

Andrew Odewahn

A Field Guide to the Distributed
Development Stack

978-1-491-91658-2

[LSI]

A Field Guide to the Distributed Development Stack
by Andrew Odewahn

Copyright © 2014 Andrew Odewahn. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook‐
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com .

Editor: Andrew Odewahn
Copyeditor: Amanda Kersey
Interior Designer: David Futato
Cover Designer: Edie Freedman

October 2014: First Edition

Revision History for the First Edition
2004-10-01: First Release

While the publisher and the author(s) have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the author(s) disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://safaribooksonline.com

Table of Contents

Introduction 1
How to Contribute 3

The Cloud Is the Default Platform 5
Traditional Cloud Providers 6
Hosted PaaS 6
Internal Services 7
For More Information 7

CI Servers Deploy Code, Not Ops 9
Tools 10
Continuous Deployment 11

The Codebase Is in Git 13
Tools 14

The Entire Application Runs Locally in Development 17
Tools 17

The Environment Is Automated in the Code 19

iii

Tools 20
For More Information 21

The Monitoring Infrastructure Is Critical 23
Tools 24

Tests Done in Code, Not by a QA Department 27
Tools 27

Containerization for Production Services 29

Real-time Chat and Chatbots 33
Chat 35
Chatbots 35
For More Information 35

Appendix: Contributors 37

Survey 39

iv | Table of Contents

Introduction

This project began while we were developing Atlas, O’Reilly
Media’s next-generation publishing tool. It seemed like every
day we were finding interesting new tools in the DevOps space,
so I started a “Sticky” for the most interesting-looking tools so I
could explore them later.

At first, this worked fine. I was content to simply keep a list,
where my only ordering criteria was “Huh, that looks cool.
Someday when I have time, I’ll take a look at that,” in the same
way you might buy an exercise DVD and then only occasion‐
ally pull it out and think “Huh, someday I’ll get to that.” But, as

1

https://atlas.oreilly.com/

anyone who has watched DevOps for any length of time can
tell you, it’s a space bursting with interesting and exciting new
tools, so my list and guilt quickly got out of hand.

Once I reached the limits of the Sticky as a medium, I started to
look for patterns in my list. Some were obvious. For example,
many of the tools, like Ansible, Salt, or (to a certain extent)
Dockerfiles, fit into a clear infrastructure-automation group
pioneered by Chef, CFEngine, and Puppet. So, too, the many
cloud services.

But where would something like CoreOS, Docker, or Mesos fit?
As I thought about how to group them, they seemed somehow
tied up with the notion of containerization, but that just
seemed too narrow. Rather, these projects and tools were part
of a much larger trend — enabling clustering and distributed
computing—and containerization was just a piece. So, rather
than group by technology, it made sense to me to group by
trend—in other words, what did the tool enable, and why was
that trend important?

Simultaneously, other people at O’Reilly were also exploring
this same question, but from a different perspective. In "Every‐
thing is distributed,” Courtney Nash, the chair of Velocity, was
asking “how do we manage systems that are too large to under‐
stand, too complex to control, and that fail in unpredictable
ways.” In "Beyond the stack,” Mike Loukides was thinking
about how “a new toolset has grown up to support the develop‐
ment of massively distributed applications,” and described the
profound consequences that the shift from well-tended, inter‐
nal servers to disposable VMs was having on the traditional
“LAMP” stack. (As well as its hipster cousin, the MEAN stack.)

So, it’s from this context that my Sticky list grew into this Field
Guide to the Distributed Development Stack. The Guide is
organized into buckets based on a general observation, such as:

• The cloud is the default platform
• CI servers deploy code, not ops

2 | Introduction

http://radar.oreilly.com/2014/05/everything-is-distributed.html
http://radar.oreilly.com/2014/05/everything-is-distributed.html
http://velocityconf.com/
http://radar.oreilly.com/2014/05/beyond-the-stack.html
http://meanjs.org/
http://sites.oreilly.com/odewahn/dds-field-guide/
http://sites.oreilly.com/odewahn/dds-field-guide/
http://sites.oreilly.com/odewahn/dds-field-guide/ch02.html
http://sites.oreilly.com/odewahn/dds-field-guide/ch03.html

• The codebase is in git
• The entire application runs locally in development
• The environment is automated in the code
• The monitoring infrastructure is critical
• Tests done in code, not by a QA department

In addition to being a (hopefully) useful framework, the Guide
is also meant to be a living resource. So, we’ve put the source on
GitHub and invite you to contribute. If you feel like we’ve
missed a tool (which we most certainly have, since new things
are popping up every day) or a major theme, then fork the repo
and send me a pull request. We’ll be keeping this document up
to date and republishing it as we watch this trend continue to
grow. We’ll use O’Reilly Atlas to pull in the contributions and
periodically republish the guide.

This is still very much a work-in-progress, but I hope it will be
a resource you’ll add to your own Sticky collection.

How to Contribute
To contribute to the DDS field guide: Fork this repo Agree to
the O’Reilly Contributor License Agreement Add your tool /
contribution Submit a pull request

If your request is accepted, we’ll add you to the Contributors
page.

Making a larger contribution
If you want to make a suggestion or contribution that is larger
than just a single tool, it might make sense to begin the conver‐
sation as a GitHub issue, rather than a pull request. For exam‐
ple, if you want to add a new theme, or want to add a major
narrative section, it would be good to discuss that first to make
sure it’s suitable for the guide. While I certainly don’t want to
limit what people contribute in any way, it’s also the case that
this guide will be centrally curated by me and other O’Reilly
contributors.

How to Contribute | 3

http://sites.oreilly.com/odewahn/dds-field-guide/ch04.html
http://sites.oreilly.com/odewahn/dds-field-guide/ch05.html
http://sites.oreilly.com/odewahn/dds-field-guide/ch06.html
http://sites.oreilly.com/odewahn/dds-field-guide/ch07.html
http://sites.oreilly.com/odewahn/dds-field-guide/ch08.html
https://github.com/odewahn/dds-field-guide
https://github.com/odewahn/dds-field-guide
http://contributor-agreements.oreilly.com/

The Cloud Is the Default Platform

The accelerating transition to distributed, cloud-based plat‐
forms is one of the main drivers of the DDS trend. Organiza‐
tions have adopted these services for a number of reasons: cost
savings, increased speed for launching new projects, and scala‐
bility, to name just a few.

But, whatever the reasons for adoption, the default platform for
many applications is increasingly assumed to be a transient,
virtual, cloud-based platform, rather than a traditional server
maintained by an internal IT group. Even in cases where the
virtualization/PaaS solution is maintained in an internal cloud,
the net effect is much the same.

The various platforms you’re likely to encounter in this new
world can be divided into three main groups:

• Traditional cloud providers. These allow you to
quickly create storage or computing power as
needed.

• Hosted PaaS services. These are value-added services
built on top of raw hosting providers. For example, a
PaaS might allow you to easily spin up a machine
based on a particular stack when you deploy your
application.

5

• Internal cloud and PaaS services.

These are tools and services you’re likely to encounter here:

Traditional Cloud Providers
There are lots of hosting services. Here are some of the more
popular:

• Amazon Web Services. AWS is probably the original
model for pay-as-you-go infrastructure and remains
one of the leading cloud platforms.

• Google Compute Engine. Google’s cloud platform,
which has become much more compelling now that
they have open sourced their cluster management
tools.

• Azure. Microsoft’s cloud offering.
• Rackspace cloud. The cloud offering from Rackspace

is mostly about compute power and storage. The
API is well done, and the customer service is gener‐
ally outstanding. Overall, though, it’s not as full-
featured as AWS.

Hosted PaaS
Hosted PaaS services add a layer on top of the raw offerings of
hosting providers:

• Heroku. A PaaS service built on top of AWS. Unlike
AWS, which gives you a raw machine, Heroku allows
the developer to push an application into the service
and have a corresponding application stack provi‐
sion for the machine.

• OpenShift is a cloud-hosted PaaS solution developer
by RedHat, the company behind RHEL Linux distri‐
bution.

6 | The Cloud Is the Default Platform

http://aws.amazon.com/
https://cloud.google.com/products/compute-engine/
http://googlecloudplatform.blogspot.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
http://googlecloudplatform.blogspot.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
http://www.windowsazure.com/
https://mycloud.rackspace.com/
https://www.heroku.com/
https://www.openshift.com/
http://www.redhat.com/products/enterprise-linux/

• Digital Ocean. A lower-cost alternative to AWS that
says it focuses on developers. It seems to be what a
lot of developers use for side projects.

• Linode is a hosting service that offers SSD for really
fast access.

Internal Services
These are tools that create virtual internal clouds (i.e., on prem‐
ise). While they’re technically running in your own internal
datacenter, they enable the concept of scalable, on-demand
resources:

• Open Stack. Open source software for building pri‐
vate and public clouds.

• VMWare vCloud Suite. A tool for running and man‐
aging VMWare images in your own data center.

• Mesos / Marathon / Chronos are a trio of technolo‐
gies for managing and scheduling processes across a
cluster of machines. Apache Mesos provides the core
clustering technology for the stack. Marathon, from
Mesosphere, is a distributed tool for starting, stop‐
ping, and managing individual jobs on a Mesos clus‐
ter. (So, it’s like a distributed version of init or
upstart). Chronos, developed by Airbnb’s engineer‐
ing team, is a distributed, fault-tolerant replacement
for cron (the classic UNIX job scheduling tool) for
scheduling when jobs will start.

• OpenShift Origin is an open source version of Red‐
Hat’s Open Shift platform.

For More Information
You can find more important background at The Twelve Factor
App.

Internal Services | 7

https://www.digitalocean.com/
https://www.linode.com/
https://www.openstack.org/
http://www.vmware.com/products/vcloud-suite/
http://mesos.apache.org/
https://github.com/mesosphere/marathon
https://github.com/airbnb/chronos
http://mesosphere.io/
http://en.wikipedia.org/wiki/Init
http://upstart.ubuntu.com/
https://openshift.github.io/
http://12factor.net/
http://12factor.net/

CI Servers Deploy Code, Not Ops

Martin Fowler defines continuous deployment as “a software
development practice where members of a team integrate their
work frequently, usually each person integrates at least daily -
leading to multiple integrations per day.” This seminal article
defines the key best practices as:

• Maintain a single source repository.
• Automate the build.
• Make your build self-testing.
• Everyone commits to the mainline every day.
• Every commit should build the mainline on an inte‐

gration machine.
• Keep the build fast.
• Test in a clone of the production environment.
• Make it easy for anyone to get the latest executable.
• Everyone can see what’s happening.
• Automate deployment.

The CI server executes a specific action on a repository when it
receives a commit hook. For example, if a developer makes a
commit against a repository called foo, the CI server might:

• Clone down a local copy of foo.

9

http://www.martinfowler.com/articles/continuousIntegration.html

• Execute foo’s test suites (see the section on applica‐
tion stacks for more about this).

• If the tests fail, send an alert to the development
team and halt the process.

• If the test suite passes, deploy the code to a staging
or even production server.

Tools
Here are a few of the CI servers you might encounter:

• Hudson. Hudson is a CI server from Oracle written
in Java.

• Jenkins. Jenkins, a fork of Hudson, is one of a lead‐
ing open source CI servers. It has a host of useful
plug-ins for tasks like build tasks, error reporting,
and repository management.

• Buildbot. Buildbot is an open source CI server based
on Python.

• Travis. Travis is a hosted CI solution that is used pri‐
marily by the Ruby community, particularly Rails.

• Hubot. Hubot is a chatbot from GitHub. It allows
you to easily create scripts that you can use inside
your chatroom (e.g., Campfire or HipChat) to
deploy new code, receive messages from the build
server, or get messages from your monitoring tools
when things go wrong.

• [Shippable] (http://shippable.com/) Shippable is a
hosted CI solution built on Docker with Webhooks.

• [Werker] (http://wercker.com/). Werker is a hosted
CI solution built on Docker with Webhooks.

10 | CI Servers Deploy Code, Not Ops

http://hudson-ci.org/
http://jenkins-ci.org/
http://buildbot.net/
https://travis-ci.org/
http://hubot.github.com/
http://shippable.com/
http://wercker.com/

Continuous Deployment
• [Distelli]
• [Capistrano]

Continuous Deployment | 11

The Codebase Is in Git

The version control system (VCS) is the heart of the process. At
the most basic level, a VCS allows developers to keep track of
all the changes made to a set of files and enables them to roll
back to specific points in time in case something screws up. In
some systems, like Subversion, the code is checked out and
then checked back in from a central repository. If there is a
conflict between two developers’ files (for example, both of
them edited the same line of code), then the two version must
be merged. This can be a painful process.

In contrast, distributed version control systems (DVCS), like
Git, are the heart of most new development processes. Rather
than having a central, master copy that makes it difficult and
expensive to merge a lot of contributions from developers, a
DVCS makes it simple (well, simpler!) to have multiple people
all working on the same codebase simultaneously in different
branches, and these branches can be easily merged in a master
branch.

While there are many different work styles, such as Git flow,
the basic DVCS process is:

13

http://subversion.apache.org/
http://git-scm.com/
http://nvie.com/posts/a-successful-git-branching-model/

• There is an agreed-upon master repository, which is
often on a public service like GitHub or BitBucket,
or an internal server like GitLab or Mercurial.

• Each developer clones the master repository to his
or her local machine.

• The developer creates a new branch, usually for a
specific feature.

• The developer makes commits against the local copy.
• Once the feature is done, he or she merges the

branch back into the master branch and pushes the
change back to the master.

• Other developers pull from the master branch and
merge their branch.

• The merged copy preserves the full version history
of all the distributed copies.

In addition to these coordination functions, most version con‐
trol systems also offer a feature called a hook. A hook is a pro‐
cess that fires once a specific event, like a commit, happens to
the repository. Hooks can be defined in the repo itself, but also
in the hosting service. For example, GitHub lets you define
“service” hooks that are called whenever a specific event occurs.
These hooks are the tie-in to the continuous integration (CI
server).

Tools
Here are the key version control systems:

• Git. “Git is a free and open source distributed ver‐
sion control system designed to handle everything
from small to very large projects with speed and effi‐
ciency.”

• Mercurial. “Mercurial is a free, distributed source
control management tool. It efficiently handles

14 | The Codebase Is in Git

https://github.com/
https://bitbucket.org/
https://www.gitlab.com/
http://mercurial.selenic.com/
http://git-scm.com/
http://git-scm.com/about/free-and-open-source
http://mercurial.selenic.com/

projects of any size and offers an easy and intuitive
interface.”

Hosting services provide a central point where you can manage
and store all your code repositories. In addition to raw code
storage, they usually offer features like issue tracking, collabo‐
rator management, and other process-oriented services.

The following table lists hosting services managed by a 3rd
party. The pricing model is typically based on a block of reposi‐
tories for a monthly fee.

• GitHub. One of the largest and most successful Git
hosting services.

• BitBucket. Atlassian’s Git hosting solution.
• GitLab.com. A hosting service based on the popular

open source project GitLab HQ.
• Gitorious. Similar to GitLab, a hosted version of an

open source tool that you can install and maintain
yourself.

These are services that you can install and manage in your own
environment:

• GitLab. “Project management and code hosting
application.”

• Gitosis. “software for hosting Git repositories”
• Gitorious. The self-hosted version of gitorious.org.

(It’s a Rails app.)

Tools | 15

https://github.com/
https://bitbucket.org/
https://www.atlassian.com/
https://www.gitlab.com/
https://gitorious.org/
https://github.com/gitlabhq/gitlabhq
https://github.com/tv42/gitosis
https://gitorious.org/gitorious

The Entire Application Runs Locally
in Development

One of the key tenets of the DDS movement is that developers
should have a simple way to install and run the entire app on
their local machine. Being able to run it on their own system
encourages creativity and flexibility and makes development
much more fun and productive.

Vagrant is the key tool here. Basically, it takes the recipes you
created with your environment tool (e.g., your Chef or Puppet
files) and provisions (creates) a virtual machine that runs in a
tool like Virtualbox or VMWare. Vagrant automatically maps a
virtual drive from the virtual instance back to the host
machine, allowing the developer to use his or her favorite edi‐
tor / IDE but still run the application in an environment that
matches the production environment as closely as possible.

Tools
The following table summarizes tools you will encounter:

• Vagrant. “Create and configure lightweight, reprodu‐
cible, and portable development environments.”

17

http://www.vagrantup.com/
https://www.virtualbox.org/
http://www.vmware.com/
http://www.vagrantup.com/

• VirtualBox. “VirtualBox is a powerful x86 and
AMD64/Intel64 Virtualization product for enter‐
prise as well as home use.” Free and open source!
This tool allows you to run a full image of another
operating system (called the “guest”) on your own
machine (called the “host”).

• VMware. One of the original virtualization solu‐
tions; Vagrant has a paid version that targets
VMware fusion.

• ngrok. ngrok allows you to share applications run‐
ning on your local machine to other users on the
Internet. IT works by setting up a tunnel to ngrok,
which then revers proxy to allow you to have a pub‐
lic URL. In the paid version (it’s a donation model
with a suggestion of $25, but you pan pay what you
want), you can have it proxy to a custom domain.

• Vagrant Cloud. A service from the creator of Vagrant
that allows you to share versioned Vagrant images.

Replicating third-party APIs locally
The develop “everything on localhost” approach breaks down
somewhat when an application makes extensive use of third-
party APIs. Clearly, you could not simply install Twitter or
Facebook on your local machine. To get around this, there are a
number of tools for mocking up the API results returned by
these services. These include:

• Canned. “Server to respond with fake API responses,
by using a directory of files for finding out what to
say.”

• WireMock. “WireMock is a flexible library for stub‐
bing and mocking web services.”

18 | The Entire Application Runs Locally in Development

https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Virtualization
http://www.vmware.com/
https://ngrok.com/
https://vagrantcloud.com/
https://github.com/sideshowcoder/canned
http://wiremock.org/

The Environment Is Automated in
the Code

A key idea (maybe the key idea) of DevOps is that the environ‐
ment in which your code will run should be modeled as code,
and not be some separate thing that is a black box. (And, as we
get a bit further down the stack, should be versioned with the
code as well.) It seems pretty basic, but the idea is that you
should have a “recipe” that allows you to recreate the environ‐
ment at any moment. Some of the key parts of managing the
environment include:

• General configuration. General configuration
includes setting up the basic requirements for the
app to even run, things like ensuring that whatever
directory it will live in actually exists, creating any
required users, setting up security groups, specifying
where log files should be stored, exposing (or block‐
ing) the proper ports, setting any required permis‐
sions, installing any license or cert files, and updat‐
ing packages. In short, anything and everything that
an app needs at the basic operating system level.

• Installation of the application stack. If you’re writing a
Rails app, for example, you’ll need to have the

19

required versions of Ruby, Rails, bundler, and other
stack-specific dependencies. The same goes for any
other stack.

• Installation and configuration of the required backing
services. The 12 Factor App describes backing serv‐
ices as “any service the app consumes over the net‐
work as part of its normal operation. Examples
include datastores (such as MySQL or CouchDB),
messaging/queueing systems (such as RabbitMQ or
Beanstalkd), SMTP services for outbound email
(such as Postfix), and caching systems (such as
Memcached).” Backing services can also include
third-party services, like Amazon AWS (SQS, dyna‐
modb, etc.), GitHub, Twitter, and Parse. Ideally, the
“code for a twelve-factor app makes no distinction
between local and third party services.”

Tools
The following table lists some of the configuration and envi‐
ronment automation tools you might encounter:

• Chef. “Chef is built to address the hardest infrastruc‐
ture challenges on the planet. By modeling IT infra‐
structure and application delivery as code, Chef pro‐
vides the power and flexibility to compete in the dig‐
ital economy.”

• OpsWorks. The OpsWorks community site has
thousands of recipes for installing and configuring a
range of services.

• Fabric. “Fabric is a Python (2.5-2.7) library and
command-line tool for streamlining the use of SSH
for application deployment or systems administra‐
tion tasks.”

20 | The Environment Is Automated in the Code

http://12factor.net
http://12factor.net/backing-services
http://12factor.net/backing-services
http://developer.github.com/v3/
https://dev.twitter.com/
https://www.parse.com/
http://www.getchef.com/chef/
http://aws.amazon.com/opsworks/
http://community.opscode.com/
http://docs.fabfile.org/en/1.8/

• Puppet. “Puppet Labs’ software gives systems
administrators the operational agility, efficiency, and
insight they need to manage dynamic infrastructure,
on-premise or in the cloud.”

• CFEngine. “CFEngine Community is the Open
Source foundation of CFEngine’s innovative config‐
uration management technology that helps systems
administrators automate and ensure the availability,
security and compliance of mission-critical applica‐
tions and services.”

• Ansible. “Ansible is the simplest way to automate
apps and IT infrastructure.”

• Salt. “Fast, scalable and flexible software for data
center automation, from infrastructure and any
cloud, to the entire application stack”

• Docker. If you’re building a Docker image, you can
specify a lot of the dependencies by specifying a
dockerfile for the container.

For More Information
• Snowflake Server
• Pets vs. Cattle

For More Information | 21

http://puppetlabs.com/
http://cfengine.com/community
http://www.ansible.com/home
http://www.saltstack.com/
https://www.docker.io/learn/dockerfile/level1/
https://www.docker.io/learn/dockerfile/level1/
http://martinfowler.com/bliki/SnowflakeServer.html
http://www.slideshare.net/randybias/pets-vs-cattle-the-elastic-cloud-story

The Monitoring Infrastructure Is
Critical

The monitoring infrastructure is perhaps the most foreign ele‐
ment in the DDS stack. Of all the parts of the software infra‐
structure, this was perhaps the most opaque. A disk would fill
up, the monitoring system would alert the systems group, and
they would quietly fix it without the developer being any the
wiser.

However, as more of the traditional admin functions spread to
other parts of the organization, there’s an increasing need for
developers to view the monitoring infrastructure as just
another part of the app. In addition to providing the sorts of
critical alerts on failures, many monitoring tools are tailored to
the application stack and can be used to pinpoint performance
bottlenecks.

Most of these systems have two components: a client and a
server. The client is an agent that runs on the server you want
to monitor; it is typically installed on the machine by a Chef or
Puppet recipe (or Ansible or Salt or whatever tool you are
using). Whether it’s a daemon or a cron job, the client periodi‐
cally reports back key metrics to the central server. The server
provides the reporting interface, notification systems, and

23

other functions that are required to smoothly maintain a large
number of systems.

Tools
Here are some monitoring tools you might encounter:

• New Relic. New Relic is an application monitoring
tool that enables you to simply and easily report
metrics from within your app. Once you do, how‐
ever, you can get a wealth of information about the
bottlenecks in your application.

• Scout. Scout is a hosted monitoring tool. It’s very
simple to set up, although it has far fewer plug-ins
than Nagios.

• PagerDuty. PagerDuty is an alert system that’s
designed to allow you to create groups and roles that
should be notified for a variety of configurable sce‐
narios.

• loader.io. “Loader.io is a free load-testing service that
allows you to stress-test your web-apps/apis with
thousands of concurrent connections.”

• Hubot. Hubot is a chatbot from GitHub. It allows
you to easily create scripts that you can use inside
your chatroom (e.g., Campfire or HipChat) to
deploy new code, receive messages from the build
server, or get messages from your monitoring tools
when things go wrong.

• Nagios. Nagios is an open source monitoring tool
that has been around for a long time. It has hun‐
dreds of client plug-ins that can report all manner of
system performance metrics.

• Kale. Kale is Etsy’s monitoring platform and is
“designed to solve the problem of metrics overload.”

24 | The Monitoring Infrastructure Is Critical

http://newrelic.com/
https://scoutapp.com/
http://www.pagerduty.com/
http://loader.io/
http://hubot.github.com/
http://www.nagios.org/
http://codeascraft.com/2013/06/11/introducing-kale/

• Graphite. Graphite is a tool for “scaleable realtime
graphing.” Once you have a data feed, graphite
makes it simpler to get nice charts to spot anomalies.

• StatsD is a tool from Etsy. It’s essentially a daemon
process that can receive messages from your applica‐
tions via a UDP port. StatsD receives and parses the
message and then aggregates it so that it can be ana‐
lyzed by another tool (like Graphite).

• Ganglia is a BSD-licensed monitoring tool that pro‐
vide more granular detail than Nagios.

• InfluxDB is a time series, events, and metrics data‐
base.

• Grafana is an open source, feature-rich metrics
dashboard and graph editor for Graphite, InfluxDB
& OpenTSDB.

Tools | 25

http://graphite.readthedocs.org/
https://github.com/etsy/statsd/
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://ganglia.sourceforge.net/
http://influxdb.com/
http://grafana.org/

Tests Done in Code, Not by a QA
Department

As described in the section on continuous deployment servers,
running automated tests on each deploy or commit is an
important way to ensure software quality.

Tools
The following table lists testing tools you’re likely to encounter:

• CasperJS. “CasperJS is an open source navigation
scripting and testing utility written in Javascript for
the PhantomJS WebKit headless browser and Sli‐
merJS (Gecko). It eases the process of defining a full
navigation scenario and provides useful high-level
functions, methods, and syntactic sugar for doing
common tasks.”

• PhantomJS. “PhantomJS is a headless WebKit script‐
able with a JavaScript API. "

• Canned. “Server to respond with fake API responses
by using a directory of files for finding out what to
say.”

27

http://casperjs.org/
http://phantomjs.org/
https://github.com/sideshowcoder/canned

Containerization for Production
Services

Containerization is the idea that an application and all its
dependencies can be packaged and shipped in a standardized
way that is the same for any platform. This enables you, for
example, to package a container you created and built on your
development machine directly to a production server. Be aware
that the container only needs the dependencies and code from
your app; other systems (like, oh, the operating system) can be
shared with the host environment via a Linux container. There
are many, many tools in this rapidly emerging space, such as:

• CoreOS. CoreOS is a Linux distro built for running
and manageing applications that are packaged as
Docker images. The key components are:

— Docker as the way you run apps.
— etcd, which is a distributed key value database;

it’s sort of the “registry” you can use to share
data between instances. It’s bundled with the
OS so that you can always count on it being
there.

— systemd, a distributed job system for schedul‐
ing and process management. I don’t really

29

https://linuxcontainers.org/
https://coreos.com/
https://github.com/coreos/etcd
http://coreos.com/using-coreos/systemd/

quite understand this yet but plan to dive in
soon.

— fleet. Fleet is a tool for managing processes on
a CoreOS cluster.

• Deis. Deis is a self-hosted PaaS platform based on
Docker and CoreOS. Basically, it allows you to create
your own Heroku-like service based on buildpacks
or “raw” Docker containers.

• Docker. Written in Go, Docker is an Open Source
project that provides a clean and simple way to cre‐
ate system images based on a known filesystem, layer
new elements onto those images, and then spin up
running instances of what you’ve done. For example,
you might start with a base images like “base/
ubuntu”, add a service like Redis, and then start the
image to have a running Redis instance. Docker
handles process management, networking, and other
services for you, allowing you to focus on adding
just the parts you need. There is also a company
called (conveniently enough) Docker that maintains
Docker, as well as providing a hosting service called
the Index, where you can publish and maintain your
images. Like GitHub, they have a “free for public/
paid for private” model.

• Flynn.io. Flynn, like Deis, provides a self-hosted
PaaS.

• geard is a tool for creating and managing Docker
containers in OpenShift, RedHast’s PaaS solution.

• kubernetes. Kubernetes is an open source version of
Google’s internal cluster management toolchain. You
can use Kubernetes to run your own Docker con‐
tainers on Google Compute Engine, Google’s cloud
platform.

30 | Containerization for Production Services

http://coreos.com/docs/launching-containers/launching/launching-containers-fleet/
http://deis.io/
https://devcenter.heroku.com/articles/buildpacks
http://www.docker.com
https://flynn.io/
http://openshift.github.io/geard/
https://openshift.github.io/
https://github.com/GoogleCloudPlatform/kubernetes
https://cloud.google.com/products/compute-engine/

• Mesos. Apache Mesos is a cluster resource manager
that simplifies running applications on a shared pool
of servers. Mesos supports containerized workloads
via linux cgroups and now supports running tasks in
Docker containers natively as of August 2014 with
the release of version 0.20.0.

• Panamax. “Panamax is a containerized app creator
with an open-source app marketplace hosted in Git‐
Hub. Panamax provides a friendly interface for users
of Docker, Fleet & CoreOS. With Panamax, you can
easily create, share and deploy any containerized app
no matter how complex it might be”

Containerization for Production Services | 31

http://mesos.apache.org
http://panamax.io/

Real-time Chat and Chatbots

Once considered a relic of a bygone era, real-time chat systems
are now a huge part of the workflow of most distributed teams.
Like texting, chat allows developers to send each other mes‐
sages in real time and is the place where most routine team
communication takes place. (It can be the place where the team
culture is formed and maintained.)

33

In addition to human participants, team chats can include a
chatbot, which is a program that performs useful functions by
monitoring the chatroom for special commands. The chatbot,
which appears like anyone else in the room, can do routine
tasks such as kicking off a build, locking the production server,
reporting errors from the monitoring tools, or providing man‐
pages. And, programmers being programmers, the chatbot can
also do things that reflect the culture of the team, like showing
pictures of a pug, displaying a squirrel whenever you type “ship
it,” or providing responses in a Magic 8 Ball form when you ask
it questions. The chatbot usually reflects the culture of the team

34 | Real-time Chat and Chatbots

that’s using it and can often become an informal mascot for the
group.

Chat
These are some of the more popular chat services and resour‐
ces:

• Campfire
• HipChat
• Slack
• Google Chat
• The Emoji Cheatsheet is a fun resource that lists text

shortcuts that correspond to the emoji characters
used in many chat services. For example, using the
code “:boom:” creates a small explosion icon when
it’s rendered in chat.

Chatbots
These are resources for creating chatbots:

• Hubot is a Node.js chatbot engine from GitHub. It
provides the essential services like logging into the
char service, listening for commands directed its
way, executing corresponding scripts, and returning
output.

• Hubot Script Catalog is a directory of useful (and
totally useless!) scripts that can be plugged into the
Hubot framework.

For More Information
• Say “Hello” to Hubot is a blog post from GitHub, the

company that developed the popular Hubot chatbot.

Chat | 35

https://www.hipchat.com
http://www.emoji-cheat-sheet.com/
https://hubot.github.com/
http://hubot-script-catalog.herokuapp.com/
https://github.com/blog/968-say-hello-to-hubot

• ChatOps at GitHub is a video explaining the
chatbot-based ops workflow at GitHub.

36 | Real-time Chat and Chatbots

https://www.youtube.com/watch?v=NST3u-GjjFw

Appendix: Contributors

• Mike Loukides — @mikeloukides
• Courney Nash — @courtneynash
• Paco Nathan — @pacoid | https://github.com/ceteri
• Andrew Odewahn — @odewahn | https://

github.com/odewahn

37

https://github.com/ceteri
https://github.com/odewahn
https://github.com/odewahn

Survey

This field guide is a work in progress, and to make it a really
useful tool, we really need your feedback. Please take a few
minutes to fill out this short survey. Many thanks for your
help.

http://oreil.ly/FGFeedback

39

http://oreil.ly/FGFeedback

	Table of Contents
	Chapter 1. Introduction
	How to Contribute
	Making a larger contribution

	Chapter 2. The Cloud Is the Default Platform
	Traditional Cloud Providers
	Hosted PaaS
	Internal Services
	For More Information

	Chapter 3. CI Servers Deploy Code, Not Ops
	Tools
	Continuous Deployment

	Chapter 4. The Codebase Is in Git
	Tools

	Chapter 5. The Entire Application Runs Locally in Development
	Tools
	Replicating third-party APIs locally

	Chapter 6. The Environment Is Automated in the Code
	Tools
	For More Information

	Chapter 7. The Monitoring Infrastructure Is Critical
	Tools

	Chapter 8. Tests Done in Code, Not by a QA Department
	Tools

	Chapter 9. Containerization for Production Services
	Chapter 10. Real-time Chat and Chatbots
	Chat
	Chatbots
	For More Information

	Chapter 11. Appendix: Contributors
	Chapter 12. Survey

