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Preface

This report is an introductory volume on unikernels. It is not meant
to be a tutorial or how-to guide, but rather a high-level overview of
unikernel technology. It will also cover the problems that unikernels
address, the unikernel projects that currently exist, the ecosystem
elements that support them, the limits of unikernel technology, and
some thoughts about the future of the technology. By the time you
are finished, you should have a good understanding of what uniker‐
nels are and how they could play a significant role in the future of
the cloud.
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CHAPTER 1

Unikernels: A New Technology to
Combat Current Problems

At the writing of this report, unikernels are the new kid on the cloud
block. Unikernels promise small, secure, fast workloads, and people
are beginning to see that this new technology could help launch a
new phase in cloud computing.

To put it simply, unikernels apply the established techniques of
embedded programming to the datacenter. Currently, we deploy
applications using beefy general-purpose operating systems that
consume substantial resources and provide a sizable attack surface.
Unikernels eliminate nearly all the bulk, drastically reducing both
the resource footprint and the attack surface. This could change the
face of the cloud forever, as you will soon see.

What Are Unikernels?
For a functional definition of a unikernel, let’s turn to the burgeon‐
ing hub of the unikernel community, Unikernel.org, which defines it
as follows:

Unikernels are specialised, single-address-space machine images
constructed by using library operating systems.

In other words, unikernels are small, fast, secure virtual machines
that lack operating systems.

I could go on to focus on the architecture of unikernels, but that
would beg the key question: why? Why are unikernels really needed?
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Why can’t we simply live with our traditional workloads intact? The
status quo for workload construction has remained the same for
years; why change it now?

Let’s take a good, hard look at the current problem. Once we have
done that, the advantages of unikernels should become crystal clear.

The Problem: Our Fat, Insecure Clouds
When cloud computing burst on the scene, there were all sorts of
promises made of a grand future. It was said that our compute farms
would magically allocate resources to meet the needs of applications.
Resources would be automatically optimized to do the maximum
work possible with the assets available. And compute clouds would
leverage assets both in the datacenter and on the Internet, transpar‐
ently to the end user.

Given these goals, it is no surprise that the first decade of the cloud
era focused primarily on how to do these “cloudy” things. Emphasis
was placed on developing excellent cloud orchestration engines that
could move applications with agility throughout the cloud. That was
an entirely appropriate focus, as the datacenter in the time before
the cloud was both immobile and slow to change. Many system
administrators could walk blindfolded through the aisles of their
equipment racks and point out what each machine did for what
department, stating exactly what software was installed on each
server. The placement of workloads on hardware was frequently
laborious and static; changing those workloads was a slow, difficult,
and arduous task, requiring much verification and testing before
even the smallest changes were made on production systems.

The Old Mindset: Change Was Bad
In the era before clouds, there was no doubt in the minds of opera‐
tions staff that change was bad. Static was good. When a customer
needed to change something—say, upgrade an application—that
change had to be installed, tested, verified, recorded, retested,
reverified, documented, and finally deployed. By the time the
change was ready for use, it became the new status quo. It became
the new static reality that should not be changed without another
monumental effort.
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If an operations person left work in the evening and something
changed during the night, it was frequently accompanied by a 3 AM
phone call to come in and fix the issue before the workday began…
or else! Someone needed to beat the change into submission until it
ceased being a change. Change was unmistakably bad.

The advent of cloud orchestration software (OpenStack, Cloud‐
Stack, openNebula, etc.) altered all that—and many of us were very
grateful. The ability of these orchestration systems to adapt and
change with business needs turned the IT world on its head. A new
world ensued, and the promise of the cloud seemed to be fulfilled.

Security Is a Growing Problem
However, as the cloud era dawned, it became evident that a good
orchestration engine alone is simply not enough to make a truly
effective cloud. A quick review of industry headlines over the past
few years yields report after report of security breaches in some of
the most impressive organizations. Major retailers, credit card com‐
panies, even federal governments have reported successful attacks
on their infrastructure, including possible loss of sensitive data. For
example, in May 2016, the Wall Street Journal ran a story about
banks in three different countries that had been recently hacked to
the tune of $90 million in losses. A quick review of the graphic rep‐
resentation of major attacks in the past decade will take your breath
away. Even the US Pentagon was reportedly hacked in the summer
of 2011. It is no longer unusual to receive a letter in the mail stating
that your credit card is being reissued because credit card data was
compromised by malicious hackers.

I began working with clouds before the term “cloud” was part of the
IT vernacular. People have been bucking at the notion of security in
the cloud from the very beginning. It was the 800-pound gorilla in
the room, while the room was still under construction!

People have tried to blame the cloud for data insecurity since day
one. But one of the dirty little secrets of our industry is that our data
was never as safe as we pretended it was. Historically, many organi‐
zations have simply looked the other way when data security was
questioned, electing instead to wave their hands and exclaim, “We
have an excellent firewall! We’re safe!” Of course, anyone who thinks
critically for even a moment can see the fallacy of that concept. If
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firewalls were enough, there would be no need for antivirus pro‐
grams or email scanners—both of which are staples of the PC era.

Smarter organizations have adopted a defense-in-depth concept, in
which the firewall becomes one of several rings of security that sur‐
round the workload. This is definitely an improvement, but if noth‐
ing is done to properly secure the workload at the center of
consideration, this approach is still critically flawed.

In truth, to hide a known weak system behind a firewall or even
multiple security rings is to rely on security by obscurity. You are bet‐
ting that the security fabric will keep the security flaws away from
prying eyes well enough that no one will discover that data can be
compromised with some clever hacking. It’s a flawed theory that has
always been hanging by a thread.

Well, in the cloud, security by obscurity is dead! In a world where a
virtual machine can be behind an internal firewall one moment and
out in an external cloud the next, you cannot rely on a lack of prying
eyes to protect your data. If the workload in question has never been
properly secured, you are tempting fate. We need to put away the
dreams of firewall fairy dust and deal with the cold, hard fact that
your data is at risk if it is not bolted down tight!

The Cloud Is Not Insecure; It Reveals That Our
Workloads Were Always Insecure
The problem is not that the cloud introduces new levels of insecur‐
ity; it’s that the data was never really secure in the first place. The
cloud just made the problem visible—and, in doing so, escalated its
priority so it is now critical.

The best solution is not to construct a new type of firewall in the
cloud to mask the deficiencies of the workloads, but to change the
workloads themselves. We need a new type of workload—one that
raises the bar on security by design.

Today’s Security is Tedious and Complicated, Leaving
Many Points of Access
Think about the nature of security in the traditional software stack:

1. First, we lay down a software base of a complex, multipurpose,
multiuser operating system.
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2. Next, we add hundreds—or even thousands—of utilities that do
everything from displaying a file’s contents to emulating a hand-
held calculator.

3. Then we layer on some number of complex applications that
will provide services to our computing network.

4. Finally, someone comes to an administrator or security special‐
ist and says, “Make sure this machine is secure before we deploy
it.”

Under those conditions, true security is unobtainable. If you applied
every security patch available to each application, used the latest ver‐
sion of each utility, and used a hardened and tested operating system
kernel, you would only have started the process of making the sys‐
tem secure. If you then added a robust and complex security system
like SELINUX to prevent many common exploits, you would have
moved the security ball forward again. Next comes testing—lots and
lots of testing needs to be performed to make sure that everything is
working correctly and that typical attack vectors are truly closed.
And then comes formal analysis and modeling to make sure every‐
thing looks good.

But what about the atypical attack vectors? In 2015, the VENOM
exploit in QEMU was documented. It arose from a bug in the virtual
floppy handler within QEMU. The bug was present even if you had
no intention of using a virtual floppy drive on your virtual
machines. What made it worse was that both the Xen Project and
KVM open source hypervisors rely on QEMU, so all these virtual
machines—literally millions of VMs worldwide—were potentially at
risk. It is such an obscure attack vector that even the most thorough
testing regimen is likely to overlook this possibility, and when you
are including thousands of programs in your software stack, the
number of obscure attack vectors could be huge.

But you aren’t done securing your workload yet. What about new
bugs that appear in the kernel, the utilities, and the applications? All
of these need to be kept up to date with the latest security patches.
But does that make you secure? What about the bugs that haven’t
been found yet? How do you stop each of these? Systems like SELI‐
NUX help significantly, but it isn’t a panacea. And who has certified
that your SELINUX configuration is optimal? In practice, most
SELINUX configurations I have seen are far from optimal by design,
since the fear that an aggressive configuration will accidentally keep
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a legitimate process from succeeding is quite real in many people’s
minds. So many installations are put into production with less-than-
optimal security tooling.

The security landscape today is based on a fill-in-defects concept.
We load up thousands of pieces of software and try to plug the hun‐
dreds of security holes we’ve accumulated. In most servers that go
into production, the owner cannot even list every piece and version of
software in place on the machine. So how can we possibly ensure that
every potential security hole is accounted for and filled? The answer is
simple: we can’t! All we can do is to do our best to correct everything
we know about, and be diligent to identify and correct new flaws as
they become known. But for a large number of servers, each con‐
taining thousands of discrete components, the task of updating, test‐
ing, and deploying each new patch is both daunting and exhausting.
It is no small wonder that so many public websites are cracked,
given today’s security methodology.

And Then There’s the Problem of Obesity
As if the problem of security in the cloud wasn’t enough bad news,
there’s the problem of “fat” machine images that need lots of resour‐
ces to perform their functions. We know that current software stacks
have hundreds or thousands of pieces, frequently using gigabytes of
both memory and disk space. They can take precious time to start
up and shut down. Large and slow, these software stacks are virtual
dinosaurs, relics from the stone age of computing.

Once Upon a Time, Dinosaurs Roamed the Earth
I am fortunate to have lived through several eras in the history of
computing. Around 1980, I was student system administrator for
my college’s DEC PDP-11/34a, which ran the student computing
center. In this time before the birth of IBM’s first personal com‐
puter, there was precisely one computer allocated for all computer
science, mathematics, and engineering students to use to complete
class assignments. This massive beast (by today’s standards; back
then it was considered petite as far as computers were concerned)
cost many tens of thousands of dollars and had to do the bidding of
a couple hundred students each and every week, even though its
modest capacity was multiple orders of magnitude below any recent
smartphone. We ran the entire student computing center on just
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248 KB of memory (no, that’s not a typo) and 12.5 MB of total disk
storage.

Back then, hardware was truly expensive. By the time you factored
in the cost of all the disk drives and necessary cabinetry, the cost for
the system must have been beyond $100,000 for a system that could
not begin to compete with the compute power in the Roku box I
bought on sale for $25 last Christmas. To make these monstrously
expensive minicomputers cost-effective, it was necessary for them
to perform every task imaginable. The machine had to authenticate
hundreds of individual users. It had to be a development platform,
a word processor, a communication device, and even a gaming
device (when the teachers in charge weren’t looking). It had to
include every utility imaginable, have every compiler we could
afford, and still have room for additional software as needed.

The recipe for constructing software stacks has remained almost
unchanged since the time before the IBM PC when minicomputers
and mainframes were the unquestioned rulers of the computing
landscape. For more than 35 years, we have employed software
stacks devised in a time when hardware was slow, big, and expen‐
sive. Why? We routinely take “old” PCs that are thousands of times
more powerful than those long-ago computing systems and throw
them into landfills. If the hardware has changed so much, why hasn’t
the software stack?

Using the old theory of software stack construction, we now have
clouds filled with terabytes of unneeded disk space using gigabytes
of memory to run the simplest of tasks. Because these are patterned
after the systems of long ago, starting up all this software can be
slow—much slower than the agile promise of clouds is supposed to
deliver. So what’s the solution?

Slow, Fat, Insecure Workloads Need to Give Way to
Fast, Small, Secure Workloads
We need a new type of workload in the cloud. One that doesn’t waste
resources. One that starts and stops almost instantly. One that will
reduce the attack surface of the machine so it is not so hard to make
secure. A radical rethink is in order.
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A Possible Solution Dawns: Dockerized
Containers
Given this need, it is no surprise that when Dockerized containers
made their debut, they instantly became wildly popular. Even
though many people weren’t explicitly looking for a new type of
workload, they still recognized that this technology could make life
easier in the cloud.

For those readers who might not be intimately aware
of the power of Dockerized containers, let me just say
that they represent a major advance in workload
deployment. With a few short commands, Docker can
construct and deploy a canned lightweight container.
These container images have a much smaller footprint
than full virtual machine images, while enjoying snap-
of-the-finger quick startup times.

There is little doubt that the combination of Docker and containers
does make massive improvements in the right direction. That com‐
bination definitely makes the workload smaller and faster compared
to traditional VMs.

Containers necessarily share a common operating system kernel
with their host system. They also have the capability to share the
utilities and software present on the host. This stands in stark con‐
trast to a standard virtual (or hardware) machine solution, where
each individual machine image contains separate copies of each
piece of software needed. Eliminating the need for additional copies
of the kernel and utilities in each container on a given host means
that the disk space consumed by the containers on that host will be
much smaller than a similar group of traditional VMs.

Containers also can leverage the support processes of the host sys‐
tem, so a container normally only runs the application that is of
interest to the owner. A full VM normally has a significant number
of processes running, which are launched during startup to provide
services within the host. Containers can rely on the host’s support
processes, so less memory and CPU is consumed compared to a
similar VM.

Also, since the kernel and support processes already exist on the
host, startup of a container is generally quite quick. If you’ve ever
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watched a Linux machine boot (for example), you’ve probably
noticed that the lion’s share of boot time is spent starting the kernel
and support processes. Using the host’s kernel and existing processes
makes container boot time extremely quick—basically that of the
application’s startup.

With these advances in size and speed, it’s no wonder that so many
people have embraced Dockerized containers as the future of the
cloud. But the 800-pound gorilla is still in the room.

Containers are Smaller and Faster, but Security is Still
an Issue
All these advances are tremendous, but the most pressing issue has
yet to be addressed: security. With the number of significant data
breaches growing weekly, increasing security is definitely a require‐
ment across the industry. Unfortunately, containers do not raise the
bar of security nearly enough. In fact, unless the administrator
works to secure the container prior to deployment, he may find
himself in a more vulnerable situation than when he was still using a
virtual machine to deploy the service.

Now, the folks promoting Dockerized containers are well aware of
that shortfall and are expending a large amount of effort to fix the
issue—and that’s terrific. However, the jury is still out on the results.
We should be very mindful of the complexity of the lockdown tech‐
nology. Remember that Dockerized containers became the industry
darling precisely because of their ease of use. A security add-on that
requires some thought—even a fairly modest amount—may not be
enacted in production due to “lack of time.”

I remember when SELINUX started to be installed by
default on certain Linux distributions. Some people
believed this was the beginning of the end of insecure
systems. It certainly seemed logical to think so—unless
you observed what happened when people actually
deployed those systems. I shudder to think how many
times I’ve heard, “we need to get this server up now, so
we’ll shut off SELINUX and configure it later.” Promis‐
ing to “configure SELINUX when there’s time” carries
about as much weight as a politician’s promise to
secure world peace. Many great intentions are never
realized for the perception of “lack of time.”
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Unless the security solution for containers is as simple as using
Docker itself, it stands an excellent chance of dying from neglect.
The solution needs to be easy and straightforward. If not, it may
present the promise of security without actually delivering it in
practice. Time will tell if container security will rise to the needed
heights.

It Isn’t Good Enough to Get Back to Yesterday’s Security
Levels; We Need to Set a Higher Bar
But the security issue doesn’t stop with ease of use. As we have
already discussed, we need to raise the level of security in the cloud.
If the container security story doesn’t raise the security level of work‐
loads by default, we will still fall short of the needed goal.

We need a new cloud workload that provides a higher level of secu‐
rity without expending additional effort. We must stop the “come
from behind” mentality that makes securing a system a critical after‐
thought. Instead, we need a new level of security “baked in” to the
new technology—one that closes many of the existing attack vectors.

A Better Solution: Unikernels
Thankfully, there exists a new workload theory that provides the
small footprint, fast startup, and improved security we need in the
next-generation cloud. This technology is called unikernels. Uniker‐
nels represent a radically different theory of an enterprise software
stack—one that promotes the qualities needed to create and radi‐
cally improve the workloads in the cloud.

Smaller
First, unikernels are small—very small; many come in at less than a
megabyte in size. By employing a truly minimalist concept for soft‐
ware stack creation, unikernels create actual VMs so tiny that the
smallest VM allocations by external cloud providers are huge by
comparison. A unikernel literally employs the functions needed to
make the application work, and nothing more. We will see examples
of these in the subsection “Let’s Look at the Results” on page 21.
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Faster
Next, unikernels are very quick to start. Because they are so tiny,
devoid of the baggage found in a traditional VM stack, unikernels
start up and shut down amazingly quickly—often measured in milli‐
seconds. The subsection “Let’s Look at the Results” on page 21 will
discuss a few examples. In the “just in time” world of the cloud, a
service that can be created when it is needed, and terminated when
the job is done, opens new doors to cloud theory itself.

And the 800-Pound Gorilla: More Secure
And finally, unikernels substantially improve security. The attack
surface of a unikernel machine image is quite small, lacking the util‐
ities that are often exploited by malicious hackers. This security is
built into the unikernel itself; it doesn’t need to be added after the
fact. We will explore this in “Embedded Concepts in a Datacenter
Environment” on page 19. While unikernels don’t achieve perfect
security by default, they do raise the bar significantly without
requiring additional labor.
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CHAPTER 2

Understanding the Unikernel

Unikernel theory is actually quite easy to understand. Once you
understand what a unikernel is and what it is designed to do, its
advantages become readily apparent.

Theory Explained
Consider the structure of a “normal” application in memory (see
Figure 2-1).

Figure 2-1. Normal application stack

The software can be broken down into two address spaces: the ker‐
nel space and the user space. The kernel space has the functions cov‐
ered by the operating system and shared libraries. These include
low-level functions like disk I/O, filesystem access, memory man‐
agement, shared libraries, and more. It also provides process isola‐
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tion, process scheduling, and other functions needed by multiuser
operating systems. The user space, on the other hand, contains the
application code. From the perspective of the end user, the user
space contains the code you want to run, while the kernel space con‐
tains the code that needs to exist for the user space code to actually
function. Or, to put it more simply, the user space is the interesting
stuff, while the kernel space contains the other stuff needed to make
that interesting stuff actually work.

The structure of a unikernel, however, is a little different (see
Figure 2-2).

Figure 2-2. Unikernel application stack

Here we see something very similar to Figure 2-1, except for one
critically different element: there is no division between user and
kernel space. While this may appear to be a subtle difference, it is, in
fact, quite the opposite. Where the former stack is a combination of
a kernel, shared libraries, and an application to achieve its goal, the
latter is one contiguous image. There is only one program running,
and it contains everything from the highest-level application code to
the lowest-level device I/O routine. It is a singular image that
requires nothing to boot up and run except for itself.

At first this concept might sound backward, even irrational. “Who
has time to code, debug, and test all these low-level functions for
every program you need to create?” someone might ask. “I want to
leverage the stable code contained in a trusted operating system, not
recode the world every time I write a new program!” But the answer
is simple: unikernels do at compile time what standard programs do
at runtime.
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In our traditional stacks, we load up an operating system designed
to perform every possible low-level operation we can imagine and
then load up a program that cherry-picks those operations it needs
as it needs them. The result works well, but it is fat and slow, with a
large potential attack surface. The unikernel raises the question,
“Why wait until runtime to cherry-pick those low-level operations
that an application needs? Why not introduce that at compile time
and do away with everything the application doesn’t need?”

So most unikernels (one notable exception is OSv, which will be dis‐
cussed in Chapter 3) use a specialized compiling system that com‐
piles in the low-level functions the developer has selected. The code
for these low-level functions is compiled directly into the application
executable through a library operating system—a special collection of
libraries that provides needed operating system functions in a com‐
pilable format. The result is compiled output containing absolutely
everything that the program needs to run. It requires no shared
libraries and no operating system; it is a completely self-contained
program environment that can be deposited into a blank virtual
machine and booted up.

Bloat Is a Bigger Issue Than You Might Think
I have spoken about unikernels at many conferences and I some‐
times hear the question, “What good does it do to compile in the
operating system code to the application? By the time you compile
in all the code you need, you will end up with almost as much bloat
as you would in a traditional software stack!” This would be a valid
assessment if an average application used most of the functions con‐
tained in an average operating system. In truth, however, an average
application uses only a tiny fraction of capabilities on an average
operating system.

Let’s consider a basic example: a DNS server. The primary function
of a DNS server is to receive a network packet requesting the trans‐
lation of a particular domain name and to return a packet contain‐
ing the appropriate IP address corresponding to that name. The
DNS server clearly needs network packet transmit and receive rou‐
tines. But does it need console access routines? No. Does it need
advanced math libraries? No. Does it need SSL encryption routines?
No. In fact, the number of application libraries on a standard server
is many times larger than what a DNS server actually needs.
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But the parade of unneeded routines doesn’t stop there. Consider
the functions normally performed by an operating system to sup‐
port itself. Does the DNS server need virtual memory management?
No. How about multiuser authentication? No. Multiple process sup‐
port? Nope. And the list goes on.

The fact of the matter is that a working DNS server uses only a
minuscule number of the functions provided by a modern operating
system. The rest of the functions are unnecessary bloat and are not
pulled into the unikernel during the compilation, creating a final
image that is small and tight. How small? How about an image that
is less than 200 KB in size?

But How Can You Develop and Debug Something Like
This?
It’s true that developing software under these circumstances might
be tricky. But because the pioneers of unikernel technology are also
established software engineers, they made sure that development
and debugging of unikernels is a very reasonable process.

During the development phase (see Figure 2-3), the application is
compiled as if it were to be deployed as software on a traditional
stack. All of the functions normally associated with kernel functions
are handled by the kernel of the development machine, as one
would expect on a traditional software stack. This allows for the use
of normal development tools during this phase. Debuggers, profil‐
ers, and associated tools can all be used as in a normal development
process. Under these conditions, development is no more complex
than it has ever been.

Figure 2-3. Unikernel development stack
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During the testing phase, however, things change (see Figure 2-4).
Now the compiler adds in the functions associated with kernel activ‐
ity to the image. However, on some unikernel systems like Mira‐
geOS, the testing image is still deployed on a traditional host
machine (the development machine is a likely choice at this stage).
While testing, all the usual tools are available. The only difference is
that the compiler brings in the user space library functions to the
compiled image so testing can be done without relying on functions
from the test operating system.

Figure 2-4. Unikernel testing stack

Finally, at the deployment phase (see Figure 2-5), the image is ready
for deployment as a functional unikernel. It is ready to be booted up
as a standalone virtual machine.

Figure 2-5. Unikernel deployment stack
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Understanding the Security Picture
Consider the ramifications to security when deploying a unikernel
in production. Many pieces that are routinely attacked or compro‐
mised by malicious hackers are absent:

• There is no command shell to leverage.
• There are no utilities to co-opt.
• There are no unused device drivers or unused libraries to attack.
• There are no password files or authorization information

present.
• There are no connections to machines and databases not

needed by the application.

Assume that a malefactor has discovered a flaw in the application
code or, perhaps, the network device driver. She has discovered a
way to break the running code. Now what? She cannot drop to a
command line to begin an assault on the information she wishes to
obtain. She cannot summon thousands of utilities to facilitate her
end. She has to break the application in a clever enough way to
return the desired information without any tools; that can be a task
that is much more difficult than exploiting the original flaw. But
what information is available to be won? There are no password
files, no links to unused databases, no slew of attached storage devi‐
ces like you frequently find on a full general-purpose operating sys‐
tem. Not only is the attack surface small and the number of assets to
co-opt small, but the unikernel is very unlikely to be a target-rich
environment—the desirable information available is extremely limi‐
ted. On top of this, the ability to convert the unikernel into an attack
platform for further malice is also extremely limited.

Around this security footprint, which is present by default, we can
now optionally wrap a second layer like the Xen Security Modules
(XSM) or similar security construct. XSM is very similar to SELI‐
NUX, except that it is designed to work in a virtual environment.
Where SELINUX can be difficult to properly configure on a multi‐
process operating system, XSM around a unikernel should be much
easier to configure because you must consider only the needs of a
single process. For example, if the application has no need to write
to disk, go ahead and disable write access with XSM. Then, even an
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extremely clever malicious hacker will be unable to penetrate the
unikernel and write something to disk.

Embedded Concepts in a Datacenter
Environment
Despite the fact that the unikernel concept is very new for the cloud,
it is not actually new for the software industry. In fact, this is virtu‐
ally identical to the process used in embedded programming.

In embedded programming, the software is often developed in a tra‐
ditional software development environment, allowing for the use of
a variety of normal software development tools. But when the soft‐
ware is ready, it is cross-compiled into a standalone image, which is
then loaded into the embedded device. This model has served the
embedded software industry successfully for years. The approach is
proven, but employing it in the enterprise environment and the
cloud is new.

Despite the proven nature of this process in the embedded world,
there are still claims that this puts an unacceptable limitation on
debugging actual production systems in the enterprise. Since there is
no operating system environment on a unikernel production VM,
there are no tools, no debuggers, no shell access with which some‐
one can probe a failure on a deployed program. Instead, all that can
be done is to engineer the executable to log events and data so that
the failure might be reconstructed on a development system, which
still has access to all the debugging tools needed.

While I can sympathize with this concern, my personal experience
leads me to believe it is somewhat of a red herring. In my career, I
have been a developer, a product manager, and a technology evan‐
gelist (among other jobs), but the bulk of my 35 years in this indus‐
try has been spent as a software services consultant. I have spent
over two decades working on-site with a wide range of clients,
including many US civilian federal agencies and Fortune 100 cus‐
tomers. In all that time, I cannot recall a single time where a cus‐
tomer allowed debugging of a production system for any reason. It
was always required that on system failure, data and logs were
exported onto a development platform, and the failed system was
placed back into service immediately. We had to analyze and recon‐
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struct the failure on a development box, fix the code, test, and then
redeploy into production.

Now I don’t deny that there are some production systems that are
made available for debugging, but my experience suggests that
access to production systems for debugging during a failure is not at
all as common as some people think. And in many large organiza‐
tions, where the benefit of unikernels can be quite significant, the
loss of production debugging is no loss at all. I and others in my role
have dealt with this restriction for years; there is nothing new here.
People in our industry have successfully debugged failures of com‐
plex software for years without direct access to production systems,
and I see no reason why they will fail to do so now.

Trade-offs Required
Objections aside, the value received from the adoption of unikernels
where they are appropriate is much greater than any feared cost.
Our industry has become so infatuated with the notion of endless
external clouds that we sometimes fail to realize that every VM has
to reside in a datacenter somewhere. Every VM launched requires
that there be a host machine in a rack consuming energy to run, and
consuming yet more energy indirectly to be kept cool. Virtual
machines require physical machines, and physical machines have
limitations.

About a decade ago, I had a customer who had built a very large
datacenter. He was still running power in the building when he said,
“You know, this datacenter is full.” I was puzzled at first; how could
the building be full when he hadn’t even run power to half of it? He
explained, “The datacenter may not look full right now, but I know
where every machine will go. When every machine is in place, there
won’t be room for even one more!” I asked him why—why build a
datacenter that will be maxed out on the day it is fully operational?
The answer was simple; he went to the local electric utility company,
and they told him the maximum amount of power they could give
him. He built his new datacenter to use exactly that much electricity.
If he wanted to add more capacity, he’d have to build an entirely new
datacenter at some other location on the electric grid. There simply
was no more electricity available to him.

In the world of the cloud, we suffer under the illusion that we have
an endless supply of computing resources available. That’s the prem‐
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ise of the cloud—you have what you need, as much as you need,
when you need it. And, while that promise can be validated by the
experience of many users, the truth behind the curtain is quite dif‐
ferent. In the era of cloud, data has swelled to previously unimagina‐
ble size. And the number of physical servers required to access and
process requests for that data has become enormous. Our industry
has never had as many huge datacenters worldwide as we have
today, and the plans for additional datacenters keep piling up. Build‐
ing additional datacenters in different locations due in part to power
concerns is extremely expensive.

We cannot reduce the demand for information—that demand is, in
fact, demonstrably growing year over year. So the prudent solution
is to reduce the impact of the demand by shrinking the resource
footprint for a large percentage of the workloads. We need to take a
nontrivial portion of the workloads—including web servers, appli‐
cation servers, even smaller databases—and reduce their resource
demand to a fraction of their traditional sizes. That way, we can
actually fit significantly more processing demand into the same
power footprint. And, if we can take some permanent services that
sit idle portions of the time, yet require resources in their waiting
state, and transform them into transient services that come and go
with demand, we can reduce the demand even more. If I could have
told my customer with the new datacenter that we had a plan to
reclaim even 20 percent of his capacity, he would have jumped for
joy so high we would have had to scrape him off the ceiling. Today, I
believe we could reclaim much more capacity than that in many
datacenters by using unikernels.

Let’s Look at the Results
The amount of resources reclaimed can be enormous when evalu‐
ated on a per-service basis. Compared to the traditional fully loaded
VM, unikernels can be extremely small. Let’s consider a few exam‐
ples.

The team behind MirageOS—one of the oldest unikernel projects—
has built a number of basic services on their unikernel platform.
One example is a functional DNS server that compiles to 184 KB in
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1 If you attended any of my previous talks about unikernels, you may have heard me cite
the size of the DNS image at 449 KB. I have been informed by a member of the Mira‐
geOS team that the current size is just 184 KB. This is one time I am glad to be wrong!

size.1 Note that the size is measured in kilobytes, not megabytes. In a
world where we routinely talk about gigabytes, terabytes, or peta‐
bytes, the very word “kilobytes” has become foreign to our ears.
Many of us haven’t spoken the word “kilobytes” since the last mil‐
lennium! And yet we see the reality that a fundamental network ser‐
vice like DNS can be instantiated in an image that is less than one-
fifth of a megabyte in size!

But that is just the beginning. MirageOS also has a web server that
compiles in at a miniscule 674 KB. That’s a working web server that
weighs in at a little more than two-thirds of a megabyte. And they
have an OpenFlow learning switch that comes in at a paltry 393 KB
—less than four-tenths of a megabyte. You could store two of these
in a single megabyte of disk space and still have room left over.

But MirageOS is not unique in its tiny footprints. The team behind
the LING unikernel runs a website based on their project. Their site
provides a special button in the upper-right corner of the home
page. By clicking the button, the user can see all sorts of statistics
about the running instance. One of these metrics is a diagram
labeled “Memory Usage.” At the time of this writing, the instance I
was connected to was using a total of 18.6 MB. A small server with
only 4 GB of memory could potentially host more than 200 of these
website VMs; just imagine what a large server could do.

Then there is the ClickOS project. These people have done extensive
work building and benchmarking a variety of network function vir‐
tualization (NFV) devices. The results aren’t shabby: consider the
impact of a network device that starts up in about 20 milliseconds,
occupies less than 6 MB of memory, and can successfully process
over 5 million packets per second. Suddenly, the rules have changed.

These are but a few examples of essential cloud services that have
been transformed into ultra-small unikernel instances. It’s easy to
see that if we can implement many of the normal services that popu‐
late our clouds and datacenters as unikernels, we stand to reclaim a
considerable amount of underutilized resources.
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CHAPTER 3

Existing Unikernel Projects

There are a number of existing unikernel systems currently in the
wild. But it’s important to note that new ones appear all the time, so
if none of these strike your fancy, a quick search of the Web might
yield some interesting new ones. The following information is accu‐
rate at the time of this writing (summer of 2016), but the list of play‐
ers and quality of the efforts could be markedly different in just a
few months.

MirageOS
One of the oldest and most established unikernel efforts, the Mira‐
geOS project continues to be a spearhead for thought leadership in
the unikernel world. Several MirageOS contributors have authored
academic white papers and blogs that have helped propel unikernels
into the popular consciousness. In addition, many of the generally
accepted concepts around unikernels have been generated from
members of this team. Many key people from this project (as well as
some other unikernel engineers) went on to form Unikernel Sys‐
tems, a company that was purchased by Docker at the beginning of
2016. So Docker now employs a significant portion of the MirageOS
brain trust.

The MirageOS project is built on the OCaml language. If you are
not familiar with OCaml, OCaml.org defines it as “an industrial
strength programming language supporting functional, imperative
and object-oriented styles.” The relative obscurity of the OCaml lan‐
guage combined with the academic background of the principal
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contributors led many people to initially dismiss MirageOS as a
mere university project. However, the spread of unikernel technol‐
ogy into other languages and commercial organizations has gar‐
nered MirageOS the respect it is due.

MirageOS allows for the construction of unikernels that can be
deployed on the Xen Project hypervisor. MirageOS is both stable
and usable, having reached release 2.0 in 2014. The project website
has copious documentation and a few samples and tutorials to help
the novice start to build unikernels. It also contains a number of
white papers and presentations that continue to influence unikernel
efforts across the world.

HaLVM
HaLVM is another of the earlier unikernel efforts, begun in 2006
and released in 2008 by Galois, Inc. The HaLVM is built on the Has‐
kell programming language, and allows Haskell programmers to
develop unikernels in much the same way as they develop normal
Haskell programs, with some limitations.

The initial goal for the HaLVM was to ease the process of experi‐
menting with the design and testing of core operating system com‐
ponents, but it quickly expanded to serve as a general-purpose
platform for developing unikernels. Galois’s first major product
using the HaLVM was a multi-unikernel, collaborative IPSec imple‐
mentation. More recently the HaLVM has been used as the base of a
network defense product from FormalTech, Inc. (CyberChaff), and
as the basis for Tor nodes.

Currently, the HaLVM—now at version 2.1—supports the Xen
Project hypervisor, including both standard server and desktop
deployments as well as Amazon’s EC2. Future versions in the 3.0 ser‐
ies are slated to support a wider variety of systems, including KVM
and bare-metal deployments.

LING
LING is yet another mature unikernel effort. It is a product of the
Erlang-on-Xen project, written (appropriately) in Erlang for deploy‐
ment (also appropriately) on the Xen Project hypervisor. The project
website contains a number of interesting artifacts, including the
ability to look under the covers of the unikernel that is running the
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website itself. If you press the Escape key, or click on the upper-right
corner of the home page, you can see the resources being consumed
by the website, which typically runs in only about 18 MB of mem‐
ory.

The website also has a number of interesting links, including a list of
use cases and a couple of working demos. The demos include Zerg
and self-learning Go-Moku implementation. The Zerg demo is espe‐
cially interesting, since it demonstrates a use case called the “Zero
Footprint Cloud.” This use case talks about having unikernel-based
VMs appear the instant they are needed and disappear as soon as
their job is done. This concept is the basis of transient microservi‐
ces, which will be discussed in Chapter 6.

ClickOS
The systems discussed so far have had a fairly wide focus. ClickOS,
on the other hand, has a tight focus on the creation of NFV devices.
A project from NEC’s European labs, ClickOS is an implementation
of the Click modular router wed to a minimalistic set of operating
system functions derived from MiniOS, which will be discussed
under Chapter 4. The result is a unikernel-based router that boots in
under 30 milliseconds, runs in only 6 MB of memory, and can pro‐
cess 10 Gbits per second in network packets. That’s a fast, small, and
powerful virtual network device that can be readily deployed on the
Xen Project hypervisor.

Rumprun
While most of the other unikernel systems reviewed so far rely on
somewhat obscure languages, Rumprun is a very different animal.
Rumprun is an implementation of a Rump kernel (which will be dis‐
cussed under Chapter 4) and it can be used to transform just about
any POSIX-compliant program into a working unikernel. Through
Rumprun, it is theoretically possible to compile most of the pro‐
grams found on a Linux or Unix-like operating system as unikernels
(whether that is worthwhile is another issue; just because it is possi‐
ble to render a program as a unikernel doesn’t mean that it is neces‐
sarily useful to do so). That represents a huge advance in unikernel
capabilities.
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Rumprun came to my attention in the spring of 2015 when it was
announced that Martin Lucina had created the “RAMP” stack.
Those of us in the open source world are well familiar with the
LAMP stack: Linux, Apache, MySQL, and PHP (or Python or Perl).
Martin ported NGINX (which is a bit faster and lighter than
Apache), MySQL, and PHP to unikernels using Rumprun, thus cre‐
ating the RAMP stack. Suddenly, one of the most common work‐
loads in the world can be instantiated as a series of unikernels—and
that’s just the beginning. Rumprun has the potential to bring the
power of unikernels to workloads already found in datacenters
worldwide.

OSv
OSv was originally created by a company called Cloudius Systems as
a means of converting almost any application into a functioning
unikernel. It is unique among existing unikernels in that it provides
a general-purpose unikernel base that can accept just about any pro‐
gram that can run in a single process (multiple threads are allowed,
but multiple processes are not). As a result, OSv is a “fat” unikernel;
the results are measured in megabytes, rather than kilobytes. It is
also more versatile than most, supporting a number of popular
hypervisors, including KVM, Xen Project, Virtualbox, and VMware.

Cloudius Systems originally targeted OSv as an engine to run Java
virtual machines by simply dropping a WAR file into it. However, its
architecture can run just about any single-process solution, so many
languages can be used, such as C, C++, Ruby, Perl, and many more.

Cloudius Systems has since been transformed into a new company
called ScyllaDB. They are no longer building a business plan cen‐
tered on servicing OSv, but the beauty of open source is that even
though the company has changed direction, the software lives on.
The OSv community is now maintaining the software, which is fully
operational. It is also being used to power the Mikelangelo project, a
European effort to create a working next-generation cloud frame‐
work.

A list of unikernel instances maintained by the OSv team can be
found on their website. Other unikernel instances, not maintained
by the OSv team, can be found in various locations on the Internet.
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IncludeOS
Still in the prototype stage (release 0.8 occurred in June 2016),
IncludeOS is an attempt to be able to run C++ code directly on a
hypervisor. It was born from a university research project in Nor‐
way. Unlike most other unikernels, the hypervisor target is not the
Xen Project hypervisor but KVM. IncludeOS also works on Virtual‐
Box and Bochs.

And Much More in Development
These are only a few of the unikernels already in existence. There
are other efforts, like Clive written in the Go language, Runtime.js
for JavaScript, and even Drawbridge from Microsoft. Every couple
of months, I see signs of new unikernels appearing in the wild. The
list keeps growing, and even the unikernel list over at Unikernel.org
has to struggle to stay up-to-date.

It is fascinating to realize that groups embracing this technology
range from university research projects to small consultancies to the
most giant companies in the industry. This last group is especially
impressive. Even though unikernels are just beginning to break into
the IT mindset, several major companies have already invested sig‐
nificant time in their development. IBM, NEC, Microsoft, EMC,
Ericsson, and Docker have already made notable contributions to
unikernel technology. It is rare to see so many large, existing organi‐
zations embracing a fledgling technology so early.
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CHAPTER 4

Ecosystem Elements

A group of individual unikernel projects is interesting, but if there is
no ecosystem developing around them, the advancement of this
technology will slow to a crawl. However, that is not the case here.
There are, in fact, a number of ecosystem projects supporting the
development and use of unikernels. The following are only a hand‐
ful of the most interesting ecosystem projects.

Jitsu
Jitsu demonstrates the promise of the amazing agility of unikernel-
based workloads. Jitsu, which stands for “Just-in-Time Summoning
of Unikernels,” is actually a DNS server. But unlike other DNS
servers, it responds to the DNS lookup request while simultaneously
launching the unikernel that will service that address. Because uni‐
kernels can boot in milliseconds, it is possible to wait until someone
has need for a service before that service is actually started. In this
case, someone asking for the IP address of a service actually gener‐
ates the service itself. By the time the requester sees the response to
their DNS query, Jitsu has created the service that is associated with
that IP address.

This ability to generate services as quickly as they are needed is a
major game changer in our industry. We will see more of this in
“Transient Microservices in the Cloud” on page 39.
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MiniOS
MiniOS is a unikernel base from the Xen Project. Originally
designed to facilitate driver disaggregation (basically, unikernel VMs
that contain only a hardware driver for use by the hypervisor), Min‐
iOS has been used as the base for any number of unikernel projects,
including MirageOS and ClickOS. By itself, MiniOS does nothing.
Its value is that, as open source software, it can be readily modified
to enable unikernel projects. It leverages the functionality of the Xen
Project hypervisor to simplify the task of unikernel development
(refer to the subsection “Xen Project Hypervisor” on page 31 for
additional information).

Rump Kernels
The Rump Kernel project has facilitated some of the most interest‐
ing advances in unikernel development. The concept of Rump Ker‐
nels comes from the world of NetBSD. Unlike most operating
systems, NetBSD was specifically designed to be ported to as many
hardware platforms as possible. Thus, its architecture was always
intended to be highly modular, so drivers could be easily exchanged
and recombined to meet the needs of any target platform. The
Rump Kernel project provides the modular drivers from NetBSD in
a form that can be used to construct lightweight, special-purpose
virtual machines. It is the basis for Rumprun (see Chapter 3), a uni‐
kernel that can be used to power a wide range of POSIX-like work‐
loads. The RAMP stack was created without changes to the
application code. The bulk of the work was in modifying the compi‐
lation configuration so the unikernels could be produced.

Why would the compilation configuration be an issue? Keep in
mind that the process of creating a unikernel is a cross-compilation.
The target system is not the same as the development system. The
development system is a fully functional multiuser operating system,
while the production target is a standalone image that will occupy a
virtual machine without any operating environment. That requires a
cross-compile. And cross-compilation requires that the build pro‐
cess make the right choices to create usable output. So the source
code may remain unaltered, but the compilation logic requires some
work in some cases.
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Xen Project Hypervisor
The Xen Project hypervisor was the first enterprise-ready open
source hypervisor. Created in 2003, the Xen Project created a con‐
cept called paravirtualization, which has been heavily leveraged by
most unikernel efforts to date. Most hypervisors use hardware virtu‐
alization—that is, the guest VM sees emulated hardware that looks
identical to real hardware. The VM cannot tell that the hardware
devices it sees are virtualized, so it employs the same drivers to run
the devices that it would on an actual hardware-based server. That
makes it easy for the operating system on the guest VM to use the
hardware, but it isn’t very efficient.

Consider an emulated network device. The guest operating system
on the virtual machine sees a piece of networking hardware (let’s say
an NE2000). So it uses its NE2000 software driver to package up the
network data to be acceptable to the hardware and sends it to the
device. But the device is emulated, so the hypervisor needs to
unpack the network data that the guest VM just packaged and then
repack it in a method suitable for transport over whatever actual
network device is available on the host hypervisor. That’s a lot of
unnecessary packing and unpacking. And, in a unikernel, that’s a lot
of unneeded code that we’d like to remove.

Xen Project is capable of providing hardware virtualization like any
other hypervisor, but it also provides paravirtualization. Paravirtual‐
ization starts with the concept that some guest VMs may be smart
enough to know that they are running in a hypervisor and not
directly on server hardware. In that case, there is no need for fancy
drivers and needless packing and unpacking of data. Instead, Xen
Project provides a very simple paravirtualized interface for sending
and receiving data to and from the virtualized device. Because the
interface is simple, it replaces complex drivers with very lightweight
drivers—which is ideal for a unikernel that wants to minimize
unnecessary code.

This is one reason why the Xen Project has been at the forefront of
unikernel development. Its paravirtualization capabilities allow uni‐
kernels to have a very small and efficient footprint interfacing with
devices. Another reason is that the project team has helped foster
unikernel innovation. The MirageOS project is in the Xen Project
incubator, so that team has had significant influence on the direc‐
tion of the hypervisor. As a result, the hypervisor team has been
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consciously reworking the hypervisor’s capabilities so it can handle a
future state where 2,000 or 3,000 simultaneous unikernel VMs may
need to coexist on a single hardware host server. Currently, the
hypervisor can handle about 1,000 unikernels simultaneously before
scaling becomes nonlinear. The development work continues to
improve unikernel support in each release.

Solo5
Solo5 is a unikernel base project, originating from the development
labs at IBM. Like MiniOS, Solo5 is meant to be an interface platform
between a unikernel and the hypervisor. Unlike MiniOS, the target
hypervisor is KVM/QEMU rather than Xen Project. Where Xen
Project leverages paravirtualization to allow the unikernel to talk to
the hypervisor, Solo5 contains a hardware abstraction layer to
enable the hardware virtualization used by its target hypervisors.

UniK
UniK (pronounced “unique”) is a very recent addition to the uniker‐
nel ecosystem, with initial public release announced in May 2016. It
is an open source tool written in Go for compiling applications into
unikernels and deploying those unikernels across a variety of cloud
providers, embedded devices (for IoT), as well as developer laptops
or workstations. UniK utilizes a simple Docker-like command-line
interface, making developing on unikernels as easy as developing on
containers.

UniK utilizes a REST API to allow painless integration with orches‐
tration tools, including example integrations with Docker, Kuber‐
netes, and Cloud Foundry. It offers an architecture designed for a
high degree of pluggability and scalability, with a wide range of sup‐
port in a variety of languages, hardware architectures, and hypervi‐
sors. Although quite new, this is a project worth watching.

And Much More…
This is far from a definitive list of unikernel ecosystem elements.
The reality is that the era of unikernels has just begun, so the devel‐
opment and refinement of new unikernel ecosystem elements is still
in its infancy. There is still a large amount of work to be done to
properly control unikernels in popular cloud orchestration systems
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(like OpenStack). Outside of the cloud, plenty of opportunity exists
for projects that will deal with unikernel management. For example,
there have been demonstrations of Docker controlling unikernels,
which could become part of Docker’s supported capabilities before
long. And Jitsu makes sense for certain workloads, but how can uni‐
kernels be dynamically launched when a DNS server is not the best
solution? We can expect that additional solutions will emerge over
time.

It is important to understand that unikernels and their surrounding
ecosystem are propelled by open source. While it is technically pos‐
sible to create closed source unikernels, the availability of a wide
variety of open source drivers and interfaces makes creation of uni‐
kernels much simpler. The best illustration of that is the Rump Ker‐
nel project, which heavily leverages existing mature NetBSD drivers,
which themselves sometimes draw on original BSD code from deca‐
des ago. By using established open source libraries, Rump Kernels
specifically—and other unikernels in general—can spend far less
time on the drudgery of making drivers work and spend more time
doing innovative unikernel tasks.
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CHAPTER 5

Limits of the Solution

All technologies have their limits, and unikernels are no different.
This section will discuss some of the things to keep in mind when
you’re considering a unikernel solution.

Unikernels Are Not a Panacea
For all their advantages, unikernels are not a panacea. In a post-
unikernel-enabled cloud, there will be many non-unikernel work‐
loads. Undoubtedly, there will be complex stacks that simply won’t
lend themselves to implementation as a unikernel. But that’s fine—
by turning some workloads into unikernels, we now have all the
more resources to give to the complex old-school stacks. When we
reduce the footprint of unikernel-capable workloads, we make
plenty of room for beefier tasks.

Practical Limitations Exist
The keep-it-simple concept that enables unikernels necessarily
comes at a price. Not every solution will be suitable for implementa‐
tion as a unikernel. Others may need some architectural modifica‐
tion to fit within the unikernel concept. And still others will work
with no code modifications whatsoever.

So what are the key limitations in unikernel implementations?
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Single Process (but Multiple Threads)
For the simple unikernel stack to work, there is no room for the
complexity of multiple process handling. Once you have multiple
processes, the overhead rises dramatically.

Multiple processes require process management. There has to be a
way to start a process, stop a process, inspect the status of a process,
kill a misbehaving process, and so forth.

And all of these capabilities are just the tip of the iceberg when you
need to support multiple processes. It’s not difficult to understand
why single processes are needed to make the ultra-light images that
characterize unikernels.

Despite the lack of multiple processes, however, multiple threads are
often supported by unikernel architectures. Threads are much
lighter weight, requiring only a fraction of the overhead needed for
multiple processes. If the workload can exist as a single process with
one or more threads, it is a candidate for a unikernel.

Systems such as Rumprun and OSv allow for many existing work‐
loads to make the leap into the unikernel world as long as they don’t
fork new processes. But what if your current application forks new
processes? Or what if it currently employs multiple processes that
rely on interprocess communication? Is there any way to make them
into unikernels?

The answer to that last question is “With modifications, maybe.” If
your multiple process code can be modified to use multiple threads,
your application could still be a unikernel candidate. Likewise, if
your application that relies on interprocess communication can be
modified to use intermachine communication, you could possibly
load the distinct processes into separate unikernels and allow them
to speak to each other across machines. As with all design decisions,
someone intimately knowledgeable in the solution architecture will
need to decide if it’s worth employing a change in architecture to
remake the solution as a unikernel.

Single User
Unikernels are fiercely single user. Multiple users require significant
overhead. When you have different users, you must have authentica‐
tion logic to verify the user’s identity. And you need user-based priv‐
ileges to say what that user can do. And you need file protections to
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determine what that user can touch. Plus you had better include a
security system to record authentication failures.

But why would a single-process virtual machine need separate users
anyway? The machine image will run the program it is intended to
run and access the files it is designed to access. It doesn’t need to log
in. It doesn’t need to ask, “Who am I?”

If your workload is like a web server or application server, it always
starts with a certain user personality and there is no need for it to be
concerned with mulitple user identities. If what you really want is a
multiuser timesharing system, don’t try to make it into a unikernel.

Limited Debugging
As previously covered, unikernels have very limited debugging
capabilities in their production form. It is easiest to debug failures of
unikernels by reproducing the failure on a development platform,
where the application exists as a standard application and debugging
tools abound. So in the architecture of the production unikernel, it
is important to include enough logging so that a failure can be prop‐
erly reconstructed in the development environment.

As I’ve said, in my experience, debugging production systems is
rarely permitted in the real world, so loss of debugging instrumenta‐
tion is more like the loss of an illusion than any real functionality. If
someone claims that a certain failure can only be debugged on a live
production system, they have a problem already—very few enter‐
prise environments will permit such work, with or without uniker‐
nels.

Impoverished Library Ecosystem
Due to the recent nature of unikernels, the list of callable functions
in most library operating systems is still only a subset of those avail‐
able in a fully mature operating system like Linux. If a given applica‐
tion requires the use of some library function that has yet to be
implemented by the targeted library operating system, it will be
incumbent on the developers to implement that function (and,
hopefully, release it to the unikernel project for future support and
maintenance). If an application has a lot of these unimplemented
functions, a developer may decide either to provide these functions,
or to wait until such time as more of the needed libraries are avail‐
able.
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What Makes for a Good Unikernel Application?
The question of what makes a good unikernel application is a lot
easier to answer than the question of what doesn’t make a good uni‐
kernel application. We just covered a number of the limitations of
the architecture, so anything that doesn’t violate one of these limits
remains a candidate for compiling as a unikernel. These conditions
include:

• Does not need multiple processes on a single machine
• Can work as single user
• Can be instrumented internally to contain whatever diagnostics

may be needed for debugging

In addition, there are some requirements that might actually suggest
that a unikernel would be appropriate:

• Something that needs subsecond startup time
• Anything that might make sense as a transient microservice

(which we will explore shortly in “Transient Microservices in
the Cloud” on page 39)

• Something that will be exposed to the Internet (or has been vio‐
lated in the past), and therefore needs the highest levels of secu‐
rity

• Something that may need to scale into very high numbers

But what programs should not be unikernels? That’s actually a very
tough question. Aside from the architectural limitations we’ve
already discussed, there isn’t a really good set of criteria to exclude
something from being built as a unikernel. This is, in part, due to
the newness of the technology; as people try building unikernels, we
will undoubtedly gain a better feel for applications that aren’t the
best fit. Applications with lots of external dependencies may not be
the best candidates, but time will tell. Also, unikernels have already
proven to be surprising. When I first started speaking about uniker‐
nels, I used to make the statement that databases were probably not
great candidates—and then Martin Lucina ported MySQL to a Rum‐
prun unikernel and that assumption went out the window. So the
question of what should not be made into a unikernel is still open.
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CHAPTER 6

What’s Ahead?

It’s important to remember that this is only the beginning of the
journey. Unikernels are not the destination; they are, I believe, the
path to a new future in the cloud. What can we expect along that
path? We won’t know for sure until we get there, but here are a few
ideas.

Transient Microservices in the Cloud
The potential impact of unikernels extends well beyond areas like
resource utilization and system security. The arrival of the unikernel
is poised to facilitate a radical reassessment of software architecture
at the highest levels. With unikernels, one of the fundamental
assumptions of most solution architectures is no longer valid: we
cannot assume that all services in our architectures are persistent.

As we discussed earlier, machines were once expensive, large, and
slow. This meant that each machine was loaded with thousands of
software programs to meet the diverse needs of a large number of
users. As a result, these expensive machines needed to be persistent
—they had to be on any time anyone might possibly need any of the
thousands of programs on the machine. So, by default, most
machines were powered on and running 24 hours per day, 365 days
per year, for the entire service life of the machine. People could
assume that the needed software was always ready and waiting to
process, even if it meant that the machine would sit idle for a signifi‐
cant part of its life.
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But now, as we have seen, the rules have changed. Hardware is
cheap, compact, and fast. There is no need to make virtual machine
instances multifunction. And there is no reason to assume that any
one VM is persistent; we can simply summon a new unikernel VM
instance to handle a request that comes over the network whenever
it appears.

This is a particularly crucial concept for proper implementation of
the Internet of Things (IoT). In a world where every button you
press, every knob you turn, and every switch you flip will cause an
event to be launched into the network, nonpersistent services make
perfect sense. Why have response agents sitting idle for hours wait‐
ing for something to happen, when they could just be generated
with the event itself? The Internet of Things makes the most sense
when you can support transient microservices, which come and go
with each event that is generated.

But the nature of transient microservices is a challenge to our cur‐
rent implementations of the cloud. Right now, most cloud orchestra‐
tion systems assume that all workloads are essentially persistent. In
most cloud engines, the orchestration layer is responsible for the
creation of a service. After waiting some time for the service to start,
the orchestration layer then queries the new service to find out if it
is ready to process requests. Then it periodically pings the service to
make sure it is alive, well, and has adequate capacity. And, finally, it
will tell the service when it is time to shut down.

That model, however, goes out the window in the world of transient
microservices. As a transient microservice is actually generated
from the request on the network for the microservice (see the sub‐
section “Jitsu” on page 29 for an example), there is no time to waste
waiting for some slow orchestration engine to process the request
and generate the service. The transient microservice needs to appear
in milliseconds in order to prevent delays in responding to the
pending request. There is no need for the orchestration layer to ask
the service if it is ready to work. And, since the service is self-
terminating, there is no longer a need for the orchestration layer to
check wellness, verify capacity, or issue a shutdown order. Depend‐
ing on the nature of the service, it may have a total lifespan meas‐
ured in tenths of a second.

This may seem very liberating at first, but it raises the question, how
do we know that the request was successfully handled? Should the
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service somehow record the handling of the request within the
orchestration layer? Or record it in a database? How should errors
be handled? Within the service? Within the orchestration layer?
Within the calling program? Whose responsibility is it to correct the
problem?

These are actually not particularly difficult problems, but since we
have not traveled this road in the cloud before, best practices don’t
yet exist. The industry will need to examine these issues, think them
through, and bake them into a new type of cloud that supports both
persistent and transient services. It’s not overly hard, but it is quite
different. Cloud orchestration systems will need to create a new
architecture to handle these transient workloads. And now is the
time for orchestration systems to create those designs so they are
ready when the transient workloads arrive—because they will.

A Possible Fusion Between Containers and
Unikernels
It seems every time I give a talk about unikernels these days, there
are always a couple of people sold on containers who look at me
incredulously. They seem to believe that I am proposing the destruc‐
tion of their favorite technology—but that couldn’t be further from
the truth.

I don’t believe that unikernels will cause the death of containers.
Quite the opposite: I think unikernels will likely cause container
technology to make serious leaps forward in the near future. The
reason for this is the open source nature of both the technologies
involved.

If we were talking about two closed source alternatives, we would
likely see a death match ensue. The two products would battle it out
and the best marketing department would probably win (if you
think the best technology would win, I humbly suggest a closer
inspection of the history of our industry is in order; OS/2 Warp is a
good example).

But given that we are talking about competing open source technol‐
ogies, the outcome is likely entirely different. When open source
technologies collide, someone normally has the bright idea of com‐
bining the best elements of both into a new solution. Since the code
is open, cross-pollination is the order of the day. I fully expect that
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in five years, the “unikernel versus container” debate will be ancient
history, and the two technologies will produce something that will
leverage the strengths of each.

We are already seeing early signs of a new synthesis in the Docker
community. At DockerCon EU 2015 in Barcelona, members of the
MirageOS team took the stage to demonstrate Dockerized uniker‐
nels. This could have been dismissed as a one-off skunkworks hack,
but just a few months after that demonstration, Docker announced
the purchase of Unikernel Systems, a fledgling company consisting
of many of the most notable unikernel engineers on the radar. It’s
clear that the fusion of Docker, containers, and unikernels has just
begun. The time to get on board the train is right now.

In another advance, 2015 saw the emergence of Hyper_, an open
source project from HyperHQ. These folks figured out how to run a
container image directly on a hypervisor, thus reducing the resulting
attack surface by removing the container host system entirely. As
these and other efforts continue to provide real innovation, I expect
that the future of the cloud will have a fusion of the best ideas.
Whether the resulting code comes from the container camp, the
unikernel camp, or somewhere else is yet to be determined. But I
believe the unikernel concept will be alive and well in the next-
generation cloud.

This Is Not the End of the Road; It’s Only the
Beginning
As I have already said, this is just the beginning of something new—
something desperately needed in our industry. The status quo of
slow Internet-accessible workloads laden with unnecessary software
requiring huge amounts of resources providing a gigantic attack sur‐
face is dead. Old-style workloads may persist deep in the bowels of
the compute center if they must, but the notion of an Internet popu‐
lated with full stacks waiting to be exploited is dead. But, like so
many apocalyptic zombie stories that have inundated popular media
in recent years, it still plods on lifelessly, creating havoc wherever it
goes. We need to bury it already and work on building its successor.

Get ahead of the curve and begin developing unikernel awareness
now, because, in my not-always-humble opinion, it will be part of
your future very soon.
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For further information, consider consulting the web pages of the
individual unikernel projects listed in Chapter 4. You can also check
out the resources at Unikernel.org, which seeks to be the informal
hub of the unikernel world. In particular, I suggest the following
documents:

• Unikernels: Rise of the Virtual Operating System, by Anil Madha‐
vapeddy and David J. Scott; published in ACM in 2014

• The Rise and Fall of the Operating System, by Antti Kantee; pub‐
lished in USENIX Login in October 2015

• Unikernels, Meet Docker!, video demonstration by Anil Madha‐
vapeddy; published on YouTube in November 2015

• The Design and Implementation of the Anykernel and Rump Ker‐
nels by Antti Kantee; work in progress

• Next Generation Cloud: Rise of the Unikernel, presented by Rus‐
sell Pavlicek at Southeast Linux Fest; published on YouTube in
May 2015
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