

http://www.oreilly.com/programming/newsletter

Abraham Marín-Pérez

Real-World
Maintainable Software

Ten Coding Guidelines in Practice

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95858-2

Real-World Maintainable Software
by Abraham Marín-Pérez

Copyright © 2016 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Brian Foster
Production Editor: Colleen Cole
Copyeditor: Gillian McGarvey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2016: First Edition

Revision History for the First Edition
2016-09-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491958582 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Real-World Main‐
tainable Software, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491958582

Table of Contents

Preface. v

1. “How Did We Get into This Mess?”. 1

2. The Ten Guidelines. 5
Unit Guidelines 6
Architectural Guidelines 13
Enabling Guidelines 18

3. Applying the Ten Guidelines. 21
Apply All the Guidelines 21
Getting Value from the Ten Guidelines 35
Not Too Much, Not Too Little: Just Right 36

4. Ten Real-World Use Cases. 39
Interamerican Greece 39
Alphabet International 40
Port of Rotterdam Authority 40
Care Schadeservice 41
Vhi Ireland 42
Rabobank International 42
Ministry of Infrastructure and Environment in the

Netherlands 43
ProRail 44
ING Bank 45
Nykredit 45

iii

Preface

Being the relatively young profession that it is, software develop‐
ment is still trying to figure out the best way to deliver. One of the
most promising ideas of recent years comes from the software
craftsmanship movement, which recommends small teams with
attention to detail, risk aversion, and an appetite for continuous
improvement. In teams like this, it is easy to be kept up-to-date with
almost every aspect of the project, which means hidden traps and
mistakes rarely go unnoticed for long. These teams consistently pro‐
duce high-quality software that is easy to maintain.

Unfortunately, for better or worse, some organizations still need to
manage large projects over long periods of time. In such environ‐
ments, the principles of craftsmanship still apply, though one cannot
hope to be kept up-to-date on every single aspect of the daily life of
the project. Knowledge silos will appear, communication channels
will decrease, and as a result it will be nearly impossible to assess
whether staff are following a good set of best practices.

Many organizations have tried to fix this, especially from the point
of view of project management. This is how, first, complex project
management processes with certifications like PRINCE2 and, later,
lighter processes with certifications like SCM came to be born. And,
although both types of approaches achieved some level of success,
they were both missing the technical side of things.

This is what initially motivated the Software Improvement Group
(SIG) to create the “Ten Guidelines for Building Maintainable Soft‐
ware,” included in the book Building Maintainable Software by Joost
Visser (O’Reilly). The main risk of initiatives like this is that, as use‐
ful as they might seem, they could easily be archived in the depart‐

v

ment of “Yet Another Nice Theory.” This is why, in this report, I will
explain how the guidelines can work in a real-life environment, con‐
sidering the typical issues that every programmer faces during the
course of a project, together with the hidden traps that program‐
mers can fall into when trying to apply the Ten Guidelines.

Acknowledgments
I have always liked writing, ever since I was little. When I was in
high school, I entered a regional narrative contest where I reached a
modest yet satisfying third position. Then the Internet became pop‐
ular and I started to write blogs and, more recently, technology news
articles. This is why I was so excited when O’Reilly gave me the
opportunity to write this report.

A project like this is never the product of a single person’s efforts,
and I’d like to thank those that have helped me along the way. First
of all, I’d like to say thank you to Brian Foster, whose initial steering
helped identify the best way for this report to serve its readers.

I’d also like to thank Nan Barber and Keith Conant for their reviews.
Nan helped me make sure the report has a consistent style and
structure, which has turned it into a more pleasant reading experi‐
ence, while Keith’s technical review improved the quality of the con‐
tents.

Last but not least, I’d like to thank my partner Bea for her patience
and support while working on this report. Without her, this
wouldn’t have happened.

vi | Preface

CHAPTER 1

“How Did We Get into This Mess?”

Cape Canaveral, Florida. November 8, 1968. At precisely 9:46 a.m.,
the Delta E rocket ignites, propelling the Pioneer 9 spacecraft into
the atmosphere. This is the fourth in a series of space missions
directed at studying “space weather.”

The program was highly successful: while designed to last for six
months, it provided data for 35 years. The main contractor of the
Pioneer 6-9 program was TRW, a company in charge not just of the
construction of the spacecraft but also of the design and implemen‐
tation of the software that governed it. This was during the relatively
early days of the software development industry, and there weren’t
too many references on running software development projects.
Perhaps for this reason, Winston W. Royce, one of TRW’s most
prominent software development project managers, published in
1970 a paper titled “Managing the Development of Large Software
Systems,” in which he described his views on making software
projects succeed. Royce’s paper was famously attributed as being the
first written reference to the Waterfall Development Model, describ‐
ing it as a “grandiose approach to software development.”

This model took the world by storm. Companies all over the planet
started to follow this methodology. Certifications were created for
project managers who would be accredited as following the Water‐
fall Model to the letter. Teachers of computer science in universities
of all countries included them in their lectures. For many decades,
the Waterfall Model was adopted without question as the best and
only possible way to develop software.

1

Figure 1-1. The Waterfall Development Model as described in Winston
W. Royce’s paper

However, in what may be a prophecy of the hunger for quick wins
that would come to plague the software development industry, the
early adopters of the Waterfall Model failed to properly read Royce’s
paper. Even though he described the Waterfall Model as the ideal
way to build software, he also said that “the implementation
described above is risky and invites failure.” He then went on for
several pages explaining the risks and downsides of his model, con‐
cluding that the only way to make it work is to run the same project
at least twice so that subsequent implementations can learn from the
mistakes of the previous ones.

And so it happened that software projects across the board consis‐
tently failed to meet expectations for decades. In 1994, the Standish
Group published their first CHAOS report, a survey covering more
than 8,000 applications, in which the overall success of software
development projects throughout the industry was assessed. The
results were abysmal: 31% of projects were cancelled before comple‐
tion, 53% were finished with reduced functionality and/or over
budget, and only 16% finished successfully according to the initial
parameters.

2 | Chapter 1: “How Did We Get into This Mess?”

1 Robert L. Glass, “Frequently Forgotten Fundamental Facts about Software Engineer‐
ing” in IEEE Software, 2001.

Maybe because of these results, project managers began to worry
about hitting deadlines above anything else, and potentially at the
expense of long-term instability. This had the effect of increasing the
costs of maintaining the code after delivery, with some sources like
the IEEE estimating that maintenance causes around 60% of the
total cost of the project.1

Step by step, failure after failure, the software development industry
realized that something needed to be done differently. In 2001, the
Agile Manifesto was signed, encouraging a new way of thinking
about software development. Companies that began to deviate from
the norm experienced the benefits. In the latest CHAOS report,
results were segregated for Agile and Waterfall projects: while 29%
of Waterfall-led projects are still cancelled (signifying virtually no
improvement after 11 years), the failure rate of Agile-led projects is
down to 9%.

It’s taken time, but companies finally realize that, for a project to
succeed, focus needs to be placed on the long term. Maintainability
is the main issue, and for this to come at a reasonable cost it needs
to be looked after from day one. It is for this reason that companies
like SIG began to think about patterns and guidelines that can be
applied to the everyday work of a software developer and that will
assist in ensuring and assessing software maintainability. After years
of experience, SIG has found a set of 10 easy-to-follow guidelines
that will help keep code manageable for years to come, putting
teams one step closer to success. This report will explore those
guidelines, explain their applicability, and present them together
with a set of real use cases that benefited from it.

You can start building maintainable code today by using these 10
guidelines.

“How Did We Get into This Mess?” | 3

http://www.kictanet.or.ke/wp-content/uploads/2012/08/Forgotten-Fundamentals-IEEE-Software-May2001.pdf
http://www.kictanet.or.ke/wp-content/uploads/2012/08/Forgotten-Fundamentals-IEEE-Software-May2001.pdf

CHAPTER 2

The Ten Guidelines

After many years of failures, the software development industry is
gradually coming to understand what makes projects succeed. Best
practices have started to appear, sometimes mixed with misinforma‐
tion and plain technical folklore, but through trial and error, teams
around the world have started to separate the chaff from the grain.

SIG is one organization that has gone through this. And not only
that, it has studied the way software development projects evolve so
as to identify the difference between success and failure. After ana‐
lyzing business cases for years, SIG has come up with Ten Guide‐
lines that, if followed correctly, can make the difference between
success or failure.

The Ten Guidelines are easy to understand but not necessarily easy
to apply. Teams may face resistance on several fronts: sometimes
from management, who may not understand the value of an invest‐
ment like this, and sometimes from developers, who may take badly
the fact that they are being told how to work best.

However, even if everybody is on board, the Ten Guidelines require
that a level of technical expertise be applied. A lot of refactoring is
needed to keep applying the guidelines overtime, and refactoring is
an art that is very difficult to master. There are a number of resour‐
ces that can be used to increased a developer’s refactoring skills,
among them the fantastic How to Work Effectively with Legacy Code
by Michael Feathers (Prentice Hall).

5

In this chapter, we will briefly cover the Ten Guidelines and explain
their usefulness; for more thorough coverage, the reader is advised
to read Building Maintainable Software.

The first thing we need to note about the guidelines is that they are
roughly divided into three categories. This isn’t a strict division (in
fact the categorization isn’t present in the original source) but it’s a
useful way to look at the guidelines since different categories require
different sets of skills:

Unit guidelines
Write short units of code
Write simple units of code
Write code once
Keep unit interfaces small

Architectural guidelines
Separate concerns in modules
Couple architecture components loosely
Keep architecture components balanced
Keep your codebase small

Enabling guidelines
Automate tests
Write clean code

Unit Guidelines
The first four guidelines are unit guidelines. In this context, a unit is
the smallest group of code that can be executed independently; in
object-oriented languages, a unit is a method within a class.

Write Short Units of Code
The first guideline indicates that our methods should be short, usu‐
ally no more than 15 lines of code. This not only improves readabil‐
ity (fewer lines of code are easier to understand), but it also lowers
the probability of hidden side effects. On top of this, a short method
will have fewer variations, which means it will be easier to test.

The easiest way to apply this guideline is to move parts of the code
in a method into other methods. Many IDEs will have an “extract
method” function that makes this easier. Sometimes, however, the
right answer is to move the code not to a different method but to a

6 | Chapter 2: The Ten Guidelines

1 For further reference, see Build Hotspots on GitHub.

new class—we’ll see more of that when we get to the architectural
guidelines.

Counting Lines of Code
Different teams may use different criteria when deciding what con‐
stitutes a line of code. In this report, we use the following:

• The signature and closing curly bracket of the method don’t
count. This is because these are lines that can’t be removed and
therefore have no bearing toward measuring the complexity of
the method.

• Blank lines within the method do count. This is because,
although blank lines don’t have any instructions, programmers
tend to add them to separate groups of lines that perform
closely related tasks, which means they help indicate the com‐
plexity of the method.

• If an instruction is so long that it needs to be split into two or
more lines, we count each of those lines independently. This is
because we consider such instructions to represent extra com‐
plexity, and therefore it makes sense for them to contribute
further to the total line count.

Choosing different criteria will obviously change the resulting
number of lines, but the only effect will be that the triggering con‐
ditions for the guidelines will be met slightly sooner or later. In the
end, a large method is a large method, regardless of how the lines
are counted.

Let’s take a look at an example. The following method contains 21
lines of code, more than the recommended limit of 15. It may not be
clear what this particular method does, but that’s not relevant at this
point (it is part of a tool to analyze build data from a Jenkins
server1).

protected void selectBuilds(String source) {
 jenkinsClient = new JenkinsClient(source);
 List<String> allBuilds = jenkinsClient.getBuildConfigurations();
 BuildSelector buildSelector = new BuildSelector(allBuilds);

Unit Guidelines | 7

https://github.com/quiram/build-hotspots

 GridPane grid = new GridPane();
 grid.setAlignment(Pos.CENTER);
 grid.setHgap(10);
 grid.setVgap(10);
 grid.setPadding(new Insets(25, 25, 25, 25));
 grid.add(buildSelector, 0, 0);

 Scene scene = new Scene(grid, 250, 400);
 m_primaryStage.setScene(scene);

 Button btn = new Button();
 btn.setText("Show me hotspots!");
 btn.setOnAction(event -> {
 List<String> selectedBuilds = buildSelector.getBuilds();
 AddDrawingToScene(selectedBuilds);
 });
 grid.add(btn, 0, 1);
}

We can make this method shorter by moving the creation and setup
of the Grid and the Button objects into new methods, like this:

private GridPane createGridPane() {
 GridPane grid = new GridPane();
 grid.setAlignment(Pos.CENTER);
 grid.setHgap(10);
 grid.setVgap(10);
 grid.setPadding(new Insets(25, 25, 25, 25));

 return grid;
}

private Button createButton(BuildSelector buildSelector) {
 Button btn = new Button();
 btn.setText("Show me hotspots!");
 btn.setOnAction(event -> {
 List<String> selectedBuilds = buildSelector.getBuilds();
 AddDrawingToScene(selectedBuilds);
 });

 return btn;
}

protected void selectBuilds(String source) {
 jenkinsClient = new JenkinsClient(source);
 List<String> allBuilds = jenkinsClient.getBuildConfigurations();
 BuildSelector buildSelector = new BuildSelector(allBuilds);

 GridPane grid = createGridPane();
 grid.add(buildSelector, 0, 0);

8 | Chapter 2: The Ten Guidelines

 Scene scene = new Scene(grid, 250, 400);
 m_primaryStage.setScene(scene);

 Button btn = createButton(buildSelector);
 grid.add(btn, 0, 1);
}

Now we have three small methods as opposed to one big one, which
makes the code easier to manipulate.

Write Simple Units of Code
The more paths of execution a method has, the more difficult it will
be to reason about all of them. And when code is difficult to reason
about, misunderstandings occur, and misunderstandings lead to
bugs.

It’s important to clarify, though, what a path of execution means.
Paths of execution are branching points, instructions that can make
the execution of the code go in one way or another. For instance, an
if statement creates a branch of execution because, depending on
the evaluation of a condition, different code will be executed. But
not only that—if the condition in the if statement is a boolean
operation involving several operators, the application of each opera‐
tor will imply a new branch.

This guideline suggests that we limit branch points to a maximum of
four. This will not only make the methods easier to understand but
will also make them easier to test. In order to cover all different sce‐
narios of a method, we need a number of automated tests that is at
least the number of branch points plus one. Let’s take a look at the
following code:

public int getDiscount(String promoCode) {
 if(promoCode == null) {
 throw new IllegalArgumentException("promoCode");
 }

 promoCode = promoCode.trim();

 if(promoCode.length() < 5 || promoCode.length() > 8) {
 throw new IllegalArgumentException("promoCode");
 }

 if(expiredPromoCodes.containsKey(promoCode)) {
 throw new ExpiredPromoException(promoCode);
 }

Unit Guidelines | 9

 if(!availablePromoCodes.containsKey(promoCode)) {
 return 0;
 }

 return availablePromoCodes.get(promoCode);
}

As can probably be guessed, this method will provide the appropri‐
ate discount to apply depending on a promotional code, throwing
exceptions in particular situations. This code has five branching
points, which means there are six different scenarios to be consid‐
ered while testing: promotional code being null, too short, or too
long; promotion having expired; promotional code not matching
any existing promotion (expired or not); and promotional code
applied successfully.

We can reduce the number of branching points per unit by moving
the validation logic to its own method, like the following:

public boolean isPromoCodeValid(String promoCode) {
 if(promoCode == null) {
 return false;
 }

 promoCode = promoCode.trim();

 if(promoCode.length() < 5 || promoCode.length() > 8) {
 return false;
 }

 return true;
}

public int getDiscount(String promoCode) {
 if(!isPromoCodeValid(promoCode)) {
 throw new IllegalArgumentException("promoCode");
 }

 promoCode = promoCode.trim();

 if(expiredPromoCodes.containsKey(promoCode)) {
 throw new ExpiredPromoException(promoCode);
 }

 if(!availablePromoCodes.containsKey(promoCode)) {
 return 0;
 }

10 | Chapter 2: The Ten Guidelines

 return availablePromoCodes.get(promoCode);
}

With the new version, we have two methods with three branching
points each, which means we’ll need four tests for each method to
cover all cases. It may look as if we have more work to do now since
we have a total of eight scenarios to cover, whereas before we only
had six. However, analyzing effort this way can be deceiving. We
don’t quite have eight scenarios to cover; we have two sets of four
scenarios each. This distinction is important because in software
development, effort doesn’t grow linearly with complexity—it grows
exponentially. Therefore, it is easier to manage two sets of four sce‐
narios each than one with six.

Write Code Once
Internet folklore has many ways to refer to this guideline, including
“Stay DRY,” with DRY being short for Don’t Repeat Yourself, and
“Don’t get WET,” with WET being short for Write Everything Twice.
The truth is, there are so many ways to refer to this because this is
one of the most powerful single sources of bugs.

It usually goes like this: A programmer, maybe due to time restric‐
tions, decides to copy and paste a portion of code to make use of it
somewhere else. Some time after that, a requirement arrives to mod‐
ify that piece of code. The programmer that picks up this task,
which might be the original one or a new one, doesn’t remember or
realize that the code that needs to be modified exists in two different
places, so that programmer only applies changes to one of the copies
of the code. And just like that, we have created a bug: two parts of
the system that are meant to do the same thing no longer do.

But even if we manage duplication well and prevent bugs, duplicate
code can still hurt a team. Whenever a task is performed, if pro‐
grammers know that there is duplication in the codebase, they’ll
have to search for all the occurrences of the code that need to be
modified and act on all of them appropriately; this is much more
costly that having to change just one existing copy of the code.

The bottom line is, whenever you see duplicated code, you should
refactor it into a single copy. Not only will you be saving yourself
trouble and time, but also, in the process of refactoring the code,
you may discover new domain concepts that fit within your overall
design.

Unit Guidelines | 11

Keep Unit Interfaces Small
In the same way that unit means, in this context, a method in a class,
interface here refers to the way we interact with a method; that is, the
method signature. Methods with long signatures usually indicate the
existence of data clumps: variables that always travel together and
that in fact aren’t particularly useful if used independently. Typical
examples of data clumps are colors (expressed as their red, green,
and blue components) and coordinates (expressed as their x,y com‐
ponents).

The way to make sure we keep interfaces small and detect these data
clumps is by keeping method signatures to a maximum of four
parameters. The way to apply this guideline is by bundling together
two or more arguments into a new class, and then to use references
to this new class. The interesting side effect is that now that we have
a new class, we can start adding logic to it.

Let’s consider a hotel room reservation system and, more precisely, a
method to get quotes for specific rooms. Since we’re only dealing
with method signatures in this guideline, we won’t include the body
of the method:

public Quote getQuote(String hotelName, RoomType roomType,
 boolean breakfastIncluded,
 LocalDate checkInDate,
 LocalDate checkOutDate)

This signature has five parameters, one more than the guideline
allows. We can fix this by bundling check-in and check-out dates
into a TimePeriod class.

public Quote getQuote(String hotelName, RoomType roomType,
 boolean breakfastIncluded,
 TimePeriod timePeriod) {
 // ... //
}

public class TimePeriod {
 public TimePeriod(LocalDate checkInDate,
 LocalDate checkOutDate) {
 // ... //
 }
}

The interesting thing about the TimePeriod class is that we can
easily add validation to it: ensure that check-out date is at least one
day after check-in date, ensure that check-in date isn’t in the past,

12 | Chapter 2: The Ten Guidelines

etc. And if we do that, we’ll have validation for free whenever we
need to use the pair of check-in and check-out dates. Thus, keeping
unit interfaces small not only makes for simpler and more readable
methods, it also helps us encapsulate concepts that better describe
the domain at hand.

Architectural Guidelines
If the first four guidelines referred to characteristics that we need to
measure at the unit (or method) level, the next four focus at a higher
level—namely modules, components, and codebases.

In this context, a module is a collection of units; in other words, a
class. Similarly, we can understand a component as an aggregation
of modules (or classes) that can be grouped to offer a higher order
of functionality. For many teams, a component will be something
that can be developed, deployed, and/or installed independently,
and will typically refer to them as a JAR file in Java, a DLL in .NET
languages or, more generally, a library. However, some other teams
with larger codebases will choose a bigger unit of measurement
when defining what a component is, and will typically refer to them
as frameworks or systems. The definition of the concept of a com‐
ponent will have an impact on the applicability of some of the guide‐
lines, so teams should choose a definition carefully and potentially
review it over time.

Finally, a codebase is a version-controlled collection of software; this
typically means a repository in GIT-based systems, or an independ‐
ent subfolder in Subversion or CVS-based systems.

As you will see, the architectural guidelines will apply to progres‐
sively broader aspects of the software, leaving behind the fine-
grained details of the unit guidelines.

Separate Concerns in Modules
Modules, or classes, are meant to be representations of domain con‐
cepts; if you can’t explain what a class does in a couple of simple sen‐
tences, then that class either represents more than one concept or
represents a concept that is too general or abstract.

A class that holds too much responsibility will be troublesome in
several ways. First, it is likely to become a change hotspot. Since it
has so many responsibilities, it will affect a large proportion of the

Architectural Guidelines | 13

business logic, and therefore the probability that it needs to be
modified upon any new request will be high. Change hotspots create
long (and difficult to browse) change logs and increase the probabil‐
ity of clashes between programmers, potentially disrupting the natu‐
ral team flow.

Second, big classes have the risk of becoming a dumping ground for
difficult design decisions. When new functionality needs to be
added to a system and programmers are unsure about where that
new functionality should go, it is not uncommon for people to
choose an existing big class whose purpose is not entirely clear any‐
way.

Finally, big classes that concentrate a lot of logic in one place will be
highly utilized by other classes in one way or another. This means
we are creating a class with a high degree of change (and therefore a
higher risk of accidents) and high exposure (and therefore a higher
impact on accidents), and creating areas of code with high risk and
impact is never a good idea.

Deciding how well a team is applying “Separate Concerns in Mod‐
ules” is a little subjective. The general suggestion is to try and apply
the Single Responsibility Principle, for which there is plenty of doc‐
umentation— although even then some people may argue whether a
particular scenario represents one single but complex principle or
two independent but related principles. Some heuristics that can
help are the size of the class (beyond 100 lines seems suspicious for a
single principle) or the rate of public versus private methods (too
many private methods may expose complexities that belong some‐
where else). However, each team will have to decide what their own
metrics are and how they are to be applied.

Couple Architecture Components Loosely
This guideline is similar to the previous one, but it is applied at an
even higher level. With “Separate Concerns in Modules,” we tried to
limit the responsibilities of a class so as to limit the dependencies
upon it. With “Couple Architecture Components Loosely,” we try to
do the same but with regards to components.

Like it happened with the previous guideline, it’s a bit difficult to
establish general parameters that highlight when architecture com‐
ponents are loosely coupled and when they aren’t; the final decision

14 | Chapter 2: The Ten Guidelines

may be different from team to team. However, there are some gen‐
eral principles that can be applied.

First, we can draw a diagram of all the different components in our
system and connect them to represent their dependencies. With this
kind of diagram, we can look for components that accumulate too
many incoming dependencies. For instance, in the following dia‐
gram we can see how component A is tightly coupled with the rest
of the architecture, while component B isn’t. Modifying component
A can have repercussions in almost every other component of the
system. This turns modifying component A into a risky affair, which
makes it more difficult to maintain. Component B, on the other
hand, has a much lower potential impact, which makes it more
maintainable. In this situation, we probably should look into split‐
ting component A into smaller, less tightly coupled components.

Figure 2-1. A component dependency diagram showing a tightly cou‐
pled component (A) and a loosely coupled one (B)

Second, we can analyze how much of each component is being
exposed. For instance, if we were considering a component to be a
JAR file, we would check which classes within the component are
being accessed when there are calls from other components. Ideally,
the exposed portion of the component will be as small as possible,
since exposed classes cannot be modified safely without impact to
dependent components. As an example, changing the signature of a
method that is being called from a different component will

Architectural Guidelines | 15

instantly cause a compilation failure unless the caller is updated at
the same time; if there are many callers, this may be impractical.

Unfortunately, depending on the language there may not be an easy
way to analyze the proportion of a component that is being exposed.
In C#, the developer can use different access modifiers for classes
that are to be available only within the component (internal) or
from everywhere (public). Java, however, doesn’t currently have this
capability, although the new Module System in plan for Java 9 will
provide it. This means that, once again, how this guideline is applied
will depend on each particular team.

Keep Architecture Components Balanced
As systems grow, it may become too easy to get lost in the many fac‐
ets of it, and when this happens it may become easy to miss systemic
issues. This is why software needs to make sense also from a high-
level point of view.

Although this sounds like a rather subjective measurement, there
are objective metrics that we can apply to assess how balanced our
architecture is. First of all, we can intuitively conclude that an archi‐
tecture with too few components can’t really describe the multiple
features of a system, whereas one with too many of them will be dif‐
ficult to grasp. For this reason, SIG recommends architectures
designed around having nine components, with an operating mar‐
gin of plus/minus three. This means that, if we have fewer than six
components, we should probably look into splitting some of them,
whereas if we have more than 12, we should try to consolidate them.
When components are consolidated, teams may need to revisit their
definition of “component” so it maps to a bigger unit of measure‐
ment.

On the other hand, the relative size of the components is also impor‐
tant. There probably isn’t much we can infer from an architecture
containing one really big component and eight tiny ones: the latter
will probably be minor utility libraries, whereas the former will hold
further substructures and divisions that are kept hidden. Compo‐
nents in an architecture should be as close in size as possible.

For most scenarios, the matter of assessing the size of a component
can be as simple as counting the number of lines of code, and indeed
this is what SIG recommends. However, there is an increasing num‐
ber of organizations that, thanks to the dynamic capabilities pro‐

16 | Chapter 2: The Ten Guidelines

vided by the Java Virtual Machine, develop different components
using different JVM-compatible languages. In cases like this, count‐
ing the number of lines may be misleading, and teams may choose
to count the number of files (as a proxy for the number of classes;
therefore, of “concepts”) or even metrics not directly related to
source code, like build duration.

Keep Your Codebase Small
The vast majority of programmers will maintain that smaller code‐
bases are easier to manage. This may sound like software develop‐
ment folklore, but after analyzing over 1,500 systems, SIG provided
statistical evidence of it. On top of this, structuring the overall sys‐
tems in several, smaller codebases as opposed to a single big one will
simplify some higher-order administrative tasks: for instance, if a
team needs to be split as part of an organizational restructuring, the
responsibilities of the new teams can be easily decided by assigning
the different codebases to each of them.

It may seem that, after applying the component guidelines above,
the size of the codebase has already been taken care of. This is not
necessarily true, since one could be splitting components without
splitting the associated codebase. For instance, the build tool Maven,
popular among Java programmers, allows the management and cre‐
ation of multiple JAR files within a single project, and therefore a
single codebase. In fact, given that splitting components is often eas‐
ier than splitting codebases, it is advisable to try and apply this
guideline by preventing unnecessary growth.

There are many things that can be done to prevent a codebase grow‐
ing too big. Applying the guideline “Write Code Once” is one of
them. “Couple Architecture Components Loosely” can help too,
since essential components with a high number of incoming depen‐
dencies, like logging or serialization, tend to have a publicly avail‐
able counterpart that could be used instead. Removing unused code
is another obvious way to reduce the size of the codebase.

However, one of the most effective ways to achieve this (but fre‐
quently also the most difficult to apply) is to avoid future-proofing.
Future-proofing is the practice of adding functionality to the code‐
base that hasn’t been required but that people believe might be
required at some point in the future. One common example of this
is unsolicited performance optimization utilities, like caching or

Architectural Guidelines | 17

connection pooling, added in case workload volumes grow to
unmanageable levels. While performance is a valid concern in some
situations, more often than not optimizations are added without the
backup of actual data.

How to decide when a codebase is too big depends on the technol‐
ogy at hand, since some languages are more verbose than others.
For instance, SIG sets the limit for Java-based systems at 175,000
lines of code, but this may be too much or too little when using
other languages. In any case, it is important to note that the number
of lines of code is just a proxy to calculate the real variable: the
amount of knowledge, functionality, and effort that is contained
within the codebase.

Enabling Guidelines
Up to now, we’ve talked about guidelines that express how the code
should be structured, both at the low and high level. Also, we’ve
talked about how the code needs to be modified whenever any of the
previous guidelines isn’t met. But so far we haven’t talked about the
inherent risk of the very application of the guidelines.

To be able to abide by the guidelines, we need to be constantly mak‐
ing changes to our code. However, with every change there is the
risk of accidents, which means every corrective measure is an
opportunity for a bug to appear. In order to apply the guidelines
safely, the code needs to be easy to understand and difficult to break.
The last two guidelines address these concerns, which is why I like
referring to them as enabling guidelines.

Automate Tests
Automated tests require a considerable amount of investment, but
the returns are almost invaluable. Automated tests can be rerun
again and again almost at no cost, which means we can frequently
reassess the status of the system. Thanks to this, we can safely per‐
form as many modifications as we deem necessary, knowing that
accidents that break it won’t go unnoticed for long. There is plenty
of literature on the topic of how to write automated tests, so we
won’t cover that here.

What we will cover is how to make sure that our set of automated
tests is a faithful representation of the requirements of the system.

18 | Chapter 2: The Ten Guidelines

On one side, we can use a technique called Test-Driven Develop‐
ment (TDD), in which tests are written before the implementation
they are testing. Moreover, when writing implementation, the pro‐
grammer has to write only as little as necessary to satisfy the tests at
hand. This will ensure that, if a functionality needs to be imple‐
mented, a test that verifies that functionality will be written first.

Even if we don’t use TDD, or if we inherit a legacy codebase, there
are ways to assess the quality of the automated tests suite. We can
use code coverage analysis tools, which tag the lines of code that are
being executed while running each test; this way, the tool can high‐
light code that isn’t exercised by any test and which may constitute a
gap in the testing suite. Unfortunately, code coverage analysis is not
enough: one thing is saying that a particular section of code is exe‐
cuted while running a test, and another one is saying that the test
performs the right checks after running. To go one step further, we
can use tools like Jester for Java or Nester for .NET. Jester will make
random modifications to the source code and then run the tests,
expecting at least one of them to fail; if none of the tests fail after
modifying the code, it will highlight this as a potential test gap.

Note, however, that automated tests don’t entirely remove the need
for manual tests. Certainly, repetitive tests that can be easily scripted
don’t need to be manual anymore, but qualitative assertions like usa‐
bility or penetration tests will probably still need to be performed
manually by an expert in the area.

Write Clean Code
Edsger Dijkstra, one of the fathers of modern programming, once
said that “in programming, elegance is not a dispensable luxury but
a quality that decides between success and failure”. Obscure code is
difficult to grasp, and therefore difficult to maintain. On the other
hand, code that can be picked up by any random programmer with
no problem represents the ultimate measure of maintainability.

The problem of clean code is that it’s a rather ambiguous topic. It’s
not simply a matter of code style, indentations, or variable name
lengths, it’s a matter of understandability. Code should clearly show
its intent and avoid any pitfalls or misgivings, so that anybody who
reads it will understand it quickly and be able to modify it without
making inadvertent mistakes. However, what exactly constitutes the

Enabling Guidelines | 19

right set of rules to decide if the code at hand is clean or not is some‐
thing that has to be agreed on by the team.

To help with this, SIG provides a basic yet functional set of rules to
write clean code as part of this guideline; these rules are a great
starting point for any team. If further information is needed, readers
can refer to the book Clean Code by Robert C. Martin (Prentice
Hall). Another technique that can help teams to write clean code is
doing unguided but supervised peer reviews: after writing code, a
programmer can share it with a peer, who will read the code and try
to understand it without help; any questions that the peer needs to
ask in order to understand the code represents an area where the
code isn’t self-evident, and therefore an area that needs to be modi‐
fied.

20 | Chapter 2: The Ten Guidelines

CHAPTER 3

Applying the Ten Guidelines

Apply All the Guidelines
Important as it is that these guidelines be applied to projects from
day one, it is even more important that they are applied in their
entirety. Applying only some of the guidelines may be even worse
than not applying them at all, for this may cause a dangerous side
effect: it could lead developers to think that the code is in a better
state than it actually is. Let’s see how this applies in practice by
assuming we are happy to apply the guidelines “Write Short Units of
Code” and “Write Code Once,” but not “Keep Unit Interfaces Small,”
and see what happens when we run the code.

Applying “Write Shorts Units of Code” and “Write Code
Once”
Let’s assume that we are building a new system. The purpose of the
system is not important right now, except to mention that this sys‐
tem will need a way to manage users. The first thing we create is a
User class that simply holds the first, last, and middle name of the
user.

public class User {
 private final String firstName;
 private final String middleName;
 private final String lastName;

 public User(String firstName, String middleName,
 String lastName) {

21

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 }
}

Adding Validation
The first validation requirement then arrives: while a middle name
is optional, the first and last names are mandatory, non-blank val‐
ues. We add some validation to the constructor.

public class User {
 private final String firstName;
 private final String middleName;
 private final String lastName;

 public User(String firstName, String middleName,
 String lastName) {
 if (firstName == null || firstName.trim().length() == 0) {
 throw new IllegalArgumentException("firstName");
 }
 if (lastName == null || lastName.trim().length() == 0) {
 throw new IllegalArgumentException("lastName");
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 }
}

It seems clear that the validation of both first and last name is essen‐
tially the same, which means we should apply the guideline “Write
Code Once” and refactor that code into its own method (showing
only the constructor and the resulting new method).

public User(String firstName, String middleName, String lastName) {
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(lastName, "lastName");

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
}

private void ensureNotEmpty(String field, String fieldName) {
 if (field == null || field.trim().length() == 0) {
 throw new IllegalArgumentException(fieldName);
 }
}

22 | Chapter 3: Applying the Ten Guidelines

Adding Contact Details
That looks like reasonable code. At this point, the next requirement
arrives: we also need the user’s email address, home number, and
mobile number in case we need to contact her. The resulting modi‐
fied class follows.

public class User {
 private final String firstName;
 private final String middleName;
 private final String lastName;
 private final String homeNumber;
 private final String mobileNumber;
 private final String emailAddress;

 public User(String firstName, String middleName,
 String lastName, String homeNumber, String mobileNumber,
 String emailAddress) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
 }

 private void ensureNotEmpty(String field, String fieldName) {
 if (field == null || field.trim().length() == 0) {
 throw new IllegalArgumentException(fieldName);
 }
 }
}

Validation is also required for these fields, although the validation
rules differ. In this case, email address is mandatory, and we need at
least one of home or mobile number; for simplicity, we’ll assume at
this point that we don’t need to check the format of the strings rep‐
resenting the phone numbers and email address, although in a real-
life scenario we would. Here is the resulting constructor:

public User(String firstName, String middleName,
 String lastName, String homeNumber, String mobileNumber,
 String emailAddress) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(emailAddress, "emailAddress");

Apply All the Guidelines | 23

 if ((homeNumber == null || homeNumber.trim().length() == 0)
 && (mobileNumber == null
 || mobileNumber.trim().length() == 0)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
}

The check for an empty field is something that we can refactor
applying “Write Code Once,” which would leave the class with the
following constructor and methods:

public User(String firstName, String middleName,
 String lastName, String homeNumber, String mobileNumber,
 String emailAddress) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(emailAddress, "emailAddress");

 if (isBlank(homeNumber) && isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
}

private void ensureNotEmpty(String field, String fieldName) {
 if (isBlank(field)) {
 throw new IllegalArgumentException(fieldName);
 }
}

private boolean isBlank(String field) {
 return field == null || field.trim().length() == 0;
}

The constructor is now 15 lines long, just on the verge of the limit
established by “Write Short Units of Code” but not quite enough to

24 | Chapter 3: Applying the Ten Guidelines

force a rewrite, and there isn’t any other repetition worth refactor‐
ing, which means the code is good considering the guidelines we are
applying.

Adding Address
We are ready to implement our next requirement: users also need a
full address, which is made up of two lines of address, a city, a post‐
code, and a country. The second line of address is optional, but all
other fields are mandatory; again, for simplicity, we’ll assume that
we don’t need to validate the format of the values, just that these are
there. The resulting constructor follows.

public User(String firstName, String middleName, String lastName,
 String homeNumber, String mobileNumber,
 String emailAddress, String addressLine1,
 String addressLine2, String city, String postcode,
 String country) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(emailAddress, "emailAddress");
 ensureNotEmpty(addressLine1, "addressLine1");
 ensureNotEmpty(city, "city");
 ensureNotEmpty(postcode, "postcode");
 ensureNotEmpty(country, "country");

 if (isBlank(homeNumber) && isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
 this.addressLine1 = addressLine1;
 this.addressLine2 = addressLine2;
 this.city = city;
 this.postcode = postcode;
 this.country = country;
}

Now this constructor is 24 lines long, which is more than what the
guideline “Write Short Units of Code” allows. We can make it
shorter by moving all the validation logic into a new private method,
resulting in the following code.

Apply All the Guidelines | 25

public User(String firstName, String middleName,
 String lastName, String homeNumber,
 String mobileNumber, String emailAddress,
 String addressLine1, String addressLine2,
 String city, String postcode, String country) {
 validateInputs(firstName, lastName, homeNumber,
 mobileNumber, emailAddress, addressLine1, city,
 postcode, country);

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
 this.addressLine1 = addressLine1;
 this.addressLine2 = addressLine2;
 this.city = city;
 this.postcode = postcode;
 this.country = country;
}

private void validateInputs(String firstName, String lastName,
 String homeNumber,
 String mobileNumber,
 String emailAddress,
 String addressLine1, String city,
 String postcode, String country) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(emailAddress, "emailAddress");
 ensureNotEmpty(addressLine1, "addressLine1");
 ensureNotEmpty(city, "city");
 ensureNotEmpty(postcode, "postcode");
 ensureNotEmpty(country, "country");

 if (isBlank(homeNumber) && isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }
}

Now both the constructor and the private validation method are
shorter than 15 lines, so according to the guidelines we are applying
we are good to go. However, by this point we can already feel that
this code is not quite right. Let’s take a look at the entire resulting
class.

public class User {
 private final String firstName;
 private final String middleName;

26 | Chapter 3: Applying the Ten Guidelines

 private final String lastName;
 private final String homeNumber;
 private final String mobileNumber;
 private final String emailAddress;
 private final String addressLine1;
 private final String addressLine2;
 private final String city;
 private final String postcode;
 private final String country;

 public User(String firstName, String middleName,
 String lastName, String homeNumber,
 String mobileNumber, String emailAddress,
 String addressLine1, String addressLine2,
 String city, String postcode, String country) {
 validateInputs(firstName, lastName, homeNumber, mobileNumber,
 emailAddress, addressLine1, city, postcode, country);

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
 this.addressLine1 = addressLine1;
 this.addressLine2 = addressLine2;
 this.city = city;
 this.postcode = postcode;
 this.country = country;
 }

 private void validateInputs(String firstName, String lastName,
 String homeNumber,
 String mobileNumber,
 String emailAddress,
 String addressLine1, String city,
 String postcode, String country) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(emailAddress, "emailAddress");
 ensureNotEmpty(addressLine1, "addressLine1");
 ensureNotEmpty(city, "city");
 ensureNotEmpty(postcode, "postcode");
 ensureNotEmpty(country, "country");

 if (isBlank(homeNumber) && isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }
 }

Apply All the Guidelines | 27

 private void ensureNotEmpty(String field, String fieldName) {
 if (isBlank(field)) {
 throw new IllegalArgumentException(fieldName);
 }
 }

 private boolean isBlank(String field) {
 return field == null || field.trim().length() == 0;
 }
}

By this point, we have a class with no public methods (other than
the constructor) and three private methods; this gives away the feel‐
ing that this class has enough complexity within it that it needs to be
sorted out in different methods, although the functionality of these
methods is not useful outside. On the other hand, the signatures of
some of those methods (the constructor and the validation method)
are so large that they span several lines. We can feel something is
missing, and that something is the application of the guideline
“Keep Unit Interfaces Small.” Let’s see what this class would look like
if we had applied this guideline.

Applying the Guideline “Keep Unit Interfaces Small”
“Keep Unit Interfaces Small” instructs us to keep method signatures
to a maximum of four parameters. Looking back at our example, we
didn’t violate this guideline until we added the contact details, so
we’ll pick it up from there.

Adding Contact Details
At this point, the constructor had six parameters and, counting vali‐
dation logic, it was 15 lines long. We’ll copy it next for quick refer‐
ence.

public User(String firstName, String middleName, String lastName,
 String homeNumber, String mobileNumber,
 String emailAddress) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");
 ensureNotEmpty(emailAddress, "emailAddress");

 if (isBlank(homeNumber) && isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }

 this.firstName = firstName;

28 | Chapter 3: Applying the Ten Guidelines

 this.middleName = middleName;
 this.lastName = lastName;
 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
}

We can bundle up all the contact details into a class of its own,
ContactDetails. After this, the constructor of User will only have
four parameters. Now, it makes sense that the validation of
homeNumber, mobileNumber, and emailAddress is moved to the
constructor of ContactDetails, which would result in the following
code.

public class User {
 private final String firstName;
 private final String middleName;
 private final String lastName;
 private final ContactDetails contactDetails;

 public User(String firstName, String middleName,
 String lastName, ContactDetails contactDetails) {
 ensureNotEmpty(lastName, "lastName");
 ensureNotEmpty(firstName, "firstName");

 if(contactDetails == null) {
 throw new IllegalArgumentException("contactDetails");
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.contactDetails = contactDetails;
 }

 private void ensureNotEmpty(String field, String fieldName) {
 if (isBlank(field)) {
 throw new IllegalArgumentException(fieldName);
 }
 }

 private boolean isBlank(String field) {
 return field == null || field.trim().length() == 0;
 }
}

public class ContactDetails {
 private final String homeNumber;
 private final String mobileNumber;
 private final String emailAddress;

Apply All the Guidelines | 29

 public ContactDetails(String homeNumber, String mobileNumber,
 String emailAddress) {
 ensureNotEmpty(emailAddress, "emailAddress");

 if (isBlank(homeNumber) && isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }

 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
 }

 private void ensureNotEmpty(String field, String fieldName) {
 if (isBlank(field)) {
 throw new IllegalArgumentException(fieldName);
 }
 }

 private boolean isBlank(String field) {
 return field == null || field.trim().length() == 0;
 }
}

This refactoring complies with “Keep Unit Interfaces Small” but not
“Write Code Once” because we had to duplicate the validation
helper methods in both classes. To avoid this duplication, we can
move these methods into a third class, which we can call Validator;
given that Validator doesn’t need to handle any internal status, the
new methods can be created as static. The three classes will now
look pretty tidy.

public class Validator {
 public static void ensureNotEmpty(String field,
 String fieldName) {
 if (isBlank(field)) {
 throw new IllegalArgumentException(fieldName);
 }
 }

 public static boolean isBlank(String field) {
 return field == null || field.trim().length() == 0;
 }
}

public class User {
 private final String firstName;
 private final String middleName;
 private final String lastName;

30 | Chapter 3: Applying the Ten Guidelines

 private final ContactDetails contactDetails;

 public User(String firstName, String middleName,
 String lastName, ContactDetails contactDetails) {
 Validator.ensureNotEmpty(lastName, "lastName");
 Validator.ensureNotEmpty(firstName, "firstName");

 if(contactDetails == null) {
 throw new IllegalArgumentException("contactDetails");
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.contactDetails = contactDetails;
 }
}

public class ContactDetails {
 private final String homeNumber;
 private final String mobileNumber;
 private final String emailAddress;

 public ContactDetails(String homeNumber, String mobileNumber,
 String emailAddress) {
 Validator.ensureNotEmpty(emailAddress, "emailAddress");

 if (Validator.isBlank(homeNumber)
 && Validator.isBlank(mobileNumber)) {
 String message = "homeNumber or mobileNumber is needed";
 throw new IllegalArgumentException(message);
 }

 this.homeNumber = homeNumber;
 this.mobileNumber = mobileNumber;
 this.emailAddress = emailAddress;
 }
}

Adding Address
By this point, we can already see the effects of applying “Keep Unit
Interfaces Small,” but let’s continue the example until the end. Let’s
add the address to the User class, leaving the following constructor:

public User(String firstName, String middleName, String lastName,
 ContactDetails contactDetails, String addressLine1,
 String addressLine2, String city, String postcode,
 String country) {
 Validator.ensureNotEmpty(lastName, "lastName");
 Validator.ensureNotEmpty(firstName, "firstName");

Apply All the Guidelines | 31

 Validator.ensureNotEmpty(addressLine1, "addressLine1");
 Validator.ensureNotEmpty(city, "city");
 Validator.ensureNotEmpty(postcode, "postcode");
 Validator.ensureNotEmpty(country, "country");

 if(contactDetails == null) {
 throw new IllegalArgumentException("contactDetails");
 }

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 this.contactDetails = contactDetails;
 this.addressLine1 = addressLine1;
 this.addressLine2 = addressLine2;
 this.city = city;
 this.postcode = postcode;
 this.country = country;
}

This constructor violates two guidelines, “Write Short Units of
Code” and “Keep Unit Interfaces Small.” We could bundle up all the
new address fields into a new class, Address, and move the valida‐
tion of relevant fields to that class. However, that would leave the
constructor with five parameters, which would still violate “Keep
Unit Interfaces Small.” To fix this, we will also bundle the name-
related attributes into a new class, FullName.

This would be the new FullName class, reusing the existing
Validator:

public class FullName {
 private final String firstName;
 private final String middleName;
 private final String lastName;

 public FullName(String firstName, String middleName,
 String lastName) {
 Validator.ensureNotEmpty(lastName, "lastName");
 Validator.ensureNotEmpty(firstName, "firstName");

 this.firstName = firstName;
 this.middleName = middleName;
 this.lastName = lastName;
 }
}

32 | Chapter 3: Applying the Ten Guidelines

This would be the new Address class:

public class Address {
 private final String addressLine1;
 private final String addressLine2;
 private final String city;
 private final String postcode;
 private final String country;

 public Address(String addressLine1, String addressLine2,
 String city, String postcode, String country) {
 Validator.ensureNotEmpty(addressLine1, "addressLine1");
 Validator.ensureNotEmpty(city, "city");
 Validator.ensureNotEmpty(postcode, "postcode");
 Validator.ensureNotEmpty(country, "country");

 this.addressLine1 = addressLine1;
 this.addressLine2 = addressLine2;
 this.city = city;
 this.postcode = postcode;
 this.country = country;
 }
}

And, finally, this would be the end state of the User class:

public class User {
 private final FullName fullName;
 private final ContactDetails contactDetails;
 private final Address address;

 public User(FullName fullName, ContactDetails contactDetails,
 Address address) {
 if (fullName == null) {
 throw new IllegalArgumentException("fullName");
 }

 if (contactDetails == null) {
 throw new IllegalArgumentException("contactDetails");
 }

 if (address == null) {
 throw new IllegalArgumentException("address");
 }

 this.fullName = fullName;
 this.contactDetails = contactDetails;
 this.address = address;
 }
}

Apply All the Guidelines | 33

The User class can be further improved by applying “Write Code
Once” and removing duplication, which would leave it as follows:

public class User {
 private final FullName fullName;
 private final ContactDetails contactDetails;
 private final Address address;

 public User(FullName fullName, ContactDetails contactDetails,
 Address address) {
 ensureNotNull(fullName, "fullName");
 ensureNotNull(contactDetails, "contactDetails");
 ensureNotNull(address, "address");

 this.fullName = fullName;
 this.contactDetails = contactDetails;
 this.address = address;
 }

 private void ensureNotNull(Object fieldValue,
 String fieldName) {
 if (fieldValue == null) {
 throw new IllegalArgumentException(fieldName);
 }
 }
}

If we now compare the end result with the one we obtained without
applying the guideline “Keep Unit Interfaces Small,” we can see a big
difference. In the former case, at the end of the coding exercise we
only had one class, User, which was clearly bigger than desirable
and had too many variables and moving parts; it’s easy to see that, if
the first version of User were to be modified, mistakes could be
inadvertently made. However, just by applying “Keep Unit Interfaces
Small,” the end result was dramatically different: instead of one class,
we had five, all of them small and obvious in their own way. If a pro‐
grammer was to make a mistake in one of these five classes, it would
stand out much more clearly and therefore the probability of some‐
body catching it would be higher.

This example illustrates just how important it is that the Ten Guide‐
lines are not cherry-picked. They were designed to complement
each other, and their benefits can only be achieved if applied
together; as we just saw, leaving out even only one of them could
have a dramatic effect on the quality of the end product.

34 | Chapter 3: Applying the Ten Guidelines

Isn’t the Address Class Violating
“Keep Unit Interfaces Small”?

Yes, it is. However, just as we are about to see in the next section,
sometimes it makes sense to make an exception. For the case of the
Address class, there isn’t an intuitive way to bundle any of its argu‐
ments into another class, and the constructor has only one more
parameter than the guideline allows. As things stand, the code cur‐
rently benefits from not applying this guideline.

Getting Value from the Ten Guidelines
There is a common joke in software development that says “the first
90% of a software development project costs as much as the other
90%.” What this joke shows is that while the vast majority of
requirements in a project tend to be relatively straightforward, there
is always a small fraction of requirements that represent unusual
edge cases and abnormalities that are incredibly hard to code, up to
the point that this small fraction requires as much energy and dedi‐
cation as the rest of the project, frequently running the project over
budget.

The same can happen when applying the Ten Guidelines to our soft‐
ware. If we attempt to apply all the guidelines strictly to the letter,
we’ll find ourselves spending a lot of time and effort on a few outli‐
ers. However, while we rarely have the option to drop requirements
that are too difficult to implement, we do have the option to give
ourselves some room for flexibility when applying the guidelines.
We must remember that the Ten Guidelines are here to help us
make projects more maintainable in the future, and therefore to
help us reduce the cost of writing software. If we let the guidelines
govern all of our decision-making, we’ll find ourselves rewriting the
code so much that we’ll drive the cost up instead of down.

There needs to be, therefore, a threshold of tolerance when applying
the guidelines to make sure we get value out of them. What’s more,
the particular threshold may be different for different teams, or even
for the same team over time. For instance, a team of junior pro‐
grammers may have a hard time refactoring code to make it fully
compliant, which means a higher tolerance may be needed to keep a

Getting Value from the Ten Guidelines | 35

good balance of short- and long-term benefits; however, an experi‐
enced team with a higher knowledge of design patterns and other
refactoring techniques can manipulate the code much more effec‐
tively, which means we can aim at a higher level of quality. Similarly,
a team that inherits some legacy codebase may need to start with a
high tolerance when applying the guidelines so as to avoid paralysis
by refactoring, although as the code is improved, this tolerance can
be progressively reduced.

SIG, the creators of the Ten Guidelines, have embedded this wisdom
into the SIG/TÜViT Evaluation Criteria (or EC for short), its
quality-scoring system for code. EC is based on the Ten Guidelines
but includes a number of tolerance thresholds that are benchmarked
and calibrated every year against a set of software systems across
industries. This allows teams to monitor the quality of their code‐
base in an effective manner, correcting those violations that could
cause a greater impact to the code but leaving the harmless ones.

Flexibility is a double-edged sword, though. Every project experien‐
ces moments of pressure when deadlines loom nearer than one
would desire, and in those moments stakeholders may be tempted to
argue that the guidelines are just slowing the team down and that
higher flexibility is needed. This usually causes unnecessary con‐
frontation between stakeholders and team members. The important
thing to note in these situations is that those arguing in favor of
relaxing the application of the guidelines do so not because they
don’t appreciate the long-term benefits these provide but because
they haven’t been made aware of their value. For organizations to
fully benefit from the Ten Guidelines, everybody needs to be fully
aware of them: the Ten Guidelines have to be instilled into the core
values of the organization.

Not Too Much, Not Too Little: Just Right
The previous section showed how being too strict about the Ten
Guidelines could grind the team to a halt, whereas being too lax
could be the equivalent of cutting corners. However, reaching the
right balance can only be done by taking into account many other
variables beyond the guidelines. In other words, while the guidelines
need to be applied in their entirety to be effective, they also need to
be applied within a context.

36 | Chapter 3: Applying the Ten Guidelines

SIG, with its EC scoring system, provides a way to measure how
much a codebase is adhering to the guidelines. But the score is only
the starting point. Whenever changes in a codebase make the score
fall below the agreed-upon threshold, it is not enough to send the
code back to the programmers and expect them to rewrite it until
the score is back up. A conversation needs to happen so as to find
the reason for which the score went down; maybe a key member of
the team has been out sick, maybe work has turned onto a particu‐
larly complex domain, or maybe programmers have been plain
sloppy. Only after finding the root cause we can understand what
actions need to be taken to bring the score back up: lower expecta‐
tions until out sick members are back, further training on the
domain at hand, or stronger leadership.

The most important thing to take into account is that the Ten
Guidelines, and their associated EC score, are not a measure of suc‐
cess by themselves, but rather a way to achieve success. Only then
we will be able to ascertain the right level of flexibility for a given
project, team, and time.

Not Too Much, Not Too Little: Just Right | 37

CHAPTER 4

Ten Real-World Use Cases

Perhaps the most important takeaway of this report is the fact that
the Ten Guidelines aren’t just a theoretical exercise. In fact, the
guidelines were created after examining what made software
projects successful and maintainable, and once created, SIG applied
them successfully to real-life projects.

In this chapter we will see 10 business cases where the Ten Guide‐
lines were applied successfully.

Interamerican Greece
Interamerican Greece, or IAG, is the top insurance company in
Greece. In 2010, it had 1,400 employees and worked with 1,800
intermediaries to provide insurance to more than one million
Greeks. But by that time, the market was beginning to change. On
one side, customers wanted to buy insurance directly from the
insurer via the Internet; on the other side, intermediaries wanted to
have more e-commerce options. IAG responded to the challenge to
become the first company in Greece to sell insurance over the Inter‐
net.

However, the increased reliance on IT to drive business exposed a
significant risk: much of IAG’s IT infrastructure had suffered from
years of underinvestment—some of the systems were 40 years
old. Failures couldn’t be completely ruled out, and these would be
directly visible to the client, which would damage their reputation.
IAG needed a new strategy.

39

The in-house programmers had already migrated some older sys‐
tems to a newer Java platform, and the main question at IAG was
whether this was the right approach for the other systems. SIG ana‐
lyzed the migrated systems according to the Ten Guidelines using
their EC score system, giving a score of three out of five. This wasn’t
as high as desirable, but it was enough to prove that the strategy was
sound. Therefore, IAG set out to migrate further systems using their
in-house teams but with the assistance of SIG to aim at a score of
four out of five. Thanks to monthly reviews and constant communi‐
cation with staff, the values of the Ten Guidelines were transmitted
and applied, helping IAG’s software nearly achieve the maximum
score, five out of five.

Alphabet International
Alphabet International, part of the BMW Group, provides leasing
and business mobility solutions in Europe. After acquiring ING Car
Lease in 2011, their market share boosted dramatically: by 2012, the
combined company had more than 490,000 cars under contract in
19 countries.

One of the main challenges in the acquisition of ING Car Lease, and
in any other merger or acquisition, is consolidating the IT systems
of both companies. Both Alphabet International and ING Car Lease
had their own applications to manage lease contracts, some of them
in-house and some of them provided by partners. SIG was brought
in to analyze those applications, highlighting the ones that were too
tied to operations in a particular region (and therefore not suitable
for a global operation), those that didn’t align with long-term objec‐
tives, and those that would become part of Alphabet International’s
main IT assets. This knowledge was instrumental for Alphabet
International to lay out their long-term technological strategy, and
provided a benchmarking framework to assess the quality of appli‐
cations as they were being modified, created, or phased out.

Port of Rotterdam Authority
The Port of Rotterdam is the largest port in Europe and, until 2004,
was also the busiest in the world. It is managed by the Port of Rot‐
terdam Authority, a public company owned by the Municipality of
Rotterdam and the Dutch State. Managing port activities is incredi‐

40 | Chapter 4: Ten Real-World Use Cases

bly complex, and until recently this was done by a collection of mul‐
tiple, independent systems connected with varying degrees of luck.

In order to remain competitive, the Port of Rotterdam Authority
realized that they needed a new, fully integrated solution, one that
could be managed more effectively and efficiently. They named their
new system HaMIS, the Harbour Master Management and Informa‐
tion System. Although they wanted to create this solution in-house,
they realized that managing complex IT systems is not part of their
core business; this added the long-term goal of externalizing man‐
agement of HaMIS to a third-party provider at some point.

SIG was hired to assist in the creation and externalization of HaMIS.
The Ten Guidelines, implemented in the EC scoring system, were
used with a double objective. On one hand, the objective was to
ensure that HaMIS provided the same level of functionality as the
previous, scattered solutions. On the other hand, they also needed to
provide empirical data that demonstrated the high quality of
HaMIS, which could be used by the Port of Rotterdam Authority to
negotiate a better deal when externalizing the management of
HaMIS. What’s more, once management had been transferred to a
third party, the EC scoring system could be used as part of the Ser‐
vice Level Agreement to ensure that the third party kept quality
high.

Care Schadeservice
Care Schadeservice is the largest car repair organization in the Ben‐
elux region. Repairing cars is a labor-intensive activity, which means
repair costs can easily skyrocket for even the simplest breakdown.
For this reason, Care Schadeservice aimed at finding as many effi‐
ciencies as possible, creating a streamlined workflow that minimized
waste. Care Schadeservice initially used off-the-shelf IT products to
manage their workflow, but being the biggest company in the care
repair sector, they were the first to notice the limitations of standar‐
dised products. So in 2004 they set out to create their own in-house
solution, CareFlow, with a second generation of the platform com‐
ing out six years later.

SIG was involved in the creation of both generations, although in
different ways. During the creation of CareFlow v1, Care Schadeser‐
vice was part of a holding company listed in the stock market, which
required them to include an objective assessment of any software

Care Schadeservice | 41

developed in-house; SIG, with their EC scoring system based on the
Ten Guidelines, provided such assessment.

When CareFlow v2 was needed, Care Schadeservice decided that
they wanted to outsource the creation and maintenance of the sys‐
tem but with the requirement of obtaining a product of certifiable
quality. The EC scoring system was perfect for this. Care Schadeser‐
vice contracted NetRom to perform the work, and with the help of
SIG established a minimum score of three out of five for the soft‐
ware.

Vhi Ireland
Vhi Ireland is a leading private health insurance company. Like
many other companies, Vhi Ireland had a combination of systems
that had evolved over decades. On top of this, in many occasions the
systems had to be modified by external developers and sub-
contractors, which contributed to a lack of cohesiveness in the code‐
base.

The situation was such that Vhi Ireland had doubts regarding the
suitability of their existing IT systems for their long-term objectives;
their main concern was that there could be technical issues that
slowed down or even blocked development of further projects. In
order to objectively measure the state of affairs, Vhi Ireland contac‐
ted SIG to perform a full assessment of their software. The end
result was the creation of a new online platform, which was imple‐
mented while instilling the quality values of the Ten Guidelines to
developers and senior management.

Rabobank International
Rabobank International needed a new application for foreign cur‐
rency transactions by bank employees and large clients. They ana‐
lyzed existing packages but didn’t find any suitable ones, so they
turned to a custom-built application. Nexaweb was contracted to
create and maintain the new foreign currency application: RITA.

Unfortunately, RITA didn’t meet expectations. There were constant
complaints from the trading floor regarding the stability of the
application, and stakeholders were unhappy about the slow turn‐
around of new features. Rabobank International and Nexaweb had
agreements specific to the architecture and code quality, but these

42 | Chapter 4: Ten Real-World Use Cases

were too abstract to be discussed effectively. A more specific way to
measure quality was needed.

With the help of SIG, the underlying problems of RITA were slowly
unearthed. Fixing the architectural problems provided stability to
the platform, while improving the quality of the code made it easier
to work with, which lead to shorter release cycles. This, in turn, lif‐
ted pressure on each of the individual releases, since a feature miss‐
ing a particular release would soon be included in the next one. This
ultimately increased confidence in the platform, allowing it to be
deployed globally.

Ministry of Infrastructure and Environment in
the Netherlands
The Ministry of Infrastructure and Environment in the Netherlands
is responsible for, among other things, the electronic annual envi‐
ronmental report (e-MJV). This report includes, for each company
in the Netherlands, the total amount of harmful substances they
have released into the water and air. These reports are then sent to
the National Institute for Public Health and the Environment, and
from there to the European emission register. This way, the Nether‐
lands can make sure that they comply with international environ‐
mental agreements such as the Kyoto Protocol and the European
environmental agreements.

Up until 2000, all the reports were obtained through paper forms.
Since this was too inefficient, a desktop application was created so
that companies could report these details electronically. The desktop
application worked well for a few years, but then its architectural
flaws became apparent: making sure that the right version of the
application was being used on all computers was administratively
costly. A web-based second generation was therefore commissioned.

However, this second version was rushed out due to legislative dead‐
lines, which affected the end result. The application was slow, the
interface wasn’t user-friendly, and the system was buggy. Many
changes were needed to bring the application to acceptable levels,
and there were doubts about whether the state of the code would
allow for such changes in a timely manner.

In order to understand what the best way to improve the application
was, SIG was contacted to analyze e-MJV and provide an assessment

Ministry of Infrastructure and Environment in the Netherlands | 43

of weaknesses. Thanks to the Ten Guidelines, SIG was able to indi‐
cate that the code was of average quality (three out of five), and
summarize the main issues within it. A decision was made to
address the most important ones until the code quality achieved a
score of at least four out of five, the level at which e-MJV could be
considered maintainable. After this point, working with e-MJV
became much easier, changes were performed faster, and the future
of e-MJV seemed safer.

ProRail
ProRail is responsible for the maintenance and operation of the rail
network in the Netherlands. The Netherlands might be a small
country, but it boasts an incredibly busy rail network: 6,500 kilome‐
tres of track, 3,000 crossings, 4,500 kilometres of overhead lines,
8,600 railroad switches, and 390 railways stations. On top of this, the
Netherlands is home to Rotterdam, where the largest port in Europe
is located. This indicates the level of passenger and freight traffic
that the Dutch rail network has to support.

Being responsible for the maintenance and operation of the rail net‐
work means that ProRail needs to control every single aspect of the
infrastructure. In order to achieve this, ProRail makes use of techni‐
cal drawings that describe each aspect of the infrastructure: a signal‐
ling drawing shows the different signals, an overhead drawing shows
the structure of overhead power lines, and so forth. The administra‐
tion of these drawings was a source of problems for ProRail for two
reasons: one, most of the technical drawings were managed man‐
ually on paper; two, the different types of designs risked imposing
restrictions on each other and often these restrictions weren’t appa‐
rent until the installation was being performed, leading to delays
and extra costs.

To fix this, ProRail made use of the services of LOXIA, who devel‐
oped a new software to manage the drawings electronically. How‐
ever, the responsibilities of this new software were far-reaching:
security, safety, operational costs—there was a lot at stake. ProRail
needed to ensure the software was of the highest quality, and SIG
was employed to help with the quality assessment. SIG’s score sys‐
tem based on the Ten Guidelines acted not only as a way to measure
the quality of the software, but the score itself served as a motivating
catalyst among staff. Now ProRail can easily share electronic designs

44 | Chapter 4: Ten Real-World Use Cases

with operators to assist them in creating timetables for their trains
while employees keep a vigilant eye over code quality for reliable
results.

ING Bank
ING Bank is a global bank with a presence in more than 40 coun‐
tries and a workforce comprising more than 75,000 people. For any
company this big, constantly adapting to new practices and techni‐
ques is a matter of survival. ING Bank had already performed a
transformation towards Agile development, but then they needed to
take it one step further to institutionalize code quality beyond the
scope of the team.

Work started with their Mijn ING website, a product with which
more than 40 teams are involved. Each team curated its own code to
make sure the quality was good from a local perspective, but there
were fears of cross-team inefficiencies. To solve this, SIG was
brought in to perform a holistic analysis. As we have seen, the Ten
Guidelines also cover overarching architectural concerns, and this
enabled SIG to pinpoint weaknesses that were invisible to the indi‐
vidual teams. Thanks to this, ING Bank was able to provide higher
transparency regarding the quality of their software and, therefore, a
better vision for senior management on the overall status.

Nykredit
Nykredit is the largest credit company in Denmark. Mortgages and
commercial banking activity make up the core business of Nykredit,
although they also offer personal pension plans and insurance. They
also lead the way in Internet banking, having received the award for
“the most digital company in Denmark” in 2010 and 2011.

By 2010, it became apparent that they had outgrown their IT infra‐
structure. The monolithic IT solution that Nykredit had hitherto
used was aimed at small- and medium-sized banks, and it was time
to move to a new, more tailored solution. Nykredit decided to use
Finacle by Infosys, but with an important number of customiza‐
tions. They were planning to employ 150 people over five years for
this project, and they needed a way to make sure their investment
would go in the right direction.

ING Bank | 45

SIG helped Nykredit create their own quality assessment tool: Nyk‐
redit Quality Tooling, or NQT. NQT analyzes all the Java code writ‐
ten by or for Nykredit, highlighting portions that violate the Ten
Guidelines or other quality metrics established as part of their agree‐
ment; this flagged code is reviewed by software architects before a
final report is produced for senior management. Thanks to this,
Nykredit has been able to gradually deprecate their old platforms
and substitute them with the new software.

46 | Chapter 4: Ten Real-World Use Cases

About the Author
Abraham Marín-Pérez is an independent Java programmer, author,
public speaker, and Agile consultant. He helps organizations achieve
their objectives through a number of varying challenges, both tech‐
nical and non-technical. He also helps run the London Java Com‐
munity, and contributes as a Java Editor at InfoQ.

	Cover
	Additional Resources
	Copyright
	Table of Contents
	Preface
	Acknowledgments

	Chapter 1. “How Did We Get into This Mess?”
	Chapter 2. The Ten Guidelines
	Unit Guidelines
	Write Short Units of Code
	Write Simple Units of Code
	Write Code Once
	Keep Unit Interfaces Small

	Architectural Guidelines
	Separate Concerns in Modules
	Couple Architecture Components Loosely
	Keep Architecture Components Balanced
	Keep Your Codebase Small

	Enabling Guidelines
	Automate Tests
	Write Clean Code

	Chapter 3. Applying the Ten Guidelines
	Apply All the Guidelines
	Applying “Write Shorts Units of Code” and “Write Code Once”
	Applying the Guideline “Keep Unit Interfaces Small”

	Getting Value from the Ten Guidelines
	Not Too Much, Not Too Little: Just Right

	Chapter 4. Ten Real-World Use Cases
	Interamerican Greece
	Alphabet International
	Port of Rotterdam Authority
	Care Schadeservice
	Vhi Ireland
	Rabobank International
	Ministry of Infrastructure and Environment in the Netherlands
	ProRail
	ING Bank
	Nykredit

	About the Author

