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Foreword

To write a foreword to Professor Rutkowski’s opus “Flexible Neuro-
Fuzzy Systems,”  or FNFS for short, was a challenging task. Today, there
exists an extensive literature on neuro-fuzzy systems, but Professor
Rutkowski’s work goes far beyond what is in print. FNFS ventures into new
territory and opens the door to new directions in research and new
application areas.

First, a bit of history. The concept of a neuro-fuzzy system is rooted in
the pioneering work of H. Takagi and I. Hayashi, who in 1988 obtained
a basic patent in Japan, assigned to Matsushita, describing a system in which
techniques drawn from fuzzy logic and neural networks were used in
combination to obtain superior performance. The basic idea underlying their
patent was to exploit the learning capability of neural networks for enhancing
the performance of fuzzy rule-based systems. Today, neuro-fuzzy systems
are employed in most of the consumer products manufactured in Japan.

In the years which followed, the concept of a neuro-fuzzy system was
broadened in various ways. In particular, a basic idea pioneered by Arabshahi
et al was to start with a neuro-based algorithm such as the backpropagation
algorithm, and improve its performance by employing fuzzy if-then rules for
adaptive adjustment of parameters. What should be noted is that the basic
idea underlying this approach is applicable to any type of algorithm in which
human expertise plays an essential role in choosing parameter-values and
controlling their variation as a function of performance. In such applications,
fuzzy if-then rules are employed as a language for describing human
expertise.
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Another important direction which emerged in the early nineties was
rooted in the realization that a fuzzy rule-based system could be viewed as
a multilayer network in which the nodes are (a) the antecedents and
consequents of fuzzy if-then rules; and (b) the conjunctive and disjunctive
connectives. The membership functions of antecedents and consequents are
assumed to be triangular or trapezoidal. The problem is to optimize the
values of parameters of such membership function through minimization of
mean-squared error, as in the backpropagation algorithm. The problem is
solved through the use of gradient techniques which are very similar to those
associated with backpropagation. It is this similarity that underlies the use of
the label “neuro-fuzzy,”  in describing systems of this type. A prominent
example is the ANFIS system developed by Roger Jaing, a student of mine
who conceived ANFIS as a part of his doctoral dissertation at UC Berkeley.

Neuro-fuzzy systems, which are the focus of attention in Professor
Rutkowski’s work, are, basically, in the ANFIS spirit. There is, however, an
important difference. In Professor Rutkowski’s systems, the connectives and
everything else are flexible in the sense that they have a variable structure,
which is adjusted in the course of training. The flexibility of Professor
Rutkowski’s systems, call then FNFS’s, has the potential for a major
improvement in performance compared to that of neuro-fuzzy systems with
a fixed structure.

In another important departure from convention, Professor Rutkowski
employs weighted t-norms and t-conorms instead of the simple “and” and
“or” connectives used in existing neuro-fuzzy systems. Flexible use of such
connectives has an important bearing on performance. Throughout the book,
Professor Rutkowski’s analysis is conducted at a high level of mathematical
sophistication and in great detail. Extensive computer simulation is employed
to verify results of analysis.

An issue that receives a great deal of attention relates to the use of
what is commonly referred to as Mamdani-type reasoning vs. logical
reasoning. In what follows, I should like to comment on this issue since it is
a source of a great deal of misunderstanding and confusion.

The crux of the issue relates to interpretation of the proposition “if X is
A the Y is B,” where X and Y are linguistic variables, and A and B are the
linguistic values of X and Y, respectively. The source of confusion is that “if
X is A then Y is B,” can be interpreted in two different ways. The first, and
simpler way, is to interpret “if X is A then Y is B,” as “X is A and Y is B” or,
equivalently, as (X,Y) is A×B, where A×B is the Cartesian product of A and
B. Thus, in this interpretation, “if X is A then Y is B” is a joint constraint on X
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and Y. A source of confusion is that Mamdani and Assilian used this
interpretation in their seminal 1974 paper, but referred to it as implication,
which it is not, rather than as a joint constraint.

An alternative way is to interpret “if X is A then Y is B,” as
a conditional constraint or, equivalently, as an implication, with the
understanding that there are many ways in which implication may be
defined. What should be noted is that, generally, we are concerned with
interpretation of a collection of fuzzy if-then rules, that is, a rule set, rather
than an isolated rule. When “if X is A then Y is B,” is interpreted as a joint
constraint, the concomitant interpretation of the rule set is the disjunction of
interpretations of its constituent rules, leading to the concept of a fuzzy
graph, described in my 1974 paper “On the Analysis of Large Scale
Systems,” Systems Approaches and Environment Problems, H. Gottinger
(ed.), 23-37, Gottingen: Vandenhoeck and Ruprecht. Alternatively, when the
conditional constraint interpretation is used, interpretations of constituent
rules are combined conjunctively.

When response to a given input is sought, the joint constraint interpretation is
distributive, while the conditional constraint interpretation, is not. Simplicity
resulting from distributivity is the principal reason why Mamdani’s
approach, which is based on the joint constraint interpretation, is in
preponderant use in applications. A more detailed discussion may be found
in my paper, “Fuzzy logic and the calculi of fuzzy rules and fuzzy graphs”
Multiple-Valued Logic 1, 1-38, 1996. An important concept within Professor
Rutkowski’s theory is that of flexible compromise neuro-fuzzy systems. In
such systems, simultaneous appearance of Mamdani-type and logical-type
reasoning is allowed.

To say that Professor Rutkowski’s work is a major contribution to the
theory and application of neuro-fuzzy systems is an understatement. The
wealth of new ideas, the thoroughness of analysis, the attention to detail, the
use of computer simulation, the problems at the end of each chapter, and high
expository skill, combine to make Professor Rutkowski’s work a must
reading for anyone interested in the conception, design and utilization of
intelligent systems. Professor Rutkowski and the publisher, Kluwer, deserve
a loud applause.

Lotfi A. Zadeh
December 22, 2003
UC Berkeley
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Chapter 1

INTRODUCTION

Over the last decade fuzzy sets and fuzzy logic introduced in 1965 by
Lotfi Zadeh [113] have been used in a wide range of problem domains
including process control, image processing, pattern recognition and
classification, management, economics and decision making. Specific
applications include washing-machine automation, camcorder focusing, TV
colour tuning, automobile transmissions and subway operations [29]. We
have also been witnessing a rapid development in the area of neural networks
(see e.g. [93, 94, 135]). Both fuzzy systems and neural networks, along with
probabilistic methods [1, 20, 67], evolutionary algorithms [23, 59], rough
sets [69, 70] and uncertain variables [6, 7, 8], constitute a consortium of soft
computing techniques [1, 39, 42]. These techniques are often used in
combination. For example, fuzzy inference systems are frequently converted
into connectionist structures called neuro-fuzzy systems which exhibit
advantages of neural networks and fuzzy systems. In literature various neuro
fuzzy systems have been developed (see e.g. [11, 12, 13, 15, 18, 24, 25, 26,
34, 35, 37, 40, 49, 50, 52, 53, 54, 55, 60, 61, 65, 72, 75, 76, 80-85, 100]).
They combine the natural language description of fuzzy systems and the
learning properties of neural networks. Some of them are known in literature
under short names such as ANFIS [33], ANNBFIS [15], DENFIS [41],
FALCON [51], GARIC [3], NEFCLASS [62], NEFPROX [62, 64],
SANFIS [99] and others. The most popular designs of neuro-fuzzy structures
fall into one of the following categories, depending on the connective
between the antecedent and the consequent in fuzzy rules:
(i) Takagi-Sugeno method – consequents are functions of inputs,
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(ii)

(iii)

Mamdani-type reasoning method – consequents and antecedents are
related by the min operator or generally by a t-norm,
Logical-type reasoning method - consequents and antecedents are
related by fuzzy implications, e.g. binary, Zadeh and
others (see Chapter 2).

These models are illustrated in Fig. 1.1.

It should be noted that most applications are dominated by the
Mamdani-type fuzzy reasoning. Moreover, in a specific singleton case, the
Takagi-Sugeno method is reduced to the Mamdani method. On the other
hand, there is a widely held belief about the inferiority of the logical method
comparing with the Mamdani method. However, it was emphasized by
Yager [106, 107] that “no formal reason exists for the preponderant use of
the Mamdani method in fuzzy logic control as opposed to the logical method
other than inertia.” Moreover, Yager said [108] that “as a matter of fact the
Mamdani approach has some disadvantages: its inability to distinguish more
specific information in the face of vague information and the requirement of
having the antecedents of the rules span the whole input space.” This
statement was an inspiration for the author to determine the type of fuzzy
inference (Mamdani or logical) in the process of learning. In Fig. 1.2 we
illustrate the process of learning of fuzzy inference.
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To our best knowledge such a concept has not yet been proposed in
literature by other authors. Neuro-fuzzy systems have been treated separately
(Mamdani-type or logical-type) in a number of books and papers, see
e.g. [15, 28, 76]. A type of the system has never been determined in the
process of learning. We solve that problem in two different ways:
a)

b)

We propose (see Chapter 5) a new class of neuro-fuzzy systems
characterized by automatic determination of a fuzzy inference
(Mamdani / logical) in the process of learning. Consequently, the
structure of the system is determined in the process of learning. This
class is based on the definition of an H-function which becomes
a t-norm or t-conorm depending on a certain parameter which can
be found in the process of learning. We refer to this class as to
OR-type fuzzy systems.
We develop (see Chapter 6) AND-type neuro-fuzzy inference systems
by making use of the concept of flexible structures studied by Yager
and Filev [108]. The AND-type fuzzy inference systems exhibit
simultaneously Mamdani and logical type inferences.

It is well know that introducing additional parameters to be tuned in
neuro-fuzzy systems improves their performance and they are able to better
represent the patterns encoded in the data. Therefore, in this book, in addition
to automatic determination of a system type we introduce several flexibility
concepts in the design of neuro-fuzzy systems, in particular we introduce:

softness to fuzzy implication operators, to the aggregation of rules and
to the connectives of antecedents,
certainty weights to the aggregation of rules and to the connectives of
antecedents,
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parameterized families of t-norms and t-conorms to fuzzy implication
operators, to the aggregation of rules and to the connectives of
antecedents

in both AND-type and OR-type neuro-fuzzy inference systems.

In Fig. 1.3 we show a design process of flexible neuro-fuzzy systems
developed in this book. In the book, we study a wide class of fuzzy systems
trained by the backpropagation method. Following other authors we call
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them neuro fuzzy inference systems (NFIS). To emphasize their main feature
flexibility, we also use the name FLEXNFIS.

The book consists of nine chapters. Chapter 2 provides an introduction
to the theory of fuzzy sets. In Chapter 3 we describe fuzzy systems with the
Mamdani-type inference and logical-type inference. Moreover, we introduce
the concept of the generalized neuro-fuzzy system. Chapter 4 concentrates on
incorporating various flexibility parameters into the design of neuro-fuzzy
systems. In Chapter 5 we develop the concept of adjustable quasi-triangular
norms and quasi-implications. Based on these concepts, flexible OR-type
neuro-fuzzy systems are presented. Chapter 6 deals with flexible compromise
neuro-fuzzy systems. They are characterized by the simultaneous appearance
of Mamdani-type and logical-type reasoning. In Chapters 7 and 8 we fix the
system type (Mamdani and logical, respectively) and present explicitly
connectionist structures of the Mamdani-type and logical-type systems. In
Chapter 9 we compare all flexible neuro-fuzzy structures studied in the book
and give conclusions and directions for future research. The material
presented in the book is illustrated by many computer simulations. Through
these simulations we show that Mamdani-type systems are more suitable for
approximation problems, whereas logical-type systems may be preferred for
classification problems. Moreover, we observe that the most influential
parameters in FLEXNFIS are certainty weights (introduced in this paper in
a novel way) in connectives of antecedents and in aggregations of rules. They
significantly improve the performance of NFIS in the process of learning.

It should be noted that the book provides a framework for the
unification, construction and development of neuro-fuzzy systems. It
presents complete algorithms in a systematic and structured fashion, easing
the understanding and implementation. Besides, the book contains numerous
examples and exercises following each chapter. Another strength of the book
is that it provides tools for possible applications in business and economics,
medicine and bioengineering, automatic control, robotics, decision theory
and expert systems.

The author thanks Professor Lotfi Zadeh for his Foreword. The author
gratefully acknowledges the material quoted from his previous works
published by IEEE and Springer-Verlag. For a complete listing of quoted
articles the reader is referred to the “References”. The author also gratefully
acknowledges Krzysztof and Robert Nowicki, his former Ph. D.
students, for the material being a part of our joint research and included in
the book. I also want to express appreciations to my editor
Susan Lagerstrom-Fife, assistant editor Sharon Palleschi and other staff
members at Kluwer Academic Publishers.
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Chapter 2

ELEMENTS OF THE THEORY OF FUZZY SETS

2.1. INTRODUCTION

Traditional knowledge representation is based on bivalent logic.
However, human thinking and behaviour is strictly connected with
imprecision and uncertainty. The traditional Boolean algebra, characterized
by categorical values of truth and falsehood, is not able to cope with such
problems. Fuzzy logic is an extension of the traditional logic to intermediate
and approximate values. The concept of fuzzy logic was proposed and
developed by Zadeh [113-134]. In this chapter we recall the basic definitions
and properties of fuzzy sets and fuzzy reasoning which will be useful in the
next chapters.

2.2. BASIC DEFINITIONS

Definition 2.1.
A fuzzy set A defined in space X is a set of pairs:

where is a membership function of the fuzzy set A , which for

every element assigns its membership degree to the
fuzzy set A . The set X is called a universe of discourse and we
write
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The fuzzy set A is completely determined by the set of pairs (2.1). When the
universe of discourse is discrete and finite with cardinality n , that is

the fuzzy set A can be represented as

or equivalently

When the universe of discourse X is an interval of real numbers, the fuzzy
set A can be expressed as

or

respectively. Symbols in formulas (2.2)-(2.5) refer to the set union,

not to the arithmetic summation. Similarly, there is no arithmetic division in
these formulas. This symbolic notation is used in order to connect an element
and its membership value. The same notation can be applied in the
multidimensional case.

Example 2.1.
Let X = {4,5,6,7,8,9,10,11}. We will define a set of natural numbers “close
to 8” by making use of the following fuzzy set

We will now present frequently used membership functions defined
in

a) Singleton Membership Function

Singleton is a membership function taking value 1 only in one point of the
universe of discourse X and 0 otherwise
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b) Gaussian Membership Function

A Gaussian membership function has two parameters: for its

center and for its width

c) Generalized Bell Membership Function

A generalized bell membership function has three parameters: a -responsible
for its width, c -responsible for its center and b -responsible for its slopes

d) Sigmoidal Membership Function

A sigmoidal membership function has two parameters: a -responsible for its
slope at the crossover point x = c

e) Triangular Membership Function

A triangular membership function is fully described by three
parameters {a,b,c}, a < b < c

or by an alternative formula to Equation (2.11)
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f) Trapezoidal Membership Function

A trapezoidal membership function is fully described by three
parameters {a,b,c,d}, a < b < c < d

or by an alternative formula to Equation (2.13)

Typical membership functions are depicted in Fig. 2.1
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Definition 2.2.
The height of a fuzzy set A is a maximal value of its membership function

If hgt(A) =1, then A is called a normal fuzzy set, otherwise it is subnormal.

Example 2.2.
If X = {2,3,4,5} and

then hgt(A) = 0.9.

Definition 2.3.
The support of a fuzzy set A is a set of all points x in X such that

Example 2.3.
If X = {1,2,3,4,5} and

then supp(A) = {1,3,4}.

Definition 2.4.
The core of a fuzzy set A is a set of all points x in X such that

In other words, we can say that a fuzzy set is normal if its core is nonempty.

Example 2.4.
If X = {1,2,3} and

then core(A) = 2.

Definition 2.5.
A fuzzy set A is convex if and only if for any and any
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Definition 2.6.
A fuzzy set A is a fuzzy number when and A is normal and
convex.

Definition 2.7.
A fuzzy set A is symmetric if its membership function is symmetric around
a certain point c

with and

Definition 2.8.
The cardinality of a fuzzy set A is defined as

and in case of a discrete universe the integration is replaced by summation.

Definition 2.9.
The concentration of a fuzzy set A in X, denoted by CON(A), is defined by

for all

Example 2.5.
If X = {1,2,3,4} and

then

Definition 2.10.
The dilation of a fuzzy set A in X , denoted by DIL(A), is defined by

for all

Example 2.6.
If X = {1,2,3 } and
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then

Definition 2.11.
If A is a fuzzy set in X , then its cylindrical extension in X×Y is a fuzzy set
ce(A, X×Y) defined by

2.3. TRIANGULAR NORMS AND NEGATIONS

Definition 2.12.
A t-norm is a function T of two variables

satisfying the following conditions:
1) T is monotonic

2) T is commutative

3) T is associative

4) T satisfies boundary conditions

where

Further, a t-norm on arguments a and b will be denoted by

The associativity condition allows to extend Definition 2.12 to n > 2
arguments, i.e.

Definition 2.13.
A t-conorm is a function S of two variables
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that satisfies the following conditions:
1) S is monotonic

2) S is commutative

3) S is associative

4) S satisfies boundary conditions

where

Further, a t-conorm on arguments a and b will be denoted by

The associativity condition allows to extend Definition 2.13 to n > 2
arguments, i.e.

Example 2.7.
The min/max triangular norms are defined as follows:

We will also refer to and as to Zadeh’s triangular norms.

The min/max triangular norms are depicted in Fig. 2.2.



Elements of the Theory of Fuzzy Sets 15

Example 2.8.
The algebraic triangular norms are defined as follows:

The algebraic triangular norms are depicted in Fig. 2.3

The t-norm (2.47) is also known under the name of a product t-norm (or
algebraic product), whereas the t-conorm (2.48) is known under the name of
a probabilistic sum (or algebraic sum).

Example 2.9.
The bounded triangular norms are defined as follows:
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The t-norm (2.51) and (2.52) t-conorm are also known under the name of the
triangular norms.

Example 2.10.
The drastic triangular norms are defined as follows:

The drastic triangular norms are depicted in Fig. 2.5. Observe that formulas
(2.55) and (2.56) can be alternatively expressed by:

respectively.

All t-norms and t-conorms satisfy the following conditions:
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Definition 2.14.
A t-norm and t-conorm are dual if they satisfy conditions:

It is easily seen that condition (2.63) and (2.64) are De Morgan’s laws, well
known in the classical set theory.

Definition 2.15.
(i)

(ii)

(iii)

A non-increasing function is called a negation if

N(0) = 1 and N(1) = 0.

A negation is called a strict negation if N is
continuous and strictly decreasing.
A strict negation is called a strong negation if it is an

involution, i.e., if N(N(a)) = a .

Example 2.11.
Zadeh’s negation is defined by

and depicted in Fig. 2.6.

Example 2.12.
Yager’s negation is given by

and illustrated in Fig. 2.7.
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Example 2.13.
Sugeno’s negation is given by

and depicted in Fig. 2.8.

2.4. OPERATIONS ON FUZZY SETS

Definition 2.16.
The intersection of two fuzzy sets is a fuzzy set denoted by
whose membership function is given by

where is any t-norm.
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The intersection of n fuzzy sets is a fuzzy set denoted by

with a membership function defined by

Definition 2.17.
The union of two fuzzy sets is a fuzzy set denoted by

whose membership function is given by

where is any t-conorm.

The union of n fuzzy sets is a fuzzy set denoted by

with a membership function defined by

In Figures 2.9 and 2.10 we illustrate Definitions 2.16 and 2.17 for min/max
and algebraic triangular norms, respectively.
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Definition 2.18.
The complement of a fuzzy set A , denoted by is defined by

An example is shown in Fig. 2.11.

Definition 2.19.
The Cartesian product of two fuzzy sets and is denoted by
A × B , and defined as

or

where and

The Cartesian product of n fuzzy sets is

denoted by and defined as

or

In Figures 2.12 and 2.13 we depict the Cartesian product defined by the
minimum operator and the product operator, respectively. In a general case
the Cartesian product is defined by a t-norm.



Elements of the Theory of Fuzzy Sets 21

2.5. FUZZY RELATIONS

The most important definitions in fuzzy reasoning are concerned with
fuzzy relations.

Definition 2.20.
Let X and Y be two universes of discourse. Binary fuzzy relations, denoted
by R , are fuzzy sets which map each element in X×Y to a membership
grade where and We write

or

in discrete and continuous cases, respectively.
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Example 2.14.
We apply Definition 2.20 to describe the imprecise statement that “ y is

about equal x”. Let X = {3,4} and Y = {4,5}. A fuzzy relation R can be

defined as follows

Fuzzy relation (2.79) can be expressed in the matrix-form

The next definition shows how to reduce the dimension of the product space
by taking the supremum of the membership function over the domain of the
variable corresponding to the dimension to be eliminated.

Definition 2.21.
Let R be a fuzzy relation defined on the Cartesian product X×Y . The
projection of R onto Y is defined as

where is the membership grade of the pair (x,y) to the fuzzy

relation R .

Definition 2.22.
Let R and S be fuzzy relations in X×Y and Y×Z, respectively. The
sup-T composition of R and S is a fuzzy relation denoted by
and defined by

Definition 2.23.
The sup-T composition of a fuzzy set and fuzzy relation
is a fuzzy set

defined by
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It should be noted that using Definitions 2.11 and 2.21, composition (2.81)
can be alternatively expressed as follows

2.6. FUZZY REASONING

The basic rule of inference in classical logic is modus ponens. The
compositional rule of inference describes a composition of a fuzzy set and
a fuzzy relation. Fuzzy rule

is represented by a fuzzy relation R . Having given input linguistic value
we can infer an output fuzzy set by the composition of the fuzzy set
and the relation R . The generalized modus ponens is the extension of the
conventional modus ponens tautology, to allow partial fulfilment of the
premises:

where A, B, are fuzzy sets and x, y are linguistic variables. Following
formulas (2.81) and (2.82), a fuzzy set is defined by

and

The problem is to determine the membership function of the fuzzy relation
described by

based on the knowledge of and We denote

where I(·) is a fuzzy implication given in Definition 2.24 (see Fodor [21]).

Definition 2.24.
A fuzzy implication is a function satisfying the following

conditions:
(I1) if then for all
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(I2)

(I3)

(I4)

(I5)

if then for all

for all (falsity implies anything),

for all (anything implies tautology),

I(1,0) = 0 (Booleanity).

Selected fuzzy implications satisfying all or some of the above conditions are
listed in Table 2.1.

In this table, implications 1-4 are examples of an S-implication associated
with a t-conorm

Neuro-fuzzy systems based on fuzzy implications given in Table 2.1 are
called logical systems. Implications 6 and 7 belong to a group of
R-implications associated with the t-norm T and given by

The Zadeh implication belongs to a group of Q-implications given by
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It is easy to verify that S-implications and R-implications satisfy all the
conditions of Definition 2.24. However, the Zadeh implication violates
conditions I1 and I4, whereas the Willmott implication violates conditions
I1, I3 and I4. In practice we frequently use Mamdani-type operators

(see Section 3.1) which do not satisfy conditions of Definition 2.24.

2.7. PROBLEMS

Problem 2.1. Let X = {1, 2, 3, 4, 5} and

Determine the intersection and union of fuzzy sets A and B using the
min/max triangular norms.

Problem 2.2. Let X = {1, 2, 3, 4, 5} and

Find the complement of A and determine

using the min/max triangular norms. Discuss the results and compare with
traditional logic.

Problem 2.3. Repeat Problem 2.2 using the algebraic triangular norms.

Problem 2.4. Let X = {2,4}, Y = {2,4,5} and

Find the Cartesian product of A and B.

Problem 2.5. Let and Let
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be the fuzzy relation defined on the Cartesian product X × Y . Find the
projection of R onto Y.

Problem 2.6. and Define the fuzzy

relations

and

in X×Y and Y×Z , respectively. Determine the sup-T composition of R
and S using the min t-norm.

Problem 2.7. Let and Let

and

where and Determine the sup-T composition of fuzzy set
A and fuzzy relation R .

Problem 2.8. Show that for the singleton fuzzy set formula (2.86) takes
the form

Problem 2.9. Verify if the min/max triangular norms are dual.

Problem 2.10. Prove that all t-norms and t-conorms satisfy conditions (2.61)
and (2.62).

Problem 2.11. Verify if the Rescher and Yager fuzzy implications satisfy
conditions of Definition 2.24.



Chapter 3

FUZZY INFERENCE SYSTEMS

3.1. INTRODUCTION

In up-to-date literature two approaches have been proposed to design
fuzzy systems having linguistic descriptions of inputs and outputs. The
fundamental differences between them is explained in the Foreword to this
book written by Professor Lotfi Zadeh.

and

or more generally

It should be emphasized that formulas (3.1) and (3.2) do not satisfy the
conditions of a fuzzy implication formulated by Fodor [21]. Following
Mendel [57, 58], we refer to (3.1) and (3.2) as to “engineering
implications” contrary to the fuzzy implications satisfying the
axiomatic definition (see Definition 2.24).
The aggregation is performed by the application of a t-conorm

The first approach, called the Mamdani method, uses a conjunction for
inference and a disjunction to aggregate individual rules. In the
Mamdani approach, the most widely used operators measuring the
truth of the relation between the input and output are the following

(i)



28 Flexible Neuro-Fuzzy Systems

e.g.,

It should also be noted that in most cases the aggregation of rules is
performed as part of the defuzzification (see, e.g. [58, 100]).
The second paradigm applies fuzzy implications to the inference and
the conjunction to the aggregation. Instead of using the “engineering
implication” (3.3) we design fuzzy systems based on the fuzzy
implications defined in Section 2.6.
For fuzzy systems with a logical implication, the aggregation is
realized by a t-norm

(ii)

e.g.,

It should be noted that the aggregation of antecedents in each rule is
performed by the same formula (3.6) for both Mamdani and
logical-type systems.

In the next sections we present a formal description of neuro-fuzzy systems
and illustrate Mamdani-type and logical-type reasoning on various
“engineering” and fuzzy implications. A generalized neuro-fuzzy inference
system will be introduced, which reflects a structure of all neuro-fuzzy
systems studied in this book. We will also provide data sets on which all
systems, developed in the next chapters, are tested and compared.

3.2. DESCRIPTION OF FUZZY INFERENCE SYSTEMS

In this book, we consider multi-input-single-output fuzzy NFIS
mapping where and The system (see Fig. 3.1) is
composed of a fuzzifier, a fuzzy rule base, a fuzzy inference engine and
a defuzzifier.

The fuzzifier performs a mapping from the observed crisp input space
to a fuzzy set defined in X . The most commonly used fuzzifier is

the singleton fuzzifier which maps into fuzzy set

characterized by the membership function
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The fuzzy rule base consists of a collection of N fuzzy IF-THEN rules,
aggregated by the disjunction or the conjunction, in the form

or

where

are fuzzy sets characterized by membership functions i =1,... ,n ,

k =1, . . . ,N , whereas are fuzzy sets characterized by membership

functions k =1 , . . . ,N . The firing strength of the k -th rule,

k =1,..., N , is defined by

In the book notations and will be used interchangeably.

The fuzzy inference engine determines the mapping from the fuzzy sets in
the input space X to the fuzzy sets in the output space Y . Each of N rules
(3.9) determines a fuzzy set given by the compositional rule of
inference

where

Fuzzy sets according to formula (3.12), are characterized by
membership functions expressed by the sup-star composition
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where can be any operator in the class of t-norms. It is easily seen that for
a crisp input i.e., the singleton fuzzifier (3.8), formula

(3.13) becomes

where I(·) is an “engineering implication” or fuzzy implication. More
precisely,

As we mentioned in Section 3.1, in the Mamdani approach

In the logical approach we apply fuzzy implications listed in Table 2.1. Other
definitions of fuzzy implications can be found in [14]. The Kleene-Dienes,

Reichenbach and Fodor implications are examples of the
S-implication given by

Obviously, an S-implication can be generated by various t-conorms given in
Section 2.3 and Table 4.1 (see also Section 4.4 for a definition of the
S-implication generated by the Dombi t-conorm).

The aggregation operator, applied in order to obtain the fuzzy set based
on fuzzy sets is the t-norm or t-conorm operator, depending on the type
of fuzzy implication. In Table 3.1 we describe connectives in the Mamdani
approach and logical approach. In case of the Mamdani approach, the
aggregation is carried out by

The membership function of is computed by the use of a t-conorm, that is
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When we use the logical model, the aggregation is carried out by

The membership function of is determined by the use of a t-norm, i.e.

As a result of the fuzzy reasoning we obtain the fuzzy set

The defuzzifier performs a mapping from the fuzzy set to a crisp point

in The COA (center of area) method is defined by the following
formula

or by

in the discrete form, where are centers of the membership functions

i.e., for r = 1,...,N

For other definitions of the defuzzifier the reader is referred to [58].
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Remark 3.1: Formula (3.14) has been derived assuming a singleton fuzzifier
given by (3.8). The fuzzifier characterized by the membership function that
equals 1 for and decreases from 1 as x moves away from is called
a non-singleton fuzzifier. An example of the non-singleton fuzzifier is the
fuzzy set with the Gaussian membership function

It should by noted that formula (3.23) is also applicable to systems with
a non-singleton fuzzifier. However, in such a case equation (3.14) is not valid
and the sup-star composition (3.13) should be determined by the use of
formula (2.83). According to that definition we should follow the following

Find the intersection, denoted by of and fuzzy

relation i.e.

Find the projection of on X × Y , i.e.

We will illustrate these steps on a number of examples in Sections 3.3
and 3.4.

3.3. MAMDANI-TYPE INFERENCE

The first rule in this approach is the minimum rule, called also the
Mamdani rule. It is defined by equation

Figures 3.2-a, b and 3.3-a, b depict an exemplary reasoning process for this
fuzzy relation. They describe two cases. The first case shown in Fig. 3.2-a, b
concerns singleton fuzzification (3.8), i.e. the reasoning expressed by (3.14).
In Fig. 3.2-a we assume one crisp input, n = 1, and three rules, N = 3. The
results of fuzzy reasoning for each rule are represented by fuzzy sets

a) Find the cylindrical extension of on X×Y , given by
steps:

b)

c)
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and These sets are aggregated in Fig. 3.2b by the use of three methods:
the maximum t-conorm, the algebraic sum t-conorm and the bounded sum
t-conorm. Figures 3.3-a and 3.3-b concern a non-singleton case and show the
complexity of such a reasoning process. In the non-singleton case the
reasoning is described in Remark 3.1 and the aggregation is performed as in
the crisp case.
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The second fuzzy reasoning rule belonging to the discussed group is
algebraic product known under the name of the Larsen rule given by

Similarly to the Mamdani case, the Larsen reasoning process is shown in
Figures 3.4-a, b and 3.5-a, b. Figures 3.4-a, b concern the singleton fuzzy set

whereas Figures 3.5-a, b depict a more general case with the
non-singleton set
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Obviously, many other t-norms represent “engineering implications”. The
reader can easily analyse a fuzzy reasoning based on various t-norms
analogously to the Mamdani rule (3.29) and to the Larsen rule (3.30).
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3.4. LOGICAL-TYPE INFERENCE

Membership functions of the relation used in the
logical-type inference are a generalization of implications in the classic
(non-fuzzy) propositional logic, therefore we call them fuzzy implications
(see Definition 2.24). One of the simplest fuzzy implications is the binary
implication (Kleene-Dienes implication), defined by
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Figures 3.6-a, b and 3.7-a, b show an exemplary reasoning process. Figures
3.6-a, b depict fuzzy reasoning in the case of the singleton fuzzification,
whereas Figures 3.7-a, b concern the non-singleton fuzzification using
a Gaussian membership function.
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Another well known fuzzy implication is the implication, given
by

The reasoning process by this implication is depicted in Fig. 3.8-a, b for the
singleton set and in Fig. 3.9-a, b for the Gaussian set
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In a similar way we may illustrate the fuzzy inference based on other
fuzzy implications given in Table 2.1.
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3.5. GENERALIZED NEURO-FUZZY SYSTEM

In this section we generalize the Mamdani-type and the logical-type
approach to a neuro-fuzzy system design.

a) Mamdani-type neuro-fuzzy systems

In this approach, function I(·) given by (3.14) is a t-norm

(e.g., minimum, algebraic or Dombi), i.e.

The aggregated output fuzzy set is given by

Consequently, formula (3.23) takes the form

Obviously, the t-norms used to connect the antecedents in the rules and in the
“engineering implication” do not have to be the same. Besides, they can be
chosen as differentiable functions as e.g. Dombi families (see Section 4.4).

b) Logical-type neuro-fuzzy systems

In this approach, function I(·) given by (3.14) is a fuzzy implication

(see Table. 2.1), i.e.

The aggregated output fuzzy set is given by

and formula (3.23) becomes
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Now, we generalize both approaches described in points a) and b) and
propose a general architecture of NFIS. It is easily seen that systems (3.35)
and (3.38) can be presented in the form

where

Moreover, the firing strength of rules has already been defined by

The general architecture of system (3.39) is depicted in Fig. 3.10.

Remark 3.2: It should be emphasized that formula (3.39) and the scheme
depicted in Fig. 3.10 are applicable to all the systems, flexible and
nonflexible, studied in this book with different definitions of and

The nonflexible systems are described by (3.39), (3.40), (3.41)

and (3.11), whereas the flexible systems by (3.39) and

defined in Chapters 5 and 6. How we define the

aggregation operator and the implication operator

depends on the particular class of the system.
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Remark 3.3: If an S-implication is used, i.e.

then the aggregated output fuzzy set is given by

Consequently, formula (3.38) becomes

Remark 3.4: We will explain how to modify formula (3.39) to solve
multi-classification problems. Let be the vector of features of an

object Let be a set of classes. The knowledge is
represented by a set of N rules in the form
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where j = 1,..., M , k = 1, . . . ,N , are interpreted as “support” for class

given by rule We will now redefine description (3.45). Let us introduce
vector where j  =  1 , . . . , M , is the “support” for class

given by all M rules. We can scale the support values to the interval [0,1],

so that is the membership degree of an object to class according to

all M rules. The rules are represented by

and formula (3.39) adopted for classification takes the form

where are centers of fuzzy sets j = 1 , . . . ,M, r = 1 , . . ,N.

Remark 3.5: The general description (3.39) is not applicable to the
Takagi-Sugeno model [95] given by the following fuzzy rules

In this model, the consequences, contrary to model (3.9), are not fuzzy sets;
they are linear or non-linear functions of inputs. The aggregation in the
Takagi-Sugeno model is described by formula



Fuzzy Inference Systems 45

3.6. DATA SETS USED IN THE BOOK

The data sets used to evaluate the performance of the neuro-fuzzy
systems developed in this book are listed in Table 3.2. It shows the name of
the data, the problem to be solved (classification or approximation), the
number of inputs, the length of the training sequence and the length of the
testing sequence.

We will now describe in detail the problems which appear in the first column
of Table 3.2.

Box and Jenkins Gas Furnace problem [5]
The Box and Jenkins Gas Furnace data consists of 296 measurements

of the gas furnace system: the input measurement u(k) is the gas flow rate

into the furnace and the output measurement y(k) is the concentration

in the outlet gas. The sampling interval is 9 s. We wish to determine a fuzzy
model of the gas furnace system. In our simulations we assume that
y(t) = f(y( t–1),y( t–2),y( t–3),y( t–4),u( t–1) ,u( t–2)).
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Chemical Plant problem [92]
We deal with a model of an operator’s control of a chemical plant. The

plant produces polymers by polymerisating some monomers. Since the
start-up of the plant is very complicated, men have to perform the manual
operations at the plant. Three continuous inputs are chosen for controlling the
system: monomer concentration, change of monomer concentration and
monomer flow rate. The output is the set point for the monomer flow rate.

Glass Identification problem [98]
The Glass Identification problem contains 214 instances and each

instance is described by nine attributes (RI: refractive index, Na: sodium,
Mg: magnesium, Al: aluminium, Si: silicon, K: potassium, Ca: calcium, Ba:
barium, Fe: iron). All attributes are continuous. There are two classes: the
window glass and the non-window glass. In our experiments, all sets are
divided into a learning sequence (150 sets) and a testing sequence (64 sets).
The study of the classification of the types of glass was motivated by
criminological investigation. At the scene of the crime, the glass left can be
used as evidence if it is correctly identified.

Ionosphere problem [98]
This radar data was collected by a system in Goose Bay, Labrador.

This system consists of a phased array of 16 high-frequency antennas with
total transmitted power in the order of 6.4 kW. The targets were free
electrons in the ionosphere. The database is composed of 33 continuous
attributes plus the class variable, using 351 examples. In our experiments, all
sets are divided into a learning sequence (246 sets) and a testing sequence
(105 sets).

Iris problem [98]
The Iris data is a common benchmark in classification and pattern

classification studies. It contains 50 measurements of four features (sepal
length in cm, sepal width in cm, petal length in cm, petal width in cm) from
each of the following three species: iris setosa, iris versicolor, and iris
virginica. In our experiments, all sets are divided into a learning sequence
(105 sets) and a testing sequence (45 sets).

Modeling of Static Nonlinear Function (HANG) problem [92]
The problem is to approximate a nonlinear function given by

We obtained 50 input-output data by sampling the input range
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The Three Monks’ problems [98]
The three monks’ problems are artificial, small problems designed to

test machine learning algorithms. Each of the three monks’ problems requires
determining whether an object described by six features (head shape, body
shape, is smiling, holding, jacket colour, has tie) is a monk or not.

There are 432 combinations of the six symbolic attributes. In the first
problem (Monk1), 124 cases were randomly selected for the training set, in
the second problem (Monk2) 169 cases, and in the third problem (Monk3)
122 cases, of which 5% were misclassifications introducing some noise in
the data.

Nonlinear Dynamic Plant problem [103]
We consider the second-order nonlinear plant described by

with

The goal is to approximate the nonlinear component g(y(k – 1),y(k – 2)) of
the plant with a fuzzy model. In [103], 400 simulated data were generated
from the plant model (3.52). Starting from the equilibrium state (0,0), 200
samples of the identification data were obtained with a random input signal
u(k) uniformly distributed in [–1.5,1.5] , followed by 200 samples of
evaluation data obtained using a sinusoidal input signal

Pima Indians Diabetes problem [98]
The Pima Indians Diabetes data contains two classes, eight attributes

(number of times pregnant, plasma glucose concentration in an oral glucose
tolerance test, diastolic blood pressure (mm Hg), triceps skin fold thickness
(mm), 2-hour serum insulin (mu U/ml), body mass index (weight in

diabetes pedigree function, age (years)). We consider 768
instances, 500 (65.1%) healthy and 268 (34.9%) diabetes cases. All patients
were females at least 21 years old of Pima Indian heritage, living near
Phoenix, Arizona. It should be noted that about 33% of this population
suffers from diabetes. In our experiments, all sets are divided into a learning
sequence (576 sets) and a testing sequence (192 sets).

Rice Taste problem [30, 66]
The Rice Taste data contains 105 instances and each instance is

described by five attributes (inputs): flavour, appearance, taste, stickiness,
toughness, and overall evaluation. The output is the overall evaluation of the
rice taste. The problem is to find a non-linear mapping between inputs and
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the output. In simulations the inputs-output pairs of the rice taste data were
normalized in the interval [0,1].

Wine Recognition problem [98]
The Wine data contains a chemical analysis of 178 wines grown in the

same region of Italy but derived from three different vineyards. The 13
continuous attributes available for classification are: alcohol, malic acid, ash,
alkalinity of ash, magnesium, total phenols, flavanoids, nonflavanoid
phenols, proanthocyanins, colour intensity, hue, OD280/OD315 of diluted
wines and proline. In our experiments all sets are divided into a learning
sequence (125 sets) and a testing sequence (53 sets). The problem is to
classify wine samples based on the learning sequence.

Wisconsin Breast Cancer problem [98]
The Wisconsin Breast Cancer data contains 699 instances (of which 16

instances have a single missing attribute) and each instance is described by
nine attributes (clump thickness, uniformity of cell size, uniformity of cell
shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, mitoses). We removed those 16 instances and
used the remaining 683 instances. Out of 683 data samples, 444 cases
represent benign breast cancer and 239 cases describe malignant breast
cancer. The problem is to classify whether a new case is a benign (class 1) or
malignant (class 2) type of cancer. In our experiments, all sets are divided
into a learning sequence (478 sets) and a testing sequence (205 sets).

Remark 3.6: Because of the space limitation in this book, the results in
Chapters 5-8 will be illustrated on four benchmarks given in Table 3.2:

Box and Jenkins Gas Furnace,
Glass Identification,
Modeling of Static Nonlinear Function (HANG),
Wisconsin Breast Cancer.

However, in Chapter 9 all the benchmarks will be used for the comparison of
flexible neuro-fuzzy systems.

3.7. SUMMARY AND DISCUSSION

Several authors (e.g., Jager [32], Mendel [58]) reported problems with
the application of logical implications to NFIS. A major problem is caused
by the indeterminant part of the membership function. We illustrated such
a situation in Section 3.4 (see e.g. Fig. 3.7-a, b). The indicated problem can
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be easily resolved by the application of a modified center of gravity
defuzzifier

where

value describes the indeterminacy that accompanies the

corresponding part of the information. It is easily seen that in order to
eliminate the indeterminant part of the membership function the
informative part has to be parallely shifted downward by value a .
Neuro-fuzzy inference systems of a logical-type with defuzzifier (3.53) have
been studied by               and [15].

3.8. PROBLEMS

Problem 3.1. Consider fuzzy sets A and B depicted in Fig. 3.11.

Find fuzzy set as a result of fuzzy reasoning according to the Mamdani
and Larsen rules.

Problem 3.2. Repeat Problem 3.1 using the binary and fuzzy
implications.

Problem 3.3. Consider a fuzzy system with a single input and two rules
depicted in Fig. 3.12. Perform a fuzzy inference based on the Mamdani rule.
Choose an appropriate triangular norm for the aggregation.
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Problem 3.4. Repeat Problem 3.3 using the binary fuzzy implication.

Problem 3.5. Consider a Takagi-Sugeno fuzzy system with the following 3
rules:

The fuzzy sets and are depicted in Fig. 3.13 Find the mapping
and determine for



Chapter 4

FLEXIBILITY IN FUZZY SYSTEMS

4.1.   INTRODUCTION

In the previous works on neuro-fuzzy systems it was assumed that
fuzzy inference (Mamdani or logical) was fixed in advance and during the
design process only the parameters of the membership functions were
optimized to meet the design requirements. On the other hand it is well
known that introducing additional parameters to be tuned in the system
usually improves its performance. The system is able to better represent the
patterns encoded in the data. In this chapter we present various concepts
leading to the designing of flexible neuro-fuzzy systems, characterized by
many parameters determined in the process of learning. Based on our
propositions various flexible structures will be developed in Chapters 5-8.

4.2.   WEIGHTED TRIANGULAR NORMS

Any construction of fuzzy systems relies on triangular norms. They are
used to connect the antecedents in the individual rules, aggregate the rules
and express the relation between the antecedents and the consequent. In this
section we incorporate the weights into the construction of triangular norms.
The idea of weighted triangular norms will be explained on the
two-dimensional case and next extended to the multidimensional case. The
weighted t-norm in the two-dimensional case is defined as follows
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Parameters and can be interpreted as antecedents of the rule. The

weights and are corresponding certainties (credibilities) of both
antecedents in (4.1).

Observe that:
If then the weighted t-norm is reduced to the standard

t-norm. In the context of linguistic values we assign the truth to both
antecedents and of the rule.

If then

(i)

(ii)

Therefore, antecedent is discarded since its certainty is equal to 0.

Similarly if then antecedent vanishes, i.e.

(iii) If and then we assume a partial certainty of

antecedents and

The t-conorm corresponding to the t-norm (4.1) is defined as follows

In the same spirit we propose the weighted triangular norms

and

to aggregate individual rules (for N = 2) in Mamdani-type and logical-type
systems, respectively. The weights and in (4.1), as well as and

in (4.5) or (4.6), can be found in the process of learning subject to

constraints

In the next chapters we will apply the weighted t-norm
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to connect the antecedents in each rule, k = 1,..., N , and the weighted t-norm
and t-conorm:

to aggregate the individual rules in the logical and Mamdani models,
respectively. It is easily seen that formula (4.7) can be applied to the
evaluation of an importance of input linguistic values, and the weighted
t-norm (4.8) or t-conorm (4.9) to a selection of important rules. The results
will be depicted in the form of diagrams. In Fig. 4.1 we show an example of
a diagram for a fuzzy system having four rules (N = 4) and two inputs
(n = 2) described by:

Observe that the third rule is “weaker” than the others and the linguistic
value corresponds to a low value of The designing of neuro-fuzzy

systems should be a compromise between the accuracy of the model and its
transparency. The measure of accuracy is usually the RMSE-criterion
(approximation problems) and the percentage of correct or wrong decisions
(classification problems). The measure of transparency is the number and
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form of fuzzy rules obtained. It was mentioned by several authors (see
e.g. [2, 28]) that the lack of transparency is a major drawback of many
neuro-fuzzy systems. Most designers focus their effort on approximation
accuracy, while the issue of transparency has received less attention. In this
context our method of weighted triangular norms seems to be a promising
tool for extracting both transparent and accurate rule-based knowledge from
empirical data. More specifically, diagrams (weights representation like that
shown in Fig. 4.1) can be used for analysis and pruning of the fuzzy-rule
bases in all the simulation examples. Note that our application of weights in
NFIS is different from those studied in [19, 31, 63, 97, 111].

Example 4.1. (An example of Zadeh triangular norms with weighted
arguments)
The Zadeh triangular norms with weighted arguments are based on classical
Zadeh triangular norms given by (2.43) and (2.44). The Zadeh t-norm with
weighted arguments is described as follows

The 3D plots of function (4.10) are depicted in Fig. 4.2.

The Zadeh t-conorm with weighted arguments is given by

The 3D plots of function (4.11) are presented in Fig. 4.3.
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Example 4.2. (An example of algebraic triangular norms with weighted
arguments)
The algebraic triangular norms with weighted arguments are based on
classical algebraic triangular norms given by (2.47) and (2.48). The algebraic
t-norm with weighted arguments is described as follows

The 3D plots of function (4.12) are depicted in Fig. 4.4.

The algebraic t-conorm with weighted arguments is given by

The 3D plots of function (4.13) are presented in Fig. 4.5.
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Example 4.3. (An example of bounded triangular norms with weighted
arguments)
The bounded triangular norms with weighted arguments are based on
classical bounded triangular norms given by (2.51) and (2.52). The bounded
t-norm with weighted arguments is described as follows

The 3D plots of function (4.14) are depicted in Fig. 4.6.

The bounded t-conorm with weighted arguments is given by

The 3D plots of function (4.15) are presented in Fig. 4.7.
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Example 4.4. (An example of drastic triangular norms with weighted
arguments)
The drastic triangular norms with weighted arguments are based on classical
drastic triangular norms given by (2.55) and (2.56). The drastic t-norm with
weighted arguments is described as follows

The 3D plots of function (4.16) are depicted in Fig. 4.8.
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The drastic t-conorm with weighted arguments is given by

The 3D plots of function (4.17) are presented in Fig. 4.9.

4.3.   SOFT FUZZY NORMS

In this sections we recall a concept of soft fuzzy norms proposed by
Yager and Filev [108]. Let be numbers in the unit interval that are

to be aggregated. The soft version of triangular norms suggested by Yager
and Filev is defined by

and

where They allow to balance between the arithmetic average
aggregator and the triangular norm aggregator depending on parameter
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Example 4.5. (An example of soft Zadeh triangular norms)
The soft Zadeh triangular norms based on classical Zadeh triangular norms
given by (2.43) and (2.44) and formulas (4.18) and (4.19). The soft Zadeh
t-norm is described as follows

The 3D plots of function (4.20) are depicted in Fig. 4.10.

The soft Zadeh t-conorm is given by

The 3D plots of function (4.21) are presented in Fig. 4.11.
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Example 4.6. (An example of soft algebraic triangular norms)
The soft algebraic triangular norms are based on classical algebraic triangular
norms given by (2.47) and (2.48) and formulas (4.18) and (4.19). The soft
algebraic t-norm is described as follows

The 3D plots of function (4.22) are depicted in Fig. 4.12.

The soft algebraic t-conorm is given by

The 3D plots of function (4.23) are presented in Fig. 4.13.
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Example 4.7. (An example of soft bounded triangular norms)
The soft bounded triangular norms are based on classical bounded triangular
norms given by (2.51) and (2.52) and formulas (4.18) and (4.19). The soft
bounded t-norm is described as follows

The 3D plots of function (4.24) are depicted in Fig. 4.14.

The soft bounded t-conorm is given by

The 3D plots of function (4.25) are presented in Fig. 4.15.
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Example 4.8. (An example of soft drastic triangular norms)
The soft drastic triangular norms are based on classical drastic triangular
norms are given by (2.55) and (2.56) and formulas (4.18) and (4.19). The soft
drastic t-norm is described as follows

The 3D plots of function (4.26) are depicted in Fig. 4.16.

The soft drastic t-conorm is given by

The 3D plots of function (4.27) are presented in Fig. 4.17.
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In the same spirit we define the softening of the “engineering implication” by

and softening of the S-fuzzy implication by

where

Example 4.9. (An example of soft Kleene-Dienes S-implication)
The soft Kleene-Dienes S-implication is based on the Zadeh t-conorm given
by (2.44), the Zadeh negation given by (2.65) and formula (4.29). The soft
Kleene-Dienes S-implication is described as follows

The 3D plots of function (4.30) are depicted in Fig. 4.18.

Example 4.10. (An example of soft Reichenbach S-implication)
The soft Reichenbach S-implication is based on the algebraic t-conorm given
by (2.48), the Zadeh negation given by (2.65) and formula (4.29). The soft
Reichenbach S-implication is described as follows

The 3D plots of function (4.31) are depicted in Fig. 4.19.



64 Flexible Neuro-Fuzzy Systems

Example 4.11. (An example of soft S-implication)
The soft S-implication is based on the bounded t-conorm given
by (2.52), the Zadeh negation given by (2.65) and formula (4.29). The soft

S-implication is described as follows

The 3D plots of function (4.32) are depicted in Fig. 4.20.

In the design of Mamdani-type systems we use the following soft
triangular norms:

(i) to connect the antecedents,
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(ii)

(iii)

to connect the

antecedent and the consequent,

to aggregate individual

rules
where n is the number of inputs and N is the number of rules.

In the design of logical-type systems based on S-implications we use
the following soft triangular norms:

(i)

(ii)

(iii)

to connect the antecedents,

to connect the

antecedent and the consequent,

to aggregate individual

rules.

Parameters can be found in the process of learning.and

4.4. PARAMETERIZED TRIANGULAR NORMS

As we mentioned in Section 4.2 any construction of fuzzy systems
relies on triangular norms. Most fuzzy inference structures studied in
literature employ the triangular norms described in Section 2.3. There is only
a little knowledge within the engineering community about the so-called
parameterized families of t-norm and t-conorms. They include the Dombi,
Hamacher, Yager, Frank, Weber I, Weber II, Dubois and Prade, Schweizer I,
Schweizer II, Schweizer III, Mizumoto IV-X families [45, 56]. These
parameterized triangular norms are listed in Table 4.1. We use notation

and for parameterized triangular norms.

The hyperplanes corresponding to them can be adjusted in the process of
learning of parameter p .
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As an example we present the Dombi family of parameterized triangular
norms. The t-norm and t-conorm are given as follows:
(i) the Dombi t-norm

where stands for a t-norm of the Dombi family parameterized
by p .

(ii) the Dombi t-conorm

where stands for a t-conorm of the Dombi family parameterized
by p .

Obviously formula (4.33) defines the “engineering implication” for n = 2.
Combining the S-implication and (4.34) we get the fuzzy S-implication
generated by the Dombi family
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In the design of Mamdani-type systems we use the following
parameterised triangular norms:
(i)

(ii)

(iii)

where n is the number of inputs and N is the number of rules.

to connect the antecedents,

to connect the antecedent and the consequent,

to aggregate individual rules

In the design of logical-type systems based on S-implications we use
the following parameterised triangular norms:
(i)

(ii)

(iii)

Parameters and can be found in the process of learning. The

NFIS realized by parameterized families of t-norms and t-conorms are
studied in Chapters 5 and 6.

4.5.  OR-TYPE SYSTEMS

In this section we introduce the concept of an OR-type system which
smoothly switches between the Mamdani-type and the logical-type systems.
Details and mathematical background will be provided in Chapter 5. The
OR-type NFIS have been proposed by Rutkowski and [81].
Depending on a certain parameter this class of systems exhibits “more
Mamdani” or “more logical” behaviour. At the
boundaries the system becomes of the Mamdani-type or of the
logical-type The definition of OR-type systems heavily relies on the
concept of the H-function (see Section 5.3). The H-function exhibits the
behaviour of fuzzy norms. More precisely, it is a t-norm for and
a t-conorm for For the H-function resembles a t-norm and
for the H-function resembles a t-conorm. In a similar spirit we
construct OR-type implications. The parameter can be found in the
process of learning subject to the constraint In Chapter 5 based on
the input-output data we learn a system type starting from as an
initial value. The behaviour of the OR-type systems, depending on parameter

, is shown in Table 4.2.

to connect the antecedents,

to connect the antecedent and the consequent,

to aggregate individual rules.
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The OR-type NFIS are studied in detail in Chapter 5.

4.6. COMPROMISE SYSTEMS

The Mamdani and the logical systems lead to different results and, in
literature, there are no formal proofs as to which of them is superior.
Therefore, Yager and Filev [108] proposed to combine both methods. The
AND-type compromise neuro-fuzzy systems are characterized by the
simultaneous appearance of Mamdani-type and logical-type systems. In this
book we study the following combination of “engineering” and fuzzy
implications

For an S-implication as the fuzzy-implication and a t-norm as the
“engineering implication”, formula (4.36) takes the form

In Chapter 6 we develop compromise NFIS based on formula (4.37). It
should be emphasized that parameter can be found in the process of
learning subject to the constraint In Chapter 6, based on the
input-output data, we learn a system type starting from as the initial
value. The behaviour of the AND-type compromise systems, depending on
parameter is depicted in Table 4.3.
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Example 4.12. (An example of AND-type compromise implication generated
by the Zadeh t-norm)
We consider the AND-type compromise implication based on the Zadeh
t-norm (2.43) and the Kleene-Dienes S-implication (3.31). It is given by

The 3D plots of function (4.38) are depicted in Fig. 4.21.

Example 4.13. (An example of AND-type compromise implication generated
by the algebraic t-norm)
We consider the AND-type compromise implication based on the algebraic
t-norm (2.47) and the Reichenbach S-implication given in Table 2.1. It is
defined by

The 3D plots of function (4.39) are depicted in Fig. 4.22.
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Example 4.14. (An example of AND-type compromise implication generated
by the bounded t-norm)
We consider the AND-type compromise implication based on the bounded
t-norm (2.51) and the S-implication (3.32). It is given by

The 3D plots of function (4.40) are depicted in Fig. 4.23.
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Example 4.15. (An example of AND-type compromise implication generated
by the drastic t-norm)
We consider the AND-type compromise implication based on the drastic
t-norm (2.55) and the Dubois-Prade S-implication given in Table 2.1. It is
defined as follows

where

and

In this chapter we explained how to incorporate flexibility into the
designing of neuro-fuzzy systems. The flexibility is represented by various
parameters allowing to better represent the patterns encoded in the data.

We note that other concepts can be applied to design flexible
neuro-fuzzy structures. Among them it is worth to mention various

The 3D plots of function (4.41) are depicted in Fig. 4.24.

4.7.   SUMMARY AND DISCUSSION



aggregation operators, e.g. the geometric mean or the harmonic mean, the
so-called exponential compensatory operator [45] or the weighted minimum
and maximum operators [19].

4.8.  PROBLEMS
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Problem 4.1. Combine soft triangular norms with the weighted t-norm, and
define the weighted soft triangular norms.

Problem 4.2. Combine soft triangular t-conorms with the weighted t-conorm,
and define the weighted soft triangular t-conorms.

Problem 4.3. Define the Dombi t-norm with weighted arguments.

Problem 4.4. Define the soft Dombi t-norm and t-conorm.

Problem 4.5. Define the S-implication generated by the Yager t-conorm.

Problem 4.6. Define the soft S-implication generated by the Dombi
t-conorm.

Problem 4.7. Prove that

Problem 4.8. Prove that

Problem 4.9. Prove that

Problem 4.10. Prove that

Problem 4.11. Prove that

Problem 4.12. Prove that



Chapter 5

FLEXIBLE OR-TYPE NEURO-FUZZY SYSTEMS

5.1.   INTRODUCTION

Triangular norms (t-norms and t-conorms) have been used to model
the intersection and union of fuzzy sets, the logical conjunction and
disjunction and the fuzzy preference. For excellent surveys and overviews of
various aggregation operators the reader is referred to [4, 9, 14, 45]. Apart
from various traditional triangular norms several modifications and
extensions have been proposed [10, 22, 36], e.g. the ordinal sum, the
uniform, the nullnorms and the t-operator. These definitions are potentially
useful to construct various new neuro-fuzzy systems, however in this chapter
we introduce another class of functions called quasi-triangular norms. They
are denoted by H and parameterized by parameter

From the construction of function H it follows that it becomes a t-norm for
and a dual t-conorm (S-norm) for For function H

resembles a t-norm and for it resembles a t-conorm. In this
chapter we also propose adjustable quasi-implications. Most neuro-fuzzy
systems proposed in the past decade employ “engineering implications” (this
terminology is suggested in [57] and [58]) defined by a t-norm
(e.g. minimum or product). In our proposition a quasi-implication

varies between an “engineering implication” T{a,b} and an S-implication as

goes from 0 to 1. Moreover, it satisfies
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assuming that T and S are dual. It should be emphasized that parameter
can be learned from the data. Consequently, we do not know the

type of the system in advance. In this chapter we propose a new class of
neuro-fuzzy systems. The fuzzy inference (Mamdani-type or logical-type) of
such systems is determined in the process of learning. More precisely after
learning one of the following two possible structures is established
depending on parameter
a)

b)

The neuro-fuzzy system with an “engineering implication” operator
(t-norm) to describe the relation between the antecedents and the
consequent, and with a t-conorm for the aggregation of rules.
The neuro-fuzzy system with an S-implication operator to describe the
relation between the antecedents and the consequent, and with
a t-norm for the aggregation of rules.

As we have already mentioned in the Introduction, such a concept has not yet
been proposed in literature by other authors. This chapter is organized as
follows. The problem description is given in Section 5.2. In Section 5.3 we
introduce the concept of adjustable quasi-triangular norms. In Section 5.4 we
present adjustable quasi-implications. In Sections 5.5-5.7 a new class of
neuro-fuzzy systems is proposed. In Section 5.8 learning procedures are
derived to learn parameter (type of the system), parameters of membership
functions, flexibility parameters and weights described in Chapter 4. In
Section 5.9 simulation examples are given. We will use the following
notations (see the block diagrams in Chapter 5 and 6)

where

5.2. PROBLEM DESCRIPTION

Let and t = 1,2,..., be
a sequence of inputs, outputs and desirable outputs, respectively. In this
chapter we address the following design and learning problems
a) Out first problem is to design a neuro-fuzzy system realizing the

mapping such that a fuzzy inference, described by

a quasi-implication varies between an “engineering

implication” T{a,b} and an S-implication depending on parameter

The construction of quasi-implication is described in
Section 5.4. Moreover, we will incorporate: (i) softness to implication
operators, to the aggregation of rules and to the connectives of
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antecedents; (ii) certainty weights to the aggregation of rules and to the
connectives of antecedents; and (iii) parameterized families of t-norms
and t-conorms to implication operators, to the aggregation of rules and
to the connectives of antecedents. All the neuro-fuzzy systems
described in this chapter are in the form (3.39), i.e.

Based on the learning sequence we wish to

determine all parameters (including the system type represented by
value of ) and weights of NFIS such that

is minimized. The steepest descent optimization algorithm with
constraints can be applied to solve this problem.

5.3. ADJUSTABLE QUASI-TRIANGULAR NORMS

We start with a definition which is a generalization of a strong
negation (see Definition 2.15).

Definition 5.1. (Compromise operator)
Function

given by

is called a compromise operator where and

Observe that

Obviously function is a strong negation for The 3D plot of

function (5.5) is depicted in Fig. 5.1.

b)
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Definition 5.2. (H-function)
Function

given by

is called an H-function where

Theorem 5.1: Let T and S be dual triangular norms. Function H defined
by (5.8) varies between a t-norm and a t-conorm as goes from 0 to 1.

Proof: From this assumption it follows that

For formula (5.9) can be rewritten with the notation of the compromise
operator (5.5)

Apparently

for The right-hand sides of (5.10) and (5.11) can be written as follows

for and respectively. If parameter changes from 0 to 1, then
the result is established.

Remark 5.1: Observe that
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It is easily seen, that for the H-function resembles a t-norm and
for the H-function resembles a t-conorm.

Example 5.1. (An example of the H-function generated by the Zadeh
triangular norms)
We will show how to switch smoothly from a t-norm to a t-conorm by
making use of Definition 5.2. Let n = 2 and the standard min-norm and
max-conorm be chosen:

The H-function generated by formulas (5.14) or (5.15) takes the form

and varies from (5.14) to (5.15) as goes from zero to one. In Fig. 5.2, we
illustrate function (5.16) for

Example 5.2. (An example of the H-function generated by the algebraic
triangular norms)
We will apply Theorem 5.1 to illustrate (for n = 2) how to switch between
the algebraic t-norm

and the algebraic t-conorm
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The H-function generated by formulas (5.17) or (5.18) takes the form

and varies from (5.17) to (5.18) as goes from zero to one. In Fig. 5.3, we
illustrate function (5.19) for

Example 5.3. (An example of the H-function generated by the bounded
triangular norms)
For the bounded t-norm

and the corresponding t-conorm

the H-function generated by formula (5.20) or (5.21) takes the form

and varies from (5.20) to (5.21) and  goes from 0 to 1. In Fig. 5.4 we depict
function (5.22) for a) b) c) d)
e)
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Example 5.4. (An example of the H-function generated by the drastic
triangular norms)
The drastic H-function based on drastic triangular norms given by (2.55) and
(2.56) and formula (5.8). The drastic H-function is described as follows

The 3D plots of function (5.23) are depicted in Fig. 5.5.
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5.4.   ADJUSTABLE QUASI-IMPLICATIONS

The next theorem shows how to switch between an “engineering
implication” (defined by a t-norm) and an S-implication.

Theorem 5.2: Let T and S be dual triangular norms. Then

switches between an “engineering implication”

and an S-implication

Proof: Theorem 5.2 is a straightforward consequence of Theorem 5.1.

Example 5.5. (An example of the H-implication generated by the Zadeh
triangular norms)
We will define the H-implication generated by the Zadeh triangular norms
and based on formula (5.24). Let

and

Then

goes from (5.27) to (5.28) as varies from 0 to 1.

The 3D plots of function (5.29) are depicted in Fig. 5.6.
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Example 5.6. (An example of the H-implication generated by the algebraic
triangular norms)
We will define the H-implication generated by the algebraic triangular norms
and based on formula (5.24). Let

and

Then

goes from (5.30) to (5.31) as varies from 0 to 1.

The 3D plots of function (5.32) are depicted in Fig. 5.7.

Example 5.7. (An example of the H-implication generated by the bounded
triangular norms)
We will define the H-implication generated by the bounded triangular norms
and based on formula (5.24). Let
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and

Then

goes from (5.33) to (5.34) as varies from 0 to 1.

The 3D plots of function (5.35) are depicted in Fig. 5.8.
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Example 5.8. (An example of the H-implication generated by the drastic
triangular norms)
We will define the H-implication generated by the drastic triangular norms
and based on formula (5.24). Let

and

Then

goes from (5.36) to (5.37) as varies from 0 to 1.

The 3D plots of function (5.38) are depicted in Fig. 5.9.
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5.5.  BASIC FLEXIBLE SYSTEMS

In this section we will apply the concept of an H-function for
constructing the basic flexible neuro-fuzzy inference systems. By making use
of that concept we will establish a new fuzzy inference allowing to switch
smoothly between the Mamdani-type and the logical-type inference and
vice-versa. Therefore, our basic flexible neuro-fuzzy system generalizes
commonly used fuzzy inference systems of the Mamdani and the
logical-type. Moreover, our approach allows to exclude insufficient
performance of the NFIS resulted from incorrectly assumed fuzzy reasoning.
The flexible OR-type systems exhibit “more Mamdani” or “more logical”
behaviour depending on parameter appearing in the construction of
function H. The system becomes of Mamdani-type for and of
logical-type for The fuzzy inference (fuzzy quasi-implication) is
realized based on function H with parameter whereas the aggregation is
based on function H with parameter The aggregation of the
antecedents is based on a t-norm which is equivalent to an H-function with
parameter Finally, the basic neuro-fuzzy system of an OR-type is
given as follows:

OR I

Observe that system (5.39)-(5.41) is of the Mamdani-type for like the
Mamdani-type for undetermined for like the

logical-type for and the logical-type for It is worth
noticing that parameter can be learned and consequently the type of the
system can be determined in the process of learning. In Table 5.1 we depict
quasi-implication and aggregation operators used in system (5.39)-(5.41).
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In Fig. 5.10, 5.11 and 5.12 we depict block diagrams realizing the
aggregation of antecedents given by (5.39), the quasi-implication

given by (5.40) and the aggregation given by (5.41),

respectively.

The firing strength of rules k = 1,...., N , following Fig. 5.10, is

determined by an aggregation, based on an H-function parameterized by
of antecedent membership function values calculated for all

inputs i = 1,...,n . It is assumed that the membership functions are

characterized by parameters i = 1,..., n ,

k = 1 , . . . , N  .

The quasi-implication k = 1,...,N , r = 1,...,N , following

Fig. 5.11, is determined by an aggregation based on an H-function
parameterized by The first argument of the aggregation operation is

the firing strength of rules k = 1,..., N . The second argument of the

aggregation operation is the value of consequence membership functions
k =1,...,N, r = 1, . . . ,N , determined in point r = 1,...,N , at
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which consequent membership functions k = 1 , . . . , N , attain their

maximum equal to 1. It is assumed that each output membership function
is characterized by parameters , k = 1 , . . . , N  .

The quasi-triangular aggregation r=1 , . . . ,N , following

Fig. 5.12, is determined by an aggregation, based on an H-function
parameterized by of quasi-implications

k = 1 , . . . ,N , r = 1 , . . . , N , determined in point r = 1 , . . . ,N , at which

consequent membership functions k = 1 , . . . , N , attain their maximum

equal to 1.
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In Fig. 5.13 we depict the shape of the hyperplanes described by formulas
(5.39)-(5.41) for n = 2, N = 2 and the varying parameter of function H
generated by the algebraic triangular norms.

5.6.   SOFT FLEXIBLE SYSTEMS

(i)
(ii)
(iii)

In this chapter we propose soft NFIS based on soft fuzzy norms (4.18)
and (4.19). These systems are characterized by:

soft strength of firing controlled by parameter
soft implication controlled by parameter
soft aggregation of rules controlled by parameter

Moreover, we assume that fuzzy norms (and H-functions) in the connection
of antecedents, implication and aggregation of rules are parameterised by
parameters respectively. We use notation to indicate
parameterised families analogously to (4.33) and (4.34).

The soft compromise NFIS of the OR-type are defined as follows:

OR II

Observe that system (5.42)-(5.44) is:
(i)
(ii)
(iii)

soft Mamdani-type NFIS for v = 0,
soft logical-type NFIS for v = 1,
soft like Mamdani-type NFIS for 0 < v < 0.5,
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(iv)
(v)

soft like logical-type NFIS for 0.5 < v < 1,
undetermined for v = 0.5 .

It is easily seen that the above system reduces to a basic flexible system
described in Section 5.5 if and parameterized triangular
norms are replaced by standard triangular norms.

In Fig. 5.14, 5.15 and 5.16 we depict block diagrams realizing the
aggregation of antecedents given by (5.42), the quasi-implication

given by (5.43) and the aggregation given by (5.44),

respectively.

The firing strength of rules k = 1,..., N , following Fig. 5.14 is

determined by a soft composition, controlled by parameter of two
components and Component is the arithmetic average

of the antecedents’ membership function values k = 1,...,N ,

i = 1,..., n , determined for all inputs  i = 1,...,n . Component is

determined analogously as in the basic flexible NFIS described in
Section 5.5. The dominance of one component over another depends on the
value of parameter

The quasi-implication k = 1,...,N , r = 1 , . . . , N ,  following

Fig. 5.15, is determined by a soft composition, controlled by parameter
of two components and Component is the

arithmetic average of the compromise operator (5.5), operated on the firing
rule strength k = 1,..., N , and the value of consequence membership
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functions k = 1 , . . . ,N , r = 1 , . . . , N , determined in point

r = 1 , . . . ,N , at which functions attain their maximum equal to 1.

Component is determined analogously as in the basic flexible

systems described in Section 5.5. The dominance of one component over
another depends on the value of parameter
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The aggregation operator r = 1 , . . . ,N , following Fig. 5.16 is

determined by a soft composition of two components and

Component is the average of quasi-implications

k=1 , . . . ,N , r = 1,...,N , determined in points r = 1,...,N ,

at which consequent membership functions k = 1,...,N , attain their

maximum equal to 1. Component is determined analogously as in
Section 5.5. The dominance of one component over another depends on the
value of parameter

In Fig. 5.17-5.22 we depict the shape of the hyperplanes described by
formulas (5.42)-(5.44) for n = 2 and N = 2. In all the cases the function H
is generated by the Dombi triangular norms.

5.7. WEIGHTED FLEXIBLE SYSTEMS

Our concept of weighted triangular norms, presented in Section 4.2,
allows to assign different degrees of credibility (importance) to fuzzy rules.
Moreover, we incorporate weights to describe the significance of particular
antecedents in all rules. More precisely, we insert:
(i)

(ii)

weights to the aggregation operator of the rules

k = 1 , . . . ,N ,

weights to the antecedents i i= 1 , . . . ,n ,  k = 1 , . . . ,N

in system ORII.
Consequently, we get the weighted soft NFIS of the OR-type:

OR III
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In the ORIII system we use parameterised families and parameterised

families with weights analogously to formula (4.1). More specifically,

in (5.45) and (5.47) we use the following definition

where

It is easily seen that the above system reduces to a soft compromise system
described in Section 5.6 if i = 1,...,n , k = 1 , . . . ,N and

k = 1 , . . . , N .

In Fig. 5.23 and 5.24 we depict block diagrams realizing the
quasi-implication given by (5.46) and aggregation

given by (5.47), respectively. The block diagram realizing the aggregation of
antecedents is shown in Fig. 5.14.

The firing strength of rules k = 1,..., N , following Fig. 5.23, is

determined by a soft composition, controlled by parameter of two
components and Component is the arithmetic average

of antecedent membership function values k = 1,..., N , i = 1,...,n ,

determined for all inputs i = 1, . . . ,n . Component is determined by

the weighted aggregation (see Section 4.2) with weights based on an

H-function parameterized by of antecedent membership function
values k=1, . . . , N, i = 1 , . . . ,n , calculated for all inputs

i = 1,..., n . The dominance of one component over another depends on the

value of parameter The weights can be interpreted as credibilities of

antecedents and can be applied to evaluate the importance of input linguistic
labels.
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The aggregation operator r = 1 , . . . ,N , following Fig. 5.24, is

determined by a soft composition of two components and

Component is the average of quasi-implications

k = 1,...,N , r = 1,...,N , determined in points r = 1,...,N ,

at which consequent membership functions k = 1,..., N , attain their

maximum equal to 1. Component is determined analogously as in
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Section 5.5, however certainty weights k = 1,..., N , are additionally

incorporated into the NFIS structure. The dominance of one component over
another depends on the value of parameter Weights can be

interpreted as credibilities of rules.

In Fig. 5.25-5.28 we depict the shape of the hyperplanes described by
formulas (5.45)-(5.47) for n = 2 and N = 2 . In all the cases the function H
is generated by the Dombi triangular norms.

5.8. LEARNING ALGORITHMS

It is well known that the basic concept of the backpropagation
algorithm, commonly used to train neural networks, can also be applied to
any feedforward network. Let and be a sequence of

inputs and desirable output signals, respectively. Based on the learning
sequence we wish to determine all parameters

algorithm can be applied to solve this problem. For instance, parameters
r = 1,..., N , are trained by the iterative procedure

Directly calculating partial derivatives in recursion (5.51) is rather
complicated. Therefore, we recall that our NFIS has a layered architecture
(see Fig. 5.29) and apply the idea of the backpropagation method to train the
system. The exact recursions derived in this section reflect that idea,
however, they are not a copy of the standard backpropagation used to train
multi-layer neural networks. We will apply the gradient optimization with
constraints in order to optimize:

(including the system’s type ) and weights of NFIS such that

is minimized, were f(·) is given (3.48). The steepest descent optimization
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The constraint functions, see formulas (33) and (35) in the Appendix, will be
used to perform the optimization of the above parameters and weights.
Moreover, we will find in the process of learning parameters of the
membership functions and i = 1,.. . ,n , k = 1,..., N :

Remark 5.2: We will explain the notation used in this book (Chapter 5 and 6)
on a simple example of a single neuron given by:

where f is a sigmoidal function, and i = 1,...,n , are inputs and

weights, respectively. Let d be the desired output signal. Then we write

and

i.e. is the error transferred from the output block f to the summation
block s . We will use the analogous notation depicted in Fig. 5.29.

General learning procedures

Parameter and other parameters of the NFIS are updated by the recursive
procedures:

a)
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where corresponding corrections are given by:
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The errors propagated through the net are indicated at the bottom of Fig. 5.29
and satisfy the following relations:

b) Block of rules’ activation

The errors propagated through the block of rules’ activation (see Fig. 5.30)
are given by:
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where
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The exact form of (5.84)-(5.90) and other derivatives depends on the used
H-function and input-output membership functions. We explain details and
give some examples in the Appendix.

Block of implicationsc)

The errors propagated through the block of implications (see Fig. 5.31) are
determined as follows:
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where
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d) Block of aggregation

The errors propagated through the block of aggregation (see Fig. 5.32) are
given by:

113
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where
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Block of defuzzification

5.9. SIMULATION RESULTS

In this section we present four simulations of the OR-type neuro-fuzzy
systems. We use benchmarks described in Section 3.6. Each of the four
simulations are designed in the same fashion:
(i) In the first experiment, based on the input-output data, we learn the

parameters of the membership functions and a system type of

the basic flexible system described in Section 5.5. It will be seen that

e)

The errors propagated through the block of defuzzification (see Fig. 5.33) are
given by:



116 Flexible Neuro-Fuzzy Systems

the optimal values of determined by a gradient procedure, are either
zero or one.
In the second experiment, we learn the parameters of the membership
functions of the basic flexible system described in Section 5.5
choosing value as opposite to that obtained in experiment (i).
Obviously, we expect a worse performance of the neuro-fuzzy system
comparing with experiment (i).
In the third experiment, we learn the parameters of the membership
functions, system type and soft parameters

of the soft flexible system described in
Section 5.6 assuming that classical (not-parameterised) triangular
norms are applied.
In the fourth experiment, we learn the same parameters as in the third
experiment and, moreover, the weights i = 1 , . . . ,n ,

k = 1 , . . . ,N , in the antecedents of rules and weights

k = 1 , . . . , N , of the aggregation operator of rules. In all diagrams

(weights representation) we separate i = 1 , . . . , n ,

k = 1 , . . . , N , from k = 1,..., N, by a vertical dashed line.

In each of the above simulations we apply the Zadeh H-implication and the
algebraic H-implication described in examples 5.5 and 5.6, respectively. In
separate experiments we repeat simulations (i)-(iv) replacing the Zadeh
H-implication and the algebraic H-implication by quasi-implications
generated by parameterised triangular norms: the Dombi H-implication and
the Yager H-implication. In these simulations we additionally incorporate
parameters

Box and Jenkins Gas Furnace problem
The experimental results for the Box and Jenkins Gas Furnace problem are
depicted in Tables 5.2 and 5.3 for the not-parameterised (Zadeh and
algebraic) and parameterised (Dombi and Yager) H-functions, respectively.
For experiment (iv) the final values (after learning) of weights

and i = 1, . . . , 6, k = 1, . . . , 4 , are shown in Fig. 5.34 (Zadeh and

algebraic H-functions) and Fig. 5.35 (Dombi and Yager H-functions).

(ii)

(iii)

(iv)
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The experimental results for the Glass Identification problem are depicted in
Tables 5.4 and 5.5 for the not-parameterised (Zadeh and algebraic) and
parameterised (Dombi and Yager) H-functions, respectively. For experiment
(iv) the final values (after learning) of weights and

i = 1,...,9 , k = 1,...,2 , are shown in Fig. 5.36 (Zadeh and algebraic
H-functions) and Fig. 5.37 (Dombi and Yager H-functions).

Glass Identification problem
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and i = 1, . . . ,2 , k = 1,...,5 , are depicted in Fig. 5.38

(Zadeh and algebraic H-functions) and Fig. 5.39 (Dombi and Yager
H-functions).
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Modeling of Static Nonlinear Function (HANG) problem
The experimental results for the Modeling of the Static Nonlinear Function
problem are shown in Tables 5.6 and 5.7 for the not-parameterised (Zadeh
and algebraic) and parameterised (Dombi and Yager) H-functions,
respectively. For experiment (iv) the final values (after learning) of weights
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The experimental results for the Wisconsin Breast Cancer problem are shown
in Tables 5.8 and 5.9 for the not-parameterised (Zadeh and algebraic) and
parameterised (Dombi and Yager) H-functions, respectively. For experiment
(iv) the final values (after learning) of weights and

i = 1,... ,9, k = 1, . . . ,2, are shown in Fig. 5.40 (Zadeh and algebraic
H-functions) and Fig. 5.41 (Dombi and Yager H-functions).

Wisconsin Breast Cancer problem
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In this chapter we introduced the concept of adjustable quasi-triangular
norms. They switch smoothly between t-norms and t-conorms depending on
the value of parameter v. In a similar spirit we proposed the idea of
quasi-implications which vary between “engineering implications” and fuzzy
s-implications as v goes from 0 to 1. Based on these ideas we developed
several neuro-fuzzy systems characterized by automatic determination in the
process of learning of the fuzzy inference (Mamdani type or logical type).
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5.10. SUMMARY AND DISCUSSION



Moreover, we incorporated various flexibility parameters into the
construction of neuro-fuzzy systems. From simulations performed in
Section 5.9 we found out that the best results were obtained for weighted
flexible neuro-fuzzy systems.

Problem 5.1. Derive an H-function generated by the Dombi t-norm.

Problem 5.2. Derive an H-function generated by the Yager t-conorm.

Problem 5.3. Derive a quasi-implication generated by the Dombi t-norm.

Problem 5.4. Derive a quasi-implication generated by the Yager t-conorm.

Problem 5.5. Derive the basic flexible systems based on the H-function
generated by the Zadeh t-norm. Plot the corresponding hyperplanes.

Problem 5.6. Derive the soft flexible system based on the H-function
generated by the Zadeh t-norm. Plot the corresponding hyperplanes.

Problem 5.7. Derive the weighted flexible system based on the H-function
generated by the Zadeh t-norm. Plot the corresponding hyperplanes.

Problem 5.8. Apply the weighted minimum and maximum operations [19]

Flexible OR-type Neuro-Fuzzy Systems 127

5.11. PROBLEMS

to construct a weighted flexible NFIS.

Problem 5.9. Apply the geometric mean

to construct a soft flexible system.
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Chapter 6

FLEXIBLE COMPROMISE AND-TYPE
NEURO-FUZZY SYSTEMS

6.1. INTRODUCTION

In Chapter 5 we constructed a new class of adjustable quasi-triangular
norms and corresponding quasi-implications. After learning, a Mamdani-type
or a logical-type neuro-fuzzy system has been established depending on
parameter in function In this chapter we assume that fuzzy

inference is characterized by the simultaneous appearance of Mamdani-type
and logical-type reasoning. We will develop another class of flexible
neuro-fuzzy systems.

This chapter is organized as follows. The problem description is given
in Section 6.2. In Sections 6.3-6.5 a new class of neuro-fuzzy systems is
presented. In Section 6.6 learning procedures are derived to learn parameter

(type of the system), parameters of membership functions, flexibility
parameters and weights described in Chapter 4. In Section 6.7 simulation
examples are given.
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6.2. PROBLEM DESCRIPTION

a sequence of inputs, outputs and desirable outputs, respectively. In this
chapter we address the following design and learning problems:
a)

Let and t = 1,2,..., be

Our first problem is to design a neuro-fuzzy system realizing
a mapping such that a fuzzy inference is described by the

following combination of “engineering” and fuzzy implications

We assume that an “engineering implication”             is represented

by a t-norm whereas a fuzzy implication is represented by

an S-implication, i.e.

where T and S are dual triangular norms.
Moreover, we will incorporate: (i) softness to implication operators, to
the aggregation of rules and to the connectives of antecedents;
(ii) certainty weights to the aggregation of rules and to the connectives
of antecedents; and (iii) parameterized families of t-norms and
t-conorms to implication operators, to the aggregation of rules and to
the connectives of antecedents. All the neuro-fuzzy systems described
in this chapter are in the form (3.39), i.e.

Based on the learning sequence we wish to
determine all parameters (including the system type represented by
value of and weights of NFIS such that

is minimized. The steepest descent optimization algorithm with
constraints can be applied to solve this problem.

c)

b)

6.3. BASIC COMPROMISE SYSTEMS

Flexible compromise neuro-fuzzy systems exhibit simultaneous
behaviour of two basic fuzzy inference systems: Mamdani-type and
logical-type. The quasi-implications (6.2) are compositions of two
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components, and are a practical implementations of the compromise fuzzy
reasoning described in Chapter 4. The value of the compromise parameter

imposes a dominance of one fuzzy model over another;

Mamdani-type if the parameter goes to 0 or logical-type if it goes to 1. The
logical AND connective is used to connect the antecedents in the individual
rules. This connective is expressed by a t-norm. As it was noted in [108], the
combination of the Mamdani and logical methods raises the problem of
aggregation in the compromise model. In the case of the Mamdani method
we use an OR aggregation while in the case of the logical method an AND
aggregation is applied. A combination of these two methods requires a final
aggregation being a compromise between an OR and an AND aggregation.
The basic neuro-fuzzy inference systems of an AND-type employ
combinations of “engineering” and fuzzy implication. The systems are given
by the formula:

AND Ia

Alternatively, if we express a t-norm and a t-conorm by an H-function with
parameters or the basic compromise NFIS can be described as
follows:

AND Ib
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It is easily seen that for the above system is of Mamdani-type, and for
it becomes of the logical-type.

The block diagram realizing a strength of rules k = 1 , . . . ,N , is

depicted in Fig. 5.10 (see Section 5.5). In Fig. 6.1 and 6.2 we depict block
diagrams realizing the quasi-implication given by (6.8) and the

aggregation given by (6.9), respectively.

The quasi-implication k = 1 , . . . , N , r = 1 , . . . , N , following

Fig. 6.1, is determined by a soft composition controlled by parameter of
two components, i.e. fuzzy inference (logical-type) and

“engineering” inference (Mamdani-type) The dominance of one

component over another depends on the value of parameter

The aggregation operator r = 1 , . . . , N  , following Fig. 6.2, is

determined by a soft composition of two components, i.e. and

Component describes the aggregation in the case of

the logical method while component in the case of the Mamdani
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method. Observe that component is realized by an H-function
parameterized by (equivalent to a t-norm) whereas component

is realized by an H-function parameterized by (equivalent
to a t-conorm). The dominance of one component over another depends on
the value of parameter

In Fig. 6.3 we depict the shape of the hyperplanes described by formulas
(6.7)-(6.9) for n = 2, N = 2 and the varying parameter We applied the
algebraic triangular norms.

6.4. SOFT COMPROMISE SYSTEMS

In this section we extend the basic compromise NFIS described in
Section 6.3. The flexibility in that section was based on a compromise fuzzy
reasoning being a composition of the Mamdani-type and the logical-type
fuzzy inference. The dominance of one inference model over another
depends on the compromise operator In this section we assume that fuzzy
norms (and the H-function) in the antecedents connection, implication and
aggregation are parameterised by parameters respectively. An
additional flexibility is obtained by incorporating soft fuzzy norms described
in Section 4.3. The flexibility parameters allow to balance
between operators (6.4), (6.5), (6.6) and corresponding arithmetic averages
being a kind of competitive solution to those given in Section 6.3. Another
flexibility can be incorporated by an application of parameterized triangular
norms described in Section 4.4.
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The soft compromise NFIS of an AND-type are given by:

AND IIa

Alternatively, if we express a t-norm and t-conorm by an H-function with
parameters or the soft compromise systems can be described as
follows:

AND IIb
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It is easily seen that the above system reduces to a basic compromise system
described in Section 6.3 if and parameterized triangular
norms are replaced by standard triangular norms.

In Fig. 6.4 and 6.5 we depict block diagrams realizing the quasi-implication
given by (6.14) and the aggregation given by (6.15),

respectively.

The block diagram realizing a strength of rules k = 1 , . . . , N  , is

depicted in Fig. 5.14 (see Section 5.6). The quasi-implication

k = 1 , . . . , N , r = 1 , . . . ,N , following Fig. 6.4, is determined by a soft

composition, controlled by parameter of two components, i.e.

and Component is a soft composition, controlled by

parameter of two components and The composition

is determined analogously as in basic compromise systems

described in Section 6.3. Component is the arithmetic average of

the compromise operator (5.5), operating on the firing rule strength

k = 1 , . . . , N , and the value of consequence membership functions

k = 1,..., N , r = 1 , . . . , N , determined in point r = 1 , . . . , N  , at which
functions attain their maximum equal to 1.
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The aggregation operator r = 1,...,N , following in Fig. 6.5, is

determined by a soft composition, controlled by parameter of two
components, i.e. and Component is the

average of quasi-implications k = 1,...,N , r = 1,...,N ,

determined in points r = 1,. . . ,N , at which consequent membership

functions k = 1,...,N , attain their maximum equal to 1. The

composition of components and is

determined analogously as in basic compromise systems described in
Section 6.3. The dominance of one component over another depends on the
value of parameter
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In Fig. 6,6 and Fig. 6.7 we depict the shape of the hyperplanes described by
formulas (6.13)-(6.15) for n = 2 and N = 2 . We applied the Dombi
triangular norms.

6.5. WEIGHTED COMPROMISE SYSTEMS

Analogously to the weighted flexible systems of an OR-type presented
in Section 5.7, we incorporate weights to the soft compromise system given
in Section 6.4. Introducing weights to that system we get the weighted soft
NFIS of an AND-type:

AND IIIa
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Alternatively, if we express a t-norm and a t-conorm by an H-function with
parameters or the weighted compromise systems NFIS can be
described as follows:

AND IIIb

It is easily seen that the above system reduces to a soft compromise system
described in Section 6.4 if  i = 1,...,n , k = 1 , . . . ,N  and

k = 1, . . . ,N .

The block diagrams realizing a strength of rules k = 1,...,N , and

quasi-implication k = 1,...,N , r = 1,...,N , are depicted in

Fig. 5.23 and Fig. 6.4, respectively. In Fig. 6.8 we depict the block diagram
realizing the aggregation                     given by (6.21).

The aggregation operator r =1,...,N , following Fig. 6.8, is

determined by a soft composition of two components, i.e. and

Component is the average of quasi-implications

k = 1,...,N  , r = 1 , . . . ,N  , determined in points r = 1 , . . . ,N ,
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at which consequent membership functions k = 1 , . . . , N , attain their

maximum equal to 1. The composition of components

and is determined analogously as in basic
compromise systems described in Section 6.4, however certainty weights

k = 1,...,N , are additionally incorporated into the weighted

compromise system. The dominance of one component over another depends
on the value of parameter

In Fig. 6.9 and Fig. 6.10 we depict the shape of the hyperplanes described by
formulas (6.19)-(6.21) for n = 2 and N = 2 . We applied the Dombi
triangular norms.
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6.6. LEARNING ALGORITHMS

In this section we follow the ideas given in Section 5.8. We will derive
the learning algorithms for flexible compromise AND-type neuro-fuzzy
systems having the layered structure shown in Fig. 5.29. The block of rules’
activation and the block of defuzzification are the same as those shown in
Fig. 5.30 and 5.33, respectively. Therefore, we will describe the block of
implication and the block of aggregation which are different for AND-type
and OR-type systems. We will apply the gradient optimization with
constraints in order to optimize:

Analogously to neuro-fuzzy systems studied in Chapter 5, we will use the
constraint functions (33) and (35) in the Appendix, to perform the
optimization of the above parameters and weights. Moreover, we will
find in the process of learning parameters of the membership functions

and i = 1,...,n , k = 1,...,N :

a) General learning procedures

Parameter of NFIS is updated by the recursive procedure

where correction is given by

Other parameters of the NFIS are updated by the recursive procedures given
in Section 5.8.

i = 1,...,n , k = 1,...,N ,

k = 1,...,N .

i = 1,...,n , k = 1,...,N ,

k = 1,...,N ,

k = 1,...,N .
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b) Block of implications

The errors propagated through the block of implications (see Fig. 6.11) are
determined as follows:
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where
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c) Block of aggregation

The errors propagated through the block of aggregation (see Fig. 6.12) are
given by:
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where
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6.7. SIMULATION RESULTS

In this section we present four simulations of the AND-type
neuro-fuzzy systems. We use benchmarks described in Sections 3.6. Each of
the four simulations is designed in the same fashion:
(i) In the first experiment, based on the input-output data, we learn the

parameters of the membership functions and a system type
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(ii)

(iii)

(iv)

(v)

of the basic compromise system described in Section 6.3. It will be
seen that the optimal values of determined by the gradient
procedure, are either zero or one.
In the second experiment, we learn the parameters of the membership
functions of the basic compromise system described in Section 6.3
choosing values of as opposite to that obtained in experiment (i).
Obviously, we expect a worse performance of the neuro-fuzzy system
comparing with experiment (i).
In the third experiment, we learn the parameters of the membership
functions, system type and soft parameters

of the soft compromise system described in

Section 6.4 assuming that classical (not-parameterised) triangular
norms are applied.
In the fourth experiment, we learn the same parameters as in the third
experiment and, moreover, the weights i = 1 , . . . ,n ,

k = 1,...,N , in the antecedents of rules and weights

k = 1 , . . . ,N , of the aggregation operator of the rules. In all diagrams

(weights representation) we separate i = 1, . . . , n  ,

k = 1,..., N , from k = 1,..., N , by a vertical dashed line.

In each of the above simulations we apply the Zadeh H-implication
and the algebraic H-implication described in examples 5.5 and 5.6,
respectively. In separate experiments we repeat simulations (i)-(iv)
replacing the Zadeh H-implication and the algebraic H-implication by
quasi-implications generated by parameterised triangular norms: the
Dombi H-implication and the Yager H-implication. In these
simulations we additionally incorporate parameters
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Box and Jenkins Gas Furnace problem
The experimental results for the Box and Jenkins Gas Furnace problem are
depicted in Tables 6.1 and 6.2 for the not-parameterised (Zadeh and
algebraic) and parameterised (Dombi and Yager) H-functions, respectively.
For experiment (iv) the final values (after learning) of weights

and i = 1,...,6 , k = 1,...,4 , are shown in Fig. 6.13 (Zadeh and

algebraic H-functions) and Fig. 6.14 (Dombi and Yager H-functions).
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Glass Identification problem
The experimental results for the Glass Identification problem are depicted in
Tables 6.3 and 6.4 for the not-parameterised (Zadeh and algebraic) and
parameterised (Dombi and Yager) H-functions, respectively. For experiment
(iv) the final values (after learning) of weights and

i = 1,...,9 , k = 1,.. . ,2 , are shown in Fig. 6.15 (Zadeh and algebraic

H-functions) and Fig. 6.16 (Dombi and Yager H-functions).
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Modeling of Static Nonlinear Function (HANG) problem
The experimental results for the Modeling of the Static Nonlinear Function
problem are shown in Tables 6.5 and 6.6 for the not-parameterised (Zadeh
and algebraic) and parameterised (Dombi and Yager) H-functions,
respectively. For experiment (iv) the final values (after learning) of weights

and i = 1,...,2 , k = 1,...,5 , are depicted in Fig. 6.17

(Zadeh and algebraic H-functions) and Fig. 6.18 (Dombi and Yager
H-functions).
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Wisconsin Breast Cancer problem
The experimental results for the Wisconsin Breast Cancer problem are shown
in Tables 6.7 and 6.8 for the not-parameterised (Zadeh and algebraic) and
parameterised (Dombi and Yager) H-functions, respectively. For experiment
(iv) the final values (after learning) of weights and

i = 1,...,9 , k = 1,...,2 , are depicted in Fig. 6.19 (Zadeh and algebraic
H-functions) and Fig. 6.20 (Dombi and Yager H-functions).
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6.8. SUMMARY AND DISCUSSION

In this chapter we studied the fuzzy inference characterized by the
simultaneous appearance of the Mamdani-type and the logical-type
reasoning. Three neuro-fuzzy structures have been developed based on the
flexibility parameters and weights described in Chapter 4. From simulations
given in Section 6.7 it follows that the incorporation of soft parameters

and improves the performance of basic neuro-fuzzy systems. The
best results are observed for neuro-fuzzy systems based on weighted
triangular norms.

6.9. PROBLEMS

Problem 6.1. Derive a compromise fuzzy implication based on the Yager
triangular norm.

Problem 6.2. Incorporate the Yager triangular norm to the construction of the
basic compromise neuro-fuzzy system.

Problem 6.3. Derive a compromise fuzzy implication based on the Larsen
inference and the Reichenbach fuzzy implication.
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Problem 6.4. Apply the compromise fuzzy implication derived in Problem
6.3 to the construction of the basic compromise neuro-fuzzy system.

Problem 6.5. Derive a compromise fuzzy implication based on the Larsen
inference and the binary fuzzy implication. Observe that in this problem
model (6.2) is not true, i.e. T and S are not dual triangular norms.

Problem 6.6. Apply the compromise fuzzy implication derived in Problem
6.5 to the construction of the soft compromise systems.

Problem 6.7. Apply the exponential operator [9, 45]

to construct a basic compromise NFIS.

Problem 6.8. Apply operator (6.62) to construct a soft compromise NFIS.

Problem 6.9. Apply operator (6.62) to construct a weighted compromise
NFIS.



Chapter 7

FLEXIBLE MAMDANI-TYPE NEURO-FUZZY
SYSTEMS

7.1. INTRODUCTION

In Chapter 5 we constructed OR-type flexible neuro-fuzzy systems
with quasi-implications

whereas in Chapter 6 we developed AND-type flexible neuro-fuzzy systems
with compromise reasoning

Setting v = 0 in model (7.1) or in model (7.2) we get the
Mamdani-type system. Therefore, for all the results (including
learning procedures) of Chapter 5 and 6 are applicable to the Mamdani-type
systems.

In this chapter we study the Mamdani-type systems from another perspective.
Our goal is to reveal the connectionist nature of these systems depending on
the functional form of used “engineering implications” (t-norms). We will
study various Mamdani-type architectures described in terms of “engineering
implications”.
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7.2. PROBLEM DESCRIPTION

As we mentioned in Section 5.5, the Mamdani-type system can be
expressed in terms of an H function:

The above description and corresponding neuro-fuzzy structures do not
reflect the functional form of a t-norm used for the antecedent-consequent
connection. Therefore our problem is to design a neuro-fuzzy system
realizing a mapping such that the fuzzy inference is described by
the “engineering implication” and the structure of the system explicitly
depends on the form of the t-norm serving as the “engineering implication”.
Moreover, we will incorporate certainty weights to the aggregation of rules
and connectives of antecedents. In simulations we also study the
Mamdani-type systems with soft triangular norms.

7.3. NEURO-FUZZY STRUCTURES

In case of weighted fuzzy systems, the firing strength of rules is
defined by

where is the weight of the i -th component of the input vector in the

k -th knowledge base rule and is defined by (4.7).

On the basis of the knowledge comprised in the rule-base and formulas
(3.14)-(3.16) we obtain individual fuzzy sets k = 1,..., N . Then we have
to aggregate them into one fuzzy set In case of the Mamdani approach,
the aggregation is carried out by (3.18) and (3.19), and in case of the
weighted aggregation we have

where is the weight of the k -th rule and is defined by (4.9).
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Combining (7.6) and (7.7) with (3.14) and (3.23), we obtain

Since “engineering implications” (3.14) used in the Mamdani approach are
described by t-norms, formula (7.8) takes the form

We will now further elaborate equation (7.8). Assuming that fuzzy sets
are normal, i.e.

and using the boundary condition of triangular norms T{a,1}= a , we get

Therefore, for we can rewrite (7.7) as follows

Consequently, combining equations (7.12) and (7.6) with (3.14) and (3.23),
equation (7.8) becomes

It will be convenient to use the following notation

and
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Using (7.14) we can rewrite (7.13) in the form

Mamdani (min) relation

Putting function (7.17) directly into (7.16), we obtain a formula describing
a neuro-fuzzy inference system with the Mamdani inference

Figure 7.1 shows the structure of the neuro-fuzzy system described by
formula (7.18).

Larsen (product) relation

Putting function (7.19) directly into (7.16), we obtain a formula describing
a neuro-fuzzy system with the Larsen inference
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Figure 7.2 shows the structure of the neuro-fuzzy system described by
formula (7.20).

Bounded product relation

Putting (7.21) directly into (7.16), we obtain a formula describing
a neuro-fuzzy inference system with the bounded product inference

Figure 7.3 shows the structure of the neuro-fuzzy system described by
formula (7.22).

Simplified Mamdani-type structures
The structures presented so far are quite complex and complicated. One
possibility of their simplification is to assume, that membership functions of
consequent fuzzy sets are sufficiently distant from each other, so that the
following assumption holds

for k, r = 1...N and . Figure 7.4 shows examples of such fuzzy sets.
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Combining assumption (7.23) with formula (7.13), we obtain the description
of simplified neuro-fuzzy systems based on “engineering implications”

Figure 7.5 shows the structure of a simplified neuro-fuzzy system described
by formula (7.24).
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7.4. SIMULATION RESULTS

(i)

(ii)

(iii)

In this section we present four simulations of Mamdani-type
neuro-fuzzy systems. We use benchmarks described in Sections 3.6. Each of
the four simulations is designed in the same fashion:

In the first experiment, based on the input-output data, we learn the
parameters of the membership functions.
In the second experiment, we learn the parameters of the membership
functions and soft parameters

In the third experiment, we learn the parameters of the membership
functions and, moreover, the weights i = 1 , . . . , n ,

k = 1 , . . . ,N , in the antecedents of rules and weights

k = l , . . . ,N , of the aggregation operator of rules. In all diagrams

(weights representation) we separate i = 1,.. . ,n ,

k = 1,..., N , from  k = 1,..., N , by a vertical dashed line.

In the fourth experiment, we learn the parameters of the membership
functions, soft parameters and the

weights i = 1, . . . ,n , k = 1 , . . . , N , in the antecedents of

rules and weights k = 1, ...,N , of the aggregation operator

of rules.

(iv)

The parameters and weights in experiments (i)-(iv) are determined by
gradient procedures presented in Section 5.8 (setting ) or in Section 6.7
(setting        ). In each simulation we apply two “engineering implications”
(t-norms) to connect antecedents and consequents: min (Mamdani) and
product (Larsen). In the case of the Mamdani connective the rules are
aggregated by the max t-conorm, in the case of the Larsen connective the
rules are aggregated by the algebraic t-conorm.
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Box and Jenkins Gas Furnace problem
The experimental results for the Box and Jenkins Gas Furnace problem are
depicted in Table 7.1. The final values (after learning) of weights

and  i = 1,...,6 , k = 1,...,4 , are shown in Fig. 7.6. Assuming min

inference, in Fig. 7.6-a.1 and 7.6-a.2 we present the results of experiments
(iii) and (iv) in Table 7.1, respectively. Analogous results for the product
inference are given in Fig. 7.6-b.1 and 7.6-b.2.



176 Flexible Neuro-Fuzzy Systems



Flexible Mamdani-type Neuro-Fuzzy Systems 177

Glass Identification problem
The experimental results for the Glass Identification problem are depicted in
Table 7.2. The final values (after learning) of weights and

i = 1,...,9 , k = 1,...,2 , are shown in Fig. 7.7. Assuming min

inference, in Fig. 7.7-a.1 and 7.7-a.2 we present the results of experiments
(iii) and (iv) in Table 7.2, respectively. Analogous results for the product
inference are given in Fig. 7.7-b.1 and 7.7-b.2.
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Modeling of Static Nonlinear Function (HANG) problem
The experimental results for the Modeling of the Static Nonlinear Function
problem are shown in Table 7.3. The final values (after learning) of weights

and  i = 1,.. . ,2 , k = 1,...,5 , are depicted in Fig. 7.8.

Assuming min inference, in Fig. 7.8-a.1 and 7.8-a.2 we present the results of
experiments (iii) and (iv) in Table 7.3, respectively. Analogous results for the
product inference are given in Fig. 7.8-b.1 and 7.8-b.2.
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Wisconsin Breast Cancer problem
The experimental results for the Wisconsin Breast Cancer problem are shown
in Table 7.4. The final values (after learning) of weights and

i = 1,...,9 , k = 1,...,2 , are depicted in Fig. 7.9. Assuming min

inference, in Fig. 7.9-a.1 and 7.9-a.2 we present the results of experiments
(iii) and (iv) in Table 7.4, respectively. Analogous results for the product
inference are given in Fig. 7.9-b.1 and 7.9-b.2.



182 Flexible Neuro-Fuzzy Systems



Flexible Mamdani-type Neuro-Fuzzy Systems 183

7.5. SUMMARY AND DISCUSSION

In this chapter we derived various weighted neuro-fuzzy structures
based on the Mamdani inference. We have also obtained a simplified
neuro-fuzzy structure assuming that membership functions of consequent
fuzzy sets are sufficiently distant from each other. From simulations in
Section 7.4 it follows that the incorporation of weights leads to a better
performance of fuzzy systems than the incorporation of soft parameters.
Their combination, i.e. weights+soft parameters, gives the best performance
of Mamdani-type neuro-fuzzy systems.

7.6. PROBLEMS

Problem 7.1. Replace defuzzifier (3.23) by

and derive the Mamdani-type system based on the Larsen relation.

Problem 7.2. Generalize solution of Problem 7.1 using a t-norm as an
“engineering implication”.

Problem 7.3. Show that defuzzifiers (3.23) and (7.25) lead to the same
description of the Mamdani-type system provided that assumption (7.23)
holds.

Problem 7.4. Incorporate weights to a fuzzy system derived in Problem 7.2
and compare the result with formula (7.24).

Problem 7.5. Incorporate softness to a fuzzy system derived in Problem 7.2.

Problem 7.6. Prove that under certain conditions fuzzy systems described by
formulas (3.23), (3.49) and (7.25) are functionally equivalent.
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Chapter 8

FLEXIBLE LOGICAL-TYPE NEURO-FUZZY
SYSTEMS

8.1. INTRODUCTION

Flexible logical-type neuro-fuzzy systems can be derived from the
OR-type systems (Chapter 5) or the AND-type systems (Chapter 6) setting
v = 0 or respectively. However, in this way we get the logical-type
system described by an S-implication only. In this chapter we do not want to
restrict the design process to an S-implication. We admit other fuzzy
implications listed in Table 2.1. Moreover, we will reveal the connectionist
nature of logical-type systems; each structure will reflect the actual fuzzy
implication used in the design process.

8.2. PROBLEM DESCRIPTION

It is easily seen that logical-type systems can be expressed in terms of
an H function:

The above description is applicable to systems with an S-implication only,
and it does not reflect the functional form of the fuzzy implication used for
the antecedent-consequent connection. Therefore our problem is to design
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a neuro-fuzzy system realizing a mapping such that the fuzzy

inference is described by the fuzzy implication and the structure of the
system explicitly depends on the functional form of that fuzzy implication.

Moreover, we will incorporate certainty weights to the aggregation of rules
and to the connectives of antecedents. In simulations we also study
logical-type systems with soft triangular norms.

8.3. NEURO-FUZZY STRUCTURES

In the logical-type model, the aggregation is carried out according to
formulas (3.20) and (3.21). The weighted aggregation is given by

where is the weight of the k -th rule.

Similarly to the Mamdani approach, to design a neuro-fuzzy system with
a weighted aggregation we use the defuzzification method described by
(3.23). Combining (8.4) and (7.6) with (3.14) and (3.23), we obtain the
following description of the system

The first group of implications used in the logical approach belongs to the
so-called S-implications given by

where S is a t-conorm. The binary, Reichenbach and Fodor
implications (see Table 2.1) belong to this group. Assuming that fuzzy sets

are normal, see condition (7.10), and using the boundary condition of
triangular norms S{a,1}= 1 , from (8.6) and (3.14) we obtain
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Hence, formula (8.4) for takes the following form

Consequently, formula (8.5) becomes

or

with notation (7.14).

Binary implication

Putting function (8.11) into (8.10), we obtain a formula describing the
neuro-fuzzy system with the binary inference

Figure 8.1 depicts the structure of the neuro-fuzzy system described by
formula (8.12).

implication
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Inserting function (8.13) directly into (8.10), we obtain a formula describing
the neuro-fuzzy system with the inference

Figure 8.2 depicts the structure of the neuro-fuzzy system described by
formula (8.14).

Reichenbach implication

Putting function (8.15) directly into (8.10), we obtain a formula describing
the neuro-fuzzy system with the probabilistic inference

Figure 8.3 depicts the structure of the neuro-fuzzy system described by
formula (8.16).

Fodor implication

Inserting function (8.17) directly into (8.10), we obtain a formula describing
the neuro-fuzzy system with the Fodor inference
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where

Figure 8.4 depicts the structure of the neuro-fuzzy system described by
formula (8.18).

We will now show that the Zadeh and Willmott implications
(see Table 2.1) lead to the same general description of corresponding
neuro-fuzzy systems. In this case assumption (7.10) regarding the normality
of fuzzy sets implies

Therefore, formula (8.4) for can be rewritten as follows

Combining formulas (8.21) and (7.6) with (3.23) we get the following
general description of the neuro-fuzzy system based on the Zadeh and
Willmott fuzzy implications
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Using notation (7.14), formula (8.22) can be rewritten in the form

A concrete form of (8.23) depends on the functional form of fuzzy
implication I(a,b). We will consider two cases.

Zadeh implication

Putting function (8.24) directly into (8.23), we obtain a formula describing
the neuro-fuzzy system with min inference
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Figure 8.5 depicts the structure of the neuro-fuzzy system described by
formula (8.25).

Willmott implication

Inserting function (8.26) directly into (8.23), we obtain a formula describing
the neuro-fuzzy system with the Willmott inference

Figure 8.6 depicts the structure of the neuro-fuzzy system described by
formula (8.27).

We will now consider neuro-fuzzy systems based on the Goguen,
Rescher, Gödel and Yager fuzzy implications given in Table 2.1. It is easily
seen that for these implications equation (8.7) is true and consequently
corresponding to them neuro-fuzzy systems are described by formula (8.10).
A concrete form of that formula depends on the fuzzy implication.
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Goguen implication

Assuming that a > 0 and putting function (8.28) into (8.10), we obtain
a formula describing the neuro-fuzzy system with the Goguen implication

Figure 8.7 depicts the structure of the neuro-fuzzy system described by
formula (8.29).

Rescher implication

Using (8.19) formula (8.30) can be rewritten in the form

Inserting function (8.31) directly into (8.10), we obtain a formula describing
the neuro-fuzzy system with the Rescher implication.

Figure 8.8 depicts the structure of the neuro-fuzzy system described by
formula (8.32).

Gödel implication

Putting function (8.33) directly into (8.10) and using (8.19), we obtain
a formula describing the neuro-fuzzy system with the Gödel implication
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Figure 8.9 depicts the structure of the neuro-fuzzy system described by
formula (8.34).

Yager implication

Inserting function (8.35) directly into (8.10), we obtain a formula describing
the neuro-fuzzy system with the Yager implication

Figure 8.10 depicts the structure of the neuro-fuzzy system described by
formula (8.36).

Simplified structures
Similarly to the Mamdani approach, it is also possible to propose
a simplification of aforementioned structures in case of the logical approach.
Observe that under assumption (7.23), equation (8.6) takes the form

which boils down formula (8.10) to

In this way we have obtained a neuro-fuzzy system description which
employs connectives being S-implications. Figure 8.11 depicts the structure
of the neuro-fuzzy system described by formula (8.38).
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In case of the Zadeh and Willmott implications, assumption (7.23) also leads
to equation (8.37). Therefore, formula (8.23) takes the form

for the Zadeh and Willmot implications. Figure 8.12 depicts the structure of
the neuro-fuzzy system described by formula (8.39).

In case of the Goguen, Rescher, Gödel and Yager fuzzy implications,
assumption (7.23) reduces their functional forms to the following

which is convenient to write down as

where symbol means binary operator defined by

Finally, using (8.10) and the above notation we get

which is a description of the neuro-fuzzy system based on the Goguen,
Rescher, Gödel and Yager fuzzy implications. Figure 8.13 depicts the
structure of the neuro-fuzzy system described by formula (8.43).
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8.4. SIMULATION RESULTS

In this section we present four simulations of logical-type neuro-fuzzy
systems. We use benchmarks described in Sections 3.6. Each of the four
simulations is designed in the same fashion:
(i)

(ii)

In the first experiment, based on the input-output data, we learn the
parameters of the membership functions.
In the second experiment, we learn the parameters of the membership
functions, and soft parameters

In the third experiment, we learn the parameters of the membership
functions and, moreover, the weights i = 1,…, n ,

k = 1,…, N , in the antecedents of rules and weights

k = 1,…, N , of the aggregation operator of the rules. In all diagrams

(weights representation) we separate i = 1,…, n ,

k = 1,..., N , from k = 1,..., N , by a vertical dashed line.

In the fourth experiment, we learn the parameters of the membership
functions, soft parameters and the

weights i = 1,…, n , k = 1,…, N , in the antecedents of

rules and weights k = 1,…, N , of the aggregation operator

of the rules.

(iii)

(iv)

In each simulation we apply six fuzzy implications to connect antecedents
and consequents:
a)
b)
c)

two S-implications: Kleene-Dienes and Reichenbach;
two R-implications: Gödel and Goguen;
two Q-implications: Zadeh and Q-algebraic given by (2.89) with min
and algebraic t-norms, respectively.

In the case of the Kleene-Dienes, Gödel and Zadeh implications the rules are
aggregated by the min t-norm, in the case of the Reichenbach, Goguen and
Q-algebraic implications the rules are aggregated by the algebraic t-norm.

The parameters and weights in experiments (i)-(iv) based on S-implications
are determined by gradient procedures presented in Section 5.8 (setting

) or in Section 6.7 (setting ). In case of the R-implications and the
Q-implications a slight modification of those procedures is required
(see Problem 8.7). Moreover, in case of the R-implications the softness idea
is incorporated heuristically as a combination (controlled by parameter )
of the Goguen or Gödel fuzzy implications with the average of arguments
1 – a and b of the Kleene-Dienes implication.



respectively. The final values (after learning) of weights and

i = 1,…,6 , k = 1,…,4 , are shown in Fig. 8.14, 8.15, and 8.16 for

the S, R, and Q fuzzy implications, respectively. Assuming the
Kleene-Dienes implication, in Fig. 8.14-a.1 and 8.14-a.2 we present the
results of experiments (iii) and (iv) in Table 8.1, respectively. Analogous
results for the Reichenbach inference are given in Fig. 8.14-b.1 and 8.14-b.2.
In Fig. 8.15 and Table 8.2 and Fig. 8.16 and Table 8.3 we show simulation
results for the R and Q implications, respectively.
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Box and Jenkins Gas Furnace problem
The experimental results for the Box and Jenkins Gas Furnace problem are
depicted in Tables 8.1, 8.2, and 8.3 for the S, R, and Q fuzzy implications,
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The experimental results for the Glass Identification problem are depicted in
Tables 8.4, 8.5, and 8.6 for the S, R, and Q fuzzy implications, respectively.
The final values (after learning) of weights and

i = 1,…,9 , k = 1,…,2 , are shown in Fig. 8.17, 8.18, and 8.19 for the S, R,

and Q fuzzy implications, respectively. Assuming the Kleene-Dienes
implication, in Fig. 8.17-a.1 and 8.17-a.2 we present the results of
experiments (iii) and (iv) in Table 8.4, respectively. Analogous results for the
Reichenbach inference are given in Fig. 8.17-b.1 and 8.17-b.2. In Fig. 8.18
and Table 8.5 and Fig. 8.19 and Table 8.6 we illustrate simulation results for
the R and Q implications, respectively.

Glass Identification problem
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and i = 1,…,2 , k = 1,…,5 , are depicted in Fig. 8.20,

8.21, and 8.22 for the S, R, and Q fuzzy implications, respectively. Assuming
the Kleene-Dienes implication, in Fig. 8.20-a.1 and 8.20-a.2 we present the
results of experiments (iii) and (iv) in Table 8.7, respectively. Analogous
results for the Reichenbach inference are given in Fig. 8.20-b.1 and 8.20-b.2.
In Fig. 8.21 and Table 8.8 and Fig. 8.22 and Table 8.9 we illustrate
simulation results for the R and Q implications, respectively.

Modeling of Static Nonlinear Function (HANG) problem
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The experimental results for the Modeling of the Static Nonlinear Function
problem are shown in Tables 8.7, 8.8, and 8.9 for the S, R, and Q fuzzy
implications, respectively. The final values (after learning) of weights
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The experimental results for the Wisconsin Breast Cancer problem are shown
in Tables 8.10, 8.11, and 8.12 for the S, R, and Q fuzzy implications,
respectively. The final values (after learning) of weights and

i = 1,…,9 , k = 1,…,2 , are depicted in Fig. 8.23, 8.24, and 8.25

for the S, R, and Q fuzzy implications, respectively. Assuming the
Kleene-Dienes implication, in Fig. 8.23-a.1 and 8.23-a.2 we present the
results of experiments (iii) and (iv) in Table 8.10, respectively. Analogous
results for the Reichenbach inference are given in Fig. 8.23-b.1 and 8.23-b.2.
In Fig. 8.24 and Table 8.11 and Fig. 8.25 and Table 8.12 we depict
simulation results for the R and Q implications, respectively.

Wisconsin Breast Cancer problem
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In this chapter we derived various weighted neuro-fuzzy logical-type
structures based on the binary, Reichenbach, Fodor, Zadeh,
Willmott, Goguen, Rescher, Gödel and Yager fuzzy implications.
Analogously to the Mamdani approach, we have also obtained simplified
neuro-fuzzy structures assuming that condition (7.23) holds. The
membership function parameters and weights are determined in the process
of learning. In simulations we have also incorporated and learned soft
parameters which slightly improve the performance of neuro-fuzzy systems.
Again the incorporation of weights and soft parameters gives the best
accuracy of all systems.

8.6. PROBLEMS

8.5. SUMMARY AND DISCUSSION
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Problem 8.1. Replace defuzzifier (3.23) by (3.56) and derive a logical fuzzy
system based on the binary implication (see [15] for details).

Problem 8.2. Solve Problem 8.1 assuming that a logical fuzzy system is
based on the Reichenbach implication.

rule (3.9) depend on crisp inputs (see [15] for details).

Problem 8.4. Incorporate weights to a fuzzy system derived in Problem 8.1.

Problem 8.5. Derive a flexible logical-type neuro-fuzzy system based on the
Dubois-Prade fuzzy implication given by

Problem 8.6. Derive a simplified neuro-fuzzy structure based on fuzzy
implication (8.44).

Problem 8.7. Derive learning algorithms for logical systems based on R and
Q-implications.

Problem 8.3. Solve Problem 8.1 assuming that fuzzy sets k = 1,…, N ,in
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Chapter 9

PERFORMANCE COMPARISON
OF NEURO-FUZZY SYSTEMS

9.1. INTRODUCTION

In the book we have studied various flexible neuro-fuzzy systems.
Their performance was evaluated based on 14 typical benchmarks given in
Table 3.2 (see Section 3.6). However, because of the space limitation, we
have presented in Chapters 5-8 the results of only four simulations, namely:

Box and Jenkins Gas Furnace (approximation problem),
Glass Identification (classification problem),
Modeling of Static Nonlinear Function (approximation problem),
Wisconsin Breast Cancer (classification problem).

In this chapter we show comparison charts for all the 14 simulations. The
following neuro-fuzzy structures have been examined and compared:
a)
b)
c)
d)
e)
f)
g)
h)

Mamdani-type systems with min and product inferences,
Logical-type systems with S-implications,
Logical-type systems with R-implications,
Logical-type systems with Q-implications,
OR-type systems with standard triangular norms,
OR-type systems with parameterized triangular norms,
AND-type systems with standard triangular norms,
AND-type systems with parameterized triangular norms.

In each case weights and i = 1,...,n , k = 1,...,N , and/or softening

parameters and have been incorporated into the construction of
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neuro-fuzzy systems. The initial values of parameters of membership
functions have been determined by making use of the Fuzzy C-Means
algorithm (see e.g. [15, 74]).

9.2. COMPARISON CHARTS

In this section we compare the performance of various neuro-fuzzy
structures. For each of the 14 benchmarks given in Table 3.2 we present
comparison charts (Fig. 9.1-9.14) and comparison tables (Tables 9.1-9.14). In
Figures 9.1-9.14 the best results (the minimum of the RMSE or the minimum
number of mistakes) of applied neuro-fuzzy structures are indicated.

Box and Jenkins Gas Furnace problem
The comparison chart and the comparison table for the Box and Jenkins Gas
Furnace problem are shown in Fig. 9.1 and Table 9.1, respectively. The best
result 0.2407 is achieved for the weighted flexible OR-type neuro-fuzzy
system (Section 5.7) with the H-function generated by the algebraic
triangular norms.



Performance Comparison of Neuro-Fuzzy Systems 237

Chemical Plant problem
The comparison chart and the comparison table for the Chemical Plant
problem are shown in Fig. 9.2 and Table 9.2, respectively. The best result
0.0042 is obtained for the weighted compromise system (Section 6.5) with
the algebraic t-norm. A very similar results 0.0044 is achieved for the
weighted flexible systems (Section 5.7) with the H-function generated by the
algebraic triangular norms.
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Glass Identification problem
The comparison chart and the comparison table for the Glass Identification
problem are shown in Fig. 9.3 and Table 9.3, respectively. The best result
98.44% is achieved for the following systems:

weighted compromise system (Section 6.5) with the Zadeh, algebraic,
Dombi and Yager triangular norms,
soft compromise system (Section 6.4) with the Zadeh, Dombi and
Yager triangular norms,
weighted flexible system (Section 5.7) with the H-function generated
by the Zadeh, algebraic, Yager and Dombi triangular norms,
soft flexible system (Section 5.6) with the H-function generated by the
Dombi and Yager triangular norms,
Mamdani-type system (Section 7.3) with the min and product
“engineering implications”,
Logical-type system (Section 8.3) with the Kleene-Dienes and
Reichenbach fuzzy implications.
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Ionosphere problem
The comparison chart and the comparison table for the Ionosphere problem
are shown in Fig. 9.4 and Table 9.4, respectively. The best result 94.29 is
achieved for the following neuro-fuzzy systems:

weighted flexible system (Section 5.7) with the H-function generated
by algebraic triangular norms,
weighted compromise system (Section 6.5) with the algebraic
triangular norms.
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Iris problem
The comparison chart and the comparison table for the Iris problem are
shown in Fig. 9.5 and Table 9.5, respectively. The best result 97.78% is
obtained for the following systems:

weighted flexible system (Section 5.7) with the H-function generated
by the Dombi and Yager triangular norms,
weighted compromise system (Section 6.5) with the Dombi and Yager
triangular norms.
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Modeling of Static Nonlinear Function (HANG) problem
The comparison chart and the comparison table for the Modeling of Static
Nonlinear Function problem are shown in Fig. 9.6 and Table 9.6,
respectively. The best result 0.0485 is achieved for the weighted flexible
system (Section 5.7) with the H-function generated by the algebraic
triangular norms.
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The Three Monk’s problems
The comparison chart and the comparison table for the Three Monk’s
problems are shown in Fig. 9.8-9.10 and Tables 9.8-9.10, respectively. For
the Monk1 problem the best result 100% is achieved for the following
systems:

weighted flexible system (Section 5.7) with the H-function generated
by the Dombi, Yager and algebraic triangular norms,
weighted compromise system (Section 6.5) with the Dombi, Yager and
algebraic triangular norms,
Mamdani-type system (Section 7.3) with the algebraic triangular
norms.

For the Monk2 problem the best result 100% is obtained for the following
systems:

weighted flexible system (Section 5.7) with the H-function generated
by the Dombi and Yager triangular norms,
weighted compromise system (Section 6.5) with the Dombi and Yager
triangular norms.

For the Monk3 problem the best result 100% is obtained for the same
systems as in the case of the Monk1 problem.
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Nonlinear Dynamic Plant problem
The comparison chart and the comparison table for the Nonlinear Dynamic
Plant problem are shown in Fig. 9.10 and Table 9.10, respectively. The best
result 0.0101 is achieved for the weighted compromise system (Section 6.5)
with the algebraic triangular norms. A similar result 0.0107 is obtained for
the weighted flexible system (Section 5.7) with the H-function generated by
the algebraic triangular norms.
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Pima Indians Diabetes problem
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The comparison chart and the comparison table for the Pima Indians
Diabetes problem are shown in Fig. 9.11 and Table 9.11, respectively. The
best result 80.2% is achieved for the weighted compromise system
(Section 6.5) with the Yager triangular norms.

Rice Taste problem
The comparison chart and the comparison table for the Rice Taste problem
are shown in Fig. 9.12 and Table 9.12, respectively. The best result 0.0369 is
obtained for the weighted compromise system (Section 6.5) with the Zadeh
triangular norms.
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Wine Recognition problem
The comparison chart and the comparison table for the Wine Recognition
problem are shown in Fig. 9.13 and Table 9.13, respectively. The best result
100% is achieved for the following systems:

weighted flexible system (Section 5.7) with the H-function generated
by the Zadeh, Yager, Dombi and algebraic triangular norms,
soft flexible system (Section 5.6) with the Zadeh, Yager, Dombi and
algebraic triangular norms,
weighted compromise system (Section 6.5) with the Zadeh, Yager,
Dombi and algebraic triangular norms,
soft compromise system (Section 6.4) with the Zadeh, Yager, Dombi
and algebraic triangular norms,
logical-type system (Section 8.3) with the Reichenbach implication.

The comparison chart and the comparison table for the Wisconsin Breast
Cancer problem are shown in Fig. 9.14 and Table 9.14, respectively. The best
result 98.5% is obtained for the following systems:

weighted flexible system (Section 5.7) with the H-function generated
by the Zadeh, Yager, Dombi and algebraic triangular norms,
weighted compromise system (Section 6.5) with the Zadeh, Yager,
Dombi and algebraic triangular norms,
Mamdani-type system (Section 7.3) with the min and product
“engineering implications”,
logical-type system (Section 8.3) with the Kleene-Dienes and
Reichenbach implications.
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Wisconsin Breast Cancer problem
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9.3. SUMMARY AND DISCUSSION

In this book we proposed a new class of operators called
quasi-triangular norms. The operators have been applied to design a new
class of neuro-fuzzy systems. At the design stage we do not assume
a concrete form of fuzzy inference. Therefore, we applied H-operators and
trained flexible neuro-fuzzy systems. For the first time in literature the
inference of neuro-fuzzy systems has been established in the process of
learning: either the Mamdani-type represented by a t-norm or the logical-type
represented by an S-implication. When the learning process is finished, the
trained neuro-fuzzy systems based on H-operators take simpler forms based
on t-norms or t-conorms. In Chapters 5-8 we derived and tested various new
neuro-fuzzy structures. They are characterized as follows:
(i)

(ii)

(iii)

(iv)

The OR-type system is “more Mamdani” or “more
logical” In the process of learning only one type of
system is established (      or ).
The AND-type system is a combination, controlled by parameter

of Mamdani-type and logical-type systems. In the process of
learning only one type of system is established or
The OR-type is equivalent to the AND-type system if
(Mamdani-type) or (logical-type).
Parameters     and     after learning do not take any value in the
interval (0,1) because only for or systems
presented in Chapters 5 and 6 are defined by triangular norms.
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(v) Comparing various neuro-fuzzy systems presented in Chapters 5, 7
and 8 we see that when parameter in the OR-type system (Chapter
5) takes the final value equal 0 (the system is of a Mamdani-type) then
the performance (RMSE or mistakes [%]) of the Mamdani-type system
presented in Chapter 7 is better than the performance of the
logical-type system presented in Chapter 8. This fact is illustrated in
Table 9.15 on the HANG problem.

Similarly, when parameter in the OR-type system (Chapter 5) takes
the final value equal 1 (the system is of a logical-type) then the
performance (RMSE or mistakes [%]) of the logical-type system
presented in Chapter 8 is better than the performance of the
Mamdani-type system given in Chapter 7. This fact is illustrated in
Table 9.16 on the Ionosphere problem.

This confirms that the OR-type neuro-fuzzy systems produce in the
process of learning a correct system type. The same conclusion can be
drawn analysing the performance of the AND-type system.
The most influential parameters are certainty weights

i = 1 , . . . ,n , k = 1 , . . . ,N and k =1 , . . . ,N . They

significantly improve the performance of the system in the process of
learning.
The influence of soft parameters on

the performance of the system varies depending on the problem. In
many cases soft parameters improve the performance of neuro-fuzzy
systems even if certainty weights are not simultaneously used.

(vi)

(vii)
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(viii)

(ix)

(x)

The Dombi and Yager parameterised triangular norms sometimes
improve the performance of neuro-fuzzy systems because they have
additional parameters to be tuned during the learning process.
The best results are obtained for neuro-fuzzy systems based on all the
flexibility parameters described in Chapter 4. The weighted flexible
systems (Section 5.7) and the weighted compromise systems
(Section 6.5) are superior to other systems in most cases.
In most cases neuro-fuzzy systems based on S-implications give better
results than R and Q-implications.

As we have mentioned, the OR-type systems, presented in Chapter 5, and the
AND-type systems, presented in Chapter 6, produce the same type of
inference (Mamdani or logical) in the process of learning. From simulations
it follows that (see Table 9.17):
a)

b)

Neuro-fuzzy systems presented in Chapters 5 and 6 become of the
Mamdani-type for examples 1, 2, 6, 7, 8, 9, 10, 12.
Neuro-fuzzy systems presented in Chapters 5 and 6 become of the
logical-type for examples 3, 4, 5, 11, 13, 14.

We conclude that the Mamdani-type systems are more suitable to
approximation problems, whereas the logical-type systems may be preferred
for classification problems.
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It would be interesting to verify if flexible neuro-fuzzy systems studied in
this book are universal approximators (see [46, 47, 100, 102]) which are
capable of uniformly approximating any nonlinear function over to
any degree of accuracy if U is a compact set. It is well known that the
Mamdani-type systems are universal approximators (see e.g. [100]). On the
other hand, it has been stated (see [47], page 140) that generalizations of the
standard fuzzy rule based modeling methodology have a universal
approximation property. This explains a very good performance of flexible
Mamdani-type neuro-fuzzy systems studied in this book. The universal
approximation property for logical neuro-fuzzy systems remains an open
problem.

Another convergence property is possessed by probabilistic neural
networks [77, 78, 79, 86, 87, 88] applied to system modeling and
classification. In the future research it would be also interesting to investigate
relations between flexible neuro-fuzzy systems and probabilistic neural
networks. It has been observed in [100] that Mamdani-type neuro-fuzzy
systems are functionally very similar to probabilistic neural networks.



Appendix

In this Appendix we show derivative operators necessary to derive
learning procedures for neuro-fuzzy structures presented in Chapters 5 and 6.

a) Basic operators

Addition operator

Multiplication operator

Division operator
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Minimum operator

Maximum operator

Compromise operator

Arithmetic average operator

Aggregation operator
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Defuzzifier operator

b) Membership functions

Gaussian membership function

Triangular membership function
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c) Constraints

Constraint for parameters

i = 1,…, n , k  = 1,…, N , k = 1,…, N ,
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Constraint for parameters

d) H-functions

Argument of the H-function (given by (5.48))
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The Zadeh H-function with weighted arguments

where

The algebraic H-function with weighted arguments

where
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The Dombi H-function with weighted arguments

where
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The Yager H-function with weighted arguments

where
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