
K. Matt Dupree

A Quick Look for Developers

RxJava for  
Android App  
Development



Additional 
Resources
4 Easy Ways to Learn More and Stay Current

Programming Newsletter
Get programming  related news and content delivered weekly to your inbox.
oreilly.com/programming/newsletter

Free Webcast Series
Learn about popular programming topics from experts live, online.
webcasts.oreilly.com

O’Reilly Radar
Read more insight and analysis about emerging technologies.
radar.oreilly.com

Conferences
Immerse yourself in learning at an upcoming O’Reilly conference.
conferences.oreilly.com

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15305

http://oreilly.com/programming/newsletter
http://webcasts.oreilly.com
http://radar.oreilly.com
http://conferences.oreilly.com




K. Matthew Dupree

RxJava for Android App
Development



978-1-491-93933-8

[LSI]

RxJava for Android App Development
by K. Matt Dupree

Copyright © 2015 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com ). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Nicole Shelby
Copyeditor: Kim Cofer

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

October 2015:  First Edition

Revision History for the First Edition
2015-09-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491939338 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. RxJava for
Android App Development, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491939338


Table of Contents

An Introduction to RxJava. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Sharp Learning Curve, Big Rewards                                                 1
Observables                                                                                           3
Observers                                                                                              4
Observable Creation and Subscribers                                               6
Schedulers                                                                                             8
Operators                                                                                            10
Conclusion                                                                                          13

RxJava in Your Android Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
RxJava and the Activity Lifecycle                                                    15
Why RxJava-based Solutions Are Awesome                                  21
Conclusion                                                                                          29

The Future of RxJava for Android Development. . . . . . . . . . . . . . . . .  31
Further Reading for RxJava                                                              31
Future Directions for Android App Development with

RxJava                                                                                              32

iii





1 Fragmented podcast, Episode 3, “The RxJava Show,” 32:26-32:50.

An Introduction to RxJava

Sharp Learning Curve, Big Rewards
I was pretty much dragged into RxJava by my coworkers...[RxJava] was
a lot like git...when I first learned git, I didn’t really learn it. I just spent
three weeks being mad at it...and then something clicked and I was like

‘Oh! I get it! And this is amazing and I love it!' The same thing hap‐
pened with RxJava. 

—Dan Lew1

As Dan Lew, a Google Developer Expert Android Developer, points
out in the preceding quotation, RxJava can be very difficult to learn.
This is unfortunate because, for reasons I point out in the next chap‐
ter, RxJava can make asynchronous data handling in Android apps
much cleaner and more flexible. In this chapter, I provide a basic
introduction to RxJava.

If you are skeptical that RxJava is worth learning about, given its
steep learning curve, skip ahead to the second section of the next
chapter. In that section, I go over a situation in which RxJava pro‐
vides us with advantages over traditional ways of handling asyn‐
chronous data in Android applications. Although you won’t under‐
stand exactly how the code in that section works, you will be able to
see how RxJava makes quick work of tasks that can often become
messy and inflexible when handled without RxJava. After seeing
how much cleaner RxJava can make your Android code, hopefully
you will have the motivation to return here to this introduction. 

1



Let’s start with the guiding example that will help us get a handle on
RxJava. Imagine we are building a HackerNews client, an app that
allows users to read HackerNews stories and comments. Our Hack‐
erNews client might look a little like Figure 1-1:

Figure 1-1. An Android HackerNews client

Obviously, this app would require us to fetch the HackerNews data
over the network, and because we can’t block the UI thread, imple‐
menting this app would require us to fetch HackerNews data asyn‐
chronously. RxJava will be helpful in implementing this app because
it is a library that allows us to represent any operation as an asyn‐
chronous data stream that can be created on any thread, declaratively
composed, and consumed by multiple objects on any thread.

That last statement about RxJava may not make complete sense to
you now, but you should be able to understand it by the time you
are finished reading this chapter. The first phrase that is likely to
seem vague or unfamiliar in the preceding definition of RxJava is
“asynchronous data stream.” Let’s start by unpacking that phrase.

2 | An Introduction to RxJava



2 See the Oracle docs.

3 By the way, my usage of the for-each syntax should not be taken as a blanket endorse‐
ment for using for-each syntax while writing Android apps. Google explicitly warns us
that there are cases where this is inappropriate.

Observables
RxJava’s asynchronous data streams are “emitted” by Observa
bles. The reactive extensions website calls Observables the “asyn‐
chronous/push ‘dual' to the synchronous/pull Iterable.”
Although Java’s Iterable is not a perfect dual of RxJava’s Observa
bles, reminding ourselves how Java’s Iterables work can be a help‐
ful way of introducing Observables and asynchronous data streams.

Every time we use the for-each syntax to iterate over a Collection,
we are taking advantage of Iterables. If we were building our
HackerNews client, we might loop over a list of Storys and log the
titles of those Storys:

for (Story story : stories) {
    Log.i(TAG, story.getTitle());
}

This is equivalent to the following:2

for (Iterator<Story> iterator = stories.iterator(); itera
tor.hasNext();) {
    Story story = iterator.next();
    Log.i(TAG, story.getTitle());
}

As we can see in the preceding code, Iterables expose an Iterator
that can be used to access the elements of a Collection and to
determine when there are no more unaccessed elements left in the
Collection.3 Any object that implements the Iterable interface is,
from the perspective of clients interacting with that interface, an
object that provides access to a stream of data with a well-defined
termination point.

Observables are exactly like Iterables in this respect: they provide
objects access to a stream of data with a well-defined termination
point.

The key difference between Observables and Iterators is that
Observables provide access to asynchronous data streams while

Observables | 3

http://bit.ly/enhanced-for
http://bit.ly/dev-android2
http://reactivex.io/intro.html


Iterables provide access to synchronous ones. Accessing a piece of
data from an Iterable’s Iterator blocks the thread until that ele‐
ment has been returned. Objects that want to consume an Observa
ble’s data, on the other hand, register with that Observable to
receive that data when it is ready.

The Key Difference between Observables and Iterables 

Observables provide access to asynchronous data
streams while Iterables provide access to synchro‐
nous ones.

To make this distinction more concrete, think again about the pre‐
ceding snippet that logs a HackerNews story’s title within a Collec
tion<Story>. Now imagine that the Storys logged in that snippet
were not available in memory, that each story had to be fetched
from the network, and that we wanted to log the Storys on the main
thread. In this case, we would need the stream of Storys to be an
asynchronous stream and using an Iterable to access each element
in that stream would be inappropriate.

Instead, in this case, we should use an Observable to access each
story as it is returned by the HackerNews API. Now, we know that
we can access an element in an Iterable’s stream of data by calling
Iterator.next() on its Iterator. We do not know, however, how
to access the elements of an Observable’s asynchronous data stream.
This brings us to the second fundamental concept in RxJava: the
Observer.

Observers
Observers are consumers of an Observable’s asynchronous data
stream. Observers can react to the data emitted by the Observable
in whatever way they want. For example, here is an Observer that
logs the titles of Storys emitted by an Observable:

storiesObservable.subscribe(new Observer<Story>() {

    @Override
    public void onCompleted() {}

    @Override
    public void onNext(Story story) {

4 | An Introduction to RxJava



        Log.i(TAG, story.getTitle());
    }

    //...
});

Note that this code is very similar to the previous for-each snippet.
In both snippets, we are consuming a data stream with a well-
defined termination point. When we loop through a Collection
using the for-each syntax, the loop terminates when iterator.has
Next() returns false. Similarly, in the preceding code, the Observer
knows that there are no more elements left in the asynchronous data
stream when onCompleted() is called.

The main difference between these two snippets is that when we
loop over a Collection, we’re logging the Story titles synchro‐
nously and we when subscribe to the stringsObservable, we’re reg‐
istering to log the Story titles asynchronously as they become avail‐
able.

An Observer can also handle any exceptions that may occur while
the Observable is emitting its data. Observers handle these errors in
their onError() method.

To see why this is a useful feature of RxJava, imagine for a moment
that the Story objects emitted by the Observable are objects that are
converted from a JSON response to a HackerNews API call. If the
HackerNews API returned malformed JSON, which in turn caused
an exception in converting the JSON to Story model objects, the
Observer would receive a call to onError(), with the exception that
was thrown when the malformed JSON was being parsed.

At this point, there are two pieces of the aforementioned definition
of RxJava that should be clearer. To see this, let’s take a second look
at that definition:

RxJava is a library that allows us to represent any operation as an
asynchronous data stream that can be created on any thread, declara‐
tively composed, and consumed by multiple objects on any thread.

We have just seen that Observables are what allow us to represent
any operation as an asynchronous data stream. Observables are simi‐
lar to Iterables in that they both provide access to data streams
with well-defined termination points. We also now know an impor‐
tant difference between Observables and Iterables: Observables

Observers | 5



4 Design Patterns: Elements of Reusable Object-Oriented Software (Kindle edition)

expose asynchronous data streams while Iterables expose synchro‐
nous ones.

Observers are objects that can consume the asynchronous data emit‐
ted by an Observable. There can be multiple Observers that are reg‐
istered to receive the data emitted by an Observable. Observers can
handle any errors that might occur while the Observable is emitting
its data and Observers know when there are no more items that will
be emitted by an Observable.

There are still some things from the preceding definition of RxJava
that are unclear. How exactly does RxJava allow us to represent any
operation as an asynchronous data stream? In other words, how do
Observables emit the items that make up their asynchronous data
streams? Where do those items come from? These are questions that
we will address in the next section.

Observable Creation and Subscribers
Observables emit asynchronous data streams. The way in which
Observables emit their items again has some similarities to how
Iterables expose their data streams. To see this, recall that Itera
bles and Iterators are both pieces of the Iterator pattern, a pattern
whose main aim is well captured by the Gang of Four in  Design Pat‐
terns: Elements of Reusable Object-Oriented Software:

Provide a way to access the elements of an aggregate object without
exposing its underlying representation.4

The Iterator pattern allows any object to provide access to its ele‐
ments without exposing that object’s underlying representation.
Similarly, Observables provide access to the elements of an asyn‐
chronous data stream in a way that completely hides and is largely
independent of the process by which that data stream is created.
This allows Observables to represent virtually any operation.

Here is an example that will make the Observable’s flexibility more
concrete. Observables are typically created by passing in a function
object that fetches the items of an asynchronous data stream and
notifies a Subscriber that those items have become available. A

6 | An Introduction to RxJava



Subscriber is just an Observer that can, among other things,
unsubscribe itself from the items emitted by an Observable.

Here is how you would create an Observable that emits some Hack‐
erNews Storys that have been fetched from the API:

Observable.create(new Observable.OnSubscribe<Story>() { //1
    @Override
    public void call(Subscriber<? super Story> subscriber) {
        if (!subscriber.isUnsubscribed()) { //2
            try {
                Story topStory = hackerNewsRestAdapter.getTop
Story(); //3
                subscriber.onNext(topStory); //4
                Story newestStory = hackerNewsRestAdapter.getNe
westStory();
                subscriber.onNext(newestStory);
                subscriber.onCompleted(); //5
            } catch (JsonParseException e) {
                subscriber.onError(e); //6
            }
        }
    }
});

Let’s run through what’s happening here step by step:

1. The name “OnSubscribe” provides us with a clue about when
this code is typically executed: when an Observer is registered to
receive the items emitted by this Observable through a call to
Observable.subscribe().

2. We check to see if the Subscriber is unsubscribed before emit‐
ting any items. Remember: a Subscriber is just an Observer
that can unsubscribe from the Observable that emits items.

3. We are actually fetching the HackerNews data with this method
call. Notice that this is a synchronous method call. The thread
will block until the Story has been returned.

4. Here we are notifying the Observer that has subscribed to the
Observable that there is a new Story available. The Observer
has been wrapped by the Subscriber passed into the call()
method. The Subscriber wrapper, in this case, simply forwards
its calls to the wrapped Observer.

5. When there are no more Storys left to emit in this Observable’s
stream, we notify the Observer with a call to onCompleted().

Observable Creation and Subscribers | 7



6. If there’s an error parsing the JSON response returned by the
HackerNews API, we notify the Observer with a call to
onError().

Creating Observables Inside Activitys Can Cause
Memory Leaks

For reasons that we will point out in the next chapter,
you should be careful when calling Observable.cre
ate() within an Activity. The preceding code snippet
we just reviewed would actually cause a memory leak if
it was called within an Activity.

As you can see from the preceding snippet, Observables can be cre‐
ated from pretty much any operation. The flexibility with which
Observables can be created is another way in which they are like
Iterables. Any object can be made to implement the Iterable
interface, thereby exposing a stream of synchronous data. Similarly,
an Observable’s data stream can be created out of the work done by
any object, as long as that object is passed into the Observa
ble.OnSubscribe that’s used to create an Observable.

At this point, astute readers might wonder whether Observables
really do emit streams of asynchronous data. Thinking about the
previous example, they might wonder to themselves, “If the call()
method on the Observable.OnSubscribe function object is typically
called when Observable.subscribe() is invoked and if that method
invokes blocking synchronous methods on the hackerNewsRestAdap
ter, then wouldn’t calling Observable.subscribe() block the main
thread until the Observable has finished emitting the Storys
returned by the hackerNewsRestAdapter?”

This is a great question. Observable.subscribe() would actually
block the main thread in this case. There is, however, another piece
of RxJava that can prevent this from happening: a Scheduler. 

Schedulers
Schedulers determine the thread on which Observables emit their
asynchronous data streams and the thread on which Observers con‐
sume those data streams. Applying the correct Scheduler to the

8 | An Introduction to RxJava



5 As I point out in the concluding section of this report, this method belongs to a library
called “RxAndroid.”

Observable that is created in the preceding snippet will prevent the
code that runs in the call() method of Observable.OnSubscribe
from running on the main thread:

Observable.create(new Observable.OnSubscribe<Story>() {
    //...
}).subscribeOn(Schedulers.io());

As the name implies, Schedulers.io() returns a Scheduler that
schedules the code that runs in the Observable.OnSubscribe object
to be run on an I/O thread.

There is another method on Observable that takes a Scheduler:
observeOn(). The Scheduler passed into this method will deter‐
mine the thread on which the Observer consumes the data emitted
by the Observable subscribeOn() actually returns an Observable,
so you can chain observeOn() onto the Observable that is returned
by the call to subscribeOn():

Observable.create(new Observable.OnSubscribe<Story>() {
    //...
})
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread());

AndroidSchedulers.mainThread() does not actually belong to the
RxJava library, but that is beside the point here.5 The main point is
that by calling observeOn() with a specific Scheduler, you can
modify the thread on which Observers consume the data emitted by
the Observable.

The subscribeOn() and observeOn() methods are really instances
of a more general way in which you can modify the stream emitted
by an Observable: operators. We will talk about operators in the
next section. For now, let’s return to the definition of RxJava with
which we opened to briefly take stock of what we have just learned:

RxJava is a library that allows us to represent any operation as
an asynchronous data stream that can be created on any
thread, declaratively composed, and consumed by multiple objects on
any thread.

Schedulers | 9



What we have just covered in this section is how RxJava allows us to
create and consume asynchronous data streams on any thread. The
only piece of this definition that should be unclear at this point is
the phrase “declaratively composed.” This phrase, as it turns out, is
directly related to operators.

Operators
The Schedulers we discussed in the previous section were passed
into both the Observable.subscribeOn() and Observable.observ
eOn() methods. Both of these methods are operators. Operators
allow us to declaratively compose Observables. In order to get a bet‐
ter grip on operators, let’s briefly break down the phrase “declara‐
tively compose.”

To compose an Observable is simply to “make” a complex Observa
ble out of simpler ones. Observable composition with operators is
very similar to the composition that occurs in function composition,
the building of complex functions out of simpler ones. In function
composition, complex functions are built by taking the output of
one function and using it as the input of another function.

For example, consider the Math.ceil(int x) function. It simply
returns the next integer closest to negative infinity that’s greater than
or equal to x . For example, Math.ceil(1.2) returns 2.0. Now, sup‐
pose we had takeTwentyPercent(double x), a function that simply
returned 20% of the value passed into it. If we wanted to write a
function that calculated a generous tip, we could compose
Math.ceil() and takeTwentyPercent() to define this function:

double calculateGenerousTip(double bill) {
    return takeTwentyPercent(Math.ceil(bill));
}

The complex function calculateGenerousTip() is composed from
the result of passing the output of Math.ceil(bill) as the input of
takeTwentyPercent().

Operators allow us to compose Observables in a way that is similar
to the way in which calculateGenerousTip() is composed. An
operator is applied to a “source” Observable and it returns a new
Observable as a result of its application. For example, in the follow‐
ing snippet, the source Observable would be storiesObservable:

10 | An Introduction to RxJava



Observable<String> ioStoriesObservable = storiesObservable.
        .subscribeOn(Schedulers.io());

ioStoriesObservable, of course, is the Observable that’s returned
as a result of applying the subcribeOn operator. After the operator is
applied, the returned Observable is more complex: it behaves differ‐
ently from the source Observable in that it emits its data on an I/O
thread.

We can take the Observable returned by the subscribeOn operator
and apply another operator to further compose the final Observable
whose data we will subscribe to. This is what we did earlier when we
chained two operator method calls together to ensure that the asyn‐
chronous stream of Story titles was emitted on a background thread
and consumed on the main thread:

Observable<String> androidFriendlyStoriesObservable = storiesOb
servable
    .subscribeOn(Schedulers.io())
    .observeOn(AndroidSchedulers.mainThread());

Here we can see that the composition of the Observable is just like
the composition of a function. calculateGenerousTip()  was com‐
posed by passing the output of Math.ceil() to the input of take
TwentyPercent(). Similarly, androidFriendlyStoriesObservable
is composed by passing the output of applying the subcribeOn oper‐
ator as the input for applying the observeOn operator. 

Note that the way in which operators allow us to compose Observa
bles is declarative. When we use an operator, we simply spec‐
ify what we want our composed Observable to do instead of provid‐
ing an implementation of the behavior we want out of our com‐
posed Observable.  When we apply the observeOn and subscribeOn
operators, for example, we are not forced to work
with Threads, Executors, or Handlers. Instead, we can simply pass
a Scheduler into these operators and this Scheduler is responsible
for ensuring that our composed Observable behaves the way we
want it to. In this way, RxJava allows us to avoid intricate and error-
prone transformations of asynchronous data. 

Composing an “android friendly” Observable that emits its items
on a background thread and delivers those items to Observers on
the main thread is just the beginning of what you can accomplish
with operators. Looking at how operators are used in the context of

Operators | 11



an example can be an effective way of learning how an operator
works and how it can be useful in your projects. This is something
we will do in detail in the next chapter.

For now, let’s simply introduce one additional operator and work it
into our HackerNews stories example code.The map operator creates
a new Observable that emits items that have been converted from
items emitted by the source Observable. The map operator would
allow us, for example, to turn an Observable that emits Storys into
an Observable that emits the titles of those Storys. Here’s what that
would look like:

Observable.create(new Observable.OnSubscribe<Story>() {
    //Emitting story objects...
})
.map(new Func1<Story, String>() {
    @Override
    public String call(Story story) {
        return story.getTitle();
    }
});

The map operator will return a new Observable<String> that emits
the titles of the Story objects emitted by the Observable returned
by Observable.create().

At this point, we know enough about RxJava to get a glimpse into
how it allows us to handle asynchronous data neatly and declara‐
tively. Because of the power of operators, we can start with an
Observable that emits HackerNews Storys that are created and con‐
sumed on the UI thread, apply a series of operators, and wind up
with an Observable that emits HackerNews Storys on an I/O
thread but delivers the titles of those stories to Observers on the UI
thread.

Here’s what that would look like:

Observable.create(new Observable.OnSubscribe<Story>() {
    //Emitting story objects...
})
.map(new Func1<Story, String>() { 
    @Override 
    public String call(Story story) {
        return story.getTitle();
    }
})

12 | An Introduction to RxJava



6 See the Project Kotlin Google doc.

.subscribeOn(Schedulers.io())

.observeOn(AndroidSchedulers.mainThread());

Chaining Together Multiple Operators Can Look Messy
For this reason, some Android developers recommend the use of
Retrolambda, a library that ports Java 8 lambda functionality back
to Java 6, a Java version that’s completely supported by Android.
Dan Lew actually recommends this in one of his Grokking RxJava
blog posts. However, Jake Wharton, an Android developer at
Square, does point out one important disadvantage of using Retro‐
lamba: the code in your IDE won’t match the code running on the
device because Retrolambda rewrites the byte code to back-port
lambda functionality.6

One thing to keep in mind in deciding whether to use Retrolambda
is that Android Studio can collapse the function objects that are
passed into various RxJava methods so that those objects look like
lamdbas. For me, this mitigates the need to use Retrolambda.

Conclusion
At the beginning of this chapter, I gave a general definition of
RxJava:

RxJava is a library that allows us to represent any operation as
an asynchronous data stream that can be created on any
thread, declaratively composed, and consumed by multiple objects on
any thread.

At this point you should have a good grasp of this definition and
you should be able to map pieces of the definition onto certain con‐
cepts/objects within the RxJava library. RxJava lets us represent any
operation as an asynchronous data stream by allowing us to create
Observables with an Observable.OnSubscribe function object that
fetches data and notifies any registered Observers of new elements
in a data stream, errors, or the completion of the data stream by call‐
ing onNext(), onError(), and onCompleted(), respectively. RxJava
Schedulers allow us to change the threads on which the asynchro‐
nous data streams emitted by Observables are created and

Conclusion | 13

http://bit.ly/retrolambda
http://bit.ly/grok-rxjava
http://bit.ly/grok-rxjava


consumed. These Schedulers are applied to Observables through
the use of operators, which allows us to declaratively compose com‐
plex Observables from simpler ones.

14 | An Introduction to RxJava



1 Fragmented podcast, Episode 6, 50:26–51:00.

RxJava in Your Android Code

We haven’t used Otto [an Android-focused event bus library] in a year
and a half, if not more...We think we found a better mechanism. That

mechanism is...RxJava where we can create a much more specific
pipeline of events than a giant generic bus that just shoves any event

across it.
—Jake Wharton1

RxJava is a powerful library. There are many situations where RxJava
provides a cleaner, more flexible way of implementing a feature
within our Android apps. In this chapter, I try to show why you
should consider using RxJava in your Android code.

First, I show that RxJava can load asynchronous data in a way that is
both efficient and safe, even in cases where the data is loaded into
objects whose lifecycle we do not control (e.g., Activitys, Frag
ments, etc.). Second, I compare an RxJava-based implementation of
a search feature for our example HackerNews client app to a solu‐
tion based on AsyncTasks, Handlers, and Listeners and I try to say a
little about the advantages of the RxJava-based solution.

RxJava and the Activity Lifecycle
We do not have complete control over the lifecycle of the Activitys
within our apps. Ultimately, the Android framework is responsible
for creating and destroying Activitys. If the user rotates a device,
for example, the Activity that is currently on screen may be

15



destroyed and re-created to load the layout appropriate for the devi‐
ce’s new orientation.

This feature of the Android framework requires any effective asyn‐
chronous data loading solution to have two properties. First, it must
be able to notify an Activity that its data-loading operation is com‐
plete without causing that Activity to leak. Second, it should not
force developers to re-query a data source just because of a configu‐
ration change. Rather, it should hold onto and deliver the results of a
data-loading operation to an Activity that’s been re-created after a
configuration change. In this section, I show that if RxJava is used
correctly, it can have these two properties and thus, that it can be an
effective data-loading solution for Android apps.

Avoiding Memory Leaks
To avoid leaking an Activity within an Android app, we must
ensure that any object that notifies an Activity when an asynchro‐
nous data load operation is complete does not a) live longer than the
Activity and b) hold a strong reference to the Activity it seeks to
notify. If both of these conditions are true, then the data-loading
object will cause the Activity to leak. Memory leaks on resource-
constrained mobile devices are especially problematic and can easily
lead to the dreaded OOM errors that crash Android apps.

When we use RxJava for Android, we typically avoid causing mem‐
ory leaks by ensuring that the Observables that emit asynchronous
data do not hold a strong reference to an Activity after that Activ
ity’s onDestroy() method has been called. RxJava has several fea‐
tures that help us do this.

Any call to Observable.subscribe() returns a Subscription. Sub
scriptions represent a connection between an Observable that’s
emitting data and an Observer that’s consuming that data. More
specifically, the Subscription returned by Observable.sub

scribe() represents the connection between the Observable receiv‐
ing the subscribe() message and the Observer that is passed in as a
parameter to the subscribe() method. Subscriptions give us the
ability to sever that connection by calling Subscription.unsub
scribe().

In cases where an Observable may live longer than its Observer
because it is emitting items on a separate thread calling

16 | RxJava in Your Android Code



Subscription.unsubscribe() clears the Observable’s reference to
the Observer whose connection is represented by the Subscription
object. Thus, when that Observer is an Activity or an anonymous
inner class that has an implicit reference to its enclosing Activity,
calling unsubscribe() in an Activity’s onDestroy() method will
prevent any leaks from occurring. Typically this looks something
like this:

@Override
public void onCreate() {
    //...
    mSubscription = hackerNewsStoriesObservable.subscribe(new 
Observer() {
            @Override
            public void onNext(Story story) {
                Log.d(TAG, story);
            }
        });        
}

@Override
public void onDestroy() {
    mSubscription.unsubscribe();
}

If an Activity utilizes multiple Observables, then the Subscrip
tions returned from each call to Observable.subscribe() can all
be added to a CompositeSubscription, a Subscription whose
unsubscribe() method will unsubscribe all Subscriptions that
were previously added to it and that may be added to it in the future.
Forgetting the last part of the previous sentence can lead to bugs, so
it’s worth repeating: If you call unsubscribe() on a CompositeSub
scription, any Subscriptions added to the CompositeSubcription
from that point on will also be unsubscribed.

Calling Subscription.unsubscribe() on an Observable, however,
does not guarantee that your Activity will not be leaked. If you cre‐
ate an Observable in your Activity using an anonymous or (non-
static) inner Observable.OnSubscribe function object, that object
will hold an implicit reference to your Activity, and if the Observa
ble.OnSubscribe function object lives longer than your Activity,
then it will prevent the Activity from being garbage collected even
after it has received a call to onDestroy().

RxJava and the Activity Lifecycle | 17



For example, the code snippet that demonstrates how an
Observable could emit HackerNews Storys from the previous
chapter, would, if run inside an Activity, cause a memory leak:

Observable.create(new Observable.OnSubscribe() {
    @Override
    public void call(Subscriber<Story> subscriber) {
        if (!subscriber.isUnsubscribed()) {
            try {
                Story topStory = hackerNewsRestAdapter.getTop
Story(); //3
                subscriber.onNext(topStory);
                Story newestStory = hackerNewsRestAdapter.getNe
westStory();
                subscriber.onNext(newestStory);
                subscriber.onComplete();
            } catch (JsonParseException e) {
                subscriber.onError(e);
            }
        }
    }
})
.subscribeOn(Schedulers.io());

Recall that the code running inside of the call() method is running
on an I/O thread. Because of this, we are able to call blocking meth‐
ods like HackerNewsRestAdapter.getTopStory(), without worry‐
ing about blocking the UI thread. We can easily imagine a case
where this code starts to run on an I/O thread, but then the user
closes the Activity that wanted to consume the data emitted by this
Observable.

In this case, the code currently running in the call() method is a
GC-root, so none of the objects referenced by the block of running
code can be garbage collected. Because the Observable.OnSub
scribe function object holds an implicit reference to the Activity,
the Activity cannot be garbage collected until the code running in
the call() method completes. Situations like this can be avoided by
ensuring that the Observable.OnSubscribe object is an instance of
a class that does not have an implicit or explicit reference to your
Activity.

18 | RxJava in Your Android Code



Avoiding Re-querying for Data Upon Configuration
Changes
Querying a data source can often be an expensive operation.
Because of this, the Android SDK has a set of classes that help devel‐
opers avoid having to re-query a data source simply because of a
configuration change: Loader and LoaderManager. These classes
help us avoid what I shall call the “re-query problem,” the problem
of having to re-query a data source simply because of a configura‐
tion change. Showing that RxJava offers us a cleaner, more flexible
method for handling asynchronous data requires that I show that
using RxJava also provides us with a solution to the re-query
problem.

There are at least two ways that we can use RxJava to solve the re-
query problem. The first way requires that we create Observables
that use the Loader classes to fetch data asynchronously. This is the
approach that I take in my TDD-based HackerNews client. The sec‐
ond way of solving the re-query problem is to a) ensure that Observ
ables survive configuration changes and b) use the cache or replay
operators to make those Observables emit the same items to any
future Observers. This approach is suggested by Dan Lew in the last
part of his Grokking RxJava article series.

Using cache or replay with Observables that Survive
Configuration Changes
Let’s start by examining the approach suggested by Dan Lew. With
this approach, the Observable that emits the data to be used by an
Activity must be able to survive configuration changes. If the
Observable is garbage collected or made inaccessible as a result of a
configuration change, then the new Observable that’s created by the
re-created Activity will have to perform the same data-loading
operation to access the data it needs to perform its responsibility.

There are at least two methods of ensuring that an Observable sur‐
vives orientation changes. The first method is to keep that Observa
ble in a retained Fragment. The second method is to keep the
Observable in a singleton.

As long as an Observable survives an Activity’s configuration
change, RxJava provides several operators that save us from having
to re-query a data source after a configuration change: the cache

RxJava and the Activity Lifecycle | 19

http://bit.ly/tdd-client
http://bit.ly/grokking4
http://bit.ly/grokking4


and replay operators. These operators both ensure that Observers
who subscribe to an Observable after that Observable has emitted
its items will still see that same sequence of items. 

The items that are re-emitted for future Observers, moreover, are
obtained without re-querying the data source the Observable ini‐
tially used to emit its data stream. Instead, the items that were emit‐
ted are cached in memory and the Observable returned by the
cache and replay operators simply emits the cached items when
future Observers subscribe to that Observable.

Because the cache and replay operators modify Observable behav‐
ior in these ways, the Activity utilizing this Observable can unsub‐
scribe from it when that Activity is being destroyed because of a
configuration change. It can then resubscribe to that same Observa
ble without worrying that it missed any items that were emitted
while it was being re-created and without causing the Observable to
re-query the data source it originally used to emit the items of its
data stream.

Building Observables on Top of Loaders
As stated previously, there is another way of using RxJava without
being forced to inefficiently reload data because of a configuration
change. Because of the flexibility with which Observables can be
created, we can simply create Observables that utilize Loaders to
fetch data that an Observable will emit to its Observers. Here is
what that might look like:

private static class LoaderInitOnSubscribe implements Observa
ble.OnSubscribe<Story> {

    //...

    @Override
    public void call(final Subscriber<? super Story> sub
scriber) {
        mLoaderManager.initLoader(LOADER_ID, mLoaderArgs, new 
LoaderCallbacks<Story>() {
            @Override
            public Loader<Story> onCreateLoader(int id, Bundle 
args) {
                return new StoryLoader(mContext);
            }

            @Override

20 | RxJava in Your Android Code



            public void onLoadFinished(Loader<Story> loader, 
Story data) {
                subscriber.onNext(data);
            }

            @Override
            public void onLoaderReset(Loader<Story> loader) {}
        });
    }
}

Recall that Observables can be created with an Observable.OnSub
scribe function object. So, LoaderInitOnSubscribe can be passed
into a call to Observable.create(). Once it’s time for the Observa
ble to start emitting its data, it will use a LoaderManager and Story
Loader to load the data that it will emit to any interested Observers.

Loaders survive configuration changes and if they have already
loaded their data, they simply deliver that data to an Activity that’s
been re-created after a configuration change. Thus, creating an
Observable that simply emits data loaded by a Loader is a simple
way of ensuring that Activitys do not need to re-query a data
source upon a configuration change.

At this point, some readers may wonder, “If the Loader and Loader
Manager are the classes doing all of the hard work, what’s the advan‐
tage of simply wrapping the hard work done by those classes in an
Observable?” More generally, readers might wonder why they
should prefer RxJava-based methods of handling asynchronous data
loading when we have solutions given to us by the Android SDK.

This more general question is one that I answer in the next section. I
think that my answer to this general question, moreover, will also
answer the reader’s questions about why we might load an Activ
ity’s data from an Observable that simply wraps Loaders and Loa
derManagers. So, let’s turn to examining why RxJava-based solutions
provide us with cleaner ways of handling asynchronous data loading
in our Android apps.

Why RxJava-based Solutions Are Awesome
In order to see why RxJava-based solutions for handling asynchro‐
nous data can be cleaner than standard approaches, consider the

Why RxJava-based Solutions Are Awesome | 21



following feature. Suppose the HackerNews app has a SearchView
that looks like Figure 2-1:

Figure 2-1. User searching with SearchView

When the user types into the search widget, the app should make an
API call to fetch and display stories that match the search string
entered into the widget. However, the app should only make this
API call if a) the query string entered is at least three characters long
and b) there has been at least a 100 millisecond delay since the user
last modified the query string she is typing into the search widget.  

One way of implementing this feature would involve the use of Lis‐
teners, Handlers, and AsyncTasks. These three components together
make up the Android SDK’s standard toolkit for handling asynchro‐
nous data. In this section, I compare a standard implementation of
the aforementioned search feature that utilizes these components
with an RxJava-based solution. 

A standard implementation of the search feature might start off with
something like this:

searchView.setOnQueryTextListener(new OnQueryTextListener() { 
//1

22 | RxJava in Your Android Code



    @Override
    public boolean onQueryTextSubmit(String query) {
        return false;
    }

    @Override
    public boolean onQueryTextChange(String queryText) {
        if (queryText.length() > 2) { //2
            Message message = Message.obtain(mHandler, 
                                             
MESSAGE_QUERY_UPDATE, 
                                             queryText); //3
            mHandler.sendMessageDelayed(message, 
QUERY_UPDATE_DELAY_MILLIS);
        }
        mHandler.removeMessages(MESSAGE_QUERY_UPDATE); //4
        return true;
    }
});

1. We start by setting a Listener on the SearchView to inform us of
any changes in the text entered into the SearchView.

2. The Listener checks to see how many characters have been
entered into the widget. If there aren’t at least three characters
entered, the Listener does nothing.

3. If there’s three or more characters, the Listener uses a Handler
to schedule a new API call to be made 100 milliseconds in the
future.

4. We remove any pending requests to make an API call that are
less than 100 milliseconds old. This effectively ensures that API
calls are only made if there has been a 100 millisecond delay
between changes in the search query string.

Let’s also take a brief look at the Handler that responds to the MES
SAGE_QUERY_UPDATE and the AsyncTask that is run to hit the API
and update the list:

private Handler mHandler = new Handler() {
    @Override
    public void handleMessage(Message msg) {
        if (msg.what == MESSAGE_QUERY_UPDATE) {
            String query = (String) msg.obj;
            mSearchStoriesAsyncTask = new SearchStoriesAsync
Task(mStoriesRecyclerView, mHackerNewsRestAdapter);
            mSearchStoriesAsyncTask.execute(query);
        }
    }
};

Why RxJava-based Solutions Are Awesome | 23



private static class SearchStoriesAsyncTask extends Asyn
cTask<String, Void, List<Story>> {

    private RecyclerView mStoriesRecyclerView;
    private HackerNewsRestAdapter mHackerNewsRestAdapter;

    public SearchStoriesAsyncTask(RecyclerView storiesRecycler
View, HackerNewsRestAdapter hackerNewsRestAdapter) {
        mStoriesRecyclerView = storiesRecyclerView;
        mHackerNewsRestAdapter = hackerNewsRestAdapter;
    }

    @Override
    protected List<Story> doInBackground(String... params) {
        return mHackerNewsRestAdapter.searchStories(params[0]);
    }

    @Override
    protected void onPostExecute(List<Story> stories) {
        super.onPostExecute(stories);
        mStoriesRecyclerView.setAdapter(new StoryAdapter(sto
ries));
    }
}

There may be a cleaner way of implementing this feature using Lis‐
teners, Handlers, and AsyncTasks, but after you see the RxJava-
based implementation, I think you will agree that RxJava gives us the
means to implement this feature in a way that is probably both
cleaner and more flexible than the cleanest version of a non–RxJava-
based implementation.

Here is what the RxJava-based implementation would look like:

searchViewTextObservable.filter(new Func1<String, Boolean>() { 
//1
    @Override
    public Boolean call(String s) {
        return s.length() > 2;
    }
})
.debounce(QUERY_UPDATE_DELAY_MILLIS, TimeUnit.MILLISECONDS) //2
.flatMap(new Func1<String, Observable<List<Story>>>() { //3
    @Override
    public Observable<List<Story>> call(String s) {
        return mHackerNewsRestAdapter.getSearchStoriesObserva
ble(s);
    }
})
.subscribeOn(Schedulers.io())

24 | RxJava in Your Android Code



.observeOn(AndroidSchedulers.mainThread())

.subscribe(new Observer<List<Story>>() {
    //...
    @Override
    public void onNext(List<Story> stories) {
        mStoriesRecyclerView.setAdapter(new StoryAdapter(sto
ries));
    }
});

Before I say why I think this implementation is cleaner, let’s make
sure we understand exactly what’s happening here:

1. First, we apply a filter operator. This creates an Observable
that only emits the items of its source Observable if those items
pass through a filter described by the Func1 object. In this case,
the Observable returned by filter will only emit SearchView
text strings that are more than two characters long.

2. Next, we apply the debounce operator. This creates an Observa
ble that only emits the items of its source Observable if there
has been a long enough delay between the emission of those
items. In this case, the Observable returned by debounce will
only emit SearchView text string changes that are separated by a
100 millisecond delay.

3. Finally, the flatMap operator creates an Observable out of the
emissions of its source Observable. The Func1 object passed
into this operator represents a function that creates an Observa
ble from a single item emitted by the source Observable. In
this case, the Observable created emits the list of strings
returned by an API call that searches for a HackerNews story
based on the query string.

Now that we have a basic grasp of the preceding code, let me briefly
say why I think this implementation is cleaner.

First of all, the RxJava-based implementation is less verbose than the
standard one. A solution that has fewer lines of code is, all other
things being equal, cleaner.

The RxJava-based solution also centralizes all of the code to imple‐
ment the search feature in one place. Instead of having to jump to
the Handler and AsyncTask class definitions to get a handle on how
the search functionality works, developers can simply look in one
place. This, along with the fact that the code uses operators that have

Why RxJava-based Solutions Are Awesome | 25



2 Mary Rose Cook makes a similar point in her “Introduction to Functional Program‐
ming.”

3 Kaushik Goupal complains about this in his talk “Learning RxJava (for Android) by
Example”.

well-established meanings within the functional programming
paradigm, makes the code easier to understand.2 

Finally, with the RxJava-based solution, error handling is straight‐
forward: Observers will just receive a call to onError(). The stan‐
dard implementation that uses an AsyncTask, on the other hand,
does not have a straightforward, “out of the box” way of handling
errors.3

The RxJava-based implementation is also more flexible than the
standard one. AsyncTasks must perform their work on a back‐
ground thread and must perform their onPostExecute() methods
on the main thread. Handlers must perform their work on the
thread on which they are created.RxJava, through Schedulers, gives
us more control over the threads on which asynchronous data is
created and consumed.

This control allows us to use Observables both for exposing asyn‐
chronous data that is loaded over a network and for an asynchro‐
nous stream of text changes that is created by the user interacting
with her device. Without RxJava, we are forced to use an AsyncTask
for the loading of data over a network and a Handler for working
with the stream of text changes. The difference between these two
objects, moreover, prevents us from being able to cleanly compose
the two streams together like we do with RxJava’s flatMap operator.

Because Observables can have multiple Observers, using RxJava to
implement the search functionality also makes it easier to “plug in”
additional objects that might be interested in the search events that
are triggered by the user’s typing into the SearchView.To see this
more clearly, let’s imagine that there was a change in our require‐
ments for implementing the search functionality for our Hacker‐
News client.

Suppose that whenever a user is about to begin a stories search, our
HackerNews client will suggest a query from that user’s search his‐
tory. When the user taps a recent search query, we want the app to

26 | RxJava in Your Android Code

http://bit.ly/cook-intro
http://bit.ly/cook-intro
http://bit.ly/goupal-rxjava
http://bit.ly/goupal-rxjava


4 I realize that getting an Observable that does this is not trivial, but discussing how this
would be done in detail would take us too far off topic. The main point here is just to
show off RxJava’s flexibility.

execute a search against that query string. With this new feature, a
search would be executed if there was a 100 millisecond delay after
any characters had been changed in a query string that was at least
three characters long and if the user tapped one of her past search
query strings. Now, suppose that we want to be able to measure how
useful these history-based search suggestions are for our users by
tracking their usage with analytics.

In this case, we would still want our stories list to be updated when‐
ever the results from a search have been returned. The only thing we
need to change is the conditions under which a search is
executed. To do this, we need an Observable that emits the query
string of any of the tapped search suggestions.4 Once we have that
Observable, we can compose it into our data stream by adding an
additional “link” in our chain of operators:

searchViewTextObservable.filter(new Func1<String, Boolean>() {
    //...
})
.debounce(QUERY_UPDATE_DELAY_MILLIS, TimeUnit.MILLISECONDS)
.mergeWith(historicalQueryTappedObservable)
.flatMap(new Func1<String, Observable<List<Story>>>() {
    //Returns Observable that represents the async data 
returned from a network call
})
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Observer<List<Story>>() {
    //...
});

The mergeWith operator, as its name implies, returns an Observable
that emits a stream that results from combining the items of its
source Observable and the Observable passed into the mergeWith
operator. In this case, the Observable returned would emit a
String for the recent search query that was tapped or a String for
the query string being typed into the SearchView. Either of these
strings would then trigger a network call to execute a search on the
query string.

Why RxJava-based Solutions Are Awesome | 27



The next piece of our feature that we need to implemente is to track
the usage of our history-based search suggestions with analytics. We
already have an Observable that emits a string every time a sugges‐
tion is tapped, so a natural way of implementing analytics for this
feature is to have an additional Observer to this Observable that
will record the usage of this feature. The flexibility with which we
can add additional Observers to an Observable’s stream makes
implementing this a breeze.

To add multiple Observers to an Observable’s data, we need to use
the publish operator.The publish operator creates a Connecta
bleObservable that does not emit its data every time there is a call
to Observable.subscribe(). Rather, the ConnectableObservable
returned by the publish operator emits its data after a call to Connec
tableObservable.connect(). This allows all interested Observers
to subscribe to a ConnectableObservable before it actually starts
emitting any of its data.

Hot Versus Cold Observables
When we apply the publish operator and call connect() on the
ConnectableObservable returned by it, we are turning a “cold”
Observable into a “hot” one. A cold Observable only emits items
upon a call to Observable.subscribe(). A “hot” Observable, on
the other hand, may emit items even if there is no one subscribing
to it. In the concluding chapter of this report, I suggest some arti‐
cles that further articulate the distinction between hot and cold
Observables.

Here’s how we could leverage the publish operator to ensure that
our analytics are logged and our list is updated whenever the user
taps one of her previously executed queries:

historicalQueryTappedConnectableObservable = historicalQueryTap
pedObservable.publish()
searchViewTextObservable.filter(new Func1<String, Boolean>() {
    //...
})
//...
.mergeWith(historicalQueryTappedConnectableObservable)
//...
.subscribe(new Observer<List<Story>>() {
    //Update list

28 | RxJava in Your Android Code



});

historicalQueryTappedConnectableObservable.subscribe(new 
Observer<String>() {
    //Log tap for analytics
});

historicalQueryTappedConnectableObservable.connect();

Conclusion
In this chapter, you saw why you should consider using RxJava in
your Android code. I showed that RxJava does have two properties
that are essential for any effective asynchronous data-loading solu‐
tion. It can load asynchronous data into an Activity

• without leaking that Activity
• without forcing developers to re-query a data source simply

because of a configuration change.

I also compared an implementation of a feature that utilized the
standard classes for handling asynchronous data with an
RxJava-based implementation and tried to say a little about why
RxJava-based implementations are often cleaner and more flexible
than standard implementations.

Conclusion | 29





The Future of RxJava for Android
Development

There is a lot about RxJava that we have not covered. Moreover, we
have barely scratched the surface of what RxJava can do to help us
write better Android apps. In this last section, I briefly point the
reader to some links for further reading and I say a little about some
of the current projects that seek to leverage RxJava specifically for
helping us write better Android apps.

Further Reading for RxJava 
The Reactive Extensions website has a great list of tutorials and arti‐
cles. There are, however, a few articles in particular that I want to
point out here. There are a few important concepts in RxJava that I
did not cover here and reading these articles will help you learn
these concepts.

The “Cold vs. Hot Observables” section of the RxJs documentation
has the best written introduction to hot versus cold Observables
that I have seen. Understanding the difference between hot and cold
Observables is very important, especially if you want to have multi‐
ple consumers of an Observable’s asynchronous data stream. Dan
Lew’s “Reactive Extensions: Beyond the Basics” video also has some
very helpful information on the distinction between hot and cold
Observables, why this distinction matters, and what operators can
be used to transform Observalbes from hot to cold and vice versa.
The discussion about hot versus cold Observables is found specifi‐
cally at 16:30-26:00.

31

http://reactivex.io/tutorials.html
http://reactivex.io/tutorials.html
http://bit.ly/rxj-cold-hot
http://bit.ly/react-ext


While using RxJava, it is possible to have an Observable that emits
data faster than the data can be consumed. This is called “back pres‐
sure.” When left unmanaged, back pressure can cause crashes. The
RxJava wiki has a helpful page on back pressure and strategies for
dealing with it.

RxJava Subjects are another important piece of RxJava that I did not
cover. The Reactive Extensions website has a nice overview of Sub‐
jects and Dave Sexton has a great article on when it is appropriate to
use Subjects.

Future Directions for Android App
Development with RxJava
There are several interesting open source projects that are worth
paying attention to if you are interested in how RxJava can be used
in your Android apps.

The first project is one that I already briefly mentioned: RxAndroid.
This library is what provides a Scheduler that’s used with the
observeOn operator so that Observers can consume data on the UI
thread. According to its git repository’s readme, RxAndroid seeks to
provide “the minimum classes to RxJava that make writing reactive
components in Android applications easy and hassle-free.” Because
this project has a very minimal scope, I expect that much of the
interesting work to be done with RxJava for Android app develop‐
ment will come from the other projects I list here.

The second project was originally an offshoot of RxAndroid and it’s
called, RxBinding. This project basically creates Observalbes that
emit streams of UI-related events typically sent to the Listeners that
are set on various View and Widget classes. This project is captained
by Jake Wharton.

RxLifecycle is a project helps Android developers use RxJava within
Activitys without causing leaks. This library is developed and
maintained by Dan Lew and other developers at Trello.

Sqlbrite’s purpose is best captured by its description on GitHub: “A
lightweight wrapper around SQLiteOpenHelper which introduces
reactive stream semantics to SQL operations.”

This library is backed by the developers at Square. You can learn
more about the history of this library by listening to Don Felker and

32 | The Future of RxJava for Android Development

https://github.com/ReactiveX/RxJava/wiki/Backpressure
https://github.com/ReactiveX/RxJava/wiki/Backpressure
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://bit.ly/sexton-subject
http://bit.ly/sexton-subject
https://github.com/ReactiveX/RxAndroid
https://github.com/JakeWharton/RxBinding
https://github.com/trello/RxLifecycle
https://github.com/square/sqlbrite


Kaushik Goupal’s interview of Jake Wharton in the seventh episode
of the Fragmented podcast.

Future Directions for Android App Development with RxJava | 33

http://fragmentedpodcast.com/episodes/7/
http://fragmentedpodcast.com/episodes/7/


About the Author
K. Matthew Dupree is a wannabe philosophy professor turned
wannabe tech entrepreneur. He’s also a mobile software engineer
that’s particularly interested in Android development. He blogs at
philosophicalhacker.com. He also recently founded Droid Journal, a
journal that seeks to publish peer-reviewed articles on Android
development.


	Copyright
	Table of Contents
	Chapter 1. An Introduction to RxJava
	Sharp Learning Curve, Big Rewards
	Observables
	Observers
	Observable Creation and Subscribers
	Schedulers
	Operators
	Conclusion

	Chapter 2. RxJava in Your Android Code
	RxJava and the Activity Lifecycle
	Avoiding Memory Leaks
	Avoiding Re-querying for Data Upon Configuration Changes

	Why RxJava-based Solutions Are Awesome
	Conclusion

	Chapter 3. The Future of RxJava for Android Development
	Further Reading for RxJava 
	Future Directions for Android App Development with RxJava

	Blank Page
	Blank Page



