Part I
INTRODUCTION

Fuzziness is not a priori an obvious concept and demands some explana-
tion. “Fuzziness” is what Black (NF 1937) calls “vaguenésshen he
distinguishes it from “generality” and from “ambiguity.” Generalizing
refers to the application of a symbol to a multiplicity of objects in the field
of reference, ambiguity to the association of a finite number of alternative
meanings having the same phonetic form. But, the fuzziness of a symbol
lies in the lack of well-defined boundaries of the set of objects to which
this symbol applies.

More specifically, letX be a field of reference, also called a universe of
discourse or universe for short, covering a definite range of objects.
Consider a subseA where transition between membership and nonmem-
bership is gradual rather than abrupt. This “fuzzy subset” obviously has no
well-defined boundaries. Fuzzy classes of objects are often encountered in
real life. For instanceA may be the set of tall men in a communiy
Usually, there are members of who are definitely tall, others who are
definitely not tall, but there exist also borderline cases. Traditionally, the
grade of membership 1 is assigned to the objects that completely belong to
A—here the men who are definitely tall; conversely the objects that do not
belong toA at all are assigned a membership value 0. Quite naturally, the
grades of membership of the borderline cases lie between 0 and 1. The

T However, it must be noticed that Zadeh (1977a) [Reference from 1V.2] has used the word
“vagueness” to designate the kind of uncertainty whichb@h due to fuzziness and
ambiguity.
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more an element or objest belongs toA, the closer to 1 is its grade of
membershipp;(x). The use of a numerical scale such as the interval [0, 1]
allows a convenient representation of the gradation in membership. Precise
membership values do not exist by themselves, they are tendency indices
that are subjectively assigned by an individual or a group. Moreover, they
are context-dependent. The grades of membership reflect an “ordering” of
the objects in the universe, induced by the predicate associated\witls
“ordering,” when it exists, is more important than the membership values
themselves. The membership assessment of objects can sometimes be made
easier by the use of a similarity measure with respect to an ideal element.
Note that a membership valyg(x) can be interpreted as the degree of
compatibility of the predicate associated wi#hand the objectx. For
concepts such as “tallness,” related to a physical measurement scale, the
assignment of membership values will often be less controversial than for
more complex and subjective concepts such as “beauty.”

The above approach, developed by Zadeh (1964), provides a tool for
modeling human-centered systems (Zadeh, 1973). As a matter of fact,
fuzziness seems to pervade most human perception and thinking processes.
Parikh (1977) has pointed out that no nontrivial first-order-logic-like
observational predicate (i.e., one pertaining to perception) can be defined
on an observationally connected spadbe only possible observational
predicates on such a space are not classical predicates but “vague” ones.
Moreover, according to Zadeh (1973), one of the most important facets of
human thinking is the ability to summarize information “into labels of
fuzzy sets which bear an approximate relation to the primary data.”
Linguistic descriptions, which are usually summary descriptions of com-
plex situations, are fuzzy in essence.

It must be noticed that fuzziness differs from imprecision. In tolerance
analysis imprecision refers to lack of knowledge about the value of a
parameter and is thus expressed as a crisp tolerance interval. This interval
is the set of possible values of the parameters. Fuzziness occurs when the
interval has no sharp boundaries, i.e., is a fuzzyﬁseThen,/JA(x) is
interpreted as the degree of possibility (Zadeh, 1978) xhatthe value of
the parameter fuzzily restricted iy

The wordfuzzinesshas also been used by Sugeno (1977) in a radically
different context. Consider an arbitrary objecof the universeX; to each
nonfuzzy subsef of X is assigned a valug (A) € [0, 1] expressing the

T Let o > 0. A metric space is-connected if it cannot be split into two disjoint nonempty
ordinary subset®A and B such thatVx € A, Vy € B, d(x,y) = a, whered is a distance. A
metric space is observationally connected if itoiconnected for somer smaller than the
perception threshold.
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“grade of fuzziness” of the statememnt belongs toA.” In fact this grade

of fuzziness must be understood as a gradeeofainty according to the
mathematical definition ofy, g (A) can be interpreted as the probability,
the degree of subjective belief, the possibility, thatbelongs toA.
Generally,g is assumed increasing in the sense of set inclusion, but not
necessarily additive as in the probabilistic case. The situation modeled by
Sugeno is more a matter of guessing whetherA rather than a problem

of vagueness in the sense of Zadeh. The existence of two different points of
view on “fuzziness” has been pointed out by MacVicar-Whelan (1977) and
Skala (Reference from IIl.1). The monotonicity assumptiongaseems to

be more consistent with human guessing than does the additivity assump-
tion. Moreover, grades of certainty can be assigned to fuzzy subsst

owing to the notion of a fuzzy integral (see I.5.A.b). For instance, seeing a
piece of Indian pottery in a shop, we may try to guess whether it is genuine
or counterfeit; obviously, genuineness is not a fuzzy conceps the
Indian pottery;A is the crisp set of genuine Indian artifacts; ag(A)
expresses, for instance, a subjective belief that the pottery is indeed
genuine. The situation is slightly more complicated when we try to guess
whether the pottery is old: actually, the gebf old Indian pottery is fuzzy
because “old” is a vague predicate.

It will be shown in 1ll.1 that the logic underlying fuzzy set theory is
multivalent. Multivalent logic can be viewed as a calculus either on the
level of credibility of propositions or on the truth values of propositions
involving fuzzy predicates. In most multivalent logics there is no longer an
excluded-middle law; this situation may be interpreted as either the ab-
sence of decisive belief in one of the sides of an alternative or the
overlapping of antonymous fuzzy concepts (e.g., “short” and “tall”).

Contrasting with multivalent logics, a fuzzy logic has been recently
introduced by Bellman and Zadeh (Reference from 1I1.1). “Fuzzy logic
differs from conventional logical systems in that it aims at providing a
model for approximate rather than precise reasoning.” In fuzzy logic what
matters is not necessarily the calculation of the absolute (pointwise) truth
values of propositions; on the contrary, a fuzzy proposition induces a
possibility distribution over a universe of discourse. Truth becomes a
relative notion, and “true,” is a fuzzy predicate in the same sense as, for
instance, “tall.”

As an example, consider the proposition “John is a tall man.” It can be
understood in several ways. First, if the universe is a set of men including
John and the set of tall men is a known fuzzy/sethen the truth-value of
the proposition “John is a tall man” jg,(John). Another situation consists
in guessing whether John, about whom only indirect information is avail-
able, is a tall man; the degree of certainty of the proposition is expressed
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by gJohn(A). In contrast, in fuzzy logic we take the proposition “John is a
tall man” as assumed, and we are interested in determining the informa-
tion it conveys. “Tall” is then in a universe of heights a known fuzzy set
that fuzzily restricts John’'s height. In other words, “John is a tall man”
translates into a possibility distributiom=u_. Thenu_(h) gives a value

to the possibility that John’s height is equal o The possibility that
John’s height lies in the intervad,[b] is easily calculated as

Oamfl 2 DD = sup (),
ashs<b

as explained in 11.5.B. It can also be verified, using a fuzzy integral, that
g, (tall) =1, when “tall” is normalized (see Il.1.A). This is consistent
with taking the proposition “John is a tall man” as assumed.

One of the appealing features of fuzzy logic is its ability to deal with
approximate causal inferences. Given an inference scheme, ‘tifien Q”
involving fuzzy propositions, it is possible from a propositiBh that
matches only approximatell?, to deduce a propositioQ" approximately
similar to Q, through a logical interpolation called “generalized modus
ponens.” Such an inference is impossible in ordinary logical systems.

APPENDIX: SOME HISTORICAL AND BIBLIOGRAPHICAL REMARKS

Fuzzy set theory was initiated by Zadeh in the early 1960s (1964; see
also Bellmanel al., 1964). However, the terransemble floa posteriori the
French counterpart ofuzzy set)was coined by Menger (1951) in 1951.
Menger explicitly used a “max-product” transitive fuzzy relation (see
11.3.B.c.f), but with a probabilistic interpretation. On a semantic level
Zadeh's theory is more closely related to Black's work on vagueness
(Black, NF 1937), where “consistency profiles” (the ancestors of fuzzy
membership functions) “characterize vague symbols.”

Since 1965, fuzzy set theory has been considerably developed by Zadeh
himself and some 300 researchers. This theory has begun to be applied in a
wide range of scientific areas.

There have already been two monographs on fuzzy set theory published:
a tutorial treatise in several volumes by Kaufmann (1973, 1975a, b, 1977;
and others in preparation) and a mathematically oriented concise book by
Negoita and Ralescu (1975). There are also two collections of papers
edited by Zadelet al. (1975) and Gupta&t al. (1977).

Apart from Zadeh's excellent papers, other introductory articles are
those of Gusev and Smirnova (1973), Ponsard (Reference from I1.1),
Ragade and Gupta (Reference from Il.1), and Kandel and Byatt (1978).
Rationales and discussions can also be found in Chang (1972), Ponsard
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(1975), Sinaceur (1978), Gale (1975), Watanabe (1969, 1975), and Aizer-
man (1977).

Several bibliographies on fuzzy sets are available in the literature,
namely, those of De Kerf (1975), Kandel and Davis (1976), Gaines and
Kohout (1977), and Kaufmann (1979).
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Part I I

MATHEMATICAL TOOLS

This part is devoted to an extensive presentation of the mathematical
notions that have been introduced in the framework of fuzzy set theory.

Chapter 1 provides the basic definitions of various kinds of fuzzy sets,
set-theoretic operations, and properties. Lastly, measures of fuzziness are
described.

Chapter 2 introduces a very general principle of fuzzy set theory: the
so-called extension principle. It allows one to “fuzzify” any domain of
mathematics based on set theory. This principle is then applied to alge-
braic operations and is used to define set-theoretic operations for higher
order fuzzy sets.

Chapter 3 develops the extensive theory of fuzzy relations.

Chapter 4 is a survey of different kinds of fuzzy functions. The extre-
mum over a fuzzy domain and integration and differentiation of fuzzy
functions of a real variable are emphasized. Fuzzy topology is also out-
lined. Categories of fuzzy objects are sketched.

Chapter 5 presents Sugeno’s theory of fuzzy measures. In this chapter
the link between such topics as probabilities, possibilities, and belief
functions is pointed out.
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Chapter 1
FUZZY SETS

This chapter deals with naive set theory when membership is no longer
an all-or-nothing notion. There is no unique way to build such a theory.
But, all the alternative approaches presented here include ordinary set
theory as a particular case. However, Zadeh's fuzzy set theory may appear
to be the most intuitive among them, although such concepts as inclusion
or set equality may seem too strict in this particular framework—many
relaxed versions exist as will be shown. Usually the structures embedded in
fuzzy set theories are less rich than the Boolean lattice of classical set
theory. Moreover, there is also some arbitrariness in the choice of the
valuation set for the elements: the real interval [0, 1] is the most commonly
used, but other choices are possible and even worth considering: these are
summarized under the label-fuzzy sets.” Fuzzy structured sets, such as
fuzzy groups and convex fuzzy sets, are also presented. Lastly, a survey of
scalar measures of fuzziness is provided.

A. DEFINITIONS

Let X be a classical set of objects, called threverse,whose generic
elements are denoted Membership in a classical subsktof X is often
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viewed as a characteristic functiom, from X to {0, 1} such that

(= i XDA
HA = if xOA

(N.B.:  “iff” is short for “if and only if.”)
{0, 1} is called avaluation set.

If the valuation set is allowed to be the real interval [0,Al]s called a
fuzzy set(Zadeh, 1965).u,(x) is the grade of membership &fin A. The
closer the value of.,(X) is to 1, the morex belongs toA. Clearly, A is a
subset ofX that has no sharp boundary.

A is completely characterized by the set of pairs

A={(x ua(x)). x OX}. (1)

A more convenient notation was proposed by Zadeh (Reference from II.2,
1972). WhenX is a finite set X, . . . ,x }, a fuzzy set onX is expressed as

A=uA(x1)/x1+~~+uA(Xn)/Xn=ZuA(x)/&- (2)

When X is not finite, we write

A:IX/JA(X)/ X. (3)
Two fuzzy setsA and B are said to bequal (denotedA = B) iff

OXOX, 1a(%) = (X)

Remarks 1 A fuzzy set is actually a generalizedbsetof a classical set,
as pointed out by Kaufmann. However, we keep the term “fuzzy set” for
the sake of convenience.

2 What we call a universe is never fuzzy.

The supportof a fuzzy setA is the ordinary subset of:
supp A={xOX, u,(x)>0}.

The elements ok such thati,(x) = are thecrossover pointef A. The

height of A is hgt@) = Sup,xHa(X), i.e., the least upper bound pf(X).
A is said to benormalizediff [IX X, u,(X) = 1; this definition implies
hgt(A) = 1. Theempty setd is defined asUXxUX,u,(x) = O; of course,
VX, m (X)) = 1.

N.B.: Elements with null membership can be omitted in Eq. (2). Using
this convention, (2) can be extended to represent finite support fuzzy sets.
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Examples 1 X =N ={positive integers}. Let
A=01/7+05/8+08/9+10/10+ 0.8/11 + 0.5/12 + 0.1/13.

A is a fuzzy set of integers approximately equal to 10.
2 X =R = {real numbers}. Let

1 . 1

=, i.e., A= ————/x
1+[;gx—105]

Ha(x) Rl+[;9(_10%]

A is a fuzzy set of real numbers clustered around 10.

B. SET-THEORETIC OPERATIONS

a. Union and Intersection of Fuzzy Sets

The classical union) and intersection(j) of ordinary subsets oK
can be extended by the following formulas, proposed by Zadeh (1965):

OXOX,  Hans(X) = max(p,(x), p(x)), (4)

OXOX,  Hag(x) = min(pa(x), Hg(x)), (5)

where u, . andu, . are respectively the membership functions oUAB
andA N B.

These formulas give the usual union and intersection when the valuation
set is reduced to {0, 1}. Obviously, there are other extensions ahd N
coinciding with the binary operators.

A Jjustification of the choice of max and min was given by Bellman and
Giertz (1973): max and min are the only operato@nd g that meet the
following requirements:

() The membership value of in a compound fuzzy set depends on the
membership value ok in the elementary fuzzy sets that form it, but
not on anything else:

OxOX, :uADB(X) = f(l“lA(X)1 IJB(X’))
Hans(X) = 0(a(X), (X)),

(i) f and g are commutative, associative, and mutually distributive
operators.
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(i) f and g are continuous and nondecreasing with respect to each of
their arguments. Intuitively, the membership »fin A U B or
A N B cannot decrease when the membershipxah A or B
increases. A small increase pf(x) or u,(x) cannot induce a strong
increase ofu,  4(X) or u, . (X).

(iv) f(u, U) and g(@, u) are strictly increasing. Ift,(X) = uy(x) > w,(x)
= ug(X,), then the membership of in A U B or A N B is certainly
strictly greater than that of.

(v) Membership inA N B requires more, and membership AnU B
less, than the membership in onefobr B:

OxOX, Ha.g(X) < min(uA(X)’ uB(X))’
uADB(X) = max(uA(X), uB(X))'

(vi) Complete membership i and in B implies complete membership
in A N B. Complete lack of membership A and in B implies
complete lack of membership il U B:

91, 1) = 1, f(0,0) = 0

The above assumptions are consistent and sufficient to ensure the
unigueness of the choice of union and intersection operators.

Fung and Fu (1975) also found max and min to be the only possible
operators. They use a slightly different set of assumptions. They kept (i)
and added the following:

(i) fandg are commutative, associative, and idempotent.
(iii") fandg are nondecreasing.

(vi) fandg can be recursively extended o= 3 arguments.
(viii)  Vx € X f(1, u,(x) = 1,900, u,(x) = 0.

The interpretation of these axioms was given in the framework of group
decision-making with a slightly more general valuation set (see 1V.3.C).
b. Complement of a Fuzzy Set

The complementA of A is defined by the membership function (Zadeh,
1965)

Ox0OX, pz(x)=1=pa(x). (6)

The justification of (6) is more difficult than that of (4) and (5). Natural
conditions to impose on a complementation functionvere proposed by
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Bellman and Giertz (1973):

() Hz(X) depends only oru,(X): Hz(X) = h(p,(X)).

(i) h(0) = 1 andh(1) = O, to recover the usual complementation when
A is an ordinary subset.

(i) h is continuous and strictly monotonically decreasing, since mem-

bership in A should become smaller when membershipAirin-
creases.

(iv) his involutive: h(h( 1z (X)) = L (X).

The above assumptions do not determmeniquely, not even if we

require in additionh(%) = % However,h(u) = 1 — u if we introduce the

following fifth requirement (Gaines, Reference from Ill.1, 1976b):

(V) VX, € X Vx, € X, if pa(x) + Ha(x) =1, thenpz(x) + Hz(x) = 1.
Instead of (v), Bellman and Giertz have proposed the following very
strong condition:

(Vi) Vx, € X, Vx, € X, U (X) — HA(X) = Hz(X) — Hz(x), which
means that a certain change in the membership valu® should

have the same effect on the membershipAin
(1), (ii), and (vi) entailh(u) = 1 — u.

However, there may be situations where (v) or (vi) may appear to be not
really necessary assumptions. Sugeno (Reference from 1.5, 1977) defines

the A-complementA* of A

o ()= (1-pa(0) /(14 Apa(x), A O-1+) (7)

A-complementation satisfies (i), (ii), (i), and (iv).
Lowen (1978) has developed a more general approach to the comple-
mentation of a fuzzy set in the framework of category theory.

When A is an ordinary subset of, the pair A, A) is a partition ofX
provided thatA # @ andA # X. When A is a fuzzy set#f O, # X), the

pair (A, A) is called afuzzy partition; more generally anm-tuple
(A, ... ,A) of fuzzy sets\i, A # @ andA # X) such that

Ox OX, i/,lpi (x)=1  (orthogonality (8)

is still called a fuzzy partition oKX (Ruspini, Rerence from V.6, 1969).
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c. Extended Venn Diagram

Venn diagrams in the sense of ordinary subsets no longer exist for fuzzy
sets. Nevertheless, Zadeh (1965) and Kaufmann (1975) use the graph of
as a representation in order to visualize set-theoretic operators, as in Fig. 1.
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Figure 1

d. Structure ot the Set of Fuzzy Subsets of X

Let ?(X) be the set of ordinary subsets Xf ?(X) is a Boolean lattice
for U andN.

Let us recall some elementary definitions from lattice theory. Alset

equipped with a partial ordering (reflexive and transitive relatonis a
lattice iff

OC0cOL, c=inf(ab),

HalL, ObOL
adt, HbOL, %I!dDL, d =sup(a, b).

inf and sup mean respectively greatest lower bound and least upper bound.
3! is short for there exists one and only one.
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L is complementediff
dJoe X 3JAle X, Vael, JaelL
infa,a) =0 and su@ a) =
and a z0 if azl a=#l if a#O.

O and 1 are respectively the least and the greatest elemeht ¢fa € L,
inf(a, O) = O, supf, 1) =1). A lattice with a0 and al is a complete lattice.
L is distributive iff sup and inf are mutually distributive.

A complemented distributive lattice is said to be Boolean. In a Boolean
lattice the complemen& of a is unique.

The structure of?(X) may be viewed as induced from that of {0, 1},
which is a trivial case of a Boolean lattice.

Let #(X) be the set of fuzzy subsets Hf Its structure can be induced
from that of the real interval [0, 1]. [0, 1] is a pseudocomplemented distribu-
tive lattice where max and min play the role of sup and inf, respectively.
The pseudocomplementation is complementation to 1. It is not a genuine
complementation®(X), considered as the set of mappings frénto [0, 1],
is thus also a pseudocomplemented distributive lattice. More particularly,
we have the following properties faw, N, and™:

(@) Commutativity: AUB=BUA ANB=BnNA.

(b) Associativity: AU BUC)=(AUB)UC AN BNC =
(AnB) NC.

(c) Idempotency: AUA=A AN A=A

(d) Distributivity: AUBNC =AUB NAUC),AN BUCOQC
=(ANBUMRLNCOC).

e) AN =0,AU X=X

() Identity: AU =A ANX=A

(g) Absorption:. AUANB =A AN (AU B) =A.

(h) De Morgan's laws: (AnB) = A U B, (AOB) = AN B.
() Involution: A = A,

() Equivalence formula: A UB)N (AU B)=(A N B) U (AN B).
(k) Symmetrical difference formula:

(ANB)U(AN B)= (AU B)N (AU B).

N.B.: A-complementation is also involutive and satisfies De Morgan’s

laws.
The only law of ordinary fuzzy set theory that is no longer true is the

excluded-middle law:
AnAz@, ADAzX
The same holds for thie-complementation.
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Since the fuzzy seA has no definite boundary and neither hasit may
seem natural tha® and A overlap. However, the overlap is always limited,
since

OA 0Ox, min(uA(x),uK(x))s

Nl -

For the same reasoy, U A do not exactly coveX; however, VA, VX,

max (uA(x),uK(x)) = 1.
For example, ifX is a set of colored objects, ardis the subset of red
ones, u,(X) measures the degree of rednessxofA pink object has a

membership value close t§, and thus belongs nearly equally Aoand A.

N.B.: A Zermelo-Fraenkel-like axiomatization, formulated in ordinary
first-order logic with equality, was first investigated by Netto (1968), and
completely developed by Chapin (1974). In this approach fuzzy sets are
built ab initio, without viewing them as a superstructure of a predeter-
mined theory of ordinary sets. The only primitive relation used in the
theory is a ternary relation, interpreted as a membership relation. There
are 14 axioms, some of which have a strongest version. However, as
pointed out by Goguen (1974), the difficulty with such a theory is in
showing that its only model is in fact the universe of fuzzy sets. Goguen, to
cope with this flaw, sets forth axioms for fuzzy sets in the framework of
category theory.

e. Alternative Operators on @(X)

Other operators can be defined for union and intersection. First, there
are the following probabilisticlike operators:
Intersection,

OXOX, Hag(X) = Ha(X) Cg(x)  (product); (9)
Union,

OXOX, Hys (%) = Ha(X) + He(X) = a(X) Qs (X)
(probabilistic suny. (20)

Under these operators and the usual pseudocomplement&{dn,s only
a pseudocomplemented nondistributive structure. More particularly,
and - satisfy only commutativity, associativity, identity, De Morgan’s laws,
andA - @ = @,A+ X = X. Such operators reflect a trade-off between
and B, and are said to bmteractive, as opposed to min and max. Using
these latter operators, a modification Af(or B) does not necessarily
imply an alteration ofA N B or A U B. N and U are said to beonin-
teractive.

Second, lety be thebounded sunoperator (according to Zadeh, also
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called bold unionby Giles (1976)),

OXOX, gy 5 (X) =min(L pa(x) + g (X)); (11)
and let be the associated operator callemd intersection,
OxOX,  w, o 5(x)=max(0, ua(x) + ps(x) - 2). (12)

With U, M, and the usual pseudocomplementatié}()() is a comple-
mented nondistributive structure. More particularly, idempotency, distrib-
utivity, and absorption are no longer valid, but commutativity, associativ-
ity, identity, De Morgan’s lawsA M @ = @, A U X = X, and even exclud-
ed-middle laws are satisfied. In this set thedkyis the real complement of
A (see Giles, 1976).

A fuzzy partition in the sense of Eqg. (8) is an ordinary partition in the
sense ofJ andn:

0 m 0 AMADOOOWA, =X,
HJXDX, ZHA(X)_]H implies E i%), AMA=D

The converse is false fan > 2. A partition in the sense &f and M is
more general than a fuzzy partition.

The existence of the excluded-middle law is consistent with a situation in
which an experiment is made whose result can be modeled as a fuzzy set
A: AN A = @ means that a given event cannot happen at the same time as
the complementary one. Nevertheless, a complete interpretation of the
operators and has not yet been provided.

Lastly, let us notice that the following properties hold. Writing

AUAU:- - -UA(@mMtimes) =U ™A
and
ANAMA---MAA(mtimes) =M MA,
0%, (X)=min(L mu,(x)),  p_, (x)=max(0, mu,(x) -m+1)

so that

m oy . (x)=1 iff  p,(x)£0,

li
m- oo

lim p o, (x)=0 iff  pa(x)#L

More details on the above operatordJ(and ) and the three lattice
structures #(X), U, N), (X), +, -), (@(X), YU, M) are provided in Sec-
tion E.

N.B.:  The aforementioned intersection operators aim), a - b,
max(0,a + b — 1), are known to bdriangular norms A triangular normT
is a 2-place function from [0, § [0, 1] to [0, 1] that satisfies the following
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conditions (Schweizer & Sklar, NF 1963):

() T(O,0)=0; T(a,1) =T(1, a = &
(i) T(a, b < T(c, d whenevera < ¢, b < d,

(i) T(a, b) = Tb, a:
(v) T(T(a, b, O = T(a, T(b, 0)).

Moreover, every triangular norm satisfies the inequality
T.(ab) = T(a,b) < min(a,b)
where
m if b=1
T, (ab)=th if a=1
Ho otherwise

The crucial importance of mia(b), a - b, max(0,a + b — 1) andT (a, b
is emphasized from a mathematical point of view in Ling (NF 1965)
among others.

f. More Operators

Some other operators are often used in the literature:
Bounded differenc¢ — | (Zadeh, Reference from 1.3, 1975a)

OxOX, uN_‘B(x):max(O, uA(x)—uB(x)). (13)

A |—| B is the fuzzy set of elements that belongAtanore than toB. It

extends the classic#l — B.

Symmetrical differences In the framework of fuzzy set theory there
may be different ways to define a symmetrical difference. First, the fuzzy
set AVB of elements that belong more # than toB or conversely is
defined as

Ox0OX, /JADB(X) = |/JA(X) _/JB(X)|' (14)
V is not associative

Secondly, the fuzzy seAAB of the elements that approximately belong
to A and not toB or conversely tdB and not toA is defined as

TXOX, M
= mamin(u,(x), 1= g (X)), min(1-pa(x), (X))~ (15)

It can be shown thaf\ is associative; moreover,
AABAC=(ANBNCU(ANBN C)UANBNC)UANBNO).

mth power of a fuzzy set A" is defined as (Zadeh, Reference from I1.2,
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uAm(x):[uA(x)]m OxOX, OmO R (16)

This operator will be used later to model linguistic hedges (see IV.2.B.h).
Let us notice that themth power and the probabilistic sum oh
identical fuzzy sets have the same behavioRasnd U™, respectively.
Convex linear sum of min and mak. combination of fuzzy set#& and
B that is intermediary betweeh N B andA U B is A||B such that

0A 0001, OxOX, py, ()
=A min(,UA(X)’ “B(X)) +(1-2 )max(/JA(X)! :UB(X))-

||, is commutative and idempotent, but not associative. It is distributive on
N and U, but not on ||, except whenA D{O,%,l}. Moreover, A||, B

= All_, BOA BOP(X).

Other formulas for intersection were suggested by Zimmermann (Ref-
erence from IV.1) after experimental studies: the arithmetic mean and
geometric mean of membership values. (See also Rédder, Reference from
IV.1.) The former does not yield an intersection for classical sets.

C. a-Cuts

When we want to exhibit an elemexte X that typically belongs to a
fuzzy setA, we may demand its membership value to be greater than some
thresholda €]0, 1]. The ordinary set of such elements is theut A of A,

A, ={xe X u(X) = a}. One also defines thstrong a-cut A, = {x € X,

09 > ab.
The membership function of a fuzzy sktcan be expressed in terms of
the characteristic functions of its-cuts according to the formula

uA(x):asEtﬂJ(Pl] min(a,/JAa,(x)),

where

it xOA,
M, (X)= D otherwise.

It is easily checked that the following properties hold:
(ADB),=A,0B,, (AnB) =A, nB,.

However, (A)_=(A_,)#(A,) if @ # (a # 1). This result stems from the

fact that generally there are elements that belong neithér twr to (A),
(A, U (A), #X).
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Radecki (1977) has definddvel fuzzy setsf a fuzzy setA as the fuzzy
setsA,, a €]0, 1, such that

A, = X HA(x)3 xOAH
The rationale behind this definition is the fact that in practical applications
it is sufficient to consider fuzzy sets defined in only one part of their
support—the most significant part—in order to save computing time and
computer memory storage. Radecki has developed an algebra of level

fuzzy sets. However, /_(\)q, the approximation ofA, cannot be obtained

from A, %Bi E}KEPQ which creates some difficulties.
N.B.: In the literaturea-cuts are also calleldvel sets.

D. CARDINALITY OF AFUZZY SET

a. Scalar Cardinality

WhenX is a finite set, theardinality | A| of a fuzzy sefA on X is defined

N Al= Y ).

| A| is sometimes called thpower of A (see De Luca and Termini,
1972b). || A| =] A|/| X| is therelative cardinality.lt can be interpreted as
the proportion of elements of that are inA.

When X is not finite, | A| does not always exist. However, Af has a

finite support, | A|:Z Ua(x). Otherwise, ifX is a measurable set

x Osupp A

and P is a measure oiX EJ'dP(x):lg |A|l can be the weighted sum

Ua(x)dP(x). The introduction of the weight functioR looks like a
X

*fuzzification” of the universeX. This can be done more directly by
choosing a fuzzy seX on X as the most significant part of the univerxe.
is assumed to have finite support or finite power. The relative cardinality

of A will then be H An xH

b. Fuzzy Cardinality of a Fuzzy Set

Strictly speaking the cardinality of a fuzzy set should be a “fuzzy
number.” WhenA has finite support, its fuzzy cardinality is (Zadeh,
Reference from 1ll.1, 1977a)

| Al :Za/| A, |={(n,a),nDN and a:sup{/\,| A |:n}},
where A, denotes thexr-cuts of A.
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E. INCLUSIONS AND EQUALITIES OF FUZZY SETS

a. Inclusion In the Sense of Zadeh (1965)
A is said to be included iB(A C B) iff

e X wu(X s uyX). (17)

When the inequality is strict, the inclusion is said to be strict and is
denotedA C B. C and C are transitive.C is an order relation o (X);
however, it is not a linear ordering. Obviousl, = B iff A C B and

B C A

b. Examples. Comparison of Operators
It is easy to check that

CAMBUOAIBUOAN B,

OABO®X), [ R
CAOBOAYBOAMB.

See Fig. 2, where,(X) = a, ugy(X) = u.

ab—
M |
' :

e S 0 ' '
[+]

l-a | u
(a) {b)

Figure 2 (a) seese ANB . max(Q,a+ti~1) «seeed-B:a-u AN B min(a, u).
(b) —— AU B:max(a,u) ~=—A+ B:a+ u— au esess AU B :min{l,a + u).

It is patent from Fig. 2 that the probabilistic operators-(+are a
median betweenl(, N) and {J, M). The respective algebraic structures
support this evidence. Moreover, the operafdris sensitive to only
significant overlapping of membership functions.

Convex combination of fuzzy sd#adeh, 1965). LetA, B, and A be
arbitrary fuzzy sets orX. The convex combinatiorof A, B, and A is
denoted by A, B; A). It is such that

OXOX, My g0y (%) = 1, (X () (L 1, (3)) o (%).
A basic property of the convex combination is
OA, AnBO(ABA)OAOB.
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Conversely,VC such thatA " B C CC AU B, 3A € @(X), C = (A B
A). The membership function of is given by

l'lA(X) = (.UC(X) _/JB(X))/(/JA(X) - HB(X))-

c. Other Inclusions and Equalities

Zadeh’s definitions of inclusion and equality may appear very strict,
especially because precise membership values are by essence out of reach.

a. Weak Inclusion and Equality

A first way to relax fuzzy-set inclusion is given by the definitions:

X a-belongs to Aiff x € A ;

A is weakly includedn B, denotedA —_ B, as soon as all the elements of
X a-belong to A or to B; mathematically,

A— B iff Xx€ (AUB), Vx€X (18)
which is equivalent to
Vx € X, max(l —u,(X), uy(X) = a.
Practically, A —_B is not true as soon as

xeX wX>1-a and p,(X < a

As such—_ is transitive only fora > % Transitivity for a = % can be

recovered by slightly modifying the above condition and stating

A— B iff YxeX wp(=; or u()> 3. (19)

We may want to impose the condition that Zadeh’s inclusian lfe a
particular case o<, i.e.,

if AC B, thenA —_B.

This holds only fora < % Hence, the only transitive<, consistent withC

is — % (abbreviated—), provided that we adopt the above slight modifica-
tion."

N.B.. [Ifa> % Zadeh's inclusion does not imphx_ because the
elementsx € X such that 1 —o < u,(X) < py(X) < a never belong to

(A U B), (see (18))
The set equalitp—~ associated with~ is defined asA »< B iff A < B
andB —< A i.e,,
A><B iff V¥xe X
1

minmax(l — (), s(). Max, (9, 1 ()] = 1.

'After modification,— 1 is still consistent withC.
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which is equivalent to

Ox OX, max[min(,uA(x),uB(x)),min(l—/JA(x),l—uB(x))] > 1.
The weak equality A—~ B is thus interpreted as follows. Both membership
values u,(X) and uy,(x) are either greater than or equal goor both
smaller than or equal t(%. This weak equality is not transitive. Lack of
transitivity does not contradict our intuition concerning weak inclusion or
equality. However, to recover the transitivity ek, we could use (19) to
define equality.
Lastly, >< is related to the symmetrical differengethrough
1

A><B iff VxeE X ) < L.

Similarly, the other symmetrical differenc¥ is related to Zadeh’s set
equality (=):

/‘LAAB

A=B iff AVB=@.
B. e-Inclusions and e-Equalities

Another way of defining less strong equalities or inclusions is to use
some scalar measuré& of similarity or “inclusion grades’l between two
fuzzy setsA and B. A thresholde is chosen such that

A C_B iff I(A B) =g, A =B iff A, B) = e.

C, and =_ denote respectivelg-inclusion ande-equality. According to the
definitions of I and S, C, and = may coincide withC and =,
respectively. We must state at least the following conditionsA £ B,
thenA C, B; if A =B, thenA =, B. Moreover,S must be symmetrical.

Inclusion grades and similarity measures are very numerous in the
literature. An informal presentation of such indices followsjs supposed
finite.

Inclusion grades
Based on intersection and cardinality

(A B)=|AnB]/[ Al

(Sanchez, Reference from I1.B977c). WherA C B, (A, B = 1.
Based on inclusion and cardinality

(A, B) :H (A_ B) H =| Am B || (zadeh's inclusion);
(Goguen, Reference from Ill.1) wheaC B, (A, B) = 1.
Is(A,B)=|| ADB| (weak inclusion);

whenA — B, I(A, B) = 2.
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Based on inclusian

I,(A B)=inf p——(x) = inf pi; . (X);

xOx ' Al-|B xOX

whenA C B, I (A, B) = 1.
Is(A B) = inf ;. (X);

xOX

1
whenA — B, I (A B) = ;.

Similarity measures
based on intersection, union and cardinality
S(AB)=[AnB|/|ADB];
whenA = B, thenS(A, B) = 1.
based on equality and cardinality
S(AB)=1-| AOB|=| AOB|;
A =B iff S(A B) = 1.
S(A B)=1-| AaB|=| AAB|;

if A>< B, thenS(A B) = 1/2.
N.B.. 1 —-S§(A, B) is therelative Hamming distancéetweenA and B
(Kaufmann, 1975). Kacprzyk (Reference from V) employed a slightly

different version of this distance, i.egmx| /,lA(x)—/JB(x)|2.
Based on equality

54(A’ B) :1_%8 Haos(X) = )'(91; .uﬁ(x) )
A =B iff S(A B) = 1.
(A B) =L 11,00 = i 4 (0):

A>< Biff §(A B) = 1/2.

N.B.. 1 —-S(A, B) is a distance betweeA and B which was used by
Nowakowska (Reference from IV.1) and Wenstgp (Reference from 1V.2,
1976a).

It is interesting to notice that

S(A, B) = min(l.(A, B), I(B, A)) =S'(A,B) fori=1, 2, 3;
S(A, B) = min(.(A, B), I.(B, A)) fori =4,5.

Consistency-like indices
Consistency(Zadeh):

C(A B)=sup 1, 5(X)

xOX
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C(A, B = 0 means thatA and B are separated. Indeed, 1CG{A, B) is
often used as a@eparation indexbetween fuzzy setsC(A, B)= 1 means
that it is possible to exhibit an element X (finite) which totally belongs
to A andB.

Other indices:

Note thatC(A, B = 1 —I (A, B).

Similarly,

1- |4(A’ E) = %B .UAmB(X);
1-1,(A B)=| Am B
1-1,(A B)=| An B|.

hgt(A M B) behaves as a consistency. WheA [) B|| = 0,A and B are
separated; but if A N B|| = 1 then A = B = X. The same holds for
[|A A B

v. Remark: Representation of a Fuzzy Set Using a Universe of
Fuzzy Sets

Willaeys and Malvache (1976) employed consistency to describe a fuzzy
set A in terms of a given finite famihR, ..., R of fuzzy sets.A is
characterized by hgt(A) R),i = 1, p. They proved that the information
that was lost in the representation was the “least significant.” This repre-
sentation was adopted in order to save computer memory storage. To
achieve such a representation, it is clear that indices other than consistency
may be tried. 3

N.B.: In this way any element of X may be viewed as a fuzzy set

on R, i=1pt:x= " uy (R,

F. CONVEX FUZZY SETS AND FUZZY STRUCTURED SETS

a. Convex Fuzzy Sets

The notion of convexity can be generalized to fuzzy sets of a uniXerse
which we shall assume to be a real Eucliddadimensional space (Zadeh,
1965).

A fuzzy setA is convexiff its a-cuts are convex. An equivalent definition
of convexity is:A is convex iff

Ox 0X, Ox,0X, 0A001],
Ha(A %+ (1-2)%)  min(pa(x). ua(%) (20)

Note that this definition does not ir%ply that is a convex function ok
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P CEIR(RINFPY

pglxp)

palx)

(a)

(b)

Figure 3 (a) Convex fuzzy set. (b) Nonconvex fuzzy set.

(see Fig. 3). IfA and B are convex, so i&A N B. An elementx of X can
also be written X, %%, . . . ,xN) since X hasN dimensions. Theprojection
(shadow of A (Zadeh, 1965) on the hyperplakk= {x, X = 0} is defined
to be a fuzzy seP (A) such that

i-1 i+l

uPH(A)(xl,...x , X ,...,xN):SLXJippA(xl,...,xN).

When A is a convex fuzzy set, so B (A). Moreover, if A and B are
convex and ifYH, P,(A) = P,(B), thenA = B.

N.B.: Definition: A fuzzy numbeis a convex normalized fuzzy sAt
of the real lineR such that

(@ 3A'x, € R, wn,(x,) =1 (x is called themean valueof A);
(b) w, is piecewise continuous.

N.B.:  Gitman and Levine (Reference from IV.6) definggmmetric
and unimodal fuzzy sets as follows: LeX be equipped with a metrid, and

let ', be theu,(x)-cut of a fuzzy sef. A is said to be unimodal iff", is
connectedvx. If A is convex,A is unimodal. Letx, be the unique element
of X such thatu,(x) = sup u,(x), and I {x d(x, x) < d(x, x)}. A

is symmetric iff ', =T, ,0x OX.
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b. Fuzzy Structured Sets

Fuzzy sets can be equipped with algebraic structures.«Lée a
composition law onX. A fuzzy setA is closed under = iff (Rosenfeld,
1971)

Ox 0X, 0% 0% pa(x0%) = min(p(x).ua(x) (1)

If (X,*) is a group, a fuzzy subgroup of X satisfies the above
inequality and the equalitys,(x™) = u,(x), wherex'x= e and e is the
identity.

If X is a real Euclidean space ard* x, = AX, + (1 =A)x,, A € [0, 1],
we see that a convex fuzzy set is a particular case of a fuzzy structured set.

Other fuzzy structured sets, such as fuzzy ideals (Rosenfeld, 1971) or
fuzzy modules (Negoita and Ralescu, 1975b), have already been defined.

G. L-FUZZY SETS

a. Definitions

Let L be a set. AnL-fuzzy setA is associated with a functiop, from
the universeX to L (Goguen, 1967). IL has a given structure, such as
lattice or group structure? (X), the set ofL-fuzzy sets onX, will have
this structure too. Several structures are worth considering.

First, letL be a lattice. The intersection and the unionLefizzy sets
can be induced in the following way:

OXOX, Hana(X) =inf (a(X), ka(x)), (22)
OxOX, UADB(X):SUp(UA(X)’IJB(X))’ (23)

where inf and sup denote respectively the greatest lower bound and the
least upper bound. Note that membership valued-tifzzy sets cannot
always be compared unlessis linearly ordered. Moreover, distributivity
and complementation require a richer structure to be defined.

A Brouwerian lattice is a latticeL such thatOalL,Ob0OL, {x € L,
inf(a, X) < b} has a least upper bound, denotedr b. a a b is a relative
pseudocomplement cd with respect tob. For example, a linearly ordered
set having a greatest elemdént a Brouwerian lattice.

A dual Brouwerian lattice is a lattick such that DalOL,Ob0L,
{x € L, supl, X) = b} has a greatest lower bound, denotedb. For
instance, [0, 1] is a complete Brouwerian and dual Brouwerian lattice:

gpt T asb _rbif a<b
“hif b<a PTH if bea
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The following theorem relates distributivity and Brouwerian lattices
(Birkhoff, NF 1948):

A complete lattice is Brouwerian iff inf is totally distributive over sup,
ie.,

O1oL, OalL, infgla,supb%—supmf a, b
b 0Ol b Ol

A complete lattice is dual Brouwerian iff sup is totally distributive over
inf. Thus, if L has such properties) and U are mutually distributive (De
Luca and Termini, 1972a). Moreover, a complete latlicehat is both
Brouwerian and dual Brouwerian is Boolean ¥ € L, a a O = a € [.
This property does not hold in = [0, 1].

In a Boolean latticea a b = sup@, b), where a is the complement cd.
Brown (1971) studiedL-fuzzy sets whenL is a Boolean lattice. The
complement of arl_-fuzzy setA is then the A such that U5 (x) is the
complement ofw, (X)Vx. Brown also gives some results about the convex-
ity and the connectivity oE-fuzzy sets.

Negoita and Ralescu (1975b) considered other kinds of structurke, for
for instance, semigroup and semiring structures.

b. Interpretation

There may occur some situations for which valuation sets different from
[0, 1] are worth considering (De Luca and Termini, 1974).

For instance, ifm ordinary fuzzy setsA(i =1,m) in X correspond tam
properties, it is possible to associate with eac& X the vector of
membership value HA‘-(X)] that represent the degree with whitsatisfies
the properties. A function fronX to the setl = [0, 1]" has been builtL is
a complete lattice that is not a linear ordering.

Now assume that each elemenof X is described by means of only one
property amongA,, ..., A, supposedly the most significant one far
The property that best describes an elemént x may be different from
that which describex. We obtain in this way a partition of into m
classes. Obviously, it is meaningless to compare membership values of
elements in different classes. Thus, the valuation set is here a collection of
m disjoint linear orderings.

c. Flou Sets

An m-flou setis anmtuple A = (E, . . . ,E ) of ordinary subsets oX
such that

E - 0E, (24)
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Operators on flou sets are defined, with = (E,..., E), B =
(F,...,F), as follows:
union
AUB=EUF,...,E UF)

intersection
ANB=ENF,...,E_NF)

complementation

inclusion
AcCB iff ECF, i=Im

It is easy to check that the sgt(X) of m-flou sets is a pseudocomple-
mented distributive lattice:y (X) has the same structural properties as

?(X) (see B.d). Generall AU A £ (X, ... ,X)andAN A £ (3D, ..., D).
The concept of flou set was introduced by Gentilhomme (1968). For

m = 2, anm-flou set may be interpreted as followE; is the set of the
“central” elements inA, and E, — E,, the set of “peripheral” ones. The
elements ofE, are considered to belong more Aothan the elements of

E, — E, - mflou sets are particular cases loffuzzy sets wherd. is the
finite linearly ordered set ofm + 1 elementsd, a, . . . ,a ) with a

=i / m; there is a structural isomorphismbetween the se® (X) of
theselL-fuzzy sets andy, (X),

PX) - 3.
A £(A)= (Ao Ay) = A

where A, is thea,-cut of A. For instance,

(FEHA), (), F= A (A

since (K)ai :('E‘)ﬂ :(A_L_ai_l) and 1-a,=a,,_,.

N.B.. Az denotes the strong-cut ofA. Q.E.D.

We also havé(A N B) = f(A) N f(B); f(A U B) = f(A) U f(B).

More general kinds of flou sets are studied by Negoita and Ralescu
(1975b).

Since there is in fact no sharp boundary between the sets of central and
peripheral elements, we may define more general flou seta-taples of
ordinary fuzzy sets that satisfy (24), i.e., as fuggflou sets.
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d. Type mFuzzy Sets

Type m fuzzy sets are defined recursively as follows:

a type 1 fuzzy set is an ordinary fuzzy setXin
a typem fuzzy set (n > 1) in X is an L-fuzzy set whose membership
values are typen — 1 fuzzy sets on [0, 1].

Let @)m(X) be the set of typen fuzzy sets inX. 9331(X) = 93>(X). This notion
was introduced by Zadeh (Reference from 1V.2, 1971).

Union, intersection, and complementation of typefuzzy sets can also
be recursively defined by induction from the structure of the valuation set.
Let us denote these operators by, N , ™, for instance,

0,=0; M s(X) = Ha(X) Opg g(x), m>1

Type 2 fuzzy sets are the most easily interpreted and thus seem to be the
most useful. Mizumoto and Tanaka (1976) were the first to study them.
Type 2 fuzzy sets are fuzzy sets whose grades of membership are them-
selves fuzzy. They are intuitively appealing because grades of membership
can never be obtained precisely in practical situations.

Figure 4
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In Fig. 4 a representation of two fuzzy sets of type 2 is given, where
H,(X) is assumed to be a fuzzy numb¥k, |, is the set of the maxima of
H,(X) whenx ranges oveiX.

Although U,, N,,  are canonical operators, it can easily be shown
that they are inconsistent with our intuitions concerning union, intersec-
tion, and complementation of type 2 fuzzy sets, and even with the corre-
sponding operators in the original fuzzy set theory itself. To prove this, let
U (X) and u,(x) be fuzzy numbers whose mean values are respectively
1,(X) and I,(x). Then u,(x) and p,(x) intuitively mean “approximately
|,(x)” and “approximatelyl (x).” We wish the membership value afin
AU,B to be “approximately mak(x), 1(x)),” i.e., a fuzzy number
whose mean value is maxk), |,(x)). However, using the above canoni-
cal definition of U,, we getu,(X) U py(x), which is generally nonconvex
and hence not a fuzzy number (see Fig. 4). As a matter of fact, we obtain a
set of two elements that are approximaté|x), and I (x). Other set-
theoretic operators are thus needed for type 2 fuzzy sets. These operators
will be provided in the next chapter thanks to an “extension principle.”

Special kinds of type 2 fuzzy sets that can be found in the literature
include:

Classical sets of type ®Zadeh, 1975). The membership function of a
classical set of type 2 is a mapping frofrto the set?({0, 1}) of classical
subsets of {0, 1} ({0, 1}) = {&, {0}, {1}, {0, 1}} . A possible interpretation
of the four membership values is:

Un(x)=@:  xOA(asx DA)isundefined or absurd;

(x)
”AEXCE}}_: XE':E “ [ hasitsordinary meaning here.
=13: x0Ag
(x)

px(x)={0,1: Wedonotknowif x OA orif x OA.

d-fuzzy sets (Sambuc, 1975)d-fuzzy sets are mappings froX to the
set of the closed intervals in [0, 1], i.e., interval-valued fuzzy sets. (See also
Grattan-Guiness, 1975; Jahn, 1975.)

Many-valued quantitieGrattan-Guiness, 1975): These are mappings
from X = R to ([0, 1]).

e. Probabilistic Sets (Hirota, 1977)

A probalilistic setA is defined by a randomized membership functign
from X x Q to [0, 1], wherep,(X, ) is measurable on the-algebraQ.

The membership valug,(x, &) of x in A is a random variable built from
the distributionp of w, assumed independent & Fig. 5 depicts the
“noised” fuzzy setA. p models the subjective imprecision pf. Since p
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does not depend oA, the set-theoretic operatots, N, ~ can be easily
extended. Probabilistic sets K form a pseudocomplemented distributive
lattice. Probabilistic fuzzy sets, which are nofuzzy sets, are related to
the result suggested by MacVicar-Whelan’s experiment (Reference from
IV.1, 1977), when asking several people to locate the boundary between
membership and nonmembership, answers are randomly distributed in a
given interval.

Figure 5
H. MEASURES OF FUZZINESS

Various authors have proposed scalar indices to measure the degree of
fuzziness of a fuzzy set. The degree of fuzziness is assumed to express on a
global level the difficulty of deciding which elements belong and which do
not belong to a given fuzzy set. y

Mathematically, a measure of fuzziness is a mapmnigom %(X) to
[0, + =) satisfying the conditions (De Luca and Termini, 1972b):

(1) d(A) = 0 iff Ais an ordinary subset of;

(2) d(A) is maximum iffu,(x) = 2 Vx € X;

(3) d(A*) =< d(A), where A* is any sharpened version &, that is,
() <) i (9 < 5 andp, (9 = p,() i w9 = 3

(4) d(A) =d(A) (A is as fuzzy ag\).

When X is finite, Loo (1977) has proposed a general mathematical form
for d:

[

o=t )

wherec, € R, Vi; f; is a real-valued function such thg0) = f(1) = O;
f(u) =f(1 —u) Yu € [0, 1]; andf is strictly increasing on [O%]. Fis a
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positive increasing functiord satisfies (1)—(4), but is not a priori the most
general form. Wherk is linear, the following property holds:

d(A) + d(B) = d(A U B) + d(A N B).

Particular forms od are:

Index of fuzzinesgKaufmann, 1975)F is the identity,Vi, c = 1, Vi,
f(u) = u whenu € [0, %]. d(A) is the distance betweeh and the closest

ordinary subset oK to A using a Hamming distance, i.e.,
M|

d(A)=3 | malx) = talx)
where A

./, IS the 2-cut of A,
Entropy (De Luca and Termini, 1972b):F(u) = ku, k > 0; Vi, ¢ = 1;

Vi, fu) =-ulnu) - (1 -uwin(1 —u)
(Shannon function).

Note that measures of fuzziness evaluatand A at the same time.
They can be extended to evaluate a whole fuzzy partition in order to give a
rating of the total amount of ambiguity that arises when deciding to which

of A, ... ,A an elemenk belongs. We havezin:luA(x):l. For such a
fuzzy partition, the measure of fuzziness is (Capocelli and De Luca, 1973)

I X] m

dA, ... ,A) = ZJZU(MAJ-(&)),

where v is any continuous and strictly concave function in [0, 1]. When

(A, ... ,A) is an ordinary partition ofX, d(A, . . . ,A) = 0.
dA, . . . ,A) is maximum iff Vi, V], ,uAJ_(xi) = 1/m (maximum ambigu-
ity).

Capocelli and De Luca (1973) have constructed a thermodynamics of
fuzzy sets, introducing such concepts as absolute temperature, en-
ergy, . . . , even recovering Bose-Einstein and Fermi-Dirac distributions.

Entropy measures of a fuzzy set defined on a denumerable support are
studied by De Luca and Termini (1977). The same authors extended this
notion to L-fuzzy sets in a finite universe (De Luca and Termini, 1974).

Lastly, Knopfmacher (1975) gave a formulation of a measure of fuzzi-
ness, for fuzzy sets in a measurable universe, that satisfies (1)—(4):

1
d(A) = WJ’XF(HA(X)) dP(x),
whereF(u) = F(1 —u), u € [0, 1]; F(0) = F(1) = O; F is strictly increasing
in [0, %].
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Remark Instead of using a quantitative measure of fuzziness, we may
simply employ a qualitative typology, as suggested by Kaufmann (1975,
\Vol. 3, p. 287 et seq.), in order to classify fuzzy sets in rough categories
such as “slightly fuzzy,” “almost precise,” “very fuzzy.”
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Chapter 2

EXTENSION PRINCIPLE,
EXTENDED OPERATIONS,
AND EXTENDED FUZZY SETS

The extension principle introduced by Zadeh is one of the most basic
ideas of fuzzy set theory. It provides a general method for extending
nonfuzzy mathematical concepts in order to deal with fuzzy quantities.
Some llustrations are given including the notion of fuzzy distance between
fuzzy sets. The extension principle is then systematically applied to real
algebra: operations on fuzzy numbers are extensively developed. These
operations generalize interval analysis and are computationally attractive.
Although the set of real fuzzy numbers equipped with an extended addi-
tion or multiplication is no longer a group, many structural properties are
preserved. Lastly, the extension principle is shown to be very useful for
defining set-theoretic operations for higher order fuzzy sets.

A. EXTENSION PRINCIPLE
a. Definition
Let X be a Cartesian product of universes= X x 0O0OOx X, and

A, ... ,A ber fuzzy sets inX, . . ., X, respectively. TheCartesian
productof A, . . . ,A is defined as

Ax O00x A :J'Xlx DD(Xrmin(pAl(xl),...,pAf(x,))/(xl,...,x,).

Let f be a mapping fronX x OOOx X to a universeY such that

36
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y = f(x, . . . ,x). The extension principle (Zadeh, 1975) allows us to
induce fromr fuzzy setsA a fuzzy setB on Y throughf such that
Ha(y)= P r;gin(uAl(xl), g, (%) (1)
y="f(x, ..., X)

Hy) =0 if  fy) = &,

where f(y) is the inverse image of. u.(y) is the greatest among the
membership valuegu, . qns (X, - . ., X) of the realizations of/ using
r-tuples & , ... ,Xx).

The special case when= 1 was already solved by Zadeh (Reference
from 11.1, 1965). When f is one to one, (1) becomegy) = u,(f(y))
whenfy) # @.

Zadeh usually writes (1) as

B= f(Al""’Ar):J.X]_X...XXr min(,uAl(xl),...,uAr(x r))/ f(Xy..0x,),
where the sup operation is implicit.

b. Compatibility of the Extension Principle with a-Cuts

Denoting the image oA, . . . ,A, by B =f(A, . .. ,A) the following
proposition holds (Nguyen, 1976):

[f(A, ..., A), =fA, ....A)
iff Oy e Y, Ik, ..., x5, IJB(y):lJA1X...><Ar(X*1’ LX) (2)

(the upper bound in (1) is attained).

Remark While a discretization of the valuation set generally commutes
with the extension of functiofy this is not true for the discretization of the
universe (X=R) as will be seen later (see Section B).

c. Other Extension Principles

Other extension principles can be considered.

Jain (1976) proposed replacing sup in (1) by the probabilistic sum
(u$ v =u+v—uv). The rationale behind this operator is that the mem-
bership ofy in f(A, . . . ,A) should depend on the number wfuples
(X, .. .,x) such thaty = f(x, . . . ,x). This extension principle sounds
more probabilistic than fuzzy, particularly if we also replace min by
product. It has been pointed out by Dubois and Prade (1978a) that, in
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generalf (A, . . . ,A) is a classical subset of whenX = R (with min or
product) and continuous membership functions are considered. So the
result depends only on the supports of tAe which invalidates this
principle as one of fuzzy extension.

Another extension principle can be obtained by just replacing min by
product in (1). This principle implicitly assumes some “interactivity” or
possible “compensation” between the The problem of interactivity will
be considered later (see chapter 3). It does not seem that this latter
principle has the same drawbacks as does that of Jain.

Note thatf,(A, ... ,A) C f(A,...,A) wheref is the sup-min ex-
tendedf andf, is the sup-Uextended.

d. Generality of the Extension Principle

Given this principle, it is possible to fuzzify any domain of mathematical
reasoning based on set theory. As in Gaines (Reference from Ill.1, 1976b),
“the fundamental change is to replace the precise concept that a variable
has avalue with the fuzzy concept that a variable hasdagree of
membership to each possible value.

However, using the extension principle is not the only way of fuzzifying
mathematical structures. Another way is just to replace ordinary sets by
fuzzy sets (or the family of theio-cuts) in the framework of a given
theory. For instance, fuzzy groups were defined in the previous chapter;
their setting did not require an extension principle: a fuzzy group is
nothing but a subgroup without sharp boundary. The group operation is
still performed on the elements of the universe. Using the extension
principle, however, we can extend the group operation to have it acting on
fuzzy sets of the universe. The extended operation is not necessarily a
group operation. This latter way of “fuzzifying a group” is radically
different from Rosenfeld’s (Reference from 11.1) and will be investigated in
Section B of this chapter.

e. Three Examples of Application of the Extension Principle

a. Fuzzy Distance between Fuzzy Sets
Let X be a metric space equipped with the pseudometrice.,
(1)d is a mapping fromx? to R*;
(2)d(x, ¥ = 0 Ox;

(3)d(x,,x) = d(x,, x) Ox,, Ox,;
(A)d(x,, %) = d(x;, %) + d(x,, x)Ux,, DX, [x,.

A fuzzy distanced between fuzzy setd and B on X is defined using (1)
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as

(2 DR+’ M&(A, B)(a): 6Sdlzp) mln(l'lA(u)’:uB(V))'
d(A, B) models a distance between fuzzy “spots.” Wherand B are
connected subsets of, d(A, B) is an ordinary interval whose extremities
are respectively the shortest and greatest distance between a pdint of
and a point ofB. dis a mapping from {)73(X)]2 to the set of fuzzy sets on
R* (i.e., positive real fuzzy sets)X (A, A) can be interpreted as the fuzzy
diameter ofA and Hia (O) = hgt(A). It is clear that we havel (A, B)
= d(B,A.

The question of knowing whether some triangular inequality like (4) still
holds for d is less straightforward. Le# , B, C_ be thea-cuts of three
fuzzy sets onX. Let us respectively denote hy v, w any element of
A B, C_. The following inequalities hold:

supd(u, w) = d(u*, w*) < d (U, v) + d(v, w*) < sup @d(u*,v) + d(v, w));
s%;) @(ur, v) + d(v, w) < sup €(u, ) + d(v, W);

sup ((u, V) + d(v, W) < S:lylrad(u, v + supd(v, w,

Lr,lf/,d(u, v + inf d(v, W= lijnj (du, v + d,(v, w).

The sides of the two last inequalities correspond to two different fuzzifica-
tions:

“a(A, B, c)(é) = ?\;‘8 min(uA(u)’“B(V)'uc(W))’
5 =d(u, v) + d(v, w) :
Hingc)(B) = P min Sup min(g,(u), (V).
a=5+5 =) ;
s min(yas(v). e (w))§
& = d(v, w)

In u. 5o We consider all the paths betwe@nand C with a detour in
B, while In u the arrival point inB is no longer constrained to be
the departure p0|}1t Hence, we have Af, B, C, are connected and
without holes,[a, d(A B, O C A(A B, Q

Let us denote byd (A, B, 0, and A(A B, Q, the a-cuts of d(A, B, O
and A(A B, Q respectively. It is easy to show thaor [ 10, 1],

|nf(d(A C),) = |nf(d(A, B, O,
sup(d (A, C),) < sup(d(A, B, O,),
sup(d (A, C),) < sup(A(A B, O,),
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and provided that these bounds are attained for some elemenXs of
Nothing can be said when comparing {@, C),) and inf(A(A, B, Q,).

The deep reason is that whén B, C are ordinary sets, the triangular
inequality does not hold for the minimal distances between the subsets.
The two first inequalities can be interpreted as a triangular inequality for
fuzzy distances (see also E)Y.d may also be viewed as a fuzzy measure
of dissimilarity between fuzzy sets.

3. Compatibility of Two Fuzzy Sets (Zadeh, Reference from Ill.1,
1977a)

Given a fuzzy sefA on X, u,(x) is the grade of membership &fin A,
We may also call it the degree obmpatibility of the fuzzy valueA with
the nonfuzzy valuex. The extension principle allows us to evaluate the
compatibility of the fuzzy valuéA with another fuzzy valud3, taken as a
reference.

Let 7 be this compatibility.7 is a fuzzy set on [0, 1] since it ig,(B).
Using (1),

p = sup w9 Oullo, 1], (3)
X U= (X
or, using Zadeh’s notation,
r= @ = | .

An example of computation ofi (u) is pictured in Fig. 1. Whem, is
one to oneu = u, ° u*, wheree is the composition of functions. When
A = B, pu_is the identity functionu (u) = u. Remember that the converse
proposition does not holdA andB can be very different whilg: (u) = u.

A

gt
gl

& —

xY

7 is a normalized fuzzy set if B i5o prove this, observe thathfis such
that pu (b) = 1, u(u,(b)) = 1 also. The converse proposition is obvious
provided that the sup is reached in (3). Q.E.D.

If u, has only one relative maximuim, (i, (b) = hgtB), thenu_ has only
one relative maximum.

This is obvious from Zadeh’'s form of the extension principle.
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From now onB is assumed to have only one global maximuin,(b) is
the mean value of, i.e., the compatibility degree & with respect toB is
“approximately u,(b)” u,(b) can be considered as a scalar inclusion index
somewhat like consistency (cf. I.H3;. instead of choosing hg(N B),
we prefer here the membership value Anof the element that mostly
belongs toB. Note that the mean value efis always less than hgi.

More generally, the compatibility oA with respect toB is a fuzzy
inclusion index.

y. Fuzzy a-Cuts (Zadeh, Reference from IV.6)

Let A be a fuzzy set oiX andA_its a-cut. A, can be writtenu ([ a, 1]),
i.e., the inverse image of the intervat, [L]. Let i, be the characteristic
function of the interval [a, 1] in the universe [0, 1]. We get

Ha, (X) :u[g’]_](/'lA(X)) Ox L x. (4)

A fuzzy a-cut can be understood as the set of elements whose member-
ship values are greater than “approximately i.e., belong to a fuzzy
interval (@, 1], where p ; is a continuous nondecreasing function from
[0, 1] to [O, 1] and ,Ll(a’l(ll) = 1 Semantically, the fuzzy interval means
something like “high.” So it is natural to extend (4) into

Ha,, (x) :u(&,l](:uA(X)) Ox X (5)
where A, is the fuzzya-cut of A.

Let us prove that (5) can be derived from the extension principle. Since
A, = p(a, 1]), symbolically we also haveA, = u ([ a, 1]); hence, we
must extendu,* viewed as a multivalued function fros([0, 1]) in X
Nevertheless, the extension principle can be generalized to deal with
multivalued functions. In our example,

Hay ()= sup p; o) (6)
X (e 1))
where u(%‘l]E[a,l]E:u(&yl](a). Note that &, x € u(e, 1)} = 10, p(X];
and since /,l(%’l is nondecreasing and continuou;sl,Aa(x):/J(%,l]([uA(x),
1]), which is the same as (5). In (a)Aa(x) is the greatest among the
membership values of the sets, L] whose images undeu,* contain x;
this contrasts with (1), where = replaces

B. EXTENDED REAL OPERATIONS

An important field of applications for the extension principle is given by
algebraic operations such as addition and multiplication. More generally,
given ann-ary composition law fromX" to X, it is possible to induce an
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n-ary composition law in@)(X). In this section we restrict ourselves to
X = R, the real line; so here we extend real algebra.

a. Operations on Fuzzy Numbers  (Dubois and Prade, 1978c)

Some previous works related to operations on fuzzy numbers are those
of Jain (1976), Nahmias (1978), Mizumoto and Tanaka (1976b, c), Baas
and Kwakernaak (1977).

For simplicity, theorems and proofs will be stated for binary operations.
However, they remain valid fon-ary operations (see Dubois and Prade,
1978c).

Definition A binary operationilin R is said to bencreasingiff:

if x, >y, andx, >y, then x Ox, >y, Oy,

In the same way{lis said to bedecreasingiff x, >y, andx, >y, imply
X Ox, <y Uy,
Using the extension principle,] can be extended int@ to combine

two fuzzy numbers (i.e., convex and normalized fuzzy setR)inM and N.
Moreover, i, and u, are assumed to be continuous functionsRon

Hyon(d = Zziugy ming,,(x), K(y))- (7)

N.B.: Kaufmann (Reference from |, 1975c, pp. 290-295) considered a
probabilistic method for extending addition to fuzzy numbers, by means of
an ordinary convolutiony,, . (2) = j'éHM (X, (z—Xdx, for some par-
ticular kinds ofy,, and y,. See also Ma&S (1977a, b).

From now onn(R) notes the set of real fuzzy numbers.

Lemma 1 Let M and N be two continuous fuzzy numbers, ahda
continuous increasing binary operation. Lat [p,] and P, p] be two
intervals on nondecreasing parts gf and pu, respectively (possibly
A, = P, Or A, = p,) such that

Oxe Aoyl Oy € Aol () =1 (y) = @
Then

Ote [\, OA, P00ty ® = @

Proof. Let x, be an element ofA[,, p,] andy, an element of X, p,].
We have ming,(x,), 1 (Y,) = .

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



I.2. Extension Principle 43

Let (x, y) € R? be such thak Oy = x, Oy,. If x < x,, then minfs, (x),
My (Y)) = w becausey,, is nondecreasing on ¢;x, ], at least. Ifx > x,
theny <y, becausel] is increasing, and mip(,(x), i (y)) < w since i
is nondecreasing on &5 Y, ], at least. Hencey, -, (x, Oy,) = @ When
x, andy, range over X, p,] and p,p ], respectively,x, Oy, ranges
over A, OA, p,0p,] sincelis increasing and continuous. Q.E.D.

A similar lemma holds when we consider the nonincreasing partg, of
and .

Lemma 2 Let M andN be two continuous fuzzy numbers such thgt
is nondecreasing on ¢;m] and nonincreasing onnf,+ ) and y_ is
nondecreasing on ¢ n] and nonincreasing onn[+ o). Let 0 be a
continuous increasing binary operation. AssumgR’) = y (R') = [0, 1]
whereR' = R U {—oo, + oo}.

Thent e]infxlyx Oy,sup, X Oy, &, Y,) such that:

Either x, < m andy, < n,or x, = mandy, = n;
l’lM@N(XM DyN) = I’lM (X|\/|) = HN (XN) = u|\/|®N(t)

Proof: Note that sincey, and y are continuous and nondecreasing,
they are locally either constant or strictly increasing om, @® and
(—o0, n], respectively.

Let uy. be a function from [0, 1] to the set of subintervals o,
w o [\ ()0, @] = py, (a), such thatx €A, (@), p, (@] iff w1y, (0
= W, (X = w (H,,Iis the nondecreasing part gf,).

Similarly, py: w o [A (@), py ()] = Uy (W)

Let g and g be functions from [0, 1] to pe, mn] defined as

g(@ p, (@) * py (), g(@) = A, () OA ().

Since O is increasing,g(w) = g(w) and g, g are nondecreasingg (1) =
mOn, g(0) = inf (xDOy). Hence,0t€ (g(0),mOn], Do such thatt €
[g9(@), g(@)]. Onthe intervals\,, (@), o, (@)], [A(@), O, ()], y, and iy,
are constant, and their values are

Hence, due to the continuity &f

(% §) € A, (@) p, ()] x A (@) o, ()]
such thatt = X0y and, by Lemma Ly on (@ = @. Whent = m0On, a

similar proof holds. Q.E.D.
When p, and pu, are strictly increasing respectively one(-m| and on
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(=00, N, g(w) = g(w) =9(w). g is bijective from [0, 1] to ¢(0), m Ln] and
-1
w0t )™ on [g(0), mon)],

1
Hyon = %u;}_ Oyt )™ on HnDn sup ny
0

O
D otherwise

(u4, and u, denote the nonincreasing parts/gf and p,.)
We can now conclude:

Theorem 1 If M and N are continuous fuzzy numbers whose member-
ship functions are onto and is a continuous increasing binary operation,
then the extensioM® XN is a continuous fuzzy number whose member-
ship function is onto. The effective construction Mi®N can be per-
formed separately on increasing and decreasing parfg, aind i, using
the procedure given in Lemma 1.

When O is a decreasing continuous binary operation, the same results
hold; but we must use the decreasing partsupfand u, to build the
increasing part ofi, ., and vice versa.

Suppose the operatidnis for instance such that d#

If x, >y, andx, <y, thenx Ox, >y 0y,

It is easy to see that the operationdefined byx 0 x, = x U(=x,) is
increasing onR. Theorem | applies tdl and hence tdl However, to
perform M&N whereM and N are fuzzy numbers, we must combine, by
means of Lemma 1, the nondecreasing (resp. nonincreasing) paMs of
with the nonincreasing (resp. nondecreasing) pariN.oflis in this case
said to be “hybrid.”

N.B.: Another approach to obtaining Theorem | is to use more explic-
itly a-cuts and their compatibility with the extension principle (2). In that
framework some results may appear more intuitive.

Remark Baas and Kwakernaak (1977) have proved the following re-
sult: Letu’, i = 1,n ben piecewise continuously differentiable membership
functions with finite supports. Lef be a continuously differentiable
mapping of R" into R. At points where the respective derivatives exist, we
shall write

H(x)=du(x)/dx,  f(x)= of(x,...,x)/0x.

Suppose that the poit = (%, %,, . .., %,)€ R" satisfies the following
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conditions:
(i) p(x) andfi(&), i =1 n, all exist and are all nonzero.
(i) p(%) = (%) = OOCF p(%,).
(i) w'(x)/f(x) has the same sign for eacke {1,2, . . . ,n}.

Then X is a strict relative maximum point of the mathematical program-
ming problem:

Maximize min (x)
i=1n

subject to  f(x

X)) =R, k) = F(K).

Note that this theorem gives only sufficient conditions felative maxi-
mum points. Moreover, it is a local version of Lemma | with different
hypotheses.

b. Properties of &)

If &) is commutative, so i€).
If &) is associative, so i€). (This is easy to check from the definition of
®.)

Distributivity of &) over U,
OMN,PU[P2RPEMEOENUP=MON UM P)

(obvious). The result still holds far-ary operations. On the contrany is
not distributive over®) and &) is not distributive oven.

Flattening effect Let M, N be two fuzzy sets on an intervialof R such
that y, (1) = [0, w,] and u (1) = [0, w,]; considerM’ and N' such that
H,.(X) = min@, (x), min(w,, @,)) and i (y) = min(,(y), min @,, @,));
it is easy to see tha’ & N' =M &) N for any operatior]. Thus,M and
N can be “flattened” intoM’ and N' that have the same height. Whigh
and N are continuous convex fuzzy sets gnTheorem 1 can be applied
directly to M' and N' when [ is increasing or decreasing In replacing
[0, 1] by [0, min@,, w,)].

Moreover, if M and N are continuous fuzzy numbers dnsuch that
u, (1) = [e,, 1] andp (1) = [e,, 1], with ¢, < €, denote & [ I, u,, (X)
= €.} by [x,x]. If Ois a continuous increasing operation such that

Ot Linf(l) Tinf(1), sup() O sup()[,
Oy Linf(1), supQ)[, Ox D[xl, x|, t=x0y

then, denoting byM" the fuzzy number such that,.(x) = max{,, (X),
€,), we haveM ® N = M" ® N, i.e., M has been flattened “from the
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bottom.” This property can be applied tb ) = (R, +) or (, D =
(R*, O but not for instance tdR, max) or R, min).

N B.: If u, (1) [0, w] and (1) = [g,, 1] with ¢, > @, , then [z,
Hyon(D = SURp, My (X) with Dz = {x 1,3y O, xoy = 2.

c. Outline of a General Algorithm for the Computation of Extended
Operations (Dubois and Prade, 1978c)

We are now able to perform the exact computation of any extended
continuous and increasing (or decreasinggry operation between contin-
uous fuzzy sets within the framework of the same algorithm. Any continu-
ous fuzzy set can be decomposed into the union of convex, possibly
nonnormalized, fuzzy sets whose membership functions are either strictly
increasing or decreasing or constant in the only interval where they are not

zero (see Fig. 2).
A
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|
|
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1 1 1 1 P

X

Figure 2

Owing to the distributivity of®) over U, we can perform this operation
on each part separately using the top-flattening effect and Theorem 1. The
final result is the union of all the partial ones. Note that Theorem 1 can be
extended to piecewise continuous convex fuzzy sets by considering any
infinite-slope segment (discontinuity) as an increasing or a decreasing part
of the fuzzy number, according to the context.

Description of the Algorithm  Each fuzzy set is assumed to be discre-
tized into a finite number of membership levels, i=0,m (w,=0, w_
=1). To each level is assigned a g®t= {p!,...,[d} of real values
such that/JMk(P:‘J): w, =173, where M, k=1, n, are the fuzzy sets
considered and is function ofi andk. The p“ are assumed increasingly
ordered.

Example Two fuzzy numbers and a binary operatignwith m= 3:
Ml = 0)1/ p 111+ 0)2/ p 121 + 0)3/ p 13l+ 0)2/ p 122 + 0)1/ p l12’
MZ = wllpil-'- wZ/p221+ w3/p231+ wZ/p§2+ w1/p212’
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then
Ml® M2: wl/pi-1Dp121+w2/p;le§1+w3/p311Dp§l

+ C“"2 / p%z Dp;z + c‘)l/ pllz Dp122
The algorithm for am-ary operation generally proceeds in four steps:

(1) Flattening: Then fuzzy sets are changed into fuzzy sets all having
the same height.

(2) Decomposition of each fuzzy set as described above into two sets
or pieces, the set of nondecreasing “parts” and the set of nonincreasing
parts: The constant parts between two nondecreasing (resp. nonin-
creasing) belong to the nondecreasing (resp. nonincreasing) set. The con-
stant parts, which are between parts of different kinds, belong to both. In
Fig. 2, the nondecreasing set i$ {T, T, T,}, and the nonincreasing set
is {T, T, T, T}

(3) Operation@ The operation] is performed as in the above
example for everyn-tuple of parts (one part for each fuzzy set) all
belonging to the same kind of sets (nondecreasing or nonincreasing). The
flattening effect may be used.

(4) Union: For eachn-tuple of parts a fuzzy set was built in step 3.
The union of these fuzzy sets is the final result.

N.B.: The above algorithm can be easily adapted to deal with hybrid
operations.

Example Consider the two fuzzy set& and B pictured in Fig. 3. We
want to calculateC = A& B. & denotes the extended sum.

1.0

Az By
R A4
' 4 ,43 l 83 5\
0.4 / 5\
wBYARREI: \

C 1. 2 3 45 6 7 8 9210 Y 12 13 14 15 16 17

1.0 Car | Cos

{ J|Cis ci
0.8 1 A\ 4 26
0.6 i ,53 1’614 \f

/C‘ / / 235 \
0.4 A ™
N EIAVIE G\,

0.2 17 7

6 7 8 9 {0 {1 12 13 14 15 16 17 18 {9 20 24 22 23
Figure 3
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Step 1. A and B are normalized, no flattening is necessary.
Step 2.

A nondecreasing setd{, A}, nonincreasing setA,, A, A},

B: nondecreasing setB{, B, B,, B}, nonincreasing setg, B, B, B}.

Steps 3 and 4. Le€, denote A © B,. The C;s will be calculated in
lexicographic order:

C,=A,®B;C ~ C_.

C,, is not considered becauge and B, do not belong to the same kind
of set.

C,= A © B, PerformC ~ C
11 and 12 is dropped.

C,=A®B;,C~-CuUC,

C.,=A ©®B; C -~ CU C, (The remaining part o€ _ is dropped,
and the part oC , between abscissas 12 and 14 is dropped.)

And so on.

.o the part ofC _ between abscissas

The final result is pictured in Fig. 3.

The above procedure is certainly not the most efficient one—a lot of
redundancies remain that could be avoided through more careful analysis.
We intend here only to indicate that the algebraic calculus on rather
general fuzzy sets oR is practically possible.

Remark 1 It is clear that when discrete representations are used for
continuous fuzzy sets, it is not suitable to perform a sup—min composition
on the discrete data. The exact result is got by a direct performance of the
operation using] Theorem 1.

Example:

(05/4 + 1/5+05/6p((0.5/1+1/2+0.5/3)
=(05/5+1/7+05/9)
# (05/5+05/6+1/7+05/8+ 0.5/9),

where the latter was obtained by a direct application of sup—min composi-
tion. Here,® denotes the extended addition. (+ is, of course, an increas-
ing operation.)

This is an illustration of the noncommutativity of support descretization
and extended operations.
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2 The decomposition of a convex fuzzy set into a union of convex,
possibly nonnormalized fuzzy sets used in the above algorithm is very
similar to the decomposition of a multimodal probability distribution
considered as a mixture (linear convex combination) of unimodal ones.

3 The extension principle expresses generalized convolutions.

d. Usual Operations on Fuzzy Numbers (Dubois and Prade, 1978b, c)

a. Unary Operations

Let ¢ be a unary operation; the extension principle reduces to

M UP®), p @ = sup 1K,
z= ¢(x)

Opposite of a fuzzy numbe@(x) = —x. ¢(M) is denoted by -M and
is such that

O x LR, M, (X) = W, (=X).

M and -M are symmetrical with respect to the axis 0.
Inverse of a fuzzy numbep(x) = 1/x. ¢(M) is denoted byM-* and
is such that

0 x UR —{0}, u, -1 =y, (1/X)

Let us call a fuzzy number Nositive (resp.negativg if its membership
function is such thap, (x) = 0, Ox < 0 (resp.0x > 0). This is denoted
M >0 (resp.M <0).

If M is neither positive nor negativéy -* is no longer convex, and
generally does not vanish whég — o« (see Fig. 4b). However, whevl is
positive or negativeM ~* is convex (Fig. 4a).

!
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o] ire 2/3

Figure 4

Scalar multiplication:  u, . M(X) = y,(X/ ), ox UrR —{o}.
Exponential of a Fuzzy numbeti(x) = €. ¢(M) is denotede” and is
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such that

ueM(x):%,M(mX), x>0,

otherwise.

eMis a positive fuzzy number. Moreover; ™ = (eM) L
Absolute value of a fuzzy numbéie absolute value oM is denoted

absM);

_IMU(-M) on RT,
abS(M)_Ep on R".

B. Extended Addition and Multiplication

Addition: Addition is an increasing operation. Hence, the extended
addition ) of fuzzy numbers gives a fuzzy number. Note thaM-
N) = (—M) @ (- N). & is commutative and associative but has no group
structure. The identity ofb is the nonfuzzy number 0. BU¥l has no
symmetrical element in the sense of a group structure. In particular,
M® (M) z00M UPR) -R.

Multiplication:  Multiplication is an increasing operation dé and a
decreasing operation oR~. Hence, the product of fuzzy number®)(
that are all either positive or negative gives a positive fuzzy number. Note
that (M) © N =— (M O N), so that the factors can have different signs.
O is commutative and associative. The set of positive fuzzy numbers is not
a group for®: althoughOM, M® 1 = M, the productM ©M-1£1 as
soon asM is not a real numbemM has no inverse in the sense of group
structure.

The multiplication of ordinary fuzzy numbers can be performed by
means of the general algorithm (see c) provided there is decomposition of
each factor into a positive and a negative part. Note also that

oM, N U[2®R)2 MON)-1= (M-) O (N-Y
Weak Distributivity of© on &
Theorem 2 Provided thatM is either a positive or a negative fuzzy
number and thalN and P are together either positive or negative fuzzy

numbers, then

MOIND®P)=MON)S (MOP) 8)
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Proof The membership functions of each side are, by definition and
through an obvious reduction,

Py o wapy®) = (SUF:) ming, (%), 1y (), U (1)), 9)
z=X(y +

Huonyomor (@ = sup — min(u, (X, 4y (y), H, ), (1) (10)

Z=Xy+tu
Let ¢(x,y,t,u) = xy + tu. WhenM, N, and P are positive,¢ is increasing;
and when they are all negative, decreasing. In both cases, using Theorem |,
the upper bound of the right-hand side of (10) is reached nfgK)
= U, (y) =y, (u) = u(t) either in the increasing or the decreasing parts of
the membership functions. Hence=u and the right-hand sides of (9)
and (10) are equal. WheM and the pair N, P) have opposite signs, we
apply the same method to

A(-MONDP]=MONDP). Q.E.D.

N.B.: 1. WhenN and P have opposite signs, (8) no longer holds. A
counterexample will be provided later (see f). However, note that
MONBP)C(MON)B(MOP) always holds, i.e. the right-hand side is
fuzzier.

2. Zadeh (1975, Part 1) gives a demonstration of the nondistributivity
of (®) on &, in the general case, for discrete support fuzzy sets. (See also
Mizumoto and Tanaka, 1976b.)

3. Because of the nondistributivity d¢d on &, some nonincreasing
operations involving sum and product cannot be extended G3irmgd .

For instance, considep(x,y,z,0) = xy + ty + xz ¢(M, N, P, Q is neither
(MON)SOQON)DMOP)nor[((MD Q) ©®N] D (MO P)nor
[(MO(NDP)] @& (QON).

A property of the fuzzy exponential:
eM O eN=eM®N Y (M, N)E [PR)] (12)

This is obvious since**Y is an increasing binary operation.

y. Extended Subtraction (©)

Subtraction is neither increasing nor decreasing. However, it is easy to
check thatM©SN = M @ (-N) V (M, N) € [?(R)]% so thatMO N is a
fuzzy number wheneveavl and N are.

0. Extended Division (®)

Division is neither increasing nor decreasing. But, sirde® N
= MONN-H)VIM,N) e[P(R) UP[R)]2, MON is a fuzzy number
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when M and N are positive or negative fuzzy numbers. The division of
ordinary fuzzy numbers can be performed similarly to multiplication, by
decomposition.

€. Extended max and min

Max and min are increasing operations [ The maximum (resp.
mlnlmum) of n fuzzy numbersM,, . . . , M, denotedrﬁEX(Ml, ..., M)
(resp. mm(M o, M)), s a fuzzy number. A direct application of
theorem 1 gives a practlcal rule for constructionnuax (M, ,M,) and
mln(M . ooa M), already stated in Dubois and Prade (1978b) the maxi-
mum (resp mlnlmum) max (resp. min) is the dual operation with respect
to union (resp. intersection) because U M, U OOOU M_ (resp.M, N
M, N 0OOON M,) is obtained by considering the nonfuzzy maximum (resp.
mlnlmum) of then membership functions. Andnax M, ..., M,) (resp.
mm(M . . ., M) is similarly obtained provided that we exchange the
coordlnate axesannd § and that we consider increasing and decreasing
parts separately (see Fig. 5).

—~
max min

Figure 5 MaX (—) Min(-).

Let M, N, P be three fuzzy numbers (i.e., convex normalized fuzzy sets
of R). The following properties hold:

max and min are commutative and associative operations;
they are mutually distributive,

min(M, max (N, P)) = max [min(M, N),min(M, P)],

max (M, min(N, P)) = mm[max (M, N), max (M, P)[;
absorption laws,

max (M,min(M, N)) =M,  min(M, max (M, N)) = M
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De Morgan laws,
19 mnM,N) = mx (1O M, 1S N),
16 max(M, N) = min(1© M, 1S N);
note that 15 M is the “dual” of M : indeed, 15 (1S M) = M:
idempotence, mak{, M) = M = min(M, M);
M @ max (N, P) = maxM @& N, M @ P); the same withmin;
max (M, N) & min(M, N) =M & N.

(11(R)), max, min) is thus a noncomplemented distributive lattice.
Lastly, from the results of A.@, we infer the following equality

max (d (A, O),d(A,B,Q) = d(A, B, Q

where d is the fuzzy distance introduced in Age.This is a compact
presentation of a triangular inequality for fuzzy distances.

(. Extended Power Function

xY is defined whernx > 0. We consider only this casg? is increasing
when x [J[1, + ©) and y LJ[0, + ©) and decreasing wher [J]0, 1] and
y L(=, 0]. So it is possible to show that

OM U (1, +), OA>0, OP>0 MO MP= MA®P
and
oM [%@o, 1)), OA <0, OP <0, M*® MP= MA®P

(becausex¥t and x¥*Y are increasing operations fgr= 1,t = 1,y = 0,

andu = 0 and decreasing for O x< 1, 0<t< 1,y < 0, andu < 0;

hence, Theorem 1 can be applied). Owing M N) ~1=(M-H) O (N

and OM > 0, M") -t = M&Y, the formulaM® © MP = M"®P holds as
soon asM D@(]O, 1]) U ?([1, + ©)) and bothA and P are positive or
negative. Whemm, A, p are just ordinary real numbers, we have

O, Py LI2RE MO M° = Mmres,

OM <O0orM>0, MO MP =M
N.B.: Here,M* does not denote th&th power of the fuzzy seM in the
sense of 11.1.B.f.

e. Fast Computation Formulas

a. L-R Representation of Fuzzy Numbers (Dubois and Prade,
1978b, ¢)

A function, usually denoted. or R, is a reference function of fuzzy
numbers iff (1) L(X) =L(—x); (2) L(0)=1; (3) L is nonincreasing on
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[0, +w). For instance,L(x)=1 for x [J[-1,+1] and 0 outsidelL(x)
= max(0,1-4x),p=0; L(x) = e XI\, p>0; L(xX)= 1/ (1 +|x"), p=0.
A fuzzy numberM is said to be an-R type fuzzy number iff

()_Er((m—x)/a) for x=<m,a>0,
. _%((X—m)lﬁ) for x=m,3>0.

L is for left andR for right referencem is the mean valueof M. a and 3
are calledleft and right spreads,respectively. When the spreads are zéfo,
is a nonfuzzy number by convention. As the spreads incréadeecomes
fuzzier and fuzzier. Symbolically, we write

M= (m,a, B .

B. Addition

Let us consider the increasing parts of two fuzzy numbérs (m,a,
), andN = (n,y 9 . Let x andy be the unique real numbers such that

L(m-%/a) = w=L({(-Y/),
wherew is a fixed value in [0, 1]. This is equivalent to
X =m-al Yw), y = n—-yL Yw),

which implies
z=xX+y=m+n-(a+y)LYw and

LDm +n-z0_ o
Ha+ % H~
The same reasoning holds on decreasing part4 ahd N and
REZ~ (m+n)0_
3 p+s A
Using Theorem 1, we prove
(m a, ) D MVyJ,=Mm+na+y B+J, (12)

More generally,

.

ma, R)..®Myd,=Mm+nl 1) ..

with
L"=(aL-*+ L' Y- R =RBL-1+ ' -H-L

The formula for the opposite of a fuzzy number is
-m a B),=EmB a,. (13)

Note that the references are exchanged.
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From (12) and (13) we deduce the formula for subtraction
(m, a, B2 (NYJ, =(M=n,a+ 9 B+, (14)

y. Multiplication
Using the same reasoning as above, for positive fuzzy numbers, we get
z=xy=mlh—-(my+na)L Yw) + ay(L ~Yw))=

Without any approximation, this second-order equationLitfew), whose
discriminant is ihy— na)?+ a yz= 0, always has one positive root when
z<mn. Using Theorem |, we could deduce explicitly, . Usually,
M © N will not be anL-R type fuzzy number.

Nevertheless, if we neglect the temny(L((w))? provided thata and y
are small compared witimn and n, and /orw is in the neighborhood of 1,
the above equation becomes simpler, and we infer the approximation
formula M >0, N> 0)

(m, a, Oy, =(mnny+na, md+nh) . (15)
WhenM < 0 andN > 0, (15) becomes

(m, a, B, Oy, =(Mmnn—md niE+m,. (16)
WhenM < 0andN < 0, (15) becomes

(m, a, B ,O0M,V¥J,=(Mmn —-nB - —-na—my,. (a7)

When spreads are not small compared with mean values, other approxi-
mation formulas can be used to give the rough shapeyof,; for
instance, whe > 0 andN > 0,

(m,a, R O,y ), =(Mmnny+na-ay, md+nl + ) . (18)
The membership function defined on the right-hand side of (18) coincides
with g - at at least three pointsm@,1), [(m—a)(n—y), L()], [(m + )
(n+ 9), R(1)]. When more precision is required, it is always possible to get
more points of u, .., such as X Oy, w(x, Oy, w), where p (x)
= () = 4, (%) = 4, (Y;) =w,andx, y (resp. x,, y,) are on the left
(resp. right) parts ofi, and p.
N.B.: Scalar multiplication. Obviously, from da,
OA>0,A€eR, AO (M, a, B, = Am Aa, AB) ,,
OAN<O,AER, AO(M, a, B, = (Am -AR, Ad),,.

O. Inverse of a Fuzzy Number

We know thaty, ,(x) = u,(1/X) Ox # 0, DM E PR —{0}). Let M be
a positive L-R type fuzzy number. The equation of the right parthbf?!
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M - mx[J

(X)) = LDTD x=1/m,

when M = (m, a, B),.. Note that the right part oM -* is built with the
left part of M. Moreover M ~* is neither aL-R type fuzzy number, nor an
R-L type. But if we consider only a neighborhood of /(1 -mx) / ax
=2 /m)—=x)/(a/m?) andM ~* is approximately ofR-L type:

(m a,B),=(m"% Bm-2 am-?)_. (19)

A similar formula holds whe < 0 since — 1 -Y) =(-M)-%

e. Division of Fuzzy Numbers

Using the identityM ® N=M O N~ and (15), (19) for positivd-R
and R-L, type fuzzy numbers, the following approximate result can be
found:

(m a, ROy, 6)RLz§n/n, S, A (20)

odm+an Am+fn
il

Similar formulas could be given whévi and / orN are negative.

{. Maximum and Minimum of Fuzzy Numbers

Figure 5 shows that wheM and N are L-R type fuzzy numbers,
max (M, N) and min(M, N) are not always such since they may be built
with parts of bothM and N. This happens whem,, and u, have more
than one intersection point. More precisely,Mf and N have at most one
intersection point,

mnM,N)=M, max (M, N=N iff m<n. (21)

If M and N have two or three intersection points, i =1, 3, they are
always such thak <ms=x,<n<x, when ms<n and left (resp. right)
parts of M and N are strictly increasing (resp. decreasing). Moreover,
Hy, () = maxu, (), t, ().

When n=m and maxg,, (x), 4, (x,)) is low, (21) still holds approxi-
mately. When|x—x,| is small with respect tan and n, we can use the
formulas

max (M, a, B, (n,V, 8) ;) = (max(m, n), min(a, ), max@, 8)),  (22)
min((m, a, B (N,Y,0), ) = (Min(m, n), max(@, y), min(3, 9)), .. (23)

Whenm=n, (22) and (23) exactly hold.
When more than three intersection points exist, no approximation for-
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mula seems available. Whevl and N have intervals of constant member-
ship, the above reasoning holds replacing “intersection points” by
“intersection intervals”; formulas will be given below.

n. Flat Fuzzy Numbers

A flat fuzzy number(see Fig. 6) is a fuzzy numbevl such that
dm,m) € R, m, < m2, andy,, (x) =1Vxe[m,m]. A flat fuzzy num-
ber can model a fuzzy interval. Ab-R type flat fuzzy numberM is
defined as

M, (x) = L({(m —x)/a) Xs=m, a > 0,

R(x-m)/R) x=m, B>0,

1 otherwise.

More briefly, we denote nj, m, a,3). by M where L and R are
reference functions.

QpF———————
e e ———

o3
21

o |

Figure

N.B.: A flat fuzzy number could be represented with only three param-
eters, with flat references, but it would be less convenient than four
because the size of the flat part would depend on the values of the spreads.
Hence, the four-parameter representation is more general since it avoids
this dependency. Formulas far~R type fuzzy numbers are easily con-
structed; for instance,

(m,m,a,B) . DM,n,y,0),=(Mm+n, m+n,a+y B+9J),,
(24)
(ml’ mz’ a’ B)LRQ(nl’ n2’ y’ 5)LR2 (mlnl’ rnZnZ’ rnly + nla’ n’Ea + nZB)LR’
(25)

(25) holds forM andN > 0.

f. Interpretation and Comments

We already hinted that a fuzzy numbkr can model an ill-known
guantity whose value is “approximately’ and that a flat fuzzy number
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can be an interval whose boundaries are not sharp, for instance, a fuzzy
tolerance interval. A fuzzy set @& having distinct maxima whose member-
ship values are 1 can model a set of imprecise measures of a given
phenomenon. When the maxima have different membership values, they
may express the degree of quality of the information inherent in these
maxima.

Hence, the maximum membership value of a fuzzy number is inter-
preted as a grade of reliability, and its spreads model the imprecision of a
measurement. The flattening effect supports this interpretation: the reli-
ability of M & N is the least of the reliabilities d¥1 and N.

The distributivity of any extended operation on the union of fuzzy sets is
easily interpreted: for instance, it seems quite natural that (“approximately
2" or "approximately 3”) + “approximately 1" gives “approximately 3" or
“approximately 4.” On the contrary, a number whose value is “ap-
proximately 1” and “approximately 3” has less meaning: this is consistent
with the nondistributivity of any extended operation on the intersection of
fuzzy sets; such a number results from conflicting sources of information.

The problem of identification of a membership function is considered at
the beginning of Part IV.

Note that our interpretation of fuzzy numbers in the framework of
tolerance analysis is supported by the fact that formulas (12) et seq.
generalize those of nonfuzzy tolerance analysis. The algebra of real inter-
vals as developed by Moore (NF 1966) is entirely consistent with our
results. In particular, Moore points out the nondistributivity of the product
of intervals over subtraction of intervals &, i.e., A(a(b — Q) # A(ab —
ac) whereAx denotes the absolute errorxnanda, b, and c are positive.

The main appeal of formulas (12) et seq. is to extend tolerance analysis
to fuzzy intervals, without increasing the amount of computation too
much, which makes it possible on a practical level: to be represented a
nonfuzzy interval needs two parameters, a fuzzy number requires three, a
fuzzy interval four. A manipulation of these parameters is enough to
obtain the final membership function. Lastly, theR representation is
general enough to encompass many shapes of rnembership functions.

NB.: Formula (12), which is for addition, allows an empirical compari-
son between the sup-min and sup—product extension principlesMLet
and N be two L-L fuzzy numbers, withL(x)=e-*, M=(m,aq, ),
N=(ny, d) . Using the max-product extension principle, it is very easy
to show that, using this particular reference,

mEN=dn+n(a® 7). (8 +6°) (26)

L
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wheret denotes the sup-product extended additiolsince M@ N
=m+na+y B+9,MEHNCM®O®N; but this result holds for any
extended operation as well, and any real fuzzy sets.

g. Comparison of Fuzzy Numbers

When comparing fuzzy numbers, two kinds of questions may arise:

(1) What is the fuzzy value of the least or the greatest number from a
family of fuzzy numbers?
(2) Which is the greatest or the least among several fuzzy numbers?

The answer to the first question is given by the use of the operalri’ﬁ’ms
andmin. The above two questions are not simultaneously answered
because, given a famili, . . ., M, of fuzzy numbers,max (M,, . .
M) (respmin(M,, . . . ,M)) is not necessarily one dfie M..

Hence, another method is required to answer question 2. We must
evaluate the degree of possibility fere R, fuzzily restricted to belong to
M € ?(R), to be greater thay € R fuzzily restricted to belong tiN
€ 2P(R).
The degree of possibility d1 = N is defined as

viM=N) = sup min(y, (¥, H(Y)) (27)

XY IX=Yy

This formula is an extension of the inequality= y according to the
extension principle. It is a degree of possibility in the sense that when a
pair , y) exists such thak =y and y,(x) = pu (y) = 1, thenv(M = N)
=1,
SinceM and N are convex fuzzy numbers, it can be seen on Fitha?
viM=N)=1 iff M = N,

V(N = M) = hgt(M N N) = u (d)

12

|
, I
!
| |
| |
! |
| ]
| ]
1 i
d m

x

Figure 7

™ E N has the same reference functibrand M or N only because we use an exponential
function; more generally, this is not true.
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whered is the ordinate of the highest intersection pdntbetweeny, and
M, Note that hgtd N N) is a good separation index for two fuzzy
numbers—the closer to 1 is hgt(N N), the harder it is to know whether
M is either greater or less thad. (= is actually a fuzzy relation (see
Chapter 3) between fuzzy numbers.)

WhenM = (m, a, B, N = (n,y, J)., the ordinate oD is given by the
equationL((n-d)/d) =L((m-d/a = pu,(d),i.e.,u,(d)=L((m-n)/
(o + 9)) if m = n. Note that the type oM is LR when that ofN is RL.

To compareM and N, we need bothv(M = N) andv(N = M). If, for
instance,v(M = N) = 1, we know that eitheM = N, or M andN are too
close to be separated. We may then choose a threghaltd admit that
M =, N as soon as/(N = M) < 6. For L-R and R-L type fuzzy num-
bers, this latter rule reduces to

N=,M iff n-m>g+y (6=R()),
=, N iff m-n>a+d (6=L(1).

When ming (M = N),v(N=M)) = 6, we shall say thaM and N are
approximately equal, in the sense that they may be very close after a
learning process. This is a very weak equality between fuzzy numbers.
Stronger equalities could be defined using similarity indices defined in
I.LE.cR. The consistency of fuzzy numbers works much better as a separa-
tion index than as a similarity index.

N.B.: 1. Comparison oM and N is equivalent to that oM © N and
0 becauseqy,, . (0) = hgtM N N) VM, N € ?(R). Hence ifM and N are
convex andv(M = N) =1, v(N= M) =, (0).

2. All results hold for flat fuzzy numbers.

3. We could defineM > N by max (M, N) = M and/or min(M, N)
= N. Such a definition is not very good becaldecan be very close td,
and stillM > N can be true while neithevl =, N nor N =, M holds.

Dgl:l

\

h. Fuzzy Equations

A fuzzy equatioris an equation whose coefficients and/or variables are
fuzzy sets ofR. The concept of equation can be extended to deal with
fuzzy quantities in several ways. Consider the very simple equatidnx
= b where @, b € R? x is a real variable, andl is a group operation on
R, so that the unique solution xs= a~* Ob wherea~* is the inverse of.

a. A®x =B, A BePR), xER

The above equation means that the fuzzy A@x is the same aS$.
Note that it is forbidden to shift terms from one side to another. For

"= is acrisp relation and1 =, N means'M is greater thal at level6.”
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instance, the equatioA®)x =B is not equivalent to A%)x) © B=0: the
first may have solutions, while the second surely does not, sk@exj ©
B is fuzzy and O is a scalar.

B. A®XCB

The above equation is a relaxed versionaofThe fuzzy setA *)x must
be contained inB. B could be for example a prescribed tolerance con-
straint on the output of a given devick,a known error rate of its input,
and x a characteristic of the device. The solution of the equation is a
tolerance interval fox.

y. A x=B

The above equation is another relaxed versiom.oThe fuzzy setA &) x
must be approximately equal ®. = is defined as a weak equality in the
sense of |LE.@ or ane-equality in the sense of |.LEX.Besides, we can
interpret A@®) x = B as “neitherA@)B=_,B nor B=, A &) x hold.” Once
more the range aof is generally an interval dR.

5 A® X=€PR),beER

The above equation is not related to the preceding ones. It means, is
there a real fuzzy seX such thatVeoe [0, 1], VaE€ R satisfying u,(a) = o,
Ix €R, i (X) =o, and alx=Db? Here, sincelis a group operation, it is
easy to check thaX=A*&)b. This type of fuzzy equation could be
generalized with a fuzzy right-hand sid& It is consistent with the
extension principle.

Equations of typed may be interpreted in the following way: knowing
the fuzzy tolerance intervah of a quantitya, what is the fuzzy tolerance
interval X of the quantityx that must satisfy the requirememtix = b?

N.B.: a, 3y can be generalized to fuzzy variables.

When coefficients aré-R type fuzzy numbers, the actual solution of all
fuzzy equations is made much easier. Usually fuzzy equations will be
equivalent to a system of nonfuzzy equations (see l1l1.4).

i. Fuzzy Matrices

A fuzzy matrix is a rectangular array of fuzzy numbers. Obviously, there
is no difficulty in performing additions on fuzzy matrices. But the product
of fuzzy matrices is no longer associative because of the lack of complete
distributivity of © over . A sufficient condition to preserve associativity
is to work only with positive fuzzy matrices (i.e., matrices all of whose
elements are positive fuzzy numbers), only with negative fuzzy matrices, or
only with diagonal fuzzy matrices.
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The problem of the inversion of a fuzzy square matfixn the sense of
h.d (find M’ such thatM © M’ =1 wherel is the ordinary identity matrix)
was approximately solved by Moore (NF 1966) when the fuzzy numbers
are just ordinary intervals. He used an algorithm based on Hansen’s
method (Hansen, NF 1965; Hansen and Smith, NF 1967).

The problem of finding the fuzzy eigenvalues of a fuzzy matrix can be
solved in the framework of systems of linear fuzzy equations (l1.4.A.b).

j- Entropy of a Fuzzy Number

Let M be anL-R fuzzy number and an entropy function that satisfies
the requirements of (1.HM =(m, a, B) ., whereL, R are such that

fm(())dx k <+o and I R(x)) dx = kg <+ oo.

The entropyd(M) of M is
:J'_ms@ %dx + SEREu%dx
= afs( L(x))dx + ﬁj;ms( R(x)) dx,
dM) = ka + k B. (28)

Thus, for a givenL-R type, the entropy of a fuzzy number is a linear
function of its spreads. It is easy to check that

dM®N) = dM) + d(N), dM O N) = mdN) + nd(M)

(n denotes the mean value HNj.

or

C. EXTENDED FUZZY SETS

a. Type mor Level p Fuzzy Sets

Let A be an ordinary fuzzy set on a univer&e In Zadeh’s notation,
A=J X/ x

Zadeh (1972) called “fuzzification” oA the change ok or u,(x) into a
fuzzy set onX or [0, 1], respectively, for every € X. When p,(x) becomes
fuzzy, A becomes a type 2 fuzzy set (1.G.d). This transformation of an
ordinary fuzzy set into a type 2 fuzzy set by blurring the grades of
membership is called g-fuzzification (Zadeh, 1972). Wheis blurred into
a fuzzy setx on X, A is a fuzzy set or?(X), and is said to be a level 2 fuzzy
set (Zadeh, Reference from IV.2, 1971).
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_ More generallyA is said to be devel p fuzzy seff it is a fuzzy set on
Pr-4X) recursively defined as

PX) = PX), PN = P(PPUX),  p> L.

A level p fuzzy set can be viewed as a hierarchy of fuzzy sets.

If X is finite ( X| =n) and [0, 1] discretized int& grades of membership,
the number of level 2 fuzzy sets X¥fis kik"], that of type 2 fuzzy sets of
is [K". Since kik" = [K|" as soon ask = 2 (strict inequality when
k> 2, n>2), there are always more level 2 fuzzy setsXothan those of
type 2. More precisely, there is no bijection betwe2n(X) and P*(X),

The two notions are not equivalent: a type 2 fuzzy set is a fuzzy-valued
fuzzy set, a level 2 fuzzy set is a fuzzy set of fuzzy sets.

Zadeh (1972) introduced the notion of s-fuzzification (s for support). In
this fuzzification each singleton of, denoted by 1X, is changed into a
fuzzy setK(x), clustered around; the mappingK from X to P(X) is
called thekernel. The result of an s-fuzzification is a fuzzy setXn

FA K = | 10K (29)

x OX

where 1, (X)K(x) :fqu(X)uk(X)(X')/X' Vx&e X Note that a level 2
fuzzy set can always be reduced to an ordinary one in a similar way:

A:ZUi/A,’ An D@)(X)

is changed intdJ:_, p A .
The effect of an s-fuzzification is to make a fuzzy set more fuzzy.

b. Extended Set-Theoretic Operations for Type 2 Fuzzy Sets

In 1.G.d we defined set-theoretic operations on fuzzy sets of type 2, by
induction from the lattice structure of([0, 1]), U, N, 7). This definition
proved to be semantically very poor.

Now, since a fuzzy set of type 2 is obtained by assigning fuzzy member-
ship values to elements of we can, following the same idea, extend the
set-theoretic operations of ordinary fuzzy set theory to allow them to deal
with fuzzy grades of membership; this is done using the extension princi-
ple. LetA and B be fuzzy sets of type 2 of. u,(x) and u,(x) belong to
2([0, 1]). We write

Hys (0= MaX (1,00, 10)  VXE X, (30)
Hors 0= MR, 1) VXEX, (31)
My (X) =10 p,(x) Vx e X (32)
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I, L, = were first proposed by Mizumoto and Tanaka (1976a). These
operators allow overcoming the paradox quoted in |.G.d: whgr) is
approximately | (x), p,(x) approximatelyl (x), and | ,(x) > I (x), we
know from B.d thatu, . (x) will be “approximatelyl (x).”

On the contrary, the structure &f([0, 1]) is poorer: P((0, 1)), LI, 1, is
only a pseudocomplemented structure. The structure is pseudocomple-
mented becaus®l € ([0, 1]) iff 1 © M &€ ([0, 1]). However, among the
properties listed in B.d, distributivity does not hold for fuzzy sets of [0, 1],
as proved by Mizumoto and Tanaka (1976a), neither does absorption hold,
existence of &) and al, identity, and excluded middle laws.

If we restrict ourselves to the s8]0, 1]) of fuzzy numbers of [0, 1], the
structure is richer: JX([0, 1]), LI, I'l, ©) is a pseudocomplemented complete
distributive lattice, and all the properties of ordinary set-theoretic opera-
tors on fuzzy sets are satisfied, i.e., commutativity, associativity, idempo-
tency, distributivity, identity A1 @ = @, A LI X = X, absorption, De
Morgan’s laws, involution (see I.B.d). Only the equivalence and symmetri-
cal difference formulas fail to hold any longer. This result stems from (see
Dubois and Prade, Reference from Ill.1, 1978Db):

max [mMmM, N), mm(L © M, 1S N)] # min[ max (M, 1 © N),

max (1 © M, N for someM, N € 94[0, 1]).

min[ max M, N), max (I © M, 1 © N)] # max [min(M, 1 © N),

min(1 © M,N)] for someM, N € 90, 1]).

Note that fuzzy-number-valued grades of membership are intuitively
appealing since they may model our imprecise knowledge of these grades.
Fuzzy numbers of [0, 1] are also easily combined thanks to the algebraic
formulas provided in section B. Thus, intuitive meaning and practical
reasons induce us to adopi([0, 1]) as the best valuation set for type 2
fuzzy sets.

To define inclusion of fuzzy-number-valued fuzzy sets, we must compare
fuzzy grades of membership, in order to be consistent with the extension
principle. For instance, we may write

ACB iff  VxeX mn®, tK)=1X
and  max (L9, Ky () = K9,
This definition is somewhat rigid (see B.g,N.B.3). We may choose
AL B iff Vxe X v(u,(X=ux) =1,

V(0 = () <6
where 6 is a threshold (see B.g). Set equality may be also very strict:
(A=B < u(x) = u,(x) V x € X) can be relaxed using the similarity indi-
ces given in LE.
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Remarks 1 (30), (31), (32) restricted to act on interval-valued member-
ship grades give operators fd-fuzzy sets (Sambuc, Reference from 11.1)
and multivalued quantities (Grattan-Guiness, Reference from 11.1): Exam-
ple:

max ([a, b, [c, d) = [max(a, 9, maxp, d],
min([a, b, [c, d) = [min(a, ¢), min(b, d)],
1©[a,b=[1-b,1-a]; V[a, b, [c,d C [0, 1].

2 The set of intervals of [0, 1] is only partially ordered unudex and
min. In the context of an application, Ponsard (Reference from V, 1977a)
introduced an inclusion of fuzzy sets so as to recover a linear ordering. The
corresponding inequality of membership values is [asDb]c, d] iff either
b <dor (b =dand a< c). An alternative definition is [a, b [c, d] iff
eithera < c or (a = c andb =< d). Using one of these inclusions, the set of
intervals of [0, 1] is linearly ordered. The union ®kfuzzy sets is now
defined by means of the operatdf on the interval-valued membership

grades:
(&, BWe, d = a, b .iff [c.d]<[a b]
c.d] iff [ab]<[c,d]
The intersection ofb-fuzzy sets using the operatht is
a,b] iff [a b]<[c,d]
c.d] iff [cd]<[anb]
Under W and M the set of intervals of [0, 1] is a distributive linear

ordered lattice W and M are associative, commutative, idempotent, and
satisfy the law of absorption. Lastly,

[a, IM[c, d =§

[a, bIM[c, d = [a, Wc,d iff  [a b = [c,d.
[a,BM[c,d = [c,d  iff  [a b Wc,d = [a b

c. Some Further Operations on Fuzzy Sets of Type 2

mth power of a fuzzy set of typgZadeh, 1975): LeA be a fuzzy set of
type 2 onX. u,(X) is a fuzzy set on [0, 1]

/'lA(X) :J.[O,l] A (t) t.

Just as for the definition of union, intersection, or complementation of
type 2 fuzzy sets, the extension principle provides us a way to define the
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mth power of A™ of A as

H0=] o A 17 = @O)"(see 11.2.B.d).

For instance, fom = 2, if u,(x) is a fuzzy nunEeruA(x) is also a fuzzy
number that is less than,(x) in the sense ofmin. It must be clear that
H,z(X) is completely different fro [0,11()‘('[))2“ = U (x) (see Fig. 8), the
second power ofi,(x) in the sense of I.LB.f.

1
() Ml
@I
Fa@ fag LX)
05 / / \\\
© 05 1
Figure 8

Addition: Let us consider the following level 2 fuzzy $gt on R: 9 is
a fuzzy set ofL-R fuzzy numbersM,. I = J)\/M where M, = (m, a,,
B), Symbolically, we writedlt = (m, a, B)LR where [, (a,) = )\ = U. (@)
¢ has an ordinary mean value but fuzzy spreé{HSIS represented 'In Fig.
9. M may be also viewed as a type 2 fuzzy numpegr(m,) is sketched in
the right part of Fig. 9.

Figure 9

If we suppose that the spreads and [3 are |-r type fuzzy numbers,
addition can easily be extended to level 2 fuzzy sefg, dike N =(m a,
B,)andN = (n, i, 5, ) through the formula

MG N =m+n, & D §i, §,P 3 e (33)

Such fuzzy-fuzzy numbers can model situations where only the rough
shape of the characteristic functions of the fuzzy numbers is known.
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Chapter 3

FUZZY RELATIONS

The concept of a fuzzy relation is introduced naturally, as a generaliza-
tion of crisp relations, in fuzzy set theory. It can model situations where
interactions between elements are more or less strong. Fuzzy relations can
be composed, and this composition is closely related to the extension
principle.

A great deal of work has been done in the field of binary fuzzy relations.
Notions such as equivalence and ordering have been generalized to fuzzy
similarity and fuzzy ordering. However, it has been made clear that most
of the mathematical tools that have been developed concerning this topic
are not new. Similarities are very connected to distances. Fuzzy preorder-
ings still contain undominated and undominating elements.

More original are the equations of fuzzy relations. Moreover, their
resolution may prove to be useful in the framework of computerized
diagnosis.

More sophisticated fuzzy relations are briefly outlined at the end of this
chapter.

A. n-ARY FUZZY RELATIONS

a. Fuzzy Relations and Fuzzy Restrictions

Let X, - - -, X be n universes. Ann-ary fuzzy relationR in
X, x.x X is a fuzzy set onX x --- x X (Zadeh, Reference from
I, 1965). An ordinary relation is a particular case of fuzzy relations.

68
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Example n = 2. X = X, = R*-{0}. R =“much greater than” may be
defined by p.(x,y) = 0 iff x<y and u,(X,y) = min(1,k-y)/9y) iff
X =Y, ,u (X y) =1 as soon as= 10y.

Let v=(v,...,v) be a variable onX=X x---x X. A fuzzy
restriction, denotedR(v), is a fuzzy relationR that acts as an elastic
constraint on the values, elementsXgfthat may be assigned to a variable
v (Zadeh, 1975a). In this context\variable is viewed as a 3-tupley(X,
R(v)); v isthe name of the variable.

Afuzzy relationR is normalized iff the fuzzy sé® isnormalized.

The projection of a fuzzy relationR on X x---.x X, where
(i,...,1) is a subsequence of (1,2,..n), is a relation onX , x---x
X. defined by (Zadeh, 1975a):

proj [R; X. .. X,]

:J’ sup (X %) (X0 %) @
Xil"'“x Xik xj'l,...,x

Ji
where {,,...,jl) is the subsequence complementary tg.(.,i) in
da,...,n.

N.B.: Projections are also calletarginal fuzzy restrictions.

Conversely, ifR is a fuzzy set inX, x --- x X, then itscylindrical
extensionin X, x .- x X is a fuzzy setc(R) on X, x --- x X defined
by (Zadeh, 1975a)

c(R)= XnuR()gl,...,&k)/(xl,...,xn). (2)

X% - X

Let R and S be two fuzzy relations orX, x---x X and X, x ---. X
X, respectively, with s< r + 1: thejoin of R and Sis ¢(R) N ¢(S), where
¢(R) and c(S) are cylindrical extensionsXyx --- x X .

Examplen = 3. X = R, i = 1,3. (X,y,2)is fuzzily restricted to be on a
sphere [ (x,y,z) =e**+¥*+Z-®|). The projection of R on the {,})
plane has membership function

2,2,,2_
o ) =e
pe(X, y)= 1 otherwise. We obtain a fuzzy disk. The cylindrical extension
of this fuzzy disk is the fuzzy cylindrical volume whose base is the fuzzy
disk and which contains the fuzzy sphere.

iff  X2+y2>R?

N.B.: A sectionof a fuzzy relationR is obtained by assigning constant
values to some of the variables fuzzily restricted RyIn the above
example a section of the fuzzy sphere is a fuzzy circle.
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In terms of their cylindrical extensions tlemmpositionof two fuzzy
relations R and S respectively oX x ---x X and onXXx - - - xX_
with s=< r is expressed by (Zadeh, 1975a)

R o S=projfc¢(R) N c(9; X x -+ x X x X x .- x XJ. ©))

R o Sis a fuzzy relation in the symmetrlcal difference of the universes of
RandS

b. Interactivity (Zadeh, 1975b)

An n-ary fuzzy restrictionR(v, ..., v) is said to beseparableiff
R(v,...») = R(v) x --- x R(v) where x denotes the cartesian
product (2.A.a) an®(v) is the projection oRonX, i.e.,

HROG-%,) = N Ly (X))

Note that in terms of cylindrical extension, the above formula can be
written

R=] c(proi[R X]). )
i=1,n
R is separable iff it is the join of its projections. B is separable, so are all
its marginal fuzzy restrictions. The variables...,v are said to be
noninteractiveiff their restrictionR(v,...,v) is a separable fuzzy restric-
tion. It is easy to check that
R(v -, V)CR(y) x -+ x Ry) = N c(proj[R(v,, -+, v);X]).
i=1,n (5)
Figure 1 sketches two binary nonfuzzy relations. On the left-hand side the
choice of a given value iR(v,) for v, does not at all restrict the choice of
a value inR(»,) for v, This pair of values will always satisfy the relation
R. On the contrary, the choice of a value fgrdepends upon the value of
v, and conversely, in order to satisfy the relation of the right-hand part of
Fig. 1. It is an example of noninteractivity and interactivity, respectively,
for nonfuzzy relations.
Note that the ordinary product of projections of a given relafgn

. .
I,

proj [R; X/] proj [R; X]- . . . -projR; X ] (see 1.B.e) is an interactive rela-
tion contained inN _, = c(proj [R; X]). As a matter of fact, the separable
restriction R(v)) x - -+ x R(v) is associated with the greatest (in the sense

of Zadeh’s inclusion of fuzzy sets) of the relations whose projections are
proj [R (v,. . ., v); X] = R(v).

Interactivity must be considered when extending a given function, in the
sense of 2.A. For instance, the nondistributivity(@fover & (2.B.df) can
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X X

. | { I

I i | !

1 1 - L L -
y X, ; 1

Riv) Riv)
noninteractive interactive
Figure 1

be explained in terms of interactivity: while there is no problem in the
extension of the functioz(x +y), the situation is different for the exten-
sion ofzx+ ty forgetting the constraint of interactivig=t.

More generally, given a function frord, x --- x X to Y and a fuzzy
restrictionR on the arguments ¢fthe extension principle becomes

f(A, ... ,A)

= [ ety M O0): o g (06, (500 X)) 060 )

(6)
whereA is a fuzzy set oiX.

When R is an ordinary separable relation &, the associated restric-
tion meansti = 1, n, O, x € | where | is a union of disjoint intervals.
The constraint is implicitly satisfied as soon @g(x) = 0, Ox & 1. An
example of interactivity wher® is an ordinary nonseparable relation on
R?is given in the following paragraph.

Calculate the fuzzy restrictiohl of ax+ by (a fuzzy set is a unary
relation) whenx andy are restricted by fuzzy setd and N, respectively,
and by the constraimt+y =1, @, b) € R

Ha(@)= sup o min(py (x), Uy(Y)):
X+y=1
hence,
. O mz-bgo [pa-z .
= D
u,(2) mmEuMDa—bDuNDa—b if azb;
and ifa=Db,

_ Huon(@ if z=a,
Hi(2)= B otherwise

However, the existence of a nonseparable restricRodoes not always
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simplify the computation off(A,...,A) as above, but can make it
totally unwieldy.

N.B.: Interactivity in the sense of this section was cafeidteractivity
by Zadeh (1975b). Another kind of interactivity will be introduced in IV.2.

c. Extension Principle and Composition of n-ary Fuzzy
Relations

The extension principle can be written (see 2.A.a)
Hg(Y) = S min(py, (%), - -+, M (X))

y=f(x1'1'_ Xn)

where B = f(A,...,A). By denoting R = c(A)N---N c(A)=
A x---x A and letting S be the ordinary relation defined by

mX ..o, xy)=1iff y=1(x,...,x), we haveB = R~ § and the
extension principle appears as a particular case of composition of
fuzzy relations. When a restrictionT on (,...,x) is added,

BbecomeB=RNT)°S

Remark From a computational point of view it may be interesting to
solve the equationy=f(x,...,x) (or the corresponding system if
nonfuzzy restrictions onx(, ...,x) exist) and to introduce the calculated
X, in My Once more the formula becomes a composition of fuzzy relations.

B. BINARY FUZZY RELATIONS

Binary relations have received much attention in the literature because
the notion of a link between two elements belonging to the same universe
or two different universes is fundamental in systems theory. Some classical
definitions follow.

a. Definitions

Let R be a fuzzy relation oX x Y. The domainof R, denoted doni),
and therangeof R, denoted rami), are respectively defined by

/’ldom(R)(X):Sl;lp Hg (X, y) Ox X
and
Heanm (Y) =8UP pig (X, y) DyLY.
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The inverse of R, denotedR™, is the fuzzy relation onY x X defined
by e oY, % = (X, Y)(Yeh1973).

Yeh (1973) has extended to fuzzy relations definitions which are rather
specific of functionsRis:

e-determinateiff Vx € X, 3 at most oney € Y, such thatu (X, y) = ¢
e-productiveiff Yx € X, 3y, u (X, y) = ¢;

An e-function iff R is both e-determinate and-productive; a 1-function
is an ordinary function when restricted to its 1-cut;

e-ontoiff Vy € Y, Ix € X, u(X,y) = ¢;

e-injectiveiff R isan €-function andR™ is e-determinate.

e-bijectiveiff RandR™ are bothe-functions.

In the following definitionsX= Y. Now we give the fuzzy version of
well-known possible properties of relations in a unive¢se
Three extensions of reflexivity have been propoBad:

reflexiveiff Vx € X, u(x,X) = 1 (Zadeh, 1971);
e-reflexiveiff Vx € X, u(x, X) = e (Yeh, 1973);
weakly reflexiveff Vx € X, Vy € X, u (X, X) > u(x,y) (Yeh, 1973).

Symmetry is defined byR is symmetriciff Vx € X, Vy € X, u (X, y)
= ey X)-

b. Composition of Binary Fuzzy Relations

o. Properties

The composition of fuzzy relations has already been introduced in A.a.
In the particular case of binary relations the compositiorRand S on
XxYandY x Z respectively can be written

l’lRoS(X1y):SylalP min(uR(x,y),/J(y,z)) Vx € X, Vz € Z. (7)

There are some properties that are common to binary relations. They
can be proven without difficulty. Let) be an extra relation oZ x W and
TonY x Z Then:

associativityRo (Se U) = (R° § o U;

distributivity over unionRe (SU T) = (Re S)U (R° T);

weak distributivity over intersectioRe (SN T) C (Re S) n(Re T);

monotonicity SC T impliesRe SC R> T;

symmetrization:R o R* is a weakly reflexive and symmetric relation
onXx X
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A nonzero fuzzy relatiorQ on X is weakly reflexive and symmetric iff
there is a univers® and a fuzzy relatiorR on X x Y such thatQ = R °
R* (Yeh, 1973).

B. Interpretations

(7) can be interpreted in the following way; (X, 2 is the strength of
a set of chains linking to z. Each chain has the form-y -z The strength
of such a chain is that of the weakest link. The strength of the relation
betweerx andz is that of the strongest chain betweemdz.

Let A be a fuzzy set iiX: (7) can be rewritten

Hacr(y)= sup min(p, (%), e(X,Y))-

We say thatB = A R is a fuzzy setinducedfrom A through R. This
induction generalizes a well-known nonfuzzy rule:xif= a andy = f(x),
then y=f(a)—as shown in Fig. 2 (Zadeh, 1975b): We hate=
proj [c(A) N R; Y.

"4

-] ;

/ i, N/

oA/}

—_—
A  (Fuzzy)

Figure 2

Y. Representation of a Fuzzy Relation on Finite Universes

When the related universes and Y are finite, a fuzzy relatiorR on
X x Y can be represented as a matrX] whose generic termR]; is
Mg (X, yj) =1, I=1,n,j =1,m, whereX| =nand ] =m.

The composition of finite fuzzy relations can thus be viewed as a matrix
product. With §, =s,, k=1,p,p=|Z],

[Reg], = Z i Sik
]

where} is in fact the operation max and product the operation min.
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8. Convergence of Powers of Fuzzy Relations on a Finite
Universe (Thomason, 1977)

Let R be a fuzzy relation oiX x X where X| = n. The mth power of a
fuzzy relation is defined a®™ = R R™, m > 1, andR' = R. The
following propositions hold:

the power ofR either converges to idempote®® for a finite c or
oscillates with finite period (iR™ does not converge, then it must oscillate
with a finite period sinceX] is finite and the composition is deterministic
and cannot introduce numbers noRioriginally);

if Vi, j, 3k such thatrij < min(rik,rkj), then R converges toR® where
c<n-1. (See Thomason, 1977, for a proof.)

Other results in more particular cases can be found in Thomason (1977).

e. Other Compositions

SinceR o S can be written prog(R) N c(S); X x Z] whereR and S
are respectively orX x Y andY x Z, other compositions may be intro-
duced by modifying the operator used for the intersection.

Changing min te, we define R S through

HR[E]S(X’Z) = S'-;/'p (UR (X’Y)Dus(yyz))-

Zadeh (1971) proved that whenis associative, and nondecreasing with
respect to each of its arguments, the s@peomposition satisfies associa-
tivity, distributivity over union, and monotonicity.

Examples of such operations are product and bold intersection (1.B.e,
formula (12)).

We may encounter another kind of alternative compositions, inf-max

composition. The following property holdsRoS=R=s Swhere = de-
notes inf-max composition.

c Transitivities

a. Max-Min Transitivity

The idea behind transitivity is that the shorter the chain, the stronger the
relation. In particular, the strength of the link between two elements must
be greater than or equal to the strength of any indirect chain (i.e., involving
other elements).

Let R be a fuzzy relation onX x X, R is max-min transitive iff
R° RC R, or more explicitly (Zadeh, 1971)

VX, ¥, EX, (X, 2 > minug(X, V), pely: 9)-
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Write R" = R o R™ with m > 1 andR'=R. If R is transitive,
R"CR, m= 1; hence R= Rwhere R is the transitive closure OR,
defined asR=RU R U *++U R"U-+-.

Generally, whenR is not transitive but reflexive,R still exists because
the sequencei (X, y) is increasing withm and bounded by 1 (Tamuret
al.,1971).

Proof:
Ha(xy)= sup min(/,lR(x, %,)s He(X,, xz),...,/,lR(xm_l,y)).

XLX2, .- Xm-1

Hence

IJRm(X’ y)B X1, .oy

BecauseR is reflexive, the left-hand side of the inequality is equal to

Mm%, Y). Q.E.D.
It is easy to show that (Tamueaal.,, 1971)

V(X Y, 2 € X ppmen X 2 = Min( pgm (X, Y)s 0 (Vs 2)
When m- + « and n- + «, we obtain

He(x, 2) = min(uﬁ(x, y), 1 (Y, z))

So the transitive closur® of R ismax—min transitive.

When X is finite and X| = n, 3k < n, R = R because chains involving
more thann elements must necessarily have cycles that do not alter the
strength of the chains.

N.B.: Note that ifR models short-range interactions between elements,
its transitive closure models long-range interaction.

B. Other Transitivities

Other transitivities, associated with other kinds of composition of fuzzy
relations, can be defined. GeneralR,is said to be max- transitive iff
RxIRCR.

Zadeh (1971) considered max-product transitivity. Bezdek and Harris
(1978) introduced several other transitivities; maxwhereax* b is given

by:
(1))aA b=max(0a+b-1) (bold intersection);
(2)all b= %(a + b) (arithmetic mean);

(3)a\/ b =max(a, b) (union);
(4) a%+ b =a+b—ab (probabilistic sum).
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The appealing features of some of these transitivities will be discussed
later.

C. SIMILARITY RELATIONS AND RELATED TOPICS

a. Definitions

“The concept of similarity relation is essentially a generalization of the
concept of an equivalence relation,” (Zadeh, 1971). More specifically, a
similarity relation is a fuzzy relation in a univer¥e denotedS, which is
reflexive, symmetrical, and max—min transitive.

The complement ofS, say D=S, is called a dissimilarity relation
(no(X, y) = 1—-pu(X,y)). D is antireflexive (i.e., u (x,X) =0, Vxe& X),
symmetrical, and min-max transitive (i.eu,(X,2 < maxuy(X,}y),
1oy D) V(. ¥, 9 € X,

(X, y) can be interpreted as a distance function, which is an ultramet-
ric owing to the above inequality.

Let S, be thea-cut of the similarity relatiors. Zadeh (1971) proved the
following proposition. IfS is a similarity relation inX, thenV_ €]0, 1],
eachS is an equivalence relation M. Conversely, if theS, 0 <a < 1,
are a nested sequence of distinct equivalence relation§ imith a,>a,
iff S . C S, S nonempty, and dorg() =S V_, then for any ch0|ce of
as in ]O 1] Whlch includesr = 1,S=U, aS |s a similarity relation inX
(Zadeh, 1971)

(us(x, y) =sup min(a, u,, (x, ¥))=sup ap, (x y))-

N.B.: If S is a fuzzya-cut of a max—min transitive fuzzy relatid®
thenS, is also max—min transitive (Zadeh, Reference from IV.6, 1976).

b. Partition Tree (Zadeh, 1971)

Let Il denote the partition induced ok by S (a-cut of a similarity
relation §). Clearly, Ila. is a refinement ofill if a. A nested sequence
of part|t|onsH Ha A | o May be represented diagrammatically in
the form of apartltlon tree as shown in Fig. 3. (The example is from
Zadeh, 1971).

The concept of a partition tree plays the same role with respect to a
similarity relation as the concept of a quotient does with respect to an
equivalence relation.
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N.B.: A similarity relation can be interpreted in terms of fuzzy similar-
ity classes S(xj), one per element of the univers,e's(xi):us(xi,%), the
grade of membership afin the fuzzy class(xj).

c. Weaker Similarity Relations

Several authors (Zadeh, 1971; Bezdek and Harris, 1978) pointed out that
max—min transitivity was too strong a property to impose on a fuzzy
relation. For instance (Zadeh, 1971), suppose Wais a closed real
interval [a, b, and we want to model a proximity relation between ele-
ments of f, b] using a similarity relationS. A reasonable assumption is
that u (X, y) is continuous ax =y; then using max-min transitivity we
can proveug(x,y) =1 V(x,y) €[a, b]>. The paradox may be resolved by
making S only max-product transitive (for examples(x, y) = e™*~)
or max-A transitive (for instanceu(x,y) =1 - (k—-)/[b—-4q)).

Let us compare the strength of the above introduced transitivities.
Denoting by%the set of reflexive, symmetrical, max+transitive fuzzy
relations and byR the set of nonfuzzy equivalence relations, Bezdek and
Harris (1978) showed that, since

V(a, b €0, 1P
max(0,a + b—1) < ab < min(@, b < %(a + b) < max@, b < a+ b-ab,

then,

RCRICR, CRCR CRCR, (8)

- C
min—
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We see that the mak—and the max-product transitivities are the weakest
ones and hence intuitively the most appealing. Transitivity max—min is too
rigid; max—arithmetic mean, max—max, and max—probabilistic sum are a
fortiori such.

A reflexive, symmetrical, maxA- transitive fuzzy relation is called a
likenesgelation (Ruspini, Reference from IV.6, 1977).

If Sis a likeness relation, then 1y is a pseudometric. Conversely,df
is a pseudometric valued in [0, 1], then d +s a characteristic function of
a likeness relation (maX-transitivity is equivalent to the triangle inequal-
ity: (X, 2) = max(0,u (X, y) + u (y, 2 — 1) is equivalent tal(x, 2
< min(1,d(x, y) +d(y, 2) =< d(x, y) + d(y, 9).

d. Proximity Relation

A proximity relation (also called dolerancerelation) is a reflexive,
symmetrical fuzzy relation.

To get a similarity relation from a proximity relatidd, we must build
the transitive closureP of the latter. LetPa be thea-cut of P and P) the
transitive closure of then-cut. Tamuraet al. (1971) have shown that
generally P) refines (P) that is,V(x, y) € X3, if x(P) y, thenx (P) y.
However, wherX is finite, @ = (P)

Some algorithms have been proposed to accelerate the computatR)n of
when X is finite. Kandel and Yelowitz (1974) used a method much related
to the Floyd (NF 1962) algorithm for shortest paths in a graph. Dunn
(1974) noticed that a finite fuzzy proximity relation could be interpreted as
a nonfuzzy capacitive graph where(x, y) is the capacity of the link-y.

The transitive closure of the relation is nothing but the maximal spanning
tree of the capacitive graph. Hence, Prim's (NF 1957) algorithm can be
used for computind®. This algorithm is very fast.

e. Convex Hull of Equivalence Relations

Let conv@®) denote the convex hull of the nonfuzzy equivalence rela-
tions in X (finite). conv@®) is made of all the convex combinations of
elements ofR. Bezdek and Harris (1978) very recently exhibited a relation-
ship between con®{) and maxA transitivity: conv@r) C R, for [X]
> 3.

The convex decompositiorEiqR, where R€ ® and Ziq =1, of an

element in con¥R) provides an alternative to the partition tree decomposi-
tion. EachR is equivalent to a nonfuzzy partition of and C. expresses

the “percentage” of Rneeded to build the fuzzy reIatioEiqR. Note that
the partitions so generated are not nested hierarchically. Unfortunately,
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given a likeness relatiors, there is as yet no efficient algorithm for
deciding whethelS belongs to con¥f) or not and a fortiori for computing
the ¢ when they exist.

f. A Connection between Fuzzy Partitions and Likeness
Relations

Given a fuzzy partition, it is possible to induce a likeness relation. Let
A, ... ,A be a fuzzy partition ofX (1.B.e). An associated likeness

relation is defined by (Bezdek and Harris, 1978).

Ha(xy) = i min(£ (x), K (¥))

Note that 1 -, is a pseudometric because

109 =15 S a9 )

owing to min@, b) = 2(a+b - fa—b)
The converse transformation is unfortunately generally not possible.

g. Comments

The most patent conclusion of this section is that a similarity relation is
a very restricted notion because it is equivalent to an ultrametric. A
likeness relation seems more promising, although it is equivalent to a
well-known nonfuzzy concept, a pseudometric. However, the concept of a
fuzzy relation renews the semantics of pseudometrics, possibly adapting
them to situations in which the classes involved do not have sharply
defined boundaries.

D. FUZZY ORDERINGS

As equivalences can be generalized into similarities and likenesses,
classical orderings can also be fuzzified. In this section we consider
reflexive and max—min transitive fuzzy relations.

a. Antisymmetries

For binary classical relation®, antisymmetry is defined by/(x,y)
€ X?, if xRy andy Rx, thenx =y, which is equivalent to
V(x,y) € X2 if X#vy, thenu(x,y) =0 or puy,2=0.
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Two definitions of antisymmetry can be found in the literature. They
coincide with the above definition for nonfuzzy relations:

Perfect antisymmetryfZadeh, 1971): a fuzzy relatioR is perfectly
antisymmetric iff

V(x,y) EX3, if xzy, and u(x,y)>0, then w (v, ¥ =0;

Antisymmetry(Kaufmann, 1975): a fuzzy relatioR is antisymmetric
iff
V(x,y) eX?, if xzy, either u(X,y)# uy, %
onug(X, ) = ugy, ¥ =0.
Note that perfect antisymmetry implies antisymmetry.

b. Fuzzy Partial Orderings (Zadeh, 1971)

A fuzzy relationP in X is afuzzy partial orderingiff it is reflexive,
max—min transitive, and perfectly antisymmetric.

When X is finite, it is possible to represeRt as a triangular matrix or a
Hasse diagram. A fuzzy Hasse diagram is a valued, oriented graph whose
nodes are the elements Bf The link x - y exists iff u (x,y)> 0. Each
link is valued by,up(x, y). Owing to perfect antisymmetry and transitivity,
the graph has no cycle. An example (Zadeh, 1971) is provided in Fig. 4,
where

1 08 0.2 06 0.6 0.4[]
g) 1 0 0 06 O E
® 0 1 0 05 0(
" o0 o 1 06 0.40
% 0O 0 0 1 o0gf

M o o 0 o0 1H

0.6

X2

X

Figure 4

With eachx € X, we associate two fuzzy sets: the dominating class
denoted byP_(x) and defined byu,_ (y) = u (y,¥ and the dominated
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class denoted by_(x) and defined byu,_x(y) = ws(X,y). And x is said
to be undominated iffP_(x) =@, i.e., Yy, up(y,x) =0; X is said to be
undominating iff P_(x) =@, i.e., Vy, wy(X,y)=0. It is evident that the
sets of undominated and undominating elements of any fuzzy partial
ordering are nonempty whex is a finite set x, . . . ,x}. Assume thatX
is ordered in such a way thati, Vj if uy(x,x)>0, theni <j, ie., the
corresponding matrix is triangular. It is obvious thatis undominated
andx undominating.

A related concept is that of fazzy upper boundf a nonfuzzy subset of
X. Specifically, letA be a nonfuzzy subset & The fuzzy upper bound of
A, denotedJ(A), is a fuzzy set defined by (Zadeh, 1971)

U(A)= 1| P.(X.

For a nonfuzzy partial ordering, this reduces to the conventional definition
of an upper bound.

N.B.: An a-cut of a fuzzy partial ordering iX is a nonfuzzy partial
ordering. The converse also holds in the same sense as for similarity (see
C.a, see Zadeh, 1971).

c. Linear Ordering

A fuzzy linear ordering L is a fuzzy partial ordering such tMatVy if
x Zy, eitheru (x,y) > 0 oru, (y, ¥ > 0.

Any a-cut of a fuzzy linear ordering is a nonfuzzy linear ordering.

Spilrajn’s theorem Let P be a fuzzy partial ordering iX. Then there
exists a fuzzy linear ordering in a setY of the same finite cardinality as
X and a one-to-one mapping a froxhonto Y such that if u,(x,y) >0,
then, (9(X), 6(y)) = ue(X, Y).

Zadeh (1971) gives a proof of this “fuzzy extension,"” of a very well-
known result. Informally, this theorem states that any fuzzy partial order-
ing can be mapped onto a fuzzy linear ordering that is consistent with it.
The construction ofL may be visualized as a projection of the Hasse
diagram ofP on an “inclined” line. See Fig. 5 (Zadeh, 1971). Specifically
is such thav'x, ij, X #X,

(X, %) 1f pp(%,%) >0,

_ it pp(x,%)=0and up(x;,%) >0,
HL(G(X)’U(X,-))‘%] if Up(X,%)=Hp(X,x)=0andi<]j,

H it e (%,%) = (X, %) =0and j <i,

where P is triangular,a(x) =y € Y, and € is any positive constant that is
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smaller than or equal to the smallest positive entry in the madrix
Generally,o andL are not unique.

Figure 5

d. Fuzzy Preorder

A fuzzy preorderis a reflexive and transitive fuzzy relation that is not
assumed to be perfectly antisymmetric.

Let P be a fuzzy preorder. If there exists an ordinary suBset X such
that

V0, Y) [ 22 (X, Y) = (3, ) £ O,

the restriction ofP in A is a similarity called a similarity subrelation Bf
A similarity subrelation is maximal ifA is maximal. A maximalA is called
a similarity class of the preordd®. Eachx in X belongs to a similarity
class, at least®. Hence, the set of similarity classes Bfis a cover ofX.
A fuzzy preorder is said to beeducible (Kaufmann, 1975) iff the set of
similarity classes is a partition &t

N.B.: Anonfuzzy preorder is always reducible.

When P is reducible, elements in the same similarity class need not be
distinguished and we get a fuzzy preorder between similarity classes.

Whether the preorder is reducible or not, Orlovsky (1978) proved the
following proposition: any fuzzy preordeP on a finite or compact
universeX has undominated elements, i.e.,

dxe X, VyeX, ,up(x, y) = ,up(y, ).
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Let P* be the antisymmetrizeld, i.e.,

MP*(X’ y) = maX(O!Mp(X1 y) - :u‘p(y’ X))
P* is a fuzzy partial order. Obviously, the undominated element8*cére
the same as those &f. When X is finite, it is thus easy to find the
undominated (undominating) elementdof

e. Comment

Orlovsky’'s result—the existence of undominated elements for any fuzzy
preorder on a compact set—is very important from a philosophical point
of view. The assumption of max—min transitivity, which some authors
considered as unnatural in a fuzzy situation, is equivalent to the existence
of nonfuzzy preferred elements in the sense of the preorder, which looks
paradoxical in such a fuzzy situation. The main contribution of the notion
of fuzzy preorder is to propose grades of preference, without blurring the
choice itself.

E. EQUATIONS OF FUZZY RELATIONS

As in the three previous sections, we consider here only binary relations

and study the equation
Q°R=S (9)

where Q is a fuzzy relation orX x Y, R a fuzzy relation onY x Z, and S
a fuzzy relation oiX x Z

Knowing Q andR in (9), it is easy to finds The converse problem, i.e.,
find Q (resp.R) knowing S andR (resp.Q), is as interesting but may seem
more difficult. Most of the published works concerning this problem were
authored by E. Sanchez.

a. The General Problem (Sanchez, 1976)

The involved fuzzy relations are supposed to be valued only on a
Brouwerian latticeL (1.G.a). Recall the operatioom on L defined by
aab = supx €L, inf(a,x) < b}, V(a,b) € L2 The following properties
obviously hold:

V(@, b, €L’ aa(supb,0)=aab (oraac) (10)
V(a,b €L? aal(inf(a, bh)=bh. (11)
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Sanchez introduced the opera®to compose fuzzy relations:
Hoor(X,2) = in (Lo (X, Y)a tg(y,2)).

The following propositions give the main propertiesrof
for every pair of fuzzy relations Q od x Y andR on Y x Z, we have

RCQ*@(Q°R) (12)

and
QC (RO(Q° Ry (13)
for every pair of fuzzy relation® on X x Y and S on X x Z, we have
Q- (Q'@ S)C S (14)

and
(R®SY) oRCS. (15)

Proof: LetU=Q*'@ (Q°R).

H(y,2)= 001 (3, )@ Fup nf (g (e D)
or

Hy (v,2) = inf | g (x, y)asup{inf (ko(x,y), He(¥.2),

sup inf (i (x,)ia(t. )} |

hence, using (10),
Ky (v,2)= Inf [ (O y)a inf (g (X Y), ey, 2)];

hence, using (11),

ry(y, 2 = uely, 3, Q. E. D.
The other inclusions are proved in the same fashion (Sanchez, 1976).
We can now state two fundamental results that give the greatest solu-
tions of (9) (Sanchez, 1976).

(1). Let Q be a fuzzy relation oX x Y, S a fuzzy relation onX x Z,
and % the set of fuzzy relationR on Y x Z such thatQ - R = S.Then,
eitherR =@ orQt @ Se R.If Rz, Q@ Sis the greatest element
inR.
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(2). Let R be a fuzzy relation or¥Y x Z and S a fuzzy relation on
X x Z, and 2 the set of fuzzy relations oM x Y such thatQ - R = §
then either2 = dor R@ SH?* € 2. If 2 # J, R@® SY? is the
greatest element if.

Proof: We prove only the first proposition. Assurffe # @ andR € AR.
From (12) we haveR C Q'@ S.Hence,SS Q> R C Q- (Q'@ 9
(see B.ha). But from (14)Q - Q' @S C S henceQ > (Q'a §=S,
e, Q@SeR. Q.E.D.

When the Brouwerian lattice is just [0, 1], recall thahab=1iffa<Db
andaab=b iff a > b: so the greatest solutions in (9) can be easily
computed.

N.B.: 1. Inf-max fuzzy relations equationsQ¢t¢ R=9 can be
solved on a dually Brouwerian lattice (1.6.a). The operat@uch that
V(a,b) € L? aeb=inf{x€L, sup@, X = b} replacesa. The associated
©-composition is defined by

/"LQ @R(X! 3 = yslile (IJQ(X’y)€ :uR(y1Z))'

Then Q'® S(R®SY)™ resp.) are the leasR (Q resp.) such that
Q= R = S when solutions exists.

2. The above results are still valid when we relax (9) Qe R C S
(Sanchez, 1977a), but now the inequality obviously always has solutions.

b. Particular Case 1 (Sanchez, 1977a)

We consider the following problem: finR such thatA - R = B where
A is a fuzzy set orX, B a fuzzy set or¥, andR an unknown fuzzy relation
in XxY, valued in [0, 1]X andY are assumed to be finite.

Sanchez defines the operatorin [0, 1] such thatac b = 0 iff a < b,
ac b =Dbiff a= b. Itis easy to check thato b < min(a,b).

Let A and B be two fuzzy sets oiX andY, respectively. The fuzzy
relationA@ B in X x Y has membership function

MA@B (X7 w = l‘LA (X) o M’B (y)
Let®h ={R, A°R=B}; if R#J, thenA@B € %.

Proof.
Ha.n@ B)(y) = ?ﬁlg min(u,(X) o Hg(y))

= SUp (1A (X)0 H15(¥).
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Hence,
M o a@8) — sup  Hg(y) = Hg(Y)

UA()Z ug(y)
because ifR # &, Vy, Ix, u,(X) = wu,(y) (obvious sincepu,(y) =
sup min( u,(X), ue(x, ¥)). Q.E.D.
Moreover, Sanchez (1977a) showed the following results:

% has a least element iy, (A!x, w,(X) = u,(y) or u,(y) = 0); when it
exists, it iIsA@ B;
if R #J, VRsuch thah @B C RC A@B, thenA° R=B.

Note that owing to the result of the general céds@ B is the greatest
element ink # &.

c. Particular Case 2

Now we turn to the following problem: find such thatA - R = B
where A is an unknown fuzzy set oX (finite), B a fuzzy set orY (finite),
andR a fuzzy relation irX x Y.

We have u(y) = sug min(u,(X), u(X,y)). Note first that the problem
has no solution as soonAg VX, u (X, y) < uy(y).

The following proposition characterizes the solutiop when it exists:A
is a solution iff:

(D). VY, @x w,(X) = (X, ) = pe(y)
or @x, w,(X) = pay) < (X V)
(2). VXYY, w,(X) < p(Y) if (X, ) > pg(y).

Proof.  LetK(y) = {x € X, ug(y) = min(u,(X), u (X, Y}

(i) VX, min(u,(X), u(X, ¥)) < ug(y) since A is a solution. Hence,
it w (X, y) > ug(y), then @, (x) < wpy(y). This proves 2. Moreover,
Vx € K(y) # & (sinceA is a solution)

if (X, Y) = pg(y), thenw,(X) = py(y);
if (X, V) > pa(y), thenu,(x) = pg(y).

(i) 'y is supposed fixed. Assumk satisfies 1 and 2. It is a solution
because

O
Hg(y)=maxd sup  min(ug(y), Ha(X))

R(X.Y)=tB(Y)

0
sup min(/JR(X,y),uA(X))é Q.E.D.

HR(XY)>UB(Y)
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For eachy, the feasible domain ofi,(x) (such thatA is a solution) is
defined by the following:

Let

X2(Y) = {% (X, Y) = pg(N)}
and

X (y) = {% pmelX, Y) > pg(Y))-

(@ Foxe X7(y) ={X uX, ¥) < ug(y)}: wm,(X) is unconstrained.
(b) VxeX (), (X € [0, u)l
(€©) IxeXAY), m () E [mg(y), 1] orIX € X" (), (X = pg(y)-

For a giveny, let p(y) = X%y)| andq(y) = [X* (y)|. Let Iy) be an
n-tuple of intervalsi¥(x,y) (n = K|) satisfying the above three require-

ments. WhenX™(y) # X, we have: if ¥xe X, u,(X)E€I4X,y)), then
e(y) = max_, min(uz, (x), (%, )

Generally, severdl(y) exist.

When X°(y) = &, the number ofXy) is q(y) (k = 1,q(y)). They are
obtained by forcing i#,(x(k)) = u.(y) for an arbitrarily chosenx(k)
€ X' (y) and settingl(x(k), ¥) = pgy), "X, ) = [0, ()], Vx
e X' (y)—{x(K)}andI¥x, y) = [0, 1] forx € X ~(y).

When X°(y) # @, the number ofiX(y) is p(y) + q(y). The first q(y)
ones are obtained as above witiix, y) =[0, 1] for x € X%y). For
k>q(y), I(y) is defined byl*x(k),y) =[0, u.(y), 1] for an arbitrarily
chosenx(k) € X%y), IYx, y) = [0, 1] for x € X%y) — {x(K)}, IX, y)
= [0, 1], forx € X~ (y), I(x, y) = [0, u4(y)] for x € X" (y).

A possible set of admissible intervalgifx), x € X} for w,(x) such that
B = A° R is obtained as follows. For eagh€ Y, choose one of thé(y)
(k is not necessarily the same for ally), denotgg) If the I(y) are such
thatVx, N (x,y)# @, then

OxOX, ¢;(x)= yIDY i (X, Y) = Hoi (X).

Note that®, is a® - fuzzy set (see 1.G.d, 2.C.b). Usually sevebalcan be

built. Moreover, the greatest feasible solution can be found at once when it
exists, namelyR* @ B (MR_l@B(X) = inf (uy, X o ug(y)) owing to the
result of the general case. Thus, thgx) are of the form ¢ (x), B(X)]

V x € X, where 3(x) does not depend on However, several incomparable
least solutions, a, (X) / x may exist.

yeEY Ii
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Example
X[ =1Y] =4; X={X,, X, X5 X, }; Y={Y, ¥y Yar Vo1

01 01 0.9 0.20
2 1 04 1%

R=C01 04 03 05 B=[0.9 0.5 0.5 0.8];
.1 0.2 09 0.8H
X7y = {x, x}; X(y) ={x}  X(y)={x}
X7 (y,) ={x, X} XAy, = @, X (y,) = {x, x};
X7y, = {x, %, X}, XAy ={x} X ()=9;
X7y, ={x, X} X(y) ={x}5  X(y)={x}
The possible choices are
I"(y) = (0.9, [0, 1], [0, 1], [0, 1]); 1”(y,) = ([0,0.9], [0, 1], [0.9, 1], [O, 1]);

I(y,) = ([0, 1], 0.5, [0, 1], [0,0.5]); B(y,) = ([0, 1], [0,0.5], [0, 1], 0.5);

I"(y,) = ([0, 1], [0, 1], [0, 1], [0.5, 1]);

I*(y,)=([0,1], [0,1], 0.8,[0,1]); F(y,) = ([0,1], [0,1], [0, 0.8], [0.8, 1]).
I%(y,) is consistent with neithel'(y,) nor I(y,), andI?*(y,) is consis-

tent with neithet*(y,) norl*(y,). Both can be rejected.
Hence there are two possible solutions

iy, = 1) N 1Y) N 1Yy, N IYY,) = (0.9, 0.5, 0.8, 0.5),
iy, € 1(y,) N 12y,) N 1Yy, N 1%(y,) = (0.9, [0, 0.5] 0.8, 0.5).

Note thatA, = R* @ B. Knowledge of the greatest solution can accel-
erate the a priori cancellation of somy). The final range of the

possible values of, is u,(x) = 0.9; u,(x) € [0,0.5]; u,(x) =0.8; w,(x,)
=0.5.

An algorithm for the determination of the possible valuesuofcan be

found in Tsukamoto and Terano (1977). Their approach is very similar to
the one outlined here. Tashiro (1977) extended Tsukamoto and Terano’s
method to the case wheld and R are interval-valued. This extension is

possible because of the following remark. Wriig(y) = [b, bj+], (X
y) =Ir;. . 5l andu,(x) = [g7, @', then
me(y) = max min([a~ a°LIr 1),
|

ne(y) = max ((min(a, 1,7, min@, r,)).
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Hence P~ b']=[max min(a-,r7), max min@’r)]. We see that the
®-fuzzy equation is equivalent to two ordinary fuzzy ones.

d. Eigen Fuzzy Sets (Sanchez, 1977b, 1978)

An eigenfuzzy setA of a fuzzy relationR in X x X is a fuzzy set oX
such thatA°R=A. Sanchez has proved the following results which
characterize the greatest eigen fuzzy s& of

(a) LetA, be the fuzzy set such that

UX, Hao(X) = Inf - Sup - pg(X,X').

This constant fuzzy set is an eigen fuzzy s&.of
(b) LetA, be the fuzzy set such that

0%, Hpg(X) = SUp pig(X',X).

The sequenceA() defined byA =A  °R, m=2, is decreasing and
bounded byA, andA:
Aog...gAmlgAmg...gAngl_
(c) dk = [X| such thatA = A, . m > 0, andA, is the greatest eigen
fuzzy set oR and also of the transitive closuRe

In Sanchez (1978) some algorithms for the determinatiorA ofre
provided.

e. Comment

Let us quote Sanchez (1977a): “The composition of a fuzzy rel&ion
with a fuzzy setA corresponds to the concept of a conditioned fuzzy set
and can be interpreted in terms of a fuzzy metaimplicatioi tihen B by
R” See [lll.1.E]. “One can infer diagnosis and prognosis from observed
symptoms by means of a specific knowledge.,, The determinatidR iaf
A° R=B models the acquisition of knowledge from experiments, the
determination ofA in A R=B models the search of a fuzzy cause (see
IV.7).

F. GENERALIZED FUZZY RELATIONS

Until now we have focused our attention upon fuzzy relations in the
sense of fuzzy sets on a Cartesian product of universes, which express a
relationship between elements. Obviously other kinds of relations may
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involve fuzziness. In this section we give only some definitions and
suggestions for the setting of several generalized fuzzy relations.

a. Nonfuzzy relation between Fuzzy Sets

Zadeh (Reference from 1V.2, 1976) introductbleausof fuzzy sets
whose columns refer to the universes and rows contailj-tuples of
labels of fuzzy sets. Then ¢ 1)th fuzzy set is considered as the image of
the n others through a nonfuzzy mapping. In fact, the tableaus play a basic
role in the description and the execution of fuzzy algorithms.

b. Interval-valued Fuzzy Relations

Ponsard (1977) has extended some results of sections C and D to
interval-valued binary fuzzy relations using the operaMsand M (see
2.C.b). The reflexivity of ab-fuzzy relation R in X? is defined by

VXEX,LLRCD X, ¥ =1[1,1]=1.
The transitivity ofR is defined by
VX, ¥, 3 € X, g (XD = (g (6 ) M gt (¥ 2)
(= in the sense of 2.C.b). The symmetryRgfis defined by
V0, Y) € X pg (X ) = g () 9.

Using these definitions, Ponsard (1977) develdpfuzzy preorders and

®-fuzzy similarities.

c. Fuzzy-Valued Fuzzy Relations

A fuzzy-valued fuzzy relation irX x Y is a type 2 fuzzy set oKX x Y.
The composition of such relatiof@ in X x Y and R in X x Z can be

performed usingnax andmin:
Ho.(X 9 = MaX min 1q(x, Y), uely, 2).

This definition holds forY finite. Note that themax-min composition of
interval-valued fuzzy relations (a particular case of fuzzy-valued fuzzy
relations) is different from th&\~—M Ponsard composition (see b above).
A direct extension of definitions of properties specific to fuzzy relations to
fuzzy-valued fuzzy relations may appear too strict; for instance symmetry
would mean

VX Y), w6 W)= py, % in P[0, 1];
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weaker symmetry could be stated using approximate equality in the sense
of 1.E.c.

d. Fuzzy Relation between (Non)Fuzzy Sets

C. L. Chang (Reference from 111.3) has proposed a way of inducing a
fuzzy relationR in 2(X) x 2(Y) from a fuzzy relatiolR in X x Y.

V(A B € 900 X P, u(AB) = sup ming,(, wy), el V)

wx(A, B) is nothing but the degree of consistency ¢ R and B (or A
and B° R?): hgt((A° R) N B). Note that one must not confuge and
the extension ofu,, a mapping fromXxY to [0, 1], by means of the
extension principle. The latter would be a fuzzy-valued fuzzy relation
between fuzzy sets. 3

Sanchez (1977c) has studiBdfor A and B ordinary sets. He defines two
kinds of inverses for:

a lower inversé,:, characterized by, (B, A) = sup _, uz(A, O);
an upper inversk”, characterized by (B, A) = SUR _ g5, 5 M(A O.

For an extensive treatment of these inverse relations, see Sanchez (1977c).

e. Tolerance Classes of Fuzzy Sets

In order to deal with the fact that membership functions are always
partially out of reach, higher order fuzzy sets were defined (type 2 fuzzy
sets 1.G.d, 2.C.b, probabilistic sets 1.G.e, level 2 fuzzy sets 2.C.a), an
alternative approach can be to use a proximity relatioer(i) X ?(X) to
sketch “fuzzy tolerance classes” for the admissible membership functions
of a given ill-known fuzzy set. Denote this proximity relation by. For
the sake of the consistency, must be compatible with most of the
operations* on %(X). Specifically, if A~A" and B~ B', then (Ax B)
~(A'™* B'), wherex may ben, N,... or even®,... andA,A,B,B
are ordinary fuzzy sets.

This is interpreted as “iA looks like A" and B like B, then A * B must
look like A" = B'.” There are several possible choices-for

The consistency condition can be expressed as follows. There exists an
increasing (in the sense of 2.B) operatiom [0, 1] such that

w (Ax B, AxB)=pu (A A) L u(B,B).

For instance, Nowakowska (Reference from IV.I) showed that the above
condition holds for~=S§, (see 1.E.@), »=Nor »=U, and L =min.
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Chapter 4

FUZZY FUNCTIONS

Under the namduzzy functionsare gathered various kinds of mappings
between sets generalizing ordinary mappings in some sense. They are
described in the first section of this chapter and interpreted. Strangely
enough, most of them have received little attention in the literature, except
from specific points of view (fuzzy topology).

The problem of maximizing a function over a fuzzy domain or a fuzzy
function over a nonfuzzy domain is investigated in the second section.

The two following parts are devoted to the integration and differenti-
ation of a special kind of fuzzy functions—closely related to some fuzzy
relations onR? The results that are presented here are a first attempt to
extend elementary notions in real analysis.

Lastly, fuzzy topology and categories of fuzzy sets are briefly surveyed.
Because of very specific and abstract features, neither is detailed here. The
interested reader is referred to the extensive bibliography of these topics at
the end of the chapter.

A. VARIOUS KINDS OF FUZZY FUNCTIONS

A fuzzy functioncan be understood in several ways according to where
fuzziness occurs. Roughly there are three basic kinds of fuzzy functions,
from an interpretive point of view:

ordinary functions having fuzzy properties or satisfying fuzzy con-
straints;
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functions that just “carry” the fuzziness of their argument(s) without
generating extra fuzziness themselves: the image of a nonfuzzy element is a
nonfuzzy element;

ill-known functions of nonfuzzy arguments: the image of an element is
blurred by the jiggling of the function.

Of course, hybrid types may be considered. Moreover, we have the
abstract concept of an ordinary function between sets of fuzzy sets.

a. Fuzzily Constrained Functions

a. Fuzzy Domain—Fuzzy Range (Negoita and Ralescu, 1975)

Let X andY be two universes anflbe an ordinary function fronX to
Y: x€ X— f(x) € Y. Let A and B be two fuzzy sets orX and Y,
respectively.f is said to have a fuzzy domafand a fuzzy rang® iff

VX E X, f(¥) = p1,(4). (1)

Example 1 “Big trucks must go slowly”:X is a set of trucksy is a
scale of speedd, assigns a speed limifx) to each truckx. A is the fuzzy
set of big trucksB is the fuzzy set of low speeds. The constraint (1) means,
“The bigger the truck, the lower its speed limit.”

Example 2 Many proverbs as well as regulations can be modeled by a
function with a fuzzy domain and a fuzzy range. For instance: “The
smaller the drink, the cooler the blood, the clearer the head.” “The more
thy years, the nearer thy grave.”

Now, consider a functio from Y to Z with a fuzzy domainB and a
fuzzy rangeC. g o f is a function fromX to Z with a fuzzy domairA and
a fuzzy rangeC since u, ((09) = g, (9, 1 OY) = 1, (), andy = f(x)
imply 1 (9(0)) = a1, (4.

N.B.: This kind of fuzzification is similar to the one that defines fuzzy
groups (1.F.b, 2.A.d).

B. Fuzzy Injection, Fuzzy Continuity, Fuzzy Surjection

Let f be an ordinary function fronX to Y. f is said to be injective iff
V(x, x) € X, f(x) = f(x) implies x = x,. Let P be a fuzzy proximity
relation (3.C.d) inX% f is said to bee-fuzzily injective iff V(x,x) € X,
f(x) = f(x,) implies u (X, X,) = €.

A more general definition id: is fuzzily injective iff

V(X %) € X, (X, X)=po(f(x), f(x) (2)
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where Q is a fuzzy proximity relation irY 2, This constraint, very similar to
(1), means “the closer the images, the closer their antecedents.”
The composition of fuzzily injective functions is still fuzzily injective.
f is said to be fuzzily continuous iff

V(X %) € X2 ug(f(x), fx)) = me(X, X,)- 3)

(3) obviously means “the closer the elements, the closer their images,”
which may appear consistent with our intuition of continuity. Note that
fuzzy continuity and fuzzy injection are here dual concepts.

Note that the usual definition of continuity is

Ve, dn, d(x, x) <m implies d'(f(x), f(x)) < e
whered and d’ are distances oX andY, respectively. A relaxation of this
definition is:
Ve €0, 1], ANE[0, 1], u (X, X) =m implies
po(f(x), f(x)) = e (4)

Both definitions are equivalent wheld and Q are likeness relations
(3.C.c) such thap (x;, x)) (resp.: py(y, ¥,)) = 1 impliesx, = x, (resp.:
y, =Y, andd andd’ are metrics valued on [0, 1]. Note that (3) implies (4)
(n = €). Conversely, the dual of (4) provides a less strict definition of fuzzy
injection:
Vec [0, 1], Ine [0, 1], p, (f(x), f(x,)) = n implies
B (X, %) = €.

The composition of fuzzily continuous functions (in the sense of (3) or
(4)) is still fuzzily continuous.
Recall thatf is said to be onto (surjective) iff

Vy ey, ax e X y = f(x).
Given a proximity relatiorQ in Y, f is said to bee-fuzzily onto iff
Yy ey, Ix e X uyy.f(x) = e (5)
More generallyf is said to be fuzzily surjective on the fuzzy &:iff
VyeY IXxeX u, ¥ f(X) = u (). (6)

(6) means the morg belongs toB, the closer is a neighbor of having an
antecedent

Remarks 1 Definitions (1), (2), (3), and (6) implicitly assume that
membership grades in different fuzzy sets can be compared. In fact, we
tacitly use relative membership.
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2 The same definitions are related to the implicatibn(see IIl.1.B.b.
pB). The truth value of a consequence is at least equal to the truth value of
the premise.

b. Fuzzy Extension of a Nonfuzzy Function (Zadeh, Reference from
1.1, 1965)

Let f be a nonfuzzy function fronX to Y; the image of a fuzzy set on
X is defined by means of the extension principle. Itf(}g defined as

toa(y) = sup p(x)
() XDf_l(y)

=0 iff'yy=0
where f *(y) is the set of antecedents wf A function of a fuzzy variable
from ?(X) to ?(Y) is thus constructed; its restriction ¥ is nonfuzzy.
Moreover, note that the image of a fuzzy singletohx is A /f(x). In that
sensef carries fuzziness without altering it.

Examples 1 f/: (a@NX) @b (@beRX=Y=R.

2 y=eXANeR.

It is easy to see that the composition of two extended functions from
@(X) to ?(Y) and from @(Y) to ?(Z), respectively, is the extension of the
composition of the original functions. This composition is associative.
Note also thaf(x) = x < R whereR is defined by

o iff y=1(x),
M Y) = B i otherwise

c. Fuzzy Function of a Nonfuzzy Variable

Two points of view can be developed depending on whether the image
of x € X is a fuzzy self(x) on Y or x is mapped toY through a fuzzy set
of functions.

a. Fuzzifying Function

A fuzzifying function fromX to Y is an ordinary function fronX to
P(Y), f: x> f(x).

The concept of a fuzzifying function and that of a fuzzy relation are
mathematically equivalent: is associated with a fuzzy relatidd such that

V) € X XY, ) = g ()

f(x) is a section oR (see 3.A.a).
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Example§/ = (é O x) D b where é 6) € [? (R)]?, and more generally
any function with fuzzy parameters.

The composition of fuzzifying functions is defined by

/Jgof(x)(z)zs;;g min(“f(x)(y)’ /J@(y)(z))

Whereé is a fuzzifying function fromY to Z. The interpretation is: given
an intermediary point, the membership of an elementin gef(x) is
bounded by the membership wfin f(x) and by that ofz in g(y). The final
membership ofz in ge f(x) is given by the best intermediary point. Note
that the composition of fuzzifying functions is nothing but the sup-min
composition of their associated fuzzy relations. This composition is thus
associative.

N.B.: 1. Fuzzifying functions have been studied by Sugeno (1977)
under the name of fuzzy correspondences.

2. Fuzzifying functions (resp. fuzzy relations) may have fuzzy domain
and fuzzy range in the sense of a (Negoita and Ralescu, 1975):

B (% Y) = i) = min (1,09, 1, (1))

where A and B are respectively the fuzzy domain and the fuzzy range.
Such fuzzy functions can also be composed.

B. Fuzzy Bunch of Functions

A fuzzy bunchF of functions fromX to Y is a fuzzy set or¥*, that is,
each functionf from X to Y has a membership valye (f) in F.

This definition is not equivalent to that of a fuzzifying function. A
fuzzifying functionf is a fuzzy bunctF in the following senseY a € [0, 1],
the equationu; (y) = a defines one or several univalued functior$
from X to Y and the fuzzy bunch 8= U F whereF' = [,  a fa.

Conversely, a fuzzy bunch is not reducible to a fuzzifying function since
there may be two functions and g from X to Y such that3dx, f(x) = g(x)
=y and u(f) # u_(9). This can never happen for a fuzzifying function
because to each paix, (y) is assigned a unique membership vajyg(y)
= u,(X,y). In a fuzzy bunch each paik,(y) has several possible member-
ship values. In that sense a fuzzy bunch is a multivalued fuzzy relation.
However, if we want to reduce the bunch to a fuzzifying function, we can
suppress the ambiguity of the membership value by choosing a combina-
tion ruler (sup, inf,...) according to the situation:

e Y) = P (0 (i 7= sup).
y =f(x)
Let F and G be two fuzzy bunches frorX to Y and fromY to Z,
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respectively. The compositionl = G- F of two fuzzy bunches is a fuzzy
bunch fromX to Z defined by

vh, p,(h) = fSU|0 mirfu, (), 15(9))-
.9
h=gof
This composition is associative.

Remark Fuzzy functions of a nonfuzzy variable may have two seman-
tic interpretations:

we do not know the precise imagef x; we know only a distribution of
possibility, of probability, of belief (see Chapter 5) of the valug;of

the image ofx is actually blurred; it is a fuzzy point (or spdtx) in Y.

d. Nonfuzzy Function of a Fuzzy Variable

Let f be a function frorr@(X) to 93>(Y). An example of such ahis the
extension of an ordinary function fro to Y. Another example is a fuzzy
relation R using sup-min_compositionX ~— X o R= §. Note that in terms
of fuzzifying function ) we can definef(x) = X - R, which naturally
extends the domain of to ?(X). The composition of such extended
fuzzifying functions is obviously consistent with that of fuzzy relations:
glf(X)]=(X°R)oQ=(ge-f)(X) where Q is the fuzzy relation asso-
ciated withg.

An ordinary function from@(X) to @(Y) iIs more general than an
extended fuzzifying function. For instance, an extended fuzzifying function

f is such that
N Bk O % implies (%) O (),
O(%, x')O12(X)| , O
RPN sy 109079

On the contrary, consider the complementatlon functofrom @(X) to
@(X) gD(X)— (X). Obviously, we havex C X' implies ¢ (X') C ¢ (X) and

p(XUX")=¢(X) N ¢ (X'). Hence,p is not an extended fuzzifying function
and there is no fuzzy relation associated with

An extended fuzzifying function is entirely characterized by its restric-
tion to the ordinary singletons of its domain, i.e., by its associated fuzzy
relation, and does not carry more information. This is not true for any
function from@ (X) to 7 Y)

N.B.: When the fuzzy relatiolR associated with a fuzzifying functioh
from X to @(X) is reflexive, then

vxe X, %cf(x.

The converse holds.
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B. FUZZY EXTREMUM

Usually, the maximum (or minimum) of a functiohover a given
domainD is attained at a precise poirl However, we may be interested
in the behavior of the function in a neighborhoodxgf the concept of a
maximizing set (minimizing set) provides a tool for modeling this situation.
The notion of an extremum also must be generalized to deal with problems
such as an extremum of a function over a fuzzy domain or an extremum of
a fuzzy function over a domain.

a. Maximizing and Minimizing Set  (Zadeh, 1972)

Let f be a real-valued function whose domain is a>seft is assumed to
be bounded from below by infj(and from above by sup( The maximiz-
ing set is a fuzzy sd¥l in X such that:

OxOX;  py(x)= f(x) |r.1f(f) .
sup(f)—inf(f)
We always haveu,(x,) = 1Vx, such thaf (x) =sup (), and u,,(x)=0
Vx such that (x) = inf (f).
Clearly, the maximizing set provides essential information about the
effect on the value of the objective functionf choosing values ok other
thanx,.

Remark Another possible membership function #dris the nth power
of the normalized, for instance,

:E f(x)—inf(f)
csup(f)—inf(f)

The maximizing set is invariant under linear scaling, thatMisjoes not
change wherf is replaced byf, k € R.

The fuzzy maximum of, i.e., a fuzzy set o, the range of (Y C R), is
the image undef of the maximizing set, i.ef,(M):

i (X)

0
0.
N

VYEY, way® = sup wm,(X)
x € f1(y)

N.B.: The minimizing set of is defined as the maximizing set eof.

b. Maximum of a Nonfuzzy Function over a Fuzzy Domain

Two approaches exist for this problem according to whether a nonfuzzy
maximum or a fuzzy one is sought.
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a. Nonfuzzy Maximum

Let D be the domain over which we want to maximize function from
X to R. Let M be the maximizing set off. Whelh is nonfuzzy, an element
X, that maximized in D is such that

%) = SUP () = SUP MIN f1, (9, 1509
X
When D is fuzzy, the maximization problem can be understood as: find
an element ofX that belongs as much as possible both to the maximizing
set and to the fuzzy domal. The Gorresponding membership grade is the
consistency oM andD, i.e.,

hgtM N D) = flépxmin 1, (9, mp(¥)) = u(x).

Zadeh (Reference from 111.2, 1965) first used the prodifg} - u (x)
instead of min and the maximizing set.

An analysis of the search of a maximum fao(x) = min(u,,(x), u (X))
was carried out by Tanaket al. (1973). They used the resolution DBfinto
its a-cuts D _, noting that

u(x) = SUp min 1, (), 1,()) =sup min @, sup , (X)).
XE X a€l0,1] XED,

The functiong(a) =sup_, m,(X) is nonlncrea3|ngc(> a, implies D_
C D,); hence ifg is contlnuous the maximum is attained wr such that
a* = Spreoa m,,(X) =, (x,); hencex,€ D_andu,(x,) = u,(X,). The
initial maximizing problem is thus equivalent to the maximizationugf
over the nonfuzzy domaifm = {x, u (X) = u,,(X)}, provided thatg(a) is
continuous. A sufficient condition is given by Tanad@al. (1973): if D is
a strictly convex fuzzy set oR" (V(x, y) € suppD, x#y, VAE]O0, 1],
oA X+ (1-N)y) > min(u, (X), 1, (¥), theng is continuous.

The main drawback of this approach is that wheyix) is small, the
solution is not very satisfactory becausedoes not belong “enough” to
D; we may prefer a solution that belongs moreDtalthough it will entail
a shift of x, toward smaller values of,,. The second approach copes with
this difficulty.

B. Fuzzy Maximum
LetN(a) = {x,€ X, f(x)) = sup,., f(x)} andR =U_N(a) N(a) is
the set of elements maximizingon D_. The fuzzy set of maximizing
elements iN =D N R. The following proposition holds:
VXxeER, u,(X)=sug_,aq.

(Note thatN(a) is not the a-cut of N.)
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Proof: Let x, € R. Obviously, x, € D, " R for N\ < u_ X, only. Note
that

D,NR=D N(UN(a)=D, N (U>I)\\l(a))

becausé&/a < A\, N(a) —=N(N) =@ orN(a) - N(\) D,. Hence x,
eLJ&B.MD(XO) N(G). ¢

Moreover, if 3 a >, u,(x) such thatx, € N (a), thenx, € D_, which is
contradictory whena > u_(x,). Hence, x, € N(a) for some a < u_x,.
On the wholex, € N (u/(x)) andx, & N (a) for a> u_(x).

Hence, sup. ., = u1y(%) = my (%) sincex,€ R Q.E.D.

Conventionally,V x € R, SUR, ¢ v T = 0.

The fuzzy value of the maximum df over D is the fuzzy set ofR
induced fromN throughtf, i.e., f(N) such that

Rigg(Y) = sup  p (X).
xe f1(y)

Note that,uf(N) is a nonincreasing function on sufgp). If we want to
improve the valuey of the maximum, we must broaden the maximization
domainD , i.e., diminisha. In Zadeh's notation

f(N):J’Ra/%a f(x).

This approach was developed by Orlovsky (1977). He also developed
another definition ofN, by considering the maximal elements ov€rin
the sense of Pareto, of the set of paf(®)(uy(X); (f(x), uy(X) is said
to be Pareto maximaliff

{(f09, 1, (), 19 = 10x) and pp, () > (%) = {(F(x), H06))}

Let P be the set of elementssuch that f(x), u, (X)) is Pareto maximal.
When X=R" and the functiond and u_, are continuous, Orlovsky has
proved that ifN'=D N P, then f(N') =f(N), which expresses the equiva-
lence between both of Orlovsky’s approaches.

N.B.: The approach developed i is consistent with the extension
principle. The function to be extended is from(X) to R: D+
sup., f(x), the membership function of the extension, whens fuzzy, is

3 [ if A= D,

u(y) = sup pp(A)  where py(A) = D otherwise
y=supxa f(x)

D is viewed as a fuzzy set on(X) whose support is the set of itscuts.
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Then w(y)= ,uf(N)(y). With a less drastic definition ofu, on »(X),
consistency with the extension principle may fail.

Example Fig. 1 illustrates both approachesand 8. V a> u_(b), the
element that maximizesoverD_is a. Va €] u,(b), u,(c)], the element
that maximizesf over D_ is on the right edge oD . V a<u,(c), this
element is always. Hence supN ={a} U [b, ], supp f(N) = [f(b), f(c)]
= [f(a), f(c)]. Note that u,  (f(&)) =1 and w, (y) < p,(b) for y>f(a).
The maximizing set of is sketched with a dashed line; the method of
Tanaka et al givesx{, a*). Generally x* € suppN as in Fig. 1; that is to
say, approachw is included in Orlovsky’s.

e ————— e —— — 4

Y — ————+
I
I
lf(x‘?‘ '
R fle)  flo) =6/

>t

Figure 1

c. Fuzzy Maximum of a Fuzzy Function on a Nonfuzzy Domain

Let f be a fuzzifying function fronX to R and D a nonfuzzy domain of
X over which we want to maximize For simplicity, assumeX is finite.

Slncef(x) is a fuzzy set oriR, a first idea for def|n|ng the valua of the
maX|mum of f over D is to use the operatormax and statem=
maxxED f(x). This quantity exists becaus® is finite. It is a fuzzy set orfR.
There is ambiguity for the choice of an elemenDirrealizing m becausem
is generally not one of thx)’s (see 2.B.&). Hence, we must keep track
of the x's that actually contribute to the membership functionmof
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Note that if| D| =

l*lrﬁ(y) = y Supyn min%‘f(xl)(yl) ""’:uf(xn) ynE
y=ma%<(yl TS )
= e min g (f(x))
y=maX;=; ],n( ( ))

or in Zadeh’s notation:

m={ .o rrjlpu i) (f(xj)) Sup f(x).
An alternative method considers equatiqns(y) = o, a €]0, 1]. When
these equations define univalued functiops f (x), we may think of
maximizing eacH overD and state

'_IaD]Ol] / %Qf

N.B.. There are possibly severé| such thatu; (f.(x))=0a,Vx€eX
WhenRP can be replaced by the sdt,{o € ]0, 1]}, thenm’ = m.

Example Let Rx) be a fuzzifying function fronR to R such thatf(x) is
a triangular fuzzy number for anyx. D= {x,X, X, X,X}. On the
left-hand part of Fig. 2 are represented the element® @ind the curves
f,f* f that satisfyVxe X

/‘L{(X)(fl(x)) = 11 /Juf'(x)(fu_(x)) = I‘Lf—(x)(fu+ (X)) =q.

J

Y

——— % Flx)

i={5

Figure 2

The right-hand part of Fig. 2 pictures the five fuzzy numtf@cjﬁ; i=1,5.
m is the dashed line. Only, X, x, contribute to buildingw- Moreover,
maxf *(x) =f *(x,), max f (x) = f (X)), max f (x) =f (x,)

xe D xe D xeD
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m and m’ are thus consistent for these points. From Fig. 2, right-hand side,
we see that

rh:L[]Qa_] a/f;(x2)+LE[a_’l] a/f;(x3)+J'aE[a+’1] alf3(x)

+J'0{E]O’w+ a/ti(x,)=m

in Zadeh's notation.a~ and a* are such thatf (x)=f (x) and
f (x)=f_.(x), respectively. More specifically, for

a€[0,a], fo(x) =f(x) Vi,
a € [a, 1], f(x)=1(x) Vi,
a € [at 1], fr(x)=f"(x) Vi,
a€[0,at], fr(x,)=f"(x) Vi.

The fuzzy set onD maximizing f is here N=a /X, + 1/X,+a" /X,
More generally, if

m = o a/sup f, (%) :qu,q a/f,(x(a))
then

N = HE]O’l]a/x(a) (symbolically).

C. INTEGRATION OF FUZZY FUNCTIONS OVER (NON)FUZZY INTERVALS

This section is concerned with the possibility of extending elementary
results in the analysis of real-valued ordinary functions to fuzzifying
functions fromR to R. This attempt is very similar to that of Chapter 2,
section B where results in real algebra have been extended to fuzzy
numbers. Unsurprisingly, the most remarkable properties will be obtained
for fuzzifying functions that map into the set of real fuzzy numbers.
Integration over a nonfuzzy and a fuzzy interval are investigated. The
main reference for this material is Dubois and Prade (1978).

a. Integral of a Fuzzifying Function over a Nonfuzzy Interval
a. Definition

_ Let f be a fuzzifying function fromg, b] C R to R such thatVx € [a, b],
f(x) is a fuzzy number, i.e., a piecewise continuous convex normalized
fuzzy set onR. Va €]0,1], the equationu;,(y) =« with x and a as
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parameters is assumed to have two and only two continuous solutions
y=f'+(x) andy=f (x) for a#1 and only oney=1(x), for a=1,
which is also continuoust*® and f are defined such that

fr)=f'x)=fx)=f (x) =1 (X Va, o, with ¢ < a.

These functions will be called-level curves off (see Fig. 3). The integral
of any continuousa-level curve off over [a, b] always exists. Unless
specified,f always satisfies these assumptions.

Figure 3

An intuitive way of defining the integralf(a, b) of f over [, b] is to
assign the membership valeeto the integral of any-level curve off over
[a, b]. Using Zadeh’s notatiori(a, b) is the fuzzy set oriR

@b)=f  af [  afff0oe @

This definition is consistent with the extension principle. Let us show this
for a particular case.

Let L be the set of functionsfrom R to R such that/’l(x)dx exists and
| is made of a denumerable union of pieces of level curves (see Fig. 4).
Hencel = U, _ | wherel is continuous. The curve delimits an areaA
whose surface i§,.. The fuzzifying function is viewed as a fuzzy set lon
such thatudl) =inf_ udl) with u(l) =« iff | is part of ana-level
curve off.

ey 2
| |
{
/"-—1
|
a
’l M__}\i
¥ | |
| ' |
| "
[ | |
|1 ] 1 -
O @ b x
Figure 4
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According to the extension principle, we have

Hiay(T=  sup infu(l) (8)

I0L: T:J'gl(x)dx

The following proposition holds whep; (y) is continuous with respect
to y and x and Vx, f(x) is a fuzzy number without constant-membership
intervals: VT € R, 3 an a-level curvef , delimiting an areaA whose
surface isT, such that

b
My, b)(T) =a and T :Lfa(x)dx.

Proof.  The double continuity ofu;,(y) with respect toy and x implies
that of a-level curves with respect ta. Denote byf a generica-level
curve of f. VT, Ja andf such that/f (X)dx=T andf is unique. Let
L.={l€ L[jabl(x)dx:T}. VieL —-{f}, | is made of pieced, on
each side of because were they on the same sidd ,othe so-delimited
area could not have a surfade(see Fig. 4). Owing to the bell shape of
f(x), inf udl) < . Hence,u;, ,(T) = a. Formulas (7) and (8) are consis-
tent. Q.E.D.

N.B.:  When . (y) is only piecewise continuous with respectytothe
mapping T— f , ji“fa(x)dx:T can be multivalued because some level
curves may overlap. However, the level curves of any fuzzifying function
can never cross each other since they are defined by the equations
a=p(y), «€]0, 1].

When f(x) has constant-membership intervals, the level curves may
degenerate into “level areas.”

Formula (8) could be extended naturally by repladingvith the setG
of functionsg such that/® g(x)dx exists:

uf(a’ b) (T) = Sup ,Ll% (g) (9)
g[G:T:Igg(x)dx
with pg (9) =inf _ . #i,(9(X). Consistency of (8) and (9) can be con-
jectured, but the proof requires some precise mathematical tools and is
beyond the scope of this book.

N.B.: Since interval-valued functions are particular cases of fuzzy-
valued functions, the above approach may be viewed as an attempt to
generalize integrals of ordinary set-valued functions (see Aumann, NF
1965). The latter have arisen in connection with economics problems.

B. Calculations of f(a, b) when f in a L-R type Fuzzifying Function

A fuzzifying function is said to be ah-R type fuzzifying function iff it
satisfies the requirements af and f(x) = (f(x), s(x), t(x)), is an L-R
type fuzzy numbeNx € [a,b]. f, s, andt are positive integrable functions
on [a, b]. Note that the 1-level curve dfx) is f(x), i.e., the mean value of
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ﬂx) Vx. Obviously, the twon-level curves off(x) are
f=(X) =f(x) — (X)L~ ), fr(X) =f(X) + ()R Y a).

Integratingf_ (X) over [, b] gives
Lb F-(x)dx = Lbf(x) dx- L"(a) Lbs(x) dx=Z.
Denoting byF, S, T,antiderivatives off, s t, respectively, we get
Z=F(b) - F(a) - L-{«)(S(b) - Sa))
or

OF(b) - F(a) - zO
L =a OZ=<F(b) - F(a).

T o) -s@ - (b) - F(a)

Note thatS(b) —S(@) = 0 since b =a. The same reasoning holds fbr
and we get

i(a b)=gj;bf(x)dx, J;bs(x)dx, ﬁ(x)dxaR, (10)

which is the result of (8) whehis anL-R fuzzifying function.

To integrate arlL-R fuzzifying function over a nonfuzzy intervah,[b], it
is sufficient to integrate mean value and spread functions ayéi. [The
result is anL-R fuzzy number.

v. Relationship with Riemann Sums

Let X,...,x) € [a, " be made up oh real numbers such that
a= XI<X2< T <Xn—l<xn:b
and X be the fuzzy sum xg—xl)f(xz) D (x3—x2)f(x3) D (X =X )
f(x). Whenf is anL-R type fuzzifying function, the fuzzy Riemann sum
3 can be written.

5,203 (5% 1(8). 3 (s x.)fx). 3 (5% x)7

R

Owing to the continuity ofL and R and to the existence of the integrals
over [a, b for f, s, t,the limit of
3 exists and is

limy, =

] . n - n - n ]

im (%= x0) (%), nllqgoZ(&-&_l)S(x), lim (>q->ﬁ_1)t(>ﬁ)EL

_ 0 b b b 0
= DJ’af(x)dx, Ls(x)dx, -Lt(x)dqu

R

I
—

(a,b).
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So, whenf is anL-R type fuzzifying function, the extension principle
does generalize Riemann sums, and hence the integration defined in this
section generalizes Riemann’s integration.

N.B.: Denoting by F(x) the L-R type fuzzifying function E(x), Sx),
T(X)), - Which we may call an “antiderivative” df the formula

| (a, b) = F(b) © F(a)
does not hold any longer becausfe(a, b) = (F(b) — F(a), Sb) — Sa),
T(b) — T(a)), ., which differs from

LR’

If(b) S If(a) = (F(b) - K@), Sb) + Sa), T(b) + T(a))

b. Integral of a Nonfuzzy Function over a Fuzzy Interval

a. Definition

Let A and B be two fuzzy sets orfiR. The extension principle allows
defining the integral of a real-valued ordinary functibrover the fuzzy
interval @, B) bounded byA and B, say I(A, B):

Hiag(2)= sup  min(u,(x), te(Y)) 11)

X, y: Z=[¥% f(u)du
B. One of the Bounds is Not Fuzzy
We consider the integral dfover f, B):

Hiag(Z)= sup pg(y)=  sup pg(y)

y: =Y f(u)du y: Z=F(y)-F(a)

where F is an antiderivative of. We see that(a, B) = F(B) © F(a) is the
value of the extendeB(x) —F(a), whenx = B.

v. Both Bounds are Fuzzy
(11) can be changed into

Hine@= 30, min(u(x), ta(y))

. 0O D
= supmingg1,(x). _sup  wa(Y)-

x[R )
- sxlélgmin(HA(X)’ul(x, B)(Z))’

that is, I(A,B)=Ac°I(-,B)=A°(F(B) © F(}). I(A, B) is the fuzzy
value of the extended fuzzifying functiog=F(B) © F(x) for x=A,
using the results of A.d. Henceé(A, B) = F(B) © F(A), which can be
denoted[?f(x)dx.
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N.B.: When A and B are fuzzy numbers oL-R type, the calculation
of I (A, B) is not especially simplified. For instancd,=(a,a, a) . then

OF*(z)-al
HF(A)(Z): L (a)

| (A, B) will not generally be ah-R type fuzzy number wheA andB are.

for F*(Z) <a and F injective.

Remark An alternative approach to the integral of a nonfuzzy function
over a fuzzy interval could be the following.

Let C be a fuzzy interval modeled by a flat fuzzy number (see 21B.e.
The integral overC of the functionf can bei(C):[[R M (X) - f(x)dx.
What is obtained is a median value between the crisp intetf@ls and
i(suppC) where C, is the 1-cut ofC. This point of view departs from the
fuzzy evaluation of the fuzzy surface bounded AgyB, fand the abscissa
axis.

c. Integral of a Fuzzifying Function over a Fuzzy Interval

Zadeh'’s extension principle gives now

'uf(Av B)(Z): IDL,(X,V)SSPRZ,xsy mm('uA(X)’ IJB(y)’ 'u?(l))' (12)
Pi)at=z
Wheref is a fuzzifying function satisfying the assumptions of a and
are fuzzy numbers that delimit a fuzzy interva(A, B) is the fuzzy
integral. (12) can be written

0 N
— : D
wold) = Sup min A0 te(y) sup w1 (1)
E z=I¥I(t)dt D

= sup min | 1,(X) Hs(Y) 1y, (2)]

Note that sincef(x, y) = (y,¥), the conditionx=<vy, which was a
priori imposed in (12) for the sake of consistency with (8), can be dropped.
Thus, | (A, B) is the value of the extenddd, y) for x=A, y=B.

N.B.: 1. We could have considered changing (12) into

O 0
Hip o(2)= sup mina.tf(l), sup min(,(x), pa(y))E (13)
i z - )}il(:(){ix H

The calculation carried out in this way can be shown to be very unwieldy
(see Dubois and Prade, 1978). Even if we assume that the upper bound is
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attained for ana-level curve off, the determination ofx can be very
difficult because the already-mentioned upper bound is not necessarily
attained for equal values of the arguments of the min.

N.B.. 2. Since from al x,y)#F(y)© F (X) when F is an anti-
derivative off, we do not havd (A,B)=F (B) © F (A) either. We remark
that, denoting by an antiderivative of, (13) can be written:

HT(A, B)(Z) - Sl’lépl_ min(”f(l)’ IJL’(B)GQ(A)(Z)

using the results of b. The intractability of (13) is thus related to the fact
that | (A, B) # F(B) OF A).
d. Some Properties of the Integral Operator

a. Linearity
It is easy to see using definition (8) that

I: (F)@a(:)ax = J': F(x) dx J;bg”j(x)dx

lefN(x)dx, Jab é(x)dx denote the integrals of the fuzzifying functiohsand
g, respectively. Wherf and g are L-R type fuzzifying functions, the result
is also easily obtained by considering Riemann sums.

We also have

J': (f(x)+g(x)dx= J’: f(x) dx® Ijg(x)dx_ (14)

which is easy to see reasoning witkcuts.
On thecontrary,

J’ dxeBJ’ f(x)dx O J’ (15)
The equality does not hold exceptbifis a real number.

Proof. Let [ a(a), a(a) ], [b(a), b ()], [ c(a), T(a)] be thea-cuts ofa, b, c
respectively.
The a-cuts of the left-hand side of (14) is

b

T (1 +a)ax, [ (109+a(0)ox g

It obviously equals thex-cuts of the right-hand side of (14).
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The a-cut of the left-hand side of (15) is

é:bf(x) dx +Jb£f(x) dx, J':f(x) dx +J'bcf(x) dxg

which contains

Bff(x) dx, J:f(x) dxg Q.E.D.

B. Relationship with U, N

Denote byJaB f(x)dx the integral of the nonfuzzy functiohover the
fuzzy interval [a, B),a € R, B € ?(R); then:

BOC

I f(x) dx = E Bf(x) dx% 0 Sj’cf(x) dxg C 0P(R);
whenf is positive,

J’Bnc f(x) dx = E Bf(x) dx% n chf(x) dx%

These properties are particular cases h¢B U C) = h(B) U h(C); and,
when h is injective, h(B N C) =h(B) N h(C) where h is any extended
function from®(X) to ?(Y) V B, C € ?(X).

e. Example

Consider the functiorax® 6:37 where a = (& a a), b = (b, b, b),,
fuzzy numbers of thé-L type. The expressions for, (t) are

Xx= 0, t<ax+h: /,ly(t):LEi:LTb;tﬁ
[1-(ax+b) [
ax+b
X< 0, ax+b=t uy(t):L%E
(- (ax+b)O
H-ax+b O

x= 0, t=ax+b p(t)=L

X< 0, ax+bs<t pi(t)=L

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



[l.4. Fuzzy Functions 114

Assumingw = L™, the a-level curves are respectively in each case

~(x) =xla—aw)+b-bw,

for x= 0 %”() (a-aw)
0, (x) = x(a+aw) + b+ bw,
~(x) =x(at+aw)+b-bw,

for x < O%H() ( )
0. (X) = x(a—aw) + b+ bw,

and are pictured on Fig. 5. Note thgf(x),x=< 0, has the same slope as
g, (X),x=0, and g; (X), x>0, has the same slope ag(x),x=<0. Using
the results about mtegratloh,, (as@ b) ds has membership function

a/2) x>+ bx-t0
0 (a/2) x*+bx %
- [ a/2) x +bx]D
g (8/2)x*+bx 5

Xx= 0, gx2+bx>t, p(t)=1L

x = 0, gx2+bxst, u(t)=L0G

and | ° (as® b) ds has membership function:

[H(ay2) x>~ bx-t O
0 (a/2)x*-bx %

X< 0, —%xz—bxzt, u(t) =

a 2 x?+bx+t O
X< 0, —-—x’-bx<t, u E(av 0
2 0 (a/2)x*-bx
i g;
a+aw
gl
a
b+ g,
% b —aw
% // —Lw -
/ﬁ 0] X
14 a
9 a+aw,
g;

Figure 5
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and
2 2

on (és@ﬁ)dsz%x%bx, gx?ﬂ_)x, 5%+Bx§ , X=0,

L

X [0 o~ 0O a NG x> - O
aséBb)ds: =x?-bx, a=—-bx, a—-bxr , x<0,
Io( H 2 2 =72 T,

It is nothing but the fuzzy functlon(O X) = y a(x2/2)EBbx an ex-
tended primitive ofy=ax+b, for x= 0, and I(x, O)-—(a(x2/2)@bx)
for x< 0.

The iptegral[ocﬂgax+ b) dx wherea and b are no longer fuzzy is, from
b . v, (ac*/2) ® bc, which, in this example, can be computed easily through
approximate sum and product formulas (see 2.B.e). Lastlg *d0,
~\2
ff (ax@ B)ax= 1 & o550 @ ghoc
i 2 7 7H 2

Now con5|derf (as@ b) ds, where u andv are positive fuzzy numbers.
First,

7 - 2 _ 2 (Uz_uz) _
I(u,u)-%(u —u)+b(u—u), a T+p(u u),

2
—(v*-u _
a(—z) + b(v-u)d
He
with v>u, using the main result of [&.
Spreads are positive singe> u. Thus,

I(u, v)= éﬁ v”-u" EEB b
and from by,
Do (@lD .
[(@,0)=3a0 DMDEB bo (0 © 0
H 2 H

which can be easily calculated using the methods developed in 2.B.e
provided thatu and v are fuzzy numbers of-R and R-L type, respec-
tively. Note thatl (u v) #1 O,v)o | (u 0), which is

Dao (v) 0 Go@) . .0
0~ ebo vlo L &bO IO
H 2 i B8 ° =

because of the nondistributivity 6 over © (see 2.B.d3)).

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



I.4. Fuzzy Functions 116

D. DIFFERENTIATION (Dubois and Prade, 1978)

In the preceding section we have extended the concept of integration to
a real fuzzifying function (i.e., a mapping frof to % '(R)). Conversely,
differentiation is introduced here.

a. Definition of the Extended Derivative

Let f be a fuzzifying function fronR to R. The image of anke D C R
is assumed to be a fuzzy number (i.e., a convex and normalized fuzzy set in
R). Moreover, eachxr-level curvef off is assumed to have a derivative at
any x, € D. Then, the derivative of at X,, denoted c(f/dx)(xo) is defined
by its membership function

N(df/d")()‘O)(P) f :(deal/J(E)( )=pP “(fa) 4
where u(f ) = o by definition. ¢, .,(P) =0 if Oe, (df 7 dX)(x) = P).

Thus the membership value Bfto @df / dx)(x,) is the greatest level of all
the a-level curves whose slope &j is P. (df/ dX)(x,) is an estimate of the
parallelism of the bundle of level curvesat The less fuzzy df / dX)(x,),
the more parallel the level curves.

b. L-R Type Fuzzifying Functions

Let f be such tha¥ x € D, (Rx): (f(¥), s(), t(X) If «# 1, there are
two a-level curvesf - andf *, whose equations are

= -L" () Ex), f ()=f(x)+R"(a)1X),

andf (x) = f(x).

For the sake of S|mpI|C|tyf(x) is assumed to be a strictly convex fuzzy
number (ie,, L and R are continuous and strictly decreasing on [&)+
and thusY a #0, O(a, b) with a # b, such thatv u € [a, b], u, (U)=a).
Moreover, f, s, andt are assumed to have derivatives at arggy D. Hence

T (%) = L () - (@) = (%)

dx dx dx
s () o o gy Ot
dx (XO) ~dx (XO) + R¥(a) dx (XO)

According to the sign ofds/ dx) (x) and @t/ dx)(x,), the bundle ofa-level
curves may have different features.

() (ds/dx)(x,) >0, (dt/dx)(x,) >0.If(ds/dx) (x,) >0and
(dt/ dx)(x,) >0 (see Fig. 6)s(x) andt(x) are increasing functions
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i)k Fte) |
/ f‘-!'t /f‘-l+
!
~4 £
f
)_,/ ..///c
\F );- — _
o] Xy R 0 X R
Figure 6 Figure 7

in a neighborhood ofx; so when x increases, thea-level curves
get away fromf(x) and we have, if<a<1

df ; df df df df ;

_B s~ a > >_—_a >_B .
dx (XO) dx (XO) dx (XO) dx (XO) dx (XO)
Given a slope P, there exists at most one level curve whose
derivative inx is equal toP. Hence, (14) gives

ifp< I - i) Py
TP boh M) P =B e 00() B
o _ o= (df /() 0
if P= Ix (%), u(df/dx)(xo)(P)_ 5 (dt/ax)(x,) %

and
df Coif ds dt , \O
o ()= 0 ba). 2 () 5 (o))
(i) (ds/dx)(x,) <0, @dt/dx(x)<0. This is the opposite case(x)

and t(x) are decreasing functions in a neighborhoodxgefand if
B<a<1((ds/dX(x)<0, @dt/dx(x)<0),

df; df - df df * df ;
5 (0)>5 06) > (%) >75% (6)> =5 (%)

Similarly to (i), we get

df _ o it ds ; \O
I (XO)_D& (%)~ i ().~ ax (XO)EEL
(i) (ds/dx) (x,) <0, dt/dx)(x)>0. Figure 7 sketches the shape of
the bundle in a neighborhood xf. Here,

L dfy oy dfy O df
Ha, mingae (o) g (o)g= 5 (%)

Thus, if P < (df/ dX)(x), then gy, ,(P)=0. If P = (df/ dX(x),
there may be two level curvds, ;" whose derivatives ax, are
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equal toP. Hence,

%( ):B%(XO)’O’ B %(Xo)a - B%(XO)D,%(XO)&.

Usually, ﬁf/ dx)(x,) has no particular type (i.e., or R).
(iv) (ds/dx)(x)>0; (dt/dx)(x)<0. A similar discussion would
lead to

(=2 (1) )02 0 2 () - L)

Remarks 1 It is clear that

U
U

df  f(x+h)ef(x) _ pdf
&(xo);tlhlm : = D&(XO)’ +00, +00

becausesven in an extended subtraction spreads must be added.

@t a0 = (109
&(f 69g)(xo) = 00) P g (%)
if ds/dx, dt/dx du/dx dv/dx have the same sign at. It would be
possible to show that in some cases the usual formula for differentiation of
a product still holds fot-R type fuzzifying functions.

c. Example

Let f(x) =€ °* where A is a strictly convex continuous positiveR
type fuzzy number. Thend{/ dx)(x) =\ O x € ©* since it is possible to
differentiate along thex-level curves: @f /dx)(x) =A_e*** and to apply
the theorem of 2.B.a because * is increasing with |, v). But it is not
always so easy!

Remark Integration and differentiation of a fuzzy bunch of functidhs
S. L. Chang and Zadeh (1972) have defined the derivative and the integral
of a function with a fuzzy parameter (viewed as a fuzzy bunch of ordinary
functions) in the following way: Lek+— f(x, @) be a function fromR to R
depending on a real parametr Its extensionf when the parameter is a
fuzzy setA on R is defined by
H;(XVA)(Y) = su ) l’lA(a)

a y=f(x, a
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This fuzzifying functionXHfN(x, A) can also be viewed as a fuzzy bunch
F:J,LLA(a) /f(-, @); in this latter approach the membership function of the
derivative and the integral are respectively

df
/-1_(' )(y) = sup :uA(a);

dof
ay=_ (xa)

Hy tAdt(y) = sp pa)
X0 a,y=IX())(f(t’A)dt

In the above example (c) thelevel curves are precisely the elements of
the support of the associated fuzzy bunch; thus the two approaches give
the same results.

E. FUZZY TOPOLOGY

The notion of a fuzzy topological space was introduced by C. L. Chang
(1968). It is a straightforward extension of the concept of ordinary topolog-
ical space (i.e., a pairX(?T) such that: 1)X, @€ J; (2) A, B& J implies
ANBeJ; QA €TJ,Viel impliesU _ A €T WhereJ CP?(X). Itis
beyond the scope of this book to present all the notions and results that
have been developed in fuzzy topology. Only some of the basic definitions
and propositions are given here. A rather extensive bibliography is listed at
the end of this chapter.

A fuzzy topologyis a famllyJ of fuzzy sets orX satlsfylng the following
conditions: (1)X,@€J; (2) if AB€J, thenANBeEJ; (3) if V €1,

A €9, thenU, _, A €9. (Chang, 1968).
X O") is sald to be &uzzy topological spac&ach member d]’ is called a
-open fuzzy set. Auzzy set isT-closediff its complement isj-open. For
instance, X, ? (X)) is a fuzzy topological space, namely tHscrete fuzzy
topology of X. B B

A fuzzy setN €7 is a neighborhoodof A iff 30&J such thatAC 0
C N. A is open iff for each fuzzy sdé8 contained inA, A is a neighbor-
hood of B. The above definition is somewhat different from the ordinary
one in that we do not consider here the neighborhood of a point but of a
fuzzy set.

Let A andB be fuzzy sets oF such thatA D B. ThenB is saidinterior
to A iff A is a neighborhood oB. The interior ofA, denotedA°, is the
union of all interior fuzzy seté. A° is the largest open fuzzy set contained
in A. A'is open iffA=A°.

Let f be a function fromX to Y. Letd be a fuzzy topology orY. The
inverse, denoted?*(B), of a fuzzy setB in Y is a fuzzy set inX whose
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membership function is

VXEX,  eag®)=nmg(F(X). )
f is said to beF-continuousiff the inverse of eachil-open set isT-open.
Then, for each fuzzy seét in X, the inverse of every neighborhood fofA)
is a neighborhood oA.

In the literature, several definitions of fuzzy compactness have been
proposed and investigated (see C. L. Chang, 1968; Christoph, 1977;
Goguen, 1973; Lowen, 1976, 1977; Wong, 1973, 1974a; Weiss, 1975;
Takahashi, 1978). Not all these definitions are equivalent. The interested
reader should consult the two comparative studies (in the sense of the
existence of a Tychonoff theorem) by Gantner et al. (1978) and by Lowen
(1978).

Local properties (Wong, 1974b) and normality (Hutton, 1975) have also
been studied. Katsaras and Liu (1977)'s fuzzy vector spaces are particu-
larly worth considering.

Questions such as, What does fuzzy continuity mean for an ordinary
function? or What is continuity for a fuzzifying function (Axg? also seem
worth considering in the framework of topology.

F. CATEGORIES OF FUZZY SETS

Category theory is a very general theory whose aim is “to lay bare some
of the underlying principles common to diverse fields in the mathematical
sciences."” (Arbib and Manes, NF 1975). It has been used by several
authors (Goguen, 1969, 1974; Eytan, 1977; Negoita and Ralescu, 1975)
who tried to provide an abstract foundation to fuzzy set theory, indepen-
dent of ordinary set theory. This approach contrasts with Chapin’s (1.B.d).

A categoryK is a collection ofobjectsdenoted objK) together with, for
each pair A B) of objects, a collection of entities calledorphisms The
set of morphismsf betweenA and B is denotedK (A, B). We write
f: A - B. Morphismsf and g respectively inK (A, B) and K (B, C) can be
composed to make a unique morphign® f in K(A, C). Symbolically, we
write

and say that “the diagram commutes.” f& to be a category, the
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following properties must be satisfied:

the composition law of morphisms is associative;
V A Uobj (K), there is a unique morphism L K (A,A) such that

Vf: A - B, fo 1,=1,0 f=1
1, is called the identity morphism.

Example An example is the category SET of sets. Morphisms are
mappings between sets.

A functor F is an assignment between two categoKeand K’, mapping
objects onto objects and morphisms onto morphisms, and such that

0fOK(A B), F(f)OK'(F(A), F(B));
Of:A- B, g:B-C, F(gOf) = F(g) OF(f);
OAD obj (K), F(L,) = 1.

Thus, a functor is a kind of homomorphism between categories.

Goguen (1969) introduced the first category of fuzzy sets, denoted
Set L) whereL is a complete lattice. Objects of Sk} @reL-fuzzy sets, i.e.,
pairs K, w) where X is an ordinary set ang a function fromX to L.
Morphisms are ordinary functionk: X —» Y such thatuo.f = xy where
(X, w),(Y,x) are objects of sdtf. Hence, morphisms are fuzzy functions
in the sense of A.a= is the order relation induced froe that inL. This
category is also used in Eytan (1977). An extensive presentation &f),Set(
its properties, and its ability to represent concepts can be found in
Goguen's (1974) paper.

Other categories of fuzzy sets include: Sk}, the category whose
objects are pairsX( u), u: X - L and whose morphisms are fuzzy rela-
tions X X Y - L such that

Ox € X, Oy €, u, (X, y) < inf( u(x), X(y))
with (X, w), (Y, x) € obj (Set(L)).

Set (L) is thus the category of fuzzy sets and fuzzy relations in the sense of
N.B.2 in A.ca.

There exists also %(elt), which has the same definition as @8t
except the condition for fuzzy relations; for Jey,

sup inf ( Ug (X,y), 1 (x)) < x(y) OyOv.

A discussion of Sgt) and SeflL) can be found in Negoita and Ralescu
(1975); two functors between Sex(and SefL), and between Sdt) and
Sef(L) respectively are constructed.
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Different from the categories of fuzzy sets are the fuzzy categories that
are extended categories as fuzzy sets are extended sets. Two points of view
exist. Given a categori{, we build K over K such that

obj(K) = obj(K).

VA, BE obj (K), a morphism ofK is an L-fuzzy set of K(A, B) (see
Negoita and Ralescu, 1975). It can be proved thats a category. When
K= SET, the morphisms oK are nothing but fuzzy buncheA.¢.b).

A fuzzytheory (Arbib and Manes, Reference from I11.2, 1975b) is a
triple ¥ = {F o, i} where F is a function from obK) to objK), o is a
function K(A, F(B)) X K(B, F(C)) - (K(A, F(C)), and i a collection of
morphismsA- F(A), A € obj (K). It is possible to equigF with properties
such that there is a catego®(K) with obj (¥(K)) = obj K), F.K) (A, B)
= K(A, F(B)) VA,B in obj(K). When K=SET and F(X) =%(X), the
morphisms of%(K) are fuzzifying functions.

The role played by the interval [0, 1] in the definition of fuzzy concepts is
discussed under the name “fuzzy characters” in a categorical framework
by Negoita and Ralescu (1975). The latter author also recently studied a
fuzzy generalization of the notion of subobject in a category (Ralescu,
1978).

Lastly, we must mention a completely different group of works which
use category theory terminology but are not related to Goguen's approach.

Poston (1971) defines a category called “Fuz” whose objects are sets
equipped with a nonfuzzy proximity relation. Dodson (1974, 1975) general-
izes Fuz by considering sebs with a nonfuzzy proximity relation on
X x P(X), called hazy spacesBoth authors are motivated by an extension
of the usual topology (not in the sense E)f and differential geometry to
spaces were usual distances no longer exist. According to Dodson (1974)
“the situation in Fuz [and in hazy spaces] resembles that in real experi-
ments: making measurements with limited precision.” Dodson (1975)
indicates with an example how hazy spaces are a good tool for modeling
the notion of an elementary particle, in accordance with an uncertainty
principle similar to Heisenbe'sg
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Chapter 5

FUZZY MEASURES.
PROBABILITIES/
POSSIBILITIES

Whereas the four previous chapters were devoted to sets, we are con-
cerned here with measures of sets. Instead of considering membership
grades, we now deal with degrees of belief, possibility, probability that a
given unlocated element belongs to a (fuzzy or nonfuzzy) set.

The first section presents Sugeno’s fuzzy measures and integral. Fuzzy
measures assume only monotonicity and thus are very general. Probability
and possibility measures, Shafer’s belief functions, and Shackle’s conso-
nant belief functions are shown to be particular cases of fuzzy measures.
Fuzzy integrals in the sense of Sugeno are analogous to Lebesgue integrals.
A result on conditional fuzzy measures is reminiscent of Bayes’ theorem.

In Section B basic notions of a theory of possibility, following Zadeh,
are provided. Similarities between possibility and probability theory are
emphasized. A possibility distribution can be induced from a fuzzy set and
does not underlie the idea of a replicated experiment, nor does a possibility
measure satisfy the additivity property.

The next section deals with fuzzy events modeled as fuzzy sets and with
their fuzzy or nonfuzzy probability and possibility. Lastly, fuzzy distribu-
tions of probability and possibility are briefly investigated.

A. FUZZY MEASURES AND SUGENO’S INTEGRALS

In the four preceding chapters we were interested in the grade of
membershipu,(x) of a known elemenk € X in a setA without precise
boundary.
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On the contrary, we are now concerned with guessing (most often
subjectively) whether an a priori nonlocated elementXifbelongs to a
subsetA of X. A is fuzzy or not here. Such an uncertainty is sometimes
conveniently expressed using probabilities.

Sugeno’s approach (see Sugeno, 1974, 1977; Terano and Sugeno, 1975),
which is the topic of this section, generalizes probability measures by
dropping the additivity property and replacing it by a weaker one, i.e.,
monotonicity.

a. Fuzzy Measures
Note: In this section a we consider onlyrfuzzy subsets.

Let g be a function from?(X) to [0, 1]. g is said to be duzzymeasure
iff:

(1) 9(@)=0;9K) = 1;

(2) VA Be P(X), if AC B, theng(A) = g(B) (monotonicity).

@) if VieN, A € P?(X) and (A), is monotonic A CA,C - C A
C - orAl ) A2 DD An )’ then

lim g(A) = g(limA) (continuity).

N.B.: More generally, a fuzzy measure can be defined on a Borel field
B CP(X), i.e., (1) GEB; (2) if A€ B, then A € B; (3) if Vi EN,

A € B, thenU, A € B.

g is associated with a nonlocated elemanof X. g(A) is called by
Sugeno a “grade of fuzziness” @& It expresses an evaluation of the
statement X belongs toA” in a situation in which one subjectively guesses
whether x is within A. The monotonicity ofg means thatX& A” is less
certain thanx € B” whenA C B. It is easy to check that

VA, B € ?(X), g(A U B) = max@(A), g(B))
and
VA, B € ?(X), g(A N B) < min(g(A), g(B)).

Several examples of fuzzy measures are provided.

a. Probability Measures

P is a probability measure iff:
(1) VA, RA) €0, 1];P(X) = 1;
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(2) ifViEN,AEP(X) and¥i+jANA=D, then

[00]
0_
PHJAR= Z P(A).
P is obviously a fuzzy measure.

B. Dirac Measures
A Dirac measure is a fuzzy measurdefined by

iff x, € A

VAE P(X), u(A) = B
otherwise,

wherex, is a given element iiX. m is nothing but the membership value of
X, in any subset oX.

Y. N-Fuzzy Measures

g, fuzzy measures were proposed by Sugeno (1974) by relaxing the
additivity property of probabilities intoYA, B € ?(X), such thatA N B
:Q’

whereg,(X) = 1 andg, satisfies the continuity property of fuzzy measures.

\-fuzzy measures are indeed fuzzy measures for-1.

Proof: From (1) we have

9,(X) = g,(X) +9,(3)(1 +Ag,(X))
Hence, sincex + -1, g,(4)=0. If ACB, thendC,B = AUC andANC
= @. We have

g,(B) =g,(A) +g,(C)(1 +Ag,(A) = g,(A)
sincex > -1. Q.E.D.

N.B.: For A = 0, N\-fuzzy measures are probability measures. Taking
B =A, we get from (1)

A = 1_9/\(A)
RN

This expression is exactly the same as\toemplement formula in |.B.b.

More generally, whenA and B are any subsets oX, the following
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formula holds:
g(AUB)= gA(A)+gA(B)—gA(An B)"'A @A(A)BQA(B)
' 1+21g,(An B)

which is easy to prove, expressirgg(AU B) in terms of g (A) and
g,(A N B), expressingg,(B) in terms ofg (A N B) and g (A N B), and
eIiminatinggA(K N B) from the two expressions.

If X=R, a Afuzzy measure is easily obtained from a functlorsuch
that (1) if x<y, thenh(x) < h(y); (2) h is continuous; (3) lim__ h(x)
= 0; (4) lim h(x) =1. h is very similar to a probability cumulative

X — +oo

dlstrlbutlon function and we have (Sugeno, 1977):

h(b) - h(a)

1+ A h(a)

If we iterate (1) using a family of disjoint subsetswe get

g}‘UDNAD Zg}‘ A=0

1 02
—a‘l 1+1 g, (A 1D A #0.
4 a

When X is a finite set {x, . . ., x}, a fuzzy measurey, is obtained from
the valuesg =g, ({X}) €[0, 1] using the above formula, provided that the
g, satisfy the normalization constraint

V[a, b] CR, g,([a b]) =

gA(x):/\l : (1+A g)—lézj_

0. Belief Functions (Shafer, NF 1976)

A belief functionb is a measure oK finite, such that

(1) b@)=0,bX)=1; VA€ P(X),0=<Db(A) <
(2) VALA, .., A €PX),

n

b(AOAD - 04)= Zb(A)‘Zb(A”A)“L

+ (1A n A0 nA)
b(A) is interpreted as a grade of belief that a given elemenX bélongs to
A. Note thatb(A) + b( A) <1, which means that a lack of belief in€ A
does not imply a strong belief inE A. Particularly, atotal ignoranceis
modeled by the belief functiob, such thatb(A)=0 if A#X and
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b(A)=1 if A=X. A probability measure is a special case of belief
functions. Belief functions are fuzzy measures. BetC A, hencedC,
A= BUC and BNC=d@d. (2) becomesb(A)=b(BU C)=b(B) +
b(C) = b(B).

Belief functions can be defined by a so-called basic probability function
m from P(X) to [0, 1] such that: (1n (D)= 0; (2) EAE@(X) m(A) =1 (the
total belief has a measure. 1) is easy to show thakt, __m(A) is a belief
function b(B). Conversely, for any belief functiob, 3 _, (-1)"*®b(B)
is a basic probability functiom(A). The subsetsA of X suchm(A) >0
are called focal elements &f “m(A) measures the belief that one commits
exactlyto A, notthetotal belief thatone commits t&\" (Shafer, NF 1976).

A \-fuzzy measure is lelief function iffA = 0.

Proof: (Banon 1978)
Let A be a subsebdbf X finite. Developing the expression @f(A) in

termsof g’syields
0(A=3 2" [ ]a
x O

We may staten(B) = \B!--11 __g iff A = 0.

Moreover, 2 (B)=1 due tothe normalization constraint on the
g's. Q.E.D.

However, belief functions are more general thafuzzy measures for
A = 0; knowledge ofb(A) and b(B) is not always sufficient to calculate
b(A U B). Moreover,b, is not ax-fuzzy measure.

€. Consonant Belief Functions (Shackle, NF 1961, Cohen NF 1973)

A consonant belief function is a belief function whose focal elements
A,..., A are nestedA CA,C--CA. In particular,b is a conso-
nant belief function.

A consonant belief function is a-fuzzy measure iff it is a Dirac
measure (Banon, 1978).

Shafer (NF 1976) showed that thbove definition of a consonant belief
function was equivalent to:

(1) b(D) =0;b(X) = 1;
(2) b(A N B) = min(b(A), b(B)).

This latter definition was independently introduced by Shackle (NF 1961).
Other properties of consonant belief functions afé, min(b(A),b( A))

= 0; Vb, 3A, B, A U B) > max({p(A), b(B)), except if b is a Dirac mea-

sure. The first equality meartkat a positive grade of membership is never
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granted to both sides of a dichotomy at the same tfi8) is interpreted
by Shackle as a potential grade of surprise.

Particular cases of consonant belief functions camrainty measuresuch
that

Y, C X, c(A) =1ifAD Y, and 0 otherwise.

{. Plausibility Measures

The plausibility of a subseA of X (finite) has been defined by Shafer
(NF 1976) as

PI(A) = 1 —b( A) (2)
whereb is a belief function.
A plausibility measure satisfies the following axioms:

(1) PI(@) = 0;PI(X) = 1.
2) VA,...,ACX,

PI(An - n A])S-Z PI(A)—ZPI(AD Aﬁ)+

+(-)™PI(AD - OA).

Plausibility measures are particular cases of fuzzy measures.

Proof. Noticing that VAC X, VBC X, PI(AU B) < PI(A) +
PIB)-PIANB), let CCA and B=CU A, henceAUB=X, ANB
=C, and 1< PI(A)+PI(B)-PI(C); since PI(B)=1, PI(A) = PI(C).
Q.E.D.

Moreover,PI(A) + PI(A) = 1.

N.B.: Plausibility measures and belief functions have been introduced
by Dempster (NF 1967) under the namgsper and lower probabilities
induced from a probability measure by a multivalued mapping.

A \-fuzzy measure is a plausibility measure iff -4 < 0.

Proof. Let g, be a A-fuzzy measure with—1x < 0. Denote f(A)
=1-g,(A). Expressing for anyA and BffAUB)=1-g,(AUB) in
terms ofg,(A), g(B) and g,(AN B), owing to the A\-complementation
formula, shows thétis nothing bugu with w ==N(l + N).

Note that the functiom o —N/(1 +\) is an involutive bijection from
]—1, 0] to [0, +x).

Thus, due to the definition of the plausibility measures in terms of belief
functions and to the fact that gs a belief function iffx =0, the
proposition holds. Q.E.D.
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In terms of basic probability functions, we have

OADX, PI(A)= 2 m(B)
An Bz@
M. Possibility Measures Zadeh, 1978)
A possibility measurdl is a function fron2(X) to [0, 1] such that
(1) (D) =0;11(X) = 1,
(2) Forany collectionA} of subsets oK, II({J, A) = suplI(A).

A possibility measure can be built from a possibility distribution, i.e., a
function 7 from X to [0, 1] such that suyp m(x)=1 (normalization
condition). More specifically, we have

OA, T(A)=supm(x) 3)

Finding the associated possibility distribution from the knowledgdI of
can be achieved by stating(x) = II({x}), at least for denumerable uni-
versesX.

The following propositions are due to Banon (1978):

* A possibility measure is a belief function iff it is a Dirac measure.
* Apossibility measure is ®-fuzzy measure iff it is a Dirac measure.

Note also thatViIl, 3A,B, II(A N B) <min(II(A),II(B)) except ifII is
a Dirac measure.

Lastly, it is easy to check that a possibility measureXofinite is a
plausibility measure.

N.B.: 1. Some authors prefer in some contexts non-normalized possi-
bility measures, i.ell(X) < 1. Viewing = as a membership function, the
interpretation of such measures is closely related to that of non-normalized
fuzzy sets (see 2.B.f.).

N.B.: 2. Letgbe a function frond?(X) to [0, 1] such that

(1) 9@)=0;9(X) =1,
(2) VACX, VBCX, if ANB=@ then g(A U B)=maxg(A),

a(B)).
WhenX is finite, g is a possibility measure.

Proof: If ACC, 3B, such thatANB=@ and AU B=C. Hence,
0(C) = max@(A), g(B)) = g(A), i.e.,g is a fuzzy measure.

VAC X, VBCX, g(AU B)=max@A), g(AN B))
g(B) = max@(A N B), g(AN B)).
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Hence,
max@(A U B), oA N B)) = max(max@(A), g( AN B)), g(A N B))

= max@(A), 9(B))
But sinceg is a fuzzy measurg(A N B) < g(AU B). Q.E.D.

N.B.. 3. II (A)=1-b(A), (i.e., II (A)=1 iff A#@) is called
maximum possibility measure.

N.B.: 4. Crisp possibility measureme defined by
Y, C X, cll(A) = 1ifANY,# @, andclI(A) = 0 otherwise.

Note thatclI(A) = 1 —c( A), wherec is a certainty measure.

Remark A consonant belief functiono can be built from a possibility
measure and reciprocally by setting

TI(A) = 1 —b( A).
Hence

b(A) :1—§1Dgn(x):ixg1;(1— n(x)) = inf v(x). (4)

By analogy with modal logic whereA*is necessary” is equivalent to
“non-A is not possible” [JA=-<-=A), we could interpret a consonant
belief function as aecessityneasure.

Fig. 1 pictures the inclusion relationships that exist between the various
sets of fuzzy measures on finite sets.

crisp
ossibilit
g y possibility
S | T
belief 1 {9} | probobility {ox}  iplousibility
(credibility) ! x>0 A=0 -1 < X<0)
!
! !
1 ]
| IR | (SR | R, -
cerfainty necessity
fuzzy measures except Dirac measures

Figure 1
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b. Sugeno's Fuzzy Integral
a. Nonfuzzy Domain

Using fuzzy measures Sugeno (1974) defined fuzzy integrals that are
very similar to Lebesgue integrals. Uetbe a function fromX to [0, 1]. The
fuzzy integral over the non fuzzy sa&tC X of the functionh with respect
to a fuzzy measurgis defined as

£ 0= 0= sup,min[a, g(ANH, )] (5)

whereH = {X, h(x) = a}.

N.B.: The analogy of (5) with a Lebesgue integral can be clearly
exhibited as follows (Sugeno, 1974). LeE (... E) be an ordinary
partition of X and assume

n

)= e (4

where p._ is the crisp characteristic function &. Let | be a Lebesgue
measure onX, ?(X)). The Lebesgue integral bfoverA is

J'Ahdlziail(AﬂEi).

Now assume & a,<--<ao <1 Let F=U"_E. Then, defining
h(x) = max_, ,min(a, ,uFi(x)):
() +9(-) = r.DLar)f min(ai, g(Aﬂ Fi)).
We give here some of the properties of the fuzzy integral:
acg()=a Va€e o, 1

it VX h0) =hed, then 4, h(eg()=4,W(9°g() (monotonic-
ity);

6(A) =4, 1,9 = o) whereA € P(X);

letM = £, h(x)  g(-) and

i M OxOH, ={xh(9=M}

Eh(x)  otherwise,
thenJ/A h'(x) © g(:) =/fA h(x) > 9(-);

if AC B, thenJ”A h(x) > g(-) < /f’A h(x) > g(-);
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let P be a probability measure & then

1
4 n() < PO [h(x)dp <.
These properties are proved in Sugeno (1974).
Kandel (1978a) proved the following result, whgis continuous
/f/Ah(x) og(-) = ahrgl] max[a, g(Aﬂ Ha)],

by noting thatg(A N H ) is a nonincreasing function ok. When X is
finite, this result no longer holds.
AssumeX = {x,, ... X} andh(x) < OITk h(x ), then we have

4 h(x) o g()= max mln(h(xl) g(Hi))

where H=(x,x,,...,x ). Let i, be such that J/ h(x) e g(-) =
mln(h(x) g(H. ))—M Note that then 1 following terms are less than

or equal toM? {gH),i>i} and {h(x),i<i}. There aren—1 other
terms that are greater than or equalMo {g(H,),i<i} and {h(x),i

>i.. Moreover g(H,) =1. SoM is obviously the median of the set of
2n—1 terms {(x),i=1,n} U{g(H ), i=2,n}, once this set has been
ordered. Thus, as indicated by Kandel (1978a, b), Sugeno’s fuzzy integral
can be interpreted as a “weighted median.”

B. Fuzzy Domain

Let A be a fuzzy set oiX, the fuzzy integral of a functioh from X to
[0, 1] overA with respect t@ is

4 ah(x) o g1=4 ymin(ua(x).h(x) © g(0} ©)

The following properties hold:

0AB, 4 sh(¥) = o= max3f 1h(x) o o4 oh(x) « o()F
£ ssh(x) o o(=minBk ,h(x) = g4 ah(x) = o(0E

it Is easy to see that (6) gives (5) wieis nonfuzzy;
the fuzzy measure of a fuzzy geis

o(A)=4 xi1,(x) o o) where ADP(X).

In particular, possibility measures of fuzzy sets can thus be defined.
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c. Conditional Fuzzy Measure

One may think that the notion of conditional fuzzy measure is to that of
fuzzy relation what the concept of fuzzy measure is to that of fuzzy set.
Moreover, it generalizes conditional probabilities.

Let X and Y be two universes. A conditional fuzzy measure Yonvith
respect toX is a fuzzy measure.(- |X) onY for any fixedx € X. A fuzzy
measureg, on Y is induced byay(-\x) and a fuzzy measurg, as follows,
for B nonfuzzy,

6,(B)=4 yo,(B] X) = o DBOR(Y). @)

g, corresponds to an a priori probability anrj(-\x) to a conditional
probability. For this reasong, may be called an a priori fuzzy measure.
crY(B]x) measures the grade of fuzziness of the statement, “One of the
elements ofB results because of.” In some applications;Y(-]x) models
subjectivity, which modifies the informatiag).

The fuzzy integral of a functioh from Y to [0, 1] with respect tg, will
be (shown in Sugeno, 1974)

£ oh(y) = 0 (0=A only) = & o (0) (0
:J/x g/x h(Y) ° UY(D|X)5° ax (0L

When h is interpreted as a membership functipg of a fuzzy setB in Y,
g,(B) is calculated using the above formula as

08 =4 (B9 = 9,0)
with
0819 =4 gy o0, 0.
Similarly to (7) we can consider

g =4 0 Alyeg0) VAEPX).

If we can chooseax(-\y) such thatg',=g,, then Sugeno (1974) has
shown thaw (- | y) anda. (- | x) were linked by

f oAl o0,0=4 080 g0, ®)
This result is similar to Bayes's theorem. Using this identity and knowing
for instance g, and oY(-\x), hence g,, we can infer (rx(-\}’), with
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B ={y} aX(-\y) iIs not always uniquely determined. A possible interpre-
tation of this model is that subjective incomplete informatgynmay be
improved tao, by extra informatiomr.,.

Remark An extension of Sugeno’s fuzzy integrals to evaluate fuzzy
measures dif-fuzzy sets ofb-fuzzy sets could be carried out.

B. POSSIBILITY AND PROBABILITY

This section is devoted to a comparison between possibility and proba-
bility. Similar quantities can be evaluated for each kind of measure. An
analogue of Bayesian inference for possibility exists. Possibility distribu-
tions and probability distributions are loosely related through a consis-
tency principle.

a. Possibility and Fuzzy Sets (Zadeh, 1978)

Let A be a nonfuzzy set of and v a variable onX. To say that takes
its value inA indicates that any element A& could possibly be a value of
and that any element not iA cannot be a value of. The statementv'
takes its value irA” can be viewed as inducing a possibility distributien
over X associating with each elemextthe possibility thatx is a value of
v

if x LA,
otherwise.

nv=x)=n(=F,

Next, assumeA is a fuzzy set that acts as a fuzzy restriction on the possible
value of v see 3.A.a). An extension of our above interpretation is Ahat
induces a possibility distribution that is equajutoon the values of:

(v =x)=7(x) = ua(x)
Since the expression of a possibility distribution can be viewed as a

fuzzy set, possibility distributions may be manipulated by the combination
rules of fuzzy sets, and more particular of fuzzy restrictions.

N.B.: 1. Note that although a fuzzy set and a possibility distribution
have a common mathematical expression, the underlying concepts are
different. A fuzzy setA can be viewed as a fuzzy value that we assign to a
variable. Viewed as a possibility restrictigh is the fuzzy set of nonfuzzy
values that can possibly be assigned.to

Example In a nonfuzzy case (Zadeh, Reference from V.2, 1977h),
consider the variablsister (Dedre) to which we assign a set or a possibility
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distribution, setting
sisters(Dedre) = {Sue, Jane, Lorraine} (set);

sister(Dedree {Sue, Jane, Lorraine} (possibility distribution).

N.B.: 2. The meaning ofr entails: “it is impossible that belongs to
the complement of supp in X.” That is, “it is necessary that belongs to
supp A’ because we suppose that we are sure thtgkes its values oiX
and only onX. However,v can be any element oA with a given
possibility. = does not model “it is possible thatbelongs to sup@” but
“each element of supp and only of sup@ is a possible value for”

b. Possibility of a Nonfuzzy Event

Let 77 be a possibility distribution induced by a fuzzy Bein X. Let A a
nonfuzzy set ofX; the possibility thatx belongs toA is II(A) where II is
the possibility measure induced byand we have (see A.

M(A)=sup (x) =sup m(x) (9)

As pointed out by Nguyen (1977d)J(A) is generally a Choquet (NF 1953)
strong precapacity.

Similarly, if p is a probability distribution ovekK, the probability thatx
belongs tA is

0f p(x) dx if X=R

P(A)= [dP= 1. o
0) p(x) if Xis finite.

Note that in (9) sup acts as a Lebesgue integral. Indeed, it is a fuzzy
integral in the sense of Sugeno:

118 =4 1,09 < 110
Moreover, VA, B & ®?(X), I[I(A U B) = max(I(A),II(B)), which corre-
sponds td®(A U B) =P(A) + P(B) whenAN B = @.
“Intuitively, possibility relates to our perception of the degree of feasibil-
ity or ease of attainment whereas probability is associated with a degree of

likelihood, belief, frequency or proportion” (Zadeh, Reference from V.2,
1977D).

c. Consistency Principle

As pointed out by Zadeh (1978), it seems quite natural to think that
“what is possible may not be probable and what is improbable need not to
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be impossible.” Proceeding further, we may state that what is probable is
certainly possible and what is inevitable (necessary) is certainly probable.
This informal principle may be translated as: the degree of possibility of
an event is greater than or equal to its degree of probability, which must be
itself greater than or equal to its degree of necessity. To calculate a degree
of necessity we may think of using a consonant belief measure as hinted by
eqg. (4). A consequence of the above principle would be &) =1 as

soon asP(X) =1, which is usually taken for granted. This means that the
possibility distribution should be normalized, i.e., syp(x) =1. Hagg
(Reference from 1V.3) suggests the use of a nonnormalized probability
distribution, andP(X) <1 is assumed to be equal to the rate of possibility
of X, i.e., P(X) =1I(X). 1-P(X) is interpreted as the probability of
occurrence of an event outside the univétse

d. Conditional Possibilities

Let X andY be two universes, and, v two variables. '—etﬂ(u,v)(X’ y) be
a possibility distribution associated with, ). 7 (x) and =, (y) respectively
denote the projection of  (x, y) onXandY:

() =suprg, (xy); 1Y) =supmg, , (x.y).

m(X) and 7 (y) are said to banarginal possibility distributionsRecall that
the separability ofr(u‘ V)(x, y) means that

7T(u, v)(X’ y) = min(’ﬂu(X), 77-\,(y))
Note that the following formula always holds:

() = syp min (%,v)(x,y), n;(y))- (10)

When, (X, Y) is separable, it becomes

| 7,(x) = syp min (7,(x), 77,(y))-

(% ¥) can be interpreted as a conditional possibility distribution.

Let us investigate the relationship between (10) and Sugeno’s fuzzy
integral.

The fuzzy integral of a functiom from X to [0, 1] over a nonfuzzy
domainD with respect to a possibility measuids

=450 = N= sup minth, sip n(x)

afjo, 1] XDNHg
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whereH = {x, h(x) = a}. Let us transform:

| = aqopl] Sp mm[a n(x)] = a%fl] min(a,uHa(x), n(x))

Iziumg)minD X), sup (a Hy, (X ))D:%E)min(n(x),h(x)). (11)

7o, 4

Hence| is the degree of consistencyofndh.
Now let us prove that

A) :/-{/Y rl(u,v)(A' y) ° HV(D]

Whereﬂ(u’ V)(A, y) = sup. AT v)(x, y); I (A) = sup_,m (X).
Proof. Using (11), the right-hand side is equal to

%I(O min(quDE %V)(x, y), m(y)) =sUp Sy%? T[(u,v)(x’ y) = Mu(A).

For A={x}, we recover (10), which thus proves to be a particular case of
(7). Q.E.D.

The analogy between conditional possibilities and conditional probabili-
ties was developed by Nguyen (1977b), who introduced the notion of a
“normalized” conditional possibility distribution. Denote such a distribu-
tion by 7 (X \ y). (X ] y) is assumed to be expressed as

7 (x| y) =7, (% Y) - alm ), m))

where a(-, ) is a normalization functiona is determined from two
requirements:

() =(x[y) €O, 1;
(i) min(m,(x), m(y)) - a7, (x), 7(Y)) = 7,(X).

(i) means that whem (x y) is separable, the normalized conditional
possibility distribution equals the projection(x). This situation is similar
to that of a conditional probabllltP(E\ F), WhICh equalsP(E) if E and F
are independentP(E N F) = P(E)P(F)). Hence the notion of noninter-
activity for possibilities may play the same role as independence for
probabilities.

(i) and (ii) lead to the expression

(12)
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Nguyen [7] showed that

m(X) = supmin(a(x| y), m(y)).

Moreover, we can state this equality together with (10) for possibility
measures:

Mu(A) =supmin{[. (A, y). 74(y)

= Sljp min(ﬂ(u, v)(A| y)’ T(,(y))

wherell(A|y) = sup_,m(x| y).
This equality is similar toP(E) = EYEYP(E |y)p(y) (Y finite) in prob-
ability theory.
Lastly, formula (8) can be written for possibilities:
VA e P(X), VBeE 2(Y)

/J./BII(U] v)(A’ y) ° Hv() - /J./Al](u, v)(X’ B) ° Hu() (13)

Proof:

A oM (A Y) = 100 =s0p min{m,(y), M, (A ¥))

=Sup mi n(ITU (y)SXUDE Un u)(X’ y))

=SUp min(ﬂu (Y), T, U)(X’ y))

y[B

=sup 71, u)(X’ Y)= N o (A B)

X

because w (y) = suva-r(u’v)(x, y) = W(u,v)(x’ y), Vy. Obviously, the right-
hand side of (13) gives the same result. Q.E.D.

(13) can be viewed as a Bayes theorem for possibililigé,;)(A, B) is
similar toP(A N B) in probabilities.

Other considerations on conditional possibility distributions have been
recently developed by Hisdal (1978).

C. FUZZY EVENTS

Events are often ill defined. The question of the probability, of the
possibility of such fuzzy events may arise. For instance, What is the
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probability/possibility of a warm day tomorrow? The extension of proba-
bility theory in order to deal with fuzzy events was introduced by Zadeh
(1968), who considered nonfuzzy probabilities of fuzzy events. However,
fuzzy probabilities of the same fuzzy events can also be defined. Both
points of view can also be applied to possibility calculus.

a. Nonfuzzy Probability/Possibility of a Fuzzy Event

We shall assume for simplicity that is the Euclidiann-spaceR". Let %
be a Borel field inR" and P a probability measure o#. A fuzzy event in
R" is a fuzzy setA on R" whose membership function is measurable. The
probability of a fuzzy everi is defined by the Lebesgue-Stielbes integral

P(A) = [, ()dP. (14)

Note that whenA is nonfuzzy, we obtain the usual probability Af The
probability of a fuzzy event is the expectation of its membership function.

P(A) evaluates the degree with which the sample®etas the fuzzy
property A. The corresponding experiment is a random selection of ele-
mentsx. more or less belonging tA. At each trial a membership value
. (X) is provided P(A) is

m

ZIJA(&)

fim B —
where m is the number of trials. Thus?(A) can be interpreted as a
proportion of elements @&" “belonging” toA.

It is easy to see thafA, Be P(R") (u,, n, measurable), ifA C B, then
P(A) < P(B),P(A+B)=P(A)+P(B)-P(A-B),andP(AU B) =
P(A) + P(B) - A N B).

Two fuzzy eventsA and B are independentff P(A - B) = P(A)P(B). An
immediate consequence of the above definition is the following. Let
X =R™ X,= R, and P be the product measufe X P, whereP, and P,
are probability measures oX, and X,, respectively. LetA and A, be
events inX and X, characterized by the membership functiqng(x{ X?)
= py (X)) and p, (X, ¥) = w, (X*) respectively. ThenA, and A, are inde-
pendent events. This would not be true if independence were defined in
terms ofP(A N B) rather tharP(A - B (Zadeh, 1968).

The conditional probability of a fuzzy eveht given B is then defined
by P(A\ B)=P(A- B)/P(B) provided P(B) >0. Note that if A and B
are independent, thé(A | B) = P(A), as in the nonfuzzy case.
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The notions of mean, variance, and entropy of fuzzy events can be
defined in a similar way (for instance, the mean is

ﬁknxu;\(x)dP

(Zadeh, 1968)).
The possibility of a fuzzy evermA in a universe X with respect to the
possibility measurél can be defined analogously as

1@ =4 10 110) =4 ) - T1().

According to (11),1I(A) = supg_, min(u,(x), m(x)) (Zadeh, 1978) where
m(X) is the possibility distribution associated willh The possibility of a
fuzzy event is thus the degree of consistency of this fuzzy event with a
possibility distribution. As in the nonfuzzy case, we haMéA U B)
= max(I(A), I1(B)) andA C B impliesII(A) < I1(B).

Let X and Y be two universesA, B be two fuzzy events iX, Y, and
(X, y) a possibility distribution oveX X Y. Two fuzzy setsA and B will
be said to beoninteractivaff

I1(A N B) = min([I(A), I1(B)).
In particular, whenr(x, y) is separable, i.e.,

(X, y) = min(@(x), m(Y));

and if A is a fuzzy set orX and B on Y, then considering the cylindrical
extensiong(A), cB) we have

II(c(A) N ¢(B)) = min([L(A), 11(B)).
Proof:

1(c(A) Ne(B)) = sup min{u,(x), po(y), 7(x, ¥)
=sp min(min(uA(x), 15.(x)), min(pg(y), nY(y)))
= mingsup(pa(x). (X)), sup(ps(y). 7.(¥))g

andA andB are noninteractive. Q.E.D.
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Lastly, there holds Bayes'’s theorem for possibilities of fuzzy events:

1A B) =4 A y) < T1.() =4 1T(x, B) = IT(.)
whereA € #(X), B & P(Y).

M(A y)=sup min(p,(x), m(x. y)).

M(x B)=sup min(ug(y), 7(x, y))

I, (resp.Il) is the possibility measure associated to the projectior¥ on
(resp. onX) of the (separable or not) distributiat(x, y):

M(A B)=sup min(u,(x), p(y). mx, ¥)).

yy

The proof is similar to that of (13).

b. Fuzzy Probability/Fuzzy Possibility of a Fuzzy Event

We give here only basic definitions and a rationale. Instead of evaluat-
ing the proportion of elements of a sample space “belonging” to a fuzzy set
C, we may calculate the possibility level that there exists a nonfuzzy event
matching C, which occurs with a given probability. In the following we
assumeX=R. Let p(x) be a probability distribution andA(B) a fuzzy
interval bounded by two nonoverlapping convex normalized fuzzy sets on
R. According to 4.C.b., the fuzzy probability of the fuzzy evextbélongs
to the fuzzy intervalA, B)” is FP[(A, B)] (Dubois and Prade, 1978)

FP{(A. B))= [p(x)dx=P(E) & P(A)

When A and B are ordinary numbers, the above formula becomes the
usual definition of probability thak € [A, B]. Here, the result is a fuzzy
set of [0, 1] which can be interpreted as a linguistic probability (Zadeh,
1975).

Analogously, fuzzy possibilities of fuzzy events can be defined through
the extension principle:IH(A, B)] has membership function

'an[(A,B)](Z): qu? min(IJA(X)! “B(y)),
z=max7(t)

txy]

which is a particular case of Sugeno’s integral extended by the extension
principle. 7= is a possibility distribution oveiR. This formula can be
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simplified according to the respective positions mf(assumed normalized
and convex) andX( B).

N.B.: The existence of two points of view on “fuzzification,” yielding
either nonfuzzy results or fuzzy ones, seems to be very general. Other
examples are the power of a fuzzy set and fuzzy cardinality (1.D.),
extremum of a function on a fuzzy domain (4.B.), fuzzy or nonfuzzy
integration over a fuzzy interval (4.C.b.).

D. FUZZY DISTRIBUTIONS

a. Probabilities

A probability distribution cannot always be precisely identified. Thus,
probability and possibility values are often rather subjectively assessed. A
linguistic probability will be modeled by a fuzzy set on [0,1] (Zadeh, 1975).

Let X={x,..., Xx). To eachx is assigned a linguistic probabilit§1i
€ #([0,1]) and a variableP({x}) restricted byp. The linguistic probabili-
ties f)i, i=1,n, are B-interactive (3.A.b) because of the normalization

constraint on the possible nonfuzzy values R§fx}) (f)i is viewed as
inducing a possibility distribution on the values B{{x})). The fuzzy
restriction associated withP({x}),...,P({x}) is R(P{x}),...,
P{x}) = R(P({x})) X-- X R(P{x}) NQ WhereNQ is the nonfuzzy
relationQ(u,, . . .,u) = 1iff 27 u =1, andR(P({x})) = p,.

Now consider the interactive sum of the p (i =1,n). Its membership
function is given by

Ho(2)= _sup minpg(u)

Z=W+---+Up
1=U1+‘ - +Up

Obviously, u (2 =0 for z#1; and n (1) evaluates the mutual consistency
of the |5i with respect to the normalization constraint. We shall admit that
an n-tuple (,...,p) of linguistic probabilities is totally consistent
whenevery (1) =1, i.e.,3(u, ...,u) €0, 1]" such thatu,,(u) =1, Vi and
Shu=1. '

The fuzzy probability of a subset of say X' ={x, . . . ,x}, k=n,is
a fuzzy interactive sura_of thep, (i = 1,k), such that

Ho(2)= _sup minpg(u) = min(1,P® - - -®R).

z=up+---+ug =L k
W+ +usl

The fuzzy expectation of a random variabletaking values in a set
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{a, . .. ,a} CR with linguistic probabilitiesf)i, i=1,n is the interactive
sumE(V) such that
HE(V)(Z) = Sup .minllﬁ (ui )

au+L +apup=zi=Ln
w+L up=1

The calculation ofu.,, may be tricky whem>2. It is equivalent to
the mathematical programming problem: maxindzender the constraints

n n

Hy(u)z6, i=1n Za,.ui:z; Zui:l

The casen=2 was already solved in Section 3.A.b. When theare
membership values that characterize a fuzzy ewenEYV) is the linguistic
probability of the fuzzy evert in the sense of Zadeh (1975).

When X =R, the probability distribution becomes a fuzzy functiprof
a nonfuzzy real variable. Two points of view exist because we may choose
a fuzzy bunch or a fuzzifying function (see 4.A.c).plfis a fuzzy bunch
p = fa/ p,., it will be a fuzzy set of probability distributions, i.e.,

IRpu(x)dx: 1 Vo

Note that this point of view would not be, in the discrete case, equivalent
to that of linguistic probabilities. The corresponding approach would be a
set of n-tuples {p },_,, with YL p,=1 Va€[O0, 1], wherea is a
membership value for the-tuple. A drawback of this approach is the
possible existence of ambiguities in the value of the membership function
of the probability of some fuzzy events. (It is possible to haveap

=3 _,ap, for a#za' and somel C (1,. . .,n): then we may use sup(

a') to solve the ambiguity; see 4.A30. The point of view equivalent to
linguistic probabilities is the use of a fuzzifying functiem> p(X). To be

sure thatp is in some sense a “fuzzified” probability distribution, we may
impose its I-level curvep, (4.C.ax) to be such thatf, p, x)dx=1. The
probability measure of an intervak,[b] will be min(l, [,p(x)dX) (see
4.C.ABy).

b. Possibilities

Let X be a finite_set. A fuzzy possibility value(x) can be assigned to
eachx in X. m(xX) € #([0, 1]). Such a fuzzy possibility distribution will be

said to be normalized ifﬁ?fx %(x)-f](X) is such thatu (1) = 1.
This happens Whenevei'lxex such thatu. (1) =1. Hence, the fuzzy
possibilities m(x) are not-interactive. The fuzzy possibility of a nonfuzzy

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



I.5. Fuzzy Measures 146

event (setA of X will be
TI(A) = rf@\(%(x).

If Alis fuzzy,IT(A) = max, _, min(7(x), w,(x)) in the sense of C.a.

When X is nonfinite, we need an extended supp,sto carry out the
same approach.

Obviously fuzzy possibilities may model linguistic possibility values; this
together with linguistic probabilities will be studied from a logical or
semantic point of view further on.
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part 11

FUZZY MODELS AND
FORMAL STRUCTURES

It seems that a lot of researchers have focused their attention on fuzzy
formal structures, i.e., models of static, deductive, algorithmic, and dy-
namic fuzzy systems. Most of these are extensions of already existing
nonfuzzy structures. However, a few depart from classical approaches.

Chapter 1 deals principally with fuzzy logic, i.e., fuzzy switching logic,
multivalent logics as underlying fuzzy set theory, and approximate reason-
ing.

Chapter 2 is devoted to fuzzy dynamical systems. Our constant concern
is to keep clear the semantic interpretation of the formal developments.

Chapter 3 first surveys the past and current research on fuzzy formal
languages and grammars and their relations to automata. Then, two points
of view on fuzzy algorithms are presented.

Chapter 4 reflects the first attempts to apply fuzzy set theory to opera-
tions research models.
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Chapter 1

MULTIVALENT AND
FUZZY LOGICS

This chapter is devoted to semantical aspects of non-Boolean logics in
correlation with fuzzy set theory. The first section gives an account of
fuzzy switching logic focusing on the fuzzy version of a well-known
problem for Boolean functions, that of their canonical and minimal
representations in terms of conjunction and disjunction. Section B provides
a systematic presentation of multivalent logics as underlying fuzzy set
theory. Most of these were developed in the 1920s and 1930s without any
set-theoretic interpretation. Applications of fuzzy set theory to modal logic
are briefly sketched in Section C. However, the link between possibility
theory and modal logic has not been made completely clear yet. We deal
then with the extension of multivalent logics to fuzzy truth values. Lastly,
Zadeh's recent theory of approximate reasoning is emphasized. It contrasts
with multivalent and fuzzy-valued logics in that a proposition is now
viewed as associated with a possibility distribution that fuzzily restricts the
values of the variables involved in the proposition. Although this approach
is very new, it already appears to be a promising methodology for model-
ing human reasoning.

A. FUZzZY SWITCHING LOGIC

One of the major fields of application of Boolean logic is the theory of
electronic switching circuits. Such circuits are modeled by Boolean expres-
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sions which may involve only negation, disjunction, and conjunction
connectives. The problem of finding a minimal representation for these
expressions has been considered at length in the literature (McCluskey, NF
1965). We are concerned here with the representation and minimization of
fuzzy logical expressions. Many works have already been published on this
very specific topic as shown by the extensive bibliography at the end of the
chapter. For a more detailed presentation, see Lee and Kandel (1978).

a. Fuzzy Expressions

Let x, X, X, be variables taking their values in [0, 1]. The following
notations are adopted:x=1-x (negation); x, \V X, =max(, X,) (dis-
junction);x_ /\ x, = min(x, X,) (conjunction).

Recall that ({0, 1},V, A, 71,) is a Boolean lattice (see 1l.1.B.d), whereas
([o, 1], V, A\, 1) is only a pseudocomplemented distributive lattice (see
[1.L1.B.d). In particular,¥V x €]0, 1[, x A ( 1x) # 0,x V ("1x) # |, which
contrasts with the Boolean case.

A fuzzy expressiors a function from [0, I]to [O, 1] defined by the
following rules only:

(i) 0,1, and variables, i =1,n, are fuzzy expressions;
(i) if f is afuzzy expression, thenf is a fuzzy expression;
(iii) if fandg are fuzzy expressions, then\ g andf \/ g are too.

Note that all Boolean expressions, once their domain is extended to
[0, 1], can be fuzzy expressions. This is because all Boolean expressions
can be expressed only in terms df /\, V. However, this is not the only
way to extend Boolean expressions; operators different from max and min
can be used, as will be seen in B.

The fact that we consider here only fuzzy expressions is what makes this
section rather specific from a logical point of view. Its interest lies in its
practical attractiveness for switching-circuit specialists.

A literal is a variablex or its negation 1 x. A phraseis a conjunction of
literals. A disjunction of literals is called @ause.Owing to the mutual
distributivity of \V and /\, any fuzzy expression can be transformed into a
disjunction of phrases or a conjunction of clauses.

1 72

b. Some Properties of Fuzzy Expressions

a. Monotonicity with Respect to Ambiguity (Mukaidono, 1975a)

The partial ordering relation that describes ambiguityh isuch that:
va,a €[0, 1], aAajlffelther > Sasaor 5 =a =a. We have Aa,
Va e[O 1]. Moreovera e] , 1] and ee [0, % [cannot be compared_ Aaq
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means: § is more ambiguous tham.” A is extended to [0, 1jas follows:

VYa=(@,,...,8 €[0,1], Vb=(0,,... ,b)€E [0, 1],
aAb iff Vi=1,n, aAbh.

Theorem (Mukaidono, 1975a) Lef be a fuzzy expression mapping
[0, 1]" - [0, 1]; if a A b thenf(a)A f(b).

Proof. The results trivially holds for 0, 1, and any variable. Now it is
easy to show that if it holds fdrand g, fuzzy expressions, then it also
holds for 1 f, f Ag,f Vg. Q.E.D.

As a consequenceb such thab A g if f(a) = ; , thenf(b) = ;. Replac-
ing terms ina by others that are closer t§ does not chang§a) in that
case. Moreover, ii{a) = w, w € {0, 1}, thenf(b) = w, Vb such that A b.

B. Canonical Disjunctive Form of a Fuzzy Expression (Davio and
Thayse, 1973)

Since excluded-middle laws no longer hold on ([0,4],V, 71), there is
no unique way to represent a fuzzy expression as a disjunction of phrases.
There are two kinds of phrases:

simple phrases in which a variable appears at most once, as a literal;
contradictory phrases which conjunctions such as)\ ("1 x) appear.

If P is a contradictory phrase, théfa) < % V a [0, 1]. Hence, since
x V (1x)= 2,
PAXYV (Ix)=P=[PAX]V[PA(T1x)].

The latter expression anid are two forms of the same fuzzy expression.
The above manipulation clearly indicates that any contradictory phrase
can be expanded into a disjunction of contradictory phrases which contain
each variable at least once. Such phrases are cahegpleted.

The canonical disjunctive form of a fuzzy expression is a disjunction of
simple or completed contradictory phrases. The proof of the uniqueness of
this form can be found in Mukaidono (1975a). An algorithm for obtaining
the canonical disjunctive form is (Davio and Thayse, 1973):

expand the expression into a fuzzy disjunctive form;

expand the contradictory phrases into a disjunction of completed con-
tradictory phrases;

suppress redundant phrases using absorption laws (see 11.1.B.d).

N.B.: Dual results on a canonical conjunctive form involving only
simple and completed “tautological” clauses obviously hold.
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v. Fuzzy Expressions and Ternary Logic

The number of fuzzy expressions involvingvariables is finite. This was
proved by Preparata and Yeh (1972) who gave the following theorem, here
stated in the terminology of Mukaidono (1975a): If fuzzy expressioasd
g satisfyf(a) = g(a) Va € {0, = , 1}", thenf(a) = g(a) Va € [0, 1.

) 2 )

Proof: Denote byx* either x or "Ix. The domain off can be
partitioned into subdomains characterized by the constraﬂmtxf < - -
< )(Es % where {,, . . . i) is a permutation of (1, . . .n). Clearly, for a
given permutation there are"2wvays of choosing an n-tuple of literals, so
that the number of subdomainsns- 2". Now consider a given subdomain.
The value of a phrase is that of a unique literal over the whole subdomain.
Viewing f as a disjunction of phrases, the valuef @ also that of a unique
literal over this subdomain, say either or "1x. Each subdomain is a
convex polyhedron whose vertices atef, _,  such that

v° isdefined by x=0, i=1,n;

vk is defined by x;;:o, j=1,n-k
%= 3, Vi=n-k+1,n (k> 0);

v" isdefinedby x=2, i=1,n.

Any elementa of the subdomain is a convex combination of the say
a= Z _,a.,u". Now on the subdomain assufr@) = a €[0, 1], then

f(a)=a :i:ZaiUIi :iiai f(u‘)

(with 0" = (U}, . . .u}, .. .0})). If f(a) = Tla, the same result holds because

> ., @=1QED.

This proof was given by Preparata and Yeh (1972). The valuefaf
anylelement of [0, 1]is thus determined by its values for+ 1 elements of
{0, =, 1}

I<2aufmann (1975) suggested the use of the subdomain defined above to
check the equality of two fuzzy expressions. However, using the above
result, this checking is easier by enumeration of elements {in @oj.

N.B.: Some authors have tried to evaluate the number of fuzzy expres-
sions involvingn variables. Until now, only upper and lower bounds—and
not very good ones—have been found (see Kandel, 1974b; Kaufmann,

1975; Kameda and Sadeh, 1977).
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c. Minimization of Fuzzy Expressions

The minimization of Boolean expressions has already been completely
discussed in the literature. It usually proceeds in two steps. First, obtain a
set of prime implicants; second, select the minimal set of implicants whose
disjunction is equal to the Boolean expression. Because of the lack of
excluded-middle laws, implicants of fuzzy expressions may be contradic-
tory phrases. Thus, Boolean methods are no longer valid for determining
prime implicants. However, the minimal form is still the disjunction of a
minimal subset of prime implicants, which are said to be essential.

Definitions  An implicant P of a fuzzy expression is a phrase such that
VY ae [0, 1]"P(a) =< f (a), which is denote@ [J f.

N.B.: Actually, 0 is not a natural implication connective for fuzzy
switching logic, which is nothing but K-SEQ (see B).

A prime implicant Pof a fuzzy expressiohis an implicant such that for
any phrasé® ', if PO P’ andP '] f, thenP =P’ or P' = f. Hence a prime
implicant is a “greatest,” implicant of.

First algorithms for generating all prime implicants were proposed by
Lee and Chang (1971) and by Siy and Chen (1972). These methods were
criticized (Kandel, 1973a; Negoita and Ralescu, 1976). Then, Kandel
(1973b) presented a method based on the notion of fuzzy consensus, which
was extended (Kandel, 1974c) to incompletely specified fuzzy expressions.
Further critiques and refinements of this method can be found in Kandel
(1973c, 1976a, 1977), Mukaidono (1975a), and Lee (1977). We follow here
Mukaidono (1975a).

Let P andP' be phrases over the set of variableg &, . . . ,x}. A

*h

fuzzy consensusd P andP ' is a contradictory phrase built as follows:
findx with P=x; ANQ P'=(T1x;)/A Q" whereQ, Q' do not contain
the variablex;

P=QANQ"Iff QA Q'"is a contradictory phrase;
OP=QANAQ"AX/ (T1x)iff Q A Q"is asimple phrase,

(x; means eithex or 71x .)

Theorem (Mukaidono, 1975a) A disjunctive form of a fuzzy expres-
sionf contains all its prime implicants iff:

(i)  thereis no phrase that is an implicant of another phrdse of
(i)  the fuzzy consensuses of any two phrases either do not exist or are
implicants of at least one phrasé. of
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Hence, there can be developed an algorithm that works on a disjunctive
form, calculates and adds all the fuzzy consensuses of pairs of phrases until
the conditions of the above theorem are satisfied; the set of all prime
implicants off is thus generated.

Another kind of method serving the same purpose was initiated by
Preparata and Yeh (1972); it is based on the distinction between simple
phrases and contradictory phrases of the canonical disjunctive form of a
fuzzy expression. In particular, simple phrases are prime implicants. More
about this approach can be found in Davio and Thayse (1973), Mukaidono
(1975b), and Negoita and Ralescu (1975). Another approach is that of
Benlahcenet al. (1977); this uses decomposition into subdomains as in
by). Lastly, Neff and Kandel (1977) have proposed a very fast algorithm
that generates at onaesssentialprime implicants, i.e., those prime impli-
cants whose disjunction realizes a minimal disjunctive form for the fuzzy
expression under consideration.

N.B.: 1. Boolean Karnaugh maps have also been extended to deal
with fuzzy expressions (see Malvache and Willaeys, 1974; Kandel, 1976b;
Schwede and Kandel, 1977).

N.B.: 2. Dually, fuzzy implicates could be sought to build a minimal
conjunctive form for a fuzzy expression (see Davio and Thayse, 1973;
Negoita and Ralescu, 1975).

d. Analysis and Synthesis of Fuzzy Expressions

These problems were investigated by Marinos (1969). To analyze a fuzzy
expressionf is to find a range for each of its variables such thae
[a, B [C [0, 1], wherex = (X, , . . . ,x ). fis assumed to be in conjunctive or
disjunctive form. For both forms, Marinos proposed automatic rules for
stating the conditions that the variables must satisfy. These conditions can
be separated into two dual groups, one of which corresponfi§xio= a,
the other td (x) <.

The converse problem, i.e., fifrdfrom knowledge of the ranges of the
variables and of d, ([, is called synthesis. The structure of the fuzzy
expression crucially depends on that of the groups of conditions. Marinos
gives a method for simulating a fuzzy expression using analogue devices. A
detailed presentation of this method is provided in Negoita and Ralescu
(1975) and Kaufmann’'s (1975) book, in which numerous examples are
discussed.

A similar attempt is that of Srini (1975) who realized fuzzy expressions
by means of networks of electronic binary switching devices. He used
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values between 0 and 1 in the form

:Zp,z-i, p€ {0, 1},

and then approximated ai p2". The p, are inputs and outputs of the
binary devices.

e. Detection of Hazards

Let f, be a Boolean expression. Consider the I5@t) of all fuzzy
expressiond compatible withf,, i.e., such thav ae {0, 1}", f.(a) = f(a)
Davio and Thayse pointed out th&(f) was a lattice for\/, /\ (see
Kameda and Sadeh, 1977), more specifically a sublattice of the lattice of
fuzzy expressions. This sublattice is, of course, distributive. The following
result holds (Kameda and Sadeh, 1977).

Let f and f, be the canonical conjunctive and disjunctive forfps
thenf and f are the minimal and maximal elements Fif;), respec-
tively.

Mukaidono (1975b) showed th#i(f) was also a complete distributive
lattice in the sense of the ambiguity relatidn(see ba). The minimal
element is the disjunction of all prime implicants tgf The maximal
element isf such thatf € F(f;) andf(a) = 2 >, Vae {0, 3, 1}"- {0, 1}~
Davio and Thayse (1973) gave a binary parametrlc representat|6(1f Df
which led to the design of a logic module capable of realizing any fuzzy
expression compatible with a given Boolean expression. They also hinted
that F(f;) could model the possible transient behavior of a switching
circuit realizingf,..

Kandel (1974a), then Hughes and Kandel (1977) indeed used fuzzy
switching logic to detect hazard in combinatorial switching circuits. For-
merly, the mathematical tool for hazard detection was ternary logic (see,
for instance, Mukaidono (1972) and Kandel (1974a) for a bibliography).

Two binary vectoras = @, , . . . ,a) andb = (b, , . .., ) in {0, 1}" are
said to be adjacent ifflj € {1, . . . , n} such thatb = (a, . . ., a, la,
A,y ). The device under study is assumed to haveputs and one
output whose value i§(a) when the inputs are,, . . . ,a. fis a fuzzy

expression. We consider the case when an inppswitches froma. to
“la € {0, 1}. A transient value of ist€ ]0, [[and t = §, . . ., z,a_l,t,
a+l, . . ., &). Assume the switching of inpyitdoes not modify the steady
state of the output, i.ef(a) = f(b). tis then called a hazard iff(t) #f (a)
=f (b), i.e., the output is not steady during the transient phasé (alf

=f(b)=1, tis said a |-hazard; if(a)=f (b) =0, it is said a 0-hazard.
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Now f (X) can be written
f(x) = (A f.x))V((1 X)) A\ f.(x)) V([ xj] AX AT (x1)) V£, (x])
(1)

with xJ = x, ... DTS FUTEPE x) andf, f, f, f, fuzzy expressions
of n— 1 variables.

The following theorems, due to Kandel (1973c), give conditions on the
steady input states for the output to be disturbed during the switching of
inputj:

tis a 1- hazard iff f(@a)=f(@)=1 and f(a’)=0.
tisa 0- hazard iff f(a)=f@)="f@)=0 andf(al)=1

Proof: Assumetisa 1-hazarda = 1.
Initial state:a = 1, hencef (al) \VV f(al) = 1.
Final statea, = 0, hencef,(a’) V f(al)=1
Transition state: by hypothesiqt)€]0,1[. Hence, from (1)f(a’) # 1,
e., f(a’)= 0, which yields the result. For 0-hazards the proof is very
similar and omitted. The “if ” parts of the theorems are obvious. Q.E.D.

Lastly, Hughes and Kandel (1977) generalized this approach to detect
hazards when several inputs switch simultaneously.

B. MULTIVALENT LOGICS

_Three fuzzy set theories were presented in Chapter 1 of Part Il
(2(X),U,N,), ((X),+,,7), and (?(X),Y,M,7). Multivalent logics,
which are bases for these set theories and some others, are the topic of this
section. We consider here, from a semantic point of view, only indenumer-
ably valued logics whose truth space is the real interval [0, 1]. We are not
concerned here with the *“fuzzification” of binary and finite multival-
ued logical calculi in the sense of Pinkava (1976) (i.e., to get a functionally
complete logical calculus with “generalized” connectives). The exposition
uses Piaget’s group of transformations, which is first reviewed. A general
survey of multivalued logics can be found in Rescher (NF 1969).

a. Piaget's Group

Let @ be a propositional variable containing elementary propositions
P, Q, R . . joined with logical connectivesb is a wff symbolically written
d=f(P,QR,..).
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Four transformations can be defineddn

(1) identity: [(®P) = P;

(2) negation: N®) = " 1d;

(3) reciprocity: R(®@) =f( 1P, 1Q, 1R, .. );
(4) correlativity: C(®) = "1 R(®);

where 1 denotes the unary connective for negation of a proposition.
These transformations, for a function compositional law, have a Klein
group structure whose table is giverFig. 1

I N R C

I I N R C

N N I C R

R R C I N

C C R N I
Figure 1

Piaget showed that, for children, learning of human reasoning demands
a perception of these transformations, that is, understanding the difference
between sentences such as
® ="“Good poets are bad husbands.”
N(®) =“Good poets are not bad husbands.”
R(®) = “Bad poets are good husbands.”
C(®) = “Bad poets are not good husbands.”

The mathematical formalization of this group of transformations can be
found for instance in “Piaget’s theory of development: The main stages”
by Hermine Sinclair (in Murray, NF 1972, pp. 68-78).

Let us make explicit the link between these transformations and binary

P Q|PQ PQ QP P RQ Q RQ BPDQ

1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0
P Q PD PexQ 1Q OQ»P P P-»Q PQ PQ

1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0

Figure 2
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connectives in the case of the binary propositional calculus. The_truth

tables of the 16 standard binary connectives are given in Fig. 2, where

denotes tautology,V disjunction, — implication, « equivalence,/\

conjunction,Jis Sheffer’s connective, ex denotes exclusive disjunctiors

Peirce’s connective and ° denotes contradictien.has no common name.
These 16 connectives are exchanged thrdugh N, and C as shown in

Fig. 3.

b. Multivalent Logics Associated with Fuzzy Set Theories

The semantic truth functions of the three multivalent logics underlying
the three fuzzy set theorieg (X), U, N, 0), (2(X), YU, M, ), (P(X), +,,)
are now given. Let us denote hy(P) the truth value of a propositioR,
v (P) €0, 1].

In the three cases, the valuation of the negatiow(isP) = 1- v (P).
Hence,w (1T 1P) =u (P).

In the three cases, the implication connectiveis always defined as
V(P - Q) =uv( TPV Q) and the equivalence as(P - Q)=v[(P - Q)
AN (Q - P); ex,J {, and~ are expressed as the negation-of, /\, \/,
and —, respectively; the tautology and the contradiction are defined
respectively as:

v(P)=uPV 71 P); v(P)=u(PAT P).
more generally,
u(PQ)=u((PVTIP)V@QVIQ));
v(PQ)=U(PVIP)AQV Q).
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These three multivalent logics are extensions of the classical two-valued
logic.

a. Logic Associated with (@’(X), U,n,”)

The disjunction and the conjunction underlying and N(see 11.1.A)
are respectively

v(PVQ)=maxp (P)u(Q), uv(PAQ=minu(P), v(Q)

It is clear that\/ and /\ are commutative, associative, idempotent,
distributive over one another, and do not satisfy the excluded-middle laws
in the sense that (P VV "1P) # 1 andu (P /\ "1 P) # O; moreover, we have
v(PVPAQ)=uP); UvPAPVQ)=u(P

(absorption);
vCIPAQ)=v(TPVTIQ); v(T1(PVQ)=v(TPATIQ
(DeMorgan);

V[PV QAPY IQI=v[PAQA(TPA Q)
(equivalence);

VI(TPAQV PATQI=u[(PVQA(IPV Q)
(exclusive disjunction).

Figure 4 gives the valuation of the 16 connectives that have been
introduced withu (P) =p andu (Q) =q.

P Q PQ PVQ Q-P P

p gl max(p,1-p,q, 1-q maxf, q) max(, 1-q) p

P Q P-Q Q P-Q PAQ

p q| max(1-p, 9 g min(max(lI-p, g maxp, 1-Qq)) min(p, 9

P Q PLQ PexQ 1Q QP

p q|max(l-p, 1-qg) max(min(l-p,09 min(p,1-q) 1-q min{p, 1-0q)

PQ|l P P>Q PQ PQ

p ql 1-p min(1-p,0 minp, 1-p,1-0) min(l-p,g1-9)
Figure 4
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Valuations for quantifiers are straightforwardly defined (coherently with
/\ andV)as

u(VxP()) = inf (u(P(x))), U(EXP(x)) = sup (u(P(x)))
wherex denotes an element of the universe of discourse.

This multivalent logic is usually called K-standard sequence logic(K-
SEQ), first developed by Dienes. This logic is compatible with Piaget’s
group of transformations in the sense of Fig. 3.

Moreover, we have the following properties:

for implication,u[P - (Q - R] = u[(P/\ Q) - R];
for tautology and contradiction,

VP - P)=u(P), v(P-P)=u(P):
VP - P)=u(P): u(P < P)=u(P);

V(P - P)=u(P);, u(P- P)=u(1P);
V(P o IP)=u(P),

for Sheffer’'s and Peirce’s connectives,

v(1P) =v(PP); v(P- Q) =vu(PUQ));
v(P)=u (P OP OP)).

Sheffer’s connective alone (or Peirce’s) is sufficient to build every binary
and unary connective in standard binary logic. This result remains valid
for the “extended ” connectives of K-SEQ.

The implication - is clearly related to the weak set inclusion introduced
in IL.ILE.c.a, and ex to the symmetrical differente(ll.1.B.f).

Gaines (1976b) has shown that this multivalued logic was nothing but
the fuzzification (in the sense of the extension principle) of standard
propositional calculus. Each propositiéhis associated with a normalized
fuzzy set on {0, 1}, i.e. a paird,(0), Hp(1)) where H,(0) may be interpreted
as a degree of falsity an#él,(1) as a degree of truth. Since the logical
connectives of the standard propositional calculus are truth functional, i.e.,
may be represented as functions, they can be fuzzified. DefinifR)
= - u,(0) + ,H,(1))/2 € [0, 1], Gaines gets the multivalued logic de-
scribed above. For proofs, the reader is referred to Gaines (1976a, b).
Lastly, this multivalued logic is basically trivalent in the sense that when
two wifs, built with the above connectives, coincide on go,l}, then they
coincide on [0, 1] (see A.b.g).

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



lI.1. Multivalent and Fuzzy Logics 163

B. Logic Associated with (@’(X),U,ﬂ,‘)

The disjunction and the conjunction underlyingand M(see 11.1.B.e)
are respectively

v (PVY Q) =min(lp (P) + v (Q)),
v (PAQ)=max(0y (P) +v(Q)-1).

It is clear thatV and A are commutative, associative, but are not
idempotent and not distributive over one another; they satisfy

VCTPAQ)=v( TPV T1Q);
V(CT(PVYQ) =uv(TPATTQ) (De Morgan)
v(PVY 1P)=1; V(PATTP)=0 (excluded middle laws).

Figure 5 gives the valuation of the 16 connectives that have been
introduced (u(P)=p; uv(Q) = @). (To avoid confusion,V, -, -, A, [

ex/~>, |, are denoted in this logi¢, 0, = A, ||, €X ~,11.)
P Q PQ PVQ QU P P
pq 1 min(1p +q) min(1p+1-0 p
PQ PO Q Q P- Q PAQ
pdg [min(,1-p+q g 1- @-qg max(0p+q-1)
PQ| PIQ P&YQ  T1Q Q=P
pag | mnll-p+l1-q) P-aqg 1-q max(0p-q)
P Q P P~Q PL1Q PQ
P q p max(0g - p) max(0, = p-0) 0

Figure 5

This logic is compatible with Piaget’s group of transformations in the
sense of Fig. 3.

Moreover, we have the following properties for tautology and contradic-
tion:

v(PO P)=u(P): v(PO P)=u(P),
v(PO P)=u(P); v(P = P)=u(P);
v (PO P)=u (P); v(PO P)=u(TTP).
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The implicationU is elearly related to the usual inclusion (in the sense
of Zadeh) for fuzzy sets (Il.1.E.aX and~> correspond respectively to
the set operator§/ (symmetrieal difference) and¥+ [ (bounded differ-
ence) introduced in 11.1.B.f. Lastly, we have

UP-Q=uv(CTPY(PAQ)

and
vPO Q=vuv(1PY ((PANQ).

y. Logic Associated with (@’(X), +,°))

The disjunction and the conjunction underlyinrg and - (see 11.1.B.e)
are respectively

u(PyQ) = u(P) + u(Q) - u(P) - L(Q);
u(P & Q) = u(P) - L(Q).

It is clear thaty and & are commutative, associative, but are not
idempotent and not distributive over one another; they satisfy

u( (P& Q)=u( 1Py TQ)

v( 1 (PyQ))=u( 1TP& 1Q) (De Morgan).

Although it is easy to build the valuation of the 16 connectives as in
both preceding logics, we give only some of them for the sake of briefness,

with u(P) = p, U(Q)=q:
implication:u(P=> Q) =1-p + pg

tautology:u( |5) =1-p(-p);
contradiction:u(P) = p(l - p).

Note also we have the hybrid formulas
UP-Q)=u(1PV(P&Q)) and

U[(P=>QAQ=P)]=u[(P&Q)V(1P& Q)

=Vv[(P&Q) = (PyQ]
This logic is compatible with Piaget’s group of transformations in the sense of
Fig. 3. This logic is often called stochastic logic.
Let us examine in what situations & coincides witlor A (or y with
\ or V). First, note that
0<max(0,p+g-1) < pg=< min(p,9

1= min(1,p+q) = p+q- pq= max@,q
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Then it is easy to check that
VP& Q) =v(PAQ),

i.e., pq = min, g iff the truth value ofP or of Q is equal to O or to 1.
v(PyQ) =V (PV Q) holds under the same conditions. And it is the same (ier
&Q)=v(PAQandv(PyQ)=v(PV Q).

Thus, two of three connectives for conjunction (resp. disjunction) coin-
cide iff the truth value oP or of Q is equal to O or to 1. In that case the
three connectives for conjunction (resp. disjunction) coincide.

Remark We have the following inequalities:

vP)+u(Q=vPAQ+V(PVQ=v(PAQ+V(PVQ
=v(P&Q+v(PyQ),

i.e.,vis a valuation (Birkhoff, NF 1948) in the lattice sense for the three logics.

c. Other Multlvalent Logics; Other Implications

Assembling the already introduced semantic truth functions differently,
other multivalent logics may be defined, for instance Lukasiewicz logic.
In Lukasiewicz logic the semantic truth functions for conjunction,
disjunction, and quantifiers are those of K-SEQ (i.e(P /\ Q) =
min(v(P),v(Q));v(PVQ)=max(v(P),v(Q));v(VxP(x))=
inf_ v(P(x); v(OxP(x)) = sup v(P(x)). The implication and the equiva-
lence are those of the logic associated wih(X), U, M, ") (i.e.,v(P O Q)
=min(l, I-u(P) + v(Q)),v(P = Q) = 1- W(P) - v(Q) 0. The negation
is classicallyu("1P) = 1- v (P). This logic is called_ Ly, is the multiva-
lent logic underlying Zadeh’s ordinary fuzzy set tI}1eory, i.e., U for union,

N for intersection, andC for inclusion (see Il.1.B.a and Il.1.E.a). This
Iogic is obviously compatible with Piaget's group of transformations in the
sense of Fig. 3. However, the link between disjunction and implication is
now u(P V Q) = v((PO Q)OI Q). Similarly to the stochastic implication
VIP=Q)=1-v(P)+ v(P&Q), we have herev(PO Q) = 1-v(P)+
v (P /\ Q). Note that we have also(P - Q) =1-v(P)+v(P A Q).

Giles (1976a) has proposed an interpretationLofin terms of risk.
Every chain of reasoning is seen as a dialogue between speakers whose
assertions entail a commitment about their truth.

Other semantic truth functions for implications may be found in the
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literature:
(1)

1 if o(P) < »Q),
u(P - Q) :% other wise.

The associated equivalence is

1. i uP)=1(Q),
u(P ~ Q)= H) other wise.

With the semantic truth functions of K-SEQ for conjunction, disjunction,
negation, and the quantifiers, we get another standard sequence logic,
called R-SEQ (see Maydole, 1975).

(2)

it u(P) < 1Q),

2
u(P -~ Q)= EV(Q) otherwise.

The associated equivalenise

. a it u(P) = Q)
u(P - Q)= min(1(P),{(Q))  otherwise.

The implication _2» sometimes called Brouwerian implication, is nothing

but the operatora introduced in 1l.1.G.a and used by Sanchez, (Ref-
erence from 1.3, 1976) (see I.3.E). With the semantic truth functions of
K-SEQ for conjunction, disjunction and the quantifiers, and the negation

if v(P)=0

a
v(1P)= %) otherwise.

we get the indenumerably valued Gddelian logic (see Maydole, 1975).
3) u(P 3aQ): max(l- u(P),min(u(P),v(Q))). Note that
0P~ Q=max(i-u(P),u(@Q)* (1 PVPAQ)= uP-Q)

This implication was considered by Zadeh (Reference from 111.3, 1973).

(4) v(P 4qQ) =min(l, u(Q)/ v (P)). This implication was introduced
by Goguen (1969). Gaines (1976b) noficed that this implication was closely
related to conditional probability sinag(P - Q) =v (P Q)/ v (P).

In order to compare all the introduced implications it should be noticed
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that the following inequalities hold:

VP, Q,
P Q= uP»Q) =P - Q)= u(P ~Q)= min(u(P), U(Q):
VP, Q, u(P0 Q)= u(P -Q)= u(P -Q)= min(u(P), u(Q)):
VP.Q, u(P-Q)=u(P -0Q)

Thus, the implication corresponding to Zadeh fuzzy set inclusion has the
greatest valuation of the implications introduced.
2 3 4 .
The implications.., ., — not compatible with Piaget’'s group of
transformations in the sense of Fig. 3.
Moreover, Maydole (1975) generates paradoxes for R-SEQ and

: 1 2 :
Godelian logic—which use. and - , respectively.

d. Detachment Operations; Modus Ponens

The modus ponens rule allowd to be inferred fromP andP — Q in
propositional calculus. In multivalent logics the problem is to compute
u(Q) given u(P) and u(P+— Q) where—is any given multivalent
implication. Several authors, especially Goguen (1969), Kling (Reference
from IV.2), LeFaivre (Reference from 1V.2, 1974a), have looked for a
detachment operation * such that

L(P)*u(P— Q) < u(Q),

to have u(Q) as large as possible. Note that the situation is similar to
probabilistic inference wheref(A) = a andP(B [A) = S, thenP(B)

= af3 sinceP(B) = P(B|APA)+ PB| 1A P (TTA).

For u(P— Q)= u(P- Q)= max(l- u(P), u(Q)), * can be the min
operation since we have, if min(P), v(P - Q))) > 0.5,

min(u(P),u(P - Q)) = v(Q) = max(u(P), u(P - Q)).

More precisely, ifo(P)=a and v(P - Q) = B with a + B > 1, then
v(Q)= B. In particular, if u(P)>; and u(P - Q)=3;, then v(Q) = 3;
but if u(P)=; instead of u(P)>;, then uv(Q) is indeterminate. The
validity of a chain of implications- when * = min is not less than the
validity of the least valid element in the chairii;,]] is called the desig-
nated set of K-SEQ.

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



lI.1. Multivalent and Fuzzy Logics 168

Moreover, every axiom or theorem in standard propositional calculus
has a truth value greater than or equal%toNhen we use the semantic
truth functions of K-SEQ. Reciprocally, if a wif has always a truth value
greater or equal to% in K-SEQ, then it is a theorem in standard
propositional calculus.

Proof: Let ® be a theorem. IP,Q, R, . . . are elementary propositions
involved in ®, then Yu(P), u(Q), v(R), . . . € {0,1},u(®)) = 1. Let us as-
sume Up*,g*, r*, . . . such thatu(®)) = f(p*, g*t*, .. .) <%. f can be

stated as a conjunction of disjunctions (i.e., of clauses). From the assump-
tion, one of the clauses is strictly smaller th%mThus if p is involved in

this clause, 1- p is not and conversely. We set to O every elementary truth
value in the clause—which becomes null—and we give arbitrary truth
values 0 or 1 to the other elementary propositions. Thus, we @t=\,

which contradicts the assumption. The converse is obvious. Q.E.D.

Using K-SEQ, R. C. T. Lee (1972) proved that if the most reliable clause
of a given set of clauses has truth valend the most unreliable clause
has truth valueb, then all the logical consequences obtained by repeatedly
applying the resolution principle (see, e.g., Robinson, NF 1965) will have a
truth value betweea andb.

L4 o
If we use Goguen’s implication.., a detachment operation is now the
product since

o(P 2.Q)- u(P) = min(l, v(Q) / u(P)) -U(P) < V(Q).

The validity of a chain of implications>, when « is the product, may
decrease with the length of the chain.
Lastly, withu(P O Q) = min(l, 1- u(P) + v(Q)), we may observe that:

if u(P)=aandu(P Q) =1, thenu(Q) = qa;

if uP)=aanduo(PO Q)=1-e<1,thenu(Q)=a-e
At the end ofn inferences whose truth values are equal toelthe truth
value of the premise beirg the conclusion has a truth value equal to

a — ne. A detachment operation fdar is A. Gaines (1976b) uses, or [
to explain the paradox of the bald man (if a man who rhésirs is bald,
then a man who has+ 1 hairs is still bald).

N.B.: Conversely, given an operation the appropriate formal defini-
tion of — is u(P— Q) = sup{x, u(P) » x < u(Q)}. Note that when

L2
(0= min,— is the Brouwerian implication. ; when* = product,
4

= =

—
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e. Comments

With so many multivalent logics and connectives, we may need some
points of view for comparison; perhaps the most interesting ones are the
compatibility with Piaget’s group, the existence of paradoxes, the presence
or lack of important structural properties, the validity of a chain of
inference, and the associated set theories.

Many authors have used the expression “fuzzy logic,” to denominate
some multivalent logics, especially,, which underlies Zadeh fuzzy set
theory. Zadeh employs “fuzzy logic,” to designate a logic on which a theory
of approximate reasoning is based (see Section E). However, multivalent
logics may be viewed as fuzzy logics in the sense that there are no longer
only crisp truth values like O or I, but also intermediate ones. Lakoff (1973)
generalizes this point of view when he proposes assigning to each proposi-
tion a 3-tuple €,By) such thata+f+y =1 and wherea, B,y are
interpreted as degrees of truth, falsity, and nonsense, respectively. (If

uP) = (a, B,y), theny(1P) = (B, a.y).)

C. FUZzZY MODAL LOGIC

Until now there have been very few works in the domain of fuzzy modal
logics. Perhaps this is because “possibility” has been investigated in an-
other way by Zadeh (see Part Il, Chapter 5). Thus, this section will be very
short, just providing what has been done. For an introduction to modal
logic, the reader may consult Hughes and Cresswell (NF 1972).

Lakoff (1973) obtained a fuzzy modal logic by adding to a set of
semantic truth functions for connectives and quantifiers the following
valuations for the modal operatdrsand<:

v(OP, w) = \!vg]:, v(P,w') V(OP, w) = sup v(P,w")

w, W € W, and wherey(P, w) is the truth value oP in the worldw, and
R is an alternativeness (or accessibility) reflexive relation between the
“possible worlds.” W is the set of “possible worlds.” Note that the
valuations are coherent with the identip = 1< 1P, (p( TP, w) = 1 -
(P, w)). »(LOP, w) is interpreted as the degree of necessary truth of w,
»(OP,w) = a means that the truth value Bf never falls below a in any
world alternative tow. Lakoff gives the following example of a statement
that is necessarily true to a degree: “Approximately half of the prime
numbers are of the forniN4+ 1.”

Schotch (1975) has applied fuzzy set theory to modal logic in the
following way. Let us consider the relational model consisting of a binary
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relation R on W (intuitively the set of possible worlds) and a valuatidn
that assigns to each elementary propositothe set of worlds in whiclP
is true. By definition, we have

V(P)= W - V(P), V(PA Q)= V(P)NV(Q)
V(CP)= {weWwRw'andw '€ V(P)},

V({OP) = {w € W, wRw'impliesw '€ V(P)},

which is coherent withllP = "1 & 71 P.

This model can be fuzzified in two ways: using fuzzy valuations and/or
fuzzy relations. B

First, let us consider the case of a fuzzy valualbly assigns to each
elementary propositio? the fuzzy setV (P) of worlds in whichP is more
or less true.u (w)is the degree to whicPR is true in the worldv € W.
V is extended to any wff by

V(P)= \Nﬁ (Bt (W) = 1=ty (W),
V(PAQ)=V(P)NV(Q) (B ongy (WD) = Min prg, o (W)ptg , (W)).

Myeor is the (two-valued) characteristic function of the set g W,
WRW and (u, =(W)#0and M. is the two-valued characteristic
function of the setV € W, wRw implies My (W) =1

Let us suppose now that the valuation is no longer fuzzy but that R is a
fuzzy relation.V(OP) is now defined as

V(OP) ={w e W, pr(ww) =1 andw &€ V(P)}.

Several kinds of stipulations may be imposed on R according to the
classical modal system we want. Moreover, another modal operator, de-
notedM, may be defined:

V(MP) = {w € W, uz(ww) # 0 andw &€ V(P)}.

MP means “it might be possible thBf’ Then we haveOCP—MP;
“IM 71 P—[P. Note thatMP # OOP.

More generally, we may consider more baroque models where the
valuation and the relation are fuzzy (see Schotch, 1975).

Remark Dana Scott has suggested (see Lakoff, 1973) a method for
relating modal and many-valued logics. NP, i) = 1 stand for P is true
in the valuationi,” i.e., v(P) = i, i € [0, 1]. The alternativeness relatiéh
is here=. The set of valuations is constrained by:V{P, i) = 1, thenV)|,
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i =j, V(P, j) = 1. Valuations for1, /\, V are now defined as
V(P )=1  iff  not(V(P, 1—i)=1)
VPA,Q,i) iff  V(P,i)=1 and V(Q i)=1

VPV, Qi) iff  V(P,i)=1 or V(Q,i)=1

D. FUZZY-VALUED LOGICS

A fuzzy-valued logic is a many-valued logic where the truth space is the
set of the fuzzy numbers (i.e., convex normalized piecewise continuous
fuzzy sets) on the real interval [O, I]; i.e., the truth value of a proposition is
a fuzzy number whose support is included in [0, 1]. Such fuzzy numbers
may model linguistic truth values whose names are “true,” “very true,”
“borderline,” “false,” etc. Figure 6 sketches the shape of their membership
functions.

Fuzzy-valued logics clearly underlie type 2 fuzzy set theories where
grades of membership are fuzzy numbers (see 11.1.G.d and I11.2.C.b). Thus,
the semantic truth functions for the connectives of negation, conjunction,
and disjunction (underlying', I'1, andLl respectively) are

0(TP) = 16 u(P), U(P_A Q) = min (u(P),u(Q),
oP v/ Q = max(u(P), v(Q),

where D(P) is a fuzzy numberg [0, 1]. For the definition and methods for
rapid computation o5 min, max, the reader is referred to 11.2.B.d and
[1.2.B.e.

u("1P) is generally called thentonymof V(P). Thus, “false” will be
defined as the antonym of “true.”

*borderline'

*true’

*false'

() o
vary trug'

N ——————

o
hS]

Figure 6.
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The other semantic truth functions for the connectives introduced in B.b
can be extended (by means of the extension principle) in the same way; for
instance, 3 ~ 3 3

u(P - Q) = max(1 © u(P), u(Q)),

vP O Q) =mn(1,19S uP) D u(Q)),
uP Y Q) =min(1uP)® v(Q),
u(P = Q) = abs((P) © u(Q)

(for & and abs, see 11.2.B.d).

It is clear that with these extended valuations, and /\ are still
commutative, associative, idempotent, mutually distributive, and satisfy
absorption and De Morgan laws; negation is still involutive; and

P AQ @ uPV Q) =uP) & uQ),

provided thatVP,Q,D(P),D(Q) are fuzzy numbers, i.e., convex and nor-
malized. However,

UPAQV (TPATQI7#U(TPV QA (PVIQ
ul(P /\ Q) \V (TP AN Q] 7#u[(1P \V Q) /\ (P VAl Q)l.

Remark 1 The meaning of “not true and not false” is approximately
that of “borderline.” However, the membership function of “not true and
not false” has a maximum whose value is different from g, ( =
wse = Min (1= p 1 — p ).) After a renormalization we get a fuzzy
number that looks like “borderline.” Thus, the classical fuzzy set opera-
tions U, N, - can be used in the same way to build new linguistic truth
values; on the contrarynax, min, and 16() must be used to valuate
composite propositions whose elementary propositions are only fuzzily
valued.

2 Other connectives may be worth considering, particularly in a fuzzy-
valued logic. For instance, lagh be the unary connective defined in a
multivalent logic by

umP = MP)]" meR"

m will be called a modulator because it modulates the affirmation of the
propositionP. If m > 1, mP is a more demanding (stronger) versionRf
so its truth value is less thar{P); conversely ifm < I, mP is a relaxed
version of P and has a greater truth value. The extensionnofto
fuzzy-valued logics is rather straightforward because it underlieanthe
power operation for a type 2 fuzzy set (see 11.2.C.c). For example, for
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m = 2, u(2P) = u(P)®O)u(P). Notice that if u(P) = true, u(2P) # very true
where “very true” is modeled by the second power of the type 1 fuzzy set
“true”on [0, 1], i.e.p ., o dX) = [m,,(X)]2VxE [0,1] (see 1I.1.B.f) “Very
true” has a mean value equal to | but w¢RP). (For a discussion of the
modeling of hedges such as “very,” see IV.2.B.b.) “Very true” is more
precise (less fuzzy) than “truety(2P) is less true.

The problem of inference is less straightforward in fuzzy-valued logic
than in multivalent logic, i.e., findu(Q) when you know u(P) and
U(PHQ) where — is some implication connective. For instance U(P)
= a and U(P 0 Q =u(1PAQ) =10 g, then U(Q) IS not a solution of
the equation

16 é=min(, 1 ©a®dX),

which is equivalent tce = a©X if u:(0) # 0 because in the equation, when

€ is given, the fuzziera is, the crisper (the less fuzzy) i, and it is
counterintuitive that the less precisely define@®) is, the more precisely
defined isu(Q). The reason is that in fuzzy equations implicit definitions
of variables are not equivalent to the corresponding explicit ones (see
11.2.B.h)00 which are usually the only valid ones. Thus, we must directly
fuzzify the nonfuzzy result of the abovejeation and state)(Q) = aOe.

In conclusion, we notice that in a chain of approximate inferences, truth
and precision progress in the same sense, conclusions are always less
precise and less true than premisasDe€. is smaller thana (see 11.2.B.g)
and also more fuzzy.

E. APPROXIMATE REASONING (Zadeh, 1977a)

a. Introduction

“Informally, by approximateor, equivalently,fuzzy reasoningve mean
the process or processes by which a possibly imprecise conclusion is
deduced from a collection of imprecise premises. Such reasoning is, for the
most part, qualitative rather than quantitative in nature and almost all of it
falls outside of the domain of applicability of classical logic” (Zadeh,
1977a).

In Section B we were interested in manipulating statements such as
P=“X &€ A” (X) is a prescribed element &f) where A is a fuzzy subset
on a univers&J andVv(P) = wa (X) (for example,P = “John is a tall man, ”
i.e., John belongs to the fuzzy s@t of tall men). In section Du(P) was
allowed to be a fuzzy number and was denotéR). In this section we
consider statements like="“X is A" where A is a fuzzy set ol inducing
a possibility distribution (see II.5.B.aJIh(X) = u,. his an attribute ofxX
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and T is the measurement scale of For example, in X is tall,”

A ="tall’ is modeled by a fuzzy set on the universeof heights. In fact,

the statement can be viewed as equivalent to an infinity of statements
P ="t is the height ofX” with u(P) = u, (), t € T, sincet belongs to the
fuzzy set A of large heights. Ift is a fuzzy heightt (for instance,
“approximately 5,”), u(P:) = lI(t) = hgt(A N t) where Il is the possibility
measure associated with,. In the following the attribute symbol is
omitted, and we writdl instead offf ., for short.

In order to perform approximate reasoning with statements similar to
“X is A,” but more complex, we need translation rules so as to model
them as possibility distributions, modifier rules in order to perhaps trans-
form them in semantically equivalent possibility distributions, and rules of
inference to deduce new possibility distributions. We are not interested
here in the question of retranslating these possibility distributions in
natural language; for this problem, called “linguistic approximation,” see
IV.2.B.e. This approach was initiated by Bellman and Zadeh (1977) and
developed by Zadeh (1977a).

b. Translation Rules

By translation rulesis meant a set of rules that yield the translation of a
modified composite proposition from the translations of its constituents,
eg. from P- T = pu, andQ - T, = u, deduceP A Q - T_ . The
translation of a proposition must be understood as its assomated possibility
distributions. There are four types of translation rules.

Type 1 modifier rules for simple propositionssiven the proposition

P="Xis A" such thatlt = u n

I I
\Jx —see
IV.2.B.b).

Type 2: composition rulesComposition rules pertain to the transla-
tion of a propositiorP that is a composition of propositioli3 and R, such
as conjunction disjunction, implication. For instance: Xlfis A, thenY is
B - T, , =K 1V

c(A)Y
B a e B)(t t')=min(l,1-un,(t) +u (t")) wherecde-
notes the cylindrical extension artde €
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First, knowingA and F, fuzzy sets respectively oh and on [0, 1], find
the possible density functions that are compatible with the staterRént
are A" Let p be a density function over the univer3e of A. The
proportion Propf) of Xs that areA is given by the cardinality of using
['.p(s)dsas a measure o (see Il.1.D.a):

Prop@) = J , 1, (9p(9ds

In fact, the proportion oXs that areA is fuzzily restricted byF; hence we
can induce a fuzzy restriction on the density functions by stating (Zadeh,
1977a)

m(p) = s S[T HA(S)P(S)ds.

m(-), the translation of FX and A,” is a possibility distribution on the
density functions.

When the univers&) to which X belongs is finite—and sufficiently small
—we may not use a density function, but directly induce a possibility
distribution on the membership values of the elements afi the fuzzy set

A of Xs that areA:
U (Xt
" U.UA( ) = 1(A)
O H

(Bellman and Zadeh, 1977).

The second problem is to find from knowledge of a density functigm
on T = R made out of a set of measurementgx), X € U} and of a
fuzzy boundBe?(R). The question is, What is the fuzzy proportiBnof
Xs such thah(X) is greater than or equal ®? For instancel is a set of
men andh(X) the height ofX, B is a fuzzy heightF is given by the
integral ofp over the fuzzy intervalB, + ) (see 11.4.C.b):

He(2) = +°§Jp Hg(t)
tft  P(s)ds=z
Note that the fuzzy intervaB( + o) corresponds to the fuzzy sAtin the
statement FX are A"

More generally, we can translate propositions likeX“in C are A”
whereC is a fuzzy set otJ acting as a fuzzy restriction on the valuesXof
For instanceF = “many,” C is the fuzzy set of the tall me® means
“fat”: “many tall men are fat.” We are interested in the proportionXof
that are A in C, i.e. (see I.1E3.

|AN C|/[C| = Prop@ in C).
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The associated possibility distribution is.
(A) = p( ANCl/|C]).

Type 4 qualification rules  Among pertinent qualifications for propo-
sitions Zadeh (1977a) considered three of them in particular:

linguistic truth qualification,
linguistic probability qualification,
linguistic possibility qualification.

(i) Truth qualification A truth-qualified version of a proposition
such as X is A” is a proposition expressed aX'is A is 7,” where
7 is a linguistic truth value. We must not confusewith the
linguistic truth value of a proposition in a fuzzy-valued logic. Here
7 is alocal linguistic truth-value (see Bellman and Zadeh, 1977)
rather than an absolute one:is defined as the degree of compati-
bility of the proposition X is A” with a reference propositionX"
is R’ (see 1.2.A.ef3):
H(2)=  SuUp pig(t).
z=pp(t)
Here we want to findR from knowledge ofA and 7 ; the greatesR
is

l’lR :l'l'r OIJA'

The translation of the propositionX® is A is 7" is thus the
possibility distribution induced byR. Note that whens is defined
as u(z) = z Vz €[0, 1] (Zadeh calls such a truth valua-true”),
we haveR = A.

(i) Probability qualification. A probability-qualified version of a
proposition such asX'is A" is a proposition expressed aX fs A
is 1”7 where 1 is a linguistic probability value such as “likely,”
“very likely,”... . This may be interpreted asP(A) is 1” where
A is viewed as a fuzzy event whose probabilityPi&). Using the
definition of 11.5.C.a, we get

P(A) =IT (1) p(t) dt.

where p is a probability distribution. SinceP(A) is fuzzily re-
stricted by A, the probability distribution is fuzzily restricted by the
possibility distribution

(P) = 0, f, (D) POt
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This result is formally equivalent to that of the quantification
rule (type 3).

The problem of finding 1 from knowledge of the fuzzy evént
and the probability distributiop was already solved in 11.5.C.b,
provided thatA is modeled as a fuzzy real interva, (C).

Possibility qualifications. A possibility-qualified version of a
prop- osition such asX‘is A”, is a proposition expresse is A is w’
where w is a linguistic possibility value such as “possible,”
“very possible,” “almost impossible,”. . .w is viewed as a fuzzy re-
striction on the nonfuzzy possibility valuesA)(of the fuzzy event

A. Recalling that

[I(A) = sup minf,(t), pi(t),
teT

where pi() is the possibility distribution associated with the possi-
bility measure 1I{), we get

T(pi) =, SUP Ming, (0, pI(O)

The translation of X is A is w” is a possibility distribution on
possibility distributions—which is analogous to (ii).

An alternative interpretation of the propositioX ‘is A is w”
where w = “a-possible” is “It is a-possible thatX is A,” i.e., “X is
A” is contingent to a certain degree When a = 1, the qualifica-
tion rule changedA into A" such thatu,+ (t) = [u,(t), 1] with the
understanding that the possibility thatqualifies X may be any
number in the interval 4,(t), 1]. Note that A is an interval-
valued fuzzy setd)-fuzzy set).u, + () is a “degree” of possibility of
membership oft in A. More generally, if 41, Zadeh (Reference
from 1V.2, 1977b) proposes the formula

e ® = [mina, o, ©), min(L, 1- w,@t) + a)] .

Sanchez (1978) prefers

e ® = [min(a, (1), max(l, 1~ (), a)] .

Both formulas coincide foo = 1 anda = 0 (“impossible”). Any-
way, according to Zadeh (Reference from 1V.2, 1977b) these rules
should be regarded as provisional in nature. Their relationships to
the theory of possibilities and (fuzzy) modal logic have not yet
been made clear.
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C. Modifier Rules (Zadeh, 1977a)
a. Semantic Equivalence and Entailment

Let P and Q be two propositions and let and 7, be the possibility
distributions induced by’ and Q owing to the above translation ruleB.
and Q are said to besemanticallyequivalentiff 77 = m, which is denoted
by P<= Q. This definition could be weakened by means of approximate
equalities (Il.1.E.c).

While the concept of semantic equivalence relates to the equality of
possibility distributions, that osemantic entailmentelates to inclusion.
More specifically, denoting® semantically entail® by P Q, we have

PO Q iff mC T,

B. Modifier Rules for Propositions

The modifier rule that was stated earlier for simple propositions provides
the basis for the formulation of a more general modifier rule that appliesto
propositions translated by rules of type I, 2, 3, and 4.

This general rule is: im is a modifier andP is a proposition, thenps
semantically equivalent to the proposition that results from applyitgy
the possibility distribution induced Wy.

(i) Simple propositions. (X is A”) = “X is mA” which is exactly a
type 1 translation rule. Examples:
m = “not,” Mo = 1=,

m = “very,” Mo, = MA

N.B.: m(*X is MA”) = “X is m(mMA)” = mmi(“X is A").
(i) Composed propositionan(“*X is A andY is B")= (X, Y) is
m(A X B). Examples:
not("X is A andY is B’) = “X isnot A or Y is notB".
very(*X is AandY is B") - “X isvery A andY is veryB”.

(i) Quantified propositions. (hFX areA”) = “(mF)X areA.” Exam-
ple: m="not.” This formula can be employed here to generalize
the standard negation rule in predicate calculus:

“I(VX)P(X) = @ 1 P(X).

To see this connection, we first assert the semaaitvalence

“FX areA” < 7 (ant F)X are notA”

where antF is the antonym O F of F.
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Proof:

m(0) = e o, Ha(P(S)ds= e - [ (1= Ha(9)p(8) o
becauseJ’T p(s)ds=1 Q.E.D.

Thus, we have
“(not F)X areA” < “ant(notF)X are notA ”
which for F = “all” gives
“not all X areA” o “some X are notA”
with “some” defined as ant(not “all’), meaning “at least some.”
(iv) Qualified propositions. We consider here only truth-qualified

propositions:
m(“X is Ais 7 o “Xis Ais mr.”
Example:m=“not,” t="“true,”
not(“*X is A is true”) o “X'is A is not true.”

On the other hand, we have
“Xis notAis 7 = “X'is A is antr.”
where if  =“true,” antr = “false.”
N.B.: For possibility-qualified propositions, we have:

not(X is A is 1-possible)= “X is A is impossible”;
very(X is A is 1-possible)- “X is very A is 1-possible”;

because

VIET, gz (®) = [0, 1= e, (O

ey e ® = [HA0.2] = [0, O a2 = 1, oD

y. Example of Inference with Modifier Rules

Consider as a premise the propositidgiX“are A.” We want to answer
the question, How man¥ are mA? whereHd . = pyp (e.g.,m = 2, mA
means “veryA”). The translation of the premise is a possibility distribution

m(0) = e tf , Ha(9P(8)dsg

The proportions ofX that aremA is

Prop(mA) = IT pR(s)p(s)ds.
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What we want to find is a quantifif’ such that“F'X are mA’ is the
answer to the question. We know on#j(p) and not preciselyp, so 7(p)
induces by the extension principle a possibility distribution on the values
of PropmA), which is u_ such that

e (2)= sup m(p) subject to J’Tuzc(s)p(s) ds=z
p
In the finite case this formula becomes (see b, type 3)
N 0¥ uua(X) O

Ue(2) = sup n(A) = sup H oo A
SUHAM(x) = zOU| SUHAM(x) = zO[U|

Assumep, is increasing on [0, 1], for instanée= “most” and m = 2. Then
the maximizing values oqu(X) are H;\(X) =./z VX. Hence u_(2
= u(/z) or FF = FOF. This example was given in Bellman and Zadeh
(2977).

It can be checked that “most are A” semantically entails “(most
O most) X are veryA” (Zadeh, 1977a): Lets' be the possibility distribu-
tion associated with the last proposition; we have

7 (p) = pror [ HA(S)P(S) ds

O 5 O
=He E\/ITIJA(S),O(S) dSE

= e o HA(9P(S) ds = (0)

using Schwarz's inequality and the monotonicityupf

N.B.: Semantic equivalences or entailments are said tstioeg (Za-
deh, Reference from IV.2, 1977b) as soon as they hold, whatever the fuzzy
sets involved in the concerned propositions may be.

0. Remark

Modifiers can be applied to questions such as, What is the fuzzy
proportion F of X such thath(X) is greater than or equal tB?, whereh
measures theXs andB is a fuzzy number ofR considered as a fuzzy

bound, i.e.,
MF(Z) = +O§UE) _ IJ“B(t)
tf{ p(s)ds=z

TFor instance, “John is very tall"John is tall” is a strong semantic entailment, but “John is very
tall’d “John is not short” depends on the definitions tafl and short, and hence does
not represent a strong semantic entailment.
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Mg

Figure 8

Using, for instance, the modifier “not,” we can change this question into
the semantically equivalent one, “What is the fuzzy propor&énsuch
that h(x) is less than or equal B? We have

He(2) = up Ha(t) = pe(1-2)= Har) (2)

t, (s
See Fig. 7. Note that the complement of the fuzzy inte@val (B, + =) is

taken as € «, B) which is different fromC . C is a fuzzy set of intervals of
the form [, + ») such that y.([t,+ «))=pug(t). C*=(-,B) is a kind
of antonym for B, + ») = C since HUq. ((— ,t]) = tg(t). C* =(t + )).

Consider now the propositionFX are A” where A is the fuzzy set on
T = R of numbers greater thaB in the sense thaWte R, w,(t)=
sup _, mg(X). Its shape is shown in Fig. & is similar to B, + «)=C.
When ‘FX are A", is translated byw(p), it is semantically equivalent to
“(@antF)X are A.” In the alternative model FX are greater thamB” is the
same as "(anE)X are less tharB.” The fuzzy set that is similar to
(-, B) is A* such thatu,,(t) = sug_, p,(X) and not A!

d. Rules of Inference (Zadeh, 1977a)

The main rules of inference in approximate reasoning are the projection
principle, the particularization / conjunction principle, and the entailment
principle. Once combined, the first two lead to generalized modus ponens.
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a. Projection Principle

_____ Xn)be a possibility distribution over a univer§gx 000X
T Mx. .. . x, isassociated with a fuzzy relatiéhin T, X OOOX T that
defines the fuzzy restrictionF(h(X),...,h(X)) on the values of
h(X), ..., h(X), whereh denotes an attribute of. my x) = Fis
a translation of a propositioR. Lets = (i,,...,i,) be a subsequence of
(1,...,n) and Tx = projlF; T, X OODX T,] (see Il.3.A.a).my ( is the
marginal possibility distribution ofth (X)), - - - R (X))). Let’Q be a
retranslation of the possibility assignment equatiorys): proj[F;
T, X OODXT,], then the projection principle asserts tf‘ét may be
inferred fromP.

For instance,n=2, F=A X B where A means *“tall’” andB means
“fat”, from P ="John is tall and fat,” we infer “John is tall,” provided
that hgtf) = hgt(B).

B. Particularization/Conjunction Principle

The particularization oﬁ(xl _____ x_»Is its modification resulting from the
stipulation that the possibility dllstributiomx(s)is a fuzzy setG on
T, X - -+ X T,. The result is a possibility distribution

n g7 D=

X1y, -+« « 3 Xn)P X(s): GE =F ﬂC(G)
where ¢(G) is the cylindrical extension ofG. From P translated in
Ty, ... ,xy= F and Q translated byrmy =G, we can inferR translated
by Tx, ... xy =FNc(G).

The particularization principle may be viewed as a special case of a
somewhat more general principle, which will be referred to ascomgunc-
tion principle. Specifically, assume th&® is translated by7ly,, . .. v,
Xesp - - - %) = FandQtranslated byry,, . . ., vzksq, . . . ,zw = G,thenfrom
P andQ we can inferR translated by

T, . . oy Y Zksas - - - szm = C(F)Nc(G),

i.e., the join ofF andG (II.3.A.a).

v. Entailment Principle

Stated informally, the entailment principle asserts that from any proposi-
tion P, we can infer a propositioQ, if the possibility distribution induced
by P is contained in the possibility distribution induced Ky For
instance, fromP =“X is very large” we can infeQ ="“X is large.”

6. Compositional Rule of Inference

The compositional rule of inference consists in the successive application
of the particularization/ conjunction principle followed by that of the
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of the particularization / conjunction principle followed by that of the
projection principle. LetP be a proposition translated by  =F and

Q translated bym ,=G. We can infer a propositiofR translated by
T ,~FoG where 0 denotes sup-min composition (see 11.3.A.a).

An important special case of the compositional rule of inference is
obtained wherP and Q are of the formP =“X is A", Q =“If X is A, then
YisB.”

Propositions such a® are translated by means of type 2 translation
rules, after having made the choice of an implication. For instaQcs,
translated byt = c(A)Uc(B).

From P and Q we can infer the propositioly is B’ whereB'=A" @

c(A) U c(B))., for instance. Using the results of B.c, we can state the
following chains of inclusions:

Ao (A B)DA’> (A=B) DA > (A - B)

SAc (ALB)D A (AXB)
Ao (ADB)DA (A > B)DA (A _B)DA °(AXB)
A (AL B)D A’° (A - B).

N.B.: In the above chains the implication symbols have been abusively
used as set theoretic operators and the cylindrical extensions are omitted.
The most valid inferred proposition isy“is A" o (AQ B)” since it is the
fuzziest one!

2. Very recently, Diaz (1978) has proposed another form of translation
“If XisA,thenYisB":

TA)UCB) if U =pa(t), LE)ET X T

H :

I TRAUCE) i ma 0> (), LE)ET X T
T andT' are the universes @& and B, respectively.

Schematically, the inference can be pictured as:

P=“XisA”
Q="If Xis A, thenY is B”
R=“Yis A ° (c(A) — (B))

where — denotes any of the introduced implications. This inference
scheme is callegeneralized modus ponens.

In the classical modus poners = A and the inferred proposition is “Y
is B.” However, it can be checked here that generally, setBhg A, we
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get B' = A (c(A) — ¢(B)) # B. For instance, assuming, A, and B are
normalized fuzzy setsy, and u, continuous, we get for

=0, pyt)=; (L +pyt) VteT

—=4, pe(t)= U () VLET
(= . (t if (t')y=1
H:—), l,lB.(t.) |:| I‘lB( ) - HB( ) 2
F0.5 otherwise.

When A is crisp, we recoverB'= B. However, whenA is fuzzy “the
implicit part of Q,” namely “if X is A, thenY is unrestricted, overlaps the
explicit part, resulting in an interference term which vanishes wheas
nonfuzzy” (Bellman and Zadeh, 1977).

Remarks 1 A rather funny particular case of generalized modus ponens
is the well-known rule of three. The classical rule is, Xlfequalsa, if X
equalsa implies Y equalsB, thenY equals g/ a).a. This rule can be
extended using for instance, positive fuzzy numbers, narag, 8. The
result of the inference is thenY“equals a®(B® a)” where “©” and
“©®,, denote here extended product and division. Defining

QHB u&aB(X,Y):uB%(Y/ X), X#0
we have
AO(BOa))= a o (p—4a)

Thus, generalized modus ponens may be viewed as a generalized interpola-
tion.
2 If A, A, and B are type 2 fuzzy sets, the compositional rule of

inference can be readily extended by means nfag - min (more generally
a sup - min) composition (see 11.3.F.c).

A generalized modus ponens may involve several conditional proposi-
tions such as “IfX is A, thenY is B,” i = 1, n. The procedure for making
inferences is then to aggregate theules (for instance, by performing their
union) into a binary fuzzy relatioR; the inferred proposition isY' is
AoR”

Some interesting questions, which have not been completely solved yet
are: consistency of the rules, nonredundancy of the set of rules, and the
converse problem, i.e., determining the rules from knowledg® ¢see
Tong, 1976). Lastly, the compositional rule of inference has been extended

T HenceA andB cannot be crisp!
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to possibility-qualified propositions of the fornX*is A is 1-possible” (see
b, type 4, (iii)) by Sanchez (1978). Consider the inference scheme:

“Xis F is I-possible” translated byr, = F*;
“(X,Y) is G is 1-possible” translated bym, ., =G" then * is
F+ o G+";

vltlgre F* is a ®-fuzzy set, such thatu_.(X) = [u(X), 1], o is the
max - min composition ofd®-fuzzy relations (see I1.3.F.c). Sanchez has
shown that FoG)*=F"-G" so that Y is F*oG"” is semantically
equivalent to Y is FoG is 1-possible.” We have als& > G*=(F-°
G)* iff F is normalized, andF*oG=(F°G)" iff projG;V]=V
where V is the universe ofY. We have supposed hetgX) =X, i.e.,
U=T.
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Chapter 2

DYNAMIC FUZZY SYSTEMS

The idea of fuzzy systems appeared very early in the literature of fuzzy
sets; it was originated by Zadeh (1965). Research on fuzzy systems seems
to have developed in two main directions. The first is rather formal and
considers fuzzy systems as a generalization of nondeterministic systems.
These have been studied within the same conceptual framework as classi-
cal systems. This approach has given birth to a body of abstract results in
such fields as minimal realization theory and formal automata theory,
sometimes expressed in the setting of category theory. These results are
sketched in Sections B and C of this chapter. Section D gives two models
of deterministic systems in a fuzzy environment. Section E deals with the
practical computation of linear systems whose parameters are fuzzy num-
bers. It does not seem that the abstract theory of fuzzy systems has been
applied yet to the study of real processes. Perhaps this situation is because
this formal approach is based on the implicit idea that crisp statements can
still be asserted to describe fuzzy behavior. This idea seems to contradict
Zadeh's rationale in favor of linguistic models and approximate reasoning.
The second direction of research is the linguistic approach to fuzzy
systems, in which a fuzzy model is viewed as a linguistic description by
means of fuzzy logical propositions. A first extensive outline of the
linguistic approach was given by Zadeh (Reference from 111.3, 1973). Since
then it has been applied to the synthesis of linguistic controllers by
Mamdani and Assilian (Reference from 1V.4) followed by many others.
This chapter is devoted to a formal approach to fuzzy systems. Linguistic
aspects are mainly discussed in Part IV and are closely related to the
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theory of approximate reasoning (Section E of Chapter 1). Various topics,
including identification and validation of models, are gathered in Section
F. Let us begin this chapter with general considerations about complexity
and fuzziness.

A. COMPLEXITY AND FUZZINESS IN SYSTEM THEORY
a. Complex Systems and the Principle of Incompatibility

Zadeh (1972) pointed out that “excessive concern with precision has
become a stultifying influence in control and system theory, largely be-
cause it tends to focus the research in this field on those, and only those,
problems which are susceptible of exact solutions.”

Complexity in systems stems from too large a size and/or difficulty in
gathering precise information or data to describe their behavior. Precise
models of complex systems are often mathematically intractable. Again
quoting Zadeh (1972): “The conventional quantitative techniques of sys-
tem analysis are intrinsically unsuited for dealing with humanistic systems
or, for that matter, any system whose complexity is comparable to that of
humanistic systems.”

The deep reason for this inadequacy can be summarized in what Zadeh
called theprinciple of incompatibility “Stated informally, the essence of this
principle is that as the complexity of a system increases, our ability to
make precise and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and significance (or
relevance) become almost mutually exclusive characteristics” (see Zadeh,
Reference from I11.3, 1973). Partial precise information is useless as long
as other important aspects of the system cannot be precisely described.

The determination of a satisfying model for a complex process is a
matter of approximation. More specifically, when complex systems are
considered, there is no longer a sense in which a model must best fit the
data. The problem is “that of determining those models that are as good as
possible in that no simpler or equally simple model is a better approxima-
tion to the data” (Gaines, 1977). Such models are teradbdissible.
Gaines (1977) formulates the general system identification problem as
follows. Let B be a set of possible observed behaviors Eihtbe a set of
models, Ord,, is the set of all partial order relations &h and < is a
specified, particular order relation. Létbe a mapping fronB to Ord,.

Vb € B, f(b) is denoted=,. The relation< is supposed to rank the
models with respect to complexity. Note that there is a set of minimal
models rather than a unique minimumss, ranks models with respect to
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the quality of approximation of behavidr. The admissibility relations}
on M is defined by

YmneM, m <Xn iff m<n and m <

i.e., m <*n iff m is neither a more complex nor a worse approximation of
b than n. The admissible models df are the minimal elements & in the
sense ofs}. The complexity of a model depends mainly on its size when
its type is given, but this notion remains more or less arbitrary. So are
measures of the quality of approximation. Some of these will be hinted at
in Section F, which deals with validation of fuzzy models.

b. Fuzzy Systems

A system is viewed here has a set of relations between measurable
attributes (i.e., inputs and outputs). The system is considered over a given
period during which inputs, outputs, and relations may change. A system
will be called fuzzy as soon as inputs or outputs are modeled as fuzzy sets
or their interactions are represented by fuzzy relations. Usually, a system is
also described in terms of state variables. In a fuzzy system a state can be a
fuzzy set. However, the notion of a fuzzy state is quite ambiguous and
needs to be clarified. Note that generally a fuzzy system is an approximate
representation of a complex process that is not itself necessarily fuzzy.
According to Zadeh, the human ability to perceive complex phenomena
stems from the use of names of fuzzy sets to summarize information. The
notion of probabilistic system corresponds to a different point of view: all
the available information at any time is modeled by probability distribu-
tions, built from repeated experiments.

A fuzzy system can be described either as a set of fuzzy logical rules or
as a set of fuzzy equations. Fuzzy logical rules must be understood as
propositions associated with possibility distributions in the sense of I|.E.
For instance, “if last input is small, then if last output is large, then current
output is medium”, where “small” is a fuzzy set on the universe of inputs,
and “medium” and “large” are fuzzy sets on the universe of outputs. Such
linguistic models will be presented later (see IV.2 and IV.4). Fuzzy equa-
tions may provide a representation for systems having fuzzy parameters,
fuzzy inputs. Fuzzy constraints or goals can also be taken into account.
Note that mathematically there is no essential difference between fuzzy
equations and fuzzy logical rules. In both cases results are obtained by
sup-min composition of fuzzy relations. However, the composition is
sometimes precalculated and thus no longer explicit in the formulation.

Several situations may be encountered from which a fuzzy model can be
derived:
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there is available linguistic description that reflects a qualitative under-
standing of the process; a set of fuzzy logical rules can then be built
directly;

there are known equations that (at least roughly) describe the behavior
of the process, but parameters cannot be precisely identified;

too-complex equations are known to hold for the process and are
interpreted in a fuzzy way to build, for instance, a linguistic model;

input-output data are used to estimate fuzzy logical rules of behavior.

Real situations may be hybrid.

B. DISCRETE-TIME FUZZY SYSTEMS

For simplicity, we shall restrict our attention to time-invariant discrete-
time systems in which the timeranges over integers. Time-variant fuzzy
systems seem not to have been investigated in the literature to date.

In this section a formulation of state equations of fuzzy systems is given.
The usual notions of reachability and observability are presented in the
framework of fuzzy systems.

a. State Equatlons for Fuzzy Systems (Zadeh, 1965, 1971)

Let u, y, and s, denote respectively the input, output, and state of a
systems at timet. U, Y, Sare respectively the set of possible inputs,
outputs, and states. Such a system is said to be deterministic if it is
characterized by state equations of the form

S,, = 9(u,s), Y, = of(s), te N.

s, is called the initial statey ando are functions fromU X S and from$S
to SandY, respectively.

¢ Is said to be nondeterministic g, and/ory, are not uniquely
determined byu ands. LetS_  andY, be the sets of possible values of
s., andy, respectively, giveru, ands. S,, andY, may be understood as
binary possibility distributions ove$ andY, respectively.

a. Nonfuzzy Inputs

The next step is to assume ti&t, and Y,, are fuzzy sets o8 and Y.
They can be interpreted as possibility distributiohsand o are now fuzzy
relations inS X U X S andyY X S respectively.d is called thefuzzy
transition relationand o the fuzzy output mapThe state equations of the
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fuzzy system are now
Mg (Sa) = SUP MINRg(S), #e(Se US)),
SEs
1)
5 (i) = sup min. (S,), 4, (%)),

SES
where &, is the fuzzy state at timgy, the fuzzy output at timé, u the
nonfuzzy input at time, and§the fuzzy initial state. More compactly, we
have

§+l:§°6u[’ ytzéoay

Where8 is the fuzzy binary relation of transition between states when the
input is u

The fuzzy state at time+ 1 can be expressed as a function of the fuzzy
state at timeg —1 and the input at time—1 andt:

M, (S:1) = sup minéﬂgsmin(ua_l(s_l). Hs(SUgr S 1)) Hs (S0 U s)@

= sup sup min(iy (S -1): Hs(S -1 S -1), Hs (S U §))

g 0SS -

1

- U :
= Sup minCht, , (Si-0), SUD MIN(H; (St -1,8 -0), H5(S12,1, )

Hences,,=s _, o (But ° SUH). More generally,

-1

=g 08,08, o 08)=g0A, 2)
where 50 is the fuzzy initial statep, =u,u,. . . u, is an input string of
lengtht + 1, and
/‘LA( t+1! !"" I,SO) /‘LA(Q[(%"'].’ 0)

= Sup min(u(S, Uy ). - 480 Y 9)

The response functiomf the systems, denotedf;o, is equal to
gt+l = fso(et) = S~0 ° A(it °a (3)

The notion of fuzzy state may have two interpretations, which corre-
spond to different representations. First, a fuzzy state can be a possibility
distribution overS, i.e., the actual state is one of the elementsSobut
since the process behavior is partially unknown, several staté&s avé
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possible with a nonzero possibility degréeand o can be then viewed as
conditional possibility distributions. For instance,(s,,, U, s) is the
possibility for the state to bg,, at timet + 1, knowing that the state and
the input at timet are s, and u, respectively. Secondlys is a set of fuzzy
sets on a sef of possible values for the actual states. Each eleme8tiof

a fuzzy cluster of elements @; the fuzzy sets belonging t8 are an
approximate covering of) in the sense that the union of the fuzzy sets,
elements ofS, is contained inQ. (in the sense off, see Il.1.E.a), but the
union of their supports i€. For instanceQ is {0,1, . . . ,9,10},S =
{small, medium, large} where

small=1/0 + 0.9/1 + 0.7/2 + 0.5/3 + 0.3/4,
medium=0.5/2 + 0.7/3 + 0.9/4 + 1/5 + 0.9/6 + 0.7/7 + 0.5/8,
large = 0.3/6 + 0.5/7 + 0.7/8 + 0.9/9 + 1/10.

The actual state cannot usually be precisely described and thus is
represented by a fuzzy sqton Q; however, in the case of a mechanical
process, the state can be sometimes precisely measured, iT@ée behav-
lor of the process under consideration can be directly described Qsag)

a state space—which corresponds to the first point of view. In the second
point of view we useS assumed to be built o®, to describe the process
in a more approximate way. Any elemenbf Q or fuzzy setsq on Q may

be expressed as a fuzzy set §see 11.1.E.q): §=5(d)= [hgt(sN q)/s.

For instance, if q=7, 7=0.7/medium+ 0.5/large; if q=0.6/6+

1/7 + 0.6/8,q= 0.7/medium + 0.6/large. In this example both represen-
tations are very close because there is no essential difference bejween
and q from the approximation point of viewSQ and To fuzzy relations on

Q X U X Q and onY X Q respectively, may inducé and o on

S X U X Sand onY X Srespectively in the following way:

(S, U, §) = sup min(u,(g, u, d), (@), k(@) (4)

ey 8) = supmin(u,, (y,0), 1 ().

In some situationsé and o are directly obtained through a linguistic
description using names of fuzzy sets belongingStanvolved in fuzzy
conditional propositions (see 1.E). State equations can be establisigd on
using formulas (4), and they are formally the same as (1). Such a fuzzy
model corresponds to an approximate (linguistic) description of a complex
system whose equations are possibly unknown. Or when they exist, their
precise solution is either quite untractable or inessential.

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



[11.2. Dynamic Fuzzy Systems 194

B. Fuzzy Inputs

In a more general formulation a may depend on the input and the input
may be fuzzy. Then, Egs. (1) become

e (8.0 SUp Min(ug (S, U, iy(S, 1 Uy S)), (5)
B 358 t
i) = U Min(u (5, 0), 1,09, S, W)
utDU

where (1;|) is a fuzzy relation or§S X U; ,uw)( . U) is the fuzzy counter-
part of the joint probability of andu. If the input and the state are not
interactive, thenug, (+) is separable and can be written as msrtﬁ()
,ugt(-)). (5) becomes then

e (8 = SUD MG (S), (). 1S 0, ) (6)
utDU
B0 = SUp MG (S), 1g(U). 0 S, W)
utDU

Assume now a string)t of fuzzy inputs; provided that the fuzzy inputs are
noninteractive, we have

K, (Uyu,...,u)= min(/Lu-o(uo), - ,,uu-t(ut));

and then, for instance,
I‘L§t+ 1(St+ 1)

= SJDpS min(/‘Lsz)(So)il‘Lu’O(uo)7 oo ’I‘L (U) I‘LA( t+ 1’ 0 ' 'ut’ SO))

0
Uo, U1,...,u 00U

N.B.: A fuzzy systems will be said to bememorylessf the fuzzy set37t
is independent o, i.e.,

M) = SUp min(u(u), (Y, U)).
In (1978b) Tong has proposed the block diagram

S

u 8 e 8

YR

+1

This is the feedbacklike representation of the equations

G=(5x Des,  §,=GX 8)ed,

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



l11.2. Dynamic Fuzzy Systems 195

Note thats,, = (§ X [(§ X U)°8]°3)#(5X u)°(5)°3) because

M§t+ 1(St+ 1)

_ %J | o N
= sup min{IBup min(Kg (8), Mg (U)H5e(&, Uy S DB e (S, Hop (S0, &, 80
s 0S E E
g OU ou

— H * H * |:|
= 5P min, (), g (8), g (W), Sup min(ks, (& U, ), Koy (841, &, S
w OU

% SUp ML, (8), Ky (W), SUB Min(Hs (&, U, S). My, (811, €, 8))

w OU

which is the membership function o§t (X l]t) ° (9, - 5p).

b. Reachability, Observability of Fuzzy Systems
a. Reachability

We consider here the extension of very well-known notions of systems
theory to time-invariant discrete-time fuzzy systems. DenotingUbythe
set of finite input strings, a system is classically said to be reachable from
s, iff Vs € §3t,36, = uu, . . .u such thatA(6,s) = s where A(6, s)
= o[u, A(6,_,, s)] and A(u, s) = 8(u,s). That is to sayA(-,s) is a
surjective mapping fromJ* to S (see, for instance, Arbib, Zeiger NF
1969).

Negoita and Ralescu (1975) have extended this definition to fuzzy
systems with a nonfuzzy input and a nonfuzzy initial sgteThe fuzzy
system® is said to beeachablefrom g iff

Vs € §3t,36,=uuy, .. .u, such that MAot (s,g) = L.
The a-cuts of a fuzzy system are nondeterministic (nonfuzzy) systems
defined by thea-cuts of 6 and o. This definition is consistent whenever
sup—min composition and-cutting commute (11.2.A.b). Then tha-cut of
the state at timé+ 1 can be obtained by the composition of theuts of
the fuzzy state at timeand of the transition relatiof.

Thus, the above definition of reachability means tha reachable from
s, by the 1-cut of&, which does not take fuzziness into account. Clearly
this definition may be relaxed to any givencut of ©. More generally, a
fuzzy system with a fuzzy initial stat%and fuzzy inputs will be said to be
reachable froms, iff VS € #(9), 3t,36,= G,u- - -0 wherel € ?(U),
i= 0, such thats, =S (Negoita and Ralescu, 1975).
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This latter definition is very strict because the quantil:E{s;s1 and s are
by essence ill known. A less strict definition, intuitively more appealing,
can be established by weakening the above equality into an inclusion:
S,, C s or even a weak inclusion (Il.1.E0¢. or ane-inclusion (II.I.E.cp).
A very relaxed definition may use the concept of consistency, replacing
S.,, =S by hgt§,, N ) = e wheree is a threshold.

s can be interpreted as a fuzzy goal and the final state must be inside the
fuzzy goal. WhenS is a set of elements that are already fuzzy sets &h
(see the second point of view at the end of),athe goal may be chosen as

an element o8* of S The reachability condition then may become
% %
VS, * S' M§t+1(s) > M§t+1 (S,)
or more rigidly
pe, (S) =mandVs # s, p. (s) < e wheren =>e.

Herep. (9 = hgt6 N q,,,) Wheres_ is the approximation o8 of q., |

N.B."T. Tong (1978b) proposes a definition of reachability, replacing
the equality §t+1:s by the equality of their “peaks”; the peak of a
fuzzy setA is the nonfuzzy set of elements whose membership valéeisn
hgt(A). This definition can be questioned since the fuzziness is not really
taken into account.

2. The relaxed definition of reachability, using consistency, is in the
same spirit as the notion of fuzzy surjection (l1l.4.8a.That is to say, a
reachable fuzzy system could be one such that the fuzzy mapging)
from U* to Sis fuzzily surjective.

B. Observability

Recall that the response function of a nonfuzzy systent_(9=
o(A(-,s)) from U* to Y. A nonfuzzy system is said to be observable iff
Vs, g_o, _if_ sov_tgo, then fSO(-)ifg ,_(-) ie., the mapping f(-) from S to
U*)Y is injective. (See, e.g., Arbib and Zeiger, NF 1969.)

Negoita and Ralescu (1975) have extended this definition to a fuzzy
system& with a nonfuzzy input and a nonfuzzy initial stafe © is said to
be observableiff

Vs, s, if s # s, then fSO(-) F fg0 )

0’ <o’

where f;) (-) is defined by
e (B))= Sup min(uy (8, 9, 1,0, 9)

This definition can be readily extended to fuzzy inputs and fuzzy initial
state.

Since f(-) is basically an ill-known response function, the above defini-
tion may once more be considered as far too strict. The concept of a
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fuzzily injective function (see 1l.4.A.8.) might be useful to define a fuzzy
observability for fuzzy systems.

The problem of minimal realization was solved by Negoita and Ralescu
(1975) when the inputs and the initial state are nonfuzzy. They use the
above definition of observability and the first definition of reachability
introduced. Their approach is very similar to the minimal realization of
nonfuzzy systems (see Arbib and Zeiger, NF 1969). They use Nerode
equivalence of input strings, i.e.,

Vo, 0,e U, 0~0, iff Vo, f(6,0) = (6,6)
where f is a given response function. The set of stafes the quotient
spaceU*/ ~. For more details, see Negoita and Ralescu (1975).

N.B.: The same authors also investigated a very general kind of fuzzy
systems where the transition functionis a function from»(S) X #(U) to
P?(S and the output majpr is a function from®(S) to ?(Y). The minimal
realization theory for these systems is formally equivalent to that of
nonfuzzy systems. However, such an approach may appear very rigid for
fuzzy systems.

c. Fuzzy Observation, Fuzzy Feedback Control System

Fuzzy systems with feedback control have been scarcely studied in the
literature. The only attempt seems to be that of Chang and Zadeh (1972).
The authors first introduce the notion foizzy observationLet s € ®(S) be
a fuzzy state. An observation & denoteds, is any fuzzy set included is
and renormalized; for instance, § C S, p(s) = (14(9) / hgt(s)). An instru-
ment or means of observation is represented by an ope@tdd(s)
represents the set of possible observations. dfet O, and O, be two
observation operator€, is said to be morelefinite than O, iff

Vs, € 0,9, 35, € O(9 such thas, C &,

A fuzzy feedback control systesmcomposed of a fuzzy relatiof on
S X U X S an observation operat@®, a goal set that is a fuzzy sgton
S a fuzzy control policyn that maps the observed fuzzy state to a fuzzy
control u, and a fuzzy initial statéo. o represents the transition of the
controlled dynamic system. The equations are

M§t+1(st+1 = %‘Emin(l’vgt!(st)y Mgt(ut)y M5(St+11 u, St)).

pe(U) = Sp min(u,(§), w8 §E O, tEN. (7

The goalg is attainableiff 3, 3t, § C g. When the control is not fuzzy, the
authors proved that giver5(O,, g) and ¢, O,, g), two control problems
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such thats, is “finer” than 8, and O, is more definite tharO,, then ifg is
attainable in §,O,, g), it is attalnable ind,, O,, 9). 6, is flner than o,
means:Vu,, 3u, such thatvs, s, s, (s,u,s)s ,ua (s’, ¥ s).) “The power of

this feedback concept is demonstrated by showmg that a precise goal can
be attained with a rather sloppy control and observation concept except
that as the goal is approached the observation must be precise” (Chang
and Zadeh, 1972).

d. Fuzzy Topological Polysystems

Nazaroff (1973) introduced the notion of fuzzy topological polysystem;
it consists in a fuzzification of the topological aspects of the optimal
control of dynamical polysystems as contributed by Halkin (NF 1964).
Warren (1976) refocused the main conclusions of Nazaroff. This section
gives only an outline of the basic notions.

Let E be a set whose elements may be considered as events. A time
structure can be imposed d& by assuming a mag from E to R called
the clock; k(e) is the time of occurrence oé. Let r denote a binary
relation onE X E such thate re, means “the eveng, follows the event
e.” r is assumed transitive, reflexive, antisymmetric, and forward (i.e., if
e re, and e, re, thenere, or ere). r is called a strategy, and the set of
strategies orkE is denotedR.

A fuzzy topological polysystem (Nazaroff, 1973) is a trige,é,R)
where E,%) is a fuzzy topological space (see 1l.4.E) aRda strategy set
such that Ve,e,€ E, VA€ &, VreR with ere, and e € suppA,
1B € € such thate, € supp BandB C {€, eré ande € suppA}.

A fuzzy dynamical polysystem (Warren, 1976) is a fuzzy topological
polysystem E, ¢, R) such thatVe,e,e, € E, Vr,,r, € Rwith e, r.,e and

1 2 73 1 "2 17 71 72

e,r, e, dr € Rwith e, re, and e, re,. Only such polysystems are consid-
ered below.
Ve,e,€E, VreR with e,re, the sett(e,e,r)={e€E,erein

{e€E, erg} is called the trajectory from the eventte the evente, using
the strategyr. The reachable sei(e) from e, is defined byVe € E,
K(e) ={e,dr € R, gre}; the reachable sdf(A)from the fuzzy setAe &

is K(A) = UquwppAK(el). Note that K(e), K(A), t(g,e,r) are crisp sets.

In this framework Nazaroff (1973) and Warren (1976) give some properties
of the trajectory, using the concept of boundary of a fuzzy set (see Warren,
Reference from 1.4, 1977). A fuzzy control problem for the fuzzy dynami-
cal polysystem is also defined.

Remark Considering fuzzy eventse e |n E and a fuzzy strategy
r E@(R) one could define a fuzzy trajectorty( ,r ) with membership
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function

(e)= min%ég min(tg (&), 4, (8, €), 14, (1))

SUp MIN(u (&), 4, (&, &), 1, ())).

rRrR

The fuzzy reachable set fregpusing nonfuzzy strategies Ié( e) such that

He(® = gég min(u, (&), K, (&, €))

wherer andr’' are nonfuzzy binary relations.

e. Concluding Remarks

Classical concepts such as stability have not been extended to fuzzy
systems yet (except a recent attempt by Tong (1978b), defining an equilib-
rium state as a state whose peak does not change within a given period).
Moreover, some years ago, Zadeh (1971) evoked a fuzzy theory of aggre-
gates as an open problem. In the theory of aggregates a system is viewed as
a collection of input—output pairs; an aggregate is a bundle of input-
output pairs satisfying certain conditions and a state is the name of an
aggregate (see Zadeh, NF 1969). It is still an open problem for fuzzy
systems. On the other hand, the rather rigid approach used for extending
reachability and observability to fuzzy systems may not seem intuitively
very appealing. A general theory of fuzzy systems perhaps demands more
imagination than a straightforward extension of classical concepts of
nonfuzzy system theory. Since the theory of approximate reasoning, initi-
ated by Zadeh, radically departs from multivalent logics, a theory of fuzzy
systems should perhaps be developed outside of the conceptual framework
of classical system theory.

C. FUZZY AUTOMATA

A fuzzy automatohis a fuzzy system in the sense of (1) where theldets
of inputs, S of states, andY of outputs are finite. The mathematical
formulation of a fuzzy automaton with a nonfuzzy initial state and

"Completely different but related to Poston's work (see 1l.4.F) are the fuzzy-state automata
considered by Dal Cin (1975a, b).
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nonfuzzy inputs was first proposed by Wee (1967) and can also be found
in Wee and Fu (1969) or Santos (Reference from 111.3, 1968). A fuzzy
automaton with a fuzzy initial state was first considered by Mizunebto

al. (Reference from l111.3; 1969) in the framework of language theory (see
3.A.9).

The problem of the reduction of fuzzy automata is investigated by
Santos (1972a). For this purpose, the author develops a max—min algebra
of real numbers playing a role in the theory of max—min automata similar
to that played by linear algebra in the theory of stochastic automata (see
Rabin, NF 1963; Paz, Reference from Il1.3). However, max—min algebra
strongly differs from linear algebra, and has scarcely been studied in the
literature. Various criteria of irreducibility and minimality are provided
(Santos, 1972a).

A general formulation of sequential machines encompassing determinis-
tic, nondeterministic, probabilistic, stochastic, and fuzzy finite machines
valued on [0, 1] is proposed in Santos and Wee (1968). Semantic aspects of
such machines are discussed at length by Gaines and Kohout (1976).

Valuation sets more general than [0, 1] can be used, especially any
ordered semiringR. An R-fuzzy automaton is a compleXJ(S Y,é,0, §0,

R) whereU, S Y are sets of inputs, states, and outputs, respectidedn
R-fuzzy relation onS X U X S, o an R-fuzzy relation onS X Y, and s, an
R-fuzzy set (initial state). Max and min operations are replaced by the sum
and the product of the semiring (see 3.A.f). Such automata were studied by
Wechler and Dimitrov (Reference from I11.3) in the framework of lan-
guage theory. (See also Gaines and Kohout, 1976.) Further, Gaines and
Kohout (1976) suggested “possible automata” whose valuation set consists
of the semiopen interval ]0, 1] and the elemeNi{<E, P, and I, respectively
interpreted as “necessary,” “eventual,” “possible,” and “impossibI&; {

E, P, [}, equipped with operations playing the role of max and min for
fuzzy automata, is a 4-value Post algebra; but the interaction of ]0, 1] with
P is inconsistent with a lattice structure. The authors conclude that a more
general structure than a distributive lattice is needed for the valuation set,
i.e., an ordered semiring. (N.B.: Gaines and Kohout (1976) coined the
term “possible,” in the sense of possibility distributieprfater introduced

by Zadeh.)

Other types of automata are max-product automata (Santos, 1972b; see
also Santos, Reference from III.3, 1976) where product replaces min and
R* replaces [0, 1], and fuzzy-fuzzy automata (Mizumoto and Tanaka,
Reference from 111.3) where [0, 1] is replaced by the set of normalized

TActually, the wordpossibilistic was also introduced by Arbib and Manes (1975a). How-
ever, in the late fifties, Shackle (NF 1961) was already discussing a congepssilbility much
related to Zadeh'’s approach.
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convex fuzzy sets on [0,1] and max and min by masd anin. A
distributive lattice structure is preserved in this last case.

Lastly, a very general approach to automata theory was developed by
Arbib and Manes (1975a, b) in the framework of category theory. Bobrow
and Arbib (NF 1974) had already unified the theories of minimal realiza-
tion of deterministic automata and linear systems. The study of fuzzy
machines in a category is based on the concept of “fuzzy theory” (see
[.4.F). The fuzzy transition relatiord and the output map a become
morphisms in an extended category. Because of its very high level of
abstraction, the theory of fuzzy machines in a category is beyond the scope
of this book. This approach considers fuzziness as a special mathematical
property of a system rather than a lack of precise knowledge about the
behavior of a complex process.

Remark A generalization of automata and graphs is a Petri net (see
e.g., Holt, NF 1971). Fuzzy Petri nets may be worth considering.

D. DETERMINISTIC SYSTEMS IN A FUZZY ENVIRONMENT

This section deals with deterministic systems subject to fuzzily con-
strained behavior or fuzzy inputs.

a. Deformed Systems  (Negoita and Ralescu, 1975)

A deformed system is a complexJ((A), (S B), (Y, C), 6, o, s) where
U,SY are the sets of inputs, states, and outputs fuzzily constrained by the
fuzzy setsA, B, and C, respectively,s is a transition function fronbd X S
to S whose domain is fuzzily constrained Byx A and its range b, o is
the output map, i.e., a function fro® to Y whose domain is fuzzily
restricted byB and its range fuzzily restricted b@, ands, is a nonfuzzy
initial state. This concept was introduced by Negoita and Ralescu (1974).
The state equations of a deformed system are

§..=0,8), Y =09
where 6 and o satisfy
me(S, ) = min(u,(U), ug(s)), my) = ug(s) (8)

These two inequalities express the fact thadnd o are fuzzily constrained
functions (see Il.4.Ax). The fuzzy setA can be extended to the ddt of
input stringse in a canonical way:

pa(6) = min: (u, (Ug), ma(uy), - . (W)

where 6=uu. ..\
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The extensiom of 6 from U to U* is defined by
A(6,s) = o(u, A(6,_,,8)),  A(u,s) =9(u,s)

It is easy to check thak is a fuzzily constrained function frotd* X S to
S ie.,

(A0, 8)) = me(S,,) = Min(u,.(6), ug(S)).

It is clear that the response map- A is a fuzzily constrained function.
Negoita and Ralescu (1975) have developed a theory of minimal realiza-
tion for a deformed system; this theory is completely parallel to the same
theory for classical nonfuzzy systems.

b. Fuzzy Noise (Sugeno and Terano, 1977)

In this section a representation of a deterministic system subject to
fuzzily noised input is derived. The transition functiénof the system is
viewed as a mapping frotd X Q X Swhere() is a set of inputs, assumed
to be uncontrollable. The state equations of the system are

St+1 = S(Ut’ Wy §)7 yt = O-(St)

() is assumed to be equipped with a fuzzy meaguigee 11.5.A.a), which is
assumed to be time-invariant and expresses the fuzzy noise.

At time t the noised input induces 08 a fuzzy measurd, that is
recursively defined as follows: lef be the initial state; the fuzzy measure
h, is such that

VA € 9(S), h(A) = u,(s).

Consider now the fuzzy product measureSix (), denotedh X g, such
that

VA€ 2Q X 9, (X A =L@, 9 g0 > h() (9
VB € (9, h,, (B) = (h X 9)(A)
where Aut = {(w,9), 8(u, w, s) € B}.

g is similar to the probability measure of a noise that disturbs the input.
The uncertainty in the knowledge of the state is due to the fuzzy noise, and
the corresponding fuzzy measung , is canonically induced from both
andh.

It is supposed that

A09', 0", 9=A[0", 0", A, o', 9]
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where A is defined as in (@) = uu, ...u, ' =u,,...,U.,0
= wo, ... .0 ,ade" =o,,, ... wWitht <t <t"andt, t,t" €N.
Denoting by o (B [li, s) the conditional fuzzy measure of the state transi-

tion

0,(B b, 9) = J, fa, (@, 9) o g(0)}
it can be shown that

houB) = f.0,B DU, .. W, 9o (D)
with

0B, Uy - - U, S) = f.04(B DUy - - U, §) o 0y(Dly. - .Uy, )

0,(B 0, 5) = f u,, (w,5) > gL

Assume now thag is a possibility measure Il associated with a possibil-
ity distribution 7 on Q (see Il.5.A.a.ty). h is now a possibility measure
associated with a possibility distributign Formula (9) becomes

(h, X 1)(A) = sup sup minf, (s, »), m(w), Y(S)).

SESweEQ

The image ofA under 9, is B = 0, (A). The possibility distributiory,, , is
obtained by settindd = {s, ,}:

+ 1

V., t6E,)= Slﬂ? mivi(St), T (u)t)),

St+1 :tgut (0p 5)
which is nothing but (6) wherd is crisp and the fuzzy part of the input is
distinguished from the controllable (nonfuzzy part) using the formal equiv-
alence between possibility distribution and fuzzy sets.

E. LINEAR FUZZY SYSTEMS

We shall call fuzzy linear systems,systems defined by linear state
equations whose coefficients are fuzzy numbers. The state will be fuzzy.
The initial state and the inputs may also be vectors of fuzzy numbers. The
state at ting + 1 is given by the equations, in the sense of I1.26B,h.

5.= AO§®BO, (10)

where A and B aren X n andn X m fuzzy matrices, respectively (see
1.2.B.i); &, .8, and U, aren, n, andm fuzzy vectors respectively; the sum

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



l11.2. Dynamic Fuzzy Systems 204

and product of fuzzy matrices can be expressed, using the extended
addition and product,

§.=(8,08)® ... ®(3,05")® (0,001 .. .®(h,00

An equation similar to @ was first hinted at by Negoita and Stefanescu
(1974) in a category-theoretic formulation. Jain (1976, 1977) studied fuzzy
linear systems in the one-dimensional case. Equation (10) can be expanded
as

§=A0 §®BO,

5= AO(AO§®BONL)PBON,

5.,.= AO(AO (... .O(AO§D®BOL)D. ... )DBO_)PBO,.
_ Generally, the expression af, cannot be reduced (e.gs,= A’O s,
A© BOu®BOu) because of the nondistributivity of>(over © (see
11.2.B.d. ﬁ) which forbids the associativity of the fuzzy matrix product.
Especially, we have!\@(A@A) #(AO A © A. However, a sufficient con-
dition that validates the associativity is the positivity of the fuzzy entries of
A. At any rate, it is always possible to compute, using the above
expression provided that we perform the operations recursively.

N.B.: Since (10) is an explicit equation yieldisg, , it is consistent
with the extension principle, that is to say it is also a fuzzy equation in the
sense of 11.2.B.1.

F. OTHER TOPICS RELATED TO FUZZINESS AND SYSTEMS

This last section gives a survey of works dealing with fuzzy identifica-
tion, validation of fuzzy models, and fuzzy classifications of systems.
Research in these domains is only at its initial stages of development. We
begin with a remark about fuzzy models.

a. Behavior of Fuzzy Models

Consider a fuzzy model that simulates a complex dynamical system. We
suppose that we know only the initial state and the transition function
between states in a fuzzy way. The problem is to forecast the future states
of the system by means of a fuzzy model. Intuitively, in such models the
state at timet' is at least as fuzzily known as statgts< t', unless some
external information is provided. Clearly, this is usually true for a fuzzy
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linear system, for instance, because the result of extended additions or
products is always relatively more fuzzy than the least fuzzy of the
involved operands. Note that this situation is similar to that of chains of
fuzzy inferences in approximate reasoning. An interesting feature of fuzzy
models in forecast analysis may be their ability to exhibit their own limit of
significance; beyond a certain horizon the forecast becomes too imprecise
to be of any use. A periodical restatement of feedback terms may be
necessary to limit the increase of fuzziness.

N.B.: 1. Recall that fuzziness is one aspect of imprecision and models
the lack of sharp boundaries of tolerance intervals. The level of fuzziness
can be evaluated by means of entropy.

2. Thomason (Reference from 11.3) showed that the fuzzy state of a
finite n-state fuzzy system in free motion (without input) either converges
or oscillates with a finite period. Denoting by the binary transition
matrix and by s, the initial state, a sufficient convergence conditiofYiis

1<i=n, 3j, 1<j=<n, such thatg < min 3‘3,6“? The convergence
occurs in a finite number of states (see 11.3.B.b.~).

b. Identification

The problem of identification of fuzzy systems was recently considered
for the first time by R. M. Tong (1978). A fuzzy model is viewed there as a
set of fuzzy conditional propositions such as “if <last input> is small and if
<last output> is large, then <current output> is medium.” Those proposi-
tions are called rules. Tong proposes indices of quality for the assessment
of such models so as to compare them with respect to a set of data (i.e.,
input-output pairs). The identification method is called “logical examina-
tion.” A class of models is characterized by the structure of the rules,
which corresponds to a data pattern. For the above example, the data
pattern is @, _,, Y, ,Y). The logical examination technique is then to
match each data pattern that can be built out of the data set with all
possible rules that can be defined for the class of models. When the
consistency between a data pattern and a rule is high enough, the rule is
kept as part of the model unless a significant data pattern is found
contradicting the rule.

Identification of fuzzy models must not be confused with fuzzy identifi-
cation of models. (Gaines, 1977) has proposed a fuzzification of the
general identification problem formulated in Section A.a. The behavior of
the process to be identified is assumed not to be observed precisely, but is
instead a fuzzy restriction on the set of possible behavigrs.e., a
mapping 1 from B to [0, 1]. The mapping can clearly be extended in the
usual way toM,, the nonfuzzy set of admissible models that describe the
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nonfuzzy behavior b: the mappimgc from M, the set of models, to [0, 1],
such that

Ome M,  p*(m)= sup min(yy, (m), p(b))

defines the fuzzy admissible subset of models induced by the fuzzy
behavior. The author illustrates his approach on an example of fuzzy
identification of a stochastic automaton. Note that “this simple extension
does not take into account the relative degrees of approximation of the
same models to differing behaviors.”

c. Validation of Models

This aspect of identification was considered by Chang (1977) for the
validation of economic models. Given a structural equagion F(x, B)
where x is a vector of exogenous variables,a vector of endogenous
variables, andB a vector of parameters, the problem of determining the
parametersf from economic data is called the estimation problem. The
author considersf as a fuzzy seB constructed as follows

15(B) = exgd(N-1)(1-C(B)/ C (B,))]

where C(B)= % [y, = F(x, BI'WIy, = F(x, B, {(x.),i=1,N} is
a set of data, a matrix of weight§(f) the cost associated with a
forecast error, ang a value off3 minimizing C(B).

N.B.: This is not the only way of defining.

Given B and a fuzzy real vector x, the modely= F(x, f) induces a
fuzzy setA of possible values fory:

() = sup min(u(X), Ug(B)).
y = F(x, B)
u,(B) may be viewed as an evaluation of the validity of the parameter
value B with respect to the set of data. Whem different forecasting
models are available, the author suggests a way of combining their results.
Let A be the fuzzy result of model that is assumed to have a reliability
r. € [0, 1]. The consensus of the m models is given by
A= (1A where 1, (x)=[u, (0]
i=1m i

When hgtd) is close to I, than models have a consensus that is likely to
be reliable; if hgd) is close to 0, no consensus can be reached among the
forecasts.

Moreover, Yager (1978) recently outlined a linguistic approach for the
validation of fuzzy models with respect to a set of fuzzy data. Formally,
the fuzzy model is described by the equatjor= F( x ) wherex andy are
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fuzzy sets ofR. The set of data is made up of paits B) of real fuzzy sets
where A is the input andB the output of the process under consideration.
The problem is to compar&(A) with the observationB taken as a
reference. The author suggests the use of a truth qualification rule (see
|.LE.b), i.e., findT € ([0, 1]) such that the fuzzy propositioly s F(A) is

7" is semantically equivalent to the fuzzy proposition “yBs’ T linguisti-

cally measures the compatibility of the fuzzy model with the pair of fuzzy

data(A, B).

d. Fuzzy Classes of Systems

The basic idea is that the class of nonfuzzy systems that are approxi-
mately equivalent to a given (type of) system from the point of view of
their behaviors is a fuzzy class of systems, for instance, the class of systems
that are approximately linear. This idea of fuzzy classification of systems
was first hinted at by Zadeh (1965). Saridis (1975) applied it to the
classification of nonlinear systems according to their nonlinearities. Pattern
recognition methods are first used to build crisp classes. “Generally this
approach does not answer the question of complete identification of the
nonlinearities involved within one class.” To distinguish between the
nonlinearities belonging to a single class, membership values in this class
are defined for each nonlinearity. One of these is considered as a reference
with a membership value 1. The membership value of each nonlinearity is
calculated by comparing the coefficients of its polynomial series expansion
to that of the reference nonlinearity. This technique of classification is
similar to those used in fuzzy pattern classification (IV.6).
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Chapter 3

FUZZY LANGUAGES—
FUZZY ALGORITHMS

This chapter is divided into two distinct parts. The first deals with the
application of fuzzy set theory to formal languages. Many papers have
been published on this topic. These are mainly interested in studying the
properties of fuzzy grammars and the recognition capabilities of fuzzy
automata. However, other models have been developed where the original
max and min operators and the valuation set [0, 1] were more or less given
up and other structures were investigated. These models share little with
the initial motivations and purposes of fuzzy set theory. On the contrary,
in order to reduce the gap between formal languages and natural language,
Zadeh has proposed an alternative approach where the semantic aspects
are no longer neglected.

The second part is devoted to fuzzy algorithms. A clear distinction is
made between usual algorithms extended to deal with fuzzy data and
algorithms that are approximate descriptions of complex actions or proce-
dures, yielding fuzzy or nonfuzzy results. Both formal and semantic aspects
are discussed.

A. FUZZY LANGUAGES AND FUZZY GRAMMARS

“The precision of formal languages contrasts rather sharply with the
imprecision of natural languages. To reduce the gap between them, it is
natural to introduce randomness into the structure of formal languages,
thus leading to the concept of stochastic languages” (see, e.g., Fu and

210
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Huang, NF 1972). “Another possibility lies in the introduction of fuzzi-
ness” (Lee and Zadeh, 1969).

This section gives a survey of fuztgrmal languages and grammars and
more general formal models that encompass them. The reader is assumed
familiar with the theory of formal languages (see, e.g., Hopcroft and
Ullman, NF 1969).

a. Fuzzy Languages (Lee and Zadeh, 1969)

Let V. be a finite set called aalphabet.We denote byV* the set of
finite strings constructed by concatenation of element¥ oincluding the
null string A. V¥ is a free monoid oveW,_ A language is a subset &ff.
Very naturally, afuzzy formal languages a fuzzy set on V7, i.e.,

v= Z,UQ(X)/X

xDVT

with ., a function fromV¥ to [0, 1]. p(X) is the degree of membership of
in ¥ and can be interpreted as a degree of properness of the string
valuating to what extent it is suitable to use it.

Union and intersection of fuzzy languages can be defined as usual

QLU P,y o, (¥) = Maxu, (9, p (), VX E VY,
FURRRU B, o, (X) = Min(u, (%), we, (X)),  VXE VL.

And the complemerit of £ has membership function Lt

A specific operation between languagescacatenation any stringx in
V. is the concatenation of a prefix stringand a suffix stringv : x = uv.
According to the extension principle, the concatenatiold, of two fuzzy
languages?, and ¥, is defined by

by () = SUD NG, (1), b (V)

The concatenation of fuzzy languages is associative. Denoting" lie
concatenation of? n times, the Kleene closure &f is = {A} U U U

LyU- - -uUU- - -. Note thatVxe V., if x=aa,- - -a,a € V,
i =1,k then
! m%
— ol
By ()= sipe sup din (U )3
EPi. uj vy

k is the length ofx, denotedl(X). R
The following property holds (Negoita and Ralescu, 19745% X iff
mo(A) =1 and p,(w) = min(u,(U), u(v)) Yu,v € V5
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A fuzzy language that is its own Kleene closure is said to be closed, and
it is obviously a fuzzy monoid iV, in the sense of Rosenfeld (Reference
from 11.1).

N.B.: The idea of valuating the strings of a language is not new. In a
probabilistic context Rabin (NF 1963) already used weighted languages,
but the semantics were different: the weight of a string reflected a
frequency of occurrence. At about the same time Chomsky and Schitzen-
berger (NF 1970) assigned integer values to strings in order to model
structural ambiguity.

b. Fuzzy Grammars (Lee and Zadeh, 1969)

“Informally, a fuzzy grammarmay be viewed as a set of rules for
generating the elements of a fuzzy set” (Lee and Zadeh, 1969). More
precisely, a fuzzy grammar is a quadru@e- (V, V, P, 9 where:V_ is a
set of terminals or alphabel/ is a set of nonterminalsV( N V_= @),
i.e., labels of certain fuzzy sets &ff called fuzzy syntactic categorieB; is
a finite set of rules called productions; asé& V, is the initial symbol,
i.e., the label of the syntactic category “string.” The elements$ aire
expressions of the form 2 B; p €[0,1] where « and B are strings in
(V;UV)*. p is the grade of membership @ given «. The symbol
always indicates a free monoX¥ over the setX. p also expresses a degree
of properness of the rule - B.

Let @,...,a_ be strings in (,UV)*, and a,Z e, ... ,a_ Do
be productions. Thew_ is said to bederivable from «, in G, more briefly
a0 a . The expressional"_% oy, ..., Da_ wil be referred to as a
derivation chain fromu, to « .

A fuzzy grammarG generates a fuzzy languag¥G) in the following
manner. A stringx of V* is said to be in¥(G) iff x is derivable froms,
The grade of membershijp_(X) of x in ¥(G) is

me(X) = sup minu(s -» «,), wla, -» a,), ..., e, - X))>0 (2)

where u(a, — «,, ) is the nonnullp, such that

B, e, 00P DI =0,m,

if ¢,=sande,_, =x

The supremum is taken over all derivation chains foto x. Note that
“X is in ¥(G)” means x € supp¥(G). The degree of properness of a
derivation chain is that of its least proper link, gudx) is calculated on
the “best” chain. Two fuzzy grammafS and G, are said to be equivalent

iff Vxe V7, ,LLGl(x) = ,LLGZ(X).
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Example V, ={s A B);V,.={a, b}

03 05 02 05

_[B-a, Ss-aA, s-DbA, A—bH

P=0 03 07 01 0.4
k-as, s-aB, s-b, B-b{H

Consider the stringb. There are three derivation chains:

0.7 04 05 05 03 01
s-aB - ab, saA s ab, s-as—ab,

and u(ab) = max(min(0.7, 0.4), min(0.5, 0.5), min(0.3, 0.1)) = 0.5.
Paralleling the standard classification of ordinary grammars, we can
distinguish four types of fuzzy grammars:

Type 0 grammarThe allowed productions are of the general form
a’B,p>0,a BE(V,UV) N .

Type 1 grammar(context-sensitive). The productions are of the form
aAa,’ aBa,p>0,a,a,B are in Y.UV)* Ain V, BZA. s LA
is also allowed.

Type 2 grammar(context-free). The allowable productions are now
A% B, p>0,AEV, BE(V,UV)* B£A, ands 3 A. _

Type 3 grammar(regular). The allowable productions afe?. aB or
A% a, p>0,whereae V ; A, BEV, ands > A.

In the above example the gramn@uris regular. IfG is of typei, ¥(G) is
said to be of type.

A grammar is said to be recursive iff there is an algorithm that computes
us(X). Lee and Zadeh (1969) showed that a fuzzy context-sensitive gram-
mar was recursive. The proof uses loop-free derivation chains; the set of
such chains, over which the supremum is taken in (1), can be further
restricted to those of bounded length which depends ori(x) and
V.UV, | The number of loop-free chains is finite because a production
of a context-sensitive grammar is noncontracting, ¥, &aj), I(a))
= |(a): and thus the search process is finite. Note that type 2 and 3
grammars are recursive too since they are particular cases of context-
sensitive grammars.

Another kind of extension of classical results to fuzzy grammar is
Chomsky and Greibach normal forms for context-free grammars (Lee and
Zadeh 1969); leG be a fuzzy context-free grammar:

G is equivalent to a fuzzy grammar whose productions are of the form
A% BCorAZ?% awhereA B, CeV,, aeV, (Chomsky);
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G is equivalent to a fuzzy grammar whose productions are of the form
A% aa, a€V, a€V,, A€V, (Greibach).

The canonical forms are obtained as for nonfuzzy grammars, provided we
add formula (1) for valuating derivation chains. For a detailed proof, the
reader is referred to Lee and Zadeh (1969).

c. Cut-Point Languages

Let ¥(G) be a fuzzy language an@ a grammar that generaté¥G).
Several nonfuzzy languages can be generated f(®). For instance,

LGN ={xE V.| u (x>}
LG, = N ={xe V.| u ) = A},
LG, = N = {XEV; | u(d =1},

UG, \

1!

\) ={XE VL [ N <) = A},

where A, A, A, are thresholds that belong to [0, 1]. These languages are
called cut-point languages. Note that sinde is finite, the image ofV]
through ., u (Vy) C [0, 1], is also finite because we use only max and min
operators to valuate strings. Lef(V;) be {0, u, w, . . . ,,up} where p is
at most the number of rules . Thus the number of cut-point languages
of each kind is finite, and depends on the number of distinct production
valuations.

Mizumoto et al. (1970) have proven the following properties:

(i) VA, Vi=0, 3, if Gis a fuzzy grammar of type then¥(G, A) is of
typei.
(i) VA, for i=0 and 2, ifG is a fuzzy grammar of type, then
G, A, L) andL(G, =, 1) may not be of typeé. Fori=3, ¥(G, A,
A,) and¥(G, = ) are of type 3. For=1, the result is unknown.
(i) VA, 1=0, 3, ifG is a fuzzy grammar of type then¥(G, = ,A) is of
typei.

Proof. (i) and (iii) stem from the fact that only rules of production
a B such thatp> A (resp. p=A) are used to build¢(G, 1) (resp.
LG, =, A). Moreover, &(G, A, A,)) = &(G,A) —2(G,A); ¥(G, = \)=L(G,
=, 1) - (G, A), and the sets of all languages of type 0 and 2 are not closed
under subtraction. For=1, the result is unknown. Far=3, the closure
property holds.
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d. Fuzzy Syntax Directed Translations (Thomason, 1974)

A translationT of a languagel, in V. into a languagel, in W, where
V., W, are alphabets is a fuzzy relation ®hXx W, such that donT =&,
and ranT =4, where donT and rarT are respectively the domain and
the range ofT (see I.3.B.a).u (x,y) is the grade of properness of
translatingx by y, X € supp&,, y € supp¥..

An efficient model in formal language translation theory is that of a
syntax-directed translation scheme (SDTS). A fuzzy STDS is a 5-tuple
TI=V,V,W,s,D whereV,_ is a set of nonterminalsy, and W, are
alphabets,s an initial symbol andD a set of double productioms 2 «, B8
with A€V, (o, B) € (V,;UV)* X (W, U V)* and p>0 valuates the
translation ofa into B.

N.B.: « and B are assumed to contain the same nonterminal elements,
but not necessarily to have the same length.

Obviously, when a string is generated \fy another string is generated
in W. by means of a double derivation chain. A fuzzy STDS builds the
translation relatiorT.

Example V, ={s A B}, V.={a b}, W, ={c,d, €
0.3 0.3 05 |:|
-as,Cs;, S-bses; s-aA, dAD

. [] o7 02 01 O]
Productions.[5 —-aB,dB; s-bACA; s-be[]
O

HA;b,c; B(fb,c H

Considerab € V. There are two derivation chains that translakeinto
dc:

0.7 0.4 05 05
s-aB,dB - ab, dc and s aA, dA - ab, dc.

According to (1), u(ab, dc) = max(min(0.7, 0.4), min(0.5, 0.5)) = 0.5. An-
other possible translation ab is ce since ¢ %’ as cs %' ab, ce) and . (ab,
do) = min(0.3, 0.1) = 0.1.

N.B.: Note that a regular STDS, as the one of the example, always
translates a string into one or several strings of the same length, that of the
string to be translated.

e. N-fold Fuzzy Grammars (Mizumotoet al, 1970, 1973a)

Ordinary fuzzy grammars have one major drawback that prevents them
from being a convenient tool for the modeling of natural language: the
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grade of properness of productions is always context-free, which is not
realistic.

Instead of increasing/, or P in order to cope with this context-
dependency, it is possible to define a grammar where grades of properness
of productions depend on productions that have been previously used.

An N-fold fuzzy grammar is a 6-tuplév,, V,,s, P, J, %) =G whereV,
is a set of terminalsy,, of nonterminals, ang an initial symbol.J is a set
of labels for production rulesIC N); P a set of production rules -
wherel € J; and % a set ofN+ 1 fuzzy relations denoteR, i= 1,N+ 1.

R is ani-ary relation onJ, i=2, N+ 1, such thatpRi(Il, .. .,l) is the
degree of properness of using productlonvhen productiond,, . . . ,|
have already been used successively just béfanea derivation chain.

Fori=1, p(l) valuates productions of the form.s«, wherel belongs
to a subsed, of J, which labels such productions.

Consider the derivation chain

i—-1

, P2 Pp
S->a; -0, - - >0,
Ih ] Ip
We havep, = ,LLRl(Il), p, = ,LLRZ(Il, L), - o o Py =M +1(I1, oo ly, s and

for i >N+ 1, pi:,uRN+1(Ii_N, ...,1). Hence, the grade of properness of a
production depends on th¢ previously used productions.
N.B.: A O-fold fuzzy grammar is an ordinary fuzzy grammar.

Example (Mizumoto et al., 1970) We give an example of a I-fold
fuzzy grammar:

V,=(AB,C9, V,={abc J={1} Mg, (1) =0.9.
R, is defined by

(1) s- ABC
2) A-aA
(3) B-DbB
4) C-cC
5) A- aAa
(6) B - bBb
(7) C - cCc
B8 A-a
9 B-b
(10) C-c

0.7 0.7
0.8
0.8
0.8 0.8
0.9

o
O
N N ;) N N ;) N N

AN AN AN AN AN AN NN NN

p—

In the list of productions each blank space indicates that the value of r at
that space is a numerical value within the range [0, 0.65]. Consider the
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generation of the sequenaéb®c’:
0.9 0.7 0.7 0.7 0.7
(1) S- ABC 2 aABC 2 aAbBC 2 aAbBcC 3 a’AbBcC

0.7 0.7 0.7 09 09
S a?Ab%BcC - a’Ab%Bc?C - a’h?Bc’C - a’b’c’C - a’b®cd.
3 4 8 9 10

0.9 0.8 08 08
(ii) s ABC - aAaBC — aAabBbC — aAabBbcCe

08 09 09
= *bBbcCc 2 *b%cCc = a’b’cd.

The grades of properness of (i) and (ii) are respectively 0.7 and 0.8. Other
derivations are possible. It could be checked thgl’h’c®) = 0.8. More-
over, the cut-point languages Gf are

LG, 0.95)=@; L@G,0.85)={ab,c};
G, 0.75) =@ b~ -1 n>0,ne N}
(G, 0.65) =fa"b"c" I h>0,h e N}
¥G,0) ={abc'Ip,g,reEN and pgrz0}.

Note thatG has a context-free structure, afedG, 0.75), ¥(G, 0.65) are
context-sensitive languages. Hence, typeN-2old fuzzy grammars can
generate type 1 fuzzy languages, iM-fold fuzzy grammars are more
powerful than ordinary fuzzy grammars.

Mizumoto et al. (1973a) showed that given a regulbrfold fuzzy
grammar, it is always possible to build ad + 1)-fold fuzzy grammar and
an (N —1)-fold fuzzy grammar N = 1) that are equivalent to the initial
grammar. Hence, a regul&-fold fuzzy grammar is able to generate only
regular fuzzy languages and is a useless notion.

N.B.: Another way of reducing the gap between formal and natural
languages by modifying a fuzzy grammar was suggested by Kandel (1974)
who constrains derivations through a control language. This is a set of
strings that encode allowed derivation chains in a deterministic fashion.
Although this approach seems much more rigid than that of Mizumioto
al. (1973a) the determination of the control language looks more straight-
forward than that of the relatiorR, from the point of view of grammati-
cal inference.

f. Other Kinds of Grammars

Other kinds of fuzzy grammars have been considered in the literature.
Santos (1975a, b) has studied the so-called max-product grammars, which
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are fuzzy grammars such that the valuation set of productiong®.is
Moreover, for the evaluation of a derivation chain, the product replaces
min in (1). Max-product grammars also arise naturally from the applica-
tion of maximal interpretation of stochastic grammars (Fu and Huang, NF
1972). Santos (1975a) proved that context-free max-product grammars
generate a set of fuzzy languages that contains the set of fuzzy context-free
languages as a proper subset, without being the set of fuzzy context-
sensitive languages. Regular max-product grammars were investigated in
Santos (1975b). They are more general than the max-min ones, in that
they generate nonregular languages. But some context-free and stochastic
languages are not obtained.

DePalma and Yau (1975) introducddactionally fuzzy grammarsA
string is derived in the same manner as in the case of a fuzzy grammar.
However, the membership of a string is given by

D”k []

o{1)

He (%) SUP;?DD[O 1]
h(

with k=index of a derivation chain leading to R, =length of thekth
derivation chain;g and h functions fromJ to R, where J labels the
productions, andh(l) = g(l) VI € J; and the convention 0/0 =0. Frac-
tionally fuzzy grammars were used by both authors instead of fuzzy
grammars in order to reduce the combinatorial aspect of parsing in a
pattern recognition procedure (see IV.6.A.b).

Fuzzy tree grammars were also considered by Inagaki and Fukumura
(1975). A tree grammar (see Brainard, NF 1969) is a 5-togleV(, r, P, 9
where V,, V, are sets of nonterminals and terminals, respectivelg a
mappingV, UV, - N ranking V. and V,, P is a finite set of productions
® - ¥ with ® and¥ being trees overM, U V, ). r is used for encoding
the trees. Inagaki and Fukumura use production rules valuated on [0, 1].

Another way of increasing the generative power of a fuzzy grammar is to
take a lattice as a valuation set. A general formulation of formal lattice-
valued grammars was proposed by Mizumetal. (1972).

An L-fuzzy language over an alphabét is anL-fuzzy set (see 1.1.G.a)
on V.. Union and intersection are defined using the operators sup and inf
of the latticeL, as in Il.1.G.a. The concatenation of twefuzzy languages
&, and &, is very similar to that of ordinary fuzzy languages:

XV, p, ()= supinf (g, (1), b, (V)

ulZIVT U T
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Mizumoto et al. suggest that sup and inf may be exchanged. We then
obtain an inf-sup concatenation. Kleene closure is also defined very
similarly, as above in a.

An L-fuzzy grammar is a fuzzy grammar where productions are valued
in a latticeL, also called aweighting space(see Kimet al., 1974). The
properties ofL-fuzzy grammars have been studied by several authors for
particular types of lattices. Here we only state some results without proofs:

L is a Boolean finite lattice BMizumoto et al., 1975a):

the class of cut-point languag&$¢G, A), A € B, generated by context-free
B-fuzzy grammars properly contains the class of context-free languages.

any cut-point languagé!(G, 1), A € B, generated by regulaB-fuzzy
grammars is a regular language;

regular B-fuzzy languages are a closed set under union, intersection,
sup-inf concatenation, and Kleene closure; however, the complement (in
the sense of Brown, Reference from II.1; see 1.1.G.a) of a reglazzy
language is generally not a reguBifuzzy language, but can be generated
through inf-sup concatenation of reguBsfuzzy languages.

context-free B-fuzzy languages are a closed set under union, sup-inf
concatenation, and Kleene closure, but not under intersection and comple-
mentation.

L is an ordered semiring RWechler, 1975a):

a semiring R, +, ) is an algebraic structure equipped with two opera-
tions + and -, such that:

(R, +) is a semigroup (or monoid), i.e¥r,r,e Rr +r,€R, + is
associatived0€ R r +0=0+r =r for anyr € R; 0 isan identity;

(R-{0}, -) is a semigroup; the identity is 1,

O is a zero for -, i.,eYr € R, 0r=r-0=0;

- is distributive over +.

A semiringR is said to be an ordered semiring, (<) iff < is a partial
ordering and:

Vr,r,r,€RIif ry<r, thenr +r,<r +r_ andr,+r <r +r,

Vr,r,e R, Vr,#0 such that Gsr, if r,<r, thenr -r,<r,-r, and

r,-r = ry,-r,.

Examples Examples include [0, 1] with the usual ordering, + = max,
- = min, N, the set of positive integerZ, the set of integerd} that of real
numbers, any complete distributive lattice equipped with their usual opera-
tions.
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The weight of a string generated by Brfuzzy grammar, wher® is an
ordered semiring is the sum (+) of the weights of all the derivation chains
from the initial symbol to the string. The weight of a derivation chain is
the product of the weights of the productions involved in the chain. The
partial ordering= is used for the definition of cut-point languages.

Wechler (1975a) gives the following theorem: I&tbe a regulaR-fuzzy
grammar. Therk(G, r) is a regular language for evenye R if R is a finite
ordered semiring or a complete distributive latticeNor

N.B.: The idea of using an ordered semiring to weight the productions
of a grammar and to valuate strings in a language is not new. Chomsky
and Schutzenberger (NF 1970) first suggested it in 1963. Each string
generated by a gramm& was associated with a positive integemwhich
was the number of possible derivation chains existing from the initial
symbol tox. n measured the grade of ambiguity »fwith respect toG.

Both authors studied the algebraic properties of sieHuzzy languages”
generated by context-free grammars. They introduced a representation of
the language which was a formal power ser}fezgvfmv, XX wherew is

the weighting function andw, xX[(=w(x) € N; this notation is very similar

to that introduced by Zadeh (Reference from 1.2, 1972; see II.1.A) for
representing fuzzy sets.

Other examples of formal grammars with weights can be found in
Mizumoto et al (1973b).

In conclusion, it seems rather easy to enhance the generative power of
fuzzy context-free grammars by modifying the weighting space; however,
very often,L-fuzzy grammars, when regular, generate only regutfuzzy
languages for usudl. Modifying also the valuation rules of derivation
chains and strings looks more efficient, as shown by the properties of
max-product fuzzy grammars.

g. Languages and Automata
a. Generation of a Fuzzy Language by a Fuzzy Automaton

Fuzzy automata have been introduced in the previous chapter as models
of fuzzy systems. Here they will be considered as acceptors of fuzzy
languages.

Let /=(U, S, §0, 6, o) be the fuzzy automaton already introduced in
Chapter 2. Recall that:

U is a finite set of inputs) ={a,...,a}
Sis a finite set of states, Sgf{...,q}

Y is a finite set of outputsy={y,,...,y}

s, is a fuzzy set orX, the fuzzy initial state;
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6 is a fuzzy ternary relation o8 X U X S made up ofm transition
relations ¢} ., for the states;
o is a fuzzy relation or§ X Y, i.e., the output map.

When a nonfuzzy inputi is processed by the automaton, the output can
be symbolically writteny =s o8 o o wheree is the (associative) com-
position of binary relations. Once a string of inputs u.u,- - -u_has
been processed by the automaton, the fuzzy output is

§=%0(3, 00, MB3,)c0=%0A,00.

Denote by A, the result of the compositio®u1o- 0B, . A, is the
identity relation.

From now on we consider automata whose output set is the singleton
{y}. What such automata compute are membership values, y.e.,
f,(6)/y using Zadeh’s notation, wherfg is the response function of the
automaton. For simplicity, we shall wrifg(6) = s ° A, ° o.

Note that the image obt* (the free monoid oveltJ containing all the
finite strings of inputs) undef  is a fuzzy languagél(sf). Hence, fuzzy
automata can recognize fuzzy languages.

B. Structural Properties of Automata-Generated Fuzzy Languages

Structural properties of fuzzy languages accepted by fuzzy automata
were studied by Mizumotet al (1969) and by Santos (1968, 1969b).

First, there is a closure property under and N (Mizumoto et al,
1969).

(1) If i, andd, are fuzzy automatalsi :&ﬁlH&(lzsuch that

Qs = L(sl) U L(st,)

A is defined byU=U UU,S=SUS, Y=Y UY, Using matrix
notations (see 1.3.B4);

~

s 00 (5,5,) o=Ff
Ho sH 7 %) o,

where the subscript 1 or 2 denotes a componen{ obr s, respectively.
(2) If o, andd, are fuzzy automataldsd = o, ® 54, such that

L(oA) = &(sA) N (A)
It is defined by U=U XU, S=§ XS, Y=Y XY, §=c(5)N

C(8,)=8 X8, §=8 XS, 0=0,X0, 8 5, o are the joins (I1.3.A.a) of

6 andé,, So, and Sy 03 and o, respectively.

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



l11.3. Fuzzy Languages—Fuzzy Algorithms 222

Now a property relating fuzzy languages and their complement is given.

(3) VA, I that recognizesi(sd) and« is a “min-max automaton,” i.e.,
1-1,(8)=% chg00=%35Re50=f_(6).

A is a “min-max automaton” becau®e min-max composition is used
instead ofe.

Lastly, the following propositions were proved by Santos (1977):

(4) If o, andd, are fuzzy automatadsd = o, o s, such that

L(oA) = &(A)(A,)  (concatenation)
(5) If o is a fuzzy automaton, thedsd such that

~

8(&@) = AB(&Q) (Kleene closure)

(6) If o1 is a fuzzy automaton, theBs such that¥(«d) = a"¥(4A,),
defined as

f (6) = min(a, f&ql(e)), voe U*, and a€]0,1].

is the same asd,Z except its output mapr is defined by Vg €S
,LLU(qJ., y) = mina, Mu(qj, y)) where o, is the output map of{..

v. Fuzzy Automata and Regular Grammars

In this section we consider a restricted type of fuzzy automaton whose
initial state is not fuzzy, and is a classical function fronF to {y}, F
being a nonfuzzy subset of states, called “final states,” |iLgs,y) =1 iff
seF
' Two automatas{, and s, are said to be equivalent iff(sd,) = £(s1,).

Any fuzzy automaton as defined ua is equivalent to a restricted fuzzy
automaton. For considedl = (U,S Y, §,6,0). o' =(U,SU{s,y},Y', 5,

&', d’) is equivalent tod provided that

sis an artificial state added 8 and the initial state ofd';
&' is defined as followsu (a, s, S) = u,(a, s, s) Vs,s €§ Va € U;

Hy(a8,s) = max min(ugo(s’), ud(a,s’,s)) Os0s,
,s8)=0 for sOSU{Sy};
,s,y):r?gg( min(ud(a,s,s’),ua(s',y)) OsOs;
,y,s)=0 OsUS or s=5
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The final state ofd’ isy. Y ={y} where Y is artificially introduced and
o is such thatu (s,y) =0 Vs€ SU{s} and 1 fors=y. Then, given an
input stringé=u.u,---u, u €U,

f.(6)
= max | min{pg (), (0§, 8). (U Scar 8o (S0 Y)
= max _min{y, (u,5.8). 1y (1,5, 8) - 5 (U S Y))
=1,(0)

becauses is not fuzzy andu_(y,¥) =1. Whenk=1, we use the expres-
sion for u(a, S,Y).

Santos (1968) showed that the capacity of a fuzzy automaton as an
acceptor is equal to that of a nonfuzzy automaton. More specifically, for a

given regular fuzzy grammds, there exists a fuzzy automatefi such that

L(G) = &(«A) and conversely. The proof given here is similar to Mizumoto

et al’s (1970):

(i) Let G=(V,V,, s, P,J be a regular fuzzy grammar. The corre-
sponding fuzzy automaton! ={U, S, Y, s, 4, F) where the initial
states, is nonfuzzy and- is the set of final states is defined by

U=V, S=JU{s, Y={y} (any singleton),

e s O, ° .OrpH
s =s, L@DJ,UATaDDPE;

Vsl,sje S Vae U, ufs,a sj) =p iff (s is the index of a produc-
tion A - bB andsj that of the productioB # a or B £ aC) or
(s=s andsJ is the index of the productios 2 aA); u(s, a, sJ) =0
otherwise. It is easy to verify that any sequence of transitiond of

from the initial state to a final state has a nonzero membership

value iff the corresponding input string is generatedGoy
(i) Let #=(U,SY,s,d, F) be a fuzzy restricted automaton. It is

possible to consider only such an automaton since a general one
can always be put into a restricted form. The equivalent fuzzy

grammar is defined by

V.=U, V,=S-F, s=s,

0

P contains productions L} as; when u (s, a, sj,) =p,>0 ands 7 a
when u(s, a, sJ) =p> 0, ands € F wheresJ can be the initial state

s, QE.D.

Hence, fuzzy automata generate regular fuzzy languages.
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8. Other Properties of Fuzzy Automata

The following property gives a sufficient condition for a fuzzy automa-
ton to generate a fuzzy language that is its own Kleene closure.

Let A =(U,SY, §, 6 a) be a fuzzy automaton such that {3 Ou, Vs
DS, u(s,a s)=1; (2) §eco=1; then¥(sl) is a closed language (i.e.,
2(A) = ¥(A)) (Negoita, Ralescu 1975, Reference from 1).

Proof f (A)=§e°A co=5§c0o=1 Sinces_ is reflexive,A is also
reflexive for eachd LI U*. Hence,AW :Aao Aa [] Ae, and we have

f(00)=50A,, 0 0=%o°A,0ca=f(0)=min( (6),f,(6))
Q.E.D.

Now, we consider a property of fuzzy automata related to cut-point
languages. Le®(sd, o) be the cut-point languaged {1 U*, f (60) > a} of
¥(sA); YV 1[0, 1], A, &(A, @) = (A, o) (for a proof see Mizumoto, et al.
1969).

h. Other Recognition Devices

Let us quote Santos (1976): “The model of fuzzy automata obtained
[using max and min operators] is not an interesting model when we view it
as a recognition device for fuzzy languages. . . . Most of the results ob-
tained in this manner are trivial extensions of existing ones.” This remark
points out the need for more powerful devices: the related literature is
briefly surveyed.

We must however mention first a paper by Thomason (1974) in which a
fuzzy transducer automaton is constructed. This machine is equivalent to
the fuzzy STDS (see d) and is still a max-min machine.

Paz (1967) deals with the problem of the approximate recognition of
fuzzy languages and their cut-points by means of deterministic and proba-
bilistic automata.

Nasu and Honda (1968) define a probabilistic event as a fuzzy language
accepted by a finite probabilistic automaton. The set of probabilistic
events is a proper subset of the set of fuzzy languages. In this paper it is
shown that the set of probabilistic events is closed under transposition and
convex combination. Less strong results for the fuzzy union and intersec-
tion of probabilistic events are given.

The recognition capabilities of max-product automata (see 2.C) were
investigated by Santos (1975a) and compared to those of probabilistic and
max-min automata. Santos (1976) also proved that the union of all
cut-point languages of the form¥gsd, A), ¥(A, =, A), ¥(#A, =, A) over a given
alphabet contains the set of regular languages over this alphabet as a
proper subset.
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L-fuzzy automata were studied by various authors: Wechler and
Dimitrov (1974) whenL is an ordered semiring; Mizumotet al. (1975a)
when L is a boolean lattice; Mizumoto and Tanaka (1976) wheis the
set of normalized convex fuzzy sets of [0, I]; and Santos (1977) whema
linearly ordered semigroup. These automata have the same recognition
capabilities as max-min automata in the sense thétzzy automata
recognize regulat-fuzzy languages whose cut-points of the fofifw, A)
are regular.

Wechler (1975b) also considered languages recognized by time-variant
L-fuzzy automata wherk is an ordered semiring.

Lastly, Honda and Nasu (1975) and Horetaal. (1977) present general
results on recognition oE-fuzzy languages wherk is a lattice with a
minimum element, byL-fuzzy Turing machines (see the next section for
L =10, 1]), L-fuzzy linear bounded automaté-fuzzy push-down auto-
mata, and_-fuzzy automata.

Remark Augmented transition networks (Woods, NF 1970), which are
related to transformational grammars, do not seem to have been fuzzified
yet, although this may be worth considering. The stochastic version has
already been studied by Chou and Fu (NF 1975).

i. Nonformal Fuzzy Languages (Zadeh, 1972)

As may be seen above, it is quite easy to generalize much of the theory
of formal languages to fuzzy sets of strings. However, as Zadeh (1972)
points out, “the resulting theory still falls far short of providing an
adequate model for the syntax of natural language.” This is because “it
fails to reflect the primary function of a language as a system of corre-
spondences between strings of words and sets of objects or constructs
which are described by these strings.”

In order to explicitly take into account these correspondences—which
are fuzzy by essence in natural language—Zadeh (1972) gives the following
broader definition of a fuzzy language.

A fuzzy languagé! is a quadruple Y, T, E, N in which:

U is a universe of discourse, i.e., a set of objects, actions, relations,
concepts,. . . ;

T, the term set, is a fuzzy set of terms that serve as names of fuzzy
subsets olJ;

E, an embedding set fdF, is a collection of symbols and their combina-
tions from which the terms are drawn, i.€.js a fuzzy subset OR;

N, the naming relation, is a fuzzy relation on (suppx U.
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The grade of membership (t) of the termt may be viewed as the degree
of well formedness or grammaticality of w(t, u) is interpreted as the
degree to which the terinfits the elemenu € U.

When T and U are sets with a small number of elements, it is easy to
define w, and w, by tabulation. However, generally, both suppandU are
infinite sets and “the characterization ®f and N requires that they be
endowed with a structure allowing the computationugfand w,.” Hence,
there is introduced the notion of saructured fuzzy languagehich is a
quadruple ¢, S, E, §) whereU and E are defined as abov& is a set of
rules, called the syntactic rules &f, which provide an algorithm for
computingu,, and S is a set of rules, called the semantic rules¥of
which provides an algorithm for computing,.

Obviously, a formal fuzzy language is a particular case of the fuzzy
language defined above; more specifically, in a formal fuzzy language,
only T and E are considered. Further, whé@nis nonfuzzy, the domain
dom(N) (see 1I.3.B.a) if the fuzzy relatioN may be viewed as a fuzzy
formal language.

Semantic aspects of the fuzzy languages are studied in Part 1V, Chapter 2.

B. Fuzzy Algorithms

According to Zadeh (1973), “a fuzzy algorithm is an ordered set of fuzzy
instructions which upon execution yield an approximate solution to a
specified problem.” The idea of fuzzy algorithm was first introduced by
Zadeh (1968). Such a definition subsumes most human action and think-
ing: people use fuzzy algorithms when they drive a car, search for an
object, untie a knot, cook food (the recipe of a scrumptious chocolate
fudge was given under the form of a fuzzy flowchart in Zadeh, 1973),
recognize patterns, or make a decision. Since fuzzy algorithms can face a
range of slightly different situations, they summarize information in a
concise, although approximate manner.

a. Fuzzy Instructions (Zadeh, 1973)

The instructions in a fuzzy algorithm belong to one of three categories:

(1) Assignment statements possibly fuzzy value is assigned to a
variable. For instance:

“X equalsapproximately5.”
“y is notsmall and not verylarge.”
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(2) Fuzzy conditional statementa possibly fuzzy value is assigned to a
variable or an action is executed, provided that a fuzzy condition holds.
For instance:

“If x is large, then y issmall elsey is notsmall.”
“If x is much smallerthan 8, then stop.”

(3) Unconditional action statements possibly fuzzy mathematical op-
eration or an action is executed:

“Decreasex slightly.”
“Multiply x by itself afew times.”

An instruction is thus said to be fuzzy as soon as the name of a fuzzy set
appears in it, and blurs somewhat its execution (“write small” is fuzzy, but
“write ‘small” is not). Note that in a fuzzy algorithm, not all the instruc-
tions are necessarily fuzzy. Note that fuzzy instructions of type 1 and 2 are
very similar to fuzzy propositions in approximate reasoning (see |.E).

b. Formal Algorithmic Machines
a. Fuzzy Algorithms as Fuzzy Systems

As pointed out by Zadeh (1968, 1972b), the notion of fuzzy algorithm is
closely related to that of fuzzy system. We may view a fuzzy algorithm as a
fuzzy system whose equations aec N;

Hyy(50) = sp min kg (5. 1 () Hs(0, 4 8))

My, (W) =su min(ugﬁl(sﬂ),ua(um,sﬂ)), )

S+1

where § is a fuzzy state of the algorithm at time G, a fuzzy input
(representing a fuzzy instruction) at tinhe §., the result of the execution
of the fuzzy instruction(i, & expresses the dependencef on §, and i,
and o the dependence of the fuzzy instruction at timen the fuzzy state
at timet. § is the initial state.

Formulas (2) correspond to the complete execution of the fuzzy instruc-
tion 4. the first equation changes the state, the second is a fuzzy branch-
ing. A fuzzy instruction is viewed here as a fuzzy set of instructions
executed in parallel.

B. Fuzzy Turing Machines

Algorithms may be thought of in terms of Turing machines. Thus, a
natural way to formalize the concept of fuzzy algorithm is via the concept
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of fuzzy Turing machines. A brief discussion of fuzzy Turing machines was
first given by Zadeh (1968), and a detailed formulation can be found in
Santos (1970).

A fuzzy Turing machinés a complexZ=(A, B, S §, §) where A is the
printing alphabet,B an auxiliary alphabet that contains special symbols
like “blank” (b), S a set of internal states a transition fuzzy relation on
SXUXVXSwithU=AUB andV=UU {+,-,0}; § is the initial
state.+,—, 0 mean respectively a move of one step to the “right,” a move
of one step to the “left,” and the termination of the algorithmic procedure.
It is assumed that

YueU, u,(su0,s)=0 ifs #s.

An instantaneous expressienof Z is a finite sequence (possibly empty)
of elements ofU U S such thata contains only one element & « is of
the form 6sur with # and 7 elements ofU* (the set of strings made of
elements ofU), ue€ U, ands& S. The states is said to point au in the
instantaneous expression. The transition between two instantaneous
expressionsy and 3 is expressed by the membership valuga, 8) which
is equal to:

py(s, u, U, s) if a=6sur and B=6su'r
(U has been written in place of and the new statd points at the same
place);
[=0suu't and LB=60usur

,,+’S, .f
H(su®s) 0O e ad B=6ush

(the new state has “moved” one step to the right);

(x=0usur and LB=0suur

su,-,s if
Hy(sit,—8) Epr a=sut and B=sbur

(the new state has “moved” one step to the left);

pys v, 0,9 if a=p (end of computation);
0 otherwise.
A computation ofZ with input x € U* and outputy € U* is a finite

sequenceq,, a,, . . ., a, Of instantaneous expressions wherg= s x and
a = 0st with y = 67. The membership value of the computation is

min(/,Léo(sO), pmlay, @), ... ma o), uy(s u,0,9)

where u is the symbol immediately to the right efin « . Denoting by
uix/y) the membership value of a computationyofrom x, the possibil-
ity of computingy from x is u(x/y) = sup uix/y).

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



l11.3. Fuzzy Languages—Fuzzy Algorithms 229

y. Fuzzy Markov Algorithm

Santos (1970) also proved the equivalence between a fuzzy Turing
machine and a fuzzy version of a Markov algorithm. Here we give a
simpler definition of a fuzzy Markov algorithm according to Zadeh
(1972a).

Let U be an alphabet. A fuzzy Markov algorithBPM is made of a
linearly ordered set of production rul®s i =1,n, of the form
P: o - ulB +- +ulB, i=1,n-1,

P: A - LA,

where a, B, are elements otJ* and A denotes the empty string. We
omitted for the sake of simplicity the subscripin the right-hand part of
the rulei. The input is a finite support fuzzy set of strings:

Qo=pw(0)/0,+ - +u(6)]0,.

First, we use the ruleFM(&) = u(0)/ FM(0) + - - -+ u(6 )/ FM(6,).
To compute eachM(ep), we find the smallest such that productior,
can be applied t@ (i.e., o; occurs as a substring of). When there is
ambiguity about how to appl?, it is the leftmost occurrence ef that is
replaced by u /B, +---+u/B: if 6 =yyr with y, 7€ U* then

FM(6) = w/yB,7+ - - - + wlvB,
Moreover, we define

M(@)/FM(BP) = min(/u(Op), m ) yB T+ - - +min(M(0p), w)yB,T.

When the application oP, to 0, gives a strlngyBT that is the terminating
part of 6, the stringyB 7 is considered as dead and no rule will be applied
to it any longer. A strlng is also dead when only rBlecan be applied to
it. The procedure is iterated until only dead strings remain. The fuzzy
language made up of all the dead strings is the result.

“The execution of a fuzzy Markov algorithm may be likened to a
birth-and-death process in which the operatidv on a string6 gives rise
to the birth of new strings . . . and the death of others. . . . As in a birth
and death process the population of ‘live’ strings can grow explosively. . . .
This rather interesting aspect of fuzzy Markov algorithm is not present in
conventional Markov algorithms” (Zadeh, 1972a).

6. Fuzzy Programs (Santos, 1976, 1977)

A mathematical formulation of fuzzy programs was introduced by
Santos, general enough to encompass all existing formulations (those of S.
K. Chang, 1972; Jakubowski and Kasprzak, 1973; Tanaka and Mizumoto,
1975). The main appeal of this formulation is that it is closer to the
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intuitive representation of a fuzzy algorithm as a set of fuzzy instructions.
An instruction is a string of one of the following forms:

Start: go toL;

L: doF; go toL';

L: if P, then go tol(l, L2, ... ,LN);
L: halt;

where N is a positive integerl, L', L1,...,LN belong to a set_ of
labels, F belongs to% (the set of function or operation symbols), and
belongs to? (the set ofN-valued predicates or test symbols). The four
types of instructions are called respectively “start,” “operation,” “test,”
and “halt” instructions.

A program is a finite setp of instructions containing exactly one start
instruction and no two instructions i@ have the same label. In a test
instruction P is a function valued in {1,,2..,N}; and if the value ofP is
K, then the next instruction to be executed has laBKel

Let (R, +, ,=<) be an ordered semiring (see A.f). AR&machine is a
complex U, M, Y, I,§, 7, o, &, P) such thatJ, M, andY are respectively the
input, memory, and output setk.is an R-fuzzy relation onU X M, é an
R-fuzzy relation onM X & X M, 7 an R-fuzzy relation on® X M X N
with @ = U »,, and o an R-fuzzy relation onM X Y. Moreover, denot-
ing by 7, the conditioned fuzzy relation obtained fromby fixing P, for
every P € P, there exists a positive integdl such thatr, is an R-fuzzy
relation onM X {1, 2, ...,N}.

Let PE P If p,Tp(m, K) :p,Tp(m, K) for all m and m" belonging toM
and for allK € {1,...,N}, then P is said to be unconditional, and so is
any instruction containing.

Let ¢ be a program antl be anR-machine.J)t is said to admitp iff:

(1) for every operation instruction of the fornh:“do F; go to L',”
Fe%:

(2) for every test instruction of the form “if°, then go to
(Ll,...,LN),” PEP,.

We write (', m) 5 (L, m), wherem and m, are two elements oM, iff
there is an instruction inp of the form L': do F; go to L” and
pw(m, F,m)=r. We write {',m) 5 (L",m), whereme& M, iff there is an
instruction in ¢ of the form L': if P, then go tol(l,...,LN)” such that
L" =LK for someK € {1,...,N} and r=u_(m, K).

A computation bye on an R-machine’ is a finite sequenag L, m,
L,...,.L,m,ywhereue U,y€Y, in whichL, is a label contained in
the start instruction ofp andL is the label of some halt instruction in
The membership value associated with the computation is an element
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reR such thatr=r -r-----r_, where r,=mu,m)r =u(m,
y), and for every othei: (L. sm_) - (Ll,m) The computation ofy
from u is feasible iffr #0. The pOSS|b|I|ty of computing from u with ¢ is
valuated by the sum (in the senseR)fof all the membership values of
the computations of from u. Note that the result is drR-fuzzy set ofY.

“The above discussion gives a precise formulation of the concept of
max-min programs, probabilistic programs, max-product programs, non-
deterministic programs, deterministic programs and other types of fuzzy
programs.” (Santos, 1977). Santos (1977) also showed that fuzzy programs
and fuzzy Turing machines are closely related. The fuzzy machines execut-
ing fuzzy programs introduced in Chang (1972), Jakubowski and Kasprzak
(1973), and Tanaka and Mizumoto (1975) are less general because they are
based on deterministic, nondeterministic, Rifuzzy automata, respec-
tively, and fuzzy instructions in the three cases.

Note that a fuzzy program is viewed here as a fuzzy set of nonfuzzy
programs in the sense that fuzzy instructions are fuzzy sets of instructions.

e. Execution of Fuzzy Programs

Obviously, the execution of fuzzy programs in the sensé ®f equiva-
lent to the parallel execution of a possibly nonfinite number of determinis-
tic programs. Practically however, for each fuzzy instruction, a determinis-
tic instruction is chosen, which is assumed to be the best interpretation of
the fuzzy instruction, and actually executed. If a fuzzy instruction is
reached for which there is no deterministic instruction capable of perform-
ing a feasible computatiorr € 0 or at leastr falls below a given thresh-
old), then a backtracking process must be initiated. The necessity for
backtracking stems from the fact that choosing locally the best interpreta-
tion of fuzzy instructions in sequence does not ensure the optimality of the
global computation.

A fuzzy test instruction is interpreted by selecting the label of another
instruction. Tanaka and Mizumoto (1975) hinted at three ways of selec-
tion:

(i) “fuzzy” selection, i.e., choos&K such thatu_ (m K) is the greatest
of all w_(m,J) for J=1,N;

(i) “probablTlstlc” selection, i.e., a random choice bK, according to
the probability values

p,p(m, J)/Z urp(m, J 03

(i) “nondeterministic” selection, i.e., choose any among s such
that ,qu(m, LJ) = «, for a given thresholdv.
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The operation instructions are interpreted by selecting a deterministic
state transition, according to the value @f(m, F, m), with one of the
above selection methods. In Tanaka and Mizumoto (1975) this approach
for executing fuzzy programs was exemplified with computer simulation of
human driver behavior (the “driver” follows a fuzzy routing plan) and of
character generation. Here, the action expressed by a fuzzy instruction
yields a nonfuzzy result, and thus the action itself is nonfuzzy. In Tanaka
and Mizumoto's fuzzy programs it is assumed that when an action fails
(because it is unfeasible), it is always possible to backtrack and modify a
previous action. Obviously, the backtracking assumption is not always
realistic.

“The key to success of a fuzzy algorithm is fuzzy feedback that is a
mechanism for (a) observing—not necessarily precisely—the result of
execution of a fuzzy instruction; and (b) executing a new instruction based
on the result or results of preceding instructions.” (Zadeh, 1968). The
existence of a feedback allows slight modifications of the result of a fuzzy
instruction owing to (fuzzy) tests that evaluate the quality of this result.
The fuzzy feedback control loop of the algorithm improves its robustness
and suppresses part of the backtracking.

c. Algorithms for Computing Fuzzy Sets

Such algorithms are made of fuzzy instructions that are executed in a
deterministic way through logico-algebraic combinations of fuzzy sets. The
result consists in fuzzy sets computed from intermediate fuzzy results and
fuzzy sets appearing in the fuzzy instructions.

a. Fuzzy Assignment Statements

A fuzzy value is assigned to a variable of the algorithm. For instarce, “
equals approximately 5” is interpreted herexas 5 where5 is a fuzzy
number whose mean value is 5. Note that in fuzzy algorithms in the sense
of b this instruction is executed by statirg- a where a is nonfuzzy and
chosen by one of the described selection methods above, wsa)g

B. Fuzzy Uncondltional Action Statements

An operation is performed on fuzzy sets. For instance, “decrease
slightly” may be interpreted as followsx — x®(1© €) where e is a
positive fuzzy number close to 0. Such an operation was referred to as an
“‘operation” in the previous section, where it was executed by choosing a
nonfuzzy e x « x(I—¢€) using u-(e) for guiding the choice. Another
example is “multiplyx by itself a few times,” withfew =1/1 + 0.8/2 +
0.6/3 +0.4/4 andx assumed nonfuzzy; we then obtam 1/x*+
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0.8/&%+ 0.6/ + 0.4¢. Nevertheless, iffew is modeled by a continuous
positive fuzzy numbern, it is easy to compute at onoce (see I1.2.B.d:
mi(Y) = p;(Iny/Inx)) instead of computing the power &fseveral times,
actually as many times as the number of integer elements in )suhpls
always possible to a posteriori extract froth the membership values
corresponding to integer exponents. (Here, the performance of the ex-
tended operation commutes with the discretization of the support; this is
not always true—see 11.2.A.b.) More generally, extended operations are
very appealing in the execution of fuzzy unconditional statements that are
allowed to have a fuzzy result because parallel computation can be
avoided.

v. Fuzzy Conditional Statements (C. L. Chang, 1975)

We consider here fuzzy instructions of the form Ffx,...,x), then
go toL else go toL"” whereP is ann-ary fuzzy predicate and andL' are
labels of fuzzy instructions. C. L. Chang (1975) has proposed the following
interpretation of a fuzzy conditional statement when the values of
X, ...,X are allowed to be fuzzy. In ordinary nonfuzzy algorithms, a
nonfuzzy condition described by a predicate is checked om-tluples of
nonfuzzy values and only the “then part” of the statement is executed
when the condition holds. Otherwise, it is the negation of the condition
that holds and it is the “else part” that is executed. Wken. . ,x are
fuzzy or/and the predicate is fuzzy, none of the complementary conditions
may completely hold and both branchings need to be done. The fuzzy
instructionsL and L' will be executed by using different fuzzy values of
the variables, i.e., those that fit respectiveland 1P.

More specifically, let le, C l]n be the fuzzy values ok,...,x
before the execution an@ the n-ary fuzzy relation associated wit?; the
degree to whictP holds foru,, ..., U is

(G, .G = P mm(u (W) - (un) te(us - ,un));
this is actually a consistency degree (see 11.3. Fd) The fuzzy u’aluéx
that best fitsP with respect to the values,, ..., u u, .U is
such that

n-1 “i+1" " °

b (u)= wpmm(u (u), paltns - ,un))-
The value ofx before executing instructioh will be u N+, i=1,n. The
degree to which 1P holds foru,...,u is uz(u,...,u) whereR is the
complement ofR The value ofx before executing instructiob” will be
u- N u; where u: is computed asr, replacingR by R in the formula
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expressingu}. Note that generallyué(dl, - ,Jn) 21— ﬁ(u} - ,Jn),
except if the values of the are not fuzzy. Moreovewi = 1,n,

uU, . .. ,u) = hgtu N u) and paU,...,u)=hgt@ N ).

The values of the program variables may become nonnormalized after
such a fuzzy branching: their heights indicate the validity of the result. The
existence of fuzzy conditional statements entails parallel computations and
may cause some programs to loop. A computation may be stopped when
output variables of a fuzzy instruction have values whose height is too low.
Some examples of fuzzy branching instructions are given below. First
consider:

If x is small, then go tal else go toL2;
Ll: yis large; go toL;

L2: y is not large; got td_;

L: outputy.

~

Let S, |, and U represent “small,” “large,” and the initial value »f The
“then part” yields the resulk — U0 NS andy « |; the “else part” gives
X « 0 N § andy < I . Note that we obtain a fuzzy set of fuzzy sets bgi(
$)I + hgt(G N $)/1 . Adamo (Reference from IV.21978b) has proposed a
method to reduce the complexity of the reswti— » where (1)
= max(min(hgt@ N 3), w (1)), min(hgt@ N S, u(l))). Instead of keeping
unchanged, as Adamo did, we may prefer (U N S)U (U N S)=10 N (SU
S).

Consider now the following example (C. L. Chang, 1975):

LO: if x is approximately equal tg, go toL1 else go toL2;
L1:y « x+Yy; go to LO;
L2: Z « X+Yy.

Let u, v be respectively the initial value of andy and R be the fuzzy
relation “approximately equal.” The result of the first step is Kkdr,
X—UuN(veR) andy « [uUN (VeR)]®[vN (U°R)], and for L2 we
have z —« [uN (ve R)] ®[vN (ue R)]. Stopping may occur when the
height of the value of is maximal, otherwise the program may loop even
whenx andy are nonzero.

Remark Fuzzy algorithms may be pictured by fuzzy flowcharts. For
instance, the flowchart of the last example is shown in Fig. 1 whewsd u
belong to [0, 1] and valuate the validity of the branchings (symbolically,
A=hgtx N (ye R)) =hgtly N (x° R))andu = hgtx N (y° R)) =
hgtly N (x> R))). When one of the validity degrees is very low, a natural
approximation leads to canceling the corresponding branching. More
generally, we may keep only the most valid branching according to the
“rule of the preponderant alternative” (Zadeh, 1973). Besides, we may

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



I11.3. Fuzzy Languages—Fuzzy Algorithms 235
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think of linguistic validity degrees for the branchings (see Zadeh, Refer-
ence from 1.2, 1975); they could be defined as compatibility values (see
II.2.A.eB), instead of consistency values as above.

8. Inference Statements

Some fuzzy conditional statements can be interpreted as “fuzzy infer-
ence statements,” which are particular cases of fuzzy unconditional action
statements. Consider, for instance, the fuzzy conditional statement:isIf
P, then go toLl else go toL2” with LI: y -« Q and L2: y -~ R, where
P, Q, Rare fuzzy on the universes a&f y, andy, respectively. Viewed as
interpolation, the three fuzzy instructions above can be translated into one
fuzzy instruction:

Yy« xe[(P-QU(CITP - R

by analogy with approximate reasoning (see |.E), provided that after the
execution ofLl and L2, the same fuzzy instruction follows. In the above
statement -~ denotes any implication operator considered in I&E.c.
However, when min is used for valuating, the above formula is nothing
but Adamo’s interpretation (Adamo, Reference from V.2 1978b) of the
original three fuzzy instructions (seeyk.

Proof: Let u be the initial value ofk and v be the output value of.
We have

o) =supminfp(u), max[mi” Hs(u). Ho(V)). mi”(ﬂﬁ(“)’ “R(V))])

=sup max(mi (ll (u), e (u ) mln( (V)))
= maxélnin(sup min H~( )
n( pmln )E

—max[mln hat(GN P), ug(v )) min(hgt( N ) (V))] Q.E.D.
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d. Fuzzification of Algorithms: A Warning

Given two nonfuzzy algorithms that calculate the same quantities using
different flowcharts, it may happen that their straightforward fuzzifications
(i.e., adapting them to fuzzy data or parameters) do not any longer yield
the same result. This point is illustrated in the following example.

Consider the very simple scheduling problem involving one task com-
posed of a known sequence wofelementary operationg the processing
time of operationi is p. Let r, be the earliest starting operating time and
d ., be the due date of the task. It is assumed that—r = 3" p.

(i.e., the problem is feasible). We want to find an algorithm for computing
the earliest starting time, the latest ending timel, and the slack time

of each operation (in the nonfuzzy case all the are equal tod —r —

3" p). Two possible algorithms are:

(1)
i-1
ri:r0+ij, i=1n;
J:
d=d.,- ) p, i=Ln
eg=d-r—-p, i=14n.
(2)
ri+1:r0+iji i=0,n;
]:
di = dn+1_ P I :1’ n
§ =d_,*+p T, i=1n

Note thatd _, andr, , are respectively the latest starting time and the

earliest ending time of operation

When the processing times are fuzzy and now denf)lt,edihe fuzzy
earliest starting times and latest ending times determined using both
algorithms are the same. But the fuzzy slack times are different. For the

first algorithm, we have
é,=defep
=d , 6p, O --6pOrOpO---0p_Oh

n+|ep:)ief)i~+1@...@~6n@?i@f0@~61@"'@6i
WOLOME® - -Op)Opdp*e,
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(for the use ofP and© see 11.2.B.0B). Specifically,ély2 depends on, but
note ..

Although the above example is somewhat artificial, the same situation
may occur in more realistic algorithms without necessarily being easy to
detect. Obviously, here the first fuzzified algorithm is the right one—the
second generates redundant fuzziness; but sometimes deciding which is the
right algorithm may be more tricky.

When using a fuzzified algorithm, we must make sure that the structure
of the mathematical expressions involved reflects the direct logical chain of
inferences that gave birth to the algorithm. The transformation of a
fuzzified algorithm into a more efficient version must be performed very
carefully because some classical mathematical manipulations are no longer
authorized with fuzzy quantities.

e. Conclusions

The preceding sections have demonstrated that a fuzzy algorithm (i.e., a
set of fuzzy instructions) can be viewed

(1) as a family of nonfuzzy algorithms that are executed in parallel
(Santos, approach seedbh.unless only one of them is chosen for execution
(Tanaka and Mizumoto,s approach, see)b.

(2) as a single algorithm that processes fuzzy data in a deterministic
fashion.

From the semantic point of view, another dichotomy exists regarding the
intended purpose of a fuzzy algorithm. In that respect, two general kinds
of algorithms that are fuzzy exist. The first consists in ordinary algorithms
that realize an implementation of fuzzy models. The aim of such algo-
rithms is to deduce the fuzziness of the outputs knowing that of the inputs
and/or of the model. In other words, what is obtained are possibility
distributions on the actual nonfuzzy output values of the modeled process.
However, when a human subject is presented with a fuzzy instruction, the
action he performs will not be fuzzy. Thus, another kind of algorithms
exists; these algorithms are fuzzy descriptions of nonfuzzy actions, in the
sense of ke. The result is always a sequence of precise actions. This type of
algorithm can be considered as involving some decision process, while the
other one bears a forecasting purpose. Combinations of both types can be
imagined. For instance, when the next action to be performed is condi-
tioned by an observation, and the observed situation realizes a trade-off
between two prototypes of situations, an interpolation (in the sense of
approximate reasoning) can be performed in order to generate a fuzzy
instruction that is more suitable than the precalculated ones. Then a best
interpretation can be determined.
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Four classes of fuzzy algorithms were described by Zadeh (1973), each
corresponding to a particular type of application:

(i) Fuzzy definitional algorithnthis is “a finite set of possibly fuzzy
instructions which define a fuzzy set in terms of other fuzzy sets or
constitute a procedure for computing the grade of membership of
any element of the universe in the set under definition"—for
instance, the concept of “oval”’. Used as an identificational device,
the algorithm yields a nonfuzzy result.

(i) fuzzy generational algorithmghis serves to generate rather than
define a fuzzy set—for instance, generation of “handwritten” char-
acters. Note that the fuzzy generation of a character is different
from the generation of fuzzy characters.

(i) fuzzy relational and behavioral algorithrthis serves to describe
relations between fuzzy variables. “A relational algorithm which is
used for the specific purpose of approximate descriptions of the
behaviour of the system will be referred to as a fuzzy behavioral
algorithm.” Usually such an algorithm will yield fuzzy output; but
if it is embedded in a feedback control system, these outputs have
to be defuzzified.

(iv) fuzzy decisional algorithmthis provides an approximate descrip-
tion of a strategy or decision rule. Obviously, the result of such an
algorithm cannot be fuzzy when a strategy is actually applied.

Fuzzy algorithms could be used for the solution of difficult mathemati-
cal programming problems. Note that a heuristic method is a nonfuzzy
approximation of fuzzy algorithms, expressed in an ordinary programming
language. In the field of combinatorial problems the only possible solution
methods are often of implicit enumeration type, for instance, branch and
bound methods. Finding a solution is equivalent to finding a path in a
solution tree. A method is efficient if it builds an optimal path very
quickly. The key factors in a branch and bound method are the choice of a
separation variable at a given node of the solution tree, the choice of the
following node to explore, and the computation of good bounds on the
value of the criterion for the unexplored nodes. Some approximate rules
are known for determining a good strategy for these choices from the
structural features of the data. These rules are very often fuzzy and could
be implemented in the framework of a fuzzy decisional algorithm to
analyze the set of data at each node of the solution tree.
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Chapter 4

FUZZY MODELS FOR
OPERATIONS RESEARCH

This brief chapter is intended to present the state of the art concerning
the application of fuzzy sets to theoretical operations research. The con-
ceptual framework for optimization in a fuzzy environment is first re-
viewed and particularized to fuzzy linear programming. In the second part
some existing definitions of fuzzy graph theory are stated. Lastly, some
very well-known shortest-path algorithms are extended to graphs where
distances between vertices are fuzzy.

A. OPTIMIZATION IN A FUZZY ENVIRONMENT

Optimization models in operations research assume that the data are
precisely known, that constraints delimit a crisp set of feasible decisions,
and that criteria are well defined and easy to formalize. However, in the
real world such assumptions are only approximately true. This section
presents the existing conceptual framework for optimization in a fuzzy
environment. The linear case is then studied more particularly.

a. General Formulation

Let X be a set of alternatives that contains the solution of a given
multicriteria optimization problem. Bellman and Zadeh (1970) pointed out
that in a fuzzy environment goals and constraints formally have the same
nature and can be represented by fuzzy setX.ohet C. be the fuzzy
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domain delimited by théth constrainti(= 1, m) and G, the fuzzy domain
associated with thgh goal { = 1, n). G is, for instance, the optimizing set

of an objective functiorg,, from X to R (see 11.4.B.a). When goals and
constraints have the same importance, Bellman and Zadeh (1970) called a
fuzzy decisionthe fuzzy seD on X

g g U
D=DﬂC,Eﬂ% G, 0 (1)

that is,

OXOX,  Ho(x) = mindmin pe,(x), min pe, ()¢

A fuzzy decision is pictured in Fig. 1 and corresponds to a constraint “
should be substantially greater thaji and an objective functioy whose
optimizing set isG.

The final decisionx can be chosen in the skt = {x, u (X) = uy(X),
Vx € X}. M, is called themaximal decision set.

When criteria and constraints have unequal importance, membership
functions can be weighted bydependent coefficients;, and g, such that

IX0X, 2ai(x)+iﬁj(x)=1,

and we have according to Bellman and Zadeh (1970)

00 3 e (ke 09+ iﬁj(x)ue,. (x). @

Note thatD satisfies the property (see Il.1.E.b)
O OO O O O O O
o Jeo(\eoopogl Jedol Jeo
D-lm |:| Dzln |:| D—l,m |:| D:j_,n |:|

However, other aggregation patterns for thg and Hg, may be worth
considering (see 1V.4).

ﬁ

1
He

#p

A X
Figure 1
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When criteria and constraints refer to different s€tand Y, respec-
tively, and there is some causal link betweermand Y, a fuzzy decision
can still be constructedX is, for instance, a set of causes constrained by
C.i=1m andY a set of effects on which is defined a set of fuzzy goals
G, =1, n. Let R be a fuzzy relation oiX x Y, the fuzzy decisiorD can
be defined onX by aggregation of the fuzzy domai® and the fuzzy
goalsG, » R~* induced from theG,.

The definition of an optimal decision by maximizipg (in the sense of
formula (1)) is not always satisfactory, expecially wher(x) is very low.
It indicates that goals and constraints are more or less contradictory, and
thus x. cannot be a good solution. For such a situation Asaal. (1975)
have proposed the following approach: choose an alternative that better
satisfies the constraints and substitute an attainable short-range goal for
the nonattainable original one. More specifically, we must find a pair
(X., x;) wherex_ is a short-range optimal decision ard a short-range
estimated goal andk(, x,) maximizes

Ho () = min(jc (). o (), o, ). @

C and G are the fuzzy constrained domain and the fuzzy goal (we take
m = n = 1 for simplicity), andR expresses a fuzzy tolerance on the
discrepancy between the immediate optimal decisiorand the fuzzy goal

G; x, is the most reasonable objective because it is a trade-off between a
feasible decision an®. Note that wherR is the identity, (3) gives (1). Asai

et al. (1975) discussed the choice & and found that a likeness relatioR (

is a distance, see 11.3.C.c) was most suitable with respect to some natural
intuitive assumptions. The authors generalized their approach tdN-the
period case wher&l short-range decisions must be chosen together Mith
short-range goals angd_ and u, may be time-dependent (see Asi al.,

1975) Some definitions pertaining to time-dependency in fuzzy set theory
in the scope of planning may be found in Lientz (1972).

b. Fuzzy Linear Programming

We deal now with the very common (in the literature!) situation when
constraints and criteria are linear functions of a set of variables.

a. Soft Constraints

We start with the problem
minimize Z = gx
subject to Ax < b, x = 0,(4)

where g is a vector of coefficients of the objective functidna vector of
constraints, andA the matrix of coefficients of the constraints. The fuzzy
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version of this problem is (Zimmermann, 1976, 1978):

gx £ Z,, Ax £ b. x = 0. (5)

<
The symbols denotes a relaxed version &f and assumes the existence
of a vectoru of membership functiong., i = 0, m, defined as follows: Let
a, andb, be the coefficients oA andb, respectively; then, for = 0, m,

|:| n
for ax < h,

for b quxj >h +d
&

(see Fig. 2) withb, = Z, a, = g; d is a subjectively chosen constant
expressing a limit of the admissible violation of the constraird, is a
constant to be determined.

M

5 nq
Figure 2

The fuzzy decision of the problem (5) s such that
- gan 0
Hp(x) = mi'n/li EZ &; X[
= 0
The maximization ofu, is equivalent to the linear program
maximize Xx ..

0o O
subject to X ., < upOYy axg i=0,m, (6)
= O
]
Xx. .=0

The constantZ, + d, is determined by solving the above problem (6)
without the constraint = O; let x be its solution, we stat& + d, = gx

and Z, is defined as the optimal value of the objective function in problem
(4) whereb. is replaced byb + d., Vi (see Sommer and Pollatschek, 1976).
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N.B.: 1. Constraints such asx = b or Ax = b can be softened in a
similar way (see Sommer and Pollatschek, 1976).

2. The same problem was also studied by Negoita (1976) and Sularia
(1977), using the same approach.

3. Zimmermann (1978) solved the multicriteria linear programming
problem in the same way.

4. In the same paper (Zimmermann, 1978) he defines a fuzzy decision,
replacing min by product and compares the two formulations. Sommer
and Pollatschek (1976) use arithmetic mean instead of min.

5. Linear programming with soft constraints is very related to sensitiv-
ity analysis in linear programming.

B. Fuzzy Constraints with Fuzzy Coefficients

What happens to a linear constraiix = b. when the coeﬂ‘icentsaij
and b, become fuzzy numbersA x can be calculated by means of
extended additiortb (see I1.2.B.d3). The symbol = can be understood in
two different ways:

first, as a strict equality betweeznlx and Bi (equality of the membership
functions); this equality can be weakened into an inclusionC b which
also reduces to equality in the nonfuzzy case; the fuzzinesb o
interpreted as a maximum tolerance for the fuzziness of

secondly, as an approximate equality betw@enandb, in the sense of
Il.1.E.c.

Both points of view will be successively investigated. We assume here
that the variables are positive £& 0) anda, andb are L-R fuzzy numbers
(see I.2.B.eq). See also Dubois and Prade (1978b)

(i) Tolerance Constraints
Consider the system of linear fuzzy constraints
AxOh, i=1m
Since the coefficients afe-R fuzzy numbers, we can write symbolically

A= (A’ ﬁ’ K)LR
where A, A, and A are vectors of mean values and left and right spreads.
Since thex_j are positive, the system is equivalent to
Ax=b, Ax=<1Db, Axs<0Dh, i=1m x=0.

which is an ordinary linear system of equalities and inequalities. According
to the value ofm and the numben of variables involved, it may or not
have solutions.
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Owing to this result, the “robust programming problem” (Negoita, 1976)
maximize gx

subject to Ath =1m,

x=0
can be turned into a classical linear programming problem having 3
constraints. This approach seems more tractable than that of Negoita
(1976).

(i) Approximate Equality Constraints

LR .

(b b, b) Recall that in 11.2.B. ga Is said to be greater tham denoted
a= b, as soon as —b = a+b. ais said to be approximately equal ldff
neithera = b norb = a holds.

A system of approximate equalities in the above sense can be consid-
ered, i.e.,

Let a and b be two fuzzy numbers witha = (a aa) and b =

AIX'—VBi, i=1m,

WhereAI iIs a vector ofL-R fuzzy numberspi an R-L fuzzy number, and
= denotes approximate equality. This fuzzy system is equivalent to the
nonfuzzy one

b —A <9
Ax— H

AXx when 0s<b —AX
AX  when 0s Ax-b.
The above approach assumes the existence of an equality threshold (see
11.2.B.Q).

An alternative approach can be, as in_a, to define the constraint domain
associated with an approximate equaln&yx = b by the membership
function . such thatu(x) = hgt@A x N b.). More specmcally,

0 DQ—AxD . _ _
+$(E if b-Ax=0,
pi(x) = 0
g_ AXBH it Ax-h = 0.
+AX@

The problem of flndlnng, maximizing min_, - w(x), the optimal deci-
sion with respect to then fuzzy constralnts can be thus reduced to a
nonlinear program (see Dubois and Prade, 1978b).

N.B.: 1. The approach in (ii) can be extended to fuzzy linear objec-
tive functions and to linear approximate inequality constraints. Moreover,
(i) and (ii) can be generalized to fuzzy variables.
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2. Systems of linear equations with interval-valued coefficients were
already considered in Hansen (NF 1969). (See also Jahn, 1974.)

B. FUZZY GRAPHS

Graph theory plays an important role in the modeling of structures,
especially in operations research. Fuzzy graphs may be helpful for repre-
senting soft or ill-defined structures, for instance, in humanistic systems. A
graph is traditionally a pai = (V, E) whereV is a finite set of vertices
and E a nonfuzzy relation oV x V, i.e., a set of ordered pairs of vertices;
these pairs are the edges ®&f A detailed exposition of graph theory and
related algorithms can be found in Roy (NF 1969-1970).

a. Fuzzy Vertices, Fuzzy Edges

A fuzzy graphé is a pair f/ E) whereV is a fuzzy set orv and Eis a
fuzzy relation onv x V such that

pe(v,v') < min(uv(u),uv(u’)).

This definition is from Rosenfeld (1975).

The above inequality expresses that the strength of the link between two
vertices cannot exceed the degree of “importance” or of “existence” of the
vertices. In other word€ is a fuzzy relation orv x V in the sense that
dom(E) and ranE) (see 11.3.B.a) are contained M. However, in some
situations it may be desirable to relax this inequality.

Classical concepts and definitions pertaining to graphs have been ex-
tended to fuzzy graphs:

A path whose length isn in a fuzzy graph is a sequence of distinct
verticesu,, U, . . . ,U, such thatu (v, _, v) > 0Vi = 1,n. The strength of
the path is min, . pe(v, v) and uy(uy) if n = 0. A strongest path

-1
joining two vertice§u0 and v has a strengthué(uo, v) where E is the
transitive closure ot (see 11.3.B.@) (Rosenfeld 1975).

In an ordinary graph the distance between two vertices is the length of
the shortest path linking them. A skt of vertices is called a cluster of
orderKk iff:

(i) VYu, v € U, d, V) <k
(i) Yo & U, v € U, du, V) >k,

where d(v, V') denotes the distance betweenand v'. Whenk = 1, a
k-cluster is called a clique, i.e., a maximum complete subgraph. In a fuzzy
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graph a nonfuzzy subsét of V is called afuzzy cluster of order K

D He (0. v') > mac i g (0. )
v'au

whereE ¥ is the kth power ofE (see 11.3.B.®) (Rosenfeld, 1975).
_ The following definitions assume that the set of vertices is not fuzzy and
E is symmetrical g-(v, U') = uz(V', v)). The degreeof a vertexv is dg@)

=g ., Hz(v,v"). The minimum degree dB is §G) = min, dg(v).
IS sald to be\-degree connectefireh and Bang, 1975) iff:

(i) Vo, U eV, u(u V) #0(fvzv),

(i) XG) = A
A A-degree componeraf G is a maximalA-degree connected subgraph of
G. For anyA > 0, theA-degree components of a fuzzy graph are disjoint
(Yeh and Bang, 1975).

Yeh and Bang (1975) have given an algorithm for the determination of
A-degree components of a finite symmetric fuzzy graph. Moreover, they
defined other kinds of connectivity and provided the corresponding de-
composition algorithms (Yeh and Bang, 1975). Other definitions related to
fuzzy graphs can be found in Rosenfeld (1975) (bridge, cut-node, forest,
tree, . . . ) and in Halpern (1975) (set-adjacency measures).

b. Shortest-Path Algorithms for Fuzzily Weighted Graphs (Dubois
and Prade, 1978a)

In this section we consider fuzzily weighted graphs: i.e., for instance, to
each edge is assigned a positive weight that represents the “length” of the
edge. Shortest-path algorithms have a common feature: they require only
additions and comparisons. It is thus easy to fit these algorithms to fuzzy
weights, thanks to the extended additi&nand subtractiono together
with the max and min operators.

a. Floyd’s Algorithm

As an example, let us first focus our attention on Floyd’s algorithm
(Floyd, NF 1962) for symmetric connected graphs. Get (V, E) be such
a nonfuzzy graph. Lety, be the weight of the edge,(u) belonging toE.
Let |, be a value assigned to each pair of vertizes (). At the beginning
of the procedure we sét=w, for (u, v) € E, | = o for (v, v) & E and
i # ], andl; = 0 Vu, € V. The procedure consists in modifying the
replacingl, by min (,, I, + l) for v, ranging overV, u, ranging over
V —{u} and v, ranging overV for a fixed u,. At the end of the procedure

I, is the length of a shortest path betweenand v,. Obviously, this
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procedure can be readily extended to deal with fuzzy wei@nt@v
assumed to be a positive fuzzy number). At the beglnnlngl, setw for
(UI, v) € E and as above otherwise. Repldceby min (I @ | ) where
k, i, j vary as indicated above.

The length of a shortest path betwegnandu, may also be defined as
l; = min_,. 1, where®(,j) is the set of all paths betweenand| and
|, the length of pattk. |, is an increasing function of the,. The result of
Floyd's algorithm is also an increasing function of the Both functions
coincide for nonfuzzyw,. Hence, the extensions of these functions to fuzzy
numbersw, also coincide (as a consequence of Theorem 1nfary
operations see 11.2.B.a). Thus, the fuzzy Floyd algorithm does calculate the
fuzzy shortest distances between vertices.

Although the fuzzy shortest d|stant:ebetweenu andu_ is still obtained,
a shortest path (or a set of shortest paths) Whose Iengthdses not
necessarily exist any longer. The |dentlty mlnkEJ,(I ol is valid, but
because thenin of several fuzzy numbers does not necessarily yield one of
those numbers, it is possible that no path has fuzzy length criticity
value of pathk can be hgt( N I,).

ij? |k

B. Ford’s Algorithm

Another example is Ford’s algorithm (see, e.g., Roy, NF 1969-1970)
applied to a connected directed graph without loop where the vertices are
weighted. Letp be the positive weight ob. The vertices represent, for
instance, a set of tasks akdthe precedence constraints between the tasks.
v, is assumed to have a fuzzy weight, i.e., the ill-known processinggime
of the tasku. Let P(i) and §i) be respectively the set of vertices
immediately preceding, and the set of vertices that immediately follow
The classical formulas giving the earliest starting timend the latest
ending timed of the tasku, become

~

f=ma (ep) = [den)

ujP(i

where r, and ai are respectively the fuzzy earliest starting time and the
fuzzy latest ending time of task. The fuzzy earliest starting time (resp.
latest ending time) of the tasks without predecessor (resp. successor), which
are used to initialize the procedure, may be also fuzzy. It is easy to see that
the above fuzzification of Ford’s algorithm is valid in the sense of 3.B.d.
Note that, owing to the use &fR fuzzy numbers (see 1l.2.B.e), the fuzzy
versions of the Floyd and Ford algorithms do not require much computa-
tion.

The case of a fuzzily weighted fuzzy graphs is considered in Dubois and
Prade (1978a).
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Part I V

SYSTEMS-ORIENTED
FUZZY TOPICS

In the field of systems science there are many common situations that
are pervaded by fuzziness. Classical models and methods dealing with
these situations must thus be revised in order to take this basic aspect into
account. Most work concerned with this is still at an early stage of
development, and in most problems no general methodology is yet avail-
able. However, several fuzzy approaches seem worth considering and some
have already yielded promising results.

After a first chapter devoted to the estimation of membership functions,
nine system-oriented topics are surveyed from a fuzzy-set-theoretic point
of view: knowledge representation and natural language, decision-making,
control, learning, pattern classification, diagnosis, structural identification,
games, and catastrophe theory. These chapters have unequal length ac-
cording to the respective states of the art.
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Chapter 1

WHERE DO “THEY”
COME FROM?

A very widespread question about fuzzy set theory is, From what kind of
data and how can membership functions actually be derived? Answering
this question is very important for practical applications. Another problem
is to check whether the choices of fuzzy set-theoretic operators have an
experimental basis.

A. INFORMAL PRELIMINARY DISCUSSION

The membership function is supposed to be a good model of the way
people perceive categories. Experiments made by psychologists showed a
distinction between central members of a category and peripheral mem-
bers. If subjects have to respond true or false to questions of the form Does
x belong to such a category?, the response time is shorersifa central
member (i.e., a good example of the category) than if it is a peripheral one
(i.e., a not very good example of the category); see Lakoff (1973) for more
details. The existence of classes of central and peripheral elements in a
category reminds us dfou sets (see 1.1.G.c) which seem to thus have an
intuitive basis.

Clearly, category membership is not always a yes-or-no matter, but
rather a matter of degree. However, Lakoff (1973) pointed out that some
speakers seem to turn relative judgments of category membership into
absolute judgments by assigning the member in question to the category in
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which it has the highest degree of membership. Since category membership
is a matter of degree, the question naturally arises as to what determines
the degree of membership for each element. One common hypothesis is
that there is a prototype for each category, and the degree of membership
for each item is directly related to the similarity of the item to the
prototype. But, as indicated by Oden (1977a), the prototype may be an
ideal element that does not lie in the category (the corresponding fuzzy set
will not be normalized) or, on the contrary, the category may have multiple
and noncomparable prototypes.

Although fuzzy set theory is capable of dealing with degrees of set
membership, the membership function is not a primitive concept from a
psychological point of view. A membership value is generally not abso-
lutely defined; take for example the concept of tallness; how one perceives
other people’s tallness may depend upon what one’s height is. Undoubt-
edly, the membership function itself is fuzzy; as soon as it has a good
shape, it can be considered a satisfactory approximation. According to
Lakoff (1973), the membership function is perceived more like a contin-
uum than a discrete set of membership values, although it may be sampled
for practical purposes. The choice of continuous set-theoretic operators is
consistent with fuzzy knowledge of membership functions: a slight modifi-
cation of the membership values does not drastically affect the rough
shape of the result of a set operation. To take into account the imprecision
of membership functions, we may think of using type 2 fuzzy sets (I1l.1.G.
d), probabilistic sets (1.1.G.e), tolerance classes of fuzzy sets (ll.3.F.e), or
level 2 fuzzy sets (11.2.C.a). Estimating the membership function of such
higher order fuzzy sets is certainly more difficult than in the case of
ordinary fuzzy sets, but the parameters of higher order fuzzy sets tolerate
less-precise estimation. On the whole, ordinary membership functions will
be sufficient for an approximate quantitative representation of this intrinsi-
cally qualitative notion, that is gradual category membership.

Remark In the framework of experiments on human height, MacVicar-
Whelan (1977) noticed that the location of the boundary of a fuzzy set
such as “tall” seems “to be equiprobable within some range of values.”

B. PRACTICAL ESTIMATION OF MEMBERSHIP FUNCTIONS

The problem of practical estimation of membership functions has not
been systematically studied in the literature. Nevertheless, some ideas and
methods have been suggested by several authors, independently.
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a. Exemplification (Zadeh, Reference from 111.3, 1972)

Let U be a universe of objects adthe name of a fuzzy set di. p,
can be estimated from partial information about it, such as the values that
u, takes at a finite number of samplesUn “The definition of a fuzzy set
by exemplification is an extension of the familiar linguistic notion of
extensive definition.” “The problem of estimating the membership function
of a fuzzy set inU from the knowledge of its values over a finite set of
points in U is the problem of abstraction which plays a central role in
pattern recognition.”

Example In order to build the membership function Af= “tall”, we
may ask a person whether a given heighs tall. To answer the person has
to use one among several possible linguistic truth-values,teig,, more or
less true, borderline, more or less false, falBlee simplest method is then to
translate these linguistic levels into numerical ones: 1, 0.75, 0.5, 0.25, O,
respectively. A discrete representation of the membership function is thus
obtained by repeating the query for several heights.

b. Deformable Prototypes (Bremermann, 1976)

The idea behind this method is quite simple. Pebe a prototype that
can be deformed by manipulating paramefgs. . . p.. Given an object,
one attempts to deform the prototype such that a maximal matching is
obtained. The dissimilarityD between the objeck and the prototype
depends both on the minimal “distance” between them and the distortion
“energy” of the deformation. Formally, we write

DEO=, min (MG By - P+ WO(Py - -+ o)
where m is a distance function betweex and the prototype and is a
distortion function weighted byv. A membership functioru, can then be
defined as

p,(X) = 1 —(D(x)/sup D).
c. Implicit Analytical Definition  (Kochen and Badre, 1976)

The membership function is assumed continuous and differentiable and
to have an S shape (i.e., we are concerned with fuzzy sefy.dDonsider,
for instance, the adjectivA = large. The marginal increase of a person’s
strength of belief thatx' is A" is assumed proportional to the strength of
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his belief that %X is A” and the strength of his belief thak is not A.”
That is,

d
—d“A (X) = K, (X) (L= A (X)),
X
whose solution is

HA(X) =1/ (L+&7™).

The parametersa and b are estimated from statistical data. Thus, the
above method is more a justification of a shape than a quantitative
estimation procedure.

d. Use of Statistics

Membership functions can be estimated through polls, igX) is the
proportion of positive answers to the question, Dgelselong toA? The
implicit assumption is that the probability of a positive answer from a
questioned person increases with the valyéx); more specifically, the
probability of a positive answer is proportional gQ(x). This method was
used by Hersh and Caramazza (1976).

In the social sciences Nowakowska (1977) gave a measurement tool for
estimating the membership value of a persom a social groupA. Her
assumption is: if a subject is asked abouhis membership in a fuzzy set
A, the probability of a positive response is an increasing function of the
value u,(X).

Lastly, another method may be considered: given a set of statistical data
in the form of a histogram, the induction from it of a possibility distribu-
tion is different from that of a probability distribution. In the first case the
histogram is normalized through an affine transformation that brings the
highest ordinate to 1; in the latter case the surface of the histogram is
brought to 1. When thus determining a possibility distribution, we postu-
late that from global precise knowledge about a population of events, we
can induce local imprecise knowledge about any element of this popula-
tion. This latter assertion assumes that the population is homogeneous in
some sense. More specifically, recall the possibility-probability consistency
principle (l1.5.B.c), which says that the possibility of an event is always
greater than or equal to its probability. Letbe a function fromR to R,
representing a smoothed histogram. The associated possibility and proba-
bility distributions should satisfy for any unidh of disjoint intervals

(D)= sup h(x) / sup h= Prob(D) :J’Dh(x) dx/foﬁ(x) dx (1)
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according to the consistency principle. The above inequality does not hold
for any positive functiorh. However, functions such as

h(x) = CeOR*  Ox0Ol,
Ep otherwise,

wherel is an interval;

h(x) = max(0, a(1 —|x|/\)) (triangular function),
and
h(x) = e@IxI  for a >0

satisfy the above inequality. But it is false for the function pictured in Fig.
1, which may be regarded as “nonhomogeneous.” Thus, it seems that only
a histogram satisfying inequality (1) may be used to derive a possibility
distribution consistent with the probability distribution issued from the
histogram.

e. Relative Preferences Method (Saaty, 1974)

Let A be a fuzzy set on a discrete univetde The membership values
m(x) = w for x € U are calculated from a set of data representing the
relative membership values of an elementx in A with respect to the
membership of an element in A. Saaty uses a scale divided into
seventeen levelsifs, . . . ,3, 1,2, . . ., 8,9}; each level has a semantic
interpretation: the larget;, the greater the membership ®f compared
with that of x. The matrixT of thet/’s is such that, = 1/t,. T is said to
be consistent ifdw = W, , . . . ,w) with n = 1 |U|, such thatt, = w/w
v, VJ.. WhenT is consistent] is transitive in the sense that

ik tt =ty

the rank ofT is 1; the eigenvalues of are 0, except one whose value is
n = |U|; w is an eigenvector of.
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A way of evaluating the inconsistency ofis to calculate the difference
between the greatest eigenvalueTofind the greatest ideal eigenvalue, i.e.,
n. The membership values, can be determined by finding the eigenvector
of T such thatT v = nw, where T is assumed as consistent as possible.
This method seems appealing from a theoretical point of view when there
is no prototype for the clasA, but its practical applicability is limited by
the size ofU X U and by the difficulty of collecting consistent data.
Moreover, the *“arbitrariness” of the membership values is somewhat
replaced by that of the.

f. Comparison of Subsets (Fung and Fu, 1974)

SupposeA is a fuzzy set ofU with a membership functiom,; a fuzzy
set A on ?(U) is induced fromA, provided thatU is finite, though the
formula

uA({xl,---,xk})=%iuA(>q)-

This definition has the intuitive meaning of an “average membership” of
{x,, ..., x}in A
A “preference” relation, denoteg is defined in%?(U) by
VS, S € PU), S=8 iff w(S) = ui(S).

1

The interpretation ofS = S, is “S matchesA better thanS,.” The data

form a set of “preferences” between subsetdUpfthey can be translated,
using the definition ofu,, into a system of inequalities relating the
membership values. These inequalities determine more or less strongly the
m,(x). Other inductions ofA from A are possible. The applicability of the
method is limited by the size @f(U). The “arbitrariness” now mainly lies

in the induction process.

g. Filter Function (MacVicar-Whelan, 1978)

MacVicar-Whelan introduced filter functions in order to identify the
membership functions of fuzzy sets modeling adjectives sudallagn the
framework of an experimental study of human height.

A filter function Fis characterized by two parameters, the locatith of
the neutral point K(NP) = J) and the width @ of the transition between
nonmembership and membership. We are here interested in S-shaped
fuzzy sets ofRR.
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More specifically,
0 if  xO(=c0, NP~ w]|
F(x;NP,w)zE(l/Zw)(x - NP+w) if xO[NP-w, NP+w],
H it xO[NP+w, o]

F is pictured in Fig.2. MacVicar-Whelan points out that a sophistication
of the shape of the transition is useless because of the imprecision.

The concept of tallness is here related to a given population for which a
normal probability distribution on the heights is known. ketnd o be the
parameters of this distribution. “A person is tall” is supposed to mean “this
person has a large height,” whel@ge is modeled by the membership
function w such that

u(X)=F (X, X + ao, Bo) where X is a height.

a and B have to be determined experimentally. Asihall is modeled in
the same way by 1KX; X—ao, Lo).

h. Concluding Remarks

What is striking in the methods presented above is their lack of general-
ity. For instance, it seems that there is no rule like maximum likelihood for
probabilities to estimate possibilities. Anyway, it seems more important to
become aware of how the human mind manipulates names of fuzzy sets
than to figure out precisely numerical grades of membership since the
perception process is itself fuzzy.

N.B.: Fuzzy measures must also be estimated; some hints on this
problem are provided by Sugeno (Reference from 1.5, 1977).

C. IDENTIFICATION OF FUZZY SET OPERATORS

Some experiments concerning the verification of the accurateness of
fuzzy set operators have been reported in the literature.
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In Hersh and Caramazza (1976) a group of people judge the size of
black squares by means of 13 qualifiers such as “small,” “large,” “not
small,” “very large,” “either small or large.” Each person assigned a
binary grade to each pair black square/qualifier. Membership functions
were constructed as described in B.d. Complementation to 1 was shown to
be a good model for negation, and max for either . . . or. In another
context Oden (1977b) found that probabilistic operatdysD{+were more
suitable for modeling disjunction and conjunction.

Zimmermann (1978) pointed out that tled operator could be either
logical or compensatory. Empirically, he found that the min operator was a
good model for logicaland; on the contrary, the compensatoaynd ex-
presses an aggregation of aspects which is not necessarily a conjunction—
for instance, when we say that a car is attractive because it is fast “and”
pretty. In this latter case the “and” may be translated by a product, an
arithmetic mean, a geometric mean, etc. according to the situation, but
rarely by min. The compensatognd is very common in decision-making.
Other experiments were carried out by Rodder (1975).

The hedge “very” has also received particular attention in the literature.
Zadeh (Reference from 1.2, 1972) has conjectured that ,(X)
= [m,(X)]% Since then, Lakoff suggested that “very” operated also a
translation, i.e.,u.(X) = w,(x—0]% Experimental verifications were
carried out by Hersh and Caramazza (1976), who confirmed that the hedge
modification involved some translation. Moreover, Kochen and Badre
(1976) found that “veryA” could be less fuzzy thaA, which is consistent
with squaring the membership function. In the context of his study of
human height and the concept of tallness, MacVicar-Whelan (1978) empir-
ically determined that the membership function of “very large” could be
F(xx + 2ao0, Po) (see B.g), i.e., a translation afo. However, considering
other studies on the hedge “very” in other contexts, he indicated that the
shift could be more multiplicative than additive.

In natural language connectives and hedges are sometimes ambiguous
and have no “universal” meaning. For instance, “and” may be as well
logical as compensatory, the “or” may be “exclusive” or “inclusive,”
“very” may indicate an increase in precision (e.g., “very medium”) or a
change of category. Implicit categorization of the universe of discourse
into different concepts has great influence on meaning. For example,
consider a universe of heights roughly divided into “large heights” and
“small heights”; then “not large” may be identical to “small,” and “very
large” is an increase in precision of “large.” When the categorization is
refined into “large,” “medium,” and “small,” then “not large” will mean
“small or medium.” Lastly, if we add the categories “very small” and “very
large,” now “large,” means “large and not very large,” and “very large” is
no longer more precise than “large.” Note that the human mind can
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perceive only a small number of categories. Moreover, some aggregations
of hedges, such as “not very large,” may have an ambiguous structure: is it
to be understood as “not (very large)” or “(not very) large”?

D. TOLERANCE ANALYSIS USING FUZZY SETS

Fuzzy sets not only model subjective categories, they may refer to the
possibility of events, for instance, in the framework of tolerance analysis,
as first suggested by Jain (Reference from 11.2).

The tolerance interval of a measurement is the interval where it is
possible that the actual value lies. More specifically, a flat fuzzy number
(see 1.2.B.e. M) can be viewed as a tolerance interval with no sharp
boundary. A fuzzy set oR with several distinct maxima can model a set of
imprecise measures of a given phenomenon. The membership value of a
maximum may express the degree of relative reliability of the information
that lies in it, while spreads model the imprecision and the fuzziness.

The use of fuzzy sets in tolerance analysis may throw some light on a
well-known problem in measure processing:Mgt, . . . , M be n approxi-
mate measures obtained by means of several devices under the same
operating conditions and which evaluate some quantifiable property of a
given phenomenon. Thkl are assumed to be normalized fuzzy setsRon
How are they to be processed, especially in the case wherdgoo small,
so that probability theory cannot be applied? Metbe the result of the
aggregation of the. M = (. M. is an optimistic one: it assumes invari-
ance of the phenomenon, reliability of all measurement devices, and
“closeness” of theM.. When these assumptions are Iackitﬁ@i,Mj iS no
longer normalized, and this aggregation is not very reliable; in that case
U.M is a most valid aggregation. (hy 0(® M) may be a trade-off
between the union and the intersection of Mein the sense that the
fuzziness of this result is an average of the fuzziness oMtke

Note that whenM M is not normalized, the gain in precision is
counterbalanced by a loss in reliability, which makes the precision some-
what delusive;U M. is more reliable but less precise.

If the M. are not equally reliable, two approaches may be considered.
Let r. € [0, 1] be the reliability ofM. Two possible aggregation formulas
areM = UrM or M = MM (see lll.2.F.c) where theél are still
normalized in both cases.
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Chapter 2

FROM PROGRAMMING
LANGUAGES TO NATURAL
LANGUAGES

Natural languages are fuzzy in many respects. Traditional programming
languages are not. The gap between them has been slightly reduced by the
conception of some fuzzy programming languages. A brief survey of the
corresponding works is provided in the first section. The second is devoted
to the representation and interpretation of natural language sentences by
means of fuzzy sets, according to Zadeh. Lastly, the application of natural
language modeling to the representation of fuzzy dynamic systems is
emphasized.

A. FUZZY PROGRAMMING LANGUAGES

Umano et al. (1978) have proposed the implementation for fuzzy-sets
manipulation of a system that is a fuzzy version of the set-theoretic data
structure (STDS) of Childs (NF 1968). The system, called FSTDS (fuzzy
STDS) consists of a simple interpreter, a collection of fuzzy-set operations,
and a data structure. The aim of the system is to make possible set-
theoretic manipulations of type, level | fuzzy sets, and.-fuzzy sets
without paying attention to their representation in the computer. FSTDS is
imbedded in FORTRAN, “because of its high portability.” It has no
control structure; however, owing to the connection between FSTDS and
FORTRAN, it is possible to use FORTRAN control structures instead.

Fellinger (1974) has described a fuzzy system modeling language FSML
which allows specification of individual nonfuzzy objects that may have
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fuzzy attributes. In order to visualize partial execution of conditional fuzzy
instructions, the author uses a modified version of Petri nets (Holt, NF
1971), called E-nets (Nutt and Noe, NF 1973), which he extends to deal
with fractional copies of tokens. This ability to reproduce tokens helps
simulate the execution of fuzzy instructions in models of fuzzy systems.

A fuzzified version of PL1, called L.P.L. (which stands for linguistic-
oriented programming language) has been developed by Adamo (1978a,
b). Statements in the L.P.L. Language are divided into basic statements
(including inference and assignment statements) and control statements.
Control statements are DO-END, IF-THEN-ELSE, PARALLEL, and
DO-WHILE structures. The DO-END structure is similar to the one in
PL1. The IF-THEN-ELSE structure is executed as described in 111.3.B.c.
The DO-WHILE structure is an infinite set of nested conditional fuzzy
structures whose execution requires the solution of a recursive fuzzy
relational equation. The PARALLEL structure, which does not exist in
PL1, is needed to realize a symmetrical execution of statements such as

IF V = HIGH THEN perform statement 1
ELSE IF V = LOW THEN perform statement 2
ELSE do nothing

which, because it is fuzzy, does not provide the same results as

IF V = LOW THEN perform statement 2
ELSE IF V = HIGH THEN perform statement 1
ELSE do nothing

Adamo (1978c) used L.P.L. for solving combinatorial and syntactic pattern
recognition problems. The backtracking processes do not appear explicitly
in the corresponding programs, but are “implicitly imbedded in the seman-
tics.”

Fuzziness has also been introduced in artificial intelligence languages in
order to represent and manipulate fuzzy knowledge. An exhaustive survey
of the various approaches to the representation and processing of fuzzy
knowledge within the field of artificial intelligence was recently provided
by Wahlster (1977). Kling (1973) was the first to deal with this problem
and proposed a fuzzy version of PLANNER. The first fuzzy artificial
intelligence programming language which was actually implemented is
LeFaivre’s FUZZY. “FUZZY acts as a many-valued programming lan-
guage, in the sense that expressions can return both a value and a numeric
modifier (called Z-value), which may be interpreted as a truth-value,
degree of certainty, etc. . . . A fuzzy associative net is maintained by the
system and ‘procedure demons’ may be defined for the control of fuzzy
processes.” Pattern-directed data access, a procedure invocation mecha-
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nism, and a backtrack control structure are also available. FUZZY is
implemented in LISP (see Winston, NF 1977, for instance). FUZZY
procedures may be used to define fuzzy algorithms (LeFaivre, 1974a). A
description of another fuzzy artificial intelligence language is given by
Wechsler (1976), who uses the question-answering system QA4, and pro-
poses a model for medical diagnosis based on fuzzy procedural knowledge.

Other fuzzy programming languages are those of Mamdani (FSML,
1975) and Noguchet al. (FLOU, 1976).

N.B.: The paper by Chang and Ke (1978), concerned with the transla-
tion of “fuzzy queries,” does not actually refer to fuzzy set theory; it
actually deals with the interpretation of ambiguous questions in the frame-
work of a data base: “fuzzy queries can be disambiguated by analyzing the
gueries against the information graph of a data base skeleton.”

B. MODELING NATURAL LANGUAGES

Most of the sentences of a text in natural language contain fuzzy
denotations. Moreover, “the numerous meaning representation, knowledge
representation and query representation languages which have been de-
scribed in the literature . . . are not oriented towards the representation of
fuzzy propositions, that is propositions containing labels of fuzzy sets, and
hence have no facilities for semantic—as opposed to syntactic—inference
from fuzzy premises” (Zadeh, 1977a). Note that the fuzzy programming
languages surveyed in Section A do not aim at modeling natural language.
This section outlines Zadeh’s approach to this problem.

a. The Concept of Meaning

By 1970, Zadeh (1971, 1972b) formalized the notion of “meaning” by
equating it with a fuzzy subset on a universe of discourse generated by a
kernel space.

A kernel spaceK can be any prescribed set of objects or constructs. In
general,K is not sufficient to embed the meaning of any concept because
some concepts may also involvetuples of elements oK and more
generally a collection of fuzzy subsets &nFor instance, “much older
than” is a label for a fuzzy set df? in this fashion the term “very” may
be equated with a subset @f(K) x #(K) since it is a function fronw(K)
to ?(K). This motivates the following definition (Zadeh, 1971).

Let K be a kernel space anf a set that contain& and which is
generated fromK by a finite application of the operations of union,
cartesian product, and collection of fuzzy sets. Thamigerse of discourse
U is a designated, not necessarily proper, subsgt of
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Now let U be a universe of discourse amda set of terms that play the
roles of names of fuzzy sets &h Letx be a term inT. The meaning 0K,
denotedM(x), is the fuzzy subset ot whose membership function is
M, (X, - ) whereN is a naming relation ofi x U (see IIl.3.A.i). (X, - ) can
be viewed as a possibility distribution (Zadeh 1977a), i.e., it designates the
objects (inU) that x possibly namesM(x) may be specified in various
ways, e.g., “by a table or by a formula or by an algorithm or by
exemplification or in terms of other membership functions.” (Zadeh,
1972b).

When the term must designate a precise object,othe principle of
“‘maximum meaningfulness” (Goguen, 1976) says that the “meaning” of
the term is the object that has the maximum membership value in the fuzzy
set named by the term.

b. Hedges

One of the basic problems in semantics is to evaluate the meaning of a
composite term from knowledge of the meaning of each of its atomic
subterms. We consider here the meaning of composite terms of the form
h-x whereh is a linguistic hedge such as “sort of,” “very,” . ...The hedge
h is viewed as a modifier of the meaning>ofZadeh (1972a) defined some
operators that may serve as a basis for modeling hedges:

normalization: p . (u)= p,(u) / (sup p,);
concentration: /Jconw(u) = [, ()%

dilation: i, (W= [,(W] 3
contrast intensification:

2u2(u) for p,(u)0[0,0.5]

: u)=
IJlnt(A)( ) - 2(1— IJA(U))Z otherwise.

Examples of models of hedges are:
very A = con@)
more or lessA = dil(A )
plus A = A%
slightly A = intfnorm(plusA and not (veryA))] .

Thus, a small number of basic functions can produce a wide range of
models of hedges. However, such an approach has some limits, which are
discussed at length in Lakoff (1973). Significantly, hedges such as “very”
are applied only to fuzzy concepts.

Remarks 1 Note that veryA and more or les® can be viewed as
fuzzy a-cuts (see I1.2.A.g), i.e., a-cuts with y (t) = t* and N respectively
(t< [0, 1]).
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2 A formal logic approach to the hedge “rather” was proposed by
Kubinski (NF 1960). This approach strikingly contrasts with the one
presented here.

c. Hierarchies of Fuzzy Concepts (Zadeh, 1971)

A fuzzy concept or simply a concept is a fuzzy set on the universe of
discourse. Thus, ik is a term, then its meaningl(x) is a concept. It is
convenient to classify concepts according to their level (of abstraction)
which is a rough measure of the complexity of characterization of a
concept. More specifically, leK be the kernel space of the universe of
discourseU. Then a termx and the corresponding concelg(x) are at
level 1 if M(x) is a fuzzy subset oK " for some finiten; x and M(x) are at
level 2 if M(x) is a subset onP(K)]" for some finiten. More generally,x
and M(x) are at levell if M(x)_is a subset of P '-{K)]" for some finiten
where ?'-{K) stands for P(.- (P(P(K)))--) with -1 Ps in the
expression. Note that whem = 1 andM(x) is a concept at levd| then it
is a levell fuzzy set orK (see I1.2.C.a).

For example K is a set of colored objects; then the concepts labeled
“white,” “yellow,” or “green” are at level 1 because they can be repre-
sented as fuzzy sets df; likewise the concepts labeled “redder than,”
“darker than” are at level 1 because they can be represented as fuzzy sets
on K2, On the other hand, the concept labeled “color” is essentially a
collection _of concepts such ad(white), M(yellow), ... and thus is a
subset on?® (K). “Color” is at level 2.

N.B.: Such hierarchies of concepts were studied by Goguen (1974) in
the framework of category theory.

d. Complex Fuzzy Concepts

The storage capacity of computing systems is usually not sufficient to
memorize explicitly all elementx of T, the set of terms, and their
meaningsM(x). Complex concepts can then be defined by means of a
grammar or more generally by an algorithm.

a. Generation of Terms by a Grammar (Zadeh, 1971)

In some restricted context$, is a formal language that can be generated
by a formal grammar from a finite set of primitive terms. For instance, a
term set of linguistic age values can be generated by a context free
grammar from the primitive terms “young,” “old,” “very,” “not,” “and,”
“or.” Each production is associated with a calculation rule of the member-
ship function of the generated string: for example, the produchon
very B is paired withu,(u) = [u, (u)]>. Typical terms generated by such a
grammar are “not very young,” “not very young and not very old,”

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.2. From Programming Languages to Natural Languages 270

“young and (old or not young).” However, some of these composite terms
are intuitively hard to understand.

N.B.: Inagaki and Fukumura (Reference from IIl.3) use tree grammars
(see 1l.3.A.f) to generate terms and their meanings.

An important example of this approach is the definition of a term set of
linguistic truth values. The set of primitive terms is then {“true,” “false,”
“very,” “not,” “and,” “or’} where “true” is a fuzzy set on [0, 1], such that
H. (1) = 1 and “false” is the antonym of “true,” i.ep_ (t)=
U, (1-t) with t € [0, 1].

Remark Zadeh (Reference from I1.2, 1975) calldirguistic variablea
complexS = (T, U, G, M) whereT is a term setG a set of syntactic rules
that generatel from a set of primitive terms, anill is a set of semantic
rules that assign to each valyeof S (x € T) its meaningM(x), which is a
fuzzy subset on the universe of discoutde A linguistic variable takes
linguistic values that are names of fuzzy sets.

B. A Fuzzy Algorithmic Approach (Zadeh, 1976)

Complex concepts can be defined by means of fuzzy algorithms that
have the structure of bBranching questionnaireThese algorithms are said
to be definitional (see II1.3.B.e). The questions are fuzzy and are of the
form, Is u A? whereA is a name of a concept amdis an element of the
universe of discourse. The answer to such a question may be fuzeys If
a primitive concept, the question is said to be atomic. A branching
guestionnaire is a representation in which the order of the constituent
guestions that are asked is determined by the answer to the previous
guestions. A branching questionnaire corresponds to a composite question
which involves a complex concept. For instance, in dldig?” “big”
means “long” and “wide” and “high.” The answer will be deduced from
the answers to the constituent questionsy lsng?, Isu wide?, Isu high?

More generally, an-adigue composite questio®, composed ofn
constituent questionQ,, . . . , Q is characterized by its relational repre-
sentationB whose tableau has the form

Q, Q Q Q

1 j n
r r' r r,

rt ri rn r
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The universes of the constituent questions may be distictyj, rl is a
linguistic value, the name of a fuzzy set on (universe onj). riis a
possible (authorized) answer to the quest@n which is either attribu-
tional (e.g., How old is Terry?) or classificational (e.g., Is Terry oldds a
linguistic truth value @ is classificational).

N.B.: 1. The tableau may not be complete, that is, certain combina-
tions of the admissible answers to constituent questions may be missing
from the tableau. This may imply that either the particular combination of
answers cannot occur or the answerQocorresponding to the missing
entries is not known.

2. The components, . . . , S of ann-ary linguistic variableS are
said to beA-non-interactive (Zadeh, Reference from 1.2, 197%, means
“linguistically”) iff the assignment of specific linguistic values 1$»

$ (Vk < n) does not constrain the assignment of linguistic vallies to
the |II’IQUIStIC variables of the complementary sequeﬁce . S k +1
= n). When S takes its value in the set of possible answersQ‘orfor any
J, the n varlablesS are A-non-interactive if the tableau is complete.
A-non-interactivity andB—non-interactivity must not be confused (see II.3.
A.b).

Several basic problems underlie the transformation of the relational
representation of a complex concept into an efficient branching question-
naire. Of these, one is that of determining the conditional redundancies
and /or restrictions that may be present in the relational representation.
Another is that of determining the order in which the constituent questions
must be asked in order to minimize the average cost of finding the answer
to Q. This problem is considered at length in Zadeh (1976).

e. Linguistic Approximation

In the previous sections, we have been interested in the computation of
the meaning of a composite term. We now consider the converse problem.

The linguistic approximation problem, i.e., find a term whose meaning is
the same as or the closest possible to the meaning of an unlabeled fuzzy
set, was first pointed out by Zadeh (1971).

Until now very few works have dealt with this problem. In order to solve
it we may think of using a distance between fuzzy sets (see Il.1.E.c), as
Wenstgp (1976a), or Kacprzyk (Reference from V) did. However, when the
term set is very large, a simple enumerative matching procedure requires
too much computation time: the determination of the distance between
two fuzzy sets involves all the elements of their discretized supports and
thus may be very long.

To cope with this difficulty, Bonissone (1978) has recently proposed a
pattern-recognition approach. The method proceeds in two main steps.
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Four features are precalculated for all the elements of the term set
(generated by a context-free grammar): the power (see I1.1.D.a), a Shan-
non-like entropy (II.1.H), the first moment, and the skewness (third mo-
ment). The author has checked the weak correlation of these features. The
first step consists in evaluating the four features of the unlabeled fuzzy set
and to prescreen the term set in order to keep the closest terms in the sense
of a quadratic weighted distance in the feature space. In the second step a
Bhattacharyya (NF 1943) distance between the unlabeled fuzzy set and the
meaning of each selected term is determined. The name of the closest
labeled fuzzy set is then assigned to the unlabeled one.

f. Representation of Natural Language

To this day the most advanced work applying fuzzy set theory to the
modeling of natural language is that of Zadeh (1977a,b), i.e., PRUF (an
acronym for possibilistic relational universal fuzzy).

PRUF is a meaning representation language for natural languages.
“Thus a proposition such as ‘Richard is tall’ translates in PRUF into a
possibility distribution of the variable Height(Richard) which associates
with each value of the variable a number in the interval [0, 1] representing
the possibility that Height(Richard) could assume the value in question.
More generally a propositionp, translates into a proceduf®, which
returns a possibility distributionfr®, with p and 7® representing, respec-
tively, the meaningof P and theinformation conveyed byp" (Zadeh,
1977a).

The theory underlying PRUF is that of approximate reasoning presented
in 1.1.E.

Some examples of translation into PRUF from Zadeh (1977a) are
provided. In the translation of an expressinn a natural language into
an expressiorkE in PRUF, ifw is a word ine, then its correspondew in
E is the name of a relation iD (the data base) is a procedure whose
form generally depends on the frame of the data base and, hence, is not
unique.

Example 1 “Kent was walking slowly toward the door” translates, in

PRUF, into:
WALKING[Name = Kent;rr = SLOW: = PAST;
m

oo = TOWARD(Object = DOOR)] .

Example 2 “Most men are tall.” The frame of D comprises
POPULATION || Name| 4|

MOST || p | yl
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where 14, in POPULATION, is the degree to which Namés TALL, andH
in MOST is the degree to whic,hJ is compatible with MOST. Then “Most
men are tall” translates in PRUF into

T[Prop(TALL) = MOST

where

Z POPULATION[Name = Name|
Prop(TALL) = ‘T *

|POPULATION|

The numerator is the power (ll.1.D.a) of the fuzzy set of tall men in
POPULATION. [POPULATION is the cardinality of POPULATIONT
always stands for “possibility distribution of the variablé

PRUF can be used to translate propositions (declaration, assertions) and
also questions. Very recently Zadeh (1978) outlined a possible extension of
PRUF to the translation of imperatives (orders, commands). According to
the “compliance criterion,” the (nonfuzzy) response to an imperative must
have the maximal membership value to the possibility distribution on the
responses to this imperative. This principle is closely related to maximum
meaningfulness principle (Goguen, 1976). The intended purpose of such an
extension of PRUF is the execution of fuzzy instructions in Robotics.

For example, the command, “Please ask Mary to have a cup of coffee”
is translated into

[T engn = MEDIUM; Issuer = Me; Addressee A; Proposition:
REQUESTPTSnengm: MEDIUM; Issuer =A; Addressee = Mary;
Proposition: DRINK [Subject = Matry;
Object = COFFEE[Vessel = CUP]];
1. = CONTEXTUAL]]
T is the degree of imperativeness of the command. Note that the

strength

above example is a nested command. A denotes the person to whom the
order is given.

Lastly, it is important to notice that a translation in PRUF is indepen-
dent of the structure of the natural language considered.

A particular kind of imperative was modeled by Shaket (1976), who
applied the maximum meaningfullness principle to the fuzzy designation of
objects in a world of blocks. This world consists in rectangular parallelepi-
pedal solid objects placed on a table. The system must understand such
commands as: “Find a cube which is near a plate” or “Find the biggest
blue plate.” “In this system adjectives define a fuzzy set over a universe
indicated in the noun. The truth value of an object in the noun group is
found by multiplying and normalizing the values in the noun fuzzy set by
those in the adjectives fuzzy set.” Superlatives are modeled by a normaliza-
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tion and a concentration. For instance, if there are two obiktand B2
in the world, such thatHong(Bl) = 0.22 and ulong(BZ) = 0.30., then
HongeslB1) = (0.22/0.30) and 1 .(B2) = 1.

Note that such fuzzy instructions do not include actions because verbs
other than “find” are not considered.

C. DEDUCTIVE VERBAL DYNAMIC SYSTEMS

Modeling natural language is crucial for the description of fuzzy sys-
tems. Recently, Wenstgp (1976a, b) proposed a verbally formulated simula-
tion model for the representation of social phenomena. In traditional
models causal relations must be precisely defined, even if the modeler has
only a vague idea of their nature. To avoid the artificial step of translating
vague ideas with inappropriate precision, the modeler should instead be
allowed to formulate his models in natural language. The main point is
that such verbal models may provide more significant information than
artificially precise ones. The aim of the approach is the inference of the
verbal model behavior from a linguistically described initial state. To make
the verbal model deductive, it is necessary to:

specify a vocabulary and a grammatr;

define a semantic model of the meaning of elementary terms of the
vocabulary;

implement the syntactical-semantical model in a computer language
(Wenstgp, 19764, b, uses APL.).

A verbal model consists in an ordered list of grammatically correct
statements such that the (fuzzy) values of all independent variables that
appear in any statement have been determined by previous statements in
the list. Loops are allowed, which, according to Wenstgp, makes the
behavior of the model hard to forecast a priori. Results are expressed in a
verbal form owing to a linguistic approximation procedure (B.e).

The validation of verbal models is discussed in Wenstgp (1976b). First,
one must be sure that the fuzzy sets used for the description of linguistic
values are acceptable by normal intuition-based standards. Secondly, two
modes of simulation exist for dynamic verbal models:

the values of the state variables, which are periodically recomputed, are
fuzzy; when they are reentered as such in the model, the output usually
gets fuzzier and fuzzier (see also lll.2.F.a); this is the forecasting mode.

when the purpose is not prediction, but investigation of principal types
of behavior, the tendency toward increased fuzziness must be removed,
this can be achieved by restoring complete sharpness to the state variables
at each iteration, owing to the maximum membership rule.
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Verbal models may be useful in situations when part of the available
information is not obtained by physical measurements or not quantifiable,
especially for the description of dynamic systems where human behavior
plays a prominent role.

Wenstgp (1976a, b) applied verbal models in a case study (an organiza-
tion problem in a factory). A similar attempt can be found in Adamo
(2977).
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Chapter 3

FUZZY SETS IN
DECISION-MAKING

Fuzzy decision-making is still in its early age; thus the reader must not
expect to find here a new general theory. To date most of the works in this
field either propose a philosophical background where already existing
theories are reinterpreted or extend some specific problems to deal with
fuzzy preference relations, fuzzy objective functions, fuzzy weightings,
fuzzy votes, fuzzy utilities, fuzzy events, etc.

Section A is devoted to rank-ordering the elements of a set equipped
with a given fuzzy binary preference relation. Fuzzy aggregation of criteria
and aggregation of fuzzy criteria are considered in Section B. Section C is
concerned with fuzzy group decision-making, and Section D with decision-
making under fuzzy events and with fuzzy utilities.

A discussion of classical approaches in decision-making can be found in
Luce and Raiffa (NF 1957).

A. FUZZY RANK-ORDERING

Let X be a finite set of possible objects (or actions) one of which must be
chosen. It is difficult to define directly a linear preference ordering of the
objects. Pairwise comparisons are more natural. Several ad hoc ranking
methods are now surveyed. All of them deal with fuzzy relations.

1) Shimura (1973) has proposed an approach to the rank-ordering of
objects from knowledge of numerical grades assigned to every object out
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of every pair inX. f(x) denotes the (positive) “attractiveness” gradexof
when the choice is limited to an element of, {{}. These primitive
evaluations can be reduced to relative preference grafley) defined by
(Shimura, 1973)

Ox,yOX, u(x,y)= L, :minD G0
VIR O (0. o) R L m) B

n(x,y) =1 as soon ax is at least as attractive as u(x,x) =1. More
generally, ifT={y, . . . y) C X, the relative preference grade xfover
the elements of is taken as

H(X, T)=min p(x, ¥).

Intuitively, the most attractive element i such that u(X X)=
max_, w(x, X). However, when max,  w(x, X)# 1, this result can be
guestioned. A sufficient condition for the existenceXo$uch thatu(X, X)
=1is (Shimura, 1973)
Vx vy, ze X, if f(x)>f(y) and f(y)>f(2),
then f(x) > f (2). (2)

When this condition holds, the most attractive objectXir {X} can be
found in the same way. Repeated applications of this procedure yield a
complete ranking of the objects.

N.B.: The case when a template (or standard) object exists was also
considered by Shimura (1973).

Another sufficient condition for the existence of a most attractive object
Xin Xis (Shimura, 1973)

fx,y,z0x, 20 10 1.0y )
. Lo G

This condition is more restrictive than (1).

i) Saaty (1978) applied his method of determination of membership
functions (see 1.B.e) to rank-ordering of objects. He assumes knowledge of
the w'(x, y) satisfying an “antisymmetry” property:

0O Ty, 9 = 1.

©'(X,y) >1 meansx is preferred toy. Moreover, u'(X,X) =1. u' is said to
be consistent iff¥x,y, z€ X, u'(X,2 = w'(X, Yu'(y, 3, which is similar to
condition (2).

The objects are ranked according to weigWis), for all x in X, such
that Vx,ye X, u'(x,y) =W(xX) / W(y). The existence of theW(x) is
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guaranteed as soon as is consistent. They are derived through a linear
algebra method described in 1.B.e.

i) When w is obtained in the form of a fuzzy preorder relation, a
ranking of classes of noncomparable objects is always possible using the
results of 11.3.D.e, due to Orlovsky (1978).

iv) Some hints for an alternative approach are now given. Assumnse
the membership function of a fuzzy relation and

w(X,y) >0.5 meansxis preferred ty,

u(X,y) =0.5 means x andy have the same attractiveness.

Of course, whenu(x,y) > 0.5, thenu(y, X) < 0.5; and whenu(x, y) = 0.5,

then w(y, ¥ =0.5. Moreover,u(x, X) =0.5 for all x in X. An example of
such a preference relation is a tournament relation that satisfies the
equality

VX, yE X, u(x, ) +uly, ¥ =1.
Consider, for any objeat the fuzzy class dominated ky

P.(X) =) u(x,y)!y,
2.

i.e., the fuzzy set of objects to whichis preferred (see 11.3.D.b)._K)
expresses the global attractivenessxoin X. Using the transitive weak
inclusion (Il.1.E.ca) denoted—, we state that the absolute attractiveness
of the objectx is greater than the attractiveness yofwhenever P(y)

— P_(X) is true andP_(x)—< P_(y) is false. A consistency condition fqu
is:Vx, y € X, P_(X—=P_(y) and P_(y)<P_(x) are not false at the
same time. For assume this consistency condition does not hold forxgiven
andy. Then:

(P_(X) <P_(y) is false) is equivalent todz € X, wu(x,2 > %and
my, 9 < 2);
(P_ (y) < P_ (X) is false) is equivalent taddf € X, u(y, t) >

1
< 3).

1
2

and w(x, 1)

These assertions meax:is preferred toz; z is at least as attractive sy
is preferred tot; andt is at least as attractive as Using transitivity, we
conclude thak is preferred tx, which is “inconsistent.” Q.E.D.

The fuzzy dominated classes of a consistenform a (nonfuzzy) par-
tially ordered set under<, and thus a ranking of disjoint subsets of
noncomparable objects is possible.

N.B.: A consistency index for fuzzy preference relations is described
and discussed in Bliet al, (1973).
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The presented approaches above may appear fragmentary in the sense
that they have not yet been discussed in the framework of a general theory.
Moreover, these methods are fuzzy only because they allow handling
noncrisp preferences. At a further stage, one may think of dealing with
linguistic preferences (i.eu(X, y) is a fuzzy number on [0, 1].)

B. MULTICRITERIA DECISION-MAKING

Suppose now each object (or action)Xnis assigned several numerical

(or linguistic) evaluations. These evaluations refer either to local features
of each object or to different global aspects (criteria) of the objects. These
two pure situations may occur at the same time in real problems. In the
first the partial evaluations refer to the same aspect. The problem of
measuring the degree to which an object has the empirical property of its
parts has been especially considered by Allen (1974). The semantics of the
aggregation operators look similar in the two situations, but these opera-
tors will be discussed in the terminology of the second situation, i.e.,

criteria aggregation, for convenience. We study separately the cases when
the evaluations are numerical (i.e., nonfuzzy) and linguistic (i.e., fuzzy).

a. Aggregation of Ordinary Criteria In the Framework of Fuzzy Set
Theory

Let X be a set oh objects (or actions), j = 1,n, andg,, . . . ,g bem
objective functions fromX to R to be maximized. The set of “good”
objects with respect to aspedcts the maximizing seG, of g (see 11.4.B.a).
When the objectives are of equal importance, the fuzzyDsef optimal
objects with respect to thea criteria may be defined as the intersection of
all the maximizing setss,, i.e.,D = ﬁizl’mGi (Bellman and Zadeh, 1970).
This aggregation is “pessimistic” in the sense that each object is assigned
its worst evaluation. The corresponding “optimistic” aggregation is defined
by D = U,_, .G where each object is assigned its best evaluation. When
the objectives are of unequal importance, rlet0, i =1, m, be m coeffi-
cients expressing the relative importance of each criterion; Yager (1977,
1978) has proposed the aggregatibn= N._, G (seealso Ill.2.F.c).

“The membership grade in all objectives having little importance: 1)
becomes larger, and while those in objectives having more importance
(r,>1) become smaller. This has the effect of making the membership
function of the decision subsdd[- -+ being more determined by the
important objectives.”

The above aggregation scheme assumes that the criteria cannot compen-
sate each other. When this is no longer true, other schemes may be

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.3. Fuzzy Sets in Decision-Making 281

considered: product, arithmetic mean, geometric mean. Note that the last
two are no longer associative. When these aggregations are weighted, we
have for instance

mo=M[ka]"  or = > Wik
with y L, w =1
If the aggregation has to be insensitive to irregularities of the evalua-

tions, we may think of using a “weighted median” such as Sugeno’s
integral (see 11.5.A.lm):

IJD(Xj) = rr_1ax min(ueik(xj)’ f(Mik))

where (x) DS fhg (x) DS fLg () M, = ={i,...,i}, andf
is a fuzzy measure on Kthe set of crlterﬂel\/l ) expresses the grade of
importance of the subset of crlteMa

Lastly, Kaufmann (1975) has Used a distadcbetween fuzzy sets (see
[.L1.E.cB) to define D: more specifically,D minimizes the functional

> 1w d(D, G ) where thewn, are weights.
N.B.: The weights may depend on the objects (or actions) considered.

Remark Roy (1975, 1976), has given a typology of criteria based on the
existence or nonexistence of indifference or presumption of preference
thresholds on the evaluations of objects. This typology can be interpreted
in the framework of fuzzy set theory.

b. Fuzzy Aggregation and Fuzzy-Valued Criteria
a. Rating

Weights are usually subjectively assessed, sometimes linguistically. The
w(x) then take their values on a term set of linguistic values such as “very
important,” “more or less important,” “not really important,” etc. mod-

eled by fuzzy numbers’iﬁj) on [0, 1] (or possiblyR*). Moreover, in some
situations the evaluation of the criteria are also fuzzy, ,kg()(l) is a fuzzy

numberp,;(ij) on [0, 1]. The linear aggregation scheme becomes

1) = MR)Ou TN @ - - B W K)O g K.
Usually, in this formula the possible nonfuzzy values of the variables
w,(x), fuzzily restricted by theNTi) are linked by theS-interactivity
constraint 3 L 1w( ) = 1 (see II.3.A.b). In the above formula the notation

is then somewhat misused: because of the interacti@&itynd © are not
exactly an extended sum and an extended product. The situation is similar
to that of 11.5.D.a.
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Baas and Kwakernaak (1977) directly extended to fuzzy numbers the

formula
Ho (X)) = Z\Ni(xj)uGi (Xj)/Z\Ni(Xj)

But, since the i2&-ary operation

f(ai,...,am,bl,...,bm):iah/ia

is neither increasing nor decreasing nor hybrid, the calculatiop;ﬁj)
may be tricky (except for its 1-cut and its support, or whes 2).
However, in the first aggregation formula, it may seem natural to assume
the B-interactivity constraint only holds for mean vaIuesTwJI(xj)’s.

When the weights do not depend on the objects considered, it is not

important to normalize them, and the calculation@fﬂ) becomes easy
because of the noninteractivity. However, strictly speakidgs no longer

a type 2 fuzzy set since the support;qu(ﬁ) is not generally included in
[0, 1]. Fuzzy linear aggregation was also investigated in this case by Jain
(2977).

Other fuzzy aggregation schemes are, for instance,

ME&,—) = MR 1 I‘LGT(\)Z;)1 ie,D="01_,,G (seell.2.C.b);

po(X) = rﬁﬁi:lm[,ue'i'(?('j)] i- in this formula the fuzzy numbe;aG'i(‘x'j) is
elevated to a fuzzy power(assumed to be a positive fuzzy number).

These two formulas generalize those of Bellman and Zadeh and of
Yager.

B. Ranking

When the,u?&j) have been calculated by some aggregation method, it
remains to rank the objects or actiox]s The ranking of fuzzily rated
objects is not obvious since no linear order exists among fuzzy numbers.

Jain (1977) has given a ranking procedure consisting of five steps:

(i) find the supporSof U, u (X), SC R+;
(i) define the maximizing seM of S through the membership
functionu, (s) = [S/(supS)P° wherep is a parameter;
(i) determineM, = [u,(x)] "M, j=1,n
(iv) assign to each objexjtthe membership value thp;
(v) rank thexJ, according to hgmi).
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Baas and Kwakernaak (1977) used a preferability indgxwhose value
is, for the objeck;,

o) = s min g (1)
subject to t; = t, k=1 n, (3)

where g, is the membership function of the fuzzy numb/eg(f(k). It
generalizes formula (27) in 11.2.B.g t fuzzy numbers. The membership
function u, gives only partial information on the preferability of the best
action (there may be several such thatu, (x) = 1). A fuzzy preferability
value of the object over the others is (Baas and Kwakernaak, 1977)

P = u(X)
O (=1 () & TTX_) B ulX . ) ® TBuX)]

(3) could be generalized using a fuzzy relatiBnthat models for
instance “much greater than” . . . . For an{3) becomes

An alternative approach was recently suggested by Wasat (1979).
Assumem= 2 for convenience. The ranking problem is viewed as one of
implication: To what extent do the fuzzy ratings imply that objecis
better than objeck, or conversely? This is formally translated My- Y
whereX andY are binary fuzzy relations d& such that

Hy (4, t,) = min(ug (4), 1y, (1)),
if t>t,

1
Hy (b t) = Ep otherwise.

(Aless rigidY is possible.) The preference valuexpbverx, is then
My (%) = tllnt]; max (1= py (L, t,), Hy (4, 1)) (4)

Note that the implication which is used is that introduced in Ill.1dB.b.
w, (X)) corresponds to the less valid implication,(x,) is also calculated
using

if t,>t,

otherwise.

Hy (4, t,) = %

The best object corresponds to the greatgs(x ).
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Note that formula (4) can also be written
Hy (%) =1~ %{E mi n(l'ld,l (), Ha, (1), g (4 15))

=1-u,(x,), using formula (3).
However, fom > 2

O O
My (%) = tl,'.'f‘.f,tn max gl = min 1y (5), krk%m Hy (t;,t) E
J

Ul
=1~ sup mingmin i, (ti),pgefguv(t,-,tk)%
kK#j

It is easy to see that 1i.,(x) can be defined by formula (3) where the
supremum is now taken subject to the constrain¢ t, for at least one
k #].

When Y=R is a fuzzy relation, even fon=2 the two approaches do
not coincide any longer.

Another possibility for ranking fuzzy-rated alternatives is to calculate
rﬁé'szl'nﬂ;(xj), i.e., looking for the fuzzy extremum of the fuzzifying
function u; from X to [0, 1] on its domairX (see 11.4.B.c.). An interesting

index for the ranking ig,.(x ) = hgt[ uo(X) N max, _, , w1

Whatever method is chosen, the ranking can be questioned whenever a

significant overlap between some;(@ exists. If this is the case, we may
wish to define more precise partial evaluations and/or weights, when
possible. Otherwise, the choice of an object will remain arbitrary. The
main advantage of this approach is its making possible detection of such
an indeterminacy.

N.B.: Fuzzy aggregation (using fuzzy weights) is obviously also worth
considering for nonfuzzy-valued criteria.

c. Fuzzy Pareto-Optimal Set  (Zadeh, 1976)

The numerical aggregation of objective functions is not the only possible
approach in multicriteria decision-making. Another is to define a preorder-
ing in the seX of objects as followsx is preferred tox, iff

Hi=1L m pg(x) = He, (%)-

(The uy(X) are here assumed to be nonfuzzy.) To each objecan be
associated the seX(x) of objects that dominate it, i.eA(x) = {x.x is
preferred tox}. Let C be the subset of objects that satisfy a prescribed
constraint. Therx € C is said to beundominatedff C N A(x) = {x}. The
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set of undominated objects @ contains the optimal solution, in the sense
of Pareto, of the multiobjective decision problem. Zadeh (1976) has pro-
posed a linguistic approach to this problem in order to reduce the size of
the Pareto-optimal set by making use of fuzzy information regarding the
trade-offs between objectives. These trade-offs are usually expressed in
linguistic terms via fuzzy preference relations. lebe the degree to which

X is preferred tox. Then a partial linguistic characterization pfmay be
expressed, fom=2, as (Zadeh 1976), “If i« (x) is much largerthan
MGl(Xk) and MGZ()(j) is approximately equato MGZ(XK)) or (/,LGl(Xj) IS approxi-
mately equalto MGl(Xk) and MGZ()(j) is much largerthan MGZ(XK)), then p is
strong.” Here “much larger” and “approximately equal’ are linguistic
names of fuzzy binary relations in [0?14nd “strong” is a linguistic value

of p. Such linguistic rules determine, once the evaluations of the objects are
known, a type 2 fuzzy preference relation X« X, which may be used to
define a fuzzy Pareto-optimal set, as suggested by Zadeh (1976).

C. AGGREGATION OF OPINIONS IN A SOCIAL GROUP. CONSENSUS

A very general class of decision-making problems is concerned with
decisions made by a group. There are two main reasons why group
decision models are attractive: first, they are easy to comment on and
debate because of our intuition concerning social phenomena; secondly,
according to Fung and Fu (1975), they are “means of reducing excessive
subjectiveness due to idiosyncrasy of a single individual.” We deal succes-
sively with the question of how best to aggregate individual choices into
social preferences and with the formation of consensus.

a. Aggregation of Opinions in a Social Group

An axiomatic approach to rational group decision-making under uncer-
tainty was presented by Fung and Fu (1975). Xdie a set of concurrent
actions andm the number of individuals involved in the decision-making
process. The preference pattern of every individua represented by an
L-fuzzy setA on X. (An individual can formally be viewed as a criterion.)
MAi()(j) denotes the degree of preference of actioiy individual i. The
authors give a set of axioms that a rational decision must satisfy:

(i) L is an order topology induced by a linear orderand is a
connected topological space. The intervalsLirare of the form
la,ff = {x € L,a < x < b} where < denotes< but not =" L
is said to be connected If is not the union of two open disjoint
nonempty sets inL. For instance,L cannot be a topological
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(v)
(vi)
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space on a discrete set, Hut= [0, 1] satisfies axiom; however,L

is not necessarily a bounded set. “The idea of using a topological

structure instead of a numerical scale to describe psychological

and social phenomena is not new (e.g., Lewin, NF 1936).
. . A feature of this approach is a generalization of fuzzy sets

and decision theory to include the situation where the scale of

memberships or risk functions is not necessarily established nor is

a metric defined” (Fung and Fu 1975).

An aggregationl] is a binary operation oih; and an aggregate

of two fuzzy setsA, A, is represented by & A,. The remaining

axioms give the properties of a rational aggregation.

(law of independent components) There exists an operation

on L such thatA, ® A= uAX)xuA(X) /X, for all fuzzy sets

A, A on X, and= is continuous in the sense of the topology of

L.

(idempotency law) VA € #? (X), A® A =A. This axiom as-

serts that if two individuals assign the same preference grade to

an action, this grade is preserved in the aggregation of both

opinions.

(commutativity) VA, A € 2(X), A® A = A® A. This ax-

iom states that the aggregation must be symmetric.

For m = 3, A®A® --- ®A_ is inductively defined by

A®A® - A JOA,

(associativity)lVA, A, A € 2 (X), A®A® A) = (A® A) ® A,

“Although axioms (v) and (vi) are obviously acceptable in a set theoretic
approach, their role in group-decision theory can be disputed” (Fung and
Fu, 1975).

(vi) (nondecreasingness of) Vxe X, VB, C , C, € ? (X) with

A =B®C, and A,=B®C, if ,ucl(x) > ,ucz(x), then u, (x) =
,LLAZ(X). If an individual increases his preference grade of an
action x, then the global preference grade »in the aggregation
cannot decrease.

The main result in Fung and Fu (1975), is the theorem:LLeind *
satisfy axioms (i) — (vii); then the only possible choices afe

(pessimistic aggregatioMa, b € L, a* b =min(a, b);
(optimistic aggregationya, b € L, a* b = max(, b);
(mixed aggregatiorda € L such that

Va<a, Vb=a, a* b=max@ b),
Va<a, Vb=a, a*b=a,
Va=a, Vb=a, a* b=min(a b).
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Lastly, Fung and Fu (1975) proved that the only possible rational aggrega-
tion is the pessimistic (resp. optimistic) one when axiom (vii) is replaced by
axiom (viii) (resp. (ix)):

(viii) There existsa in L and a lower limit O ofL, such that, if
O0<x<a,then0xx=0.

(ix) There existsf in L and an upper limit 1 ot, such that, if
B<x=<1,then xx=1.

Axioms (i)—(vi) plus (viii) justify theminimax principle the best action is
x Osuch that

K(x*) =sup minp, (x).

These axioms provide a theoretical basis for some of the aggregation
schemes described in Section B.a. However, to account for aggregation
schemes of fuzzy-valued criteria (or preferences), some weaker structure
seems to be needed far for instance, a topology induced in a partially
ordered set (see Morita and lida, 1975).

When theu, (x) are fuzzy numberm;i(f(), a linear aggregation was
proposed by Nahmias (Reference from I1.2). Suppese. . . ,w_ are

nonnegative weights, such thajy .,w, =1, which reflect the relative
importance of the opinion of each individual in the group decision.

Nahmias claimed that the fuzzy grade () ® - - -® w u, (X) was a
more reasonable description of the opinions of the group than a similar
convex sum of random variables. This is because whemntledividuals

share the same opinion with regardxiothat is,,u;(i) = aVi=1m,then
the convex sum givea only whena is a fuzzy number and not a random
variable.

The aggregation of relative preferences in a group using fuzzy sets was
considered by Blin and Whinston (1973) and Blin (1974). The opinions of
the m individuals are assumed to bwa linear orders overX. A social
preference relatiorR is here a fuzzy relation obtained by aggregation of
the individuals’ preferences. Denoting B, the number of individuals
who preferx tox, then possible definitions &fare

He (X, %) =N; /m
or
He(%, %) = max (0, N; = N;; ) /m.
Blin and Whinston noticed that the 1-cut Bf, defined as above, is a
nonfuzzy partial ordering. They obtained nonfuzzy linear orderingsRfor

defined as a linear extension of the 1-cut ofR in the sense of Spilrajn’s
theorem (see I1.3.D.c). Since several linear extensions may exist, the
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authors chosA* maximizing
; pe (%, x) wherel(A) = {(i, ), (x, x) € A andp,(x,x) < 1};
(i, 19T

so in A* the relative ranking of elements in a pair of initially non-
comparable ones reflects the strength of preferences in the original fuzzy
relation. An algorithm for computation éf* can be found in Blin (1974).

b. Consensus

Ragade (1976, 1977) has modeled consensus formation in a group as a
dynamical process by means of fuzzy automata. The description of how a
consensus is reached aims at understanding the way decisions are made in
a group. Fuzzy automata were already suggested as an interesting model
for an individual's formulation of voting strategies in social choice theory
by Hatteret al (1975).

In a group each individual is assumed to have a fuzzy profile of
opinions A(t) with regard to then actionsx at time t. Individual i
perceives the opinion pfas

@,() =T, * Al
where T, is the transformation matrix expressing thatloes not perceive
accurately’s opinions:* is one of the four compositions:

1 n
Ho, (%) == Ztiljd Ha (%)

or

l'chij(t)(Xk) = mlax tilj(l IJAJ-(t)(Xi)
or

Ho, 0(%) = mlax(tilj(I mrin :uAj(t)(Xr))
or

1 .
Ho, (%) = n Z (tiTl MIN Ly, 0 (X ))

The opinions ofi, modified by the perceived opinions of other individuals,
become at + 1

A(t+1)= A1) DO, (1)

where L denotes for instance:

a max-min consensusiA(t+1) =A(t) U (N, ®,(1)); individual i
“chooses to transforni\(t) by accepting any agreed improvement in the
@, (0"

j

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.3. Fuzzy Sets in Decision-Making 289

a min-max consensusA(t+ 1) =A(t) N (U, P,(1)); here individual
i “chooses to transformy(t) by rejecting any improvement in tide (t).”

Four other profile modification rules are given by Ragade (1977). A
consensus is reached as sooA @p=A(t + 1), Vi.

N.B.: Another model of how people perceive each other’s behavior has
been proposed by Vaina (Reference from V, 1978).

Let R denote the group-preference fuzzy relation when the consensus is
reached, constructed for example according to Blin and Whin®ois. a
reciprocalfuzzy relation, i.e.,

VX X (X, X) + (X, %) =1, J£K,

VX, (X, %) =0, by convention.

peX, %) = 1 meansx is totally preferred tox; uq(x,x) = 0.5 meansc
and x_have equal preferences. Bezdekal. (1977) have proposed scalar
measures of consensus:

21tr(R%)

F(R)= n(n-1)

(average fuzziness),

2tr(RRY) _
C(R)=W (certainty).
F(R) is supposed to express the average confusion exhibite® layd
C(R), the average “assertiveness.” The following properties he(&) +

C(R =1 F(R) €0, ;1; CR E [, 1] F(R) = 7 iff C(R) =3iff wy(x,

x,) =1/2,Vj, Vk, j#k; F(R) = 0iff C(R) = 1 iff u_(x, x) € {0, 1}

Vj, k. (See Bezdelet al. (1977).) Other properties and discussions can be
found in Bezdelet al (1977).

D. DECISION-MAKING UNDER RANDOMNESS AND FUZZINESS

In this last section we survey some applications of fuzzy sets to more
complex decision-making problems in which the choice of actions may
depend not only on utility values but also on the states of nature or on
possible or expected consequences of actions. States of nature, feasible
actions, admissible consequences, utility values, available information, etc.
may be fuzzy in practical situations. Fuzziness may also be introduced in
statistical decision models where only probabilities of occurrence of events
are known. Several more or less different attempts of this kind can be
found in the literature. This field is still at an early stage of development.
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a. Choice of an Action According to the State of Nature

Let S be a set ofg possible nonfuzzy states of natwge s is assumed
uncontrollable and describes the situation or environment in which a
decision must be mad&X={x, . . . ,x} is the set of actions that can be
performed. Letu be the nonfuzzy utility of performing when the state
of nature iss. Wnen the state of nature £§0 the best actlon |s< such
that

Uigky = MaX Ui

Sis assumed finite here for convenience.

a. Fuzzy State (Jain, 1976)

A state of nature is fuzzy as soon as it is linguistically described or
roughly preceived or approximately measured because of the complexity of
the situation. The extension principle allows us to induce for each action
a fuzzy utility Uj that reflects the lack of well-defined knowledge of the
State:

Gj = Z.u”s(sx)/ujk

where “sis the fuzzy state, a fuzzy set & The fuzzy utilitiesljj can be
ranked according to the methods described in®.b.

B. Fuzzy State. Fuzzy Utilities

Let 4, be the fuzzy utility of performing in the nonfuzzy state,
When only utilities are fuzzy, the problem is to rank those that correspond
to the state of naturs, , using methods of B.B. When both utilities and
the state of nature are fuzzy, the extension principle allows assigning the
membership valugw(s) to each fuzzy utility value]]k. The utility of action
X is now a level 2 fuzzy set (see 11.2.C.a):

z d .
U, = ;Ug(sk)/ujk'

The problem of ranking level 2 fuzzy setsPfis still unsolved. A possible
method for reducing to an ordinary fuzzy set is to considjgras
deriving from a fuzzification kernel (see 11.2.C.a). The reduced fuzzy utility
U will be

J

= Oug(sk)ajk’

whose membership functlon/u% (z) = max w(sk)p (z) Vz
The reduced fuzzy utllltyU can be ranked as in BM. Another
reduction method can be found in Jain (1976).

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.3. Fuzzy Sets in Decision-Making 291

v. Probabilistic State. Fuzzy Utilities

Assume that the state of nature is known only in probability, i.e., there is
a probability distributionp over S such thaty &-1p(s) = 1. The decision
problem when the utilities are nonfuzzy is classically solved by assigning to
each action the nonfuzzy expected utility

U= Z p(s ) Ui

and the expected best actiorxj(i)ssuch that

Uj =max U..
0 i J

When the utilitiesu, are fuzzy numbersl, , the same formula holds

provided that we use an extended addition. [ﬁpare now defined by

U= p(sl)ﬁil@ P p(sq)tujq.
When theujk are L-R type fuzzy numbers (see 11.2.B.e), tlhlja are very
easy to calculate and are ranked as in B.0his situation was also
studied by Jain (1978), who extended his approach to multicriteria (utili-
ties) with fuzzy weights.
Sometimes, the probability of each stateis known only linguistically,

ie., p@ (eg., “very likely,” “rather unprobable,” etc.). This problem is
considered by Watsoet al. (1979). The membership function &f is
given by

Hy (D= _ s ming () (007

k=1py vk=z
subject to Y}, p.=1 The calculation oij IS not so easy as in the

preceding case (fog>2) because the linguistic probabilities afe
interactive (see 11.5.D.a).

b. Statistical Decision-Making under Fuzzy Events

The main references of this section are Taretkal. (1976), Okudaet al.
(1974, 1978), and Tanaka and Sommer (1977), who dealt with high-level
decision-making. According to these authors, “much of the decision-
making at the higher level might take place in a fuzzy environment, so that
it is only necessary to decide roughly what action, what states, what
parameters should be considered.” Their formulation uses Zadeh’s ap-
proach of probabilities of fuzzy events (see 11.5.C.a).

Let us recall some definitions. Le5 and S be sets of statesS
={s.,... ,sq}, S ={s, .. .,s} with probabilitiesp(s) and p'(s), re-
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spectively. The probability of the fuzzy evexin Sis

q
P(A) = Z‘uA(sq) p(s,)-

Let p(s.,s) denote the joint probability ofs and s/; then the joint
probability of the fuzzy even&sin SandBin S is

q r
P(A B) = Z‘ ZuA(sq)uB(S)p(sq, g).

The conditional probabilitieB(A\ 5) andP(A \ B) are defined by
P(A\g) =P(A,8)/p(s), RA\B) = P(A, B) / P'(B).
A decision problem with fuzzy events and fuzzy actions in the sense of

Tanakaet al (1976), is a 4-tuple&, &, p, u) where© = {§, ... ,§}is a
set of fuzzy states that are fuzzy eventsSon {s, . . . ,s} equipped with
the probability distributionp; & = {x, . . . ,x} is the set of fuzzy ac-

tions; u(- , -) is the utility function frontf x © to R. © is assumed to be
orthogonal, i.e.,

Zua(sozl, Vk=1, g

(so that Z _PG)=1).
The expected utility of a fuzzy acti(XJnis

U(>~<,-)=ZU(>~<;,$)P(§1)-

An optimal decision is a fuzzy actioi, that maximizesU(X ). In the
following the fuzzy state is assumed to be known through a message
belonging toM={m, . . . , m}, the set of possible messages. It is also
supposed that a conditional probabilitym|s) of receivingm, in states,

is known a priori. Using Bayes’s formula to calculate the posterior proba-
bility f(s [m) from f(m | s) andp(s,), the expected utilityJ (x, | m) of the
actionx, when message is received is

U(X |m)= Zu(ij,é)P(é |m).

The optimal decisionx(m) is the one that maximize®(x |m). The
probabilistic informatione is obtained through observation of the random
messagen whose probability distribution issuch that

q
f(m)=zlp(%)f(m|%)-
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The expected utility of receiving the informatiers

t

Ux(m)lm) =% U(X(m)Im) f(m).

The worth of the informatioris defined by
V() = Ux(m) | m) — U(x,).
When a message is characterisitic of a staee, (f(m|s)=0 for izk;
f(m [s) =1; t=q), the information is called probabilistic perfect infor-
mation and denoted lgy.
Next, we consider fuzzy messages . . . ,m that are fuzzy sets oNl
and satisfy the orthogonality condition

;uﬁu(m):l Oi =1t.

Similarly, the expected utility of givenm, is
U(%]fiy) = Zu(i,-,s)P(sm),

and the optimal decisio(m,) maximizesU(X |m,). The corresponding
fuzzy informationE has expected utility

h
U (X(M)| ) = ZU(R(M)M)P(%)

wherem is a random fuzzy message. The worth of the fuzzy inform&&on
is V(E) = U(X(m) | m)—U(X,). When a fuzzy message is characteristic of
a fuzzy state (particularly; =h), the corresponding information is called
fuzzy perfect information and denotdfl. The following inequalities are
proved in Tanakat al.(1976):

V(E,) =V (e,) = V(e) = V(E).
These inequalities are consistent with intuitidéffe) = V(E) is due to the
fact the informationE has fuzziness in addition to randomne¥4e )
= V(e) holds because_ is better information thae;, “V(E_ ) = V(e ) is
caused by the fact that our interest is notSimut in ©.” (Tanakaet al.
(1976)). The probabilistic entropies & in the presence of fuzzy or
nonfuzzy messages are also calculated by these authors.

N.B.: 1. Tanaka and Sommer (1977) proved that the probability of
state S when two identical fuzzy messagay are simultaneously received
is p(s|m, m)=p(s |very m,), provided thatf(m|s)=0 for i#Kk,
f(m s ) = 1 andt = g. Verym, is nothing butif)>. (See 11.1.B.f.).

2. Fuzzy utilities would be worth considering in this framework.
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c. Fuzzy Decision Analysis

In this section decisions are made according to an analysis of their
consequences.

a. Opportunity Cost Calculation (Hagg, 1978)

Hagg (1978) recently suggested a means of extending decision analy-
sis to take into account the possibility degrees of actions. Xet
{x, ... ,x} be the set of actions an@={c, . . . ,c } be the set of
possible outcomes of the actionp(c|x) denotes the probability of
outcomec, when actiorx is performed. Traditionally, we have

ZD(QIXJFL j=1n.

Suppose we now have a possibility distributienover X. Hagg suggested
the following interpretation ofr: an external outcome, may occur, which
was unexpected, with a probability of occurrenggcy|x)=1—-m(x).
The conditional probability distribution is modified to

P'(Col %) = p(C | X)(X).

Given the payoff valuey,, v, . . . ,v_ of the outcomes, then the expected
opportunity costs of the actions are

m
Vi=1n, V= Z p'(c1%) .
&
vV, may be difficult to estimate in real situations

B. Fuzzy Behavioral Choice Model (Enta, 1976)

Classical choice models were criticized by Simon (NF 1967). The main
reproach was the necessity, for the decision-maker, of assigning numerical
payoffs and definite probabilities to outcomes. To avoid these difficulties,
Simon proposed the following behavioral model.

Let X be a set of actions a set of outcomes, arfdl a set of states of
nature.p(x , ) denotes the set of possible outcomes of actian states,.
Assume there exist€ C C containing the outcomes considered satisfac-
tory. A good actiorx must satisfy the requirement

C = U p(x;,s)0C.

k=1q
C is the set of possible consequencesxofThe existence of good actions

may be guaranteed by enlargi@j (lowering of the aspiration level) or by
shrinkingC, (through gathering more information ab@(t , s)).
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Such a model and mechanisms have been “fuzzified” by Enta (1976). In
his formulation C', s, p(x,s) are fuzzy sets. The mechanisms that
guarantee the existence of good actions may be straightforwardly extended
by modifying the fuzziness of the different sets involved.
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Chapter 4

FUZZY CONTROL

There have been two kinds of applications of fuzzy sets in control
theory. First, the Bellman and Zadeh (1970) approach to decision-making
was used in optimal control problems in which the choice of performance
criteria is both a matter of subjectivity and computational tractability.
Secondly, Zadeh’s linguistic approach to fuzzy systems has motivated
many works dealing with the synthesis of fuzzy logic controllers for
complex processes. This brief chapter successively surveys these two appli-
cations of fuzzy set theory.

A. FUZzZY OPTIMAL CONTROL

Let us consider the discrete state equation of a linear time-invariant
system:s(t + 1) = Aqt) + Bu(t), t € N, wheres(0) is ann-dimensional real
initial state vector,s(t) an n-dimensional real state vectouy(t) an r-
dimensional real control vectorA and B are nXn and nX r real
matrices, respectively. The optimal control problem is to find a sequence of
inputs (possibly of a fixed length) in order to reach a prescribed final state
(i.e., the goal). There may exist constraints on the control sequence and on
the intermediary states of the dynamic system.

a. Characterization of a Class of Fuzzy Optimal Control Problems
(Fung and Fu, 1974b)

Assume both the final timé and the control sequence(0), u(l),
..., Ut —1) are unknown. LetV=U* XN where U* is the set of
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possible control sequences. Any elemert (6,t) €V represents a con-
trol sequence #u(0),...,u(t,—1) such that the process terminates at
time t. Let C(t), X(t), T, and F be fuzzy constraints on the control value
and on the state at timg on the final time and on the final state,
respectively. These can be viewed as fuzzy sets/dusing cylindrical
extensions).,uc(t)(u) IS a membership value af(t) and depends inversely
on the magnitude ofi(t). Mxm(“) is a membership value of the stes)
that is reached at time when the control sequenag=u(0),,...,u(t—1)
is applied. T is a fuzzily fixed final time.u (v) decreases with,. F is a
fuzzy target set.u_(v) is the membership value ox(t) when v =
(u(0), ... ,u(t, — 1),t).

The fuzzy constraint sets defined above can be viewed as a collection of
optimality criteria foru. The overall fuzzy goal set is obtained as a result of
amalgamating the whole collection of criteria:

/J“J(U) = MT(U) D/"LF(U) D(/‘Lc(o)(U) D/‘Lc(l)(U)D' ' 'Ey.LC(tf_l)(U))
D(/J’x(o)(u) D/J’x(l)(u)lj' ' 'D‘Lx(tf_l)(u))
where [0 denotes an aggregation operator such as min, max, product, etc.
(see 3.B.a and 3.C.a).
b. Special Problems Using Particular Criteria

The fuzzy multistage decision-making problem stated above has been
solved in the literature for special kinds of optimality criteria, namely when
(Jis min, product, and a linear convex sum.

a. Pessimistic Criterion

We suppose herg= min. The optimality criterion becomes

w(U0), . .. u(t),t)

:minéﬁ(tf)’ :uF(S(tf))’ min /’lc(t)(u(t))' min Hx(t)(s(t))g 1)

o<t<tf o<t<t

An optimal control sequencé with terminal timet, satisfies the condition

HJ(é’ff) = Sup u3(91tf)'

tg ON

Bellman and Zadeh (1970) dealt with the following subcase of fuzzy
optimal control problems with pessimistic (see 3.B.a) criterion. The system
under control is a finite deterministic automaton; there is no constraint on
the state at time, except fort=t, which is assumed given. Moreover,
there is a constraint on the control sequence to be determined. The
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criterion is then

1,(6) = min [u (s(t)), min w,(u(t)]. (2)

To solve this problem a dynamic programming method was proposed by
Bellman and Zadeh (1970). (See also Chang, 1969.) The method is carried
out by applying the “optimality principle’,, which asserts thatu{D),

. u(t.—1) is an optimal control sequence on O, . .t—1, thenVt <

t—21u(), . .. ,u(t—1) isoptimal on § ..., t—1}. We have
s (6)
:u(o),..s.l,{nf_z) min(uc(o)(u(o)), T ’l'lC(If—Z)(u(tf B 2))' u'tf—l(s(tf_ 1)))
where
ultf—l (S(tf _1))

= p min [1“0 ( ( _1))1.UF[5(S(tf _1)’u(tf _1))]E

and s(+ 1) =3(st),u(t),t € N, is the state equation of the automaton.
By iteration, we get the following equations which provide an optimal
control sequence,

utf_l(s(t )) P mln(uc(tf i)(u(tf_i))'u'tf—iﬂ(s(tf_i+1)))
S(tf—i+1):5(s(tf—i),u(tf—i)), i=1t, 3)

with ' = Note that since the final state is known only fuzzily, the

above equations must be iteratively solved for all possible final states.

Bellman and Zadeh (1970) also solved the problem wthés not known

and unconstrained and the final state must belong to a fixed ordinary set
of states. Lastly Kacprzyk (1978) addressed the same problem, assuming a
fuzzy constraint on the termination time.

Fung and Fu (1974b) solved the optimal control problem using (2) on a
linear continuous unidimensional system. They also give a solution method
for the same linear system with time-independent fuzzy constraints on the
final time and the input sequence; the final state is assumed to reach a
given time-dependent moving targgt), i.e., s(t) = z(t). The correspond-
ing optimality criterion is

(6, t) = minger (t ), inf pie((u(t))g @

The pessimistic criterion was also studied by Gluss (1973) for the

optimal control of a single-input, single-output discrete system where
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inputs and outputs are valued on an infinite space. The final time is
assumed known, and there are fuzzy constraints on the input and on the
state at any time. The corresponding optimality criterion is

/JJ(Q):min(ux(o)(s(O)), . ,ux(tf)(s(tf)),

/'lc(o)(u (0))’ Ce ’/'lc(tf-l)(u (tf _1)))

where u_ = M - Gluss (1973) solved this fuzzy state regulation problem
using a dynamic programming method.

Fung and Fu (1974a) have criticized the pessimistic criterion because it
does not allow any trade-off between the membership values of the
elementary criteria. This entails a “highly insensitive optimality criterion
which virtually depends on the worst stage of the whole process” according
to these authors.

B. Other Optimality Criteria

Alternative optimality criteria that do not have the drawback mentioned
in « have been studied in the literature. Fung and Fu (1974a) considered
the optimal control of a finite deterministic automaton with a fuzzy goal
expressed as a convex combination of the elementary criteria,

p0) =ame(s(0))+ T 3 b (9(0)

They gave an algorithm for determination of tkita optimal policy (i.e.,
control sequence).

A linear convex optimality criterion was also studied by Gluss (1973).
Moreover, he dealt with a product optimality criterion similar to (5) where
product replaces min. He noticed that, when the membership functions of
C(t) and X(t) are, fort=0,t -1,

ux(t)(s(t)): exp[— azs(t)Z], pc(t)(u (t)):exp[—u (t)z],

and p(s(t)) = exp[-bs(t,)q], then we recover the usual quadratic opti-

mality criterion
t -1

Z (u(t)2 + azs(t)z) +bs(t)’,
t=
which expresses the necessity of keepsty “small” for all t, subject to
the requirement thau(t) is not too “large” for allt. Obviously, the
quadratic criterion corresponds to a fuzzy objective.

The choice of an optimality criterion is however a matter of experience
and seems very difficult to justify a priori.
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Remark An extension of this approach to stochastic optimal control
was carried out in a similar manner by Bellman and Zadeh (1970), Gluss
(1973), and Jacobson (1976).

B. SYNTHESIS OF LINGUISTIC CONTROLLERS

Fuzzy controllers have been introduced by Mamdani (1974) and by
Mamdani and Assilian (1975) for control of complex processes, such as
industrial plants, especially when no precise model of the process exists
and most of the a priori information is available only in qualitative form.

It has been observed that a human operator is sometimes more efficient
than an automatic controller in dealing with such systems. The intuitive
control strategies used by trained operators may be viewed as fuzzy
algorithms (Zadeh, Reference from 1.3, 1973), which provide a possible
method for handling qualitative informations in a rigorous way. This
section gives a brief outline of this approach. More detailed surveys can be
found in Mamdani (1977a) or in Tong (1977).

a. Structure of a Fuzzy Controller

The purpose of controllers is to compute values of action variables from
observation of state variables of the process under control. The relation
between state variables and action variables may be viewed as a set of
logical rules. When this relation is only qualitatively known, fuzzy logical
rules may be stated to implement an approximate strategy. An example of
such a fuzzy rule is: if pressure erisrpositive big or positive mediurthen
if change in pressure error isegative smallthen heat input change is
negative mediumwhere “positive big” and “positive medium” are fuzzy
sets on a discrete universe of pressure error values; similarly, “negative
small” or “negative medium” are fuzzy sets, but not on the same universe.

Such rules are of the form:

if X is A, then (ifY is B, thenZ is C), (6)

which is a conditional proposition (see Ill.1.Ed. To translate this
proposition, most authors used the min operator instead of a logical
implication.* The conditional proposition is then equivalent to the fuzzy
relation

g (X,Y,2) = min(, (X)min(pg (V)i (2)))
= min(, (X). kg (Y)Hg, (2)).

*Note that here, in propositions such as is A ," X and A refer to the same universe.
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When a set oh fuzzy rules is available, the resulting fuzzy relat®ns the
union of then elementary fuzzy relationg, i = 1, n:

pe (X, Y, 3= MaX pe (X, Y, Z).
N.B.: An intuitive justification of this method of translation and aggre-
gation of the rules is the following: given the two consistent and nonredun-

dant rules,
if XisA, thenYis B,

if X is A, thenY is unrestricted,
we get

He(X,Y) = max [ min( ,(X)pg(Y))min(1-p,(X), 1)]
= max[l—/JA(X), min(yA(X), .UB(Y))]’

which is nothing but the implicatior? (see 11l.1.B.c).

If the state variableX andY take fuzzy value\' and B', respectively,
the fuzzy valueC' of the action variableZ is obtained by applying the
compositional rule of inference

C'=(AxB)oR
or

He(Z)=max min( t, (X), ts( Y). a( XY, 2)).

The A, B, and C are prescribed fuzzy sets on finite discretized universes
which represent the possible ranges of measurement or action magnitudes.
In fuzzy controllers the inputs (e.gX, Y) are usually precisely observed
quantities, hence, not fuzzy; if, for instancg, and Y, are the observed

inputs, the compositional rule of inference reduces to

He(Z) = .uR(XO'YO'Z)'

Furthermore, the output (e.gZ) of the fuzzy controller, which must
serve as input of the controlled process, thus has to assume nonfuzzy
values. A decision procedure must be used to “unfuzziy”i.e., to obtain
a nonfuzzy value “compatible” witlC’. An obvious method is to choose
the value that corresponds to the maximum of their membership function;
when several values are possible, their average is chosen (mean of maxima
method). Another obvious technique is to form an average based on the
shape of the membership function.

N.B.: 1. Of course, more complicated rules than (6) may be consid-
ered.

2. Sets of linguistic conditional rules can be conveniently displayed in
the form of decision tables. An example in Fig. 1 is from Kickert and

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



Change in error

NB NMINS NOlPSJPMIPB
PB
NM NB
PM
PS | PS |NO| NM
= P
8 Ot pm |ps|nolns|
wi NO
NS PM |NO|[ NS
NM
-1 B PM
N8

IV.4 Fuzzy Control 303

Figure 1. PB, positive big; PM, positive medium; PS, positive small; PO,positive zero;

and analogously for negative.

Mamdani (1978) (the cells of the matrix contain the possible linguistic
values of the outputs of the controller). Such decision tables are not
necessarily complete. MacVicar-Whelan (1976), starting from a completed
decision table (see Fig. 2a), first refined it as sketched in Fig. 2b, and
suggested that “fuzzified” versions of Fig. 2b (see Fig. 2c) could be more
realistic representations of the actual behavior of a human operator, whose

CSE

SE

Figure 2. SE, speed error; CSE, change in speed error; L, large; M, medium; S, small.
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strategy is modeled by the linguistic rules, in order to synthesize a fuzzy
controller.

3. A set of linguistic rules can also be expanded into a fuzzy flowchart.
Actually, linguistic rules may be viewed as fuzzy instructions (see II1.3.B.c.
d).

4. Gaines (Reference from .1, 1975) has made experiments to com-
pare fuzzy and stochastic logics (see Ill.1.B.bor the latter). It was
concluded that no significant difference in control policy resulted from
combining the fuzzy rules using any of the logics. “The robustness of the
result to radical changes in the assumptions underlying the logical calculus
used is an encouraging indication of the basic robustness of the tech-
nique.”

5. Willaeys and Malvache (1976) use a referential of fuzzy sets (see
Il.I.LF.c.y) in order to save computer memory storage.

b. Determination of a Fuzzy Controller

The relationR is constructed by assuming three more or less arbitrary
factors, whose choice depends on the experience of the designer. First, it is
necessary to choose appropriate membership functions for the prescribed
fuzzy sets. The second factor is the range of values in the various universes,
i.e., the quantization level that can be widened or narrowed. The third
factor is the set of rules itself. The spreads of the prescribed fuzzy sets and
the quantization level must be fitted to the sensitivity of the process.
Moreover, the number of prescribed fuzzy sets on a given universe must be
sufficient so as to constitute a satisfactory covering for it. Hence, a good
way of tuning the controller is to modify the set of control rules, i.e., add
or delete rules or replace somely other prescribed fuzzy sets.

They are three methodologies for the determination of a good set of
rules:

(1) A linguistic description of a control strategy used by a skilled
operator will serve, provided that the speed of the process allows direct
manual control. The rules obtained are of the form: if the errquosstive
big and the derivative of the error ositive mediumthen set the control
variable tonegative mediumAnyway, the identification of the protocol
used by the operator is not always easy.

(2) When the speed of the process is too fast to be manually controlled,
it is possible to analyze records of system responses to prototypes of input
sequences. The rules obtained are then of the form: if the control variable
is set to positive mediumand the error is negativenedium and the
derivative of the error ipositive bigat timet, then at timet + 1 the error
will be negative smalland its derivativepositive mediumWillaeys et al.
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Figure 3. —one dominant rule; —two contradictoly rules; —no satisfactory rule.

(1977) compaired these two aproaches in a case study; because of the
high speed of the process, they used an analog simulation to slow it in

order to allow manual learning of control strategies. The best results were

obtained with approach (1) because it is based on an effective learning

procedure. However, the corresponding controller was less robust because
perturbations were not simulated.

(3) A rule modification algorithm was proposed by Mamdani and
Baaklini (1975) in order to automate the alteration of rules “by introducing
a form of adaptive behaviour into the controller.” This idea was also
developed by Procyk (1976). See the next chapter for details.

The quality of the control rules used can be assessed by the shape of the
membership functions of the calculated controller output fuzzy sets. The
existence of a dominant control rule in a given state of the process is
indicated by an output membership function presenting a single strong
peak; a very low membership value of this maximum indicates that some
rules are missing. When two distinct strong peaks exist, contradictory rules
are present in the controller; see Fig. 3 (from King and Mamdani, 1977).

C. Performance and Results

The problem of stability of the controller was discussed by Mamdani
(1976b, 1977a). He pointed out that “stability analysis relies on the
availability of the mathematical model of the process.” However, the main
advantage of a fuzzy controller is that its synthesis does not require the
existence of such a model. Hence the discussion on stability seems some-
what irrelevant for fuzzy controllers. They are implicitly assumed robust
because they are based on human experience. “A confidence in the quality
of control can always be obtained by running [the controller] in open-loop
with the human operator present to make any changes in its structure to
improve its performances.” Nevertheless, Kickert and Mamdani (1978)
have shown that, under certain restrictive assumptions, the fuzzy controller
can be viewed as a multidimensional (multiple inputs, single output)
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multilevel relay. In this restricted framework a frequency domain stability
analysis has been carried out by Kickert and Mamdani (1978) on an
example for a system made up of a fuzzy controller and the modeled
process. This analysis was possible because the fuzzy controller could be
proved equivalent to a conventional nonlinear one. But generally a fuzzy
controller cannot be described by an analytical function, so most of
modern nonlinear system theory is not applicable.

Fuzzy controllers have been experimented with by many researchers
who compared them with DDC algorithms or PID controllers, on highly
nonlinear processes generally. The results obtained were good and some-
times better than those of classical methods. Numerous case studies can be
found in the appended bibliography. Most of these deal with control of
industrial processes such as warm water plants, heat exchanger systems,
sinter plants, etc. The successful attempt of Pappis and Mamdani (1977) to
apply fuzzy logic to the control of a traffic junction indicates that other
problems can be investigated with this approach.
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Chapter 5

FUZZY SETS IN
LEARNING SYSTEMS

“A learning system (or automaton) can be considered as a system (or
automaton) which demonstrates an improvement of performance during
its operation from a systematic modification of its structure or parameter
values” (Fu, NF 1976). A very well-known model of a learning system is
the variable structure stochastic automaton (see Varshavskii and Voront-
sova, NF 1963; McLaren, NF 1966). In this model the evolution of
transition probabilities or state probabilities reflect the information that
the automaton has received from the input in such a way that the system
performance can be improved during operation.

The same approach has been employed using a fuzzy automaton instead
of a stochastic one, and more recently using a conditional fuzzy measure.
This is the topic of Section A. A radically different learning process, for
on-line improvement of fuzzy linguistic controllers, is presented in Section
B. This chapter is just a short survey of the existing works.

A. LEARNING WITH AUTOMATA OR FUZZY CONDITIONAL MEASURES

A basic learning system is given in Fig. 1 (Wee and Fu, 1969). The
unknown environment is assumed to be a system that on receiving the
input u returns the outpuy = f(u). The goal is to findd such that a given
performance evaluator, which depends ynand u, is optimized. The
learning system works as follows: first, a decision is made, i.e., a given
chosen and sent to the environment, which oupguts f(u). Secondly, the
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- unknown
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o ——— e — — ——

"student”

- decision—maker -

tearning section

performance evaluator
“teacher"

L] . L]
learning system

Figure 1

performance evaluator is used to compare the decision with the previous
ones, from knowledge afi andy. Thirdly, the learning section is modified

as a consequence and a new decision is made, which is supposed to be
better than the previous ones. This procedure is iterated until convergence
of the learning section, i.e., the goal has been attained. Here, the learning
section consists in a fuzzy automaton or an inference model based on
fuzzy integrals in the sense of Sugeno.

a. Fuzzy Automaton

Wee and Fu (1969) considered a fuzzy automaton with nonfuzzy inputs
i(t) and a time-dependent fuzzy transition relatig). Let s(t) be the
fuzzy state of the automaton at tinhei.e., a fuzzy set on the finite set
S={s,...,s}. The valuei of i(t) may depend ory(t), the output of the
unknown environment. The fuzzy state at titne 1 is defined through a
max—min composition:

Mg(t+l)($<) = mjaxmin(ﬂ‘g(t)(sl)’ l"l’g(t)(ﬁo i|! SJ))1

and alternatively a min—max composition:

rué(t+2)(s<) = mjin max('ué(tﬂ)(sj )’ 'ua(t+1)(sk’ il" S ))

The learning behavior is reflected by having nonstationary fuzzy transition
matrices with a convergence property. Wee and Fu (1969) have proposed
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the reinforcement algorithm

“6«)(5«’ il’sj) :ﬂs(t-l)(%, is) Oj#k
”6(t)(s1<’ s = ak”a(t-l)(sw i, 5 )+ (1= a)A (1),

where 0 <a, < 1 and 0 <A () < 1,k =1, n. The a, are constants that are
related to the speed of learning. When #h@) are known a priori, we are
in the situation of a perfect teacher. Here, thgt) depend on the
performance evaluation, which serves thus as an unreliable teacher. Let
lim A = A, then u; (S, i, §) - Ay whent — «. Wee and Fu (1969)
proved thatug(t)(sK) - A, whent - «. The convergence holds whether or
not a priori information is available, i.e., the,(s) may be assigned any
value in [0, 1]. Each stats of the fuzzy automaton corresponds to a
possible input of the unknown environment. Wh&t) has been calcu-
lated, the decision (i.e., the choice of s]ahis based on the maximum grade
of membership:

“5@)(51) = max Hyo(S0)-

However, a pure random choice is aIIowed/uigm(sJ) iIs below a given
threshold.

Wee and Fu (1969) applied their learning model to pattern classification
and control systems. Fu and Li (1969) used it for the determination of
optimal strategies in games against a random environment and two-
automaton zero-sum games. The fuzzy automaton was advantageously
compared to the stochastic one. More recently, Saridis and Stephanou
(1977) employed the same learning model in a coordination decision-
making problem for the control of a prosthetic arm.

A slightly different learning model is that of Asai and Kitajima (1971a,

b, 1972; Hiraiet al, 1968). They considered a complete max—min fuzzy
automaton, i.e., with an output mapthat is a time-varying fuzzy relation
onV x S whereV is the output universe. Their purpose was the optimiza-
tion of a multimodal function. The domain of the function is divided into
subdomains that correspond to the nonfuzzy states of the automaton;
every subdomain is also divided into unit domains corresponding to the set
of outputs of the automaton. Therefore, a global search can be executed by
deciding the optimum output over the whole domain of the objective
function, after a local search has been executed in order to find a
candidate point in each subdomain. Global and local search are performed
alternately. A reinforcement algorithm modifies the membership functions
,uﬁ(t)(sk, s]) (the input is omitted) anma(t)(q, Si) as follows:
u5(t+1)(SK’Sj):aﬂé(t)(sk’sj)-'-l_a it 1(t)> 1,

/.ta(tﬂ)(ui,sj):aug(t)(ui,sj) if 1(t)<lI,,
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where|(t) is the performance index at tinie which has to be for instance
maximized, |, is a performance criterion which possibly depends on the
previous results, and

a = min(0.99, max(0.5, 1 — I — 1) /1,1))

(o < 1 to ensure convergence). A success is obtained Wher |, and

the correspondingug(t”)(sk,sj) is increased, ifl(t) < |, (failure), it is
,ug(Hl)(Ui,sJ) that is decreased. In Kitajima and Asai (1974) time-varying
subdomains are allowed. This method can be used for the adaptive control
of dynamic systems; the performance index then evaluates the quality of
control. (See also Jarvis, 1975.) An application of this approach to a
nuclear engineering problem can be found in Serizawa (1973) and to
structural identification of hierarchical systems in Tazaki and Amagasa
(1977) (see also Chapter 8 for this application).

b. Conditional Fuzzy Measure

Sugeno and Terano (1977; Terano and Sugeno, 1977) recently proposed
a learning model formulated using the concept of conditional fuzzy mea-
sure. It is similar to a Bayesian learning model in a stochastic environment.
(See, e.g., Duda and Hart, NF 1973.)

Let X be a finite set and), a fuzzy measure oX. Let h be a function
from X to [0, 1]. Assume X={x,...,x} and h(x)s<---<h(x).
Then

4,009 = g.() = max min(n(x), g,(H,)

whereH = {x,x_ ., ... ,x} (see IL.5.A.ba).

X is now viewed as a set of causes; Yet {y, . . . ,y } be a set of
results. The problem is to estimate causes through a fuzzy information. Let
g, be a fuzzy measure ovi g, is assumed to be related g9 through a
conditional fuzzy measure.( - | X), i.e.,

o) =400 1% °g(").

g, is viewed as an a priori weighting of causes by an estimat(F | X),
where F C Y, is the grade of fuzziness of the statement, “One of the
elements ofF results because of” F is the information; in the determin-
istic case it is a singleton, but it may be a fuzzy set as wely})
expresses the grade of fuzziness of the statememictually results,” and
“u(y) represents the accuracy of the information objectively.” We have

0P =4 0ol )= oFI¥a(-)
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where o, (F | x) = £ u(y)° o, (- |X) (see Il.5.A.c). Sinc is finite,
gY(F)lellanX min(aY(F|xi),gx({xi,xi+1,...xn}))

where theo, (F | x) are increasingly ordered.

After having new informationF, the degree of confidencg(F) in F
must be increased. This is done by modifying the fuzzy meagure
through a reinforcement algorithm.

Let {x,...,x} be the set ofx that are explicitly involved in the
calculation of g (F). | is the smallesti such thatg({x,...,x})
< o,(F| x). Following Sugeno and Terano (1977; Terano and Sugeno,
1977),9.(-) and o ( - |X) are assumed to befuzzy measures (see Il.5.A.a.
y). The greater igy, ({x}) (i = I) and the smaller ig ({x}) (i <), the
greater isg, (F). Hence,g,(F) is improved by the reinforcement rules:

oy Fodx)) +a-aa(Fix). =1,
’ ({K})_Efrgx({&}), i=11-1

with 0<a<1. Owing to the above expressiong,((x}), the new
g,({x}), always remains smaller tham (F| x) because it is useless to
have it greatera is related to the speed of convergencegg{x}). The
following properties are proved in Sugeno and Terano (1977):

the final values of they,({x}) do not depend on a priori values, but are
equal too(F | x) for x that makeso(F | X) a maximum value and equal
to zero for the othex when the same informatida is repeatedly given;

when the same informatior such thatu_(y) =CVy is repeatedly
given, theg ({x}) converge toC Vi.

Sugeno and Terano (1977; Terano and Sugeno, 1977) applied their
learning model to the macroscopic search for a maximum of a multimodal
function. The search domain is divided into blocks that correspond to the
elements ofY. X is a set of criteria or types of clues through which one
guesses whether a block contains the actual maxingnexpresses the
grade of importance of subsets of criteria. The criteria may concern for
instance the number of points examined in the previous searches or the
average of the function obtained in previous searche@y} |x) evalu-
ates the belief of finding an extremum in blogkowing to the type of clue
x. For instance,o ({y} |x) may depend on the number of previously
searched points in the blogk The available informatiofft is given by

.UF(yj) :(pj_mkin pk)/ (mkaX pk_mkin (%

wherep, is the maximum of the multimodal function found so far in block
y;- Note thatF converges to the maximizing set of the function (see
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I.4.B.a). g, is subjectively initialized, andrY({yj} | x) is calculated at first
from an initial random search. At each iteration a given number of new
points are tested, the number of these points in blpcis chosen in
proportion togY({yj}).

A current iteration works as follows: from the result of a seatgh | x)
is calculated in eaclyj and normalized (see I1.5.A9; g, is normalized;
gY({yj}) is calculated fromo, and g,; g.(F) is then obtained, and the
g,({x}) are corrected by the reinforcement rules. Then a new search is
performed. This iteration is repeated urgfjlconverges.

Sugeno and Terano (1977) have compared their model with a Bayesian
learning model. Bayesian inference is now briefly reviewed.d ebe an a
priori probability density onX and p(-|x) a conditional probability
density with respect ta. The conditional probability of a fuzzy evehtis

ple )= § by

Learning is obtained through the Bayes formula, which yields the a
posteriori probability density, on X after having the fuzzy information
F:

ox (% 1F) = py (% )ov (F I&)/ pr(xk)py(lek)-

Note that when constant informationF(yj):CVyj IS given, we have
p (X |F) = p(x); that is, in Bayesian terms, obtaining constant informa-
tion is the same as obtaining no information, i.e., learning nothing.
However, the fuzzy model is able to distinguish between obtaining con-
stant information and no information since under constant information the
weighting g, becomes uniform because the information is too fuzzy.
Another difference between the Bayesian model and the one presented
here is the possibility of controlling the speed of convergence by means of
a. Lastly, Sugeno and Terano (1977) claimed that the fuzzy model could be
expected to work “more effectively than a Bayesian learning model” under
fuzzy information.

N.B.: Sugeno and Terano's learning model was used by Seif and
Aguilar-Martin (1977) for classification of objects using a sensitive-skinned
artificial hand.

B. SELF-IMPROVEMENT OF FUZZY LINGUISTIC CONTROLLERS

The learning methods presented in A may be applied to adaptive
nonfuzzy control of dynamic systems. In this section we are interested in
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the design of adaptive fuzzy controllers, i.e., controllers defined by a set of
fuzzy logical rules, as in 4.B.

Mamdani and Baaklini (Reference from 1V.4) first suggested a prescrip-
tive method for deriving the best control policy during run time in a fuzzy
logic controller. The main idea is to automate the alteration of fuzzy
control rules and thus obtain a self-regulating fuzzy controller. Such a
controller can be useful when the system under control is subject to
time-varying parameter changes and unknown disturbances.

A self-organizing controller for single-input, single-output systems has
actually been implemented by Procyk (1977). The corresponding block
diagram is shown in Fig. 2. The quality of control is periodically checked
by the performance evaluator, which can modify the structure of the
controller when the control is not satisfactory. This modification is sup-
posed to improve the control strategy.

Controller and performance evaluator are both made up of a set of fuzzy
inference rules relating(t), c(t) and u(t), and e(t), ¢(t) and P(t), respec-
tively, where g(t) is the error at timet, c(t) = e(t) —e(t—1), u(t) is the
control at timet, and P(t) is the control modification at time (P(t) is
possibly fuzzy). More specificallyP(t) is the modification that should
have altered the controller in order to improve its performance at ttime
The rules of the performance evaluator implicitly define the band within
which the process output is to be restricted. These rules determine the
desired change in the controller to be made in order to keep the process
output within the band. The rules of the controller are of the form

If eis E, then, ifc is C, thenu is U..
Those of the performance evaluator are of form
If eis EJ then, ifc is CJ thenp is P]

where E, E, G, C, U, and P are prescribed fuzzy sets. The fuzzy output
P(t) of the performance evaluator is calculated freft), c(t), and the set
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of fuzzy rules using max—min composition (see 4.BR(t) is used to
modify the control strategy: consider a fuzzy rul¢éhat contributed to the
present bad performance; theh is modified toU' = U, @ P(t) where®
denotes extended addition. Rulen the controller is replaced by the rule:

If eis E, then, ifc is Ci, thenu is U’

A detailed description of the implementation of a self-organizing controller
can be found in Procyk (1977). It has been tested on first, second, and
third order linear processes and nonlinear processes (Procyk, 1977).
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Chapter 6

PATTERN CLASSIFICATION
WITH FUZZY SET

It is well known that the concept of a fuzzy set first arose from the study
of problems related to pattern classification (see Belletaal, 1966). This
IS not a posteriori surprising since the recognition of patterns is an
important aspect of human perception, which is a fuzzy process in nature.
Although a great amount of literature has been published dealing with
fuzzy pattern classification, a unified theory is not available yet and a
linguistic approach based on fuzzy sets is far from being completely
developed. The topics of this chapter are clustered around three themes:
pattern recognition, clustering methods, and information retrieval.

A. PATTERN RECOGNITION

Let () be a set of objects. A way of characterizing an oljje€t() is to
assign to it the values of a finite set of parameters considered relevant
for the object. Each parameter is specific to a so-cdbeture of the ob-
ject p. Thus,p can be associated to a mathematical obpestM(p) =
(m(p), . . . ,m(p)) wherem is the measurement procedure associated
with featurei and m(p) is the feature valuex is called apattern. Note that
there are usually many mathematical objectdhat may be associated with
p. The set of mathematical objects will be called pattern space. The above
representation of an object does not take into account its structure.
However, in some situations knowledge of this structure may be of great
help in the recognition process. In this case the object is viewed as a formal
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structure that can be decomposed iptanitives These primitives may in
turn be valued.

The purpose of pattern recognition is to assign a given object to a class
of objects similar to it. According to Zadeh (1976), such a class is often a
fuzzy setF—F is the label of the class. A recognition algorithm, when
applied to an objeap, yields the grade of membershijp,(p) of p in a class
F. For instance, whemp can be modeled as a string of primitives that can
be derived from a formal grammar, a recognition algorithm may consist in
a parsing procedure. But the grade of membership of an gbjecta class
may also be the degree of its similarity to a typical object of the class,
namely a prototype. When the explicit description of the recognition
algorithm is known, this algorithm is said to bensparent if such a
description is not available, it is said to bpaque(Zadeh, 1976). Human
perception usually uses opaque algorithms to recognize objects. The prob-
lem of pattern recognition is that of converting an opaque recognition
algorithm R into a transparent onR. Note thatR acts onp and R,
can act only onM(p). The transformation ofROp into R involves two
steps:

(1) feature extraction: select a small set of measurement procetrjjures
and/or a set of primitives in order to tuminto a mathematical
objectx (vector in a pattern space and/or formal structure);

(2) define a transparent algorithR. that from M(p) yields the grade
of membership op in a class~

The first problem is generally the more difficult. However, we are mainly
concerned here with step (2).

Fuzziness may be present at several levels in a pattern recognition
problem: the pattern classes, the feature values, and even the transparent
recognition algorithm may be fuzzy.

In the following, existing approaches involving fuzzy sets are surveyed;
successively dealt with are semantic pattern recognifibfp)(is a pattern
vector in a feature space) and syntactic pattern recognipooa( be
modeled as a string in a formal language).

a. Semantic Pattern Recognition

One of the most intuitive ways of defining a fuzzy pattern class is to
assign to each class a deformable prototype (Bremermann, 1976a,b; Al-
bin, 1975). The grade of membership of a given object in the class depends
on the deformation energy necessary to make the prototype close to the
object and the remaining discrepancy between the object and the deformed
prototype (see I.B.b). Lee (1972) has given quantitative measures of the
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proximity of two n-sided polygons; however, he did not consider deforma-
tion energy. The proximity indices are based on angular and dimensional
comparisons. Thus, for instance, triangles can be classified into “ap-
proximate right triangle,” “approximate isosceles triangle,” “ordinary tri-
angle,” etc. Siy and Chen (1974) have a similar approach in a handwritten
numerical character recognition procedure. Each numeral is decomposed
into primitives such as horizontal lines or portions of circles. The authors
use proximity measures for the (semantic) identification of the primitives.
However, the structural part of Siy and Chen’s procedure (graph matching)
is not fuzzy.

Kotoh and Hiramatsu (1973) propose a general approach for the repre-
sentation of fuzzy pattern classes. A feature is viewed as a fuzzy partition
of pattern space, i.e., each member of the fuzzy partition corresponds to a
fuzzy value of this feature. For instance, if the possible fuzzy values of the
feature “height” are “small,” “medium,” and “large,” these values realize
a fuzzy partition provided that the orthogonality condition

l'lsmall(rr(p)) + umedium(rr(p)) + ularge(rr(p)) = 1 Vp € Q

holds ((p) denotes the height qf) (see I.1.B.b). A fuzzy pattern class is
expressed by a logical expression of feature values that correspond to
different features: for instance, the class of objects whose (height is
“‘medium” or width is “narrow”) and weight is “heavy.” An algebra of
fuzzy-valued features is then developed in Kotoh and Hiramatsu (1973).
Operations such as refinement and unification of fuzzy-valued features,
related to intersection and union of fuzzy sets, respectively, are introduced.
Two pseudocomplementations of feature values are defined; these differ
from the usual fuzzy set complementation: in the above example, “medium
or large” and “medium and large” are the two pseudocomplements of
“small.” Note that in this approach each object is evaluated with respect to
a fuzzy pattern class by means of a fuzzy logical expression (in the sense of
[1.1.A.a) that is specific to this pattern class. However, an opaque algo-
rithm cannot always be reduced to the computation of a fuzzy logical

expression.
More specifically, letF be a fuzzy pattern class defined by the fuzzy
feature valuef,F, . . . ,F whereF is a fuzzy value of feature An

object p is thus characterized with respect to the classy r membership
values p (m(p)) denotedp(p) for convenienceu(p) is then constructed

by aggregating theu(p) in some manner. For instance, a “subjective”
aggregation, when features are of unequal importance, could be the
Sugeno (1973) integral. Other aggregation schemes are also possible, espe-
cially those presented in 3.B.a. It seems that the choice of an aggregation is
very context-dependent.
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Usually, there are several (fuzzy) pattern clagsgs. . . , F5 and the
recognition problem is to assign a given objpcto a definite class. When
the membership valueg!_(p) are availablep is assigned to the class
such that U .(p) = max U, (p) provided that 4_.(p) is sufficiently large.
Otherwise, a new pattern clags* ! may be created fop. Once more, a
maximum meaningfulness principle has been applied.

Remark Perceptrons, introduced by Rosenblatt (NF 1961; see also
Minsky and Papert, NF 1969), have been considered as decision machines
in pattern recognition problems. The objgcts accepted in a clads iff

a, M (p) + OO0+ o pe (p) > 6

where theF, are crisp sets and the and 6 belong toR. Kaufmann (1977,
Reference from I) has recently considered “fuzzy perceptons” wher€, the

are fuzzy sets; more general aggregations offtheare possible.

Zadeh (1976) has suggested another approach to the pattern recognition
problem. The features are linguistically valued, and the dependence be-
tween p_(p) and the feature fuzzy valuea”)(p) are expressed as an
(r + 1)-ary fuzzy relationR. on X x 0OOOx X x [0, 1] WhereXJ_ is the
universe of m(p). R. is specific to the fuzzy pattern clas$s R. can be
derived from a relational tableau (see 2.B)dhaving n lines andr + 1
columns. Letp/ denote the current term of the tableau; each line
corresponds to the fuzzy rule: nfi(p) is p' and if . . . and ifm(p) is p,
then u(p) is p/*', wherep! is a linguistic feature value fgr< r and p™*
is a linguistic truth value. A first way of calculating.(p) is to explicitly
construct

R=U N ps
i=Lnj=1r+l
then, knowing the linguistic feature valueg(p), i = 1r, of an objectp,

H(p) is obtained by max-min composition:

H-(p) = [M(p) x OOCx m(p)] ° R

Note thatF is a type 2 fuzzy pattern class.

Another way of determinings (p) is to build a branching questionnaire
(see 2.B.df) by viewing each colummn of the relational tableau as a set of
possible answers to a question concerning featu#enalogously, Chang
and Pavlidis (1977) discussed certain theoretical aspects of fuzzy decision
trees. A fuzzy decision tree is a tree such that each nonleafinbde a
k-tuple decision functiorf from Q to [0, 1} and k ordered sons. Each
nonleaf sonj of a nodei corresponds to a question determined by the
answer to the preceding questionf (p;j) valuates the branch fromto j.
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Each leaf corresponds to a pattern class. Each path of the decision tree
from the root to a leaf represents the decisign€ F'. Each decision (leaf)

is valued by the minimum (or the product) of the decision val(esj) of

the branches composing the path. The object is finally assigned to the
pattern class that ends the best valued path. An example of a fuzzy
decision tree is pictured in Fig. 1 with=2. The problem of optimizing a
decision tree is to find the best path without computing the decision values
of the others. Chang and Pavlidis (1977) use a branch—-bound-backtrack
method to optimize the fuzzy decision tree. Note that their approach
differs from Zadeh’s in which a decision tree (branching questionnaire) is
characteristic of a pattern class and the leaves are/theMoreover, in
Chang and Pavlidis’s model the truth valdgp; j) are numerical and not
linguistic.

Remark 1 Recognition of binary discretized images using fuzzy logic.

Let M(p) be a binary vectorx(, . . . ,x) that represents a discretized
picture. To each pattern clags Shimura (1975) associates four matrices
G,y G, G, G,, Where

vk I) € {0, 1}2, le(i, j) = probp € F Dxi =k, )ﬁ =1],
i=1,r;j=1,r.

The values of theG (i, ) are learned through a reinforcement algorithm
similar to those of 5.A.a. Max-min or min-max compositions between
M(p) and theG,(i,]) are used to evaluate the compatibility pfwith the
pattern class-

In Mukaidono (1977) the patterns are allowed to be noisy, i.e., gach
belongs to [0, 1]. Let(p) be the original nonnoisy pattern amd(p) be
the noisy one. The noise, a vectdr is the absolute value of the difference
M(p) — I(p). It is easy to see thaM(p)= I(P)AN(p) (A denotes the
symmetrical difference (see I1.1.B.f) associated with({), U, N,7) (see
[11.1.B.b.a)). Mukaidono (1977) studies the existence of a quantization
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threshold able to resolve the ambiguity (in the sense of Ill.bA.baused
by the noise.

2 A methodology for a speech understanding system using fuzzy set
theory has been proposed by De Mori and Torasso (1976). The correspon-
dence between spectrogram segments and lexicon words is described as a
fuzzy relation. The first speech-understanding system using fuzzy sets
seems to be the one by Brémont (Reference from V).

b. Syntactic Pattern Recognition

The idea behind syntactic pattern recognition is that certain pattern
classes contain objects, such as geometric figures, that have an identifiable
hierarchical structure that can be described by a formal grammar, called
the pattern grammarA basic set of pattern primitives is selected and forms
the set of terminals of the grammar. The productions of the grammar are a
list of allowable relations among the primitives. The pattern class is the set
of strings generated by the pattern grammar. However, the concept of a
formal grammar is often too rigid to be used for representation of real
patterns, which are generally distorted and noisy, yet still retain much
underlying structure. Stochastic techniques for describing such distorted
and noisy patterns can be found in Fu (NF 1974).

Thomason (1973) has suggested that fuzzy languages could handle
imprecise patterns when the indeterminacy is due to inherent vagueness.
The fuzziness may lie in the definition of primitives or in the physical
relations among them. Thus, the primitives become labels of fuzzy sets and
the production rules of the grammar are weighted. The membership grade
of a particular pattern in the class described by the grammar is calculated
using maxmin composition (see Ill.3.A.b), i.e., the grammar is fuzzy. The
possibility of applying fuzzy grammars to the recognition of leukocytes
and chromosomes is discussed in Lee (1973). Kickert and Koppelaar
(1976) used an ordinary context-free grammar with a set of fuzzy primi-
tives. A fuzzy set of strings compatible with the pattern to be recognized is
generated. The method is applied to the recognition of handwritten capi-
tals; the compatibility of the pattern with each of the 26 letters is calcu-
lated using the min operator. This approach is criticized by Stallings (1977)
who compares it to a stochastic Bayesian one. Fractionally fuzzy gram-
mars (see Ill.3.A.f) were used by DePalma and Yau (1975) for recognition
of handwritten characters.

An important problem in syntactic pattern recognition is that of gram-
matical inference, i.e., given a set of structured patterns modeled by
strings, find an automatic procedure that yields the production rules of a
grammar capable of generating this set of patterns. A grammatical infer-
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ence method may be useful for determining the grammar associated with
the pattern class. Although such methods already exist for ordinary and
stochastic grammars (see Fu and Booth, NF 1975), the inference of fuzzy
grammars has not received much attention in the literature; see 8.C.

B. CLUSTERING ALGORITHMS

The primary objective of clustering techniques is to partition a given
data set into so-called homogeneous clusters. The hemogeneousneans
that all points in the same group are close to each other and are not close
to points in other groups. Clustering algorithms may be used to build
pattern classes or to reduce the size of a set of data while retaining relevant
information. In classical algorithms it is implicitly assumed that disjoint
clusters exist in the set of data. However, the separation of clusters is a
fuzzy notion, and the representation of clusters by fuzzy sets may seem
more appropriate in certain situations. Whereas fuzzy pattern recognition
has few practical applications yet, fuzzy set theory has given birth to
several new interesting clustering techniques, which are described below. A
survey of classical algorithms for pattern classification can be found in
Duda and Hart (NF 1973).

a. Detection of Unimodal Fuzzy Sets (Gitman and Levine, 1970)

The method of unimodal fuzzy sets has been developed to overcome two
drawbacks of usual clustering methods, namely their inability to handle
large data sets (say 1000 points) and to detect clusters that exhibit
complicated distributions in pattern space.

Let X be a finite set of vectorsX(=n) in a metric space. Led be the
metric. For allx € X, i = 1,n, denote byT , the set ¥ € X, d(x, X) < 6}
where 8 € R*. A fuzzy setA on X is constructed by assigning to each
the membership valug, (x) = IT J/n. For a given®, p,(x) is a measure
of the concentration of points around The maximau, correspond to
the “centers” of the clusters existing iX. The clustering procedure
decomposesA into unimodal fuzzy sets (see Il.1.F.a) and realizes the
maximum separation among them. The procedure is divided in two main
steps: first, local maxima are identified by a systematic search where both
the order of the points according to their grade of membership and their
order according to distance are used. The second step is the assignment of
each point to a cluster. There are as many clusters as local maxima of
(For further details, see Gitman and Levine, 1970.) Note that the clusters
obtained are not fuzzy sets.
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b. Fuzzy Partition (Ruspini’s approach)

Ruspini (1969) has introduced the notion of a fuzzy partition to repre-
sent the clusters in a data set. A fuzzy partition is a family of fuzzy sets
F....,F_ onXsuch that

1
Vx e X, 2 He () = 1.
i=1

“The advantage of a fuzzy set representation in cluster analysis is that
stray points or points isolated between clusters as well as other types of
uncertainties may be classified as such” (Ruspini, 1973b).

According to Ruspini (1973a), the problem of fuzzy clustering may be
stated as follows. Given a finite data s¢tand a positive real-valued
function o (the distance or dissimilarity function), whose domainXfs
such that

(1) Vx e X dx x= 0,
(2) VX, y € X o(x,y) = (y, X),

find a fuzzy partitionF, . . . ,F_, wherem is a priori known, such that
close elements X (in the sense oB) will have similar classification
(membership values) and dissimilar elements will have different classi-
fication. The classification of an elememt is the vector C(x) =

[ He, (x) OOMHE, (X)]. One of the possible ways of satisfying the above

requirement is to select the functi@(x) so as to minimize some suitably
defined functional. Let us outline Ruspini’s idea for constructing such a
functional.

Let v be a function from [0, 1] x [0, 1]" to R* such thatv(a,a) = 0 and
v(a, b) = v(b,a), and letf be a positive nondecreasing not identically zero
real function of one real variable satisfyim@) = 0, then the functionC
should be selected such that

VX, y € X, v(C(x), C(y)) = f(d(x, V).

Generally, this equation has no solution. It is then relaxed into a minimiza-
tion problem: findC minimizing
2

3 woowly)[v(C().c(v) - F(o(xy))]

where w is an appropriate weighting function. Usually,is taken as a
Euclidean distance. Various forms bfhave been tried and discussed in
Ruspini (1970, 1973a) where many experimental results are provided. A
slightly different approach using association measures is described in
Ruspini (1973b). The association measure between a goamd a fuzzy
setF on X is taken as the inverse of a weighted average distance between

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.6 Fuzzy Pattern Classification 325

andF. (The average distance betweemndF is defined as

1 M
dxF) = 15 2 L) B(%X).

Ruspini’s (1973b) idea is that the membership valuex af a fuzzy cluster
F, varies in proportion with the inverse of the average distance between
andF.

c. Fuzzy ISODATA

In some situations we are interested in finding not only a partition of a
data set but also the most representative elements of the data set, i.e., the
cluster centers. This is achieved by the ISODATA algorithm (Ball and
Hall, NF 1967). This algorithm has been improved by allowing fuzzy
clusters to be generated. First, the nonfuzzy version of ISODATA is re-
viewed.

Let X be a finite data set contained in a real vector spaseR" and let
d denote an arbitrary metric od. Set diameters and set distances are
defined by

VACV dam = &Jg\ d(x, y),
X,y
VACV, VB CV, dA B)= infd(xy).
XA

yB
d is assumed to be induced by a norm \¢ni.e., a metric of the form

d(x,y) = [x-y| where| | satisfies

Vae R, YueV, |au| = |af|u|

and the triangle inequality. Le¥ = (F, . . . ,F ) be a hard (i.e., nonfuzzy)
partition of X. convf) denotes the convex hull & in V (see 11.3.C.e).

The subsetd, of a nonfuzzy partition ofX are said to becompact
well-separated(CWS) clusters iff for alli, j, k with j £ k, any pair X, Y)
with x in F, and v in convf,) are closer together as measured doyhan
any pair @,v) with u in F and v in convf) (Dunn, 1974a). This property
can be quantified by the index

Hi : 0 .
B(m F) = min _min d(Fi,conv(Fj))B/ max_ diam(F).

<isml<ism 1<is<m
j#i

According to Dunn (1974a)X can be partitioned inton CWS clusters
relative tod iff

B(m) = maxfm7) > 1
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(¥ belongs to the set afrpartitions of X). The problem of finding ar¥
such thatg(m, ) = B(m) is very difficult. The above index is usually
replaced by the simpler criterion

m

JF,0) = 2 2 d(xU)>

i=1 xCF,
wherev is anm-tuple of elements of conX¥j called the cluster centers and
d is now supposed to be induced by an inner product:

d(xy) = [(x=y)' M(x=y)] >

M is called a sample covariance matrix. Usual, is taken as the
identity. J(%,v) can be interpreted as the average least square error of
assimilating the elements &f to u, for all i = 1,m. The problem becomes:
find &* and v*, for a givenm, such that

% *) — 1 1 Of
J(F*, v%) min VDL)rgE(X) J(F,V).

A local minimum of J is obtained by the following iterative method
(ISODATA):

(1) choose a¥ =F, ..., F;
(2) compute the centens of theF;;

(3) construct a new partitio@ according to the rule

xE F iff d(xu) = min d(xv));
<j<m

N

4) if F=F stop; otherwise sé# = % and go to step (2).

More details can be found in Dunn (1974a) where some limitations of the
above algorithm are discussed. Every partition consisting in CWS clusters
is necessarily a fixed point of ISODATA; however, there are examples
where a fixed point of ISODATA is neither a global minimum Johor a
global maximum off(m, ¥). This is especially true for small values of
B (m). ISODATA always yields some hard partition even when CWS
clusters do not exist. Hence, when it is not known in advance that CWS
clusters are actually present, “inferences drawn from ISODATA partitions
can be very dangerous” (Dunn, 1974a).

To avoid this difficulty, Dunn (1974a) and Bezdek (1974a, b) have re-
laxed J to allow fuzzy partitions as global minima. More specifically, let
J (#,0) be equal to

m

35 [k 0] doeoy,  we R
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where m
He(x) € [0, 1] and Zl He () =1 VX, Vi=1m.

Bezdek (1974a,b) and Dunn (1974a) have adapted the ISODATA algo-
rithm to the minimization of] (%, v). Details can be found in the above
references. In particular, it can be shown that §) may be a local

minimum ofJ , forw €]1, + ») andu, UX, i = 1m, only if
0 W)
He (X) = MD E,izlm, Vx € X,
D-H\x i

o = 3O X[ 3l i=am.

The first formula replaces the nearest neighbor rule of step (3) of ISO-
DATA. The iterative procedure is initialized either by amtuple of F, or
an n-tuple of thev. Dunn (1974a) proved that fov=1, when the nearest
neighbor rule is usedf is necessarily a hard partition.

The partition coefficienyp (%) is defined by (Bezdek, 1974b)

09 =15 S [h ]

Note thatVx,
1= Szup %zplﬂ E ZHF )+igjupi(><)uﬁ(><)-

Thus, when¢ (¥) = 1, theF, are pairwise disjoint andr is a hard
partition. The minimum ofg_ is reached forlg (x) = m™ Vi Vx. The
partition coefficient provides a quantitative measure of how “fuzzy’is.

The relation between the partition coefficient and CWS clusters has been
studied by Bezdek (1974b) and Dunn (1974b). They proved thas (a9
increases the result of the fuzzy ISODATA algorithm becomes necessarily
hard, and further the global minimum &f becomes arbitrarily close to
the unique optimal CWS clustering of corresponding tog (m). It is
indicated in Bezdek (1974b) thap (¥) may be used for testing the
reliability of the solution of fuzzy ISODATA.

The influence ofw on the result of the algorithm was discussed by Dunn
(1974c). Whenw increases, the partition obtained, for a givgnbecomes
fuzzier and fuzzier. Fow = 2, the result of the algorithm usually reflects
the actual fuzziness of the clustersXn
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Gustafson and Kessel (1978) have recently generalized the fuzzy 1SO-
DATA algorithm to distances of the fornd(x,y) = X-y)'M(X-Y)
whereM is no longer the identity.

Fuzzy ISODATA has been applied to medical taxonomy (Bezdek and
Castelaz, 1977; Fordon and Fu, 1976), to Bayesian unsupervised learning
(Bezdek and Dunn, 1975), and to feature selection for binary data (Bezdek,
1976b; Bezdek and Castelaz, 1977).

d. Graph-Theoretic Methods

The idea underlying the graph-theoretic approach to cluster analysis is
to start from similarity values between patterns to build the clusters. The
data are the entries of a fuzzy symmetrical relalofor a distance matrix,
in terms of dissimilarity). Usually, the methods described in the fuzzy-set
literature yield nonfuzzy clusters. Several partitions are obtained together
with their “degree of validity.”

Flake and Turner (1968) determine a nonfuzzy partition made up of
maximally coherent clusters. They use the coherence index

2
n(n-1) x,yzDF H.Y)

D(F) =

where F is a nonfuzzy subset of, the data set(X[= n). Their algorithm
IS enumerative.

Tamura et al (1971) start from a proximity relation (see 11.3.C.d),
compute its transitive closure, and construct the associated partition tree
(see 11.3.C.b). They obtain a nested sequence of nonfuzzy partitions. Dunn
(1974d) indicated that this clustering method was related to the well-
known single linkage approach (see, e.g., Duda and Hart, NF 1973).

Yeh and Bang (1975) define several kinds of clusters based on various
notions of connectivity in a fuzzy symmetrical graph. For instance, a
partition can be built from th@-degree components of the fuzzy graph
(see Ill.4.B.a). The authors notice that these methods are related to
already-known techniques described in terms of distance rather than of
similarity. However, the fuzzy graph approach is shown to be more
powerful.

Recently, Bezdek and Harris (1978) have suggested that likeness rela-
tions included in the convex hull of the nonfuzzy equivalence relations in
X x X (see 11.3.C.e) could provide a basis for new clustering techniques.
(See also Ruspini, 1977.)

e. Other New Methods

Instead of defining a fuzzy partitior = (F, . . . ,F ) by the orthogo-
nality condition Z{L’lupi (X) = 1 Vx € X, Zadeh (1976) has proposed the
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fuzzy affinity property in order to characterize fuzzy clusters induced by a
fuzzy relationR. More specifically,F, . . . , F_ satisfy the fuzzy affinity
property as soon as:

(1) bothx, y, elements ofX, have high grades of membership in some
F. iff (x,y) has a high grade of membershipRn

(2) if x € X has a high grade of membership in sdf@ndy € X has
a high grade of membership in sorRe j %1, then §& y) does not
have a high grade of membershipRn

Note that the fuzzy affinity property implies some kind of transitivity for
R. The set of pairsx(y) having a “high” degree of membership i can
be found using a fuzzg-cut R of R (see I.2.A.g)); “high” is here a
fuzzy set on [0,1]. “Basically the employment of fuzzy level sets for
purposes of clustering may be viewed as an application of a form of
contrast intensification.”

Recently, Ruspini (1977) has dealt with a new approach to the cluster
representation problem. A fuzzy partition is now viewed as a fuzzy set of
fuzzy clusters. Classically, given a crisp equivalence relafoon X x X
and denoting byR(x) the set § € X, u(x,y) = 1}, a nonfuzzy subse€
of X is said to be amr-cluster representation of iff

U R =X @)

If C contains no proper subset that is alsoRaoluster representation of
X, C is said to be a minimal representationXfWhenR is fuzzy andX is
finite, a fuzzy seCC is said to be a fuzzR-representation oX iff

2 by (6 ) =1 vy € X, 2

provided thaty, .« H, (x,y) = 1 Vy € X. The problem of finding a fuzzy
minimal R-representation may be stated as: find a fuRzrepresentation

C* of X such thatH(C*) = inf H(C) where H is for instance the cardinal-

ity of C in the sense of Il.1.D.a. In the conventional representation the set
of clusters is R(x),x € C*}— C* is a set of cluster centers. In the fuzzy
representation the set of clusters is a fuzzy set

XZXEUCD(X) / EZXMR(X, y)/y%

using Zadeh's notation of fuzzy sets. The membership functions of the
fuzzy clusters argu(x,0, their number isLC*[] i.e., no longer an integer.
H..(X) is the degree of eligibility ofi(x,[)] and is to be considered as the
membership function of a fuzzy cluster.
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N.B.: Equation (2) generalizes (1) in the sense of the bold uni¢see
[1.1.B.e.). WhenC is not fuzzy, buiR is, (1) can be extended into

ngC R(X) = X

i.e., min(3xoc M, (X Y), 1) =1 whenC is fuzzy, this equation is obviously
extended into (2).

Lopez de Mantaras (1978) deals with the case when the data set is not
given at once, but the patterns arrive sequentially. The main features of his
approach are:

(1) relaxation of the orthogonality constraint that defines a fuzzy
partition because the patterns are noisy; thus, too noisy patterns
are allowed to have a very low degree of membership to each
cluster,

(2) it employs the concept of self-learning (see Lopez de Mantaras and
Aguilar-Martin, NF 1978); the number of clusters is not known a
priori.

C. INFORMATION RETRIEVAL

An information retrieval system compares the specification of required
items with the description of stored items and retrieves or lists all the items
that match in some defined way that specification. An example of a fuzzy
system describing an information retrieval process can be found in Negoita
and Ralescu (1975, Chap. 4). We are concerned here with the clustering
aspect of the problem.

Fuzzy approaches to information retrieval have been initiated rather
early in the literature (Negoita, 1973a; Demant, 1971).

Let X be a set of documents. A fuzzy set Xnis interpreted as a fuzzy
cluster of documents. LeY be a set of descriptorg, k = 1n. A
documentx € X is described by the vectoy(x), . . . y.(x)) where
Vk, y(x) € {0,1}. The probability that the descriptgy, is present in any
document of the cluster is denotedp,. The membership function of the
clusteri is p such that (Negoita, 1973b)

H(x) = élpikyk(x)/élyk(x)'

A reasonable necessary condition for a clustering algorithm used for
structuring the storage of documents is that every document should be
assigned to at least one cluster. To take into account all the clusters, a
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documentx is assigned to the clusterms soon as
K09 = min max min(H(x), H(X)).
i, k x OX

Negoita (1973a) introduced the degree of relevance of a desgjptor
a documenix as the truth value (belonging to [0, 1]) of the proposition “the
documenti has the descriptoy,.” Thus, there is a fuzzy relatioR on
X x Y. It is supposed tha¥x € X[y, € Y such thatu(x,y) > 0. The
fuzzy description of the document is a fuzzy setD(x) such that
/.lD(X)(y) = u(x,y). A fuzzy relation p expressing the similarity between
the documents can be induced ¥nx X (Negoita and Flondor, 1976) by

H(x X) = max Min (U (Y): Howy(¥))-

Clusters of similar documents can thus be considered.

Let g be a fuzzy measure ov expressing the relative importance of the
descriptors. A global evaluatiod(x) of a documentx can be defined by
means of Sugeno’s integral:

3) = 4, ty &) ° 9O

Such an evaluation may be helpful when searching for a document
(Negoita and Flondor, 1976). For lgtbe a request whose fuzzy descrip-
tion is D(q), the documentsx that best match the request are such that a
distance betweed(x) and d(q) is minimum.

A linguistic approach to the representation and processing of fuzzy
queries is described at length in Tahani (1977).

Remark The problem of organizing the set of descriptors by means of
fuzzy relations is considered by Reisinger (1974). The membership value of
the link between two descriptoss andy (i.e., the “association factor”) is
calculated from the numbers of documentsXirthat are partially charac-
terized by bothy andy’, and by only one of them.

A similar approach is given by Radecki (1976) who uses the notion of
fuzzy level set (11.1.C.).
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Chapter 7
FUZZY DIAGNQOSIS

In this brief chapter the problem of the determination of the internal
state of a system from a set of external observations is considered. States
may be thought of as possible causes (e.g., diseases) and observations as
effects (e.g., symptoms). In many practical situations the observations are
fuzzy because they are partially qualitative; moreover, the relationship
between causes and effects may be complex or ill known. The number of
works dealing with fuzzy diagnosis is still rather small compared with
decision-making and pattern classification using fuzzy sets. In Section A a
fuzzy extension of the well-known Bayesian inference model is presented.
Section B is devoted to the representation of causality by fuzzy relations.

A. DISCRIMINATION OF FUZZY STATES IN A PROBABILISTIC
ENVIRONMENT

In most decision-making problems of large-scale systems, states are
generally defined by fuzzy statements that roughly reflect a given situation.
Asai et al. (1977) have formulated a method for discriminating such fuzzy
states in probability space and have derived a diagnosis rule that mini-
mizes the average probability of discrimination error. 8et (s, . . . ,s)
be a set of nonfuzzy statgs(s) denotes the a priori probability of being in
state s Let X be a set of possible observatiopé | s) is the probability of
observingx when the state is. Let F, and F, be two fuzzy states that
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realize a fuzzy partition oS, ie,Vs € § u_ ( )+HF2(5):J- Only two
fuzzy states are considered for convenience.

Generally, the a priori probabilitiep(s) are not known. They can be
obtained from fuzzy prior information which is described by a fuzzy
statementM. Only bounds on

n

P(M) =% pu(s)p(s)

| =
are available, say,, anda,. The p(s) are calculated using the principle of
maximum entropy, i.e., they are solutions of the problem

n

maximize —; p(s)in(s)

subject to o, < P(M) <
The probability of the fuzzy state whenx is observed is

_ P(X’Fk) _ Z “Fk |$) ( )
"R = o0 T PR (1)+P( RER

with

P(x.Fy)

PR = Sy @ PR = Zu (s)p(s)

In these formulag(s), p(x | s), Me, (S), and M, (S) are assumed known for
alli =1,n.

The discrimination of a fuzzy state can be performed using the Bayes
acceptance rule (extended to fuzzy statds):is chosen iff P(F [s)
>P(F,|s) and conversely. This rule corresponds to the minimization of
the probability P, of discrimination error. When the observation is made
of a finite sequence of independent elementary observations (. , X )
=x(m), Asai et al. (1977) give upper bounds fd?. They have pointed
out that whenm - <, P_no longer converges to O in average value as in
the nonfuzzy case. This fact is interpreted as follows: when discriminating
fuzzy states, there is uncertainty in the meaning of the fuzzy states in
addition to probabilistic uncertainty.

Lastly, the authors provide a rule for deciding when to stop the observa-
tions. LetH denote the entropy; we have
H (F,,F,| x(m)

=—[PCF, I x(m)In(P(F | x(m)) + P(F,[x(m))1nPE(F,|x(m)))]
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and

H(plx(m) = 2p(s|x(m))1n(p(s|x(m))).

Asai et al. (1977) have proved that if
max®(F, | x(m)), P(F, | x(m))) =max p (slx (m)),

then H(F, F, | x(m)) <H (p|x(m)), which means that the probabilistic
uncertainty is greater than the uncertainty due to the fuzzy states. It is then
worth getting new informatiox ., before discriminatind= andF..

B. REPRESENTATION OF CAUSALITY BY FUZZY RELATIONS

The use of fuzzy sets for medical diagnosis was first suggested by Zadeh
(1969).

An approach to the modeling of medical knowledge by fuzzy relations is
described by Sanchez (1977a). Létbe a set of symptomsS a set of
diagnoses, and a set of patients. Two fuzzy relations are assumed to be
given, namelyQ on ® X X and T on ? X S Q expresses the fuzzy
symptoms of the patients aril the fuzzy diagnoses given by a physician.
In order to represent the medical knowledge inferred frQmand T,
Sanchez proposes determining the greatest fuzzy relRtibn the sense of
the usual fuzzy set inclusion) oX X S such that the proposition
R2Z (Q2T) is true (where % is Brouwerian implication, see lIl.1.B.c).
This is equivalent to

V(X,s,p € X XSX P,

vR%: Q2 T)= py (%, 9 @ (g (B, Wer (P, 9) = 1

where a is the operator introduced in I1l.1.G.a. Noting that for any
propositionsA, B, and C, we have

VA ZB)=1 iff U(A) <u(B)
and
L(AZ((B2C) =uv((AAB): C),

(/\ denotes conjunction in the sense of IIl.1.B)b.we deduce
V(x,s,p)€ X XSXP,  min(u, (X, ), uy (P, X))< uy (P, S),
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i.,e., Q e R C T. The greatest fuzzy relatioR satisfying this inclusion is
R=Q'@T (see Il.3.E.a) which yields the medical knowledge associated
with Q and T. Given a patienp having a fuzzy symptonX, a fuzzy set on
X, the automated fuzzy diagnosis will be

S=Xo(Qt@T.
When the diagnosis is not satisfactory, the medical knowleBpegn be
improved by enlarging the set of patients diagnosed by a physician. Other
formulations of medical diagnosis models can be found in Sanchez
(1977b).

An alternative approach to diagnosis with fuzzy relations has been
proposed by Tsukamoto and Terano (1977). They have illustrated their
scheme of diagnosis on the detection of car troulles now a set of
possible failures, an& is still the set of symptoms. LR be a fuzzy
relation on SX X that models the causal link between failures and
existence of symptoms; another fuzzy relatibnon SX X reflects the
causal link between failures ambservedsymptoms T C R). Let S be a
fuzzy failure andX a fuzzy symptom. The causality between failure and
symptoms is expressed by the logical propositions

Vxe X, PX: X(x) O (3s€ S (R(s,% \ 5(9))
VseS, Vxe X, P(s,%:5(0 0 X(X
where X(9), S(s), R(s, ¥ are predicates (such that

V(X() = K (), V(3(9) = HE(9), U(R(S, Q) = Hy(s, X);

0 denotes implication in the sense of I1I.1.B®./\ conjunction in the
sense of IIl.1.B.m. P (x) means that if a symptom is observed, then at
least one failure among those that cagshas occurred. Consequently,
v (P,(X)) = 1. P(s x) expresses that if a failu® occurs, then a symptom

is observed. The truth value &%(s, ¥ is not necessarily 1, but greater than
or equal tou (s, X). The fuzzy proposition® (x) and P,(s, X) translate into

VXxE X, P(X): 0= H(X) < max min(u(s), (s, X),
SES
VsES VXE X PSsX: 0= p(s) <= min(d, 1 —p. (s x) + Hy(X)).

From knowledge ofX, R, and T a fuzzy failure $ can be deduced by
solving the system

XCSoR, Vse€S, (9 =<min(d,1-p(sx+ Hg(x).
xe X

In 11.3.E.c a method for obtaining the solutions of the equation $* - R
is described. These solutions, when they exist, are constructed from a set of
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®-fuzzy sets §,,i = 1,r) by choosing the value ofty(s) in He, (s) = [a,(s),
B(s)] provided that the sam@. is used to characteriz&*. Noting that

VSDS*Y, SoRDS*oR=X,

the exact intervals for choosing,(s) such thatx C S oR are [a(s), 1].
These intervals are then reduced by applying condRigs, X).

Remark An artificial intelligence approach to diagnosis problems using
fuzzy concepts has been outlined by Wechsler (1976). It is a medical expert
system with the characteristics:

“the medical knowledge is represented procedurally.” (i.e., contained in
programs rather than in declarative structures);

it uses procedures which deal explicitly with statistically dependent
symptoms through use of logical combination;

new information is added “via change or extension of procedure rather
than through building a large data base to improve the statistical decision
rules”;

“inexact concepts (multi-valued) are allowed so as to deal with degrees
of a symptom”;

“the interpretation of inexactness is allowed to vary with context.”

This approach is related to that developed by Shortlife and Buchanan
(NF 1975), i.e., the MYCIN system. The approximate reasoning used by
MYCIN is based on measures of belief and disbelief (different from
Shafer's (NF 1976) belief functions) rather than fuzzy set theory. Another
related approach is that of Chilaus&y al (1976).
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Chapter 8

FUZZY SETS IN THE
IDENTIFICATION OF
STRUCTURES

This chapter presents a few works that share the purpose of structural
identification of systems, while based on fuzzy set theory. However, they
are quite different in other respects. In the first section the construction of
hierarchical models of organizations through fuzzy responses of a panel is
considered. A learning method for the synthesis of a single-input, single-
output system from knowledge of possible subsystems is then described.
Lastly, first attempts at fuzzy grammar inference are reported.

A. FUZZY STRUCTURAL MODELING

Let S be a finite set of objects, i = 1, n. These objects can be viewed as
parts of a large system. The problem is to oifere., to define how each
part is related to others. The determination of the hierarchy under§ing
is achieved by asking a panel of experts to supply the entries nfbgnn
relation matrixR, called the reachability matrix.

However, the process of collecting such data can become very long when
n is a large number. To circumvent this difficulty, and also to avoid
inconsistency in the data, Warfield (NF 1974a, b), has developed a
computer-aided approach to the collection of binary entries of matrices
describing the hierarchical structure of large systems. The main assump-
tion is the transitivity of the relation obtained, which allows computation
of entries from knowledge of others.

341

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.8 Fuzzy Structural Identification 342

Warfield’s method has been extended by Ragade (1976) to the case
when the panel's answers are graded, Reis a fuzzy reflexive, max—min
transitive relationu(s, s) is the grade of dominance sfovers.

In a first phaseS is partitioned in (nonfuzzy) clusters called subsystems,
whose individual reachability matrix is known. In the second phase inter-
connection matrices between subsystems are filled.

First phase The choice of an element B says, is made. The panel
must answer questions about the relations betveeand the other objects.
S — {s} is then divided into four sets:

the lift setL(s) = {s | u.(s,s) > O};

the feedback sef(s) = {s € L(9) | us,s > O};
the drop seD(s) = {s | u(s,s) = 0, u(s,s > O},
the vacant se¥(s) = {s | u(s, 9 = u(s,s = 0}.

The matrix is then arranged in block-triangular form:

L-F F(s) s V{s) D(s)
L-F R, ¢ 0 0 0 0
L(s)
F(s) Rp, K 0 0
s PL_F Pr 1 0 0
V(s) Ry 1 -F 0 0 R, 0
D(s) Rp Kp Rp, v Rp

p._ e Py Ko, K, are supplied by the panel. Some blocks can be calculated
by transitivity; we have, for instance,

Os OF(s), Os, OV(s), uR(s, sj) =0= min(uR(s,s),uR(s,Sj ))

and

/JR(SJ- , s) =0= min(uR(sj , s), uR(s , s));

hence,RFYV =0-= Rv, - We also have

Os OD(s), Os OL(s), uR(s,sj)>min(uR(s,s),/JR(s, S ))>0.

Note that what is actually obtained are nonnull bounds onuffe, s) in

R, .+ R+ R, » and R, This process is iterated by choosing a new
element inL(s) — F(s) and partitioning this set as above, and so on, until
drop sets, vacant sets, and nonfeedback parts of lift sets are singletons.
D(s) and V(s) are similarly reduced.
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Second phase Some lower off-diagonal blocks remain unknown, i.e.,
interconnection matrices. They are determined without extra information
as follows. Let

00O
Res

where R, is unknown. Using the transitivity oR.., i.e. , R..°R.. =
R..: R,z must satisfy

RAB = (RABORAA) U (RAB RBB)’
i.e., if R, is p by p, andR;; q by g, and denoting by, the entries oR_,

Rcczgi’;

di>p, Ojsp, r;=mx ksa>p( min(rik, rkj), rglag((rik, rkj)g

It is easy to see that by renaming thU.e the above equation can be
formally writtenz = z © T wherez is a vector withpg components which
are therij, andT is apg by pg matrix made up oR,,, R,,, and zerosz is
thus an eigenfuzzy set of and can be calculated as in 1.3.E.d. Another
solution method is given in Ragade (1976).

The assumption of transitivity can be relaxed. Tazaki and Amagasa
(1977a) define the semitransitivity & by

Oi, Oj, Ok, if mj:m@xmin(uR(s,g),uR(sK,sj))B9

then MR(SI,SJ) = m, where # €]0, 1] is a given threshold. The authors
describe a procedure for constructing a semitransitive matrix (called a
semireachability matrix) and deduce the structuré&. of

WhenR is transitive and reflexive, a partial order on the elementS isf
easily obtained as shown in 11.3.D.c. When it is only semitransitive, a set of
disjoint partial orders can still be obtained; this set depends on the value
of 6 (see Tazaki and Amagasa, 1977a).

B. HEURISTIC STRUCTURE SYNTHESIS

A system synthesis problem is now defined, and a heuristic fuzzy
approach to this problem is proposed, following Tazaki and Amagasa
(1977b). LetS be a single-input, single-output system maden aubsys-
temsS, . . . ,S, as in Fig. 1.

Each subsystem # 1 has an inputx that is one of the outputg,
j=1,n-1 sayx =y, j(i) <n. The outputy, i = 1, n, depends on the
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e B2 % \Q:;v 5 J &5, 5 [

Figure 1

input x and a local decisiod:
Y = fi(xwdi)-

No subsystem is connected to the input subsys$gnthe output ofS is
not connected to any subsystem’s inputis assumed known and is the
maximal number of connected subsystemsSinA performance criterion
for Sis selected of the form

n

7(05.9)= Y 7,(x.3,.4)

where 7, is the objective function of théh subsystem. The synthesis
problem is stated as follows: find the admissible connections and the
decisions that minimiz& under the constraints:

(1) Y, :fi(xl, di), i=1,n
(2) 3Fj@i)<n,x = Yoy I=2,n.
The heuristic algorithm solving this problem proceeds in four steps:

Stepl  Optimize each subsystem, for a nominal admissible imput
while relaxing (2), and determine the output and decision vectors in each
subsystem.

Step2 Calculate the matrix of a fuzzy relatidh that expresses the
discrepancy between the outputs and the inputs to which they are con-
nected. Each term, is of the form

I :wmul(xi,yj)+(1—wm)u2(97i,9j), i=1n, j=1n,

where (see Tazaki and Amagasa, 197ifb)ndicates thatm — 1 iterations
have been run,ul(xi,yj) decreases withxi|—yj| and is 1 forxi:yj. It
evaluates the suitability of coupling the output $fwith the input ofS.

pX T, J,) decreases witly; + J, and valuates how andS are optimized.

w_ € [0, 1] is a weight calculated at each iteration by a reinforcement rule
(see 5.A):

a _ or
L+(l-a,)A  with amzl—% (010,1)

m

w

=a, W

m 'm
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J . is the value ofJ at themth iteration and J_ the average value of
from the beginning of the run;

A=1 iff
A=0 iff

hence w_ >w__,;

hence w,<w,,_;.

And u? is given a priority ovep®.
Step3 The set of admissible subsystems is a fuzzy se§ sayA at
iterationm. A is given a priori. The new admissible fuzzy set is

A=A R

The new structure ob is determined by two rules:

connect the input o§ to the output 01‘5J such that

uﬁm(s) = min(uAm—l(S)’ rji);

whenj is not uniquek is chosen such that

max(/,lAm_l(SK), rki) = max max(uAm_l(ﬁ), rji).

Conditions onR and A, are given in Tazaki and Amagasa (1977b) to make
sure of the uniqueness kf

Step4  According to the structure determined in step 3, adjust the
inputs of the connected subsystems; then return to step 1. The modifica-
tion of the inputs of the connected subsystems is carried out through a
reinforcement algorithm (see Tazaki and Amagasa, 1979). The inputs of
the nonconnected subsystems remain unchanged. The algorithm stops
when step 1 gives the same results as the preceding iteration.

Tazaki and Amagasa (1977b) claim that their method is more conve-
nient than combinatorial enumerative or variational approaches from the
point of view of computation time, and usually yields the optimal solution
for small-sized systems.

Remark: A method for the structural decomposition of large dynamic
systems is proposed by Dufour et al. (1976). It is based on the derivation of
a partition-tree (see 11.3.C.b.) from a similarity relation on a set of
characteristic parameters. This relation is built from observations.

C. FUZZY GRAMMAR INFERENCE

The problem of grammatical inference is very important in syntactic
pattern recognition. It consists in finding a formal grammar that generates
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a language containing a prescribed finite set of strings, and sometimes not
containing another finite set of strings; however, the latter constraint is not

considered in the following. Grammatical inference methods have been

developed for ordinary regular and context free grammars, tree grammars,
and unambiguous stochastic grammars. (See, e.g., Fu and Booth, NF 1975,
for a survey.)

Inference methods for deriving fuzzy grammars would enhance the
applicability of fuzzy language theory to syntactic pattern recognition
problems. To date only two approaches exist in the literature of fuzzy sets,
a reinforcement algorithm and an enumeration method.

a. Learning of Fuzzy Formal Language  (Tamura and Tanaka, 1973)

Let G, = (V, V,, P, § be a fuzzy grammar wherg is a set of
nonterminals,V, a set of terminalsP, a set of valued productions, a&i
is the starting symbolV,, V,, and P, are chosen beforehand to cover a
sufficient range. The seR of productions on whictP is a fuzzy set may
contain improper production rules.

At time n the fuzzy grammar i&_= (V,, V;, P, S where

P, = Zun(u ~ o)/ (u=v), uoOv =(VyOV;).

For the purpose of learning, a finite set of strikgs={ x, [I=1,N} is
given. Each string oK is parsed byG . To make the parsing possiblg,

is assumed recursive. L&(x,) be the subset of productions Rthat can

be used to generate . The subset of productions that can be used to
generate the strings K _is thus

Ax.)=J Qx)OrR
i=1Np
The learning process consists in reinforcing the productio@(i) and
weakening the others. More precisdd,, , is defined by
Upor(u - 0)=ap,(u- v)+(1-0a)6,(u-v), a0]0,1]

where 6_is the characteristic function d(K ).

N.B..  WhenG, is ambiguous, one may wish to reinforce the produc-
tions of only one of the derivation chains that yield eagh The choice is
made by an external supervisor. Denoting

¢,(G)={x0V' lug,(x) =2} DAO[0.1]

and by &(A) the nonfuzzy language generated by, ,B,, A, § with
A C R, it can be proved that (see Tamura and Tanaka, 1978 iE N —
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{0}, K = K, then VA €]0, 1[, IN(A) such thatVn = N(A), £ (G)
= ¥(Q(K)).

This result means that the only productions that remain valid are those
in Q(K), when K is always used as a training set. However, generally
speaking, it is not clear what training set is adequate to intensify only a
specified set of productions. Note that sirteis a characteristic function,
the result is a nonfuzzy grammar, havig{K) as a production set.

b. A Combinatorial Approach (Lakshmivarahan and Rajasethupathy,
1978)

A slightly different kind of grammatical inference is now considered. Let
r=(V, V;,R, 9 be a nonfuzzy context-free grammar, afqr) the
nonfuzzy language generated by Let E:Ziui / % be a given finite-
support fuzzy set oV.. The problem is to find a fuzzy s& of R, i.e., a
fuzzy grammarG = (V, V,, P, § such thatE C (G).

Let k=|R|. There are at most different valuations for the produc-
tions, sayp,, p,, - - ., p. For any subseX = {P,..., R} of R where Pi,-
denotes the name of a production, let us define

C(X):min(pil,...,pir)
E, :{XDL(I')|SDX x};

which is the set of strings derived by applying at least once each of the
productions of X. Note that whenl is not ambiguous,Ux, X, UE,,
1e(x) = (%) = C(X).

L(I") is now decomposed into equivalence classes.

WhenT is not ambiguous, each string bfi) belongs to only one sé&i,
since x can be derived only by one chain. The equivalence is thus defined
by Vx,y € L(I'), x~vy iff X(x) = X(y) where X(x) and X(y) denote the
set of productions necessary to deriveandy, respectively. The equiva-
lence class ok is E, .

When I' is ambiguous a stringce L(I') may belong to severak,.
Hence~ is no longer an equivalence relation.

In the nonambiguous case the inference problem is solved as follows:

find all the subsetsK of productions ofl that give birth to complete
derivation chains

S—»Gl—>"'—>an—>x;

let M be the number of th¥';
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choose in each of the subseﬁs&i, one stringx' whose length is X |[;

we thus obtainM strings to which are assigned weightsi=1,M
supposedly consistent, i.e., the system of nonlinear equa¥gnsC(X')
= w, has a solution;

the valuations of the productions are the the solutions of the above
system; generallypj IS not unique.

N.B.: 1. The sample set of stringsmust have at mog¥l elements to
use the above algorithm. This algorithm indicates what kind of sample sets
are worth considering.

2. Some hints for dealing with the ambiguous case are proposed in
Lakshmivarahan and Rajasethupathy (1978).
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Chapter 9

FUZZY GAMES

Like most system-oriented theories, game theory did not escape fuzzifi-
cation, although the number of attempts is still rather small. Fuzzy games
are intended to model conflict situations with imprecise information.
Payoffs, strategies, coalitions, etc. may be fuzzy.

For instance, we can consider a two-person zero-sum game with a fuzzy
payoff. LetS and S, be the sets (assumed finite_for simplicity) of the
strategies of player | and of player Il, respectively. B{s, S,), a fuzzy set
on R, denote the fuzzy payoff to player | when he choages S, and
player Il chooses, in S,. Player | wishes to maximiz&(s, s,) and player
Il wishes to maximize—P(s, s,). Irrespective of what player Il does,
player | may secure for himself at least

max min P(s,s)= ¥,
LAY (s, ) |
Similarly, player 1l may secure for himself kast

P =
B T P2 7

P(s, s,), v, and v, may be V|ewed as possibility distributions on the actual
value of the payoff. hg#f, N v,) values the possibility of the existence of a
saddle point. Note that, for instance, the set of secure straggiésplayer

| such thatmmSES P(s1 s,)= v, is a fuzzy set when the payoff function is

fuzzy (see 11.4.B.c

In the remainder of this very short chapter a survey of the current
literature is provided.
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Orlovsky (1977) has considered the following two-person game. The sets
of the possible (feasible) strategies of player | and player Il are two fuzzy
setsA and A, on S and S, respectively. But the two payoff functiory
(for player I) andP, (for player Il) fromS X S, to R are assumed
nonfuzzy. Each player is here supposed to know the strategy chosen by the
other player. Thus, player | maximizes his payBf(s,s) over his fuzzy
strategy sefA, for a givens,. The fuzzy choice of player | is given by the
membership function (see 11.4.B.b)

Ha(s) i SEUNQ, ),

otherwise,

Hi(s, S,) =0

where
N(A, sz)=§%€ S, Pi(s, s)= S, P.(s;, Sz)@

Dj = ESL SRS /JAl(S_) 2)@

The fuzzy choice of player Ik, (s, s) is symmetrically defined. Théuzzy
equilibrium solutionis then introduced as a fuzzy set & X S whose
membership function is

1S, ;) = min(, (5, S), wy (S, S))

The fuzzy payoff P, of player | at the fuzzy equilibrium is (see II.4.Ep.
ps(2) = sup p(s. Sz)
(s5) 0P
where pii(z)={(s,s) ES, X S,P/(s,s) = z}. P, is calculated simi
larly.

Ragade (1976) deals with two-person games where the preferences of the
players are fuzzy. Le§ be the strategy set (nonfuzzily restricted) of player
i, 1=1,2. Leta = S X §. For each playerM. denotes a reflexive fuzzy
preference relation anXx a (uMl[(sl, S,), (s;,S,) €10, 1,1 =1, 2).An ele-
ment §,s)Ea is called an outcome. An outconig] , s}) is said to be
A -rational for player 1 if

Vsle S]_, I’lM 1[(31’ S*Z )’ (S’i’ S’é )] 2)\1

The set of alln -rational outcomes is denotel,, . R, is similarly
defined. Since rational outcomes for both players correspond to equilibria,
R, N R,, may be viewed as the set of outcomes\ jn\_-equilibria.

Iéutnarlu (1978) questions the usual safest (worst case) strategy rule of
2-person games. For a given player, the set of feasible strategies is fuzzy. It
is obtained from the composition of a fuzzy relation§)nx S, (expressing
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the preferences of the player conditioned by the other player’s strategies)
and the fuzzy set representing the estimation of the behavior of the other
player.

Blaquiere (1976), in the framework @Fperson dynamic games with
coalition, has introduced the notion of fuzzy optimality with respect to a
set of players. The concepts of diplomacy and fuzzy diplomacy (in order to
take into account the fact that “any subset of the set of players can try to
improve its payoff by switching from one set of coalitions to another as
time evolves”) are also presented in the same reference.

Aubin (1974a, b, 1976) has introduced the concept dfizay core in
game theory. Let us consider arperson game. Lell be the set of players
and a be a family of coalitionsA (i.e., of subsets oN). §A) is the set of
multistrategies ofA. Let , = {P4,,, be the set of the real-valued loss
functions of playersi behaving as members &. Let S € SN) be a
multistrategy of the whole set of players. It isvaak equilibriumif

INEM = @xeR“*,DieN,w =0 and gxi :1§
such that, for all coalitiong\,

2RO < i, 2NPAS)
It is an equilibrium if INEM" = {A € M", \' > 0,Vi € N}. The core
C{SA).2?,},.) is the set of multistrategies € SN) that are not
rejected by any coalition A&a. By definition, a coalition A rejects
se S(N) if it can find S, € §A) yielding to each player participating in
A a loss Pa(s) strlctly smaller than the lossP|(s). Note that any
equilibrium belongs to the core; the converse is false

In order to “shrink” the core by allowing more coalitions to form and
reject strategies Aubin (1976) embeds the self coalitionsA into the set
I of fuzzy coalitions (fuzzy subsets ofN). The game becomes “a fuzzy
game.” A fuzzy core can be defined (see Aubin, 1976). It is possible to
show that “any equilibrium belongs to the fuzzy core and that the fuzzy
core is contained in the set of weak equilibria” (see Aubin, 1976).

Another game situation involving coalitions and fuzzy sets in an eco-
nomics context is considered in Féron (1976).

REFERENCES

Aubin, J. P. (1974a). Coeur et valeur des jeux flous a paiements lat€adk. Acad. Sci.
Paris, Sér. A279 891-894.

Aubin, J. P. (1974b). Coeur et équilibres des jeux flous sans paiements lat@raRixAcad.
Sci. Paris, Sér. A279 963-966.

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



IV.9 Fuzzy Games 352

Aubin, J. P. (1976). Fuzzy core and equilibrium of games defined in strategic form.
“Directions in Large-Scale Systems” (Y. C. Ho and S. K. Mitter, eds.), pp. 371-388.
Plenum, New York.

Blaquiere, A. (1976). Dynamic games with coalitions and diplomadies‘Directions in
Large-Scale Systems”(Y. C. Ho and S. K. Mitter, eds.), pp-185. Plenum, New York.

Butnariu, D. (1978). Fuzzy games: A description of the condeptJ. Fuzzy Sets Syst. No.

3, 181-192.

Féron, R. (1976). Economie d’échanges aléatoires flGueR. Acad Sci.Paris, Sér. A,282
1379-1382. (Reference from V).

Nurmi, H. (1976). On fuzzy gameg&ur. Meet Cybern. Syst. Res., 3rd, Vienna.

Orlovsky, S. A. (1977). On programming with fuzzy constraint skgernetes6, 197-201.
(Reference from 11.4.)

Ragade, R. K. (1976). Fuzzy games in the analysis of optlorSybern. 6, 213-221.

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



Chapter 1 0

FUZZY SETS
AND CATASTROPHES

Zadeh’s fuzzy set theory and catastrophe theory (Thom, NF 1973, NF
1974) appeared almost at the same time. However, they have been initially
developed in very different frameworks. Each theory has encountered not
only enthusiasm and approbation, but also criticism and even derision.
The applications of both theories are concerned with system theory:
approximate descriptions of complex processes for the former and models
of discontinuous changes in the evolution of systems for the latter. It
would be interesting to know whether both theories may be used concur-
rently. One may also be tempted to fuzzify catastrophe theory, but it is not
clear that this would be fruitful. In fact, very few works dealing with these
guestions have been published to date. Thus, this chapter is somewhat
different from the others in Part IV. No definition or result is provided.
We just intend here to give some hints.

In order to have in mind the basic vocabulary, we begin with a brief
description of one of the most widely used elementary catastrophes, the
cusp (also called the Riemann-Hugoniot catastrophe). A potentiallike

function
V(X P, g) =3 X"+ 10 +pX
is supposed to be minimized as the system evolves, i.e.,

dx _ oV
dat - ax
The set of equilibrium pointg®+ gx + p = 0 is the manifold. xis referred
to as the state variable amd and g as the parameters (considered as

353

= —(x3+ X+ p).
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attractor

Figure 1

“slow” variables, whilex is a “fast” one). The manifold and the set of
bifurcation (projection of the folds of the manifoldg4 27 =0 are
pictured in Fig. 1. There are two attractors (which correspond to minima
of V) A, (x>0, limited by the edgeD§ and A, (x<0, limited by the
edgeOT). If p goes fromp, to p,, the state trajectory follows the manifold
smoothly until it reaches the eddeS of A, then there is a catastrophic
jump (i.e., a discontinuity in the behavior of the system) to the lower
attractorA, before continuing td\. But a path with fixed positivg avoids
the fast jump. A presentation of the other types of elementary catastrophes
(for otherV) can be found in Thom (NF 1974).

In practical situations we never have to know explicitly wkiais or
what it represents; we need principally to know the type of the catastrophe
(for instance, a cusp catastrophe), i.e., a qualitative description of the
phenomenon to be modeled. The trajectories will then remain in a neigh-
borhood of the theoretical manifold rather than on it. (See, e.g., Dixon, NF
1977.) Thus, we may be led to consider “fuzzy manifolds"—for instance,
“fuzzy cusps” [as Kokawat al (1975, 1977) for modeling of the human
concept-formational process: jump in the degree of confidence, in people’s
minds] with “fuzzy attractors.” Besides, on ordinary manifolds boundaries
between various attractors may be fuzzy.

Catastrophe theory may be very useful for modeling systems where
humanistic components play an important role (for instance, the behavior
of drivers in a traffic flow as modeled by Furutani (NF 1976a, b, NF 1977).
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As pointed out by Flondor (1977), a classical notion of fuzzy set theory
such as preference may be viewed as “a moment in the fight between
different attractors.” A different way of connecting catastrophe theory and
fuzzy sets lies in the introduction of “catastrophic” membership functions
(Zwick, et al, 1978).

N.B.: Kitagawa (1975) has proposed using fuzzy topology as a basis
for the introduction of fuzziness in catastrophe theory.
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Part V

A SURVEY OF
POTENTIAL APPLICATIONS

The previous parts have developed at length the mathematics of fuzzy
sets and presented various fuzzy approaches to system-oriented problems.
Indeed, this is the main purpose of this book. Nevertheless, a review of the
present fields of application is now provided in order to give examples of
works where fuzzy concepts have been used.

Although some applications are actually based on real world data
experiments, many others are not; and very often comparison with other
techniques has not been made. Fuzzy set theory seems potentially promis-
ing; but, because of its novelty, the success of its applications is not
completely established yet.

So far, fuzzy set theory seems to have been applied mainly to scientific
areas where man is somewhat involved. However, there are some notice-
able exceptions: the detection of hazards in switching circuits (Hughes and
Kandel, Reference from IIl.1), functional approximation (Pavlidis and
Chang, 1977), and quantum mechanics. Fuzzy logic for quantum mechan-
ics is discussed by Almog (1978a,b) and Giles (1974), while Prakjove™
(2973, 1974, 1975, 1976a,b, 1977) has introduced the notion of fuzzy events
in the theory of measurement of observables. See also Ali and Doebner
(1976, 1977).

Apart from these exceptions the applications concern the following
fields: artificial intelligence and robotics, image processing, speech recogni-
tion, biological and medical sciences, control, applied operations research,
economics and geography, sociology, psychology, linguistics, semiotics,
and some more-restricted topics.

357
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A. ARTIFICIAL INTELLIGENCE AND ROBOTICS

Since “Artificial Intelligence is the study of ideas which enable comput-
ers to do the things that make people seem intelligent” (Winston, NF 1977)
and since, according to Zadeh (Reference from I11.3, 1973), “The key
elements in human thinking are not numbers but labels of fuzzy sets,” the
interaction between artificial intelligence and fuzzy set theory seems quite
natural. Paradoxically, fuzzy artificial intelligence has not many proselytes
yet. Some rationale and motivations may be found in Uhr (1975), Goguen
(1975), and Hanakata (1974). Using fuzzy concepts, Goguen (1975) hopes
to construct robust systems, i.e., systems “able to respond without program
modification to slightly perturbed, or to somewhat inexactly specified
situations.” As a tool for modeling natural language (see 1V.2.B), fuzzy set
theory may be useful in man-machine communication. The problem of
guiding a robot using fuzzy instructions has been considered by Gershman
(1976) and Uragamet al (1976). A system able to “understand” sentences
that fuzzily designate objects has been developed by Shaket (1976). Rhodes
and Klinger (1977a,b) have implemented an interactive flexible language
(modeling hedges, as in fuzzy set theory—see 1V.2.B.b) to modify graphic
facial images. Schek (1977) has proposed an interactive robust system that
is able to recognize slightly misspelled keywords, but the use of fuzzy
concepts is limited to the idea of similarity. More theoretical is PRUF
(Zadeh, 1977), which is a broad attempt to model semantic aspects of
natural languages. Quite different, although related to robotics, is the work
by Saridis and Stephanou (1977a, b; Stephanou and Saridis, 1976) where
fuzzy automata and fuzzy grammars are employed for coordination and
task organization in the hierarchical control of prosthetic devices.

N.B.: 1. For the application of fuzzy sets to computer science lan-
guages, see IV.2.A.

2. Becker (1973) seems to be the first to apply fuzzy sets to computer-
aided design.

B. IMAGE PROCESSING AND SPEECH RECOGNITION

Works in image processing using fuzzy sets are rather scarce. A fuzzy
relaxation approach to scene labeling can be found in Roseafetd
(1976). The problem is to identify objects in a scene by using relationships
among these objects to reduce or eliminate ambiguity. Nakagawa and
Rosenfeld (1978) use local max and min operations for noise removal on
gray-scale pictures. Jain and Nagel (1977) detect moving objects in a
sequence of images by means of heuristic rules involving fuzzy texture
indices on the level of gray of the pixels. However, the use of fuzzy set
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theory is only a marginal aspect of these works. Lastly, a computer aided
system for art-oriented fuzzy image generation is described by Makaro-
vitsch (1976, 1977).

The first attempt to apply fuzzy set theory to speech recognition seems
to be that of Brémont (1975); see also Brémont and Lamotte (1974), Mas
and Lamotte (1976). Speech understanding systems based on fuzzy rela-
tions were also proposed by De Mori and Torasso (1976) for lexical
classification and by Coppo and Saitta (1976) for semantic analysis of
sentences. Another problem (vowel and speaker recognition) is considered
in Pal and Majumber (1977, 1978a, b), lealal. (1978).

C. BIOLOGICAL AND MEDICAL SCIENCES

The possibility of applying fuzzy set theory to biological and medical
sciences was first discussed by Zadeh (Reference from IV.7). Fuzzy cluster-
ing algorithms have been used in the classification of EEG patterns (Adey,
1972; Larseret al., 1972), of ECG patterns (Albin, 1975), of hypertension
(Fordon and Fu, 1976), of abdominal diseases (Bezdek and Castelaz,
Reference from 1V.6), of chromosomes (Lee, 1975), and of leukocytes (E.
T. Lee, Reference from IV.6, 1973). Models of neurons based on fuzzy
automata are described in Lee and Lee (1974) and Butnariu (1977).
Sanchez (References from II1.3, 1977a, c) has studied the representation of
medical knowledge by means of fuzzy relations (see IV.7.B) for the
purpose of automated diagnosis. An application to diagnosis in thyroid
pathology can be found in Sanchez and Sambuc (Reference from I1.1).
Wechsler (Reference from 1V.2) has described a medical expert system
based on fuzzy concepts. Lastly, Malvache and Vidal (1974) have devel-
oped a fuzzy model of visual perception.

D. CONTROL

Applications of fuzzy sets to the linguistic control of mechanical systems
are rather numerous. The reader is referred to the corresponding chapter
(IV.4).

E. APPLIED OPERATIONS RESEARCH

Many case studies in operations research have been realized using fuzzy
approaches. The distribution process of the customers of a given service
within a whole system of service centers has been studied by Carlucci and
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Donati (1977); a fuzzy mathematical model is proposed to predict this
distribution. A methodology based on fuzzy sets for transportation net-
work planning has been applied to the design of a bus network in a town
(Dubois, 1977, 1978); more specifically, fuzzy sets are used in forecasting
users’ trips; users are assigned to paths calculated by means of a fuzzy
Floyd's algorithm; the networks are evaluated through fuzzy criteria aggre-
gation. A problem of optimal assignment of employees to work places,
where data and constraints are verbally defined, has been studied by
Kacprzyk (1976). A fuzzy logic controller of traffic in a single intersection

of two one-way streets has been implemented by Pappis and Mamdani
(1977). Prade (1977, 1979) deals with a real scheduling problem where the
duration of the tasks and the availability of resources are incompletely
specified—a fuzzy PERT method and other fuzzy tools are used. Sommer
and Pollatschek (1976) have applied fuzzy linear programming to an air
pollution regulation problem. Numerous practical production management
problems with fuzzy features are described in Pun (1977). Ben Salem
(1976) has developed a fuzzy multicriteria automatic decision-making
procedure to determine the sequencing of operations accomplished by a
machine tool. A. Jones (1974) models a computerized education system by
specifying fuzzy relations among sets of media, objectives, and teaching
modes. Other references can be found in the appended bibliography.

F. ECONOMICS AND GEOGRAPHY

Blin et al, (1973) and Hatteret al. (Reference from IV.3) have ap-
proached the problem of consumer choice in microeconomics using fuzzy
relation or fuzzy automata. On a mathematical level S. S. L. Chang
(Reference from 1l.2) has applied fuzzy set theory to economic modeling,
economic forecasting, and economic policy. On a philosophical level
rationales and discussions in favor of fuzzy approaches to economics and
behavioral geography can be found in Ponsard (1975a) and Gale (1972),
respectively. Ponsard (1977a, b) introduckgsuzzy relations in central
place theory in order to explain the hierarchical organization of an
economic area. Deloche (1975) has proposed a taxonomic method based
on fuzzy relations to determine boundaries of economic subregions. Fus-
tier (1975) models the attractiveness of shopping centers, using the notion
of fuzzy economical subzones.

G. SOCIOLOGY

Zadeh (1973) has suggested modeling human behavior (individual or
group behavior) as a fuzzy system. It is assumed that basic system-
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theoretic concepts such as control, reinforcement, feedback, goal, con-
straints decisions, strategies, adaptation, and environment remain central
to the discussion of human behavior. A similar attempt is made in
Kaufmann (1977). Using verbal models, Wenstgp (Reference from 1V.2,
1976a) is able to take into account human factors in the dynamic represen-
tation of organizations. Dimitrov (1977), Dimitrov and Cuntchev (1977)
model the understanding of fuzzy imperatives by individuals or groups.

H. PSYCHOLOGY

Experimental verifications of the psycholinguistic reality of fuzzy sets
and their operators are reported at length in Kochen (1975), Kochen and
Badre (Reference from 1V.1), Hersh and Caramazza (Reference from
IV.1), Dreyfuss-Raimiet al. (1975), Oden (Reference from IV.1, 1977a,b),
Oden and Anderson (1974), and MacVicar-Whelan (Reference from IV.1,
1978). An experimental study has been carried out by Kokatval.
(1975a, b, 1977a, b). It deals mainly with memorizing, forgetting, and
inference processes and with the effect of hints on subjective decisions.

I.  LINGUISTICS

Flou sets were initiated by Gentilhomme (1968) in the framework of
linguistics. Since then, other works have been published in fuzzy linguis-
tics, as shown in the appended bibliography. For instance, Rieger (1974,
1976) has proposed a fuzzy-set approach to the textual analysis of eigh-
teenth century German student lyric poetry.

Very different, although related, is the vast attempt, carried out by L. A.
Zadeh, to model semantic aspects of natural language. His theory has been
presented at length in Ill.1.E and IV.2.B. Lakoff's (1973) paper is a
linguist's commentary on Zadeh'’s ideas about modeling hedges.

J. SEMIOTICS

Among the very few works that use fuzzy concepts in semiotics are those
of Vaina. In her thesis (Vaina, 1976) a fuzzy reading of a short story by M.
Eliade is presented: emergence and disappearance of themes and articula-
tion of episodes are modeled using fuzzy sets. Vaina (1977) also outlines a
semiotic approach to the problem of the coherence of a text, based on
fuzzy topology. Also in Vaina (1978) a model of a relation of “with”
between several people is given. The way people apprehend one another’s
behavior is viewed as a fuzzy multicriteria decision-making process, which

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade



V. A Survey of Potential Applications 362

induces a proximity relation between individuals. This model also involves
concepts from modal logic.

Nowakowska (1976, 1978) describes a formal language of actions for
dialogue purpose. The semantics of dialogues are modeled in the frame-
work of fuzzy set theory.

K. OTHER TOPICS

Lastly, some particular topics are considered.

Damage assessment of structureSn original attempt that deserves
mention is that of Blockley (1975, 1978), who analyzes human factors in
the failure of mechanical structures. Subjectively assessed parameters make
possible modification of the evaluation of the probability of failure.

Aid to creativity “Aid to creativity” consists here in using a computer to
generate, enumeratively, possibly unexpected solutions of a problem. Such
solutions are constructed by assembling components picked out of differ-
ent sets, each made of homologous elements. These sets are called
“formational sets”; they may be fuzzy, and fuzzy relations can be defined
between them in order to valuate the possibility of associating elements
from different formational sets (see Cools and Peteau, 1974; Kaufetann
al., 1973; Kaufmann, 1977).

Analysis of scientific literatureSome empirical analyses of the system of
scientific literature by fuzzy sets are provided in Allen (1973) and Jones
(1976).
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CONCLUSION

Obviously, a basic concept in fuzzy set theory is the idea of a set without
sharp boundaries. Another very important concept is that of fuzzy corre-
spondences (represented by fuzzy relations). The sup-min composition
allows building images of fuzzy sets through fuzzy correspondences. When
the correspondences are just ordinary functions, sup—min composition
reduces to the extension principle. Moreover, it should be noted that there
is often no canonical way to extend classical concepts into fuzzy ones. For
instance, operators other than “min” have been pointed out in this book
and require further investigations.

Some applications of fuzzy set theory, such as switching logic or cluster-
ing analysis for example, turn only the first idea to account. They may
appear more multivalent than fuzzy, in the sense that only grades of
membership (rather than fuzzy sets as a whole) are manipulated. Similarly,
multivalent logics only underlie fuzzy set theories without providing a
sufficient framework for approximate reasoning.

Fuzzy sets allow information to be approximately summarized in a
humanlike fashion, or modeling ill-known data. Fuzzy-set theory provides
the right tool for the manipulation of this information, i.e., for approximate
reasoning or for a generalized tolerance analysis. From this point of view
the specification of a fuzzy system consists in a linguistic description of its
behavior and/or assignment of fuzzy parameters to an ordinary mathemat-
ical model. A fuzzy system has a “possibilistic” interpretation, whereas
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a stochastic system has a probabilistic one. Fuzziness may lie in the system
itself or in its model. It is mainly a matter of human perception.

A great amount of work has been already accomplished. However, the
ability to apply fuzzy concepts to practical problems requires a somewhat
deeper understanding of the specificity of Zadeh'’s theory.
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LIST OF THE MOST
COMMONLY USED
SYMBOLS

GENERAL MATHEMATICAL SYMBOLS

equal to

= equal to (by definition)
< less than; >, greater than

< less than or equal tez, greater than or equal to
A4 For all
3

there exists at least one

d! there exists one and only one
S belongs to

{x, ...} set of elementg

iff if and only if

P(X) set of subsets oX

& set of functions fronX to Y

N set of natural integers

R set of real numbers

[a, b] closed real interval

[a, b real interval closed ira, open inb
[a, + ) set of real numbers greater than or equak to
ex exponential ofx
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List of Symbols 378

In Napierian logarithm

|al absolute value of the numbar

A transpose of a matril

tr(A) sum of diagonal terms of a matrx

S, sum ofn ngmbers indexed by, . sum of numbers
indexed byi

[17-1 product ofn numbers indexed by

JP integral over an intervalaj bj

O, 1 least and greatest elements of a lattice (respectively)

O empty set

LOGICAL SYMBOLS

v(P) truth value of propositiorP

PAQ conjunction ofP andQ, v(P /A Q) = min(\(P), v(Q))

P\v Q disjunction of P andQ, v(P \/ Q) = max{(P), v(Q))

1P negation ofP, v( "1 P) = 1 —v(P)

PAQ conjunction ofP andQ, V(P A Q) = max(0,v(P) +
v(Q) - 1)

PV Q disjunction of P andQ, v(P V Q) = min(1,v(P) +
v(Q))

> any implication

implication, v(P - Q) = max(1 ~(P), V(Q))
implication, v(P 0 Q) = min(1, 1 —v(P) + v(Q))
implication, v(P-> Q) = 1 —v(P) + v(P) IMQ)
aab=1liffas<b;aab=>biff b<a

Q¢D¢

FUZZY SETS SYMBOLS

M, membership function of a fuzzy sAton a universeJ

RO Zadeh’s notation of a fuzzy séton a universeJ

2 M, (W)/u Zadeh's notation of a fuzzy sét on a discrete universe
U

N intersection of fuzzy sets
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List of Symbols 379

U union of fuzzy sets

A complement of the fuzzy sét

C inclusion of fuzzy sets

— weak inclusion of fuzzy sets

M bold intersection of fuzzy sets

Uj bold union of fuzzy sets

+ probabilistic sum of fuzzy sets

0 product of fuzzy sets

[ igf_grsection of type two fuzzy setg,  ,(X) =
min (i, (X), Mg (X))

L] uﬂ@on of type two fuzzy setw, ,(X) =
max (14, (9, 1 ()

A complement of a type two fuzzy setz (X) = 1 © p,(x)

C inclusion of type two fuzzy sets

| Al cardinality of a fuzzy seA

SUpPA support of a fuzzy seh

hgt(A) height of a fuzzy seA

§P(X) set of fuzzy sets oiX

§Pn(X) set of typen fuzzy sets orX

§P'(X) set of levell fuzzy sets orX

?,(X) set of L-fuzzy sets ornX

A x B cartesian product of the fuzzy sétsand B

FUZZY RELATION SYMBOLS

domR®) domain of the fuzzy relatioR

ran®R) range of the fuzzy relatioR

c(R) cylindrical extension oR

proj[R; U] projection ofR on the universeJ

R-Q sup—min composition of the fuzzy relatioRsand Q
Rs Q inf-max composition of the fuzzy relatiofsand Q
R@Q sup-a composition of fuzzy relation® and Q

R transitive closure of a fuzzy relatidR
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List of Symbols 380

EXTENDED OPERATIONS ON FUZZY SETS ON R

S, addition

S, subtraction
O multiplication
® division

max maximum
P~ ..

min minimum

OTHER SYMBOLS

f Sugeno’s integral

1 possibility measure
P probability measure
T possibility distribution
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FOREWORD

When | first met Henri Prade and Didier Dubois, | was impressed at
once by their unusual breadth of knowledge about all facets of the theory
of fuzzy sets and their youthful enthusiasm for a theory that challenges the
traditional reliance on two-valued logic and classical set theory as a basis
for scientific inquiry.

Later on, when they told me about their plans for writing an up-to-date
research monograph on fuzzy sets and systems, | was rather skeptical that
it could be done although the earlier five-volume work of Professor Arnold
Kaufmann had covered the basic ground both comprehensively and with
great authority.

The publication of this volume shows that my skepticism was unwar-
ranted. Dubois and Prade have produced a comprehensible research
monograph that covers almost all of the important developments in the
theory of fuzzy sets and in their applications that have taken place during
the past several years—developments that include their own significant
contributions to fuzzy arithmetic and the analysis of fuzzy relations.

In presenting the work of others, Dubois and Prade have contributed
many useful insights and supplied a number of examples which aid
materially in understanding of the subject matter. Inevitably, there are
some instances where one could take issue with their choice of topics, their
interpretations, and their conclusions. But what is remarkable is that they
have been able to cover so much ground—uwithin the compass of a single
volume—in a field that is undergoing rapid growth and spans a wide
variety of applications ranging from industrial process control to medical
diagnosis and group decision processes.

Like other theories that have broken away from tradition, the theory of
fuzzy sets has been and will continue to be controversial for some time to
come. The present volume may or may not convince the skeptics of the
utility of fuzzy sets. But it will certainly be of great value to those who are
interested in acquainting themselves with the basic aspects of the theory
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and in exploring its potentialities as a methodology for dealing with
phenomena that are too complex or too ill-defined to be susceptible to
analysis by conventional means.

LoTrl A. ZADEH
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PREFACE

Since Lotfi A. Zadeh published his now classic paper almost fifteen
years ago, fuzzy set theory has received more and more attention from
researchers in a wide range of scientific areas, especially in the past few
years. This theory is attractive because it is based on a very intuitive,
although somewhat subtle, idea capable of generating many intellectually
appealing results that provide new insights to old, often-debated questions.
Opinion is still divided about the importance of fuzzy set theory. Some
people have argued that many contributions were simply exercises in
generalization. However, several significant and original developments
have recently been proposed, which should convince those who are still
reluctant. Anyway, fuzziness is not a matter of aesthetics; neither is it an
ingredient to make up arid formal constructions; it is an unavoidable
feature of most humanistic systems and it must be dealt with as such.

This book is intended to be a rather exhaustive research monograph on
fuzzy set theory and its applications. The work is based on a large
compilation of the literature* in English, French, and German. Approxi-
mately 550 publications or communicatibrere referred to; it is hoped
that they are representative of about a thousand papers existing in the
world. Whenever possible we have tried to cite published easy-to-find
versions of works rather than rare research memoranda. Of course, some
original contributions may have been missed; this is unavoidable in such a
fast growing field of research.

It is not intended here to embed fuzzy set theory in a pure mathematics
framework. Sophisticated formalisms, such as that of category theory, do
not seem suitable in working with concepts at an early stage of their
development. No high-level mathematical tool will be used in the exposi-
tion.

We do not propose that this work be used as a textbook, but only as a
research compendium. As such, topics are developed unequally according

*Throughout this book NF stands for references to the nonfuzzy literature.
TAppearing between 1965 and 1978.
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to our own state of knowledge and fields of interest. Hence some chapters
are only modest surveys of existing works, while others may appear more
original and detailed. More specifically, there are very few tutorial numeri-
cal examples and no exercises; however, some hints or ideas at their early
stage of development can be found, which we hope will be of some use for
further research.

This book is a structured synthesis in an attempt to unify existing works.
Such an attempt is made necessary because several research directions
have been investigated, often independently.

In spite of the relative lack of mathematical ambition within the work,
some may find the material rather hard to read because it covers a wide
range of topics within a comparatively small number of pages. Thus, this
monograph is aimed at readers at the graduate level, involved in research
dealing with human-centered systems.

This synthesis is organized in five parts, respectively devoted to (1) a
short informal discussion on the nature of fuzziness; different kinds of
uncertainty are pointed out; (2) a structured exposition in five chapters of
the mathematics of fuzzy sets; (3) a description of fuzzy models and formal
structures: logic, systems, languages and algorithms, and theoretical opera-
tions research; (4) a survey of system-oriented applied topics dealing with
fuzzy situation; (5) a brief review of results in existing fields of applica-
tions.

DIDIER DUBOIS
HENRI PRADE

Purdue University
West Lafayette, Indiana
September, 1978
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