
Leveraging Big Data Technologies to
Build a Common Repository for Security

The Security
Data Lake

Raffael Marty
ISBN: 978-1-491-92773-1

Make Data Work
strataconf.com
Presented by O’Reilly and Cloudera,
Strata + Hadoop World is where
cutting-edge data science and new
business fundamentals intersect—
and merge.

n Learn business applications of
data technologies

n Develop new skills through
trainings and in-depth tutorials

n Connect with an international
community of thousands who
work with data

Job # 15420

http://strataconf.com?cmp=pd-data-confreg-lp-na_free_report_ad

Raffael Marty

The Security Data Lake
Leveraging Big Data Technologies

to Build a Common Data
Repository for Security

978-1-491-92773-1

[LSI]

The Security Data Lake
by Raffael Marty

Copyright © 2015 PixlCloud, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Laurel Ruma and Shannon Cutt
Production Editor: Matthew Hacker
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2015: First Edition

Revision History for the First Edition
2015-04-13: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Security Data
Lake, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

The Security Data Lake. 1
Leveraging Big Data Technologies to Build a Common Data

Repository for Security 1
Comparing Data Lakes to SIEM 1
Implementing a Data Lake 2
Understanding Types of Data 2
Choosing Where to Store Data 4
Knowing How Data Is Used 6
Storing Data 10
Accessing Data 17
Ingesting Data 19
Understanding How SIEM Fits In 21
Acknowledgments 27
Appendix: Technologies To Know and Use 28

iii

The Security Data Lake

Leveraging Big Data Technologies to Build a
Common Data Repository for Security
The term data lake comes from the big data community and is
appearing in the security field more often. A data lake (or a data
hub) is a central location where all security data is collected and
stored; using a data lake is similar to log management or security
information and event management (SIEM). In line with the Apache
Hadoop big data movement, one of the objectives of a data lake is to
run on commodity hardware and storage that is cheaper than
special-purpose storage arrays or SANs. Furthermore, the lake
should be accessible by third-party tools, processes, workflows, and
to teams across the organization that need the data. In contrast, log
management tools do not make it easy to access data through stan‐
dard interfaces (APIs). They also do not provide a way to run arbi‐
trary analytics code against the data.

Comparing Data Lakes to SIEM
Are data lakes and SIEM the same thing? In short, no. A data lake is
not a replacement for SIEM. The concept of a data lake includes
data storage and maybe some data processing; the purpose and
function of a SIEM covers so much more.

The SIEM space was born out of the need to consolidate security
data. SIEM architectures quickly showed their weakness by being
incapable of scaling to the loads of IT data available, and log man‐
agement stepped in to deal with the data volumes. Then the big data
movement came about and started offering low-cost, open source

1

alternatives to using log management tools. Technologies like
Apache Lucene and Elasticsearch provide great log management
alternatives that come with low or no licensing cost at all. The con‐
cept of the data lake is the next logical step in this evolution.

Implementing a Data Lake
Security data is often found stored in multiple copies across a com‐
pany, and every security product collects and stores its own copy of
the data. For example, tools working with network traffic (for exam‐
ple, IDS/IPS, DLP, and forensic tools) monitor, process, and store
their own copies of the traffic. Behavioral monitoring, network
anomaly detection, user scoring, correlation engines, and so forth all
need a copy of the data to function. Every security solution is more
or less collecting and storing the same data over and over again,
resulting in multiple data copies.

The data lake tries to get rid of this duplication by collecting the data
once, and making it available to all the tools and products that need
it. This is much simpler said than done. The goal of this report is to
discuss the issues surrounding and the approaches to architecting
and implementing a data lake.

Overall, a data lake has four goals:

• Provide one way (a process) to collect all data
• Process, clean, and enrich the data in one location
• Store data only once
• Access the data using a standard interface

One of the main challenges of implementing a data lake is figuring
out how to make all of the security products leverage the lake,
instead of collecting and processing their own data. Products gener‐
ally have to be rebuilt by the vendors to do so. Although this adop‐
tion might end up taking some time, we can work around this chal‐
lenge already today.

Understanding Types of Data
When talking about data lakes, we have to talk about data. We can
broadly distinguish two types of security data: time-series data,

2 | The Security Data Lake

which is often transaction-centric, and contextual data, which is
entity-centric.

Time-Series Data
The majority of security data falls into the category of time-series
data, or log data. These logs are mostly single-line records contain‐
ing a timestamp. Common examples come from firewalls, intrusion-
detection systems, antivirus software, operating systems, proxies,
and web servers. In some contexts, these logs are also called events,
or alerts. Sometimes metrics or even transactions are communicated
in log data.

Some data comes in binary form, which is harder to manage than
textual logs. Packet captures (PCAPs) are one such source. This data
source has slightly different requirements in the context of a data
lake. Specifically because of its volume and complexity, we need
clever ways of dealing with PCAPs (for further discussion of PCAPs,
see the description on page 15).

Contextual Data
Contextual data (also referred to as context) provides information
about specific objects of a log record. Objects can be machines,
users, or applications. Each object has many attributes that can
describe it. Machines, for example, can be characterized by IP
addresses, host names, autonomous systems, geographic locations,
or owners.

Let’s take NetFlow records as an example. These records contain IP
addresses to describe the machines involved in the communication.
We wouldn’t know anything more about the machines from the
flows themselves. However, we can use an asset context to learn
about the role of the machines. With that extra information, we can
make more meaningful statements about the flows—for example,
which ports our mail servers are using.

Contextual data can be contained in various places, including asset
databases, configuration management systems, directories, or
special-purpose applications (such as HR systems). Windows Active
Directory is an example of a directory that holds information about
users and machines. Asset databases can be used to find out infor‐
mation about machines, including their locations, owners, hardware
specifications, and more.

Understanding Types of Data | 3

Contextual data can also be derived from log records; DHCP is a
good example. A log record is generated when a machine (repre‐
sented by a MAC address) is assigned an IP address. By looking
through the DHCP logs, we can build a lookup table for machines
and their IP addresses at any point in time. If we also have access to
some kind of authentication information—VPN logs, for example—
we can then argue on a user level, instead of on an IP level. In the
end, users attack systems, not IPs.

Other types of contextual data include vulnerability scans. They can
be cumbersome to deal with, as they are often larger, structured
documents (often in XML) that contain a lot of information about
numerous machines. The information has to be carefully extracted
from these documents and put into the object model describing the
various assets and applications. In the same category as vulnerability
scans, WHOIS data is another type of contextual data that can be
hard to parse.

Contextual data in the form of threat intelligence is becoming more
common. Threat feeds can contain information around various
malicious or suspicious objects: IP addresses, files (in the form of
MD5 checksums), and URLs. In the case of IP addresses, we need a
mechanism to expire older entries. Some attributes of an entity
apply for the lifetime of the entity, while others are transient. For
example, a machine often stays malicious for only a certain period
of time.

Contextual data is handled separately from log records because it
requires a different storage model. Mostly the data is stored in a key-
value store to allow for quick lookups. For further discussion of
quick lookups, see page 17.

Choosing Where to Store Data
In the early days of the security monitoring, log management and
SIEM products acted (and are still acting) as the data store for secu‐
rity data. Because of the technologies used 15 years ago when SIEMs
were first developed, scalability has become an issue. It turns out
that relational databases are not well suited for such large amounts
of semistructured data. One reason is that relational databases can
be optimized for either fast writes or fast reads, but not both
(because of the use of indexes and the overhead introduced by the
properties of transaction safety—ACID). In addition, the real-time

4 | The Security Data Lake

correlation (rules) engines of SIEMs are bound to a single machine.
With SIEMs, there is no way to distribute them across multiple
machines. Therefore, data-ingestion rates are limited to a single
machine, explaining why many SIEMs require really expensive and
powerful hardware to run on. Obviously, we can implement tricks to
mitigate the one-machine problem. In database land, the concept is
called sharding, which splits the data stream into multiple streams
that are then directed to separate machines. That way, the load is
distributed. The problem with this approach is that the machines
share no common “knowledge,” or no common state; they do not
know what the other machines have seen. Assume, for example, that
we are looking for failed logins and want to alert if more than five
failed logins occur from the same source. If some log records are
routed to different machines, each machine will see only a subset of
the failed logins and each will wait until it has received five before
triggering an alert.

In addition to the problem of scalability, openness is an issue of
SIEMs. They were not built to let other products reuse the data they
collected. Many SIEM users have implemented cumbersome ways to
get the data out of SIEMs for further use. These functions typically
must be performed manually and work for only a small set of data,
not a bulk or continuous export of data.

Big-data technology has been attempting to provide solutions to the
two main problems of SIEMs: scalability and openness. Often
Hadoop is mentioned as that solution. Unfortunately, everybody
talks about it, but not many people really know what is behind
Hadoop.

To make the data lake more useful, we should consider the following
questions:

• Are we storing raw and/or processed records?
• If we store processed records, what data format are we going to

use?
• Do we need to index the data to make data access quicker?
• Are we storing context, and if so, how?
• Are we enriching some of the records?
• How will the data be accessed later?

Choosing Where to Store Data | 5

The question of raw versus processed data, as well as
the specific data format, is one that can be answered
only when considering how the data is accessed.

Hadoop Basics
Hadoop is not that complicated. It is first and foremost a dis‐
tributed file system that is similar to file-sharing protocols like
SMB, CIFS, or NFS. The big difference is that the Hadoop Dis‐
tributed File System (HDFS) has been built with fault tolerance in
mind. A single file can exist multiple times in a cluster, which
makes it more reliable, but also faster as many nodes can read/write
to the different copies of the file simultaneously.

The other central piece of Hadoop, apart from HDFS, is the dis‐
tributed processing framework, commonly referred to as MapRe‐
duce. It is a way to run computing jobs across multiple machines to
leverage the computing power of each. The core principle is that the
data is not shipped to a central data-processing engine, but the code
is shipped to the data. In other words, we have a number of
machines (often commodity hardware) that we arrange in a cluster.
Each machine (also called a node) runs HDFS to have access to the
data. We then write MapReduce code, which is pushed down to all
machines to run an algorithm (the map phase). Once completed,
one of the nodes collects the answers from all of the nodes and
combines them into the final result (the reduce part). A bit more
goes on behind the scenes with name nodes, job trackers, and so
forth, but this is enough to understand the basics.

These two parts, the file system and the distributed processing
engine, are essentially what is called Hadoop. You will encounter
many more components in the big data world (such as Apache
Hive, Apache HBase, Cloudera Impala, and Apache ZooKeeper),
and sometimes, they are all collectively called Hadoop, which
makes things confusing.

Knowing How Data Is Used
We need to consider five questions when choosing the right archi‐
tecture for the back-end data store (note that they are all
interrelated):

6 | The Security Data Lake

• How much data do we have in total?
• How fast does the data need to be ready?
• How much data do we query at a time, and how often do we

query?
• Where is the data located, and where does it come from?
• What do you want to do with the data, and how do you access

it?

How Much Data Do We Have in Total?
Just because everyone is talking about Hadoop doesn’t necessarily
mean we need a big data solution to store our data. We can store
multiple terabytes in a relational database, such as MySQL. Even if
we need multiple machines to deal with the data and load, often
sharding can help.

How Fast Does the Data Need to Be Ready?
In some cases, we need results immediately. If we drive an interac‐
tive application, data-retrieval rates often need to be completed at
subsecond speed. In other cases, it is OK to have the result available
the next day. Determining how fast the data needs to be ready can
make a huge difference in how it needs to be stored.

How Much Data Do We Query, and How Often?
If we need to run all of our queries over all of our data, that is a
completely different use-case from querying a small set of data every
now and then. In the former case, we will likely need some kind of
caching and/or aggregate layer that stores precomputed data so that
we don’t have to query all the data at all times. An example is a
query for a summary of the number of records seen per user per
hour. We would compute those aggregates every hour and store
them. Later, when we want to know the number of records that each
user looked at last week, we can just query the aggregates, which will
be much faster.

Knowing How Data Is Used | 7

Where Is the Data and Where Does It Come From?
Data originates from many places. Some data sources write logs to
files, others can forward data to a network destination (for example,
through syslog), and some store records in a database. In some
cases, we do not want to move the data if it is already stored in some
kind of database and it supports our access use-case; this concept is
sometimes called a federated data store.

What Do You Want with the Data and How Do You
Access It?
While we won’t be able to enumerate every single use case for query‐
ing data, we can organize the access paradigms into five groups:

Search
Data is accessed through full-text search. The user looks for
arbitrary text in the data. Often Boolean operators are used to
structure more advanced searches.

Analytics
These queries require slicing and dicing the data in various
ways, such as summing columns (for example, for sales prices).
There are three subgroups:

Record-based analytics
These use cases entail all of the traditional questions we
would ask a relational database. Business intelligence ques‐
tions, for example, are great use cases for this type of
analytics.

Relationships
These queries deal with complex objects and their relation‐
ships. Instead of looking at the data on a record-by-record
(or row) basis, we take an object-centric view, where objects
are anything from machines to users to applications. For
example, when looking at machine communications, we
might want to ask what machines have been communicat‐
ing with machines that our desktop computer has accessed.
How many bytes were transferred, and how long did each
communication last? These are queries that require joining
log records to come up with the answers to these types of
questions.

8 | The Security Data Lake

Data mining
This type of query is about running jobs (algorithms)
against a large set of our data. Unlike in the case of simple
statistics, where we might count or do simple math, analyt‐
ics or data-mining algorithms that cluster, score, or classify
data fall into this category. We don’t want to pull all the data
back to one node for processing/analytics; instead, we want
to push the code down to the individual nodes to compute
results. Many hard problems are related to data locality, and
communication between nodes to exchange state, for exam‐
ple, that need to be considered for this use case (but essen‐
tially, this is what a distributed processing framework is
for).

Raw data access
Often we need to be able to go back to the raw data records to
answer more questions with data that is part of the raw record
but was not captured in parsed data.
These access use cases are focused around data at rest—data we
have already collected. The next two are use cases in the real-
time scenario.

Real-time statistics
The raw data is not always what we need or want. Driving dash‐
boards, for example, require metrics or statistics. In the simplest
cases of real-time scenarios, we count things—for example, the
number of events we have ingested, the number of bytes that
have been transferred, or the number of machines that have
been seen. Instead of calculating those metrics every time a
dashboard is loaded—which would require scanning a lot of the
data repeatedly—we can calculate those metrics at the time of
collection and store them so they are readily available. Some
people have suggested calling this a data river.
A commonly found use case in computer security is scoring of
entities. Running models to identify how suspicious or mali‐
cious a user is, for example, can be done in real time at data
ingestion.

Real-time correlation
Real-time correlation, rules, and alerting are all synonymous.
Correlation engines are often referred to as complex event pro‐
cessing (CEP) engines; there are many ways of implementing
them. One use case for CEP engines is to find a known pattern

Knowing How Data Is Used | 9

based on the definition of hard-coded rules; these systems need
a notion of state to remember what they have already seen. Try‐
ing to run these engines in distributed environments gets inter‐
esting, especially when you consider how state is shared among
nodes.

Storing Data
Now that you understand the options for where to store the data
and the access use-cases, we can now dive a little deeper into which
technologies you might use to store the data and how exactly it is
stored.

Using Parsers
Before we dive into details of how to store data, we need to discuss
parsers. Most analysis requires parsed, or structured, data. We there‐
fore need a way to transform our raw records into structured data.
Fields (such as port numbers or IP addresses) inside a log record are
often self-evident. At times, it’s important to figure out which field is
the source address and which one is the destination. In some cases,
however, identifying fields in a log record is impossible without
additional knowledge. For example, let’s assume that a log record
contains a number, with no key to identify it. This number could be
anything: the number of packets transmitted, number of bytes trans‐
mitted, or number of failed attempts. We need additional knowledge
to make sense of this number. This is where a parser adds value.
This is also why it is hard and resource-intensive to write parsers.
We have to gather documentation for the data source to learn about
the format and correctly identify the fields. Most often, parsers are
defined as regular expressions, which, if poorly written or under
heavy load, can place a significant burden on the parsing system.

All kinds of off-the-shelf products claim that they don’t need pars‐
ers. But the example just outlined shows that at some point, a parser
is needed (unless the data already comes in some kind of a struc‐
tured form).

We need to keep two more things in mind. First, parsing doesn’t
mean that the entire log record has to be parsed. Depending on the
use case, it is enough to parse only some of the fields, such as the
usernames, IP addresses, or ports. Second, when parsing data from
different data sources, a common field dictionary needs to be used;

10 | The Security Data Lake

this is also referred to as an ontology (which is a little more than just
a field dictionary). All the field dictionary does is standardize the
names across data sources. An IP address can be known by many
names, such as: sourceAddress, sourceIP, srcIP, and src_ip.
Imagine, for example, a setup where parsers use all of these names
in the same system. How would you write a query that looked for
addresses across all these fields? You would end up writing this crazy
chain of ORed-together terms; that’s just ugly.

One last thing about parsing: we have three approaches to parsing
data:

Collection-time parsing
In collection-time parsing, the data is parsed as soon as it is col‐
lected. All processing is then done on parsed, or structured, data
—enabling all kinds of analytical use-cases. The disadvantage is
that parsers have to be available up front, and if there is a mis‐
take or an omission in the parsers, that data won’t be available.

Batch parsing
In batch parsing, the data is first stored in raw form. A batch
process is then used to parse the data at regular intervals. This
could be done once a day or once a minute, depending on the
requirements. Batch parsing is similar to collection-time pars‐
ing in that it requires parsers up front, and after the data is
parsed, it is often hard to change. However, batch parsing has
the potential to allow for reparsing and updating the already-
parsed records. We need to watch out for a few things, though—
for example, computations that were made over “older” versions
of the parsed data. Say we didn’t parse the username field
before. All of our statistics related to users wouldn’t take these
records into account. But now that we are parsing this field,
those statistics should be taken into account as well. If we
haven’t planned for a way to update the old stats in our applica‐
tion, those numbers will now be inconsistent.

Process-time parsing
Process-time parsing collects data in its raw form. If analytical
questions are involved, the data is then parsed at processing
time. This can be quite inefficient if large amounts of data are
queried. The advantage of this approach is that the parsers can
be changed at any point in time. They can be updated and aug‐
mented, making parsing really flexible. It also is not necessary

Storing Data | 11

to know the parsers up front. The biggest disadvantage here is
that it is not possible to do any ingest-time statistics or analytics.

Overall, keep in mind that the topic of parsing has many more facets
we don’t discuss here. Normalization may be needed if numerous
data sources call the same action by different names (for example,
“block,” “deny,” and “denied” are all names found in firewall logs for
communications that are blocked). Another related topic is value
normalization, used to normalize different scales. (For example, one
data source might use a high, medium, or low rating, while another
uses a scale from 1 to 10.)

Storing Log Data
To discuss how to store data, let’s revisit the access use cases we cov‐
ered earlier (see “What Do You Want with the Data and How Do
You Access It?” on page 8), and for each of them, discuss how to
approach data storage.

Search
Getting fast access based on search queries requires an index. There
are two ways to index data: full-text or token-based. Full text is self-
explanatory; the engine finds tokens in the data automatically, and
any token or word it finds it will add to the index. For example,
think of parsing a sentence into words and indexing every word.
The issue with this approach is that the individual parts of the sen‐
tence or log record are not named; all the words are treated the
same. We can leverage parsers to name each token in the logs. That
way, we can ask the index questions like username = rmarty, which
is more specific than searching all records for rmarty.

The topic of search is much bigger with concepts like prefix parsing
and analyzers, but we will leave it at this for now.

Analytics
Each of the three subcases in analytics require parsed, or structured,
data. Following are some of the issues that need to be taken into
consideration when designing a data store for analytics use-cases:

• What is the schema for the data?
• Do we distribute the data across different stores/tables? Do

some workloads require joining data from different tables? To

12 | The Security Data Lake

speed up access, does it make sense to denormalize the database
tables?

• Does the schema change over time? How does it change? Are
there only additions or also deletions of columns/fields? How
many? How often does that occur?

• Speed is an important topic that has many facets. Even with a
well thought-out schema and all kinds of optimizations, queries
can still take a long time to return data. A caching layer can be
introduced to store the most accessed data or the most returned
results. Sometimes database engines have a caching layer built
in; sometimes an extra layer is added. A significant factor is
obviously the size of the machines in use; the more memory, the
faster the processors (or the more processors), and the faster the
network between nodes, the quicker the results will come back
(in general).

• If a single node cannot store all of the data, the way that the data
is split across multiple nodes becomes relevant. Partitioning the
data, when done right, can significantly increase query speeds
(because the query can be restricted to only the relevant parti‐
tions) and data management (allowing for archiving data).

Following is a closer look at the three sub-uses of analytics:

Record-based analytics
Parsed data is stored in a schema-based/structured data store,
where you can choose either a row-based or columnar storage
format. Most often, columnar storage is more efficient and
faster for relational queries, such as counts, distinct counts,
sums, and group-bys. Columnar storage also has better com‐
pression rates than row-based stores. We should bear in mind a
couple of additional questions when designing a relational
store:

• Are we willing to sacrifice some speed in return for the flex‐
ibility of schemas on demand? Big-data stores like Hive and
Impala let the user define schemas at query time; in con‐
junction with external tables, this makes for a fairly flexible
solution. However, the drawback is that we embed the pars‐
ers in every single query, which does not really scale.

• Some queries can be sped up by computing aggregates;
online analytical processing (OLAP) cubes fall into this
area. Instead of computing certain statistical results over

Storing Data | 13

and over, OLAP cubes are computed and stored before the
result is needed.

Relationships
Log records are broken into the objects and relationships
between them, or in graph terms, with nodes and edges con‐
necting them. Nodes are entities such as machines, users, appli‐
cations, files, and websites; these entities are linked through
edges. For example, an edge would connect the nodes represent‐
ing applications and the machines these applications are
installed on. Graphs let the user express more complicated,
graph-related queries—such as “show me all executables exe‐
cuted on a Windows machine that were downloaded in an
email.” In a relational store, this type of query would be quite
inefficient. First, we would have to go through all emails and see
which ones had attachments. Then we’d look for executables.
With this candidate set, we’d then query the operating system
logs to find executables that have been executed on a Windows
machine. By using graphs, much longer chains of reasoning can
be constructed that would be really hard to express in a rela‐
tional model. Beware that most analytical queries will be much
slower in a graph, though, than in a relational store.

Distributed processing
We sometimes need to run analytics code on all or a significant
subset of our data. An example of such jobs are clustering
approaches that find groups of similar items in the data. The
naive approach would be to find the relevant data and bring it
back to one node where the analytics code is run; this can be a
large amount of data if the query is not very discriminating. The
more efficient approach is to bring the computation to the data;
this is the core premise of the MapReduce paradigm.
Common applications for distributed processing are clustering,
dimensionality reduction, and classifications—data-mining
approaches in general.

Raw Data
When processing/parsing data, we end up storing the parsed data in
some kind of a structured store. The question remains of what to do
with the raw data. The following are a few reasons we would want to
keep the raw data:

14 | The Security Data Lake

• In case we need to reparse the data, especially if the parsing was
incomplete or the parsers were wrong.

• The raw data needs to be shown to the user.
• Other data-processing steps will need raw data—for example,

natural language processing (NLP) or sentiment analysis.
• Raw data is required to be stored by compliance or regulatory

mandates.

Packet captures (PCAP) are a special case of raw data. They are large
because they contain all of the network conversations. There are a
few recommendations when it comes to storing PCAPs:

• Parse out as much meta information from the raw packets as
possible and necessary: extract IP addresses, ports, URLs, and
so forth and store them in a structured store for query and ana‐
lytics. When doing so, make sure to point the metadata back to
the full-packet captures; that way, you can search the metadata
and find the corresponding packets for further details. You can
also keep the meta information around longer than the large
PCAPs; most analytics will run on the metadata anyway.

• Store/capture PCAPs for a short amount of time; short is rela‐
tive and can mean anything from a couple of hours to a couple
of weeks. This data can be used for in-depth forensics investiga‐
tions if the metadata collected and extracted is not enough.

• For specific areas of the network—for example, communica‐
tions involving critical servers—store the raw packets for a
longer period of time.

One thing to keep in mind is that all of the preceding cases are not
mutually exclusive. In fact, most of the time, we will need all of the
access use cases. Therefore, we will end up needing a data store that
supports all of these approaches. We will discuss technologies and
specific data stores in “Accessing Data” on page 17; first we have to
address one more topic: storing context.

Storing Context
We mentioned earlier that context, or contextual data, is slightly spe‐
cial. One option is to store context in a graph database by attaching
the context as properties of individual objects. What if we want or

Storing Data | 15

need to use one of the other data stores? How do we leverage con‐
text for search, analytics, and data mining (distributed processing)?
For example, we might want to search for all of the records that
involve web servers. The data records themselves contain only IP
addresses and no machine roles. The context, however, consists of a
mapping from IP addresses to machine roles. Or we might want to
compute some kind of statistics for web servers.

We can take two approaches to incorporate context for those cases:

Enrich at collection time
The first option is to augment every record at ingestion time.
When the data is collected, we add the extra information to
each record. This puts more load on the input processing and
definitely consumes more storage on the back end, because
every record now contains extra columns with the context. The
benefit is that we can easily run any analytics/search right
against the main data without any lookups. The caveat is that
enrichment at collection time works only for context that does
not change over time.
Enrich in batch: Instead of doing all of the enrichment in real
time when data is collected, we can also run batch jobs over all
of the data to enrich it anytime after it’s collected.

Join at processing time
The other option, if the overhead of enrichment is too high, is
to join the data at processing time. Let’s take our example from
earlier. We would first use the context store to find all the IP
addresses of web servers. We would then take that list to query
against the main data store to find all the records that involve
those IP addresses. Depending on the size of the list of IP
addresses (how many web servers there are), this can get pretty
expensive in terms of processing time. In a relational data store
that supports joins, we can normalize the schema and store the
context in a separate table that is then joined against the main
data table whenever needed.

Either or both of the preceding approaches can be right, depending
on the situation. Most likely, you will end up with a hybrid
approach, whereby some of the data should be enriched at collection
time, some on a regular basis in batch, and some that is looked up in
real time. The decision depends on how often we use the informa‐

16 | The Security Data Lake

tion and how expensive the query becomes if we do a real-time
lookup.

Ideally, we implement a three-tier system:

1. Real-time lookup table: Lookups are often stored in key-value
stores, which are really fast at finding associations for a key.
Keep in mind that the reverse—looking up a key for a given
value—is not easily possible. However, a method called an
inverse index, which some key-value stores support out of the
box, will facilitate this task. In other cases, you will have to add
the inverse index (value→key) manually. In a relational data‐
base, you can store the lookups in a separate table. In addition,
you might want to index the columns for which you issue a lot
of lookups. Also, keep in mind that some lookups are valid at
only certain times, so keep a time range with the data that
defines the validity of the lookup. For example, a DHCP lease is
valid for only a specific time period and might change
afterward.

2. In-memory cache: Some lookups we have to repeat over and
over again, and hitting disks to answer these queries is ineffi‐
cient. Figure out which lookups you do a lot and cache those
values in memory. This cache can be an explicit caching layer
(something like memcache), or could be part of whatever key-
value store we use to store the lookups.

3. Enrich data: The third tier is to enrich the data itself. Most
likely there will be some data fields for which we have to do this
to get decent query times across analytical and search opera‐
tions. Ideally, we’d be able to instrument our applications to see
what kinds of fields we need a lot and then enrich the data store
with that information—an auto-adopting system.

Accessing Data
How is data accessed after it is stored? Every data store has its own
ways of making the data available. SQL used to be the standard for
interacting with data, until the NoSQL movement showed up. APIs
were introduced that didn’t need SQL but instead used a proprietary
language to query data. It is interesting to observe, however, that
many of those NoSQL stores have introduced languages that look
very much like SQL, and, in a lot of cases, now support

Accessing Data | 17

SQL-compliant interfaces. It is a good policy to try to find data
stores that support SQL as a query language. SQL is expressive (it
allows for many data-processing questions) and is known by a lot of
programmers and even business analysts (and security analysts, for
that matter). Many third-party tools and products also allow inter‐
facing with SQL-based data stores, which makes integrations easier.

Another standard that is mentioned often, along with SQL, is JDBC.
JDBC is a commonly used transport protocol to access SQL-based
data stores. Libraries are available for many programming lan‐
guages, and many products embed a JDBC driver to hook into the
database. Both SQL and JDBC are standards that you should have
an eye out for.

RESTful APIs are not a good option to access data. REST does not
define a query language for data access. If we defined an interface,
we would have to make sure that the third-party tools would under‐
stand them. If the data lake was used by only our own applications,
we could go this route, but bearing in mind that this would not scale
to third-party products.

Figure 1-1 shows a flow diagram with the components we discussed
in this section.

Figure 1-1. Flow diagram showing the components of a data lake

The components are as follows:

• The real-time processing piece contains parts of parsing, as well
as the aggregation logic to feed the structured stores. It would

18 | The Security Data Lake

also contain any behavioral monitoring, or scoring of entities, as
well as the rule-based real-time correlation engine.

• The data lake itself spans the gray box in the middle of
Figure 1-1. The distributed processing piece could live in your
data lake, as well as other components not shown here.

• The access layer often consists of some kind of a SQL interface.
However, it doesn’t have to be SQL; it could be anything else,
like a RESTful interface, for example. Keep in mind, though,
that using non-SQL will make integrating with third-party
products more difficult; they would have to be built around
those interfaces, which is most likely not an option.

• The storage layer could be HDFS to share data across all the
components (key-value store, structured store, graph store, stats
store, raw data storage), but often you will end up with multiple,
separate data stores for each of the components. For example,
we might have a columnar store for the structured data
already—something like Vertica, TeraData, or Hexis. These
stores will most likely not have the data stored on HDFS in a
way that other data stores could access them, and you will need
to create a separate copy of the data for the other components.

• The distributed processing component contains any logic that is
used for batch processing. In the broadest sense, we can also
lump batch processes (for example, later-stage enrichments or
parsing) into this component.

Based on the particular access use case, some of the boxes (data
stores) won’t be needed. For example, if search is not a use case, we
won’t need the index, and likely won’t need the graph store or the
raw logs.

Ingesting Data
Getting the data into the data lake consists of a few parts:

Parsing
We discussed parsing at length already (see “Using Parsers” on
page 10). Keep a few things in mind: SIEMs have spent a lot of
time building connectors/agents (or collectors), which are basi‐
cally parsers. Both the transport to access the data (such as
syslog, WMF) and the data structure (the syntax of the log mes‐
sages) take a lot of time to be built across the data sources. Don’t

Ingesting Data | 19

underestimate the work involved in this. If there is a way to
reuse the parsers of a SIEM, you should!

Enrichment
We discussed enrichment at length earlier (see page 16). As an
example, DNS resolution is often done at ingestion time to
resolve IP addresses to host names, and the other way around.
This makes it possible to correlate data sources that have either
of those data fields, but not both. Consider, however, that a DNS
lookup can be really slow. Holding up the ingestion pipeline to
wait for a DNS response might not always be possible. Most
likely, you should have a separate DNS server to answer these
lookups, or consider the enrichment after the fact based on a
batch job.
In the broadest sense, matching the real-time log feed against a
list of indicators of compromise (IOC) can be considered
enrichment as well.

Federated data
We talked a little about federated data stores (see “Where Is the
Data and Where Does It Come From?” on page 8). If you have
an access layer that allows for data to be distributed in different
stores, that might be a viable option, instead of reading the data
from the original stores and forwarding it into the data lake.

Aggregation
As we are ingesting data into the data lake, we can already begin
some real-time statistics, by computing various types of statisti‐
cal summaries. For example, counting events and aggregating
data by source address are two types of summaries we can cre‐
ate during ingestion, which can speed up queries for those sum‐
maries later.

Third-party access
Third-party products might need access to your real-time feed
in order to do their own processing. Jobs like scoring and
behavioral models, for example, often require access to a real-
time feed. You will either need a way to forward a feed to those
tools, or run those models through your own infrastructure,
which opens up a number of new questions about how exactly
to enable the feed.

20 | The Security Data Lake

Understanding How SIEM Fits In
SIEMs get in trouble for three main issues: actual threat detection,
scalability, and storage of advanced context, such as HR data. The
one main issue we can try to address with the data lake is scalability.
We have seen expensive projects try to replace their SIEM with
some big data/Hadoop infrastructure, just for the team to realize
that some SIEM features would be really hard to replicate.

In order to decide which parts of an SIEM could be replaced with
the aid of some additional plumbing, first we must look at SIEM’s
key capabilities, which include the following:

• Rich parsers for a large set of security data sources
• Mature parsing and enrichment framework
• Real-time, stateful correlation engine (generally not distributed)
• Real-time statistical engine
• Event triage and workflow engines
• Dashboards and reports
• User interfaces to configure real-time engines
• Search interface for forensics
• Ticketing and case management system

Given that this is a fairly elaborate list, instead of replacing the
SIEM, it might make more sense to embed the SIEM into your data-
lake strategy. There are a couple of ways to do so, each having its
own caveats. Review Table 1-1 for a summary of the four main
building blocks that can be used to put together a SIEM–data lake
integration.

We will use the four main building blocks described in Table 1-1 to
discuss four additional, more elaborate use cases based on these
building blocks:

• Traditional data lake
• Preprocessed data
• Split collection
• Federated data access

Understanding How SIEM Fits In | 21

Table 1-1. Four main building blocks for a SIEM-data lake integration

Traditional Data Lake
Whatever data possible is stored in its raw form on HDFS. From
there, it is picked up and forwarded into the SIEM, applying some
filters to reduce the amount of data collected via the SIEM (see
Figure 1-2).

22 | The Security Data Lake

Figure 1-2. Data-flow diagram for a traditional data lake setup

The one main benefit of this architecture is that we can significantly
reduce the effort of getting access to data for security monitoring
tools. Without such a central setup, each new security monitoring
tool needs to be fed a copy of the original data, which results in get‐
ting other teams involved to make configuration changes to prod‐
ucts, making changes to production infrastructure that are risky,
and having some data sources that might not support copying their
data to multiple destinations. In the traditional data lake setup, data
access can be handled in one place. However, this architecture has a
few disadvantages:

• We need transport agents that can read the data at its origin and
store it in HDFS. A tool called Apache Flume is a good option.

• Each product that wants to access the data lake (the raw data)
needs a way to read the data from HDFS.

• Parsing has to be done by each product independently, thereby
duplicating work across all of the products.

• When picking up the data and forwarding it to the SIEM (or
any other product), the SIEM needs to understand the data for‐
mat (syntax). However, most SIEM connectors (and products)
are built such that a specific connector (say for Check Point
Firewall) assumes a specific transport to be present (OPSEC in
our example) and then expects a certain data format. In this sce‐
nario, the transport would not be correct.

For other data sources that we cannot store in HDFS, we have to get
the SIEM connectors to directly read the data from the source (or
forward the data there). In Figure 1-2 we show an arrow with a dot‐
ted line, where it might be possible to send a copy of the data into
the raw data store as well.

Understanding How SIEM Fits In | 23

As you can see, the traditional data lake setup doesn’t have many
benefits. Hardly any products can read from the data lake (that is,
HDFS), and it is hard to get the SIEMs to read from it too. There‐
fore, a different architecture is often chosen, whereby data is prepro‐
cessed before being collected.

Preprocessed Data
The preprocessed data architecture collects data in a structured or
semistructured data store, before it is forwarded to the SIEM. Often
this precollection is done either in a log management, or some other
kind, of data warehouse, such as a columnar database. The data
store is used to either summarize the data and forward summarized
information to the SIEM, or to forward a filtered data stream in
order to not overload the SIEM (see Figure 1-3).

Figure 1-3. Data-flow diagram for the preprocessed data setup

The reasons for using a preprocessed data setup include the
following:

• Reduces the load on the SIEM by forwarding only partial infor‐
mation, or forwarding presummarized information.

• Collects the data in a standard data store that can be used for
other purposes; often accessible via SQL.

• Stores data in an HDFS cluster for use with other big data tools.
• Leverages cheaper data storage to collect data for archiving

purposes.
• Frequently chosen if there is already a data warehouse, or a rela‐

tional data store available for reuse.

24 | The Security Data Lake

As with a traditional data lake, some of the challenges with using the
preprocessed data setup include the following:

• You will need a way to parse the data before collection. Often
this means that the SIEM’s connectors are not usable.

• The SIEM needs to understand the data forwarded from the
structured store. This can be a big issue, as discussed previously.
If the SIEM supports a common log format, such as the Com‐
mon Event Format (CEF), we can format the data in that format
and send it to the SIEM.

Split Collection
The split collection architecture works only if the SIEM connector
supports forwarding textual data to a text-based data receiver in
parallel to sending the data to the SIEM. You would configure the
SIEM connector to send the data to both the SIEM and to a process,
such as Flume, logstash, or rsyslog, that can write data to HDFS, and
then store the data in HDFS as flat files. Make sure to partition the
data into directories to allow for easy data management. A directory
per day and a file per hour is a good start until the files get too big,
and then you might want to have directories per hour and a file per
hour (see Figure 1-4).

Figure 1-4. Data flow diagram for a split connection setup

Some of the challenges with using split collection include the
following:

Understanding How SIEM Fits In | 25

• The SIEM connector needs to have two capabilities: forwarding
textual information and copying data to multiple destinations.

• If raw data is forwarded to HDFS, we need a place to parse the
data. We can do this in a batch process (MapReduce job) over
HDFS. Alternatively, some SIEM connectors are capable of for‐
warding data in a standardized way, such as in CEF format.
(Having all of the data stored in a standard format in HDFS
makes it easy to parse later.)

• If you are running advanced analytics outside the SIEM, you
will have to consider how the newly discovered insight gets inte‐
grated back into the SIEM workflow.

Federated Data Access
It would be great if we could store all of our data in the data lake,
whether it be security-related data, network metrics (the SNMP
input in the diagram), or even HR data. Unlike in our first scenario
(the traditional data lake), the data collected is not in raw form any‐
more. Instead, we’re collecting processed data (see Figure 1-5).

Figure 1-5. Data flow diagram for a federated data access setup

To enable access to the data, a “dispatcher” is needed to orchestrate
the data access. As shown in Figure 1-5, not all data is forwarded to
the lake. Some data is kept in its original store, and is accessed
remotely by the dispatcher when needed.

Some of the challenges with using federated data access include the
following:

26 | The Security Data Lake

• There is no off-the-shelf dispatcher available; you will need to
implement this capability yourself. It needs to support both
batch data access (probably through SQL), but also a real-time
streaming capability to forward data to any kind of real-time
system, such as your SIEM.

• Security products (such as behavior analytics tools, visualization
tools, and search interfaces) need to be rewritten to leverage the
dispatcher.

• Accessing data in a federated way (for example, HR data) might
not be possible or may be hard to implement (for example,
schemas need to be understood or systems need to allow third-
party access).

• Controlling access to and protecting the data store becomes a
central security problem, and any data-lake project will need to
address these issues.

Despite all of the challenges with a federated data access setup, the
benefits of such an architecture are quite interesting:

• Data is collected only once.
• Data from critical systems, such as an HR system, can be left in

its original data store.
• The data lake can be leveraged by not only the security teams,

but also any other function in the company that needs access to
the same data.

A fifth setup consists of first collecting the data in a SIEM and then
extracting it to feed it into the security data lake. This setup is some‐
what against the principle of the data lake, in that it first collects the
data in a big data setup and then gives third-party tools (among
them the SIEM) access. In addition, most SIEMs do not have a good
way to get data out of their data store.

Acknowledgments
I would like to thank all of the people who have provided input to
early ideas and versions of this report. Special thanks go to Jose Naz‐
ario, Anton Chuvakin, and Charaka Goonatilake for their great
input that has made this report what it is.

Acknowledgments | 27

Appendix: Technologies To Know and Use
The following list briefly summarizes a few key technologies (for
further reading, check out the Field Guide to Hadoop):

HDFS
A distributed file system supporting fault tolerance and
replication.

Apache MapReduce
A framework that allows for distributed computations. One of
the core ideas is to bring processing to the data, instead of data
to the processor. An algorithm has to be broken into map and
reduce components that can be strung together in arbitrary top‐
ologies to compute results over large amounts of data. This can
become quite complicated, and optimizations are left to the pro‐
grammer. Newer frameworks exist that abstract the MapReduce
subtasks from the programmer. The framework is used to opti‐
mize the processing pipeline. Spark is such a framework.

YARN
Yet Another Resource Negotiator (YARN), sometimes also
called MapReduce 2.0, is a resource manager and job scheduler.
It is an integral part of Hadoop 2, which basically decouples
HDFS from MapReduce. This allows for running non-
MapReduce jobs in the Hadoop framework, such as streaming
and interactive querying.

Spark
Just like MapReduce, Spark is a distributed processing frame‐
work. It is part of the Berkeley Data Analytics Stack (BDAS),
which encompasses a number of components for big data pro‐
cessing both in real time, as well as batch uses. Spark, which is
the core component of the BDAS stack, supports arbitrary algo‐
rithms to be run in a distributed environment. It makes efficient
use of memories on the compute nodes and will cache on disk if
needed. For structured data processing needs, SparkSQL is used
to interact with the data through a SQL interface. In addition, a
Spark Streaming component allows for real-time processing
(microbatching) of incoming data.

28 | The Security Data Lake

http://shop.oreilly.com/product/0636920032830.do

Hive
An implementation of a query engine for structure data on top
of MapReduce. In practice, this means that the user can write
HQL (for all intended purposes, it’s SQL) queries against data
stored on HDFS. The drawback of Hive is the query speed
because it invokes MapReduce as an underlying computation
engine.

Impala, Hawk, Stinger, Drill
Interactive SQL interfaces for data stored in HDFS. They are
trying to match the capabilities of Hive, but without using Map‐
Reduce as the computation engine—making SQL queries much
faster. Each of the four has similar capabilities.

Key-value stores
Data storage engines that store data as key-value pairs. They
allow for really fast lookup of values based on their keys. Most
key-value stores add advanced capabilities, such as inverse
indexes, query languages, and auto sharding. Examples of key-
value stores are Cassandra, MongoDB, and HBase.

Elasticsearch
A search engine based on the open source search engine
Lucene. Documents are sent to Elasticsearch (ES) in JSON for‐
mat. The engine then creates a full-text index of the data. All
kinds of configurations can be tweaked to tune the indexing and
storage of the indexed documents. While search engines call
their unit of operation a document, log records can be consid‐
ered documents. Another search engine is Solr, but ES seems to
be used more in log management.

ELK stack
A combination of three open source projects: Elasticsearch, log‐
stash, and Kibana. Logstash is responsible for collecting log files
and storing them in Elasticsearch (it has a parsing engine), Elas‐
ticsearch is the data store, and Kibana is the web interface to
build dashboards and query the data stored in Elasticsearch.

Graph databases
A database that models data as nodes and edges (for example, as
a graph). Examples include Titan, GraphX, and Neo4j.

Appendix: Technologies To Know and Use | 29

Apache Storm
A real-time, distributed processing engine just like Spark
Streaming.

Columnar data store
We have to differentiate between the query engines themselves
(such as Impala, Hawk, Stinger, Drill, and Hive) and how the
data is stored. The query engines can use various kinds of stor‐
age engines. Among them are columnar storage engines such as
parquet, and Optimized Row Columnar (ORC) files; these for‐
mats are self-describing, meaning that they encode the schema
along with the data.

A good place to start with the preceding technologies is one of the
big data distributions from Cloudera, Hortonworks, MapR, or Pivo‐
tal. These companies provide entire stacks of software components
to enable a data lake setup. Each company also makes a virtual
machine available that is ready to go and can be used to easily
explore the components. The distributions differ mainly in terms of
management interfaces, and strangely enough, in their interactive
SQL data stores. Each vendor has its own version of an interactive
SQL store, such as Impala, Stinger, Drill, and Hawk.

Finding qualified resources that can help build a data lake is one of
the toughest tasks you will have while building your data stack. You
will need people with knowledge of all of these technologies to build
out a detailed architecture. Developer skills—generally, Scala or Java
skills in the big data world—will be necessary to fill in the gaps
between the building blocks. You will also need a team with system
administration or devops skills to build the systems and to deploy,
tune, and monitor them.

30 | The Security Data Lake

About the Author
Raffael Marty is one of the world’s most recognized authorities on
security data analytics and visualization. Raffy is the founder and
CEO of pixlcloud, a next-generation visual analytics platform. With
a track record at companies including IBM Research and ArcSight,
he is thoroughly familiar with established practices and emerging
trends in big data analytics. He has served as Chief Security Strate‐
gist with Splunk and was a cofounder of Loggly, a cloud-based log
management solution. Author of Applied Security Visualization and
frequent speaker at academic and industry events, Raffy is a leading
thinker and advocate of visualization for unlocking data insights.
For more than 14 years, Raffy has worked in the security and log
management space to help Fortune 500 companies defend them‐
selves against sophisticated adversaries and has trained organiza‐
tions around the world in the art of data visualization for security.
Zen meditation has become an important part of Raffy’s life, some‐
times leading to insights not in data but in life.

	Copyright
	Table of Contents
	Chapter 1. The Security Data Lake
	Leveraging Big Data Technologies to Build a Common Data Repository for Security
	Comparing Data Lakes to SIEM
	Implementing a Data Lake
	Understanding Types of Data
	Time-Series Data
	Contextual Data

	Choosing Where to Store Data
	Knowing How Data Is Used
	How Much Data Do We Have in Total?
	How Fast Does the Data Need to Be Ready?
	How Much Data Do We Query, and How Often?
	Where Is the Data and Where Does It Come From?
	What Do You Want with the Data and How Do You Access It?

	Storing Data
	Using Parsers
	Storing Log Data
	Storing Context

	Accessing Data
	Ingesting Data
	Understanding How SIEM Fits In
	Traditional Data Lake
	Preprocessed Data
	Split Collection
	Federated Data Access

	Acknowledgments
	Appendix: Technologies To Know and Use

