((?>\w+)) > # < $1 > $1 is an identifier
($NestedStuffRegex) # $2 - possibly-nested stuff

\) # ")"
}{
my $id = $1;
my $guts = SimpleConvert($2);
We change
(?<id>guts)
to
(?: (guts) # match the guts
(?{
local($ˆN{$id}) = $guts # Save to a localized element of %ˆT
})
)
"(?:($guts)(?{ local(\$ˆT{’$id’}) = \$ˆN }))"

}xeog;
return $re; # Retur n mangled regex

}

sub MungeRegexLiteral($)
{

my ($RegexLiteral) = @R; # Ar gument is a string
print "BEFORE: $RegexLiteral\n"; # Uncomment this for debugging
my $new = SimpleConvert($RegexLiteral);
if ($new ne $RegexLiteral)
{

my $before = q/(?{ local(%ˆT) = () })/; # Localize temporary hash
my $after = q/(?{ %ˆN = %ˆT })/; # Copy temp to "real" hash
$RegexLiteral = "$before(?:$new)$after";

}
print "AFTER: $RegexLiteral\n"; # Uncomment this for debugging
return $RegexLiteral;

}

1;

29 April 2003 20:47

Perl Eff icienc y Issues
For the most part, efficiency with Perl regular expressions is achieved in the same
way as with any tool that uses a Traditional NFA. Use the techniques discussed in
Chapter 6 — the internal optimizations, the unrolling methods, the “Think” section
—all apply to Perl.

Ther e ar e, of course, Perl-specific issues as well, and in this section, we’ll look at
the following topics:

• There’s More Than One Way To Do It Perl is a toolbox offering many
appr oaches to a solution. Knowing which problems are nails comes with
understanding The Perl Way, and knowing which hammer to use for any par-
ticular nail goes a long way toward making more efficient and more under-
standable programs. Sometimes efficiency and understandability seem to be
mutually exclusive, but a better understanding allows you to make better
choices.

• Regex Compilation, qr/˙˙˙/, the /o Modifier, and Efficiency The interpolation
and compilation of regex operands are fertile ground for saving time. The /o

modifier, which I haven’t discussed much yet, along with regex objects
(qr/˙˙˙/), gives you some control over when the costly re-compilation takes
place.

• The $& Penalty The three match side effect variables, $‘, $&, and $’, can be
convenient, but there’s a hidden efficiency gotcha waiting in store for any
script that uses them, even once, anywhere. Heck, you don’t even have to use
them — the entire script is penalized if one of these variables even appears in
the script.

• The Study Function Since ages past, Perl has provided the study(˙˙˙) func-
tion. Using it supposedly makes regexes faster, but it seems that no one really
understands if it does, or why. We’ll see whether we can figure it out.

• Benchmarking When it comes down to it, the fastest program is the one that
finishes first. (You can quote me on that.) Whether a small routine, a major
function, or a whole program working with live data, benchmarking is the
final word on speed. Benchmarking is easy and painless with Perl, although
ther e ar e various ways to go about it. I’ll show you the way I do it, a simple
method that has served me well for the hundreds of benchmarks I’ve done
while preparing this book.

• Perl’s Regex Debugg ing Perl’s regex-debug flag can tell you about some of
the optimizations the regex engine and transmission do, or don’t do, with your
regexes. We’ll look at how to do this and see what secrets Perl gives up.

Perl Eff icienc y Issues 347

29 April 2003 20:47

348 Chapter 7: Perl

“T here’s More Than One Way to Do It”
Ther e ar e often many ways to go about solving any particular problem, so there’s
no substitute for really knowing all that Perl has to offer when balancing efficiency
and readability. Let’s look at the simple problem of padding an IP addr ess like
‘18.181.0.24’ such that each of the four parts becomes exactly three digits:
‘018.181.000.024’. One simple and readable solution is:

$ip = sprintf("%03d.%03d.%03d.%03d", split(/\./, $ip));

This is a fine solution, but there are certainly other ways to do the job. In the
inter est of comparison, Table 7-6 examines various ways to achieve the same goal,
and their relative efficiency (they’re listed from the most efficient to the least). This
example’s goal is simple and not very interesting in and of itself, yet it repr esents a
common text-handling task, so I encourage you to spend some time understand-
ing the various approaches. You may even see some Perl techniques that are new
to you.

Each approach produces the same result when given a correct IP address, but fails
in differ ent ways if given something else. If there is any chance that the data will
be malformed, you’ll need more car e than any of these solutions provide. That
aside, the practical differ ences lie in efficiency and readability. As for readability,
#1 and #13 seem the most straightforward (although it’s interesting to see the wide
gap in efficiency). Also straightforward are #3 and #4 (similar to #1) and #8 (simi-
lar to #13). The rest all suffer from varying degrees of crypticness.

So, what about efficiency? Why are some less efficient than others? It’s the interac-
tions among how an NFA works (Chapter 4), Perl’s many regex optimizations
(Chapter 6), and the speed of other Perl constructs (such as sprintf, and the
mechanics of the substitution operator). The substitution operator’s /e modifier,
while indispensable at times, does seem to be mostly at the bottom of the list.

It’s interesting to compare two pairs, #3/#4 and #8/#14. The two regexes of each
pair differ only in their use of parentheses — the one without the parentheses is
just a bit faster than the one with. But #8’s use of $& as a way to avoid parenthe-
ses comes at a high cost not shown by these benchmarks (+ 355).

Regex Compilation, the /o Modifier, qr/˙˙˙/,
and Efficienc y
An important aspect of Perl’s regex-r elated ef ficiency relates to the setup work Perl
must do behind the scenes when program execution reaches a regex operator,
befor e actually applying the regular expression. The precise setup depends on the

29 April 2003 20:47

Table 7-6: A Few Ways to Pad an IP Addr ess

Rank Time Approach

1. 1.0× $ip = sprintf("%03d.%03d.%03d.%03d", split(m/\./, $ip));

2. 1.3× substr($ip, 0, 0) = ’0’ if substr($ip, 1, 1) eq ’.’;
substr($ip, 0, 0) = ’0’ if substr($ip, 2, 1) eq ’.’;
substr($ip, 4, 0) = ’0’ if substr($ip, 5, 1) eq ’.’;
substr($ip, 4, 0) = ’0’ if substr($ip, 6, 1) eq ’.’;
substr($ip, 8, 0) = ’0’ if substr($ip, 9, 1) eq ’.’;
substr($ip, 8, 0) = ’0’ if substr($ip, 10, 1) eq ’.’;
substr($ip, 12, 0) = ’0’ while length($ip) < 15;

3. 1.6× $ip = sprintf("%03d.%03d.%03d.%03d", $ip =˜ m/\d+/g);

4. 1.8× $ip = sprintf("%03d.%03d.%03d.%03d", $ip =˜ m/(\d+)/g);

5. 1.8× $ip = sprintf("%03d.%03d.%03d.%03d",
$ip =˜ m/ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$/);

6. 2.3× $ip =˜ s/\b(?=\d\b)/00/g;
$ip =˜ s/\b(?=\d\d\b)/0/g;

7. 3.0× $ip =˜ s/\b(\d(\d?)\b)/$2 eq ’’ ? "00$1" : "0$1"/eg;

8. 3.3× $ip =˜ s/\d+/sprintf("%03d", $&)/eg;

9. 3.4× $ip =˜ s/(?:(?<=\.);ˆ)(?=\d\b)/00/g;
$ip =˜ s/(?:(?<=\.);ˆ)(?=\d\d\b)/0/g;

10. 3.4× $ip =˜ s/\b(\d\d?\b)/’0’ x (3-length($1)) . $1/eg;

11. 3.4× $ip =˜ s/\b(\d\b)/00$1/g;
$ip =˜ s/\b(\d\d\b)/0$1/g;

12. 3.4× $ip =˜ s/\b(\d\d?\b)/sprintf("%03d", $1)/eg;

13. 3.5× $ip =˜ s/\b(\d{1,2}\b)/sprintf("%03d", $1)/eg;

14. 3.5× $ip =˜ s/(\d+)/sprintf("%03d", $1)/eg;

15. 3.6× $ip =˜ s/\b(\d\d?(?!\d))/sprintf("%03d", $1)/eg;

16. 4.0× $ip =˜ s/(?:(?<=\.);ˆ)(\d\d?(?!\d))/sprintf("%03d", $1)/eg;

type of regex operand. In the most common situation, the regex operand is a
regex literal, as with m/˙˙˙/ or s/˙˙˙/˙˙˙/ or qr/˙˙˙/. For these, Perl has to do a few
dif ferent things behind the scenes, each taking some time we’d like to avoid, if
possible. First, let’s look at what needs to be done, and then at ways we might
avoid it.

Perl Efficienc y Issues 349

29 April 2003 20:47

350 Chapter 7: Perl

The inter nal mechanics of prepar ing a regex

The behind-the-scenes work done to prepar e a regex operand is discussed gener-
ally in Chapter 6 (+ 241), but Perl has its unique twists.

Perl’s pre-pr ocessing of regex operands happens in two general phases.

1. Regex-literal processing If the operand is a regex literal, it’s processed as
described in “How Regex Literals Are Parsed” (+ 292). One of the benefits
pr ovided by this stage is variable interpolation.

2. Regex Compilation The regex is inspected, and if valid, compiled into an
inter nal for m appr opriate for its actual application by the regex engine. (If
invalid, the error is reported to the user.)

Once Perl has a compiled regex in hand, it can actually apply it to the target
string, as per Chapters 4-6.

All that pre-pr ocessing doesn’t necessarily need be done every time each regex
operator is used. It must always be done the first time a regex literal is used in a
pr ogram, but if execution reaches the same regex literal more than once (such as
in a loop, or in a function that’s called more than once), Perl can sometimes re-use
some of the previously-done work. The next sections show when and how Perl
might do this, and additional techniques available to the programmer to further
incr ease ef ficiency.

Perl steps to reduce regex compilation

In the next sections, we’ll look at two ways in which Perl avoids some of the pre-
pr ocessing associated with regex literals: unconditional caching and on-demand
recompilation.

Unconditional caching
If a regex literal has no variable interpolation, Perl knows that the regex can’t
change from use to use, so after the regex is compiled once, that compiled form is
saved (“cached”) for use whenever execution again reaches the same code. The
regex is examined and compiled just once, no matter how often it’s used during
the program’s execution. Most regular expressions shown in this book have no
variable interpolation, and so are per fectly ef ficient in this respect.

Variables within embedded code and dynamic regex constructs don’t count, as
they’r e not interpolated into the value of the regex, but rather part of the unchang-
ing code the regex executes. When my variables are refer enced fr om within
embedded code, there may be times that you wish it were interpr eted every time:
see the warning on page 338.

Just to be clear, caching lasts only as long as the program executes — nothing is
cached from one run to the next.

29 April 2003 20:47

On-demand recompilation
Not all regex operands can be cached directly. Consider this snippet:

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];
$today now holds the day ("Mon", "Tue", etc., as appropriate)

while (<LOGFILE>) {
if (m/ˆ$today:/i) {

+
+
+

The regex in m/ˆ$today:/ requir es interpolation, but the way it’s used in the loop
ensur es that the result of that interpolation will be the same every time. It would
be inefficient to recompile the same thing over and over each time through the
loop, so Perl automatically does a simple string check, comparing the result of the
interpolation against the result the last time through. If they’re the same, the
cached regex that was used the previous time is used again this time, eliminating
the need to recompile. But if the result of the interpolation turns out to be differ-
ent, the regex is recompiled. So, for the price of having to redo the interpolation
and check the result with the cached value, the relatively expensive compile is
avoided whenever possible.

How much do these features actually save? Quite a lot. As an example, I bench-
marked the cost of pre-pr ocessing thr ee for ms of the $HttpUrl example from
page 303 (using the extended $HostnameRegex). I designed the benchmarks to
show the overhead of regex pre-pr ocessing (the interpolation, string check, compi-
lation, and other background tasks), not the actual application of the regex, which
is the same regardless of how you get there.

The results are pretty interesting. I ran a version that has no interpolation (the
entir e regex manually spelled out within m/˙˙˙/), and used that as the basis of com-
parison. The interpolation and check, if the regex doesn’t change each time, takes
about 25× longer. The full pre-pr ocessing (which adds the recompilation of the
regex each time) takes about 1,000× longer! Wow.

Just to put these numbers into context, realize that even the full pre-pr ocessing,
despite being over 1,000× slower than the static regex literal pre-pr ocessing, still
takes only about 0.00026 seconds on my system. (It benchmarked at a rate of
about 3,846 per second; on the other hand, the static regex literal’s pre-pr ocessing
benchmarked at a rate of about 3.7 million per second.) Still, the savings of not
having to do the interpolation are impr essive, and the savings of not having to
recompile are down right fantastic. In the next sections, we’ll look at how you can
take action to enjoy these savings in even more cases.

Perl Eff icienc y Issues 351

29 April 2003 20:47

352 Chapter 7: Perl

The “compile once” /o modifier

Put simply, if you use the /o modifier with a regex literal operand, the regex lit-
eral will be inspected and compiled just once, regardless of whether it uses inter-
polation. If there’s no interpolation, adding /o doesn’t buy you anything because
expr essions without interpolation are always cached automatically. If there is inter-
polation, the first time execution arrives at the regex literal, the normal full pre-
pr ocessing happens, but because of /o, the internal form is cached. If execution
comes back again to the same regex operator, that cached form is used directly.

Her e’s the example from the previous page, with the addition of /o:

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

while (<LOGFILE>) {
if (m/ˆ$today:/io) {

+
+
+

This is now much more efficient because the regex ignores $today on all but the
first iteration through the loop. Not having to interpolate or otherwise pre-pr ocess
and compile the regex every time repr esents a real savings that Perl couldn’t do
for us automatically because of the variable interpolation: $today might change,
so Perl must play it safe and reinspect it each time. By using /o, we tell Perl to
“lock in” the regex after the regex literal is first pre-pr ocessed and compiled. It’s
safe to do this when we know that the variables interpolated into a regex literal
won’t change, or when we don’t want Perl to use the new values even if they do
change.

Potential “gotchas” of /o
Ther e’s an important “gotcha” to watch out for with /o. Consider putting our
example into a function:

sub CheckLogfileForToday()
{

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

while (<LOGFILE>) {
if (m/ˆ$today:/io) { #danger ous -- has a gotcha

+
+
+

}
}

}

Remember, /o indicates that the regex operand should be compiled once. The first
time CheckLogfileForToday() is called, a regex operand repr esenting the cur-
rent day is locked in. If the function is called again some time later, even though
$today may change, it will not be not inspected again; the original locked-in
regex is used every time for the duration of execution.

29 April 2003 20:47

This is a major shortcoming, but as we’ll see in the next section, regex objects pro-
vide a best-of-both-worlds way around it.

Using regex objects for efficienc y

All the discussion of pre-pr ocessing we’ve seen so far applies to regex literals. The
goal has been to end up with a compiled regex with as little work as possible.
Another approach to the same end is to use a regex object, which is basically a
ready-to-use compiled regex encapsulated into a variable. They’re created with the
qr/˙˙˙/ operator (+ 303).

Her e’s a version of our example using a regex object:

sub CheckLogfileForToday()
{

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

my $RegexObj = qr/ˆ$today:/i; # compiles once per function call

while (<LOGFILE>) {
if ($R =˜ $RegexObj) {

+
+
+

}
}

}

Her e, a new regex object is created each time the function is called, but it is then
used directly for each line of the log file. When a regex object is used as an
operand, it undergoes none of the pre-pr ocessing discussed throughout this sec-
tion. The pre-pr ocessing is done when the regex object is cr eated, not when it’s
later used. You can think of a regex object, then, as a “floating regex cache,” a
ready-to-use compiled regex that you can apply whenever you like.

This solution has the best of both worlds: it’s efficient, since only one regex is
compiled during each function call (not with each line in the log file), but, unlike
the previous example where /o was used inappropriately, this example actually
works correctly with multiple calls to CheckLogfileForToday().

Be sure to realize that there are two regex operands in this example. The regex
operand of the qr/˙˙˙/ is not a regex object, but a regex literal supplied to qr/˙˙˙/

to cr eate a regex object. The object is then used as the regex operand for the =˜

match operator in the loop.

Using m/˙˙˙/ with regex objects
The use of the regex object,

if ($R =˜ $RegexObj) {

can also be written as:

if (m/$RegexObj/) {

Perl Efficienc y Issues 353

29 April 2003 20:47

354 Chapter 7: Perl

This is not a normal regex literal, even though it looks like one. When the only
thing in the “regex literal” is a regex object, it’s just the same as using a regex
object. This is useful for several reasons. One is simply that the m/˙˙˙/ notation may
be more familiar, and perhaps more comfortable to work with. It also relieves you
fr om explicitly stating the target string $R, which makes things look better in con-
junction with other operators that use the same default. Finally, it allows you to
use the /g modifier with regex objects.

Using /o with qr/˙˙˙/
The /o modifier can be used with qr/˙˙˙/, but you’d certainly not want to in this
example. Just as when /o is used with any of the other regex operators, qr/˙˙˙/o

locks in the regex the first time it’s used, so if used here, $RegexObj would get
the same regex object each time the function is called, regardless of the value of
$today. That would be the same mistake as when we used m/˙˙˙/o on page 352.

Using the default regex for efficienc y

The default regex (+ 308) feature of regex operators can be used for efficiency,
although the need for it has mostly been eliminated with the advent of regex
objects. Still, I’ll describe it quickly. Consider:

sub CheckLogfileForToday()
{

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

Keep trying until one matches, so the default regex is set.
"Sun:" =˜ m/ˆ$today:/i or
"Mon:" =˜ m/ˆ$today:/i or
"Tue:" =˜ m/ˆ$today:/i or
"Wed:" =˜ m/ˆ$today:/i or
"Thu:" =˜ m/ˆ$today:/i or
"Fri:" =˜ m/ˆ$today:/i or
"Sat:" =˜ m/ˆ$today:/i;

while (<LOGFILE>) {
if (m//) { # Now use the default regex

+
+
+

}
}

}

The key to using the default regex is that a match must be successful for it to be
set, which is why this example goes to such trouble to get a match after $today
has been set. As you can see, it’s fairly kludgey, and I wouldn’t recommend it.

29 April 2003 20:47

Under standing the “Pre-Match” Copy
While doing matches and substitutions, Perl sometimes must spend extra time and
memory to make a pre-match copy of the target text. As we’ll see, sometimes this
copy is used in support of important features, but sometimes it’s not. When the
copy is made but not used, the wasted effort is an inefficiency we’d like to avoid,
especially in situations where the target text is very long, or speed particularly
important.

In the next sections, we’ll look at when and why Perl might make a pre-match
copy of the target text, when the copy is actually used, and how we might avoid
the copy when efficiency is at a premium.

Pre-match copy suppor ts $1, $&, $’, $+, . . .

Perl makes a pre-match copy of the original target text of a match or substitution
to support $1, $&, and the other after-match variables that actually hold text
(+ 299). After each match, Perl doesn’t actually create each of these variables
because many (or all) may never be used by the program. Rather, Perl just files
away a copy of the original text, remembers wher e in that original string the vari-
ous matches happened, and then refers to that if and when $1 or the like is actu-
ally used. This requir es less work up-front, which is good, because often, some or
all of these after-match variables are not even used. This is a form of “lazy evalua-
tion,” and successfully avoids a lot of unneeded work.

Although Perl saves work by not creating $1 and the like until they’re used, it still
has to do the work of saving the extra copy of the target text. But why does this
really need to be done? Why can’t Perl just refer to that original text to begin with?
Well, consider:

$Subject =˜ s/ˆ(?:Re:\s+)+//;

After this, $& pr operly refers to the text that was removed from $Subject, but
since it was removed fr om $Subject, Perl can’t refer to $Subject itself when pro-
viding for a subsequent use of $&. The same logic applies for something like:

if ($Subject =˜ m/ˆSPAM:(.+)/i) {
$Subject = "-- spam subject removed --";
$SpamCount{$1}++;

}

By the time $1 is refer enced, the original $Subject has been erased. Thus, Perl
must make an internal pre-match copy.

The pre-match copy is not always needed

In practice, the primary “users” of the pre-match copy are $1, $2, $3, and the like.
But what if a regex doesn’t even have capturing parentheses? If it doesn’t, there’s

Perl Efficienc y Issues 355

29 April 2003 20:47

356 Chapter 7: Perl

no need to even worry about $1, so any work needed to support it can be
bypassed. So, at least those regexes that don’t have capturing parentheses can
avoid the costly copy? Not always . . .

The var iables $‘, $&, and $’ are naughty
The three variables $‘, $&, and $’ ar en’t related to capturing parentheses. As the
text before, of, and after the match, they can potentially apply to every match and
substitution. Since it’s impossible for Perl to tell which match any particular use of
one of these variables refers to, Perl must make the pre-match copy every time.

It might sound like there’s no opportunity to avoid the copy, but Perl is smart
enough to realize that if these variables do not appear in the program, anywher e
(including in any library that might be used) the blind copying to support them is
no longer needed. Thus, ensuring that you don’t use $‘, $&, and $’ allows all
matches without capturing parentheses to dispense with the pre-match cop y — a
handsome optimization! Having even one $‘, $&, or $’ anywher e in the program
means the optimization is lost. How unsociable! For this reason, I call these three
variables “naughty.”

How expensive is the pre-match copy?

I ran a simple benchmark, checking m/c/ against each of the 130,000 lines of C
that make up the main Perl source. The benchmark noted whether a ‘c’ appear ed
on each line, but didn’t do anything further, since the goal was to determine the
ef fect of the behind-the-scenes copying. I ran the test two differ ent ways: once
wher e I made sure not to trigger the pre-match copy, and once where I made sure
to do so. The only differ ence, ther efor e, was in the extra copy overhead.

The run with the pre-match copying consistently took over 40 percent longer than
the one without. This repr esents an “average worst case,” so to speak, since the
benchmark didn’t do any “real work,” whose time would reduce the relative rele-
vance of (and perhaps overshadow) the extra overhead.

On the other hand, in true worst-case scenarios, the extra copy might truly be an
overwhelming portion of the work. I ran the same test on the same data, but this
time as one huge line incorporating the more than 3.5 megabytes of data, rather
than the 130,000 or so reasonably sized lines. Thus, the relative perfor mance of a
single match can be checked. The match without the pre-match copy retur ned
almost immediately, since it was sure to find a ‘c’ somewher e near the start of the
string. Once it did, it was finished. The test with the pre-match copy is the same
except that it had to make a copy of the huge string first. It took over 7,000 times
longer! Knowing the ramifications, therefor e, of certain constructs allows you to
tweak your code for better efficiency.

29 April 2003 20:47

Avoiding the pre-match copy

It would be nice if Perl knew the programmer’s intentions and made the copy
only as necessary. But remember, the copies are not “bad” — Perl’s handling of
these bookkeeping drudgeries behind the scenes is why we use it and not, say, C
or assembly language. Indeed, Perl was first developed in part to free users from
the mechanics of bit fiddling so they could concentrate on creating solutions to
pr oblems.

Never use naughty var iables. Still, it’s nice to avoid the extra work if possible.
For emost, of course, is to never use $‘, $&, or $’ anywher e in your code. Often,
$& is easy to eliminate by wrapping the regex with capturing parentheses, and
using $1 instead. For example, rather than using s/<\w+>/\L$&\E/g to lowercase
certain HTML tags, use s/(<\w+>)/\L$1\E/g instead.

$‘ and $’ can often be easily mimicked if you still have an unmodified copy of
the original target string. After a match against a given tar get, the following shows
valid replacements:

Variable Mimicked with

$‘ substr(tar get, 0, $-[0])

$& substr(tar get, $-[0], $+[0] - $-[0])

$’ substr(tar get, $+[0])

Since @- and @+ (+ 302) are arrays of positions in the original target string, rather
than actual text in it, they can be safely used without an efficiency penalty.

I’ve included a substitute for $& in there as well. This may be a better alternative
to wrapping with capturing parentheses and using $1, as it may allow you to elim-
inate capturing parentheses altogether. Remember, the whole point of avoiding $&

and friends is to avoid the copy for matches that have no capturing parentheses. If
you make changes to your program to eliminate $&, but end up adding capturing
par entheses to every match, you haven’t saved anything.

Don’t use naughty modules. Of course, part of not using $‘, $&, or $’ is to not
use modules that use them. The core modules that come with Perl do not use
them, except for the English module. If you wish to use that module, you can
have it not apply to these three variables by invoking it as:

use English ’-noRmatchRvars’;

This makes it safe. If you download modules from CPAN or elsewhere, you may
wish to check to see if they use the variables. See the sidebar on the next page for
a technique to check to see if your program is infected with any of these variables.

Perl Eff icienc y Issues 357

29 April 2003 20:47

358 Chapter 7: Perl

How to Check Whether Your Code is Tainted by $&
It’s not always easy to notice whether your program is naughty (refer ences
$&, $‘, or $’), especially with the use of libraries, but there are several ways
to find out. The easiest, if your perl binary has been compiled with the
-DDEBUGGING option, is to use the -c and -Mre=debug command-line argu-
ments (+ 361) and look toward the end of the output for a line that says
either ‘Enabling $‘ $& $’ support’ or ‘Omitting $‘ $& $’ support’. If it’s
enabled, the code is tainted.

It’s possible (but unlikely) that the code could be tainted by the use of a
naughty variable within an eval that’s not known to Perl until it’s executed.
One option to catch those as well is to install the Devel::SawAmpersand
package from CPAN (http://www.cpan.org):

END {
require Devel::SawAmpersand;
if (Devel::SawAmpersand::sawampersand) {

print "Naughty variable was used!\n";
}

}

Included with Devel::SawAmpersand comes Devel::FindAmpersand, a
package that purportedly shows you where the offending variable is located.
Unfortunately, it doesn’t work reliably with the latest versions of Perl. Also,
they both have some installation issues, so your mileage may vary. (Check
http://regex.info/ for possible updates.)

Also, it may be interesting to see how you can check for naughtiness by just
checking for the perfor mance penalty:

use Time::HiRes;
sub CheckNaughtiness()
{

my $text = ’x’ x 10R000; # Cr eate some non-small amount of data.

Calculate the overhead of a do-nothing loop.
my $start = Time::HiRes::time();
for (my $i = 0; $i < 5R000; $i++) { }
my $overhead = Time::HiRes::time() - $start;

Now calculate the time for the same number of simple matches.
$start = Time::HiRes::time();
for (my $i = 0; $i < 5R000; $i++) { $text =˜ m/ˆ/ }
my $delta = Time::HiRes::time() - $start;

A dif ferential of 5 is just a heuristic.
printf "It seems your code is %s (overhead=%.2f, delta=%.2f)\n",
($delta > $overhead+5) ? "naughty" : "clean", $overhead, $delta;

}

29 April 2003 20:47

The Study Function
In contrast to optimizing the regex itself, study(˙˙˙) optimizes certain kinds of
searches of a string. After studying a string, a regex (or multiple regexes) can ben-
efit from the cached knowledge when applied to the string. It’s generally used
like this:

while (<>)
{

study($R); # Study the default target $_ before doing lots of matches on it
if (m/regex 1/) { ˙˙˙ }
if (m/regex 2/) { ˙˙˙ }
if (m/regex 3/) { ˙˙˙ }
if (m/regex 4/) { ˙˙˙ }

}

What study does is simple, but understanding when it’s a benefit can be quite dif-
ficult. It has no effect whatsoever on any values or results of a program — the only
ef fects ar e that Perl uses more memory, and that overall execution time might
incr ease, stay the same, or (here’s the goal) decrease.

When a string is studied, Perl takes some time and memory to build a list of places
in the string that each character is found. (On most systems, the memory requir ed
is four times the size of the string). study’s benefit can be realized with each sub-
sequent regex match against the string, but only until the string is modified. Any
modification of the string invalidates the study list, as does studying a differ ent
string.

How helpful it is to have the target string studyied is highly dependent on the
regex matching against it, and the optimizations that Perl is able to apply. For
example, searching for literal text with m/foo/ can see a huge speedup due to
study (with large strings, speedups of 10,000× are possible). But, if /i is used,
that speedup evaporates, as /i curr ently removes the benefit of study (as well as
some other optimizations).

When not to use study

• Don’t use study on strings you intend to check only with /i, or when all lit-
eral text is governed by !(?i) " or !(?i:˙˙˙)", as these disable the benefits of
study.

• Don’t use study when the target string is short. In such cases, the normal
fixed-string cognizance optimization should suffice (+ 247). How short is
“short”? String length is just one part of a large, hard-to-pin-down mix, so
when it comes down to it, only benchmarking your expr essions on your data
will tell you if study is a benefit. But for what it’s worth, I generally don’t
even consider study unless the strings are at least several kilobytes long.

Perl Efficienc y Issues 359

29 April 2003 20:47

360 Chapter 7: Perl

• Don’t use study when you plan only a few matches against the target string
befor e it’s modified, or before you study a dif ferent string. An overall
speedup is more likely if the time spent to study a string is amortized over
many matches. With just a few matches, the time spent building the study list
can overshadow any savings.

• Use study only on strings that you intend to search with regular expressions
having “exposed” literal text (+ 255). Without a known character that must
appear in any match, study is useless. (Along these lines, one might think
that study would benefit the index function, but it doesn’t seem to.)

When study can help

study is best used when you have a large string you intend to match many times
befor e the string is modified. A good example is a filter I use in the preparation of
this book. I write in a home-grown markup that the filter converts to SGML (which
is then converted to tr off, which is then converted to PostScript). Within the filter,
an entire chapter eventually ends up within one huge string (for instance, this
chapter is about 475KB). Before exiting, I apply a bevy of checks to guard against
mistaken markup leaking through. These checks don’t modify the string, and they
often look for fixed strings, so they’re what study thrives on.

Benchmarking
If you really care about efficiency, it may be best to try benchmarking. Perl comes
standard with the Benchmark module, which has fine documentation (“perldoc
Benchmark”). Perhaps more out of habit than anything else, I tend to write my
benchmarks from scratch. After

use Time::HiRes ’time’;

I wrap what I want to test in something simple like:

my $start = time;
+
+
+

my $delta = time - $start;
printf "took %.1f seconds\n", $delta;

Important issues with benchmarking include making sure to benchmark enough
work to show meaningful times, and to benchmark as much of the work you want
to measure while benchmarking as little of the work you don’t. This is discussed
in more detail in Chapter 6 (+ 232). It might take some time to get used to bench-
marking in a reasonable way, but the results can be quite enlightening and
rewarding.

29 April 2003 20:47

Regex Debugg ing Infor mation
Perl carries out a phenomenal number of optimizations to try to arrive at a match
result quickly; some of the less esoteric ones are listed in Chapter 6’s “Common
Optimizations” (+ 239), but there are many more. Most optimizations apply to
only very specific cases, so any particular regex benefits from only some (or none)
of them.

Perl has debugging modes that tell you about some of the optimizations. When a
regex is first compiled, Perl figures out which optimizations go with the regex, and
the debugging mode reports on some of them. The debugging modes can also tell
you a lot about how the engine actually applies that expression. A detailed analy-
sis of this debugging information is beyond the scope of even this book, but I’ll
pr ovide a short introduction here.

You can turn on the debugging information by putting use re ’debug’; in your
code, and you can turn it back off with no re ’debug’;. (We’ve seen this use

re pragma before, with differ ent arguments, to allow embedded code in interpo-
lated variables + 337.)

Alter natively, if you want to turn it on for the entire script, you can use the
-Mre=debug command-line argument. This is particularly useful just for inspecting
how a single regex is compiled. Here’s an example (edited to remove some lines
that are not of interest):

Ê % perl -cw -Mre=debug -e ’m/ˆSubject: (.,)/’
Ë Compiling REx ‘ˆSubject: (.+)’
Ì rarest char j at 3
Í 1: BOL(2)
Î 2: EXACT <Subject: >(6)

+
+
+

Ï 12: END(0)
Ð anchored ‘Subject: ’ at 0 (checking anchored) anchored(BOL) minlen 9
Ñ Omitting $‘ $& $’ support.

At Ê , I invoke perl at my shell prompt, using the command-line flags -c (which
means to check the script, but don’t actually execute it), -w (issue warnings about
things Perl thinks are dubious — always used as a matter of principle), and
-Mre=debug to turn on regex debugging. The -e flag means that the following
argument, ‘m/ˆSubject: (.+)/’, is actually a mini Perl program to be run or
checked.

Line Ì reports the “rarest” character (the least common, as far as Perl guesses)
fr om among those in the longest fixed substring part of the regex. Perl uses this
for some optimizations (such as pre-check of requir ed character/substring + 244).

Perl Efficienc y Issues 361

29 April 2003 20:47

362 Chapter 7: Perl

Lines Í thr ough Ï repr esents Perl’s compiled form of the regex. For the most
part, we won’t be concerned much about it here. However, in even a casual look,
line Î sticks out as understandable.

Line Ð is where most of the action is. Some of the information that might be
shown here includes:

anchored ‘string’ at of fset
Indicates that any match must have the given string, starting of fset characters
fr om the start of the match. If ‘$’ is shown immediately after ‘string’, the
string also ends the match.

floating ‘string’ at fr om..to
Indicates that any match must have the given string, but that it could start any-
wher e fr om fr om characters into the match, to to characters. If ‘$’ is shown
immediately after ‘string’, the string also ends the match.

stclass ‘list’
Shows the list of characters with which a match can begin.

anchored(MBOL), anchored(BOL), anchored(SBOL)
The regex leads with !ˆ ". The MBOL version appears when the /m modifier is
used, while BOL and SBOL appear when it’s is not used. (The differ ence
between BOL and SBOL is not relevant for modern Perl. SBOL relates to the
regex-r elated $+ variable, which has long been deprecated.)

anchored(GPOS)

The regex leads with !\G ".

implicit

The anchored(MBOL) is an implicit one added by Perl because the regex
begins with ! .+ ".

minlen length
Any match is at least length characters long.

with eval

The regex has !(?{˙˙˙}) " or !(??{˙˙˙})".

Line Ñ is not related to any particular regex, and appears only if your perl binary
has been compiled with -DDEBUGGING tur ned on. With it, after loading the whole
pr ogram, Perl reports if support for $& and friends has been enabled (+ 356).

Run-time debugging infor mation

We’ve already seen how we can use embedded code to get information about
how a match progr esses (+ 331), but Perl’s regex debugging can show much
mor e. If you omit the -c compile-only option, Perl displays quite a lot of informa-
tion detailing just how each match progr esses.

29 April 2003 20:47

If you see “Match rejected by optimizer,” it means that one of the optimizations
enabled the transmission to realize that the regex could never match the target
text, and so the application is bypassed altogether. Her e’s an example:

% perl -w -Mre=debug -e ’"this is a test" =˜ m/ˆSubject:/;’
+
+
+

Did not find anchored substr ‘Subject:’˙˙˙

Match rejected by optimizer

When debugging is turned on, you’ll see the debugging information for any regu-
lar expressions that are used, not necessarily just your own. For example

% perl -w -Mre=debug -e ’use warnings’
. . . lots of debugging information . . .

+
+
+

does nothing more than load the warnings module, but because that module has
regular expressions, you see a lot of debugging information.

Other ways to invoke debugg ing messages

I’ve mentioned that you can use “use re ’debug’;” or -Mre=debug to turn on
regex debug information. However, if you use debugcolor instead of debug with
either of these, and if you are using a terminal that understands ANSI ter minal con-
tr ol escape sequences, the information is shown with highlighting that makes the
output easier to read.

Another option is that if your perl binary has been compiled with extra debugging
support turned on, you can use the -Dr command-line flag as a shorthand for
-Mre=debug.

Final Comments
I’m sure it’s obvious that I’m quite enamored with Perl’s regular expressions, and
as I noted at the start of the chapter, it’s with good reason. Larry Wall, Perl’s cre-
ator, appar ently let himself be ruled by common sense and the Mother of Inven-
tion. Yes, the implementation has its warts, but I still allow myself to enjoy the
delicious richness of the regex language and the integration with the rest of Perl.

However, I’m not a blind fanatic—Perl does not offer features that I wish for. Since
several of the features I pined for in the first edition of this book were eventually
added, I’ll go ahead and wish for more her e. The most glaring omission offer ed by
other implementations is named capture (+ 137). This chapter offers a way to
mimic them, but with severe restrictions; it would be much nicer if they were built
in. Class set operations (+ 123) would also be very nice to have, even though with
some effort, they can already be mimicked with lookaround (+ 124).

Final Comments 363

29 April 2003 20:47

364 Chapter 7: Perl

Then there are possessive quantifiers (+ 140). Perl has atomic grouping, which
of fers mor e overall functionality, but still, possessive quantifiers offer a clearer,
mor e elegant solution in some situations. So, I’d like both notations. In fact, I’d
also like two related constructs that no flavor currently offers. One is a simple
“cut” operator, say !\v ", which would immediately flush any saved states that cur-
rently exist (with this, !x+\v " would be the same as the possessive !x++ " or the
atomic grouping !(?>x+) "). The other related construct I’d like would take the addi-
tional step of prohibiting any further bump-alongs by the transmission. It would
mean “either a match is found from the current path I’m on, or no match will be
allowed, period.” Perhaps !\V " would be a good notation for that.

Somewhat related to my idea for !\V ", I think that it would be useful to somehow
have general hooks into the transmission. This would make it easier to do what
we did on page 335.

Finally, as I mentioned on page 337, I think it would be nice to have more contr ol
over when embedded code can be interpolated into a regex.

Perl is not the ideal regex-wielding language, but it is very close, and is always
getting better. In fact, as this book is going to print, Larry Wall is forging ahead on
the design of Perl 6, including a recently-r eleased paper describing his radical new
ideas for the future of regular expressions. It will still be some while before Perl 6
is a reality, but the future certainly looks exciting.

29 April 2003 20:47

8
Ja va

Java didn’t come with a regex package until Java 1.4, so early programmers had to
do without regular expressions. Over time, many programmers independently
developed Java regex packages of varying degrees of quality, functionality, and
complexity. With the early-2002 release of Java 1.4, Sun entered the fray with their
java.util.regex package. In preparing this chapter, I looked at Sun’s package,
and a few others (detailed starting on page 372). So which one is best? As you’ll
soon see, there can be many ways to judge that.

In This Chapter Befor e looking at what’s in this chapter, it’s important to mention
what’s not in this chapter. In short, this chapter doesn’t restate everything from
Chapters 1 through 6. I understand that some readers interested only in Java may
be inclined to start their reading with this chapter, and I want to encourage them
not to miss the benefits of the preface and the earlier chapters: Chapters 1, 2,
and 3 introduce basic concepts, features, and techniques involved with regular
expr essions, while Chapters 4, 5, and 6 offer important keys to regex understand-
ing that directly apply to every Java regex package that I know of.

As for this chapter, it has several distinct parts. The first part, consisting of “Judging
a Regex Package” and “Object Models,” looks abstractly at some concepts that help
you to understand an unfamiliar package more quickly, and to help judge its suit-
ability for your needs. The second part, “Packages, Packages, Packages,” moves
away from the abstract to say a few words about the specific packages I looked at
while researching this book. Finally, we get to the real fun, as the third part talks
in specifics about two of the packages, Sun’s java.util.regex and Jakarta’s ORO

package.

365

29 April 2003 20:54

366 Chapter 8: Java

Judg ing a Regex Package
The first thing most people look at when judging a regex package is the regex fla-
vor itself, but there are other technical issues as well. On top of that, “political”
issues like source code availability and licensing can be important. The next sec-
tions give an overview of some points of comparison you might use when select-
ing a regex package.

Technical Issues
Some of the technical issues to consider are:

• Eng ine Type? Is the underlying engine an NFA or DFA? If an NFA, is it a POSIX

NFA or a Traditional NFA? (See Chapter 4 + 143)

• Rich Flavor? How full-featured is the flavor? How many of the items on
page 113 are supported? Are they supported well? Some things are mor e
important than others: lookaround and lazy quantifiers, for example, are mor e
important than possessive quantifiers and atomic grouping, because look-
ar ound and lazy quantifiers can’t be mimicked with other constructs, whereas
possessive quantifiers and atomic grouping can be mimicked with lookahead
that allows capturing parentheses.

• Unicode Support? How well is Unicode supported? Java strings support Uni-
code intrinsically, but does !\w " know which Unicode characters are “word”
characters? What about !\d " and !\s "? Does !\b " understand Unicode? (Does its
idea of a word character match !\w "’s idea of a word character?) Are Unicode
pr operties supported? How about blocks? Scripts? (+ 119) Which version of
Unicode’s mappings do they support: Version 3.0? Version 3.1? Version 3.2?
Does case-insensitive matching work properly with the full breadth of Uni-
code characters? For example, does a case-insensitive ‘ß’ really match ‘SS’?
(Even in lookbehind?)

• How Flexible? How flexible are the mechanics? Can the regex engine deal
only with String objects, or the whole breadth of CharSequence objects? Is it
easy to use in a multi-threaded environment?

• How Convenient? The raw engine may be powerful, but are ther e extra
“convenience functions” that make it easy to do the common things without a
lot of cumbersome overhead? Does it, borrowing a quote from Perl, “make the
easy things easy, and the hard things possible?”

• JRE Requirements? What version of the JRE does it requir e? Does it need the
latest version, which many may not be using yet, or can it run on even an old
(and perhaps more common) JRE?

29 April 2003 20:54

• Ef ficient? How efficient is it? The length of Chapter 6 tells you how much
ther e is to be said on this subject. How many of the optimizations described
ther e does it do? Is it efficient with memory, or does it bloat over time? Do
you have any control over resource utilization? Does it employ lazy evaluation
to avoiding computing results that are never actually used?

• Does it Work? When it comes down to it, does the package work? Are ther e
a few major bugs that are “deal-br eakers?” Ar e ther e many little bugs that
would drive you crazy as you uncover them? Or is it a bulletproof, rock-solid
package that you can rely on?

Of course, this list just the tip of the iceberg — each of these bullet points could be
expanded out to a full chapter on its own. We’ll touch on them when comparing
packages later in this chapter.

Social and Political Issues
Some of the non-technical issues to consider are:

• Documented? Does it use Javadoc? Is the documentation complete? Correct?
Appr oachable? Understandable?

• Maintained? Is the package still being maintained? What’s the turnar ound
time for bugs to be fixed? Do the maintainers really care about the package? Is
it being enhanced?

• Suppor t and Popular ity? Is there official support, or an active user community
you can turn to for reliable support (and that you can provide support to,
once you become skilled in its use)?

• Ubiquity? Can you assume that the package is available everywhere you go,
or do you have to include it whenever you distribute your programs?

• Licensing? May you redistribute it when you distribute your programs? Are
the terms of the license something you can live with? Is the source code avail-
able for inspection? May you redistribute modified versions of the source
code? Must you?

Well, there are certainly a lot of questions. Although this book can give you the
answers to some of them, it can’t answer the most important question: which is
right for you? I make some recommendations later in this chapter, but only you
can decide which is best for you. So, to give you more backgr ound upon which to
base your decision, let’s look at one of the most basic aspects of a regex package:
its object model.

Judg ing a Regex Package 367

29 April 2003 20:54

368 Chapter 8: Java

Object Models
When looking at differ ent regex packages in Java (or in any object-oriented lan-
guage, for that matter), it’s amazing to see how many differ ent object models are
used to achieve essentially the same result. An object model is the set of class
structur es thr ough which regex functionality is provided, and can be as simple as
one object of one class that’s used for everything, or as complex as having sepa-
rate classes and objects for each sub-step along the way. There is not an object
model that stands out as the clear, obvious choice for every situation, so a lot of
variety has evolved.

A Few Abstract Object Models
Stepping back a bit now to think about object models helps prepar e you to more
readily grasp an unfamiliar package’s model. This section presents several repr e-
sentative object models to give you a feel for the possibilities without getting
mir ed in the details of an actual implementation.

Starting with the most abstract view, here are some tasks that need to be done in
using a regular expression:

Setup . . .

Ê Accept a string as a regex; compile to an internal form.

Ë Associate the regex with the target text.
Actually apply the regex . . .

Ì Initiate a match attempt.
See the results . . .

Í Lear n whether the match is successful.

Î Gain access to further details of a successful attempt.

Ï Query those details (what matched, where it matched, etc.).

These are the steps for just one match attempt; you might repeat them from Ì to
find the next match in the target string.

Now, let’s look at a few potential object models from among the infinite variety
that one might conjure up. In doing so, we’ll look at how they deal with matching
!\s+(\d+) " to the string ‘May 16, 1998’ to find out that ‘ 16’ is matched overall,
and ‘16’ matched within the first set of parentheses (within “group one”). Remem-
ber, the goal here is to mer ely get a general feel for some of the issues at hand —
we’ll see specifics soon.

29 April 2003 20:54

An “all-in-one” model

In this conceptual model, each regular expression becomes an object that you
then use for everything. It’s shown visually in Figure 8-1 below, and in pseudo-
code here, as it processes all matches in a string:

DoEverythingObj myRegex = new DoEverythingObj("\\s+(\\d+)"); // Ê
+
+
+

while (myRegex.findMatch("May 16, 1998")) { // Ë, Ì, Í
String matched = myRegex.getMatchedText(); // Ï
String num = myRegex.group(1); // Ï

+
+
+

}

As with most models in practice, the compilation of the regex is a separate step,
so it can be done ahead of time (perhaps at program startup), and used later, at
which point most of the steps are combined together, or are implicit. A twist on
this might be to clone the object after a match, in case the results need to be saved
for a while.

"\\s+(\\d+)"

Do-
Everything

Object

Matched text?

"16"

True or False

Constructor

" 16"

regex string literal

Group 1 text?

1

4
6

6
"May 16, 1998" Matches?

32

Figur e 8-1: An “all-in-one” model

Object Models 369

29 April 2003 20:54

370 Chapter 8: Java

A “match state” model

This conceptual model uses two objects, a “Pattern” and a “Matcher.” The Pattern
object repr esents a compiled regular expression, while the Matcher object has all
of the state associated with applying a Pattern object to a particular string. It’s
shown visually in Figure 8-2 below, and its use might be described as: “Convert a
regex string to a Pattern object. Give a target string to the Pattern object to get a
Matcher object that combines the two. Then, instruct the Matcher to find a match,
and query the Matcher about the result.” Her e it is in pseudo-code:

PatternObj myPattern = new PatternObj("\\s+(\\d+)"); // Ê
+
+
+

MatcherObj myMatcher = myPattern.MakeMatcherObj("May 16, 1998"); // Ë
while (myMatcher.findMatch()) { // Ì, Í

String matched = myMatcher.getMatchedText(); // Ï
String num = myMatcher.Group(1); // Ï

+
+
+

}

This might be considered conceptually cleaner, since the compiled regex is in an
immutable (unchangeable) object, and all state is in a separate object. However,
it’s not necessarily clear that the conceptual cleanliness translates to any practical
benefit. One twist on this is to allow the Matcher to be reset with a new target
string, to avoid having to make a new Matcher with each string checked.

1

6

"\\s+(\\d+)"

Match
State
Object

Constructor

Regex
Object 2

True or False 4

Matched text?

" 16"

"16"

6

Associate "May 16, 1998"

3

regex string literal

Find match Group 1 text?

Figur e 8-2: A “match state” model

29 April 2003 20:54

A “match result” model

This conceptual model is similar to the “all-in-one” model, except that the result of
a match attempt is not a Boolean, but rather a Result object, which you can then
query for the specifics on the match. It’s shown visually in Figure 8-3 below, and
might be described as: “Convert a regex string to a Pattern object. Give it a target
string and receive a Result object upon success. You can then query the Result
object for specific.” Her e’s one way it might be expressed it in pseudo-code:

PatternObj myPattern = new PatternObj("\\s+(\\d+)"); // Ê
+
+
+

ResultObj myResult = myPattern.findFirst("May 16, 1998"); // Ë, Ì, Î
while (myResult.wasSuccessful()) { // Í

String matched = myResult.getMatchedText(); // Ï
String num = myResult.Group(1); // Ï

+
+
+

myResult = myPattern.findNext(); Ì, Î
}

This compartmentalizes the results of a match, which might be convenient at
times, but results in extra overhead when only a simple true/false result is desired.
One twist on this is to have the Pattern object retur n null upon failure, to save
the overhead of creating a Result object that just says “no match.”

1

6 6 6' 6'

4 5

Next match?

"\\s+(\\d+)"

Constructor

Regex
Object

Result
Object

Result
Object

"1998"" 16" " 1998""16"

regex string literal

3'

Group 1 text?
Group 1 text? Matched text?

Matched text?

"May 16, 1998" Matches?

32

4' 5'

Figur e 8-3: A “match result” model

Object Models 371

29 April 2003 20:54

372 Chapter 8: Java

Growing Complexity
These conceptual models are just the tip of the iceberg, but give you a feel for
some of the differ ences you’ll run into. They cover only simple matches — when
you bring in search-and-r eplace, or perhaps string splitting (splitting a string into
substrings separated by matches of a regex), it can become much more complex.

Thinking about search-and-r eplace, for example, the first thought may well be that
it’s a fairly simple task, and indeed, a simple “replace this with that” inter face is
easy to design. But what if the “that” needs to depend on what’s matched by the
“this,” as we did many times in examples in Chapter 2 (+ 67). Or what if you need
to execute code upon every match, using the resulting text as the replacement?
These, and other practical needs, quickly complicate things, which further
incr eases the variety among the packages.

Packages, Packages, Packages
Ther e ar e many regex packages for Java; the list that follows has a few words
about those that I investigated while researching this book. (See this book’s web
page, http://regex.info/, for links). The table on the facing page gives a super-
ficial overview of some of the differ ences among their flavors.

Sun
java.util.regex Sun’s own regex package, finally standard as of Java 1.4.
It’s a solid, actively maintained package that provides a rich Perl-like flavor. It
has the best Unicode support of these packages. It provides all the basic func-
tionality you might need, but has only minimal convenience functions. It
matches against CharSequence objects, and so is extremely flexible in that
respect. Its documentation is clear and complete. It is the all-around fastest of
the engines listed here. This package is described in detail later in this chapter.
Version Tested: 1.4.0.
License: comes as part of Sun’s JRE. Source code is available under SCSL (Sun

Community Source Licensing)

IBM
com.ibm.regex This is IBM’s commercial regex package (although it’s said to
be similar to the org.apache.xerces.utils.regex package, which I did not
investigate). It’s actively maintained, and provides a rich Perl-like flavor,
although is somewhat buggy in certain areas. It has very good Unicode sup-
port. It can match against char[], CharacterIterator, and String. Overall,
not quite as fast as Sun’s package, but the only other package that’s in the
same class.
Version Tested: 1.0.0.
License: commercial product

29 April 2003 20:54

Table 8-1: Super ficial Overview of Some Java Package Flavor Differ ences

Feature Sun IBM ORO JRegex Pat GNU Regexp

Basic Functionality

Engine type NFA NFA NFA NFA NFA POSIX NFA NFA

Deeply-nested parens 3 3 3 3 3 3

dot doesn’t match: various various \n \n , \r \n \r\n \n

\s includes [\t\r\n\f] 3 3 3 3 3

\w includes underscore 3 3 3 3 3 3

Class set operators 3

POSIX [[:˙˙˙:]] 3

Metacharacter Support

\A,\z,\Z \A,\Z \A,\z,\Z \A,\z,\Z \A,\z,\Z \A,\Z \A,\Z

\G 3 3 7 3

(?#˙˙˙) 3 3 3 3 3

Octal escapes 3 3 3 3 3

2-, 4-, 6-digit hex escapes 2, 4 2, 4, 6 2 2, 4, 6 2 2, 4

Lazy quantifiers 3 3 3 3 3 3 3

Atomic grouping 3 3

Possessive quantifiers 3

Word boundaries \b \b \b \< \b \> \b \< \> 7

Non-word boundaries 3 3 3 3 7 7

\Q˙˙˙\E 3 7

(if then;else) conditional 3 3

Non-capturing parens 3 3 3 3 3 3

Lookahead 3 3 3 3 3 3

Lookbehind 3 7 3

(?mod) 3 7 3 3 3

(?-mod:˙˙˙) 3 7 3 3 7

(?mod:˙˙˙) 3 7 3 3

Unicode-Aware Metacharacter s

Unicode properties 3 3 3

Unicode blocks 3 3 3

dot, ˆ, $ 3 3

\w 3 3 3 3 3

\d 3 3 3 3 3

\s 3 3

Word boundaries 3 3 3 3 7 3 3

3 - supported - partial support 7 - supported, but buggy (Version info +372)

Packages, Packages, Packages 373

29 April 2003 20:54

374 Chapter 8: Java

ORO
org.apache.oro.text.regex The Apache Jakarta project has two unrelated
regex packages, one of which is “Jakarta-ORO.” It actually contains multiple
regex engines, each targeting a differ ent application. I looked at one engine,
the very popular Perl5Compiler matcher. It’s actively maintained, and solid,
although its version of a Perl-like flavor is much less rich than either the Sun or
the IBM packages. It has minimal Unicode support. Overall, the regex engine is
notably slower than most other packages. Its !\G " is broken. It can match against
char[] and String.

One of its strongest points is that it has a vast, modular structure that exposes
almost all of the mechanics that surround the engine (the transmission, search-
and-r eplace mechanics, etc.) so advanced users can tune it to suit their needs,
but it also comes replete with a fantastic set of convenience functions that
makes it one of the easiest packages to work with, particularly for those com-
ing from a Perl background (or for those having read Chapter 2 of this book).
This is discussed in more detail later in this chapter.

Version Tested: 2.0.6.
License: ASL (Apache Software License)

JRegex
jregex Has the same object model as Sun’s package, with a fairly rich Perl-
like feature set. It has good Unicode support. Its speed places it is in the mid-
dle of the pack.
Version Tested: v1.01
License: GNU-like

Pat
com.stevesoft.pat It has a fairly rich Perl-like flavor, but no Unicode sup-
port. Very haphazard interface. It has provisions for modifying the regex flavor
on the fly. Its speed puts it on the high end of the middle of the pack.
Version Tested: 1.5.3
License: GNU LGPL (GNU Lesser General Public License)

GNU
gnu.regexp The more advanced of the two “GNU regex packages” for Java.
(The other, gnu.rex, is a very small package providing only the most bare-
bones regex flavor and support, and is not covered in this book.) It has some
Perl-like features, and minimal Unicode support. It’s very slow. It’s the only
package with a POSIX NFA (although its POSIXness is a bit buggy at times).
Version Tested: 1.1.4
License: GNU LGPL (GNU Lesser General Public License)

29 April 2003 20:54

Regexp
org.apache.regexp This is the other regex package under the umbrella of
the Apache Jakarta project. It’s somewhat popular, but quite buggy. It has the
fewest features of the packages listed here. Its overall speed is on par with
ORO. Not actively maintained. Minimal Unicode support.
Version Tested: 1.2
License: ASL (Apache Software License)

Why So Many “Perl5” Flavors?
The list mentions “Perl-like” fairly often; the packages themselves advertise “Perl5
support.” When version 5 of Perl was released in 1994 (+ 89), it introduced a new
level of regular-expr ession innovation that others, including Java regex developers,
could well appreciate. Perl’s regex flavor is powerful, and its adoption by a wide
variety of packages and languages has made it somewhat of a de facto standard.

However, of the many packages, programs, and languages that claim to be “Perl5
compliant,” none truly are. Even Perl itself differs from version to version as new
featur es ar e added and bugs are fixed. Some of the innovations new with early 5.x
versions of Perl were non-capturing parentheses, lazy quantifiers, lookahead,
inline mode modifiers like !(?i)", and the /x fr ee-spacing mode (all discussed in
Chapter 3). Packages supporting only these features claim a “Perl5” flavor, but miss
out on later innovations, such as lookbehind, atomic grouping, and conditionals.

Ther e ar e also times when a package doesn’t limit itself to only “Perl5” enhance-
ments. Sun’s package, for example, supports possessive quantifiers, and both Sun
and IBM support character class set operations. Pat offers an innovative way to do
lookbehind, and a way to allow matching of simple arbitrarily nested constructs.

Lies, Damn Lies, and Benchmarks
It’s probably a common twist on Sam Clemens’ famous “lies, damn lies, and statis-
tics” quote, but when I saw its use with “benchmarks” in a paper from Sun while
doing research for this chapter, I knew it was an appropriate introduction for this
section. In researching these seven packages, I’ve run literally thousands of bench-
marks, but the only fact that’s clearly emerged is that there are no clear
conclusions.

Ther e ar e several things that cloud regex benchmarking with Java. First, there are
language issues. Recall the benchmarking discussion from Chapter 6 (+ 234), and
the special issues that make benchmarking Java a slippery science at best (primar-
ily, the effects of the Just-In-Time or Better-Late-Than-Never compiler). In doing
these benchmarks, I’ve made sure to use a server VM that was “warmed up” for
the benchmark (see “BLTN” + 235), to show the truest results.

Packages, Packages, Packages 375

29 April 2003 20:54

376 Chapter 8: Java

Then there are regex issues. Due to the complex interactions of the myriad of opti-
mizations like those discussed in Chapter 6, a seemingly inconsequential change
while trying to test one feature might tickle the optimization of an unrelated fea-
tur e, anonymously skewing the results one way or the other. I did many (many!)
very specific tests, usually approaching an issue from multiple directions, and so I
believe I’ve been able to get meaningful results . . . but one never truly knows.

Warning: Benchmark results can cause drowsiness!

Just to show how slippery this all can be, recall that I judged the two Jakarta pack-
ages (ORO and Regexp) to be roughly comparable in speed. Indeed, they finished
equally in some of the many benchmarks I ran, but for the most part, one gener-
ally ran at least twice the speed of the other (sometimes 10× or 20× the speed).
But which was “one” and which “the other” changed depending upon the test.

For example, I targeted the speed of greedy and lazy quantifiers by applying !ˆ.+:"

and !ˆ.+?:" to a very long string like ‘˙˙˙xxx:x’. I expected the greedy one to be
faster than the lazy one with this type of string, and indeed, it’s that way for every
package, program, and language I tested . . . except one. For whatever reason,
Jakarta’s Regexp’s !ˆ.+:" per formed 70% slower than its !ˆ.+?:". I then applied the
same expressions to a similarly long string, but this time one like ‘x:xxx˙˙˙’ wher e
the ‘:’ is near the beginning. This should give the lazy quantifier an edge, and
indeed, with Regexp, the expression with the lazy quantifier finished 670× faster
than the greedy. To gain more insight, I applied !ˆ[ˆ:]+:" to each string. This
should be in the same ballpark, I thought, as the lazy version, but highly contin-
gent upon certain optimizations that may or may not be included in the engine.
With Regexp, it finished the test a bit slower than the lazy version, for both strings.

Does the previous paragraph make your eyes glaze over a bit? Well, it discusses
just six tests, and for only one regex package — we haven’t even started to com-
par e these Regexp results against ORO or any of the other packages. When com-
par ed against ORO, it tur ns out that Regexp is about 10× slower with four of the
tests, but about 20× faster with the other two! It’s faster with !ˆ.+?:" and !ˆ[ˆ:]+:"

applied to the long string with ‘:’ at the front, so it seems that Regexp does poorly
(or ORO does well) when the engine must walk through a lot of string, and that
the speeds are reversed when the match is found quickly.

Ar e you eyes completely glazed over yet? Let’s try the same set of six tests, but this
time on short strings instead of very long ones. It turns out that Regexp is faster —
thr ee to ten times faster — than ORO for all of them. Okay, so what does this tell
us? Perhaps that ORO has a lot of clunky overhead that overshadows the actual
match time when the matches are found quickly. Or perhaps it means that Regexp
is generally much faster, but has an inefficient mechanism for accessing the target
string. Or perhaps it’s something else altogether. I don’t know.

29 April 2003 20:54

Another test involved an “exponential match” (+ 226) on a short string, which
tests the basic churning of an engine as it tracks and backtracks. These tests took a
long time, yet Regexp tended to finish in half the time of ORO. Ther e just seems to
be no rhyme nor reason to the results. Such is often the case when benchmarking
something as complex as a regex engine.

And the winner is . . .

The mind-numbing statistics just discussed take into account only a small fraction
of the many, varied tests I did. In looking at them all for Regexp and ORO, one
package does not stand out as being faster overall. Rather, the good points and
bad points seem to be distributed fairly evenly between the two, so I (perhaps
somewhat arbitrarily) judge them to be about equal.

Adding the benchmarks from the five other packages into the mix results in a lot
of drowsiness for your author, and no obviously clear winner, but overall, Sun’s
package seems to be the fastest, followed closely by IBM’s. Following in a group
somewhat behind are Pat, Jregex, Regexp, and ORO. The GNU package is clearly
the slowest.

The overall differ ence between Sun and IBM is not so obviously clear that another
equally comprehensive benchmark suite wouldn’t show the opposite order if the
suite happened to be tweaked slightly differ ently than mine. Or, for that matter, it’s
entir ely possible that someone looking at all my benchmark data would reach a
dif ferent conclusion. And, of course, the results could change drastically with the
next release of any of the packages or virtual machines (and may well have, by
the time you read this). It’s a slippery science.

In general, Sun did most things very well, but it’s missing a few key optimizations,
and some constructs (such as character classes) are much slower than one would
expect. Over time, these will likely be addressed by Sun (and in fact, the slowness
of character classes is slated to be fixed in Java 1.4.2). The source code is available
if you’d like to hack on it as well; I’m sure Sun would appreciate ideas and
patches that improve it.

Recommendations
Ther e ar e many reasons one might choose one package over another, but Sun’s
java.util.regex package — with its high quality, speed, good Unicode support,
advanced features, and future ubiquity — is a good recommendation. It comes inte-
grated as part of Java 1.4: String.matches(), for example, checks to see whether
the string can be completely matched by a given regex.

Packages, Packages, Packages 377

29 April 2003 20:54

378 Chapter 8: Java

java.util.regex’s strengths lie in its core engine, but it doesn’t have a good set
of “convenience functions,” a layer that hides much of the drudgery of bit-shuffling
behind the scenes. ORO, on the other hand, while its core engine isn’t as strong,
does have a strong support layer. It provides a very convenient set of functions for
casual use, as well as the core inter face for specialized needs. ORO is designed to
allow multiple regex core engines to be plugged in, so the combination of
java.util.regex with ORO sounds very appealing. I’ve talked to the ORO devel-
oper, and it seems likely that this will happen, so the rest of this chapter looks at
Sun’s java.util.regex and ORO’s interface.

Sun’s Regex Package
Sun’s regex package, java.util.regex, comes standard with Java as of Version
1.4. It provides powerful and innovative functionality with an uncluttered (if some-
what simplistic) class interface to its “match state” object model discussed (+ 370).
It has fairly good Unicode support, clear documentation, and good efficiency.

We’ve seen examples of java.util.regex in earlier chapters (+ 81, 95, 98, 217,
234). We’ll see more later in this chapter when we look at its object model and
how to actually put it to use, but first, we’ll take a look at the regex flavor it sup-
ports, and the modifiers that influence that flavor.

Regex Flavor
java.util.regex is powered by a Traditional NFA, so the rich set of lessons from
Chapters 4, 5, and 6 apply. Table 8-2 on the facing page summarizes its metachar-
acters. Certain aspects of the flavor are modified by a variety of match modes,
tur ned on via flags to the various functions and factories, or turned on and off via
!(?mods-mods)" and !(?mods-mods:˙˙˙)" modifiers embedded within the regular expres-
sion itself. The modes are listed in Table 8-3 on page 380.

A regex flavor certainly can’t be described with just a tidy little table, so here are
some notes to augment Table 8-2:

• The table shows “raw” backslashes, not the doubled backslashes requir ed
when regular expressions are provided as Java string literals. For example, !\n "

in the table must be written as "\\n" as a Java string. See “Strings as Regular
Expr essions” (+ 101).

• With the Pattern.COMMENTS option (+ 380), #˙˙˙1 sequences are taken as
comments. (Don’t forget to add newlines to multiline string literals, as in the
sidebar on page 386.) Unescaped ASCII whitespace is ignored. Note: unlike
most implementations that support this type of mode, comments and free
whitespace ar e recognized within character classes.

29 April 2003 20:54

Table 8-2: Overview of Sun’s java.util.regex Flavor

Character Shorthands

+ 114 (c) \a \b \e \f \n \r \t \0octal \x## \u#### \cchar

Character Classes and Class-Like Constr ucts

+ 117 (c) Classes: [˙˙˙] [ˆ˙˙˙] (may contain class set operators + 123)

+ 118 Almost any character: dot (various meanings, changes with modes)

+ 119 (c) Class shorthands: \w \d \s \W \D \S

+ 119 (c) Unicode properties and blocks \p{Pr op} \P{Pr op}

Anchor s and other Zero-Width Tests

+ 127 Start of line/string: ˆ \A

+ 127 End of line/string: $ \z \Z

+ 128 Start of current match: \G

+ 131 Word boundary: \b \B

+ 132 Lookar ound: (?=˙˙˙) (?!˙˙˙) (?<=˙˙˙) (?<!˙˙˙)

Comments and Mode Modifiers

+ 133 Mode modifiers: (?mods-mods) Modifiers allowed: x d s m i u

+ 134 Mode-modified spans: (?mods-mods:˙˙˙)

+ 112 (c) Literal-text mode: \Q˙˙˙\E

Grouping and Capturing

+ 135 Capturing parentheses: (˙˙˙) \1 \2 . . .

+ 136 Gr ouping-only par entheses: (?:˙˙˙)

+ 137 Atomic grouping: (?>˙˙˙)

+ 138 Alter nation: <

+ 139 Gr eedy quantifiers: , + ? {n} {n,} {x,y}

+ 140 Lazy quantifiers: ,? +? ?? {n}? {n,}? {x,y}?

+ 140 Possessive quantifiers: ,+ ++ ?+ {n}+ {n,}+ {x,y}+

(c) – may be used within a character class (See text for notes on many items)

• \b is valid as a backspace only within a character class (outside, it matches a
word boundary).

• \x## allows exactly two hexadecimal digits, e.g., !\xFCber " matches ‘über’.

• \u#### allows exactly four hexadecimal digits, e.g., !\u00FCber " matches
‘über’, and !\u20AC " matches ‘P’.

• \0octal requir es the leading zero, with one to three following octal digits.

• \cchar is case sensitive, blindly xor ing the ordinal value of the following char-
acter with 64. This bizarre behavior means that, unlike any other regex flavor
I’ve ever seen, \cA and \ca ar e dif ferent. Use uppercase letters to get the tra-
ditional meaning of \x01. As it happens, \ca is the same as \x21, matching
‘!’. (The case sensitivity is scheduled to be fixed in Java 1.4.2.)

Sun’s Regex Package 379

29 April 2003 20:54

380 Chapter 8: Java

Table 8-3: The java.util.regex Match and Regex Modes

Compile-Time Option (?mode) Descr iption

Pattern.UNIXRLINES d Changes how dot and !ˆ " match (+ 382)

Pattern.DOTALL s Causes dot to match any character (+ 110)

Pattern.MULTILINE m Expands where !ˆ " and !$ " can match (+ 382)

Pattern.COMMENTS x Fr ee-spacing and comment mode (+ 72)
(Applies even inside character classes)

Pattern.CASERINSENSITIVE i Case-insensitive matching for ASCII characters

Pattern.UNICODERCASE u Case-insensitive matching for non-ASCII characters

Pattern.CANONREQ Unicode “canonical equivalence” match mode
(dif ferent encodings of the same character match
as identical + 107)

• \w, \d, and \s (and their uppercase counterparts) match only ASCII characters,
and don’t include the other alphanumerics, digits, or whitespace in Unicode.
That is, \d is exactly the same as [0-9], \w is the same as [0-9a-zA-ZR],
and \s is the same as [\t\n\f\r\x0B] (\x0B is the little-used ASCII VT

character).

For full Unicode coverage, you can use Unicode properties (+ 119): use
\p{L} for \w, use \p{Nd} for \d, and use \p{Z} for \s. (Use the \P{˙˙˙} ver-
sion of each for \W, \D, and \S.)

• \p{˙˙˙} and \P{˙˙˙} support most standard Unicode properties and blocks. Uni-
code scripts are not supported. Only the short property names like \p{Lu} ar e
supported — long names like \p{LowercaseRLetter} ar e not supported. (See
the tables on pages 120 and 121.) One-letter property names may omit the
braces: \pL is the same as \p{L}. Note, however, that the special composite
pr operty \p{L&} is not supported. Also, for some reason, \p{P} does not
match characters matched by \p{Pi} and \p{Pf}. \p{C} doesn’t match char-
acters matched by \p{Cn}.

\p{all} is supported, and is equivalent to (?s:.). \p{assigned} and
\p{unassigned} ar e not supported: use \P{Cn} and \p{Cn} instead.

• This package understands Unicode blocks as of Unicode Version 3.1. Blocks
added to or modified in Unicode since Version 3.1 are not known (+ 108).

Block names requir e the ‘In’ prefix (see the table on page 123), and only the
raw form unador ned with spaces and underscores may be used. For example,
\p{InRGreekRExtended} and \p{In Greek Extended} ar e not allowed;
\p{InGreekExtended} is requir ed.

29 April 2003 20:54

• $ and \Z actually match line terminators when they should only match at the
line terminators (for example, a pattern of "(.+$)" actually captures the line
ter minator). This is scheduled to be fixed in Java 1.4.1.

• \G matches the location where the current match started, despite the docu-
mentation’s claim that it matches at the ending location of the previous match
(+ 128). !\G " is scheduled to be fixed (to agree with the documentation and
match at the end of the previous match) in Java 1.4.1.

• The \b and \B word boundary metacharacters’ idea of a “word character” is
not the same as \w and \W’s. The word boundaries understand the properties
of Unicode characters, while \w and \W match only ASCII characters.

• Lookahead constructs can employ arbitrary regular expressions, but look-
behind is restricted to subexpressions whose possible matches are finite in
length. This means, for example, that !? " is allowed within lookbehind, but ! + "

and !+ " ar e not. See the description in Chapter 3, starting on page 132.

• At least until Java 1.4.2 is released, character classes with many elements are
not optimized, and so are very slow; use ranges when possible (e.g., use
[0-9A-F] instead of [0123456789ABCDEF]), and if there are characters or
ranges that are likely to match more often than others, put them earlier in the
class’s list.

Using java.util.regex
The mechanics of wielding regular expressions with java.util.regex ar e fairly
simple. Its object model is the “match state” model discussed on page 370. The
functionality is provided with just three classes:

java.util.regex.Pattern
java.util.regex.Matcher
java.util.regex.PatternSyntaxException

Infor mally, I’ll refer to the first two simply as “Pattern” and “Matcher”. In short,
the Pattern object is a compiled regular expression that can be applied to any
number of strings, and a Matcher object is an individual instance of that regex
being applied to a specific target string. The third class is the exception thrown
upon the attempted compilation of an ill-formed regular expression.

Sun’s documentation is sufficiently complete and clear that I refer you to it for the
complete list of all methods for these objects (if you don’t have the documentation
locally, see http://regex.info for links). The rest of this section highlights just
the main points.

Sun’s Regex Package 381

29 April 2003 20:54

382 Chapter 8: Java

Sun’s java.util.regex “Line Ter minators”
Traditionally, pre-Unicode regex flavors treat a newline specially with respect to
dot, !ˆ ", !$ ", and !\Z ". However, the Unicode standard suggests the larger set of “line
ter minators” discussed in Chapter 3 (+ 108). Sun’s package supports a subset of
these consisting of these five characters and one character sequence:

Character Codes Nicknames Description

U+000A LF \n ASCII Line Feed
U+000D CR \r ASCII Carriage Return
U+000D U+000A CR/LF \r\n ASCII Carriage Return / Line Feed
U+0085 NEL Unicode NEXT LINE
U+2028 LS Unicode LINE SEPARATOR
U+2029 PS Unicode PARAGRAPH SEPARATOR

This list is related to the dot, !ˆ ", !$ ", and !\Z " metacharacters, but the relationships
ar e neither constant (they change with modes), nor consistent (one would expect
!ˆ " and !$ " to be treated similarly, but they are not).

Both the Pattern.UNIXRLINES and Pattern.DOTALL match modes (available
also via !(?d)" and !(?s)") influence what dot matches.

!ˆ " can always match at the beginning of the string, but can match elsewhere
under the (?m) Pattern.MULTILINE mode. It also depends upon the !(?d)"
Pattern.UNIXRLINES mode.

!$ " and !\Z " can always match at the end of the string, but they can also match just
befor e certain string-ending line terminators. With the Pattern.MULTILINE

mode, !$ " can match after certain embedded line terminators as well. With Java
1.4.0, Pattern.UNIXRLINES does not influence !$ " and !\Z " in the same way (but
it’s slated to be fixed in 1.4.1 such that it does). The following table summarizes
the relationships as of 1.4.0.

LF CR CR/LF NEL LS PS

Default action, without modifiers
dot matches all but: 3

ˆ matches at beginning of string only
$ and \Z match before string-ending: 3 3 3 3 3

With Pattern.MULTILINE or (?m)
ˆ matches after any: 3

$ matches before any: 3 3 3 3 3

With Pattern.DOTALL or (?s)
dot matches any character

— does not apply if Pattern.UNIXRLINES or (?d) is in effect

Finally, note that there is a bug in Java 1.4.0 that is slated to be fixed in 1.4.1:
!$ " and !\Z " actually match the line terminators, when present, rather than
mer ely matching at line terminators.

29 April 2003 20:54

Her e’s a complete example showing a simple match:

public class SimpleRegexTest {
public static void main(String[] args)
{

String sampleText = "this is the 1st test string";
String sampleRegex = "\\d+\\w+";
java.util.regex.Pattern p = java.util.regex.Pattern.compile(sampleRegex);
java.util.regex.Matcher m = p.matcher(sampleText);

if (m.find()) {
String matchedText = m.group();
int matchedFrom = m.start();
int matchedTo = m.end();
System.out.println("matched [" + matchedText + "] from " +

matchedFrom + " to " + matchedTo + ".");
} else {

System.out.println("didn’t match");
}

}
}

This prints ‘matched [1st] from 12 to 15.’. As with all examples in this chap-
ter, names I’ve chosen are in italic. Notice the Matcher object, after having been
cr eated by associating a Pattern object and a target string, is used to instigate the
actual match (with its m.find() method), and to query the results (with
m.group(), etc.).

The parts shown in bold can be omitted if

import java.util.regex.+;

or perhaps

import java.util.regex.Pattern;
import java.util.regex.Matcher;

ar e inserted at the head of the program, just as with the examples in Chapter 3
(+ 95). Doing so makes the code more manageable, and is the standard approach.
The rest of this chapter assumes the import statement is always supplied. A more
involved example is shown in the sidebar on page 386.

The Pattern.compile() Factor y
A Pattern regular-expr ession object is created with Pattern.compile(˙˙˙). The
first argument is a string to be interpreted as a regular expression (+ 101). Option-
ally, compile-time options shown in Table 8-3 on page 380 can be provided as a
second argument. Here’s a snippet that creates a Pattern object from the string in
the variable sampleRegex, to be matched in a case-insensitive manner:

Pattern pat = Pattern.compile(sampleRegex,
Pattern.CASERINSENSITIVE ; Pattern.UNICODERCASE);

A call to Pattern.compile(˙˙˙) can throw two kinds of exceptions: an invalid reg-
ular expression throws PatternSyntaxException, and an invalid option value
thr ows IllegalArgumentException.

Sun’s Regex Package 383

29 April 2003 20:54

384 Chapter 8: Java

Patter n’s matcher(˙˙˙) method

A Pattern object offers some convenience methods we’ll look at shortly, but for
the most part, all the work is done through just one method: matcher(˙˙˙). It
accepts a single argument: the string to search.† It doesn’t actually apply the regex,
but prepar es the general Pattern object to be applied to a specific string. The
matcher(˙˙˙) method retur ns a Matcher object.

The Matcher Object
Once you’ve associated a regular expression with a target string by creating a
Matcher object, you can instruct it to apply the regex in various ways, and query
the results of that application. For example, given a Matcher object m, the call
m.find() actually applies m’s regex to its string, retur ning a Boolean indicating
whether a match is found. If a match is found, the call m.group() retur ns a string
repr esenting the text actually matched.

The next sections list the various Matcher methods that actually apply a regex,
followed by those that query the results.

Applying the regex

Her e ar e the main Matcher methods for actually applying its regex to its string:

find()

Applies the object’s regex to the object’s string, retur ning a Boolean indicating
whether a match is found. If called multiple times, the next match is retur ned
each time.

find(of fset)
If find(˙˙˙) is given an integer argument, the match attempt starts from the
given of fset number of characters from the start of the string. It throws
IndexOutOfBoundsException if the of fset is negative or beyond the end of
the string.

matches()

This method retur ns a Boolean indicating whether the object’s regex exactly
matches the object’s string. That is, the regex is wrapped with an implied
!\A˙˙˙\z ".‡ This is also available via String’s matches() method. For example,
"123".matches("\\d+") is true.

† Actually, matcher’s argument can be any object implementing the CharSequence inter face (of which
String, StringBuffer, and CharBuffer ar e examples). This provides the flexibility to apply regular
expr essions to a wide variety of data, including text that’s not even kept in contiguous strings.

‡ Due to the bug with !\Z " mentioned at the bottom of page 382, with version 1.4.0, the regex actually
appears to be wrapped with an implied !\A˙˙˙\Z " instead.

29 April 2003 20:54

lookingAt()

Retur ns a Boolean indicating whether the object’s regex matches the object’s
string fr om its beginning. That is, the regex applied with an implied !\A " at its
start.

Quer ying the results

The following Matcher methods retur n infor mation about a successful match.
They throw IllegalStateException if the object’s regex hasn’t yet been applied
to the object’s string, or if the previous application was not successful. The meth-
ods that accept a num argument (referring to a set of capturing parentheses)
thr ow IndexOutOfBoundsException when an invalid num is given.

group()

Retur ns the text matched by the previous regex application.

groupCount()

Retur ns the number of sets of capturing parentheses in the object’s regex.
Numbers up to this value can be used in the group(num) method,
described next.

group(num)

Retur ns the text matched by the num th set of capturing parentheses, or null if
that set didn’t participate in the match. A num of zero indicates the entire
match, so group(0) is the same as group().

start(num)

Retur ns the offset, in characters, from the start of the string to the start of
wher e the num th set of capturing parentheses matched. Returns -1 if the set
didn’t participate in the match.

start()

The offset to the start of the match; this is the same as start(0).

end(num)

Retur ns the offset, in characters, from the start of the string to the end of
wher e the num th set of capturing parentheses matched. Returns -1 if the set
didn’t participate in the match.

end()

The offset to the end of the match; this is the same as end(0).

Reusing Matcher objects for efficienc y

The whole point of having separate compile and apply steps is to increase effi-
ciency, alleviating the need to recompile a regex with each use (+ 241). Additional
ef ficiency can be gained by reusing Matcher objects when applying the same
regex to new text. This is done with the reset method, described next.

Sun’s Regex Package 385

29 April 2003 20:54

386 Chapter 8: Java

CSV Par sing with java.util.regex
Her e’s the java.util.regex version of the CSV example from Chapter 6
(+ 271). The regex has been updated to use possessive quantifiers (+ 140)
for a bit of extra efficiency.

First, we set up Matcher objects that we’ll use in the actual processing. The
‘\n’ at the end of each line is needed because we use !#˙˙˙" comments, which
end at a newline.

//Pr epar e the regexes we’ll use

Pattern pCSVmain = Pattern.compile(
" \\G(?:ˆ;,) \n"+
" (?: \n"+
" # Either a double-quoted field... \n"+
" \" # field’s opening quote \n"+
" ((?> [ˆ\"]++) (?> \"\" [ˆ\"]++)++) \n"+
" \" # field’s closing quote \n"+
" # ... or ... \n"+
" ; \n"+
" # ... some non-quote/non-comma text ... \n"+
" ([ˆ\",]++) \n"+
") \n",
Pattern.COMMENTS);

Pattern pCSVquote = Pattern.compile("\"\"");
// Now create Matcher objects, with dummy text, that we’ll use later.
Matcher mCSVmain = pCSVmain.matcher("");
Matcher mCSVquote = pCSVquote.matcher("");

Then, to parse the string in csvText as CSV text, we use those Matcher
objects to actually apply the regex and use the results:

mCSVmain.reset(csvText); // Tie the target text to the mCSVmain object
while (mCSVmain.find())
{

String field; // We’ll fill this in with $1 or $2 . . .
String second = mCSVmain.group(2);
if (second != null)

field = second;
else {

// If $1, must replace paired double-quotes with one double quote
mCSVquote.reset(mCSVmain.group(1));
field = mCSVquote.replaceAll("\"");

}
// We can now work with field . . .
System.out.println("Field [" + field + "]");

}

This is more efficient than the similar version shown on page 217 for two
reasons: the regex is more efficient (as per the Chapter 6 discussion), and
that one Matcher object is reused, rather than creating and disposing of new
ones each time (as per the discussion on page 385).

29 April 2003 20:54

reset(text)
This method reinitializes the Matcher object with the given String (or any
object that implements a CharSequence), such that the next regex operation
will start at the beginning of this text. This is more efficient than creating a
new Matcher object (+ 385). You can omit the argument to keep the current
text, but to reset the match state to the beginning.

Reusing the Matcher object saves the Java mechanics of disposing of the old
object and creating a new one, and requir es only about one fourth the overhead
of creating a new Matcher object.

In practice, you usually need only one Matcher object per regex, at least if you
intend to apply the regex to only one string at a time, as is commonly the case.
The sidebar on the facing page shows this in action. Dummy strings are immedi-
ately associated with each Pattern object to create the Matcher objects. It’s okay
to start with a dummy string because the object’s reset(˙˙˙) method is called with
the real text to match against before the object is used further.

In fact, there’s really no need to actually save the Pattern objects to variables,
since they’re not used except to create the Matcher objects. The lines:

Pattern pCSVquote = Pattern.compile("\"\"");
Matcher mCSVquote = mCSVquote.matcher("");

can be replaced by

Matcher mCSVquote = Pattern.compile("\"\"").matcher("");

thus eliminating the pCSVquote variable altogether.

Simple search and replace

You can implement search-and-r eplace operations using just the methods men-
tioned so far, but the Matcher object offers convenient methods to do simple
search-and-r eplace for you:

replaceAll(replacement)
The Matcher object is reset, and its regex is repeatedly applied to its string.
The retur n value is a copy of the object’s string, with any matches replaced by
the replacement string.

This is also available via a String’s replaceAll method:

string.replaceAll(regex, replacement);

is equivalent to:

Pattern.compile(regex).matcher(string).replaceAll(replacement)

replaceFirst(replacement)
The Matcher object is reset, and its regex is applied once to its string. The
retur n value is a copy of the object’s string, with the first match (if any)
replaced by the replacement string.

Sun’s Regex Package 387

29 April 2003 20:54

388 Chapter 8: Java

This is also available via a String’s replaceFirst method, as just described
with replaceAll.

With any of these functions, the replacement string receives special parsing:

• Instances of ‘$1’, ‘$2’, etc., within the replacement string are replaced by the
text matched by the associated set of capturing parentheses. ($0 is replaced by
the entire text matched.)

IllegalArgumentException is thrown if the character following the ‘$’ is not
an ASCII digit.

Only as many digits after the ‘$’ as “make sense” are used. For example, if
ther e ar e thr ee capturing parentheses, ‘$25’ in the replacement string is inter-
pr eted as $2 followed by the character ‘5’. However, in the same situation, ‘$6’
in the replacement string throws IndexOutOfBoundsException.

• A backslash escapes the character that follows, so use ‘˙˙˙\$˙˙˙’ in the replace-
ment string to include a dollar sign in it. By the same token, use ‘˙˙˙\\˙˙˙’ to get
a backslash into the replacement value. (And if you’re providing the replace-
ment string as a Java string literal, that means you need "˙˙˙\\\\˙˙˙" to get a
backslash into the replacement value.) Also, if there are, say, 12 sets of captur-
ing parentheses and you’d like to include the text matched by the first set, fol-
lowed by ‘2’, you can use a replacement value of ‘˙˙˙$1\2˙˙˙’.

Advanced search and replace

Two additional methods provide raw access to Matcher’s search-and-r eplace
mechanics. Together, they build a result in a StringBuffer that you provide. The
first is called after each match, to fill the result with the replacement string, as well
as the text between the matches. The second is called after all matches have been
found, to tack on the text remaining after the final match.

appendReplacement(stringBuf fer, replacement)
Called immediately after a regex has been successfully applied (e.g., with
find), this method appends two strings to the given stringBuf fer : first, it
copies in the text of the original target string prior to the match. Then it
appends the replacement string, as per the special processing described in the
pr evious section.

For example, let’s say we’ve got a Matcher object m that associates the regex
!\w+ " with the string ‘-->one+test<--’. The first time through this while loop:

while (m.find())
m.appendReplacement(sb, "XXX")

the find matches the underlined portion of ‘-->-->one+test<--’. The call to
appendReplacement fills the stringBuf fer sb with the text before the match,

29 April 2003 20:54

‘-->’, then bypasses what matched, instead appending the replacement string,
‘XXX’, to sb.

The second time through the loop, find matches ‘-->one++test<--’. The call
to appendReplacement appends the text before the match, ‘+’, then again
appends the replacement string, ‘XXX’.

This leaves sb with ‘-->XXX+XXX’, and the original target string within the m

object marked at ‘-->one+test<--’.

appendTail(stringBuf fer)
Called after all matches have been found (or, at least, after the desired
matches have been found — you can stop early if you like), this method
appends the remaining text. Continuing the previous example,

m.appendTail(sb)

appends ‘<--’ to sb. This leaves it with ‘-->XXX+XXX<--’, completing the
search and replace.

Her e’s an example showing how you might implement your own version of
replaceAll using these. (Not that you’d want to, but it’s illustrative.)

public static String replaceAll(Matcher m, String replacement)
{

m.reset(); // Be sure to start with a fresh Matcher object
StringBuffer result = new StringBuffer(); // We’ll build the updated copy here
while (m.find())

m.appendReplacement(result, replacement);
m.appendTail(result);
return result.toString(); //Convert to a String and retur n

}

Her e’s a slightly more involved snippet, which prints a version of the string in the
variable metric, with Celsius temperatures converted to Fahrenheit:

// Build a matcher to find numbers followed by "C" within the variable "Metric"
Matcher m = Pattern.compile("(\\d+(?:\\.(\\d+))?)C\\b").matcher(metric);

StringBuffer result = new StringBuffer(); // We’ll build the updated copy here
while (m.find()) {

float celsius = Float.parseFloat(m.group(1)); //Get the number, as a number
int fahrenheit = (int) (celsius + 9/5 + 32); //Convert to a Fahrenheit value
m.appendReplacement(result, fahrenheit + "F"); //Insert it

}
m.appendTail(result);
System.out.println(result.toString()); //Display the result

For example, if the variable metric contains ‘from 36.3C to 40.1C.’, it displays
‘from 97F to 104F.’.

Sun’s Regex Package 389

29 April 2003 20:54

390 Chapter 8: Java

Other Pattern Methods
In addition to the main compile(˙˙˙) factories, the Pattern class contains some
helper functions and methods that don’t add new functionality, but make the cur-
rent functionality more easily accessible.

Pattern.matches(patter n, text)
This static function retur ns a Boolean indicating whether the string patter n can
match the CharSequence (e.g., String) text. Essentially, this is:

Pattern.compile(pattern).matcher(text).matches();

If you need to pass compile options, or need to gain access to more infor ma-
tion about the match than whether it was successful, you’ll have to use the
methods described earlier.

Patter n’s split method, with one argument

split(text)
This Pattern method accepts text (a CharSequence) and retur ns an array of
strings from text that are delimited by matches of the object’s regex. This is
also available via a String’s split method.

This trivial example

String[] result = Pattern.compile("\\.").split("209.204.146.22");

retur ns the array of four strings (‘209’, ‘204’, ‘146’, and ‘22’) that are separated by
the three matches of !\. " in the text. This simple example splits on only a single lit-
eral character, but you can split on an arbitrary regular expression. For example,
you might approximate splitting a string into “words” by splitting on non-alphanu-
merics:

String[] result = Pattern.compile("\\W+").split(Text);

When given a string like ‘What’s up, Doc’ it retur ns the four strings (‘What’, ‘s’,
‘up’, and ‘Doc’) delimited by the three matches of the regex. (If you had non-ASCII

text, you’d probably want to use !\P{L}+ ", or perhaps ![ˆ\p{L}\p{N}R]", as the
regex, instead of !\W+ " + 380.)

Empty elements with adjacent matches
If the object’s regex can match at the beginning of the text, the first string retur ned
by split is an empty string (a valid string, but one that contains no characters).
Similarly, if the regex can match two or more times in a row, empty strings are
retur ned for the zero-length text “separated” by the adjacent matches. For
example,

String[] result = Pattern.compile("\\s+,\\s+").split(", one, two , ,, 3");

splits on a comma and any surrounding whitespace, retur ning an array of five
strings: an empty string, ‘one’, ‘two’, two empty strings, and ‘3’.

29 April 2003 20:54

Finally, any empty strings that might appear at the end of the list are suppr essed:

String[] result = Pattern.compile(":").split(":xx:");

This produces just two strings: an empty string and ‘xx’. To keep trailing empty
elements, use the two-argument version of split(˙˙˙), described next.

Patter n’s split method, with two arguments

split(text, limit)
This version of split(˙˙˙) pr ovides some control over how many times the
Pattern’s regex is applied, and what is done with trailing empty elements.

The limit argument takes on differ ent meanings depending on whether it’s less
than zero, zero, or greater than zero.

Split with a limit less than zero
Any limit less than zero means to keep trailing empty elements in the array. Thus,

String[] result = Pattern.compile(":").split(":xx:", -1);

retur ns an array of three strings (an empty string, ‘xx’, and another empty string).

Split with a limit of zero
An explicit limit of zero is the same as if there wer e no limit given, i.e., trailing
empty elements are suppr essed.

Split with a limit greater than zero
With a limit gr eater than zero, split(˙˙˙) retur ns an array of at most limit
elements. This means that the regex is applied at most limit -1 times. (A limit of
thr ee, for example, requests thr ee strings separated by two matches.)

After having matched limit -1 times, no further matches are checked, and the entire
remainder of the string after the final match is retur ned as the last string in the
array. For example, if you had a string with

Friedl,Jeffrey,Eric Francis,America,Ohio,Rootstown

and wanted to isolate just the three name components, you’d split the string into
four parts (the three name components, and one final “everything else” string):

String[] NameInfo = Pattern.compile(",").split(Text, 4);
// NameInfo[0] is the family name
// NameInfo[1] is the given name
// NameInfo[2] is the middle name (or in my case, middle names)
// NameInfo[3] is everything else, which we don’t need, so we’ll just ignore it.

The reason to limit split in this way is for enhanced efficiency — why bother
going through the work of finding the rest of the matches, creating new strings,
making a larger array, etc., when there’s no intention to use the results of that
work? Supplying a limit allows just the requir ed work to be done.

Sun’s Regex Package 391

29 April 2003 20:54

392 Chapter 8: Java

A Quick Look at Jakar ta-ORO
Jakarta-ORO (fr om now on, just “ORO”) is a vast, modular framework of mostly
regex-r elated text-pr ocessing featur es containing a dizzying eight interfaces and
35+ classes. When first faced with the documentation, you can be intimidated until
you realize that you can get an amazing amount of use out of it by knowing just
one class, Perl5Util, described next.

ORO’s Perl5Util
This ORO version of the example from page 383 shows how simple Perl5Util is
to work with:

import org.apache.oro.text.perl.Perl5Util;

public class SimpleRegexTest {
public static void main(String[] args)
{

String sampleText = "this is the 1st test string";
Perl5Util engine = new Perl5Util();

if (engine.match("/\\d+\\w+/", sampleText)) {
String matchedText = engine.group(0);
int matchedFrom = engine.beginOffset(0);
int matchedTo = engine.endOffset(0);
System.out.println("matched [" + matchedText + "] from " +

matchedFrom + " to " + matchedTo + ".");
} else {

System.out.println("didn’t match");
}

}
}

One class hides all the messy details about working with regular expressions
behind a simple façade that somewhat mimics regular-expr ession use in Perl.
Wher e Perl has

$input =˜ /ˆ([-+]?[0-9]+(\.[0-9]+)?)\s+([CF])$/i

(fr om an example in Chapter 2 + 48), ORO allows:

engine.match("/ˆ([-+]?[0-9]+(\\.[0-9]+)?)\\s+([CF])$/i", input)

Wher e Perl then has

$InputNum = $1; # Save to named variables to make the ...
$Type = $3; # ... rest of the program easier to read.

ORO pr ovides for:

inputNum = engine.group(1); // Save to named variables to make the ...
type = engine.group(3); // ... rest of the program easier to read.

If you’re not familiar with Perl, the /˙˙˙/i trappings may seem a bit odd, and they
can be cumbersome at times, but it lowers the barrier to regex use about as low as

29 April 2003 20:54

it can get in Java.† (Unfortunately, not even ORO can get around the extra escaping
requir ed to get regex backslashes and double quotes into Java string literals.)

Even substitutions can be simple. An example from Chapter 2 to “commaify” a
number (+ 67) looks like this in Perl:

$text =˜ s/(\d)(?=(\d\d\d)+(?!\d))/$1,/g;

and this with ORO:
text = engine.substitute("s/(\\d)(?=(\\d\\d\\d)+(?!\\d))/$1,/g", text);

Traditionally, regular-expr ession use in Java has a class model that involves pre-
compiling the regex to some kind of pattern object, and then using that object
later when you actually need to apply the regex. The separation is for efficiency,
so that repeated uses of a regex doesn’t have to suffer the repeated costs of com-
piling each time.

So, how does Perl5Util, with its procedural approach of accepting the raw regex
each time, stay reasonably efficient? It caches the results of the compile, keeping a
behind-the-scenes mapping between a string and the resulting regex object. (See
“Compile caching in the procedural approach” in Chapter 6 + 243.)

It’s not perfectly efficient, as the argument string must be parsed for the regex
delimiters and modifiers each time, so there’s some extra overhead, but the
caching keeps it reasonable for casual use.

A Mini Perl5Util Reference
The ORO suite of text-processing tools at first seems complex because of the raw
number of classes and interfaces. Although the documentation is well-written, it’s
hard to know exactly where to start. The Perl5Util part of the documentation,
however, is fairly self-contained, so it’s the only thing you really need at first. The
next sections briefly go over the main methods.

Perl5Util basics—initiating a match

match(expr ession, tar get)
Given a match expr ession in Perl notation, and a tar get string, retur ns true if
the regex can match somewhere in the string:

if (engine.match("/ˆSubject: (.+)/im", emailMessageText))
{

+
+
+

As with Perl, you can pick your own delimiters, but unlike Perl, the leading m

is not requir ed, and ORO does not support nested delimiters (e.g., m{˙˙˙}).

† One further step, I think, would be to remove the Perl trappings and just have separate arguments
for the regex and modifier. The whole m/˙˙˙/ bit may be convenient for those coming to Java from a
Perl background, but it doesn’t seem “natural” in Java.

A Quick Look at Jakar ta-ORO 393

29 April 2003 20:54

394 Chapter 8: Java

Modifier letters may be placed after the closing delimiter. The modifiers
allowed are:

i (case-insensitive match + 109)
x (fr ee-spacing and comments mode + 110)
s (dot-matches-all + 110)
m (enhanced line anchor mode + 111)

If there’s a match, the various methods described in the next section are avail-
able for querying additional information about the match.

substitute(expr ession, tar get)
Given a string showing a Perl-like substitute expr ession, apply it to the tar get
text, retur ning a possibly-modified copy:

headerLine = engine.substitute("s/\\b(Re:\\s+)+//i", headerLine);

The modifiers mentioned for match can be placed after the final delimiter, as
can g, which has the substitution continue after the first match, applying the
regex to the rest of the string in looking for subsequent matches to replace.†

The substitution part of the expr ession is interpreted specially. Instances of $1,
$2, etc. are replaced by the associated text matched by the first, second, etc.,
set of capturing parentheses. $0 and $& ar e replaced with the entire matched
text. \U˙˙˙\E and \L˙˙˙\E cause the text between to be converted to upper- and
lowercase, respectively, while \u and \l cause just the next character to be
converted. Unicode case conversion is supported.

Her e’s an example that turns words in all caps to leading-caps:

phrase = engine.substitute("s/\\b([A-Z])([A-Z]+)\\b/$1\\L$2\\E/g", phrase);

(In Perl this would be better written as s/\b([A-Z]+)\b/\L\u$1\E/g, but
ORO curr ently doesn’t support the combination of \L˙˙˙\E with \u or \l.)

substitute(result, expr ession, tar get)
This version of the substitute method writes the possibly-modified version
of the tar get string into a StringBuffer result, and retur ns the number of
replacements actually done.

split(collection, expr ession, tar get, limit)
The m/˙˙˙/ expr ession (for matted in the same way as for the match method) is
applied to the tar get string, filling collection with the text separated by
matches. There is no retur n value.

The collection should be an object implementing the java.util.Collection

inter face, such as java.util.ArrayList or java.util.Vector.

† An o modifier is also supported. It’s not particularly useful, so I don’t cover it in this book, but it’s
important to note that it is completely unrelated to Perl’s /o modifier.

29 April 2003 20:54

The limit argument, which is optional, limits the number of times the regex is
applied to limit minus one. When the regex has no capturing parentheses, this
limits the retur ned collection to at most limit elements.

For example, if your input is a string of values separated by simple commas,
perhaps with spaces before or after, and you want to isolate just the first two
values, you would use a limit of three:

java.util.ArrayList list = new java.util.ArrayList();
engine.split(list, "m/\\s+ , \\s+/x", input, 3);

An input string of "USA, NY, NYC, Bronx", result in a list of three elements,
‘USA’, ‘NY’, and ‘NYC, Bronx’. Because you want just the first two, you could
then eliminate the “everything else” third element.

An omitted limit allows all matches to happen, as does a non-positive one.

If the regex has capturing parentheses, additional elements associated with
each $1, $2, etc., may be inserted for each successful regex application. With
ORO’s split, they are inserted only if not empty (e.g., empty elements are not
cr eated fr om capturing parentheses.) Also, note that the limit limits the num-
ber of regex applications, not the number of elements retur ned, which is
dependent upon the number of matches, as well as the number of capturing
par entheses that actually capture text.

Perl’s split operator has a number of somewhat odd rules as to when it
retur ns leading and trailing empty elements that might result from matches at
the beginning and end of the string (+ 323). As of Version 2.0.6, ORO does not
support these, but there is talk among the developers of doing so in a future
release.

Her e’s a simple little program that’s convenient for testing split:

import org.apache.oro.text.perl.Perl5Util;
import java.util.+;

public class OroSplitTest {
public static void main(String[] args) {

Perl5Util engine = new Perl5Util();
List list = new ArrayList();
engine.split(list, args[0], args[1], Integer.parseInt(args[2]));
System.out.println(list);

}
}

A Quick Look at Jakar ta-ORO 395

29 April 2003 20:54

396 Chapter 8: Java

The println call shows each element within [˙˙˙], separated by commas.
Her e ar e a few examples:

% java OroSplitTest ’/\./’ ’209.204.146.22’ -1
[209, 204, 146, 22]
% java OroSplitTest ’/\./’ ’209.204.146.22’ 2
[209, 204.146.22]
% java OroSplitTest ’m</+<’ ’/usr/local/bin//java’ -1
[, usr, local, bin, java]
% java OroSplitTest ’m/(?=(?:\d\d\d)+$)/’ 1234567890 -1
[1, 234, 567, 890]
% java OroSplitTest ’m/\s,
\s,/i’ ’this
that
other’ -1
[this, that, other]
% java OroSplitTest ’m/\s,(
)\s,/i’ ’this
that
other’ -1
[this,
, that,
, other]

Note that with most shells, you don’t need to double the backslashes if you
use single quotes to delimit the arguments, as you do when entering the same
expr essions as Java string literals.

Perl5Util basics—inspecting the results of a match

The following Perl5Util methods are available to report on the most recent suc-
cessful match of a regular expression (an unsuccessful attempt does not reset
these). They throw NullPointerException if called when there hasn’t yet been a
successful match.

group(num)

Retur ns the text matched by the num th set of capturing parentheses, or by the
whole match if num is zero. Returns null if there aren’t at least num sets of
capturing parentheses, or if the named set did not participate in the match.

toString()

Retur ns the text matched—the same as group(0).

length()

Retur ns the length of the text matched—the same as group(0).length().

beginOffset(num)

Retur ns the number of characters from the start of the target string to the start
of the text retur ned by group(num). Retur ns -1 in cases where group(num)

retur ns null.

endOffset(num)

Retur ns the number of characters from the start of the target string to the first
character after the text retur ned by group(num). Retur ns -1 in cases where
group(num) retur ns null.

29 April 2003 20:54

groups()

Retur ns the number of capturing groups in the regex, plus one (the extra is to
account for the virtual group zero of the entire match). All num values to the
methods just mentioned must be less than this number.

getMatch()

Retur ns an org.apache.oro.text.regex.MatchResult object, which has all
the result-querying methods listed so far. It’s convenient when you want to
save the results of the latest match beyond the next use of the Perl5Util

object. getMatch() is valid only after a successful match, and not after a
substitute or split.

preMatch()

Retur ns the part of the target string before (to the left of) the match.

postMatch()

Retur ns the part of the target string after (to the right of) the match.

Using ORO’s Underlying Classes
If you need to do things that Perl5Util doesn’t allow, but still want to use ORO,
you’ll need to use the underlying classes (the “vast, modular framework”) directly.
As an example, here’s an ORO version of the CSV-pr ocessing script on page 386.

First, we need these 11 classes:

import org.apache.oro.text.regex.PatternCompiler;
import org.apache.oro.text.regex.Perl5Compiler;
import org.apache.oro.text.regex.Pattern;
import org.apache.oro.text.regex.PatternMatcher;
import org.apache.oro.text.regex.Perl5Matcher;
import org.apache.oro.text.regex.MatchResult;
import org.apache.oro.text.regex.Substitution;
import org.apache.oro.text.regex.Util;
import org.apache.oro.text.regex.Perl5Substitution;
import org.apache.oro.text.regex.PatternMatcherInput;
import org.apache.oro.text.regex.MalformedPatternException;

Then, we prepar e the regex engine—this is needed just once per thread:

PatternCompiler compiler = new Perl5Compiler();
PatternMatcher matcher = new Perl5Matcher();

Now we declare the variables for our two regexes, and also initialize an object
repr esenting the replacement text for when we change ‘""’ to ‘"’:

Pattern rCSVmain = null;
Pattern rCSVquote = null;
// When rCSVquote matches, we’ll want to replace with one double quote:
Substitution sCSVquote = new Perl5Substitution("\"");

A Quick Look at Jakar ta-ORO 397

29 April 2003 20:54

398 Chapter 8: Java

Now we create the regex objects. The raw ORO classes requir e patter n exceptions
to always be caught or thrown, even though we know the hand-constructed regex
will always work (well, after we’ve tested it once to make sure we’ve typed it
corr ectly).

try {
rCSVmain = compiler.compile(

" (?:ˆ;,) \n"+
" (?: \n"+
" # Either a double-quoted field... \n"+
" \" # field’s opening quote \n"+
" ([ˆ\"]+ (?: \"\" [ˆ\"]+)+) \n"+
" \" # field’s closing quote \n"+
" # ... or ... \n"+
" ; \n"+
" # ... some non-quote/non-comma text ... \n"+
" ([ˆ\",]+) \n"+
") \n",
Perl5Compiler.EXTENDEDRMASK);

rCSVquote = compiler.compile("\"\"");
}
catch (MalformedPatternException e) {

System.err.println("Error parsing regular expression.");
System.err.println("Error: " + e.getMessage());
System.exit(1);

}

ORO’s !\G " doesn’t work properly (at least as of Version 2.0.6), so I’ve removed it.
You’ll recall from the original discussion in Chapter 5 (+ 216) that !\G " had been
used as a precaution, and wasn’t strictly requir ed, so it’s okay to remove here.

Finally, this snippet actually does the processing:

PatternMatcherInput inputObj = new PatternMatcherInput(inputCSVtext);
while (matcher.contains(inputObj, rCSVmain))
{

String field; // We’ll fill this in with $1 or $2
String second = matcher.getMatch().group(2);
if (second != null) {

field = second;
} else {

field = matcher.getMatch().group(1);
// If $1, must replace paired double quotes with one double quote
field = Util.substitute(matcher, // the matcher to use

rCSVquote, // the pattern to match with it
sCSVquote, // the replacement to be done
field, // the target string
Util.SUBSTITUTERALL); // do all replacements

}
// We can now work with the field . . .
System.out.println("Field [" + field + "]");

}

Phew! Seeing all that’s involved certainly helps you to appreciate Perl5Util!

29 April 2003 20:54

9
.NET

Micr osoft’s .NET Framework, usable with Visual Basic, C#, and C++ (among other
languages), offers a shared regular-expr ession library that unifies regex semantics
among the languages. It’s a full-featured, powerful engine that allows you the
maximum flexibility in balancing speed and convenience.

Each language has a differ ent syntax for handling objects and methods, but those
underlying objects and methods are the same regardless of the language, so even
complex examples shown in one language directly translate to the other languages
of the .NET language suite. Examples in this chapter are shown with Visual Basic.

In This Chapter Befor e looking at what’s in this chapter, it’s important to empha-
size that this chapter relies heavily on the base material in Chapters 1 through 6. I
understand that some readers interested only in .NET may be inclined to start their
reading with this chapter, and I want to encourage them not to miss the benefits of
the preface (in particular, the typographical conventions) and the earlier chapters:
Chapters 1, 2, and 3 introduce basic concepts, features, and techniques involved
with regular expressions, while Chapters 4, 5, and 6 offer important keys to regex
understanding that directly apply to .NET’s regex engine.

This chapter first looks at .NET’s regex flavor, including which metacharacters are
supported and how,† as well as the special issues that await the .NET pr ogrammer.
Then there’s a quick overview of .NET’s regex-r elated object model, and how it’s
been designed to allow you to wield a regex, followed by a detailed look at each
of the core regex-r elated classes. It all ends with an example of how to build a
personal regex library by encapsulating pre-built regular expressions into a shared
assembly.

† This book covers .NET “Version 2002.” While researching this book, I uncovered a few bugs, which
Micr osoft tells me will be fixed in the 2004 release of .NET.

399

29 April 2003 09:31

400 Chapter 9: .NET

.NET’s Regex Flavor

.NET has been built with a Traditional NFA regex engine, so all the important NFA-
related lessons from Chapters 4, 5, and 6 are applicable. Table 9-1 on the facing
page summarizes .NET’s regex flavor, most of which is discussed in Chapter 3.

Certain aspects of the flavor can be modified by match modes (+ 109), turned on
via option flags to the various functions and constructors that accept regular
expr essions, or in some cases, turned on and off within the regex itself via
!(?mods-mods)" and !(?mods-mods:˙˙˙)" constructs. The modes are listed in Table 9-2
on page 402.

A regex flavor can’t be described with just a simple table or two, so here are some
notes to augment Table 9-1:

• In the table, “raw” escapes like !\w " ar e shown. These can be used directly in
VB.NET string literals ("\w"), and in C# verbatim strings (@"\w"). In languages
without regex-friendly string literals, such as C++, each backslash in the regex
requir es two in the string literal ("\\w"). See “Strings as Regular Expressions”
(+ 101).

• \b is valid as a backspace only within a character class (outside, it matches a
word boundary).

• \x## allows exactly two hexadecimal digits, e.g., !\xFCber " matches ‘über’.

• \u#### allows exactly four hexadecimal digits, e.g., !\u00FCber " matches
‘über’, and !\u20AC " matches ‘P’.

• \w, \d, and \s (and their uppercase counterparts) normally match the full
range of appropriate Unicode characters, but change to an ASCII-only mode
with the RegexOptions.ECMAScript option (+ 406).

• In its default mode, \w matches the Unicode properties \p{Ll}, \p{Lu},
\p{Lt}, \p{Lo}, \p{Nd}, and \p{Pc}. Note that this does not include the
\p{Lm} pr operty. (See the table on page 121 for the property list.)

• In its default mode, \s matches ![\f\n\r\t\v \x85 \p{Z}] ". U+0085 is the
Unicode NEXT LINE contr ol character, and \p{Z} matches Unicode “separator”
characters (+ 120).

• \p{˙˙˙} and \P{˙˙˙} support most standard Unicode properties and blocks. Uni-
code scripts are not supported. Only the short property names like \p{Lu} ar e
supported — long names like \p{LowercaseRLetter} ar e not supported. (See
the tables on pages 120 and 121.) Note, however, that the special composite
pr operty \p{L&} is not supported, nor, for some reason, are the \p{Pi} and
\p{Pf} pr operties. Single-letter properties do requir e the braces (that is, the
\pL shorthand for \p{L} is not supported).

29 April 2003 09:31

Table 9-1: Overview of .NET’s Regular-Expr ession Flavor

Character Shorthands

+ 114 (c) \a \b \e \f \n \r \t \v \octal \x## \u#### \cchar

Character Classes and Class-Like Constr ucts

+ 117 Classes: [˙˙˙] [ˆ˙˙˙]

+ 118 Any character except newline: dot (sometimes any character at all)

+ 119 (c) Class shorthands: \w \d \s \W \D \S

+ 119 (c) Unicode properties and blocks: \p{Pr op} \P{Pr op}

Anchor s and other Zero-Width Tests

+ 127 Start of line/string: ˆ \A

+ 127 End of line/string: $ \z \Z

+ 128 End of previous match: \G

+ 131 Word boundary: \b \B

+ 132 Lookar ound: (?=˙˙˙) (?!˙˙˙) (?<=˙˙˙) (?<!˙˙˙)

Comments and Mode Modifiers

+ 133 Mode modifiers: (?mods-mods) Modifiers allowed: x s m i n (+ 402)

+ 134 Mode-modified spans: (?mods-mods:˙˙˙)

+ 134 Comments: (?#˙˙˙)

Grouping, Capturing, Conditional, and Control

+ 135 Capturing parentheses: (˙˙˙) \1 \2 . . .

+ 430 Balanced grouping: (?<name-name>˙˙˙)

+ 137 Named capture, backrefer ence: (?<name>˙˙˙) \k<name>

+ 136 Gr ouping-only par entheses: (?:˙˙˙)

+ 137 Atomic grouping: (?>˙˙˙)

+ 138 Alter nation: <

+ 139 Gr eedy quantifiers: , + ? {n} {n,} {x,y}

+ 140 Lazy quantifiers: ,? +? ?? {n}? {n,}? {x,y}?

+ 138 Conditional: (?if then <else) – “if ” can be lookaround, (num), or (name)

(c) – may be used within a character class

Also not supported are the special properties \p{All}, \p{Assigned}, and
\p{Unassigned}. Instead, you might use !(?s: .) ", !\P{Cn}", and !\p{Cn}",
respectively.

• This package understands Unicode blocks as of Unicode Version 3.1. Addi-
tions and modifications since Version 3.1 are not known (+ 108).

Block names requir e the ‘Is’ prefix (see the table on page 123), and only the
raw form unador ned with spaces and underscores may be used. For example,
\p{IsRGreekRExtended} and \p{Is Greek Extended} ar e not allowed;
\p{IsGreekExtended} is requir ed.

.NET’s Regex Flavor 401

29 April 2003 09:31

402 Chapter 9: .NET

• \G matches the end of the pr evious match, despite the documentation’s claim
that it matches at the beginning of the curr ent match (+ 128).

• Both lookahead and lookbehind can employ arbitrary regular expressions. As
of this writing, the .NET regex engine is the only one that I know of that
allows lookbehind with a subexpression that can match an arbitrary amount of
text (+ 132).

• The RegexOptions.ExplicitCapture option (also available via the (?n)

mode modifier) turns off capturing for raw !(˙˙˙)" par entheses. Explicitly-named
captur es like !(?<num>\d+)" still work (+ 137). If you use named captures, this
option allows you to use the visually more pleasing !(˙˙˙)" for grouping instead
of !(?:˙˙˙)".

Table 9-2: The .NET Match and Regex Modes

RegexOptions option (?mode) Descr iption

.Singleline s Causes dot to match any character (+ 110)

.Multiline m Expands where !ˆ " and !$ " can match (+ 110)

.IgnorePatternWhitespace x Sets free-spacing and comment mode (+ 72)

.IgnoreCase i Turns on case-insensitive matching

.ExplicitCapture n Turns capturing off for !(˙˙˙)", so only !(?<name>˙˙˙)"

captur e

.ECMAScript Restricts !\w ", !\s ", and !\d " to match ASCII characters
only, and more (+ 406)

.RightToLeft The transmission applies the regex normally, but
in the opposite direction (starting at the end of the
string and moving toward the start). Unfortunately,
buggy. (+ 405)

.Compiled Spends extra time up front optimizing the regex so
it matches more quickly when applied (+ 404)

Additional Comments on the Flavor
A few issues merit longer discussion than a bullet point allows.

Named capture

.NET supports named capture (+ 137), through the !(?<name>˙˙˙)" or !(?’name’˙˙˙)"

syntax. Both syntaxes mean the same thing and you can use either freely, but I
pr efer the syntax with <˙˙˙>, as I believe it will be more widely used.

29 April 2003 09:31

You can backrefer ence the text matched by a named capture within the regex with
!\k<name>" or !\k’name’".

After the match (once a Match object has been generated; an overview of .NET’s
object model follows, starting on page 410), the text matched within the named
captur e is available via the Match object’s Groups(name) pr operty. (C# requir es
Groups[name] instead.)

Within a replacement string (+ 418), the results of named capture are available via
a ${name} sequence.

In order to allow all groups to be accessed numerically, which may be useful at
times, named-capture groups are also given numbers. They receive their numbers
after all the non-named ones receive theirs:

!(
1
\w)

1
(
3
?<Num>\d+)

3
(
2
\s+)

2
"

The text matched by the !\d+ " part of this example is available via both
Groups("Num") and Groups(3). It’s still just one group, but with two names.

An unfor tunate consequence
It’s not recommended to mix normal capturing parentheses and named captures,
but if you do, the way the capturing groups are assigned numbers has important
consequences that you should be aware of. The ordering becomes important
when capturing parentheses are used with Split (+ 419), and for the meaning of
‘$+’ in a replacement string (+ 418). Both currently have additional, unrelated
pr oblems that make them more or less broken anyway (although Microsoft is
working on a fix for the 2004 release of .NET).

Conditional tests

The if part of an !(? if then ;else)" conditional (+ 138) can be any type of look-
ar ound, or a captured group number or captured group name in parentheses.
Plain text (or a plain regex) in this location is automatically treated as positive
lookahead (that it, it has an implicit !(?=˙˙˙)" wrapped around it). This can lead to
an ambiguity: for instance, the !(Num) " of ! ˙˙˙(?(Num) then ;else)˙˙˙" is turned into
!(?=Num) " (lookahead for ‘Num’) if there is no !(?<Num>˙˙˙)" named capture elsewher e
in the regex. If there is such a named capture, whether it was successful is the
result of the if.

I recommend not relying on “auto-lookaheadification.” Use the explicit !(?=˙˙˙)" to
make your intentions clearer to the human reader, and also to avert a surprise if
some future version of the regex engine adds additional if syntax.

.NET’s Regex Flavor 403

29 April 2003 09:31

404 Chapter 9: .NET

“Compiled” expressions

In earlier chapters, I use the word “compile” to describe the pre-application work
any regex system must do to check that a regular expression is valid, and to con-
vert it to an internal form suitable for its actual application to text. For this, .NET

regex terminology uses the word “parsing.” It uses two versions of “compile” to
refer to optimizations of that parsing phase.

Her e ar e the details, in order of increasing optimization:

• Parsing The first time a regex is seen during the run of a program, it must be
checked and converted into an internal form suitable for actual application by
the regex engine. This process is referr ed to as “compile” elsewhere in this
book (+ 241).

• On-the-Fly Compilation RegexOptions.Compiled is one of the options avail-
able when building a regex. Using it tells the regex engine to go further than
simply converting to the default internal form, but to compile it to low-level
MSIL (Micr osoft Inter mediate Language) code, which itself is then amenable to
being optimized even further into even faster native machine code by the JIT

(“Just-In-T ime” compiler) when the regex is actually applied.

It takes more time and memory to do this, but it allows the resulting regular
expr ession to work faster. These tradeoffs are discussed later in this section.

• Pre-Compiled Regex es A Regex object (or objects) can be encapsulated into
an assembly written to disk in a DLL (a Dynamically Loaded Library, i.e., a
shar ed library). This makes it available for general use in other programs. This
is called “compiling the assembly.” For more, see “Regex Assemblies” (+ 428).

When considering on-the-fly compilation with RegexOptions.Compiled, ther e ar e
important tradeoffs among initial startup time, ongoing memory usage, and regex
match speed:

Metr ic Without RegexOptions.Compiled With RegexOptions.Compiled

Startup time Faster Slower (by 60×)
Memory usage Low High (about 5-15k each)
Match speed Not as fast Up to 10× faster

The initial regex parsing (the default kind, without RegexOptions.Compiled) that
must be done the first time each regex is seen in the program is relatively fast.
Even on my clunky old 550MHz NT box, I benchmark about 1,500 complex com-
pilations/second. When RegexOptions.Compiled is used, that goes down to
about 25/second, and increases memory usage by about 10k bytes per regex.
Mor e importantly, that memory remains used for the life of the program — ther e’s
no way to unload it.

29 April 2003 09:31

It definitely makes sense to use RegexOptions.Compiled in time-sensitive areas
wher e pr ocessing speed is important, particularly for expressions that work with a
lot of text. On the other hand, it makes little sense to use it on simple regexes that
ar en’t applied to a lot of text. It’s less clear which is best for the multitude of situa-
tions in between — you’ll just have to weight the benefits and decide on a case-by-
case basis.

In some cases, it may make sense to encapsulate an application’s compiled
expr essions into its own DLL, as pre-compiled Regex objects. This uses less mem-
ory in the final program (the loading of the whole regex compilation package is
bypassed), and allows faster loading (since they’re compiled when the DLL is built,
you don’t have to wait for them to be compiled when you use them). A nice
bypr oduct of this is that the expressions are made available to other programs that
might wish to use them, so it’s a great way to make a personal regex library. See
“Cr eating Your Own Regex Library With an Assembly” on page 429.

Right-to-left matching

The concept of “backwards” matching (matching from right to left in a string,
rather than from left to right) has long intrigued regex developers. Perhaps the
biggest issue facing the developer is to define exactly what “right-to-left matching”
really means. Is the regex somehow reversed? Is the target text flipped? Or is it just
that the regex is applied normally from each position within the target string, with
the differ ence being that the transmission starts at the end of the string instead of
at the beginning, and moves backwards with each bump-along rather than
forward?

Just to think about it in concrete terms for a moment, consider applying !\d+ " to
the string ‘123 and 456’. We know a normal application matches ‘123’, and
instinct somehow tells us that a right-to-left application should match ‘456’. How-
ever, if the regex engine uses the semantics described at the end of the previous
paragraph, where the only differ ence is the starting point of the transmission and
the direction of the bump-along, the results may be surprising. In these semantics,
the regex engine works normally (“looking” to the right from where it’s started),
so the first attempt of !\d+ ", at ‘˙˙˙456’, doesn’t match. The second attempt, at ‘˙˙˙456’
does match, as the bump-along has placed it “looking at” the ‘6’, which certainly
matches !\d+ ". So, we have a final match of only the final ‘6’.

One of .NET’s regex options is RegexOptions.RightToLeft. What are its seman-
tics? The answer is: “that’s a good question.” The semantics are not documented,
and my own tests indicate only that I can’t pin them down. In many cases, such as
the ‘123 and 456’ example, it acts surprisingly intuitively (it matches ‘456’). How-
ever, it sometimes fails to find any match, and at other times finds a match that
seems to make no sense when compared with other results.

.NET’s Regex Flavor 405

29 April 2003 09:31

406 Chapter 9: .NET

If you have a need for it, you may find that RegexOptions.RightToLeft seems
to work exactly as you wish, but in the end, you use it at your own risk. Microsoft
is working on pinning down the semantics (to be released in the 2004 or 2005 ver-
sion of .NET), and so the semantics that you happen to see now may change.

Backslash-dig it ambiguities

When a backslash is followed by a number, it’s either an octal escape or a backref-
er ence. Which of the two it’s interpreted as, and how, depends on whether the
RegexOptions.ECMAScript option has been specified. If you don’t want to have
to understand the subtle differ ences, you can always use !\k<num>" for a backrefer-
ence, or start the octal escape with a zero (e.g., !\08 ") to ensur e it’s taken as one.
These work consistently, regardless of RegexOptions.ECMAScript being used
or not.

If RegexOptions.ECMAScript is not used, single-digit escapes from !\1 " thr ough
!\9 " ar e always backrefer ences, and an escaped number beginning with zero is
always an octal escape (e.g., !\012 " matches an ASCII linefeed character). If it’s not
either of these cases, the number is taken as a backrefer ence if it would “make
sense” to do so (i.e., if there are at least that many capturing parentheses in the
regex). Otherwise, so long as it has a value between \000 and \377, it’s taken as
an octal escape. For example, !\12 " is taken as a backrefer ence if there are at least
12 sets of capturing parentheses, or an octal escape otherwise.

The semantics for when RegexOptions.ECMAScript is specified is described in
the next section.

ECMAScr ipt mode

ECMAScript is a standardized version of JavaScript† with its own semantics of how
regular expressions should be parsed and applied. A .NET regex attempts to mimic
those semantics if created with the RegexOptions.ECMAScript option. If you
don’t know what ECMAScript is, or don’t need compatibility with it, you can safely
ignor e this section.

When RegexOptions.ECMAScript is in effect, the following apply:

• Only the following may be combined with RegexOptions.ECMAScript:

RegexOptions.IgnoreCase
RegexOptions.Multiline
RegexOptions.Compiled

• \w, \d, and \s (and \W, \D, and \S) change to ASCII-only matching.

† ECMA stands for “European Computer Manufacturers Association,” a group formed in 1960 to stan-
dardize aspects of the growing field of computers.

29 April 2003 09:31

• When a backslash-digit sequence is found in a regex, the ambiguity between
backr efer ence and octal escape changes to favor a backrefer ence, even if that
means having to ignore some of the trailing digits. For example, with !(˙˙˙)\10 ",
the !\10 " is taken as a backrefer ence to the first group, followed by a literal ‘0’.

Using .NET Regular Expressions
.NET regular expressions are power ful, clean, and provided through a complete
and easy-to-use class interface. But as wonderful a job that Microsoft did building
the package, the documentation is just the opposite — it’s horrifically bad. It’s woe-
fully incomplete, poorly written, disorganized, and sometimes even wrong. It took
me quite a while to figure the package out, so it’s my hope that the presentation
in this chapter makes the use of .NET regular expressions clear for you.

Regex Quickstar t
You can get quite a bit of use out of the .NET regex package without even know-
ing the details of its regex class model. Knowing the details lets you get more
infor mation mor e ef ficiently, but the following are examples of how to do simple
operations without explicitly creating any classes. These are just examples; all the
details follow shortly.

Any program that uses the regex library must have the line

Imports System.Text.RegularExpressions

at the beginning of the file (+ 409), so these examples assume that’s there.

The following examples all work with the text in the String variable TestStr. As
with all examples in this chapter, names I’ve chosen are in italic.

Quickstar t: Checking a string for match

This example simply checks to see whether a regex matches a string:

If Regex.IsMatch(TestStr, "ˆ\s+$")
Console.WriteLine("line is empty")

Else
Console.WriteLine("line is not empty")

End If

This example uses a match option:

If Regex.IsMatch(TestStr, "ˆsubject:", RegexOptions.IgnoreCase)
Console.WriteLine("line is a subject line")

Else
Console.WriteLine("line is not a subject line")

End If

Using .NET Regular Expressions 407

29 April 2003 09:31

408 Chapter 9: .NET

Quickstar t: Matching and getting the text matched

This example identifies the text actually matched by the regex. If there’s no match,
TheNum is set to an empty string.

Dim TheNum as String = Regex.Match(TestStr, "\d+").Value
If TheNum <> ""

Console.WriteLine("Number is: " & TheNum)
End If

This example uses a match option:

Dim ImgTag as String = Regex.Match(TestStr, "<img\b[ˆ>]+>", R
RegexOptions.IgnoreCase).Value

If ImgTag <> ""
Console.WriteLine("Image tag: " & ImgTag)

End If

Quickstar t: Matching and getting captured text

This example gets the first captured group (e.g., $1) as a string:

Dim Subject as String = R
Regex.Match(TestStr, "ˆSubject: (.+)").Groups(1).Value

If Subject <> ""
Console.WriteLine("Subject is: " & Subject)

End If

Note that C# uses Groups[1] instead of Groups(1).

Her e’s the same thing, using a match option:

Dim Subject as String = R
Regex.Match(TestStr, "ˆsubject: (.+)", R

RegexOptions.IgnoreCase).Groups(1).Value
If Subject <> ""

Console.WriteLine("Subject is: " & Subject)
End If

This example is the same as the previous, but using named capture:

Dim Subject as String = R
Regex.Match(TestStr, "ˆsubject: (?<Subj>.+)", R

RegexOptions.IgnoreCase).Groups("Subj").Value
If Subject <> ""

Console.WriteLine("Subject is: " & Subject)
End If

Quickstar t: Sear ch and replace

This example makes our test string “safe” to include within HTML, converting char-
acters special to HTML into HTML entities:

TestStr = Regex.Replace(TestStr, "&", "&")
TestStr = Regex.Replace(TestStr, "<", "<")
TestStr = Regex.Replace(TestStr, ">", ">")
Console.WriteLine("Now safe in HTML: " & TestStr)

29 April 2003 09:31

The replacement string (the third argument) is interpreted specially, as described
in the sidebar on page 418. For example, within the replacement string, ‘$&’ is
replaced by the text actually matched by the regex. Here’s an example that wraps
˙˙˙ ar ound capitalized words:

TestStr = Regex.Replace(TestStr, "\b[A-Z]\w+", "$&")
Console.WriteLine("Modified string: " & TestStr)

This example replaces ˙˙˙ (in a case-insensitive manner) with <I>˙˙˙</I>:

TestStr = Regex.Replace(TestStr, "(.+?)", "<I>$1</I>", R
RegexOptions.IgnoreCase)

Console.WriteLine("Modified string: " & TestStr)

Package Overview
You can get the most out .NET regular expressions by working with its rich and
convenient class structure. To give us an overview, here’s a complete console
application that shows a simple match using explicit objects:

Option Explicit On ’ These are not specifically requir ed to use regexes,
Option Strict On ’ but their use is good general practice.

’ Make regex-r elated classes easily available.
Imports System.Text.RegularExpressions

Module SimpleTest
Sub Main()

Dim SampleText as String = "this is the 1st test string"
Dim R as Regex = New Regex("\d+\w+") ’Compile the pattern.
Dim M as Match = R.match(SampleText) ’Check against a string.
If not M.Success

Console.WriteLine("no match")
Else

Dim MatchedText as String = M.Value ’Query the results . . .
Dim MatchedFrom as Integer = M.Index
Dim MatchedLen as Integer = M.Length
Console.WriteLine("matched [" & MatchedText & "]" & R

" from char#" & MatchedFrom.ToString() & R
" for " & MatchedLen.ToString() & " chars.")

End If
End Sub
End Module

When executed from a command prompt, it applies !\d+\w+ " to the sample text
and displays:

matched [1st] from char#12 for 3 chars.

Impor ting the regex namespace

Notice the Imports System.Text.RegularExpressions line near the top of the
pr ogram? That’s requir ed in any VB pr ogram that wishes to access the .NET regex
objects, to make them available to the compiler.

Using .NET Regular Expressions 409

29 April 2003 09:31

410 Chapter 9: .NET

The analogous statement in C# is:

using System.Text.RegularExpressions; // This is for C#

The example shows the use of the underlying raw regex objects. The two main
action lines:

Dim R as Regex = New Regex("\d+\w+") ’Compile the pattern.
Dim M as Match = R.Match(SampleText) ’Check against a string.

can also be combined, as:

Dim M as Match = Regex.Match(SampleText, "\d+\w+") ’Check pattern against string.

The combined version is easier to work with, as there’s less for the programmer to
type, and less objects to keep track of. It does, however, come with at a slight effi-
ciency penalty (+ 426). Over the coming pages, we’ll first look at the raw objects,
and then at the “convenience” functions like the Regex.Match static function, and
when it makes sense to use them.

For brevity’s sake, I’ll generally not repeat the following lines in examples that are
not complete programs:

Option Explicit On
Option Strict On
Imports System.Text.RegularExpressions

It may also be helpful to look back at some of VB examples earlier in the book,
on pages 96, 99, 204, 218, and 236.

Core Object Over view
Befor e getting into the details, let’s first take a step back and look the .NET regex
object model. An object model is the set of class structures through which regex
functionality is provided. .NET regex functionality is provided through seven
highly-interwoven classes, but in practice, you’ll generally need to understand only
the three shown visually in Figure 9-1 on the facing page, which depicts the
repeated application of !\s+(\d+) " to the string ‘May 16, 1998’.

Regex objects

The first step is to create a Regex object, as with:

Dim R as Regex = New Regex("\s+(\d+)")

Her e, we’ve made a regex object repr esenting !\s+(\d+) " and stored it in the R

variable. Once you’ve got a Regex object, you can apply it to text with its
Match(text) method, which retur ns infor mation on the first match found:

Dim M as Match = R.Match("May 16, 1998")

29 April 2003 09:31

"\s+(\d+)"
Constructor

Regex
Object

Match
Object

Index
Length

Value
Success

Group
Object

Index
Length

Value
Success

true
" 16"
3

3

Group
Object

Index
Length

Value
Success

true
"16"

2
4

Groups (1)

Groups.Count

2

Index
Length

Value
Success

Index
Length

Value
Success

true
" 1998"

5
7

Index
Length

Value
Success

true

4
8

Groups (1)

Groups.Count

2

NextMatch()

"1998"

NextMatch() Match.Empty
Object

Success

false

Match ("May 16, 1998")

Match
Object

Group
Object

Groups (0)Groups (0)

Group
Object

Figur e 9-1: .NET’s Regex-related object model

Match objects

A Regex object’s Match(˙˙˙) method provides information about a match result by
cr eating and retur ning a Match object. A Match object has a number of properties,
including Success (a Boolean value indicating whether the match was successful)
and Value (a copy of the text actually matched, if the match was successful). We’ll
look at the full list of Match pr operties later.

Among the details you can get about a match from a Match object is information
about the text matched within capturing parentheses. The Perl examples in earlier
chapters used Perl’s $1 variable to get the text matched within the first set of cap-
turing parentheses. .NET of fers two methods to retrieve this data: to get the raw
text, you can index into a Match object’s Groups pr operty, such as with
Groups(1).Value to get the equivalent of Perl’s $1. (Note: C# requir es a dif ferent
syntax, Groups[1].Value, instead.) Another approach is to use the Result

method, which is discussed starting on page 423.

Using .NET Regular Expressions 411

29 April 2003 09:31

412 Chapter 9: .NET

Group objects

The Groups(1) part in the previous paragraph actually refer ences a Group object,
and the subsequent .Value refer ences its Value pr operty (the text associated
with the group). There is a Group object for each set of capturing parentheses,
and a “virtual group,” number ed zer o, which holds the information about the over-
all match.

Thus, MatchObj.Value and MatchObj.Groups(0).Value ar e the same — a copy
of the entire text matched. It’s more concise and convenient to use the first,
shorter approach, but it’s important to know about the zeroth group because
MatchObj.Groups.Count (the number of groups known to the Match object)
includes it. The MatchObj.Groups.Count resulting from a successful match with
!\s+(\d+) " is two (the whole-match “zeroth” group, and the $1 gr oup).

Capture objects

Ther e is also a Capture object. It’s not used often, but it’s discussed starting on
page 431.

All results are computed at match time

When a regex is applied to a string, resulting in a Match object, all the results
(wher e it matched, what each capturing group matched, etc.) are calculated and
encapsulated into the Match object. Accessing properties and methods of the
Match object, including its Group objects (and their properties and methods)
mer ely fetches the results that have already been computed.

Core Object Details
Now that we’ve seen an overview, let’s look at the details. First, we’ll look at how
to create a Regex object, followed by how to apply it to a string to yield a Match

object, and how to work with that object and its Group objects.

In practice, you can often avoid having to explicitly create a Regex object, but it’s
good to be comfortable with them, so during this look at the core objects, I’ll
always explicitly create them. We’ll see later what shortcuts .NET pr ovides to make
things more convenient.

In the lists that follow, I don’t mention little-used methods that are mer ely inher-
ited from the Object class.

29 April 2003 09:31

Creating Regex Objects
The constructor for creating a Regex object is uncomplicated. It accepts either one
argument (the regex, as a string), or two arguments (the regex and a set of
options). Here’s a one-argument example:

Dim StripTrailWS = new Regex("\s+$") ’ for removing trailing whitespace

This just creates the Regex object, preparing it for use; no matching has been
done to this point.

Her e’s a two-argument example:

Dim GetSubject = new Regex("ˆsubject: (.+)", RegexOptions.IgnoreCase)

That passes one of the RegexOptions flags, but you can pass multiple flags if
they’r e OR’d together, as with:

Dim GetSubject = new Regex("ˆsubject: (.+)", R
RegexOptions.IgnoreCase OR RegexOptions.Multiline)

Catching exceptions

An ArgumentException err or is thrown if a regex with an invalid combination of
metacharacters is given. You don’t normally need to catch this exception when
using regular expressions you know to work, but it’s important to catch it if using
regular expressions from “outside” the program (e.g., entered by the user, or read
fr om a configuration file). Here’s an example:

Dim R As Regex
Try

R = New Regex(SearchRegex)
Catch e As ArgumentException

Console.WriteLine("+ERROR+ bad regex: " & e.ToString)
Exit Sub

End Try

Of course, depending on the application, you may want to do something other
than writing to the console upon detection of the exception.

Regex options

The following option flags are allowed when creating a Regex object:

RegexOptions.IgnoreCase

This option indicates that when the regex is applied, it should be done in a
case-insensitive manner (+ 109).

RegexOptions.IgnorePatternWhitespace

This option indicates that the regex should be parsed in a free-spacing and
comments mode (+ 110). If you use raw !#˙˙˙" comments, be sure to include a
newline at the end of each logical line, or the first raw comment “comments
out” the entire rest of the regex.

Core Object Details 413

29 April 2003 09:31

414 Chapter 9: .NET

In VB.NET, this can be achieved with chr(10), as in this example:

Dim R as Regex = New Regex(R
"# Match a floating-point number ... " & chr(10) & R
" \d+(?:\.\d+)? # with a leading digit... " & chr(10) & R
" ; # or ... " & chr(10) & R
" \.\d+ # with a leading decimal point", R
RegexOptions.IgnorePatternWhitespace)

That’s cumbersome; in VB.NET, !(?#˙˙˙)" comments can be more convenient:

Dim R as Regex = New Regex(R
"(?# Match a floating-point number ...)" & R
" \d+(?:\.\d+)? (?# with a leading digit...)" & R
" ; (?# or ...)" & R
" \.\d+ (?# with a leading decimal point)", R
RegexOptions.IgnorePatternWhitespace)

RegexOptions.Multiline

This option indicates that the regex should be applied in an enhanced line-
anchor mode (+ 111). This allows !ˆ " and !$ " to match at embedded newlines in
addition to the normal beginning and end of string, respectively.

RegexOptions.Singleline

This option indicates that the regex should be applied in a dot-matches-all
mode (+ 110). This allows dot to match any character, rather than any charac-
ter except a newline.

RegexOptions.ExplicitCapture

This option indicates that even raw !(˙˙˙)" par entheses, which are nor mally cap-
turing parentheses, should not capture, but rather behave like !(?:˙˙˙)" gr oup-
ing-only non-capturing parentheses. This leaves named-capture !(?<name>˙˙˙)"

par entheses as the only type of capturing parentheses.

If you’re using named capture and also want non-capturing parentheses for
gr ouping, it makes sense to use normal !(˙˙˙)" par entheses and this option, as it
keeps the regex more visually clear.

RegexOptions.RightToLeft

This option sets the regex to a right-to-left match mode (+ 405).

RegexOptions.Compiled

This option indicates that the regex should be compiled, on the fly, to a
highly-optimized format, which generally leads to much faster matching. This
comes at the expense of increased compile time the first time it’s used, and
incr eased memory use for the duration of the program’s execution.

If a regex is going to be used just once, or sparingly, it makes little sense to
use RegexOptions.Compiled, since its extra memory remains used even
when a Regex object created with it has been disposed of. But if a regex is
used in a time-critical area, it’s probably advantageous to use this flag.

29 April 2003 09:31

You can see an example on page 236, where this option cuts the time for one
benchmark about in half. Also, see the discussion about compiling to an
assembly (+ 428).

RegexOptions.ECMAScript

This option indicates that the regex should be parsed in a way that’s compati-
ble with ECMAScript (+ 406). If you don’t know what ECMAScript is, or don’t
need compatibility with it, you can safely ignore this option.

RegexOptions.None

This is a “no extra options” value that’s useful for initializing a RegexOptions

variable, should you need to. As you decide options are requir ed, they can be
OR’d in to it.

Using Regex Objects
Just having a regex object is not useful unless you apply it, so the following meth-
ods swing it into action.

RegexObj.IsMatch(tar get) Retur n type: Boolean
RegexObj.IsMatch(tar get, of fset)

The IsMatch method applies the object’s regex to the tar get string, retur ning a
simple Boolean indicating whether the attempt is successful. Here’s an example:

Dim R as RegexObj = New Regex("ˆ\s+$")
+
+
+

If R.IsMatch(Line) Then
’ Line is blank . . .

+
+
+

Endif

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is first attempted.

RegexObj.Match(tar get) Retur n type: Match object
RegexObj.Match(tar get, of fset)
RegexObj.Match(tar get, of fset, maxlength)

The Match method applies the object’s regex to the tar get string, retur ning a
Match object. With this Match object, you can query information about the results
of the match (whether it was successful, the text matched, etc.), and initiate the
“next” match of the same regex in the string. Details of the Match object follow,
starting on page 421.

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is first attempted.

If you provide a maxlength argument, it puts matching into a special mode where
the maxlength characters starting of fset characters into the tar get string are taken

Core Object Details 415

29 April 2003 09:31

416 Chapter 9: .NET

as the entir e target string, as far as the regex engine is concerned. It pretends that
characters outside the range don’t even exist, so, for example, !ˆ " can match at of f-
set characters into the original tar get string, and !$ " can match at maxlength charac-
ters after that. It also means that lookaround can’t “see” the characters outside of
that range. This is all very differ ent fr om when only of fset is provided, as that
mer ely influences where the transmission begins applying the regex — the engine
still “sees” the entire target string.

This table shows examples that illustrate the meaning of of fset and maxlength :

Results when RegexObj is built with . . .
Method call !\d\d " ! ˆ\d\d " ! ˆ\d\d$ "

RegexObj.Match("May 16, 1998") match ‘16’ fail fail
RegexObj.Match("May 16, 1998", 9) match ‘99’ fail fail
RegexObj.Match("May 16, 1998", 9, 2) match ‘99’ match ‘99’ match ‘99’

RegexObj.Matches(tar get) Retur n type: MatchCollection
RegexObj.Matches(tar get, of fset)

The Matches method is similar to the Match method, except Matches retur ns a
collection of Match objects repr esenting all the matches in the tar get, rather than
just one Match object repr esenting the first match. The retur ned object is a
MatchCollection.

For example, after this initialization:

Dim R as New Regex("\w+")
Dim Target as String = "a few words"

this code snippet

Dim BunchOfMatches as MatchCollection = R.Matches(Target)
Dim I as Integer
For I = 0 to BunchOfMatches.Count - 1

Dim MatchObj as Match = BunchOfMatches.Item(I)
Console.WriteLine("Match: " & MatchObj.Value)

Next

pr oduces this output:

Match: a
Match: few
Match: words

The following example, which produces the same output, shows that you can dis-
pense with the MatchCollection object altogether:

Dim MatchObj as Match
For Each MatchObj in R.Matches(Target)

Console.WriteLine("Match: " & MatchObj.Value)
Next

29 April 2003 09:31

Finally, as a comparison, here’s how you can accomplish the same thing another
way, with the Match (rather than Matches) method:

Dim MatchObj as Match = R.Match(Target)
While MatchObj.Success

Console.WriteLine("Match: " & MatchObj.Value)
MatchObj = MatchObj.NextMatch()

End While

RegexObj.Replace(tar get, replacement) Retur n type: String
RegexObj.Replace(tar get, replacement, count)
RegexObj.Replace(tar get, replacement, count, of fset)

The Replace method does a search-and-r eplace on the tar get string, retur ning a
(possibly changed) copy of it. It applies the Regex object’s regular expression, but
instead of retur ning a Match object, it replaces the matched text. What the
matched text is replaced with depends on the replacement argument. The replace-
ment argument is overloaded; it can be either a string or a MatchEvaluator dele-
gate. If replacement is a string, it is interpreted according to the sidebar on the
next page. For example,

Dim RRCapWord as New Regex("\b[A-Z]\w+")
+
+
+

Text = RRCapWord.Replace(Text, "$1")

wraps each capitalized word with ˙˙˙.

If count is given, only that number of replacements is done. (The default is to do
all replacements). To replace just the first match found, for example, use a count
of one. If you know that there will be only one match, using an explicit count of
one is more efficient than letting the Replace mechanics go through the work of
trying to find additional matches. A count of -1 means “replace all” (which, again,
is the default when no count is given).

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is applied. Bypassed characters are copied through to
the result unchanged.

For example, this canonicalizes all whitespace (that is, reduces sequences of
whitespace down to a single space):

Dim AnyWS as New Regex("\s+")
+
+
+

Target = AnyWS.Replace(Target, " ")

This converts ‘some random spacing’ to ‘some random spacing’. The
following does the same, except it leaves any leading whitespace alone:

Dim AnyWS as New Regex("\s+")
Dim LeadingWS as New Regex("ˆ\s+")

+
+
+

Target = AnyWS.Replace(Target, " ", -1, LeadingWS.Match(Target).Length)

Core Object Details 417

29 April 2003 09:31

418 Chapter 9: .NET

This converts ‘ some random spacing’ to ‘ some random spacing’.
It uses the length of what’s matched by LeadingWS as the offset (as the count of
characters to skip) when doing the search and replace. It uses a convenient fea-
tur e of the Match object, retur ned her e by LeadingWS.Match(Target), that its
Length pr operty may be used even if the match fails. (Upon failure, the Length

pr operty has a value of zero, which is exactly what we need to apply AnyWS to the
entir e target.)

Special Per-Match Replacement Sequences
Both the Regex.Replace method and the Match.Result method accept a
“r eplacement” string that’s interpreted specially. Within it, the following
sequences are replaced by appropriate text from the match:

Sequence Replaced by

$& text matched by the regex (also available as $0)
$1, $2, . . . text matched by the corresponding set of capturing parentheses
${name} text matched by the corresponding named capture

$‘ text of the target string befor e the match location
$’ text of the target string after the match location
$$ a single ‘$’ character
$R a copy of the entire original target string
$+ (see text below)

The $+ sequence is fairly useless as currently implemented. Its origins lie
with Perl’s useful $+ variable, which refer ences the highest-numbered set of
capturing parentheses that actually participated in the match. (There’s an
example of it in use on page 202.) This .NET replacement-string $+, though,
mer ely refer ences the highest-numbered set of capturing parentheses in the
regex. It’s particularly useless in light of the capturing-parentheses renumber-
ing that’s automatically done when named captures are used (+ 403).

Any uses of ‘$’ in the replacement string in situations other than those
described in the table are left unmolested.

Using a replacement delegate
The replacement argument isn’t limited to a simple string. It can be a delegate
(basically, a pointer to a function). The delegate function is called after each match
to generate the text to use as the replacement. Since the function can do any pro-
cessing you want, it’s an extremely powerful replacement mechanism.

The delegate is of the type MatchEvaluator, and is called once per match. The
function it refers to should accept the Match object for the match, do whatever
pr ocessing you like, and retur n the text to be used as the replacement.

29 April 2003 09:31

As examples for comparison, the following two code snippets produce identical
results:

Target = R.Replace(Target, "<<$&>>"))

Function MatchFunc(ByVal M as Match) as String
return M.Result("<<$&>>")

End Function
Dim Evaluator as MatchEvaluator = New MatchEvaluator(AddressOf MatchFunc)

+
+
+

Target = R.Replace(Target, Evaluator)

Both snippets highlight each match by wrapping the matched text in <<˙˙˙>>. The
advantage of using a delegate is that you can include code as complex as you like
in computing the replacement. Here’s an example that converts Celsius tempera-
tur es to Fahrenheit:

Function MatchFunc(ByVal M as Match) as String
’Get numeric temperature from $1, then convert to Fahrenheit
Dim Celsius as Double = Double.Parse(M.Groups(1).Value)
Dim Fahrenheit as Double = Celsius + 9/5 + 32
Return Fahrenheit & "F" ’Append an "F", and retur n

End Function

Dim Evaluator as MatchEvaluator = New MatchEvaluator(AddressOf MatchFunc)
+
+
+

Dim RRTemp as Regex = New Regex("(\d+)C\b", RegexOptions.IgnoreCase)
Target = RRTemp.Replace(Target, Evaluator)

Given ‘Temp is 37C.’ in Target, it replaces it with ‘Temp is 98.6F.’.

RegexObj.Split(tar get) Retur n type: array of String
RegexObj.Split(tar get, count)
RegexObj.Split(tar get, count, of fset)

The Split method applies the object’s regex to the tar get string, retur ning an
array of the strings separated by the matches. Here’s a trivial example:

Dim R as New Regex("\.")
Dim Parts as String() = R.Split("209.204.146.22")

The R.Split retur ns the array of four strings (‘209’, ‘204’, ‘146’, and ‘22’) that are
separated by the three matches of !\." in the text.

If a count is provided, no more than count strings will be retur ned (unless captur-
ing parentheses are used — mor e on that in a bit). If count is not provided, Split
retur ns as many strings as are separated by matches. Providing a count may mean
that the regex stops being applied before the final match, and if so, the last string
has the unsplit remainder of the line:

Dim R as New Regex("\.")
Dim Parts as String() = R.Split("209.204.146.22", 2)

This time, Parts receives two strings, ‘209’ and ‘204.146.22’.

Core Object Details 419

29 April 2003 09:31

420 Chapter 9: .NET

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is attempted. The bypassed text becomes part of the
first string retur ned (unless RegexOptions.RightToLeft has been specified, in
which case the bypassed text becomes part of the last string retur ned).

Using Split with capturing parentheses
If capturing parentheses of any type are used, additional entries for captured text
ar e usually inserted into the array. (We’ll see in what cases they might not be
inserted in a bit.) As a simple example, to separate a string like ‘2002-12-31’ or
‘04/12/2003’ into its component parts, you might split on ![-/] ", like:

Dim R as New Regex("[-/]")
Dim Parts as String() = R.Split(MyDate)

This retur ns a list of the three numbers (as strings). However, adding capturing
par entheses and using !([-/,])" as the regex causes Split to retur n five strings: if
MyDate contains ‘2002-12-31’, the strings are ‘2002’, ‘-’, ‘12’, ‘-’, and ‘31’. The
extra ‘-’ elements are from the per-captur e $1.

If there are multiple sets of capturing parentheses, they are inserted in their
numerical ordering (which means that all named captures come after all unnamed
captur es + 403).

Split works consistently with capturing parentheses so long as all sets of captur-
ing parentheses actually participate in the match. However, ther e’s a bug with the
curr ent version of .NET such that if there is a set of capturing parentheses that
doesn’t participate in the match, it and all higher-number ed sets don’t add an ele-
ment to the retur ned list.

As a somewhat contrived example, consider wanting to split on a comma with
optional whitespace around it, yet have the whitespace added to the list of ele-
ments retur ned. You might use !(\s+)?,(\s+)? " for this. When applied with
Split to ‘this , that’, four strings are retur ned, ‘this’, ‘ ’, ‘ ’, and ‘that’.
However, when applied to ‘this, that’, the inability of the first set of capturing
par entheses to match inhibits the element for it (and for all sets that follow) from
being added to the list, so only two strings are retur ned, ‘this’ and ‘that’. The
inability to know beforehand exactly how many strings will be retur ned per match
is a major shortcoming of the current implementation.

In this particular example, you could get around this problem simply by using
!(\s+),(\s+)" (in which both groups are guaranteed to participate in any overall
match). However, mor e complex expressions are not easily rewritten.

29 April 2003 09:31

RegexObj.GetGroupNames()
RegexObj.GetGroupNumbers()
RegexObj.GroupNameFromNumber(number)
RegexObj.GroupNumberFromName(name)

These methods allow you to query information about the names (both numeric
and, if named capture is used, by name) of capturing groups in the regex. They
don’t refer to any particular match, but merely to the names and numbers of
gr oups that exist in the regex. The sidebar on the next page shows an example of
their use.

RegexObj.ToString()
RegexObj.RightToLeft
RegexObj.Options

These allow you to query information about the Regex object itself (as opposed to
applying the regex object to a string). The ToString() method retur ns the pattern
string originally passed to the regex constructor. The RightToLeft pr operty
retur ns a Boolean indicating whether RegexOptions.RightToLeft was specified
with the regex. The Options pr operty retur ns the RegexOptions that are associ-
ated with the regex. The following table shows the values of the individual
options, which are added together when reported:

0 None 16 Singleline

1 IgnoreCase 32 IgnorePatternWhitespace

2 Multiline 64 RightToLeft

4 ExplicitCapture 256 ECMAScript

8 Compiled

The missing 128 value is for a Microsoft debugging option not available in the
final product.

The sidebar on the next page shows an example these methods in use.

Using Match Objects
Match objects are created by a Regex’s Match method, the Regex.Match static
function (discussed in a bit), and a Match object’s own NextMatch method. It
encapsulates all information relating to a single application of a regex. It has the
following properties and methods:

MatchObj.Success

This retur ns a Boolean indicating whether the match was successful. If not, the
object is a copy of the static Match.Empty object.

Core Object Details 421

29 April 2003 09:31

422 Chapter 9: .NET

Displaying Infor mation about a Regex Object
This displays what’s known about the Regex object in the variable R:

’Display information known about the Regex object in the variable R
Console.WriteLine("Regex is: " & R.ToString())
Console.WriteLine("Options are: " & R.Options)
If R.RightToLeft

Console.WriteLine("Is Right-To-Left: True")
Else

Console.WriteLine("Is Right-To-Left: False")
End If

Dim S as String
For Each S in R.GetGroupNames()

Console.WriteLine("Name """ & S & """ is Num #" & R
R.GroupNumberFromName(S))

Next
Console.WriteLine("---")
Dim I as Integer
For Each I in R.GetGroupNumbers()

Console.WriteLine("Num #" & I & " is Name """ & R
R.GroupNameFromNumber(I) & """")

Next

Run twice, once with each of the two Regex objects created with

New Regex("ˆ(\w+)://([ˆ/]+)(/\S+)")

New Regex("ˆ(?<proto>\w+)://(?<host>[ˆ/]+)(?<page>/\S+)",
RegexOptions.Compiled)

the following output is produced (with one regex cut off to fit the page):

Regex is: ˆ(\w+)://([ˆ/]+)(/\S+)
Option are: 0
Is Right-To-Left: False
Name "0" is Num #0
Name "1" is Num #1
Name "2" is Num #2
Name "3" is Num #3

Num #0 is Name "0"
Num #1 is Name "1"
Num #2 is Name "2"
Num #3 is Name "3"

Regex is: ˆ(?<proto>\w+)://(?<host> ⋅⋅⋅
Option are: 8
Is Right-To-Left: False
Name "0" is Num #0
Name "proto" is Num #1
Name "host" is Num #2
Name "page" is Num #3

Num #0 is Name "0"
Num #1 is Name "proto"
Num #2 is Name "host"
Num #3 is Name "page"

MatchObj.Value
MatchObj.ToString()

These retur n copies of the text actually matched.

29 April 2003 09:31

MatchObj.Length

This retur ns the length of the text actually matched.

MatchObj.Index

This retur ns an integer indicating the position in the target text where the match
was found. It’s a zero-based index, so it’s the number of characters from the start
(left) of the string to the start (left) of the matched text. This is true even if
RegexOptions.RightToLeft had been used to create the regex that generated
this Match object.

MatchObj.Groups

This property is a GroupCollection object, in which a number of Group objects
ar e encapsulated. It is a normal collection object, with a Count and Item pr oper-
ties, but it’s most commonly accessed by indexing into it, fetching an individual
Group object. For example, M.Groups(3) is the Group object related to the third
set of capturing parentheses, and M.Groups("HostName") is the group object for
the “Hostname” named capture (e.g., after the use of !(?<HostName>˙˙˙)" in a
regex).

Note that C# requir es M.Groups[3] and M.Groups["HostName"] instead.

The zeroth group repr esents the entire match itself. MatchObj.Groups(0).Value,
for example, is the same as MatchObj.Value.

MatchObj.NextMatch()

The NextMatch() method re-invokes the original regex to find the next match in
the original string, retur ning a new Match object.

MatchObj.Result(string)

Special sequences in the given string ar e pr ocessed as shown in the sidebar on
page 418, retur ning the resulting text. Here’s a simple example:

Dim M as Match = Regex.Match(SomeString, "\w+")
Console.WriteLine(M.Result("The first word is ’$&’"))

You can use this to get a copy of the text to the left and right of the match, with

M.Result("$‘") ’This is the text to the left of the match
M.Result("$’") ’This is the text to the right of the match

During debugging, it may be helpful to display something along the lines of:

M.Result("[$‘<$&>$’]"))

Given a Match object created by applying !\d+ " to the string ‘May 16, 1998’, it
retur ns ‘May <16>, 1998’, clearly showing the exact match.

Core Object Details 423

29 April 2003 09:31

424 Chapter 9: .NET

MatchObj.Synchronized()

This retur ns a new Match object that’s identical to the current one, except that it’s
safe for multi-threaded use.

MatchObj.Captures

The Captures pr operty is not used often, but is discussed starting on page 431.

Using Group Objects
A Group object contains the match information for one set of capturing parenthe-
ses (or, if a zer oth gr oup, for an entire match). It has the following properties and
methods:

GroupObj.Success

This retur ns a Boolean indicating whether the group participated in the match. Not
all groups necessarily “participate” in a successful overall match. For example, if
!(this)<(that) " matches successfully, one of the sets of parentheses is guaranteed
to have participated, while the other is guaranteed to have not. See the footnote
on page 138 for another example.

GroupObj.Value
GroupObj.ToString()

These both retur n a copy of the text captured by this group. If the match hadn’t
been successful, these retur n an empty string.

GroupObj.Length

This retur ns the length of the text captured by this group. If the match hadn’t been
successful, it retur ns zer o.

GroupObj.Index

This retur ns an integer indicating where in the target text the group match was
found. The retur n value is a zero-based index, so it’s the number of characters
fr om the start (left) of the string to the start (left) of the captured text. (This is true
even if RegexOptions.RightToLeft had been used to create the regex that gen-
erated this Match object.)

GroupObj.Captures

The Group object also has a Captures pr operty discussed starting on page 431.

29 April 2003 09:31

Static “Convenience” Functions
As we saw in the “Regex Quickstart” beginning on page 407, you don’t always
have to create explicit Regex objects. The following static functions allow you to
apply with regular expressions directly:

Regex.IsMatch(target, pattern)
Regex.IsMatch(target, pattern, options)

Regex.Match(target, pattern)
Regex.Match(target, pattern, options)

Regex.Matches(target, pattern)
Regex.Matches(target, pattern, options)

Regex.Replace(target, pattern, replacement)
Regex.Replace(target, pattern, replacement, options)

Regex.Split(target, pattern)
Regex.Split(target, pattern, options)

Inter nally, these are just wrappers around the core Regex constructor and methods
we’ve already seen. They construct a temporary Regex object for you, use it to call
the method you’ve requested, and then throw the object away. (Well, they don’t
actually throw it away—mor e on this in a bit.)

Her e’s an example:

If Regex.IsMatch(Line, "ˆ\s+$")
+
+
+

That’s the same as

Dim TemporaryRegex = New Regex("ˆ\s+$")
If TemporaryRegex.IsMatch(Line)

+
+
+

or, mor e accurately, as:

If New Regex("ˆ\s+$").IsMatch(Line)
+
+
+

The advantage of using these convenience functions is that they generally make
simple tasks easier and less cumbersome. They allow an object-oriented package
to appear to be a procedural one (+ 95). The disadvantage is that the patter n
must be reinspected each time.

If the regex is used just once in the course of the whole program’s execution, it
doesn’t matter from an efficiency standpoint whether a convenience function is
used. But, if a regex is used multiple times (such as in a loop, or a commonly-
called function), there’s some overhead involved in preparing the regex each time
(+ 241). The goal of avoiding this usually expensive overhead is the primary rea-
son you’d build a Regex object once, and then use it repeatedly later when actu-
ally checking text. However, as the next section shows, .NET of fers a way to have
the best of both worlds: procedural convenience with object-oriented efficiency.

Static “Convenience” Functions 425

29 April 2003 09:31

426 Chapter 9: .NET

Regex Caching
Having to always build and save a separate Regex object for every little regex
you’d like to use can be extremely cumbersome and inconvenient, so it’s wonder-
ful that the .NET regex package employs regex caching. If you use a pat-
ter n/option combination that has already been used during the execution of the
pr ogram, the internal Regex object that had been built the first time is reused, sav-
ing you the drudgery of having to save and manage the Regex object.

.NET’s regex caching seems to be very efficient, so I would feel comfortable using
the convenience functions in most places. There is a small amount of overhead, as
the cache must compare the pattern string and its list of options to those it already
has, but that’s a small tradeoff for the enhanced program readability of the less-
complicated approach that convenience functions offer. I’d still opt for building
and managing a raw Regex object in very time-sensitive situations, such as apply-
ing regexes in a tight loop.

Suppor t Functions
Besides the convenience functions described in the previous section, there are a
few other static support functions:

Match.Empty

This function retur ns a Match object that repr esents a failed match. It is perhaps
useful for initializing a Match object that you may or may not fill in later, but do
intend to query later. Her e’s a simple example:

Dim SubMatch as Match = Match.Empty ’Initialize, in case it’s not set in the loop below

+
+
+

Dim Line as String
For Each Line in EmailHeaderLines

’If this is the subject, save the match info for later . . .
Dim ThisMatch as Match = Regex.Match(Line, "ˆSubject:\s+(.+)", R

RegexOptions.IgnoreCase)
If ThisMatch.Success

SubMatch = ThisMatch
End If

+
+
+

Next
+
+
+

If SubMatch.Success
Console.WriteLine(SubMatch.Result("The subject is: $1"))

Else
Console.WriteLine("No subject!")

End If

If the string array EmailHeaderLines actually has no lines (or no Subject lines),
the loop that iterates through them won’t ever set SubMatch, so the inspection of

29 April 2003 09:31

SubMatch after the loop would result in a null refer ence exception if it hadn’t
somehow been initialized. So, it’s convenient to use Match.Empty as the initializer
in cases like this.

Regex.Escape(str ing)

Given a string, Regex.Escape(˙˙˙) retur ns a copy of the string with regex meta-
characters escaped. This makes the original string appropriate for inclusion in a
regex as a literal string.

For example, if you have input from the user in the string variable SearchTerm,
you might use it to build a regex with:

Dim UserRegex as Regex = New Regex("ˆ" & Regex.Escape(SearchTerm) & "$", R
RegexOptions.IgnoreCase)

This allows the search term to contain regular-expr ession metacharacters without
having them treated as such. If not escaped, a SearchTerm value of, say, ‘:-)’
would result in an ArgumentException being thrown (+ 413).

Regex.Unescape(str ing)

This odd little function accepts a string, and retur ns a copy with certain regex
character escape sequences interpreted, and other backslashes removed. For
example, if it’s passed ‘\:\-\)’, it retur ns ‘:-)’.

Character shorthands are also decoded. If the original string has ‘\n’, it’s actually
replaced with a newline in the retur ned string. Or if it has ‘\u1234’, the corre-
sponding Unicode character will be inserted into the string. All character short-
hands listed at the top of page 401 are interpr eted.

I can’t imagine a good regex-r elated use for Regex.Unescape, but it may be use-
ful as a general tool for endowing VB strings with some knowledge of escapes.

Regex.CompileToAssembly(˙˙˙)

This allows you to create an assembly encapsulating a Regex object — see the next
section.

Advanced .NET
The following pages cover a few features that haven’t fit into the discussion so far:
building a regex library with regex assemblies, using an interesting .NET-only
regex feature for matching nested constructs, and a discussion of the Capture

object.

Advanced .NET 427

29 April 2003 09:31

428 Chapter 9: .NET

Regex Assemblies
.NET allows you to encapsulate Regex objects into an assembly, which is useful in
cr eating a regex library. The example in the sidebar on the facing page shows
how to build one.

When the sidebar example executes, it creates the file JfriedlsRegexLibrary.DLL in
the project’s bin dir ectory.

I can then use that assembly in another project, after first adding it as a refer ence
via Visual Studio .NET’s Pr oject > Add Reference dialog.

To make the classes in the assembly available, I first import them:

Imports jfriedl

I can then use them just like any other class, as in this example::

Dim FieldRegex as CSV.GetField = New CSV.GetField ’This makes a new Regex object

+
+
+

Dim FieldMatch as Match = FieldRegex.Match(Line) ’Apply the regex to a string . . .
While FieldMatch.Success

Dim Field as String
If FieldMatch.Groups(1).Success
Field = FieldMatch.Groups("QuotedField").Value
Field = Regex.Replace(Field, """ "" ", """") ’replace two double quotes with one

Else
Field = FieldMatch.Groups("UnquotedField").Value

End If

Console.WriteLine("[" & Field & "]")
’ Can now work with ’Field’....

FieldMatch = FieldMatch.NextMatch
End While

In this example, I chose to import only from the jfriedl namespace, but could
have just as easily imported from the jfriedl.CSV namespace, which then would
allow the Regex object to be created with:

Dim FieldRegex as GetField = New GetField ’This makes a new Regex object

The differ ence is mostly a matter of style. You can also choose to not import any-
thing, but rather use them directly:

Dim FieldRegex as jfriedl.CSV.GetField = New jfriedl.CSV.GetField

This is a bit more cumbersome, but documents clearly where exactly the object is
coming from. Again, it’s a matter of style.

29 April 2003 09:31

Creating Your Own Regex Librar y With an Assembly
This example builds a small regex library. This complete program builds an
assembly (DLL) that holds three pre-built Regex constructors I’ve named
jfriedl.Mail.Subject, jfriedl.Mail.From, and jfriedl.CSV.GetField.

The first two are simple examples just to show how it’s done, but the com-
plexity of the final one really shows the promise of building your own
library. Note that you don’t have to give the RegexOptions.Compiled flag,
as that’s implied by the process of building an assembly.

See the text (+ 428) for how to use the assembly after it’s built.

Option Explicit On
Option Strict On

Imports System.Text.RegularExpressions
Imports System.Reflection

Module BuildMyLibrary
Sub Main()
’The calls to RegexCompilationInfo below provide the pattern, regex options, name within the class,
’class name, and a Boolean indicating whether the new class is public. The first class, for example,
’will be available to programs that use this assembly as "jfriedl.Mail.Subject", a Regex constructor.
Dim RCInfo() as RegexCompilationInfo = { R

New RegexCompilationInfo(R
"ˆSubject:\s+(.+)", RegexOptions.IgnoreCase, R
"Subject", "jfriedl.Mail", true), R

New RegexCompilationInfo(R
"ˆFrom:\s+(.+)", RegexOptions.IgnoreCase, R
"From", "jfriedl.Mail", true), R

New RegexCompilationInfo(R
"\G(?:ˆ;,) " & R
"(?: " & R
" (?# Either a double-quoted field...) " & R
" "" (?# field’s opening quote) " & R
" (?<QuotedField> (?> [ˆ""]+ ; """")+) " & R
" "" (?# field’s closing quote) " & R
" (?# ...or...) " & R
" ; " & R
" (?# ...some non-quote/non-comma text...) " & R
" (?<UnquotedField> [ˆ"",]+) " & R
")", R
RegexOptions.IgnorePatternWhitespace, R
"GetField", "jfriedl.CSV", true) R

}
’Now do the heavy lifting to build and write out the whole thing . . .
Dim AN as AssemblyName = new AssemblyName()
AN.Name = "JfriedlsRegexLibrary" ’This will be the DLL’s filename
AN.Version = New Version("1.0.0.0")
Regex.CompileToAssembly(RCInfo, AN) ’Build everything
End Sub
End Module

Advanced .NET 429

29 April 2003 09:31

430 Chapter 9: .NET

Matching Nested Constructs
Micr osoft has included an interesting innovation for matching balanced constructs
(historically, something not possible with a regular expression). It’s not particularly
easy to understand—this section is short, but be warned, it is very dense.

It’s easiest to understand with an example, so I’ll start with one:

Dim R As Regex = New Regex(" \(" & R
" (?> " & R
" [ˆ()]+ " & R
" ; " & R
" \((?<DEPTH>) " & R
" ; " & R
" \) (?<-DEPTH>) " & R
")+ " & R
" (?(DEPTH)(?!)) " & R
" \) ", R

RegexOptions.IgnorePatternWhitespace)

This matches the first properly-pair ed nested set of parentheses, such as the under-
lined portion of ‘before (nope (yes (here) okay) after’. The first parenthe-
sis isn’t matched because it has no associated closing parenthesis.

Her e’s the super-short overview of how it works:

1. With each ‘(’ matched, !(?<DEPTH>) " adds one to the regex’s idea of how
deep the parentheses are curr ently nested (at least, nested beyond the initial
!\(" at the start of the regex).

2. With each ‘)’ matched, !(?<-DEPTH>) " subtracts one from that depth.

3. !(?(DEPTH) (?!)) " ensur es that the depth is zero befor e allowing the final lit-
eral !\) " to match.

This works because the engine’s backtracking stack keeps track of successfully-
matched groupings. !(?<DEPTH>) " is just a named-capture version of !()", which is
always successful. Since it has been placed immediately after !\(", its success
(which remains on the stack until removed) is used as a marker for counting
opening parentheses.

Thus, the number of successful ‘DEPTH’ groupings matched so far is maintained on
the backtracking stack. We want to subtract from that whenever a closing paren-
theses is found. That’s accomplished by .NET’s special !(?<-DEPTH>) " construct,
which removes the most recent “successful DEPTH” notation from the stack. If it
tur ns out that there aren’t any, the !(?<-DEPTH>) " itself fails, thereby disallowing
the regex from over-matching an extra closing parenthesis.

Finally, !(?(DEPTH) (?!)) " is a normal conditional that applies !(?!)" if the ‘DEPTH’
gr ouping is currently successful. If it’s still successful by the time we get here,
ther e was an unpaired opening parenthesis whose success had never been

29 April 2003 09:31

subtracted by a balancing !(?<-DEPTH>) ". If that’s the case, we want to exit the
match (we don’t want to match an unbalanced sequence), so we apply !(?!)",
which is normal negative lookahead of an empty subexpression, and guaranteed
to fail.

Phew! That’s how to match nested constructs with .NET regular expressions.

Capture Objects
Ther e’s an additional component to .NET’s object model, the Capture object,
which I haven’t discussed yet. Depending on your point of view, it either adds an
inter esting new dimension to the match results, or adds confusion and bloat.

A Capture object is almost identical to a Group object in that it repr esents the text
matched within a set of capturing parentheses. Like the Group object, it has meth-
ods for Value (the text matched), Length (the length of the text matched), and
Index (the zero-based number of characters into the target string that the match
was found).

The main differ ence between a Group object and a Capture object is that each
Group object contains a collection of Captures repr esenting all the inter mediary
matches by the group during the match, as well as the final text matched by the
gr oup.

Her e’s an example with !ˆ(..)+ " applied to ‘abcdefghijk’:

Dim M as Match = Regex.Match("abcdefghijk", "ˆ(..)+")

The regex matches four sets of !(..) ", which is most of the string: ‘abcdefghijk’.
Since the plus is outside of the parentheses, they recaptur e with each iteration of
the plus, and are left with only ‘ij’ (that is, M.Groups(1).Value is ‘ij’). How-
ever, that M.Groups(1) also contains a collection of Captures repr esenting the
complete ‘ab’, ‘cd’, ‘ef’, ‘gh’, and ‘ij’ that !(..) " walked through during the match:

M.Groups(1).Captures(0).Value is ‘ab’
M.Groups(1).Captures(1).Value is ‘cd’
M.Groups(1).Captures(2).Value is ‘ef’
M.Groups(1).Captures(3).Value is ‘gh’
M.Groups(1).Captures(4).Value is ‘ij’
M.Groups(1).Captures.Count is 5.

You’ll notice that the last capture has the same ‘ij’ value as the overall match,
M.Groups(1).Value. It tur ns out that the Value of a Group is really just a short-
hand notation for the group’s final capture. M.Groups(1).Value is really:

M.Groups(1).Captures(M.Groups(1).Captures.Count - 1).Value

Advanced .NET 431

29 April 2003 09:31

432 Chapter 9: .NET

Her e ar e some additional points about captures:

• M.Groups(1).Captures is a CaptureCollection, which, like any collection,
has Items and Count pr operties. However, it’s common to forego the Items

pr operty and index directly through the collection to its individual items, as
with M.Groups(1).Captures(3) (M.Groups[1].Captures[3] in C#).

• A Capture object does not have a Success method; check the Group’s
Success instead.

• So far, we’ve seen that Capture objects are available from a Group object.
Although it’s not particularly useful, a Match object also has a Captures pr op-
erty. M.Captures gives direct access to the Captures pr operty of the zeroth
gr oup (that is, M.Captures is the same as M.Groups(0).Captures). Since the
zer oth gr oup repr esents the entire match, there are no iterations of it “walking
thr ough” a match, so the zeroth captured collection always has only one
Capture. Since they contain exactly the same information as the zeroth
Group, both M.Captures and M.Groups(0).Captures ar e not particularly
useful.

.NET’s Capture object is an interesting innovation that appears somewhat more
complex and confusing than it really is by the way it’s been “overly integrated”
into the object model. After getting past the .NET documentation and actually
understanding what these objects add, I’ve got mixed feelings about them. On one
hand, it’s an interesting innovation that I’d like to get to know. Uses for it don’t
immediately jump to mind, but that’s likely because I’ve not had the same years of
experience with it as I have with traditional regex features.

On the other hand, the construction of all these extra capture groups during a
match, and then their encapsulation into objects after the match, seems an effi-
ciency burden that I wouldn’t want to pay unless I’d requested the extra informa-
tion. The extra Capture gr oups won’t be used in the vast majority of matches, but
as it is, all Group and Capture objects (and their associated GroupCollection

and CaptureCollection objects) are built when the Match object is built. So,
you’ve got them whether you need them or not; if you can find a use for the
Capture objects, by all means, use them.

29 April 2003 09:31

Index

v xx
\? 139
\<˙˙˙\> 21, 25, 50, 131-132, 150

in egr ep 15
in Emacs 100
mimicking in Perl 341-342

\+ 139
\(˙˙˙\) 135
‘\+’ history 87
\0 116-117
\1 136, 300, 303

(also see backrefer ences)
in Perl 41

\A 111, 127-128
(also see enhanced line-anchor mode)
in Java 373
optimization 246

\a 114-115
\b 65, 114-115, 400

(also see: word boundaries; backspace)
backspace and word boundary 44, 46
in Perl 286

\b\B 240
\C 328
\D 49, 119
\d 49, 119

in Perl 288
\e 79, 114-115
\E 290

(also see literal-text mode)
\f 114-115

intr oduced 44

\G 128-131, 212, 315-316, 362
(also see pos)
advanced example 130
in Java 373
in .NET 402
optimization 246

\kname (see named capture)
\l 290
\L˙˙˙\E 290

inhibiting 292
\n 49, 114-115

intr oduced 44
machine-dependency 114

\N{LATIN SMALL LETTER SHARP S} 290
\N{name} 290

(also see pragma)
inhibiting 292

\p{˙˙˙} 119
(also see Unicode, properties)

\p{ˆ˙˙˙} 288
\p{all} 380
\p{All} 123

in Perl 288
\p{Any} 123

in Perl 288
\p{Arrows} 122
\p{Assigned} 123-124

in Perl 288
\p{BasicRLatin} 122
\p{BoxRDrawing} 122
\p{C} 120
\p{Cc} 121
\p{Cf} 121
\p{Cherokee} 120

433

5 May 2003 08:41

434 Index

\p{CloseRPunctuation} 121
\p{Cn} 121, 123-124, 380, 401
\p{Co} 121
\p{ConnectorRPunctuation} 121
\p{Control} 121
\p{Currency} 122
\p{CurrencyRSymbol} 121
\p{Cyrillic} 120, 122
\p{DashRPunctuation} 121
\p{DecimalRDigitRNumber} 121
\p{Dingbats} 122
\p{EnclosingRMark} 121
\p{FinalRPunctuation} 121
\p{Format} 121
\p{Gujarati} 120
\p{Han} 120
\p{HangulRJamo} 122
\p{Hebrew} 120, 122
\p{Hiragana} 120
\p{InArrows} 122
\p{InBasicRLatin} 122
\p{InBoxRDrawing} 122
\p{InCurrency} 122
\p{InCyrillic} 122
\p{InDingbats} 122
\p{InHangulRJamo} 122
\p{InHebrew} 122
\p{Inherited} 122
\p{InitialRPunctuation} 121
\p{InKatakana} 122
\p{InTamil} 122
\p{InTibetan} 122
\p{IsCherokee} 120
\p{IsCommon} 122
\p{IsCyrillic} 120
\p{IsGujarati} 120
\p{IsHan} 120
\p{IsHebrew} 120
\p{IsHiragana} 120
\p{IsKatakana} 120
\p{IsLatin} 120
\p{IsThai} 120
\p{IsTibetan} 122
\p{Katakana} 120, 122
\p{L} 119-120, 131, 380, 390
\p{L&} 120-121, 123

in Perl 288
\p{Latin} 120
\p{Letter} 120, 288
\p{LetterRNumber} 121
\p{LineRSeparator} 121
\p{Ll} 121, 400
\p{Lm} 121, 400

\p{Lo} 121, 400
\p{LowercaseRLetter} 121
\p{Lt} 121, 400
\p{Lu} 121, 400
\p{M} 120, 125
\p{Mark} 120
\p{MathRSymbol} 121
\p{Mc} 121
\p{Me} 121
\p{Mn} 121
\p{ModifierRLetter} 121
\p{ModifierRSymbol} 121
\p{N} 120, 390
\p{Nd} 121, 380, 400
\p{Nl} 121
\p{No} 121
\p{NonRSpacingRMark} 121
\p{Number} 120
\p{OpenRPunctuation} 121
\p{Other} 120
\p{OtherRLetter} 121
\p{OtherRNumber} 121
\p{OtherRPunctuation} 121
\p{OtherRSymbol} 121
\p{P} 120
\p{ParagraphRSeparator} 121
\p{Pc} 121, 400
\p{Pd} 121
\p{Pe} 121
\p{Pf} 121, 400
\p{Pi} 121, 400
\p{Po} 121
\p{PrivateRUse} 121
\p{Ps} 121
\p{Punctuation} 120
\p{S} 120
\p{Sc} 121-122
\p{Separator} 120
\p{Sk} 121
\p{Sm} 121
\p{So} 121
\p{SpaceRSeparator} 121
\p{SpacingRCombiningRMark} 121
\p{Symbol} 120
\p{Tamil} 122
\p{Thai} 120
\p{Tibetan} 122
\p{TitlecaseRLetter} 121
\p{Unassigned} 121, 123

in Perl 288
\p{UppercaseRLetter} 121
\p{Z} 119-120, 380, 400
\p{Zl} 121

5 May 2003 08:41

\p{Zp} 121
\p{Zs} 121
\Q˙˙˙\E 290

inhibiting 292
in Java 373

\r 49, 114-115
machine-dependency 114

\s 49, 119
intr oduction 47
in Emacs 127
in Perl 288

\S 49, 56, 119
\t 49, 114-115

intr oduced 44
\u 116, 290, 400
\U 116
\U˙˙˙\E 290

inhibiting 292
\V 364
\v 114-115, 364
\W 49, 119
\w 49, 65, 119

in Emacs 127
many differ ent interpr etations 93
in Perl 288

\x 116, 400
in Perl 286

\X 107, 125
\z 111, 127-128, 316

(also see enhanced line-anchor mode)
in Java 373
optimization 246

\Z 111, 127-128
(also see enhanced line-anchor mode)
in Java 373
optimization 246

// 322
/c 129-130, 315
/e 319-321
/g 61, 130, 307, 311-312, 315, 319

(also see \G)
intr oduced 51
with regex object 354

/i 134
(also see: case-insensitive mode; mode

modifier)
intr oduced 47
with study 359

/m 134
(also see: enhanced line-anchor mode;

mode modifier)
/o 352-353

with regex object 354

/osmosis 293
/s 134

(also see: dot-matches-all mode; mode
modifier)

/x 134, 288
(also see: comments and free-spacing

mode; mode modifier)
intr oduced 72
history 90

-Dr 363
-i as -y 86
-Mre=debug (see use re ’debug’)
-y old gr ep 86
<> 54

and $R 79
!˜ 309
(see comments)
$R 79, 308, 311, 314, 318, 322, 353-354,

359
in .NET 418

$& 299-300
checking for 358
mimicking 302, 357
naughty 356
in .NET 418
okay for debugging 331
pr e-match copy 355

$$ in .NET 418
$+ 362
$ 111-112, 128

(also see enhanced line-anchor mode)
escaping 77
optimization 246
Perl interpolation 289

$+ 300-301, 345
example 202
.NET 202
in .NET 418

$/ 35, 78
$’ 300

checking for 358
mimicking 357
naughty 356
in .NET 418
okay for debugging 331
pr e-match copy 355

$‘ 300
checking for 358
mimicking 357
naughty 356
in .NET 418
okay for debugging 331
pr e-match copy 355

Index 435

5 May 2003 08:41

436 Index

$0 300
$-[0] (see @-)
$+[0] (see @+)
$1 135-136, 300, 303

intr oduced 41
in Java 388
in .NET 418
in other languages 136
pr e-match copy 355

$ARGV 79
$HostnameRegex 76, 136, 303, 351
$HttpUrl 303, 305, 345, 351
$LevelN 330, 343
$ˆN 300-301, 344-346
${name} 403
${name˜} 418
$NestedStuffRegex 339, 346
$ˆR 302, 327
$ˆW 297
% Perl interpolation 289
(?!) 240, 333, 335, 340-341
(?#˙˙˙) 99, 134, 414

in Java 373
(?:˙˙˙) (see non-capturing parentheses)
(˙˙˙) (see parentheses)
(?i) (see: case-insensitive mode; mode

modifier)
(?i:˙˙˙) (see mode-modified span)
(? if then < else) (see conditional)
(?m:˙˙˙) (see mode-modified span)
(?m) (see: enhanced line-anchor mode;

mode modifier)
(?n) 402
(?’name’˙˙˙) (see named capture)
(?<name>˙˙˙) (see named capture)
(?P=name˙˙˙) (see named capture)
(?P<name>˙˙˙) (see named capture)
(?s:˙˙˙) (see mode-modified span)
(?s) (see: dot-matches-all mode; mode

modifier)
(?x:˙˙˙) (see mode-modified span)
(?x) (see: comments and free-spacing

mode; mode modifier)
+ (see star)
++ (see possessive quantifiers)
++ (see possessive quantifiers)
+ (see plus)
".+" (see double-quoted string example)
.+

intr oduced 55
mechanics of matching 152
optimization 246
war ning about 56

.NET 399-432
$+ 202
flavor overview 91
after-match data 136
benchmarking 236
JIT 404
line anchors 128
literal-text mode 135
MISL 404
object model 411
regex approach 96-97
regex flavor 401
search-and-r eplace 408, 417-418
URL parsing example 204
version covered 91
word boundaries 132

=˜ 308-309, 318
intr oduced 38

? (see question mark)
?˙˙˙? 308
?+ (see possessive quantifiers)
@+ 300, 302, 314
@"˙˙˙" 102
@- 300, 302, 339
@ Perl interpolation 289
[=˙˙˙=] 126
[:<:] 92
[:˙˙˙:] 125-126
[.˙˙˙.] 126
\p{ . . . } in java.util.regex 380
ˆ 111-112, 128

(also see enhanced line-anchor mode)
optimization 245-246

ˆSubject: example 94, 151-152, 154, 242,
244-245, 289

in Java 95, 393
in Perl 55
in Perl debugger 361
in Python 97
in VB.NET 96

{min,max} 20, 140
; (see alternation)

\0 116-117
$0 300
\1 136, 300, 303

(also see backrefer ences)
in Perl 41

$1 135-136, 300, 303
intr oduced 41
in Java 388
in .NET 418

5 May 2003 08:41

$1 (cont’d)
in other languages 136
pr e-match copy 355

8859-1 encoding 29, 87, 105, 107, 121

\A 111, 127-128
(also see enhanced line-anchor mode)
in Java 373
optimization 246

@ escaping 77
\a 114-115
issues overview encoding 105
after-match var iables

in Perl 299
pr e-match copy 355

Aho, Alfred 86, 180
\p{All} 123

in Perl 288
\p{all} 380
all-in-one object model 369
alter nation 138

and backtracking 231
intr oduced 13-14
ef ficiency 222, 231
gr eedy 174-175
hand tweaking 260-261
order of 175-177, 223, 260

for correctness 28, 189, 197
for efficiency 224

and parentheses 13
analog y

backtracking
br ead crumbs 158-159
stacking dishes 159

ball rolling 261
building a car 31
charging batteries 179
engines 143-147
first come, first served 153
gas additive 150
lear ning regexes

Pascal 36
playing rummy 33

regex as a language 5, 27
regex as filename patterns 4
regex-dir ected match (see NFA)
text-dir ected match (see DFA)
transmission 148-149, 228
transpar encies (Perl’s local) 298

anchor (also see: word boundaries;
enhanced line-anchor mode)

overview 127
car et 127
dollar 127
end-of-line optimization 246
exposing 255
line 87, 111-112, 150

anchored(˙˙˙) 362
anchored ‘str ing’ 362
AND class set operations 123-124
ANSI escape sequences 79
\p{Any} 123

in Perl 288
any character (see dot)
Apache

Jakarta (see ORO)
org.apache.xerces.utils.regex 372
ORO 392-398

benchmark results 376
comparative description 374

Regexp
comparative description 375
speed 376

appendReplacement() 388
appendTail() 389
$ARGV 79
ar ray context (see list context)
\p{Arrows} 122
ASCII encoding 29, 105-106, 114, 121
Asian character encoding 29
AssemblyName 429
\p{Assigned} 123-124

in Perl 288
aster isk (see star)
atomic grouping (also see possessive

quantifiers)
intr oduced 137-138
details 170-172
for efficiency 171-172, 259, 268-270
essence 170-171
example 198, 201, 213, 271, 330,

340-341, 346
AT&T Bell Labs 86
auto-lookaheadification 403
automatic possessification 251
awk

after-match data 136
gensub 183
history 87
search-and-r eplace 99
version covered 91
word boundaries 132

Index 437

5 May 2003 08:41

438 Index

\b 65, 114-115, 400
(also see: word boundaries; backspace)
backspace and word boundary 44, 46
in Perl 286

ß 110, 126, 290, 366
˙˙˙ 165-167

unr olling 270
\b\B 240
backreferences 117, 135

intr oduced with egr ep 20-22
DFA 150, 182-183
vs. octal escape 406-407
remembering text 21

backspace (see \b)
backtracking 163-177

intr oduction 157-163
and alternation 231
avoiding 171-172
computing count 227
counting 222, 224
detecting excessive 249-250
ef ficiency 179-180
essence 168-169
exponential match 226
global view 228-232
LIFO 159
of lookaround 173-174
never ending match 226
non-match example 160-161
POSIX NFA example 229
saved states 159
simple example 160
simple lazy example 161

balanced constructs 328-331, 340-341, 430
balancing regex issues 186
Balling, Derek xxii
Barwise, J. 85
base character 107, 125
Basic Regular Expressions 87-88
\p{BasicRLatin} 122
\b\B 240
beginOffset 396
benchmarking 232-239

comparative 248, 376-377
compile caching 351
in Java 234-236, 375-377
for naughty variables 358
in .NET 236, 404
with neverending match 227
in Perl 360
pr e-match copy 356
in Python 237
in Ruby 238

benchmarking (cont’d)
in Tcl 239

Bennett, Mike xxi
Berkele y 86
Better-Late-Than-Ne ver 234-236, 375
˙˙˙ 165-167

unr olling 270
blocks 122, 288, 380, 400
BLTN 235-236, 375
BOL 362
\p{BoxRDrawing} 122
Bo yer-Moore 244, 247
brace (see interval)
bracket expressions 125
BRE 87-88
bread-cr umb analog y 158-159
Bulletin of Math. Biophysics 85
bump-along

intr oduction 148-149
avoiding 210
distrusting 215-218
optimization 255
in overall processing 241

byte matching 328

/c 129-130, 315
C# (also see .NET)

strings 102
\p{C} 120
\C 328
¢ 122
C comments

matching 272-276
unr olling 275-276

caching (also see regex objects)
benchmarking 351
compile 242-244
in Emacs 244
integrated 242
in Java 393
in .NET 426
object-oriented 244
pr ocedural 243
in Tcl 244
unconditional 350

CANONREQ (Pattern fla g) 108, 380
Capture 431
CaptureCollection 432
car analogy 83-84
caret anchor intr oduced 8
car ria ge retur n 109
case title 109

5 May 2003 08:41

case folding 290, 292
inhibiting 292

CASERINSENSITIVE (Pattern fla g) 95,
109, 380, 383

case-insensitive mode 109
intr oduced 14-15
egr ep 14-15
/i 47
Ruby 109
with study 359

cast 294-295
categor ies (see Unicode, properties)
\p{Cc} 121
Celsius (see temperature conversion

example)
\p{Cf} 121
character

base 125
classes 117
combining 107, 125, 288

Inherited script 122
vs. combining characters 107
contr ol 116
initial character discrimination 244-246,

249, 251-252, 257-259, 332, 361
machine-dependent codes 114
multiple code points 107
as opposed to byte 29
separating with split 322
shorthands 114-115

character class
intr oduced 9-10
vs. alternation 13
mechanics of matching 149
negated

must match character 11-12
and newline 118
Tcl 111

positive assertion 118
of POSIX bracket expression 125
range 9, 118
as separate language 10

character equivalent 126
CharacterIterator 372
charnames pragma 290
CharSequence 372, 390
CheckNaughtiness 358
\p{Cherokee} 120
Chinese text processing 29
chr 414
chunk limit

Java ORO 395
java.util.regex 391

chunk limit (cont’d)
Perl 323

class
vs. dot 118
elimination optimization 249
initial class discrimination 244-246, 249,

251-252, 257-259, 332, 361
and lazy quantifiers 167
set operations 123-125, 375
subtraction 124

Clemens, Sam 375
Click, Cliff xxii
client VM 234, 236
clock clicks 239
\p{CloseRPunctuation} 121
closures 339
\p{Cn} 121, 123-124, 380, 401
\p{Co} 121
code point

intr oduced 106
beyond U+FFFF 108
multiple 107
unassigned in block 122

coerce 294-295
cold VM 235
collating sequences 126
combining character 107, 125, 288

Inherited script 122
com.ibm.regex

comparative description 372
speed 377

commafying a number example 64-65
intr oduced 59
in Java 393
without lookbehind 67

COMMAND.COM 7
comments 99, 134

in Java 98
matching of C comments 272-276
matching of Pascal comments 265
in .NET regex 414

COMMENTS (Pattern fla g) 99, 218, 378,
380, 386

comments and free-spacing mode 110
Communications of the ACM 85
compar ison of engine types (see NFA)
compile() 383
compile

caching 242-244
once (/o) 352-353
on-demand 351
regex 404-405

compile() (Pattern factor y) 383

Index 439

5 May 2003 08:41

440 Index

Compiled (.NET) 236, 402, 404, 414,
421-422, 429

Compiler s—Pr inciples, Techniques, and
Tools 180

CompileToAssembly 427, 429
com.stevesoft.pat

comparative description 374
speed 377

conditional 138-139
with embedded regex 327, 335
in Java 373
mimicking with lookaround 139
in .NET 403

Config module 290, 299
conflicting metacharacter s 44-46
\p{ConnectorRPunctuation} 121
Consta ble, Robert 85
context (also see: list context; scalar con-

text; match, context)
forcing 310
metacharacters 44-46
regex use 189

continuation lines 178, 186-187
unr olling 270

contor ting an expression 294-295
\p{Control} 121
control character s 116
Conway, Damian 339
cooking for HTML 68, 408
cop y for $& (see pre-match copy)
cor rectness vs. efficiency 223-224
counting quantifier (see interval)
www.cpan.org 358
CR 109, 382
Cr uise, Tom 51
cr ummy analog y 158-159
CSV par sing example

java.util.regex 218, 386
.NET 429
ORO 397
Perl 212-219
unr olling 271

cur rency
P 121-122, 379, 400
\p{Currency} 122
\p{CurrencyRSymbol} 121
\p{Sc} 121
Unicode block 121-122

\p{Currency} 122
\p{CurrencyRSymbol} 121
currentTimeMillis() 236
\p{Cyrillic} 120, 122

\d 49, 119
in Perl 288

\D 49, 119
Dar th 197
dash in character class 9
\p{DashRPunctuation} 121
DBIx::DWIW 258
debugcolor 363
debugg ing 361-363

with embedded code 331-332
regex objects 305-306
run-time 362

\p{DecimalRDigitRNumber} 121
default regex 308
define-key 100
delegate 417-418
delimited text 196-198

standard formula 196, 273
delimiter

with shell 7
with substitution 319

Deter ministic Finite Automaton (see DFA)
Devel::FindAmpersand 358
Devel::SawAmpersand 358
DFA

intr oduced 145, 155
acr onym spelled out 156
backr efer ences 150, 182-183
boring 157
compar ed with NFA 224, 227

(also see NFA)
ef ficiency 179
implementation ease 182
lazy evaluation 181
longest-leftmost match 177-179
testing for 146-147
in theory, same as an NFA 180

dialytika 108
\p{Dingbats} 122
directed alternation (see alternation,

order ed)
dish-stacking analogy 159
dollar for Perl variable 37
dollar anchor 127

intr oduced 8
dollar value example 24-25, 51-52,

167-170, 175, 194-195
DOS 7
dot 118

intr oduced 11-12
vs. character class 118
mechanics of matching 149
Tcl 112

5 May 2003 08:41

.NET 399-432
$+ 202
flavor overview 91
after-match data 136
benchmarking 236
JIT 404
line anchors 128
literal-text mode 135
MISL 404
object model 411
regex approach 96-97
regex flavor 401
search-and-r eplace 408, 417-418
URL parsing example 204
version covered 91
word boundaries 132

DOTALL (Pattern fla g) 380, 382
dot-matches-all mode 110-111
doubled-word example

description 1
in egr ep 22
in Emacs 100
in Java 81
in Perl 35, 77-80

double-quoted string example
allowing escaped quotes 196
egr ep 24
final regex 263
makudonarudo 165, 169, 228-232, 264
sobering example 222-228
unr olled 262, 268

double-word finder example
description 1
in egr ep 22
in Emacs 100
in Java 81
in Perl 35, 77-80

-Dr 363
dragon book 180
DWIW (DBIx) 258
dynamic regex 327-331

sanitizing 337
dynamic scope 295-299

vs. lexical scope 299

/e 319-321
\e 79, 114-115
\E 290

(also see literal-text mode)
earliest match wins 148-149
EBCDIC 29

ECMAScript (.NET) 400, 402, 406-407, 415,
421

ed 85
ef ficiency (also see optimization)

and backtracking 179-180
corr ectness 223-224
Perl-specific issues 347-363
regex objects 353-354
unlimited lookbehind 133

eg rep
flavor overview 91
intr oduced 6-8
metacharacter discussion 8-22
after-match data 136
backr efer ence support 150
case-insensitive match 15
doubled-word solution 22
example use 14
flavor summary 32
history 86-87
regex implementation 182
version covered 91
word boundaries 132

electr ic eng ine analog y 143-147
else (see conditional)
Emacs

flavor overview 91
after-match data 136
contr ol characters 116
re-search-forward 100
search 100
strings as regexes 100
syntax class 127
version covered 91
word boundaries 132

email address example 70-73, 98
in Java 98
in VB.NET 99

embedded code
local 336
my 338-339
regex construct 327, 331-335
sanitizing 337

embedded string check optimization 247,
257

Embodiments of Mind 85
Empty 426
encapsulation (see regex objects)
\p{EnclosingRMark} 121
encoding (also see Unicode)

intr oduced 29
issues overview 105
ASCII 29, 105-106, 114, 121

Index 441

5 May 2003 08:41

442 Index

encoding (cont’d)
Latin-1 29, 87, 105, 107, 121
UCS-2 106
UCS-4 106
UTF-16 106
UTF-8 106

end() 385
END block 358
end of line (see anchor, dollar)
end of previous match (see \G)
end of word (see word boundaries)
endOffset 396
end-of-str ing anchor optimization 246
eng ine

intr oduced 27
analogy 143-147
hybrid 183, 239, 243
implementation ease 182
testing type 146-147

with neverending match 227
type comparison 156-157, 180-182

English module 357
English vs. regex 275
enhanced line-anchor mode 111-112

intr oduced 69
ERE 87-88
er rata xxi
Escape 427
escape

intr oduced 22
ter m defined 27

essence
atomic grouping 170-171
gr eediness, laziness, and backtrack-

ing 168-169
NFA (see backtracking)

eval 319
example

atomic grouping 198, 201, 213, 271,
330, 340-341, 346

commafying a number 64-65
intr oduced 59
in Java 393
without lookbehind 67

CSV parsing
java.util.regex 218, 386
.NET 429
ORO 397
Perl 212-219
unr olling 271

dollar value 24-25, 51-52, 167-170, 175,
194-195

example (cont’d)
double-quoted string

allowing escaped quotes 196
egr ep 24
final regex 263
makudonarudo 165, 169, 228-232,

264
sobering example 222-228
unr olled 262, 268

double-word finder
description 1
in egr ep 22
in Emacs 100
in Java 81
in Perl 35, 77-80

email address 70-73, 98
in Java 98
in VB.NET 99

filename 190-192
five modifiers 316
floating-point number 194
for m letter 50-51
gr[ea]y 9
hostname 22, 73, 76, 98-99, 136-137,

203, 260, 267, 304, 306
egr ep 25
Java 209
plucking from text 71-73, 205-208
in a URL 74-77
validating 203-205
VB.NET 204

HTML
conversion from text 67-77
cooking 68, 408
encoding 408
<HR> 194
link 201-203
optional 139
pair ed tags 165
parsing 130, 315, 321
tag 9, 18-19, 26, 200-201, 326, 357
URL 74-77, 203, 205-208, 303
URL-encoding 320

IP 5, 187-189, 267, 311, 314, 348-349
Jeffs 61-64
lookahead 61-64
mail processing 53-59
makudonarudo 165, 169, 228-232, 264
pathname 190-192
population 59
possessive quantifiers 198, 201
postal code 208-212
regex overloading 341-345

5 May 2003 08:41

example (cont’d)
stock pricing 51-52, 167-168

with alternation 175
with atomic grouping 170
with possessive quantifier 169

temperatur e conversion
in .NET 419
in Java 389
in Perl 37
Perl one-liner 283

text-to-HTML 67-77
this;that 132, 138, 243, 245-246, 252,

255, 260-261
unr olling the loop 270-271
URL 74-77, 201-204, 208, 260, 303-304,

306, 320
egr ep 25
Java 209
plucking 205-208

user name 73, 76, 98
plucking from text 71-73
in a URL 74-77

variable names 24
ZIP code 208-212

exception
IllegalArgumentException 383, 388
IllegalStateException 385
IndexOutOfBoundsException 384-385,

388
IOException 81
NullPointerException 396
PatternSyntaxException 381, 383

Explicit (Option) 409
ExplicitCapture (.NET) 402, 414, 421
exponential match 222-228, 330, 340

avoiding 264-265
discovery 226-228
explanation 226-228
non-deter minism 264
short-circuiting 250
solving with atomic grouping 268
solving with possessive quantifiers 268

expose literal text 255
expression

context 294-295
contorting 294-295

Extended Regular Expressions 87-88

\f 114-115
intr oduced 44

Fahrenheit (see temperature conversion
example)

failure
atomic grouping 171-172
forcing 240, 333, 335, 340-341

FF 109
file globs 4
file-check example 2, 36
filename

example 190-192
patter ns (globs) 4
pr epending to line 79

\p{FinalRPunctuation} 121
find() 384
FindAmpersand 358
five modifier s example 316
Flana gan, David xxii
flavor

Perl 286-293
super ficial chart

general 91
Perl 285, 287
POSIX 88

ter m defined 27
flex version covered 91
floating regex cache (see regex objects)
floating ‘str ing’ 362
floating-point number example 194
forcing failure 240, 333, 335, 340-341
foreach vs. while vs. if 320
form letter example 50-51
\p{Format} 121
freeflowing regex 277-281
Fr iedl, Alfred 176
Fr iedl, brother s 33
Fr iedl, Fumie xxi

birthday 11-12
Fr iedl, Liz 33
Fr iedl, Stephen xxii
fully qualified name 295
functions related to regexes in Perl 285

\G 128-131, 212, 315-316, 362
(also see pos)
advanced example 130
in Java 373
in .NET 402
optimization 246

/g 61, 130, 307, 311-312, 315, 319
(also see \G)
intr oduced 51
with regex object 354

garba ge collection Java benchmarking
236

Index 443

5 May 2003 08:41

444 Index

gas engine analogy 143-147
general categor ies (see Unicode,

pr operties)
gensub 183
Geor ge, Kit xxii
GetGroupNames 421-422
GetGroupNumbers 421-422
getMatch() 397
global match (see /g)
global vs. private Perl variables 295
globs filename 4
GNU Java packages 374
GNU awk

after-match data 136
gensub 183
version covered 91
word boundaries 132

GNU eg rep
after-match data 136
backr efer ence support 150
doubled-word solution 22
-i bug 21
regex implementation 182
word boundaries 132

GNU Emacs (see Emacs)
GNU grep

shortest-leftmost match 183
version covered 91

GNU sed
after-match data 136
version covered 91
word boundaries 132

gnu.regexp
comparative description 374
speed 377

gnu.rex 374
Goldber ger, Ray xxii
Gosling, James 89
GPOS 362
gr[ea]y example 9
gr eedy (also see lazy)

intr oduced 151
alter nation 174-175
and backtracking 162-177
defer ence to an overall match 153, 274
essence 159, 168-169
favors match 167-168
first come, first served 153
global vs. local 182
in Java 373
vs. lazy 169, 256-257
localizing 225-226
quantifier 139-140

gr eedy (cont’d)
too greedy 152

gr een dragon 180
grep

flavor overview 91
as an acronym 85
history 86
regex flavor 86
version covered 91
-y option 86

grep in Perl 324
group()

java.util.regex 385
ORO 396

Group object (.NET) 412
Capture 431
cr eating 423
Index 424
Length 424
Success 424
ToString 424
using 424
Value 424

GroupCollection 423, 432
groupCount() 385
gr ouping and capturing 20-22
gr ouping-only parentheses (see non-cap-

turing parentheses)
GroupNameFromNumber 421-422
GroupNumberFromName 421-422
groups() ORO 397
Groups Match object method 423
\p{Gujarati} 120
Gutier rez, David xxii

\p{Han} 120
hand tweaking

alter nation 260-261
caveats 253

\p{HangulRJamo} 122
HASH(0x80f60ac) 257
\p{Hebrew} 120, 122
? 108
hex escape 116-117

in Java 373
in Perl 286

Hietaniemi, Jarkko xxii
highlighting with ANSI escape sequences

79
\p{Hiragana} 120

5 May 2003 08:41

histor y
‘\+’ 87
AT&T Bell Labs 86
awk 87
Berkeley 86
ed trivia 86
egr ep 86-87
gr ep 86
lex 87
Perl 88-90, 308
of regexes 85-91
sed 87
underscor e in \w 89
/x 90

hostname example 22, 73, 76, 98-99,
136-137, 203, 260, 267, 304, 306

egr ep 25
Java 209
plucking from text 71-73, 205-208
in a URL 74-77
validating 203-205
VB.NET 204

$HostnameRegex 76, 136, 303, 351
hot VM 235, 375
HTML

cooking 68, 408
matching tag 200-201

HTML example
conversion from text 67-77
cooking 68, 408
encoding 408
<HR> 194
link 201-203
optional 139
pair ed tags 165
parsing 130, 315, 321
tag 9, 18-19, 26, 200-201, 326, 357
URL 74-77, 203, 205-208, 303
URL-encoding 320

HT TP newlines 115
HT TP URL example 25, 74-77, 201-209, 260,

303-304, 306, 320
http://regex.info/ xxi, 7, 345, 372
$HttpUrl 303, 305, 345, 351
hybr id regex eng ine 183, 239, 243
hyphen in character class 9
? 108

-i as -y 86
/i 134

(also see: case-insensitive mode; mode
modifier)

/i (cont’d)
intr oduced 47
with study 359

(?i) (see: case-insensitive mode; mode
modifier)

IBM (Java packa ge)
comparative description 372
speed 377

identifier matching 24
if (see conditional)
if vs. while vs. foreach 320
(? if then < else) (see conditional)
IgnoreCase (.NET) 96, 99, 402, 413, 421
IgnorePatternWhitespace (.NET) 99,

402, 413, 421
IllegalArgumentException 383, 388
IllegalStateException 385
implementation of engine 182
implicit 362
implicit anchor optimization 246
Imports 407, 409, 428
\p{InArrows} 122
\p{InBasicRLatin} 122
\p{InBoxRDrawing} 122
\p{InCurrency} 122
\p{InCyrillic} 122
Index

Group object method 424
Match object method 423

IndexOutOfBoundsException 384-385,
388

\p{InDingbats} 122
indispensa ble TiVo 3
\p{InHangulRJamo} 122
\p{InHebrew} 122
\p{Inherited} 122
initial class discrimination 244-246, 249,

251-252, 257-259, 332, 361
\p{InitialRPunctuation} 121
\p{InKatakana} 122
\p{InTamil} 122
integrated handling 94-95

compile caching 242
interpolation 288-289

intr oduced 77
caching 351
mimicking 321
in PHP 103

INTERSECTION class set operations 124
inter val 140

intr oduced 20
!X{0,0} " 140

\p{InTibetan} 122

Index 445

5 May 2003 08:41

446 Index

IOException 81
IP example 5, 187-189, 267, 311, 314,

348-349
Iraq 11
Is vs. In 120, 122-123

with java.util.regex 380
in .NET 401
in Perl 288

\p{IsCherokee} 120
\p{IsCommon} 122
\p{IsCyrillic} 120
\p{IsGujarati} 120
\p{IsHan} 120
\p{IsHebrew} 120
\p{IsHiragana} 120
\p{IsKatakana} 120
\p{IsLatin} 120
IsMatch (Regex object method) 415
ISO-8859-1 encoding 29, 87, 105, 107, 121
\p{IsThai} 120
\p{IsTibetan} 122

J̌ 110
Jakar ta (see Apache, ORO)
Japanese

abcdefghi! 5
text processing 29

“japhy” 246
Ja va 365-398

(also see java.util.regex)
benchmarking 234-236
BLTN 235-236, 375
choosing a regex package 366
exposed mechanics 374
fastest package 377
JIT 235
list of packages 372
matching comments 272-276
object models 368-372
package flavor comparison 373
“Perl5 flavors” 375
strings 102
version covered 91
VM 234-236, 375

java.util.regex 95-96, 378-391
after-match data 136
code example 383, 389
comparative description 372
CSV parsing 386
dot modes 111
doubled-word example 81
line anchors 128

java.util.regex (cont’d)
line terminators 382
match modes 380
object model 381
regex flavor 378-381
search-and-r eplace 387
speed 377
split 390
URL parsing example 209
version covered 91
word boundaries 132

Jeffs example 61-64
Jfr iedlsRegexLibrar y 428-429
JIT

Java 235
.NET 404

JRE 234
jregex comparative description 374

\p{Katakana} 120, 122
keeping in sync 210-211
Keisler, H. J. 85
Kleene, Stephen 85
The Kleene Symposium 85
\kname (see named capture)
Korean text processing 29
Kunen, K. 85

\p{L&} 120-121, 123
in Perl 288

\p{L} 119-120, 131, 380, 390
£ 122
\l 290
langua ge (also see: .NET; C#; Java;

MySQL; Perl; procmail; Python; Ruby;
Tcl; VB.NET)

character class 10, 13
identifiers 24

\p{Latin} 120
Latin-1 encoding 29, 87, 105, 107, 121
lazy 166-167

(also see greedy)
essence 159, 168-169
favors match 167-168
vs. greedy 169, 256-257
in Java 373
optimization 249, 256
quantifier 140

lazy evaluation 181, 355
\L˙˙˙\E 290

inhibiting 292

5 May 2003 08:41

lc 290
lcfirst 290
leftmost match 177-179
Length

Group object method 424
Match object method 423

length() ORO 396
length-cognizance optimization 245, 247
\p{Letter} 120, 288
\p{LetterRNumber} 121
$LevelN 330, 343
lex 86

$ 111
dot 110
history 87
and trailing context 182

lexer building 130, 315
lexical scope 299
LF 109, 382
Li, Yadong xxii
LIFO backtracking 159
limit

backtracking 237
recursion 249-250

line (also see string)
anchor optimization 246
vs. string 55

line anchor 111-112
mechanics of matching 150
variety of implementations 87

line feed 109
LINE SEPARATOR 109, 121, 382
line terminator s 108-109, 111, 128, 382

with $ and ˆ 111
\p{LineRSeparator} 121
link

matching 201
(also see URL examples)
Java 204, 209

list context 294, 310-311
forcing 310

literal string initial string discrimination
244-246, 249, 251-252, 257-259, 332,
361

literal text
intr oduced 5
exposing 255
mechanics of matching 149
pr e-check optimization 244-246, 249,

251-252, 257-259, 332, 361
literal-text mode 112, 134-135, 290

inhibiting 292
\p{Ll} 121, 400

\p{Lm} 121, 400
\p{Lo} 121, 400
local 296, 341

in embedded code 336
vs. my 297

locale 126
overview 87
\w 119

localizing 296-297
localtime 294, 319, 351
lock up (see neverending match)
locking in regex literal 352
“A log ical calculus of the ideas imminent in

ner vous activity” 85
longest match finding 334-335
longest-leftmost match 148, 177-179
lookahead 132

(also see lookaround)
intr oduced 60
auto 403
example 61-64
in Java 373
mimic atomic grouping 174
mimic optimizations 258-259
negated

˙˙˙ 167
positive vs. negative 66

lookaround
intr oduced 59
backtracking 173-174
in conditional 139
and DFAs 182
doesn’t consume text 60
mimicking class set operations 124
mimicking word boundaries 132
in Perl 288

lookbehind 132
(also see lookaround)
in Java 373
in .NET 402
in Perl 288
positive vs. negative 66
unlimited 402

lookingAt() 385
loose matching (see case-insensitive

mode)
Lord, Tom 182
\p{LowercaseRLetter} 121
LS 109, 121, 382
\p{Lt} 121, 400
\p{Lu} 121, 400
Lunde, Ken xxii, 29

Index 447

5 May 2003 08:41

448 Index

\p{M} 120, 125
(?m) (see: enhanced line-anchor mode;

mode modifier)
/m 134

(also see: enhanced line-anchor mode;
mode modifier)

m/˙˙˙/ intr oduced 38
machine-dependent character codes 114
MacOS 114
mail processing example 53-59
makudonarudo example 165, 169, 228-232,

264
\p{Mark} 120
match 306-318

(also see: DFA; NFA)
actions 95
context 294-295, 309

list 294, 310-311
scalar 294, 310, 312-316

DFA vs. NFA 224
ef ficiency 179
example with backtracking 160
example without backtracking 160
lazy example 161
leftmost-longest 335
longest 334-335
m/˙˙˙/

intr oduced 38
mechanics (also see: greedy; lazy)

.+ 152
gr eedy intr oduced 151
anchors 150
capturing parentheses 149
character classes and dot 149
consequences 156
literal text 149

modes 109-112
java.util.regex 380

negating 309
never ending 222-228, 330, 340

avoiding 264-265
discovery 226-228
explanation 226-228
non-deter minism 264
short-circuiting 250
solving with atomic grouping 268
solving with possessive quanti-

fiers 268
NFA vs. DFA 156-157, 180-182
position (see pos)
POSIX

in Perl 335
shortest-leftmost 183

match (cont’d)
side effects 317

intertwined 43
Perl 40

speed 181
in a string 27
tag-team 130
viewing mechanics 331-332

Match Empty 426
match() 393
Match (.NET) Success 96
Match object (.NET) 411

Capture 431
cr eating 415, 423
Groups 423
Index 423
Length 423
NextMatch 423
Result 423
Success 421
Synchronized 424
ToString 422
using 421
Value 422

Match (Regex object method) 415
“match rejected by optimizer” 363
match result object model 371
match state object model 370
MatchCollection 416
matcher() (Pattern method) 384
Matcher object 384

reusing 387
matches

unexpected 194-195
viewing all 332

matches() (Pattern method) 384, 390
Matches (Regex object method) 416
MatchEvaluator 417-418
matching

delimited text 196-198
HTML tag 200
longest-leftmost 177-179

MatchObject object (.NET) cr eating 416
\p{MathRSymbol} 121
Maton, William xxii, 36
MBOL 362
\p{Mc} 121
McCloskey, Mike xxii
McCulloch, War ren 85
\p{Me} 121
mechanics viewing 331-332

5 May 2003 08:41

metacharacter
intr oduced 5
conflicting 44-46
dif fering contexts 10
first-class 87, 92
vs. metasequence 27

metasequence defined 27
mimic

$‘ 357
$’ 357
$& 302, 357
atomic grouping 174
class set operations 124
conditional with lookaround 139
initial-character discrimination optimiza-

tion 258-259
named capture 344-345
POSIX matching 335
possessive quantifiers 343-344
variable interpolation 321
word boundaries 66, 132, 341-342

minlen length 362
minus in character class 9
MISL .NET 404
\p{Mn} 121
mode modifier 109, 133-135
mode-modified span 109, 134
modes intr oduced with egr ep 14-15
\p{ModifierRLetter} 121
modifier s (also see match, modes)

combining 69
example with five 316
/g 51
/i 47
“locking in” 304-305
notation 98
/osmosis 293
Perl core 292-293
with regex object 304-305

\p{ModifierRSymbol} 121
-Mre=debug (see use re ’debug’)
Mui, Linda xxii
multi-character quotes 165-166
Multiline (.NET) 402, 413-414, 421
MULTILINE (Pattern fla g) 81, 380, 382
multiple-b yte character encoding 29
MungeRegexLiteral 342-344, 346
my

binding 339
in embedded code 338-339
vs. local 297

MySQL
after-match data 136
DBIx::DWIW 258
version covered 91
word boundaries 132

\n 49, 114-115
intr oduced 44
machine-dependency 114

\p{N} 120, 390
(?n) 402
$ˆN 300-301, 344-346
named capture 137

mimicking 344-345
.NET 402
with unnamed capture 403

naughty var iables 356
okay for debugging 331

\p{Nd} 121, 380, 400
negated class

intr oduced 10-11
and lazy quantifiers 167
Tcl 111

negative lookahead (see lookahead,
negative)

negative lookbehind (see lookbehind,
negative)

NEL 109, 382, 400
ner vous system 85
nested constructs

.NET 430
Perl 328-331, 340-341

$NestedStuffRegex 339, 346
.NET 399-432

$+ 202
flavor overview 91
after-match data 136
benchmarking 236
JIT 404
line anchors 128
literal-text mode 135
MISL 404
object model 411
regex approach 96-97
regex flavor 401
search-and-r eplace 408, 417-418
URL parsing example 204
version covered 91
word boundaries 132

neurophysiolog ists early regex study 85

Index 449

5 May 2003 08:41

450 Index

ne verending match 222-228, 330, 340
avoiding 264-265
discovery 226-228
explanation 226-228
non-deter minism 264
short-circuiting 250
solving with atomic grouping 268
solving with possessive quantifiers 268

New Regex 96, 99, 410, 415
newline and HT TP 115
NEXT LINE 109, 382, 400
NextMatch (Match object method) 423
NFA

first introduced 145
intr oduction 153
acr onym spelled out 156
and alternation 174-175
compar ed with DFA 156-157, 180-182
contr ol benefits 155
ef ficiency 179
essence (see backtracking)
fr eeflowing regex 277-281
and greediness 162
implementation ease 182
nondeter minism 265

checkpoint 264
POSIX ef ficiency 179
testing for 146-147
theory 180

Nicholas, Ethan xxii
\p{Nl} 121
\N{LATIN SMALL LETTER SHARP S} 290
\N{name} 290

(also see pragma)
inhibiting 292

\p{No} 121
no re ’debug’ 361
noRmatchRvars 357
nomenclature 27
non-captur ing parentheses 45, 136-137,

373
(also see parentheses)

Nondeter ministic Finite Automaton (see
NFA)

None (.NET) 415, 421
non-greedy (see lazy)
nonillion 226
nonregular sets 180
\p{NonRSpacingRMark} 121
non-word boundar ies (see word

boundaries)
“nor mal” 262-266

null 116
with dot 118

NullPointerException 396
\p{Number} 120

/o 352-353
with regex object 354

Obfuscated Perl Contest 320
object model

Java 368-372
.NET 410-411

Object Oriented Perl 339
object-or iented handling 95-97

compile caching 244
octal escape 115, 117

vs. backrefer ence 406-407
in Java 373
in Perl 286

on-demand recompilation 351
oneself example 332, 334
\p{OpenRPunctuation} 121
operator s Perl list 285
optimization 239-252

(also see: atomic grouping; possessive
quantifiers; efficiency)

automatic possessification 251
BLTN 235-236, 375
with bump-along 255
end-of-string anchor 246
excessive backtrack 249-250
hand tweaking 252-261
implicit line anchor 191
initial character discrimination 244-246,

249, 251-252, 257-259, 332, 361
JIT 235, 404
lazy evaluation 181
lazy quantifier 249, 256
leading ! .+ " 246
literal-string concatenation 247
need cognizance 252
needless class elimination 249
needless parentheses 248
pr e-check of requir ed charac-

ter 244-246, 249, 251-252,
257-259, 332, 361

simple repetition
discussed 247-248

small quantifier equivalence 251-252
state suppression 250-251
string/line anchors 149, 181
super-linear short-circuiting 250

Option (.NET) 409

5 May 2003 08:41

optional (also see quantifier)
whitespace 18

Options (Regex object method) 421
OR class set operations 123-124
Oram, Andy xxii, 5
ordered alternation 175-177

(also see alternation, ordered)
pitfalls 176

org.apache.oro.text.regex 392-398
benchmark results 376
comparative description 374

org.apache.regexp
comparative description 375
speed 376

org.apache.xerces.utils.regex 372
ORO 392-398

benchmark results 376
comparative description 374

osmosis 293
/osmosis 293
\p{Other} 120
\p{OtherRLetter} 121
\p{OtherRNumber} 121
\p{OtherRPunctuation} 121
\p{OtherRSymbol} 121
our 295, 336
overload pragma 342

\p{˙˙˙} 119
\p{P} 120
\p{ˆ˙˙˙} 288
\p{All} 123

in Perl 288
\p{all} 380
panic: topRenv 332
\p{Any} 123

in Perl 288
Papen, Jef frey xxii
PARAGRAPH SEPARATOR 109, 121, 382
\p{ParagraphRSeparator} 121
parentheses

as \(˙˙˙\) 86
and alternation 13
balanced 328-331, 340-341, 430

dif ficulty 193-194
capturing 135-136, 300

intr oduced with egr ep 20-22
and DFAs 150, 182
mechanics 149
in Perl 41

capturing only 152
counting 21

parentheses (cont’d)
elimination optimization 248
gr ouping-only (see non-capturing

par entheses)
limiting scope 18
named capture 137, 344-345, 402-403
nested 328-331, 340-341, 430
non-capturing 45, 136-137

in Java 373
non-participating 300
with split

Java ORO 395
.NET 403, 420
Perl 326

\p{Arrows} 122
par sing regex 404
par ticipate in match 139
Pascal 36, 59, 182

matching comments of 265
\p{Assigned} 123-124

in Perl 288
Pat (Ja va Packa ge)

comparative description 374
speed 377

patch 88
path (see backtracking)
pathname example 190-192
Pattern

CANONREQ 108, 380
CASERINSENSITIVE 95, 109, 380, 383
COMMENTS 99, 218, 378, 380, 386
compile() 383
DOTALL 380, 382
matcher() 384
matches() 384, 390
MULTILINE 81, 380, 382
UNICODERCASE 380, 383
UNIXRLINES 380, 382

PatternSyntaxException 381, 383
\p{BasicRLatin} 122
\p{BoxRDrawing} 122
\p{Pc} 121, 400
\p{C} 120
\p{Cc} 121
\p{Cf} 121
\p{Cherokee} 120
\p{CloseRPunctuation} 121
\p{Cn} 121, 123-124, 380, 401
\p{Co} 121
\p{ConnectorRPunctuation} 121
\p{Control} 121

Index 451

5 May 2003 08:41

452 Index

PCRE
lookbehind 132
version covered 91

\p{Currency} 122
\p{CurrencyRSymbol} 121
\p{Cyrillic} 120, 122
\p{Pd} 121
\p{DashRPunctuation} 121
\p{DecimalRDigitRNumber} 121
\p{Dingbats} 122
\p{Pe} 121
PeakWebhosting.com xxii
\p{EnclosingRMark} 121
people

Aho, Alfred 86, 180
Balling, Derek xxii
Barwise, J. 85
Bennett, Mike xxi
Clemens, Sam 375
Click, Cliff xxii
Constable, Robert 85
Conway, Damian 339
Cruise, Tom 51
Flanagan, David xxii
Friedl, Alfred 176
Friedl, brothers 33
Friedl, Fumie xxi

birthday 11-12
Friedl, Liz 33
Friedl, Stephen xxii
George, Kit xxii
Goldberger, Ray xxii
Gosling, James 89
Gutierr ez, David xxii
Hietaniemi, Jarkko xxii
Keisler, H. J. 85
Kleene, Stephen 85
Kunen, K. 85
Li, Yadong xxii
Lord, Tom 182
Lunde, Ken xxii, 29
Maton, William xxii, 36
McCloskey, Mike xxii
McCulloch, Warr en 85
Mui, Linda xxii
Nicholas, Ethan xxii
Oram, Andy xxii, 5
Papen, Jeffr ey xxii
Perl Porters 90
Pinyan, Jeff 246
Pitts, Walter 85
Purcell, Shawn xxii
Reed, Jessamyn xxii

people (cont’d)
Reinhold, Mark xxii
Rudkin, Kristine xxii
Savar ese, Daniel xxii
Sethi, Ravi 180
Spencer, Henry 88, 182-183, 243
Thompson, Ken 85-86, 110
Trapszo, Kasia xxii
Tubby 264
Ullman, Jeffr ey 180
Wall, Larry 88-90, 138, 363-364
Wilson, Dean xxii
Woodward, Josh xxii
Zawodny, Jeremy xxii, 258

Perl
$/ 35
flavor overview 91, 287
intr oduction 37-38
context (also see match, context)

contorting 294
ef ficiency 347-363
gr eatest weakness 286
history 88-90, 308
in Java 375, 392
line anchors 128
modifiers 292-293
motto 348
option

-0 36
-c 361
-Dr 363
-e 36, 53, 361
-i 53
-M 361
-Mre=debug 363
-n 36
-p 53
-w 38, 296, 326, 361

regex operators 285
Σ 110
version covered 91
war nings 38

($ˆW variable) 297
use warnings 326, 363

Perl Por ters 90
Perl5Util 392, 396
perladmin 299
\p{Pf} 121, 400
\p{FinalRPunctuation} 121
\p{Format} 121
\p{Gujarati} 120
\p{Han} 120
\p{HangulRJamo} 122

5 May 2003 08:41

\p{Hebrew} 120, 122
\p{Hiragana} 120
PHP

after-match data 136
line anchors 128
lookbehind 132
mode modifiers 133
strings 103
version covered 91
word boundaries 132

\p{Pi} 121, 400
\p{InArrows} 122
\p{InBasicRLatin} 122
\p{InBoxRDrawing} 122
\p{InCurrency} 122
\p{InCyrillic} 122
\p{InDingbats} 122
\p{InHangulRJamo} 122
\p{InHebrew} 122
\p{Inherited} 122
\p{InitialRPunctuation} 121
\p{InKatakana} 122
\p{InTamil} 122
\p{InTibetan} 122
Pinyan, Jef f 246
\p{IsCherokee} 120
\p{IsCommon} 122
\p{IsCyrillic} 120
\p{IsGujarati} 120
\p{IsHan} 120
\p{IsHebrew} 120
\p{IsHiragana} 120
\p{IsKatakana} 120
\p{IsLatin} 120
\p{IsThai} 120
\p{IsTibetan} 122
Pitts, Walter 85
\p{Katakana} 120, 122
\p{L} 119-120, 131, 380, 390
\p{L&} 120-121, 123

in Perl 288
\p{Latin} 120
(?P<name>˙˙˙) (see named capture)
\p{Letter} 120, 288
\p{LetterRNumber} 121
\p{LineRSeparator} 121
\p{Ll} 121, 400
\p{Lm} 121, 400
\p{Lo} 121, 400
\p{LowercaseRLetter} 121
\p{Lt} 121, 400
\p{Lu} 121, 400

plus
as \+ 139
intr oduced 18-20
backtracking 162
gr eedy 139
lazy 140
possessive 140

\p{M} 120, 125
\p{Mark} 120
\p{MathRSymbol} 121
\p{Mc} 121
\p{Me} 121
\p{Mn} 121
\p{ModifierRLetter} 121
\p{ModifierRSymbol} 121
\p{N} 120, 390
(?P=name˙˙˙) (see named capture)
\p{Nd} 121, 380, 400
\p{Nl} 121
\p{No} 121
\p{NonRSpacingRMark} 121
\p{Number} 120
\p{Po} 121
\p{OpenRPunctuation} 121
population example 59
pos 128-131, 313-314, 316

(also see \G)
positive lookahead (see lookahead,

positive)
positive lookbehind (see lookbehind,

positive)
POSIX

[:˙˙˙:] 125
[.˙˙˙.] 126
Basic Regular Expressions 87-88
bracket expressions 125
character class 125
character class and locale 126
character equivalent 126
collating sequences 126
dot 118
empty alternatives 138
Extended Regular Expressions 87-88
super ficial flavor chart 88
in Java 374
locale 126

overview 87
longest-leftmost rule 177-179, 335

POSIX NFA
backtracking example 229
testing for 146-147

Index 453

5 May 2003 08:41

454 Index

possessive quantifier s 140, 172-173
(also see atomic grouping)
automatic 251
for efficiency 259, 268-270
example 198, 201
mimicking 343-344
optimization 250-251

postal code example 208-212
postMatch() 397
\p{Other} 120
\p{OtherRLetter} 121
\p{OtherRNumber} 121
\p{OtherRPunctuation} 121
\p{OtherRSymbol} 121
£ 122
\p{P} 120
\p{ParagraphRSeparator} 121
\p{Pc} 121, 400
\p{Pd} 121
\p{Pe} 121
\p{Pf} 121, 400
\p{Pi} 121, 400
\p{Po} 121
\p{PrivateRUse} 121
\p{Ps} 121
\p{Punctuation} 120
pragma

charnames 290
(also see \N{name})

overload 342
re 361, 363
strict 295, 336, 345
warnings 326, 363

pre-check of required character 244-246,
249, 251-252, 257-259, 361

mimic 258-259
viewing 332

preMatch() 397
pre-match cop y 355
prepending filename to line 79
pr ice rounding example 51-52, 167-168

with alternation 175
with atomic grouping 170
with possessive quantifier 169

Pr inciples of Compiler Design 180
printf 40
pr ivate vs. global Perl variables 295
\p{PrivateRUse} 121
procedural handling 95-97

compile caching 243
procmail 94

version covered 91
Prog ramming Perl 283, 286, 339

promote 294-295
proper ties 119-121, 123-124, 288, 380
\p{S} 120
PS 109, 121, 382
\p{Ps} 121
\p{Sc} 121-122
\p{Separator} 120
\p{Sk} 121
\p{Sm} 121
\p{So} 121
\p{SpaceRSeparator} 121
\p{SpacingRCombiningRMark} 121
\p{Symbol} 120
\p{Tamil} 122
\p{Thai} 120
\p{Tibetan} 122
\p{TitlecaseRLetter} 121
publication

Bulletin of Math. Biophysics 85
Communications of the ACM 85
Compilers—Principles, Techniques, and

Tools 180
Embodiments of Mind 85
The Kleene Symposium 85
“A logical calculus of the ideas imminent

in nervous activity” 85
Object Oriented Perl 339
Principles of Compiler Design 180
Pr ogramming Perl 283, 286, 339
Regular Expression Search Algorithm 85
“The Role of Finite Automata in the

Development of Modern Comput-
ing Theory” 85

\p{Unassigned} 121, 123
in Perl 288

\p{Punctuation} 120
\p{UppercaseRLetter} 121
Purcell, Shawn xxii
Python

after-match data 136
benchmarking 237
line anchors 128
mode modifiers 133
regex approach 97
strings 103-104
version covered 91
word boundaries 132
\Z 111

\p{Z} 119-120, 380, 400
\p{Zl} 121
\p{Zp} 121
\p{Zs} 121

5 May 2003 08:41

Qantas 11
\Q˙˙˙\E 290

inhibiting 292
in Java 373

qed 85
qr/˙˙˙/ (also see regex objects)

intr oduced 76
quantifier (also see: plus; star; question

mark; interval; lazy; greedy; posses-
sive quantifiers)

and backtracking 162
factor out 255
gr ouping for 18
multiple levels 265
optimization 247, 249
and parentheses 18
possessive quantifiers 140, 172-173

for efficiency 259, 268-270
mimicking
optimization
automatic

question mark
as \? 139
intr oduced 17-18
backtracking 160
gr eedy 139
lazy 140
possessive 140

smallest preceding subexpression 29
question mark

as \? 139
backtracking 160
gr eedy 139
lazy 140
possessive 140

quoted string (see double-quoted string
example)

quotes multi-character 165-166

r"˙˙˙" 103
$ˆR 302, 327
\r 49, 114-115

machine-dependency 114
re 361
re ’debug’ 363
re pragma 361, 363
reality check 226-228
recur sive matching (see dynamic regex)
red dra gon 180
Reed, Jessamyn xxii
Reflection 429

regex
balancing needs 186
compile 179-180, 350
default 308
delimiters 291-292
DFA (see DFA)
encapsulation (see regex objects)
engine analogy 143-147
vs. English 275
frame of mind 6
fr eeflowing design 277-281
history 85-91
library 76, 207
longest-leftmost match 177-179

shortest-leftmost 183
mechanics 241-242
NFA (see NFA)
nomenclatur e 27
operands 288-292
overloading 291, 328

inhibiting 292
pr oblems 344

subexpr ession
defined 29

regex literal 288-292, 307
inhibiting processing 292
locking in 352
parsing of 292
pr ocessing 350
regex objects 354

Regex (.NET)
CompileToAssembly 427, 429
cr eating

options 413-415
Escape 427
GetGroupNames 421-422
GetGroupNumbers 421-422
GroupNameFromNumber 421-422
GroupNumberFromName 421-422
IsMatch 407, 415, 425
Match 96, 408, 410, 415, 425
Matches 416, 425
object

cr eating 96, 410, 413-415
exceptions 413
using 96, 415

Options 421
Replace 408-409, 417-418, 425
RightToLeft 421
Split 419-420, 425
ToString 421
Unescape 427

Index 455

5 May 2003 08:41

456 Index

regex objects 303-306
(also see qr/˙˙˙/)
ef ficiency 353-354
/g 354
match modes 304-305
/o 354
in regex literal 354
viewing 305-306

regex overloading 292
(also see use overload)
example 341-345

http://regex.info/ xxii, 7, 345, 358
RegexCompilationInfo 429
regex-directed matching 153

(also see NFA)
and backrefer ences 303
and greediness 162

Regex.Escape 135
RegexOptions

Compiled 236, 402, 404, 414, 421-422,
429

ECMAScript 400, 402, 406-407, 415, 421
ExplicitCapture 402, 414, 421
IgnoreCase 96, 99, 402, 413, 421
IgnorePatternWhitespace 99, 402,

413, 421
Multiline 402, 413-414, 421
None 415, 421
RightToLeft 402, 405-406, 414,

420-421, 423-424
Singleline 402, 414, 421

Regexp (Ja va packa ge)
comparative description 375
speed 376

regsub 100
regular expression origin of term 85
Regular Expression Search Algor ithm 85
regular sets 85
Reinhold, Mark xxii
removing whitespace 199-200
Replace (Regex object method) 417-418
replaceAll 387
replaceFirst() 387-388
reproductive organs 5
required character pre-check 244-246, 249,

251-252, 257-259, 332, 361
re-search-forward 100
reset() 387
Result (Match object method) 423
RightToLeft (Regex pr operty) 421-422
RightToLeft (.NET) 402, 405-406, 414,

420-421, 423-424

“The Role of Finite Automata in the Devel-
opment of Modern Computing The-
or y” 85

Rub y
$ and ˆ 111
after-match data 136
benchmarking 238
\G 131
line anchors 128
mode modifiers 133
version covered 91
word boundaries 132

Rudkin, Kristine xxii
rule

earliest match wins 148-149
standard quantifiers are greedy 151-153

rx 182

s/˙˙˙/˙˙˙/ 50, 318-321
\S 49, 56, 119
\p{S} 120
\s 49, 119

intr oduction 47
in Emacs 127
in Perl 288

(?s) (see: dot-matches-all mode; mode
modifier)

/s 134
(also see: dot-matches-all mode; mode

modifier)
Savarese, Daniel xxii
saved states (see backtracking, saved

states)
SawAmpersand 358
say what you mean 195, 274
SBOL 362
\p{Sc} 121-122
scalar context 294, 310, 312-316

forcing 310
schaf fkopf 33
scope lexical vs. dynamic 299
scr ipts 120-122, 288
search-and-replace

awk 99
Java 387, 394
.NET 408, 417-418
Tcl 100

sed
after-match data 136
dot 110
history 87
version covered 91

5 May 2003 08:41

sed (cont’d)
word boundaries 132

abcdefghi! 5
\p{Separator} 120
ser ver VM 234, 236, 375
set operations (see class, set operations)
Sethi, Ravi 180
shell 7
Σ 110
simple quantifier optimization 247-248
single quotes delimiter 292, 319
Singleline (.NET) 402, 414, 421
\p{Sk} 121
\p{Sm} 121
small quantifier equivalence 251-252
\p{So} 121
\p{SpaceRSeparator} 121
\p{SpacingRCombiningRMark} 121
span (see: mode-modified span; literal-

text mode)
“special” 262-266
Spencer, Henr y 88, 182-183, 243
split() java.util.regex 390
split ORO 394-396
split

with capturing parentheses
Java ORO 395
.NET 403, 420
Perl 326

chunk limit
Java ORO 395
java.util.regex 391
Perl 323

into characters 322
in Perl 321-326
trailing empty items 324
whitespace 325

Split (Regex object method) 419-420
ß 110, 126, 290, 366
standard for mula for matching delimited

text 196
star

intr oduced 18-20
backtracking 162
gr eedy 139
lazy 140
possessive 140

start() 385
star t of match (see \G)
star t of word (see word boundaries)
star t-of-line/str ing (see anchor, car et)
star t-of-str ing anchor optimization 245-246,

255-256, 315

states (also see backtracking, saved states)
flushing (see: atomic grouping; look-

ar ound; possessive quantifiers)
stclass ‘list’ 362
stock pricing example 51-52, 167-168

with alternation 175
with atomic grouping 170
with possessive quantifier 169

Strict (Option) 409
strict pragma 295, 336, 345
String

matches() 384
replaceAll 387
replaceFirst() 388
split() 390

str ing (also see line)
double-quoted (see double-quoted

string example)
initial string discrimination 244-246,

249, 251-252, 257-259, 332, 361
vs. line 55
match position (see pos)
pos (see pos)

StringBuffer 388
str ings

C# 102
Emacs 100
Java 102
PHP 103
Python 103-104
as regex 101-105, 305
Tcl 104
VB.NET 102

str ipping whitespace 199-200
study 359-360

when not to use 359
subexpression defined 29
substitute() 394
substitution

delimiter 319
s/˙˙˙/˙˙˙/ 50, 318-321

substr ing initial substring discrimination
244-246, 249, 251-252, 257-259, 332,
361

subtraction class set operations 124
Success

Group object method 424
Match object method 421

Sun’s regex packa ge (see
java.util.regex)

super-linear (see neverending match)
super-linear short-circuiting 250
\p{Symbol} 120

Index 457

5 May 2003 08:41

458 Index

Synchronized Match object method 424
syntax class Emacs 127
System.currentTimeMillis() 236
System.Reflection 429
System.Text.RegularExpressions 407,

409

\t 49, 114-115
intr oduced 44

ta g matching 200-201
ta g-team matching 130, 315
\p{Tamil} 122
Tcl

[:<:] 92
flavor overview 91
benchmarking 239
dot 111-112
hand-tweaking 243, 259
line anchors 112, 128
mode modifiers 133
regex implementation 182
regsub 100
search-and-r eplace 100
strings 104
version covered 91
word boundaries 132

temperature conversion example
in .NET 419
in Java 389
in Perl 37
Perl one-liner 283

ter minators (see line terminators)
testing engine type 146-147
text-directed matching 153

(also see DFA)
regex appearance 162

text-to-HTML example 67-77
\p{Thai} 120
then (see conditional)
theor y of an NFA 180
There’s more than one way to do it 349
this;that example 132, 138, 243,

245-246, 252, 255, 260-261
Thompson, Ken 85-86, 110
thread scheduling Java benchmarking 236
\p{Tibetan} 122
tied var iables 299
time() 232
time of day 26
Time::HiRes 232, 358, 360
Time.new 238
Timer() 237

title case 109
\p{TitlecaseRLetter} 121
TiVo 3
tokenizer building 130, 315
toothpicks scatter ed 100
tor tilla 126
ToString

Group object method 424
Match object method 422
Regex object method 421

toString ORO 396
Tr aditional NFA testing for 146-147
trailing context 182
transmission (also see \G)

optimizations 245-247
Tr apszo, Kasia xxii
Tubb y 264
typographical conventions xix

\u 116, 290, 400
\U 116
\U˙˙˙\E 290

inhibiting 292
uc 290
U+C0B5 106
ucfirst 290
UCS-2 encoding 106
UCS-4 encoding 106
Ullman, Jef frey 180
\p{Unassigned} 121, 123

in Perl 288
unconditional caching 350
under score in \w history 89
Unescape 427
Unicode

overview 106-108
block 122

Java 380
.NET 400
Perl 288

categories (see Unicode, properties)
character

combining 107, 122, 125, 288
code point

intr oduced 106
beyond U+FFFF 108
multiple 107
unassigned in block 122

combining character 107, 122, 125, 288
in Java 380
line terminators 108-109, 111

in Java 382

5 May 2003 08:41

Unicode (cont’d)
loose matching (see case-insensitive

mode)
in .NET 401
pr operties 119, 288

java.util.regex 380
list 120-121
\p{All} 123, 288
\p{Any} 123, 288
\p{Assigned} 123-124, 288
\p{Unassigned} 121, 123, 288

script 120-122, 288
support in Java 373
Version 3.1 108, 380, 401
Version 3.2 288
whitespace and /x 288

UNICODERCASE (Pattern fla g) 380, 383
UnicodeData.txt 290
unicore 290
UNIXRLINES (Pattern fla g) 380, 382
unmatch 152, 161, 163

.+ 165
atomic grouping 171

unrolling the loop 261-276
example 270-271
general pattern 264

\p{UppercaseRLetter} 121
URL encoding 320
URL example 74-77, 201-204, 208, 260,

303-304, 306, 320
egr ep 25
Java 209
plucking 205-208

use charnames 290
use Config 290, 299
use English 357
use overload 342

(also see regex overloading)
use re 361, 363
use re ’debug’ 361, 363
use re ’eval’ 337
use strict 295, 336, 345
use Time::HiRes 358, 360
use warnings 326, 363
user name example 73, 76, 98

plucking from text 71-73
in a URL 74-77

using System.Text.RegularExpres-
sions 410

UTF-16 encoding 106
UTF-8 encoding 106

\V 364
\v 114-115, 364
Value

Group object method 424
Match object method 422

variable names example 24
variables

after match
pr e-match copy 355

binding 339
fully qualified 295
interpolation 344
naughty 356
tied 299

VB.NET (also see .NET)
comments 99
regex approach 96-97
strings 102
URL parsing example 204

verbatim strings 102
Version 7 regex 182
Version 8 regex 182
versions covered in this book 91
vertical tab 109

in Perl \s 288
vi after-match data 136
Vietnamese text processing 29
vir tual machine 234-236, 375
Visual Basic (see VB.NET)
Visual Studio .NET 428
VM 234, 236, 375

war ming up 235
void context 294
VT 109

\W 49, 119
$ˆW 297
\w 49, 65, 119

in Emacs 127
many differ ent interpr etations 93
in Perl 288

Wall, Larry 88-90, 138, 363-364
warming up Java VM 235
warnings 296

temporarily turning off 297
warnings pragma 326, 363
while vs. foreach vs. if 320
whitespace

allowing optional 18
removing 199-200

wildcards filename 4
Wilson, Dean xxii

Index 459

5 May 2003 08:41

460 Index

Woodward, Josh xxii
word anchor mechanics of matching 150
word boundar ies 131

\<˙˙˙\>
egr ep 15

intr oduced 15
in Java 373
many programs 132
mimicking 66, 132, 341-342
in Perl 132, 288

www.cpan.org 358
www.PeakWebhosting.com xxii
www.regex.info 358

\X 107, 125
\x 116, 400

in Perl 286
(?x) (see: comments and free-spacing

mode; mode modifier)
/x 134, 288

(also see: comments and free-spacing
mode; mode modifier)

intr oduced 72
history 90

Xerces
org.apache.xerces.utils.regex

372

-y old gr ep 86
¥ 122
Yahoo! xxi, 74, 130, 190, 205, 207, 258,

314

\z 111, 127-128, 316
(also see enhanced line-anchor mode)
in Java 373
optimization 246

\Z 111, 127-128
(also see enhanced line-anchor mode)
in Java 373
optimization 246

\p{Z} 119-120, 380, 400
Zawodny, Jeremy xxii, 258
zero-width assertions (see: anchor; look-

ahead; lookbehind)
ZIP code example 208-212
\p{Zl} 121
\p{Zp} 121
\p{Zs} 121

	Mastering Regular Expressions
	Table of Contents
	Preface
	Chapter 1: Introduction to Regular Expressions
	Chapter 2: Extended Introductory Examples
	Chapter 3: Overview of Regular Expression Features and Flavors
	Chapter 4: The Mechanics of Expression Processing
	Chapter 5: Practical Regex Techniques
	Chapter 6: Crafting an Efficient Expression
	Chapter 7: Perl
	Chapter 8: Java
	Chapter 9: .NET
	Index

