
Laine Campbell & Charity Majors

Database
Reliability
Engineering
DESIGNING AND OPERATING
RESILIENT DATABASE SYSTEMS

Laine Campbell and Charity Majors

Database Reliability Engineering
Designing and Operating Resilient

Database Systems

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-92594-2

[LSI]

Database Reliability Engineering
by Laine Campbell and Charity Majors

Copyright © 2018 Laine Campbell and Charity Majors. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Courtney Allen and Virginia Wilson
Production Editor: Melanie Yarbrough
Copyeditor: Bob Russell, Octal Publishing, Inc.
Proofreader: Matthew Burgoyne

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2017: First Edition

Revision History for the First Edition
2017-10-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491925942 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Database Reliability Engineering, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491925942

Table of Contents

Foreword. xi

Preface. xiii

1. Introducing Database Reliability Engineering. 1
Guiding Principles of the DBRE 2

Protect the Data 2
Self-Service for Scale 3
Elimination of Toil 4
Databases Are Not Special Snowflakes 5
Eliminate the Barriers Between Software and Operations 5

Operations Core Overview 6
Hierarchy of Needs 7

Survival and Safety 7
Love and Belonging 8
Esteem 9
Self-actualization 10

Wrapping Up 11

2. Service-Level Management. 13
Why Do I Need Service-Level Objectives? 13
Service-Level Indicators 15

Latency 15
Availability 16
Throughput 16
Durability 16
Cost or Efficiency 16

Defining Service Objectives 17

iii

Latency Indicators 17
Availability Indicators 20
Throughput Indicators 23

Monitoring and Reporting on SLOs 25
Monitoring Availability 25
Monitoring Latency 28
Monitoring Throughput 28
Monitoring Cost and Efficiency 28

Wrapping Up 29

3. Risk Management. 31
Risk Considerations 32

Unknown Factors and Complexity 32
Availability of Resources 32
Human Factors 33
Group Factors 34

What Do We Do? 35
What Not to Do 35
A Working Process: Bootstrapping 36

Service Risk Evaluation 37
Architectural Inventory 39
Prioritization 40

Control and Decision Making 42
Ongoing Iterations 45
Wrapping Up 47

4. Operational Visibility. 49
The New Rules of Operational Visibility 51

Treat OpViz Systems Like BI Systems 52
Distributed Ephemeral Environments Trending to the Norm 52
Store at High Resolutions for Key Metrics 54
Keep Your Architecture Simple 55

An OpViz Framework 56
Data In 57

Telemetry/Metrics 59
Events 60
Logs 60

Data Out 60
Bootstrapping Your Monitoring 61

Is the Data Safe? 63
Is the Service Up? 64
Are the Consumers in Pain? 65

iv | Table of Contents

Instrumenting the Application 66
Distributed Tracing 66
Events and Logs 68

Instrumenting the Server or Instance 68
Events and Logs 70

Instrumenting the Datastore 71
Datastore Connection Layer 71

Utilization 71
Saturation 72
Errors 73

Internal Database Visibility 74
Throughput and Latency Metrics 74
Commits, Redo, and Journaling 75
Replication State 75
Memory Structures 76
Locking and Concurrency 77

Database Objects 78
Database Queries 79
Database Asserts and Events 79
Wrapping Up 80

5. Infrastructure Engineering. 81
Hosts 81

Physical Servers 81
Operating a System and Kernel 82
Storage Area Networks 92
Benefits of Physical Servers 92
Cons of Physical Servers 92

Virtualization 93
Hypervisor 93
Concurrency 94
Storage 94
Use Cases 94

Containers 95
Database as a Service 95

Challenges of DBaaS 96
The DBRE and the DBaaS 96

Wrapping Up 97

6. Infrastructure Management. 99
Version Control 100
Configuration Definition 101

Table of Contents | v

Building from Configuration 103
Maintaining Configuration 104

Enforcement of Configuration Definitions 105
Infrastructure Definition and Orchestration 105

Monolithic Infrastructure Definitions 106
Separating Vertically 107
Separated Tiers (Horizontal Definitions) 108

Acceptance Testing and Compliance 109
Service Catalog 109
Bringing It All Together 110
Development Environments 111
Wrapping Up 112

7. Backup and Recovery. 113
Core Concepts 114

Physical versus Logical 114
Online versus Offline 114
Full, Incremental, and Differential 115

Considerations for Recovery 115
Recovery Scenarios 116

Planned Recovery Scenarios 116
Unplanned Scenarios 118
Scenario scope 121
Scenario Impact 121

Anatomy of a Recovery Strategy 122
Building Block 1: Detection 122
Building Block 2: Tiered Storage 124
Building Block 3: A Varied Toolbox 125
Building Block 4: Testing 127

A Recovery Strategy Defined 128
Online, Fast Storage with Full and Incremental Backups 128
Online, Slow Storage with Full and Incremental Backups 129
Offline Storage 130
Object Storage 131

Wrapping Up 132

8. Release Management. 133
Education and Collaboration 133

Become a Funnel 134
Foster Conversations 134
Domain-Specific Knowledge 135
Collaboration 137

vi | Table of Contents

Integration 138
Prerequisites 139

Testing 141
Test-Friendly Development Practices 142
Post-Commit Testing 143
Full Dataset Testing 144
Downstream Tests 145
Operational Tests 145

Deployment 146
Migrations and Versioning 146
Impact Analysis 147
Migration Patterns 148
Manual or Automated 151

Wrapping Up 151

9. Security. 153
The Purpose of Security 153

Protecting Data from Theft 154
Protecting from Purposeful Damage 154
Protecting from Accidental Damage 154
Protecting Data from Exposure 155
Compliance and Auditing Standards 155

Database Security as a Function 155
Education and Collaboration 155
Self-Service 156
Integration and Testing 157
Operational Visibility 158

Vulnerabilities and Exploits 160
STRIDE 160
DREAD 161
Basic Precautions 162
Denial of Service 163
SQL Injection 166
Network and Authentication Protocols 168

Encryption of Data 168
Financial Data 169
Personal Health Data 169
Private Individual Data 169
Military or Government Data 170
Confidential/Sensitive Business Data 170
Data in Transit 170
Data in the Database 174

Table of Contents | vii

Data in the Filesystem 177
Wrapping Up 179

10. Data Storage, Indexing, and Replication. 181
Data Structure Storage 181

Database Row Storage 182
Sorted-String Tables and Log-Structured Merge Trees 185
Indexing 188
Logs and Databases 189

Data Replication 189
Single-Leader 190
Multi-Leader Replication 203

Wrapping Up 209

11. Datastore Field Guide. 211
Conceptual Attributes of a Datastore 212

The Data Model 212
Transactions 215
BASE 221

Internal Attributes of a Datastore 222
Storage 222
The Ubiquitous CAP Theorem Section 223
Consistency Latency Trade-offs 225
Availability 226

Wrapping Up 227

12. A Data Architecture Sampler. 229
Architectural Components 229

Frontend Datastores 229
Data Access Layer 230
Database Proxies 231
Event and Message Systems 233
Caches and Memory Stores 235

Data Architectures 238
Lambda and Kappa 238
Event Sourcing 241
CQRS 242

Wrapping Up 243

13. Making the Case For DBRE. 245
A Culture of Database Reliability 246

Breaking-Down Barriers 246

viii | Table of Contents

Data-Driven Decision Making 251
Data Integrity and Recoverability 252

Wrapping Up 252

Index. 253

Table of Contents | ix

Foreword

Collectively, we are witnessing a time of unprecedented change and disruption in the
database industry. Technology adoption life cycles have accelerated to the point
where all of our heads are spinning—with both challenge and opportunity.

Architectures are evolving so quickly that the tasks we became accustomed to per‐
forming are no longer required, and the related skills we invested in so heavily are
barely relevant. Emerging innovations and pressures in security, Infrastructure as
Code, and cloud capabilities (such as Infrastructure and Database as a Service), have
allowed us—and required us, actually—to rethink how we build.

By necessity, we have moved away from our traditional, administrative workloads to a
process emphasizing architecture, automation, software engineering, continuous
integration and delivery, and systems instrumentation skills, above all. Meanwhile,
the value and importance of the data we’ve been protecting and caring for all along
has increased by an order of magnitude or more, and we see no chance of a future in
which it doesn’t continue to increase in value. We find ourselves in the fortunate posi‐
tion of being able to make a meaningful, important difference in the world.

Without a doubt, many of us who once considered ourselves outstanding database
administrators are at risk of being overwhelmed or even left behind. Simultaneously,
newcomers into our field are thirsty for an organizing paradigm. The answer to both
circumstances is the same: a commitment to the delight of learning, to self-
improvement, to the optimism, enthusiasm, and confidence it takes to take on a task
and see it through to conclusion, despite the inevitable travails and pitfalls. This book
is a remarkable achievement. It is an introduction to a new way of thinking about
database infrastructure engineering and operations, a guidebook, and a playbook tak‐
ing all of what we used to do and reimagining it into a new way forward: Database
Reliability Engineering.

— Paul Vallée, President and CEO,
Pythian

xi

Preface

In this book, we hope to show you a framework for the next iteration of the database
professional: the database reliability engineer, or DBRE. Consider any preconceived
notions of what the profession of database administration looks like. Any software or
systems engineer who has interacted with these mysterious creatures probably has a
lot of these preconceived notions.

Traditionally, database administrators (DBAs) understood database (DB) internals
thoroughly; they ate, lived, and breathed the optimizer, the query engine, and the
tuning and crafting of highly performant, specialized systems. When they needed to
pick up other skill sets to make their databases run better, they did. They learned how
to distribute load across computer processing units (CPUs) or disk spindles, how to
configure their DB to use CPU affinity, and how to evaluate storage subsystems.

When the DBA ran into visibility problems, they learned how to build graphs for the
things they identified as key metrics. When they ran into architectural limitations,
they learned about caching tiers. When they ran into the limits of individual nodes,
they learned (and helped drive the development of) new design patterns like shard‐
ing. Throughout this, they were mastering new operational techniques, such as cache
invalidation, data rebalancing, and rolling DB changes.

But for a long long time, DBAs were in the business of crafting silos and snowflakes.
Their tools were different, their hardware was different, and their languages were dif‐
ferent. DBAs were writing SQL, systems engineers were writing perl, software engi‐
neers were writing C++, web developers were writing PHP, and network engineers
were crafting their own perfect appliances. Only half of the teams were using version
control in any kind of way, and they certainly didn’t talk or step on each other’s turf.
How could they? It was like entering a foreign land.

The days in which this model can prove itself to be effective and sustainable are num‐
bered. This book is a view of reliability engineering as seen through a pair of database
engineering glasses. We do not plan on covering everything possible in this book.
Instead, we are describing what we do see as important, through the lens of your

xiii

experience. This framework can then be applied to multiple datastores, architectures,
and organizations.

Why We Wrote This Book
This book has been an evolving dream of ours for about five years. Laine came to the
DBA role without any formal technical training. She was neither a software engineer
nor a sysadmin; rather, she chose to develop a technical career after leaving music and
theater. With this kind of background, the ideas of structure, harmony, counterpoint,
and orchestration found in databases called to her.

Since that time, she’s hired, taught, mentored, and worked with probably a hundred
different DBAs. Us database folks are a varied bunch. Some came from software back‐
grounds, others from systems. Some even came from data analyst and business back‐
grounds. The thing that consistently shone through from the best, however, was a
passion and a sense of ownership for the safety and availability of the company’s data.
We fulfilled our roles of stewards of data with a fierceness that bordered on unheal‐
thy. But we also functioned as a lynchpin between the software engineers and the sys‐
tems engineers. Some might say we were the original DevOps, with a foot in each
world.

Charity’s background is firmly in operations and startup culture. She has a gloriously
sloppy history of bootstrapping infrastructures fast, making quick decisions that can
make or break a startup, taking risks, and making difficult choices based on severely
limited resources. Mostly successfully, give or take. She is an accidental DBA who
loves data. She has always worked on ops teams for which there were no specialized
DBAs, so the software engineering and operations engineering teams ended up shar‐
ing that work.

Doing this for so long and with varied pasts, we’ve recognized and embraced the
trends of the past decade. The life of the DBA has often been one of toil and invisibil‐
ity. Now we have the tools and the collective buy-in to transform the role to that of
first-class citizen and to focus on the highest areas of value that the DBA can bring.

With this book, we wanted to help the next generation of engineers have truly happy,
productive careers and to continue the impact previous generations had.

Who This Book Is For
This book is written for anyone with an interest in the design, building, and opera‐
tions of reliable data stores. Perhaps you are a software engineer, looking to broaden
your knowledge of databases. You might also be a systems engineer looking to do the
same. If you’re a database professional looking to develop your skill set, you will also

xiv | Preface

find value here. If you are newer to the industry, this should also be able to give you a
solid understanding. This book, after all, is a framework.

We assume that you already have a baseline of technical proficiency in Linux/Unix
systems administration as well as web and/or cloud architectures. We also assume
that you are an engineer on one of two paths. On one path, you have existing depth in
another discipline, such as systems administration or software engineering, and are
interested in developing your technical breadth to include the database engineering
discipline. On the other path, you are early- to mid-career and looking to build your
technical depth as a specialist in database engineering.

If you are management, or even project management, you can use this book to
understand the needs of the datastores that will be underpinning your services. We
believe firmly that management needs to understand operational and database princi‐
ples to increase the likelihood of success of their teams and their projects.

You might also be someone without a traditional technical background. Perhaps you
are an “accidental DBA” who was a business analyst and learned to run databases by
jumping into the deep end of the pool. There are many database professionals who
have come to the database world via Excel rather than a development or systems job.

How This Book Is Organized
As we go into this book, we present the information in two sections. The first section
is operations core curriculum. This is a foundation of operations that anyone—data‐
base engineer, software engineer, even product owner—should know. After this, we
dig into data: modeling, storing, replicating, accessing, and much more. This is also
where we discuss architectural choices and data pipelines. It should be thrilling!

There is a reason there is an ops-heavy approach to this narrative: you can’t be a good
“DBRE” without being a good “RE.” Which you can’t be without being a plain old
good “E.” The modern DBRE specializes in understanding data-specific domain
problems on top of the fundamentals of systems engineering.

But the point of this is that any engineer can run data services. We now speak the same
languages. We use the same repos and the same code review processes. Caring for
databases is an extension of operations engineering—a creamy frosting of special
knowledge and awareness atop the cupcake of running systems at scale—just as being
an exceptional network engineer also means knowing how to be an engineer first,
and then knowing extra things about how to handle traffic, what to be scared of, what
the current best practices are, how to evaluate network topology, and so on.

Here is a breakdown of what you can expect in each chapter:

Preface | xv

Chapter 1 is an introduction to the concept of database reliability engineering. We
start with guiding principals, move on to the operations centric core, and finally give
a framework for building a vision for DBRE based on Maslow’s hierarchy of needs.

In Chapter 2, we start with service level requirements. This is as important as feature
requirements for a product. In this chapter we discuss what service level require‐
ments are and how to define them, which is not as easy as it sounds. We then discuss
how to measure and work with these requirements over time.

In Chapter 3, we discuss risk assessment and management. After a foundational dis‐
cussion on risk, we discuss a practical process for incorporating risk assessment into
systems and database engineering. Pitfalls and complexities are also brought to atten‐
tion.

In Chapter 4, we discuss operational visibility. This is where we discuss metrics and
events, and how build a plan for what to start measuring, and what to iterate on over
time. We dig into the components of monitoring systems, the clients that use them.

We then dive into infrastructure engineering and infrastructure management in
Chapters 5 and 6. This is the section where we discuss the principles of building hosts
for datastores. We will dive into virtualization and containerization, configuration
management, automation and orchestration in an attempt to help you understand all
the moving parts required to build these systems that store and access data.

Chapter 7 is backup and recovery. This is, perhaps, the most critical things for the
DBE to master. Losing data is simply game over. Starting from service level require‐
ments, we evaluate appropriate backup and restore methods, how to scale and how to
test this critical and oft overlooked aspect of operations.

Chapter 8 is a discussion on release management. How do we test, build and deploy
changes to data stores? What about changes to data access code and SQL? Deploy‐
ment, integration and delivery are the meat of this section.

Chapter 9 is on security. Data security is critical to a company’s survival. Strategies on
how to do plan for and manage security in ever evolving data infrastructures are in
this chapter.

Chapter 10 is on data storage, indexing, and replication. We will discuss how rela‐
tional data is stored, and then compare this to sorted strings and log structured merge
trees. After reviewing indexing variants, we will explore data replication topologies.

Chapter 11 is our datastore field guide. Here we will discuss a myriad of various prop‐
erties to look for in datastores you will be evaluating or operating. This includes con‐
ceptual attributes of great importance to application developers and architects, as well
as the internal attributes focused on the physical implementation of the datastores.

In Chapter 12, we look at some of the more common architectural patterns used for
distributed databases and the pipelines they are involved with. We start with a look at

xvi | Preface

the architectural components that typically reside in a database ecosystem, along with
their benefits, complexities and general usage. We then explore architectures and
pipelines, or at least few examples.

Finally, in Chapter 13 we discuss how to build a culture of database reliability engi‐
neering in your organization. We explore the different ways in which you can trans‐
form the role of DBRE from one of administrator to that of engineer in today’s
organizations.

Preface | xvii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

xviii | Preface

http://oreilly.com/safari
http://www.oreilly.com/safari

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/database-reliability-engineering.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xix

http://bit.ly/database-reliability-engineering
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introducing Database
Reliability Engineering

Our goal with this book is to provide the guidance and framework for you, the reader,
to grow on the path to being a truly excellent database reliability engineer (DBRE).
When naming the book we chose to use the words reliability engineer, rather than
administrator.

Ben Treynor, VP of Engineering at Google, says the following about reliability engi‐
neering:

fundamentally doing work that has historically been done by an operations team, but
using engineers with software expertise, and banking on the fact that these engineers
are inherently both predisposed to, and have the ability to, substitute automation for
human labor.

Today’s database professionals must be engineers, not administrators. We build
things. We create things. As engineers practicing devops, we are all in this together,
and nothing is someone else’s problem. As engineers, we apply repeatable processes,
established knowledge, and expert judgment to design, build, and operate production
data stores and the data structures within. As database reliability engineers, we must
take the operational principles and the depth of database expertise that we possess
one step further.

If you look at the non-storage components of today’s infrastructures, you will see sys‐
tems that are easily built, run, and destroyed via programmatic and often automatic
means. The lifetimes of these components can be measured in days, and sometimes
even hours or minutes. When one goes away, there is any number of others to step in
and keep the quality of service at expected levels.

Our next goal is that you gain a framework of principles and practices for the design,
building, and operating of data stores within the paradigms of reliability engineering

1

and devops cultures. You can take this knowledge and apply it to any database tech‐
nology or environment that you are asked to work in at any stage in your organiza‐
tion’s growth.

Guiding Principles of the DBRE
As we sat down to write this book, one of the first questions we asked ourselves was
what the principles underlying this new iteration of the database profession were. If
we were redefining the way people approached data store design and management,
we needed to define the foundations for the behaviors we were espousing.

Protect the Data
Traditionally, protecting data always has been a foundational principle of the database
professional and still is. The generally accepted approach has been attempted via:

• A strict separation of duties between the software and the database engineer
• Rigorous backup and recovery processes, regularly tested
• Well-regulated security procedures, regularly audited
• Expensive database software with strong durability guarantees
• Underlying expensive storage with redundancy of all components
• Extensive controls on changes and administrative tasks

In teams with collaborative cultures, the strict separation of duties can become not
only burdensome, but also restrictive of innovation and velocity. In Chapter 8,
Release Management, we will discuss ways to create safety nets and reduce the need
for separation of duties. Additionally, these environments focus more on testing,
automation, and impact mitigation than extensive change controls.

More often than ever, architects and engineers are choosing open source datastores
that cannot guarantee durability the way that something like Oracle might have in the
past. Sometimes, that relaxed durability gives needed performance benefits to a team
looking to scale quickly. Choosing the right datastore, and understanding the impacts
of those choices, is something we look at Chapter 11. Recognizing that there are mul‐
tiple tools based on the data you are managing and choosing effectively is rapidly
becoming the norm.

2 | Chapter 1: Introducing Database Reliability Engineering

Underlying storage has also undergone a significant change as well. In a world where
systems are often virtualized, network and ephemeral storage is finding a place in
database design. We will discuss this further in Chapter 5.

Production Datastores on Ephemeral Storage
In 2013, Pinterest moved their MySQL database instances to run on ephemeral stor‐
age in Amazon Web Services (AWS). Ephemeral storage effectively means that if the
compute instance fails or is shut down, anything stored on disk is lost. Pinterest chose
the ephemeral storage option because of consistent throughput and low latency.

Doing this required substantial investment in automated and rock-solid backup and
recovery, as well as application engineering to tolerate the disappearance of a cluster
while rebuilding nodes. Ephemeral storage did not allow snapshots, which meant that
the restore approach was full database copies over the network rather than attaching a
snapshot in preparation for rolling forward of the transaction logs.

This shows that you can maintain data safety in ephemeral environments with the
right processes and the right tools!

The new approach to data protection might look more like this:

• Responsibility of the data shared by cross-functional teams.
• Standardized and automated backup and recovery processes blessed by DBRE.
• Standardized security policies and procedures blessed by DBRE and Security

teams.
• All policies enforced via automated provisioning and deployment.
• Data requirements dictate the datastore, with evaluation of durability needs

becoming part of the decision making process.
• Reliance on automated processes, redundancy, and well-practiced procedures

rather than expensive, complicated hardware.
• Changes incorporated into deployment and infrastructure automation, with

focus on testing, fallback, and impact mitigation.

Self-Service for Scale
A talented DBRE is a rarer commodity than a site reliability engineer (SRE) by far.
Most companies cannot afford and retain more than one or two. So, we must create
the most value possible, which comes from creating self-service platforms for teams
to use. By setting standards and providing tools, teams are able to deploy new serv‐
ices and make appropriate changes at the required pace without serializing on an

Guiding Principles of the DBRE | 3

overworked database engineer. Examples of these kinds of self-service methods
include:

• Ensure the appropriate metrics are being collected from data stores by providing
the correct plug-ins.

• Building backup and recovery utilities that can be deployed for new data stores.
• Defining reference architectures and configurations for data stores that are

approved for operations, and can be deployed by teams.
• Working with Security to define standards for data store deployments.
• Building safe deployment methods and test scripts for database changesets to be

applied.

In other words, the effective DBRE functions by empowering others and guiding
them, not functioning as a gatekeeper.

Elimination of Toil
The Google SRE teams often use the phrase “Elimination of Toil,” which is discussed
in Chapter 5 of the Google SRE book. In the book, “toil” is defined as:

Toil is the kind of work tied to running a production service that tends to be manual,
repetitive, automatable, tactical, devoid of enduring value, and that scales linearly as a
service grows.

Effective use of automation and standardization is necessary to ensure that DBREs
are not overburdened by toil. Throughout this book, we will be bringing up examples
of DBRE-specific toil and the approaches to mitigation of this. That being said, the
word “toil” is still vague, with lots of preconceptions that vary from person to person.
When we discuss toil in this book, we are specifically talking about manual work that
is repetitive, non-creative, and non-challenging.

Manual Database Changes
In many customer environments, database engineers are asked to review and apply
DB changes, which can include modifications to tables or indexes, the addition, mod‐
ification, or removal of data, or any other number of tasks. Everyone feels reassured
that the DBA is applying these changes and monitoring the impact of the changes in
real time.

At one customer site, the rate of change was quite high, and those changes were often
impactful. We ended up spending about 20 hours a week applying rolling changes
throughout the environment. Needless to say, the poor DBA who ended up spending
half of their week running these repetitive tasks became jaded and ended up quitting.

4 | Chapter 1: Introducing Database Reliability Engineering

Faced with a lack of resources, management finally allowed the DB team to build a
rolling schema change automation utility that software engineers could use once the
changeset had been reviewed and approved by one of the database engineers. Soon,
everyone trusted the tool and monitoring to introduce change, paving the way for the
DBRE team to focus more time on integrating these processes with the deployment
stack.

Databases Are Not Special Snowflakes
Our systems are no more or less important than any other components serving the
needs of the business. We must strive for standardization, automation, and resilience.
Critical to this is the idea that the components of database clusters are not sacred. We
should be able to lose any component and efficiently replace it without worry. Fragile
data stores in glass rooms are a thing of the past.

The metaphor of pets versus cattle is often used to show the difference between a spe‐
cial snowflake and a commodity service component. Original attribution goes to Bill
Baker, Microsoft Distinguished Engineer. A pet server, is one that you feed, care for,
and nurture back to health when it is sick. It also has a name. At Travelocity in 2000,
our servers were Simpsons characters, and our two SGI servers running Oracle were
named Patty and Selma. I spent so many hours with those gals on late nights. They
were high maintenance!

Cattle servers have numbers, not names. You don’t spend time customizing servers,
much less logging on to individual hosts. When they show signs of sickness, you cull
them from the herd. You should, of course, keep those culled cattle around for foren‐
sics, if you are seeing unusual amounts of sickness. But, we’ll refrain from mangling
this metaphor any further.

Data stores are some of the last hold outs of “pethood.” After all, they hold “The
Data,” and simply cannot be treated as replaceable cattle with short lifespans and
complete standardizations. What about the special replication rules for our reporting
replica? What about the different config for the primary’s redundant standby?

Eliminate the Barriers Between Software and Operations
Your infrastructure, configurations, data models, and scripts are all part of software.
Study and participate in the software development lifecycle as any engineer would.
Code, test, integrate, build, test, and deploy. Did we mention test?

This might be the hardest paradigm shift for someone coming from an operations
and scripting background. There can be an organizational impedance mismatch in
the way software engineers navigate an organization and the systems and services
built to meet that organization’s needs. Software engineering organizations have very
defined approaches to developing, testing, and deploying features and applications.

Guiding Principles of the DBRE | 5

In a traditional environment, the underlying process of designing, building, testing,
and pushing infrastructure and related services to production was separate among
software engineering (SWE), system engineering (SE), and DBA. The paradigm shifts
discussed previously are pushing for removal of this impedance mismatch, which
means DBREs and Systems Engineers find themselves needing to use similar meth‐
odologies to do their jobs.

Software Engineers Must Learn Operations!

Too often, operations folks are told to learn to “code or to go
home.” While I do agree with this, the reverse must be true as well.
Software engineers who are not being pushed and led to learn
operations and infrastructure principles and practices will create
fragile, non-performant, and potentially insecure code. The impe‐
dance mismatch only goes away if all teams are brought to the
same table!

DBREs might also find themselves embedded directly in a software engineering team,
working in the same code base, examining how code is interacting with the data
stores, and modifying code for performance, functionality, and reliability. The
removal of this organizational impedance creates an improvement in reliability, per‐
formance, and velocity an order of magnitude greater than traditional models, and
DBREs must adapt to these new processes, cultures, and tooling.

Operations Core Overview
One of the core competencies of the DBRE is operations. These are the building
blocks for designing, testing, building, and operating any system with scale and relia‐
bility requirements that are not trivial. This means that if you want to be a database
engineer, you need to know these things.

Operations at a macro level is not a role. Operations is the combined sum of all of the
skills, knowledge, and values that your company has built up around the practice of
shipping and maintaining quality systems and software. It’s your implicit values as
well as your explicit values, habits, tribal knowledge, and reward systems. Everybody,
from tech support to product people to the CEO participates in your operational out‐
comes.

Too often, this is not done well. So many companies have an abysmal ops culture that
burns out whoever gets close to it. This can give the discipline a bad reputation,
which many folks think of when they think of operations jobs, whether in systems,
database, or network. Despite this, your ops culture is an emergent property of how
your org executes on its technical mission. So if you go and tell us that your company
doesn’t do any ops, we just won’t buy it.

6 | Chapter 1: Introducing Database Reliability Engineering

Perhaps you are a software engineer or a proponent of infrastructure and platforms as
a service. Perhaps you are dubious that operations is a necessity for the intrepid data‐
base engineer. The idea that serverless computing models will liberate software engi‐
neers from needing to think or care about operational impact is flat out wrong. It is
actually the exact opposite. It’s a brave new world where you have no embedded oper‐
ations teams—where the people doing operations engineering for you are Google
SREs and AWS systems engineers and PagerDuty and DataDog and so on. This is a
world where application engineers need to be much better at operations, architecture,
and performance than they currently are.

Hierarchy of Needs
Some of you will be coming at this book with experience in enterprises and some in
startups. As we approach and consider systems, it is worth thinking about what you
would do on day one of taking on the responsibility of operating a database system.
Do you have backups? Do they work? Are you sure? Is there a replica you can fail over
to? Do you know how to do that? Is it on the same power strip, router, hardware, or
availability zone as the primary? Will you know if the backups start failing somehow?
How?

In other words, we need to talk about a hierarchy of database needs.

For humans, Maslow’s hierarchy of needs is a pyramid of desire that must be satisfied
for us to flourish: physiological survival, safety, love and belonging, esteem, and self-
actualization. At the base of the pyramid are the most fundamental needs, like sur‐
vival. Each level roughly proceeds to the next—survival before safety, safety before
love and belonging, and so forth. Once the first four levels are satisfied, we reach self-
actualization, which is where we can safely explore and play and create and reach the
fullest expression of our unique potential. So that’s what it means for humans. Let’s
apply this as a metaphor for what databases need.

Survival and Safety
Your database’s most essential needs are backups, replication, and failover. Do you
have a database? Is it alive? Can you ping it? Is your application responding? Does it get
backed up? Will restores work? How will you know if this stops being true?

Is your data safe? Are there multiple live copies of your data? Do you know how to do a
failover? Are your copies distributed across multiple physical availability zones or multi‐
ple power strips and racks? Are your backups consistent? Can you restore to a point in
time? Will you know if your data gets corrupted? How? Plan on exploring this much
more in the backup and recovery section.

Hierarchy of Needs | 7

This is also the time when you start preparing for scale. Scaling prematurely is a fool’s
errand, but you should consider sharding, growth, and scale now as you determine ids
for key data objects, storage systems, and architecture.

Scaling Patterns
We will discuss scale quite frequently. Scalability is the capability of a system or ser‐
vice to handle increasing amounts of work. This might be actual ability, because
everything has been deployed to support the growth, or it might be potential ability,
in that the building blocks are in place to handle the addition of components and
resources required to scale. There is a general consensus that scale has four pathways
that will be approached.

• Scale vertically, via resource allocation. aka scale up
• Scale horizontally, by duplication of the system or service. aka scale out
• Separate workloads to smaller sets of functionality, to allow for each to scale

independently, also known as functional partitioning
• Split specific workloads into partitions that are identical, other than the specific

set of data that is being worked on also known as sharding

The specific aspects of these patterns will be reviewed in Chapter 5, Infrastructure
Engineering.

Love and Belonging
Love and belonging is about making your data a first-class citizen of your software
engineering processes. It’s about breaking down silos between your databases and the
rest of your systems. This is both technical and cultural, which is why you could also
just call this the “devops needs.” At a high level, it means that managing your data‐
bases should look and feel (as much as possible) like managing the rest of your sys‐
tems. It also means that you culturally encourage fluidity and cross-functionality. The
love and belonging phase is where you slowly stop logging in and performing cowboy
commands as root.

It is here where you begin to use the same code review and deployment practices.
Database infrastructure and provisioning should be part of the same process as all
other architectural components. Working with data should feel consistent to all other
parts of the application, which should encourage anyone to feel they can engage with
and support the database environment.

Resist the urge to instill fear in your developers. It’s quite easy to do and quite tempt‐
ing because it feels better to feel like you have control. It’s not—and you don’t. It’s
much better for everyone if you invest that energy into building guard rails so that it’s

8 | Chapter 1: Introducing Database Reliability Engineering

harder for anyone to accidentally destroy things. Educate and empower everyone to
own their own changes. Don’t even talk about preventing failure, as such is impossi‐
ble. In other words, create resilient systems and encourage everyone to work with the
datastore as much as possible.

Guardrails at Etsy
Etsy introduced a tool called Schemanator to apply database changes, otherwise
known as change-sets, safely to their production environments. Multiple guardrails
were put in place to empower software engineers to apply these changes. These
guardrails included:

• Change-set heuristic reviews to validate standards had been followed in schema
definitions.

• Change-set testing to validate the scripts run successfully.
• Preflight checks to show the engineer the current cluster status.
• Rolling changes to run impactful changes on “out of service” databases.
• Breaking workflows into subtasks to allow for cancelling out when problems

occur that can not be predicted.

You can read more about this at Etsy’s blog.

Esteem
Esteem is the highest of the needs in the pyramid. For humans, this means respect
and mastery. For databases, this means things like observability, debuggability, intro‐
spection, and instrumentation. It’s about being able to understand your storage sys‐
tems themselves, but also being able to correlate events across the stack. Again, there
are two aspects to this stage: one of them is about how your production services
evolve through this phase, and the other is about your humans.

Your services should tell you if they’re up or down or experiencing error rates. You
should never have to look at a graph to find this out. As your services mature, the
pace of change slows down a bit as your trajectory becomes more predictable. You’re
running in production so you’re learning more every day about your storage system’s
weaknesses, behaviors, and failure conditions. This can be compared to teenager
years for data infrastructure. What you need more than anything is visibility into
what is going on. The more complex your product is, the more moving pieces there
are and the more engineering cycles you need to allocate into developing the tools
you need to figure out what’s happening.

Hierarchy of Needs | 9

http://bit.ly/2zy74uz

You also need knobs. You need the ability to selectively degrade quality of service
instead of going completely down, e.g.:

• Flags where you can set the site into read-only mode
• Disabling certain features
• Queueing writes to be applied later
• The ability to blacklist bad actors or certain endpoints

Your humans have similar but not completely overlapping needs. A common pattern
here is that teams will overreact once they get into production. They don’t have
enough visibility, so they compensate by monitoring everything and paging them‐
selves too often. It is easy to go from zero graphs to literally hundreds of thousands of
graphs—99% of which are completely meaningless. This is not better. It can actually
be worse. If it generates so much noise that your humans can’t find the signal and are
reduced to tailing log files and guessing again, it’s as bad or worse than not having the
graphs.

This is where you can start to burn out your humans by interrupting them, waking
them up, and training them not to care or act on alerts they do receive. In the early
stages, if you’re expecting everyone to be on call, you need to document things. When
you’re bootstrapping, you have shared on call, and you’re pushing people outside of
their comfort zones, give them a little help. Write minimally effective documentation
and procedures.

Self-actualization
Just like every person’s best possible self is unique, every organization’s self-actualized
storage layer is unique. The platonic ideal of a storage system for Facebook doesn’t
look like the perfect system for Pinterest or Github, let alone a tiny startup. But just
like there are patterns for healthy, self-actualized humans (doesn’t throw tantrums in
the grocery store, they eat well and exercise), there are patterns for what we can think
of as healthy, self-actualized storage systems.

In this context, self-actualization means that your data infrastructure helps you get
where you’re trying to go and that your database workflows are not obstacles to pro‐
gress. Rather, they empower your developers to get work done and help save them
from making unnecessary mistakes. Common operational pains and boring failures
should remediate themselves and keep the system in a healthy state without needing
humans to help. It means you have a scaling story that works for your needs.
Whether that means 10x’ing every few months or just being rock solid, stable, and
dumb for three years before you need to worry about capacity. Frankly, you have a
mature data infrastructure when you can spend most of your time thinking about

10 | Chapter 1: Introducing Database Reliability Engineering

other things. Fun things. Like building new products or anticipating future problems
instead of reacting to current ones.

It’s okay to float back and forth between levels over time. The levels are mostly there
as a framework to help you think about relative priorities, like making sure you have
working backups is way more important than writing a script to dynamically re-shard
and add more capacity. Or if you’re still at the point where you have one copy of your
data online, or you don’t know how to fail over when your primary dies, you should
probably stop whatever you’re doing and figure that out first.

Wrapping Up
The DBRE role is a paradigm shift from an existing, well-known role. More than any‐
thing, the framework gives us a new way to approach the functions of managing data‐
stores in a continually changing world. In the upcoming section, we will begin
exploring these functions in detail, prioritizing operational functions due to their
importance in day-to-day database engineering. With that being said, let’s move
bravely forward, intrepid engineer!

Wrapping Up | 11

CHAPTER 2

Service-Level Management

One of the first steps required to successfully design, build, and deploy a service is to
understand the expectations of that service. In this chapter, we define what service-
level management is and discuss the components of it. We then discuss how to define
the expectations of a service and how to monitor and report to ensure we are meeting
those expectations. Throughout the chapter, we also build a robust set of service-level
requirements to explain this process.

Why Do I Need Service-Level Objectives?
Services that we design and build must have a set of requirements about their runtime
characteristics. This is often referred to as a Service-Level Agreement (SLA). An SLA is
more than just an enumerated list of requirements, however. SLAs include remedies,
impacts, and much more that is beyond the scope of this book. So, we will focus on
the term Service-Level Objective (SLO). SLOs are commitments by the architects and
operators that guide the design and operations of the system to meet those commit‐
ments.

Service-level management is difficult! Condensing it to a chapter is reductive, and it
is important to understand the nuances. Let’s take a few examples to illustrate why
this problem is difficult:

• Maybe you say, I’ll just report on the percentage of requests that are successfully
served by my API. Okay...as reported by whom? By the API? That’s obviously a
problem, because what if your load balancers are down? Or, what if it returned a
200 error from the database because your service discovery system knew that
particular database was unavailable?

• Or, what if you say, “Ok, we’ll use a third-party end-to-end checker and calculate
how many of those read and write the correct data?” That’s a great thing to do—

13

end-to-end checks are the best high-level reliability alerts. But is it exercising
every backend?

• Do you factor less-important services into your SLO? Your customers would
probably rather have a 99.95% availability rate from your API and a 97% availa‐
bility from your batch processing product than 99.8% from both your API and
and batch processing.

• How much control do you have over clients? If your API has a 98% availability,
but your mobile clients automatically retry and have a 99.99% reliability response
rate within three tries, they might never notice. Which is the accurate number?

• Maybe you say, “I’ll just count error percentages,” but what about the errors that
are caused by users sending invalid or malformed requests? You can’t actually do
anything about that.

• Maybe you return a correct result 99.999% of the time, but 15% of the time the
latency is more than 5 seconds. Is that acceptable? Depending on the client
behavior, that might actually mean your website is unresponsive for some people.
You might technically have five 9’s by your own accounting, and yet your users
can be incredibly and justifiably unhappy with you.

• What if the site is 99.999% up for 98% of your users but only 30% to 70% avail‐
able for the other 2% of your users? How do you calculate that?

• What if one shard or one backend is down or slow? What if you experience 2%
data loss due to a bug in an upgrade? What if you experience an entire day of
data loss but only for certain tables? What if your users never noticed that data
was lost due to the nature of it, but you reported a 2% data loss, alarming every‐
one and encouraging them to migrate off your stack? What if that 2% data loss
actually included rewriting pointers to assets so that even though the data wasn’t
“lost” it “could not be found?”

• What if some users are experiencing 95% availability because they have bad WiFi,
old cable internet, or bad router tables between their client and your server? Can
they hold you responsible?

• What if it’s from entire countries? Well, then it probably is something that they
can blame you for (e.g., packet overruns for DNS UDP packets by some provid‐
ers—you can fix this).

• What if your number is 99.97%, but every error causes your entire website to fail
to load? What if your number is 99.92%, but each page has 1,500 components
and users almost never notice when a tiny widget has failed to load. Which expe‐
rience is better?

• Is it better to count actual error rate or by time slices? By the number of minutes
(or seconds) when errors or timeouts exceeded a threshold?

14 | Chapter 2: Service-Level Management

Five 9’s?

Many people use a number of 9’s as shorthand to describe availabil‐
ity. For instance, a system is designed to have “five 9’s” of availabil‐
ity. This means that it is built to be available 99.999% of the time,
whereas “three 9’s” would be 99.9%.

This is why the practice of designing, curating, and adapting SLO and availability
metrics over time is less of a computation problem and more of a social science prob‐
lem. How do you calculate an availability percentage that accurately reflects the expe‐
rience of your users, builds trust, and incentivizes in the right direction?

From the perspective of your team, whatever availability metrics you all agree are
important to deliver become numbers to be gamed to some extent, even if only sub‐
consciously. Those are the numbers you pay attention to when you’re determining
whether your reliability is getting better or worse or whether you need to switch
resources from feature development to reliability, or vice versa.

From the perspective of your customers, the most important thing about the metric is
that it reflects their experience as much as possible. If you have the ability to calculate
metrics per customer or slice and dice the data along arbitrary dimensions—even
high-cardinality ones like UUID—this is incredibly powerful. Facebook’s Scuba does
this and so does Honeycomb.io.

Service-Level Indicators
When evaluating requirements for SLOs, we will generally consider a finite set of
indicators, or metrics, against which we will set requirements. In these objectives, we
will consider ideal parameters as well as working parameters. An SLO can be consid‐
ered a set of one or more indicators that define the expectations of a service, often,
because these indicators can be intrinsically linked.

For instance, latency past a certain point will become an availability issue because the
system is effectively unusable. Latency without throughput is easy to game and not
necessarily an accurate view of the system at load. Typical indicators are enumerated
and explained in the subsections that follow.

Latency
Latency, also known as response time, is a time-based measurement indicating how
long it takes to receive a response from a request. It is best to measure this for end-to-
end response from the customer rather than breaking it down component by compo‐
nent. This is customer-centric design and is crucial for any system that has customers,
which is any system!

Service-Level Indicators | 15

Latency versus Response Time

Vast wars of ink and blood have been spilled on the topic of latency
versus response time. There are some factions that consider latency
to be the time it takes to get to the service, whereas response time is
the time it takes to service the request. In this book, we use
“latency” to refer to the total round-trip time of a request, from ini‐
tiation to payload delivery.

Availability
This is generally expressed as a percentage of overall time the system is expected to be
available. Availability is defined as the ability to return an expected response to the
requesting client. Note that time is not considered here, which is why most SLOs
include both response time and availability. After a certain latency point, the system
can be considered unavailable even if the request is still completing. Availability is
often denoted in percentages, such as 99.9% over a certain window. All samples
within that window will be aggregated.

Throughput
Another common SLI is throughput, or the rate of successful requests in a specific
period of time, typically measured on a per-second basis. Throughput actually
becomes quite useful as a companion to latency. When a team is preparing for launch
and measuring latency, it must do it at the top throughput goals; otherwise, its tests
will be useless. Latency tends to be steady until a certain tipping point, and we must
know that tipping point in reference to throughput goals.

Durability
Durability is specific to storage systems and datastores. It indicates the successful per‐
sistence of a write operation to storage so that it can be retrieved at another time. This
can be expressed in a time window, such as: in the event of a system failure, no more
than the past two seconds of data can be lost.

Cost or Efficiency
“Cost or Efficiency” is often overlooked, or not considered in service-level discus‐
sions. Instead, you will find it relegated to budget and often not tracked effectively.
Still, the overall cost of a service is a critical component to most businesses. Ideally,
this should be expressed in cost per action, such as a page view, a subscription, or a
purchase.

An organization should expect to have the following actions as part of the operations
of their services:

16 | Chapter 2: Service-Level Management

New service
SLOs Defined. In more traditional models, this might be called operating-level
agreements.

New SLOs
Set up appropriate monitoring to evaluate actual versus target metrics.

Existing service
Regular reviews of SLOs should be scheduled to validate that current service crit‐
icality is taken into account for defined SLOs.

SLO fulfillment
Regular reports to indicate historical and current status of the achievement or
violation of SLOs.

Service issues
A portfolio of issues that have affected service-levels, and their current status in
terms of workarounds and fixes.

Defining Service Objectives
SLOs should be built from the same set of requirements toward which product fea‐
tures are built. We call this customer-centric design because we should be defining
requirements based on the needs of our customers. We generally only want up to
three indicators. More than three indicators rarely add significant value. Often, exces‐
sive numbers of indicators could mean you are including symptoms of primary indi‐
cators.

Latency Indicators
A latency SLO can be expressed as a range based on a certain indicator. For instance,
we might say that request latency must be less than 100 ms (which is actually a range
between 100 ms and 0s when we make assumptions explicit). Latency is absolutely
critical to the user experience.

Defining Service Objectives | 17

Why Is Latency Critical?

Slow or inconsistently performing services can lose more custom‐
ers than a system that is down. In fact, speed matters enough that
Google Research found that introducing a delay of 100 to 400 ms
caused a reduction in searches by 0.2% to 0.6% over 4 to 6 weeks.
You can find more details at Speed Matters. Here are some other
startling metrics:

• Amazon: for each 100 ms, it loses 1% of sales
• Google: if it increases page load by 500 ms, it results in 25%

fewer searches
• Facebook: pages that are 500 ms slower cause a 3% dropoff in

traffic
• A one-second delay in page response decreases customer satis‐

faction by 16%

We can express an availability SLO like this: Request latency must be less than 100 ms.

If we leave the lower bound at 0, we might drive certain dysfunctions. A performance
engineer might spend a week of time getting the response time down to 10 ms, but
the mobile devices using the application will rarely have networks that can deliver the
results fast enough to utilize this optimization. In other words, your performance
engineer just wasted a week of work. We can iterate on the SLO like this: request
latency must be between 25 ms and 100 ms.

Let’s next consider how we collect this data. If we are reviewing logs, we might take
one minute’s worth of requests and average them. There is a problem with this, how‐
ever. Most distributed, networked systems create distributions with small percentages
of outliers that can be fairly significant. This will skew an average and also hide the
complete workload characteristics from the engineers monitoring it. In other words,
aggregating response times is a lossyprocess.

In fact, thinking about latency must be done by thinking of latency distributions.
Latency almost never follows normal, gaussian or poisson distributions, so averages,
medians, and standard deviations are useless at best and lies at worst. More details of
this can be considered at “Everything you know about latency is wrong.”

To better understand, take a look at Figures 2-1 and 2-2 provided by Circonus, a high
scale monitoring product. In the blog, these graphs are being used to show spike ero‐
sion, which is the phenomenon we’re discussing. In Figure 2-1, we have averages
graphed with a larger time window in each average to accommodate for a month’s
worth of data.

18 | Chapter 2: Service-Level Management

http://googleresearch.blogspot.com/2009/06/speed-matters.html
http://bravenewgeek.com/everything-you-know-about-latency-is-wrong/
http://www.circonus.com/spike-erosion/

Figure 2-1. Latency averages with larger window of time for each average

In Figure 2-2, we are averaging on much shorter time windows because we are dis‐
playing only four hours.

Figure 2-2. Latency averages with a smaller window of time for each average

Even though this is the exact same dataset, the averages in Figure 2-1 indicate a peak
of around 9.3, while Figure 2-2 shows 14!

Be Careful Storing Averages!

Remember to store the actual values rather than averages! If you
have a monitoring application that is averaging values every minute
and not retaining the actual full history of values, you will find a
time when you want to average at five minutes, using the one-
minute averages. This will absolutely give you incorrect data
because the original averaging was lossy!

Defining Service Objectives | 19

If you think of the minute of data as a full dataset rather than an average, you will
want to be able to visualize the impact of outliers (in fact, you might be more interes‐
ted in the outliers). You can do this in multiple ways. First, you can visualize the min‐
imum and maximum values over the average. You can also remove outliers by
averaging a certain percentage of values in that minute, such as the fastest 99.9%,
99%, and 95%. If you overlay those three averages with the 100% average, as demon‐
strated in Figure 2-3, and a minimum/maximum, you get a very good feel for the out‐
lier impacts.

Figure 2-3. Latency average (100% sample size) overlaid with minimum and maximum

Now, with that segue, let’s think of our SLO regarding latency. If we are averaging
every minute, no matter what our SLO is, we cannot prove we hit it because we are
measuring averages only! Why don’t we make our objective more relevant to real life
workloads? We can iterate on this SLO like this: latency over one minute must be
between 25 and 100 ms for 99% of requests.

Why do we choose something like 99% instead of 100%? Latency distributions tend
to be very multimodal. There are normal times, and there are edge cases, which are
due to any number of possibilities in a complex distributed system, such as Java Vir‐
tual Machine (JVM) garbage collection, database flushing, cache invalidations, and
more. So, we expect a certain percentage of outliers, and our goal in setting an SLO is
to recognize the percentage of outliers we are willing to tolerate.

Now, let’s consider the workload. Are we talking about simple response such as you
might see in an API? Or, are we measuring a page rendering, which is an aggregation
of many calls that happen over a period of time. If we are measuring a page render,
we might want to specify initial response as one requirement and final rendering as a
second because there can be quite a period of time between them.

Availability Indicators
As mentioned earlier, availability is the amount of time, generally expressed as a per‐
centage, that a service is able to respond to requests with system-defined responses.

20 | Chapter 2: Service-Level Management

For instance, we might say that a system should be available 99.9% of the time. This
can be expressed like this: service must be available 99.9% of the time.

This gives us about 526 minutes of downtime per year to work with. Almost 9 hours!
A king’s feast of downtime. You might ask why we don’t just say 100%? If you are a
product owner, or a salesperson, you probably will. It is generally accepted that the
differences from 99%, to 99.9%, to 99.99% are each an order of magnitude more
complex to manage, more expensive, and more distracting for engineers. Addition‐
ally, if this is an application that relies on delivery over the internet or large geograph‐
ical distances, you can expect that the transport mediums will create their own
disruptions, which would not allow you to utilize more than 99% to 99.9% of the
uptime your system has.

That being said, there is a big difference between 526 one-minute outages in a year
and one 526 minute outage. The shorter the downtime, the greater the chance that
most users will not even notice the disruption. In contrast, an eight-hour outage for
some services generates news articles, thousands of tweets, and erodes trust from
users. It makes sense to consider two data points around your service. The first is
Mean Time Between Failures (MBTF). Traditionally, avoidance of failure has been the
priority, which means increasing MTBF. The second data point is Mean Time To
Recover (MTTR). This is how long it takes to resume service after a failure has occur‐
red. Shorter is better!

Resiliency versus robustness in availability
There has been much discussion over the past decade about building resilient systems
that have three specific traits:

• Low MTTR due to automated remediation to well-monitored failure scenarios.
• Low impact during failures due to distributed and redundant environments.
• The ability to treat failure as a normal scenario in the system, ensuring that auto‐

mated and manual remediation is well documented, solidly engineered, prac‐
ticed, and integrated into normal day-to-day operations.

Note that there is not a focus on eliminating failures. Systems without failures,
although robust, become brittle and fragile. When failures occur, it is more likely that
the teams responding will be unprepared, and this could dramatically increase the
impact of the incident. Additionally, reliable but fragile systems can lead users to
expect greater reliability than the SLO indicates and for which the service has been
engineered. This means that even if an SLO has not been violated, customers might
be quite upset when an outage does occur.

Armed with this knowledge, as you evaluate an SLO for availability, you should ask
yourself some key questions:

Defining Service Objectives | 21

• Are there workarounds during downtime? Can you function in a degraded
mode, such as read only? Can you use caches to provide data even if it is stale?

• Is there a different tolerance for downtime if it is limited to a small percentage of
users?

• What experience does a user have during downtimes of increasing lengths?
— One failed request
— 30 seconds
— One minute
— Five minutes
— An hour or more

After considering this, you might want to reevaluate the naive availability SLO by
doing the following:

• Defining the time interval
• Defining a maximum incident duration
• Defining a percentage of the user population affected before calling availability

down

With that in mind, you can express the SLO as follows:

• 99.9% availability averaged over one week
• No single incident greater than 10.08 minutes
• Call for downtime if more than 5% of users are affected

Designing for downtime allowed
This new iteration allows us to engineer processes such as failovers, database locks,
and restarts that can fit within the parameters provided. We can do rolling upgrades
that affect fewer than one percent of users. We can lock tables to build indexes if it
takes less than 10 minutes and no downtime has occurred that week. By designing for
the downtime allowed, rather than trying to achieve zero downtime, we can be more
efficient with our design and allow for some risks in the name of innovation and
velocity.

It is worth noting that even in today’s world in which 99.9% uptime is considered
ubiquitous, there are times when services truly can tolerate planned and managed
downtime safely. Being willing to take four hours of downtime that is communicated,
mitigated with read-only options, and broken up into smaller percentages of users

22 | Chapter 2: Service-Level Management

can eliminate hours of carefully orchestrated migrations that introduce risk of data
corruption, privacy issues, and more.

After considering this, you might want to reevaluate the availability SLO by adding
planned downtime options to guide the operations team in their maintenance efforts.

Sample availability SLO, iteration 2:

• 99.9% availability averaged over one week
• No single incident greater than 10.08 minutes
• Downtime is called if more than 5% of users are affected
• One annual four-hour downtime allowed, if:

— Communicated to usersat least two weeks ahead of time
— Affects no more than 10% of users at a time

Throughput Indicators
Throughput, as a service-level indicator, should list a peak value that the service must
be able to support while maintaining the latency and availability SLOs provided in
conjunction with it. You might say, “Laine and Charity, why do we have it? Shouldn’t
latency and availability be enough?” To which one of us would respond, “Intrepid
Ops Scout, excellent question!” She would then puff thoughtfully on a pipe...

There might be times when there is a bottleneck that puts an upper boundary on
throughput without necessarily tipping over performance or availability. Perhaps
there is locking in your system that constrains you to 50 queries per second (qps).
Those might be incredibly snappy and tight responses, but if you have 1,000 people
waiting to run this query, you have a problem. Because there are times when you can‐
not measure end-to-end latency, throughput indicators can often be an extra layer of
validation that a system is living up to the needs of the business.

Throughput can suffer from similar visibility issues as latency when it comes to using
averages and less granular sampling, so please do keep this in mind while monitoring.

Cost/efficiency indicators
As you consider effective indicators for the cost of a system, the biggest variable is
what you will use to reference cost against. This is really a business decision, but you
should choose the action in the service that drives value. If you are a content provider
such as an online magazine, pages being delivered is critical. If you are a Software as a
Service (SaaS) provider, subscriptions to your service makes sense. For retailers,
transaction counts will be appropriate.

Defining Service Objectives | 23

Considerations
Why do you, as a database engineer, need to know this? You are managing one com‐
ponent of the service, so why must you concern yourself with the overall require‐
ments? In the dark days of dysfunction, you might have been given a target for your
datastore and graded based on your ability to maintain that. But, as part of a larger
team, you have great opportunities to affect the service’s velocity and availability.

By knowing the holistic SLO, you can prioritize your own focus. If you have a latency
SLO of 200 ms, you can assume that this 200 ms is being shared by the following:

• DNS resolution
• Load balancers
• Redirection to an http server
• Application code
• Applications querying the database
• TCP/IP transport times across oceans and worlds
• Retrieval from memory, both solid-state devices (SSD) and spinning disks

So, if your datastores are doing well and contributing minimally, you know to focus
elsewhere. On the other hand, if you see that the SLO is at risk and you see low-
hanging fruit, you can devote some time in your sprint to plucking that ripe, delicious
performance fruit.

While assembling an SLO for your new and exciting service, there are some addi‐
tional things to consider:

Don’t go overboard
We’re metrics hoarders, and we understand the urge. But please try to keep your
list simple and concise enough that the SLO status can be reviewed on a single
page dashboard.

Stay user-centric
Think about what your users would find critical and build from there. Remember
that most application services focus on latency, throughput, and availability,
whereas storage services add data durability to this list.

Defining SLOs is an iterative process
If you have an SLO review process, you can modify and add on to this over time.
While you are in early stages, you might not need to be as aggressive with SLOs.
This will allow your engineers to focus on features and improvements.

Use your SLOs to determine how you want to design your services, processes, and
infrastructure.

24 | Chapter 2: Service-Level Management

Monitoring and Reporting on SLOs
Now that you have well-defined SLOs, it is critical to monitor how you are doing in
real-life in comparison to your ideal objectives. We have not gone into operational
visibility in this book yet, but there are crucial things to discuss before moving on to
the next topic.

Our top goal in monitoring for service-level management is to preemptively identify
and remediate any potential impacts that could cause us to miss our SLOs. In other
words, we don’t want to ever have to rely on monitoring to tell us that we are cur‐
rently in violation. Think of it like canoeing. We don’t want to know rapids are
present after we are in them. We want to know what is happening that could indicate
rapids there are downstream while we are still in calm waters. We then want to be able
to take appropriate action to ensure that we stay within the SLOs to which we have
committed ourselves and our systems.

When monitoring, we will always rely on automated collecting and analysis of met‐
rics. This analysis will then be fed into automated decision-making software for
remediation, for alerting of human operators (aka, you), or for ticket creation for
later work. Additionally, you will want to visualize this data for real-time analysis by
humans, and potentially you will want to create a dashboard for a high-level view of
current state. We’ll want to consider all three of these scenarios when we discuss the
various indicators we will be monitoring.

In other words, suppose that you have 10.08 minutes of downtime for the week, and
by Tuesday, you’ve had three minutes of downtime over three days due to “Stop the
World” Cassandra Garbage Collection events and one minute from a load balancer
failover. You’ve used up 40% of the SLO already, and you still have four days left to go.
Now is the time to tune that garbage collection! By having an alert after a certain
threshold (i.e., 30%) create an email in the ticketing system, the database reliability
engineer (DBRE) can jump right on this issue.

Monitoring Availability
Let’s use the availability SLO that we defined in the previous section. How do we
monitor for this? We will need to monitor system availability as well as user-level
errors to get an appropriate picture. As a reminder, our current sample availability
SLO is as follows:

• 99.9% availability averaged over one week
• No single incident greater than 10.08 minutes
• Downtime is called if more than 5% of users are affected
• One annual four-hour downtime allowed, if:

— Communicated to users at least two weeks ahead of time

Monitoring and Reporting on SLOs | 25

— Affects no more than 10% of users at a time

Traditionally, Ops staff would tend to focus on fairly low-level monitoring to inform
them whether a system was available. For instance, they might measure to see
whether a host was up, whether it was reachable, and whether the expected services
that were hosted by that system were running and connectable. In a distributed sys‐
tem, this rapidly proves to be unsustainable and not a good predictor of service avail‐
ability. If we have 1,000 JVMs, 20 database instances, and 50 web servers in place,
how can we learn if any one of these components is affecting the service and to what
degree that impact exists?

With this in mind, the first thing we want to focus on is error rates from user
requests. This is also known as Real User Monitoring (RUM). For instance, when a
user submits an HTTP call from her browser, does she receive a well-formed
response from the service? If your service is popular, this can potentially be a lot of
data. Consider a major global news event that is generating in excess of 70,000 hits
per second on a web service. Any modern CPU can calculate errors rates for this
amount of data fairly efficiently. This data is logged from the application (such as
Apache HTTP) to a logging daemon (such as a Linux syslog).

At this point, the way in which a system would get the data from these logs into
appropriate tools for monitoring and analysis varies wildly. We’re going to gloss over
this for now and assume that we’ve stored the success/error rates of the service to a
production datastore without any aggregation or averaging at the base level. We dis‐
cussed this in the previous section, but it is worth repeating that storing averages
alone loses the valuable data.

With our data stored, it is relatively trivial to evaluate whether one percent or more of
our calls failed, and if so, mark that second as downtime. This regular tally of down‐
time can be summed and compared to our budget of 604.8 seconds for the week and
reported in a dashboard that is displayed in browsers, on monitors in a network oper‐
ations center or office, or any other number of places to help all stakeholders see how
the team is performing.

Ideally, we want to be able to use this data to predict whether the current downtime
amounts will lead to violation of the budget by the end of the week. The largest chal‐
lenge in most environments is workload shifts due to product development. In a sys‐
tem for which releases are happening weekly, and sometimes daily, any previous
datasets become relatively useless. This is particularly true of the older datasets com‐
pared to the ones in the recent past. This is called a decaying function.

Exploring predictive data science is beyond the scope of this book. But, there are
numerous approaches that you can take here to predict whether you will violate your
SLO in the current week or potentially in future weeks. It is worthwhile to take the
previous N weeks’ value (N could be larger in stable environments or as small as one

26 | Chapter 2: Service-Level Management

in continuous deployment models of downtimes) and see how many SLO violations
occurred during those periods for which downtime was equal to or less than the cur‐
rent period.

For instance, your script might take the current downtime, which could be 10 sec‐
onds for the week, and the current time in the week in seconds. That downtime could
be defined as a downtime of 10 seconds and a time of 369,126 seconds into the week.

You would then evaluate the previous 13 weeks, and for each week for which down‐
time was 10 seconds or less at the same point in the week (between 1 and 369,126
seconds), evaluate whether an SLO violation occurred that week. You would then give
a weight based on the nearness of the previous period. For instance, in 13 weeks, the
previous week is assigned 13 points, the one before it, 12, and so on. Adding up the
weights for weeks for which the SLO violations occurred, you might issue a high-
priority ticket to your Ops team and notify them in chat if the combined values are 13
or above. This is just one example of a way to ensure that you have some level of data-
driven monitoring in place if you do not have a crack team of data scientists with the
time and inclination to review service-level data. The goals here are to get proactive
eyes on a potential problem before it is an emergency, which means fewer pages to
humans and fewer availability impacts.

In addition to real user monitoring, it is useful to create a second data-set of artificial
tests. This is called synthetic monitoring. Just because these are artificial, does not
mean that they are not identical in activity to a real user. For instance, a transactional
email company might trigger email requests from QA accounts just as any other cus‐
tomer would do.

The case for synthetic monitoring is to provide coverage that is consistent and thor‐
ough. Users might come from different regions and be active at different times. This
can cause blind spots if we are not monitoring all possible regions and code paths
into our service. With synthetic monitoring, we are able to identify areas where avail‐
ability or latency is proving to be unstable or degraded, and prepare or mitigate
appropriately. Examples of such preparation/mitigation include adding extra capacity,
performance tuning queries, or even moving traffic away from unstable regions.

With synthetic and RUM, you can identify when availability is affected and even pre‐
dict when you might have an SLO violation. But, this does not help us when it comes
to larger impacts due to system failures or capacity limitations. One of the key rea‐
sons to implement robust monitoring is to capture enough data to predict failures
and overloads before they occur.

Monitoring and Reporting on SLOs | 27

Monitoring Latency
Monitoring latency is quite similar to monitoring for errors in requests. Although
availability is Boolean, latency is a value of time that we must measure to validate
whether it fits within the constraints given in our SLO.

Latency SLO

Ninety-nine percent request latency over one minute must be
between 25 and 100 ms.

As with our error telemetry, we assume that our HTTP request logs have gone
through syslog and into a time–series datastore. With that in place, we can take an
interval of time, order all data points by latency, and eliminate the top one percent of
requests. In this case, we are averaging values in each one-second time window. If any
of the remaining 99% of calls are longer than 100 ms, we have a violation that counts
toward downtime.

This kind of data can also lend itself to predictive analytics via any multitude of tools
or scripts. By measuring previous latencies during similar time or traffic patterns, you
can look for anomalies that indicate a climbing response time that could lead to an
SLO violation.

Monitoring Throughput
Throughput is easy to assess with the data we’ve assembled and reviewed for availa‐
bility and latency SLOs. If you are storing every record, you will be able to measure
transactions per second quite easily. If you are exceeding the minimum transaction
count in your SLO, you are good. If you are not generating enough traffic to exceed
your SLO, you will need to rely on periodic load tests to ensure that your system can
support the demands of the SLO. Load testing is covered in more detail later.

Monitoring Cost and Efficiency
Cost and efficiency can be a challenging SLO to monitor because there are some costs
that are not as quantifiable as others. You must consider the overall cost for a window
of time. If you are working in a cloud environment, for which resources are billed like
utilities, you can fairly easily quantify costs for resources such as storage, processing,
memory, and interinstance bandwidth. If you are using your own bare metal, you will
need to get hardware costs for all machines dedicated to the services, estimating when
shared resources are in play. Often, the period of time for the cost is not very granu‐
lar, however, so it can prove challenging to understand costs for specific periods of
time, such as by hour, if you are getting monthly reports from the provider.

28 | Chapter 2: Service-Level Management

For fixed-cost items such as instances and storage, you can keep an uploaded cost
matrix from your provider or from your own internal databases. This data can be ref‐
erenced as resources are deployed and decommissioned, creating an estimated spend.
For usage costs such as bandwidth, IOPS, and similar items, you can reference other
gathered metrics on a scheduled interval to also estimate costs.

You also need to consider the costs of staff who are maintaining the service. This can
include operations, database and network engineers, anyone on-call, and coordinat‐
ing project managers. These can be shared resources, and again, you will find yourself
estimating percentage of time devoted to the specific service you are monitoring. If
you are in an environment in which time tracking is in use, you can potentially refer‐
ence that data to build a somewhat real-time human spend metric. Otherwise, you
will need to estimate on a regular basis, taking into account factors such as termina‐
tions, new hires, and team changes.

This is manual work, and some of it we can not automate easily, but nonetheless it
provides incredibly valuable data in terms of the cost of operating services. Compar‐
ing this to the value being generated by services gives reliability engineers a target for
efficiency improvements.

Wrapping Up
Service-level management is the cornerstone of infrastructure design and operations.
We cannot emphasize enough that all actions must be a result of planning to avoid
violations of our SLOs. The SLOs create the rules of the game that we are playing. We
use the SLOs to decide what risks we can take, what architectural choices to make,
and how to design the processes needed to support those architectures.

Having completed this chapter, you should now understand the core concepts of
service-level management, including SLAs, SLOs, and SLIs. You should know the
common indicators that are used, including availability, latency, durability, and effi‐
ciency. You should also understand the approaches to monitoring these indicators
effectively to catch problems before your SLOs are violated. This should give you a
good foundation to effectively communicate what is expected of the services you
manage and to contribute to meeting those goals.

In Chapter 3, we cover risk management. This is where we begin to evaluate what
might affect the service-levels we’ve committed to meeting. Using these service-level
requirements and recognizing the potential risks, we can effectively design services
and processes to ensure that we fulfill the promises we’ve made to the business.

Wrapping Up | 29

CHAPTER 3

Risk Management

Operations is a set of promises and the work it takes to fulfill it. In Chapter 2, we dis‐
cussed how to create, monitor, and report on them. Risk management is what we do
to identify, assess, and prioritize the uncertainties that could cause us to violate these
promises we’ve made. It is also the application of resources (technology, tools, people,
and processes) to monitor, mitigate, and reduce the probability of these uncertainties
coming to pass.

This is not a perfect science! The goal of this is not to eliminate all risks. That is a
quixotic goal that will waste resources. The goal is to bake the assessment and mitiga‐
tion of risk into all of our processes and to iteratively reduce the impact of risks
through mitigation and prevention techniques. This process should be continually
performed with inputs from observation of incidents, introduction of new architec‐
tural components, and the increased or decreased impact as an organization evolves.
The cycle of this process can be broken down into seven categories:

• Identify possible hazards/threats that create operational risk to the service
• Conduct assessment of each risk, looking at likelihood and impacts
• Categorize the likelihood and outcome of the risks
• Identify controls for mitigating consequences or reducing likelihood of the risk
• Prioritize which risks to tackle first
• Implement controls and monitor effectiveness
• Repeat process

By repeating this process, you are exercising Kaizen, or continuous improvement.
And no where is this more important than in risk assessment, where you must evolve
a strategy incrementally.

31

Risk Considerations
There are multiple variables that can affect the quality of our risk assessment pro‐
cesses. These can be broken down into the following categories:

• Unknown factors and complexity
• Availability of resources
• Human factors
• Group factors

Each of these need to be taken into consideration to help define a realistic process for
your team, and so we’d like to briefly touch on them in this section.

Unknown Factors and Complexity
Compounding the challenge of a risk assessment process is the sheer amount of com‐
plexity involved in today’s systems. The more complex and convoluted the domain,
the greater the difficulty people have in transferring their knowledge to situations
they have not experienced. The tendency to oversimplify concepts so that they can be
dealt with easily is called reductive bias. What works in initial learning no longer
works in advanced knowledge acquisition. There are numerous risks that are
unknown, and many that are out of our control. Here are some examples:

• Impacts from other customers in hosted environments such as Amazon or
Google

• Impacts from vendors integrated into the infrastructure
• Software engineers pushing code
• Marketing efforts creating workload spikes
• Upstream and downstream services
• Patches, repository changes, and other incremental software changes

To assess risk in such environments, problem-solving in these domains help with the
assessment process. The operations team must utilize its collective experience and
continually grow knowledge to continue to build richer models for planning. The
teams must also acknowledge that they will not be able to consider all possibilities
and that they must plan for unknown possibilities by creating resilient systems.

Availability of Resources
If any of you have worked in a resource-starved department or a scrappy startup, you
know that trying to acquire resources for ongoing, proactive processes like this can

32 | Chapter 3: Risk Management

http://www.au.af.mil/au/awc/awcgate/usmc/orm.pdf
http://www.au.af.mil/au/awc/awcgate/usmc/orm.pdf

be...well, challenging (aka Sisyphean)? So, you might find yourself with 4 hours or
perhaps only 30 minutes a month to visit risk-management processes. Therefore, you
must create value. The cost of your time and the resources you apply to mitigation
must be less than the cost of inaction. In other words, be relentless in prioritizing
against the most probable and highest impacting risks with the time available. Create
resilient systems and learn from the incidents that occur.

Human Factors
There are numerous potential issues when humans begin doing things. We’re bril‐
liant, but we have a lot of fine print in our owner’s manuals. Here are some things that
can damage these processes:

Inaction syndrome
Many Ops folks will find themselves working under a manager or surrounded by
peers who are risk averse. Characterized by inertia, these people choose inaction
because they consider risk of change greater than risk of inaction. It is important
to do the math rather than falling back on inaction in the face of the unknown.

Ignoring familiar hazards
Experienced engineers will often ignore common risks, focusing more on exotic
and rare events. For instance, someone who is quite used to dealing with disks
filling up might focus more on datacenter-wide events and not plan adequately
for disk space controls.

Fear
Fear can be considered a positive as well as a negative stressor depending on the
individual. Some individuals thrive within high-stress, high-stakes environments
and will bring great value to your planning, mitigation, and production work. It
is not uncommon for those who have fear reactions to ignore worst-case scenar‐
ios because of their fear. This could lead to lack of preparation on key, high-risk
components and systems. It is important to recognize these reactions in your
team.

Overoptimism
Another human tendency in response to risk assessment is that of overoptimism.
We often believe the best of ourselves and the others in our teams. This can lead
us to consider things in ideal situations (nonfatigued, no other incidents distract‐
ing us, junior staff being available). This applies not only to people, but to events.
Have you ever thought, “There’s no way three disks can fail in the same day,” only
to experience the pain of a bad batch of disks causing exactly that?

We must also consider physical factors, such as fatigue, in creating risk, and as a hin‐
drance in manual remediation (aka firefighting). Any time we consider human effort
and the risks inherent to that effort, such as manual changes and forensics, we must

Risk Considerations | 33

http://bit.ly/2zyoBmm

assume that the Ops staff digging into the meaty problem has been woken up after a
long day of work. Perhaps this won’t be the case, but we must consider it. Addition‐
ally, while designing controls for mitigating or eliminating risk, we must consider that
the person doing manual remediation could be just as fatigued and perhaps even
fighting multiple fires at the same time.

Pager Fatigue

Pager fatigue is when unnecessary or excessive paging creates fati‐
gue and overwhelm. You should consider this when deciding how
much alerting (manual response and remediation) is built into the
monitoring processes. It is often caused by false positives (alerts for
issues that aren’t issues, often due to poorly tuned thresholds), or
using alerts instead of warnings for trends that might become dan‐
gerous in the near future.

Group Factors
Just as individuals have their blind spots, groups have their own dynamics that can
skew a process of risk management. Here are some factors to keep in mind:

Group polarization
Also known as risky shift, group polarization occurs because groups tend to
make decisions that are more extreme than their individual members hold. This
will tend toward contrary shifts from initial views. For instance, if individuals feel
cautious, they will tend towards being much more risk tolerant after consensus
has been met. Similarly, risk-tolerance will shift toward risk-avoidance. Individu‐
als often will not want to appear the most conservative in a group environment.
This can cause a team to be more risk-tolerant than is necessarily appropriate.

Risk transfer
Groups will also tend towards greater risk tolerance when they have other groups
to which they can assign risk. For instance, if I am planning for the Ops team, I
might take greater risks if I know I have a database team to fall back on. Building
a sense of ownership and working in cross-functional teams that cannot shift risk
to others will help this.

Decision transfer
Decision transfer can occur when teams overestimate risk, so that they can trans‐
fer responsibility for specific decisions to others. For example, if high-risk
changes require CTO approval, and thus responsibility, people will tend to meas‐
ure risks higher so as to push decision making up the chain. This can also be
mitigated through more autonomous teams that rely on the expertise and experi‐
ence of individuals and teams rather than hierarchical approval processes.

34 | Chapter 3: Risk Management

http://bit.ly/2zyfqCv

What Do We Do?
We face a reality that a risk-management process can easily become overly burden‐
some. Even with significant resources, teams will still not be able to capture all poten‐
tial risks that can affect availability, performance, stability, and security. It makes
sense for us to create a process that iterates and improves over time. Striving for resil‐
ience in handling risks versus elimination of all risks also allows for intelligent risk
taking in the name of innovation and improvements.

We would argue that the goal of eliminating all risks is actually a poor one. Systems
without stressors do not tend to strengthen and improve over time. They end up
being brittle against unknown stressors that have not been planned for. Systems that
experience stressors regularly, and thus have been designed for resiliency, will tend to
handle unknown risks more gracefully.

It is arguable that systems should use their downtime budgets, as Google coined, to
use risk for opportunities that provide great benefit while incurring a manageable
amount of risk. At Google, if it has a budget of 30 minutes of downtime for a quarter
and has not used that time, it is willing to take greater risks for the sake of new feature
releases, improvements, and enhancements. This is an excellent use of the full budget
for innovation rather than a completely risk-averse approach.

So how does this translate into a real-world approach to risk assessment as a process?
Let’s begin with what not to do!

What Not to Do
OK, so that’s a lot to keep in mind! Here are some last-minute tips to consider as we
actually dig into the process of risk management:

• Don’t allow subjective biases to damage your process
• Don’t allow anecdotes and word of mouth to be the primary source of risk assess‐

ment
• Don’t focus only on previous incidents and issues; look ahead
• Don’t stagnate; keep reviewing previous work
• Don’t ignore human factors
• Don’t ignore evolution in architecture and workflow
• Don’t assume that your environment is the same as previous environments
• Don’t create brittle controls or ignore worst-case contingencies

We’re sure you’ll add to this list over time, but this is a good list to keep in mind to
avoid the pitfalls awaiting you as you consider your systems.

What Do We Do? | 35

A Working Process: Bootstrapping

Figure 3-1. Initial bootstrapping of a risk management process

Whether for a new service or for inheritance of an existing one, our process begins
with an initial bootstrapping. In a bootstrapping (see Figure 3-1), the goal is to recog‐

36 | Chapter 3: Risk Management

nize the major risks that would endanger the Service Level Objective (SLO) for the
service or that are most likely to occur. Additionally, we must take into account
worst-case scenarios that could endanger the service’s long-term viability. Remember,
brave database engineer, that trying to build a comprehensive risk portfolio is not the
goal here. The goal is a starting list to mitigate, eliminate, or plan how, operationally,
to drive the most value for existing resources available.

Service Risk Evaluation
Armed with a list of the services and microservices that you are supporting, you
should sit down with the product owners and evaluate risk tolerance for each. The
questions you want to answer include the following:

• What are the availability and latency SLOs defined for this service?
• What does downtime or unacceptable latency look like for this service when:

— All customers are affected?
— A subset of customers are affected?
— The service in degraded mode? (read-only, some functions turned off, etc.)
— Performance of the service is degraded?

• What is the cost of downtime for this service?
— Revenue lost?
— Customer retention?

— Is this a free or paid service?
— Are there competitors the customer can easily go to?

— Are there downtime impacts that can undermine the entire company?
— Data loss?
— Privacy breach?
— Downtime during an event/holiday?
— Extended downtime?

Let’s look at an example. UberPony is a pony-on-demand company comprising six
services:

1. New customer signup
2. Pony-on-demand, order/fulfillment
3. Pony handler signup
4. Pony handler logistics

A Working Process: Bootstrapping | 37

5. Pony handler payments
6. Internal analytics

Let’s look at two services, New Customer Signup, and Order/Fulfillment:

UberPony sustomer signup
Availability SLO 99.90%
Latency SLO 1 second
New customers per day 5,000
SLO allowed errors 5
Infrastructure cost per day $13,698
Infrastructure cost per dollar of revenue $0.003
Customer lifetime value $1,000
Lifetime value per day $5,000,000
Peak customers per minute 100
Customer dropout after error 60%
Peak value loss per minute $60,000
UberPony ordering and fulfillment
Availability SLO 99.90%
Latency SLO 1 second
Current Orders per day 500,000
SLO allowed errors 500
Infrastructure cost per day $30,000
Infrastructure cost per dollar of revenue $0.006
Revenue per order $10
Daily revenue $5,000,000
Peak orders per minute 1,000
Order dropout after error 25%
Customer loss after error 1%
Peak revenue loss per minute $2,500
Customer value loss per minute $10,000
Total loss per minute $12,500

So, it appears that our customer signup service can cost us up to 4.8 times as much
revenue per minute as ordering and fulfillment service. Seventy-five percent of cus‐
tomers will retry an order, but only 40% of customers will come back if they can’t sign
up. Apparently they are happy to go to UberDonkey, instead. Notice that we tried to
consider variables such as customer loss after an order error and how many custom‐
ers or orders were retried after an error. This can be difficult without good business
intelligence, but guesses can suffice if you do not have data available. It is better than
nothing!

38 | Chapter 3: Risk Management

This data will change and evolve, so be sure to keep it up to date as your go through
the process. For instance, if UberDonkey becomes more competitive and UberPony
loses 5% of its customers after an order error, suddenly our loss per minute of down‐
time for the order/fulfillment service becomes $52,500. This has increased in priority
significantly. Thus, it makes much more sense for us to focus on the customer signup
service as a priority.

Architectural Inventory
Now that we’ve defined our scope, we take inventory of the systems and environ‐
ments for which we are responsible:

• Datacenters
• Architectural components/tiers (i.e., MySQL, Nginx load balancers, J2EE applica‐

tion instances, network, firewall, Hadoop/HDFS, Content Delivery Network
[CDN])

• Roles within those component (i.e., Writer/Primary, Replica)
• Interactions/Communication pathways between services (queries from app to

mysql, Load balancer to app, app post to Redis)
• Jobs (Extract, Transform, and Load [ETL] process, CDN loading, cache refresh,

configuration management, orchestration, backup and recovery, log aggregation)

Here is a simplistic inventory for our top priority service:

UberPony customer signup
Component Datacenter 1 count Datacenter 2 count
Front end load balancers 2 2
Web servers 20 20
Java load balancers 2 2
Java servers 10 10
Database proxies 2 2
Cloudfront CDN Service Service
Redis cache servers 4 4
MySQL cluster write servers 1 0
MySQL cluster read servers 2 2
MySQL replication Service Service
CDN refresh Job Job
Redis cache refresh Job Job
MySQL backups Job n/a
ETL process Job n/a
RedShift data warehouse Service n/a

A Working Process: Bootstrapping | 39

Our next step is to assess the risks in this architecture that could affect the service.

Prioritization
How do we identify and prioritize the risks that could potentially cause us to violate
our SLO targets? The field of risk management defines risk in terms of the likelihood
of a hazard leading to an adverse outcome multiplied by the consequence of that out‐
come. For instance, this grid shows an assessment spectrum:

Likelihood/Impact Severe Major Moderate Minor Negligible
Almost Certain Unacceptable Unacceptable High Moderate Acceptable
Likely Unacceptable High High Moderate Acceptable
Possible Unacceptable High Moderate Moderate Acceptable
Unlikely High Moderate Moderate Acceptable Acceptable
Rare High Moderate Acceptable Acceptable Acceptable

With the goal of removing ambiguity, it is important to quantify what the values for
likelihood and outcome are. Outcomes will vary based on your specific domain prob‐
lem. In terms of the issue of ambiguity in likelihood/probability, we would suggest
reviewing “Describing probability: The limitations of natural language”.

Let’s break up probabilities as follows:

Scale Range
Almost certain >50%
Likely 26–50%
Possible 11–25%
Unlikely 5–10%
Rare <5%

We will consider this the percentage that we will violate SLOs during a specific
period, such as, for example, a week. In terms of impact, we will consider our SLO
when defining impact categories as well as other issues that could destroy a business,
including data corruption, privacy exposures, and security incidents. Most of those
will go into severe or major categorizations. Again, these are only examples.

Severe impact (immediate SLO violation)
A severe impact’s potential are as follows:

• The entire service will be unavailable or degraded past 100 ms for 10 minutes or
more for 5% or more of users. (In a 7 day week, there are 10,080 minutes. 10
minutes of downtime violates a 99.9% SLO).

• Imminent or current exposing of customer data to other customers.

40 | Chapter 3: Risk Management

http://www.risk-doctor.com/pdf-files/emeamay05.pdf

• Letting nonauthorized person access production systems and/or data.
• Data corruption of transactional data.

Any of the preceding would trigger a severe classification.

Major (imminent SLO violation)
A major impact’s potential are as follows:

• The entire service will be unavailable or degraded past 100 ms for 3 to 5 minutes
for 5% or more of users (up to 50% of availability budget).

• System capacity degraded to 100% of needed capacity instead of 200% target.

Any of the above would trigger a major classification.

Moderate (could contribute to SLO violation with other incidents in the same period)
A moderate impact’s potential characteristics are as follows:

• The entire service will be unavailable or degraded past 100 ms for 1 to 3 minutes
for 5% or more of users (up to 33% of availability budget).

• System capacity degraded to 125% of needed capacity instead of 200% target.

Any of the preceding would trigger a moderate classification.

Minor
A minor impact’s potential characteristics are as follows:

• The entire service will be unavailable or degraded past 100ms for up to one
minute for 5% or more of users (up to 10% of availability budget).

• System capacity degraded to 150% of needed capacity instead of 200% target.

Any of the preceding would trigger a minor classification.

As a reminder, we will not try to capture every potential risk. You will add more to
this portfolio day to day as part of the ongoing incident management and risk-
management processes. What we are doing is called framing, which means that we
are creating a limited scope to bound our work in a pragmatic way. In this case, we
are framing based on the most likely and most impactful scenarios.

For instance, we know that component failures and instance failures are common
events in public cloud environments, such as the one UberPony uses as a host. In
other words, there is a low mean time between failures (MTBF). We will classify these
failures as “Likely” for the web and Java instance groups because we have a moderate

A Working Process: Bootstrapping | 41

amount of them in play at any time (20 or 10, respectively). That being said, failure of
one web instance means 5% of customers are affected. Failure of a Java instance
means 10% of customers are affected. That is a violation of SLO, and because it might
take three to five minutes to launch a new copy of this, we would have a major
impact. With a likely probability and a major impact, risk is high. After we put in
automated remediation (take the instance out of service and launch a new one in its
place), we test, and this process takes five seconds on average. This puts the new
impact to minor, and thus the risk moves to moderate.

If we consider failure at the service or instance level for our inventory, we might come
up with something like this:

UberPony customer signup service
Component Likelihood Impact Risk
Frontend load balancers Possible Severe Unacceptable
Web servers Likely Major High
Java load balancers Possible Major High
Java servers Likely Major High
Database proxies Possible Major High
Cloudfront CDN Rare Major Moderate
Redis cache servers Possible Major Moderate
MySQL write servers Unlikely Severe High
MySQL read servers Possible Major High
MySQL replication Possible Major High
CDN refresh Unlikely Minor Acceptable
Redis cache refresh Unlikely Minor Acceptable
MySQL backups Unlikely Major Acceptable
ETL process Unlikely Minor Acceptable
RedShift data warehouse Rare Minor Acceptable

Based on framing, we want to dive deeper into anything with an unacceptable or high
risk first, and then we can dig deeper into the moderate cases, and so on. In the data‐
base section after operations core, we will do risk assessment for databases in greater
detail. Our goal here is to help you understand the process. The other caveat is that
we do need to consider full datacenter-level risks. Although these are rare, they go in
the same category as privacy violation, data loss, and other risks that require consid‐
eration due to the potentially business-ending impacts.

Control and Decision Making
Now that we have a prioritized list of risks to evaluate, let’s look at the techniques for
deciding on controls to mitigate and potentially eliminate those risks. We started this
in the previous section with our web and Java servers by putting in automated

42 | Chapter 3: Risk Management

replacements to reduce the mean time to recover (MTTR) of the failure. Remember,
our goal is to focus on rapid recovery and reduction of MTTR over elimination of
failures. Resiliency over brittle high availability!

Why MTTR Over MTBF?

When you create a system that rarely breaks, you create a system
that is inherently fragile. Will your team be ready to do repairs
when the system does fail? Will it even know what to do? Systems
that have frequent failures that are controlled and mitigated such
that their impact is negligible have teams that know what to do
when things go sideways. Processes are well documented and
honed, and automated remediation becomes actually useful rather
than hiding in the dark corners of your system.

For each potential risk, there are three approaches the team can choose from:

• Avoidance (find a way to eliminate the risk)
• Reduction (find a way to lessen the impact of the risk when it occurs)
• Acceptance (label the risk tolerable and plan for it to happen accordingly)

Technically, in risk management circles, there is a fourth approach, called risk shar‐
ing, in which you use outsourcing, insurance, and other risk transfer approaches.
None of those apply to risk in IT, however, so it will not be analyzed.

For each component, we will look at the types of failure, the impacts of those failures
and a few controls to automate recovery, improve recovery times, and reduce fre‐
quency. Associated with these controls will be a cost and effort. By comparing this
cost with the costs of downtime, we can make decisions on the proper choice in miti‐
gation.

Identification
In our UberPony risk evaluation, we identified multiple tiers of our MySQL storage
service as high risk. This is very typical of the database tier. So, let’s look at what we
can do to reduce this risk. We’ve identified four key failure points in this service:

• Write instance failure
• Read instance failure
• Replication failure
• Backup failures

Each of these are common failure points for a datastore.

A Working Process: Bootstrapping | 43

Evaluation
For write failures, the UberPony ops team sits down and evaluates its options for
automating MySQL writer failure recovery. If a write instance failure occurs, our cus‐
tomer signup service cannot create or change any data. This means no new customers
and no ability for customers, or UberPony, to change customer data. We’ve identified
that if the signup service is down at peak, we can potentially lose $60,000 of lifetime
customer value per minute. So, it is pretty critical that we figure this one out! This
means that risk acceptance is not an option.

Mitigation and controls
There are some risk elimination items already in place. We have a RAID 10-disk sys‐
tem that provides disk redundancy so that disk failure does not create database fail‐
ure. There are similar redundancies across the environment. Another elimination
approach that is brought up is replacing the base MySQL database engine with
Galera, an architecture that allows us to write to any node in the MySQL cluster. This
would require a significant architectural change, and no one on the team has much
experience with this engine. After consideration, the risks introduced by a new sys‐
tem seem to outweigh the gains from the approach.

If the application is designed correctly, customers could still log in to the service and
view their data from the read instances. This is risk mitigation. Speaking to the soft‐
ware engineering team, we find out that this is on its roadmap. But, new customers
still can’t sign up in degraded mode, so we do not get much value for the cost of this
feature (other features not being developed is a high cost in a competitive market‐
place).

Ultimately, the team decides to do an automated remediation—in this case, an auto‐
mated failover to another master. They choose automated over manual because the 10
minutes of downtime allowed in the SLO simply doesn’t allow for the time it takes to
get a human online and ready to take action. That being said, with managing writes,
we have a potential for data loss, so the process must be rock solid.

Implementation
The team decides on MySQL MHA as the technology it will use to do automated fail‐
over. MySQL MHA, or MySQL High Availability, is software to manage the failover
and ensuing replication topology changes required in such a failover. The team cre‐
ates a plan for vigorous testing before implementing such a critical process. Such tests
are phased, starting with a test environment with no traffic, followed by a test envi‐
ronment with simulated traffic, and finally on production, closely monitored. These
tests are done numerous times to ensure they aren’t looking at an outlier. The tests
include the following:

44 | Chapter 3: Risk Management

• Cleanly shutting down the master database in a test environment
• Killing the MySQL process in a test environment
• Killing the server instance running MySQL in a test environment
• Simulating a network partition

After each test, the team does the following:

• Record the amount of time the failover took
• Record the latency of simulated and production traffic to evaluate impacts to per‐

formance
• Validate that tables are not corrupt
• Validate the data was not lost
• Look at error logs from the clients to see what the impact was during this time

When the team is satisfied that the system works and will meet its SLOs, it considers
how to incorporate this process into other daily processes to ensure that it is well
exercised, documented, and free of bugs. The team initially chooses to incorporate it
into its deployment process, using the failover process to do rolling changes to data‐
base objects so as to not affect MySQL single-threaded replication processes. By the
time the team finishes, failover is down to a 30-second or less impact.

As the software engineering team practices the failover processes, it also realizes that
there could be a potential for data loss during that 30-second interval. So, the team
enacts double write for its applications, sending all of its inserts, updates, and deletes
to an event broker in case data must be recovered. This is a further mitigation of the
impacts of the write-master failover.

These controls are for the initial bootstrapping. It is important to remember that this
doesn’t need to be perfect. This is an initial set of controls only, focused on the highest
priorities and the greatest value.

With the bootstrapping process complete, you’ve gone a long way toward covering
the most common cases of risk. From this point on, it is a process of iterating.

Ongoing Iterations
With a bootstrapped process in place, our priorities for risk elimination and mitiga‐
tion are pushed into the architectural pipeline for design, build, and ongoing opera‐
tions. We have mentioned previously that risk management is a continual process;
thus, there is no need to be comprehensive in the beginning because continued pro‐
cesses will add to the risk portfolio, providing deeper coverage, as depicted in
Figure 3-2. So, what are those processes?

Ongoing Iterations | 45

• Service delivery reviews
• Incident management
• Architectural pipeline

Figure 3-2. The ongoing life cycle and inputs to the risk-management process

Service delivery reviews are periodic revisiting of the service’s evolution with an eye
toward shifts in risk tolerance, revenue, cost of impacts, and user base. As these val‐
ues shift significantly, previous risk acceptances, mitigations, and eliminations must
be revisited to ensure that they are still acceptable.

Incident management processes will also create inputs for risk prioritization. As post‐
mortems reveal new vulnerabilities, we must analyze those vulnerabilities and add
them into the priority list. Finally, as the architectural pipeline is built, we must bring
new components through the risk-management process to identify any risks that
might have been missed in the design phase.

46 | Chapter 3: Risk Management

Wrapping Up
By now you’ve learned the importance of incorporating risk management into the
daily processes of IT. You’ve gone over some of the considerations and factors that
can affect the process and broken out a realistic bootstrapping process in addition to
the day-to-day processes that can keep an incremental risk-management process
developing over time.

Even armed with an understanding of our service-level commitments and the poten‐
tial risks to those commitments, we still are missing a vital component: operational
visibility. Situational awareness as well as historical knowledge of our systems perfor‐
mance and characteristics over time will be needed to preempt issues and make deci‐
sions about how to continually improve the systems we manage.

Wrapping Up | 47

CHAPTER 4

Operational Visibility

Visibility (often referred to as monitoring) is the cornerstone of the craft of database
reliability engineering. Operational visibility means that we have awareness of the
working characteristics of a database service due to the regular measuring and collec‐
tion of data points about the various components. Why is this important? Why do we
need operational visibility? Here are just some of the reasons:

Break/fix and alerting
We need to know when things break, or are about to break, so that we can fix
them to avoid violating our Service-Level Objectives (SLOs).

Performance and behavior analysis
It’s important to understand the latency distribution in our applications, includ‐
ing outliers, and we need to know the trends over time. This data is critical to
understanding the impact of new features, experiments, and optimization.

Capacity planning
Being able to correlate user behavior and application efficiency to real resources
(CPU, network, storage, throughput, memory) is critical to ensuring that you
never encounter a lack of capacity at a critical business moment.

Debugging and postmortems
Moving fast means things do break. Good operational visibility gives you the
ability to rapidly identify failure points and optimization points to mitigate future
risk. Human error is never a root cause, but systems can always be improved
upon and made to be more resilient.

49

Did We Mean to Say Human Error Is Never a Root Cause?
When analyzing an incident or problem, it can be tempting to use human error as a
root cause. If we dig in deeper, though, what appears to be human error is caused by
an underlying failure of process or environment. How can that be? Here are some
possibilities:

• A fragile, poorly instrumented, or overly complex system can cause humans to
make mistakes.

• A process that doesn’t take into account human needs, such as sleep, context, or
skill can also cause humans to make mistakes.

• A process of hiring and training operators may be broken, allowing the wrong
operators into the environment.

Furthermore, “root cause” itself is a problematic statement, as there is rarely a single
issue that leads to errors and incidents. Complex systems lead to complex failures,
and adding humans into the mix complicates things further. Instead of thinking in
terms of root cause, we suggest you consider a list of contributing factors, prioritized
by risk and impact.

Business analysis
Understanding how your business functionality is being utilized can be a leading
indicator of issues, but it is also critical for everyone to see how people are using
your features and how much value versus cost is being driven.

Correlation and causation
By having events in the infrastructure and application register themselves in your
operational visibility stack, you can rapidly correlate changes in workload, behav‐
ior, and availability. Examples of these events are application deployments, infra‐
structure changes, and database schema changes.

Pretty much every facet of your organization requires true operational visibility—
OpViz. Our goal in this chapter is to help you to understand observability in the
architectures with which you will be working. Although there is no one set of tools
we espouse, there are principles, a general taxonomy, and usage patterns to learn. We
present this via numerous case studies and example approaches. First, let’s consider
the evolution of OpViz from traditional approaches to those utilized today.

50 | Chapter 4: Operational Visibility

Traditional Monitoring
Traditional monitoring systems typically have the following characteristics:

• Hosts are generally servers rather than virtual instances or containers, and they
have a long lifetime, measured in months, sometimes years.

• Network and hardware addresses are stable.
• There is a focus on systems rather than services.
• Utilization and static thresholds (aka symptoms) are monitored more than

customer-facing metrics (service-level indicators).
• Different systems for different silos (network and database as examples).
• Low granularity (one- or five-minute intervals).
• Focus on collection (polling) and presentation, not analysis.
• High administration overhead and often more fragile than the services they

monitor.

Let’s summarize this into a “traditional monitoring” mindset. In traditional environ‐
ments, database administrators focused on questions such as, “Is my database up?”
and “Is my utilization sustainable?” They were not considering how the behavior of
the database was affecting latency to users by looking at histograms of the latency
metrics to understand distribution and potential outliers. They often wanted to, but
they didn’t have tools to make this happen.

Operational visibility is a big deal! We need some rules on how we design, build, and
utilize this critical process.

The New Rules of Operational Visibility
Modern operational visibility assumes that data stores are distributed, often mas‐
sively. It recognizes that collection, and even presentation of data, are not as crucial as
the analysis. It always asks—and hopefully elicits rapid answering of—two questions:
“How is this impacting my SLOs?” and “How is this broken, and why?” In other
words, rather than treating your OpViz stack as a set of utilities to be relegated to the
Ops team, you must design, build, and maintain it as a business intelligence (BI) plat‐
form. This that you must treat it the same way you would a data warehouse or big
data platform. The rules of the game have changed to reflect this.

The New Rules of Operational Visibility | 51

http://bit.ly/2zkfkhc

Treat OpViz Systems Like BI Systems
When designing a BI system, you begin by thinking about the kinds of questions your
users will be asking and building out from there. Consider your users needs for data
latency (“How quickly is data available?”), data resolution (“How deep down can the
user drill?”), and data availability. In other words, you are defining SLOs for your
OpViz service. (Refer to Chapter 2.)

The hallmark of a mature OpViz platform is that it can provide not only the state of
the infrastructure running the application, but also the behavior of the applications
running on that infrastructure. Ultimately, this should also be able to show anyone
how the business is doing and how that is being affected by the infrastructure and
applications on which the business is relying. With that in mind, the OpViz platform
must support operations and database engineers, software engineers, business ana‐
lysts, and executives.

Distributed Ephemeral Environments Trending to the Norm
We’ve already discussed the fact that our database instance life cycles are trending
down with the adoption of virtual infrastructures. Even though they are still much
longer lived than other infrastructure components, we still must be able to gather
metrics for services consisting of short-lived components that are aggregated rather
than individual database hosts.

Figure 4-1 demonstrates a fairly stable master/replica setup for a relational datastore
in which numerous activities can occur in one day. By the end of the day, we can see a
completely new setup, as illustrated in Figure 4-2.

52 | Chapter 4: Operational Visibility

Figure 4-1. Typical master/replica setup

Figure 4-2. End of day 1

This kind of dynamic infrastructure requires us to store metrics based on roles rather
than hostnames or IPs. So, instead of storing a set of metrics as DB01, we would add
metrics to the “master” role, allowing us to see all master behavior even after switch‐
ing to a new master. Service discovery systems do a great job of maintaining abstrac‐
tion above the dynamic portions of infrastructure to facilitate this.

The New Rules of Operational Visibility | 53

Store at High Resolutions for Key Metrics
As reviewed in Chapter 2, high resolution is critical for understanding busy applica‐
tion workloads. At a minimum, anything related to your SLOs should be kept at one-
second or lower sampling rates to ensure that you understand what is going on in the
system. A good rule of thumb is to consider whether the metric has enough variabil‐
ity to affect your SLOs in the span of 1 to 10 seconds and to base granularity on that.

For instance, if you are monitoring a constrained resource, such as CPU, you would
want to collect this data at a one-second or smaller sample given that CPU queues can
build up and die down quite quickly. With latency SLOs in the milliseconds, this data
must be good enough to see if CPU saturation is the reason your application latency
is being affected. Database connection queues are another area that can be missed
without very frequent sampling.

Conversely, for infrequently changing items such as disk space or service availability,
you can measure these in the one-minute or higher sampling rates without losing
data. High sample rates consume a lot of resources, and you should be judicious in
using them. Similarly, you should probably keep less than five different sampling
rates to maintain simplicity and structure in your OpViz platform.

For an example of the impacts of a sampling rate that is too long, let’s consider the
graph in Figure 4-3.

Figure 4-3. Real workload showing spikes

Figure 4-3 shows two spikes followed by a long ascension. Now, if we are sampling
this metric at one-minute intervals, the graph would look like Figure 4-4.

54 | Chapter 4: Operational Visibility

Notice now that we don’t see even a single spike, and the second graph looks much
more benign. In fact, our alerting threshold is not even exceeded until minute three.
Assuming a one-minute schedule for storage and for alert rules checking, we
wouldn’t even send an alert to an operator until 7.5 minutes after the rule was viola‐
ted!

Figure 4-4. Workload visualized via one-minute sampling.

Keep Your Architecture Simple
It is not unusual for a growing platform to have 10,000 or more metrics being
checked at various levels of granularity for any number of instances/servers that are
going in and out of service in the infrastructure at any time. Your goal is to be able to
rapidly answer the aforementioned questions, which means that you must continually
push for reducing the signal-to-noise ratio. This means being ruthless in the amount
of data you allow into your system, particularly at the human interaction points, such
as presentation and alerting.

“Monitor everything” has been the watch-cry for quite a while and was a reaction to
environments in which monitoring was sparse and ad hoc. The truth, though, is that
distributed systems and multiservice applications create too many metrics. Early
stage organizations have neither the money nor the time to manage this amount of
monitoring data. Larger organizations should have the knowledge to focus on what is
critical to their systems.

The New Rules of Operational Visibility | 55

Focusing Your Metrics
Focus initially on metrics directly related to your SLOs. This can also be called the
critical path. Based on Chapter 2, what are the metrics that should be a priority for
getting into your OpViz platform? Let’s take a look:

Latency
Client calls to your service. How long do they take?

Availability
How many of your calls result in errors?

Call Rates
How often are calls sent to your service?

Utilization
Looking at a service, you should know how critical resources are being utilized to
ensure quality of service and capacity.

Of course, as the database reliability engineer (DBRE), you will want to immediately
begin breaking out these metrics into the datastore subsystems. That only makes
sense, and its a natural evolution that will be discussed later in this chapter.

Simplicity and signal amplification also includes standardization. This means stand‐
ardizing templates, resolutions, retentions, and any other knobs and features presen‐
ted to engineers. By doing so, you ensure that your system is easy to understand and
thus user friendly for answering questions and identifying issues.

Remembering these four rules will help keep you on track with designing and build‐
ing incredibly valuable and useful monitoring systems. If you find yourself violating
them, ask yourself why. Unless you have a really good answer, consider going back to
the foundation.

An OpViz Framework
We could write an entire book on this stuff. As you begin to gather and prepare the
appropriate data to go into the OpViz platform for you to do your job, you should be
able to recognize a good platform and advocate for a better platform. This is our goal
for this section.

Let’s think of our OpViz platform as a great big distributed I/O device. Data is sent in,
routed, structured, and eventually comes out the other side in useful ways that help
you to understand your systems better, to identify behaviors caused by broken or
soon to be broken components, and to meet your SLOs. Let’s take a closer look at the
process:

56 | Chapter 4: Operational Visibility

• Data is generated by agents on clients and then sent to a central collector for that
datatype (i.e., metrics to Sensu or CollectD, events to Graphite, logs to Logstash
or Splunk):
— Occasionally a centralized monitoring system (like Sensu or Nagios) will exe‐

cute checks via a pull method in addition to the aforementioned push
method.

— A benefit of distributed checking—the app generates checks and forwards
them—is that there is a significantly smaller amount of configuration manage‐
ment required than in tightly coupled systems like Nagios for which you must
configure the agent and the monitoring server together.

• The collectors store data (in systems like Graphite, InfluxDB, or ElasticSearch) or
forward to event routers/processors (such as Riemann).

• Event routers uses heuristics to send data to the right places.
• Data output includes long-term storage, graphs, alerts, tickets, and external calls.

These outputs are where we get the true value of our OpViz stack.

Data In
To create outputs, we require good inputs. Wherever possible, use data already gener‐
ated by your environments rather than artificial probes. When you simulate a user by
sending a request into the system, it is called blackbox monitoring. Blackbox monitor‐
ing is sending “canary” users, or watching the inputs and outputs from the internet
edge. Blackbox monitoring can be effective if you have low traffic periods or items
that just don’t run frequently enough for you to monitor. But, if you are generating
sufficient data, getting real metrics, aka whitebox monitoring, is infinitely more
appealing. Whitebox testing involves knowing a lot about your application, and at its
most specific, includes instrumenting the internals of the application. Great tools for
this include AppDynamics, NewRelic, or Honeycomb. With tools such as this you can
trace the flow of a single user through the application all the way to the database.

Blackbox Testing and Queueing Theory
With the importance of latency, even with blackbox testing we can use queueing
theory and information on traffic volume and and the latency of those calls to deter‐
mine if the system is saturated. You can learn more about queueing theory from the
VividCortex “The Essential Guide to Queueing Theory” and the University of New
Mexico’s page.

Data In | 57

https://www.vividcortex.com/resources/queueing-theory
http://ece-research.unm.edu/jimp/611/slides/chap6_3.html
http://ece-research.unm.edu/jimp/611/slides/chap6_3.html

One benefit of this approach is that anything creating data becomes an agent. A cen‐
tralized, monolithic solution that is generating checks and probes will have challenges
scaling as you grow. But with whitebox testing, you’ve distributed this job across your
entire architecture. This kind of architecture also allows new services and compo‐
nents to easily register and deregister with your collection layer, which is a good thing
based on our OpViz rules. That being said, there are still times when having a moni‐
toring system that can perform remote executions as a pull can be valuable, such as
checking to see whether a service is up, monitoring to see whether replication is run‐
ning, or checking to see whether an important parameter is enabled on your database
hosts.

Sorting Signal from Noise
More and more, we rely on larger datasets to manage distributed systems. It has come
to the point at which we are creating big data systems to manage the data we collect
on our applications and the infrastructures supporting them. As discussed earlier in
this chapter, the use of data science and advanced math is one of the greatest short‐
comings to today’s observability stacks. To effectively identify the signal from all of
this noise, we must rely on machines to sort the signal from the noise.

This area is still very theoretical, and most attempts at good anomaly detection have
proven unusable with multimodal workloads and continuous changes to workloads
due to rapid feature development and user population changes. A good anomaly
detection system helps identify activity that does not fit the norm, thus directing peo‐
ple immediately to problems, which can reduce mean time to recover (MTTR) by
getting a higher ratio of signal to noise.

Following are some systems worth evaluating:

• Reimann
• Anomaly.io
• VividCortex
• Dynatrace
• Circonus
• Prometheus

OK, so we are looking to send all of this valuable data to our OpViz platform. What
kind of data are we talking about anyway?

58 | Chapter 4: Operational Visibility

Telemetry/Metrics
Ah metrics! So diverse. So ubiquitous. A metric is the measurement of a property that
an application or a component of your infrastructure possesses. Metrics are observed
periodically, creating a time-series that contains the property or properties, the time‐
stamp, and the value. Some properties that might apply include the host, service, or
datacenter. The true value of this data comes in observing it over time through visual‐
izations such as graphs.

Metrics are typically stored in four different ways:

Counters
These are cumulative metrics that represent how many times a specific occur‐
rence of something has occurred.

Gauges
These are metrics that change in any direction, and indicate a current value, such
as temperature, jobs in queue, or active locks.

Histograms
A number of events broken up into configured buckets to show distribution.

Summaries
This is similar to histogram but focused on proving counts over sliding windows
of time.

Metrics often have mathematical functions applied to them to assist humans in deriv‐
ing value from their visualizations. These functions create more value, but it is impor‐
tant to remember that they are derived data and that the raw data is just as critical. If
you’re tracking means per minute but do not have the underlying data, you won’t be
able to create means on larger windows, such as hours or days. The following are
some of the functions:

• Count
• Sum
• Average
• Median
• Percentiles
• Standard Deviation
• Rates of Change
• Distributions

Data In | 59

1 Latency Heat Maps

Visualizing Distributions

Visualizing a distribution is very valuable to look at the kind of
data that is often generated in web architectures. This data is rarely
distributed normally and often has long tails. It can be challenging
to see this in normal graphs. But, with the ability to generate distri‐
bution maps over buckets of time, you enable new styles of visuali‐
zation such as histograms over time and flame graphs that can
really help a human operator visualize the workloads that are
occurring in your systems.1

Metrics are the source for identifying symptoms of underlying issues, and thus are
crucial to early identification and rapid resolution of any number of issues that might
affect your SLOs.

Events
An event is a discrete action that has occurred in the environment. A change to a
config is an event. A code deployment is an event. A database master failover is an
event. Each of these can be signals that are used to correlate symptoms to causes.

Logs
A log is created for an event, so you can consider log events to be a subset of an event.
Operating systems, databases, and applications all create logs during certain events.
Unlike metrics, logs can provide additional data and context to something that has
occurred. For instance, a database query log can tell you when a query was executed,
important metrics about that query, and even the database user who executed it.

Data Out
So, data is flowing into our systems, which is nice and all but doesn’t help us answer
our questions or meet our SLOs, now does it? What should we be looking to create in
this OpViz framework? Let’s examine this more closely:

Alerts
An alert is an interrupt to a human that instructs him to drop what he’s doing
and investigate a rules violation that caused the alert to be sent. This is an expen‐
sive operation and should be utilized only when SLOs are in imminent danger of
violation.

60 | Chapter 4: Operational Visibility

http://www.brendangregg.com/HeatMaps/latency.html

Tickets/tasks
Tickets and tasks are generated when work must be done, but there is not an
imminent disaster. The output of monitoring should be tickets/tasks that go in
engineer queues for work.

Notifications
Sometimes you just want to record that an event has occurred to help create con‐
text for folks, such as when code deploy events are registered. Notifications will
often go to a chat room, a wiki, or collaboration tool to make it visible without
interrupting workflow.

Automation
There are times when data, particularly utilization data, advises of the need for
more or less capacity. Autoscaling groups can be called to modify resource pools
in such cases. This is but one example of automation as an output of monitoring.

Visualization
Graphs are one of the most common outputs of OpViz. These are collected into
dashboards that suit the needs of a particular user community and are a key tool
on which humans can perform pattern recognition.

Bootstrapping Your Monitoring
If you are like most rational people, you might be beginning to feel overwhelmed by
all of these things that should be happening. That is normal! This is a good time to
remind you that everything we build here is part of an iterative process. Start small,
let things evolve, and add in more as you need it. Nowhere is this more true than in a
startup environment.

As a brand new startup, you begin with zero. Zero metrics, zero alerting, zero visibil‐
ity—just a bunch of engineers cranking out overly optimistic code. Many startups
somehow end up with an instance somewhere in a public cloud that was a prototype
or testbed and then it somehow turned into their master production database. Head?
Meet desk!

Maybe you were just hired as the first Ops/database engineer at a young startup and
you’re taking stock of what the software engineers have built around monitoring or
visibility, and it’s effectively…zero.

Sound familiar? If you have any experience with startups, it should. It’s nothing to be
ashamed of! This is how startup sausage gets made. A startup that began by building
out an elaborate operational visibility ecosystem in advance of their actual needs
would be a stupid startup. Startups succeed by focusing hard on their core product,
iterating rapidly, aggressively seeking out customers, responding to customer feed‐
back and production realities, and making difficult decisions about where to spend

Bootstrapping Your Monitoring | 61

their precious engineering resources. Startups succeed by instrumenting elaborate
performance visibility systems as soon as they need them, not before. Startups fail all
the time but usually not because the engineers failed to anticipate and measure every
conceivable storage metric in advance. What we need to begin with is a Minimum
Viable Monitoring Set.

Enumerating Moving Parts of the Database
You can think of your data as a stream from clients to databases. At the highest of
levels, the database exists to take in data, to hold data, and to serve data back:

• Data in client memory
• Data across the wire between client and datastore
• Data in your databases memory structures
• Data in your OS and disk memory structures
• Data on your disks
• Data in backups and archival

Everything we seek to measure about our databases can boil down to:

• How long does it take to get data out, and why does it take that long?
• How long does it take to put data in, and why does it take that long?
• Is the data safely stored, and how is it stored?
• Is the data available in redundant locations in case primary retrieval fails?

Of course, this is quite simplistic, but it is a good top-level structure to think about
while we dig into the following sections.

There are an infinite number of metrics that you can monitor between the database,
system, storage, and various application layers. In the physiological needs state, you
should be able to determine if your database is up or down. As you work toward ful‐
filling the “esteem” state, you begin by monitoring other symptoms that you have
identified that correlate with real problems, such as connection counts or lock per‐
centages. One common progression looks like this:

• Monitor if your databases are up or down (pull checks).
• Monitor overall latency/error metrics and end-to-end health checks (push

checks).
• Instrument the application layer to measure latency/errors for every database call

(push checks).

62 | Chapter 4: Operational Visibility

• Gather as many metrics as possible about the system, storage, database, and app
layers, regardless of whether you think they will be useful. Most operating sys‐
tems, services, and databases will have plug-ins that are fairly comprehensive.

• Create specific checks for known problems. For example, checks based on losing
x percent of database nodes or a global lock percent that is too high (do this itera‐
tively as well as proactively, see Chapter 3).

Sometimes you can take a shortcut to the “esteem” level by plugging in third-party
monitoring services like VividCortex, Circonus, HoneyComb, or NewRelic. But it’s
kind of a hack if you’re storing these database metrics in a system separate from the
rest of your monitoring. Storing in disparate systems makes it more challenging to
correlate symptoms across multiple monitoring platforms. We’re not saying this is
bad or you shouldn’t do this; elegant hacks can take you a really long way! But the
“self-actualization” phase generally includes consolidating all monitoring feeds into a
single source of truth.

Okay. Now that you’ve safeguarded against your company going out of business when
you lose a disk or an engineer makes a typo, you can begin asking yourself questions
about the health of your service. As a startup, the key questions to ask yourself are: “Is
my data safe?” “Is my service up?” and “Are my customers experiencing pain?” This is
your minimum viable product monitoring set.

Is the Data Safe?
For any mission-critical data that you truly care about, you should avoid running
with less than three live copies. That’s one primary and two-plus secondaries for
leader-follower data stores like MySQL or MongoDB or a replication factor of three
for distributed data stores like Cassandra or Hadoop. Because you never, ever want to
find yourself in a situation in which you have a single copy of any data you care
about, ever. This means that you need to be able to lose one instance while still main‐
taining redundancy, which is why three is a minimum number of copies, not two.
Even when you are penny-pinching and worrying about your run rate every month
as a baby startup, mission-critical data is not the appropriate place to cut those costs.
(We discuss availability architecture in Chapter 5, Infrastructure Engineering.)

But not all data is equally precious! If you can afford to lose some data or if you could
reconstruct the data from immutable logs if necessary, running with n + 1, (where n
is the required number of nodes for normal activity) copies is perfectly ok. This is a
judgment call—only you can know how critical and how irreplaceable each dataset is
for your company, and how tight your financial resources are. You also need backups,
and you need to regularly validate that the backups are restorable and that the backup
process is completing successfully. If you aren’t monitoring that your backups are
good, you cannot assume that your data is safe.

Bootstrapping Your Monitoring | 63

Sample Data Safety Monitors

Some examples of safety checks to include in your monitoring are:

• Three data nodes up
• Replication threads running
• Replication on at least one node <1 second behind
• Most recent backup success
• Most recent automated replica rebuild from backups is a suc‐

cess

Is the Service Up?
End-to-end checks are the most powerful tool in your arsenal because they most
closely reflect your customer experience. You should have a top-level health check
that exercises not just the aliveness of the web tier or application tier, but all the data‐
base connections in the critical path. If your data is partitioned across multiple hosts,
the check should fetch an object on each of the partitions, and it should automatically
detect the full list of partitions or shards so that you do not need to manually add new
checks any time you add more capacity.

However—and this is important—you should have a simpler aliveness check for your
load balancers to use that does not exercise all of your database connections. Other‐
wise, you can easily end up health-checking yourself to death.

Excessive Health Checking

Charity once worked on a system for which a haproxy health check
endpoint did a simple SELECT LIMIT 1 from a mysql table. One
day, they doubled the capacity of some stateless services, thus dou‐
bling the number of proxy servers running these health checks.
Adding capacity to other systems accidentally took the entire site
down by overloading the database servers with health checks. More
than 95% of all database queries were those stupid health checks.
Don’t do that!

Speaking of lessons learned the hard way, you should always have some off-premises
monitoring—if nothing else, an offsite health check for your monitoring service
itself. It doesn’t matter how amazing and robust your on-premises monitoring ecosys‐
tem is if your datacenter or cloud region goes down and takes your entire monitoring
apparatus with it. Setting up an external check for each major product or service, as
well as a health check on the monitoring service itself, is a good best practice.

64 | Chapter 4: Operational Visibility

Sample Database Availability Monitors

Here are some examples of ways to measure whether your system is
available or close to unavailability:

• Health check at the application level that queries all frontend
datastores

• Query run against each partition in each datastore member,
for each datastore

• Imminent capacity issues
— Disk capacity
— Database connections

• Error log scraping
— DB restarts (faster than your monitor!)
— Corruption

Are the Consumers in Pain?
Okay, you are monitoring that your service is alive. The patient has a heartbeat. Good
job!

But what if your latency subtly doubles or triples, or what if 10% of your requests are
erroring in a way that cleverly avoids triggering your health check? What if your data‐
base is not writable but can be read from, or the replicas are lagging, which is causing
your majority write concern to hang? What if your RAID array has lost a volume and
is running in degraded mode, you have an index building, or you are experiencing
hot spotting of updates to a single row?

Well, this is why systems engineering, and databases in particular, are so much fun.
There are infinite ways your systems can fail, and you can probably only guess about
five percent of them in advance. Yay!

This is why you should gradually develop a library of comprehensive high-level met‐
rics about the health of the service—health checks, error rates, latency. Anything that
materially affects and disrupts your customer experience. And then? Go work on
something else for a while and see what breaks.

We are almost entirely serious. As discussed in Chapter 3, there is only so much to be
gained by sitting around trying to guess how your service is going to break. You just
don’t have the data yet. You might as well go build more things, wait for things to
break, and then pay a lot of attention when things actually begin failing.

Bootstrapping Your Monitoring | 65

Now that we’ve provided a bootstrapping method and an evolution method, let’s
breakdown what you should be measuring, with a focus on what you as the DBRE
need.

Instrumenting the Application
Your application is the first place to begin. Although we can measure most things at
the datastore layer, the first leading indicators of problems should be changes in user
and application behavior. Between application instrumentation by your engineers and
application performance management solutions (APM) such as New Relic and App‐
Dynamics, you can get a tremendous amount of data for everyone in the organiza‐
tion:

• You should already be measuring and logging all requests and responses to pages
or API endpoints.

• You should also be doing this to all external services, which includes databases,
search indexes, and caches.

• Any jobs or independent workflows that should be similarly monitored.
• Any independent, reusable code like a method or function that interacts with

databases, caches, and other datastores should be similarly instrumented.
• Monitor how many database calls are executed by each endpoint, page, or func‐

tion/method.

Tracking the data access code (such as SQL calls) called by each operation allows for
rapid cross-referencing to more detailed query logs within the database. This can
prove challenging with object-relational mapping systems (ORMs), for which SQL is
dynamically generated.

SQL Comments

When doing SQL tuning, a big challenge is mapping SQL running
in the database to the specific place in the codebase from which it is
being called. In many database engines, you can add comments for
information. These comments will show up in the database query
logs. This is a great place to insert the codebase location.

Distributed Tracing
Tracing performance at all stages from the application to the datastore is critical for
optimizing long-tail latency issues that can be difficult to capture. Systems like New
Relic or Zipkin (open source) allow for distributed traces from application calls to the
external services, such as your databases. A full transaction trace from the application

66 | Chapter 4: Operational Visibility

to datastore should ideally give timing for all external service calls, not just the data‐
base query.

Tracing with full visibility through to the database can become a powerful arsenal in
educating your software engineer (SWE) teams and creating autonomy and self-
reliance. Rather than needing you to tell them where to focus, they are able to get the
information themselves. As Aaron Morton at the Last Pickle says in his talk, “Replac‐
ing Cassandra’s Tracing with Zipkin”:

Knowing in advance which tools create such positive cultural shifts is basically impos‐
sible to foretell, but I’ve seen it with Git and its practice of pull requests and stable mas‐
ter branches, and I’ve seen it with Grafana, Kibana, and Zipkin.

You can read more about this on The Last Pickle’s blog.

There are many components of an end-to-end call that can occur and be of interest to
the DBRE. These include, but are not limited to, the following:

• Establishing a connection to a database or a database proxy
• Queuing for a connection in a database connection pool
• Logging a metric or event to a queuing or message service
• Creating a user ID from a centralized UUID service
• Selecting a shard based on a variable (such as user ID)
• Searching, invalidating, or caching at a cache tier
• Compressing or encrypting data at the application layer
• Querying a search layer

Traditional SQL Analysis
Laine here. In my consulting days, I can’t tell you the amount of times I’d come into a
shop that had no monitoring that mapped application performance monitoring to
database monitoring. I’d invariably have to do TCP or log-based SQL gathering to
create a view from the database. Then, I’d go back to the SWEs with my prioritized list
of SQL to optimize, and they’d have no idea where to go to fix that code. Searching
code bases could take a week or more of precious time.

As a DBRE, you have an amazing opportunity to work side by side with SWEs to
ensure that every class, method, function, and job has direct mappings to SQL that is
being called. When SWEs and DBREs use the same tools, DBREs can teach at key
inflection points, and soon you’ll find SWEs doing your job for you!

Instrumenting the Application | 67

http://thelastpickle.com/blog/2015/12/07/using-zipkin-for-full-stack-tracing-including-cassandra.html

If a transaction has a performance “budget” and the latency requirements are known,
the staff responsible for every component are incentivized to work as a team to iden‐
tify the most expensive aspects and make the appropriate investments and compro‐
mises to get there.

Events and Logs
It goes without saying that all application logs should be collected and stored. This
includes stack traces. Additionally, there are numerous events that will occur that are
incredibly useful to register with OpViz, such as the following:

• Code deployments
• Deployment time
• Deployment errors

Application monitoring is a crucial first step, providing realistic looks at behavior
from the user’s perspective, and is directly related to latency SLOs. These are the
symptoms providing clues into faults and degradations within the environment. Now,
let’s look at the supporting data that can help with root cause analysis and provision‐
ing: host data.

Instrumenting the Server or Instance
Next is the individual host, real or virtual, on which the database instance resides. It is
here that we can get all of the data regarding the operating system and physical
resources devoted to running our databases. Even though this data is not specifically
application/service related, it is valuable to use when you’ve seen symptoms such as
latency or errors in the application tier.

When using this data to identify causes for application anomalies, the goal is to find
resources that are over or underutilized, saturated, or throwing errors. (USE, as Bren‐
dan Gregg defined in his methodology.) This data is also crucial for capacity planning
for growth and performance optimization. Recognizing a bottleneck or constraint
allows you to prioritize your optimization efforts to maximize value.

68 | Chapter 4: Operational Visibility

http://www.brendangregg.com/usemethod.html

Distributed Systems Aggregation

Keep in mind that individual host data is not especially useful,
other than for indicating that a host is unhealthy and should be
culled from the herd. Rather, think about your utilization, satura‐
tion, and errors from an aggregate perspective for the pool of hosts
performing the same function. In other words, if you have 20 Cas‐
sandra hosts, you are mostly interested in the overall utilization of
the pool, the amount of waiting (saturation) that is going on, and
any errors faults that are occurring. If errors are isolated to one
host, it is time to remove that one from the ring and replace it with
a new host.

On a Linux system, a good starting place for resources to monitoring in a linux envi‐
ronment includes the following:

• CPU
• Memory
• Network interfaces
• Storage I/O
• Storage capacity
• Storage controllers
• Network controllers
• CPU interconnect
• Memory interconnect
• Storage interconnect

Understanding Your Operating System

We cannot overemphasize just how much it is of value to dig
deeply into the operating characteristics of your operating system.
Although many database specialists leave this to system adminis‐
trators, there is simply too tight of a relationship between database
service levels and the operating system to not dive in. A perfect
example of this is how Linux fills all of your memory with Page
Cache, and thus the “Free Memory” gauge is virtually useless to
monitor your memory usage. Pagescans per second becomes a
much more useful metric in this case, which is not obvious without
a deeper understanding of how Linux memory management works.

Instrumenting the Server or Instance | 69

In addition to hardware resource monitoring, operating system software has a few
items to track:

• Kernel mutex
• User mutex
• Task capacity
• File descriptors

If this is new to you, we suggest going to Brendan Gregg’s USE page for Linux
because it is incredibly detailed in regard to how to monitor this data. Its obvious that
a significant amount of time and effort went into the data he presents.

Events and Logs
In addition to metrics, you should be sending all logs to an appropriate event process‐
ing system such as RSyslog or Logstash. This includes kernel, cron, authentication,
mail, and general messages logs as well as process- or application-specific log to
ingest, such as MySQL, or nginx.

Your configuration management and provisioning processes should also be register‐
ing critical events to your OpViz stack. Here is a decent starting point:

• A host being brought into our out of service
• Configuration changes
• Host restarts
• Service restarts
• Host crashes
• Service crashes

Cloud and Virtualized Systems
There are a few extra items to consider in these environments.

Cost! You are spending money on-demand in these environments, rather than up-
front spend that you might be used to in datacenter environments. Being cost effec‐
tive and efficient is crucial.

When monitoring CPU, monitor “steal time.” This is time that the virtual CPU is
waiting on real CPU, which is being used elsewhere. High steal times (10% or more
over sustained periods) are indicators that there is a noisy neighbor in your environ‐
ment! If steal time is the same across all of your hosts, this probably means that you
are the culprit, and you might need to add more capacity and/or rebalance.

70 | Chapter 4: Operational Visibility

http://www.brendangregg.com/usemethod.html

If steal time is on one or a few hosts, this means that some other tenant is stealing
your time! Its best to kill that host and launch a new one. The new one will hopefully
be deployed somewhere else and will perform much better.

If you can get the preceding into your OpViz stack, you will be in great shape for
understanding what’s going on at the host- and operating-system levels of the stack.
Now, let’s look at the databases themselves.

Instrumenting the Datastore
What do we monitor and track in our databases, and why? Some of this will depend
on the kind of datastore. We focus here on areas that are generic enough to be univer‐
sal, but specific enough to help you track to your own databases. We can break this
down into four areas:

• Datastore connection layer
• Internal database visibility
• Database objects
• Database calls/queries

Each of these will get its own section, beginning with the datastore connection layer.

Datastore Connection Layer
We have discussed the importance of tracking the time it takes to connect to the
backend datastore as part of the overall transaction. A tracing system should also be
able to break out time talking to a proxy and time from the proxy to the backend as
well. You can capture this via tcpdump and Tshark/Wireshark for ad hoc sampling if
something like Zipkin is not available. You can automate this for occasional sampling
or run it ad hoc.

If you are seeing latency and/or errors between the application and the database con‐
nection, you will require additional metrics to help identify causes. Taking the afore‐
mentioned USE method we recommended, let’s see what other metrics can assist us.

Utilization
Databases can support only a finite number of connections. The maximum number
of connections is constrained in multiple locations. Database configuration parame‐
ters will direct the database to accept only a certain number of connections, setting an
artificial top boundary to minimize overwhelming the host. Tracking this maximum

Instrumenting the Datastore | 71

as well as the actual number of connections is crucial because it might be set arbitrar‐
ily low by a default configuration.

Connections also open resources at the operating system level. For instance, Post‐
greSQL uses one Unix process per connection. MySQL, Cassandra, and MongoDB
use a thread per connection. All of them use memory and file descriptors. So, there
are multiple places we want to look at to understand connection behaviors:

• Connection upper bound and connection count
• Connection states (working, sleeping, aborted, and others)
• Kernel-level Open file utilization
• Kernel-level max processes utilization
• Memory utilization
• Thread pool metrics such as MySQL table cache or MongoDB thread pool uti‐

lization
• Network throughput utilization

This should inform you as to whether you have a capacity or utilization bottleneck
somewhere in the connection layer. If you are seeing 100% utilization and saturation
is also high, this is a good indicator. But, low utilization combined by saturation is
also an indicator of a bottleneck somewhere. High, but not full, utilization of resour‐
ces is also often quite impactful to latency and could be causing latency as well.

Saturation
Saturation is often most useful when paired with utilization. If you are seeing a lot of
waits for resources that are also showing 100% utilization, you are seeing a pretty
clear capacity issue. However, if you are seeing waits/saturation without full utiliza‐
tion, there might be a bottleneck elsewhere that is causing the stack up. Saturation can
be measured at these inflection points:

• TCP connection backlog
• Database-specific connection queuing, such as MySQL back_log
• Connection timeout errors
• Waiting on threads in the connection pools
• Memory swapping
• Database processes that are locked

Queue length and wait timeouts are crucial for understanding saturation. Any time
you find connections or processes waiting, you have an indicator of a potential bottle‐
neck.

72 | Chapter 4: Operational Visibility

Errors
With utilization and saturation, you can determine whether capacity constraints and
bottlenecks are affecting the latency of your database connection layer. This is great
information for deciding whether you need to increase resources, remove artificial
configuration constraints, or make some architectural changes. Errors should also be
monitored and used to help eliminate or identify faults and/or configuration prob‐
lems. Errors can be captured as follows:

• Database logs will provide error codes when database-level failures occur. Some‐
times you have configurations with various degrees of verbosity. Make sure you
have logging verbose enough to identify connection errors, but do be careful
about overhead, particularly if your logs are sharing storage and IO resources
with your database.

• Application and proxy logs will also provide rich sources of errors.
• Host errors discussed in the previous section should also be utilized here.

Errors will include network errors, connection timeouts, authentication errors, con‐
nection terminations, and much more. These can point to issues as varied as corrupt
tables, reliance on DNS, deadlocks, auth changes, and so on.

By utilizing application latency/error metrics, tracing and appropriate telemetry on
utilization, saturation, and specific error states, you should have the information you
need to identify degraded and broken states at the database connection layer. Next,
we will look at what to measure inside of the connections.

Troubleshooting Connection Speeds, PostgreSQL
Instagram is one of the companies that chose PostgreSQL to be their relational data‐
base. It chose to use a connection pooler, PGBouncer, to increase the number of
application connections that could connect to its databases. This is a proven scaling
mechanism for increasing the number of connections to a datastore, and considering
that PostgreSQL must spawn a new Unix process for every connection, new connec‐
tions are slow and expensive.

Using the psycopg2 Python driver, the company was working with the default of auto
commit=FALSE. This means that even for read-only queries, explicit BEGINS and COM
MITS were being issued. By changing autocommit to TRUE, the company reduced its
query latency, which also reduced queuing for connections in the pool.

This would initially show up as increased latency in the application as the pool was
100% utilized, causing queues to increase. By looking at the connection layer metrics
and monitoring pgbouncer pools, it was clear that the waiting pool was increasing
due to saturation, and that active was fully utilized most of the time. With no other

Datastore Connection Layer | 73

metrics showing significant utilization/saturation and errors clear, it was time to look
at what is going on inside of the connection that was slowing down queries. We will
look into that in the next section.

Internal Database Visibility
When we look inside of the database, we can see that there is a substantial increase in
the number of moving parts, number of metrics, and overall complexity. In other
words, this is where things start to get real! Again, let’s keep in mind USE. Our goal is
to understand bottlenecks that might be affecting latency, constraining requests, or
causing errors.

It is important to be able to look at this from an individual host perspective and in
aggregate by role. Some databases, like MySQL, PostgreSQL, ElasticSearch, and Mon‐
goDB, have master and replica roles. Cassandra and Riak have no specific roles, but
they are often distributed by region or zone. That too is important to aggregate by.

Throughput and Latency Metrics
How many and what kind of operations are occurring in the datastores? This data is a
very good high-level view of database activity. As SWEs put in new features, these
workloads will shift and provide good indicators of how the workload is shifting.
Some examples of metrics to collect to understand these shifting workloads include
the following:

• Reads
• Writes

— Inserts
— Updates
— Deletes

• Other Operations
— Commits
— Rollbacks
— DDL statements
— Other administrative tasks

When we discuss latency here, we are talking in the aggregate only, meaning averages.
We will discuss granular and more informative query monitoring further in this sec‐
tion. Thus, you are getting no outliers in this kind of data, only very basic workload
information.

74 | Chapter 4: Operational Visibility

Commits, Redo, and Journaling
Although the specific implementations will depend on the datastore, there are almost
always a set of I/O operations involved in flushing data to disk. In MySQL’s InnoDB
storage engine and in PostgreSQL, writes are changed in the buffer pool (memory)
and operations are recorded in a redo log (or write-ahead log in PostgreSQL). Back‐
ground processes will then flush this to disk while maintaining checkpoints for recov‐
ery. In Cassandra, data is stored in a memtable (memory), whereas a commit log is
appended to. Memtables are flushed periodically to an SSTable. SSTables are periodi‐
cally compacted, as well. Following are some metrics you might monitor:

• Dirty buffers (MySQL)
• Checkpoint age (MySQL)
• Pending and completed compaction tasks (Cassandra)
• Tracked dirty bytes (MongoDB)
• (Un)Modified pages evicted (MongoDB)
• log_checkpoints configuration (PostgreSQL)
• pg_stat_bgwriter view (PostgreSQL)

All checkpointing, flushing, and compaction are operations that have significant per‐
formance impacts on activity in the database. Sometimes, the impact is increased I/O,
and sometimes it can be a full stop of all write operations while a major operation
occurs. Gathering metrics here allows you to tune specific configurables to minimize
the effects that will occur during such operations. So in this case, when we see latency
increasing and see metrics related to flushing showing excessive background activity,
we will be pointed toward tuning operations related to these processes.

Replication State
Replication is the copying of data across multiple nodes so that the data on one node
is identical to another. It is a cornerstone of availability and read scaling as well as a
part of disaster recovery and data safety. There are three replication states that can
occur, however, that are not healthy and can lead to big problems if they are not
monitored and caught. We discuss replication in detail in Chapter 10.

Replication latency is the first of the fault states. Sometimes, the application of
changes to other nodes can slow down. This can be the result of network saturation,
single-threaded applies that cannot keep up, or any number of other reasons. Occa‐
sionally, replication will never catch up during peak activity, causing the data to be
hours old on the replicas. This is dangerous because stale data can be served, and if
you are using this replica as a failover, you can lose data.

Internal Database Visibility | 75

Most database systems have easily tracked replication latency metrics; you can see the
difference between the timestamp on the master and the timestamp on the replica. In
systems like Cassandra, with eventually consistent models, you are looking for back‐
logs of operations used to synchronize replicas after unavailability. For instance, in
Cassandra, this is hinted handoffs.

Broken replication is the second of the fault states. In this case, the processes required
to maintain data replication simply break due to any number of errors. Resolution
requires rapid response facilitated by appropriate monitoring, followed by repair of
the cause of the errors, and replication allowed to resume and catch up. In this case,
you can monitor the state of replication threads.

The last error state is the most insidious: replication drift. In this case, data has lost
synchronization, causing replication to be useless and potentially dangerous. Identify‐
ing replication drift for large datasets can be challenging and depends on the work‐
loads and kind of data that you are storing.

For instance, if your data is relatively immutable and insert/read operations are the
norm, you can run checksums on data ranges across replicas and then compare
checksums to see if they are identical. You can do this in a rolling method behind rep‐
lication, allowing for an easy safety check at the cost of extra CPU utilization on the
database hosts. If you are doing a lot of mutations, however, this proves more chal‐
lenging because you must either repeatedly run checksums on data that has already
been reviewed or just do occasional samples.

Memory Structures
Data stores will maintain numerous memory structures in their regular operation.
One of the most ubiquitous in databases is a data cache. Although it might have many
names, the goal of this is to maintain frequently accessed data in memory rather than
from disk. Other caches like this can exist, including caches for parsed SQL, connec‐
tion caches, query result caches, and many more.

The typical metrics we use when monitoring these structures are as follows:

Utilization
The overall amount of allocated space that is in use over time.

Churn
The frequency that cached objects are removed to make room for other objects
or because the underlying data has been invalidated.

Hit ratios
The frequency with which cached data is used rather than uncached data. This
can help with performance optimization exercises.

76 | Chapter 4: Operational Visibility

Concurrency
Often these structures have their own serialization methods, such as mutexes,
that can become bottlenecks. Understanding saturation of these components can
help with optimization as well.

Some systems, like Cassandra, use Java Virtual Machines (JVMs) for managing mem‐
ory, exposing whole new areas to monitor. Garbage collection and usage of the vari‐
ous object heap spaces are also critical in such environments.

Locking and Concurrency
Relational databases in particular utilize locks to maintain concurrent access between
sessions. Locking allows mutations and reads to occur while guaranteeing that noth‐
ing might be changed by other processes. Even though this is incredibly useful, it can
lead to latency issues as processes stack up waiting for their turn. In some cases, you
can have processes timing-out due to deadlocks, for which there is simply no resolu‐
tion for the locks that have been put in place but to roll back. The details of locking
implementations are reviewed in Chapter 11.

Monitoring locks includes monitoring the amount of time spent waiting on locks in
the datastore. This can be considered a saturation metric, and longer queues can indi‐
cate application and concurrency issues or underlying issues that affect latency, with
sessions holding locks taking longer to complete. Monitoring rollbacks and deadlocks
is also crucial because it is another indicator that applications are not releasing locks
cleanly, causing waiting sessions to timeout and roll back. Rollbacks can be part of a
normal, well-behaved transaction, but they often are a leading indicator that some
underlying action is affecting transactions.

As discussed in the memory structures section earlier, there are also numerous points
in the database that function as synchronization primitives designed to safely manage
concurrency. These are generally either mutexes or semaphores. A mutex (Mutually
Exclusive Lock) is a locking mechanism used to synchronize access to a resource such
as a cache entry. Only one task can acquire the mutex. This means that there is own‐
ership associated with mutexes, and only the owner can release the lock (mutex). This
protects from corruption.

A semaphore restricts the number of simultaneous users of a shared resource up to a
maximum number. Threads can request access to the resource (decrementing the
semaphore) and can signal that they have finished using the resource (incrementing
the semaphore). Examples of using mutexes/semaphores to monitor MySQL’s
InnoDB storage engine are listed in Table 4-1.

Internal Database Visibility | 77

Table 4-1. InnoDB semaphore activity metrics

Name Description
Mutex Os Waits (Delta) The number of InnoDB semaphore/mutex waits yielded to the OS.
Mutex Rounds (Delta) The number of InnoDB semaphore/mutex spin rounds for the internal sync array.
Mutex Spin Waits (Delta) The number of InnoDB semaphore/mutex spin waits for the internal sync array.
Os Reservation Count (Delta) The number of times an InnoDB semaphore/mutex wait was added to the internal sync

array.
Os Signal Count (Delta) The number of times an InnoDB thread was signaled using the internal sync array.
Rw Excl Os Waits (Delta) The number of exclusive (write) semaphore waits yielded to the OS by InnoDB.
Rw Excl Rounds (Delta) The number of exclusive (write) semaphore spin rounds within the InnoDB sync array.
Rw Excl Spins (Delta) The number of exclusive (write) semaphore spin waits within the InnoDB sync array.
Rw Shared Os Waits (Delta) The number of shared (read) semaphore waits yielded to the OS by InnoDB.
RW Shared Rounds (Delta) The number of shared (read) semaphore spin rounds within the InnoDB sync array.
RW Shared Spins (Delta) The number of shared (read) semaphore spin waits within the InnoDB sync array.
Spins Per Wait Mutex (Delta) The ratio of InnoDB semaphore/mutex spin rounds to mutex spin waits for the internal

sync array.
Spins Per Wait RW Excl (Delta) The ratio of InnoDB exclusive (write) semaphore/mutex spin rounds to spin waits within

the internal sync array.
Spins Per Wait RW Shared (Delta) The ratio of InnoDB shared (read) semaphore/mutex spin rounds to spin waits within the

internal sync array.

Increasing values in these can indicate that your datastores are reaching concurrency
limits on specific areas in the code base. You can resolve this via tuning configurables
and/or by scaling out to maintain sustainable concurrency on a datastore to satisfy
traffic requirements.

Locking and concurrency can truly kill even the most performant of queries once you
start experiencing a tipping point in scale. By tracking and monitoring these metrics
during load tests and in production environments, you can understand the limits of
your database software and identify how your own applications must be optimized to
scale up to large numbers of concurrent users.

Database Objects
It is crucial to understand what your database looks like and how it is stored. At the
simplest level, this is an understanding of how much storage each database object and
its associated keys/indexes takes. Just like filesystem storage, understanding the rate
of growth and the time to reaching the upper boundary is as crucial, if not more, than
the current storage usage.

In addition to understanding the storage and growth, monitoring the distribution of
critical data is helpful. For instance, understanding the high and low bounds, means
and cardinality of data is helpful to understanding index and scan performance. This

78 | Chapter 4: Operational Visibility

is particularly important for integer datatypes and low cardinality character-based
datatypes. Having this data at your SWE fingertips allows you and them to recognize
optimizations on datatypes and indexing.

If you have sharded your dataset using key ranges or lists, understanding the distribu‐
tion across shards can help ensure you are maximizing output on each node. These
sharding methodologies allow for hot spots because they are not even distributions
using a hash or modulus approach. Recognizing this will advise you and your team
on needs to rebalance or reapproach your sharding models.

Database Queries
Depending on the database system you are working with, the actual data access and
manipulation activity can prove to be highly instrumented or not at all. Trying to
drink at the firehose of data that results in logging queries in a busy system can cause
critical latency and availability issues to your system and users. Still, there is no more
valuable data than this. Some solutions, such as Vivid Cortex and Circonus, have
focused on TCP and wire protocols for getting the data they need, which dramatically
reduces performance impact of query logging. Other methods include sampling on a
less loaded replica, only turning logging on for fixed periods of time or only logging
statements that execute slowly.

Regardless of all this, you want to store as much as possible about the performance
and utilization of your database activity. This will include the consumption of CPU
and IO, number of rows read or written, detailed execution times and wait times, and
execution counts. Understanding optimizer paths, indexes used, and statistics around
joining, sorting, and aggregating is also critical for optimization.

Database Asserts and Events
Database and client logs are a rich source of information, particularly for asserts and
errors. These logs can give you crucial data that can’t be monitored any other way,
such as the following:

• Connection attempts and failures
• Corruption warnings and errors
• Database restarts
• Configuration changes
• Deadlocks
• Core dumps and stack traces

Database Queries | 79

You can aggregate some of this data and push it to your metrics systems. You should
treat others as events to be tracked and used for correlations.

Wrapping Up
Well, after all of that, I think we all need a break! You’ve come out of this chapter with
a solid understanding of the importance of operational visibility, how to start an
OpViz program, and how to build and evolve an OpViz architecture. You can never
have enough information about the systems you are building and running. You can
also quickly find the systems built to observe the services that have become a large
part of your operational responsibilities! They deserve just as much attention as every
other component of the infrastructure.

80 | Chapter 4: Operational Visibility

CHAPTER 5

Infrastructure Engineering

Let’s begin the process of actualizing our database clusters for consumption by appli‐
cations and analysts. Previously, we’ve discussed a lot of the preparatory work:
service-level expectations, risk analysis, and, of course, operational visibility. In the
next two chapters, we discuss the techniques and patterns for designing and building
the environments.

In this chapter, we discuss the various hosts a datastore can run on, including server‐
less or Database as a Service options. We discuss the various storage options available
to those datastores.

Hosts
As discussed previously, your datastores do not exist in a vacuum. They must always
run as processes on some host. Traditionally, database hosts were physical servers.
Over the past decade, our options have grown, including virtual hosts, containers,
and even abstracted services. Let’s look at each in turn, discuss the pros and cons of
using them for databases, and examine some specific implementation details.

Physical Servers
In this context, a physical server is a host that has an operating system and is 100%
dedicated to running services directly from that operating system. In immature envi‐
ronments, a physical server might run many services on it while traffic is low and
resources are abundant. One of the first steps a database reliability engineer (DBRE)
will take is to separate datastores to their own servers. The workloads required by a
datastore are generally quite intensive on CPU, RAM, and Storage/IO. Some applica‐
tions will be more CPU-bound or IO-bound, but you don’t want them competing

81

with other applications for resources. Tuning these workloads is also quite specific
and thus requires isolation to properly accomplish.

When you run a database on a dedicated physical host, your database will be interact‐
ing with and consuming a large number of components that we will discuss briefly in
just a moment. For the purposes of this discussion, we will assume that you are run‐
ning a Linux or Unix system. Even though much of this can be applied to Windows,
the differences are significant enough that we will not be using them as examples.

We’ve tried to break out a significant chunk of the best practices here to show the
depth of operating system (OS) and hardware knowledge that a DBRE can utilize to
solve problems that can dramatically increase availability and performance of data‐
bases. As we go upward in abstractions to virtual hosts and containers, we will add in
relevant information where appropriate.

Operating a System and Kernel
As the DBRE, you should collaborate directly with software reliability engineers
(SREs) to define appropriate kernel configurations for your database hosts. These
should become gold standards that automatically deploy along with database binaries
and other configurations. Most database management systems (DBMS’s) will come
with vendor-specific requirements and recommendations that should be reviewed
and applied where possible. Interestingly, there can be very different approaches to
this depending on the type of database you are using. So, we will go through a few
high-level categories and discuss them.

User resource limits
There are a number of resources that databases utilize at much higher numbers than
typical servers. These include file descriptors, semaphores, and user processes.

I/O scheduler
Input/Output (I/O) scheduling is the method that operating systems use to decide the
order in which block level I/O operations will be submitted to storage volumes. By
default, these schedulers often assume they are working with spinning disks that have
high seek latency. Thus, the default is usually an elevator algorithm that attempts to
order requests by location and to minimize seek times. In Linux, you might see the
following options available:

wtf@host:~$ cat /sys/block/sda/queue/scheduler
[noop] anticipatory deadline cfq

The noop scheduler is the proper choice when the target block device is an array of
SSDs with a controller that performs I/O optimization. Every I/O request is treated
equally because seek times on solid-state drives (SSDs) are relatively stable. The dead‐

82 | Chapter 5: Infrastructure Engineering

line scheduler will optimize by seeking to minimize I/O latency by imposing dead‐
lines to prevent starvation and by prioritizing reads over writes. The Deadline
Scheduler has shown to be more performant in highly concurrent multithreaded
environments, such as database loads.

Memory allocation and fragmentation
No one can deny that databases are some of the most memory-hungry applications a
server can run. Understanding how memory is allocated and managed is critical to
utilizing it as effectively as possible. Database binaries are compiled using a variety of
memory allocation libraries. Here are some examples:

• MySQL’s InnoDB, as of version 5.5, uses a custom library that wraps glibc’s mal
loc. GitHub claims to have saved 30% latency by switching to tcmalloc, whereas
Facebook uses jemalloc.

• PostgreSQL also uses its own custom allocation library, with malloc behind it.
Unlike most other datastores, PostgreSQL allocates memory in very large chunks,
called memory contexts.

• As of version 2.1, Apache Cassandra off-heap allocation supports jemalloc over
native.

• MongoDB’s version 3.2 implementation uses malloc by default but can be config‐
ured with tcmalloc or jemalloc.

• As of version 2.4, Redis uses jemalloc.

jemalloc and tcmalloc have both proven to provide significant improvements in
concurrency for most database workloads, performing significantly better than
glibc’s native malloc while also reducing fragmentation.

Memory is allocated in pages that are 4 KB in size by default. Thus, 1 GB of memory
is the equivalent of 262,144 pages. CPUs use a page table that contains a list of these
pages, with each page referenced through a page table entry. A translation lookaside
buffer (TLB) is a memory cache that stores recent translations of virtual memory to
physical addresses for faster retrieval. A TLB miss is where the virtual-to-physical
page translation is not in a TLB. A TLB miss is slower than a hit, and can require a
page walk, requiring several loads. With large amounts of memory, and thus pages,
TLB misses can create thrashing.

Transparent Huge Pages (THP) is a Linux memory management system that reduces
the overhead of TLB lookups on machines with large amounts of memory by using
larger memory pages, thus reducing the number of entries required. THPs are blocks
of memory that come in 2 MB and 1 GB sizes. Tables used for 2 MB pages are suitable
for gigabytes of memory, whereas 1 GB pages are best for terabytes. However, defrag‐
mentation of these large page sizes can cause significant CPU thrashing, which has

Hosts | 83

been seen on Hadoop, Cassandra, Oracle, and MySQL workloads, among others. To
mitigate this, you might need to deal with disabling defragmentation and losing up to
10% of your memory because of it.

Linux is not particularly optimized for database loads requiring low latency and high
concurrency. The kernel is not predictable when it goes into reclaim mode, and one
of the best recommendations we can give is to simply ensure that you never fully use
your physical memory by reserving it to avoid stalls and significant latency impacts.
You can reserve this memory by not allocating it in configuration.

Swapping
In Linux/UNIX systems, swapping is the process of storing and retrieving data that no
longer fits in memory and needs to be saved to disk to alleviate pressure for memory
resources. This is a very slow operation by orders of magnitude compared to memory
access, and thus should be considered a last resort.

It is generally accepted that databases should avoid swapping because it can immedi‐
ately increase latency beyond acceptable levels. That being said, if swap is disabled,
the operating system “Out of Memory Killer” (OOM Killer) will shut down the data‐
base process.

There are two schools of thought here. The first, and more traditional, approach is
that keeping a database up and slow is better than the database not being available at
all. The second approach, and the one that aligns more closely with the DBRE philos‐
ophy, is that latency impacts are as bad as performance impacts; thus, swapping in
from disk should not be tolerated at all.

Database configurations will typically have a realistic memory usage high watermark
as well as a theoretical one. Fixed memory structures like buffer pools and caches will
consume fixed amounts, making them predictable. At the connection layer, however,
things can get messier. There is a theoretical limit based on the maximum number of
connections and the maximum size of all per-connection memory structures, such as
sort buffers and thread stacks. Using connection pools and some sane assumptions,
you should be able to predict a reasonably safe memory threshold by which you can
avoid swapping.

This process does allow for anomalies such as misconfigurations, runaway processes,
and other pear-shaped events to push you past your memory bounds, which would
shut down your server in an OOM event. This is a good thing, though! If you have
effective visibility, capacity, and failover strategies in place, you have effectively shut
out a potential Service-Level Objective (SLO) violation on latency.

84 | Chapter 5: Infrastructure Engineering

1 “A brief update on NUMA and MySQL” and “The MySQL ’swap insanity’ problem and the effects of the
NUMA architecture”, both available on his blog.

Disabling Swap

You should do this only if you have rock-solid failover processes.
Otherwise, you will absolutely find yourself affecting availability to
your applications.

Should you choose to allow swapping in your environment, you can reduce the oper‐
ating system’s chance of swapping out your database memory for file cache, which is
generally not helpful. You can also adjust the OOM scores for your database pro‐
cesses to reduce the chance that your kernel memory profiler will kill your database
process for memory needs elsewhere.

Non-Uniform memory access
Early implementations of multiple processors used an architecture called Symmetric
Multiprocessing (SMP) to provide equal access to memory for each CPU via a shared
bus between the CPUs and the memory banks. Modern multiprocessor systems uti‐
lize Non-Uniform Memory Access or NUMA, which provides a local bank of memory
to each processor. Access to memory banked to other processors is still done over a
shared bus. Thus, some memory access has much lower latency (local) versus others
(remote).

In a Linux system, a processor and its cores are considered a node. The operating sys‐
tem attaches memory banks to their local nodes and calculates cost between nodes
based on distance. A process and its threads will be given a preferred node to utilize
for memory. Schedulers can change this temporarily, but affinity will always go to the
preferred node. On top of this, after memory is allocated, it will not be moved to
another node.

What this means in an environment in which large memory structures are present,
such as database buffer pools, is that memory will be allocated heavily to the prefer‐
red node. This imbalance will cause the preferred node to be filled, with no available
memory on it. This means that even if you are utilizing less memory than physically
available on the server, you will still see swapping.

Solving NUMA and MySQL at Twitter
Jeremy Cole has produced two impressive posts about this issue and how Twitter
resolved it.1 Initially, the following approach was utilized: forcing interleaved alloca‐
tion by using numactl --interleave=all.

Hosts | 85

http://bit.ly/2zxNuPe
http://bit.ly/2zxXnfP
http://bit.ly/2zxXnfP

By interleaving, allocation could effectively spread itself across all nodes. This was not
100% effective, however, as an OS buffer cache can be quite full if the MySQL process
was restarted after running for awhile in production. By adding on two more solution
points, the process proved repeatable and reliable:

• Flushing Linux’s buffer caches just before mysqld startup by using sysctl -q -w
vm.drop_caches=3. This helps to ensure allocation fairness, even if the daemon is
restarted while significant amounts of data are in the operating system buffer
cache.

• Forcing the OS to allocate InnoDB’s buffer pool immediately upon startup, using
MAP_POPULATE where supported (Linux 2.6.23+), and falling back to memset
otherwise. This forces the NUMA node allocation decisions to be made immedi‐
ately, while the buffer cache is still clean from the aforementioned flush.

This is a perfect example of the kind of value that a DBRE can provide to a very large
population of SWEs and SREs. In this case, excessive swapping led to a deep dive into
OS memory management. Using a deep knowledge of MySQL’s memory management
in conjunction with this led to immediate fixes that eventually were rolled into main
MySQL forks.

At this point, for most DBMS requests, you set interleaving for NUMA in the kernel.
Stories abound for PostgreSQL, Redis, Cassandra, MongoDB, MySQL, and Elastic‐
Search about the same issues.

Network
The assumption of this book is that all datastores are distributed. Network traffic is
critical for the performance and availability of your databases, period. You can break
up network traffic into the following categories:

• Internode communications
• Application traffic
• Administrative traffic
• Backup and recovery traffic

Internode communications include data replication, consensus and gossip protocols,
and cluster management. This is the data that let’s the cluster know its own state and
keeps data replicated in the amounts defined. Application traffic is the traffic that
comes from application servers or proxies. This is what maintains application state
and allows for the creation, mutation and deletion of data by applications.

Administrative traffic is the communication between management systems, opera‐
tors, and the clusters. Administrative traffic is the communication between manage‐

86 | Chapter 5: Infrastructure Engineering

ment systems, operators, and clusters. This includes starting and stopping services,
deploying binaries, and making database and configuration changes. When things go
badly elsewhere, this is the lifeline to systems that allows for manual and automated
recovery. Backup and recovery traffic is just what it says. This is the traffic created
when archiving and copying data, moving data between systems or recovering from
backups.

Isolation of traffic is one of the first steps to proper networking for your databases.
You can do this via physical network interface cards (NICs), or by partitioning one
NIC. Modern server NICs generally come in 1 Gbps and 10 Gbps sizes, and you can
bond them in a pair to allow for redundancy and load balancing. Although this
redundancy will increase mean time between failures (MTBF), it is an example of cre‐
ating robustness rather than resiliency.

Databases need a lean transport layer to manage their workloads. Frequent and fast
connections, short round trips, and latency-sensitive queries all require a specific
tuning effort. This can be broken down into three areas:

• Tuning for large numbers of connections by expanding the amount of TCP/IP
ports.

• Reducing the time it takes to recycle sockets to avoid large amounts of connec‐
tions sitting in TIME_WAIT, and thus rendering it unusable.

• Maintaining a large TCP backlog so that saturation will not cause connections to
be refused.

TCP/IP will become your best friend in troubleshooting latency and availability prob‐
lems. We strongly suggest that you deep-dive into this. A good book to do so is Inter‐
networking with TCP/IP, Vol 1 by Douglas E. Comer (Pearson). It is updated as of
2014 and is an excellent reference.

Storage
Storage for databases is a huge topic. You need to consider the individual disks, the
grouped configuration of disks, controllers providing access to disks, volume man‐
agement software, and the filesystems on top of this. It is quite possible to geek out on
any single section of this for days, so we will try to stay focused on the big picture
here.

In Figure 5-1, you can see the ways in which data is propagated to storage. When you
read from a file, you go from user buffer, to page cache, to disk controller, to disk
platter for retrieval, and then step back through that for delivery to the user.

Hosts | 87

Figure 5-1. The linux storage stack

This elaborate cascade of buffers, schedulers, queues, and caches is used to mitigate
the fact that disks are very slow compared to memory, with the difference being 100
nanoseconds versus 10 milliseconds.

For database storage, you will have five major demands, or objectives:

• capacity
• throughput (or IO per second, aka IOPS)
• latency
• availability
• durability

Storage capacity
Capacity is the amount of space available for the data and logs in your database. Stor‐
age can be via large disks, multiple disks striped together (RAID 0), or multiple disks
functioning as individual mount points (known as JBOD, or just a bunch of disks).
Each of these solutions has a different failure pattern. Single large disks are single
points of failure, unless mirrored (RAID 1). RAID 0 will have its MTBF reduced by a

88 | Chapter 5: Infrastructure Engineering

http://bit.ly/2zyKIt1
http://bit.ly/2zyKIt1

factor of N, where N is the number of disks striped together. JBOD will have more
frequent failures, but unlike RAID 0, the other N–1 disks will be available. Some data‐
bases can take advantage of this and stay functional, if degraded, while the replace‐
ment disk is acquired and installed.

Understanding a database’s total storage needs is only one piece of this picture
though. If you have a 10 TB storage need, you can create a 10 TB stripe set, or mount
ten 1 TB disks in JBOD and distribute data files across them. However, you now have
a 10 TB database to back up at once, and if you have a failure, you will need to
recover 10 TB, which takes a long time. During that time, you will have reduced
capacity and availability for your overall system. Meanwhile, you must consider if
your database software, the operating system, and the hardware can manage the con‐
current workloads to read and write to this monolithic datastore. Breaking this sys‐
tem up into smaller databases will improve resiliency, capacity, and performance for
applications, for backup/restores, and for copying the dataset.

Storage throughput
IOPS is the standard measure of input and output operations per second on a storage
device. This includes reads and writes. When considering the needs, you must con‐
sider IOPS for the peak of a database’s workload rather than the average. When plan‐
ning a new system, you will need to estimate the number of IOPS needed per
transaction, and the peak transactions in order to plan appropriately. This will obvi‐
ously vary tremendously depending on the application. An application that does con‐
stant inserts and single row reads can be expected to do four or five IOPs per
transaction. Complex multiquery transactions can do 20 to 30 easily.

Database workloads tend to be mixed read/write, and random, rather than sequential.
There are some exceptions, such as append-only write schemas (such as Cassandra’s
SSTables), which will write sequentially. For hard disk drives (HDDs), random IOPs
numbers are primarily dependent upon the storage device’s random seek time. For
SSDs, random IOPs numbers are instead constrained by internal controller and
memory interface speeds. This explains the significant improvement in IOPS seen by
SSDs. Sequential IOPS indicate the maximum sustained bandwidth that the disk can
produce. Often sequential IOPS are reported as megabytes per second (MBps), and
are indicative of how a bulk load or sequential writes might perform.

When looking at SSDs, remember to consider the bus, as well. Consider installing a
PCIe bus flash solution, such as FusionIO 6 GBps throughput with microsecond
latency. As of this writing, 10 TB will cost you around $45,000, however.

Traditionally, IOPS was the constraining factor over storage capacity. This is particu‐
larly true for writes, which you could not optimize away via caching like reads.
Adding disks via striping (RAID 0) or JBOD would add more IOPS capacity just like
storage. RAID 0 will give you uniform latency and eliminate hot spots that might

Hosts | 89

show up in JBOD, but at the expense of a reduced MTBF based on the number of
disks in the stripe set.

Storage latency
Latency is the end-to-end client time of an I/O operation; in other words, the time
elapsed between sending an I/O to storage and receiving an acknowledgement that
the I/O read or write is complete. As with most resources, there are queues for pend‐
ing requests, which can back up during saturation. Some level of queuing is not a bad
thing, and, in fact, many controllers are designed to optimize queue depth. If your
workload is not delivering enough I/O requests to fully use the performance avail‐
able, your storage might not deliver the expected throughput.

Transactional database applications are sensitive to increased I/O latency and are
good candidates for SSDs. You can maintain high IOPS while keeping latency down
by maintaining a low queue length and a high number of IOPS available to the vol‐
ume. Consistently driving more IOPS to a volume than it has available can cause
increased I/O latency.

Throughput-intensive applications like large MapReduce queries are less sensitive to
increased I/O latency and are well-suited for HDD volumes. You can maintain high
throughput to HDD-backed volumes by maintaining a high queue length when per‐
forming large, sequential I/O.

The Linux page cache is another bottleneck to latency. By using direct IO (O_DIRECT),
you can avoid multimillisecond latency impacts by bypassing the page cache.

Storage availability
Performance and capacity are critical factors, but unreliable storage must be accoun‐
ted for. Google did an extensive study on HDD failure rates in 2007 titled "Failure
Trends in a Large Disk Drive Population" (see Figure 5-2). From this, you can expect
about 3 out of 100 drives to fail in their first three months of service. Of disks that
make it through the first six months, you will find approximately 1 in 50 fail between
six months and one year in service. This doesn’t seem like a lot, but if you have six
database servers with eight drives each, you can expect to have a disk failure during
that period.

90 | Chapter 5: Infrastructure Engineering

http://bit.ly/2zyKZfx
http://bit.ly/2zyKZfx

Figure 5-2. HDD failure rates, according to Google

This is why engineers began mirroring drives, à la RAID 1, and enhancing stripe sets
with a parity drive. We don’t talk much about the parity variants (e.g., RAID 5)
because their write penalty is so large. Modern storage subsystems will typically find
disks in JBOD or grouped in stripes (RAID 0), mirrors (RAID 1), or mirrors that are
striped (RAID10). With that in mind, it is easy to extrapolate that RAID 1 and RAID
10 are most tolerant of single-disk failures, whereas RAID 0 is most prone to com‐
plete service loss (and greater chances the more disks in the stripe). JBOD shows the
ability to tolerate failures while still serving the rest of the storage.

Availability is not just the MTBF of your volumes. It is also the time it would take to
rebuild after a failure, or the mean time to recover (MTTR). The choice of RAID 10
versus RAID 0 is dependent on the ability to easily deploy replacement database hosts
during a failure. It can be tempting to stay with RAID 0 for performance reasons.
RAID 1 or 10 requires double the IOPS for writes, and if you are using high-end
drives, the duplication of hardware can become expensive. RAID 0 is performant and
predictable, but somewhat fragile. After all, a five-drive stripe set of HDDs can be
expected to have about a 10% failure rate in the first year. With four hosts, you can
reasonably expect a failure every year or two.

With a mirror, you can replace the disk without the need to rebuild the database. If
you are running a 2 TB database with fairly fast-spinning disks, database backup copy
time is measured in hours, and you will likely need more hours for database replica‐
tion to sync the delta from the last backup. To be comfortable with this, you will need
to consider if you have enough capacity to support peak traffic with one, or even two,
failed nodes while this recovery is going on. In a sharded environment, where one
dataset is only a percentage of users, this might be perfectly acceptable, meriting more
fragile data volumes for the benefits of cost and/or write latency.

Durability
Finally, there is durability. When your database goes to commit data to physical disk
with guarantees of durability, it issues an operating system call known as fsync()

Hosts | 91

rather than relying on page cache flushing. An example of this is when a redo log or
write-ahead log is being generated and must be truly written to disk to ensure recov‐
erability of the database. To maintain write performance, many disks and controllers
utilize an in-memory cache. fsync instructs the storage subsystem that these caches
must be flushed to disk. If your write cache is backed by a battery, and can survive a
power loss, it is much more performant to not flush this cache. It is important to vali‐
date that your particular setup does truly flush data to stable storage, whether that is a
non-volatile RAM (NVRAM), write cache or the disk platters themselves. You can do
this via a utility such as diskchecker.pl by Brad Fitzpatrick.

Filesystem operations can also cause corruption and inconsistency during failure
events, such as crashes. Journaling filesystems like XFS and EXT4 significantly reduce
the possibility of such events, however.

Storage Area Networks
In opposition to direct storage, you can use a storage area network (SAN) with an
external interface, typically Fibre Channel. SANs are significantly more expensive
than direct attached, and by centralizing storage, you reduced management expense
and allow a significant amount of flexibility.

With top-of-the-line SANs, you get significantly more cache. Additionally, there are a
lot of features that can be useful for large datasets. Being able to take snapshots for
backups and data copies is incredibly useful. Realistically, data snapshots and move‐
ment are some of the nicest features in modern infrastructures, where SSDs provide
better IO than traditional SANs.

Benefits of Physical Servers
Physical servers are the simplest approach to hosting databases. There are no abstrac‐
tions that hide implementation and runtime details or add additional complexity. In
most cases, you have as much control as is possible with your OS, and as much visi‐
bility. This can make operations fairly straightforward.

Cons of Physical Servers
Still, there can be some drawbacks to using physical servers. First among them is that
you can find yourself wasting capacity that has been dedicated to specific servers.
Additionally, deployment of these systems can take quite a lot of time, and it can be
difficult to ensure that every server is identical from the hardware and software per‐
spectives. With that in mind, let’s discuss virtualization.

92 | Chapter 5: Infrastructure Engineering

https://gist.github.com/bradfitz/3172656

Virtualization
In virtualization, software separates physical infrastructures to create various dedica‐
ted resources. This software makes it possible to run multiple operating systems that
run multiple applications on the same server. With virtual machines (VMs), for
example, you could alternately run four instances of Linux on one server, each with
dedicated computing, memory, networking, and storage.

Virtualization allows an infrastructure’s resources, including compute, storage, and
networking, to be combined to create pools that can be allocated to virtual servers.
This is often referred to as cloud computing. This is what you work with if you are
running on a public cloud infrastructure such as Amazon Web Services (AWS). This
can also be done within your own data centers.

Essentially, whether in a public, private, or hybrid solution, you are able to define
what your server resources and the related operating systems look like via code. This
allows for consistent deployments for database systems, which means the DBREs
users are empowered to build their own database clusters, which have been config‐
ured according to the standards set by the DBRE. These standards include the follow‐
ing:

• OS
• Database software version
• OS and database configurations
• Security and permissions
• Software packages and libraries
• Management scripts

This is all a wonderful thing, but adding an abstraction layer on top of physical
resources does create its own set of complexities to manage. Let’s look at some of
them.

Hypervisor
A hypervisor or virtual machine monitor (VMM) can be software, firmware, or hard‐
ware. The hypervisor creates and runs VMs. A computer on which a hypervisor runs
one or more VMs is called a host machine, and each VM is called a guest machine. The
hypervisor presents the guest operating systems with a virtual operating platform and
manages the execution of the guest operating systems.

Virtualization | 93

Concurrency
Databases running within hypervisors show lower boundaries for concurrency than
the same software on bare metal. When designing for these virtualized environments,
the focus should be on a horizontally scaled approach, minimizing concurrency
within nodes.

Storage
Storage durability and performance are not what you would expect in the virtualized
world. Between the page cache of your VM and the physical controller lies a virtual
controller, the hypervisor, and the host’s page cache. This means increased latency for
I/O. For writes, hypervisors do not honor fsync calls in order to manage perfor‐
mance. This means that you cannot guarantee that your writes are flushed to disk
when there is a crash.

Additionally, even though you can easily spin-up a VM in 10 minutes or less, that
does not necessarily create the data that an existing database needs to be functional.
For instance, if you are deploying a new replica, you will need to bootstrap the data
for that replica from somewhere.

When looking at storage in virtualized environments, there are two major categories:
local storage and persistent block storage. Local storage is ephemeral. Its data cannot
survive the life of the VM. Persistent block storage can be attached to any VM and
utilized. If the virtual machine is shut down, another VM can attach to that storage.
This externalized, persistent storage is ideal for databases. This block storage often
will allow snapshots for easy data movement, as well.

This block storage is much more network dependent than traditional physical disks,
and congestion can quickly become a performance killer.

Use Cases
With all of these caveats, the DBRE must consider virtual and cloud resources care‐
fully when planning to use them for database infrastructure. When designing for
these infrastructures, you must consider all of the aforementioned factors, which we
summarize here:

• Relaxed durability means data loss must be considered an inevitability.
• Instance instability means automation, failover, and recovery must be very

reliable.
• Horizontal scale requires automation to manage significant numbers of servers.
• Applications must be able to tolerate latency instability.

94 | Chapter 5: Infrastructure Engineering

Even with all of this in mind, there can be tremendous value to virtualized and cloud
infrastructures for databases. The ability to create self-service platforms that your
users can build on and work with is a force multiplier for DBRE resources. This
allows dissemination of knowledge and best practices even with only a few DBREs on
staff.

Rapid deployment also allows for extensive testing of applications and prototyping.
This allows for development teams to be much more productive without bottleneck‐
ing on the DBRE for deployments and configuration. This also means developers are
less likely to go off on their own when deploying new application persistence tiers.

Containers
Containers sit on top of a physical server and its host OS. Each container shares the
host OS kernel, binaries, and libraries. These shared components are read-only, and
each container can be written to through a unique mount. Containers are much
lighter than VMs. In fact, they are only megabytes in size. Whereas a VM might take
10 minutes or so to spin up, a container can take seconds to start.

For datastores, however, the advantages of a quick spin up in Docker are often out‐
weighed by the need to attach, bootstrap, and synchronize data. Additionally, kernel-
level customizations, IO heavy workloads, and network congestion often make a
shared OS/host model challenging. Docker is a great tool for rapidly spinning up
deployments for tests and development environments, however, and DBREs will still
find useful places for it in their toolkits.

Database as a Service
Increasingly, companies are looking to third-party solutions for their virtualization
and cloud services. Taking the self-service model we discussed in Chapter 6 further,
you end up with third-party-managed database platforms. All of the public cloud
providers offer these, the most famous being Amazon’s Relational Database Service
(RDS), which offers MySQL, PostgreSQL, Aurora, SQL Server, and Oracle. In these
environments, you are given the opportunity to choose fully deployed database envi‐
ronments to place in your infrastructure.

Database as a Service (DBaaS) has gained significant adoption rates because of the
idea that the automation of many of the more mundane aspects of operations frees up
time from valuable engineering resources. Typical features can include:

• Deployment
• Master failover
• Patches and upgrades

Containers | 95

• Backup and recovery
• Exposure of metrics
• High performance due to "special sauce,” such as Amazon’s Aurora

All of this does free up time, but also can lead software engineers (SWEs) to think
that database specialists are not needed. This could not be further from the truth.
Abstracted services add their own challenges, but more important, they allow you to
focus where your specialized knowledge can create the most value.

Challenges of DBaaS
Lack of visibility is one of the biggest challenges. With no access to the OS, network
devices, and hardware, you will be unable to diagnose many significant issues.

DBaaS and Network Time Protocol (NTP)
We were using one well-known DBaaS, and our client decided to be one of the first to
use a new database version the vendor was providing. We begged the client not to, but
incentives were given and we found ourselves beta testing. In this case, an intrepid
operations member neglected to synchronize Network Time Protocol (NTP) between
all of the DB hosts. After hours of troubleshooting replication lag that could not be
explained, we called support to find out what exactly had been going on. That night
was a whiskey night!

Although many monitoring systems are now gathering database SQL data at the TCP
level to manage data gathering at scale, they must fall back to logs or internal snap‐
shots such as MySQL’s performance schema for data. Additionally, time-tested tracing
and monitoring tools like top, dtrace, and vmstat are unavailable.

Durability issues are similar to other virtualized environments, and implementation
of important components such as replication and backups are often black boxes that
rely on your vendor to do the right thing.

The DBRE and the DBaaS
In the world of marketing, DBaaS platforms are often sold as ways to eliminate the
need for expensive and difficult-to-hire/retain database specialists. The DBaaS plat‐
form does allow for more rapid introduction of an operationally sound database
infrastructure, which can delay the need for hiring or engaging a specialist. This is far
from the elimination of the need for the specialist that is being sold however.

If anything, with the DBaaS abstracting away toil and easy-to-solve issues, you create
risk that a difficult-to-solve issue will come up before you have the appropriate data‐

96 | Chapter 5: Infrastructure Engineering

base specialists dialed into your environment. Additionally, there are key decisions to
be made early that do require someone with depth in the database engine you have
chosen. These decisions include the following:

• Which database engine to use
• How to model your data
• An appropriate data access framework
• Database security decisions
• Data management and growth/capacity plans

So, even though software engineers may be more empowered by the DBaaS, you as
the DBRE should work harder than ever to help them choose correctly and to ensure
that they understand where your expertise can make the difference in success or fail‐
ure of the DBaaS deployment.

DBaaS can be very attractive to an organization, particularly in its early days when
every engineering minute is incredibly critical. As a DBRE in such an environment, it
is strongly recommended that you consider a migration path and a disaster recovery
path to your own infrastructure. Everything that your DBaaS solution can do you and
your operations team can automate at the right time, giving you full control and visi‐
bility into your datastores for better or for worse.

Wrapping Up
In this chapter, we looked at the various combinations of hosts that you might find
yourself working with—physical, virtual, containers, and services. We discussed the
impact of processing, memory, network and storage resources, and the impacts that
under-allocation and misconfiguration can cause.

In Chapter 6, we discuss how to manage these database infrastructures through
appropriate tooling and process to scale and to manage risk and failure. We will cover
configuration management, orchestration, automation and service discovery, and
management.

Wrapping Up | 97

CHAPTER 6

Infrastructure Management

In Chapter 5, we looked at the various infrastructure components and paradigms on
which you might run your datastores. In this chapter, we discuss how to manage
those environments at scale. We begin with the smallest unit, the individual host’s
configuration and definition. From this point, we zoom out to the deployment of
hosts and orchestration between components. After this, we zoom out even further to
the dynamic discovery of the current state of infrastructure, and the publishing of
that data—aka service discovery. Finally, we will go to the development stack, discus‐
sing how to create development environments that are similar to these large produc‐
tion stacks.

Gone are the days of one or two boxes that can be manually managed with ease and
relative stability. Today, we must be prepared to support large, complex infrastruc‐
tures with only a few sets of hands. Automation is critical in ensuring that we can
deploy datastores repeatably and reliably. Application stability and availability, and
the speed at which new features can be deployed, relies on this. Our goals must be to
eliminate processes that are repetitive and/or manual and to create easily reproduci‐
ble infrastructures via standardized processes and automation.

What are good opportunities for this?

• Software installations, including operating system (OS), database, and associated
packages and utilities

• Configuring software and the OS for desired behaviors and workloads
• Bootstrapping data into new databases
• Installing associated tools such as monitoring agents, backup utilities, and opera‐

tor toolkits
• Testing of infrastructure for appropriate setup and behaviors

99

• Static and dynamic compliance testing

If we were to boil all of this down, our goals are to ensure that we can consistently
build and/or reproduce any component of our database infrastructures, and that we
can know the current and previous state of any of these components as we carry out
troubleshooting and testing.

Admittedly, this is a fairly high-level overview. Should you want to deep-dive, we’d
suggest Infrastructure as Code, by Kief Morris (O’Reilly). The goal for this chapter is
to explain the various components of infrastructure management via code that you
will be asked to contribute to, and point out the ways in which they can make your
life as a database reliability engineer (DBRE) easier.

Version Control
To achieve these goals, we must use version control for all components required in
the process. This includes the following:

• Source code and scripts
• Libraries and packages that function as dependencies
• Configuration files and information
• Versions of OS images and database binaries

A version control system (VCS) is the core of any software engineering workflow. The
database and systems engineers working with software engineers (SWEs) to build,
deploy, and manage applications and infrastructures work together within the VCS.
Traditionally, this was the case. The systems and database engineers would often not
use any VCS. If they did happen to use one, it would be separate from the SWE team’s
VCS, leading to an inability to map infrastructure versions to code versions.

Some examples of popular VCS platforms include:

• GitHub
• Bitbucket
• Git
• Microsoft Team Foundation Server
• Subversion

The VCS must be the source of truth for everything in the infrastructure. This
includes scripts, configuration files, and the definition files you will use to define a
database cluster. When you want to introduce something new, you check it into the
VCS. When you want to modify something, you check it out, perform your changes,

100 | Chapter 6: Infrastructure Management

and commit the changes back into the VCS. After commits are in place, review, test‐
ing, and ultimately deployment can occur. It is worth noting that passwords should
be masked in someway before being stored in the VCS.

Configuration Definition
To define how your database cluster should be configured and built, you will be uti‐
lizing a series of components. Your configuration management application will use a
domain-specific language (DSL), though you might also find yourself working with
scripts in Windows PowerShell, Python, Shell Scripts, Perl, or other languages. Fol‐
lowing are some popular configuration management applications:

• Chef
• Puppet
• Ansible
• SaltStack
• CFEngine

By defining configuration, rather than scripting it, you create easily readable compo‐
nents which you reuse across your infrastructure. This creates consistency, and often
reduces the amount of work needed to add a new component to configuration man‐
agement.

These applications have primitives, which are called recipes in Chef or manifests in
Puppet. These are rolled up into cookbooks or playbooks. These rollups incorporate
the recipes with attributes that can be used to override defaults for different needs
such as test versus production, file distribution schemes, and extensions such as libra‐
ries and templating. The end result of a playbook is code to generate a specific com‐
ponent of your infrastructure such as installing MySQL or Network Time Protocol
(NTP).

These files can become quite complex in and of themselves and should share certain
attributes. They should be parameterized so that you can run the same definition
across different environments, such as dev, test, and production based on your inputs.
The actions taken from these definitions and their application also need to be idem‐
potent.

Configuration Definition | 101

Idempotency

An idempotent action is one that can be run repeatedly with the
same outcomes. An idempotent operation takes a desired state and
does whatever is necessary to bring the component to that state
regardless of its current state. For instance, if you are updating a
configuration file to set the size of your buffer cache, you can
assume the entry exists, which is naive and error prone. Instead,
you can insert the line into the file. If you insert this line automati‐
cally, but it already exists, you will duplicate it. Thus, the action is
not idempotent.
Instead, you can have the script look to see if the entry exists. Then,
if the line does exist, you can modify it. If the line is nonexistent,
you can insert it. This is an idempotent approach.

We can break up into sections an example of the configuration definition required by
a distributed system such as Cassandra as follows:

• Core Attributes
— Installation method, location, hashes
— Cluster name and version
— Group and user permissions
— Heap sizing
— JVM tuning and configuration
— Directory layout
— Service configuration
— JMX setup
— Virtual nodes

• JBOD setup and layout
• Garbage collection behavior
• Seed discovery
• Configuration of the YAML config file
• OS resource configs
• External services

— PRIAM
— JAMM (Java metrics)
— Logging
— OpsCenter

102 | Chapter 6: Infrastructure Management

• Data center and rack layout

In addition to idempotency and parameterization, each of these components should
have appropriate pre and post tests and integration into monitoring and logging for
error management and continuous improvement.

Pre and post tests will include validation that state starts and ends up where expected.
Additional tests can focus on using features that might be enabled or disabled by the
change to see if functional behavior is expected. We assume that operational, perfor‐
mance, capacity, and scale tests are done prior to determine if these changes are even
necessary. This means that testing will focus on validation that the implementation
worked and desired behaviors are occurring. You’ll find an example of a real-world
case study with idempotency on the Salesforce Developers blog.

Building from Configuration
After you have your server specifications, acceptance tests, and modules for automa‐
tion and building defined, you have everything in source code you need to build your
databases. There are two approaches regarding how this should be done, and they are
called baking and frying. Baking, frying, recipes, chefs...getting hungry yet? Check out
John Willis’s presentation on DevOps and Immutable Delivery.

Frying involves dynamic configuration at host deployment time. Hosts are provi‐
sioned, operating systems are deployed, and then configuration occurs. All of the
configuration management applications mentioned in the previous section have the
ability to build and deploy infrastructure via frying.

For instance, if you are frying up a MySQL Galera Cluster, you might see the
following:

• Server hardware provisioned (three nodes)
• Operating systems installed
• Chef client and knife (CLI) installed, cookbooks uploaded
• Cookbooks for OS permissions and configuration applied
• Cookbooks for default package installations applied
• Databag created/uploaded for /clusternode level attributes to be used (IP, init

node, package names)
• Node roles applied (Galera Node)

— MySQL/Galera binaries installed
— MySQL utility packages and scripts installed
— Basic configuration set up

Building from Configuration | 103

http://sforce.co/2zxYrjG
https://www.nginx.com/blog/devops-and-immutable-delivery/

— Tests run
— Services started and shut down
— Cluster created/primary node set up
— Remaining nodes setup
— Tests run

• Register cluster with infrastructure services

Baking involves taking a base image and configuring that base image at build time.
This creates a “golden image,"which becomes the standard template for all hosts built
for the same role. This is then snapshotted and stored for future use. Amazon AMIs
or virtual machine (VM) images are examples of the artifacts output from this baking
process. In this scenario, nothing is dynamic.

Packer is a tool from Hashicorp that creates images. The interesting thing about
Packer is that it can create images for different environments (such as Amazon EC2
or VMWare images) from the same configuration. Most configuration management
utilities can create baked images as well.

Maintaining Configuration
In an ideal world, use of configuration management will help you mitigate and poten‐
tially eliminate configuration drift. Configuration drift is what happens after a server
is deployed after frying or baking. Although all instances of this component might
start identical, people will inevitably log in, tweak something, install something, or
run a few experiments and leave some trace behind.

An immutable infrastructure is one that is not allowed to mutate, or change, after it
has been deployed. If there are changes that must happen, they are done to the ver‐
sion controlled configuration definition, and the service is redeployed. Immutable
infrastructures are attractive, because they provide the following:

Simplicity
By not allowing mutations, the permutations of state in your infrastructure are
dramatically limited.

Predictability
State is always known. This means that investigations and discovery are much
faster, and everything is easily reproducible during troubleshooting.

Recoverability
State can easily be reintroduced by redeploying the golden image. This reduces
mean time to recover (MTTR) significantly. These images are known, tested, and
ready to deploy at any time.

104 | Chapter 6: Infrastructure Management

That being said, immutable infrastructures can have fairly dramatic overhead. For
instance, if you have a 20-node MySQL Cluster and you want to modify a parameter,
you must then redeploy every single node of this cluster in order to apply the change
after it is checked in.

In the interest of moderation and middle ground, there can be some mutations that
are frequent, automated and predictable, and can be allowed in the environment.
Manual changes are still prohibited, keeping a significant amount of the value of pre‐
dictability and recoverability while minimizing operational overhead.

Enforcement of Configuration Definitions
How are these policies enforced?

Configuration synchronization
Many of the configuration management tools already discussed will provide synchro‐
nization. This means that any mutations occurring are overwritten on a schedule as
the configuration is forcibly overwritten back to standard. This requires the
synchronized state to be extraordinarily complete, however, or some areas will be
missed, and thus allowed to drift.

Component redeploys
With appropriate tooling, you should be able to identify differences, and redeploy
cleanly to eliminate them. Some environments might go so far as to constantly rede‐
ploy, or redeploy after any manual login/interaction has occurred on the component.
This is generally more attractive in a baked solution, where the overhead of post-
deployment configuration has been eliminated.

Using configuration definition and management can help ensure that your individual
servers or instances are built correctly and stay that way. There is a higher level of
abstraction in the deployment process, which is the definition of cross-service infra‐
structures and orchestration of those deployments.

Infrastructure Definition and Orchestration
Now that we’ve looked at the configuration and deployment of individual hosts,
whether they be servers, VMs, or cloud instances, let’s zoom out to look at groups of
hosts. After all, we will rarely be managing a single database instance in isolation.
With the assumption that we are always working with a distributed datastore, we
need to be able to build, deploy, and operate multiple systems at once.

Orchestration and management tools for provisioning infrastructures integrate with
deployment (either frying or baking) applications to create full infrastructures,
including services that might not use a host, such as virtual resources or platform as a

Infrastructure Definition and Orchestration | 105

http://chadfowler.com/2013/06/23/immutable-deployments.html

service configurations. These tools will ideally create a solution for codifying the cre‐
ation of an entire datacenter or service, giving developers and operations staff the
ability to build, integrate, and launch infrastructures from end to end.

By abstracting infrastructure configurations into archivable, version-controlled code,
these tools can integrate with configuration management applications to automate
the provisioning of hosts and applications while handling all of the set up of underly‐
ing infrastructure resources and services required for automation tools to effectively
do their jobs.

When discussing infrastructure definitions, we often use the term stack. You might
have heard of a LAMP stack (Linux, Apache, MySQL, PHP), or a MEAN stack (Mon‐
goDB, Express.js, Angular.js, Node.js). These are generic solution stacks. A specific
stack might be focused on a specific application or group of applications. A stack
takes an even more specific meaning when you discuss the definition of infrastruc‐
tures for the purpose of automation and orchestration via tooling. That is the defini‐
tion we will be referring to here.

The structure of these stacks has a significant impact on how you meet your responsi‐
bilities as the DBRE on your team. Let’s discuss these permutations, and the impacts
to the DBRE role.

Monolithic Infrastructure Definitions
In this stack, all of the applications and services that your organization owns are
defined together in one large definition. In other words, all database clusters will be
defined in the same files. In such an environment, any number of applications and
services will typically be using one or more databases. You might find five different
applications with their associated databases in the same definition.

There are really no pros to a monolithic infrastructure definition, but there are plenty
of cons. From an overall orchestration/infrastructure as code point of view, the prob‐
lems can be elaborated as follows:

• If you want to make a change to the definition, you will need to test against the
entire definition. This means that tests are slow and fragile. This will cause people
to avoid making changes, creating a calcified and fragile infrastructure.

• Changes are also more prone to break everything rather than being isolated to
one component of the infrastructure.

• Building a test or development environment means that you have to build every‐
thing together rather than a smaller section that is isolated that you can focus on.

• Changes will often be restricted to small groups of individuals who are able to
know the entire stack. This creates bottlenecks of changes, slowing velocity.

106 | Chapter 6: Infrastructure Management

Teams can find themselves in a monolithically defined stack if they have introduced a
new tool, like Terraform, and simply reverse engineered their entire infrastructure
into it. When considering an infrastructure definition, you have horizontal consider‐
ations (various tiers within one stack) and vertical considerations (breaking up your
stack functionally so that one service is in one stack, rather than putting all services in
one).

Separating Vertically
By breaking out the definition to individual services per definition, as illustrated in
Figure 6-1, you can reduce size and complexity. So, what once was one definition file
can become two, one for each service. This reduces the failure domain during
changes to one service only. It will also reduce testing by half, and the size of your
development and test environments commensurately.

Figure 6-1. Separating vertically

If you have multiple applications using the same database tier, which is rather com‐
mon, this will prove more challenging. At this point, you will need to create three def‐
initions. One will be a shared database definition, and the other two will be the
individual service definitions, excluding the database tier, as demonstrated in
Figure 6-2.

Infrastructure Definition and Orchestration | 107

Figure 6-2. Vertically separated service definitions, with shared database

Now your failure domain for changes to the definition file are reduced even further,
because each definition is smaller and more focused. However, you still have two
applications coupled to the database, which means that there will need to be integra‐
tion testing to ensure that changes made to the database tier work effectively with the
other application stacks. So, testing will still require all applications to be built and
deployed. Having applications separated does mean that you have the flexibility to
build and test applications serially or in parallel depending on your infrastructure
constraints.

Separated Tiers (Horizontal Definitions)
If you take the application definitions that have been separated out, you can break
definition files out by tiers, also called horizontally separating. So, a standard web app
might have a web server stack, an application server stack, and a database stack. The
primary advantage of breaking out your infrastructure definition in this matter is that
you have now reduced your failure domain even further. In other words, if you need
to change configuration to your database servers, you don’t need to worry about
potentially breaking the build for web servers.

After you have separated tiers vertically and potentially horizontally, you find yourself
dealing with new and interesting complexities. Specifically, you now have communi‐
cation paths across stacks that require sharing of data. Your database load balancer
virtual IPs must be shared with your application servers, but the stacks have their

108 | Chapter 6: Infrastructure Management

own definitions. This dynamic infrastructure requires a service catalog to ensure that
any component of your infrastructure can effectively share its state to any other com‐
ponent for communication and integration.

Acceptance Testing and Compliance
Utilizing automation and infrastructure as code obviously gives us a lot of benefits.
One more that we haven’t mentioned yet is acceptance testing and compliance. With
images of infrastructure in place, you can utilize tools such as ServerSpec, which uses
descriptive language to define tests for your infrastructure images. This brings test-
driven development (TDD) to your infrastructure, which is a great opportunity to
continue to align infrastructure and software engineering.

With a framework such as ServerSpec for automated testing, you can delve into com‐
pliance and security, which are ideal customers of this. Working with these teams you
can create a test suite focused on database security and compliance. Inspec is a plug-
in for ServerSpec that does this work quite well. You can find more information about
it at the Chef blog.

Service Catalog
With dynamic environments being built, scaled, and destroyed automatically, there
must be a source of truth for current state that all infrastructure components can use.
Service discovery is an abstraction that maps specific designations and port numbers
of your services and load balancers to semantic names. For instance, mysql-replicas is
a semantic that can include any number of MySQL hosts replicating data from the
primary write host. The utility of this is being able to refer to things by semantic
names instead of IP address, or even hostnames. Information in the catalog can be
accessed via HTTP or DNS.

The following are some of the most common service discovery tools available as of
this writing:

• Zookeeper
• Consul.io
• Etcd
• Build your own!

There are numerous use cases for such a server catalog that the DBRE might
encounter. Here are a few. (We discuss more in later chapters as we explore specific
architectures.)

Acceptance Testing and Compliance | 109

https://blog.chef.io/2015/11/04/the-road-to-inspec/

Database failovers
By registering Write IPs to the catalog, you can create templates for load balanc‐
ers. When IP is switched, load balancer configurations rebuild and reload.

Sharding
Share information about writeable shards to application hosts.

Cassandra Seed Nodes
Let bootstrapping nodes know where to go for seeds.

A service catalog can be very simple, storing service data to integrates services, or it
can include numerous additional facilities, including health checks to ensure that
data in the catalog provides working resources. You can also store key–value pairs in
many of these catalogs.

Bringing It All Together
That was a lot of information, and a lot of it high-level. Let’s discuss a day in the life of
a DBRE using these concepts for MySQL. Hopefully, this will add some valuable con‐
text. For simplicity, we will assume that this environment runs in Amazon’s EC2 envi‐
ronment. You’ve been tasked with bringing up a new MySQL cluster for your primary
user database, which is sharded and requires more capacity. Here are the tools you’ve
been given:

• MySQL Community, 5.6
• MySQL MHA for replication management and failover
• Consul for cluster state database

The Terraform files and the Chef Cookbooks for MySQL shards for the user database
are checked into GitHub, of course. There should be no manual changes that need to
occur in order to build this. You grumble about the fact that you should probably
automate capacity analysis and deployment of new shards, but this is only your third
month and you just haven’t had the time yet.

Checking your deployment logs, you see the last time a MySQL shard was deployed,
and you compare that to the current versions of the terraform and chef code to vali‐
date that nothing has changed since then. Everything checks out, so you should be
good to go. First, you run terraform with the plan option, to show the execution path
and verify nothing untoward will happen. Assuming that is good, you go ahead and
run the terraform commands to build the shard.

Terraform executes a chef provisioner that queries Consul for the latest shard_id,
and increments it by one. Using that shard_id, it runs its way through a series of
steps that include the following:

110 | Chapter 6: Infrastructure Management

http://bit.ly/2zxRX4D
http://bit.ly/2zxRX4D

1. Launch three EC2 instances in two availability zones (AZs) using the appropriate
Amazon Machine Images (AMIs) for MySQL Shard Hosts

2. Configuring MySQL on these hosts and bringing the service up
3. Register each node into consul, under the shard_id namespace

• First one will register as master, the following will register as failovers
• Start replication using this data

4. Launch two EC2 instances in two AZs using the appropriate AMIs for MySQL
MHA Manager Hosts

5. Register Master High Availability (MHA) manager to consul, under the shard_id
namespace

6. Configure MHA using node data from consul
7. Start MHA replication manager
8. Run through a series of failover tests

At this point, you have an MHA managed MySQL cluster that is registered in Consul.
Some things will happen automatically from here, including the following:

• Backups start snapshotting from the master automatically, as scripts use Consul.
• Monitoring agents are in the AMIs, and automatically begin sending metrics and

logs to the operational visibility stack.

Finally, when you are satisfied, you mark the shard as active in Consul. At this point,
proxy servers begin adding it to their templates and reloading. Application servers
identify it as available, and start sending data to it as appropriate.

Development Environments
Testing locally in a development environment or sandbox is crucial to this workflow.
You should feel confident in the impacts of your changes before committing it to the
VCS. One of our goals with everything we’ve discussed in this chapter is repeatability.
This means that the sandbox must be as close as possible in software and configura‐
tion as your actual infrastructure. This means the same OS, the same configuration
management, orchestration, and even service catalogs.

When discussing deployment, we mentioned Packer. To reiterate, Packer allows you
to create multiple images from the same configuration. This includes images for vir‐
tual machines on your workstation. Using a tool like Vagrant on your workstation
allows you to download the latest images, build the VMs, and even run through a
standard test suite to verify that everything works as expected.

Development Environments | 111

After you’ve done your changes, tested them, brought down any new changes from
your VCS and tested again, you can commit this right back into the team VCS in
preparation for integration and deployment.

Wrapping Up
Using infrastructure as code, automation, and version control are crucial skillsets for
any reliability engineer, and the DBRE is no exception. With the tools and techniques
discussed in this chapter, you can begin eliminating toil, reducing mistakes, and cre‐
ating self-service deployments for your engineering teams.

In Chapter 7, we begin digging deeper into a crucial component of infrastructure:
backup and recovery. One key difference in the database tiers is the importance of
persistence and availability of data. Although most other environments can be built
as artifacts and deployed fast and easily, databases require large working sets of data
to be attached and maintained safely. There is a broad toolkit available to do this,
which is what we will go over next.

112 | Chapter 6: Infrastructure Management

CHAPTER 7

Backup and Recovery

In Chapters 5 and 6, we focused on infrastructure design and management. This
means that at this point we have a good feeling for how to build, deploy, and manage
distributed infrastructures running databases. This includes techniques for rapidly
adding new nodes for capacity or to replace a failed node. Now, it’s time to discuss the
serious meat and potatoes: data backup and recovery.

Let’s face it. Everyone considers backup and recovery dull and tedious. Most think of
it as the epitome of toil. It is often relegated to junior engineers, outside contractors,
and third-party tooling that the team is loathe to interact with. We’ve worked with
some pretty horrible backup software before. Trust me, we empathize.

Still, this is one of the most crucial processes in your operations toolkit. Moving your
precious data between nodes, across datacenters, and into long-term archives is the
constant movement of your business’ most precious commodity: its data. Rather than
relegating this to a second-class citizen of Ops, we strongly suggest you treat it as a
VIP. Everyone should understand not only the recovery targets, but be intimately
familiar with operating and monitoring the processes. Many DevOps philosophies
propose that everyone should have an opportunity to write and push code to produc‐
tion. We propose that every engineer should participate at least once in the recovery
processes of critical data.

We create and store copies of data, otherwise known as backups and archives, as a
means to the real need. That need is recovery. Sometimes, this recovery is something
nice and leisurely, such as building an environment for auditors or configuring an
alternate environment. More often though, the recovery is needed to rapidly replace
failed nodes or to add capacity to existing clusters.

Today, in distributed environments, we face new challenges in the backup and recov‐
ery realm. Now, as before, most local datasets are distributed to reasonable sizes, of

113

up to a few terabytes at most. The difference is that those local datasets are only one
fraction of a larger distributed dataset. Recovering a node is a relatively manageable
task, but keeping state across the cluster becomes more challenging.

Core Concepts
Let’s begin by discussing core concepts around backup and recovery. If you are an
experienced database or systems engineer, some of this might be rudimentary. If so,
please feel free to fast forward a bit.

Physical versus Logical
When backing up a database physically, you are backing up the actual files in which
the data resides. This means that the database-specific file formats are maintained,
and there is usually a set of metadata within the database that defines what files exist,
and what database structures reside within them. If you back up files and expect
another database instance to be able to utilize them, you will need to back up and
store the associated metadata that the database relies on in order to make the backup
portable.

A logical backup exports the data out of the database into a format that is, theoreti‐
cally, portable to any system. There will usually be some metadata still, but it is more
likely to be focused on the point in time at which the backup was taken. An example
of this is an export of all of the insert statements needed to populate an empty data‐
base to bring it up to date. Another example could be each row in a JSON format.
Due to this, logical backups tend to be very time consuming because it is a row-by-
row extraction rather than a physical copy and write operation. Similarly, recovery
involves all of the normal overhead of the database, such as locking and generation of
redo or undo logs.

An excellent example of this dichotomy is the difference between row-based and
statement-based replication. In many relational databases, statement-based replica‐
tion means that upon commit, a log of data manipulation language (DML; aka insert,
update, replace, delete) statements is appended to. Those statements are streamed to
replicas, where they are replayed. Another approach to replication is row-based, or
change data capture (CDC).

Online versus Offline
An offline, or cold, backup is one in which the database instance that utilizes the files
is shutdown. This allows files to be quickly copied with no worries about maintaining
a point in time state while other processes are reading and writing data. This is an
ideal, but very rare state in which to work.

114 | Chapter 7: Backup and Recovery

In an online, or hot, backup, you are still copying all of the files, but you have the
added complexity of needing to get a consistent, point-in-time snapshot of the data
that must exist for the amount of time it takes a backup to occur. Additionally, if live
traffic is accessing the database during the backup, you also must be careful not to
overwhelm the Input/Output (IO) throughput of the storage layer. Even throttled,
you can find that the mechanisms used to maintain consistency add unreasonable
amounts of latency to application activity.

Full, Incremental, and Differential
A full backup, regardless of the approach, means that the entire local dataset is backed
up fully. On small datasets, this is a fairly trivial event. For 10 terabytes, it can take an
impossible amount of time.

A differential backup allows you to take a backup of only the changed data since the
last full backup. In practice, there is usually more data backed up than just that which
has changed because your data will be in structures such as a page. A page will be of a
particular size, such as 16 K or 64 K, and will have many rows of data in it. An incre‐
mental backup will back up any page that has modified data in it. Thus, larger page
sizes will backup significantly more than just the changed data.

An incremental backup is similar to a differential backup, except that it will use the
last backup, incremental or full, as the point in time at which it will look for changed
data. Thus, if you are restoring an incremental backup, you might need to recover the
last full backup, and one or more incremental backups, as well, to get to the current
point in time.

With these concepts in mind, let’s discuss various things to consider when deciding
on an effective backup and recovery strategy.

Considerations for Recovery
When you first evaluate an effective strategy, you should look back to your Service-
Level Objectives (SLOs), as discussed in Chapter 2. Specifically, you need to consider
availability and durability indicators. Any strategy that you choose will require you to
be able to recover data within the predefined uptime constraints. And, you need to
back up fast enough to ensure that you meet the necessary parameters for durability.
If you back up every day, and your transaction logs between backups remain on
node-level storage, you can very well lose those transactions before the next backup.

Additionally, you need to consider how the dataset functions within the holistic eco‐
system. For instance, your orders might be stored in a relational system, where every‐
thing is committed in transactions, and is thus easily recovered in relation to the rest
of the data within that database. However, after an order is set, a workflow may be
triggered via an event stored in a queuing system or a key–value store. Those systems

Considerations for Recovery | 115

might be eventually consistent, or even ephemeral, relying on the relational system
for reference or recoverability. How do you account for those workflows when recov‐
ering?

If you are in an environment with rapid development, you might also find that data
stored in a backup was written and utilized by a different version of the application
than the version running after the restore is done. How will the application interact
with that older data? Hopefully the data is versioned to allow for that, but you must
be knowledgeable of this and prepared for such eventualities. Otherwise, the applica‐
tion could logically corrupt that data and create even larger issues down the road.

Each of these, and many other variables that you cannot plan for, must be taken into
account when planning for data recovery. As we discussed in Chapter 3, we simply
can’t prepare for every eventuality. But, this is a critical service. Data recoverability is
one of the most significant responsibilities of the database reliability engineer
(DBRE). So, your plan for data recoverability must be able to be as broad as possible,
taking into account as many potential issues as possible.

Recovery Scenarios
With that in mind, let’s discuss the types of incidents and operations that might
require recovery so that we can plan on supporting each need. We can first sort these
into planned versus unplanned scenarios. Treating recovery as an emergency tool
only will limit your team’s exposure to the tool to emergencies and emergency simu‐
lations. Instead, if we can incorporate recovery into daily activities, we can expect a
higher degree of familiarity and success during an emergency. Similarly, we will have
more data to determine whether the recovery strategy supports our SLOs. With mul‐
tiple daily runs, it is easier to get a sample set that can include upper bounds and can
be represented with some level of certainty for planning purposes.

Planned Recovery Scenarios
What are the day-to-day recovery needs that can be incorporated? Here is a list that
we’ve seen at various sites:

• Building new production nodes and clusters
• Building different environments
• Extract, Transform, and Load (ETL) and pipeline processes for downstream data‐

stores
• Operational tests

When performing these operations, be sure to plug the process into your operational
visibility stack:

116 | Chapter 7: Backup and Recovery

Time
How long does each component, as well as the overall process, take to run?
Uncompress? Copy? Log applies? Tests?

Size
How big is your backup compressed and uncompressed?

Throughput
How much pressure are you putting on the hardware?

This data will help you stay ahead of capacity issues, allowing you to ensure that your
recovery process stays viable.

New production nodes and clusters
Whether your databases are part of an immutable infrastructure or not, there are
opportunities for regular rebuilds that will, of necessity, utilize recovery procedures.
Databases are rarely set into autoscaling automation because of the amount of time it
can take for a new node to be bootstrapped and brought into a cluster. Still, there is
no reason that a team can’t set up a schedule to regularly introduce new nodes into a
cluster to test these processes. Chaos Monkey, a tool developed by Netflix that ran‐
domly shuts down systems, can do this in such a way that the entire process of moni‐
toring, notification, triage, and recovery can be tested. If you’re not there yet, though,
you can still do this as a planned part of a checklist of processes your operations team
should be performing at regular enough intervals to keep them all familiar with the
procedure. These activities allow you to test not only a full and incremental recovery,
but incorporation into the replication stream and the process to take a node into ser‐
vice.

Building different environments
It is inevitable that you will be building environments for development, for integra‐
tion testing, for operational testing and for demos among others. Some of these envi‐
ronments will require complete recovery, and should utilize node recovery and full
cluster recovery. Some will have other requirements, such as subset recovery for fea‐
ture testing and data scrubbing for user privacy purposes. This allows for you to test
point-in-time recovery as well as the recovery of specific objects. Each of these are
very different from a standard full dataset recovery and are useful for recovering
from operator and application corruption. By creating APIs that allow for object-level
and point-in-time recovery, you can facilitate the automation and familiarization
with these processes.

Recovery Scenarios | 117

http://bit.ly/2zy1qsE

ETL and pipeline processes for downstream datastores
Similarly to your environment builds, the process of pushing data from production
databases into pipelines for downstream analytics and streaming datastores is a per‐
fect place to utilize point-in-time and object-level recovery processes and APIs.

Operational tests
During various testing scenarios, you will need copies of data. Some testing, such as
capacity and load testing, requires a full dataset, which is an excellent opportunity for
utilizing full-recovery processes. Feature testing might require smaller datasets, which
is an excellent opportunity to use point-in-time and object-level restores.

Recovery testing itself can become a continuous operation. In addition to utilizing
recovery processes in everyday scenarios, you can set restores to constantly be run,
allowing for automated testing and validation to rapidly bring up any issues that
might have occurred to break the backup process. When we bring up this process,
many people ask how to test the success of a restore.

When taking the backup, you can produce a lot of data that can be used for testing,
such as the following:

• The most recent ID in an auto increment set.
• Row counts on objects.
• Checksums on subsets of data that are insert only and thus can be treated as

immutable.
• Checksums on schema definition files.

As with any testing, this should be a tiered approach. There are some tests that will
succeed or fail quickly; these should be the first layer of testing. Examples of this are
checksum comparisons on metadata/object definitions, the successful starting of a
database instance, and the successful connection to a replication thread. Operations
that might take longer, such as checksumming data and running table counts, should
be run later into the validation process.

Unplanned Scenarios
With all of the day-to-day planned scenarios that can be used, the recovery process
should be quite finely tuned, well documented, well practiced, and reasonably free of
bugs and issues. Thus, the unplanned scenarios are rarely as scary as they could be
otherwise. The team should see no difference in these unplanned exercises. Let’s list
and dive into each to discuss the possibilities that might cause us to need to exercise
our recovery processes:

• User error

118 | Chapter 7: Backup and Recovery

• Application errors
• Infrastructure services
• Operating system and hardware errors
• Hardware failures
• Datacenter failures

User error
Ideally, user error should be somewhat of a rare occurrence. If you are creating guard
rails for engineers, you can add a lot of prevention. Still, there will always be an occa‐
sion when an operator accidentally does damage. Some examples of this include the
ubiquitous absence of a WHERE clause when executing an UPDATE or DELETE in
the database client. Or, perhaps a data cleansing script is executed in the production,
rather than the testing environment. There are also many cases when something exe‐
cutes correctly, just at the wrong time, or against the wrong hosts. All of these are
user errors. These errors are often immediately identified and recovered. However,
there can be occasions when the impacts of these changes might not be known for
days or weeks, thus hindering detection.

Application errors
Application errors are the scariest of the scenarios discussed because they can be so
insidious. Applications are constantly modifying how they interact with datastores.
Many of these applications are also managing referential integrity and external point‐
ers to assets such as files or third-party IDs. It is frighteningly simple to introduce a
change that destructively mutates data, removes data, or adds incorrect data in ways
that might not be noticed for quite a long time.

Infrastructure services
Chapter 6 covers the magic of infrastructure management services. Unfortunately,
these systems can be as destructive as they can be helpful, with wide-ranging conse‐
quences from editing a file, pointing to a different environment, or pushing an incor‐
rect configuration.

OS and hardware errors
Operating systems and the hardware they interface with are still systems built by
humans, and thus can have bugs and unintended consequences from undocumented
or poorly known configurations. In the context of data recovery, this is quite true
regarding the path of data from the database through OS caches, filesystems, control‐
lers, and ultimately disks. Data corruption or data loss is much more common than

Recovery Scenarios | 119

we think. Unfortunately, our trust and reliance on these mechanisms creates cultures
in which data integrity is expected rather than something to be skeptical of.

Silent Corruption

This kind of OS and hardware error impact happened to Netflix in
2008. Error detection and correction on disks utilizes error correc‐
tion code (ECC). ECC corrects single-bit errors automatically, and
detects double-bit errors. Thus, an ECC can detect an error up to
twice the hamming distance of what it can correct. So, if it can cor‐
rect 46 bytes in your 512-byte sector hard drive, it can detect up to
92 bytes of error. What isn’t correctable is reported to the controller
as uncorrectable, and the disk controller increments the “uncor‐
rectable error” counter in S.M.A.R.T. Errors larger than 92 bytes
are passed straight to the controller as good data. That propagates
to backups. Terrifying right?
This is what makes cloud and so-called “serverless” computing
something that should be approached with great skepticism. When
you do not have access to implementation details, you cannot be
sure that data integrity is being treated as top priority. Too often it
is ignored, or even tuned down for performance. Without knowl‐
edge, there is no power.
Checksumming filesystems like ZFS will checksum each block,
ensuring detection of bad data. If you are using RAID that involves
mirroring or parity, it will even fix the data.

Hardware failures
Hardware components fail, and in distributed systems they fail regularly. You get reg‐
ular failures of disks, memory, CPUs, controllers, or network devices. These failures
of hardware can cause node failures, or latency on nodes that make the system unusa‐
ble. Shared systems like network devices can affect entire clusters, making them
unavailable, or causing them to break into smaller clusters that aren’t aware of the
network having been partitioned. This can lead to rapid and significant data diver‐
gence that will need to be merged and repaired.

Datacenter failures
Sometimes, hardware failures at the network level can cascade into datacenter fail‐
ures. Occasionally, congestion of storage backplanes cause cascading failures as in the
case of Amazon Web Services in 2012. Sometimes hurricanes, earthquakes, and trac‐
tor trailers can create conditions that cause the failure of entire datacenters. Recovery
from this will test even the most robust of recovery strategies.

120 | Chapter 7: Backup and Recovery

http://bit.ly/2zxSpzR

Scenario scope
Having enumerated the planned and unplanned scenarios that might create the need
for a recovery event, let’s further add the dimension of scope to these events. This will
be useful to determine the most appropriate response. Here are ranges we’ll consider:

• Localized or single-node
• Cluster-wide
• Datacenter or multiple clusters

In a local or single-node scope, the recovery is limited to a single host. Perhaps you are
adding a new node to a cluster for capacity or for the replacement of a failed node.
Perhaps you are doing a rolling upgrade, and restores are being done node by node.
Any of these are local scope.

In a cluster-wide scope, the need to execute recovery is global to all members of that
cluster. Perhaps a destructive mutation or data removal occurred and cascaded to all
nodes via replication. Or, perhaps you need to build a new cluster for capacity testing.

Datacenter or multiple cluster scope indicates that all data in a physical location or
region needs recovery. This could be due to failure of shared storage, or a disaster
that has caused the catastrophic failure of a datacenter. This might also be deploy‐
ment of a new redundant site for planning purposes.

In addition to the locality scope, there is dataset scope. This can be enumerated into
three potential types:

• Single object
• Multiple objects
• Database metadata

In single-object scope, one specific object requires recovery of some or all data. The
incident discussed previously, in which a DELETE ends up removing more data than
planned, is a single-object scope. In multiple objects, the scope is against more than
one, and possibly all, objects in a particular database. This can occur in application
corruption or during a failed upgrade or shard migration. Finally, there is database
metadata scope, in which the data stored in the database is fine, but the metadata that
makes the database usable, such as user data, security permissions, or mapping to OS
files, is lost.

Scenario Impact
In addition to defining the scenario requiring recovery and the scope enumerated, it
is also crucial to define the potential impacts because they will be significant in deter‐

Recovery Scenarios | 121

mining how the recovery option is approached. You can approach data loss that
doesn’t affect the SLO methodically and slowly to minimize escalating the impact.
More destructive changes that are causing SLO violation must be approached with an
eye toward triage and rapid service restoration before any long-term clean up. We can
separate the approaches into three categories:

• SLO impacting, application down, or majority of users affected
• SLO threatening, some users affected
• Features affected, non-SLO threatening

With recovery scenario, scope, and impact, we have a potential combination of 72 dif‐
ferent scenarios to consider. That’s a lot of scenarios! Too many really to give each the
level of focus they need. Luckily, many scenarios can utilize the same recovery
approach. Still, even with this overlap, there is no way that we can fully plan for every
eventuality. Thus, building a multitiered approach to recovery is required to help
make sure we have as extensive of a toolkit as possible. In the next section, we use the
information we just went through in this section to define the recovery strategy.

Anatomy of a Recovery Strategy
There is a reason why we say “recovery strategy” rather than “backup strategy.” Data
recovery is the very reason we do backups. Backups are simply a means to the end,
and thus are dependent on the true requirement: recovery within parameters. The
simple question “Is your database backed up?” is a question that should be followed
with the response, “Yes, in multiple ways, depending on the recovery scenario.” A
simple yes is naive and promotes a false sense of security that is irresponsible and
dangerous.

An effective database recovery strategy not only engages multiple scenarios with the
most effective approaches, but also includes the detection of data loss/corruption,
recovery testing, and recovery validation.

Building Block 1: Detection
Early detection of potential data loss or corruption is crucial. In our discussion of
user and application errors in “Unplanned Scenarios” on page 118, we noted that
these problems can often go for days, weeks, or even longer before being identified.
This means that backups might even be aged-out by the time the need for them is
noticed. Thus, detection must be a high priority for all of engineering. In addition to
building early detection around data loss or corruption, ensuring that there is as long
of a window as possible in place to recover in case early detection fails is also critical.
Let’s look at the different failure scenarios discussed, and identify some real-world
approaches to detection and lengthened recovery windows.

122 | Chapter 7: Backup and Recovery

User error
One of the biggest impacts in reducing time to identifying data loss is through not
allowing manual or ad hoc changes to be executed in production environments. By
creating wrappers for scripts, or even API-level abstractions, engineers can be guided
through effective steps for ensuring all changes are as safe as possible, tested, logged,
and pushed up to the appropriate teams.

An effective wrapper or API will be able to do the following:

• Execute in multiple environments via parameterization
• A dry-run stage, in which execution results can be estimated and validated
• A test suite for the code execution
• Validation post-execution to verify that changes met expectations
• Soft-deletion or easy rollback via the same API
• Logging by ID of all data modified, for identification and recovery

By removing the ad hoc and manual components of these processes, you can increase
the likelihood that all changes will be trackable by troubleshooting engineers. All
changes will be logged so that there is traceability and the change cannot simply dis‐
appear into the day-to-day noise. Finally, by soft-staging mutations or deletions and
building in easy rollbacks of any data, you give greater windows of time for problems
with the change to be identified and corrected. This is not a guarantee. After all, man‐
ual processes can be extremely well logged, and people can forget to set up logging in
automated processes, or they can bypass them.

Application errors
A key to early detection of application errors is data validation. When engineers
introduce new objects and attributes, database reliability engineers should work with
them to identify data validation that can be done downstream, outside of the applica‐
tion itself.

Like all testing, initial work should focus on quick tests that provide fast feedback
loops on critical data components, such as external pointers to files, relationship
mapping to enforce referential integrity, and personal identification information
(PII). As data and applications grow, this validation becomes more expensive and
more valuable. Building a culture that holds engineers accountable for data quality
and integrity rather than the storage engines pays dividends in terms of not only flex‐
ibility to use different databases, but also by helping people feel more confident about
experimenting and moving fast on application features. Validation functions as a
guard rail, helping everyone to feel braver and more confident.

Anatomy of a Recovery Strategy | 123

Infrastructure services
Any catastrophic infrastructure impacts that require recovery should be caught rap‐
idly by monitoring the operational visibility stack. That being said, there are some
changes that can be quieter and potentially cause data loss, data corruption, or availa‐
bility impacts. Using golden images and comparing them regularly to your infrastruc‐
ture components can help identify straying from the test images quickly. Similarly,
versioned infrastructure can help identify straying infrastructure and alert the appro‐
priate engineers or automation.

OS and hardware errors
As with infrastructure services, the majority of these problems should be rapidly
caught by monitoring of logs and metrics. Edge cases that are not standard will
require some thought and experience to identify and add to monitoring for early
detection. Checksums on disk blocks is an example of this. Not all filesystems will do
this, and teams working with critical data need to take the time to consider the appro‐
priate filesystems that can identify silent corruption via checksumming.

Hardware and datacenter failures
As with infrastructure services, these failures should be easily identifiable via the
monitoring that we’ve already gone over in Chapter 4. Isn’t it great that we already did
that?

Building Block 2: Tiered Storage
An effective recovery strategy relies on data being placed on multiple storage tiers.
Different recovery needs can be served by different storage areas, which not only
ensure the right performance, but also the right cost and the right durability for any
number of scenarios.

Online, high performance storage
This is the storage pool most of your production datastores will run on. It is charac‐
terized by a high amount of throughput, low latency, and thus, a high price point.
When recovery time is of the utmost importance, putting recent copies of the data‐
store, and associated incremental backups on this tier is paramount. Generally speak‐
ing, only a few copies of the most recent data will reside here, allowing for rapid
recovery for the most common and impactful of scenarios. Typical use cases will be
full database copies to bring new nodes into production service after failures, or in
response to rapid escalations of traffic that result in a need for additional capacity.

124 | Chapter 7: Backup and Recovery

Online, low-performance storage
This storage pool is often utilized for data that is not sensitive to latency. Larger-sized
disks that have low throughput and latency profiles—and a lower price point—make
up this pool. These storage pools are often much larger due to this, and thus more
copies of data from further back in time can be stored in this tier. Relatively infre‐
quent, low-impact, or long-running recovery scenarios will utilize these older back‐
ups. Typical use cases will be finding and repairing application or user errors that
slipped by early detection.

Offline storage
Tape storage or even something like Amazon Glacier are examples of this kind of
storage. This storage is off-site, and often requires movement via vehicle to bring it to
an area where it can be made available for recovery. This can support business con‐
tinuity and auditory requirements but does not have a place in day-to-day recovery
scenarios. Still, due to the size and cost, vast amounts of storage are available here,
allowing for the potential of storing all data for the life of the business, or at least for a
full legal compliance term.

Object storage
Object storage is a storage architecture that manages data as objects, rather than files
or blocks. Object storage gives features not available through traditional storage
architectures, such as an API available to applications, object versioning, high degrees
of availability via replication and distribution. Object storage allows for scalable and
self-healing availability of large amounts of objects with full versions and history.
This can be ideal for easy recovery of specific objects that are unstructured, and that
are not reliant on relationships to other data for coherence. This gives an attractive
opportunity to allow for recovery of application or user errors. Amazon S3 is a classic
example of an inexpensive, scalable, and reliable object-level storage tier.

Each of these tiers plays a part in a comprehensive strategy for recoverability across
multiple potential scenarios. Without being able to predict every possible scenario, it
is this level of breadth that is required. Next, we will discuss the tools that utilize these
storage tiers to provide recoverability.

Building Block 3: A Varied Toolbox
So, now it is time to evaluate the required recovery processes by going through the
scenarios and evaluating options. We know from various sections in this chapter that
we have a series of tools available to us. Let’s look at them a little more closely.

Anatomy of a Recovery Strategy | 125

Replication Is Not a Backup!

You will note that nowhere do we discuss replication as a way to
effectively back up data for recovery. Replication is blind, and can
cascade user errors, application errors, and corruption. You must
look at replication as a necessary tool for data movement and syn‐
chronization, but not for creating useful recovery artifacts. If any‐
one tells you that they are using replication for backups, give them
some side eye and move on. Similarly, RAID is not a backup.
Rather, it is a redundancy.

Full physical backups
We know that we will need to do full restores at each level of scope: node level, cluster
level, and datacenter level. Rapid, portable full restores are incredibly powerful and
mandatory in dynamic environments. They allow rapid node builds for capacity or
for deployment of replacements during failures. A full backup can be done via full
data copies over the network, or via volumes that can easily be attached and detached
from specific hosts/instances. To do this, you need full backups.

Full backups of a relational database require either the opportunity to lock the data‐
base to get a consistent snapshot from which you can copy, or the ability to shut the
database down for the duration of the copy. In an asynchronously replicated environ‐
ment, the replicas cannot be completely trusted to be synchronized with the primary
writer, so you should perform these full backups from the primary if at all possible.
After the snapshot is created within the database or via a filesystem or infrastructure
snapshot, you can copy that snapshot to staging storage.

Full backups of an appending write datastore, such as Cassandra, involve a snapshot
that utilizes an OS hard link at the OS level. Because the data in these distributed
datastores is not on all nodes, the backup is considered an eventually consistent
backup. Recovery will require the node being brought back into a cluster at which
point regular consistency operations will eventually bring it up to date.

A full backup on online, high-performance storage is for immediate replacement into
an online cluster. These backups are typically uncompressed because uncompression
takes a lot of time. Full backups on online, low-performance storage are utilized for
building different environments, such as for testing, or for analytics and data foren‐
sics. Compression is an effective tool to allow for longer timelines of full backups on
limited storage pools.

Incremental physical backups
As discussed earlier, incremental backups allow for bridging the gap between the last
full backup and a place in time after it. Physical incremental backups are generally
done via data blocks that have a changed piece of data in it. Because full backups can

126 | Chapter 7: Backup and Recovery

be expensive, both in terms of performance impact during the backup and storage,
incremental backups allow you to quickly bring a full backup that might be older up
to date for use in the cluster.

Full and incremental logical backups
A full logical backup provides for portability and simpler extraction of subsets of
data. They will not be used for rapid recovery of nodes, but instead are perfect tools
for use in forensics, moving data between datastores, and recovering specific subsets
of data from large datasets.

Object stores
Object stores, like logical backups, can provide for easy recovery of specific objects.
In fact, object storage is optimized for this specific use case, and it can easily be used
by APIs to programmatically recover objects as needed.

Building Block 4: Testing
For such an essential infrastructure process as recovery, it is astonishing how often
testing tends to fall by the wayside. Testing is an essential process to ensure that your
backups are usable for recovery. Testing is often set up as an occasional process, to be
run on an intermittent basis such as monthly or quarterly. Although this is better
than nothing, it allows for long periods of time between tests during which backups
can stop working.

There are two effective approaches to adding testing into ongoing processes. The first
one is incorporating recovery into everyday processes. This way, recovery is con‐
stantly tested, allowing for rapid identification of bugs and failures. Additionally, con‐
stant recovery creates data about how long your recovery takes, which is essential in
calibrating your recovery processes to meet Service-Level Agreements (SLAs). Exam‐
ples of constant integration of recovery into daily processes includes the following:

• Building integration environments
• Building testing environments
• Regularly replacing nodes in production clusters

If your environment does not allow for enough opportunities to rebuild datastores,
you can also create a continuous testing process, whereby recovery of the most recent
backup is a constant process, followed by verification of the success of that restore.
Regardless of the presence of automation, even offsite backup tiers do require occa‐
sional testing.

Anatomy of a Recovery Strategy | 127

With these building blocks, you can create an in-depth defense for different recovery
scenarios. By mapping out the scenarios and tools used to recover them, you can then
begin evaluating your needs in terms of development and resources.

A Recovery Strategy Defined
As we discussed earlier in this chapter, we have multiple failure scenarios to prepare
for. To do this, we need a rich toolset, and a plan for utilization of each of those tools.

Online, Fast Storage with Full and Incremental Backups
This portion of the strategy supports the meat and potatoes of daily recovery. When
you need to build a new node for rapid introduction into production or for testing,
you use this strategy.

Use Cases
The following scenarios are the primary use cases for this portion of strategy:

• Replacing failed nodes
• Introducing new nodes
• Building test environments for feature integration
• Building test environments for operations testing

Running a daily full backup is often the highest frequency possible due to latency
during backups. Keeping up to a week’s worth allows for rapid access to any recent
changes and is usually more than enough. This means seven full copies of the data‐
base, uncompressed, plus the amount of data required to track all changes for incre‐
mental backups. Some environments do not have the capacity or money for this, so
permutations can occur in retention period and frequency as levers for tuning.

Detection
Monitoring informs you when there is a node or component failure requiring recov‐
ery to new nodes. Capacity planning reviews and projections let you know when you
need to add more nodes for capacity purposes.

Tiered storage
Online, high-performance storage is required because production failures require
rapid recovery. Similarly, testing must be as fast as possible to support rapid develop‐
ment velocity.

128 | Chapter 7: Backup and Recovery

Toolbox
Full and incremental physical backups provide the fastest recovery option, and are
the most appropriate here. These backups are left uncompressed due to recovery time
needs.

Testing
Because integration testing happens frequently, these recovery scenarios occur fre‐
quently. In virtual environments, daily reintroduction of one node into the cluster
allows for similar frequent exercising of recovery processes. Finally, a continuous
recovery process is introduced due to the significant importance of this process.

Online, Slow Storage with Full and Incremental Backups
Here, we have slower storage with cheaper, more plentiful space.

Use cases
The following scenarios are the primary use cases for this portion of strategy:

• Application errors
• User errors
• Corruption repair
• Building test environments for operations testing

When new features, failed changes, or inappropriate migrations occur and cause
damage to data, you need to be able to access and extract large amounts of data for
recovery. That is where this tier comes in. This is perhaps the messiest stage of recov‐
ery because there are too many permutations of potential damage to account for.
Code often must be scripted during the recovery effort, which itself can lead to more
bugs and errors without effective testing.

Copying full backups from high-performance to low-performance storage through a
compression mechanism is an easy way to get full backups into this portion of our
strategy. Due to compression and cheaper storage, keeping up to a month or even
longer is possible depending on budget and needs. In highly dynamic environments,
the opportunity for missing corruption and integrity issues is much higher, which
means you need to account for a longer amount of time.

Detection
Data validation is the key for identifying the need for recovery from this pool. When
validation fails, engineers can use these backups to identify what happened, and
when, and begin extracting clean data for reapplication into production.

A Recovery Strategy Defined | 129

Tiered storage
Online, low-performance storage is required because a long window of time is
required for this part of the strategy. Cheap, large storage is the key.

Toolbox
Full and incremental physical backups are the most appropriate here. These backups
are compressed due to recovery time needs as well. Here, you can also utilize logical
backups, such as replication logs, in addition to physical ones to allow for more flexi‐
bility in recovery.

Testing
Because this recovery does not happen as often, continuous automated recovery pro‐
cesses are critical to ensure that all backups are usable and in good shape. Occasional
“game day” practice runs of specific recovery scenarios such as a table, or a range of
data, are also good to keep teams familiar with the processes and tools.

Offline Storage
By far the least expensive, this is also the slowest of storage tiers from which to extract
data.

Use cases
The following scenarios are the primary use cases for this portion of strategy:

• Audits and compliance
• Business continuity

So, this part of the solution is really focused on rare, but highly critical needs. Audits
and compliance often require data going back seven years or more. But, they are not
time sensitive, and can take quite a while to prepare and present. Business continuity
requires copies of data away from the same physical locations of the current produc‐
tion systems to ensure that if there are disasters, you can rebuild. Although this is
time sensitive, it can be restored in staged approaches that allow for flexibility.

Copying full backups from low-performance to offline storage through a compres‐
sion mechanism is an easy way to get full backups into this portion of our strategy.
Keeping up to seven years or even longer is not only possible, but required.

Detection
Detection is not a substantial part of this component of the strategy.

130 | Chapter 7: Backup and Recovery

Tiered storage
Cheap storage in vast sizes is required because a long window of time is required for
this part of the strategy. Tape or solutions like Amazon Glacier are often the choices
here.

Toolbox
Full backups are the most appropriate here. These backups are compressed due to
recovery time needs also.

Testing
Testing strategies here are similar to the online, slow storage tier.

Object Storage
An example of object storage is Amazon’s S3. It is characterized by programmatic
access, rather than physical.

Use cases
The following scenarios are the primary use cases for this portion of the strategy:

• Application errors
• User errors
• Corruption repair

Object storage inspection, placement, and retrieval APIs are given to software engi‐
neers for integration into applications and administrative tools to effectively recover
from user error and application errors. With versioning, it becomes trivial enough to
recover from deletes, unexpected mutations, and other potential time-sinks for
administrators without these tools.

Detection
Data validation and user requests are key for identifying the need for recovery from
this pool. When validation fails, engineers can identify the date ranges of the occur‐
rence and programmatically recover from the incident.

Testing
Because object-level recovery becomes a part of the application, standard integration
testing should be more than enough to ensure that this works.

With these four approaches to data recovery, we are able to provide a fairly compre‐
hensive strategy for recovering from most scenarios, even those for which we don’t

A Recovery Strategy Defined | 131

expect or plan. There is fine tuning to be done based on recovery service-level expect‐
ations, budget, and resources. But, overall, we’ve set the stage for an effective plan that
incorporates detection, metrics, and tracking, and continuous testing.

Wrapping Up
You should be finishing this chapter with a solid understanding of the potential risks
to your environment that could require data recovery. These risks are legion and
unpredictable. One of the most important points is that you can’t plan for everything,
and you need to build a comprehensive strategy to ensure you can tackle anything
that comes up. Some of this includes working with software engineers to incorporate
recovery into the application itself. In other places, you need to build some pretty
solid recovery software yourself. And in all cases, you must build off of the previous
chapters on service-level management, risk management, infrastructure manage‐
ment. and infrastructure engineering to get there.

In Chapter 8, we discuss release management. It is our hope that going into the rest of
this book, data recovery stays in the forefront of your mind. Every step forward in an
application and infrastructure brings risks to data and stateful services. The prime
directive of the DBREs world is to ensure that data is recoverable.

132 | Chapter 7: Backup and Recovery

CHAPTER 8

Release Management

As we automate and ease the burdens of infrastructure management, the database
reliability engineer (DBRE) is able to devote more time to the highly valuable parts of
their job. One of these high-value activities is working with software engineers to
build, test and deploy application features. Traditionally, the database administrator
(DBA) would be a gatekeeper to production. They would expect to see each database
migration, database object definition, and code accessing the database to ensure that
it was done correctly. When satisfied, the DBA would plan an appropriate hand-
crafted change and husband it through into production.

You might already be thinking that this is not necessarily a sustainable process for
environments experiencing significant amounts of deployments and changes in their
database structures. In fact, if you’ve been part of one of these processes you are
already keenly aware of how quickly a DBA can go from gatekeeper to bottleneck,
leading to burnout on the DBA end and frustrations in software engineering.

Our goal in this chapter is to look at how DBREs can effectively utilize their time,
skills, and experience to support a software engineering process that utilizes continu‐
ous integration (CI) and even continuous deployment (CD) without becoming a bot‐
tleneck.

Education and Collaboration
One of the first steps the DBRE must take is educating the developer population
about the datastores with which they are working. If the SWEs can make better
choices about their data structures, their SQL, and the overall interaction strategies,
there will be fewer needs for direct intervention by the DBRE. By taking on the role of
conduit of database knowledge to the SWE teams, you can have quite a significant
impact on the continuous learning processes of your peers. This also fosters better

133

relationships, trust, and communication, all things critical to the success of the tech‐
nical organization.

To be clear, we are not advocating that the DBRE attempt a hands-off relationship
with the software engineering team. Instead, we are suggesting an interaction
wherein the DBRE uses regular interactions and strategic efforts to create a knowl‐
edgeable team that has access to resources and can function autonomously for a high
degree of its day-to-day decisions with respect to the databases.

Remember to keep everything that you do specific, measurable, and actionable.
Define key metrics for your team’s success in this, and as you implement strategies
and changes, see how they help the team. Some key metrics to consider in this pro‐
cess are:

• Number of database stories that require DBRE interaction.
• Success/Failure of DB story deployments.
• Feature velocity. How quickly can a SWE get a story into production?
• Downtime caused by DB changes.

Agile methodology and DevOps cultures require cross-functional interactions
between people of different backgrounds, skill levels, and, of course, professional
contexts to collaborate closely. Education and collaboration are a huge part of this
process, and are great opportunities for you as the DBRE to shift out of the legacy
“DBA” mode and become an integrated part of your technical organization.

Become a Funnel
You will undoubtedly find yourself following blogs, twitter feeds, and social accounts
of people and organizations that you consider to be exceptional in the world of data
and databases. In doing this, you will find articles, Q&A sessions, podcasts, and
projects that have relevance and value to what you and your teams are doing. Curate
these and share them. Create a regular newsletter, forum, or even a channel in chat
where you can post relevant information and bring it up for discussion. Show the
engineering team that you and the other DBREs are invested in their success and
continued development.

Foster Conversations
The next step is to create active dialogue and interactions with software engineers.
This is where you and the team begin to dig into relevant content that you have
shared to generate ideas, learn to apply the information and even improve upon it by
identifying gaps and teaming up for further study and experimentation. There are
multiple ways to do this, and it will depend significantly on the culture of learning
and collaboration in your environment. Here are just a few examples:

134 | Chapter 8: Release Management

• Weekly tech talks
• Brown bag lunches
• Online AMAs (“ask me anythings”)
• Chat channel focused on knowledge sharing

Similarly, you can hold open office hours, where people are encouraged to ask you
questions, interact on specific topics, and explore things together.

Domain-Specific Knowledge
Although the previous components provide general foundation and knowledge rele‐
vant to the appropriate datastores and architectures in use at your organization, there
is still a need for knowledge transfer specifically related to your organization’s
domains.

Architecture
We are not fans of documentation that is static and untied to the processes that
actually build and deploy our architectures. With configuration management and
orchestration systems, you get a lot of documentation for free that is always up to
date. Putting tools on top of these to allow for easy discovery, borrowing, and annota‐
tion of notes and comments creates a living, breathing document for teams.

On top of this comes the ability to understand context and history. There is a reason
that certain datastores, configurations, and topologies are made. Helping engineers
find out what architecture is in place, why it is in place, how to find documentation
about how to interact with it, and, finally, what trade-offs and compromises have
been made to get to where we are now.

As the DBRE, it is your job to make this knowledge, context, and history available to
engineers who are making decisions daily while working on features without your
oversight. Building a knowledge base of design documents creates the structure nec‐
essary to build context and history around the architecture. These documents can
apply to full projects that require new architectural components, or they might relate
to smaller incremental changes or subprojects. For instance, you would definitely
need a design document to show the process of moving from statement- to row-based
replication, but it would not necessarily have the same requirements as the first Kafka
installation to support building a distributed log file for event-driven architectures.

Creating and disseminating templates for these documents is a team exercise. It is
critical, however, that certain pieces of information are included:

Executive summary
For those looking for the basics.

Education and Collaboration | 135

Goals and anti-goals
What was expected out of this project? What was out of scope?

Background
Context a future reader might need.

Design
From high-level to quite detailed, you should find diagrams, sample configura‐
tions, or algorithms.

Constraints
What did you need to keep in mind and work around, such as compliance for
PCI, IaaS-specific needs or staffing?

Alternatives
Did you evaluate other options? What methodology did you use and why were
they discarded?

Launch Details
How was it rolled out? What problems arose and how were they managed?
Scripts, processes and notes go here also.

As you can see, these documents can potentially grow quite large. For some projects,
that is ok. Distributed systems and multitier services are complex and there is a lot of
information and context that must be absorbed. Remember that a big goal here is giv‐
ing that context to engineers without requiring more time from you than necessary.

Data model
Just as important as the architecture, data flow and physical pipelines is the informa‐
tion about the kind of data that is being stored. Letting software engineers know what
kind of data is already stored and where they can find it can eliminate a significant
amount of redundancy and investigative time from the development process. Addi‐
tionally, this allows you to share how the same data should be represented in various
paradigms—relational, key–value, or document oriented. This is also the opportunity
to give best practices for which data stores are not appropriate for certain kinds of
data.

Best Practices and Standards
Giving engineers standards for the activities they engage in regularly is another effec‐
tive method for optimizing the amount of value you are able to generate. You can do
this incrementally as you help engineers and make decisions. Some examples of this
include the following:

• Datatype standards

136 | Chapter 8: Release Management

• Indexing
• Metadata attributes
• Datastores to use
• Metrics to expose
• Design patterns
• Migration and DB change patterns

Publishing these as you work with engineers allows for a self-service knowledge base,
accessible at any time rather than forcing teams to bottleneck on you.

Tools
Giving software engineers effective tools for their development process is the ultimate
enabler. You might be helping them with benchmarking tools and scripts, data con‐
sistency evaluators, templates, or even configurators for new data stores. Ultimately,
what you are doing is enabling greater velocity in the development process while
simultaneously freeing up your time for higher-value efforts.

Following are some excellent examples of tools:

• Etsy’s Schemanator
• Percona Toolkit, particularly online schema changes
• SQL Tuning and Optimzation suites
• SeveralNines Cluster Configurator
• Checked in Change plan templates and examples
• Checked in migration scripts and pattern examples
• Benchmark suites for easy testing, visualization, and analysis

Treat software engineering teams as your customers, and practice lean product devel‐
opment. Get them a minimally viable tooling on how to do their jobs and consistently
interview, monitor, and measure their successes, failures, pain points, and wishes.
This will guide you toward what tools will give them the most benefits.

Collaboration
If you’re regularly educating, creating tools, and empowering engineers, good rela‐
tionships will naturally be created. This is critical, because they lead to ongoing col‐
laboration. Any software engineer should be empowered to reach out to the DBRE
team to ask for information or for the chance to pair while they work. This gives great
value bidirectionally, as the software engineers (SWEs) learn more about how the

Education and Collaboration | 137

https://martinfowler.com/articles/evodb.html

DBRE team works and what they look for, and the DBRE team learns more about the
software development process.

DBREs can facilitate this further by proactively reaching out to engineers. There are
stories that obviously have a large dependency and reliance on DB development and
refactoring. This is where DBREs should be focusing their efforts, to help guarantee
success and efficiency. Ask to pair or be part of a team on these stories. Similarly,
keeping an eye on migrations being committed into mainline will help the DBRE
team cherry pick where it needs to perform reviews.

It goes without saying, but making sure that DBREs are not segregated into their own
cave, deep underground and away from where code is being built will help ensure
that this collaboration can actually occur. Rotating DBREs and SWEs into each oth‐
er’s projects and work can also do this.

Throughout this section, we have been discussing ways in which you can help soft‐
ware engineers in the development process to be as self-sufficient as possible. As
development teams grow, you need to utilize effective education, standards, and tool‐
ing to ensure that your teams are making good decisions without needing your direct
intervention. Simultaneously, you are able to educate engineers regarding when they
do need you to review upcoming changes and solutions so that you can assist at the
appropriate times.

Next, we discuss how to effectively support the various components of the delivery
pipeline as DBREs. Although Continuous Delivery (CD) is not a new concept by any
means, organizations have struggled to incorporate databases into the process. In
each of the following sections, we discuss how to effectively introduce the database
layers into the full delivery cycle.

Integration
Frequent integration of database changes allows for smaller, more manageable
changesets and creates quicker feedback loops by identifying breaking changes as
soon as possible. Many organizations strive for Continuous Integration (CI), enabling
automatic integration of all checked-in changes. A large portion of the value of CI is
the automated tests that prove that the database is meeting all expectations for the
application. These tests are applied any time that code is committed.

Throughout the software development life cycle, any change to the database code or
components should trigger a fresh build, followed by integration and its tests. You
and the software engineering team are responsible for establishing the working defi‐
nition of the database. Integration continues to verify that the database remains in a
working state while the software engineers refactor the data model, introduce new
datasets, and find new and interesting ways to query the database.

138 | Chapter 8: Release Management

Doing CI for the database tier proves to be very challenging. In addition to the func‐
tional aspects of any applications utilizing database objects, there are operational
requirements around availability, consistency, latency, and security. Changes to
objects can affect stored code (functions, triggers, or views among others), and even
queries from other parts of the applications. Additionally, advanced features, such as
events, in databases can create more fragility. Beyond testing for functionality, there
are numerous potential edge cases involving data integrity. Even though sometimes
constraints can enforce integrity, these rules must be tested. Even more concerning
are environments in which no constraints exist.

Prerequisites
To establish CI at the database level, there are five requirements that you must satisfy.
Let’s take a look at each one.

Version control system
Just as with infrastructure code and configurations, all database migrations must be
checked in to the same version control system (VCS) as the rest of the application. It
is critical that you are able to build from the latest configurations in order to under‐
stand how a recent database configuration change could potentially disrupt and break
your application builds in new and interesting ways.

At this risk of being redundant, everything must be checked in to code. This includes
the following:

• DB object migrations
• Triggers
• Procedures and functions
• Views
• Configurations
• Sample datasets for functionality
• Data cleanup scripts

This provides a lot of useful things outside of CI:

• You can easily find all related items in one place.
• It supports all of the automated builds necessary for automated deployments (see

Chapter 6).
• You can find all history and versions of the database, which helps for recoveries,

forensics, and troubleshooting.

Integration | 139

• You know that the application and database versions will be synchronized, at
least in an ideal world.

As you continue to run integrations, validating checked in code and infrastructure
changes against known working state, software engineers can apply the latest data‐
base versions to their development environments.

Database build automation
Assuming that you’re utilizing the configuration management and automation tech‐
niques discussed in the Chapter 6, you should be able to automatically build data‐
bases for integration. This includes applying the latest data definition language (DDL)
scripts and loading representative datasets for testing. This can prove more challeng‐
ing than you might expect because production data often must be cleaned up or
scrubbed to ensure that no compliance issues occur with exposing customer data.

Test data
Empty databases almost always perform extremely well. Small datasets often do the
same. You will need three different sets of data. First is all metadata needed for
lookup tables. This is where you find IDs for customer types, location IDs, workflow,
and internal tables. These datasets are generally small and crucial for the application
to work correctly.

Next, you need a working set of functional data, such as customers or orders. This is
generally just enough to let those quick tests that run in the early stages of integration
succeed before investing time in the more intensive tests.

Finally, you need large datasets to help understand what things look like under pro‐
duction load. These usually need to be built from production sets and scrubbed to
ensure that you don’t expose customer data, accidentally send emails to thousands of
users, or other interesting and exciting opportunities for customer and legal interac‐
tion.

Metadata and test datasets should be versioned, checked in, and applied as part of the
builds. Larger datasets often come from production, and the scripts needed to restore
and cleanse the data should be versioned and checked in to ensure that there is syn‐
chronization between application and persistence layer.

Database migrations and packaging
This is all presupposed on the concept that database changes are applied as migra‐
tions (incremental coded changes). Each set of changes, such as an alter table, or
adding metadata or adding a new column family will be checked in and given a
sequence number. Because all changes are applied sequentially, you have a version
number for the database at any time based on the most recently applied migration.

140 | Chapter 8: Release Management

Traditionally, DBAs would either get a list of changes from developers or do a schema
diff between development and production to get the information needed for them to
apply the necessary changes for a release. The benefit of this is that large, potentially
highly impactful changes can be managed very carefully by the DB specialists. This
can minimize potential downtime and impacts during expensive migrations.

The negative side of this traditional approach, however, is that it can be challenging to
see which changes map to which features. If something must be rolled back, it can be
challenging to identify the incremental database change related to the particular fea‐
ture. Similarly, if a database change fails, all features waiting on those changes will be
delayed, affecting time for stories to get to production.

The incremental approach allows for all of the things we want from agile approaches:
rapid time to market, incremental and small changes, clear visibility, and fast feed‐
back loops. But this means that SWEs must be more knowledgeable about creating
safe migrations, and about when they should get the DBRE team in to help them.
Additionally, there is risk that migrations might conflict. If two SWEs are modifying
the same objects, their migrations would run serially which could cause two alters
instead of one. If the object has a lot of data in it, this could greatly increase migration
time. You must consider trade-offs in these cases, which means that SWEs must be
aware that they are potentially stepping on one another’s toes.

CI server and test framework
It is assumed that your software integration is already utilizing these things. A good
CI system will provide all of the necessary functionality for integration. Testing
frameworks will provide both the system level tests as well as the code component
tests.

At the system level, frameworks such as Pester for Windows or Robot for Linux are
available. Additionally, you can utilize Jepsen, a distributed systems testing frame‐
work specifically built to validate data consistency and safety in distributed storage.

With these prerequisites, you can begin the work of using your company’s CI plat‐
form for database migrations. As the name implies, continuous integration means
that anytime a database change is committed, integration is performed automatically.
For this to happen and for the engineering team to be confident that the changes will
not adversely affect the application’s functionality and service-level expectations, test‐
ing becomes the key tool.

Testing
So, you have all engineers checking their database changes into the VCS. The CI
server is able to trigger automated database builds synchronized with the application

Testing | 141

http://jepsen.io/

releases and you have a testing framework. What’s next? We need to verify that inte‐
gration works and what kind of effects it will have in the next phase: deployment.

Unfortunately, we’re here to tell you that this stuff is hard! Database changes are noto‐
rious for affecting huge amounts of code and functionality. That being said, there are
ways to build applications that can make this easier.

Test-Friendly Development Practices
When designing development processes, you can make things easier for testing with
any number of choices. We’ve included two here as examples.

Abstraction and encapsulation
There are numerous ways in which you can abstract database access away from
SWEs. Why would you do this? Centralizing database access code creates a standard,
easily understood way of implementing new objects and accessing objects. It also
means that you don’t have to find code all over the code base in order to make a data‐
base change. This simplifies testing and integration tremendously. There are a few
different ways to do this abstraction:

• Data access objects (DAOs)
• APIs or web services
• Stored procedures
• Frameworks meant for this

With these in place, your integration can focus on testing the primitives around
accessing and updating data first, to see if changes have affected the ability to use
them. As with any testing, you want high-impact, quick-execution tests first, and cen‐
tralized data access code makes this much easier to accomplish.

Being efficient
Often you might find engineers using a “select *,” or retrieving an entire row of an
object to work with. This is done to “future proof ” or ensure that whatever might
need data gets it. Perhaps they want to be sure that if an attribute is added to the
object, they automatically retrieve it. This is dangerous, and like any “future proof‐
ing,” is wasteful and puts applications at risk during changes. A “select *” will retrieve
all columns, and if code is not ready to handle that, it will break. All of the data
retrieved also must be shipped over the network, which requires more bandwidth if
you are retrieving multiple rows and begin overfilling your TCP packets. Being selec‐
tive about what you are retrieving is crucial. You can modify object access code when
the right time comes, and you’ll be prepared for it when it does.

142 | Chapter 8: Release Management

Post-Commit Testing
The goal of post-commit testing is to validate that changes apply successfully and that
the application is not broken. Additionally, impact analysis and rules-based validation
for security and compliance can occur at this level. After code has been committed,
the build server should immediately build an integration datastore, apply changes,
and begin a series of tests that are quick enough to run that the feedback loop to engi‐
neers is as tight as possible. This means a quick database build using a checked-in
minimal dataset containing all necessary metadata, user accounts, and test data nec‐
essary to exercise the appropriate functions on all data access objects. This allows for
a fast turnaround to engineers to see if they’ve broken the build.

Early in an organization’s life, much of this might be done manually. As rules come
into play, tools and automation can be applied to make these processes faster and
more bulletproof.

Pre-build
Prior to applying changes, the following validation against established rules for
impact analysis and for compliance can be performed at this time:

• Validation that SQL is formed correctly
• Validation of the number of rows potentially affected by changes
• Validation of index creation for new columns
• Validation that defaults are not applied to new columns on tables with existing

data
• Validation of impact to stored code and referential constraints
• Report that sensitive database objects and attributes are being updated
• Report when rules required for compliance are being violated

Build
When the build runs, validation of SQL occurs again. In this case, based on actual
application of the changes rather than rules based analysis.

Post-build
After the changes have been applied to the build, you can run functional test suites.
You can also create reports that show analysis of impact and any rules violations that
occurred in the change.

Testing | 143

Full Dataset Testing
It is assumed that after the application runs against a full production dataset, there is
the potential for the service to no longer meet service-level expectations. This means
that the test suite should be run against production datasets at appropriate loads. This
requires more preparation and resources to do, so this test suite can be scheduled
asynchronously from the standard commit integration tests. Depending on the fre‐
quency of integration and code pushes, you might find a weekly or even daily sched‐
ule makes the most sense for these tests.

The steps taken for this extensive testing vary but will generally follow a blueprint
such as the following:

• Provision datastore and application instances
• Deploy code
• Recover full dataset
• Anonymize data
• Hook up metrics collection
• Apply changes to the datastore
• Launch functional, quick tests
• Perform load tests, ramping up concurrency
• Deprovision instances
• Post-test analysis

Some things that you will want to look at in these tests include the following:

• Latency changes for tests compared to previous runs on smaller datasets
• Database access path changes in optimizers that could affect latency or resource

utilization
• Database metrics that indicate potential performance or functionality impacts

(locking, errors, waits on resources)
• Changes in resource utilization from previous runs

You can automate some analysis, such as registration of queries into a centralized
datastore and comparison of historical plan changes. Some, such as metrics analysis
would require an operator to review and perform effective review to determine if any
changes are passable or not.

If any red flags come up, automated or not, the DBREs are able to narrow down the
changes requiring analysis by reviewing changes applied since the last test run.

144 | Chapter 8: Release Management

Although this does not allow for immediate flagging of a specific committed change,
it does allow for a much quicker identification.

In addition to fast and slow analysis of applications, there are additional tests that
must periodically be performed on a rapidly evolving datastore. These tests ensure
that the evolving database will continue to be a good citizen in the overarching eco‐
system. These are downstream tests and operational tests.

Downstream Tests
Downstream tests are used to ensure that any data pipelines and consumers of the
datastore are not adversely affected by any changes applied as part of the migrations.
Like full dataset testing, downstream tests are best done asynchronously from the
commit process. Here are some examples of downstream tests:

• Validating event workflows triggered by data in the database
• Validation of extraction, transform, and loading of data into analytics datastores
• Validation of batch and scheduled jobs that directly interact with the database
• Validation that job times have not increased significantly, potentially affecting

delivery at specific times for required delivery or downstream processes

Similarly to full-dataset testing, these tests are often much more extensive and require
larger datasets for consumption. By running them asynchronously but regularly, it is
easier to identify potential changes that have affected the downstream processes that
have been flagged in testing. If tests are failed, pushes to production can be stopped,
and DBREs can have tickets automatically put in queue for them when rules are vio‐
lated.

Operational Tests
As datasets increase and schemas evolve, there are opportunities for operational pro‐
cesses to run longer and potentially fail. These process tests include the following:

• Backup and recovery processes
• Failover and cluster processes
• Infrastructure configuration and orchestration
• Security tests
• Capacity tests

These tests should regularly perform automated builds from production datasets,
with all pending and committed changes applied before tests are run. Failed tests can
advise the build server that there is a problem that must be evaluated and resolved

Testing | 145

before changes can be pushed to production. Although it is rarer for database
changes to affect these processes, the impact can be severe at the service level, and
thus require a high level of diligence.

With a combination of continuous, lightweight builds and tests, and strategically
scheduled more-intensive tests, you can foster a greater degree of confidence in relia‐
bility engineering, software engineering, operations, and management that database
changes can be safely introduced into production without direct intervention by the
DBRE team.

These integration processes are a perfect example of DBREs providing high amounts
of value through process, knowledge sharing, and automation to empower software
engineers without bottlenecking them. In the next section, we will discuss the largest
elephant in the room: deployment. Recognizing that a database change is safe is the
first step, but safely getting those changes into a production environment is just as
important.

Deployment
In the previous section on integration, we touched on the concept of database migra‐
tions and some of the pros and cons. Because we discussed how significant these can
be, it makes sense to decompose data migrations in such a way that SWEs can easily
and incrementally modify environments safely. Or, at least in as safe a way as possible.

In an ideal world, our goals should be to empower SWEs to recognize when their
database changes require analysis and management by DBREs in order to be effec‐
tively introduced into production. Additionally, we would be able to give those engi‐
neers the tools to safely and reliably introduce most changes into production
themselves. Finally, we would give SWEs the ability to push their changes to produc‐
tion at any time, rather than during restrictive maintenance windows. Creating a rea‐
sonable approximation of this world is what we will review in this section.

Migrations and Versioning
As discussed in “Prerequisites” on page 139, each changeset that is applied to the
database should be given a numeric version. This is generally done with incrementing
integers that are stored in the database after a changeset is applied. This way your
deployment system can easily look at the database and discover the current version.
This allows easy application of changes when preparing to push code. If a code
deployment is certified for database version 456, and the current database version is
455, the deployment team knows that it must apply the changeset for 456 prior to
pushing code.

So, an SWE has committed changeset 456 into the code base and integration has been
successfully run with no breaking changes. What comes next?

146 | Chapter 8: Release Management

Impact Analysis
We discussed impact analysis in the previous section under post-commit testing.
Some impacts, such as the invalidation of stored code in the database, or violation of
security controls, are gates that cannot be passed. The SWE must go back and modify
her changes until these impacts have been mitigated.

In this section, we discuss the impact of performing the database migration on pro‐
duction database servers. Database changes can affect a production service in multi‐
ple ways.

Locking of objects
Many changes can cause a table or even a group of tables to be inaccessible for writes,
reads, or both. In these cases, the amount of time the objects are inaccessible should
be estimated and determined to be acceptable or not. Acceptable locking really will be
part of the service-level objectives (SLOs) and business needs, and thus is subjective.
Previous changes on these objects can be recorded with specific metrics around the
time it took to run the change. This will allow some objective data to be used to deter‐
mine impact time, even though the time it takes to do changes to objects will
lengthen as dataset size and activity increases.

If unacceptable, the DBRE should work with the deployment team to determine a
plan to either reduce the time to a point of acceptability, or to redirect traffic until
such time as the change has successfully finished.

Saturation of resources
A change can also utilize significant amounts of Input/Output (I/O), which can
increase latency for all other transactions utilizing the datastore. This can cause ser‐
vice levels to be violated, and eventually cause processes to back up to a point at
which the application becomes unusable and other resources are also saturated. This
can easily cause a cascading failure.

Data integrity issues
As part of these changes, there are often transitional periods during which con‐
straints might be relaxed or deferred. Similarly, locking and invalidation can cause
data to not be stored in the way SWEs would expect.

Replication stalls
Database changes can also cause increased activity and lagged replication. This can
affect the usefulness of replicas and even put failover at risk.

It is these impacts that we as DBREs must help SWEs proactively identify and avoid.

Deployment | 147

Migration Patterns
After impact analysis, the SWE should be able to make a decision on the appropriate
way to deploy the migration. For many migrations, there is no reason to go through a
lot of incremental changes and extensive review work to execute. New objects, data
inserts, and other operations can be easily pushed through to production.

After data is in the system, however, changes or removal of existing data, and modifi‐
cation or removal of objects with data in them, create opportunities for your migra‐
tion to affect service levels as discussed earlier. It is at this time that the SWE should
bring the DBRE in. Luckily, there is a relatively finite set of changes for which you can
plan. As you work with SWEs to plan and execute on these migrations, you can build
a repository of patterns for database changes to be applied. At some point, if they
happen frequently and painlessly enough, you can automate them.

For example, you can set up deployment gates in integration and testing that utilize
rules-based analysis and testing results to determine whether migrations are safe to
be deployed. Some flagged operations could include the following:

• Updates and deletes without a WHERE clause to filter rows
• Number of rows impacted is greater than N
• Alters on tables with a certain dataset size
• Alters on tables stored in metadata as too busy to have live alters on them
• New columns with defaults
• Certain datatypes in create/alter statements such as BLOB (Binary Large Object)

files
• Foreign keys without indexes
• Operations on particularly sensitive tables

The more flags and safeguards you put in place to enable safety in production for
everyone, the more confidence you create in all teams. This results in development
velocity. Now, let’s assume that our intrepid SWE who has checked in changeset 456
has had his change flagged due to an alter that is deemed to be impactful. At this
point, he can use a migration pattern for that operation if it has been applied and doc‐
umented. Otherwise, he should create one in collaboration with the DBRE team.

Pattern: locking operations
Adding a column is a very typical operation in most database environments. Depend‐
ing on the DBMS that you are using, these operations can be quick and simple,
without locking the table. Other DBMSs will require a re-creation of the table. When
adding the column, you might want to put a default value in the column as well. This

148 | Chapter 8: Release Management

will definitely create a significant impact because the value must be entered into each
existing row of the table before the change is completed and the lock is released.

One way to avoid some locking operations is to utilize code. For example:

• Add empty column
• Perform regression tests
• Utilize conditional code in the select statement at access time to determine if a

row needs updating rather than performing it as a batch statement
• Set up a watcher to advise when the attribute is fully populated and conditional

code can be removed

For some operations, locking of the object is unavoidable. In these cases, you must
give a pattern, automatic or manual, to engineers. This might be a tool for performing
online changes via triggers and table renames. Or, it might be a rolling migration uti‐
lizing proxies and failovers to apply the changes node by node on out-of-service
nodes.

It can be tempting to have two processes: one that is lightweight and one that has
more steps. This way, you only roll out the complex pattern for major impacting
changes. However, this can cause you to rely too heavily on one process, leaving the
other underpracticed and perhaps buggy. It is best to be consistent with the process
that works most effectively for all locking operations.

Pattern: high resource utilization operations
There are multiple patterns that you can utilize here, depending on the operations
that are being executed.

For data modification, throttling by performing the updates in batches is a simple
pattern to give engineers when performing bulk operations. For larger environments,
it often makes more sense to utilize code to do lazy updating upon login of a user, or
querying of a row for example.

For data removal, you can encourage SWEs to utilize soft deletes in their code. A soft
delete flags a row as deleteable, which means it can be filtered out of queries in the
application and removed at will. You can then throttle the deletes, removing them
asynchronously. As with bulk updates, for large datasets this might prove to be
impossible. If deletes are regularly performed on ranges, such as dates or ID group‐
ings, you can utilize partitioning features to drop partitions. By dropping a table or
partition, you do not create undo I/O which can reduce resource consumption.

Should you find that DDL operations such as table alters create enough I/O that
latency is affected, you should consider this a red flag that capacity might be reaching
its limits. Ideally, you would work with operations to add more capacity to the data

Deployment | 149

stores. However, if this is not possible or is delayed, these DDL operations can be
treated like blocking operations, with the appropriate pattern being applied.

Pattern: rolling migrations
As discussed in the previous sections, it often makes sense to give engineers the abil‐
ity to apply changes incrementally across each node in a cluster. This is often called a
rolling upgrade, because you are rolling the change through each node. You accom‐
plish this somewhat differently depending on whether the cluster can be written to
via any node, or if only one node can function as a target write node.

In a write anywhere cluster, such as Galera, you can take one node out of service by
removing the node from a service directory or proxy configuration. After draining
the traffic from the node, the change can be applied. The node is then reintroduced
into the appropriate configuration or directory to put it back in service.

In a write leader cluster, where writes go to one node, you would take the followers in
the replication chain out of service individually as in the write anywhere cluster.
However, after this has been done for all nodes but the master, there must be a fail‐
over to a node with the changeset already applied.

Obviously both of these choices require a lot of orchestration. Understanding what
operations are expensive and might require rolling upgrades is a critical part of
choosing a datastore. It is also why many people are exploring database solutions that
allow for low-impact-only schema evolution.

Migration testing
Even though it might seem evident, it is imperative to recognize that if a changeset’s
implementation details are modified, the revised migration must be committed and
fully integrated before deployment in post-integration environments, including pro‐
duction.

Rollback testing
In addition to testing migrations and their impact, the DBRE and her supported
teams must consider the failure of migrations/deploys and the rolling back of partial
or full changesets. Database change scripts should be checked-in at the same time as
migrations. There can be autogenerated defaults for some migrations, such as table
creations, but there must be an accounting for data that comes in. Therefore, we don’t
recommend reverting by simply dropping an object. Renaming tables allows them to
still be accessible in case data was written and must be recovered.

Migration patterns also enable ease in the process of defining rollbacks. The lack of
an effective rollback script can be a gating factor in the integration and deployment

150 | Chapter 8: Release Management

process. To validate that the scripts work, you can use the following deployment and
testing pattern:

• Apply changeset
• Quick integration tests
• Apply rollback changeset
• Quick integration tests
• Apply changeset
• Quick integration tests
• Longer and periodic testing

Much like testing recoveries, testing fallbacks is critical and you must incorporate it
into every build and deploy process.

Manual or Automated
Another advantage of using migration patterns is that a migration pattern can allow
for automatic approval and deployment rather than waiting for review and execution
by the DBRE team. It also means that certain patterns can automatically flag DBREs
for implementation outside of the automated process.

There is no reason to rush the path to automation, particularly when dealing with
critical data. Community best practices posit that anything run frequently should be
automated if at all possible, but this is mitigated by the impact of failed automation. If
you have built an environment that has tested and reliable fallbacks, rapid and prac‐
ticed recovery processes, and mature engineers, you can begin to take migration pat‐
terns and automate the application of those changes. But, just moving toward
standardized models, push-button deploys and fallbacks, and guard rails/flags pro‐
vides significant progress toward our goals.

Wrapping Up
In this chapter, we covered the ways in which a DBRE team provides oversized value
to software engineering teams through the development, integration, testing and
deployment phases of software development. We can’t emphasize enough how much
of this relies on collaboration and very close relationships between DBRE, operations,
and SWE teams. As the DBRE in this equation, you must consider yourself teacher,
diplomat, negotiator, and student. The more you invest in education and relation‐
ships, the greater dividends will be paid as you apply the knowledge shared in this
section.

Wrapping Up | 151

A natural progression from release management is that of security. Your data is one of
the most significant attack vectors in the infrastructure. Every change and feature
potentially creates vulnerabilities that must be planned for and mitigated. In Chap‐
ter 9, we discuss how to bring value to security planning and processes.

152 | Chapter 8: Release Management

CHAPTER 9

Security

The function of security has always been a significant part of the database administra‐
tor’s job. Just as with recovery, the security of the organization’s most critical asset is
paramount. Security incidents and attempts are occurring with greater and greater
frequency. You need only read the news to learn about high-profile cases of hundreds
of thousands (even millions) of user profiles, credit cards, and emails being stolen
and resold regularly.

In the siloed world, the database administrator (DBA) would focus on his database
security controls only, hardening in isolation and recognizing that security was the
job of someone else. As the stewards of the organization’s data, however, the database
reliability engineer (DBRE) must take a more holistic approach to the job.

We’ve already spoken about continuous deployment (CD) pipelines, cloud environ‐
ments, and infrastructure as code in earlier chapters of this book. Each of these areas
represents new attack vectors for potential thieves and vandals to get at your data. In
this chapter, we craft a paradigm for database security for the DBRE to match today’s
organizations and infrastructures. We will then approach the craft, discussing the
potential attack vectors, a methodology and strategy for mitigation, and a holistic
model that the DBRE can champion.

The Purpose of Security
It goes without saying that security is a crucial role equal to that of data recovery, as
discussed in Chapter 7. Depending on the data, stolen data is as bad as corrupted
data. But, just as recovery is a function with broad use cases outside of just emergency
recovery, so does security have multiple functions.

153

Protecting Data from Theft
This is the classic use case. In most cases, each opportunity to store data has someone
who wants access to that data outside of its normal use. Individuals both internal and
external might want to gain access to databases to resell customer data, to get at com‐
petitive secrets, or simply to cause damage using the data that they have acquired.
Attack vectors for this include the following:

• Data in the online databases
• Data moving between datastores
• Data in backups and archives
• Data going from datastores to applications and clients
• Data in memory on application servers
• Data going from applications across the internet to users

As we just mentioned, not all thieves are external. Internal users who already might
have knowledge of systems and authenticated access are even more dangerous than
the many imagined bogeymen out on the internet. Regardless of location, the DBRE
works with InfoSec, Ops and software engineers (SWEs) to make certain that data
can be read, duplicated, or moved out of its appropriate place.

Protecting from Purposeful Damage
Sometimes, the intent of a malicious actor is purely to hurt the organization. Cor‐
rupting or manipulating data, shutting down databases, or utilizing all of the IT
resources until they are no longer accessible are all ways someone can damage an
organization’s databases and data. These can take the form of Denial of Service (DOS)
attacks, exploitation of bugs that will shut down databases, and access that allows
manipulation of data or storage. The good thing about these attacks is they often are
recoverable via backups. But, damaging backups often is easier than damaging an
online store.

Protecting from Accidental Damage
Although we often think of security as a function to protect us from bad actors, secu‐
rity is just as important in ensuring that someone does not accidentally wander into
the wrong environment, wrong schema, object, or row and cause damage uninten‐
tionally. A fence can keep out outsiders and help people to know they are straying in
areas they didn’t mean to. Just as internal actors are more dangerous than external
when you’re protecting data from theft, accidental vandals and saboteurs often come
with tools and credentials that can quickly cause catastrophes.

154 | Chapter 9: Security

Protecting Data from Exposure
Even without a witting or unwitting actor, there are still risks. In complex, distributed
and decoupled systems, it is rather easy for a bug or misplaced set of credentials to
expose sensitive clear-text data in logs, in the wrong customer’s browser or email, or
even allow unauthorized people to log in as a user to another person’s account. This
kind of exposure can rightfully and rapidly erode trust in your organization’s ability
to safeguard and husband data.

Compliance and Auditing Standards
Organizations are under intense scrutiny from numerous standards and laws that
help to protect customers and individuals. It is security’s job to educate the organiza‐
tion regarding these standards and to ensure that the organization complies. It is a
thankless job, and one that often frustrates people looking to focus on new features
and scaling. Still, it is essential if the organization doesn’t want to find itself shut down
or fined large sums of money.

Database Security as a Function
Throughout this book, we’ve pushed strongly on the notion of cross-functional rela‐
tionships and approaches to database reliability. The DBRE has become much more
of a liaison, subject matter expert, and educator to the rest of the organization. With
developer teams growing exponentially, this is the only way to scale. Information
security experts are often one of the most understaffed positions in the organization,
making it even more challenging for the DBRE and information security (IS) teams
to effectively guard company data in the face of constant development and change.

This is exactly what we discussed in Chapter 8, in which we focus on enabling safe,
effective and rapid development via self-service, education, and cherry picking meth‐
ods. The developers are the front line of security, as well, and the approaches we dis‐
cuss will be done with a similar thrust. Security must first and foremost be integrated
into the development processes for applications and for infrastructures, rather than
being a side note or a checkbox on a compliance sheet at release time.

How do you do this? You do it using the same tools we’ve been discussing throughout
the book. Let’s review those now.

Education and Collaboration
We discuss this in greater detail in Chapter 8, so we will summarize the three
approaches here:

• Fostering conversations

Database Security as a Function | 155

http://bit.ly/2zw896p

• Creating domain-specific knowledge bases
• Collaborating via pairing and reviews

You do this to teach SWEs how to more effectively and safely develop on their own
defenses against attacks on the organization’s datastores. This increases the perfor‐
mance and effectiveness of the application, it reduces the amount of downtime and
degradation of service from implementations and poor design, and it increases the
velocity of development teams. Similarly, this constant grassroots effort must be done
to educate on database security. This includes the following:

• Secure database access configuration and controls.
• Effective use of security features such as encryption, fine-grained access control,

and data management.
• What data is exposed by the database that can be brought into instrumentation,

logs, and telemetry to help expose malicious or damaging activity.
• Database specific vulnerabilities that must be managed at other layers, including

updates as new CVEs are released.

CVEs

The acronym CVE stands for Common Vulnerabilities and Expo‐
sures. (See the CVE database.) You can also generate custom feeds
to follow based on topics of interest such as SQL Injection vulnera‐
bilities. This is an excellent resource to keep you updated on newly
discovered vulnerabilities, or updates to existing ones.

By continued education and collaboration, database security becomes a regularly dis‐
cussed topic, one that is explored, critiqued, and researched within the organization.

Self-Service
The next step to fostering a rigorous and mature security process that can scale with
development team size and feature velocity is to create self-service approaches to
database security. You’ll never be able to review every feature, every new service, and
every new datastore on your own. Instead, you will find yourself constantly blocking
requests as your backlog grows and grows. Partnering with InfoSec to create reusable,
approved security patterns that engineers can check out and use at will enables a scal‐
able security process.

As we discussed in Chapter 5, Infrastructure Engineering, infrastructure as code allows
you to create approved deployments of all datastores that might be created and
released into the wild. This means that a large portion of your time is spent on build‐

156 | Chapter 9: Security

https://cve.mitre.org

ing these gold standards, researching vulnerabilities, and revising or updating the
playbooks in your platform to mitigate those vulnerabilities, including the following:

• Approved software build numbers
• Removal of default accounts and passwords that come with datastores
• Locking down of unnecessary ports
• Setting up effectively constrained access lists to reduce the points of entry to your

datastores
• Removing features and configurations that allow exploits via filesystem or net‐

work
• Install and set up keys for secure sockets layer (SSL) communications
• Scripts to check and enforce password policies
• Configuring auditing and log forwarding to ensure that all access can be

reviewed and protected from tampering

By checking in all of this and making it available to people deploying new datastores,
you can allow preapproval of these infrastructures due to the use of the gold stan‐
dard. The DBRE and InfoSec teams do not need to spend time reviewing and report‐
ing on vulnerabilities with these known installs.

In addition to infrastructure self-service, code libraries such as logging, authentica‐
tion, password hashing, and encryption can all be checked-in and made available.
This includes client software.

Building Your Own Database Clients

Similar to self-service for infrastructure, providing self-service cli‐
ents and libraries is an effective mitigation technique. Clients pro‐
vided by vendors often already have workarounds that you might
not be aware of, thus exposing you unknowingly to vulnerabilities
in the future. These clients will often use older protocols also, to
ensure backward compatibility. By writing your own, you reduce
the risk of unknown factors, and you take control of a core part of
the database tier: the access layer.

Integration and Testing
Integration and testing processes represent excellent opportunities to catch vulnera‐
bilities early and often, rather than at the end of the development process when fixes
are exponentially more expensive. Alternately, they represent high-risk opportunities
for exploitation given that the infiltrator who owns the testing and integration server
can bypass all tests and inject malicious code quite easily.

Database Security as a Function | 157

During integration, standard tests that have been approved by security can be applied
to automatically validate that vulnerabilities are not being introduced. This can
include, but is not limited to the following:

• SQL injection vulnerabilities in database access functions
• Testing the authentication layer for common flaws including plaintext communi‐

cations, plain-text credential storage or connecting as elevated administrative
users

• Testing new stored code for exploits such as buffer overflows

In addition to the immediate post-commit tests that are always run, more intensive
tests can be run asynchronously on a regular time schedule. This includes penetration
tests at the application level, but also rigorous testing within the network for vulnera‐
bilities that can be exploited via unauthenticated and authenticated means that will
grant access to the database or operating system (OS).

Operational Visibility
Integrating all outputs of security function into standard logging and telemetry as
well as their outputs is crucial. This data comes from everywhere in the stack, includ‐
ing application layer, database layer, and OS layers. You also saw much more of this in
Chapter 4.

Application layer instrumentation
Tracking every failed and successful SQL statement sent to database is critical for
identifying SQL injection attacks. SQL syntax errors can be a leading indicator. It
alerts you that someone or something is trying to pass unplanned SQL through the
application into the database. Syntax errors in a working, tested application should be
very rare. Similarly, SQL injection patterns, if studied, will show strings that often
indicate an attack is underway. This includes UNION and LOAD_FILE statements.
We discuss this further in “Vulnerabilities and Exploits” on page 160.

Audit data also should be collected around personally identifiable information (PII)
or critical data. Using metadata to flag API endpoints as PII/critically impacting or
not allows you to collect granular data on accessing, changing, or removing data such
as passwords, emails, credit cards, or document blobs. Although auditing will also
occur at the database layer, this application-level auditing can easily give appropriate
staff members access to see if application code is being accidentally or purposefully
abused.

158 | Chapter 9: Security

Database layer instrumentation
At the database layer, any and all activity should be logged and pushed into the opera‐
tional visibility stack for analysis. Following are some activities to look for:

Configuration Changes
These can occur in a file or in memory. Configuration file changes can open a
system up completely to exploitation.

Database User Changes
Privilege or password changes and new users should all be inspected for corre‐
sponding migrations that have been checked in to code and integrated. Other‐
wise, these changes could be deliberately creating security holes.

All select, insert, update, and delete data
Auditing at the database level provides a good supplement and foil to
application-level auditing. Excessive querying or modifications, queries coming
from unexpected users, and unexpectedly large result sets can all indicate prob‐
lems.

New database objects, particularly stored code
New or modified functions, procedures, triggers, views, and user-defined func‐
tions (UDFs) should all be correlated to database migrations because they can be
indications of exploits.

Logins, successful and failed
There should be expected traffic patterns for any database. Application users will
come from specific hostgroups, and, generally speaking, no one should be
directly logging in to a database. In some environments, you might go so far as to
mark a datastore suspect if there is a login that does not occur from an applica‐
tion server, proxy, or other approved client.

Patches and binary changes
Hot patches can occur from a user who has received OS access. This might be
through network buffer overflows or other exploits. These changes can create
backdoors and potentially malicious code.

OS instrumentation
Just as with the database, operating systems must be carefully monitored and logged,
as well. This includes the following:

Configuration Changes
Just as with database changes.

Database Security as a Function | 159

New software, scripts, or files
New or modified software, scripts, and files are almost always bad signs outside
of temporary directories, log directories, or other expected landing zones for new
files. Comparing these regularly to golden images can indicate malicious activity.

Logins, successful and failed
Just as with database logins.

Patches and binary changes
Just as with database changes.

Comprehensive data gathering combined with effective tools for comparison and
anomaly detection are critical for identifying malicious activity that has gotten past
security. There is no security strategy that can be comprehensive and up-to-date
enough to keep everyone out, so effective visibility is required, and the DBRE team
works hand in hand with Ops, InfoSec, and SWE to ensure this instrumentation.

Vulnerabilities and Exploits
We’ve spoken at a high level about the DBRE’s primary job duties for helping build a
scalable security function. Throughout this section, we discussed various potential
threats at a very high level. In this section, we discuss the potential vulnerabilities that
must be considered and planned for as the DBRE goes about training and educating
the organization, building self-service configurations, and setting up monitors, tem‐
plates, and playbooks for response.

When modeling threats, it is important to classify and prioritize. Balancing and pri‐
oritizing with all of your other priorities is critical. There are already structured
approaches to do this. For example, Microsoft has populated STRIDE for classifica‐
tion and DREAD for prioritization.

STRIDE
STRIDE is a classification scheme for characterizing known threats according to the
kinds of exploit that are used (or motivation of the attacker). The STRIDE acronym is
formed from the first letter of each of the following categories:

Spoofing identity
Identity spoofing allows for a user to assume another identity in order to bypass
access controls. Because most multiuser applications end up with a single user
into the database, there is significant risk.

Tampering with data
Users can change data via application POST activities in addition to actions taken
with spoofed or assumed identities. Data validation and APIs even for adminis‐
trative activities are critical for protecting against that.

160 | Chapter 9: Security

http://bit.ly/2zxfqCJ

Repudiation
Without proper levels of auditing, customers and internal users can dispute
activities that they have taken. This can lead to financial losses in disputes, failing
of audits and inability to find malicious activities.

Information disclosure
Customer and private details can be revealed to the public, to competitors and to
malicious buyers. This also can include accidental disclosure.

Denial of service
Applications and specific infrastructure components are also subject to denial of
service. This can come from expensive operations or simply masses of activities
distributed across the world.

Elevation of privilege
Users can potentially move into roles with higher degrees of privilege. At the
highest level, application users can achieve root access on servers.

DREAD
DREAD classification allows for risk analysis and prioritization based on the risk pre‐
sented by each evaluated threat. The DREAD algorithm shown here is used to com‐
pute a risk value, which is an average of all five categories.

Damage potential
If a threat exploit occurs, how much damage will be caused?

• 0 = Nothing
• 5 = Individual user data is compromised or affected
• 10 = Complete system or data destruction

Reproducibility
How easy is it to reproduce the threat exploit?

• 0 = Very difficult or impossible, even for administrators of the application
• 5 = One or two steps required, may need to be an authorized user
• 10 = Just a web browser and the address bar is sufficient, without authentica‐

tion

Exploitability
What is needed to exploit this threat?

• 0 = Advanced programming and networking knowledge, with custom or
advanced attack tools

Vulnerabilities and Exploits | 161

http://bit.ly/2zjZfrL

• 5 = Malware exists on the internet, or an exploit is easily performed, using
available attack tools

• 10 = Just a web browser

Affected users
How many users will be affected?

• 0 = None
• 5 = Some users, but not all
• 10 = All users

Discoverability
How easy is it to discover this threat?

• 0 = Very hard to impossible; requires source code or administrative access
• 5 = Can figure it out by guessing or by monitoring network traces
• 9 = Details of faults like this are already in the public domain and can be

easily discovered using a search engine
• 10 = The information is visible in the web browser address bar or in a form

While we walk through each of the potential attack vectors, utilizing categorization
like this can allow you to determine where to focus your energy and resources.

Basic Precautions
In this section, we discuss multiple possible precautions, with examples from various
datastores. This includes general mitigating techniques that will be expanded on in
the section on strategy. There are some mitigation techniques that are more general
and can be applied to multiple categories. These include the following:

Configuration
Remove all unnecessary features and configurations from the database. Many
database systems are feature rich, and most applications will not utilize even a
small portion of those features. Shutting these down can reduce attack vectors.

Patching
Continued scanning of vulnerability databases will give you regular security
patches to be applied. Keeping these up to date will reduce the risk of exploita‐
tion.

Removing unnecessary users
Default users and passwords are well known and create significant risk.

162 | Chapter 9: Security

Network and host access
Use firewalls and security groups to minimize which hostgroups have access to
the databases, and over which ports. Similarly, using restrictions via roles and
privileges to minimize the ability for anyone to access systems is of top priority.

The Dangers of Defaults

During this writing, there has been a staggeringly significant—and
preventable—security exploit against MongoDB and ElasticSearch
databases listening on Public IPs. In 2015, Shodan wrote an article
revealing that more than 30,000 MongoDB instances were publicly
accessible because the default listing IP was 0.0.0.0 and no authen‐
tication was enabled. That’s more than 595.2 TB of data exposed
simply because no one paid attention to defaults in early versions
of the server.

Here are the categories we will be discussing:

• Denial of Service
• SQL injection
• Network and authentication protocols

Denial of Service
Denial of Dervice (DoS) attacks are a family of attacks designed to make a service or
application unavailable by throwing so many requests at them its resources are satu‐
rated and cannot fulfill requests from actual users. This often takes the form of
exhausting network bandwidth via a distributed network of clients flooding a net‐
work with requests. The other category these attacks can take involves exhausting the
resources of a specific server or cluster, such as a database. By consuming all CPU,
memory, or disk, the critical server can become unresponsive, effectively taking all
services down that depend on it.

These attacks are typically not destructive in that they do not damage or steal data.
They are designed to take down a service, whether for general nuisance, for anti-
competitive actions, or as a cover to distract InfoDec and Ops teams while other
attacks are taking place.

Large network flooding attacks are the norm, and thus most defensive techniques
focus on these. This has caused attackers to go up the stack to service components
that are more vulnerable, have fewer resources available to them, and that function as
lynchpins. Unfortunately, databases are a perfect target here, and thus the DB-DoS
(Database Denial of Service) was born. With minimal effort, database logic can be

Vulnerabilities and Exploits | 163

https://blog.shodan.io/its-the-data-stupid/

executed at exponential levels, saturating resources in ways that do not look very dif‐
ferent from normal elevated traffic.

Following are some potential impacts of a DB-DoS attack that we will want to miti‐
gate:

• Consumption of user connections until application servers are starved out
• Disrupting the optimizer with a huge variance of queries that require parsing,

hashing, and inspection during query optimization
• Autoscaling of resources until a budget measure shuts down the service
• Removal of valid data from caches, causing extensive disk I/O
• Increased memory usage potentially causing swapping
• Table growth and logs that consume all disk space
• Excessive replication lag due to large amounts of writes
• Starving of OS resources including file descriptors, processes, or shared memory

These can be instigated easily by using a number of different tactics. The easiest is
simply to use the application functionality itself. Here are a few examples:

• Building large shopping carts
• Searches with no input or broad input
• API calls that return slowly can tell an abuser that a query might not be opti‐

mized or indexed, and thus be a target for repetitive calls
• Adding UNIONs to inputs in forms that can cause huge numbers of joins and

scans (this is a SQL injection technique also)
• Sorting large result sets
• Creating edge cases such as a huge number of posts in a forum application, or a

huge number of friends in a social application

Similar to abusing application functionality, a knowledgeable attacker who can iden‐
tify the database in use can often find ways to shut it down. For instance, locking out
users by logging in incorrectly, running administrative commands via SQL injection
that can clear caches, or sending malformed XML can cause overflows in parsers.

Mitigation
In addition to standard mitigation techniques that we have already discussed, the
most effective approaches to mitigate a DB-DoS are quite similar to the techniques
used for surviving heavy traffic and growth issues. There is a tripod that supports the
ability to survive these sudden surges in resource utilization, whether from legitimate

164 | Chapter 9: Security

or illegitimate traffic sources. You will notice that automated capacity scaling is not
included. There is always an upper bound to capacity, whether due to hardware, soft‐
ware, or budget, and any DB-DoS can probably get you there.

Resource management and load shedding
Over time, the technical teams will begin to understand the general workload charac‐
teristics of their applications. It can be reasonably assumed then that they should be
able to build a set of tools to effectively handle surges in load. As the DBRE, your
responsibility is to help educate and support SWEs in understanding these workloads
and prioritizing work to reduce the risks effectively. These tools can include the fol‐
lowing:

Client-side throttling
Rather than letting a robot hit an endpoint repeatedly, putting in a throttle
regarding the time between submitting a request and resubmitting it can effec‐
tively stop or slow down surges. You can do this via basic counters, exponential
degradation, ratios of calls to retries, or combined with data coming back from
the application regarding service-level quotas being exceeded.

Quality of service
You can classify traffic going to the application based on criticality also. Marking
expensive queries, such as search, that can be exploited as less critical allows the
application to enforce quality-of-service quotas that make DB-DoSes more diffi‐
cult to achieve.

Degrade the results
For expensive queries and remote procedure calls (RPCs), you might want to
develop two execution paths. For normal loads, a full execution path will be fine,
but perhaps you want to reduce the number of rows scanned or shards queried
during heavy loads such as what could be generated during a DB-Dos.

Query killers and heavy-handed approaches
If you do not have the ability to do more comprehensive code-based approaches,
you might need to use brute force. Killing long-running queries or putting per‐
formance profiles at the database layer to reduce the number of resources a query
can consume are effective enough, at the cost of a lack of control and potentially
bad user experience that is difficult to mitigate at the code level.

Continual improvement of database access and workloads
If you ever needed a justification to devote DBRE and SWE resources to cleaning up
the most expensive queries in the database tiers, the potential for DB-DoS is it.
Because these queries often might not be part of normal workload patterns, they
might be ignored in a methodology where you are tuning based on the aggregate con‐

Vulnerabilities and Exploits | 165

sumption of resources at the database tier. If these outliers are only called infre‐
quently it is easy to ignore them. But, a clever sleuth can find them and exploit them.
This means that a good performance process should ideally be looking for the most
expensive queries regardless of execution frequency in order to push these into a tun‐
ing queue.

Logging and monitoring
Regardless of the aforementioned efforts, a persistent actor can still affect your data‐
base. Effective monitoring of execution calls by endpoint should be able to identify
significant spikes and reveal them to triage teams for throttling or even shutting
down. Similarly, if there are queries or activities that have no upper bounds, monitor‐
ing of the number of items in “in clauses,” memory structures, permanent or tempo‐
rary tables, or similar structures can help to identify potential problems.

It is important to remember that attacks can include destructive forms in addition to
theft or vandalism. DB-Dos attacks can be easily forgotten when planning a security
function. Now, let’s go on to the next threat to consider.

SQL Injection
SQL injection is a class of exploits in which database code, usually SQL, is injected
into an application input. This is done in order to bypass security and execute code in
the database that has nothing to do with the application’s expected input. SQL injec‐
tion can be used to exploit bugs that cause buffer overflows. Buffer overflows can shut
down a database, perform a DbDoS, or they can give a user elevated privileges at the
database, and even the OS level. An example of this can be found here.

Another attack vector that utilizes SQL injection is stored code in the database itself.
Stored code such as stored procedures can often execute arbitrary statements at eleva‐
ted privileges. This can be exploited by an internal user or someone who has man‐
aged to get access via credential guessing or sniffing.

SQL injection can also be used to access data by utilizing UNION statements to get
datasets from other tables with identical numbers of columns as the tables being
queried in the original form. For instance, if a search form queries a table with five
columns, a union injected into the form could allow you to add result sets to any
other table with five columns. Data can be effectively stolen without needing to
exploit a bug.

Mitigation
SQL injection mitigation at the application layer begins with education of your soft‐
ware engineering team. When coding, software engineers must avoid dynamic quer‐
ies and must prevent input with malicious SQL from modifying queries.

166 | Chapter 9: Security

http://bit.ly/2zAiKxa

Prepared statements
The first step is ensuring that engineers use some variant of prepared statements. A
prepared statement is also known as a parameterized statement. In a prepared state‐
ment, the structure of the query is defined in advance. Form input is then bound to a
variable that is used to run the query. The opposite of this is to dynamically define
and build SQL at runtime. A prepared statement is safer because the bad actor will
not be able to modify query logic. If SQL injection occurs, the SQL will simply be
considered a string for comparison, sorting, or filtering, rather than as a separate SQL
statement for execution.

Example 9-1. Example prepared statement in Java

String hostname = request.getParameter("hostName");

String query = "SELECT ip, os FROM servers WHERE host_name = ? ";

PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, hostName);
ResultSet results = pstmt.executeQuery();

Input validation
There are times when prepared statements cannot protect you. Dynamic table names,
or inputs to the ordering of a sort cannot be prepared in advance. This requires vali‐
dation of input against which to be protected. In such a case, the application checks a
defined list of valid table names, or Desc and Asc, to see if the query can be safely
executed. Validation can also be performed to ensure that zip codes are five integers,
strings have no spaces, and lengths are specific or within bounds.

Harm reduction
There are other mitigations that you can perform outside of the application that
reduce the impact of SQL injection for cases in which precautions are unable to pro‐
tect the application inputs. You cannot guarantee that SQL injection will not occur, so
it is best to establish defense in depth. This includes patching of database binaries in
order to reduce the number of exploitable bugs. Eliminating unnecessary stored code
and unnecessary privileges from database users used by the application is critical also.
Additionally, giving each application its own database user can reduce the damage a
hijacked account can cause.

Monitoring
As with almost any other malfunction or dysfunction, instrumentation and monitor‐
ing of that data is crucial to mitigation. It is also critical to make sure to log and ana‐

Vulnerabilities and Exploits | 167

lyze dumps and stack traces and query log pattern matching for unions, semicolons,
and other strings that are indicative of SQL injection.

SQL injection is very easy to prevent, and yet it is one of the most common ways to
exploit databases. A consistent and ongoing platform of education and collaboration,
as well as shared libraries that have been approved by infosec and DBRE, is a must for
large, growing software engineering teams to ensure safety as well as velocity.

Network and Authentication Protocols
There are a number of ways to attack a database server through the various commu‐
nications protocols available to a malicious actor. If there is a bug in the network pro‐
tocol, the exploiting user can potentially gain direct server access. This was done in
the “hello” bug (CAN-2002-1123), which was in session setup code on TCP port
1433. There are also exploits that can occur after authentication over the network,
gaining OS or database access, or elevated privileges. Similarly, database protocols can
be rife with vulnerabilities. Some servers actually allow unencrypted communica‐
tions, which can allow credentials to be stolen and used. Other times, bugs can allow
a user to send signals of authentication without actual credentials.

The mitigation techniques discussed in the beginning of this section are all critical to
reducing attack vectors in your database infrastructure. Using those techniques and
building a deep understanding of authentication protocols and database features in
your engineering organization can ensure that your configurations are as secure as
possible.

Now that we’ve given an overview of the potential attack vectors and their mitigation
strategies, let’s discuss the protection of data in case intrusion, elevation of privileges,
or even full access to databases and servers is gained. The natural place to transition
to in this conversation is encryption.

Encryption of Data
There are inevitably going to be times when someone malicious, someone who is
unwittingly trespassing, or even someone friendly will be able to access data that they
shouldn’t. You’ve already locked down all your known network and OS paths, you’ve
minimized access and privileges for every user, you’ve patched every known bug, and
you’ve blocked all known application holes that could be exploited. Yet, you still need
to prepare for the inevitable.

Encryption is the process of transforming data using an agreed upon set of keys or
secrets. Theoretically, only people who have these keys should be able to transform
the encrypted data back into a usable format. Encryption is often a last form of
defense for data, even after it has been stolen and is in the hands of malicious actors.

168 | Chapter 9: Security

In this section, we discuss encryption at three different layers:

• Data in transit
• Data at rest within the database client
• Data at rest on the filesystem

Each of these is a potential attack vector that can be secured via encryption. And,
such encryption methods bring about overhead and cost in various forms, requiring
consideration and trade-offs in most organizations.

In each of these layers, we must take into account another dimension of data, which is
the type of data. Data can be considered sensitive or not, and that sensitivity of data
can be broken out into categories described in the subsections that follow. If you are
storing and managing any of this kind of data, the DBRE team should be working
very closely with the InfoSec and SWE teams to ensure that all parties understand the
obligations and standards and are building the self-service platforms, libraries, and
monitoring required to meet those regulations. Data comes in many different forms,
and we will review some of the more common forms of regulated data that you can
manage.

Financial Data
This includes account numbers and associated data around accounts that can be used
for authentication or identification. It also includes transaction histories and data that
reveals the financial status of an individual or organization such as credit scores,
financial reports, balances, and more. Financial data in the United States alone is
regulated by numerous laws, bodies, and standards including PCI DSS requirements
for credit card data, GLBA, SOX/J-SOX, NCUA, data privacy and data residency laws,
and the Patriot Act. We can find similar bodies in other countries as well.

Personal Health Data
Information about patients and their health is covered within this category. It
includes personally identifiable information such as social security numbers, names,
and contact information, as well as data regarding patients’ health, their treatments
and procedures, and their insurance information. Health data in the US is regulated
predominantly by the Health Insurance Portability and Accountability Act of 1996
(HIPAA).

Private Individual Data
This is often referred to as Personally Identifiable Information or (PII). It includes
social security numbers, addresses, phone numbers, and emails. This information can

Encryption of Data | 169

be used for identity theft, harassment, and unwanted contact. The Privacy Act of 1974
was the basis for the US standards currently in place for this data.

Military or Government Data
Any data related to government operations or personnel is considered very sensitive.
Information regarding military operations and personnel is more so. There are very
strict procedures in place for any organization supporting and storing this.

Confidential/Sensitive Business Data
This includes any data that must be kept secret to protect a business’ competitiveness.
It includes Intellectual Property (IP), trade secrets, financials, and performance/activ‐
ity reporting. Customer and sales information falls into this, also.

Understanding the nature of the data being stored in individual datastores is critical
to being able to make appropriate choices around encryption and protections. This is
also why it is so important that organizational collaboration and education occurs.
Otherwise, in fast-moving organizations, it would be easy for an unwitting engineer
to begin putting sensitive data into datastores that have not been locked down for
such.

There are also some basic standards that should simply always be applied. Even
though we even feel embarrassed mentioning these, the aforementioned MongoDB
case and defaults should tell us just how important these reminders are. These
include the following:

• Web administrative interfaces speaking directly to databases should always use
SSL, or use a secure proxy service. We use SSL to refer to both. Transport Layer
Security (TLS) is the successor of SSL 3.0 and most people refer to both as SSL.
TLS 1.0 suffers from vulnerabilities and should be considered inadequate.

• You should use SSH2 or remote desk protocol (RDP) for connecting to servers.
• Administrative connections to databases should use a separate administrative

network and should use TLS 1.1 or 1.2 if the database allows it.
• Each SSL protocol should use an appropriately strong encryption cypher. The

strength of a an encrypted session comes from the cipher negotiated between the
server and client.

Let’s first look at the encryption of data in transit.

Data in Transit
Data must be moved across networks. This is an inevitable and sad fact for the DBRE
looking to secure her data. Just as money must be moved in armored trucks, or valua‐

170 | Chapter 9: Security

http://bit.ly/2zxqT5t

1 Check out the Transport Layer Protection Cheat Sheet.

ble goods must be transported for delivery, so must data be transported. This is a
highly vulnerable time, and depending on where in the transit process, this vulnera‐
bility becomes greater. This is also called “Data in flight.”

Before digging in further, its worthwhile to ensure that any DBRE worth his or her
salt (really hoping you get that joke...) understands the various components and best
practices in a cipher suite.

Anatomy of a cipher suite
Each database server will communicate with clients over a negotiated cipher suite. It is
important to understand the implications of a particular databases implementation of
a cipher suite to ensure that data is protected at the levels necessary. Your InfoSec
team should be able to set standards, but if this is left to you, understanding the
implications of a specific databases implementation is critical. Here’s an example of a
cipher suite:

ECDHE-ECDSA-AES128-GCM-SHA256

The first part of the suite, ECDHE is the key exchange algorithm. This particular exam‐
ple uses elliptic curve version of the key–exchange using ephemeral keys. Other values
here could be RSA, DH, and DHE. Ephemeral key exchanges are based on Diffie-
Hellman and use per-session, temporary keys during the initial TLS handshake. They
provide perfect forward secrecy (PFS), which means a compromise of the server’s
long-term signing key does not compromise the confidentiality of past session. When
the server uses an ephemeral key, the server signs the temporary key with its long-
term key (the long-term key is the customary key available in its certificate).1 DHE is
considered stronger than EDHE and should be favored.

The next part, ECDDSA, is the signature algorithm that is used to sign the key–
exchange parameters. RSA is preferred here over DSA or DSS, which can be very
weak depending on the signing entropy source.

Next, AES128 refers to the cipher in the suite. In this case, it is Advanced Encryption
Standard (AES) with a 128-bit key. This is followed by the mode of operation for the
cipher, in this case Galois/Counter mode (GCM), which provides authenticated
encryption. GCM supports only AES, Camellia, or Aria, and thus those ciphers are
ideal. For AES, the National Institute of Standards and Technology (NIST) selected
three members, each with a block size of 128 bits, but three different key lengths: 128,
192, and 256 bits as the standard.

Finally, SHA-256 refers to the keyed message authentication code (MAC) function e.
SHA-256 is a hashed MAC (HMAC) function used by certification authorities to sign

Encryption of Data | 171

http://bit.ly/owasp-cheat-sheet
https://www-ee.stanford.edu/~hellman/publications/24.pdf
https://www-ee.stanford.edu/~hellman/publications/24.pdf

certificates and certificates revocation lists (CRLs). You use this algorithm to create
the master secret. Recipients of messages use this to verify that the contents are cor‐
rect. After a side has sent its finished message and received and validated the finished
message from its peer, it can begin to send and receive application data over the con‐
nection. SHA2 is a preferred implementation of this algorithm. It includes four kinds
of hash functions: SHA224, SHA256, SHA384, and SHA512.

When evaluating a database’s implementation of SSL, understanding the cipher list is
important because this list shows the order in which ciphers are scanned until a
matching cipher that is available for both the client and server is found.

When evaluating the needs of communications encryption, you must consider not
only the types of data discussed previously but also the transit paths and boundaries,
specifically:

• Communications within the network
• Communications outside of the network

Each of these transport areas requires consideration and an agreed upon set of
assumptions. Each of those assumptions creates a set of requirements, and each of
those requirements creates a need for implementation.

Communication within the network
Communications within a secured subnet are generally assumed to be secured at the
network layer, and thus most regulations do not require the communications chan‐
nels (aka the network connection itself) to be further protected. This means that
application servers requesting or sending data and replication between servers and
other internetwork communications do not need to set up encrypted communica‐
tions in a secured network. This is good, as this is the majority of the activity a data‐
base will be engaged in, and encryption is quite CPU intensive. That being said, if the
database is storing sensitive data, it still is required to be encrypted somehow. This is
ideally done at the application layer when the data is being placed into the database
itself. We will discuss this further when we discuss data at rest.

If sensitive data within a database cannot be secured, whether due to legacy reasons
or other constraints, the organization should consider requiring encrypted communi‐
cations for anything connecting to the database.

Communications outside of the network
For cases in which you are connecting between two networks owned and managed by
your organization or between your network and the internet, you must use a virtual
private network (VPN) using IPSec or SSL when transporting any data, sensitive or
not.

172 | Chapter 9: Security

Similarly, internet clients should be communicating to load balancers via SSL/TLS for
most communications. This does add CPU overhead to clients and load balancers,
but it should be relatively rare that you want data being transferred as clear text
between your clients and you.

With an understanding of the needs for SSL, let’s look at the architectural choices that
go into making this happen.

Establishing secure data connections
Modern database systems typically have SSL support of various degrees. There are
exceptions, such as Redis, and it is important when determining if a datastore fits
your needs that you verify this. Sensitive data that is not encrypted should not be
cached!

It is worth pointing out that SSL overhead is generally quite minimal as compared to
myths that persist. The majority of computational overhead is done on initiation of
the connection, and that rarely exceeds 2% CPU overhead and an increase of 5 milli‐
sencond latency. Some ciphers, such as AES, have instructions built into most
modern CPUs, substantially increasing speed compared to software-based ciphers.

There is a layered set of approaches that you can apply to securing connections.

Basic connection encryption. At the most basic of levels, you first configure a database
server to require secure communications for all connections. With this configuration
comes the creation of a certificate authority (CA) certificate. That certificate is used to
sign a server public key certificate and a server private key. That same certificate is
also used on clients to generate client public key certificates and private keys. With
clients storing their keys and servers configured appropriately, all connections are
considered encrypted.

Best practices and common sense indicate that keys must not be stored where people
can easily hijack and use them. This means that dynamic configuration might be used
to directly load keys into an application’s memory rather than storing them directly
on a client’s filesystem. There are better ways, though.

Securely stored secrets. Although securing a connection via SSL is a crucial first step,
there are still vulnerabilities. After all, if an actor is able to acquire access to the client
hosts, connections using those keys can be utilized to query data. Using a key man‐
agement infrastructure secure service such as Hashicorp’s Vault, Amazon’s Key Man‐
agement Service (KMS), or any other number of solutions allows for separation of
key storage and management from those accessing the data.

Additionally, other pieces of information used to access the database such as user‐
name, password, IPs, and ports can be stored remotely in some of these services,

Encryption of Data | 173

http://bit.ly/2zykkiT
http://bit.ly/2zykkiT

ensuring that no credentials are stored on the filesystem where someone can acquire
them and use them outside of application context.

Dynamically built database users. Building on the previous two stages, the natural evo‐
lution is using the same secure secrets service such as Vault to dynamically create
ephemeral user accounts within the datastore. This allows an application host to reg‐
ister and request a user account that will be created at that moment. Using roles such
as read-only facilitates various permissions being automatically applied, and these
users can have limited lifetimes, ensuring that any access potentially hijacked lasts a
limited time. Additionally, you have an ability to map users to specific application
hosts now. This allows for auditing of queries and access that would have proved
challenging in an environment that utilized shared usernames for a pool of servers.

Using a combination of SSL and VPN technology, all communication paths should be
able to be encrypted based on the needs of the data being stored. Additionally, we can
take advantage of secret management services to reduce the attack vectors of configu‐
ration files and keys sitting on filesystems for anyone with enough OS privilege to
read and abuse. This is the concept of protecting data in flight. Now, let’s move on to
reviewing data at rest. We begin with data in the database itself.

Data in the Database
Also known as “Data in Use,” data in the database must be accessible to applications,
analysts, and consumer processes. This means that any encryption solution must
allow for accessing of data by those authenticated to do so while preventing anyone
who wishes to maliciously access data from doing so. If a user manages to authenti‐
cate into a database, he is generally able to read any data for which he has appropriate
database read permissions.

A potential attacker can be broken into one of three categories:

• Intruder
• Insider
• Administrator

Intruders gain access to a database or its server to extract valuable information. Insid‐
ers belong to trusted groups with privileges in the database or OS and attempt to get
information beyond their granted privileges. Administrators are people who have
administration-level privileges at the database and/or OS level and use those to get
valuable information.

Much of the data listed at the beginning of this section requires even further encryp‐
tion to ensure that only appropriate users can read it. Let’s review the options avail‐
able to us and their features and potential drawbacks. We’d also like to remind you

174 | Chapter 9: Security

that encryption standards and best practices hold just as they do in SSL encryption,
as we discussed earlier.

Application-level security
In this approach, specific tables or columns are identified as requiring encryption
during threat modeling. Utilizing encryption libraries, the application encrypts data
before submitting it to the application for storage. The data is then submitted just as
any other string or binary data would be. Data is also retrieved similarly, and the
application knows to decrypt it before presenting it for use. This encryption and
decryption can be done with libraries such as Bouncy Castle and OpenSSL.

Using libraries at the application level provides database portability. Even if the back‐
end changes, you can still perform encryption and decryption just as before. It also
allows for control of encryption libraries. InfoSec can place these shared libraries in
version control for anyone to use, and there is no further need for compliance audit‐
ing of that code because it is approved and used across the organization. Finally, this
method allows for selective encryption, leaving other columns and tables unencryp‐
ted for easier reporting, indexing, and querying.

The primary disadvantage of this approach is that it is not a blanket approach that is
applied to all data in the database. Thus, when new data is modeled and introduced
into the application, developers must remember to consider if this new piece of data
requires encryption and then to actually implement it. This approach also requires all
other clients in the data pipeline who require reading of this data to utilize de-
encryption libraries.

Application-level encryption provides the most flexibility at the cost of development
velocity.

Database plug-in encryption
Plug-in encryption utilizes an encryption package installed in the database itself. This
method is independent of the application, requiring less custom coding. Depending
on the plug-in, selective encryption at the column level, access control features, and
auditing of access are often features also.

Encrypting the database completely with one key is generally not recommended
because a user can potentially exploit vulnerabilities and gain access greater than nec‐
essary to read data anywhere using that key. For example, an internal user with
encryption key access could gain access to an elevated user and access data beyond
her security group. Encrypting tables from different security groups using different
keys ensures that users can decrypt only those objects within their security group.
This means that any plug-ins you look to utilize should have selective encryption and
access control features to be considered effective.

Encryption of Data | 175

Unlike application-level encryption, this does create portability issues between data‐
bases. Thus, if you are working in a startup or an environment with frequently chang‐
ing requirements, this can prove to be too inflexible of a solution.

Transparent database encryption
There are some security appliances that will encrypt/decrypt all communications
through the database. This is a relatively easy approach that can make it easier to
ensure that data is encrypted, but it does enforce the overhead of encryption for all
data. That being said, the universality and low-level approach minimizes this over‐
head.

Query performance considerations
Even though encrypting data is a relatively trivial activity, querying that data can
prove to be nonperformant and will affect schema and query design. Data encryption
at the column or table level does not easily support range queries or string searches.
Thus, queries must take into consideration how data will be filtered and sorted.

Most encryption functions do not preserve order, so you cannot use a B-Tree index,
which is very standard for indexing ranges on encrypted data. You can often use
unencrypted fields for filtering in a performant manner. For instance, you can use
date range filters to reduce the dataset you need to scan for an encrypted value. To
support more efficient querying of encrypted data, you can store a keyed-hash mes‐
sage authentication code (HMAC) of an encrypted field in your schema, and you can
supply a key for the hash function. Subsequent queries of protected fields that contain
the HMAC of the data being sought would not disclose the plain-text values in the
query. This allows the database to perform a query against the encrypted data in your
database without disclosing the plain-text values in the query. This also protects
against data manipulation in the database by users who do not have the data needed
to create an HMAC.

With indexes on these hashed fields, you get equality performance, but information
about frequency and cardinality of indexed values is revealed. Similarly, a bad actor
might be able to infer information about an encrypted database value by its position
in an index or even search for other occurrences of the hash. With long-term access,
information about the data can be gained by observing and analyzing changes over
time. For instance, after data is inserted, a knowledgeable user could infer potential
values by events and position in the index.

Thus, depending on the value of the data, you can potentially add obfuscation techni‐
ques to reduce the chance that an observer can infer linkage or values based on the
hash, its relation to other hashes, and the values of new inserts. This can include
adding dummy data with every insert, or batching inserts to not allow incremental
observations on atomic inserts.

176 | Chapter 9: Security

http://bit.ly/2zzUoUe

Although this is a very high-level overview of schema considerations for performance
and security, we felt it important to bring up the concerns and a few sample
approaches to mitigation so that database encryption is not considered to be a trivial
matter during the planning phase.

Data that is stored within the database still ultimately sits on the filesystem. Similarly,
logs, data dumps, and backups are all places on the filesystem that must be considered
when protecting data. So, let’s look at the encryption of data at rest from the filesys‐
tem level.

Data in the Filesystem
Through encryption of data in flight and data in use, we’ve provided significant levels
of protection. Still, there is an opportunity for data to be accessed directly from disk,
tape, or other media. Like all other mitigation techniques, there are multiple
approaches to this. When considering a solution, it is important to consider how
much data is stored, CPU, and latency impacts of reads and writes and how often the
data must be accessed.

Attackers can use direct or indirect attack strategies against data in the filesystem. In
direct storage attacks, the bad actor accesses database files directly, outside of the
database software. This can include copying datafiles off of the server over the net‐
work by physical removal of storage devices or by getting data from the backup infra‐
structure. With indirect attacks, the bad actor can get schema information, log data,
and metadata from files used by the database.

In addition to standard network and access-control strategies, encryption of filesys‐
tem data is required to ensure that anyone bypassing those steps can’t access our tasty
data. When considering storage encryption, there are multiple layers that must be
considered. These are the data sitting on a filesystem, the filesystem, and the device.

Data encryption above the filesystem
When data is laid down on a filesystem, it can be encrypted automatically. This has
similar considerations as discussed in “Data in the Database” on page 174. This gen‐
erally would apply to data being uploaded to a filesystem, such as a backup or a data‐
file for importing. By encrypting at this layer, you can always know the encryption
status of critical files.

Additionally, this data can be broken into chunks for distribution across multiple
storage devices. This is a great option for sensitive data backups and large data dumps
as it prevents a person accessing one storage device from getting a full dataset. Such
chunking also can allow for parallelization of read and write operations, allowing for
faster recovery. The trade-off is typically going to be the development and mainte‐
nance time of such a storage gateway.

Encryption of Data | 177

Filesystem encryption
Because most datastores create their own files for metadata, logs, and data storage. A
system must be in place for encrypting at the filesystem layer. You can do this on top
of the filesystem with a stacked encrypted filesystem, directly in the filesystem via
built-in encryption mechanisms, or below the filesystem at the block layer.

Stacking an encrypted filesystem on top of an existing filesystem allows for use of any
filesystem underneath. This is a quite flexible option because you can use it for spe‐
cific directories rather than encryption of the entire volume. Examples of Linux-
based options include eCryptfs and EncFs. These do require keys to be provided
manually or via a Key Management Interface (KMI). Many filesystems such as ZFS
and BTRFS also have encryption options, though it is critical to see if they expose
unencrypted metadata.

Block-level encryption systems operate below the filesystem, encrypting one disk
block at a time. Some options for this in Linux include Loop-AES, dm-crypt, and
Vera. Each of these operates below the filesystem layer using kernel space device driv‐
ers. These tools are useful when you want all data written to a volume to be encrypted
regardless of what directory the data is stored in.

All of these solutions do have performance impacts that must be weighed with secu‐
rity requirements. It makes sense to put logs, metadata, and other similar files on
encrypted filesystems. But, what about data files being accessed from the database
itself? Many users find that application-level or column-level encryption of key data
gives the necessary encryption within the database. This allows the database files
themselves to stay unencrypted for performance reasons. Combining this solution
with filesystem encryption of logs, metadata files, and other system-level files creates
an effective multilayered solution that does not compromise on performance.

Device-level encryption
You can also utilize storage media that has built-in decryption. This increases storage
costs and is of questionable value given that there are many known vulnerabilities.
The point here was that this layer definitely adds to a defense-in-depth approach to
data security.

As you can see by the broad level of discussion, data encryption merits significant
engineering cycles for design, implementation, and auditing. In this section, we dis‐
cussed the protection via encryption of data in transit, data in the database, and data
at rest on filesystems. Data encryption is a last bastion of safety to provide protection
when access controls, code hardening, and regular patching fail. Recognizing the crit‐
icality of this is also a recognition that every layer in security is vulnerable and that
the protection of data must be considered at every level to create a reasonable amount
of protection. When continuing along the path of encryption, regardless of which
level, you can always be sure that you need to consider the following checklist:

178 | Chapter 9: Security

• Has all data been classified according to sensitivity?
• Is there a standard on cipher suites, and is it audited for compliance?
• Are new reports of vulnerabilities and exploits being tracked and considered?
• Are new hires in SWE, SRE, Ops, and DBRE aware of centralized libraries and

encryption standards?
• Are keys being managed effectively, including rotation, removal, and testing?
• Are you performing regular, automated penetration testing of key components

including logs, backups, critical tables, and database connections?

Like any automated and manual testing, it is important to recognize that you will not
be able to test everything. This is why focusing on high risk and easy exploitability
allows for focus, prioritization, and tight feedback loops in a continuous process of
testing and improvement.

Wrapping Up
You now have a deeper understanding not only of the nuanced layers of database
security, but also of how to be an effective security champion in your organization. As
with much in this book, the DBRE cannot be solely responsible for this function.
That DBA thinking simply doesn’t work in high velocity, dynamic environments that
require DBRE mentality. Instead, you should be actively partnering with every group
mentioned in this chapter to provide your own depth of knowledge to the creation of
self-service platforms, shared libraries, and team processes.

In this, as in the preceding eight chapters, we have strived to create a solid foundation
of not only operations, but also of effective collaboration and support of the other
technical organizations that rely on you as a DBRE. Now, we will focus on helping
you understand the wide range of database persistence options out there and how
they implement key technologies to provide resilient, scalable, and performant data
storage and retrieval. Throughout the next section, we will be referring back to the
foundation laid out up to now.

Wrapping Up | 179

CHAPTER 10

Data Storage, Indexing, and Replication

We’ve been talking about operations for much of this book in preparation for diving
into datastores. The most critical thing every datastore has in common with one
another is that they...wait for it...store data. In this chapter, we explain the ways a sin‐
gle node structures its data storage, how large datasets are partitioned, and how nodes
replicate data between one another. It’s going to be quite the chapter!

This book’s scope is focused predominantly on reliability and operations, so we will
be working on understanding storage and access patterns to facilitate infrastructure
choices, to understand performance characteristics, and to make sure that you, as the
database reliability engineer (DBRE), have the information required to help engineer‐
ing teams choose the appropriate datastores for their services. For a much more
detailed and nuanced review of this, we strongly suggest that you read Martin Klepp‐
mann’s book Designing Data-Intensive Applications (O’Reilly).

Data Structure Storage
Databases traditionally have stored data in a combination of tables and indexes. A
table is the main storage mechanism, and an index is an optimized subset of data
ordered to improve access times. With the proliferation of datastores now, this has
evolved significantly. Understanding how data is written to and read from storage is
crucial to being able to configure and optimize your storage subsystems and
databases.

When understanding how a database stores data, you actually need to evaluate not
only how the raw data is stored, but also how it is retrieved. In large datasets, access‐
ing specific subsets of data at any reasonable level of latency will often require special‐
ized storage structures, called indexes, to accelerate the finding and retrieval of that
data. Thus, when looking at storage, we must take into account the storage and Input/

181

Output (I/O) requirements for putting data onto disk and into indexes as well as the
I/O requirements for retrieving that data.

Database Row Storage
Much of the data here is applicable to more traditional relational systems. We will
begin with this, and then we’ll discuss some of the more prevalent alternative storage
options. In relational databases, data is stored in containers called blocks or pages that
correspond to a specific number of bytes on disk. Different databases will use blocks
or pages in their terminology. In this book, we use blocks to refer to both. Blocks are
the finest level of granularity for storing records. Oracle Database stores data in data
blocks. A page is a fixed size called a block, just like blocks on disks. Blocks are the
smallest size that can be read or written to access data. This means that if a row is 1 K
and the block size is 16 K, you will still incur a 16 K read operation. If a database
block size is smaller than the filesystem block size, you will be wasting I/O for opera‐
tions that require multiple pages. This can be visualized in Figure 10-1.

Figure 10-1. Aligned versus nonaligned block/stripe configurations.

A block requires some metadata to be stored, as well, usually in the form of a header
and trailer or footer. This will include disk address information, information about
the object the block belongs to, and information about the rows and activity that have
occurred within that block. In Oracle, as of version 11g, Release 2, block overhead

182 | Chapter 10: Data Storage, Indexing, and Replication

1 Cole, Jeremy, “The physical structure of records in InnoDB”.

totals 84 to 107 bytes. In MySQL’s InnoDB, as of version 5.7, header and trailer use 46
bytes. Additionally, each row of data will require its own metadata, including infor‐
mation about columns, links to other blocks that the row is spread across, and a
unique identifier for the row.1

Data blocks are often organized into a larger container called an extent. For efficiency
reasons, an extent is often the allocation unit when new blocks are required within a
tablespace. A tablespace is typically the largest data structure, mapped to one or more
physical files that can be laid out as required on disk. On systems mapped directly to
physical disks, tablespace files can be laid out across different disks to reduce I/O
contention. In the paradigms we focus on in this book, such curation of I/O is not
necessarily an option. Large, generic RAID structures of stripes and potentially mir‐
rored stripes can maximize I/O without significant time spent on microtuning.
Otherwise, assuming rapid recovery and failover are available, focusing on simple
volumes or even ephemeral storage provides ease of management and minimal over‐
head.

B-tree structures
Most databases structure their data in a binary tree format, also known as B-tree. A B-
tree is a data structure that self-balances while keeping data sorted. The B-tree is opti‐
mized for the reading and writing of blocks of data, which is why B-trees are
commonly found in databases and filesystems.

You can imagine a B-tree table or index as an upside-down tree. There is a root page,
which is the start of the index that is built on a key. The key is one or more columns.
Most relational database tables are stored on a primary key, which can be explicitly or
implicitly defined. For instance, a primary key can be an integer. If an application is
looking for data that maps to a specific ID or a range of IDs, this key will be used to
find it. In addition to the primary key B-tree, secondary indexes on other columns or
sets of columns can be defined. Unlike the original B-tree, these indexes store only
the data that is indexed rather than the entire row. This means that these indexes are
much smaller and can fit in memory much more easily.

A B-tree is called a tree because when you navigate through the tree, you can choose
from two or more child pages to get to the data you want. As just discussed, a page
contains rows of data and metadata. This metadata includes pointers to the pages
below it, also known as child pages. The root page has two or more pages below it,
also known as children. A child page, or node, can be an internal node or a leaf node.
Internal nodes store pivot keys and child pointers and are used to direct reads
through the index to one node or another. Leaf nodes contain key data. This structure
creates a self-balancing tree that can be searched within only a few levels, which

Data Structure Storage | 183

http://bit.ly/2zykQ0j

allows for only a few disk seeks to find the pointers to the rows that are needed. If the
data needed is within the key itself, you don’t even need to follow the pointer to the
row.

Binary tree writes. When inserting data to a B-tree, the correct leaf node is found via
search. Nodes are created with room for additional inserts, rather than packing them
in. If the node has room, the data is inserted in order in the node. If the node is full, a
split has to occur. In a split, a new median is determined and a new node is created.
Records are then redistributed accordingly. The data about this median is then inser‐
ted into the parent node, which can cause additional splits all the way up to the root
node. Updates and deletes also begin with finding the correct leaf node via search,
followed by the update or delete. Updates can cause splits if they increase data size to
the point where it overflows a node. Deletes can cause rebalancing, as well.

Greenfield (new) databases begin with primarily sequential writes and reads. This
shows as low latency writes and reads. As the database grows, splits will cause I/O to
become random. This results in longer latency reads and writes. This is why we must
insist on realistic datasets during testing to ensure that long-term performance char‐
acteristics will exhibit rather than these naive, early exhibitors.

Single-row writes require a page to be completely rewritten, at minimum. If there are
splits, there can be many pages that must be written. This complex operation requires
atomicity yet allows opportunities for corruption and orphaned pages if there is a
crash. When evaluating a datastore, it is vital to understand what mechanisms are put
in place to prevent this. Examples of such mechanisms include the following:

• Logs of write operations that are written to before the more complex operations
of writing to disk, also known as Write Ahead Logs (WAL)

• Event logs for reconstruction
• Redo logs with before and after images of the mutated data

With all of this in mind, a crucial variable in configuring your databases for underly‐
ing storage is the database block size. We’ve discussed the importance of aligning
database block sizes with the underlying disk block sizes, but that is not enough. If
you are using Solid-State Drives (SSDs), for instance, you might find smaller block
sizes provide much better performance while traversing B-trees. An SSD can experi‐
ence a 30% to 40% latency penalty on larger blocks versus performance on Hard Disk
Drives (HDDs). Because reads and writes are required in B-tree structures, this must
be taken into account.

The following is a summary of the attributes and benefits of B-trees:

• Excellent performance for range-based queries.
• Not the most ideal model for single-row lookups.

184 | Chapter 10: Data Storage, Indexing, and Replication

• Keys exist in sorted order for efficient key lookups and range scans.
• Structure minimizes page reads for large datasets.
• By not packing keys into each page, deletes and inserts are efficient, with only

occasional splits and merges being needed.
• Perform much better if the entire structure can fit within memory.

When indexing data, there are other options as well. The most predominant one is
the hash index.

As we mentioned earlier, the B-tree tends to be fairly ubiquitous in relational data‐
bases. If you’ve worked in those environments, you’ve probably worked with them
already. There are other options for data storage, however, and they are moving from
experimental to mature. Let’s look next at append-only log structures.

Sorted-String Tables and Log-Structured Merge Trees
BigTable, Cassandra, RocksDB (which is available in MySQL via MyRocks and Mon‐
goDB), and LevelDB are all examples of databases that use sorted-string tables (SSTs)
for primary storage. The terms SSTable and Memtable originally appeared in the
Google BigTable paper that has been a source of inspiration for a number of database
management systems (DBMS’s) since then.

In an SST storage engine, there are a number of files, each with a set of sorted key–
value pairs inside. Unlike in the block storage discussed earlier, there is no need for
the metadata overhead at the block or row level. Keys and their values are opaque to
the DBMS and stored as arbitrary binary large objects (BLOBs). Because they are
stored in a sorted fashion, they can be read sequentially and treated as an index on
the key by which they are sorted.

There is an algorithm that combines in-memory tables, batch flushing, and periodic
compaction in SST storage engines. This algorithm is referred to a log-structured
merge (LSM) tree architecture (see Figure 10-2). This was described by Patrick
O’Neill in his paper.

Data Structure Storage | 185

http://bit.ly/2zyttIz
https://research.google.com/archive/bigtable-osdi06.pdf
http://nosqlsummer.org/paper/lsm-tree

Figure 10-2. Log-structured merge tree structure with a bloom filter

With an LSM, SSTs are written to by periodic flushes of data that has been stored in
memory. After data is flushed, sorted, and written to disk, it is immutable. Items can‐
not be added or removed from the map of key–value pairs. This is effective for read-
only datasets because you can map an SST into memory for rapid access. Even if the
SST does not fully fit in memory, random reads require a minimal amount of disk
seeks.

To support fast writes, more is required. Opposite to writes on disk, writes on a data‐
set in memory are trivial because you are just changing pointers. An in-memory table
can take writes and remain balanced. This is also referred to as a memtable. The
memtable can also act as the first query point for reads before falling back to the new‐
est SST on disk, followed by the next oldest, and then the next, until the data is found.
After a certain threshold is reached, which can be time, number of transactions, or
size, the memtable will be sorted and flushed to disk.

When deletes are done on data that is already stored in an SST, a logical delete must
be recorded. This is also known as a tombstone. Periodically, SST’s are merged
together, allowing elimination of tombstones and saving of space. This merge and
compaction process can be very I/O intensive and often requires significantly more
space available than the actual working set. Until operations teams are used to these
new capacity models, there might be impacts to availability Service-Level Objectives
(SLOs).

186 | Chapter 10: Data Storage, Indexing, and Replication

There are data-loss possibilities that must be assumed during failure scenarios. Until
memtables are flushed to disk, they are vulnerable to crashes. Unsurprisingly, there
are similar solutions in SST storage engines as in B-tree based ones, including event
logs, redo logs, and write ahead logs.

Bloom filters
You might imagine that having to search through a memtable and a large number of
SSTables to find a record key that doesn’t exist could be expensive and slow. You’d be
right! An implementation detail to assist with this is a bloom filter. A bloom filter is a
data structure that you can use to evaluate whether a record key is present in a given
set, which, in this case, is an SSTable.

A datastore such as Cassandra uses bloom filters to evaluate which SSTable, if any,
might contain the record key requested. It is designed for speed, and thus there might
be some false positives. But, the overall effect is a significant reduction in read I/O.
Inversely, if a bloom filter says that a record key does not exist in an SSTable, that is a
certainty. Bloom filters are updated when memtables are flushed to disk. The more
memory that can be allocated to the filter, the less likely a false positive will occur.

Implementations
There a number of datastores that utilize the LSM structure with SSTables as a storage
engine:

• Apache Cassandra
• Google Bigtable
• HBase
• LevelDB
• Lucene
• Riak
• RocksDB
• WiredTiger

Implementation details will vary for each datastore, but the proliferation and growing
maturity of this storage engine has put it into an important storage implementation
for any team working with large datasets to understand.

While reviewing and enumerating data storage structures, we’ve mentioned logs mul‐
tiple times as critical for data durability in the case of failures. We also discuss them in
(Chapter 7). They are also critical for replicating data in distributed datastores. Let’s
dig deeper into logs and their usage in replication.

Data Structure Storage | 187

Indexing
We have already discussed one of the most ubiquitous of indexing structures, the B-
tree. SSTs are also inherently indexed. There are some other index structures that you
will find out in the database wild.

Hash indexes
One of the simplest index implementations is that of a hash map. A hash map is a
collection of buckets that contain the results of a hash function applied to a key. That
hash points to the location where the records can be found. A hash map is only viable
for single-key lookups because a range scan would be prohibitively expensive. Addi‐
tionally, the hash must fit in memory to ensure performance. With these caveats, hash
maps provide excellent access for the specific use cases for which it works.

Bitmap indexes
A bitmap index stores its data as bit arrays (bitmaps). When you traverse the index, it
is done by performing bitwise logical operations on the bitmaps. In B-trees, the index
performs the best on values that are not repeated often. This is also known as high
cardinality. The bitmap index functions much better when there are a small number
of values being indexed.

Permutations of B-trees
There are permutations of the traditional B-tree index. These are often designed for
very specific use cases, including the following:

Function Based
An index based on the results of a function applied to the index.

Reverse Index
Indexing values from the end of that value to the beginning to allow for reverse
sorting.

Clustered Index
Requires the table records to be physically stored in indexed order to optimize
I/O access. The leaf nodes of clustered index contain the data pages.

Spatial Index
There are a number of different mechanisms for indexing spatial data. Standard
index types cannot handle spatial queries efficiently.

Search Index
These indexes allow for searching of subsets of data within the columns. Most
indexes cannot search within the indexed value. There are some indexes

188 | Chapter 10: Data Storage, Indexing, and Replication

2 See the book Replication Techniques in Distributed Systems (Advances in Database Systems, 1996).

designed for this, however, and some entire datastores, such as ElasticSearch, are
built for this operation.

Each datastore will have its own series of specialized indices that are available, often
to optimize the typical use cases within that datastore.

Indexes are tremendously critical for rapid access of subsets of data. When evaluating
bleeding-edge datastores, understanding the limitations in terms of indexes, such as
the ability to have more than one index or how many columns can be indexed or
even how those indexes are maintained in the background, is crucial to understand.

Logs and Databases
Logs began as a way to maintain durability in database systems. They evolved to the
mechanism used to replicate data from primary to replica servers for availability and
scalability reasons. Eventually, services were built to use these logs to migrate data
between different database engines with a transformation layer between them. This
then evolved into a full messaging system with logs becoming events that a subscrib‐
ing service could use to perform discreet pieces of work for downstream services.

With opportunities of so many use cases for logs, we’d like to focus specifically on
replication in this chapter. Having discussed how data can be stored and indexed on a
local server, we now will move on to how that data can be distributed to other servers.

Data Replication
For this entire book, we have been working under the assumption that you will be
working primarily on distributed datastores. This means that there must be a way for
data that is written on one node to be moved around between nodes. There are entire
books written on this topic alone,2 so we will focus on well-known and utilized exam‐
ples rather than more theoretical ones. Our goal for you as a DBRE is for you and the
engineers you support to be able to look at replication methods offered and to under‐
stand how they work. Knowing the pros and cons and patterns and antipatterns that
are associated with replication options is crucial for a DBRE, an architect, a software
engineer, or an operations person to do their jobs well.

There are some high-level distinctions in replication architectures that can be used
for an initial enumeration. When discussing replication here, we are referring to lead‐
ers as nodes that take writes from applications and followers as nodes that receive
replicated events to apply to their own datasets. Finally, readers are nodes that appli‐
cations read data from.

Data Replication | 189

Single Leader
Data is always sent to one specific leader.

Multiple Leader
There can be multiple nodes with a leader role, and each leader must persist data
across the cluster.

No Leader
All nodes are expected to be able to take writes.

We will begin with the simplest replication method, single-leader, and build on from
there.

Single-Leader
As the title implies, in this replication model all writes go to a single leader and are
replicated from there. Thus, you have one node out of N nodes that is designated as
the leader, and the others are replicas. Data flows from the leader out. This method is
widely utilized for its simplicity, and you can make a few guarantees. These guaran‐
tees include:

• There will be no consistency conflicts because all writes occur against one node.
• Assuming that all operations are deterministic, you can guarantee that they will

result in the same outputs on each node.

There are some permutations here, such as one leader replicating to a few relay repli‐
cas that then have their own replicas. Regardless, there is one leader taking writes,
which is the key attribute of this architecture. There are a few different approaches to
replication in single leader. Each approach trades off some level of consistency,
latency, and availability. Thus, the appropriate choice will vary based on the applica‐
tions and how they use database clusters.

Replication models
When replicating data in single-leader fashion, there are three different models that
you can be use:

Asynchronous
optimize latency over durability

Synchronous
optimize durability over latency

Semi-synchronous
compromise latency and durability

190 | Chapter 10: Data Storage, Indexing, and Replication

In asynchronous replication models, a transaction is written to a log on the leader and
then committed and flushed to disk. A separate process is responsible for shipping
those logs to the followers, where they are applied as soon as possible. In asynchro‐
nous replication models, there is always some lag between what is committed on the
leader and what is committed on the followers. Additionally, there is no guarantee
that the commit point on one follower is the same as the others. In practice, the time
gap between commit points might be too small to notice. It is just as easy to find clus‐
ters using asynchronous replication for which there is a time gap of seconds, minutes,
or hours between leaders and followers.

In synchronous replication models, a transaction that is written to a log on the leader
is shipped immediately over the network to the followers. The leader will not commit
the transaction until the followers have confirmed that they have recorded the write.
This ensures that every node in the cluster is at the same commit point. This means
that reads will be consistent regardless of what node they come from, and any node
can take over as a leader without risk of data loss if the current leader fails. On the
other hand, network latency or degraded nodes can all cause write latency for the
transaction on the leader.

Because synchronous replication can have a significant impact on latency, particularly
if there are many nodes, semi-synchronous replication can be put in place as a com‐
promise. In this algorithm, only one node is required to confirm to the leader that
they have recorded the write. This reduces the risk of latency impacts when one or
more nodes are functioning in degraded states while guaranteeing that at least two
nodes on the cluster are at the same commit point. In this mode, there is no longer a
guarantee that all nodes in the cluster will return the same data if a read is issued on
any reader. There is, however, still a guarantee that you can promote at least one node
in the cluster to leader status, if needed, without data loss.

Replication log formats
To achieve single-leader replication, you must use a log of transactions. There are a
number of approaches to how these logs are implemented. Each one has benefits and
trade-offs, and many datastores might implement more than one to allow you to
choose what works best. Let’s review them here.

Statement-based logs. In statement-based replication, the actual SQL or data write
statement used to execute the write is recorded and shipped from the leader to fol‐
lowers. This means that the entire statement will be executed on each follower.

Pros:

• A statement can execute hundreds or thousands of records. That’s a lot of data to
ship. The statement is usually much smaller. This can be optimal when replicat‐
ing across datacenters where network bandwidth is scarce.

Data Replication | 191

• This approach is very portable. Most SQL statements will result in the same out‐
puts even on different versions of the database. This allows you to upgrade fol‐
lowers before upgrading leaders. This is a critical piece of high-availability
approaches to upgrades in production. Without backward-compatible replica‐
tion, version upgrades can require significant downtime while an entire cluster is
upgraded.

• You can also use log files as audits and for data integration because they contain
entire statements.

Cons:

• A statement might require significant processing time if it is using aggregation
and calculation functions on a selected dataset to determine what it will write.
Running the statement can take much longer than simply changing the records
or bits on disk. This can cause replication delay in serialized apply processes.

• Some statements might not be deterministic and can create different outputs to
the dataset if run on different nodes.

MySQL statement-based replication is an example of this.

Deterministic Transactions
Deterministic means that the processing output of a statement is not dependent on
time and cannot be influenced by external factors. If a statement is run on the same
dataset and in the same sequence, regardless of which node it is on, it should create
the same output. Examples of nondeterministic statements include the use of local
time functions, such as now() or sysdate(), or that use random ordering, such as
order by rand().

Similarly, stored code such as user-defined functions, stored procedures, and triggers
can cause a statement to be nondeterministic and thus not safe for statement-based
replication.

Write-ahead logs. A write-ahead log (WAL), also known as a redo log, contains a ser‐
ies of events, each event mapped to a transaction or write. In the log are all of the
bytes required to apply a transaction to disk. In systems, such as PostgreSQL, that use
this method, the same log is shipped directly to the followers for application to disk.

Pros:

• Very fast as the parsing and execution of the statement has already occurred. All
that is left is to apply the changes to disk.

192 | Chapter 10: Data Storage, Indexing, and Replication

• Not at risk of impacts from nondeterministic SQL.

Cons:

• Can consume significant bandwidth in high-write environments.
• Not very portable because the format is closely tied to the database storage

engine. This can make it challenging to perform rolling upgrades that allow for
minimization of downtime.

• Not very auditable.

WALs will often use the same logs built for durability and just bolt on a log shipping
process for replication. This is what gives us the efficiency of this format, but also its
lack of portability and flexibility.

Row-based replication. In row-based replication (also called logical), writes are written
to replication logs on the leader as events indicating how individual table rows are
changed. Columns with new data are indicated, columns with updated information
show before/after images, and deletes of rows are indicated as well. Replicas use this
data to directly modify the row rather than needing to execute the original statement.

Pros:

• Not at risk of impacts from nondeterministic SQL.
• A compromise on speed between the two previous algorithms. Logical transla‐

tion to physical is still required, but entire statements do not need to run.
• A compromise on portability between the two pervious algorithms. Not very

human readable but can be used for integrations and inspection.

Cons:

• Can consume significant bandwidth in high-write environments.
• Not very auditable.

This method has also been called change data capture (CDC). It exists in SQL Server
and MySQL and is also used in data warehouse environments.

Block-level replication. So far, we have been speaking about replication methods using
native database mechanisms. In contrast, block-device replication is an external
approach to the problem. A predominant implementation of this is Distributed Repli‐
cated Block Device (DRBD) for Linux. DRBD functions a layer above block devices
and propagates writes not only to the local block device, but also to the replicated
block device on another node.

Data Replication | 193

Block-level replication is synchronous and eliminates significant overhead in the
replicated write. However, you cannot have a running database instance on the secon‐
dary node. So, when a failover occurs, a database instance must be started. If the for‐
mer master failed without a clean database shutdown, this instance will need to
perform recovery just as if the instance had been restarted on the same node.

So, what we have with block-level replication is synchronous replication with very
low latencies, but we lose the ability to use the replicas for scalability or workload dis‐
tribution. Happily for us, using an external replication method, such as block-level
replication, can be combined with native replication, such as statement-based or row-
level replication. This can give a combination of zero-data-loss replication along with
the flexibility of asynchronous replication.

Other methods. There are other methods for replication that are decoupled from the
database logs. Extraction, Transform, and Load (ETL) jobs used to move data
between services will often look for indicators of new or changed rows such as IDs or
timestamps. With these indicators, they will pull out data for loading elsewhere.

Triggers that are on tables can also load a table with changes for an external process
to listen on. These triggers can simply list out IDs for changes or give full change data
capture information just like a row-based replication approach will.

When evaluating options for replication, you will need a combination of options
depending on your source datastore, target datastore, and the infrastructure that
exists between the two datastores. We will discuss this more in the next section on
replication uses.

Single-leader replication uses
At this point in datastore maturity, replication is more often than not a requirement
rather than an option. But, there are still a variety of reasons to implement replication
that can affect architecture and configuration. In single-leader architectures, most of
these can be enumerated as availability, scalability, locality, and portability.

Availability. It goes without saying that if a database leader fails, you want to have the
fastest recovery option possible to which to point application traffic. Having a live
database with a fully up-to-date copy of data is far preferable to a backup that must be
recovered and then rolled forward to the failure point. This means that mean time to
recover (MTTR) requirements and data-loss requirements must be kept at the fore‐
front when making choices about replication. Synchronous and semi-synchronous
replication gives the best options for no data loss with a low MTTR, but they do affect
latency. Finding the elusive trifecta of low MTTR, low latency, and no data loss via
replication alone is not possible without some external support, such as a messaging
system that you can write to in addition to the datastore to allow for recovery of data
that might be lost in a leader failover in an asynchronously replicated environment.

194 | Chapter 10: Data Storage, Indexing, and Replication

Scalability. A single leader creates a boundary on write I/O, but the followers allow
for reads of data to scale based on the number of reads provided. For read-intensive
applications that experience a relatively small amount of writes, multiple replicas do
create an opportunity for creating more capacity in the cluster. This capacity is boun‐
ded, as replication overhead does not allow for linear scalability. Still, this does create
an opportunity for increasing runway. To support scalability, the data on replicas
must be recent enough to support business requirements. For some organizations, the
replication delay inherent in asynchronously replicated systems is acceptable. How‐
ever, for other requirements, synchronous replication is absolutely required, regard‐
less of the impact to write latency.

Locality. Replication is also a way to keep datasets in various locations that are closer
to consumers to minimize latency. If you have customers across countries or even on
different coasts, the impact of long-distance queries can be significant. Large datasets
are not very portable in their entirety, but incremental application of changes keeps
those datasets up to date. As we mentioned previously, long-distance replication over
bandwidth-starved networks often requires statement-based replication if compres‐
sion is not enough to manage row-based or WAL entries. Modern networks and com‐
pression often alleviate this. Also, semi-synchronous or synchronous algorithms are
generally not feasible with long-distance latencies, leading to the choice of asynchro‐
nous replication.

Portability. There are a number of opportunities in other datastores for the data
residing in your leader. You can use replication logs to push into data warehouses as
events for consumers in a data pipeline or for transformation into other datastores
with more appropriate query and indexing patterns. Utilizing the same replication
streams as replicas that are in place for availability and scale ensures that the datasets
streaming from the leader are the same. That being said, more custom solutions such
as query-based ETL and trigger-based approaches provide filtering of the appropriate
subsets of data rather than the entire transaction stream coming out of the replication
logs. These jobs also often have significant leeway in the freshness requirements of
data, which allows for choices that have less of an impact on latency than other
approaches.

Based on these needs, you and your engineering teams should be able to select one or
more choices for replication. Regardless of which choices you make, there are a num‐
ber of challenges that can come up in these replicated environments.

Single leader replication challenges
There a number of opportunities for challenges in any replicated environment. Even
though single-leader is the simplest of replicated environments, that does not by any
means indicate simplicity or ease. In this section, we walk through the most common
of these challenges.

Data Replication | 195

Building replicas. With large datasets, the portability of your data can be reduced sig‐
nificantly. We reviewed this in (Chapter 7). As the dataset increases, the MTTR also
increases, which can lead to a need for a larger number of replicas or a new backup
strategy that can keep the MTTR within acceptable levels. Other options include
reducing the dataset size in one group of server by breaking out one dataset into mul‐
tiple smaller datasets. This is also called sharding. We discuss this further in Chap‐
ter 12.

Keeping replicas synchronized. Building a replica is only the first step in a replicated
environment. While using asynchronous replication, keeping that replica caught up
proves to be its own challenge in environments characterized by frequent or large
changes to the dataset. As we discussed in “Replication log formats” on page 191,
changes must be logged, logs must be shipped, and changes must be applied.

Relational databases, by design, typically translate writes to a linearized series of
transactions that must be followed strictly to ensure dataset consistency between rep‐
licas and leaders. This generally translates into the need for serialized processes
applying one change at a time on the replicas. These serialized apply processes on
replicas often are unable to catch up or stay caught up with the leader for a number of
reasons, including the following:

• Lack of concurrency and parallelism as compared to the leader. I/O resources are
often wasted on the replicas.

• Blocks to be read in transactions are not in memory on replicas if read traffic is
not common.

• When distributing writes to leaders and reads to replicas, read traffic concur‐
rency can affect write latency on replicas.

Regardless of the reason, the end result is often called replica lag. In some environ‐
ments, replica lag might be an infrequent and ephemeral problem that resolves itself
frequently, and within SLOs. In other environments, these issues become pervasive
and can lead to replicas being unusable for their original purposes. If this occurs,
there is an indication that the workload for your datastore has grown too large and
must be redistributed via one or more techniques. We discuss these techniques in
more detail in Chapter 12. In brief, they are as follows:

Short Term
Increase capacity on the cluster so that the current workload fits within the clus‐
ters capacity.

Medium Term
Break out functions of the database into their own clusters to guaranty workload
bounds fit within the cluster capacity. Also known as functional partitioning or
sharding.

196 | Chapter 10: Data Storage, Indexing, and Replication

Long Term
Break out your dataset into multiple clusters, allowing you to maintain workload
bounds so that they fit within the cluster’s capacity. Also known as dataset parti‐
tioning or sharding.

Long Term
Choose a database management system whose storage, consistency, and durabil‐
ity requirements make more sense for your workload and SLOs and that will not
have the same scaling problems.

As you can see in the choices described, none of these will work for continued
growth. In other words, they do not scale linearly with workload. Some, like capacity
increases of functional partitioning, have shorter runways than others, like dataset
partitioning. But even dataset partitioning will eventually find limits in how far it can
be solved. This means that other things must be evaluated to ensure that the bounds
never increase to the point of diminishing returns that render the solution obsolete.

If you are experiencing replication lag and must mitigate impacts while a longer-term
solution is put in place, there are some short-term tactics that can be employed.
These include:

• Preloading active replica datasets into memory to reduce disk IO.
• Relaxing durability on the replicas to reduce write latency.
• Parallelizing replication based on schemas if there are no transactions that cross

schemas.

These are all short term tactics that can allow for breathing room, but they all also
have tradeoffs in terms of fragility, high maintenance costs, and potential data issues
so they must be scrutinized very carefully and only in great need.

Single leader failovers. One of the greatest values of replication is the existence of
other datasets that are caught up and can be used as leaders in the case of a failure or
because of the need to move traffic off of the original leader. This is not a trivial oper‐
ation, however, and there are a number of steps that occur. In a planned failover,
these steps include the following:

• Identification of the replica that you want to promote to the new leader.
• Depending on the topology, a preliminary partial reconfiguration of the cluster

can be performed, to move all replicas to replicate from the candidate leader.
• If asynchronous replication is used, a pause in application traffic to allow the

candidate leader to catch up.
• Reconfiguration of all application clients to point to the new replica.

Data Replication | 197

In a clean, planned failover, this all can appear to be quite trivial if you’ve effectively
scripted and automated certain steps. However, relying on these failovers during fail‐
ure scenarios can create lots of opportunity for problems. An unplanned failover
might look something like this:

1. Leader database instance becomes unresponsive.
2. A monitoring heartbeat process attempts to connect to the database leader.
3. After 30 seconds of hanging, the heartbeat triggers a failover algorithm.
4. The failover algorithm does the following:

• Identifies the replica with the latest commit level as the promotion candidate
• Reattaches the other replicas at the appropriate point in the log stream to the

promotion candidate
• Monitors until the cluster replicas are caught up
• Reconfigures application configurations via file or a service and pushes
• Instantiates rebuilding of a new replica

Within this, there are numerous inflection points. We discuss these further in Chap‐
ter 12.

Despite these challenges, replication remains one of the most commonly imple‐
mented features of databases and thus becomes a critical part of the database infra‐
structure. This means that it must be incorporated into the rest of your reliability
infrastructure.

Single leader replication monitoring
Effective management of replication requires effective monitoring and operational
visibility. There are a number of metrics that must be collected and presented to
ensure that replicas are effective in supporting the organization’s SLOs. Critical areas
to monitor include the following:

• Replication lag
• Latency impacts to writes
• Replica availability
• Replication consistency
• Operational processes

This is touched upon somewhat in Chapter 4, but is worth mentioning again here.

198 | Chapter 10: Data Storage, Indexing, and Replication

Replication lag and latency. To understand replication flows, we must understand the
relative time it takes to perform replicated operations. In asynchronous environ‐
ments, this means understanding the amount of time that has lapsed between an
operation occurring on the master and the time when that write has been applied to
the replica. This time can vary wildly from second to second, but the data is crucial.
There are a number of ways that you can measure this.

Like any distributed system, these measurements rely at some level on the local
machine time. Should system clocks or Network Time Protocol (NTP) drift apart
from one another, the information can be skewed. There is simply no way to rely on
local time on two machines and assume that they are synchronized. For most dis‐
tributed databases relying on asynchronous replication, this is not an issue. Times are
very close, and this will suffice. But, even in these situations, remembering the fact
that time is a very relative concept on each node can assist in forensics on some trou‐
bling issues.

One common approach to measuring the time from insert on a leader to insert on a
replica is to insert a heartbeat row of data and then to measure when that time
appears on the replica. For example, if you insert data at 12:00:00 and you regularly
poll the replica and see that it has not received that value, you can assume that repli‐
cation is stalled. If you query at 12:01:00 and the data for 11:59:00 does exist, but
12:00:00 and beyond doesn’t, you know replication is one second behind at 12:01:00.
Eventually, this row will commit, and you can use the next row to measure how far
beyond the database is currently.

In the case of semi- or fully synchronous replication, you will want to know the
impact of these configurations on writes. This can and will be measured as part of
your overall latency metrics, but you will also want to measure the time the network
hops from the leader to the replica takes because this will be the cost of synchronous
writes over the network.

The following are critical metrics that you must ensure are being gathered:

• Delay in time from leader to replica in asynchronous replication
• Network latency between leader and replicas
• Write latency impact in synchronous replication

These metrics are invaluable for any service. Proxy infrastructures can use replication
lag information to validate which database replicas are caught up enough to take pro‐
duction read traffic. A proxy layer that can take nodes out of service not only assists
in guaranteeing that stale reads do not occur, but also allows replicas that are behind
to catch up without the burden of supporting read traffic. Of course this algorithm
must take into account what happens if all replicas are delayed. Do you serve from
the leader? Do you shed load at the frontend until enough replicas are caught up? Do

Data Replication | 199

you put the system in read-only mode? All of these are potentially effective options if
planned for.

Additionally, engineers can use replica lag and latency information to troubleshoot
data consistency issues, performance degradations, and other complaints that can
result from replication delays.

Now, let’s look at the next set of metrics: on availability and capacity.

Replication availability and capacity. If you are working with a datastore such as Cas‐
sandra that distributes data synchronously based on a replication factor, you also
need to monitor and be aware of the number of copies that are available to satisfy a
quorum read. For instance, suppose that we have a cluster with a replication factor of
3, which means that a write must be replicated to three nodes. Our application
requires that 2/3 of the nodes with this data must be able to return results during a
query. This means that if we have two failures, we will no longer be able to satisfy our
applications queries. Monitoring replica availability proactively lets you know when
you are in danger of failing this.

Similarly, even in environments without replication factor and quorum requirements,
database clusters are still designed with an eye toward how many nodes must be
available in order to satisfy SLOs. Monitoring how cluster size matches these expecta‐
tions is critical.

Finally, it is important to recognize when replication has broken completely.
Although monitoring replication lag with heartbeats will inform you that replication
is falling behind, it will not alert you that something has occurred and the replication
stream is broken. There are a number of reasons that replication might break:

• Network partitions
• Inability to execute Data Manipulation Language (DML) in statement-based rep‐

lication, including:
— Schema mismatch
— Nondeterministic SQL causing dataset drift that violates a constraint
— Writes that went accidentally to the replica causing dataset drift

• Permissions/security changes
• Storage space starvation on replica
• Corruption on replica

The following are examples of metrics to gather:

• Actual number of available copies of data versus expected number
• Replication breakage requiring repair of replicas

200 | Chapter 10: Data Storage, Indexing, and Replication

• Network metrics between the leaders and replicas
• Change logs for the database schemas and user/permissions
• Metrics on how much storage is being consumed by replication logs
• Database logs that provide more information about issues such as replication

errors and corruption

With this information, automation can use replica availability metrics to deploy new
replicas when you are underprovisioned. Operators can also more quickly identify
the root cause of breakage to determine if they should repair or simply replace a rep‐
lica or if there is a more systemic issue that must be addressed.

Replication consistency. As we discussed earlier, there are possible scenarios that can
occur that will cause your datasets to be inconsistent between leader and replica.
Sometimes, if this causes a replication event to fail during the apply phase, you will be
alerted to this via replication breaking. What is even worse though, is silent corrup‐
tion of data that you do not detect for quite a long time.

You will recall from Chapter 7 that we discussed the importance of a validation pipe‐
line for maintaining consistency of datasets with business rules and constraints. You
can utilize a similar pipeline to ensure that data is identical across replicas. Like data
validation pipelines for consistency, this is often neither simple nor inexpensive in
terms of resources. This means that you must be selective in determining which data
objects are reviewed and how often.

Data that is append-only, such as SSTs or even insert-only tables in B-tree structures,
is easier to manage because you can create checksums on a set of rows based on a
primary key or date range and compare these checksums across replicas. As long as
you let this run frequently enough that you don’t fall behind, you can be relatively
sure that this data is consistent.

For data that allows for mutations, this can prove more challenging. One approach is
to run and store a database-level hashing function on the data after a transaction is
completed in the application. When incorporated into the replication stream, a hash
will create identical values in each replica if the data replicated appropriately. If it
didn’t, the hashes will be different. An asynchronous job that compares hashes on
recent transactions can then alert if there is a difference.

These are just a few ways to monitor replication consistency. Creating patterns for
your software engineers (SWEs) to use, as well as a classification system of data
objects to help them determine if a table requires a place in a validation pipeline, will
help to ensure that you don’t use too many precious resources. Sampling or just doing

Data Replication | 201

3 Download the paper “Replication, Consistency, and Practicality: Are These Mutually Exclusive?”.

recent time windows may also be effective depending on the type of data that you are
storing.3

Operational processes. Finally, it is important to monitor the time and resources
required to perform operational processes critical to replication. Over time, as data‐
sets and concurrency grow, these processes can grow more burdensome on a number
of dimensions. If you exceed certain thresholds, you might be at risk of being able to
maintain replication freshness or to keep an appropriate number of replicas online at
any time to support traffic. Some of these metrics include:

• Dataset size
• Backup duration
• Replica recovery duration
• Network throughput used during backup and recovery
• Time to synchronize after recovery
• Impact to production nodes during backups

By sending events with appropriate metrics every time a backup, recovery, or syn‐
chronization occurs, you can create reports to evaluate and potentially predict when
your dataset and concurrency will cause your operational processes to become unusa‐
ble. You can also utilize some basic predictive evaluations on how durations or con‐
sumption of resources can change based on changes in dataset size or concurrency.

Outside of predictive automation, regular reviews and tests can help operations staff
to evaluate when their operational processes are no longer scaling. This will allow you
to either provision more capacity, to redesign systems or processes, or to rebalance
dataset distributions to maintain effective times that support availability and latency
SLOs.

Although there will inevitably be other metrics or indicators that you want to meas‐
ure with respect to your data replication, these are a good working set to ensure that
your replication is working effectively and is supporting the SLOs against which you
designed it.

Single-leader replication is by far the most common implementation of replication
due to its relative simplicity. Still, there are times when availability and locality needs
are not met by this approach. By allowing writes into a database cluster from more
than one leader, the effects of leader failovers can be reduced, and leaders can be put
in different zones and regions to allow for better performance. Let’s now review the
approaches and challenges of this requirement.

202 | Chapter 10: Data Storage, Indexing, and Replication

https://www.eng.tau.ac.il/~yash/sigmod98.ps

Multi-Leader Replication
There are really two different approaches to breaking free from the single-leader
paradigm of replication. The first method is what we can call multi-directional repli‐
cation, or traditional multileader. In this approach, the concept of a leader role still
exists, and leaders are designed to take and propagate writes to replicas as well as to
the other leader. Typically, there will be two leaders distributed into different datacen‐
ters. The second approach is write-anywhere, meaning that any node in the database
cluster can effectively take reads or writes at any time. Writes are then propagated to
all other nodes.

Regardless of which solution is attempted here, the end result is more complex
because you must add a layer of conflict resolution. When all writes are going to one
leader you are working with a premise that there can be no chance of conflicting
writes going to different nodes. But, if you allow writes to multiple nodes, there is a
chance that conflicts can occur. This must be planned for appropriately, causing
increased application complexity.

Multileader use cases
If the end result of multileader replication is complexity, what requirements could be
worth that cost and risk? Let’s look at them here.

Availability. When a leader failover occurs in single-leader asynchronous replication,
there is generally an impact to the application of anywhere between 30 seconds on the
low end and 30 minutes or even one or more hours on the high end, depending on
how the system is designed. This is due to the need for replication consistency checks,
crash recovery, or any of a number of other steps.

In some cases, this disruption to service might simply be unacceptable, and there are
not resources or ability to change the application to tolerate the failovers more trans‐
parently. In this case, the ability to load balance writes across nodes becomes poten‐
tially worth the inevitable complications.

Locality. A business might need to run active sites in two different regions to ensure
low latency for a global or distributed customer base. In a read-heavy application, you
can still often do this via single-leader replication over a long-distance network.
However, if the application is write intensive, the latency impact of sending writes
across those long-distance networks might be too great. If this is the case, putting a
leader in each datacenter and managing conflict resolution can prove to be the best
approach.

Disaster recovery. Similar to locality and availability, there are times when an applica‐
tion is so critical that it must be separated across datacenters to ensure availability in
the infrequent case of a failure at the datacenter layer. You can still accomplish this

Data Replication | 203

goal with single-leader replication but only if the secondary region is used for reads
only, as discussed earlier, or if it is used only for redundancy. Few businesses can
afford to spin up an entire datacenter without using it, however, so multileader repli‐
cation is often chosen to allow both datacenters to actively take traffic and support
customers.

With a greater percentage of infrastructures running in cloud services, or with global
distribution requirements, it is almost an inevitability that you will need to evaluate
multileader replication eventually for one of the aforementioned reasons. Often, the
physical implementation of the multileader replication can be supported natively or
with a third party piece of software. The challenge comes in managing the inevitable
conflicts that will occur.

Conflict resolution in traditional multidirectional replication
Traditional multidirectional replication bears the closest resemblance to single leader.
Essentially, it just pushes the writes both directions as you allow writes to go to more
than one leader. It sounds good and meets all of the use cases we just discussed. But if
you are using asynchronous replication, which is the only feasible approach in an
environment incorporating multiple datacenters and slow network connections, there
can and will be problems. During times of replication latency or partitioned net‐
works, applications that rely on the stored state in the database will be using stale
state. On repair of the replication lag or the network partition, the writes that have
been built using different versions of state must be resolved. So how do you and your
SWEs manage the problem of conflicting writes in a multileader replication architec‐
ture? Very carefully. As with most problems, we can work on this with a few
approaches.

Eliminate conflicts. The path of least resistance is always avoidance. There are times
when you can perform writes or direct traffic in such a way that there simply are no
conflicts. Here are a few examples:

• Give each leader a subset of primary keys that can be generated only on that spe‐
cific leader. This works well for insert/append-only applications. At its simplest,
this might look like one leader writing odd number incrementing keys and the
other leader writing even number ones.

• Affinity approaches in which a specific customer is always routed to a specific
leader. You can do this by region, unique ID, or any number of ways.

• Use a secondary leader for failover purposes only, effectively writing to only one
leader at a time but maintaining a multileader topology for ease of use.

• Shard at the application layer, putting full application stacks in each region to
eliminate the need for active/active cross region replication.

204 | Chapter 10: Data Storage, Indexing, and Replication

Of course, just because you configure things this way doesn’t mean it will always
work. Configuration mistakes, load balancer mistakes, and human errors are all pos‐
sible and can cause replication to break or data to be corrupted. Thus, you still need
to be prepared for accidental conflicts even if they are rare. And as we’ve discussed
before, the rarer the error, the more dangerous it can be.

Last write wins. For the case in which you will not be able to avoid potential write
conflicts, you need to decide how you want to manage them when they occur. One of
the more common algorithms provided natively in datastores is Last Write Wins
(LWW). In LWW, when two writes conflict, the write with the latest timestamp wins.
This seems pretty straightforward, but there are a number of issues with timestamps.

Timestamps—Sweet Little Lies

Most server clocks use wall clock time, which relies on gettimeof
day(). This data is provided by hardware and NTP. Time can flow
backward instead of forward for many reasons, such as the follow‐
ing:

• Hardware issues
• Virtualization issues
• NTP not being enabled, or upstream servers might be wrong
• Leap seconds

Leap seconds are rather horrifying. POSIX days are defined as
86,400 seconds in length. Real days are not always 86,400 seconds,
however. Leap seconds are scheduled to keep days in line, by skip‐
ping or double-counting seconds. This can cause tremendous
problems, and Google spreads out the time over a day to keep time
monotomic.

There are times when LWW is relatively safe. If you can perform immutable writes
because you know the correct state of your data at the time of write, using LWW can
work. But, if you are relying on state you’ve read in the transaction to perform a
write, you are at significant risk of data loss in the case of a network partition.

Cassandra and Riak are examples of datastores with LWW implementations. In fact,
in the Dynamo paper, LWW is one of the two options described for handling update
conflicts.

Custom resolution options. Due to the constraints of basic algorithms that rely on
timestamps, more custom options must often be taken into account. Many replicators
will allow for custom code to be executed when a conflict is detected after a write.

Data Replication | 205

http://bit.ly/2zzUTO6
http://bit.ly/2zzUTO6
http://bit.ly/2zyOVwP

The logic required to automatically resolve write conflicts can be quite extensive, and
even so, there can be opportunities for making mistakes.

Using optimistic replication, which allows for all mutations to be written and replica‐
ted, you can allow background processes, the application, or even users to determine
what to do to resolve those conflicts. This can be as simple as choosing one version or
another of the data object. Alternatively, you could do a full merge of the data.

Conflict-free replicated datatypes. Due to the complexity of logic in custom code for
conflict resolution, many organizations might balk at the work and the risks. There is
a class of data structures, however, that are built to effectively manage writes from
multiple replicas that might have timestamp or network issues. These are called con‐
flict free, replicated datatypes (CRDTs). CRDTs provide strong, eventual consistency
as they are always able to be merged or resolved without conflicts. CRDTs are effec‐
tively implemented in Riak as of this writing and utilized in very large implementa‐
tions of online chat and online betting.

As we can see here, conflict resolution in multi-leader environments is absolutely
possible but not a simple problem. The complexity involved in distributed systems is
very real and requires a significant amount of engineering time and effort. Addition‐
ally, mature implementations of these approaches might not be available in the data‐
stores at which you and your organization work most effectively. So, be very careful
before going down the rabbit hole of multileader replication.

Write-anywhere replication
There is an alternate paradigm to the traditional multidirectional replication. In a
write-anywhere approach, there are no leaders. Any node can take reads or writes.
Dynamo-based systems, such as Riak, Cassandra, and Voldemort are examples of this
approach to replication. There are certain attributes of these systems that we will go
over in more detail now:

• Eventual consistency
• Read and write quorums
• Sloppy quorums
• Anti entropy

Different systems will vary on their implementations of these, but together they form
an approach to leaderless replication as long as your application can tolerate unor‐
dered writes. There are usually tunables that help modify the behavior of these sys‐
tems to better match your needs, but the presence of unordered writes is an
inevitability.

206 | Chapter 10: Data Storage, Indexing, and Replication

4 Vogels, Werner, “Eventually Consistent”, practice.
5 Baldoni, Roberto and Raynal, Michel, “Fundamentals of Distributed Computing: A Practical Tour of Vector

Clock Systems”, Distributed Systems Online.

Eventual consistency. The phrase “eventual consistency,” is often touted in relation to a
class of datastores known as NoSQL. In distributed systems, server or network issues
will fail. These systems are distributed to allow for continued availability but at a cost
in data consistency. With a node down for minutes, hours, or even days, nodes easily
diverge in terms of the data stored within them4

When systems come back up, they will resolve using the methods discussed in the
previous section on conflict resolution, including the following:

• LWW via timestamps or vector clocks5

• Custom code
• Conflict free replicated datatypes

Although there is no guarantee that data is consistent across all nodes at any time,
that data will eventually converge. When you build the datastores, you configure how
many copies of the data must be written to provide quorum during failures.

That being said, eventual consistency still must be proven to work. There are plenty
of opportunities for data loss, whether through misunderstanding of the conflict res‐
olution techniques used and the results of their application or through bugs. Jepsen is
a great test suite that shows how to effectively test data integrity in a distributed data‐
store. You can find some additional reading at the following:

• Jepsen’s Distributed Systems Safety Research
• Martin Fowler’s “Eventual Consistency”
• Peter Bailis and Ali Ghodsi’s “Eventual Consistency Today: Limitations, Exten‐

sions, and Beyond”

Read and write quorums. One key factor in write anywhere replication is an under‐
standing of how many nodes must be available to deliver or accept data to maintain
consistency. At the client or database levels, there is generally an ability to define quo‐
rum. Historically, a quorum is the minimum number of members of a assembly nec‐
essary to conduct the business of that group. In the case of distributed systems, this
means the minimum number of readers or writers necessary to guarantee consistency
of data.

For instance, in a cluster of three nodes, you might want to tolerate one node’s failure.
This means you require a quorum of two for reads and writes. When making deci‐

Data Replication | 207

http://stanford.io/2zxRXBu
http://bit.ly/2zylMll
http://bit.ly/2zylMll
https://jepsen.io
http://bit.ly/2zxs6JS
http://queue.acm.org/detail.cfm?id=2462076
http://queue.acm.org/detail.cfm?id=2462076

sions about quorums, there is an easy formula. N is the number of nodes in a cluster.
R is the number of read nodes available, and W is the number of write nodes. If R +
W is greater than N, you have an effective quorum to guarantee at least one good read
after a write.

In our example of three nodes, this means that you need at least two readers and two
writers given that 2 + 2 > 3. If you lose two nodes, you have only 1 + 1, or 2. That is
less than 3, and thus you don’t have quorum, and the cluster should not return data
on read. If on reading two nodes, the application receives two different results (either
missing data on one node or divergent data), repair will be done using the defined
conflict resolution methods. This is called a read repair.

There is a lot more to understanding quorums and all of the theory and practice of
distributed systems. For more reading, we recommend the following:

• The Load, Capacity, and Availability of Quorum Systems
• Quorum Systems: With Applications to Storage and Consensus

Sloppy quorums. There will be times when you have nodes up, but they do not have
the data needed to meet quorum. Perhaps N1, N2, and N3 are configured to take
writes, and N2 and N3 are down, but N1, N4, and N5 are available. At this point, the
system should stop allowing writes for that data until a node can be reintroduced into
the cluster and quorum is resumed. However, if it is more important to continue
receiving writes, you can allow a sloppy quorum for writes. This means that another
node can begin receiving writes to get quorum met. Once N2 or N3 are brought back
into the cluster, the data can be propagated back to them via a process called a hinted
hand-off.

Quorums are trade-offs between consistency and availability. It is absolutely crucial
that you understand how your datastore actually implements quorums. You must
understand when sloppy quorum is allowed and what quorums can lead to strong
consistency. Documentation can be misleading, so testing the realities of the imple‐
mentations is part of your job.

Anti-entropy. Another tool in maintaining eventual consistency is anti-entropy.
Between read repairs and hinted hand-offs, a Dynamo-based datastore can maintain
eventual consistency quite effectively. However, if data is not read very often, incon‐
sistencies can last for a very long time. This can put the application at risk for receiv‐
ing stale data in the case of future failovers. Thus, there needs to be a mechanism for
synchronizing data outside of these mechanisms. This process is called anti-entropy.

An example of anti-entropy is the Merkle tree, which you can find implemented in
Riak, Cassandra, and Voldemort. The Merkle tree is a balanced tree of object hashes.
By building hierarchical trees, the anti-entropy background process can rapidly iden‐

208 | Chapter 10: Data Storage, Indexing, and Replication

http://bit.ly/2xjZNRZ

tify different values between nodes and repair them. These hash trees are modified on
write, and are regularly cleared and regenerated to minimize risk of missing inconsis‐
tent data.

Anti-entropy is critical for datastores that store a lot of cold, or infrequently accessed,
data. It is a good complement to hinted hand-offs and read repair. Making sure that
anti-entropy is in place for these datastores will help to provide as much consistency
as possible in your distributed datastore.

Although there is a significant difference in implementation details of these systems,
the recipes come down to the components discussed earlier. Assuming that your
application can tolerate unordered writes and stale reads, the leaderless replication
system can provide excellent fault tolerance and scale.

Having reviewed the three most common approaches to replicated datastores, you
and your supported teams should have a solid high-level understanding of the
approaches taken to distributing your data across multiple systems. This allows you
to design systems that meet your organization’s needs based on your team’s experi‐
ence and comfort zones, needs for availability, scale, performance, and data locality.

Wrapping Up
This chapter was a crash course in data storage. We’ve looked at storage from how we
lay data down on disk to how we push it around clusters and datacenters. This is the
foundation for database architecture, and armed with the knowledge, albeit at a high
level, we will dive even more deeply into the attributes of datastores to help you and
your teams choose the appropriate architectures for your organizations needs.

Wrapping Up | 209

CHAPTER 11

Datastore Field Guide

Technically, a datastore is just that—storage of data and the associated software and
structure to allow it to be stored, modified, and accessed. But we are specifically
speaking of datastores that today’s organizations would use to fulfill these purposes
with nontrivial amounts of users accessing nontrival amounts of data at nontrivial
levels of concurrency.

A field guide is traditionally carried by a reader looking to identify flora, fauna, or
other objects in nature. Carried out into the field, it helps the user distinguish
between a wide range of similar objects. Our goal in this chapter is to help you under‐
stand the identifying characteristics of various datastores. Armed with this informa‐
tion we hope that you can go into the world understanding the best use cases for
these datastores—as well as appropriate care and feeding.

In this chapter, we begin by defining attributes and categories of a datastore that are
pertinent to the developers of applications that write and consume data. After this, we
dive into the categories that would be of greater interest to architects and operators of
datastores. Although we believe anyone developing, designing, or operating data‐
stores should be aware of all of the attributes of that datastore, we recognize that peo‐
ple often evaluate these things from their specific job roles. Our goal is not to be
comprehensive here, because there are any number of datastores out there in use.
Instead, we hope to familiarize you with a good sampling and to give you the tools to
do further investigation based on your own needs and objectives.

211

Conceptual Attributes of a Datastore
There are numerous ways to categorize a datastore. How you do so really depends on
your job and how you might interact with the datastore. Do you build features in
applications that query, store, and modify data? Do you query and analyze data for
decision making? Do you design the systems on which the database will run? Do you
administer, tune, or monitor the database? Each role has a certain view of the database
and the data within.

In the world of ORMs and serverless architectures exposing APIs, there has been a
movement toward abstracting away the datastores from the consumers who use
them. We don’t agree with this. Understanding each attribute and the (implications
thereof) of the datastore you (or someone else) are choosing is critical to doing your
job well. There is no such thing as a free lunch, and each attractive feature will come
with a trade-off or caveat. Ensuring that the teams working with these datastores are
fully educated about this is a crucial function.

The Data Model
For most software engineers (SWEs), the data model is one of the most important
categorizations. How the data is structured and how relationships are managed is cru‐
cial to those building applications on top of it. This also significantly affects how you
manage database changes and migrations, as the different models often manage such
changes very differently.

There are four prevalent permutations of data models in this section: relational, key–
value, document, and navigational, or graph models. Each has its own uses, limita‐
tions, and quirks. The relational model has historically been the most prevalent. With
significant time in production in a huge number of shops, it can be considered the
most well understood, the most stable, and the least risky of the choices available.

The relational model
The relational model has been around since its initial proposal by E.F. Codd, who
issued his paper “A Relational Model of Data for Large Shared Data Banks” in 1970
after an internal IBM paper one year earlier. Because the purpose of this guide is not
to give you a full background but rather to help you to understand systems you
encounter today, we will focus on relational systems in modern organizations.

The basic premise of relational database models, is that data is represented as a series
of relationships, based around unique keys that are the core identifiers for a piece of
data. The relational model creates consistency of data across tables with constraints
on relationships, cardinality, values, and the requirements for certain attributes to
exist or not. The relational model is formalized and includes various levels of strict‐

212 | Chapter 11: Datastore Field Guide

https://en.wikipedia.org/wiki/Edgar_F._Codd#cite_note-relationalmodel-4

1 Codd, E.F., “The relational model for database management: version 2”, ACM Digital Library.
2 Ibid.

ness, also known as normalization. The reality is that many of these theoretical
requirements fall by the wayside as performance and concurrency come into play.1

Well-known relational databases include Oracle, MySQL, PostgreSQL, DB2, SQL
Server, and Sybase. More alternative players in field include Google Spanner, Amazon
RedShift, NuoDB, and Firebird. Many of these alternative systems are classifed as
NewSQL. These are considered to be a subclass of relational database management
systems that seek to break some of the barriers of concurrency and scale while main‐
taining consistency guarantees. This will be discussed further in this chapter.2

The relational model provides a very well-known approach to data retrieval. By sup‐
porting joins, one-to-many, and many-to-many relationships, developers have a high
level of flexibility in how they define their data model. This can also lead to much
more challenging approaches to schema evolution, as the addition, modification or
removal of tables, relationships, and attributes all can require a large amount of coor‐
dination and moving parts in order to be accomplished. This can lead to expensive
and risky changes, as discussed in Chapter 8.

Many software teams choose to operate an object relational management (ORM)
layer to facilitate work by mapping the relational model to the object model defined
at the software layer. Such ORMs can be great tools for developer velocity, but they
can prove problematic to the database reliability engineer (DBRE) team in multiple
ways.

ORMs and You
ORMs have matured greatly over the past decade, and as a DBRE, you don’t need to
be as leery of them as you used to be. Still, there are some gotchas that you will need
to consider.

• ORMs tie reads and writes to tables. This makes any number of optimizations for
one part of the workload more challenging because it affects the entire workload.

• ORMs can hold transactions much longer than necessary, causing significant
impact to finite resources because snapshots are maintained excessively.

• ORMs can create a huge number of unnecessary queries.
• ORMs can create convoluted and poorly performing queries.

Beyond these obvious issues, one of the greater challenges is that the ORM abstracts
the database away, which eliminates the collaboration needed to scale an organization
past the physical number of database administrators (DBAs) who work for them. The

Conceptual Attributes of a Datastore | 213

http://dl.acm.org/citation.cfm?id=77708

3 Ireland, Christopher, et. al, “A Classification of Object-Relational Impedance Mismatch”, IEEE Xplore.

ORM allows constraints to be ignored, logic to be obfuscated, and creates barriers for
DBREs to understand the application’s interactions with the datastores.3

All of this leads many software engineers and architects to think of relational systems
as unflexible and an impedance to developer velocity. This is far from accurate, how‐
ever, and later in this chapter we present a more accurate list of pros and cons and
bust some of the myths prevalent in many such lists.

The key–value model
A key–value model stores data as a dictionary or hash. A dictionary is analogous to a
table and contains any number of objects. Each object can store any number of
attributes or fields within it. Like a relational database, these records are uniquely
identified with a key. Unlike relational databases, there is no way to create mappings
between objects based on those keys.

The key–value datastore sees an object as a blob of data. It isn’t inherently aware of
the data it holds, and thus each object can have different fields, nested objects, and an
infinite amount of variety. This variety comes at a cost, including the potential for
inconsistency because rules are not enforced at the common storage layer. Similarly,
efficiencies in datatypes and indexing are unavailable. On the other hand, a lot of the
overhead inherent to managing various datatypes, constraints, and relationships are
gone. If the application doesn’t need this, efficiencies can be realized.

Examples of key–value stores can be quite varied. One example is Dynamo. In 2007,
Amazon published the Dynamo paper as a set of techniques to build a highly avail‐
able, distributed datastore. As soon as we’ve gone over all of the attributes, we will
discuss Dynamo in more detail. Dynamo-based systems include Aerospike, Cassan‐
dra, Riak, and Voldemort. Other key–value implementations include Redis, Oracle
NoSQL Database, and Tokyo Cabinet.

The document model
The document model is technically a subset of the key–value model. The difference
with the document model is that the database maintains metadata about the structure
of the document. This allows for datatype optimization, secondary indexing, and
other optimizations. Document stores store all information about the object together,
rather than across tables. This allows for all data to be retrieved from one call, rather
than requiring joins, which, although declaratively easy, can consume significantly
more resources. This also typically eliminates the need for an ORM layer.

214 | Chapter 11: Datastore Field Guide

http://bit.ly/2zymmQ3
http://bit.ly/2zy49Ch
http://bit.ly/2zyAucm
http://bit.ly/2zyAucm
http://bit.ly/2zxKUsJ
http://stanford.io/2zxtrk3

4 Vera, Harley, et al., “Data Modeling for NoSQL Document-Oriented Databases”.
5 Stonebraker, Micheal and Held, Gerald, “Networks, Hierarchies and Relations in Data Base Management Sys‐

tems”.

On the other hand, this means that document stores inherently require denormaliza‐
tion if there are different views of the object required. This can cause bloat and create
consistency issues. Additionally, external tools are required to enforce data gover‐
nance, as the schema no longer exists as a self-documenting system.4

Data Governance

Data governance is the management of the availability, integrity,
and security of the data that an organization saves and uses. Intro‐
duction of new data attributes is something that should be consid‐
ered carefully and documented. The use of JSON for data storage
allows new data attributes to be introduced too easily and even
accidentally.

The navigational model
Navigational models began with hierarchical and network databases. Today, when
referring to navigation models, we are almost always discussing the graph data model.
A graph database uses nodes, edges, and properties to represent and store data and
the connections between objects. The node holds the data about a specific object, the
edge is the relationship to another object, and properties allow additional data about
the node to be added. Because relationships are directly stored as part of the data,
links can easily be followed. Often, an entire graph can be retrieved in one call.

Graph stores, like document stores, often map more directly to the structure of
object-oriented applications. They also eliminate the need for joins and can prove to
have more flexibility in terms of data model evolution. Of course, this works only for
data that is ideal for graph-appropriate queries. Traditional queries can prove to be
far less performant.5

Each of these models has its place in a certain subset of applications. We will summa‐
rize the options and trade-offs within. First, let’s look at transactional support and
implementation attributes.

Transactions
How a datastore handles transactions is also a considerably important attribute to
understand and consider. A transaction is effectively a logical unit of work within a
database that can be considered to be indivisible. All of the operations in the transac‐
tion must be executed, or rolled back, to maintain consistency within the datastore.

Conceptual Attributes of a Datastore | 215

http://ceur-ws.org/Vol-1478/paper17.pdf
http://bit.ly/2zxrbcq
http://bit.ly/2zxrbcq

6 Vieira, Marco, et al., “Timely ACID Transactions in DBMS”.

Being able to trust that all aspects of a transaction will be committed or rolled back
greatly simplifies error handling logic in database-driven applications. These guaran‐
tees of the transactional model allow developers to ignore certain aspects of failure
and concurrency that would consume significant developer cycles and resources.

If you’ve worked predominantly with traditional relational datastores, you probably
take the existence of transactions for granted. This is because almost all of these data‐
stores are built on the ACID model, explained next, introduced by IBM in 1975. All
reads and writes are considered to be transactions, and they utilize the underlying
architecture of database concurrency to achieve this.

ACID
An ACID database provides a set of guarantees that, when put together, create the
acronym ACID. These guarantees are (A)tomicity, (C)onsistency, (I)solation, and
(D)urability. In 1983, Andreas Reuter and Theo Härder coined the acronym, building
on work by Jim Gray, who enumerated Atomicity, Consistency, and Durability but
left out Isolation. These four properties describe the major guarantees of the transac‐
tion paradigm, which has influenced many aspects of development in database sys‐
tems.

It is of the utmost importance when working with a datastore to understand how it
defines and implements these concepts because there can be a significant amount of
ambiguity and diversity. With this in mind, it behooves us to consider each property
and to understand the variations to be found in the wild.6

Atomicity
Atomicity refers to the guarantee that an entire transaction will be committed, or
written, to the datastore or that the entire transaction will be rolled back. There is no
such thing as a partial write or rollback in an atomic database. Atomicity, in this con‐
text, does not refer to atomic operations as you might find in software engineering.
That term refers to the guarantee of isolation from concurrent processes seeing work
in progress rather than only the before and after results.

There are many reasons that a transaction might fail and require rollback. The client
process might terminate mid-transaction, or perhaps a network fault could terminate
the connection. Similarly, database crashes, server faults, and numerous other opera‐
tions could require a partially completed transaction to be rolled back.

PostgreSQL implements this by using pg_log. Transactions are written in pg_log and
given a state of in progress, committed, or aborted. Should a client abandon or rollback

216 | Chapter 11: Datastore Field Guide

http://bit.ly/2zyR2Rh
https://en.wikipedia.org/wiki/ACID#cite_note-2
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)

7 Adya, Atul et al., “Generalized Isolation Level Definitions”.

a transaction, it will be marked as aborted. Backend processes will also periodically
mark transactions as aborted if there are no backends mapped to it.

It is important to note that you can consider writes atomic only if the underlying disk
page writes are atomic. There is significant disagreement on the atomicity of sector
writes. Most modern disks will channel power to writing a sector even during a disk
failure. But depending on the layers of abstraction between the physical drive and the
actual writes being flushed to disk, there are still plenty of opportunities for data loss.

Consistency
The guarantee of consistency is a guarantee that any transaction will bring the data‐
base from one valid state to another. A transaction being written can assume to not
be able to violate defined rules. Technically, consistency is defined at the application
level rather than the database. Traditional databases do, however, give the developer
tools to enforce this consistency. Those tools can be guaranteed effective and include
constraints and triggers. Constraints can include foreign keys with cascading, not
null, uniqueness constraints, datatypes and lengths, and even specific values being
allowed in a specific field.

It is interesting and frustrating that consistency is used elsewhere in the realms of
databases and software. The CAP theorem uses the term consistency also but in a
very different way. Similarly, you will hear this term when discussing hashing and
replication.

Isolation
The isolation guarantee is a promise that the concurrent execution of transactions
results in the same state that would occur if you were to run those transactions seri‐
ally and sequentially. ACID databases do this via a combination of techniques that
can include write locks, read locks, and snapshots. Collectively this is called concur‐
rency control. In practice, there are multiple types of concurrency control that can
lead to different behaviors in the database. Stricter versions can significantly impact
performance of concurrent transactions, whereas more relaxed ones might lead to
better performance at the cost of less isolation. 7

The ANSI/ISO SQL standard defines four possible levels of transaction isolation.
Each level would potentially provide a different outcome for the same transaction.
These levels are defined in terms of three potential occurrences that are permitted or
not at each isolation level:

Conceptual Attributes of a Datastore | 217

http://pmg.csail.mit.edu/papers/icde00.pdf

Dirty read
With a dirty read, you can potentially read uncommitted, or dirty, data that is
being written in another transaction from another client.

Nonrepeatable read
With a nonrepeatable read, within the context of a transaction, if you perform
the same read twice, you could potentially get different results based on other
concurrent activities in the database.

Phantom read
With a phantom read, within the context of a transaction, you perform the same
read twice, and the data returned the second time is different from the first. This
is different from a nonrepeatable read because with a phantom read, data you
have already queried does not change, but more data is returned by your query
than before.

To avoid these phenomena, there are four potential isolation levels that can be uti‐
lized:

Read Uncommitted
This is the lowest isolation level. Here, dirty reads, dirty writes, and nonrepeata‐
ble and phantom reads are all allowed.

Read Committed
In this isolation level, the goal is to avoid dirty reads and dirty writes. In other
words, you should not be able to read, or overwrite, uncommitted data. Some
databases will avoid dirty writes via write locks acquired on selected data. Write
locks are held until the data is committed, and read locks are released after select.
Dirty reads are usually implemented by keeping two copies of the data being
written in the transaction, one of older committed data to be used for reads from
other transactions and one for the data that has been written but not committed.

In read committed isolation, you can still experience nonrepeatable reads how‐
ever. If uncommitted data is read once and then read again after it has been com‐
mitted, you will see different values within the context of your own transaction.

Repeatable Reads
To achieve read committed isolation level and to avoid nonrepeatable reads, you
must implement additional controls. If a database is using locks to manage con‐
currency control, a client would need to keep read and write locks until the end
of the transaction. This would not maintain a range lock, though, so it would be
possible to get phantom reads. As you can imagine, this lock-based approach is
heavy handed and can lead to significant performance impact on highly concur‐
rent systems.

218 | Chapter 11: Datastore Field Guide

The other way to accomplish this is via snapshot isolation. In snapshot isolation,
after a transaction is started, the client will see an image of the database based on
the current time. Additional writes will not show in the snapshot, allowing for
long-running queries to have consistent, repeatable reads. Snapshot isolation uses
write locks but not read locks. The goal is to ensure that reads do not block writ‐
ers, and vice versa. Since this requires more than just two copies, it is referred to
as multiversion concurrency control (MVCC).

In repeatable read snapshot isolation, write skew can still occur. In write skew,
two writes can be allowed on the same column or columns in a row from two
different writers who have read the columns they are updating. This results in
rows that can have data from two transactions.

Serializable
This is the highest isolation level and is meant to avoid all of the aforementioned
phenomena. Like in repeatable read, if locks are the focus of concurrency control,
read and write locks are held for the duration of the transaction. There are addi‐
tions, however, and the locking strategy is called 2-phase locking (2PL).

In 2PL, a lock can be shared or exclusive. Multiple readers can hold shared locks
for reading. However, to get an exclusive lock for a write, all shared read locks
must be released after a commit. Similarly, if a write is occurring, shared locks for
reads cannot be acquired. In this mode, it can be quite common in high-
concurrency environments for transactions to be stuck waiting for a lock. This is
called a deadlock. Additionally, range-locks must also be acquired for queries
using ranges in their WHERE clauses. Otherwise, phantom reads occur.

2PL can dramatically affect latency for transactions. When many transactions are
waiting, system-wide latency can increase significantly. Thus, many systems do
not truly implement serializability and stick to repeatable read.

The non-lock-based approach builds on snapshot isolation and is called serial
snapshot isolation (SSI). This approach is an optimistic serialization, whereby the
database waits until commit to see if any activities have occurred to cause a seri‐
alizability issue, most often a write collision. This can significantly reduce latency
in systems for which concurrency violations are few. However, if these are regular
things, the constant rollback and retries can be quite significant.

Because each isolation level is stronger than those below in that no higher isolation
level allows an action forbidden by a lower one, the standard permits a DBMS to run

Conceptual Attributes of a Datastore | 219

8 See the post “If Eventual Consistency Seems Hard, Wait Till You Try MVCC” on Baron Schwartz’s blog.

a transaction at an isolation level stronger than that requested (e.g., a “Read Commit‐
ted” transaction may actually be performed at a “Repeatable Read” isolation level).

Variability in Isolation
As we mentioned, there are significant differences between datastores in their imple‐
mentation of the ANSI isolation standards

• PostgreSQL: Has read committed, repeatable read, and serializable levels. Uses
SSI for serializable.

• Oracle: Only has read-committed and serializable options. Serializable is closer
to repeatable-read than actual serializable.

• MySQL w/InnoDB: Has read committed, repeatable read, and serializable levels.
Uses 2PL for serializable but does not detect lost updates.8

We have only scratched the surface of isolation, isolation anomalies, and isolation
implementations. We have a few delightful recommended reads for you for further
dives at the end of the chapter.

Durability
The durability guarantee promises us that as soon as a transaction has been commit‐
ted, it remains committed. Whether there is a power loss, database crash, hardware
fault, or any other issue, the transaction stays durable. Obviously, the database cannot
promise that the underlying hardware will support this durability. As discussed in
Chapter 5, there are numerous opportunities for the database to believe it has
synchronized to disk, when the reality is very different.

Durability is linked closely to atomicity, as durability is required for atomicity. Many
databases implement a write-ahead log (WAL) to capture all writes before they are
pushed to disk. This log is used to undo a transaction as well as to reapply it. If there
is a failure, upon restarting, the database can check this log against the system to
determine whether the transaction must be undone, completed, or ignored.

Much like isolation levels, there are times when durability can and should be relaxed
to accommodate performance. For true durability, flush to disk must occur on every
commit. This can become prohibitively expensive and is not required for all transac‐
tions and writes. For instance, in MySQL, you can tune the Innodb log flush to per‐

220 | Chapter 11: Datastore Field Guide

http://bit.ly/2zyNy1m

9 Sears, Russell, and Brewer, Eric, “Segment-Based Recovery: Write-ahead loggin revisited”.
10 Roe, Charles, “The Question of Database Transaction Processing: An ACID, Base, NoSQL Primer”.

form periodically rather than after each commit. Similarly, you can do this for
replication logs.9

Even though we have stayed fairly high-level here, it should be apparent just how
much detail is hidden and taken for granted in systems that support transactions. As
a DBRE in an organization, it is critical for you to ensure familiarity with the imple‐
mentation not only for yourself, but also for the development organization. Often the
details of these implementations are not readily apparent from documentation, and
further tests via such tools as Jepsen and Hermitage can assist you in this discovery
process.

Similarly, this knowledge can help you in choosing appropriate configurations when
there are options to relax durability or use weaker isolation. Alternatively, knowing
when database defaults do not meet your applications needs can be just as important.

BASE
As engineers have looked to alternatives to traditional relational systems, the term
BASE has begun to be used as a foil to ACID. BASE stands for basically available, soft
state, and eventual consistency. This focuses on nontransactional systems that are dis‐
tributed and might have fairly nontraditional replication and synchronization capa‐
bilities. Unlike ACID systems, there might not ever be a clear state while the system is
up and taking traffic. Similarly, without concurrency control needs for transactions,
write throughput and concurrency can be dramatically increased at the expense of
atomicity, isolation, and consistency.10

Having looked at the data models and transactional models available to datastores,
we’ve covered the conceptual attributes most relevant to developers. Still, there are
numerous other attributes that must be considered when evaluating not only data‐
base choice but also the entire operational ecosystem and infrastructure around those
databases (Table 11-1).

Table 11-1. Datastore conceptual attribute summary

Attribute MySQL Cassandra MongoDB Neo4J
Data model Relational Key–Value Document Navigational
Model maturity Mature 2008 2007 2010
Object relationships Foreign keys None DBRefs Core to model
Atomicity Supported Partition level Document level Object level
Consistency (node) Supported Unsupported Unsupported Strong consistency
Consistency (cluster) Replication based Eventual (tunable) Eventual XA transaction support

Conceptual Attributes of a Datastore | 221

http://www.vldb.org/pvldb/2/vldb09-583.pdf
http://bit.ly/2zw5Obr
https://github.com/jepsen-io/jepsen
https://github.com/ept/hermitage

Attribute MySQL Cassandra MongoDB Neo4J
Isolation MVCC Serializable option Read-uncommitted Read committed
Durability For DML, not DDL Supported, tunable Supported, tunable Supported, WAL

Now, a lot of this is overly simplified, and a trusty skepticism of the functionality of a
feature, supported with testing the efficacy of those claims, will help to clarify things
as you evaluate a datastore for your application. Even with these caveats, there are
some definite differences that will help to determine the appropriate choice for your
application. The next step is to evaluate the internal attributes of a datastore to get the
full picture.

Internal Attributes of a Datastore
There are numerous ways to describe and categorize a datastore. The data model and
transactional structures are attributes that directly affect application architecture and
logic. They tend to thus be a big focus of developers who are looking for velocity and
flexibility. The internal, architectural implementations of these databases tend to be
black boxes or at least, only features on a glossy marketing brochure. Still, they are
crucial to choosing the appropriate datastore for the long term.

Storage
We went over storage in detail in Chapter 10. Each datastore will have one or more
options for laying data down on disk that are available to it. This often comes in the
form of storage engines. The storage engine manages the reading and writing of data,
locking, concurrency access to data, and any processes needed to manage data struc‐
tures, such as B-tree indexes, log structured merge (LSM) trees, and bloom filters.

Some databases, like MySQL and MongoDB, offer multiple storage engine options.
For example, in MongoDB, you can use MMap, WiredTiger in MMap, or LSM struc‐
tures or RocksDB, which is based on LSM trees. Storage engines implementations will
vary significantly, but their attributes can generally be broken down to the following:

• Write performance
• Read performance
• Durability of writes
• Storage size

Evaluating storage engines based on these attributes will help to determine which to
choose for your datastore. There are often tradeoffs between read and write perfor‐
mance as well as durability. There are also features that can be implemented to
increase the effective durability of the storage engine. Understanding these and of

222 | Chapter 11: Datastore Field Guide

11 See Martin Kleppmann’s article “Please stop calling databases CP or AP”.

course, benchmarking and testing the veracity of claims of durability are of the
utmost importance.

The Ubiquitous CAP Theorem Section
Often, when people discuss these attributes, they will refer to Eric Brewer’s CAP theo‐
rem (see Figure 11-1). The CAP theorem states that any networked shared-data sys‐
tem can have at most two of three properties or guarantees: (C)onsistency,
(A)vailability, or network (P)artition tolerance. As with the terms in ACID, these
terms are overly generalized. Each one is not truly either/or and is, in fact, a contin‐
uum. Many will refer to a system as CP or AP, meaning that they are designed to
encompass two specific properties while trading-off another. Yet, if you dive into
those systems, you will find their implementations of each specific attribute to be
incomplete, having only achieved a portion of Availability or Consistency.11

Figure 11-1. Brewer’s CAP theorem: Consistency, Availability, and Partition tolerance

CAP is meant to help designers understand the trade-offs between consistency or
availability. Network partitions in distributed systems are an inevitability. Networks
are inherently unreliable. In the case of such, the node(s) on one side of a partition
will inevitably lose consistency if they allow state to be updated. If consistency is pre‐

Internal Attributes of a Datastore | 223

http://bit.ly/2zxUA6k
http://bit.ly/2zxuOiw
http://bit.ly/2zxuOiw

12 See Peter Bailis’s article “Linearizability versus Serializability”.
13 See Eric Brewer’s post “CAP Twelve Years Later: How the ‘Rules’ Have Changed”.

ferred, one side of the partition must become unavailable. Let’s look at each term
more carefully to understand what those attributes can potentially encompass.

Consistency
Recall that we discussed consistency in the section on transactions. It is the C in
ACID. Annoyingly, ACID consistency is not the same as CAP consistency. In ACID,
consistency means that a transaction preserves all database rules and constraints. In
CAP, consistency means linearizability. Linearizability guarantees that a set of opera‐
tions on an object in a distributed database will occur in real-time order. Because
operations can be reads and writes, this means that these operations must appear as
they occur to the rest of the users in the system. Linearizability is a guarantee of
sequential consistency within real time.12

ACID consistency, like CAP consistency, cannot be maintained across a network par‐
tition. This means that ACID-based transactional datastores can guarantee consis‐
tency only by sacrificing availability in the face of a network partition.13 BASE
systems were developed, amongst other reasons, to be able to tolerate network parti‐
tions without sacrificing availability.

Availability
The availability aspect of the CAP theorem refers to the ability to process requests.
Normally, most distributed systems can provide consistency and availability. But, in
the face of a network partition where a subset of nodes is split off from another subset
of nodes, the decision must be made to remain available at the expense of consistency.
Of course, no system can maintain 100% availability over time, reflecting what we
said before regarding availability as a continuum rather than either/or.

Partition tolerance
A network partition is a temporary or permanent disruption in connectivity that ends
up disrupting communication between two subsets of the network infrastructure. In
effect, this often will create two smaller clusters. Each of these clusters can believe it is
the last cluster standing, allowing writes to continue. This leads to two divergent
datasets and is also referred to as a split brain.

The CAP theorem was published to help people understand the trade-offs between
consistency and availability in distributed datastores. In practice, network partitions
encompass a small amount of time in the life cycle of a datastore. Consistency and
availability can and should be delivered together. When partitions do occur, however,

224 | Chapter 11: Datastore Field Guide

http://bit.ly/2v08Ymd
http://bit.ly/2psQjuC

14 See Daniel Abadi’s cover feature, “Consistency Tradeoffs in Modern Distributed Database System Design”.

the system must be able to detect, manage, and recover to restore consistency and
availability.

It is worth noting that the CAP theorem does not account for latency or performance
at all. Latency can be as crucial as availability, and bad latency can also be a potential
cause of consistency issues. Long enough latency can pass a boundary that forces a
system to enter into the failure state associated with network partitions. There is a
trade-off with regard to latency that is often made more explicitly than those of Con‐
sistency and Availability. In fact, the other important reason that BASE systems and
the NoSQL movement came about was because of the requirements for increased
performance at scale.

Now that we have familiarized ourselves with the CAP theorem, let’s discuss how that
might influence our database taxonomy. We could go with the concept of CP versus
AP, but we’ve already discussed the oversimplification of such an approach. Rather,
let’s look at how distributed systems maintains both consistency and availability.

Consistency Latency Trade-offs
In a distributed system, the system is said to be strongly consistent if all nodes see all
transactions in the same order in which they were written. In other words, the system
is linearizable. The CAP theorem specifically discusses how the distributed datastore
favors consistency or availability in the event of a network partition. Consistency is
required throughout the life cycle of the datastore, however, and cannot be looked at
just through the CAP paradigm.14

Everyone would like a strongly consistent distributed datastore, but few people are
actually willing to accept the impacts to latency and availability that come with this.
So, tradeoffs are made. In this section, we evaluate the trade-offs that are made and
how they affect overall consistency in the cluster. This allows us to clearly evaluate a
datastore to see if it meets our needs.

When writing data to a node in a distributed datastore, the data must be replicated to
meet availability guarantees. As reviewed earlier, we can replicate this data in a few
different ways:

• Send writes to all nodes at once, synchronously.
• Send writes to one node, the role of primary. Replication occurs asynchronously,

semi-synchronously, or synchronously.
• Send writes to any node, which functions as primary for that transaction only.

Replication occurs asynchronously, semi-synchronously, or synchronously.

Internal Attributes of a Datastore | 225

http://bit.ly/2zxYLiH

When writing to any node in a cluster, there is the opportunity for consistency to be
broken without some coordinator process, such as Paxos, that can order the writes
effectively. This inherently adds more latency to the transaction. This is one way in
which strong consistency is maintained while latency impacts are traded off. Inver‐
sely, if latency is more crucial than ordering, consistency could be sacrificed at this
stage. This is the ordering-latency trade-off.

When sending writes to one node that must propagate to other nodes, there is the
possibility that the primary node accepting writes is unavailable due to it being shut
down/crashed or due to it having unacceptable amounts of load that can lead to time-
outs. Retries or waits increase latency. However, you can configure load balancers or
proxies to send writes to another node after a timeout. Writes going to another node
can cause consistency issues, however, as conflicts can occur if the original transac‐
tion processed but did not provide confirmation. The amount of retries or increased
time-out windows impact latency, and eventually availability, while maintaining con‐
sistency. This is the primary timeout retry trade-off.

When reading from a node, you can also experience time-outs or unavailability.
Sending reads to other nodes in asynchronously replicated environments can lead to
stale reads and thus consistency issues. Increasing time-outs and retries reduces the
risk of inconsistent results but at the cost of increased latency. This is the reader time-
out retry trade-off.

When writing to all nodes synchronously, whether via ordered processor or replica‐
tion, you also are incurring additional latency due to the overhead of all transactions
being shipped to other nodes. If these nodes are on a congested network or are com‐
municating across networks, this latency can be very high. This is the synchronous
replication-latency trade-off. A compromise for this trade-off is semi-synchronous
replication. This reduces potential latency impacts by reducing the number of nodes
and network connections that might affect the replication. Semi-synchronous is a
compromise, however, because by increasing latency, you have increased risk of data
loss, trading off availability. This is the semi-synchronous availability-latency trade-off.

Each of these shows opportunities for tuning a system toward greater consistency or
reduced latency. These trade-offs are crucial for the times when the systems are
behaving outside of a network partition and are servicing requests.

Availability
Similarly to consistency and its relationship to latency, we have availability. There is
availability in the face of a network partition as in the CAP theorem. But, there is also
daily availability in the face of node-level, multinode, or entire cluster failures. When
discussing availability in distributed systems, we find it useful to refer to yield and
harvest rather than simply availability. Yield refers to the ability to get an answer to
your question. Harvest refers to the completeness of the dataset. Rather than simply

226 | Chapter 11: Datastore Field Guide

http://mauricio.github.io/pwl-harvest-yield/#/20

considering whether a system is up or down, you can evaluate which approach is best
—reducing yield or reducing harvest in the face of failures.

The first question to ask yourself in a distributed system is whether it is acceptable to
reduce the harvest to maintain the yield. For example, is it acceptable to deliver 75%
of the data in a query if 25% of your node capacity is down? If you are delivering a
large amount of search results, this might be acceptable. If so, this allows a greater
tolerance for failure, which could mean reducing replication factors in your Cassan‐
dra ring. Similarly, if your harvest must stay close to 100%, you need to distribute
more copies of your data. This means not just more replicas but more availability
zones within which replicas should exist.

You can also see this in the decomposition of applications into their own sub-
applications. Whether you see this in functional partitioning or microservices, the
result is that one failure can be isolated from the rest of the system. This will often
require programming work, as well, but it is an example of reducing harvest to main‐
tain yield.

Understanding the storage mechanisms and the way your datastore implements the
trade-offs of consistency, availability, and latency give you the “under the covers”
understanding of the datastore that complements the conceptual attributes we’ve
already covered. The engineers and architects who are responsible for the perfor‐
mance and functionality of the application are most concerned with the conceptual
attributes. Operational and database engineers are often focused on making sure that
the internal attributes (see Table 11-2) meet the Service Level Objectives (SLOs) that
have been set forth for them by the business.

Table 11-2. Datastore internal attribute summary

Attribute MySQL Cassandra MongoDB Neo4J
Storage engines Plugins, B-tree primarily LSM only Plugins, B-tree, or LSM Native graph storage
Distributed
consistency

Focused on consistency Eventual, secondary to
availability

Focused on consistency Focused on consistency

Distributed
availability

Secondary to consistency Focused on availability Secondary to consistency Secondary to
consistency

Latency Tunable based on
durability

Optimized for writes Tunable for consistency Optimized for reads

Wrapping Up
Hopefully this field guide has given you a good list of attributes, and the variety
therein, for the wild datastore. This should be useful to you whether you are consid‐
ering a new application, learning an existing one, or evaluating the request by a devel‐
oper team for the newest cool datastore. Now that we have climbed the ladder from
storage to datastore, it’s time to move on to data architectures and pipelines.

Wrapping Up | 227

CHAPTER 12

A Data Architecture Sampler

Now that we’ve gone over storage engines and individual datastores, let’s broaden our
view to look at how those datastores can fit within multisystem architectures. Rare is
the architecture that only involves one datastore. The reality is that there will be mul‐
tiple ways to save data, multiple consumers of that data, and multiple producers of
data. In this chapter, we present you a delightful little sampler of architectural compo‐
nents that are often used to enable our datastores followed by a few data-driven archi‐
tectures that are found in the wild and the problems they attempt to solve.

Although this will be no where close to comprehensive, it should give you an excel‐
lent overview of the ecosystem and what to look for. This chapter will help you
understand the effective uses for these components as well as the ways in which they
can affect your data services, both positively and negatively.

Architectural Components
Each of these components falls within the purview of the day-to-day duties of the
database reliability engineer (DBRE). Gone are the days when we can ignore all of the
components around the data ecosystem. Each of these components has a definitive
impact on overall data service availability, data integrity, and consistency. There is no
way to ignore them when designing services and operational processes.

Frontend Datastores
The frontend database is the bread and butter of much of what we have been discus‐
sing throughout this book. Users of your applications typically query, insert, and
modify data in these datastores through the data access layer. Historically, many
applications are designed to function as if these databases were always available. This

229

means that anytime these frontend datastores are down or so busy that they are slow
enough to affect customer experience, the applications become unusable.

Historically, these systems have been referred to as OnLine Transactional Processing
(OLTP) systems. They were characterized by a lot of quick transactions, and thus they
were designed for very fast queries, data integrity in high concurrency, and scale
based on the number of transactions they can handle concurrently. All data is
expected to be real time with all of the necessary details to support the services using
them. Each user or transaction is seeking a small subset of the data. This means query
patterns tend to focus on finding and accessing a small, specific dataset within a large
set. Effective indexing, isolation, and concurrency are critical for this, which is why it
tends to be fulfilled by relational systems.

A frontend datastore is also characterized by the fact that its data is primarily popula‐
ted by the users themselves. There are also user-facing datastores that are predomi‐
nantly for analytics, often historically referred to as OnLine Analytics Processing
(OLAP). These are discussed in the downstream analytics section.

We have already discussed the various attributes that most of these datastores
employ: storage structure, data model, ACID/BASE paradigms, and trade-offs
between availability, consistency, and latency. Additionally, we must consider overall
operability and how they integrate with the rest of the ecosystem. Typical attributes
required include the following:

• Low-latency writes and queries
• High availability
• Low Mean Time to Recover (MTTR)
• Ability to scale with application traffic
• Easy integration with application and operational services

As you might imagine, this is a pretty steep bar for any architecture all by itself. These
requirements can rarely be met without help from other components in the infra‐
structure, which we will review.

Data Access Layer
An application is often broken into presentation and business logic tiers. Within the
business logic tier is what is known as the data access layer (DAL). This layer provides
a simplified access to the persistent datastores used for the read and write compo‐
nents of the application. This often exhibits as a set of objects with attributes and
methods that refer to stored procedures or queries. This abstraction hides datastore
complexity from software engineers (SWEs).

230 | Chapter 12: A Data Architecture Sampler

An example of a DAL is the use of data access objects (DAO). DAOs provide inter‐
faces to the database by mapping application calls to database. By keeping this persis‐
tence logic in it own place, SWEs can test data access discretely. Similarly, you can
provide stubs instead of databases, and the application can still be tested. The com‐
mon thought regarding this approach is that it requires a lot more coding in Java
Database Connectivity (JDBC) or other equivalents. Still, by staying closer to the
database, it gives you the ability to code effectively when performance must be
achieved via specific methods. The other negative often given is that it requires the
developer to have a greater understanding of the schema. We happen to think that
this is a positive thing and that the more developers understand the schema, the bet‐
ter for everyone involved.

Another example of a DAL is the Object-Relational Mapper (ORM). As we’ve made
clear, we don’t like ORMs for any number of reasons. There are some benefits, how‐
ever. The ORM can provide a lot of features, including caching and auditing. It is crit‐
ical to understand what your SWE teams are using, and what flexibility or constraints
are introduced in data access coding and optimization.

Database Proxies
The database proxy layer sits between the application servers and the frontend data‐
stores. Some proxies sit on Layer 4 (L4) of the networking transport layer and use the
information available at that layer to decide how to distribute requests from applica‐
tion servers to the database servers. This includes the source and destination IP
addresses and ports in the packet header. L4 functionality allows you to distribute
traffic according to a specific algorithm but cannot take other factors like load or rep‐
lication lag into account.

Layer 4 and 7

When we discuss layers, we are discussing layers of the Open Sys‐
tems Interconnection (OSI) model. This model defines the stan‐
dard for networking.

A Layer 7 (L7) proxy operates at the highest level of the networking transport layer.
This is also known as the application, or in this case, the HTTP layer. At L7, the proxy
has access to significantly more data from the TCP packet. L7 proxies can understand
the database protocol and protocol routing and can be significantly customized.

Some of this functionality can include the following:

• Health checking and redirection to healthy servers
• Splitting of reads and writes to send reads to replicas
• Query rewriting to optimize queries that cannot be tuned in code

Architectural Components | 231

• Caching query results and returning them
• Redirecting traffic to replicas that are not lagged
• Generate metrics on queries
• Perform firewall filtering on query types or hosts

All of this functionality does come at a cost, of course. The trade-off in this case is
latency. So, deciding on an L4 proxy versus an L7 will depend on the needs of your
team for functionality as well as latency. A proxy can help mitigate the effects of tech‐
nical debt by fixing things at a different layer. But, this can also cause technical debt to
be ignored for a longer amount of time, and it can make your application less
portable toward other datastores as things evolve.

Availability
One major function of a proxy server is the ability to redirect traffic during the failure
of a node. In the case of a node serving as a replica, a proxy can run a healthcheck
and pull a node out of service. In the case of a primary or write failure, if there can be
only one writer, the proxy can stop traffic to allow a safe failover to occur. Either way,
the use of an effective proxy layer can dramatically reduce the MTTR of a failure.
This assumes that you’ve set up your proxy layer to be tolerant. Otherwise, you’ve
simply added a new failure point.

Data Integrity
If a proxy is simply directing traffic, there will be little impact to the data’s integrity.
There are some opportunities for improving and affecting this, however. In an asyn‐
chronous repliction environment, an L7 proxy can pull any replicas out of service
that are lagging behind in replication. This reduces the chance of stale data being
returned to an application.

On the other hand, if the proxy is caching data to reduce latency and increase
capacity on the database nodes, there can be a chance for stale data to be returned
from that cache if it is not effectively invalidated after writes. We will discuss this and
other caching issues in the caching section.

Scalability
A good proxy layer can dramatically improve scale. We’ve already discussed the scal‐
ing patterns, which include distributing reads across multiple replicas. Without a
proxy, you can perform rudimentary load distribution, but it is not load or lag aware,
and thus not as useful. But, using a proxy to distribute reads is a very effective
approach for workloads that are heavy on reads. This assumes that the business
makes enough money to pay for all of those replicas and that effective automation is
put in place to manage them.

232 | Chapter 12: A Data Architecture Sampler

Another area for which a proxy layer can improve scalability is by load shedding.
Many database servers suffer from a large number of concurrent connections. A
proxy layer can act as a connection queue, holding a large number of connections
while only allowing a certain number of those to do work in the database. While this
might seem counterintuitive because of the increase in latency from concurrency,
constraining connections and work can allow greater throughput.

Latency
Latency is a crucial consideration when adding another tier to the transaction flow.
An L4 proxy adds minimal latency, but L7 adds significantly more. On the other
hand, there are ways in which that can be amortized with latency improvements.
These improvements include caching regularly executed queries, avoiding overly
loaded servers, and rewriting ineffective queries. The trade-offs will vary dramatically
across applications, and it will be up to you, the architects and engineers, to make
those decisions. As with most trade-offs, we recommend simplicity over rich features
unless they are absolutely needed. Simplicity and lower latency can be incredibly val‐
uable to your organization.

Now that we’ve looked at the data access and proxy layers—the layers that help get an
application to the database—let’s talk about the applications that function down‐
stream from the database. These are the systems that consume, process, transform,
and generally create value from those frontend datastores.

Event and Message Systems
Data does not exist in isolation. Because transactions occur in a primary datastore,
there are any number of actions that must occur after a transaction is registered. In
other words, these transactions function as events. Some examples of actions that
might need to be taken after a transaction, include the following:

• Data must be put into downstream analytics and warehouses
• Orders must be fulfilled
• Fraud detection must review a transaction
• Data must be uploaded to caches or Content Delivery Networks (CDNs)
• Personalization options must be recalibrated and published

Those were just a few examples of the possible actions that can be triggered after a
transaction. Event and message systems are built to consume data from the datastores
and publish those events for the downstream processes to act on them. Messaging
and event software enables communication sharing between applications via asyn‐
chronous messages. These systems produce messages based on what they detect in

Architectural Components | 233

the datastore. Those messages are then consumed by other applications that are sub‐
scribed to them.

There are a diverse group of applications that perform this function. The most popu‐
lar as of this writing is Apache Kafka, which functions as a distributed log. Kafka
allows for significant horizontal scale at the producer, consumer, and topic level.
Other systems include RabbitMQ, Amazon Kinesis, and ActiveMQ. At its simplest,
this can be an Extract, Transform, and Load (ETL) job or jobs that are constantly or
periodically polling for new data in the datastore.

Availability
An event system can positively affect the availability of a datastore. Specifically, by
pushing the events and the processing of those events out of the datastore, we are
eliminating one mode of activity from the datastore. This reduces resource utilization
and concurrency, which could potentially affect availability of core services. It also
means that event processing can occur even during peak activity periods because they
do not need to worry about disturbing production.

Data integrity
One of the biggest risks when moving data across systems is the risk of data corrup‐
tion and loss. In a distributed message bus with any number of data sources and con‐
sumers of that data, data validation is an incredible challenge. For data that cannot be
lost, the consumer must write a copy of some sort or another back into the bus. An
audit consumer can then read those messages and compare them to the original one.
Just like the data validation pipeline we discussed in the recovery section, this is a lot
of work in terms of coding and resources. But, it is absolutely necessary for data that
you cannot afford to lose. Of course, this can be sampled for data that can tolerate
some loss. If there is detected loss, there needs to be a way to notify downstream pro‐
cesses that they must reprocess a specific message. How that occurs will depend on
the consumer.

Similarly, it is important to verify that the storage mechanism for events or messages
is durable enough to maintain persistence for the life of the message. If there can be
data loss, there is a data integrity issue. The inverse of this is duplication. If data can
be duplicated, an event will be reprocessed. If you cannot guarantee that the process‐
ing is idempotent and thus can be rerun with the same results if the event is reproc‐
essed, you might be better off using a datastore that can be indexed appropriately to
manage duplicates.

Scalability
As just discussed in “Availability” on page 234, by pulling the events and their subse‐
quent processing out of the frontend datastore, we are reducing the overall load on

234 | Chapter 12: A Data Architecture Sampler

the database. This is workload partitioning, which we have discussed in scaling pat‐
terns as a step on the path to scale. By decoupling orthagonal workloads, we eliminate
multimodal workload interference.

Latency
Pulling event processing out of the frontend datastores is an obvious win on reducing
potential conflicts that can reduce frontend application latency. The time it takes to
get the events from the frontend datastore to the event processing system is addi‐
tional latency for the processing of those events, however. The asynchronous nature
of this process means that applications must be built to tolerate a delay in processing.

So, now that we have reviewed how to get to the datastores and the glue to connect
data between the frontend datastore and the downstream consumers, let’s look at
some of those downstream consumers.

Caches and Memory Stores
We have already discussed how incredibly slow disk access is in comparison to mem‐
ory. This is why we strive to get all datasets of our datastores to fit in memory struc‐
tures like buffer caches rather than reading them from disk. That being said, for many
environments, the budget to keep a dataset in memory just does not exist. For data
that that is too large for your datastore’s cache, consideration of caching systems and
in-memory datastores is worth merit.

Caching systems and in-memory datastores are fairly similar in terms of the basics.
They function to store data on RAM rather than disk, providing rapid access for
reads. If your data is infrequently changed and you can tolerate the ephemeral nature
of in-memory storage, this can prove to be an excellent option. Many in-memory
datastores will offer persistence by copying data to disk via background processes that
run asynchronously from the transaction. But, that introduces a high risk of data
being lost in a crash before it can be saved.

In-memory datastores often have additional features, such as advanced datatypes,
replication, and failover. Newer in-memory stores are also optimized for in-memory
access, which can prove faster than even a dataset in a relational system that fits fully
in the database cache. Database caches still must do validation on the freshness of
their stores and manage concurrency and ACID requirements. Thus, an in-memory
datastore might prove the best fit for systems requiring the fastest latency.

There are three approaches to populating caches. The first approach is putting data in
cache after it has been written to a persistent datastore like a relational database. The
second approach is writing to cache and persistence at the same time in a double‐
write. This approach is fragile due to the opportunity for one of the two writes to fail.
Expensive mechanisms for guarantees, including post-write validation or two-phase

Architectural Components | 235

commit, are required to make this work. The final approach is writing to cache first
and then letting that persist to disk asynchronously. This is also called a write-through
approach. Let’s discuss how each of these approaches can affect your database ecosys‐
tem.

Availability
Use of a cache can positively affect availability by allowing reads to continue even in
the case of a datastore failure. For read-heavy applications, this can be very valuable.
On the other hand, if a caching system provides improved capacity and/or latency, or
if the caching systems fails, the persistence data behind it might prove to be inade‐
quate for the traffic load sent back to it. Maintaining availability at the caching layer
becomes just as critical as availability at the datastore, meaning that you have twice
the complexity to manage.

Another major issue is that of the thundering herd. In a thundering herd, all of the
cache servers have a very frequently accessed piece of data invalidated due to a write
or due to a time-out. When this happens, a large number of servers then simultane‐
ously send requests for reads to the persistence store so that they can refresh their
cache. This can cause a concurrency backup that can overload the persistence data‐
store. When that happens it might prove impossible to serve the reads from the cache
or the persistence tier.

You can manage thundering herds with multiple approaches. Ensuring that cache
time-outs are offset from one another is a simple, if not very scalable approach.
Adding a proxy cache layer that can limit direct access to the datastore is a more
manageable approach. At this point, you have a persistence tier, a proxy cache tier,
and a cache tier. As you can see, scaling can rapidly become quite complex.

Data integrity
Data integrity can be quite the sticky situation with caching systems. Due to the fact
that your cached data is generally a somewhat static copy of potentially ever-changing
data, you must make a trade-off between how frequently you allow for the refreshing
of data and the inherent impact to your persistence store versus how much of a
chance there is that you are showing stale data to anything querying the cache.

When putting data into cache after saving it, you must be prepared for the chance for
stale data. This approach is best suited for relatively static data that rarely needs to be
invalidated and recached. Examples would include lookup datasets such as geocodes,
application metadata, and read-only content, such as news articles or user-generated
content.

When putting data into persistence and cache at the same time, you are eliminating
the opportunity for stale data. This does not eliminate the need for validation that the
data is not stale, however. Directly after a write, and periodically thereafter, you must

236 | Chapter 12: A Data Architecture Sampler

continue to run validation checks to ensure that you are providing the consumer with
the correct data.

Finally, when writing data to your cache first, followed by a write to your persistence
store, you must have a means of reconstructing the write in the event that your cache
crashes before it can send the write forward to the persistence tier. Logging all writes
and treating them as events that can trigger validation code is one approach to doing
this. Of course, at this point, you are in many ways reproducing the complexity that
many home-built datastores already provide. Thus, you must carefully consider
whether the write through approach is worth the complexity required to validate and
maintain integrity across datastores.

Scalability
One primary reason for using caches and in-memory databases is because you are
scaling the read dimension of your workload. So, yes, by adding a caching tier you
can effectively achieve greater degrees of scale at the cost of complexity in your envi‐
ronment. But, as we discussed in the availability section, you are now creating a
dependency on this tier to successfully achieve your Service-Level Objectives (SLO).
If your cache servers fail, or become invalidated or corrupted, you can no longer rely
on your persistence store to maintain reads for your application.

Latency
Outside of scalability, the other reason to use a caching tier is to reduce latency for
reads. This is a great use of cache or in-memory technology, but if your cache server
fails, you no longer can directly observe what your persistence stores look like
without the cache server in existence. It is worth scheduling and performing periodic
tests with read traffic bypassing the cache in test environments to see how your per‐
sistence tier handles both write and read workloads simultaneously. If failing back to
your persistence store is a valid contingency in production, you will want to test these
failures in production as well as test.

Caching and in-memory datastores are tried-and-true components of many success‐
ful datadriven architectures. They play well with event-driven middleware and can
truly level up your application’s scalability and performance. That being said, it is an
additional tier to manage in terms of operational expense, risk of failures, and risk of
data integrity. This cannot be overlooked, which often happens because many cache
systems are just so darned easy to implement. It is your job as the DBRE to ensure
that your organization takes the availability and integrity responsibilities of this sub‐
system seriously.

Each of these components plays a vital role in the availability, scalability, and
enhanced functionality of your datastores. But, each one of these increases architec‐
tural complexity, operational dependencies, and risk of data loss and data integrity

Architectural Components | 237

issues. Those trade-offs are crucial when making architectural decisions. Now that we
have looked at some of the individual components, let’s look at some of the architec‐
tures used to push data through frontend production through the datastore and into
any number of downstream services.

Data Architectures
The data architectures in this chapter are an example set of data-driven systems that
are designed to accept, process, and deliver data. In each, we will discuss the basic
principles, uses, and tradeoffs. Our goal in this is to give context to how the data‐
stores and associated systems that we have been discussing throughout this book exist
in the real world. It goes without saying that these are simply examples. Real-world
application will always vary tremendously based on each organization’s needs.

Lambda and Kappa
Lambda is a real-time big data architecture that has gained a certain level of ubiqui‐
tousness in many organizations. Kappa is a response pattern that seeks to introduce
simplicity and take advantage of newer software. Let’s go over the original architec‐
ture first and then discuss the permutation.

Lambda architecture
The Lambda architecture is designed to handle a significant volume of data that is
processed rapidly to serve near-real-time requests, while also supporting long-
running computation. Lambda consists of three layers: batch processing, real-time
processing, and a query layer, as illustrated in Figure 12-1.

238 | Chapter 12: A Data Architecture Sampler

Figure 12-1. Lambda architecture

If data is written to a frontend datastore, you can use a distributed log such as Kafka
to create a distributed and immutable log for the Lambda processing layers. Some
data is written directly to log services rather than going through a datastore. The pro‐
cessing layers ingest this data.

Lambda has two processing layers, so it can support fast queries with a “good enough”
rapid processing while also allowing for more comprehensive and accurate computa‐
tions. The batch-processing layer is often done via Mapreduce queries, which have a
latency that simply cannot be tolerated by real-time or near-real-time queries. A typi‐
cal datastore for the batch layer is a distributed filesystem such as Apache Hadoop.
Mapreduce then creates batch views from the master dataset.

The real-time processing layer processes the data streams as fast as they come in
without requiring completeness or 100% accuracy. This is a trade-off on data quality
for latency to present recent data to the application. This layer is the delta that fills in
data that is lagging from the batch layer. After batch processing completes, the data
from the real-time layer is replaced by the batch layer. This is usually accomplished
with a streaming technology such as Apache Storm or Spark backed by a low-latency
datastore such as Apache Cassandra.

Finally, we have the serving layer. The server layer is the layer that returns data to the
application. It includes the batch views created from the batch layer and indexing to

Data Architectures | 239

ensure low-latency queries. This layer is implemented by using HBase, Cassandra,
Apache Druid, or another similar datastore.

In addition to the value of low-latency results from the real-time layer, there are other
benefits to this architecture, not least of which is that the input data remains
unchanged in the master dataset. This allows for reprocessing of the data when code
and business rules change.

The most significant drawback to this architecture is that you need to maintain two
separate code bases, one for the real time and one for the batch processing layers.
This complexity comes with much higher maintenance costs and a risk of data integ‐
rity issues if the two code bases are not always synchronized. There are frameworks
that have come about that can compile code to both the real-time and batch-
processing layers. Additionally, there is the complexity of operating and maintaining
both systems.

Another valid criticism of this architecture is that real-time processing has matured
significantly since the Lambda architecture was introduced. With newer streaming
systems, there is no reason that semantic guarantees cannot be as strong as batch pro‐
cesses without sacrificing latency.

Kappa architecture
The original concept of the Kappa architecture (Figure 12-2) was first described by
Jay Kreps when he was at LinkedIn. In Lambda, you use a relational or NoSQL data‐
store to persist data. In a Kappa architecture, the datastore is an append-only immut‐
able log such as Kafka. The real-time processing layer streams through a
computational system and feeds into auxiliary stores for serving. Kappa architecture
eliminates the batch processing system, with the expectation that the streaming sys‐
tem can handle all transformations and computations.

240 | Chapter 12: A Data Architecture Sampler

Figure 12-2. Kappa architecture

One of the biggest values to Kappa is the reduction in complexity and operational
expense of Lambda by eliminating the batch processing layer. It also aims to reduce
the pain of migrations and reorganizations. When you want to reprocess data, you
can start a reprocessing, test it, and switch over to it.

Lambda and Kappa are examples of patterns that you can use to process and present
large amounts of data in real time. Next, we look at some architectural patterns that
are data driven and are built as alternatives to the traditional approach to applications
that speak directly to their datastores.

Event Sourcing
Event Sourcing is an architectural pattern that completely changes how you retrieve
and insert stored data. In this case, data storage’s abstraction layer is taken lower,
which creates flexibility in the creation and reconstruction of data views.

In the event-sourcing architectural pattern, changes to entities are saved as a
sequence of state changes. When state changes, a new event is appended to the log. In
a traditional datastore, changes are destructive, replacing the previous state with the
current. In this model, with all mutations recorded, the application can reconstruct
current state by replaying the events from the log. This datastore is called an event
store.

This is more than just a new log for mutations. Event sourcing and distributed logs
are a new data modeling pattern. Event sourcing complements traditional storage

Data Architectures | 241

such as relational or key–value stores by exposing a lower level of data storage that
functions as events rather than stateful values that can be overwritten.

The event store also functions not only as a distributed log of events and database of
record, but also as a message system, as we reviewed earlier in the chapter. Down‐
stream processes and workflows can subscribe to them. When a service saves an
event in the event store, it is delivered to all interested subscribers. You can imple‐
ment the event store in relational or NoSQL datastores or in a distributed log such as
Kafka. There is even an event store called EventStore, an open source project that
stores immutable, append-only records. The choice will depend a lot on the rate of
change and the length of time in which all events must be stored prior to snapshot‐
ting and compaction.

Event sourcing offers a number of benefits. Unlike the world of destructive muta‐
tions, it is quite simple to audit the life cycle of an entity. It also makes debugging and
testing much easier. With event stores, even if someone accidentally removes a table
or a chunk of data, you have the distributed log to recreate tables wholesale or on the
fly based on a specific entity that is missing. There are challenges, however. Not least
of which is managing schema evolutions of the entities because the change can inva‐
lidate previous events that have been stored. External dependencies can also be chal‐
lenging to recreate when replaying an event stream.

With the benefits of event sourcing, many shops might find use for implementing it
even if their many applications still use the more traditional datastores instead of the
event store. Over time, giving full historical access via API for auditing, reconstruc‐
tion, and different transformations can provide significant benefits.

CQRS
There is a natural evolution from using an event store as an ancillary storage abstrac‐
tion to using an event store as the core data storage layer. This is command-query-
responsibility segregation (CQRS). The driver for CQRS is the idea that the same data
can be represented for consumption using multiple models or views. This need for
different models comes from the idea that different domains have different goals, and
those goals require different contexts, languages, and ultimately views of the data.

You can accomplish this by using event sourcing. With a distributed log of event state
changes, worker processes that subscribe to those events can build effective views to
be consumed. CQRS can also enable some other very useful behaviors. Instead of just
building new views, you can build views of that data in different datastores that are
optimized for the query patterns that consume them. For instance, if the data is text
that you want to search, putting it into a search store like ElasticSearch for one view
can create an optimized view for the search application. You are also creating inde‐
pendent scaling patterns for each aggregate. By using read optimized data stores for

242 | Chapter 12: A Data Architecture Sampler

queries and an append-only log that is optimized for writes, you are effectively using
CQRS to distribute and optimize your workloads.

There is a great potential for unnecessary complexity in this architecture, however. It
is entirely possible to segregate data that needs only one view or over-segregate to
more views than are absolutely necessary. Focusing only on the data that actually
requires the multimodel approach is important to keep complexity down.

Ensuring that writes or commands return enough data to effectively find the new ver‐
sion numbers of their models can go a long way in helping reduce complexity within
the application as well. If commands return success/failure, errors, and a version
number that can be used to get the resulting model version will help with this. You
can even return data from the affected model as part of a command, which might not
be exactly according to the theory of CQRS but can make everyone’s life much easier.

You do not need to couple CQRS with event sourcing. Event sourcing as the core data
storage mechanism is quite complicated. It is important to make sure that only the
data that has functions as a series of state changes is represented in that manner. You
can perform CQRS using views, database flags, and external logic or any number of
other ways that are less complex than event sourcing itself.

This was just a sampling of data-driven architectures that you might find yourself
working with or designing. The key in each is recognizing the life cycle of the data,
and finding effective storage and transport to get that data to each component of the
system. Data can be presented in any number of ways, and most of today’s organiza‐
tions will eventually need to be able to accomplish multiple presentation models
while maintaining the integrity of the core dataset.

Wrapping Up
With this sampler, we hope you see some of the opportunities to create even more
functionality, availability, scale, and performance within your datastores. There are
plenty of opportunities to lock yourself into complex architectures that cost a tremen‐
dous amount to maintain. The worst case, of course, is the loss of data integrity,
which should be a real concern throughout your career.

With this chapter, we are coming to the conclusion of our book. In the final chapter,
we will bring this all back together with some guidance on how you can continue to
develop your own career and the culture of database reliability within your organiza‐
tions.

Wrapping Up | 243

CHAPTER 13

Making the Case For DBRE

Throughout this book, we have attempted to show how the landscape of database
engineering has shifted over the years. Within the context of that landscape, we have
enumerated the operational and developmental disciplines that the database reliabil‐
ity engineer (DBRE) must be involved with and how to begin to do so. Finally, we
attempted to lay out the current ecosystems of storage, replication, datastores, and
architectures, or at least a reasonable subset, to broaden your minds and knowledge.

The reason we feel there is a real need for an emphasis on reliability in not just the
job title of the DBRE but in everything they do is because the database is a place
where risk and chaos simply has no place. A lot of what is now commonplace in our
day-to-day work—virtualization, infrastructure as code, containers, serverless com‐
puting, and distributed systems—all came about from risk at areas of computing
where risk could be tolerated. Now that they are ubiquitous, it is up to the stewards of
one of the organization’s most precious resources, the data, to find paths to bring
databases into these paradigms.

A lot of this work is still aspirational. There is only so much risk that can be tolerated
within any organization when data comes into play. Thus, how we introduce these
concepts to the rest of the organization, or how we respond to others doing so,
becomes an actual discipline and job function for us. It is not enough to have the
vision and the intent, we must simultaneously find ways to introduce this vision in
such a way to be successful.

In this chapter, we show you how to shepherd a culture of database reliability into
your organizations, now and into the future. You will get some ideas on ways to
become involved in a wide range of functions within the organization while repre‐
senting and speaking up for database reliability engineering.

245

A Culture of Database Reliability
What does a culture of database reliability look like and how can you promote it?
There are many items that people think of when they think of reliability culture that
are not specific to the database world:

• Blameless post-mortems
• Automating away repetitive work
• Structured and rational decision making

This all makes sense, and everyone within an operations or site reliability engineer
(SRE) organization should constantly be working toward this. But what should we, as
DBREs or people who want to become DBREs, foster in our own environments?
Here, we go over some approaches to become involved, to inject reliability culture,
and to bring our expertise as DBREs to the rest of the organization.

Breaking-Down Barriers
The DBA who maintains isolation away from the other teams that interact with the
datastore will simply not be successful. To be effective, we absolutely need to be active
team members and partners at a much higher layer of abstraction than the one in
which we have traditionally functioned. There is an inherent challenge in this because
the database role is not one that is generally highly populated. Throughout the book,
we have stressed that the database role simply cannot scale to the number of develop‐
ers and operations engineers who will be working with them.

There are areas in which the DBRE can prove to be a highly effective member of
cross-functional teams and work. Any time the DBRE becomes involved in cross-
functional work, there should be a goal of contributing subject matter expertise, elim‐
inating constraints on DBRE resources, or learning more about other functions to
improve our own ability to function within the organization.

The architectural process
It goes without saying that those with deep database expertise should be involved
more at all layers of the architectural process, particularly the design phase. The
DBRE can provide incredibly valuable data on choosing the right datastore, prefera‐
bly one that has already been significantly tested and proven in production. As we
discussed in Chapters 7 and 11, the DBRE’s job is to truly vet the datastores that
might be brought into service in their organization.

In larger organizations that require self-service in order to build and deploy services,
the DBRE has a particular power in determining which storage services are put into
the self-service catalog. By working with the rest of the technical organization, the

246 | Chapter 13: Making the Case For DBRE

DBRE can help support the mandate of using these approved services that have been
tested thoroughly for edge cases, scale, reliability, and data integrity. Sometimes, this
can also come with the caveat that all organizations can build and deploy services
outside of the catalog, or at different tiers in the catalog, but that they must accept
different Service-Level Agreements (SLAs) in order to do so. For example:

Tier 1 Storage
Tested in core services in production. Use of self-service patterns means that Ops
and DBRE can provide 15-minute Sev1 response SLAs for escalation, and will
guarantee highest SLAs on availability, latency, throughput, and durability.

Tier 2 Storage
Tested in production on non-critical services. Use of self-service patterns means
that Ops and DBRE can provide 30-minute Sev1 response SLAs for escalation,
and will guarantee reduced Service Level Objectives (SLOs) on availability,
latency, throughput, and durability.

Tier 3 Storage
Not tested in production. Escalation from Ops and DBRE is on best effort, and
no guarantees on SLOs can be guaranteed. Must be fully supported by software
engineering (SWE) teams.

If your organization doesn’t support such self-service platforms, the DBRE must work
harder on ensuring that every team is aware of the methods they use in evaluating
datastores and architectures and the value that is provided by doing so. Although pre‐
mature optimization is always a danger, one of the most important values provided
by DBREs is helping to guarantee that architectural datastore decisions do not ham‐
string a service in the future as they hit scaling inflection points.

In many organizations, this begins as a mandatory checklist on a technical project
that includes DB review in any project before it goes into production. However, it is
easy for this to wait too far into the life of a project, simply beyond the point for you
to change. This is where the art of politics and ambassadorship comes into play. Find‐
ing time to evaluate datastores and publish best practices, trade-offs and patterns for
the most common or upcoming datastores in the organization is an important way of
showing people the value of DBREs. It also is a great chance to work with SWEs and
architects to build this data and publish it to build more mindshare. With this coming
out regularly, when a new datastore that you have not evaluated comes into an archi‐
tectural conversation, people will be more encouraged to sponsor an evaluation as
part of their project and resources with you as a matrixed mentor and advisor. The
key is getting people to see value and not constraint in using the DBRE.

There are metrics that you can use to measure how well DBREs and the organization
are doing in this regards. Here are a few examples:

A Culture of Database Reliability | 247

• How many architectural projects used DBREs or their approved templates? (post
mortem)

• What storage was used and deployed? (post mortem)
• How many hours of DBRE work occurred during each phase or user story? (post

mortem)
• Availability, throughput, and latency metrics grouped by storage tiers and

engines to provide proof of reliability.

Database development
Much like architecture, DBREs being involved in database development early in the
development cycle can be a force multiplier in the success of a project. We discussed a
lot of this opportunity and value in Chapter 8. One of the biggest barriers to this is
SWEs forgetting to discuss their designs with DBREs. Other times, SWEs might feel
they do not need such guidance. One of the biggest wins in this struggle is to assist
the SWE teams in seeing the value in the work that they do with DBREs.

Embedding DBREs, whether full-time or just at certain times in a project’s life cycle.
Pairing with software engineers is a great opportunity to help those SWEs see the
value of DBRE collaboration. Even if the DBRE is not particularly strong with coding,
her input on data modeling, database access, and use of features can prove invaluable,
while also building relationships between organizations. Pairing SWEs with DBREs
who are performing reviews, implementations, or oncall to support data-driven
applications can similarly foster relationships, empathy, and cross-team knowledge
that will accelerate development.

We also discussed the importance of providing best practices and patterns for the
functions that each SWE performs in integration with the data layer. For instance,
you can implement checklists for models, queries, or feature usage that require the
SWE to indicate whether he used patterns or not. These checklists can raise flags on
stories or features that might need review prior to pushing into production.

There are metrics that you can use to measure how well DBREs and the organization
are doing in this regard. Here are some examples:

• Development pairing hours between SWEs and DBREs
• User stories that used DBRE
• Feature metrics, such as latency and durability, mapped to use of DBRE or not
• On-call shifts with an SRE paired

248 | Chapter 13: Making the Case For DBRE

Production migrations
Everyone wants more error-free migrations. There is no doubt about that. But often
the rate of deployment rapidly outstrips the time DBREs have to support those
deployments. Backlogs end up being bundled into large, fragile changesets that can
introduce dramatic risk, or migrations are done without significant DBRE review. As
we discussed in Chapter 8, an effective way to manage this is to build process and
tools to enable SWEs to make better choices about what can be implemented through
normal deployment mechanisms, what DBREs should implement, and what should
be reviewed by DBREs when ambiguity is present.

The easiest first step is to incrementally create a library of heuristics that can indicate
whether the changes are safe or dangerous. Even though the bottleneck is not
removed immediately, creating a mandate to build this library together with DBREs
will begin to build traction over time. Having a review board periodically going
through the most recent changes, the resulting heuristics and guidance and the suc‐
cess or failure of those changes can prove to be an effective watchdog on this process.
You can do this as part of regular post-mortems of changes, both successful and
unsuccessful ones.

Another way to continue to incrementally enable the SWE organization to be as
autonomous as possible is to build a database of migration patterns that can be
applied heuristically to upcoming changes. By doing this with SWEs over time as you
pair together with changes, you can build a living document that the SWEs not only
use, but also feel enabled to build upon themselves over time. Again, doing post-
mortems and reviews to validate the success of these patterns is crucial.

You can build further upon this by providing guardrails to implementations that heu‐
ristics and migration patterns indicate can be performed by SWEs. These guardrails
give confidence to everyone—SWEs, operations staff, DBREs, and leadership. The
more you show success and build trust, the further this can go. By enabling the
autonomy of SWEs, you can find that your relationships with those teams become
much healthier as you prove to be more of value than of hindrance. Continuing to
impart the depth of your expertise in database storage and access will continue to
optimize their velocity and the relationship. You can do this individually via pairing
or via more educational approaches, such as workshops, knowledge shares, and docu‐
ments.

No amount of enablement will change the fact that there are some migrations that the
DBRE must take on. Even at this phase, there are approaches that can be done to edu‐
cate and enable others. Again, pairing with the engineers during the migration plan‐
ning and execution can be an excellent approach. Pairing with operations engineers
as well can be highly valuable, as the more people who can assist and eventually own
complex production implementations, the better.

A Culture of Database Reliability | 249

Even without significant automation, there are plenty of ways for you and the DBRE
team to continue to drive more reliable, error-free change in a way that does not
cause the development pipeline to stagnate. The addition of technology, tools, and
code can take this even further after trust and repeatability of manual processes has
been refined.

There are metrics that you can use to measure how well DBREs and the organization
are doing in this regard. Here are a few examples:

• Migration pairing hours between SWEs/Ops staff and DBREs
• Count of migrations requiring DBREs versus all migrations
• Failure or success of migrations and impact

Infrastructure design and deployment
In the section on architecture, we discussed working with engineering to choose tes‐
ted and trustworthy datastores. Similarly, you must work constantly with operations
and infrastructure staff to ensure that they have everything necessary not only to host
those datastores, but also to deploy and maintain them. In Chapter 5 we discussed the
various parts of this function in detail, and in Chapter 6, we discussed the software
and tools needed to manage those infrastructures at scale. But, we are still in the early
stages of doing this for datastores, particularly distributed ones.

As with production implementations and giving software engineers more autonomy,
so much of introducing this into the organization is about building trust through
incremental steps. The first steps that can provide significant value to the DBRE team
and the organization are using the same code repositories and versioning systems to
manage your scripts, configuration files, and documentation. Then, you can work
with the operations team to begin configuring and deploying empty datastores via
configuration management and orchestration. This will still require you to finalize
those datastores with the actual data, but it is an incremental step forward.

Throughout this, by pairing with operations, you can do testing for proper configura‐
tions, security testing, load testing, and even more advanced tests for data integrity
and replication. The more you familiarize the entire team with how your databases
work and how they break, the better. Availability and failure testing is also a critical
test to bring in other organizations to work with.

Finally, you can begin to give primary on-calls to operations staff and even senior
developers managing their own infrastructures. With you and your team mirroring
and pairing with them, they can rapidly gain confidence in working with these infra‐
structures while minimizing risk. It is only when the team truly feels confident know‐
ing the inside and out of maintaining all of this that you can begin to automate the

250 | Chapter 13: Making the Case For DBRE

riskier components, such as data loading, replication reworking, and primary node
failovers.

There are metrics that you can use to measure how well DBREs and the organization
are doing in this regard:

• Count of infrastructure components that are managed via configuration manage‐
ment

• Count of infrastructure components that are integrated into orchestration plat‐
forms

• Count of successful and failed provisioning
• Metrics on resource consumption—all subsystems used by the datastores
• On-all shifts managed by non-DBREs
• Incidents managed by non-DBREs and the Mean Time to Restore (MTTR)
• Escalation counts to DBREs

So much of the success of this work is in relationships, empathy, trust, and shared
knowledge. We know that many DBAs are used to functioning in isolation, but with
these steps, you and your team can bring database work into the sunshine. No longer
should it be a murky, scary function that only the bravest or most foolish engineers
are willing to tackle. The key to this is repetitive exposure, constant incremental trust
building, and pairing with others.

Data-Driven Decision Making
Trust cannot be built without excellent data on the impacts of changes. The Deming
Cycle of plan, do, check, and act requires the observability we reviewed in Chapter 4.
Remembering to define clear appropriate metrics for determining success before
gathering baselines with every change and then finally taking the time to analyze the
results with a skeptical eye is key.

Using your knowledge of the organizations SLOs as discussed in Chapter 2 and
Chapter 3 is crucial to understanding the changes you must make and the metrics
and results you need to prove to the rest of the organization the potential value that
will drive the change and the resulting value of the effort to take them there.

Hopefully you find yourself in an organization that has already seen the value of data-
driven decision making and thus has already implemented the platform for observ‐
ing, the processes for analyzing, and the discipline to consistently execute. Similarly,
we hope that you are in an organization that has already defined clear, useful SLOs to
drive your decision making. But, if not, you will need to begin with these practices to
be able to drive deeper and more potentially far-reaching changes.

A Culture of Database Reliability | 251

Data Integrity and Recoverability
We discussed the criticality of data integrity and the ability to recover from loss or
corruption in Chapter 7. Too often organizations view this as the responsibility of the
DBRE, but we know that that is an impossible task for the DBRE organization alone.
Being the champion of a data integrity program will often fall upon the DBRE organi‐
zation. Convincing the SWE organization of the importance of allocating resources
for data validation pipelines and recovery APIs is a constant responsibility. Serendipi‐
tously, if you are breaking down the barriers between architecture, software develop‐
ment, and the lack of DBRE involvement in early phases of work, you will find
yourself with the relationships and the trust to incrementally build the shared code
and the knowledge required to implement an effective data integrity pipeline.

This is not an easy sell. Our experience with this is that most SWEs feel data integrity
is the domain of the DBRE only. And constrained organizations will balk at the devel‐
opment of validation pipelines and recovery APIs. Thus, you will find yourself having
to make the case while implementing “poor man’s” solutions that can gather the data
around data-integrity issues. Similarly, tracking the efforts taken for manual recovery
of data can go a long way toward convincing leadership to commit resources for
recovery APIs and validatoin pipelines.

As you can see, the successful evolution of database reliability requires incremental,
and comprehensive organizational shifts. Choosing the areas that consume the most
of your time, and that create the largest constraints on other organizations is a skill
you would be smart to practice. Then, building incremental points of change to build
trust and create improvements will build momentum. But this all takes time, trust,
and a lot of experimentation regarding what works for your organization’s risk levels,
and what doesn’t.

Wrapping Up
We’d like to thank you for taking the time to read through this book. Both of us are so
passionate about evolving one of the most burdensome and byzantine of technical
careers. Although a good portion of this book is aspirational, or still being proven in
the wild, we believe that the DBRE movement is one that can drive so much value to
data-driven services and organizations.

Our hope is that you are inspired to explore these shifts in your organization and that
you are eager to learn more. We have tried to give further reading and exploration
options throughout, as this framework is flexible. But, most important, we hope we’ve
helped you see that there is opportunity to bring the time-honored role of DBA into
the modern world and into the future. The role of DBA isn’t going away, and whether
you are new to this career or a tried-and-scarred veteran, we want you to have a long
career ahead of you as you drive value to every organization you are a part of.

252 | Chapter 13: Making the Case For DBRE

Index

A
abstraction and encapsulation, 142
acceptance testing and compliance, 109
access control, network and host access, 163
ACID transactions, 216

atomicity, 216
consistency, 217
durability, 220
isolation, 217-220

administrative connections to databases, 170
administrative traffic, 86
AES (Advanced Encryption Standard), 171, 173
affected users (security exploits), 162
agile methodology, 134
alerts, 60
Amazon machine images (AMIs), 104
Amazon Web Services (AWS), 93
Amazon's Relational Database Service (RDS),

95
analytics, user-facing datastores used for, 230
ANSI/ISO SQL standard, transaction isolation

levels, 217
Ansible, 101
anti-entropy, 208
Apache Kafka, 234
APIs and web services, 142
AppDynamics, 57
append-only write schemas, 89
application errors, 119, 129, 131

detection and recovery from, 123
application instrumentation, 66-68

distributed tracing, 66
application layer instrumentation, 158

application performance management solu‐
tions, 66

application traffic, 86
application-level security, 175
architectural pipeline, adding to risk manage‐

ment process, 46
architecture

architectural process, DBRE and, 246
data architecture sampler, 229-243

caches and memory stores, 235-238
command-query-responsibility-

segregation (CQRS), 242
data access layer, 230
database proxies, 231-233
event and message systems, 233-235
event sourcing, 241
frontend datastores, 229
lambda and kappa, 238

domain-specific knowledge on, 135
keeping simple, 55

asserts (database), monitoring, 79
asynchronous replication models, 191
atomicity, 216

durability and, 220
attackers, categories of, 174
audits and compliance, 130, 155

repudiation and, 161
authentication

security vulnerabilities in authentication
protocols, 168

testing authentication layer for common
flaws, 158

automation
as an output of monitoring, 61

253

automated deployment, 151
database build, 140
elimination of toil through, 4
opportunities for, 99

availability, 16, 226
availability metrics and customer experi‐

ence, 14
considerations for recovery, 115
database proxies and, 232
five 9’s as shorthand for, 15
impacts of caches and memory stores, 236
impacts of event and message systems, 234
impacts of SST merges and compaction, 186
in CAP theorem, 224
indicators, 20

designing for downtime, 22
resiliency versus robustness in availabil‐

ity, 21
monitoring, 25, 64
multi-leader replication and, 203
replication, 200
single-leader replication and, 194
storage, 90

averages
for latency, 18
storing actual values instead of, 19

B
B-tree structures, 188

attributes and benefits of, 184
permutations of B-tree indexes, 188
writes to, 184

backups, 7, 113-115
damaging, 154
data to use for testing restores, 118
failures of, in datastores, 43
full and incremental

online, fast storage with, 128
online, slow storage with, 129

full and incremental logical backups, 127
full and incremental physical backups, 129
full physical backups, 126
full, incremental, and differential backups,

115
in data safety monitoring, 63
incremental physical backups, 126
issues in Database as a Service (DBaaS), 96
online versus offline, 114
physical versus logical, 114

replication and, 126
size of, 117

baking, 103
BASE (basically available, soft state, and even‐

tual consistency), 221
best practices and standards, 136
BigTable, 185
bitmap indexes, 188
blackbox monitoring, 57
blackbox testing

and queueing theory, 57
block-level encryption systems, 178
blocks, 182

aligned versus nonaligned block/stripe con‐
figurations, 182

block-level replication, 193
bloom filters, 187
Bouncy Castle, 175
Brewer, Eric, 223
buffer overflows, 158, 166
build testing, 143
bus, SSDs and, 89
business continuity, 130
business data, confidential/sensitive, encryp‐

tion of, 170
business intelligence (BI) systems, treating

operational visibility systems as, 52

C
caches

and memory stores, 235-238
database, monitoring, 76

CAP theorem, 223-225
availability, 224
consistency, 224
partition tolerance, 224

capacity, 61, 65, 72
monitoring in cloud and virtualized sys‐

tems, 70
replication availability and, 200
utilization and, 56

capacity planning
DDL operations creating enough I/O to

affect latency, 149
need to add more nodes, 128
USE data and, 68

cardinality of data, 78
high cardinality, 188

Cassandra, 63, 74

254 | Index

connections, use of resources on operating
system, 72

full backups, 126
last write wins, 205
memory allocation, 83
monitoring replication state, 76
non-uniform memory access (NUMA) and,

86
seed nodes, 110
SSTables, 89
THP defragmentation and, 84
use of bloom filters, 187
use of JVMs to manage memory, 77

cattle versus pets metaphor, 5
certificates, 171, 173
CFEngine, 101
change data capture (CDC), 193
change-sets

Etsy's guardrails for application of, 9
making sure all changes are safe as possible,

123
versioning, 146

Chaos Monkey, 117
checkpointing, flushing, and compaction oper‐

ations in databases, 75, 92
checksums on data

checking replicas for replication drift, 76
checksumming filesystems to detect bad

data, 120
using in testing restores, 118

Chef, 101
churn, 76
cipher suites, 171, 173
Circonus, 79
client-side throttling, 165
cloud computing, 93

advantages for database infrastructure, 94
data integrity and, 120
monitoring in cloud and virtualized sys‐

tems, 70
public cloud providers offering DBaaS plat‐

forms, 95
clusters

building new production clusters, 117
cluster-wide scope for recovery, 121
multiple cluster scope for recovery, 121
rolling migrations in, 150

collaboration in release management, 137

command-query-responsibility-segregation
(CQRS), 242

commits, redo, and journaling, monitoring, 75
commodity service components, 5
common vulnerabilities and exposures (CVEs),

156
communications encryption

communication within the network, 172
communications outside the network, 172
evaluating needs of, 172

compliance and auditing standards, 155
component redeploys to eliminate configura‐

tion differences, 105
concurrency

databases running within hypervisors, 94
monitoring for database memory structures,

77
monitoring locking and concurrency, 77

concurrency control, 217
multiversion concurrency control (MVCC),

219
configuration management applications, 101
configurations

building from configuration, 103
configuration definition, 101
maintaining, 104-105

enforcement of configuration defini‐
tions, 105

precautions against security vulnerabilities
and exploits, 162

conflict resolution in multi-leader replication,
204
conflict-free replicated datatypes, 206
custom resolution options, 205
eliminating conflicts, 204

conflict-free replicated datatypes (CRDTs), 206
connection layer

memory usage limits, 84
monitoring for datastores, 71-74

errors, 73
saturation, 72
troubleshooting connection speeds for

PostgreSQL, 73
utilization, 71

connections
basic encryption of, 173
establishing secure data connections, 173

consistency
eventual consistency, 76, 207

Index | 255

in CAP theorem, 224
in transactions, 217
replication consistency, 201
single-leader replication guarantee on, 190
trade-offs with latency, 225-226

Consul.io, 109
containers, 95
continuous delivery (CD), 138
continuous integration (CI), 138

establishing CI at the database level, prereq‐
uisites, 139
CI server and test framework, 141
database build automation, 140
database migrations and packaging, 140
test data, 140
version control system, 139

controls to mitigate or eliminate risks, 44
cost and efficiency, 16

cloud and virtualized systems, 70
indicators, 23
monitoring, 28

counters, metrics storage by, 59
critical data

audit data on, 158
monitoring distribution of, 78

culture of database reliability, 246-252
breaking down barriers, 246

architectural process, 246
database development, 248
infrastructure design and deployment,

250
production migrations, 249

data-driven decision making, 251
customer experience

availability metrics and, 15
monitoring anything that disrupts, 65

CVEs (common vulnerabilities and exposures),
156

D
damage potential, 161
data access layer, 230
data access objects (DAOs), 142, 231
data corruption

detection of, 122
repair of, 129, 131
resulting from OS and hardware errors, 119

example of silent corruption at Netflix,
120

data definition language (DDL)
applying the latest DDL scripts, 140
operations creating enough I/O to affect

latency, 149
data encryption (see encryption of data)
data governance, 215
data in the database, encryption of, 174-177

application-level security, 175
database plug-in encryption, 175
query performance considerations, 176
transparent database encryption, 176

data in the filesystem, encryption of (see filesys‐
tems)

data in transit, encryption of, 170-174
basic connection encryption, 173
cipher suites, 171
communication within the network, 172
communications outside the network, 172
dynamically built database users, 174
establishing secure data connections, 173
securely stored secrets, 173

data integrity, 252
database proxies and, 232
impacts of caches and memory stores, 236
impacts of event and message systems, 234
issues with, in database deployment, 147

data loss, 14, 44, 122
detection of, 122
single-leader replication and, 194

data models, 212-215
document model, 214
domain-specific knowledge on, 136
key-value model, 214
navigational model, 215
relational model, 212

data structure storage (see storage)
data validation, 129, 131

key to eary detection of application errors,
123

using input validation to mitigate against
SQL injection, 167

data-driven decision making, 251
database access and workloads, continual

improvement of, 165
database administration (DBA), 6
database administrators (DBAs), isolated from

other teams, 246
Database as a Service (DBaaS), 95-97

challenges of, 96

256 | Index

database reliability engineers and, 96
database clients, building your own, 157
database development, 248
database layer instrumentation, 159
database management systems (DBMSs), 82
database metadata scope for recovery, 121
database objects, 78
database proxies, 231-233

availability, 232
data integrity and, 232
impacts on latency, 233
improving scalability with, 232

database security as a function, 155-160
education and collaboration, 155
integration and testing, 157
operational visibility, 158-160
self-service approaches, 156

databases
build automation, 140
enumerating moving parts of, 62
internal visibility, 74-78

commits, redos, and journaling, 75
locking and concurrency, 77
memory structures, 76
replication state, 75
throughput and latency metrics, 74

logs and, 189
monitoring, 62, 71

tying application monitoring to, 67
monitoring database asserts and events, 79
monitoring database queries, 79
relational, 213
sample availability monitors, 65
transport layer, 87

datacenters
datacenter scope for recovery, 121
failures of, 120, 203

early detection, 124
dataset scope (recovery), 121
datasets

for database integration testing, 140
full dataset testing, 144

large, problems with, 196
partitioning or sharding, 197

datastores, 62, 211-227
(see also databases)
choosing the right datastore, 2, 181
common failure points in, 43
conceptual attributes of, 212-222

BASE, 221
data model, 212-215
summary, 221
transactions, 215-221

frontend, 229
instrumenting, 71
internal attributes of, 222-227

availability, 226
CAP theorem, 223-225
consistency latency trade-offs, 225-226
storage, 222
summary, 227

monitoring connection layer, 71-74
treating as pets versus cattle, 5

datatypes, optimizations on, for databases, 79
days, 205
DBRE (database reliability engineering)

DBREs and the DBaaS, 96
guiding principles of, 2-6

databases are not special snowflakes, 5
eliminating barriers between software

and operations, 5
elimination of toil, 4
protecting the data, 2
self-service for scale, 3

making the case for, 245-252
culture of database reliability, 246-252

deadline scheduler (I/O), 83
deadlocks, 77, 219
debuggability, 9
decaying function, 26
decryption of data, 175
defaults, security dangers of, 163
degrading results, 165
delete operations

on data stored in SSTs, 186
soft deletes, 149

DELETE statement without a WHERE clause,
119

denial of service (DoS) attacks, 154, 161
impacts of DB-DoS attacks to mitigate, 164
mitigation, 164

continual improvement of database
access and workloads, 165

logging and monitoring, 166
resource management and load shed‐

ding, 165
deployment, 146-151

Index | 257

component redeploys in configuration man‐
agement, 105

impact analysis, 147
data integrity issues, 147
locking of objects, 147
replication stalls, 147
saturation of resources, 147

manual or automated, 151
migration patterns, 148-151

high resource utilization operations, 149
locking operations, 148
migration testing, 150
rollback testing, 150
rolling migrations, 150

migrations and versioning, 146
design documents, 135
detection of potential data loss or corruption,

122
deterministic transactions, 192
development environments, 106

testing infrastructure locally, 111
development practices, test friendly

abstraction and encapsulation, 142
being efficient, 142

device-level encryption (storage media), 178
DevOps cultures, 134
devops needs, 8
differential backups, 115
dirty reads, 218
disaster recovery, 75

(see also recovery)
using multi-leader replication for, 203

discoverability (security threats), 162
diskchecker.pl, 92
Distributed Replicated Block Device (DRBD)

for Linux, 193
distributed tracing for applications, 66
distributions, visualizing, 60
Docker, 95
document model, 214
domain-specific knowledge, 135-137

architecture, 135
best practices and standards, 136
data model, 136
tools, 137

downstream tests, 145
downtime, 21

(see also failures)
designing for, 22

DRBD (Distributed Replicated Block Device)
for Linux, 193

DREAD algorithm, 161
DSA or DSS algorithm, 171
durability, 16, 91

considerations for recovery, 115
in transactions, 220
issues in Database as a Service (DBaaS), 96

dynamically built database users, 174
Dynamo-based datastores, 208, 214

E
education and collaboration

in database security, 155
in release management, 133-138

collaboration, 137
DBRE becoming a funnel, 134
domain-specific knowledge, 135-137
fostering conversations with software

engineers, 134
efficiency (see cost and efficiency)
ElasticSearch, 57

master and replica roles, 74
non-uniform memory access (NUMA) and,

86
security exploits against databases listening

on Public IPs, 163
elevation of privilege (see privilege escalation)
elevator algorithm, 82
elimination of toil, 4
elliptic curve version of key exchange, 171
encapsulation, 142
encryption cyphers for SSL protocols, 170
encryption of data, 168-179

checklist for, 178
confidential/sensitive business data, 170
data in the database, 174-177

application-level security, 175
plug-in encryption, 175
query performance considerations, 176
transparent database encryption, 176

data in the filesystem, 177-179
data ecryption above the filesystem, 177
device-level encryption, 178
filesystem encryption, 178

data in transit, 170-174
basic connection encryption, 173
cipher suites, 171

258 | Index

communications outside the network,
172

communications within the network,
172

dynamically built database users, 174
securely stored secrets, 173

financial data, 169
military or government data, 170
personal health data, 169
private individual data, 169

environments, different, building, 117
ephemeral environmennts, distributed, trend‐

ing to the norm, 52
ephemeral key exchanges, 171
ephemeral storage, 94, 183

production datastores on, 3
ephemeral user accounts, 174
error rates, 65
errors, 68

(see also utilization, saturation, and errors)
database and client logs, information on

asserts and errors, 79
error correction code (ECC), 120
monitoring for datastore connection layer,

73
esteem (for databases), 9
Etcd, 109
event routers/processors, 57
event stores, 241
events, 60

event and message systems, 233-235
availability and, 234
data integrity and, 234
latency and, 235
scalability and, 235

event sourcing architectural pattern, 241
CQRS and, 242

in application monitoring, 68
logging for database hosts, 70
monitoring database asserts and events, 79

eventual consistency, 76, 126, 207
(see also consistency)
maintaining using anti-entropy, 208

exploitability, 161
exposure of data, protecting against, 155

information disclosure, 161
extract, transform, and load (ETL), 116, 194

processes for downstream datastores, 118
query-based ETL, 195

F
failovers, 7, 44

automated failover for MySQL, 44
database failovers, using service catalogs,

110
single leader, 197

failures
emphasizing resiliency over elimination of

failure, 43
key questions about in evaluating a SLO for

availability, 21
treated as normal scenario in resilient sys‐

tems, 21
filesystems

checksumming to detect bad data, 120
encryption of data in, 177-179

data encryption above the file system,
177

device-level encryption, 178
filesystem encryption, 178

operations causing corruption and inconsis‐
tency, 92

financial data, encryption of, 169
five 9’s, 15
fragmentation, memory allocation and, 83
framing, 41
frontend datastores, 229
frying, 103
fsync function call (OS), 91

hypervisors and, 94
full backups, 115, 129

full logical backups, 127
full physical backups, 126, 129

functional partitioning, 8, 196
functions (mathematical) applied to metrics, 59

G
Galois/Counter mode (GCM), 171
garbage collection, 20

downtime from, 25
gauges, metrics from, 59
globc's malloc, 83
government data, encryption of, 170
Graphite, 57
graphs

graph data model, 215
output from operational visualization plat‐

forms, 61
Gregg, Brendan, 68

Index | 259

group factors affecting risk assessment, 34
guardrails, building, 8

Etsy's guardrails, 9
guest machine, 93

H
Hadoop, 39, 63

THP defragmentation and, 84
hard disk drives (HDDs), 184

failure rates, Google study on, 90
I/O latency and, 90
IOPs, 89

hardware
errors from, 119

early detection of, 124
failures of, 120

early detection, 124
harvest, 226
hash maps, 188
hashed MAC (HMAC), 171, 176
health checks

excessive, 64
in off-premises monitoring, 64

Health Insurance Portability and Accountabil‐
ity Act of 1996 (HIPAA), 169

hello bug (CAN-2002-1123), 168
hierarchy of needs, 7-11

esteem, 9
love and belonging, 8
self-actualization, 10
survival and safety, 7

high and low bounds, means, and cardinality of
data, 78

high cardinality, 188
high resolution for key metrics, 54
hinted hand-offs, 208
histograms, 59
hit ratios for cached/uncached data in data‐

bases, 76
HMAC (hashed MAC), 171, 176
Honeycomb, 57
horizontal scaling, 8
horizontally separated infrastructure defini‐

tions, 108
host machine, 93
hosts, 81-92

access to, 163
operating a system and kernel, 82

durability, 91

I/O scheduler, 82
memory allocation and fragmentation,

83
networks, 86
non-uniform memory access, 85
storage, 87
storage availability, 90
storage capacity, 88
storage latency, 90
storage throughput, 89
swapping, 84
user resource limits, 82

physical servers, 81
benefits of, 92
cons of, 92

shared OS/host model in containers, 95
storage area networks (SANs), 92

human error and root cause of incidents, 50
human factors affecting risk assessment, 33
hypervisors, 93

I
I/O operations, storage latency and, 90
I/O schedulers (for database hosts), 82
idempotent actions, 102
identification of key failure points in a service,

43
identity spoofing, 160
images, 104

creating multiple images from same config‐
uration, using Packer, 111

infrastructure images, detecting problems
with, 124

infrastructure images, testing, 109
immutable infrastructures, 104
impact analysis

in deployment, 147
data integrity issues, 147
locking of objects, 147
replication stalls, 147
saturation of resources, 147

in post-commit testing, 143
implementation of risk controls, 44
in-memory datastores, 235-238
incident management, 46
incremental backups, 115, 124, 129

incremental logical backups, 127
incremental physical backups, 126, 129

indexing, 78, 188

260 | Index

bitmap indexes, 188
hash indexes, 188
permutations of B-trees, 188
using B-tree structures, 183-185

indicators, 15
(see also service-level indicators)

InfluxDB, 57
information disclosure, 161
information secuity (IS) teams, 155
infrastructure as code, 100
infrastructure design and deployment, 250
infrastructure engineering, 81-97

containers, 95
Database as a Service (DBaaS), 95-97
hosts, 81-92

operating a system and kernel, 82
physical servers, 81

security, 156
virtualization, 93-95

concurrency, 94
hypervisors, 93
storage, 94
use cases, 94

infrastructure management, 99-112
acceptance testing and compliance, 109
building from configuration, 103
configuration definition, 101
development environments, 111
infrastructure definition and orchestration,

105-109
monolithic infrastructure definitions,

106
separated tiers (horizontal definitions),

108
separating vertically, 107

maintaining configuration, 104-105
service catalog, 109
using the concepts for MySQL, 110
version control, 100

infrastructure services
damages from, 119
detection and recovery from, 124

InnoDB storage engine, 75
(see also MySQL)
using mutexes/semaphores to monitor, 77

input validation, 167
instrumentation, 9
integration, 138-141

catching security vulnerabilities, 157

prerequisites for establishing CI at database
level, 139
CI server and test framework, 141
database build automation, 140
database migrations and packaging, 140
test data, 140
version control system, 139

integration testing, 129
internode communications, 86
introspection, 9
inventory, systems and environment, 39
IOPS (input and output operations per second),

89
high IOPS with SSDs, 90

isolation (transactions), 217-220

J
Java Database Connectivity (JDBC), 231
Java Virtual Machines (JVMs), 20

use in databases for managing memory, 77
JBOD, 88, 91
jemalloc, 83
Jepsen testing framework, 141
journaling fileysystems, 92
journaling, monitoring for databases, 75

K
Kafka, 234
kappa architecture, 240
kernel, operating for database hosts, 82-86
key exchange algorithms, 171
key management infrastructure secure services,

173
key-value model, 214
keys for filesystem encryption, 178
killing long-running queries, 165

L
lambda architecture, 238
last write wins algorithm, 205
latency, 15

critical nature of, 18
impacts of caches and in-memory data‐

stores, 237
impacts of database proxies on, 233
impacts of event and message systems, 235
increases due to swapping, 84
indicators, 17-20

Index | 261

latency distributions, 18
low latency with single-leader replication,

194
minimizing, using single-leader replication

for locality, 195
monitoring, 28, 65
monitoring for databases, 74
replication, 75
replication lag and, 199
SLO, sharers in, 24
storage, 90
throughput and, 16, 23
trade-offs with consistency, 225-226
versus response time, 16

laws, bodies, and standards regulating financial
data in the U.S., 169

layers (OSI model), 231
leaders (in replication), 189
leap seconds, 205
LevelDB, 185
Linux systems

Distributed Replicated Block Device
(DRBD), 193

filesystem encryption, 178
I/O scheduler, 82
nodes, 85
page cache, storage latency and, 90
resources to monitor, 69
storage stack, 87
swapping, 84
Transparent Huge Pages memory manage‐

ment system, 83
understanding, importance of, 69

load shedding, 233
local or single-node scope, recovery in, 121
local storage in virtualized environments, 94
locality

use of single-leader replication for, 195
using multi-leader replication for, 203

locking (database), 22
2-phase locking (2PL), 219
locking of objects in database migrations,

147
locking operations during migrations, 148
monitoring locking and concurrency, 77

log-structured merge (LSM) trees with
SSTables, 185-187
datastores that utilize as storage engines,

187

logical backups, 114
full and incremental, 127

logical replication, 193
logs, 60, 189

application, 68
capturing errors for datastore connection

layer, 73
for database hosts, 70
replication log formats in single-leader rep‐

lication, 191
statement-based logs, 191
write-ahead logs, 192

using to mitigate DoS attacks, 166
love and belonging needs, 8

M
MAC (see message authentication code;

HMAC)
major impact risks (imminent SLO violation),

41
malloc libraries, 83
manual database changes, 4
Maslow, Abraham, 7
master/replica setup for databases, 52, 74
mathematical functions applied to metrics, 59
mean time between failures (MBTF), 21
mean time to recover (MTTR), 21

emphasizing over MTBF, 43
reducing with immutable infrastructure,

104
replication and, 194

memory
caches and memory stores, 235-238
memory allocation and fragmentation, 83
non-uniform memory access, 85
swapping and, 84

memory contexts (PostgreSQL), 83
memory structures (in datastores), 76
memtables, 75, 185, 186
Merkle trees, 208
message authentication code (MAC), 171

HMAC, 176
message systems, 233-235
metadata

for data blocks, 182
testing in database integration, 140

metrics, 59
central collector for, 57
collecting too many, 55

262 | Index

DBRE and the architectural process, 247
focusing, 56
from application monitoring, 66
monitoring between database, system, stor‐

age, and application layers, 62
throughput and latency, for datastores, 74

MHA-managed MySQL cluster, 110
migrations, 249

and versioning, 146
impact analysis on production service, 147
patterns in, 148-151

allowing for automatic deployment, 151
high resource utilization operations, 149
locking operations, 148
migration testing, 150
rollback testing, 150
rolling migrations, 150

military data, encryption of, 170
minimum viable monitoring set, 62
minor impact risks, 41
mission-critical data, replication of, 63
moderate impact risks, 41
MongoDB, 63

connections, use of resources on operating
system, 72

master and replica roles, 74
memory allocation libraries, 83
non-uniform memory access (NUMA) and,

86
security exploits against databases listening

on Public IPs, 163
monitoring

alerts on reaching threshold of downtime,
25

bootstrapping, 61-66
availability monitors, 64
common progression, 62
customer experience, anything that dis‐

rupts, 65
data safety, 63

characteristics of traditional monitoring
systems, 51

Database as a Service (DBaaS) and, 96
for node or component failure requiring

recovery to new nodes, 128
for SQL injection attacks, 167
of availability, 25
of cost and efficiency, 28
of latency, 28

of single-leader replication, 198
operational processes, 202
replication availability and capacity, 200
replication consistency, 201
replication lag and latency, 199

of throughput, 28
testing, using Chaos Monkey, 117
to identify DoS attacks, 166
top goal for service-level management, 25

monitoring services, third-party, 63
monolithic infrastructure definitions, 106
multi-leader replication, 203-209

conflict resolution in, 204
custom options for, 205
last write wins, 205

use cases, 203
availability, 203
disaster recovery, 203
locality, 203

write-anywhere replication, 206
multiple object scope for recovery, 121
multiversion concurrency control (MVCC),

219
mutexes, 77
MySQL, 63

connections, use of resources on operating
system, 72

frying up a Galera Cluster, 103
InnoDB storage engine

block overhead, 183
memory allocation library, 83

master and replica roles, 74
NUMA and, resolving at Twitter, 85
statement-based replication, 192
THP defragmentation and, 84
using infrastructure concepts for, 110
using mutexes/semaphores to monitor

InnoDB storage engine, 77

N
Nagios, 57
navigational model, 215
network interface cards (NICs), 87
Network Time Protocol (NTP), 101, 199

Database as a Service (DBaaS) and, 96
timestamps and, 205

networks
access to, 163
communications outside, encryption of, 172

Index | 263

communications within, encryption of, 172
database performance and availability and,

86
security vulnerabilities in network and

authentication protocols, 168
New Relic, 57
nodes

in Linux systems, 85
new production nodes, building, 117
replacing failed nodes and introducing new

nodes, 128
non-uniform memory access (NUMA), 85

solving NUMA and MySQL at Twitter, 85
nondeterministic statements, 192
nonrepeatable reads, 218
noop scheduler (Linux), 82
normalization, 212
NoSQL datastores, 207
notifications

from operational visibility platforms, 61
testing, using Chaos Monkey, 117

NTP (see Network Time Protocol)
NUMA (see non-uniforrm memory access)

O
object storage, 125, 131
object stores, 127
object-relational mappers (ORMs), 213, 231

SQL dynamically generated for, 66
object-relational mapping (ORM), 213
objects, locking, 147
observability, 9
off-premises monitoring, 64
offline storage, 125, 130
OnLine Analytics Processing (OLAP), 230
OnLine Transactional Processing (OLTP) sys‐

tems, 230
online versus offline backups, 114
online, fast storage with full and incremental

backups (recovery strategy), 128
online, high performance storage, 124
online, low-performance storage, 125
online, slow storage with full and incremental

backups (recovery strategy), 129
Open Systems Interconnection (OSI) model,

231
OpenSSL, 175
operating systems

datastore connections opening resources
on, 72

errors from, 119
early detection of, 124

instrumentation of, 159
shared OS/host model in containers, 95
understanding, importance of, 69

operational processes, monitoring for single-
leader replication, 202

operational tests, 145
in planned recovery scenario, 118

operational visibility, 49-80
bootstrapping your monitoring process,

61-66
data in, 57-60

events, 60
logs, 60
telemetry/metrics, 59

data out, 60
Database as a Service (DBaaS) and, 96
database asserts and events, 79
database objects, 78
database queries, 79
framework for, 56
in database security, 158-160

application layer instrumentation, 158
database layer instrumentation, 159
OS instrumentation, 159

instrumenting the application, 66-68
instrumenting the datastore, 71
instrumenting the server or instance, 68-71
internal database visibility, 74-78

commits, redos, and journaling, 75
locking and concurrency, 77
memory structures, 76
replication state, 75
throughput and latency metrics, 74

new rules, 51-56
distributed ephemeral environments

trending to the norm, 52
keep your architecture simple, 55
store at high resolutions for key metrics,

54
treating OpViz systes like BI systems, 52

planned recovery operations, 116
operations

and software development, eliminating bar‐
riers between, 5

core overview, 6

264 | Index

optimistic replication, 206
OpViz (see operational visibility)
Oracle

storage of data in data blocks, 182
THP defragmentation and, 84

ordering-latency trade-off, 226
outputs from operational visibility platform, 57,

60

P
Packer, 104, 111
page table entries, 83
page tables, 83
pager fatigue, 34
pages (memory allocation), 83, 182

Transparent Huge Pages (THPs) in Linux,
83

parameterized statements, 167
partition tolerance (CAP theorem), 224
patching

of database binaries to reduce exploitable
bugs, 167

security patches, keeping up to date, 162
PCIe bus flash solutions, 89
perfect forward secrecy (PFS), 171
persistent block storage in virtualized environ‐

ments, 94
personally identifiable information (PII)

audit data on, 158
encryption of, 169

Pester for Windows, 141
pets versus cattle metaphor, 5
phantom reads, 218
physical backups, 114

full, 126
incremental physical backups, 126

physical servers
as database hosts, 81
benefits of, 92

pipeline processes for downstream datastores,
118

planned recovery scenarios, 116
building different environments, 117
ETL and pipeline processes for downstream

datastores, 118
new production nodes and clusters, 117
operational tests, 118

plug-in encryption, 175
portability

use of single-leader replication for, 195
with large datasets, 196

POSIX days, 205
post-build testing, 143
post-commit testing, 143
PostgreSQL

connections, use of resources on operating
system, 72

master and replica roles, 74
memory allocation library, 83
non-uniform memory access (NUMA) and,

86
troubleshooting connection speeds for, 73

pre-build testing, 143
predictive analytics

for availability data, 26
for latency data, 28

preferred node, 85
prepared statements, 167
primary timeout retry trade-off, 226
prioritization of risks, 40
Privacy Act of 1974, 170
private individual data, encryption of, 169
privilege escalation, 161, 166, 168
product development, workload shifts due to,

26
production migrations, 249
production nodes and clusters, building new,

117
protecting the data, 2

new approach to, 3
proxies (see database proxies)
Puppet, 101

Q
quality of service quotas, making DoS attacks

more difficult, 165
queries

monitoring database queries, 79
perfomance considerations querying

encrypted data, 176
query killers and heavy-handed approaches to

reducing DoS attacks, 165
queueing theory, 57
quorums, 207

sloppy, 208

R
RAID 0, 88

Index | 265

RAID levels, 91
random IOPs, 89
read and write quorums, 207

sloppy quorums, 208
read committed isolation level, 218
read failures (datastores), 43
read repair, 208
read uncommitted isolation level, 218
reader timeout retry trade-off, 226
reads

dirty, 218
nonrepeatable, 218
phantom, 218

real user monitoring (RUM), 26
recovery, 115-132

advantages of an immutable infrastructure,
104

anatomy of a recovery strategy, 122-128
building block 1, detection, 122
building block 2, tiered storage, 124
building block 3, varied toolbox, 125
building block 4, testing, 127

considerations for, 115
data integrity and recoverability, 252
defined recovery strategy, 128

object storage, 131
offline storage, 130
online, fast storage with full and incre‐

mental backups, 128
online, slow storage with full and incre‐

mental backups, 129
disaster recovery, using multi-leader replica‐

tion, 203
scenarios for, 116-122

planned recovery, 116
scenario impact, 121
scenario scope, 121
unplanned scenarios, 118

testing success of restores, 118
Redis

memory allocation library, 83
non-uniform memory access (NUMA) and,

86
SSL and, 173

redo logs, 192
redos, monitoring for databases, 75
reductive bias, 32
relational model, 212

object relational mapping (ORM) layer, 213

release management, 133-152
deployment, 146-151

impact analysis, 147
manual or automated, 151
migration patterns, 148-151
migrations and versioning, 146

education and collaboration, 133-138
integration, 138-141
testing, 141-146

downstream tests, 145
full dataset testing, 144
operational tests, 145
post-commit testing, 143
test-friendly development practices, 142

reliability engineers, 1
remote desk protocol (RDP), 170
repeatable reads isolation level, 218
replica lag, 196
replicas

building, in single-leader replication, 196
keeping synchronized, in single-leader rep‐

lication, 196
replication, 7, 189-209, 225

backups and, 126
failures of, in datastores, 43
for mission-critical data, 63
issues in Database as a Service (DBaaS), 96
monitoring replication state in databases, 75
multi leader, 203-209

conflict resolution in, 204
use cases, 203
write-anywhere replication, 206

replication stalls caused by database
changes, 147

row-based versus statement-based, 114
safety checks in monitoring, 64
single leader, 190-202

block-level replication, 193
challenges in, 195
monitoring, 198-202
replication log formats, 191
replication models, 190
row-based replication, 193
statement-based logs, 191
uses of, 194
write-ahead logs, 192

reproducibility (exploits), 161
repudiation, 161
resiliency

266 | Index

robusness versus, in availability, 21
striving for resilience in handling risks, 35
traits of resilient systems, 21

resource management and load shedding to
mitigate DoS attacks, 165

response time versus latency, 16
Riak, 74

last write wins, 205
risk analysis and prioritization (DREAD), 161
risk assessment

considerations, 32
availability of resources, 33
group factors, 34
human factors, 33
unknown factors and complexity, 32

risk elimination, 44
risk management, 31-47

bootstrapping a working process, 36-45
architectural inventory, 39
control and decision making, 42
prioritization of risks, 40
service risk evaluation, 37

ongoing iterations of the process, 45
what not to do, 35

risk mitigation, 44
Robot for Linux, 141
robustness versus resiliency (in availability), 21
RocksDB, 185
rollbacks

failure of migrations/deploys, 150
monitoring, 77

rolling migrations, 150
rolling upgrades, 22, 150
rows

database row storage, 182-185
row-based replication, 193

RSA algorithm, 171
RUM (real user monitoring), 26

S
safety of data, monitoring, 63
SaltStack, 101
SANs (see storage area networks)
saturation (see utilization, saturation, and

errors)
scalability, 8

impacts of caches and in-memory data‐
stores, 237

impacts of event and message systems, 235

improving with database proxies, 232
single-leader replication and, 195

scaling
patterns of, 8
premature, 8

scaling out (see horizontal scaling)
scaling up (see vertical scaling)
secret management services, 173
security, 153-179

database security as a function, 155-160
education and collaboration, 155
integration and testing, 157
operational visibility, 158-160
self-service approaches, 156

encryption of data, 168-179
confidential/sensitive business data, 170
data in the database, 174-177
data in the filesystem, 177-179
data in transit, 170-174
financial data, 169
military or government data, 170
personal health data, 169
private individual data, 169

new attack vectors, 153
purpose of, 153-155

compliance and auditing standards, 155
protecting data from exposure, 155
protecting data from theft, 154
protecting from accidental damage, 154
protecting from purposeful damage, 154

safety of data, 7
vulnerabilities and exploits, 160-168

basic precautions against, 162
denial of service (DoS), 163-166
DREAD algorithm, 161
network and authentication protocols,

168
SQL injection, 166-168
STRIDE classification for known threats,

160
self-actualization (for databases), 10
self-service for scale, 3
semantic names, 109
semaphores, 77
semi-synchronous availability-latency trade-off,

226
semi-synchronous replication, 191
Sensu, 57
sequential IOPs, 89

Index | 267

serial snapshot isolation (SSI), 219
serializable isolation level, 219

variability in implementations of, 220
serverless computing models

data integrity and, 120
operational expertise and, 7

servers
instrumenting the server or instance, 68-71
physical servers as database hosts, 81

(see also hosts)
ServerSpec, 109
service catalog, 109
service delivery reviews, 46
service discovery, 109
service discovery tools, 109
service issues, 17
service risk evaluation, 37
service-level agreements (see SLAs)
service-level indicators, 15

availability, 16
cost or efficiency, 16
durability, 16
latency, 15
throughput, 16

service-level management, 13-29
defining service objectives, 17-24
monitoring and reporting on SLOs, 25-29
need for SLOs, 13

service-level objectives (see SLOs)
severe impact risks (immediate SLO violation),

40
SHA-256, 171
sharding, 8, 79, 196, 196

using infrastructure management concepts
for, 110

using service catalog for, 110
signal from noise, sorting, 58
single-leader replication, 190-202

block-level replication, 193
challenges in, 195

building replicas, 196
keeping replicas synchronized, 196
single leader failovers, 197

monitoring, 198
operational processes, 202
replication availability and capacity, 200
replication consistency, 201
replication lag and latency, 199

other methods, 194

replication models, 190
row-based replication, 193
statement-based logs, 191
uses of, 194

availability, 194
locality, 195
portability, 195
scalability, 195

write-ahead logs, 192
single-object scope for recovery, 121
site reliability engineers (SREs), 3
size (backups), compressed and uncompressed,

117
SLAs (service-level agreements), 13

calibrating recovery processes to meet, 127
sloppy quorums, 208
SLOs (service-level objectives), 13

considerations for recovery, 115
defining, 17-24

additional considerations, 24
availability indicators, 20
latency indicators, 17-20
throughput indicators, 23

defining for cost or efficiency, 17
focusing on metrics directly related to, 56
monitoring and reporting on, 25-29

availability, 25
cost and efficiency, 28
latency, 28
throughput, 28

recovery scenario impacts on, 122
snapshot isolation, 219

serial snapshot isolation (SSI), 219
soft deletes, 149
software and operations, eliminating barriers

between, 5
software engineering, 6

making your data a first-class citizen in, 8
software engineers

collaboration with DBREs in release man‐
agement, 137

creating active dialogue and interactions
with, 134

educating about datastores, 133
educating and collaborating with in data‐

base security, 156
necessity of learning operations, 6

solid-state drives (SSDs), 184
I/O latency and, 90

268 | Index

I/O scheduling, 82
IOPs, 89

sorted string tables (SSTs) and log-structured
merge trees, 185-187
datastores using as storage engine, 187

Speed Matters, 18
spike erosion, 18
spoofing identity, 160
SQL (Structured Query Language)

tracking SQL calls, 66
traditional SQL analysis, 67

SQL injection attacks, 166-168
identifying, 158
mitigation, 166

harm reduction, 167
using input validation, 167
using prepared statements, 167

monitoring for, 167
vulnerability to, 158

SSH2, 170
SSL (Secure Sockets Layer), 170

evaluating database implementation of, 172
SSL/TLS

for communications outside the network,
172

OpenSSL, 175
support by modern database systems, 173

SSTables, 75, 185
standardization, 56

and use of physical servers as database
hosts, 92

databases as commodity service compo‐
nents, 5

elimination of toil through, 4
statement-based logs, 191
steal time, monitoring, 70
storage, 87, 181, 222

data structure storage, 181-189
database row storage, 182-185
indexing, 188
logs and databases, 189
sorted-string tables and log-structured

merge trees, 185-187
in tiers, 247
in virtualized environments, 94
major demands or objectives for, 88
object storage recovery strategy, 131
object stores, 127
storage availability, 90

storage capacity, 88
storage latency, 90
storage throughput, 89
tiered storage in a recovery strategy, 124

object storage, 125
offline storage, 125, 130
online, fast storage, 128
online, high performance storage, 124
online, low-performance storage, 125
online, slow storage, 129

storage area networks (SANs), 92
storage engines, 222

datastores utilizing LSM structure with
SSTables as, 187

stored code, attack vector using SQL injection,
166

stored procedures, 142
STRIDE, 160
Structured Query Language (see SQL; SQL

injection attacks)
summaries, metrics stored in, 59
survival and safety needs (databases), 7
swapping, 84

disabling, 85
symmetric multiprocessing (SMP), 85
synchronization of configuration, 105
synchronous replication models, 191
synchronous replication-latency trade-off, 226
synthetic monitoring, 27
system engineering, 6

T
tampering with data, 160
tcmalloc, 83
TCP/IP, tuning for databases, 87
telemetry/metrics, 59
Terraform, 107

using with MySQL, 110
test-driven development (TDD), 109
testing

acceptance testing and compliance for infra‐
structure, 109

building test environments for feature inte‐
gration and operations testing, 128

building test environments for operations
testing, 129

configurations, 103
in a recovery strategy, 127
in object storage recovery strategy, 131

Index | 269

in release management, 142-146
downstream tests, 145
full dataset testing, 144
operational tests, 145
post-commit testing, 143
test-friendly development practices, 142

integration and testing, catching security
vulnerabilities, 157

migration, 150
operational tests in planned recovery sce‐

nario, 118
rollbacks of partial or full changesets, 150
test data for database integration, 140

testing frameworks, 141
theft of data, protecting against, 154
throughput

assessing in planned recovery scenario, 117
defined, 16
indicators, 23
monitoring, 28
monitoring for databases, 74
storage, 89

tickets and tasks, 61
time (for planned recovery processes), 117
timeouts, 226
timestamps

in last write wins, 205
issues with, 205

TLS (Transport Layer Security), 170
toil, 4
tombstones, 186
tools

giving to software engineers for develop‐
ment process, 137

varied toolbox for recovery, 125
tracing, distributed tracing of performance, 66
transactions, 215-221

ACID, 216
atomicity, 216
consistency, 217
durability, 220
isolation, 217-220

functioning as events, 233
translation lookaside buffers (TLBs), 83
Transparent Huge Pages (THP), 83
Transport Layer Security (TLS), 170
triggers

causing a statement to be nondeterministic,
192

use for replication, 194, 195
2-phase locking (2PL), 219

U
unplanned recovery scenarios, 118

resulting from application errors, 119
resulting from datacenter failures, 120
resulting from hardware failures, 120
resulting from OS and hardware errors, 119
resulting from user error, 119

UPDATE statement without a WHERE clause,
119

user errors, 119, 129, 131
detection and recovery from, 123

user resource limits (for database hosts), 82
user-centric approach to SLOs, 24
users

dynamically built database users, 174
removing unnecessary users, 162

utilization, saturation, and errors, 68
for aggregate hosts on a distributed system,

69
high resource utilization operations during

migrations, 149
monitoring for datastore connection layer,

71
saturation, 72

saturation of resources during database
deployment, 147

USE page for Linux, 70
utilization for database memory structures,

76

V
version control, 100
version control systems (VCS), 100

prerequisite for continuous integration of
databases, 139

versioning, migrations and, 146
vertical scaling, 8
vertically separated infrastructure definitions,

107
virtual infrastructures, database instance lifecy‐

cles and, 52
virtual machine monitors (VMMs) (see hyper‐

visors)
virtual machines (VMs), 93

containers versus, 95

270 | Index

images for, downloading and building with
Vagrant, 111

virtualization, 93-95
concurrency, 94
database clusters, configuration standards,

93
hypervisors, 93
storage in virtualized environments, 94
use cases for database infrastructure, 94

virtualized systems, 3
monitoring, 70
testing in a defined recovery strategy, 129

visibility (see operational visibility)
visualizations, output from OpViz, 59, 61
Vivid Cortex, 79
vulnerabilities, 160-168

basic precautions against, 162
common vulnerabilities and exposures

(CVEs), 156
denial of service (DoS) attacks, 163-166
DREAD classification algorithm, 161
in network and authentication protocols,

168
SQL injection, 166-168
STRIDE classification for known threats,

160

W
WHERE clause (DELETE and UPDATE state‐

ments), absence of, 119

whitebox monitoring, 57
whitebox testing, 57
write-ahead logs, 192, 220
write-anywhere replication, 206

anti-entropy, 208
eventual consistency, 207
read and write quorums, 207
sloppy quorums, 208

write-through approach, 236
writes

conflict resolution in multidirectional repli‐
cation, 204
conflict-free replicated datatypes, 206
custom options for, 205
eliminating conflicts, 204
last write wins, 205

write failures, evaluation of, 44

Y
yield, 226

Z
Zipkin, 66
Zookeeper, 109

Index | 271

About the Authors
Laine Campbell works as Senior Director of Production Engineering at Fastly. She
was also founder and CEO of PalominoDB/Blackbird, a consultancy servicing the
database needs of a number of companies, including Obama for America, Activision
Call of Duty, Adobe Echosign, Technorati, Livejournal, and Zendesk. She has 18 years
of production experience, running databases and distributed systems at scale.

Charity Majors works as the CEO/cofounder of honeycomb.io. Honeycomb com‐
bines the raw accuracy of log aggregators, the speed of time series metrics, and the
flexibility of APM (application performance metrics) to provide the world’s first truly
next-generation analytics service. She previously ran operations at Parse/Facebook,
managing a massive fleet of MongoDB replica sets as well as Redis, Cassandra, and
MySQL. She also worked closely with the RocksDB team at Facebook to develop and
roll out the world’s first Mongo+Rocks deployment using the pluggable storage
engine API.

Colophon
The animal on the cover of Database Reliability Engineering is a Suffolk punch, also
known as a Suffolk horse or Suffolk sorrel. This English breed of draught horse is
always chestnut in color and has an energetic gait.

The Suffolk punch was developed in the 16th century for farm work. Though the
breed gained popularity in the early 20th century, it fell out of favor in the middle
part of the century because of the mechanization of agriculture. Suffolk punches are
around 65 to 70 inches tall and weigh around 2,000 pounds; they are shorter but
more massive than other British draught breeds such as Clydesdales or Shires.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from the Museum of British Quadrapeds. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Why We Wrote This Book
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us

	Chapter 1. Introducing Database Reliability Engineering
	Guiding Principles of the DBRE
	Protect the Data
	Self-Service for Scale
	Elimination of Toil
	Databases Are Not Special Snowflakes
	Eliminate the Barriers Between Software and Operations

	Operations Core Overview
	Hierarchy of Needs
	Survival and Safety
	Love and Belonging
	Esteem
	Self-actualization

	Wrapping Up

	Chapter 2. Service-Level Management
	Why Do I Need Service-Level Objectives?
	Service-Level Indicators
	Latency
	Availability
	Throughput
	Durability
	Cost or Efficiency

	Defining Service Objectives
	Latency Indicators
	Availability Indicators
	Throughput Indicators

	Monitoring and Reporting on SLOs
	Monitoring Availability
	Monitoring Latency
	Monitoring Throughput
	Monitoring Cost and Efficiency

	Wrapping Up

	Chapter 3. Risk Management
	Risk Considerations
	Unknown Factors and Complexity
	Availability of Resources
	Human Factors
	Group Factors

	What Do We Do?
	What Not to Do
	A Working Process: Bootstrapping
	Service Risk Evaluation
	Architectural Inventory
	Prioritization
	Control and Decision Making

	Ongoing Iterations
	Wrapping Up

	Chapter 4. Operational Visibility
	The New Rules of Operational Visibility
	Treat OpViz Systems Like BI Systems
	Distributed Ephemeral Environments Trending to the Norm
	Store at High Resolutions for Key Metrics
	Keep Your Architecture Simple

	An OpViz Framework
	Data In
	Telemetry/Metrics
	Events
	Logs

	Data Out
	Bootstrapping Your Monitoring
	Is the Data Safe?
	Is the Service Up?
	Are the Consumers in Pain?

	Instrumenting the Application
	Distributed Tracing
	Events and Logs

	Instrumenting the Server or Instance
	Events and Logs

	Instrumenting the Datastore
	Datastore Connection Layer
	Utilization
	Saturation
	Errors

	Internal Database Visibility
	Throughput and Latency Metrics
	Commits, Redo, and Journaling
	Replication State
	Memory Structures
	Locking and Concurrency

	Database Objects
	Database Queries
	Database Asserts and Events
	Wrapping Up

	Chapter 5. Infrastructure Engineering
	Hosts
	Physical Servers
	Operating a System and Kernel
	Storage Area Networks
	Benefits of Physical Servers
	Cons of Physical Servers

	Virtualization
	Hypervisor
	Concurrency
	Storage
	Use Cases

	Containers
	Database as a Service
	Challenges of DBaaS
	The DBRE and the DBaaS

	Wrapping Up

	Chapter 6. Infrastructure Management
	Version Control
	Configuration Definition
	Building from Configuration
	Maintaining Configuration
	Enforcement of Configuration Definitions

	Infrastructure Definition and Orchestration
	Monolithic Infrastructure Definitions
	Separating Vertically
	Separated Tiers (Horizontal Definitions)

	Acceptance Testing and Compliance
	Service Catalog
	Bringing It All Together
	Development Environments
	Wrapping Up

	Chapter 7. Backup and Recovery
	Core Concepts
	Physical versus Logical
	Online versus Offline
	Full, Incremental, and Differential

	Considerations for Recovery
	Recovery Scenarios
	Planned Recovery Scenarios
	Unplanned Scenarios
	Scenario scope
	Scenario Impact

	Anatomy of a Recovery Strategy
	Building Block 1: Detection
	Building Block 2: Tiered Storage
	Building Block 3: A Varied Toolbox
	Building Block 4: Testing

	A Recovery Strategy Defined
	Online, Fast Storage with Full and Incremental Backups
	Online, Slow Storage with Full and Incremental Backups
	Offline Storage
	Object Storage

	Wrapping Up

	Chapter 8. Release Management
	Education and Collaboration
	Become a Funnel
	Foster Conversations
	Domain-Specific Knowledge
	Collaboration

	Integration
	Prerequisites

	Testing
	Test-Friendly Development Practices
	Post-Commit Testing
	Full Dataset Testing
	Downstream Tests
	Operational Tests

	Deployment
	Migrations and Versioning
	Impact Analysis
	Migration Patterns
	Manual or Automated

	Wrapping Up

	Chapter 9. Security
	The Purpose of Security
	Protecting Data from Theft
	Protecting from Purposeful Damage
	Protecting from Accidental Damage
	Protecting Data from Exposure
	Compliance and Auditing Standards

	Database Security as a Function
	Education and Collaboration
	Self-Service
	Integration and Testing
	Operational Visibility

	Vulnerabilities and Exploits
	STRIDE
	DREAD
	Basic Precautions
	Denial of Service
	SQL Injection
	Network and Authentication Protocols

	Encryption of Data
	Financial Data
	Personal Health Data
	Private Individual Data
	Military or Government Data
	Confidential/Sensitive Business Data
	Data in Transit
	Data in the Database
	Data in the Filesystem

	Wrapping Up

	Chapter 10. Data Storage, Indexing, and Replication
	Data Structure Storage
	Database Row Storage
	Sorted-String Tables and Log-Structured Merge Trees
	Indexing
	Logs and Databases

	Data Replication
	Single-Leader
	Multi-Leader Replication

	Wrapping Up

	Chapter 11. Datastore Field Guide
	Conceptual Attributes of a Datastore
	The Data Model
	Transactions
	BASE

	Internal Attributes of a Datastore
	Storage
	The Ubiquitous CAP Theorem Section
	Consistency Latency Trade-offs
	Availability

	Wrapping Up

	Chapter 12. A Data Architecture Sampler
	Architectural Components
	Frontend Datastores
	Data Access Layer
	Database Proxies
	Event and Message Systems
	Caches and Memory Stores

	Data Architectures
	Lambda and Kappa
	Event Sourcing
	CQRS

	Wrapping Up

	Chapter 13. Making the Case For DBRE
	A Culture of Database Reliability
	Breaking-Down Barriers
	Data-Driven Decision Making
	Data Integrity and Recoverability

	Wrapping Up

	Index
	About the Authors
	Colophon

