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Preface

Statistical learning — that is, learning from data — and, in particular, prob-
abilistic model learning have become increasingly important in recent years.
Advances in information technology have facilitated an explosion of available
data. This explosion has been accompanied by theoretical advances, permit-
ting new and exciting applications of statistical learning methods to bioinfor-
matics, finance, marketing, text categorization, and other fields.

A welter of seemingly diverse techniques and methods, adopted from dif-
ferent fields such as statistics, information theory, and neural networks, have
been proposed to handle statistical learning problems. These techniques are
reviewed in a number of textbooks (see, for example, Mitchell (1997), Vap-
nik (1999), Witten and Frank (2005), Bishop (2007), Cherkassky and Mulier
(2007), and Hastie et al. (2009)).

It is not our goal to provide another comprehensive discussion of all of these
techniques. Rather, we hope to

(i) provide a pedagogical and self-contained discussion of a select set of
methods for estimating probability distributions that can be approached
coherently from a decision-theoretic point of view, and

(ii) strike a balance between rigor and intuition that allows us to convey the
main ideas of this book to as wide an audience as possible.

Our point of view is motivated by the notion that probabilistic models
are usually not learned for their own sake — rather, they are used to make
decisions. We shall survey select popular approaches, and then adopt the point
of view of a decision maker who

(i) operates in an uncertain environment where the consequences of every
possible outcome are explicitly monetized,

(ii) bases his decisions on a probabilistic model, and

(iii) builds and assesses his models accordingly.

We use this point of view to shed light on certain standard statistical learning
methods.

Fortunately finance and decision theory provide a language in which it is
natural to express these assumptions — namely, utility theory — and for-
mulate, from first principles, model performance measures and the notion of
optimal and robust model performance. In order to present the aforementioned
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approach, we review utility theory — one of the pillars of modern finance and
decision theory (see, for example, Berger (1985)) — and then connect various
key ideas from utility theory with ideas from statistics, information theory,
and statistical learning. We then discuss, using the same coherent framework,
probabilistic model performance measurement and probabilistic model learn-
ing; in this framework, model performance measurement flows naturally from
the economic consequences of model selection and model learning is intended
to optimize such performance measures on out-of-sample data.

Bayesian decision analysis, as surveyed in Bernardo and Smith (2000),
Berger (1985), and Robert (1994), is also concerned with decision making
under uncertainty, and can be viewed as having a more general framework
than the framework described in this book. By confining our attention to a
more narrow explicit framework that characterizes real and idealized financial
markets, we are able to describe results that need not hold in a more general
context.

This book, which evolved from a course given by the authors for graduate
students in mathematics and mathematical finance at the Courant Institute
of Mathematical Sciences at New York University, is aimed at advanced un-
dergraduates, graduate students, researchers, and practitioners from applied
mathematics and machine learning as well as the broad variety of fields that
make use of machine learning techniques (including, for example, bioinformat-
ics, finance, physics, and marketing) who are interested in practical methods
for estimating probability distributions as well as the theoretical underpin-
nings of these methods. Since the approach we take in this book is a natural
extension of utility theory, some of our terminology will be familiar to those
trained in finance; this book may be of particular interest to financial engi-
neers. This book should be self-contained and accessible to readers with a
working knowledge of advanced calculus, though an understanding of some
notions from elementary probability is highly recommended. We make use of
ideas from probability, as well as convex optimization, information theory, and
utility theory, but we review these ideas in the book’s second chapter.
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Chapter 1

Introduction

In this introduction, we informally discuss some of the basic ideas that underlie
the approach we take in this book. We shall revisit these ideas, with greater
precision and depth, in later chapters.

Probability models are used by human beings who make decisions. In this
book we are concerned with evaluating and building models for decision mak-
ers. We do not assume that models are built for their own sake or that a single
model is suitable for all potential users. Rather, we evaluate the performance
of probability models and estimate such models based on the assumption that
these models are to be used by a decision maker, who, informed by the models,
would take actions, which have consequences.

The decision maker’s perception of these consequences, and, therefore, his
actions, are influenced by his risk preferences. Therefore, one would expect
that these risk preferences, which vary from person to person,1 would also
affect the decision maker’s evaluation of the model.

In this book, we assume that individual decision makers, with individual
risk preferences, are informed by models and take actions that have associ-
ated costs, and that the consequences, which need not be deterministic, have
associated payoffs. We introduce the costs and payoffs associated with the
decision maker’s actions in a fundamental way into our setup.

In light of this, we consider model performance and model estimation, tak-
ing into account the decision maker’s own appetite for risk. To do so, we make
use of one of the pillars of modern finance: utility theory, which was originally
developed by von Neumann and Morgenstern (1944).2 In fact, this book can
be viewed as a natural extension of utility theory, which we discuss in Section
1.1 and Chapter 4, with the goals of

(i) assessing the performance of probability models, and

1Some go to great lengths to avoid risk, regardless of potential reward; others are more
eager to seize opportunities, even in the presence of risk. In fact, recent studies indicate
that there is a significant genetic component to an individual’s appetite for risk (see Kuhnen
and Chiao (2009), Zhong et al. (2009), Dreber et al. (2009), and Roe et al. (2009)).
2It would be possible to develop more general versions of some of the results in this book,
using the more general machinery of decision theory, rather than utility theory — for such
an approach, see Grünwald and Dawid (2004). By adopting the more specific utility-based
approach, we are able to develop certain results that would not be available in a more
general setting. Moreover, by taking this approach, we can exploit the considerable body
of research on utility function estimation.

1
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(ii) estimating (learning) probability models

in mind.
As we shall see, by taking this point of view, we are led naturally to

(i) a model performance measurement principle, discussed in Section 1.2
and Chapter 8, that we describe in the language of utility theory, and

(ii) model estimation principles, discussed in Section 1.3.2 and Chapter 10,
under which we maximize, in a robust way, the performance of the model
with respect to the aforementioned model performance principle.

Our discussion of these model estimation principles is a bit different from
that of standard textbooks by virtue of

(i) the central role accorded to the decision maker, with general risk pref-
erences, in a market setting, and

(ii) the fact that the starting point of our discussion explicitly encodes the
robustness of the model to be estimated.

In more typical, related treatments, for example, treatments of the maximum
entropy principle, the development of the principle is not cast in terms of mar-
kets or investors, and the robustness of the model is shown as a consequence
of the principle.3

We shall also see, in Section 1.3.3, Chapter 7, and Chapter 10, that a number
of classical information-theoretic quantities and model estimation principles
are, in fact, special cases of the quantities and model estimation principles,
respectively, that we discuss. We believe that by taking the aforementioned
utility-based approach, we obtain access to a number of interpretations that
shed additional light on various classical information-theoretic and statistical
notions.

1.1 Notions from Utility Theory

Utility theory provides a way to characterize the risk preferences and the
actions taken by a rational decision maker under a known probability model.
We will review this theory more formally in Chapter 4; for now, we informally
introduce a few notions. We focus on a decision maker who makes decisions
in a probabilistic market setting where all decisions can be identified with

3This is consistent with the historical development of the maximum entropy principle, which
was first proposed in Jaynes (1957a) and Jaynes (1957b); the robustness was only shown
much later by Topsøe (1979) and generalized by Grünwald and Dawid (2004).
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asset allocations. Given an allocation, a wealth level is associated with each
outcome. The decision maker has a utility function that maps each potential
wealth level to a utility. Each utility function must be increasing (more is
preferred to less) and concave (incremental wealth results in decreasing incre-
mental utility). We plot two utility functions in Figure 1.1. An investor (we

FIGURE 1.1: Two utility functions from the power family, with κ = 2
(more risk averse, depicted with a dashed curve) and κ = 1 (less risk averse,
depicted with a solid curve).

use the terms decision maker and investor interchangeably) with the utility
function indicated with the dashed curve is more risk averse than an investor
with the utility function indicated with the solid curve, since, for the dashed
curve, higher payoffs yield less utility and lower payoffs are more heavily pe-
nalized. The two utility functions that we have depicted in this figure are both
members of the well-known family of power utility functions

Uκ(W ) =
W 1−κ − 1

1 − κ
→ log(W ), as κ→ 1, κ > 0. (1.1)

In Figure 1.1, κ = 2 (more risk averse, depicted with a dashed curve) and
κ = 1 (less risk averse, depicted with a solid curve). The utility function
Uκ(W ) is known to have constant relative risk aversion κ;4 the higher the

4We shall formally define the term “relative risk aversion” later.
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value of κ, the more risk averse is the investor with that utility function.
Sometimes we will refer to a less risk averse investor as a more aggressive
investor. For example, an investor with a logarithmic utility function is more
aggressive than an investor with a power 2 utility function.

From a practical point of view, perhaps the most important conclusion of
utility theory is that, given a probability model, a decision maker who sub-
scribes to the axioms of utility theory acts to maximize his expected utility
under that model. We illustrate these notions with Example 1.1, which we
present in Section 1.6.5

We’d like to emphasize that, given a probability measure, and employing
utility theory, there are no single, one-size-fits-all methods for

(i) allocating capital, or

(ii) measuring the performance of allocation strategies.

Rather, the decision maker allocates and assesses the performance of alloca-
tion strategies based on his risk preferences. Examples 1.1 and 1.2 in Section
1.6 illustrate these points.

1.2 Model Performance Measurement

In this book we are concerned with situations where a decision maker must
select or estimate a probability model. Is there a single, one-size-fits all, best
model that all individuals would prefer to use, or do risk preferences enter into
the picture when assessing model performance? If risk preferences do indeed
enter into model performance measurement, how can we estimate models that
maximize performance, given specific risk preferences? We shall address the
second question (model estimation) briefly in Section 1.3 of this introduc-
tion (and more thoroughly in Chapter 10), and the first (model performance
measurement) in this section (and more thoroughly in Chapter 8).

We incorporate risk preferences into model performance measurement by
means of utility theory, which, as we have seen in the previous section, allows
for the quantification of these risk preferences. In order to derive explicit model
performance measures, we will need two more ingredients:

(i) a specific setting, in which actions can be taken and a utility can be
associated with the consequences, and

5Some of the examples in this introduction are a bit long and serve to carefully illustrate
what we find to be very intuitive and plausible points. So, to smooth the exposition, we
present our examples in the last section of this introduction. In these examples, we use
notions from basic probability,which (in addition to other backgroundmaterial) is discussed
in Chapter 2.
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(ii) a probability measure under which we can compute the expected utility
of the decision maker’s actions.

Throughout most of this book, we choose as ingredient (i) a horse race (see
Chapter 3 for a detailed discussion of this concept), in which an investor can
place bets on specific outcomes that have defined payoffs. We shall also discuss
a generalization of this concept to a so-called incomplete market, in which the
investor can bet only on certain outcomes or combinations of outcomes. In
this section we refer to both settings simply as the market setting.

As ingredient (ii) we choose the empirical measure (frequency distribution)
associated with an out-of-sample test dataset. The term out-of-sample refers
to a dataset that was not used to build the model. This aspect is important
in practical situations, since it protects the model user to some extent from
the perils of overfitting, i.e., from models that were built to fit a particular
dataset very well, but generalize poorly. Example 1.3 in Section 1.6 illustrates
how the problem of overfitting can arise.

Equipped with utility theory and the above two ingredients, we can state
the following model performance measurement principle, which is depicted in
Figure 1.2.

Model Performance Measurement Principle: Given

(i) an investor with a utility function, and

(ii) a market setting in which the investor can allocate,

the investor will allocate according to the model (so as to maximize his expected
utility under the model).

We will then measure the performance of the candidate model for this in-
vestor via the average utility attained by the investor on an out-of-sample test
dataset.

We note that somebody who interprets probabilities from a frequentist point
of view might want to replace the test dataset with the “true” probability
measure.6 The problem with this approach is that, even if one believed in the
existence of such a “true” measure, it is typically not available in practice. In
this book, we do not rely on the concept of a “true” measure, although we
shall use it occasionally in order to discuss certain links with the frequentist
interpretation of probabilities, or to interpret certain quantities under a hy-
pothetical “true” measure. The ideas described here are consistent with both
a frequentist or a subjective interpretation of probabilities.

The examples in Section 1.6 illustrate how the above principle works in
practice. It can be seen from these examples that risk preferences do indeed
matter, i.e., that decision makers with different risk preferences may prefer

6One can think of the “true” measure as a theoretical construct that fits the relative fre-
quencies of an infinitely large sample
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FIGURE 1.2: Model performance measurement principle (also see Section
1.2.2).
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different models.7 The intuitive reason for this is that different decision makers
possess

(i) different levels of discomfort with unsuccessful bets, and

(ii) different levels of satisfaction with successful bets.

This point has important practical implications; it implies that there is no
single, one-size-fits-all, best model in many practical situations.

1.2.1 Complete versus Incomplete Markets

This section is intended for readers who have a background in financial
modeling, or are interested in certain connections between financial model-
ing and the approach that we take in this book. Financial theory makes a
distinction between

(i) complete markets (where every conceivable payoff function can be repli-
cated with traded instruments) — perhaps the simplest example is the
horse race, where we can wager on the occurrence of each single state
individually, and

(ii) incomplete markets.

In the real world, markets are, in general, incomplete. For example, given
a particular stock, it is not, in general, possible to find a trading strategy
involving one or more liquid financial instruments that pays $1 only if the
stock price is exactly $100.00 in one year’s time, and zero otherwise. Even
though real markets are typically incomplete, much financial theory has been
based on the idealized complete market case, which is typically more tractable.

As we shall see in Chapter 8, the usefulness of the distinction between the
complete and incomplete market settings extends beyond financial problems
— this distinction proves important with respect to measuring model per-
formance. In horse race markets, the allocation problem can be solved via
closed-form or nearly closed-form formulas, with an associated simplification
of the model performance measure; in incomplete markets, it is necessary to
rely to a greater extent on numerical methods to measure model performance.

1.2.2 Logarithmic Utility

We shall see in Chapter 8 that, for investors with utility functions in a
logarithmic family, and only for such investors, in the horse race setting, the
utility-based model performance measures are equivalent to the likelihood

7We shall show later in this book that all decision makers would agree that the “true”
model is the best. However, this is of little practical relevance, since the latter model is
typically not available, even to those who believe in its existence.
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from classical statistics, establishing a link between our utility-based formu-
lation and classical statistics. This link is depicted in Figure 1.2.

1.3 Model Estimation

As we have seen, different decision makers may prefer different models. This
naturally leads to the notion that different decision makers may want to build
different models, taking into account different performance measures. In light
of this notion, we formulate the following goals:

(i) to discuss how, by starting with the model performance measurement
principle of Section 1.2, we are led to robust methods for estimating
models appropriate for individual decision makers, and

(ii) to establish links between some traditional information-theoretic and
statistical approaches for estimating models and the approach that we
take in this book, and

(iii) to briefly compare the problem settings in this book with those typi-
cally used in probability model estimation and certain types of financial
modeling.

To keep things as simple as possible, we (mostly) confine the discussion in
this introduction to discrete, unconditional models.8 In the discussion that
follows, before addressing the main goals of this section, we shall first review
some traditional information-theoretic approaches to the probability estima-
tion problem.

1.3.1 Review of Some Information-Theoretic Approaches

The problem of estimating a probabilistic model is often articulated in the
language of information theory and solved via maximum entropy (ME), mini-
mum relative entropy (MRE), or minimum mutual information (MMI) meth-
ods. We shall review some relevant classical information theoretic quantities,
such as entropy, relative entropy, mutual information, and their properties in
Chapter 2; we shall discuss modeling via the ME, MRE, and MMI principles
in Chapters 9 and 10. In this introduction, we discuss a few notions informally.

Let Y be a discrete-valued random variable that can take values, y, in the
finite set Y with probabilities py. The entropy of this random variable is given

8We do consider conditional models, where there are explanatory variables with known
values and we seek the probability distribution of a response variable, in the chapters that
follow.
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by the quantity

H(p) ≡ −
∑

y

pylog (py) . (1.2)

It can be shown that the entropy of a random variable can be interpreted
as a measure of the uncertainty of the random variable. We note that this
measure of uncertainty, unlike, for example, the variance, does not depend on
the values, y ∈ Y; the entropy depends only on the probabilities, py.

Given another probability measure on the same states, with probabilities,
{p0

1, . . . , p
0
n}, the Kullback-Leibler relative entropy (we often refer to this quan-

tity as, simply, relative entropy) from p to p0 is given by

D(p‖p0) ≡
∑

y

pylog

(

py

p0
y

)

. (1.3)

It can be shown that

(i) D(p‖p0) ≥ 0, and

(ii) D(p‖p0) = 0 only if p = p0.

Thus, relative entropy has some, but not all,9 of the properties associated
with a distance. We note that if the measure p0 is uniform on the states, i.e.,
if there are n elements in Y, and

p0
y =

1

n
for all y, (1.4)

then in this special case,

D(p‖p0) = −H(p) − log(n), (1.5)

so relative entropy can be viewed as a more general quantity than entropy.
Moreover, minimizing relative entropy is equivalent, in this special case, where
(1.4) holds, to maximizing entropy.

Let X be a discrete-valued random variable that can take values, x, in the
finite set X with probabilities px. The mutual information between X and Y
is given by

I(X; Y ) =
∑

x,y

px,ylog
px,y

pxpy
, (1.6)

where px,y denotes the joint probability that X = x and Y = y. Thus, the
mutual information is also a special case of the relative entropy for the joint
random variables X and Y , where p0

x,y = pxpy. It can be shown that the
mutual information can be interpreted as the reduction in the uncertainty of
Y , given the knowledge of X.

9Relative entropy is not symmetric; more importantly, it does not satisfy the triangle in-
equality.
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Armed with these information-theoretic quantities, we return to the goal of
formulating methods to estimate probabilistic models from data; we discuss
ME, MRE, and MMI modeling.

(i) ME modeling is governed by the maximum entropy principle, under
which we would seek the probability measure that is most uncertain
(has maximum entropy), given certain data-consistency constraints,

(ii) MRE modeling is governed by the minimum relative entropy principle,
under which we would seek the probability measure satisfying certain
data-consistency constraints that is closest (in the sense of relative en-
tropy) to a prior measure, p0; this prior measure can be thought of as
a measure that one might be predisposed to use, based on prior belief,
before coming into contact with data, and

(iii) MMI modeling is governed by the minimum mutual information prin-
ciple, under which we would seek the probability measure satisfying
certain data-consistency constraints, where X provides the least infor-
mation (in the sense of mutual information) about Y . If the marginal
distributions, px and py, are known, then the MMI principle becomes
an instance of the MRE principle.

For ME, MRE, and MMI modeling, the idea is that the data-consistency
constraints reflect the characteristics that we want to incorporate into the
model, and that we want to avoid introducing additional (spurious) charac-
teristics, with the specific means for avoiding introducing additional (spuri-
ous) characteristics described in the previous paragraph. Since entropy and
mutual information are special cases of relative entropy, the principles are
indeed related, though the interpretations described above might seem a bit
disparate.

1.3.1.1 Features

The aforementioned data-consistency constraints are typically expressed in
terms of features. Formally, a feature is a function defined on the states, for
example, a polynomial feature like f1(y) = y2, or a so-called Gaussian kernel
feature, with center µ and bandwidth, σ

f2(y) = e−
(y−µ)2

2σ2 .

The model, p, can be forced to be consistent with the data, for example via a
series of J constraints

Ep[fj] = Ep̃[fj], j = 1, . . . , J, (1.7)
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where p̃ denotes the empirical measure.10 We can think of the expectation
under the empirical measure on the right hand side of (1.7) as the sample
average of the feature values.

Thus, by taking empirical expectations of features, we garner information
about the data, and by enforcing constraints (1.7), we impose consistency of
the model with the data.

1.3.1.2 The MRE Problem

The MRE problem formulation is given by

minimize D(p‖p0) with respect to p , (1.8)

subject to data-consistency constraints, for example,

Ep[fj] = Ep̃[fj], j = 1, . . . , J. (1.9)

The solution to this problem is robust, in a sense that we make precise in
Section 1.2 and Chapter 10.

1.3.1.3 The ME Problem

The ME problem formulation is given by

maximize H(p) with respect to p , (1.10)

subject to data-consistency constraints, for example,

Ep[fj] = Ep̃[fj], j = 1, . . . , J. (1.11)

As a special case of the MRE problem, the solution of the ME problem inherits
the robustness of the MRE problem solution.

1.3.1.4 The MMI Problem

Under the MMI problem formulation, we seek the probability measure
that minimizes the mutual information subject to certain expectation con-
straints.11

1.3.1.5 Dual Problems

Fortunately, the MRE, ME, and MMI principles all lead to convex optimiza-
tion problems. We shall see that each of these problems has a corresponding
dual problem which yields the same solution. In many cases (for example,

10Later, we shall relax the equality constraints (1.7).
11In this setting, the features depend on x and y; moreover, the expectation constraints can
be a bit more complicated; for ease of exposition, we do not state them here. For additional
details, see Globerson and Tishby (2004).
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conditional probability model estimation), the dual problem is more tractable
than the primal problem.

We shall see that for the MRE and ME problems,

(i) the solutions to the dual problem are members of a parametric expo-
nential family, and

(ii) the dual problem objective function can be interpreted as the logarithm
of the likelihood function.

These points sometimes, but not always (we shall elaborate in Chapter 10),
apply to the MMI problem. Thus, the dual problem is typically interpreted
as a search, over an exponential family, for the likelihood maximizing prob-
ability measure.12 This establishes a connection between information theory
and statistics.

1.3.2 Approach Based on the Model Performance Measure-
ment Principle of Section 1.2

In this section, we discuss how we might develop a model estimation prin-
ciple around the model performance measurement principle of Section 1.2. At
first blush, it might seem natural for an investor to choose the model that
maximizes the utility-based performance measures, discussed in Section 1.2,
on the data available for building the model (the training data). However, it
can be shown that this course of action would lead to the selection of the em-
pirical measure (the frequency distribution of the training data) — for many
interesting applications,13 a very poor model indeed, if we want our model to
generalize well on out-of-sample data; we illustrate this idea in Example 1.3
(see Section 1.6).

Though it is, generally speaking, unwise to build a model that adheres too
strictly to the individual outcomes that determine the empirical measure, the
observed data contain valuable statistical information that can be used for
the purpose of model estimation. We incorporate statistical information from
the data into a model via data-consistency constraints, expressed in terms of
features, as described in Section 1.3.1.1.

12Depending on the exact choice of the data-consistency constraints, the objective function
of this search may contain an additional regularization term. We shall elaborate on this in
Chapters 9 and 10.
13For some simple applications, for example a biased coin toss with many observations,
the empirical probabilities may serve well as a model. For other applications, for example,
conditional probability problems where there are several real-valued explanatory variables
and few observations, the empirical distribution will, generally speaking, generalize poorly
out-of-sample.
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1.3.2.1 Robust Outperformance Principle

Armed with the notions of features and data-consistency constraints, we
return to our model estimation problem. The empirical measure typically
does not generalize well because it is all too precisely attuned to the observed
data. We seek a model that is consistent with the observed data, in the sense
of conforming to the data-consistency constraints, yet is not too precisely
attuned to the data. The question is, which data-consistent measure should
we select? We want to select a model that will perform well (in the sense of the
model performance measurement principle of Section 1.2), no matter which
data-consistent measure might govern a potential out-of-sample test set. To
address this question, we consider the following game against nature14 (which
we assume is adversarial) that occurs in a market setting.

A game against “nature” Let Q denote the set of all probability measures,
K denote the set of data-consistent probability measures, and U∗

q denote the
(random) utility that is realized when allocating (so as to maximize expected
utility) under the measure q in this market setting.15

(i) (Our move) We choose a model, q ∈ Q; then,

(ii) (Nature’s move) given our choice of a model, and, as a consequence,
the allocations we would make, “nature” cruelly inflicts on us the worst
(in the sense of the model performance measurement principle of Sec-
tion 1.2) possible data-consistent measure; that is, “nature” chooses the
measure

p∗ = arg min
p∈K

Ep[U
∗
q ]. (1.12)

If we want to perform as well as possible in this game we will seek the
solution of

q∗ = arg max
q∈Q

min
p∈K

Ep[U
∗
q ]. (1.13)

By solving (1.13), we estimate a measure that (as we shall see later) conforms
to the data-consistency constraints, and is robust, in the sense that the ex-
pected utility that we can derive from it will be attained, or surpassed, no mat-
ter which data-consistent measure “nature” chooses. The resulting estimate
therefore, in particular, avoids being too precisely attuned to the individual
observations in the training dataset, thereby mitigating overfitting.16

14This game is a special case of a game in Grünwald and Dawid (2004), which was preceded
by the “log loss game” of Good (1952).
15We note that we are speaking informally here, since we have not specified the market
setting or how to calculate U∗

q . We shall discuss these issues more precisely in the remainder
of the book.
16This strategy does not guarantee a cure to overfitting, though! If there are too many data-
consistency constraints, or the data-consistency constraints are not chosen wisely, problems



14 Utility-Based Learning from Data

This game can be further enriched by introducing a rival, who allocates
according to the measure q0 ∈ Q.17 In this case, we would seek the solution
according to the robust outperformance principle:

Robust Outperformance Principle
We seek

q∗ = arg max
q∈Q

min
p∈K

Ep[U
∗
q − U∗

q0 ]. (1.14)

Estimating q∗ would allow us to to maximize the worst-case outperformance
over our competitor (who allocates according to the measure q0 ∈ Q), in the
presence of a “nature” that conforms to the data-consistency constraints and
tries to minimize our outperformance (in the sense of the model performance
measurement principle of Section 1.2) over our rival.

Jaynes (2003), page 431, has pointed out that “this criterion concentrates
attention on the worst possible case regardless of the probability of occurrence
of this case, and it is thus in a sense too conservative.” In our view, this may
be so, given a fixed collection of features. However, by enriching the collection
of features, it is always possible to go too far in the other direction, overly
constraining the set of measures consistent with the data, and estimating a
model that is too aggressive. We shall have more to say about ways to attempt
to tune (optimally) the extent to which the data are consistent with the model
in Section 1.3.5 and Chapter 10.

We note that this formulation has been cast entirely in the language of
utility theory. The model that is produced is therefore specifically tailored
to the risk preferences of the model user with utility function U . We also
note that we have not made use of the concept of a “true” measure in this
formulation.

1.3.2.2 Minimum Market Exploitability Principle

As we shall see in Chapter 10, under certain technical conditions, it is pos-
sible to reverse the order of the max and min in the robust outperformance
principle. Moreover, as we shall see in Chapter 10, subject to regularity con-
ditions, by solving the resulting minimax problem, we obtain the solution to
the maxmin problem (1.14) arising from the robust outperformance principle.

By reversing the order of the max and min in (1.14), we obtain the minimum
market exploitability principle:

Minimum Market Exploitability Principle

can arise. We shall discuss these issues, and countermeasures that can be taken to fur-
ther protect against overfitting, at greater length below in this introduction, as well as in
Chapters 9 and 10.
17Later, we shall see that this rival’s allocation measure q0 can be identified with the prior
measure in an MRE problem.
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We seek
p∗ = arg min

p∈K
max
q∈Q

Ep[U
∗
q − U∗

q0 ]. (1.15)

Here,
Ep[U

∗
q − U∗

q0 ] (1.16)

can be interpreted as the gain in expected utility, for an investor who allocates
according to the model q, rather than q0, when the “true” measure is p. Under
the minimum market exploitability principle, we seek the data-consistent mea-
sure, p, that minimizes the maximum gain in expected utility over an investor
who uses the model q0. After a little reflection, this principle is consistent with
a desire to avoid overfitting. The intuition here is that the data-consistency
constraints completely reflect the characteristics of the model that we want
to incorporate, and that we want to avoid introducing additional (spurious)
characteristics. Any additional characteristics (beyond the data-consistency
constraints) could be exploited by an investor; so, to avoid introducing addi-
tional such characteristics, we minimize the exploitability of the market by an
investor, given the data-consistency constraints.

Fortunately, as we shall see in Chapter 10, the minimum market exploitabil-
ity principle leads to a convex optimization problem with an associated dual
problem that can be solved robustly via efficient numerical techniques. More-
over, as we shall also see in Chapter 10, this dual problem can be interpreted
as a utility maximization problem over a parametric family, and can be solved
robustly via efficient numerical techniques.

By virtue of their equivalence, both the minimum market exploitability
principle and the robust outperformance principle lead us down the same
path; both lead to a tractable approach to estimate statistical models tailor-
made to the risk preferences of the end user.

1.3.3 Information-Theoretic Approaches Revisited

As we shall see in Chapter 7, the quantity maxq∈Q Ep[U
∗
q −U∗

q0 ] in (1.15) is
a generalization of relative entropy, with a clear economic interpretation. In
particular, we shall see in Chapter 7, that the relative entropy, D(p‖p0), can
be interpreted as the gain in expected utility, for a logarithmic utility investor
who allocates in a horse race on the states according to the “true” measure
p, rather than the measure p0.

We shall also see in Chapter 10 that the minimum market exploitability
principle, in fact, includes as special cases the maximum entropy (ME) princi-
ple, the minimum relative entropy (MRE) principle, and the minimum mutual
information (MMI) principle, and that all of these principles can be expressed
in economic terms.

The common intuition underlying these expressions in economic terms is
that the additional characteristics (beyond the data-consistency constraints)
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that we want to avoid introducing could be exploited by an investor; so,
to avoid introducing additional characteristics beyond the data-consistency
constraints, we minimize the exploitability of the market by an investor, given
the data-consistency constraints. In particular, as we shall see in Chapter 10,

(i) the ME principle can be viewed as the requirement that, given the data-
consistency constraints, our model have as little (spurious) expected
logarithmic utility as possible,

(ii) the MRE principle can be viewed as the requirement that, given the
data-consistency constraints, our model have as little (spurious) ex-
pected logarithmic utility gain as possible over an investor who allocates
to maximize his expected utility under the prior measure, and

(iii) the MMI principle can be viewed as the requirement that, given the data-
consistency constraints, our model have as little (spurious) expected
logarithmic utility gain as possible over an investor who allocates to
maximize his expected utility without making use of the information
given by the realizations of X.

We believe that this economic intuition provides a convincing and unifying
rationale for the ME, MRE, and MMI principles.

We shall also see that

(i) for the ME, MRE, and certain MMI problems,18 the objective function
of the dual problem can be interpreted as the expected utility of an
investor with a logarithmic utility function, so the dual problem can be
formulated as the search, over an exponential family of measures, for the
measure that maximizes expected (logarithmic) utility, or, equivalently,
maximizes the likelihood, and that

(ii) for the ME, MRE, and MMI problems, by construction, the solutions
possess the optimality and robustness properties discussed in Section
1.3.2.1 — they provide maximum expected utility with respect to the
worst-case measures that conform to the data-consistency constraints.

For more general utility functions, we would obtain more general versions
of the ME, MRE, and MMI principles; in this book, when we discuss more
general utility functions, we shall concentrate on more general version of the
MRE principle, rather than the ME or MMI principles.

1.3.4 Complete versus Incomplete Markets

As indicated in Section 1.2.1, there is an important distinction between the
complete horse race setting and the more general incomplete market setting. In

18We shall specify these cases in Chapter 10.
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the more tractable horse race setting, with data-consistency constraints under
which the feature expectations under the model are related to the feature
expectations under the empirical measure, the generalized relative entropy
principle has an associated dual problem that can be viewed as an expected
utility maximization over a parametric family. We are not aware of similar
results in incomplete market settings.

1.3.5 A Data-Consistency Tuning Principle

As we have discussed, the above problem formulations bake in a robust out-
performance over an investor who allocates according to the prior, or bench-
mark model, given a set of data-consistency constraints. But how, given a set
of feature functions,19 can we formulate data-consistency constraints that will
prove effective?

The simplest (and most analytically tractable) way to generate data-
consistency constraints from features is to require that the expectation of
the features under the model be exactly the same as the expectation under
the empirical measure (the frequency distribution of the training data). How-
ever, this requirement does not always lead to effective models. Two of the
things that can go wrong with this approach, depending on the number and
type of features and the nature of the training data, are

(i) the feature expectation constraints are not sufficiently restrictive, re-
sulting in a model that has not “learned enough” from the data, and

(ii) the feature expectation constraints are too restrictive, resulting in a
model that has learned “too much” (including noise) from the data.

In case (i), where the features are not sufficiently restrictive, we can add new
features. In case (ii), where the features are too restrictive, we can relax them.
By controlling the degree of relaxation in the feature expectation constraints,
we can control the tradeoff between consistency with the data and the extent
to which we can exploit the market, relative to the performance of our rival
investor. In the end, in this case, our investor chooses the model that best
balances this tradeoff, with respect to the model performance measurement
principle of Section 1.2 applied to an out-of-sample dataset, as indicated in
the following principle

Data-Consistency Tuning Principle
Given a family of data constraint sets indexed by the parameter α, let q∗(α)
denote the model selected under one of the equivalent principles of Section
1.3.2 as a function of α. We tune the level of data-consistency to maximize

19In this book, we do not discuss methods to generate features — we assume that they are
given. In some cases, though, we discuss ways to select a sparse set of features from some
predetermined set.
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(over α) the out-of-sample performance under the performance measurement
principle of Section 1.2.

1.3.6 A Summary Diagram for This Model Estimation,
Given a Set of Data-Consistency Constraints

We display some of the relationships discussed above in Figure 1.3, where

(i) we have used a dashed arrow to signify that the MMI principle some-
times, but not always (we shall elaborate in Chapter 10), leads to a
utility maximization problem over a parametric family, and

(ii) we have used bi-directional arrows between the generalized MRE princi-
ple and the robust outperformance and minimum market exploitability
principles, since, as we shall see in Chapter 10, all three principles are
equivalent.

1.3.7 Problem Settings in Finance, Traditional Statistical
Modeling, and This Book

In this section, which may be of particular interest to readers with a back-
ground in financial modeling, we compare the problem settings used in this
book with problem settings used in finance and traditional statistical model-
ing.

Though we use methods drawn from utility theory, the problems to which
we apply these methods are (statistical) probability model estimation prob-
lems, rather than more typical financial applications of utility theory. One
such application — the least favorable market completion principle (discussed
in Section 11.2), which is used in finance to price contingent claims20 — is
quite similar in spirit to our minimum market exploitability principle. As we
shall see, (statistical) probability model estimation problems and the pricing
problems from finance can be structurally similar.

In the case of contingent claim pricing problems, given the statistical mea-
sure on the system (in finance, this measure is often called the physical mea-
sure, or the real-world measure) the modeler seeks a different probability mea-
sure, a probability measure consistent with known market prices (a so-called
pricing measure, or risk-neutral measure).

In the case of traditional probability model estimation problems, outside of
finance, the modeler seeks a statistical (real-world) measure consistent with
certain data-consistency constraints. Thus, the traditional statistical modeler

20Contingent claims are financial instruments with contractually specified payments that
depend on the prices of other financial instruments. Examples include puts and calls on a
stock, and interest rate futures.
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FIGURE 1.3: Model estimation approach. Note that the model perfor-
mance measurement principle enters this figure twice: once as a building block
(not shown) for our model estimation principles, and then later, as a means
of tuning the degree of consistency with the data to maximize out-of-sample
performance.
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seeks a statistical (real-world) measure, and is, typically, not at all concerned
with pricing measures; the contingent claim modeler assumes that the statis-
tical (real-world) measure is known, and seeks a pricing measure.

In particular, in the horse race setting, with payoffs specified for each state,

(i) the contingent claim modeler essentially already has the pricing measure
(which can easily be determined from the payoffs) and is able to price
any contingent claim by reconstructing its payoff in terms of the horse
race payoffs,

(ii) the traditional statistical modeler is, typically, not influenced by the
payoffs, and must take whatever steps are necessary to find the statistical
measure, and

(iii) we use the payoffs, together with utility theory, as described in the
preceding sections, to evaluate model performance and estimate mod-
els (given data-consistency constraints) for expected utility maximizing
investors.

1.4 The Viewpoint of This Book

As discussed in the preceding sections, we take the viewpoint of a decision
maker who uses a probability model to make decisions in an uncertain en-
vironment. We believe that this viewpoint is natural, appropriate for many
practical problems, and leads to intuitive, desirable, and tractable model per-
formance measurement and model construction principles. When taking this
point of view, it is relatively straightforward to construct, generalize, and shed
light on some well-known principles from information theory, finance, and sta-
tistical learning. Moreover, the mindset and language adopted in this book
lead to various nontraditional methods that can be brought to bear on prac-
tical problems. These nontraditional methods, some of which are discussed in
this book, can be used to

(i) relate the performance of probability models to the risk preferences of
the model user,

(ii) build robust probability models that are custom-tailored to the model
user’s risk preferences (which can, depending on the investor’s risk pref-
erences, result in relatively elegant representations of fat-tailed, yet flex-
ible distributions),

(iii) measure the monetary value of a probability model,
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(iv) quantify the impact of information exploitability on the performance
of a probability model (measuring model performance in incomplete
financial markets), and

(v) derive robust performance measures for regression models.

1.5 Organization of This Book

Chapters 8 and 10 constitute the crux of this book; each of these chapters
depends on the chapters that precede it.

In Chapter 2, we review mathematical preliminaries from probability theory,
convex optimization (all of the methods for building probabilistic models that
we discuss in this book require solution to convex programming problems),
and information theory. These are the building blocks that we use in later
chapters.

In Chapter 3, we review the horse race setting, which is also known as a
complete market. This is a particularly tractable and simple “market” setting
— used heavily throughout this book — in which we can consider model
performance and model building from a decision-theoretic point of view.

In Chapter 4, we review elements of utility theory. Utility theory provides a
framework that we use to describe investor risk preferences. Expected utility
maximization (von Neumann and Morgenstern (1944)) allows for plausible
and practical model performance measurement and provides a goal for model
construction.

In Chapter 5, we discuss an expected utility maximizing investor who bets
in a horse race type market. In particular, we introduce the notion of compat-
ibility between the utility function, the horse race market, and the probability
measure. When the utility function, the market, and the probability measure
are compatible, there is always an optimal allocation.

In Chapter 6, we discuss select popular methods for measuring model perfor-
mance. In particular, we discuss the likelihood principle, the likelihood ratio,
and the Neyman-Pearson Lemma, and draw connections between likelihood
and the horse race.

In Chapter 7, we discuss information theory from a decision-theoretic point
of view. This chapter starts by observing that there are decision-theoretic
interpretations (in terms of an investor with a particular utility function)
for fundamental information theoretic quantities. We then note that by gen-
eralizing the utility function, we obtain more general information theoretic
quantities, which we explore.

In Chapter 8, we discuss model performance measurement from the point
of view of an investor who would use the models to make financial decisions,
and is concerned with the performance of his investments under the model.
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In Chapter 9, we review select methods for learning probabilistic models
from data, including maximum likelihood inference and regularized maximum
likelihood inference, including the ridge and lasso models. We also discuss
Bayesian inference and minimum relative entropy methods.

In Chapter 10, we develop the model learning problem in the horse race
context. Based on the general principals introduced in the introduction to
this book, we formulate explicit primal and dual problems.

In Chapter 11, we discuss various extensions of the material in earlier chap-
ters. We discuss model performance measures for leveraged investors, model
performance and estimation in incomplete markets, and model performance
measurement for regression models.

In Chapter 12, we discuss applications to four important financial modeling
problems, a breast cancer model, and a text categorization problem.

1.6 Examples

Example 1.1 Four gamblers allocate to a coin toss

In this example, we see that given a probability measure, and employing
utility theory, there are no single, one-size-fits-all methods for allocating cap-
ital.

The specific setting, which is summarized in Table 1.1, is as follows.

TABLE 1.1: Four gamblers (completely risk averse,
expectation maximizing or linear utility, log utility, and power
2 utility) allocate to a coin toss. The probability of heads is .51.

Heads Occurs Tails Occurs

Payoffs on a $1 bet on heads: $2 $0

Payoffs on a $1 bet on tails: $0 $2

The payoff for a $1 bet on heads is $2 if heads occurs and zero otherwise;
the payoff for a $1 bet on tails is $2 if tails occurs and zero otherwise. Each
gambler must allocate his wealth to heads and/or tails. The probability of
heads is known to be .51. How should a gambler allocate his capital? That
depends on the gambler’s risk preferences.

Suppose that our first gambler is completely averse to any risk of loss what-
soever. He can perfectly hedge, allocating $.5 to heads and $.5 to tails. In this
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case, his total payoff will always be exactly $1, no matter whether the coin
toss results in heads or tails.

Suppose that, at the other extreme, our second gambler will do whatever
it takes to maximize the expected payoff after a single play of the game. If he
allocates the fraction, b, of his wealth to heads and the fraction 1− b to tails,
he would allocate his wealth so as to solve the problem

max
{b:0≤b≤1}

[0.51 ∗ 2b+ 0.49 ∗ 2(1 − b)] . (1.17)

This expected payoff maximizing gambler will choose b = 1, i.e., he will al-
locate his entire wealth to heads, with expected payoff 0.51 ∗ 2 = 1.02. We
note that though this strategy maximizes the expected wealth gain on a single
play, in the long run, under repeated play, the strategy of allocating all of the
wealth to heads is almost surely a recipe for ruin. Eventually, almost surely,
a tail will occur and the gambler will lose all of his wealth. This gambler is
oblivious to that risk.

If a gambler subscribes to the axioms of utility theory, he would allocate so
as to maximize his expected utility. Such a gambler, allocating fraction b of
his wealth to heads and the fraction 1 − b to tails, would solve the problem

max
{b:0≤b≤1}

[0.51 ∗ U(2b) + 0.49U(2(1− b))] . (1.18)

We note that a gambler with the linear utility function, U(W ) = W , would
formulate precisely the optimization problem (1.17). Thus the expectation
maximizing gambler can be characterized by the utility function U(W ) = W .

Suppose that our third gambler has the utility function U(W ) = log(W ).
He would solve the problem

max
b

[0.51 log(2b) + 0.49 log(2(1 − b))] . (1.19)

It is easy to verify, by calculus, that the investor with the utility U(W ) =
log(W ) will allocate the fraction b∗ = 0.51 to heads and 0.49 to tails.

Suppose that our fourth gambler’s utility function is given by the power
utility with κ = 2. He would solve the problem

max
b

[

0.51
(2b)1−2 − 1

1 − 2
+ 0.49

(2(1− b))1−2 − 1

1 − 2

]

. (1.20)

After setting the derivative to zero, solving, and checking the second deriva-
tive, we see that this investor will allocate b∗ = 0.505 to heads and 0.495
to tails, midway between the allocations of the more aggressive logarithmic
utility investor and the completely risk averse investor. These differences in
allocation may seem small, but over repeated play, they can have a profound
impact on the long-term experience of the gambler: the long-term wealth
growth rate for the logarithmic utility investor is 0.0002, albeit with a non-
negligible probability of large drawdowns (runs of “bad luck”). The long-term
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wealth growth rate for the completely risk averse decision maker is zero, since
his wealth never changes, with no possibility of drawdowns.

Example 1.2 Two of our gamblers rank wealth distributions

In this example, we shall see that different investors may rank wealth dis-
tributions differently, depending on their risk preferences.

In the same setting as Example 1.1 (see Table 1.1), after repeated play,
with heads occuring 51% of the time, we suppose that each of our decision
makers, with log utility and power, with κ = 2, utility functions, respectively,
can choose among the wealth distributions generated by the two strategies
b∗ = 0.51, and b∗ = 0.505. We assume that these decision makers measure
the success of the strategies in a manner consistent with the axioms of util-
ity theory — by computing expected utility with respect to the probabilities
actually experienced. This formulation leads to the quantities that we max-
imized in (1.19) and (1.20). As we have already seen from the optimization
problems, the log utility investor will prefer the wealth distribution generated
by the allocations b∗ = 0.51 and the power 2 decision maker prefers the wealth
distribution generated by b∗ = 0.505.

Example 1.3 An overfit model

In this example, we shall see that the empirical measure can be a very poor
model.

Let the random variable X denote the daily return of a stock. We observe
the daily stock returns x1, . . . , x10, over a two week period (10 trading days).
The empirical measure is then

prob(X = x) =

{

1
10 , if x ∈ {x1, . . . , x10}, and
0, otherwise,

(1.21)

assuming that each of the returns is unique. This model reflects the train-
ing data perfectly, but will fail out-of-sample, since it only attaches nonzero
probability to events that have already occurred. If this model is to be be-
lieved, then it would make sense to risk all on the bet that xn ∈ {x1, . . . , x10},
for n > 10, a strategy doomed to fail when a previously unobserved return
(inevitably) occurs.

Example 1.4 Two gamblers who bet on a coin toss
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In this example, we shall see that different decision makers may prefer
different models and that the economic implications of the model choices can
be considerable.

The specific setting, which is summarized in Table 1.2, is the following. The
payoff for a $1 bet on heads is $100 if heads occurs and zero otherwise; the
payoff for a $1 bet on tails is $1 if tails occurs and zero otherwise. We suppose
that there are two decision makers with utility functions U1(W ) and U2(W )
(here we are using the notation given in (1.1)). Each decision maker can
allocate to heads and/or tails. There are two probabilistic candidate models,
q(1) and q(2) (these models are not associated with the investors); q(1) assigns
the probabilities 0.004 and 0.996 to heads and tails, respectively, while q(2)

assigns the probabilities 0.0225 and 0.9775 to heads and tails, respectively.

TABLE 1.2: Two gamblers rank model performance.

Heads Occurs Tails Occurs

Payoffs on a $1 bet on heads: $100 $0

Payoffs on a $1 bet on tails: $0 $1

Probabilities according to q(1): 0.004 0.996

Probabilities according to q(2): 0.0225 0.9775

Assessment dataset frequencies: 0.01 0.99

We assume that the investors would allocate under the two models by max-
imizing their respective utility functions under the two models. We ask the
question, how would these investors rank the two models, should the frequency
(empirical probability) of heads on a model assessment dataset be 0.01, which
is different from either model?

(i) Allocation

Under model q(1), the more aggressive (log utility) investor would allo-
cate to heads the fraction of wealth

0.0040 = arg max
{b:0≤b≤1}

[0.004 log(100b) + 0.996 log(1 − b)] . (1.22)

Under model q(2), the more aggressive investor would allocate to heads
the fraction of wealth

0.0225 = arg max
{b:0≤b≤1}

[0.0225 log(100b) + 0.9775 log(1 − b)] . (1.23)
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Under model q(1), the more risk averse (κ = 2 power utility) investor
would allocate to heads the fraction of wealth

0.0063 = arg max
{b:0≤b≤1}

[

0.004
(100b)1−2 − 1

1 − 2
+ 0.996

(1(1− b))1−2 − 1

1 − 2

]

.

(1.24)

Under model q(2), the more risk averse investor would allocate to heads
the fraction of wealth

0.0149 = arg max
{b:0≤b≤1}

[

0.0225
(100b)1−2 − 1

1 − 2

+0.9775
(1(1− b))1−2 − 1

1 − 2

]

. (1.25)

Given the models q(1) and q(2), and the associated allocation strategies for
each investor, which model works best for which investor?

(ii) Performance Measurement Each decision maker, allocating accord-
ing to the two models, would compute his expected utility under the
empirical measure with probability of heads equal to 0.01, based on
their allocations under the measures q(1) and q(2).

Under model q(1), the more aggressive investor’s average (or expected,
under the empirical measure) utility is

0.01 log(100 ∗ 0.004) + 0.99 log(0.996) = −0.0131. (1.26)

Under model q(2), the more aggressive investor’s average (or expected,
under the empirical measure) utility is

0.01 log(100 ∗ 0.0225) + 0.99 log(0.9775) = −0.0144. (1.27)

Thus, based on this performance, the more aggressive investor prefers
model q(1).

Under model q(2), the more risk averse investor’s average (or expected,
under the empirical measure) utility is

0.01
(100 ∗ 0.0063)1−2 − 1

1 − 2
+ 0.99

(1(1− 0.0063))1−2 − 1

1 − 2
= −0.0121.

(1.28)
Under model q(1), the more risk averse investor’s average (or expected,
under the empirical measure) utility is

0.01
(100 ∗ 0.0149)1−2 − 1

1 − 2
+ 0.99

(1(1− 0.0149))1−2 − 1

1 − 2
= −0.0117.

(1.29)
Thus, based on this performance, the more risk averse investor prefers
model q(2).



Introduction 27

To give some economic perspective, we note that (as we shall see in Chapter
8) for the more aggressive investor, the difference in expected utility (0.0013)
can be interpreted as a loss, for each bet, in expected wealth growth rate. The
effects, after repeated play, can be quite substantial. We shall also see, in
Chapter 8, that the logarithmic investor would be willing to pay the fraction
e0.0013 − 1 = 0.0013 of his capital every time he makes a bet, to upgrade from
model q(2) to model q(1). For models that are used frequently, the value of such
a model upgrade can be considerable.

Example 1.5 Betting on a stock

In this example, we shall see again, this time in an incomplete market
setting, that different decision makers, who allocate and assess performance
in a manner consistent with utility theory, might prefer different models.

In this example, which is summarized in Table 1.3, we consider two decision
makers, each of whom must select a model of the probability distribution of the
logarithm of single period stock price returns. We suppose that the candidate
models are t-distributed with different degrees of freedom. The univariate t-
distribution with mean µ, standard deviation σ and degrees of freedom ν > 2
has probability density21

f(t;µ, σ, ν) =
Γ
(

ν+1
2

)

√

ν
ν−2

Γ
(

ν
2

)√
νπσ

(

1 +
1

ν − 2

(

t− µ

σ

)2
)− ν+1

2

. (1.30)

All of the stock price return distributions that we consider in this example
have the same mean (µ = 0.1) and standard deviation (σ = 0.2); the different
degrees of freedom govern the tail fatness, with the probability distributions
approaching a normal distribution as ν → ∞ and having progressively fatter
tails as ν decreases.

The more aggressive decision maker has power utility with κ = 2; the more
risk-averse has power utility with κ = 3. There are two stock return models
that the investors weigh: one has 3 degrees of freedom, the other has 200
degrees of freedom (ν = 3 and 200, respectively). We shall refer to the first
distribution as the fat-tailed distribution and the second as the thin-tailed
distribution. We illustrate these two models in Figure 1.4, which depicts the
two distributions over much of their support, and Figure 1.5, which depicts
part of the right tail of the distributions.

21This probability density is not in standard form (compare, for example, with the definition
in Example 2.6 of Section 2.1.3, below), but the form described here explicitly provides the
density function in terms of its mean, standard deviation, and degrees of freedom, which is
convenient for this example.
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FIGURE 1.4: Two t-distributions, with degrees of freedom, ν = 3 (higher
center, fatter tails), and degrees of freedom, ν = 200 (lower center, thinner
tails).

FIGURE 1.5: Two t-distribution right tails, with degrees of freedom, ν = 4
(fatter tail) and degrees of freedom, ν = 9 (thinner tail).
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TABLE 1.3: Two power utility investors weigh two t-distributed
candidate models for log stock returns. Models are assessed with respect
to their expected utility under the t-distributed assessment distribution
f(t; 0.1, 0.2, 5).

Models: f(t; 0.1, 0.2, 3) (Fat-tailed) f(t; 0.1, 0.2, 200) (Thin-tailed)

Investors: Aggressive utility U2(W ) Risk Averse utility U3(W )

The investor allocates the fraction, b, of his capital to stocks, and the frac-
tion 1 − b to cash. For simplicity, we assume that here is no interest and the
initial price of the stock is $1. Let X denote the (random) logarithm of the
stock price at the end of the trading period. Then, the investor’s wealth at
the end of the trading period is

W (b, X) = 1 − b+ beX . (1.31)

Adopting the fat-tailed model (ν = 3), the more aggressive investor (κ = 2)
would allocate to stocks, the fraction of wealth

0.9711 = arg max
b

∫ ∞

−∞
f(t; 0.1, 0.2, 3)U2(W (b, t))dt. (1.32)

(We have solved this and the following three concave maximization problem
numerically.) Adopting the thin-tailed model (ν = 200), the more aggressive
investor (κ = 2) would allocate to stocks, the fraction of wealth

0.9999 = arg max
b

∫ ∞

−∞
f(t; 0.1, 0.2, 200)U2(W (b, t))dt. (1.33)

Adopting the fat-tailed model (ν = 3), the more risk averse investor (κ = 3)
would allocate to stocks, the fraction of wealth

0.8299 = arg max
b

∫ ∞

−∞
f(t; 0.1, 0.2, 3)U3(W (b, t))dt. (1.34)

Adopting the thin-tailed model (ν = 200), the more risk-averse investor (κ =
3) would allocate to stocks, the fraction of wealth

0.9989 = arg max
b

∫ ∞

−∞
f(t; 0.1, 0.2, 200)U3(W (b, t))dt. (1.35)

We note that under the conditions of this example, the more aggressive in-
vestor always allocates more to the stock than the more risk averse investor;
this is natural, since the stock affords a greater opportunity for growth, but
at a greater risk. We also note that both investors allocate more to stock
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under the assumption of a thin-tailed return distribution than a fat-tailed
distribution (which has greater probability of large losses).

We ask the question, how would these investors rank the two models, under
an assessment dataset (for log returns) that is described by the t-distribution
with ν = 5? We see, after numerical quadrature, that

• by using and allocating according to the fat-tailed distribution model
(ν = 3), the more aggressive investor (κ = 2) would experience an
expected utility of

0.0756 =

∫ ∞

−∞
f(t; 0.1, 0.2, 5)U2(W (0.9711, t))dt, (1.36)

• by using and allocating according to the thin-tailed distribution model
(ν = 200), the more aggressive investor (κ = 2) would experience an
expected utility of

0.0763 =

∫ ∞

−∞
f(t; 0.1, 0.2, 5)U2(W (0.9999, t))dt, (1.37)

• by using and allocating according to the fat-tailed distribution model
(ν = 3), the more risk averse investor (κ = 3) would experience an
expected utility of

0.0548 =

∫ ∞

−∞
f(t; 0.1, 0.2, 5)U3(W (0.8299, t))dt, (1.38)

and

• by using and allocating according to the thin-tailed distribution model
(ν = 200), the more risk averse investor (κ = 3) would experience an
expected utility of

0.0324 =

∫ ∞

−∞
f(t; 0.1, 0.2, 5)U3(W (0.9989, t))dt. (1.39)

Thus, under a validation set consistent with the log returns being distributed
as t with ν = 5, the more aggressive investor would favor the performance
of the thin-tailed (ν = 200) model, while the more risk averse investor would
prefer the performance of the fat-tailed (ν = 3) model. The more aggressive
investor allocates more to stock under the thin-tailed probability distribution
and, under the validation measure, prefers the risk/reward profile to that of
the alternative. The more risk averse investor allocates less to the risky stock
under the fat-tailed probability measure, and, under the validation measure,
prefers the risk/reward profile to that of the alternative.

We summarize these preferences in the Table 1.4:
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TABLE 1.4: Model and allocation preferences for our
investors.

Investor Preferred Model Allocation to Stock

More aggressive Thin-tailed density More

More conservative Thick-tailed density Less

To give some economic perspective, we note that (as we shall see in Chapter
8), under certain conditions, the more risk averse investor would be willing to
pay approximately the fraction 0.0224 of his capital every time he makes a bet,
to upgrade from the thin-tailed model (ν = 3) to the fat-tailed model (ν = 3).
The more frequently the model is used, the more rapidly these upgrade fees
would accumulate.





Chapter 2

Mathematical Preliminaries

In this chapter, we discuss some mathematical concepts that will be used in
later chapters. In Section 2.1, we outline some elements of probability theory.
In Section 2.2 we discuss some basics of convex optimization, and in Section
2.3 we introduce entropy and relative entropy.

2.1 Some Probabilistic Concepts

In this section, we review some probabilistic concepts, many of which are
employed in this book. We refer the reader seeking a more thorough introduc-
tion to one of many textbooks on this subject, for example Ross (2005), or
Bertsekas and Tsitsiklis (2002).

2.1.1 Probability Space

According to Parker (1968), “The essentials of the mathematical theory of
probability were worked out in 1654 in a correspondence between the French
mathematicians Pierre de Fermat (1601-65) and Blaise Pascal (1623-62)....” It
was not, however, until Kolmogorov (1933) that the current formal, axiomatic,
rigorous, mathematical underpinnings of probability theory were formulated.
In this section we review the formal definition of a probability space as for-
mulated by Kolmogorov.

Formally, a probability space is a triple: (Ω,F , P ), where

(i) the set Ω 6= ∅ (the sample space) contains all possible outcomes from a
random experiment,

(ii) F is a sigma algebra of subsets of Ω, i.e.,

1. the elements of F (the events) are themselves subsets of Ω,

2. A ∈ F implies that the complement of A in Ω, Ac, is also an
element of F , i.e.,

A ∈ F implies that Ac ∈ F , (2.1)

and

33
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3. If α is an index over a countably infinite set, and Aα denotes a set
indexed by alpha, then

Aα ∈ F , ∀α implies that
⋃

α

Aα ∈ F . (2.2)

(iii) P is a probability measure, defined on F , such that

1. if A ∈ F , then P (A) ∈ [0, 1],

2. P (Ω) = 1

3. P (∅) = 0, and

4. if {Aα} is a countably infinite set of pairwise disjoint sets indexed
by α, then P (

⋃

αAα) =
∑

α P (Aα).

To clarify this rather abstract formal definition, we introduce the following
example.

Example 2.1 Probability space generated by 3 coin tosses

For 3 coin tosses, where each toss might result in a head (H) or tail (T),

Ω = {ω1, . . . , ω8}, (2.3)

where

ω1 = {HHH}
ω2 = {HHT}
ω3 = {HTH}
ω4 = {HTT}
ω5 = {THH}
ω6 = {THT}
ω7 = {TTH}
ω8 = {TTT}.

We provide two possible sigma algebras, corresponding to the information
revealed after one and three tosses, respectively:

F1 = {∅,Ω, {ω1, . . . , ω4}, {ω5, . . . , ω8}}, and

F3 = 2Ω ≡ {A : A ⊂ Ω}.
An (natural) example of a probability measure is given by

P (A) =
the number of elements in A

8
. (2.4)

We note that even though this book takes place in a probabilistic setting,
we do not make extensive, direct use of this formal definition (nor the formal
definition of a random variable, described below) in the remainder of this
book.
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2.1.2 Random Variables

A random variable represents a particular measurement or state of the
world. Formally, if Y denotes a random variable, then Y (ω), ω ∈ Ω is an
F -measurable function; i.e., the preimages, under the mapping Y , of certain
“nice” sets are elements of F . For the purposes of this book, we can assume
that Y (ω) ∈ Rn.

Example 2.2 Random variables generated by 3 coin tosses in Example 2.1

We consider two functions:

(i) Y (ω) = 1, if the first toss is H, and 0, otherwise, is measurable (and is
therefore a random variable) with respect to both F1 and F3.

(ii) Y (ω) = 1, if the last toss is H, and 0, otherwise, is measurable (and is
therefore a random variable) with respect to F3, but not F1.

2.1.3 Probability Distributions

We denote the probability that Y has value y (the result of a draw, a
sampling, or a measurement) by prob{Y = y}. y can be discrete, continuous,
or multidimensional.

If y takes discrete values, we usually denote prob{Y = y} by py, with

0 ≤ py ≤ 1 and (2.5)

and
∑

y

py = 1. (2.6)

At times, for clarity, it may be necessary to use alternative notation, which
will be clear from the context.

Example 2.3 Probability measure for the roll of a fair die

Here, there are six outcomes (y = 1, . . . , 6), each occurring with probability
1
6 . We have py = 1

6 , y = 1, . . . , 6.

It is often natural to consider random variables that have values on a con-
tinuum in one or several dimensions. For such random variables, probabilities
can be characterized by probability density functions. A function p(y) with
the properties

p(y) ≥ 0, (2.7)
∫

p(y)dy = 1, (2.8)

and

prob(Y ∈ A) =

∫

A

p(y)dy, (2.9)
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for all A ∈ F is called the probability density function (pdf) associated with
the random variable Y . As we shall see below, the probabilities of discrete val-
ued random variables can be described using pdf’s, if we are willing to consider
a sufficiently large class of pdf’s. Sometimes, depending on the context, we
may use alternative notation: p(y), pY (y), or py.1

Another notion that is often useful is that of the cumulative distribution
function. For Y = (Y1, . . . , Yn) ∈ Rn, Y has cumulative distribution function

F (y1, . . . , yn) =

∫

u1≤y1,...,un≤yn

p(u)du. (2.10)

If Y ∈ R1 and Y has continuous distribution function F (y), the qth quantile
yq is given by yq = F−1(q).

We now provide examples of some important random variables:

Example 2.4 Uniform random variable

If Y has probability density 1
b−a

on the interval (a, b), then Y is distributed
uniformly on (a, b). We illustrate a uniformly distributed random variable in
Figure 2.1.

FIGURE 2.1: The pdf for Y , where Y is distributed uniformly on the
interval (3, 5).

1Though we sometimes abuse notation, the meaning should be clear from the context.
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Example 2.5 Standard Gaussian or standard normal random variable

If Z has probability density

1√
2π
e−

z2

2 , on (−∞,∞), (2.11)

we write Z ∼ N(0, 1) and refer to Z as a standard Gaussian or standard
normal random variable. The cumulative distribution function is given by

F (y) =

∫ y

−∞
f(u)du =

∫ y

−∞

1√
2π
e−

u2

2 du =
1

2
erf(

√
2y) +

1

2
, (2.12)

where the erf function is defined via

erf(y) =
2√
π

∫ y

0

e−t2dt. (2.13)

The probability density function for a standard normal random variable is
depicted in Figure 2.2. We illustrate the cumulative distribution function and
the notion of a quantile in Figure 2.3.

FIGURE 2.2: Probability density function for a standard normal random
variable.
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FIGURE 2.3: Cumulative distribution function for a standard normal ran-
dom variable and the quantile y.9.

It is easy to generate a probability density function. Let A denote the set
on which we want our probability density to be defined. If φ(y) ≥ 0 for y ∈ A
and 0 <

∫

A
φ(y)dy <∞, then

f(y) =
φ(y)

∫

A
φ(y)dy

(2.14)

is a probability density.
A number of well known probability density functions can readily be de-

scribed in terms of simple positive fucnctions, φ with finite integrals over a
set, A:

Example 2.6 (t- with ν degrees of freedom) Here,

φ(y) =

(

1 +
x2

ν

)−( ν+1
2 )

, (2.15)

where ν ≥ 1 and A = (−∞,∞).

Example 2.7 (Multivariate normal distribution with mean µ and covariance
matrix Σ) Here,

φ(y) = exp(−(y − µ)T Σ−1(y − µ)), (2.16)

where Σ is positive definite, and A = Rn.
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Example 2.8 (Exponential distribution) Here,

φ(y) = exp(−a(y − b)), (2.17)

where A = (b,∞) and a > 0).

Example 2.9 (Uniform distribution) Here,

φ(y) = 1, (2.18)

where A = (a, b).

Example 2.10 (Beta distribution) Here,

φ(y) = ya(1 − y)b, (2.19)

where A = (0, 1).

Example 2.11 (Chi-square distribution with k degrees of freedom) Here,

φ(y) = y
k
2−1e−

y
2 , (2.20)

where A = (0,∞).

Moreover, it is easy to confirm that convex combinations of probability
densities are probability densities; i.e., if pi(y) is a probability density and if
λi ≥ 0 for i ∈ {1, . . . , n} and

∑

i λi = 1, then

n
∑

i=1

λipi(y) (2.21)

is a probability density.
Probability density functions can accommodate real valued random vari-

ables with discrete values if the class of probability density functions is broad
enough to include the Dirac delta function, δ(·), which, for any function f ,
has the defining property

∫ b

a

f(y)δ(y − y0)dy = f(y0), (2.22)

if a ≤ y ≤ b.
We do not provide (or require) a rigorous or thorough description of the

Dirac delta function and its properties in this book; rather, we refer the in-
terested reader to Zemanian (1987). In Exercise 3, we indicate an intuitive
way of thinking about the Dirac delta function as the limit of a sequence of
smooth functions.
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Example 2.12 Probability density function of a discrete valued random vari-
able

Suppose that the random variable Y can take the value 0, with probability
.4, and the value 1, with probability .6. Then Y has the pdf

f(y) = .4δ(y) + .6δ(y − 1). (2.23)

Here, the values y = 0 and y = 1 can be interpreted as having point masses
with probabilities .4 and .6, respectively, with

prob(Y = 0) = lim
ε→0

∫ ε

−ε

f(y)dy = .4 (2.24)

and

prob(Y = 1) = lim
ε→0

∫ 1+ε

1−ε

f(y)dy = .6. (2.25)

2.1.4 Univariate Transformations of Random Variables

Suppose that we have a density function for Y ∈ R1, which is given by fY (y)
and that we seek the density function for U = h(Y ), where h : R1 → R1 is
monotone. Note that the probability that Y ∈ (y, y + dy) is given, to leading
order in dy, by fY (y) · dy. By setting

fU (u) · |du| = fY (y) · |dy|, (2.26)

we obtain

Theorem 2.1 (Density of a transformed univariate random variable) Let the
random variable Y ∈ R1 have the density function fY (y) and let h : R1 → R1.
If h(y) is either increasing or decreasing for all y, then U = h(Y ) has density

fU (u) = fY (h−1(u))

∣

∣

∣

∣

d

du
h−1(u)

∣

∣

∣

∣

. (2.27)

Example 2.13 Lognormal random variable

If Z ∼ N(0, 1), then the density function for Y = exp(Z) is given by

1

y
√

2π
e−

(log(y))2

2 . (2.28)

This distribution is known as the lognormal distribution and is depicted in
Figure 2.4.
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FIGURE 2.4: Probability density function for the lognormal distribution.

2.1.5 Multivariate Transformations of Random Variables

For a multivariate transformation of a vector of random variables, we make
use of the following theorem from multivariate calculus:

Theorem 2.2 (Integration by substitution) Let fY : Rn → R be integrable.
Let h : Rn → Rn be invertible and smooth. Then

∫

A

fY (y)dy =

∫

h(A)

fY (h−1(u))|J |du, (2.29)

for A ⊂ Rn, where | · | denotes the determinant and J is the Jacobian matrix
given by

J =







∂
∂u1

h−1
1 · · · ∂

∂um
h−1

1

...
. . .

...
∂

∂u1
h−1

m · · · ∂
∂um

h−1
m






. (2.30)

We can read off the density function for the transformed random variable
vector U , which leads us to the following theorem.

Theorem 2.3 (Density of a transformed multivariate random variable)
Let the random variable Y ∈ Rm have the density function fY (y). Let
h : Rm → Rm be invertible and smooth. Then U = (U1 , . . . , Un)T =
(h1(Y ), . . . , hn(Y ))T has density

fU (u) = fY (h−1(u))|J |. (2.31)
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2.1.6 Expectations

In this section, we give definitions for some standard terms relating to the
moments of random variables. The expectation is a measure of the central
tendency of the random variable Y . For a continuous random variable with
density function p(y), the expected value is given by

Ep[Y ] =

∫

yp(y)dy. (2.32)

If Y is discrete-valued, with prob{Y = yi} = pi, then

Ep[Y ] =

∫

yp(y)dy =

∫

y
∑

i

piδ(y − yi)dy =
∑

i

piyi. (2.33)

Sometimes, when the probability measure is clear, we drop the subscript p
from the notation, writing

E[Y ] =

∫

yp(y)dy. (2.34)

It follows that

E[f(Y )] =

∫

f(y)p(y)dy. (2.35)

If Y is discrete-valued, then

E[f(Y )] =
∑

i

pif(yi). (2.36)

The variance, a measure of the dispersion, of the random variable Y is given
by

var[Y ] = E[(Y − E[Y ])2]. (2.37)

The covariance of X and Y is given by

cov[X, Y ] = E[(X −E[X])(Y −E[Y ])]. (2.38)

The correlation of X and Y , if var[X] > 0 and var[Y ] > 0, is given by

ρ[X, Y ] =
cov[X, Y ]

√

var[X]var[Y ]
. (2.39)

Example 2.14 Moments of linearly transformed random variables

If the random vector Y = (Y1, . . . , Yn)T has expectation vector µ (with
ith element µi), and covariance matrix cov(Y, Y ) = Σ (with ijth element
cov(Yi, Yj)), and if A is a matrix with n columns, then

E[AY ] = Aµ, (2.40)

and
cov(AY,AY ) = AΣAT . (2.41)

(Proof: Exercise 4.)
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Not all random variables have moments, as we see from the following ex-
ample.

Example 2.15 The Cauchy distribution (Expectations need not exist)

The Cauchy distribution

p(y) =
1

π(1 + y2)
(2.42)

(which is a special case of the t-distribution with ν = 1) has

Ep[Y ] =

∫ ∞

−∞
yp(y)dy =

∫ 0

−∞
yp(y)dy +

∫ ∞

0

yp(y)dy, (2.43)

which is not well defined, since

∫ 0

−∞
yp(y)dy = −∞, (2.44)

and
∫ ∞

0

yp(y)dy = ∞. (2.45)

We depict the Cauchy distribution and a standard normal distribution in
Figure 2.5. Note that the Cauchy distribution has much fatter tails.

2.1.7 Some Inequalities

We list three fundamental inequalities. The first two provide bounds on
the probabilities of “tail” events. The third provides a bound on the product
of random variables, in terms of the second moments of each of the random
variables.

• The Markov inequality If Y is a nonnegative random variable, then
for any c > 0,

prob(Y > c) ≤ E[Y ]

c
. (2.46)

• The Chebyshev inequality

prob(|Y − Y |2 > c2) ≤ var(Y )

c2
(2.47)

or equivalently (when c > 0)

prob(|Y − Y | > c) ≤ var(Y )

c2
. (2.48)

• The Schwarz inequality

(E[XY ])2 ≤ E[X2]E[Y 2]. (2.49)
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FIGURE 2.5: Cauchy distribution (with fat tails, lower center) and Normal
distribution (with thin tails, higher center).

2.1.8 Joint, Marginal, and Conditional Probabilities

Given two random variables X and Y , we use the notation p(x, y) or, for
discrete random variables, px,y, to denote the joint probability that X = x
and Y = y. We obtain marginal probabilities for continuous random variables

p(x) =

∫

p(x, y)dy, (2.50)

or, for discrete random variables,

px =
∑

y

px,y. (2.51)

Conditional probabilities are defined via

p(y|x) =
p(x, y)

p(x)
. (2.52)

For discrete random variables, we use the notation

py|x =
px,y

px
. (2.53)

p(y|x) and py|x represent the probability that Y = y, given that X = x.
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It is straightforward to derive Bayes’ Rule. To do so, for continuous random
variables, note that

p(x|y) =
p(x, y)

p(y)

=
p(y|x)p(x)

p(y)

=
p(y|x)p(x)
∫

p(x, y)dx

=
p(y|x)p(x)

∫

p(y|x)p(x)dx.

Thus, Bayes’ Rule reverses the conditioning. Bayes’ Rule, in the discrete case,
is given by

px|y =
py|xpx

∑

x py|xpx
.

The random variables X and Y are independent if

p(y|x) = p(y). (2.54)

That is, the probability that Y = y, given that X = x, is the same as the
probability that Y = y (the additional information on the value of X has
no effect on the probability that Y = y). This leads directly to the formal
definition of independence: the random variables X and Y with joint density
function p(x, y) and marginal density functions p(x) and p(y) respectively are
independent if and only if

p(x, y) = p(x)p(y). (2.55)

Example 2.16 cov[X, Y ] = 0 need not imply that X and Y are independent

To see this, consider the random variables Y and Y 2 where Y is uniformly
distributed on [−1, 1].

2.1.9 Conditional Expectations

The conditional expectation, E[Y |x] ≡ E[Y |X = x], is defined as follows

E[Y |x] =

∫

yp(y|x)dy. (2.56)

If Y is discrete-valued, with prob{Y = yi|x} = pyi|x, then

E[Y |x] =

∫

yp(y|x)dy =

∫

y
∑

i

pyi|xδ(y − yi)dy =
∑

i

pyi|xyi. (2.57)
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We shall, on occasion, encounter iterated expectations of the form
E[E[Y |X]]. Fortunately, such iterated expectations can be simplified as fol-
lows:

E[E[Y |X]] =

∫ [∫

yp(y|x)dy
]

p(x)dx (2.58)

=

∫

y

[∫

p(x, y)dx

]

dy (2.59)

=

∫

yp(y)dy (2.60)

= E[Y ]( the tower law). (2.61)

We define the conditional variance, var(Y |x), via

var(Y |x) =

∫

[y− E(Y |x)]2p(y|x)dy (2.62)

=

∫

[y2 −E(Y |x)2]p(y|x)dy (2.63)

= E[Y 2|x]− (E[Y |x])2. (2.64)

It follows that

var(E[Y |X]) = E
[

(E[Y |X])2
]

− (E[E[Y |X]])
2

(2.65)

= E
[

(E[Y |X])2
]

− (E[Y ])2 . (2.66)

We now state

Theorem 2.4 (Law of Conditional Variances)

var[Y ] = E[var[Y |X]] + var[E[Y |X]]. (2.67)

Proof:

E[var[Y |X]] + var[E[Y |X]]

= E[E[Y 2|X] − (E[Y |X])2] +E[E(Y |X)2] − (E[Y ])2

= E[E[Y 2|X]] −E[E(Y |X)2] + E[E(Y |X)2]− (E[Y ])2

= E[Y 2]− (E[Y ])2

= var(Y ).

2.1.10 Convergence

Ordinary Convergence.: A sequence of real numbers {yn} converges to the
real number y, which we write as limn→∞ yn = y if

∀ε > 0, ∃N(ε) such that |yn − y| < ε for n > N(ε). (2.68)
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There are several generalizations for random variables. Let Y, Y1, Y2, . . .
be jointly distributed random variables. We now list several definitions for
convergence in a probabilistic context:

1. Pointwise convergence. limn→∞Yn(ω) = Y (ω), ∀ω ∈ Ω in the sense of
ordinary convergence. This definition is the most straightforward gen-
eralization of ordinary convergence. However, for most purposes, this
generalization is unnecessarily strong.

2. Convergence with probability one (almost everywhere convergence,
strong convergence). Yn converges to Y with probability one if

prob{ω : lim
n→∞

Yn(ω) = Y (ω)} = 1, (2.69)

i.e., Yn(ω) → Y (ω) pointwise on a set of measure 1.

3. Convergence in Lp, 0 < p <∞ (for p = 2, convergence in mean square).
Yn converges to Y in Lp if and only if,

lim
n→∞

E[|Yn − Y |p] = 0. (2.70)

4. Convergence in probability (weak convergence). Yn converges to Y in
probability if, for every ε > 0,

lim
n→∞

prob{|Yn − Y | > ε} = 0. (2.71)

If so, we write
Yn →p Y (2.72)

or
plim(Yn) = Y. (2.73)

This definition of convergence is weaker than (is implied by) convergence
with probability one or Lp convergence.

5. Convergence in distribution. Let F (y) = Pr{Y ≤ y} denote the cumu-
lative distribution function for Y and Fn(y) = Pr{Yn ≤ y} denote the
cumulative distribution function for Yn. Yn converges to Y in distribu-
tion if

lim
n→∞

Fn(y) = F (y) (2.74)

for all y at which F is continuous. This is the weakest form of conver-
gence discussed in this section.
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2.1.11 Limit Theorems

We list below two limit theorems that govern sample averages of indepen-
dent identically distributed (i.i.d.) random variables, as the number of terms
becomes large.

Theorem 2.5 (Strong Law of Large Numbers) Let Yn be i.i.d. such that
E[Yn] = µ is finite; then

1

n

n
∑

i=1

Yi → µ with probability 1. (2.75)

Theorem 2.6 (Central Limit Theorem) Let Yn be i.i.d. such that E[Yn] = µ
and var[Yn] = σ2 are finite. Let

Y n =

∑n
i=1 Yi

n
(2.76)

and

Zn =
Y − µ

σ√
n

. (2.77)

Let Z be a normally distributed random variable with mean 0 and variance 1.
Then Zn converges in distribution to Z, i.e., for all real z

lim
n→∞

prob{Zn ≤ z} =

∫ z

−∞

1√
2π
e−

u2

2 du. (2.78)

2.1.12 Gaussian Distributions

The Gaussian distribution, also known as the normal distribution, though
not suitable for all modeling purposes, is an extremely useful distribution and
is perhaps the most widely used probability distribution. Its applicability is a
consequence of the Central Limit Theorem discussed in the previous section,
since many outcomes spanning the natural and behavioral sciences result from
the cumulative effects of many small shocks. In this section, we define general
univariate Gaussian distributions with nonzero means and nonunit variances.
We also define the multivariate Gaussian distribution. We then state certain
facts about Gaussian distributions, sketching some proofs.

We start with the univariate standard Gaussian or standard normal distri-
bution of Example 2.5. Suppose that Y is a standard normal random variable.
Then U = h(Y ) = µ + σY has mean µ and variance σ2. Applying Theorem
2.3, we obtain the density for U , which is given by

1

σ
√

2π
e−

(u−µ)2

2σ2 . (2.79)
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In this case we say that U has a Gaussian distribution with mean µ and
variance σ2 and write U ∼ N(µ, σ2).

We now consider the multivariate Gaussian distribution. If Z1, . . . , Zn are
independent N(0, 1) random variables, then their joint density function is
given by

n
∏

i=1

1√
2π
e−

z2
i
2 = (2π)−

n
2 e−

1
2

P

n
i=1 z2

i = (2π)−
n
2 e−

1
2 zT z, (2.80)

where zT denotes the transpose of z.
Let U = CZ+µ, where C is an invertible n×n matrix and µ is a vector. It

can be shown that U has mean µ and covariance matrix CCT (exercise: justify
this statement). According to Theorem 2.3 (exercise: fill in missing details),
the density for U is given by

(2π)
n
2 e−

1
2 (C−1(u−µ))T (C−1(u−µ))|C| = (2π)−

n
2 e−

1
2 (u−µ)T (C−1)T (C−1(u−µ))|C|

= (2π)−
n
2 e−

1
2 (u−µ)T Σ−1(u−µ))|C|

= (2π)−
n
2 |Σ|−1

2 e−
1
2 (u−µ)T Σ−1(u−µ)),

where Σ = CCT . In this case we write U ∼ N(µ,Σ).
Next, we consider affine transformations of multivariate Gaussian random

variables. Suppose that U ∼ N(µ,Σ); then it is possible to show (using The-
orem 2.3) that AU + b ∼ N(µ+ b, AΣAT ).

Finally, we consider the conditional distributions of multivariate Gaussian
random variables. It is noteworthy that the conditional distributions of Gaus-
sian random variables are themselves Gaussian random variables. Suppose
that

Z =

(

Y
X

)

, (2.81)

µ =

(

µy

µx

)

, and (2.82)

Σ =

(

Σxx Σxy

Σyx Σyy

)

, (2.83)

then, given that X = x, Y is distributed normally with mean

µy + ΣyxΣ−1
xx (x− µx) (2.84)

and covariance matrix
Σyy − ΣyxΣ−1

xx Σxy. (2.85)
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2.2 Convex Optimization

In this section, we discuss some basics of convex optimization. We shall
restrict ourselves to problems defined in Rn, outlining some ideas and results
and providing some but not all necessary proofs. More detailed expositions can
be found in the textbooks by Rockafellar (1970), and Boyd and Vandenberghe
(2004). Most of the results we discuss in this section also hold for problems
defined in more general linear vector spaces. Although we shall occasionally
use these generalizations later in this book, we shall not discuss them in this
section, but rather refer the reader to Luenberger (1969).

The practical importance and usefulness of convexity of a optimization
problem is to a large extent derived from the fact that any local minimum of
a convex function on a convex set is also a global minimum. This consider-
ably simplifies the numerical procedures that can be employed to solve these
optimization problems.

A very useful concept that we shall frequently utilize in this book is the
concept of convex duality. Based on this idea, a convex problem can be related
to its so-called dual problem, which has, under certain conditions, the same
solution as the original problem. In a later chapter, we will use this duality
to relate relative entropy minimization to the maximum-likelihood method.

2.2.1 Convex Sets and Convex Functions

Definition 2.1 A set S ⊆ Rn is called convex if, for any x1 ∈ S and x2 ∈ S
and any λ ∈ [0, 1], λx1 + (1 − λ)x2 ∈ S.

Figure 2.6 illustrates this definition.

Definition 2.2 A function f : Rn → R is called convex if its domain,
dom(f), is a convex set and if, for all xx, x2 ∈ dom(f) and any λ ∈ (0, 1),

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) . (2.86)

If strict inequality holds whenever x1 6= x2, the function is called strictly
convex. A function g is said to be (strictly) concave if −g is (strictly) convex.

Figure 2.7 illustrates this definition.
It is easy to see that, if a function is twice continuously differentiable on

an open convex set, it is convex (strictly convex) if and only if its Hessian is
positive semi-definite (positive definite). See Rockafellar (1970), Theorem 4.5,
for a proof.

Convex functions have the following property, which we will find useful
later.
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FIGURE 2.6: A convex (left) and a nonconvex (right) set.

FIGURE 2.7: A convex (left) and a nonconvex (right) function.
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Lemma 2.1 (Jensen’s inequality) If f is a convex function, X is a random
variable with probability measure p and the expectations Ep[X] and Ep[f(X)]
exist, then

Ep[f(X)] ≤ f (Ep[X]) . (2.87)

Proof: See, for example, Feller (1966), Volume II, Chapter V.8.

Lemma 2.2 (Supremum of a collection of convex functions) If fa(x) is con-
vex for all a ∈ A, then

g(x) = sup
a∈A

fa(x) (2.88)

is a convex function of x.

Proof: Exercise.

Lemma 2.3 (Infimum of a collection of concave functions) If fa(x) is con-
cave for all a ∈ A, then

g(x) = inf
a∈A

fa(x) (2.89)

is a concave function of x.

Proof: Exercise.

2.2.2 Convex Conjugate Function

The following concept is very useful in the context of convex optimization
problems.

Definition 2.3 The convex conjugate function of a convex function, f, on
Rn is defined by

f∗(λ) = sup
x∈Rn

{

λTx− f(x)
}

, (2.90)

where λ ∈ Rn.

One often calls the convex conjugate function simply the convex conjugate.
The following lemma lists some properties of the convex conjugate.

Lemma 2.4

(i) The epigraph of the convex conjugate, f∗, is the set of all pairs (λ, µ) in
Rn+1 such that the affine function h(x) = λT x− µ is majorized by f.

(ii) f∗∗ = f .

(iii) f∗ is convex.

Proof: See Rockafellar (1970), Section 12.
Later in this book, we shall make use of the following lemma.
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Lemma 2.5 Let x be an Rn vector, xj denote the jth component of x, and

`p(x) =





n
∑

j=1

|xj|p




1
p

, 1 < p <∞ , (2.91)

denote the `p norm of x. Then

(i) the convex conjugate of the function 1
p
`pp is the function 1

q
`qq, where q =

p
p−1 , and

(ii) the convex conjugate of the function `∞, which is given by

`∞(x) = max
j=1...n

|xj| , (2.92)

is the function `1.

Proof: The proof is straightforward; see Exercise 14 in Section 2.4.

2.2.3 Local and Global Minima

As we shall see later in this book, we often need to find a global minimum
of an objective function, i.e., the minimum of the objective function over
its whole domain. However, many numerical algorithms for finding a global
minimum of a function focus on the search for local minima, i.e., minima of
the function in small neighborhoods. This task is easier then directly finding
a global minimum. For this reason, a numerical minimum search would be
substantially simplified if we knew that any local minimum is also a global
minimum. As the following theorem shows, this is the case for convex functions
on convex sets.

Theorem 2.7 Let f be a convex function on a convex set S ⊆ Rn. Then, if
x∗ is a local minimum of f, then x∗ is a global minimum of f.

Proof: See Luenberger (1969), Proposition 1, Section 7.8.
Another issue of practical importance is the uniqueness of a minimum. The

following theorem, which addresses this issue, will be useful later.

Theorem 2.8 Let f be a strictly convex function on a convex set S. Then

x∗ = arg min
x∈S

f(x) (2.93)

is unique, if it exists.

In the above equations, ‘arg’ denotes ‘argument of ...’.
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Proof: We prove the theorem by contradiction. Suppose f(x1) = f(x2) =
infx∈S f(x), where x1 6= x2 ∈ S. Since S is convex, 1

2
x1 + 1

2
x2 ∈ S, and since

f is strictly convex

f

(

1

2
x1 +

1

2
x2

)

<
1

2
f(x1) +

1

2
(x2) = inf

x∈S
f(x) , (2.94)

which is a contradiction. 2

We note that concave maximization problems can be cast as minimization
problems, since

max
x∈S

f(x) = −min
x∈S

−f(x), (2.95)

with
arg max

x∈S
f(x) = arg−min

x∈S
−f(x). (2.96)

2.2.4 Convex Optimization Problem

A convex optimization problem is a problem of the following type.

Problem 2.1 Find
Φ∗ = inf

x∈Rn
Φ(x) (2.97)

s.t.

fi(x) ≤ 0 , i = 1, ..., m (2.98)

and hj(x) = 0 , j = 1, ..., l , (2.99)

where Φ : Rn → R, fi : Rn → R are convex, and the hj : Rn → R are affine.

Below, in the context of duality, we often refer to Problem 2.1 as the primal
problem.

We note that Problem 2.1 is not the most general class of problems that
can be labeled as convex optimization problems, but is general enough for the
purpose of this book.

2.2.5 Dual Problem

In this section, we will introduce the important concept of Lagrangian du-
ality, which is also often called convex duality.

Lagrangian and Lagrange dual function

Definition 2.4 The Lagrangian for Problem 2.1 is given by

L(x, λ, ν) = Φ(x) +
m
∑

i=1

λifi(x) +
l
∑

j=1

νjhj(x) , λi ≥ 0 , ∀i = 1...m , (2.100)
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and the λi, νi are called Lagrange multipliers and λ = (λ1, ..., λm)T and ν =
(ν1, ..., νl)

T . The Lagrange dual function is given by

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) . (2.101)

In the above definition, we assume that, if the Lagrangian is unbounded
below as a function of x, the Lagrange dual function takes the value −∞.

The Lagrange dual function has the following properties.

Lemma 2.6 With Φ∗ defined in (2.97) and g(λ, ν) defined in (2.101), we
must have

(i) g(λ, ν) ≤ Φ∗, and

(ii) g is concave.

Since the proof of this lemma is very simple and provides some insight into
the working of Lagrange duality, we will provide it here.

Proof: We first prove statement (i). Let us call a point x̃ with fi(x̃) ≤ 0 and
hi(x̃) = 0 a feasible point. For any feasible point, we have

L(x̃, λ, ν) = Φ(x̃) +

m
∑

i=1

λifi(x̃) +

l
∑

j=1

νihj(x̃)

≤ Φ(x̃) (since λi ≥ 0 , fi(x̃) ≤ 0 and hj(x̃) = 0 , ∀i, j).(2.102)

So we have

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

≤ inf
x̃:fi(x̃)≤0 , hj(x̃)=0 , ∀i,j

L(x̃, λ, ν)

≤ inf
x̃:fi(x̃)≤0 , hj(x̃)=0 , ∀i,j

Φ(x̃) (by (2.102))

≤ Φ∗ (by (2.97)) , (2.103)

which proves statement (i).
Statement (ii) of the lemma follows directly from the fact that the dual

function, g, is the pointwise infimum of a family of affine functions of (λ, ν)
(see Rockafellar (1970), Theorem 5.5). 2

We note that Lemma 2.6 holds even for nonconvex problems.

Dual problem

We are now ready to define the so-called dual problem.

Problem 2.2 (Dual Problem) Find

g∗ = sup
λ≥0,ν

g(λ, ν) . (2.104)
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We note that, because of Lemma 2.6 (ii), Problem 2.2 amounts to the max-
imization of a concave function on a convex set, which is equivalent to the
minimization of a convex function on a convex set; therefore, Problem 2.2 is
a convex problem.

The following theorem connects Problem 2.2 with Problem 2.1.

Theorem 2.9 (Strong duality) If there exists some x with hi(x) = 0 and
fi(x) < 0 (i.e., if the so-called Slater condition holds), then strong duality
holds, i.e.,

Φ∗ = g∗ . (2.105)

Moreover, if the minimum and the maximum in (2.106) and (2.109) exist,
then the set of optimal points

x∗ = arg min
x:fi(x)≤0 , hi(x)=0 , ∀i,j

Φ(x) (2.106)

can be computed as

x∗ = x̂(λ∗, ν∗) , (2.107)

where x̂(λ, ν) = arg min
x∈Rn

L(x, λ, ν) , (2.108)

and (λ∗, ν∗) = arg max
λ(∈R+)m,ν∈Rl

L(x̂(λ, ν), λ, ν) . (2.109)

In the above equations, the expressions λ∗, ν∗, x∗ and x̂(λ, ν) denote either a
single point or a set, depending on whether the extrema they correspond to
are uniquely attained or not.

Proof: See, for example, Boyd and Vandenberghe (2004), Chapter 5.
Theorem 2.9 has important practical implications. It states that, under

the conditions of the theorem, one can solve Problem 2.2 instead of solving
Problem 2.1, if one is interested in the solution of Problem 2.1. If the dimension
of the dual problem, which is equal to the number of constraints in the primal
problem, is smaller than the dimension, n, of the primal problem, solving the
dual problem is often easier than solving the primal problem.

Later in this book, we will encounter situations where we can explicitly
derive the dual problem, i.e., find an explicit expression for the Lagrange dual
function, g, and where the dual problem has a much lower dimension than the
primal problem. Often, an efficient strategy for solving the primal problem is
to solve the dual problem instead.

Often we are interested not only in the infimum of the function Φ (under the
constraints of Problem 2.1), but also in the minimizing x if such an x exists.
Based on Theorem 2.9, we can also compute the latter by using (2.106) and
(2.109).
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2.2.6 Complementary Slackness and Karush-Kuhn-Tucker
(KKT) Conditions

The Lagrange multipliers that correspond to the inequality constraint have
the following useful property.

Lemma 2.7 (Complementary slackness) For the optimal Lagrange multipli-
ers, λ∗i , we have either

λ∗i > 0 and fi(x
∗) = 0 (2.110)

or
λ∗i = 0 and fi(x

∗) < 0 . (2.111)

Proof: See Boyd and Vandenberghe (2004), Section 5.5.2.
For a convex problem where the objective and the constraints are given in

terms of differentiable functions, we can formulate the following conditions for
the problem’s solution.

Theorem 2.10 (Karush-Kuhn-Tucker) Suppose the functions Φ, fi , i =
1, ..., m and gj , j = 1...l from Problem 2.1 are differentiable. Then the point
x∗ is primal optimal, i.e., Φ(x∗) solves Problem 2.1, and the point (λ∗, ν∗)
is dual optimal, i.e., g(λ∗, ν∗) solves Problem 2.2, if and only if the following
conditions hold.

fi(x
∗) ≤ 0 , i = 1, ..., m, (2.112)

hj(x
∗) = 0 , j = 1, ..., l, (2.113)

λ∗i ≥ 0, , i = 1, ..., m, (2.114)

λ∗i fi(x
∗) = 0, , i = 1, ..., m, and (2.115)

0 = ∇Φ(x∗) +

m
∑

i=1

λ∗i ∇fi(x
∗) +

l
∑

j=1

ν∗j∇hj(x
∗) . (2.116)

Proof: See Boyd and Vandenberghe (2004), Section 5.5.3.

2.2.7 Lagrange Parameters and Sensitivities

Let us consider the following perturbed version of Problem 2.1.

Problem 2.3 Find
Φ∗(u, v) = inf

x∈Rn
Φ(x) (2.117)

s.t.

fi(x) ≤ ui , i = 1, ..., m (2.118)

and hj(x) = vj , j = 1, ..., l , (2.119)

where u = (u1, ..., um)T and v = (v1, ..., vl)
T .
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We have obtained this problem from Problem 2.1 by adding the perturba-
tions u to the inequality constraints and the perturbations v to the equality
constraints.

The following theorem relates the optimal Lagrange multipliers to the con-
straint perturbations.

Theorem 2.11 Suppose that the assumptions of Theorem 2.9 hold and that
Φ∗ is differentiable at u = (0, ..., 0)T , v = (0, ..., 0)T . Then

λ∗i = − ∂Φ∗(u, v)

∂ui

∣

∣

∣

∣

u=(0,...,0)T , v=(0,...,0)T

, (2.120)

and ν∗j = − ∂Φ∗(u, v)

∂vj

∣

∣

∣

∣

u=(0,...,0)T , v=(0,...,0)T

, (2.121)

where the λ∗i and the ν∗j are the dual optimal Lagrange multipliers from The-
orem 2.9.

Proof: See, for example, Boyd and Vandenberghe (2004), Section 5.6.
According to Theorem 2.11, the dual optimal Lagrange multipliers are a

measure of how active a constraint is. If the absolute of a certain multiplier
is small, we can modify the constraint without much effect on the solution of
the optimization problem; if, on the other hand, the absolute of the multiplier
is large, a small modification of the constraint leads to a big change in the
solution.

2.2.8 Minimax Theorems

Suppose we have a function of two variables, which we want to minimize
with respect to one of the variables and maximize with respect to the other.
Can we exchange the order of the maximization and minimization? This ques-
tion, which plays an important role in the theory of zero-sum games, is, as we
shall see later in this book, related to the question of robustness of the mini-
mum relative entropy method. The answer to this question is that, generally,
we cannot exchange the order of the maximization and minimization. How-
ever, under certain conditions we can do so. Many such conditions are known
(see, for example, von Neumann and Morgenstern (1944), Rockafellar (1970),
or Frenk et al. (2002)), each of which lead to a so-called minimax theorem.
Below, we state one of these theorems.

Before stating the theorem, we define a concave-convex function.

Definition 2.5 Let C and D be nonempty closed convex sets in Rm and Rn,
respectively, and let Φ be a continuous finite function on C × D. Φ(x, y) is
concave-convex if for every y ∈ D, Φ(x, y) is concave in x and for every
x ∈ C, Φ(x, y) is convex in y.
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Theorem 2.12 Let C and D be nonempty closed convex sets in Rm and
Rn, respectively, and let Φ be a continuous finite concave-convex function on
C ×D. If either C or D is bounded, then

inf
y∈D

sup
x∈C

Φ(x, y) = sup
x∈C

inf
y∈D

Φ(x, y) . (2.122)

Moreover, if both C and D are bounded, then Φ has a saddle point with respect
to C ×D, i.e., there exists some x∗ ∈ C and y∗ ∈ D such that

Φ(x, y∗) ≤ Φ(x∗, y∗) ≤ Φ(x∗, y) , ∀x ∈ C , ∀y ∈ D , (2.123)

i.e.,
min
y∈D

max
x∈C

Φ(x, y) = max
x∈C

min
y∈D

Φ(x, y) = Φ(x∗, y∗) . (2.124)

Proof: See Rockafellar (1970), Corollaries 37.3.2 and 37.6.2.
We note that the saddle-point property from Theorem 2.12 is closely related

to the duality from Theorem 2.9 (see Boyd and Vandenberghe (2004), Section
5.4).

2.2.9 Relaxation of Equality Constraints

Later in this book, when discussing the minimum relative entropy method,
we shall analyze particular optimization problems under equality constraints
and under relaxed equality constraints. Specifically, our starting point will be
a problem of the following type.

Problem 2.4 Find
x(eq) = arg min

x∈Rn
Φ(x) (2.125)

s.t.

fi(x) ≤ 0 , i = 1, ..., m , (2.126)

and hj(x) = 0 , j = 1, ..., l , (2.127)

where Φ : Rn → R is a convex function, the functions fi : Rn → R are
convex, and the functions hj : Rn → R are affine.

Often we are interested in the problem that is obtained from Problem 2.4
by relaxing some of the equality constraints. The following problem is a useful
example for such a relaxed problem.

Problem 2.5 Find
x(r) = arg min

x∈Rn
Φ(x) (2.128)



60 Utility-Based Learning from Data

s.t.

fi(x) ≤ 0 , i = 1, ..., m , (2.129)

hj(x) = cj , j = 1, ..., l̂ , (2.130)

hj(x) = 0 , j = l̂+ 1, ..., l , (2.131)

and Ψ(c) ≤ α , (2.132)

where Φ and the fi and hj are the same as in Problem 2.4, Ψ is a convex
function of the vector c = (c1, ..., cl̂)

T that attains its minimum, 0, at c =
(0, ..., 0)T , and α is a positive number.

The following theorem relates the solutions of Problems 2.4 and 2.5 to each
other.

Theorem 2.13 If the minimum and the maximum in (2.134) and (2.135)
exist, then the set of optimal points of Problem 2.5 is given by

x(r) = x̂(eq)
(

λ(r), ν(r)
)

, (2.133)

where x̂(eq)(λ, ν) = arg min
x∈Rn

L(eq)(x, λ, ν) , (2.134)

L(eq)(x, λ, ν) = Φ(x) +
∑m

i=1 λifi(x) +
∑l

j=1 νjhj(x) is the Lagrangian of
Problem 2.4, and

(

λ(r), ν(r)
)

= arg max
λ∈(R+)m , ν∈Rl

g(r)(λ, ν, ξ∗) (2.135)

where g(r)(λ, ν, ξ∗) = g(eq)(λ, ν)− inf
ξ≥0

{

ξΨ∗
(

ν

ξ

)

+ αξ

}

, (2.136)

g(eq)(λ, ν) = inf
x∈Rn

L(eq)(x, ν) , (2.137)

ν̂ is the vector of the first l̂ components of the vector ν, and Ψ∗ is the convex
conjugate of Ψ.

Proof: See Section 2.2.10.
This theorem states that the solution to Problem 2.5 is given by the same

function of the dual optimal Lagrange parameters as the solution to Problem
2.4 is, and that the dual optimal Lagrange parameters maximize the sum of
the objective function of the dual of Problem 2.4 and an additional term.

The following corollary states some explicit results for two special cases
involving the `p norm given by (2.91), and the `∞-norm given by (2.92). We
make use of these special cases in some important practical applications, which
we shall consider later in this book.
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Corollary 2.1

(i) If the function Ψ in the relaxed constraint (2.132) in Problem 2.5 is
given by

Ψ(c) =
1

p
`pp(c) , 1 < p <∞ , (2.138)

then the objective function of the dual problem is

g(r)(λ, ν, ξ∗) = g(eq)(λ, ν)− α
1
p q

1
p (q − 1)−

1
p `q(ν) , (2.139)

where q = p
p−1 .

(ii) If the function Ψ in the relaxed constraint (2.132) in Problem 2.5 is
given by

Ψ(c) = `∞(c), (2.140)

then the objective function of the dual problem is

g(r)(λ, ν, ξ∗) = g(eq)(λ, ν) − α`1(ν) . (2.141)

Proof: See Section 2.2.10.
A relaxation function that is often used is Ψ(c) = 1

p
`pp(c) with p = 2. The

objective function of the dual of Problem 2.5 is then

g(r)(λ, ν, ξ∗) = g(eq)(λ, ν) −
√

2α`2(ν) (2.142)

(see Corollary 2.13). This objective function is suitable for practical appli-
cations. From a theoretical perspective, however, the following corollary is
useful.

Corollary 2.2 The α-parameterized (with α ≥ 0) family of maxima of

g(r)(λ, ν, ξ∗) = g(eq)(λ, ν) − α
1
p q

1
p (q − 1)−

1
p `q(ν) (2.143)

is the same as the α-parameterized (with α ≥ 0) family of maxima of

g(`)(λ, ν) = g(eq)(λ, ν)− α`qq(ν) . (2.144)

Proof: The corollary is a direct consequence of Theorem 2.13 and Lemma
7 in Friedman and Sandow (2003a). The proof is straightforward; it is based
on the fact that a monotone transformation doesn’t modify the set of Pareto-
optimal values of the vector −(g(eq)(λ, ν), `qq(ν)).

We shall apply this corollary below to demonstrate the equivalence of the
`2-relaxed minimum relative entropy problem to a `2-regularized maximum-
likelihood method.

We note that an alternative approach to relaxing equality constraint is
discussed in Exercise 17 in Section 2.4.
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2.2.10 Proofs for Section 2.2.9

Proof of Theorem 2.13: The Lagrangian of Problem 2.5 is

L(r)(x, c, λ, ν, ξ) = Φ(x) +

m
∑

i=1

λifi(x) +

l̂
∑

j=1

νj [hj(x) − cj ] +

l
∑

j=l̂+1

νjhj(x)

+ξ [Ψ(c) − α]

= L(eq)(x, λ, ν)− ν̂Tc+ ξ [Ψ(c) − α] , (2.145)

where L(eq) is the Lagrangian of Problem 2.4, ν̂ is the vector of the first
l̂ components of the vector ν , and ξ ≥ 0. This equation implies (2.133), by
virtue of the fact that L(r) depends on x only through the additive term L(eq).

It follows further from (2.145) that the Lagrange dual function is

g(r)(λ, ν, ξ) = inf
x∈Rn,c∈Rl

L(r)(x, c, λ, ν, ξ)

= g(eq)(λ, ν) + inf
c∈Rl

[

−ν̂T c+ ξΨ(c)
]

− αξ , (2.146)

where g(eq)(λ, ν) = infx∈Rn L(eq)(x, λ, ν) is the Lagrange dual function of
Problem 2.4.

Next, we separately consider three cases.

(i) ξ = 0 and ν̂j 6= 0 for some j ∈ (1, ..., l̂). In this case,

inf
c∈Rl

[

−ν̂T c+ ξΨ(c)
]

= −∞ ,

and it follows from (2.146) that g(r)(λ, ν, 0) = −∞.

(ii) ξ = 0 and ν̂j = 0 , ∀j ≤ l̂. In this case,

inf
c∈Rl

[

−ν̂T c+ ξΨ(c)
]

= 0 ,

and it follows from (2.146) that

g(r)(λ, (0, ..., 0, νl̂+1, ..., νl)
T , 0) = g(eq)(λ, (0, ..., 0, νl̂+1, ..., νl)

T ) .

(iii) ξ > 0. Using Definition 2.3 of the convex conjugate, we obtain

g(r)(λ, ν, ξ) = g(eq)(λ, ν) + ξ inf
c∈Rl

[

− ν̂
T c

ξ
+ Ψ(c)

]

− αξ

= g(eq)(λ, ν)− ξΨ∗
(

ν̂

ξ

)

− αξ . (2.147)
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Making the notational assumption that ξΨ∗
(

ν̂
ξ

)

= 0 if ξ = 0 and ν̂ =

(0, ..., 0)T , we can collect the above three cases as follows.

g(r)(λ, ν, ξ) =

{

−∞ if ξ = 0 and νj 6= 0 for some j ≤ l̂

g(eq)(λ, ν) − ξΨ∗
(

ν̂
ξ

)

− αξ otherwise.
(2.148)

(2.135)-(2.137) in Theorem 2.13 follow then from Lagrangian duality, i.e.,
from Theorem 2.9. This completes the proof of the theorem. 2

Proof of Corollary 2.1:

(i) It follows from Ψ = 1
p
`pp and Lemma 2.5 that Ψ∗ = 1

q
`qq where q = p

p−1
.

From there, it follows that

inf
ξ≥0

{

ξΨ∗
(

ν

ξ

)

+ αξ

}

= α
1
p q

1
p (q − 1)−

1
p `q(ν) . (2.149)

This equation, in conjunction with (2.136), implies (2.139).

(ii) It follows from Ψ = `∞ and Lemma 2.5 that Ψ∗ = `1. Consequently,

inf
ξ≥0

{

ξΨ∗
(

ν

ξ

)

+ αξ

}

= α`1(ν) . (2.150)

The above equation, in conjunction with (2.136), implies (2.141). 2

2.3 Entropy and Relative Entropy

In this section, we introduce two basic concepts from information theory:
entropy and relative entropy. We will discuss these quantities for unconditional
and conditional probabilities, on discrete and continuous state spaces. For
a more detailed review we refer the reader to the textbooks by Cover and
Thomas (1991), or MacKay (2003).

Entropy is a measure for the information content in a probability distri-
bution or, alternatively, of the average length of the shortest description of a
random variable. It can also be interpreted as the difference in the expected
wealth growth rates between an optimal and a clairvoyant gambler in a horse
race.

Relative entropy can be viewed as a measure for the discrepancy between
two probability distributions. In the context of a horse race, the relative en-
tropy between the probability measures p and q is the gain in the expected
wealth growth rate experienced by an investor who bets optimally according
to p as opposed to the misspecified measure q, when the horses win with the
probabilities given by the measure p.
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2.3.1 Entropy for Unconditional Probabilities on Discrete
State Spaces

Let us consider probability measures of the random variable Y with the
discrete state space Y. We make the following definition.

Definition 2.6 The entropy of the (unconditional) probability measure p is

H(p) = −Ep[logp] = −
∑

y∈Y
py logpy . (2.151)

Here, we assign the value 0 to the expression 0 log 0, which is consistent with
limp→0 p logp = 0.

Some mathematical properties of the entropy

The following lemma lists some properties of the entropy.

Lemma 2.8

(i) H is a strictly concave function of p.

(ii) H(p) ≤ log |Y|, with equality if and only if p is uniform.

(iii) H(p) ≥ 0, with equality if and only if p = δy,y′ for some y′.

Proof: Statement (i) follows from the fact that the Hessian of H is diagonal
with positive entries. (ii) Exercise. Statement (iii) follows trivially from the
facts that x log x < 0 , ∀x ∈ (0, 1) and that H(p) = 0 if p = δy,y′ for some y′.
2

The concavity of the entropy turns out to be very useful; as a consequence
of this property, the maximum entropy principle (see Section 9.4) leads to a
convex problem.

Entropy and information

Entropy can be viewed as a measure of the information content of a prob-
ability distribution. The intuition behind this interpretation is illustrated in
Fig. 2.8; probability measures that are associated with high uncertainty have
a large entropy, while probability measures that are associated with little un-
certainty have a low entropy. The interpretation of entropy as information
content in a probability measure has been formalized by Shannon (1948),
who showed that entropy is the only quantity (up to a constant) that has the
following properties that one would expect an information measure to have.

(i) H is a continuous function of the probability measure, p.

(ii) If the probability measure p is uniform, H(p) should be a monotone
increasing function of the number of states.
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FIGURE 2.8: Three probability distributions and their entropies. The
higher the uncertainty, i.e., the lower the information content, associated with
a distribution, the higher is its entropy.

(iii) If a choice is broken down into two successive choices, the original
entropy is the weighted sum of the two entropies corresponding to
the two successive choice. Setting, without restriction of generality,
Y = {1, 2, ..., m} (for an infinite state space, we set m = ∞), this means
that

H(p1, p2, ..., pm) = H(p1 + p2, p3, . . . , pm)

+(p1 + p2)H

(

p1

p1 + p2
,

p2

p1 + p2

)

.

The interpretation of entropy as the information content in a probability
measure provides a motivation for the maximum entropy principle (see Section
9.4).

Entropy and minimum description length

Let us assume that our random variable Y has the probability distribution
p and ask the following question: what is the expected length of the shortest
description of Y ? It turns out that this expected length is greater or equal to
H(p) logd e, where d is the number of letters in the description alphabet (see
Cover and Thomas (1991), Theorem 5.3.1).

Entropy and physics

Entropy was first introduced as a thermodynamic quantity and later related
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to probability distributions by Boltzmann (1877). Boltzmann identified this
thermodynamic entropy with a statistical entropy, which he defined as the
logarithm of the number of microstates (states of individual atoms) of a phys-
ical system that are consistent with a given macrostate (as defined by the
thermodynamic properties, such as total energy) of the same physical system.
Boltzmann’s statistical entropy is a specialization of Definition 2.6 to a uni-
form probability distribution. The link between statistical and thermodynamic
entropy has been generalized to nonuniform distributions and interpreted in
terms of information theory by Jaynes (1957a).

One of the most fundamental laws of physics is the second law of thermody-
namics, which states that, for an isolated physical system, the thermodynamic
entropy always increases. This law is reflected in the following mathematical
property of the entropy, H .

Lemma 2.9 (Second law of thermodynamics) If p(n) denotes the probability
measure for the time-n states of a Markov chain with constant transition
probabilities, then

H
(

p(n+1)
)

≥ H
(

p(n)
)

. (2.152)

Proof: See Cover and Thomas (1991), Chapter 2.9.

Entropy and horse race

Let us identify the states of the random variable Y with horses in a horse
race, and assume that horse y wins the race with probability py. We consider a
gambler who bets on this horse race, and allocates his money so as to maximize
his expected wealth growth rate (such an investor is often called a Kelly
investor, after Kelly (1956)). Entropy then has the following interpretation,

H(p) = W ∗
p (p) −W ∗∗

p , (2.153)

where W ∗
p (p) is the optimal wealth growth rate for an investor who knows

the probability measure p, and W ∗∗
p is the wealth growth rate of a clairvoyant

investor, i.e., of an investor who wins every bet, if horse y wins with probability
py. We will derive this statement below in Section 3.4, Theorem 3.2 (see also
Cover and Thomas (1991), Theorem 6.1.2)).

The above interpretation of the entropy provides a financial (or a simple
decision-theoretic) motivation for the maximum entropy principle (see Section
9.4).

The gambler who wants to maximize his wealth growth rate in a horse
race is a simple example for a decision maker in an uncertain environment.
We shall revisit this gambler later in this book, and we will provide a formal
definition of the horse race in Chapter 3.
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2.3.2 Relative Entropy for Unconditional Probabilities on
Discrete State Spaces

We make the following definition.

Definition 2.7 The relative entropy between the (unconditional) probability
measures p and q is

D(p‖q) = Ep

[

log

(

p

q

)]

=
∑

y∈Y
py log

(

py

qy

)

. (2.154)

As before, we assign the value 0 to the expression 0 log 0.
This relative entropy is also called Kullback-Leibler relative entropy or

Kullback-Leibler discrepancy. It can be viewed as a measure of the discrepancy
between two probability distributions. The intuitive meaning of the relative
entropy as a discrepancy between two probability measures is illustrated in
Fig. 2.9. We note, however, that the relative entropy doesn’t exhibit all the
properties of a mathematical distance; in particular, it is not symmetric in its
arguments, and it does not obey the triangular inequality.

FIGURE 2.9: Three probability distributions and their relative entropies:
D(p1||p3) = 0.14, D(p2||p3) = 1.90, D(p2||p1) = 2.3.



68 Utility-Based Learning from Data

Some mathematical properties of the relative entropy

The following lemma lists some useful properties of the relative entropy.

Lemma 2.10

(i) D(p‖q) = −H(p) + log |Y| if q is the uniform distribution,

(ii) D(p‖q) is convex in (p, q),

(iii) D(p‖q) is strictly convex in p, and

(iv) D(p‖q) ≥ 0, with equality if and only if p = q.

Proof: Statement (i) follows directly from Definitions 2.6 and 2.7. For state-
ment (ii), see Cover and Thomas (1991), Theorem 2.7.2. Statement (iii) can
be easily proved by computing the Hessian, which is diagonal with strictly pos-
itive entries. Statement (iv) follows from Jensen’s inequality and D(p‖q) = 0
if p = q (see, Cover and Thomas (1991), Theorem 2.6.3). 2

The convexity of the entropy in its first argument turns out to be very useful;
as a consequence of this property, the minimum relative entropy principle (see
Chapter 9.4) leads to a convex problem.

Second law of thermodynamics

Above, in Lemma 2.9, we have formulated the second law of thermodynamics
in terms of the entropy, H . We can generalize this mathematical statement to
relative entropies as follows.

Lemma 2.11 If p(n) and q(n) denote the probability measures for the time-n
states of two Markov-chain with constant transition probabilities, then

D
(

p(n+1)‖q(n+1)
)

≥ D
(

p(n)‖q(n)
)

. (2.155)

Proof: See Cover and Thomas (1991), Chapter 2.9.

Relative entropy and horse race

Let us again identify the states of the random variable Y with horses in a
horse race, and assume that horse y wins the race with probability py, and
consider a gambler who bets on the horses. The relative entropy then has the
following interpretation,

D(p‖q) = W ∗
p (p) −W ∗

p (q) , (2.156)

where W ∗
p (p) is the optimal wealth growth rate for a gambler who knows

the probability measure p, and W ∗
p (q) is the optimal wealth growth rate for

a gambler who believes the (misspecified) probability measure q. We have
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set the lower indices, p, in the above notation to indicate that horse y wins
the race with probability py. We will prove (2.156) below in Section 3.4 (see
Theorem 3.3).

The above interpretation of the relative entropy provides a financial (or a
simple decision-theoretic) motivation for the minimum relative entropy prin-
ciple (see Section 9.4). We will revisit this point later in this book.

2.3.3 Conditional Entropy and Relative Entropy

In the previous sections, we have introduced entropy and relative entropy
for probability measures for a single random variable Y . In this section, we
generalize these concepts to conditional probability measures of the random
variables Y (with state space Y) and X (with state space X ). We denote joint
probability measures by pX,Y or qX,Y , conditional probability measures by
pY |X or qY |X , and the marginal X-probability measures by pX or qX . Later
in this book, when the meaning is clear from the context, we may drop the
upper indices. As before, we assign the value 0 to the expression 0 log 0.

Definition 2.8 The conditional entropy of the probability measure pX,Y is

HY |X (pX,Y
)

= −EpX,Y

[

log pY |X
]

= −
∑

x∈X
pX

x

∑

y∈Y
p

Y |X
y|x log p

Y |X
y|x . (2.157)

Below, we shall often call the above conditional entropy simply entropy and
drop the superscript.

Definition 2.9 The conditional relative entropy between the probability mea-
sures pX,Y and qY |X is

DY |X (pX,Y
∥

∥ qY |X
)

= EpX,Y

[

log

(

pY |X

qY |X

)]

=
∑

x∈X
pX

x

∑

y∈Y
p

Y |X
y|x log





p
Y |X
y|x

q
Y |X
y|x



 .

Below, when the meaning is clear from the context, we shall call the above
conditional relative entropy simply relative entropy and drop the superscript.

One can also define a joint entropy and a joint relative entropy; we will
briefly discuss this in Exercise 20 in Section 2.4.

Some mathematical properties of the conditional entropy and the conditional
relative entropy

The following lemma lists some properties.



70 Utility-Based Learning from Data

Lemma 2.12

(i) HY |X (pX,Y
)

= EpX

[

H
(

pY |X |X
)]

, where H
(

pY |X |X
)

denotes the en-

tropy of the probability measure pY |X for a given value of X.

(ii) HY |X is a strictly concave function of pY |X .

(iii) HY |X (pX,Y
)

≤ log |Y|, with equality if and only if pY |X is uniform for
all x ∈ X with pX

x > 0.

(iv) HY |X (pX,Y
)

≥ 0, with equality if and only if, for all x ∈ X with pX
x > 0,

pY |X = δy,y′
x

for some y′.

(v) DY |X (pX,Y ‖qY |X) = EpX

[

D
(

pY |X‖qY |X |X
)]

, whereD
(

pY |X‖qY |X |X
)

denotes the relative entropy between the probability measures pY |X and
qY |X for a given value of X.

(vi) DY |X (pX,Y ‖qY |X) = −HY |X(pX,Y ) + log |Y| if pY |X is uniform for all
x ∈ X with pX

x > 0.

(vii) DY |X(pY |X‖qY |X) is convex in (pY |X , qY |X).

(viii) DY |X(pY |X‖qY |X) is strictly convex in its first argument, pY |X .

(ix) DY |X (pX,Y ‖qY |X) ≥ 0, with equality if and only if pY |X = qY |X for all
x ∈ X with pX

x > 0.

Proof: Statement (i) follows directly from Definitions 2.8 and 2.6, and state-
ment (v) follows directly from Definitions 2.9 and 2.7. Statements (ii) and
(vii) follow from statements (i) and (v), the (strict) convexity of −H and D
(see Lemmas 2.8 and 2.10) and the fact that a nonnegatively weighted sum of
(strictly) convex functions is convex itself. Statement (viii) follows from state-
ment(v), the strict convexity of D in its first argument (see Lemma 2.10), and
the fact that a nonnegatively weighted sum of strictly convex functions is
strictly convex itself. Statements (iii) and (iv) follow from statement (i) and
Lemma 2.8. Statements (vi) and (ix) follow from statement (v) and Lemma
2.10. 2

2.3.4 Mutual Information and Channel Capacity Theorem

We introduce the useful concept of mutual information.

Definition 2.10 The mutual information is given by

I
(

pX,Y
)

= HY
(

pY
)

−HY |X (pX,Y
)

. (2.158)
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Here we have denoted the (unconditional) entropy by HY as opposed to just
H , in order to make the distinction between this entropy and the conditional
entropy clearer. It follows from Definitions 2.10, 2.6, and 2.8 that

I
(

pX,Y
)

=
∑

x∈X

∑

y∈Y
pX,Y

x,y log

(

pX,Y
x,y

pX
x p

Y
y

)

. (2.159)

The concept of mutual information, and therefore the concept of entropy,
plays an important role in the context of transmission of data through a
noisy channel; this role derives from Shannon’s channel capacity theorem. In
order to discuss this theorem, let us consider a data transmission channel
that takes the random variable X with probability distribution pX as input
and provides the random variable Y with conditional probability distribution
pY |X as output. We define the channel capacity, C, as

C = log2 max
pX

I
(

pX,Y
)

, (2.160)

where I
(

pX,Y
)

is the mutual information from Definition 2.10. The channel
capacity theorem, which is a central result of information theory, states that
the above channel capacity, C, is the highest rate in bits per channel use
at which information can be sent with arbitrarily low error probability (see
Shannon (1948), or Cover and Thomas (1991), Chapter 8).

2.3.5 Entropy and Relative Entropy for Probability Densi-
ties

So far, we have discussed entropy and relative entropy for random variables
with a discrete state space. However, one can generalize these concepts to
continuous (one-dimensional) random variables. In this section, we will ex-
plicitly discuss these generalizations for the case of unconditional probability
measures; the extension to conditional measures and to higher dimensional
random variables is straightforward.

Definition 2.11 The entropy of the probability density p for the continuous
random variable Y with support Y is

H (p) = −Ep[logp] = −
∫

Y
p(y) log p(y)dy . (2.161)

This entropy is sometimes called the differential entropy.

Definition 2.12 The relative entropy between the probability densities p and
q for the continuous random variable Y with support Y is

D (p‖q) = Ep

[

log

(

p

q

)]

=

∫

Y
p(y) log

(

p(y)

q(y)

)

dy . (2.162)
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For probability densities that are Riemann integrable, we can identify the
above entropy and relative entropy with the continuum limits of the corre-
sponding quantities for a discrete random variable.

Lemma 2.13 Let us assume that the probability densities p and q of the
random variable X are Riemann integrable, and let

p∆
k = p(yk)∆ , and (2.163)

q∆k = q(yk)∆ , (2.164)

where the yk are the mid-points of size-∆ bins that partition Y. Then

H(p) = lim
∆→0

[

H
(

p∆
)

− log ∆
]

, and (2.165)

D(p‖q) = lim
∆→0

D
(

p∆‖q∆
)

. (2.166)

Proof: In order to prove (2.165), we use Definition 2.6 to write

H
(

p∆
)

= −
∑

k

p∆
k logp∆

k

= −∆
∑

k

p(yk) logp(yk) − log ∆ (from (2.163)).

(2.165) follows then directly from Definition 2.11 and the definition of the
Riemann integral. Equation (2.166) follows in the same manner from Defini-
tions 2.7 and 2.12 and (2.164); the term log ∆ drops out, since we have the
logarithm of the ratio of two probabilities here. 2

Some mathematical properties of the entropy and relative entropy for contin-
uous random variables

The following lemma lists some properties.

Lemma 2.14 The entropy, H(p), of the probability distribution p of a con-
tinuous random variable

(i) is a concave function of p, and

(ii) is nonnegative.

The relative entropy, D(p‖q), of the probability distributions p and q of a
continuous random variable has the following properties.

(iii) D(p, q) is convex in (p, q).

(iv) If the probability densities p and q are Riemann integrable, then D(p, q)
is strictly convex in p.

(v) D(p‖q) ≥ 0, with equality if and only if p = q almost everywhere.
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Proof: For statements (i) and (iii), the proof of Theorem 2.7.2 in Cover and
Thomas (1991) applies. Statement (iv) follows from the strict convexity of the
discrete relative entropy in its first argument (see Lemma 2.10) and Lemma
2.13. For statement (v), see Cover and Thomas (1991), Theorem 9.6.1. For
statement (ii) the proof of Theorem 9.6.1 in Cover and Thomas (1991) can
be easily modified.

2.4 Exercises

1. Suppose that Z ∼ N(0, 1). Show that the density function for X = Z2

is given by
1√
2πx

e−
x
2 (2.167)

(Chi-squared with 1 degree of freedom). Verify your result with a nu-
merical simulation.

FIGURE 2.10: χ2 distribution, plotted on the interval [.01, 5].

2. (a) If X is distributed uniformly on (a, b), show that E[X] = b+a
2 and

var(X) =
(b−a)2

12 .

(b) Show directly that Z ∼ N(0, 1) indeed has mean 0 and variance 1.

(c) Show that if E[X] = µ, and Xi, i = 1, . . . , N denote repeated
realizations of X, then E[X] = µ, where the sample average

X =

∑N
i=1Xi

N
. (2.168)

(d) Compute var(X).
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3. The Dirac delta function can be understood as the limit of a sequence
of smooth functions

δ(x) = lim
ε→0

δε(x), (2.169)

where δε(x) has the property that

lim
ε→0

∫ ∞

−∞
δε(x)f(x)dx = f(0) (2.170)

for all continuous functions, f . Functions δε(x) with this property are
referred to as nascent delta functions. Show that the pdf of a random
variable that is N(0, ε) is a nascent delta function.

4. Prove (2.40) and (2.41), i.e., prove that if the random vector X =
(X1, . . . , Xn)T has expectation vector µ (with ith element µi), and co-
variance matrix cov(X,X) = Σ (with ijth element cov(Xi, Xj)), and if
A is a matrix with n columns, then

E[AX] = Aµ, (2.171)

and
cov(AX,AX) = AΣAT . (2.172)

5. Show that for the nonnegative discrete-valued random variable X, that
takes values 0, 1, 2, . . . ,

E[X] =
∑

n≥0

prob{X > n} =
∑

n≥1

prob{X ≥ n}. (2.173)

Hint: apply the definition of expectation, using the identity

n prob{X = n} =

n
∑

k=1

prob{X = k}. (2.174)

Verify your result for the distribution

prob{X = j} = (e− 1)e−j−1, for j ≥ 0 (2.175)

with a numerical simulation.

6. (a) Use the Markov inequality to prove the Chebyshev inequality

(b) Using the Schwarz inequality, show that −1 ≤ ρ[X, Y ] ≤ 1

7. Suppose that K is running against B in an election and p is the per-
centage of eligible voters who will vote for B. Using the Chebyshev
inequality, estimate the number of people who should be polled to in-
sure that the probability is .95 that the sample average differs from p
by no more than .01. Support this estimate with numerical simulations.
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8. If X and Y are independent random variables, then cov[X, Y ] =
ρ[X, Y ] = 0.

9. The coefficients, a, b, c, of ax2 +bx+c are independent random variables
and each is distributed uniformly on the interval (0, 1). Give a closed-
form formula for the probability that the solutions of the equation ax2+
bx+ c = 0 are real. Verify your result with a numerical simulation.

10. X and Y have a constant joint density, p(x, y), on the region x ≥ 0, y ≥
0, x + y ≤ 1. Find p(x, y), p(y), p(x|y), E[X|y], and E[X]. Verify your
results with numerical simulations.

11. A boss leaves work at time X, which is distributed uniformly on (0, T ).
Someone who works for the boss leaves at time Y , which is distributed
uniformly on (X, T ).

Calculate E[Y |X], E[Y ],var(E[Y |X]),E[var(Y |X)], and var(Y ). Verify
your results with numerical simulations.

12. Suppose that X is a standard normal random variable. Then U =
h(X) = µ + σX has mean µ and variance σ2. Use Theorem 2.3 to
show that (2.79) holds, i.e., that the density for U is given by

1

σ
√

2π
e−

(u−µ)2

2σ2 . (2.176)

13. We visit a random number of stores, N , and spend Xi in store i ∈
{1, . . . , N}, where Xi are i.i.d. (independent and identically distributed)
and independent of N , with E[Xi] = µ and var(Xi) = σ2. Let Y =
X1 + · · ·+XN . Show that

E[Y ] = E[N ]µ,

var[Y |N = n] = nσ2, and

var[Y ] = E[N ]σ2 + µ2var[N ].

14. Derive the convex conjugate of the function 1
p
`pp(x), where

`p(x) =





n
∑

j=1

|xj|p




1
p

is the `p-norm, and of the function `∞, where

`∞(x) = max
j=1...n

|xj| . (2.177)

15. Prove Lemmas 2.2 and 2.3.
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16. Let

x1(α) = arg min
Ψ(x)≤α

Φ(x) ,

and x2(γ) = arg min
x∈Rn

{Φ(x) + γΨ(x)}

where Φ : Rn → R, Ψ : Rn → R are strictly convex, and α, γ ∈ R.
Show that, for a given α, if the Slater condition holds for the first of
these optimization problems, there exists a γ∗(α) such that x2(γ

∗(α)) =
x1(α).

17. Consider the following problem.

Problem 2.6 Find

F = inf
x∈Rn , c∈Rl

{Φ(x) + γΨ(c)} (2.178)

s.t.

fi(x) ≤ 0 , i = 1, ..., m (2.179)

and hj(x) = cj , j = 1, ..., l , (2.180)

where c = (c1, ..., cl)
T , Φ : Rn → R, fi : Rn → R are convex and differ-

entiable, Ψ : Rl → R is a convex function of the vector c = (c1, ..., cl)
T

that attains its minimum, 0, at c = (0, ..., 0)T , the hj : Rn → R are
affine, and γ > 0.

Let gγ

gγ(λ, ν) = min
x∈Rn,c∈Rl







Φ(x) + γΨ(c) +

m
∑

i=1

λifi(x) +

l
∑

j=1

νj[hj(x) − cj]







(2.181)
be the Lagrange dual function corresponding to this problem. Show that

gγ(λ, ν) = ĝ(λ, ν)− γΨ∗(γ−1ν) , (2.182)

where Ψ∗ is the convex conjugate of Ψ and ĝ is the Lagrange dual
function of Problem 2.1.

18. Prove Lemma 2.8, statement (ii).

19. Provide an example which shows that the relative entropy is generally
not symmetric in its arguments.

20. Prove the chain rule for the entropy:

HX,Y
(

pX,Y
)

= HY |X (pX,Y
)

+HX
(

pX
)

, (2.183)



Mathematical Preliminaries 77

where HY |X is the conditional entropy from Definition 2.8, HX is the
entropy from Definition 2.6, and

HX,Y = −EpX,Y

[

log pX,Y
]

= −
∑

x∈X , y∈Y
pX,Y

x,y logpX,Y
x,y (2.184)

is the joint entropy.





Chapter 3

The Horse Race

Probabilistic models are often used by decision makers in uncertain environ-
ments. An idealization of such a decision maker, on which we heavily rely
in this book, is a gambler, or investor (we use the terms interchangeably),
in a horse race. In this chapter, we introduce the notions of the horse race
and the conditional horse race and discuss some simple relationships between
probability measures and betting strategies, while leaving a more thorough
decision-theoretic treatment for later chapters. Most of the concepts and re-
sults in this chapter can be found in the textbook by Cover and Thomas
(1991) or in the original papers by Kelly (1956) and Breiman (1961).

We shall first discuss the (unconditional) horse race as a setting in which we
explore unconditional probabilities, and then generalize it to the conditional
horse race, which is a useful picture when we are interested in conditional
probabilities. The basic ideas that we shall apply later in this book can be
most easily understood in the unconditional probability context and don’t
have to be substantially modified in the unconditional probability context.

A horse race investor who invests so as to maximize his expected wealth
growth rate — a so-called Kelly-investor — allocates money to each horse in
proportion to the horse’s winning probability. The expected wealth growth
rate for such an investor is the difference between the expected wealth growth
rate for a clairvoyant investor and the entropy of the winning-probabilities.
Expected wealth growth rates are also related to the relative entropy: the
latter is a difference between two expected wealth growth rates. These two
relationships, which hold for the conditional and the unconditional horse race,
are very important, as they provide a simple decision-theoretic interpretation
for information-theoretic quantities. In Chapter 8, when we discuss decision
makers with arbitrary risk preferences, we shall use these relationships as a
starting point for a generalization of entropy and relative entropy.

79
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3.1 The Basic Idea of an Investor in a Horse Race

Horse race

Definition 3.1 (Horse race) A horse race is characterized by the discrete
random variable Y with possible states in the finite set Y; we identify each
element of Y with a horse. An investor can place a bet that Y = y ∈ Y, which
pays the odds ratio (payoff) Oy > 0 for each dollar wagered if Y = y, and 0,
otherwise.

Apart from an actual horse race, the following settings are examples that
meet either exactly or approximately the above definition:

• betting on a coin toss,

• investing in defaultable bonds,

• playing roulette or blackjack, and

• bringing a new product to the market.

We note that an investor who allocates $1 of capital, investing B
Oy

to state

y, where

B =
1

∑

y∈Y
1
Oy

,

receives the payoff B with certainty. This motivates the following definition:

Definition 3.2 (Bank account) The riskless bank account payoff, B, is given
by

B =
1

∑

y∈Y
1
Oy

, . (3.1)

We also note that B
Oy

> 0 and

∑

y∈Y

B

Oy
= 1 ,

so B
O =

{

B
Oy
, y ∈ Y

}

is a probability measure on Y. Under this measure, the

expected payoff for a bet placed on a single horse, y, is always B, independent
of y. So we make the following definition.

Definition 3.3 The homogeneous expected return measure is given by

p(h) =

{

p(h)
y =

B

Oy
, y ∈ Y

}

. (3.2)
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Let us suppose the bookie was risk-neutral, i.e., demanded the same return
on each horse, no matter what the associated risk is, and that there was no
track take. Then, if the bookie believed in the homogeneous expected return
measure, p(h), he would set the odds ratios O. This provides an — albeit
somewhat unrealistic — interpretation of p(h) as the measure that an idealized
bookie believes.

Investor

The following definition makes precise what the term ‘investor’ shall mean
throughout this book, unless indicated otherwise.

Definition 3.4 (Investor) An investor is a gambler who invests $1 in a horse
race, i.e., who allocates by to the event Y = y, where

∑

y∈Y
by = 1 . (3.3)

We denote the investor’s allocation by

b = {by, y ∈ Y} . (3.4)

We have made the assumption of $1 total investment for convenience, but
without loss of generality; we may view this $1 as the investor’s total wealth
in some appropriate currency. In particular, we can choose the investor’s initial
wealth as currency.

3.2 The Expected Wealth Growth Rate

We make the following definition.

Definition 3.5 The expected wealth growth rate corresponding to a probability
measure p and a betting strategy b is given by

W (b, p) = Ep [log (b,O)] =
∑

y∈Y
py log(byOy) . (3.5)

We note that we have introduced the notation

Ep [f (b,O)] =
∑

y∈Y
py log(byOy)

for the function f = log here, which we will use for more general functions
below.

This definition is motivated by the following lemma, which states that,
asymptotically, the gambler’s wealth grows exponentially with W (b, p) as
growth rate.
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Lemma 3.1 The wealth, Wn, of an investor after n independent successive
bets in a horse race, where the horses win with probabilities given by the mea-
sure p, is related to the expected wealth growth rate as

W (b, p) = lim
n→∞

log
(

Wn

W0

)

n
. (3.6)

Proof: The investor’s wealth after n independent, successive bets is

Wn = W0

n
∏

i=1

byi
Oyi

, (3.7)

where yi is the realizations of Y in the ith bet. So we have

lim
n→∞

log
(

Wn

W0

)

n
= lim

n→∞

∑n
i=1 log(byi

Oyi
)

n
= Ep [log (b,O)] (by the law of large numbers) . (3.8)

The lemma follows then from Definition 3.5. 2

3.3 The Kelly Investor

We make the following definition, which is motivated by the work of Kelly
(1956).

Definition 3.6 (Kelly investor) A Kelly investor is an investor (in the sense
of Definition 3.4) who allocates his wealth so as to maximize his expected
wealth growth rate according to the model he believes.

The Kelly investor is an investor with a particular type of risk preferences.
Later in this book, we shall consider investors with different types of risk
preferences.

The following theorem explicitly states the investment strategy chosen by
a Kelly investor.

Theorem 3.1 A Kelly investor who believes the probability measure p allo-
cates his assets to the horse race according to

b∗y(p) = py . (3.9)

This betting strategy is often called proportional betting, since the investor
allocates to each horse proportionally to the horse’s winning probability.
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Proof: It follows from Definitions 3.6 and 3.5 that the optimal allocation
for a Kelly investor who believes p is

b∗(p) = arg max
{b:

P

y∈Y by=1}

∑

y

py log(byOy) . (3.10)

In order to solve this optimization problem, which is convex, we write down
its Lagrangian:

L(b, λ) =
∑

y

py log(byOy) − λ





∑

y∈Y
by − 1



 . (3.11)

The optimal allocation, b∗, is the solution of

0 =
∂L(b, λ)

∂by

∣

∣

∣

∣

b=b∗

=
py

b∗y
− λ ,

which is
b∗y =

py

λ
. (3.12)

In order to find the value, λ∗, that corresponds to the solution of our convex
problem, we have to solve

1 =
∑

y∈Y
b∗y (3.13)

for λ, which, of course, is the same as solving the dual problem. We find
λ∗ = 1. So we have b∗y = py. 2

The Kelly investor has remarkable properties. In particular, the probability
that the ratio of the wealth of a Kelly investor to the wealth of a non-Kelly
investor after n trials will exceed any constant can be made as close to 1 as
we please, for n sufficiently large. Moreover, the expected time to double the
wealth is smaller for the Kelly investor than for any other investor. For proofs
of these statements, see, for example, Cover and Thomas (1991), Chapter 6,
or Breiman (1961). Some of these properties also hold for Kelly investors who
invest in continuous-time markets (see Merton (1971), Karatzas et al. (1991),
Jamishidian (1992), and Browne and Whitt (1996)).

3.4 Entropy and Wealth Growth Rate

The following theorem relates the entropy to the expected wealth growth
rate of a Kelly investor.
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Theorem 3.2 A Kelly investor who knows that the horses in a horse race win
with the probabilities given by the measure p has the expected wealth growth
rate

W ∗
p (p) = W ∗∗

p −H(p) , (3.14)

where
W ∗∗

p = Ep [logO] (3.15)

is the wealth growth rate of a clairvoyant investor, i.e., of an investor who
wins every bet.

We have set the lower indices, p, in the above notation to indicate that horse
y wins the race with probability py.

Proof: Theorem 3.1 states that a Kelly investor who believes the probability
measure p allocates according to

b∗y(p) = py . (3.16)

Inserting this expression into Definition 3.5, we obtain the p-expected wealth
growth rate for the Kelly investor

W ∗
p (p) = Ep [log (p,O)]

= Ep [logp] + Ep [logO]

= −H(p) +W ∗∗
p (from (3.15) and Definition 2.6) .2

As we have discussed in Section 2.3.1, Theorem 3.2 provides a financial
interpretation to the entropy. In Section 7.2, where we consider investors with
more general risk-preferences, we shall use Theorem 3.2 as the starting point
for a generalization of entropy.

The following theorem relates the relative entropy to the expected wealth
growth rate of a Kelly investor.

Theorem 3.3 In a horse race where horses win with the probabilities given
by the measure p, the difference in expected wealth growth rates between a
Kelly investor who knows the probability measure p and a Kelly investor who
believes the (misspecified) probability measure q is given by

W ∗
p (p) −W ∗

p (q) = D(p‖q) . (3.17)

Proof: Theorem 3.1 states that a Kelly investor who believes the probability
measure p allocates according to

b∗y(p) = py , (3.18)

and a Kelly investor who believes the probability measure q allocates according
to

b∗y(q) = qy . (3.19)
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Inserting the above two equations into Definition 3.5, we obtain the p-expected
wealth growth rate difference

W ∗
p (p) −W ∗

p (q) = Ep [log (p,O)] − Ep [log (q,O)]

= Ep [log p]− Ep [log q]

= D(p‖q) (by Definition 2.7) .2

As we have seen in Section 2.3.2, Theorem 3.3 provides a financial interpre-
tation to the relative entropy. In Section 7.2 we shall use this theorem as the
starting point for a generalization of the relative entropy.

The following theorem states another relationship between expected wealth
growth rates and relative entropy.

Theorem 3.4 In a horse race where horses win with the probabilities given
by the measure p, the expected wealth growth rate of a Kelly investor who
believes the measure q is given by

W ∗
p (q) = logB +D

(

p‖p(h)
)

−D (p‖q) . (3.20)

Proof: The expected wealth growth rate of a Kelly investor who believes
the measure q is

W ∗
p (q) = W (b∗(q), p)

= Ep[log(b∗(q),O)] (by Definition 3.5)

= Ep[log(q,O)] (by Theorem 3.1)

= Ep

[

log

(

p

p(h)

Bq

p

)]

(by Definition 3.3)

= logB +D
(

p‖p(h)
)

−D (p‖q) (by Definition 2.7) .2

It follows from Theorem 3.4 that the Kelly investor has an expected wealth
growth rate in excess of the bank account growth rate only if the measure
he believes is closer (in the relative entropy sense) to the measure p than the
homogeneous measure is.

3.5 The Conditional Horse Race

So far we have discussed investors in a (unconditional) horse race as an ide-
alized setting for a decision maker who uses a probabilistic model for a single
variable. In many practical situations, however, we are interested in condi-
tional probabilities of a variable Y given a variable X. In order to evaluate
and build such probabilistic models, we introduce the notion of the conditional
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horse race. We shall see that most of the horse-race results from the previous
sections can be generalized to the conditional horse race.

Throughout this section, we denote joint probability measures by pX,Y or
qX,Y , conditional probability measures by pY |X or qY |X , and the marginal
X-probability measures by pX or qX . Later in this book, when the meaning
is clear from the context, we shall drop the upper indices.

Conditional horse race

We generalize Definition 3.1 as follows.

Definition 3.7 (Conditional horse race) A conditional horse race is charac-
terized by the discrete random variable Y with possible states in the finite set
Y and the discrete random variable X with possible states in the finite set X ;
we identify each element of Y with a horse and each element of X with a par-
ticular piece of side information. An investor can place a bet that Y = y ∈ Y
after learning that X = x ∈ X , which pays the odds ratio (payoff) Oy|x > 0
for each dollar wagered if Y = y, and 0, otherwise.

This conditional horse race (see, Friedman and Sandow (2003b)) is slightly
more general than the horse race with side information from Cover and
Thomas (1991), Chapter 6; the latter is restricted to payoffs that are in-
dependent of X, but is otherwise the same as the conditional horse race.

We also generalize the notions of a bank account, introduce a worst (over x ∈
X ) bank account, and introduce the homogeneous expected return measure.

Definition 3.8 (Conditional bank account) Given that X = x, the riskless
conditional bank account payoff, Bx, is

Bx =
1

∑

y∈Y
1

Oy|x

. (3.21)

Definition 3.9 (Worst conditional bank account) The worst conditional
bank account has payoff

B = inf
x∈X

Bx . (3.22)

Definition 3.10 The conditional homogeneous expected return measure is
given by

pY |X(h) =

{

p
Y |X(h)
y|x =

Bx

Oy|x
, y ∈ Y, x ∈ X

}

. (3.23)

The above pY |X(h) has the required properties of a conditional probability

measure, i.e., p
Y |X(h)
y|x > 0 , ∀x ∈ X , y ∈ Y, and

∑

y∈Y p
Y |X(h)
y|x = 1 , ∀x ∈ X .

The conditional expected return, given X = x, under pY |X(h) is Bx; this
return depends on the value of X, which is known before bets are placed, but
is independent of the value of Y .
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Conditional investor

We generalize Definition 3.4 as follows.

Definition 3.11 (Conditional investor) A conditional investor is a gambler
who invests $1 in a horse race, i.e., a gambler who, after having learned that
X = x, allocates by|x to the event Y = y, where

∑

y∈Y
by|x = 1 , ∀x ∈ X . (3.24)

We denote the conditional investor’s allocation by

b =
{

by|x, x ∈ X , y ∈ Y
}

. (3.25)

Below we shall often refer to the conditional investor simply as investor, unless
we need to make a distinction between a conditional and an unconditional
investor.

Expected conditional wealth growth rate

We generalize Definition 3.5 as follows.

Definition 3.12 The expected conditional wealth growth rate corresponding
to a probability measure pX,Y and a betting strategy b is given by

WY |X (b, pX,Y
)

= EpX,Y [log (b,O)] =
∑

y∈Y ,x∈X
pX,Y

x,y log(by|xOy|x) . (3.26)

Below we shall often refer to the expected conditional wealth growth rate
simply as expected wealth growth rate.

We generalize Lemma 3.1, which states that, asymptotically, the gambler’s
wealth grows exponentially with WY |X(b, p) as growth rate.

Lemma 3.2 The wealth, Wn, of an investor after n independent successive
bets in a conditional horse race, where the horses win with probabilities given
by pX,Y , is related to the expected wealth growth rate as

WY |X (b, pX,Y
)

= lim
n→∞

log
(

Wn

W0

)

n
. (3.27)

Proof: The investor’s wealth after n independent, successive bets is

Wn = W0

n
∏

i=1

byi|xi
Oyi|xi

, (3.28)

where (xi, yi) is the realizations of (X, Y ) in the ith bet. So we have

lim
n→∞

log
(

Wn

W0

)

n
= lim

n→∞

∑n
i=1 log(byi|xi

Oyi|xi
)

n
= EpX,Y [log (b,O)] (by the law of large numbers). .(3.29)
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The lemma follows then from Definition 3.12. 2

Conditional Kelly investor

We generalize Definition 3.6 as follows.

Definition 3.13 (Conditional Kelly investor) A conditional Kelly investor
is a conditional investor (in the sense of Definition 3.11) who allocates his
wealth so as to maximize his expected wealth growth rate according to the
model he believes.

Below we shall often, for the sake of brevity, refer to the conditional Kelly
investor simply as Kelly investor.

Generalizing Theorem 3.1, the following theorem explicitly states the in-
vestment strategy chosen by a Kelly investor.

Theorem 3.5 A conditional Kelly investor who believes the conditional prob-
ability measure pY |X allocates his assets to the horse race according to

b∗y|x

(

pY |X
)

= p
Y |X
y|x . (3.30)

Proof: It follows from Definition 3.13 and Definition 3.12 that

b∗
(

pY |X
)

= arg max
{b:

P

y∈Y by|x=1}

∑

y

p
Y |X
y|x log(by|xOy|x) . (3.31)

In order to solve this optimization problem, which is convex, we write down
its Lagrangian:

L(b, λ) =
∑

y

p
Y |X
y|x log(by|xOy|x) − λx

(

∑

y

by|x − 1

)

. (3.32)

The optimal allocation, b∗, is the solution of

0 =
∂L(b, λ)

∂by|x

∣

∣

∣

∣

b=b∗

=







p
Y |X
y|x
b∗y|x

− λx







pX
x ,

which is
b∗y|x =

py|x
λx

. (3.33)

In order to find the value, λ∗x, that corresponds to the solution of our convex
problem, we have to solve

1 =
∑

y

b∗y|x (3.34)
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for λx. We find λ∗x = 1. So we have b∗y|x = p
Y |X
y|x . 2

Entropy and wealth growth rate

As we have done for the case of the (unconditional) horse race, we relate the
entropy to the expected conditional wealth growth rate of a conditional Kelly
investor.

Theorem 3.6 A conditional Kelly investor who knows that the horses in a
conditional horse race win with the probabilities given by the measure pX,Y

has the expected wealth growth rate

W ∗
pX,Y

(

pY |X
)

= W ∗∗
pX,Y −HY |X (pX,Y

)

, (3.35)

where
W ∗∗

pX,Y = EpX,Y [logO] =
∑

y∈Y ,x∈X
pX,Y

x,y logOy|x (3.36)

is the wealth growth rate of a clairvoyant investor, i.e., of an investor who
wins every bet.

Proof: It follows from Theorem 3.5 that a Kelly investor who believes the
probability measure pY |X allocates according to

b∗y|x

(

pY |X
)

= p
Y |X
y|x . (3.37)

Inserting this equation into Definition 3.12, we obtain the pX,Y -expected
wealth growth rate of the Kelly investor as

W ∗
pX,Y

(

pY |X
)

=
∑

y∈Y ,x∈X
pX,Y

x,y log
(

p
Y |X
y|x Oy|x

)

=
∑

y∈Y ,x∈X
pX,Y

x,y log p
Y |X
y|x +

∑

y∈Y ,x∈X
pX,Y

x,y logOy|x

= −HY |X (pX,Y
)

+W ∗∗
pX,Y (from (3.36) and Definition 2.8) .2

In Section 7.2 we shall use Theorem 3.6 as the starting point for a general-
ization of the conditional entropy.

The following theorem, which is a generalization of Theorem 3.3, relates
the relative entropy to the expected conditional wealth growth rate of a Kelly
investor.

Theorem 3.7 In a conditional horse race where horses win with the probabil-
ities given by the measure pX,Y , the difference in expected conditional wealth
growth rates between a conditional Kelly investor who knows the probability
measure pY |X and a conditional Kelly investor who believes the (misspecified)
probability measure qY |X is given by

W ∗
pX,Y

(

pY |X
)

−W ∗
pX,Y

(

qY |X
)

= DY |X
(

pX,Y ‖qY |X
)

. (3.38)
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Proof: It follows from Theorem 3.5 that a conditional Kelly investor who
believes the probability measure p allocates according to

b∗y|x

(

pY |X
)

= p
Y |X
y|x , (3.39)

and a conditional Kelly investor who believes the probability measure qX,Y

allocates according to

b∗y|x

(

qY |X
)

= q
Y |X
y|x . (3.40)

Inserting the above two equations into Definition 3.12, we obtain the pX,Y -
expected wealth growth rate difference

W ∗
pX,Y

(

pY |X
)

−W ∗
pX,Y

(

qY |X
)

=
∑

y∈Y ,x∈X
pX,Y

x,y log(p
Y |X
y|x Oy|x)

−
∑

y∈Y ,x∈X
pX,Y

x,y log(q
Y |X
y|x Oy|x)

=
∑

y∈Y ,x∈X
pX,Y

x,y log





p
Y |X
y|x

q
Y |X
y|x





= DY |X
(

pX,Y ‖qY |X
)

(3.41)

(from Definition 2.9) .2

In Section 7.3, where we consider investors with more general risk-
preferences, we will use Theorem 3.7 as the starting point for a generalization
of the conditional relative entropy.

Next, we generalize Theorem 3.4.

Theorem 3.8 In a conditional horse race where horses win with the proba-
bilities given by the measure pX,Y , the expected conditional wealth growth rate
of a conditional Kelly investor who believes the measure qY |X can be computed
as

W ∗
pX,Y

(

qX,Y
)

= EpX [logB] +DY |X
(

pX,Y ‖pY |X(h)
)

−DY |X
(

pX,Y ‖qY |X
)

.

(3.42)

Proof: The expected conditional wealth growth rate of a conditional Kelly
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investor who believes the measure qY |X is

W ∗
pX,Y

(

qY |X
)

= W
(

b∗
(

qY |X
)

, pX,Y
)

=
∑

y∈Y ,x∈X
pX,Y

x,y log
(

b∗y|x

(

qY |X
)

Oy|x
)

=
∑

y∈Y ,x∈X
pX,Y

x,y log
(

q
Y |X
y|x Oy|x

)

(by Theorem 3.5)

=
∑

y∈Y ,x∈X
pX,Y

x,y log





p
Y |X
y|x

p
Y |X(h)
y|x

Bxq
Y |X
y|x

p
Y |X
y|x



 (by Definition 3.10)

= EpX [logB] +DY |X
(

pX,Y ‖pY |X(h)
)

−DY |X
(

pX,Y ‖qY |X
)

(by Definition 2.9). 2

It follows from Theorem 3.8 that the conditional Kelly investor has an
expected conditional wealth growth rate in excess of the bank account growth
rate only if the measure he believes is closer (in the relative entropy sense) to
the measure pY |X than the homogeneous measure is.

Increase of expected wealth growth rate due to side information

Theorem 3.9 The increase in the expected wealth growth rate for a condi-
tional Kelly investor in a conditional horse race due to the information pro-
vided by the variable X is

∆W = I
(

pX,Y
)

+W ∗∗
pX,Y −W ∗∗

pX×pY , (3.43)

where I
(

pX,Y
)

is the mutual information, W ∗∗
pX,Y is the expected wealth growth

rate of a clairvoyant investor, and W ∗∗
pX×pY is the expected wealth growth rate

of a clairvoyant investor in a horse race where X and Y are independent.

Proof: We compare the Kelly investor who knows the information provided
byX, and therefore knows the measure pY |X , to an investor who doesn’t know
the information provided by X, and therefore believes the measure p̂Y |X with

p̂
Y |X
y|x = pY

y , ∀x ∈ X , (3.44)

i.e.,
p̂X,Y = pX × pY . (3.45)
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The difference in expected wealth growth rate between these two investors is

∆W = W ∗
pX,Y

(

pY |X
)

−W ∗
pX,Y

(

p̂Y |X
)

= −HY |X (pX,Y
)

+W ∗∗
pX,Y

+HY |X (p̂X,Y
)

−W ∗∗
p̂X,Y

(by Theorem 3.6)

= I
(

pX,Y
)

+W ∗∗
pX,Y −W ∗∗

pX×pY

(by Definitions 2.8 and 2.10, (3.44) and (3.45)) .2

As a straightforward consequence of Theorem 3.9 and (3.36), we have the
following corollary.

Corollary 3.1 In a conditional horse race where the odds ratios are indepen-
dent of X, i.e., where Oy|x = Oy , ∀x ∈ X , the increase in the expected wealth
growth rate for a conditional Kelly investor in a conditional horse race due to
the information provided by the variable X is

∆W = I
(

pX,Y
)

. (3.46)

3.6 Exercises

1. A 3-horse race has win probabilities (p1, p2, p3) and odds ratios (1, 1, 1).
A gambler places bets (b1, b2, b3),

∑

i bi = 1.

(a) Calculate the gambler’s expected wealth growth rate.

(b) Find the expected wealth growth-rate-optimal gambling scheme.

(c) Find the probabilities that cause the expected wealth to go to zero
the fastest.

(d) Calculate the expected wealth growth rate for a clairvoyant (some-
one who wins every bet and allocates accordingly).

2. Suppose an investor invests $1 over one year in a financial market that
offers two instruments:

(i) a bond, which after one year pays $1.20 (in case of no default) with
a probability of 0.9 and $0.50 (in case of default) with a probability
of 0.1, and

(ii) a bank account, which after one year pays $1.05 with certainty.

The investor can go long or short either position. If we were to define a
horse race that corresponds to this financial market, what combinations
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of the bond and the bank account do the horses correspond to and what
are their odds ratios?

3. A horse race has odds ratios Oy , y ∈ Y. An investor wants to bet $1 on
the horse race, and believes that horse y wins with probability py. How
does the investor allocate his $1 if he aims at

(a) maximizing his expected payoff,

(b) maximizing his best-case payoff,

(c) maximizing his worst-case payoff, or

(d) minimizing the uncertainty of the payoff.

Compute, in each case, the expectation and the variance of the payoff
under the assumption that the empirical probabilities are the same as
the ones the investor believes.

4. A horse race has odds ratios Oy , y ∈ Y. A Kelly investor bets $1 on the
horse race, and believes that horse y wins with probability py. Assume
that the empirical probabilities are the same as the ones the investor
believes.

(a) Compute the expectation and the variance of the investor’s payoff.

(b) Which probability measure leads to the smallest variance of the
payoff?

5. Suppose an investor invests $1 over one year in a financial market that
offers two instruments:

(i) a stock, which has an initial price of $10, and has one of the fol-
lowing prices after one year: $0.5, $0.6 , $0.7 , $0.8 , $0.9 , $1, $1.1,
$1.2 , $1.3 , $1.4 , $1.5.

(ii) a bank account, which after one year pays $1.05 with certainty.

If we were to define a horse race that corresponds to this financial mar-
ket, what combinations of the bond and the bank account do the horses
correspond to and what are their odds ratios? Can the investor actually
place bets on any of the ‘horses?’ If not, what instruments are needed
in order to complete the market, i.e., in order to allow the investor to
place bets on any of the ‘horses?’





Chapter 4

Elements of Utility Theory

Utility theory is one of the pillars of modern finance and is invoked extensively
in this book. In this chapter, we briefly review elements of this theory. We
refer readers interested in a more thorough introduction to J. Ingersoll, Jr.
(1987) and the references therein. Utility theory can be of use when there
are a number of investment alternatives and an investor is to allocate his
wealth among the alternatives. Given an allocation, his wealth at the end of
some time horizon is determined by the (random) outcomes for the various
investment alternatives. For deterministic outcomes, it is easy to rank the
choices. However, prior to the exploration of utility theory, it was not obvious
how to rank such choices in a probabilistic setting. Utility theory provides a
way to rank random wealth levels.

Utility theory has been criticized based on the observation that investors
are not always “rational”; that is, there are investors who might not subscribe
to the axioms of utility theory (stated below), or might not act in a manner
consistent with those axioms. Utility theory has also been criticized because
an investor’s utility function cannot be observed directly. We do not address
these issues; rather, we confine our attention to investors who subscribe to
the axioms of utility theory and act accordingly.

In this chapter, we review the genesis of utility theory — the St. Peters-
burg paradox, elements of an axiomatic approach to utility theory, define risk
aversion, introduce several popular utility functions, discuss field studies, and
provide certain technical conditions on utility functions that we shall adopt
in the remainder of the book.

4.1 Beginnings: The St. Petersburg Paradox

The beginnings of utility theory go back to the early 18th century. As de-
scribed in Szekely and Richards (2004), in 1713, Nikolaus Bernoulli, in a letter
to Pierre Raymond de Montmort, considered the following game:

(i) a fair coin is to be tossed until a head appears, and,

(ii) if the first head appears on the nth toss, then the game ends and the

95
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payoff from playing the game is 2n−1 ducats.

Thus, the payoff is always positive, and for most plays of the game, the
payoff is modest, since the game typically ends when a head appears after
several tosses; for example, if the first head occurs on the fourth toss, the
player receives only 8 ducats. However, there is the possibility of a long string
of tails, and an enormous payoff.

Montmort was intrigued by the following question: how much should one
pay to play this game? The expected payoff of this game is given by

E[payoff] =
∑

n

1

2n
2n−1 =

1

2
+

1

2
+

1

2
+ · · · = ∞. (4.1)

Does (4.1) suggest that this game is a bargain at any price? Certainly, the
vast majority of people would not be willing to risk their entire fortunes to
play this game, which would result, in most cases, in a gain of several ducats,
with a remote chance of gaining an enormous number of ducats. That is the
paradox: (4.1) “suggests” that we should risk all, though, for most investors,
that seems completely unreasonable.

Cramer (1728) and (Nikolaus’s cousin, Daniel) Bernoulli (1738)1 postulated
that one should maximize the expected utility derived from wealth, where the
utility from wealth is not linearly related to wealth, W , but increases at a
decreasing rate. This is plausible. The utility function — which expresses the
utility associated with a given level of wealth — should increase, since more
ought to be preferred to less; the rate of increase of the utility function should
decrease, since an incremental unit of wealth should provide more utility for
a person with limited wealth than for a person of greater wealth.

If we think about how much we should pay to play this game in terms of
expected utility, we are not led to the expected payoff of the game, but rather
to the expected utility of playing the game assuming that it costs c ducats
to play. Let N denote the (random) number of tosses that occur up to and
including the first head; i.e., the first head occurs on the (random) N th toss.
For a player with initial wealth W0 and utility function, U(·), the expected
utility of playing the game, if it costs c ducats to play, is given by

E[U(W0 + 2N−1 − c)] =
∑

n

1

2n
U(W0 + 2n−1 − c). (4.2)

Such an investor will pay any amount that increases his expected utility. That
is, he will pay any amount for which

E[U(W0 + 2N−1 − c)] > U(W0). (4.3)

1Daniel Bernoulli presented, in an article to the Imperial Academy of Sciences in St. Pe-
tersburg (hence, the name), a statement and resolution of the paradox.
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That is, the investor would pay any number of ducats, c, up to the solution
of

0 = E[U(W0 +2N−1−c)]−U(W0) =
∑

n

1

2n
U(W0 +2n−1−c)−U(W0) (4.4)

to play the game.
For U(W ) = log(W ), the utility function used by Cramer and Daniel

Bernoulli, the investor would pay any number of ducats up to the solution
(solving for c) of

0 = E[log(W0 + 2n−1 − c)] − log(W0) =
∑

n

1

2n
log(W0 + 2n−1 − c) − log(W0)

(4.5)
to play the game. An investor with a logarithmic utility function has a utility
which approaches −∞ as W → 0+ and grows “slowly” as W → ∞; such
an investor would therefore be extremely averse to risking all or nearly all of
his wealth on a gamble that usually doesn’t pay too much. So, it would not
be surprising should this expected logarithmic utility approach resolve the
paradox. To see that this approach does indeed resolve the paradox, note that
it can be shown that the sum in (4.5) is finite (see Exercise 1) and monotone
decreasing in c with a range of (−∞,∞) (see Exercise 2), so there is always
a finite solution, c, to (4.5). Thus, the St. Petersburg paradox is resolved: an
expected utility maximizing investor with a logarithmic utility function and
initial wealth, W0, will pay only a finite amount to play this game.

As the Figure 4.1, produced by numerically solving (4.5), indicates, the
amount that the logarithmic utility investor will pay is quite modest: even a
ducat-trillionaire would pay at most 20.90 ducats to play this game. Investors
with less initial wealth will pay less to play the game. For example, an investor
with initial wealth 1 ducat will borrow .67 ducats and pay at most2 1.67 ducats
to play the game. An investor with 2 ducats will pay at most 2 ducats to play
the game, an investor with 1, 000 ducats will pay at most 5.96 ducats to play,
while an investor with 1, 000, 000 ducats will pay at most 10.93 ducats to play
(see Exercise 3).

We note that there are other resolutions of the St. Petersburg paradox (for
example, asserting that no real casino would offer a game with unbounded
expected payoff) and related problem formulations that are not resolved for an
expected logarithmic utility investor, for example, for the Super St. Petersburg
paradox:

(i) a fair coin is to be tossed until a head appears, and,

(ii) if the first head appears on the nth toss, then the game ends and the

payoff from playing the game is e2
n−1

ducats.

2We consider only multiples of .01 ducats.
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FIGURE 4.1: Maximum amount an expected logarithmic utility investor
would pay to play the St. Petersburg game, as a function of initial wealth.

Our purpose was to describe the beginnings of utility theory, so we do not
discuss these other resolutions of the St. Petersburg paradox, or other more
subtle paradoxes. We refer the reader to Samuelson (1977) for further discus-
sion along these lines.

Thus, the idea of maximizing expected utility was established in the 18th

century; for a more general gamble, with discrete wealth outcomes in the set
A, the expected utility is given by

E[U(W )] =
∑

w∈A

prob{W = w}U(w). (4.6)

This idea of an expected utility maximizing investor, originally postulated by
Bernoulli and Cramer, is used throughout the remainder of this book. In the
next section, we trace elements of the axiomatic approach of von Neumann
and Morgenstern (1944) developed about 200 years later.

4.2 Axiomatic Approach

In this discussion, which follows that of J. Ingersoll, Jr. (1987), we do not
derive results from the most primative assumptions, nor do we seek complete-



Elements of Utility Theory 99

ness or generality. Rather, we indicate how certain results of utility theory, for
example, the idea of maximizing expected utility, may be derived from more
primitive assumptions. Under the axiomatic approach, we define goods, pref-
erences for different bundles of goods, and state fundamental axioms. As we
shall see, in this context, the idea of an expected utility maximizing investor
follows as a logical consequence of more fundamental axioms. The reader con-
tent to accept the idea of an expected utility maximizing investor as a postulate
can skip this section.

We assume that there are goods:

Definition 4.1 (Bundle of goods) Let x denote a bundle, with xi units of
good i, x ∈ X, where X is a closed, convex subset of Rn that denotes the set
of all bundles of goods.

The goods may represent tangible goods, such as cotton or steel.
We define two types of preference relationships:

Definition 4.2 (Weakly preferred) The statement x � z is read “x is weakly
preferred to z.”

Definition 4.3 (Strictly preferred) x � y (x is strictly preferred to y) if
x � y, but not y � x.

We define equivalence as follows:

Definition 4.4 (Equivalence) x ∼ y (x is equivalent to y) if x � y, and
y � x.

Now we state three natural axioms:

Axiom 1 (Completeness on bundles) For every pair of bundles, x ∈ X and
y ∈ X, either x � y, or y � x.

Axiom 2 (Reflexivity on bundles) For every bundle, x ∈ X, x � x.

Axiom 3 (Transitivity on bundles) For every pair of bundles, x ∈ X and
y ∈ X, if x � y, and y � z, then x � z.

We now introduce the notion of an ordinal utility function — a function
that encodes the preference of the ordering relation:

Definition 4.5 (Ordinal utility function) Υ: X → R is an ordinal utility
function if and only if, for bundles x and z ∈ X,

Υ(x) > Υ(z) if and only if x � z, and

Υ(x) = Υ(z) if and only if x ∼ z.
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We note that ordinal utility functions encode only the ordering of preferences,
and not the magnitude of the preferences.3

The axioms stated above are not sufficient to insure the existence of an
ordinal utility function. In order to insure the existence of an ordinal utility
function, it is necessary to introduce an additional axiom. It can be shown
that the following axiom, the continuity axiom, guarantees the existence of
an ordinal utility function, as well as the continuity of the utility function.

Axiom 4 (Continuity on bundles) For every bundle x ∈ X, the two subsets:

(i) all bundles that are strictly preferred to x, and

(ii) all bundles that are strictly worse than x

are open subsets of X.

That is, it can be shown4 that:

Theorem 4.1 (Existence of ordinal utility function) Under Axioms 1-4
above, there exists a continuous ordinal utility function Υ mapping X to the
real line that satisfies

Υ(x) > Υ(z) if and only if x � z, and

Υ(x) = Υ(z) if and only if x ∼ z.

Observe that if Υ(x) is an ordinal utility, then so is θ[Υ(x)], where θ(·) is
a strictly increasing function. That is, ordinal utility functions are equivalent
up to strictly increasing monotone transformations. Also note that we have
not yet introduced the notion of risk into our axiomatic discussion of utility
theory. We do so now.

Definition 4.6 (Lottery) A lottery is a pair consisting of

(i) a collection of bundles (x1, . . . , xm), with xi ∈ X, and

(ii) the probability measure (π1, . . . , πm) on these payoffs.

We assume that there is a preference ordering on the lotteries, with strict
preference and indifference defined as above, that satisfies the following ax-
ioms:

Axiom 5 (Completeness on lotteries) For every pair of lotteries (L1, L2),
either L1 � L2, or L2 � L1.

Axiom 6 (Reflexivity on lotteries) For every lottery, L, L � L.

3Below, we describe cardinal utility functions which encode more information about the
magnitude of the preferences than ordinal utility functions.
4For a proof, see, for example, Luce and Raiffa (1989).
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Axiom 7 (Transitivity on lotteries) If L1 � L2, and L2 � L3, then L1 � L3.

It can be shown that these axioms are sufficient to guarantee that prefer-
ences are consistent with an ordinal utility function defined on lotteries. We
now state additional axioms from which it follows that a decision maker who
subscribes to the full set of axioms will maximize an expected utility function.

Axiom 8 (Independence) Let L1 be the lottery with

(i) the collection of bundles (x1, . . . , xv, . . . , xm), and

(ii) probability measure (π1, . . . , πv, . . . , πm).

Let z denote a bundle of goods or another lottery. If z is a lottery, let it be
the lottery with

(i) the collection of bundles (y1, . . . , yn), and

(ii) probability measure (p1, . . . , pn).

Let L2 be the lottery with

(i) the collection of bundles (x1, . . . , z, . . . , xm), and

(ii) probability measure (π1, . . . , πv, . . . , πm).

If xv ∼ z, then L1 ∼ L2, whether z is a bundle or another lottery. If z is
another lottery, then L1 ∼ L2 ∼ L3, where L3 denotes the lottery with

(i) the collection of bundles (x1, . . . , xv−1, y1, . . . , yn, xv−1, . . . , xm), and

(ii) probability measure (π1, . . . , πv−1, πvp1, . . . , πvpn, πv−1, . . . , πm).

Under this axiom, only the preferences on final payoffs and final probabilities
matter — not the path taken (through a single lottery or compound lottery).
In that sense, preferences are independent of the path taken, hence the name
of the axiom.

Axiom 9 (Continuity on lotteries) If x1 � x2 � x3, then there exists a
probability π, 0 ≤ π ≤ 1, such that x2 ∼ L, where L denotes the lottery with

(i) the collection of bundles (x1, x3), and

(ii) probability measure (π, 1− π).

This probability is unique unless x1 ∼ x3.

Axiom 10 (Dominance) Let L1 denote the lottery with

(i) the collection of bundles (x1, x2), and

(ii) probability measure (π, 1− π)
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and let L2 denote the lottery with

(i) the collection of bundles (x1, x2), and

(ii) probability measure (p, 1− p).

If x1 � x2, then L1 � L2 if and only if π > p.

We now state what is perhaps the main result from utility theory. It can be
shown that5

Theorem 4.2 (Expected utility maximization) A decision maker, who sub-
scribes to Axioms 1-10, facing two or more lotteries, will choose the lottery
with maximum expected cardinal utility, Ψ(x).

The cardinal utility function of this theorem is called a von Neumann-
Morgenstern utility function. For a cardinal utility function, the numerical
value of the utility has a precise meaning (up to a linear transformation). Thus,
unlike an ordinal utility function (which, when composed with any monotone
function, produces another ordinal utility function), a cardinal utility function
encodes information on preferences beyond rank. Two different cardinal utility
functions can be consistent with the same ordinal utility function. Thus, two
consumers who make the same choices under certainty may choose different
lotteries.

4.2.1 Utility of Wealth

So far, we have expressed outcomes in terms of bundles of goods. In much of
the finance literature and in the remainder of this book, utility functions are
typically described in terms of wealth. In the case where the bundles consist
of a single good — wealth — in varying quantity, the previous discussion
leads directly to utility of wealth as a special case. In general, given market
prices for the goods, we can define a utility function as a function of wealth
as follows:

U(W ; p) = max{Ψ(x)|pTx = W}, (4.7)

where p is the price vector, i.e., pi is the price of good i. Below, whenever we
use a utility function, we mean the utility of wealth, as defined here.

4.3 Risk Aversion

Many investors are not thrill-seekers. They do not seek risk for its own sake;
rather, they possess varying degrees of risk aversion. In this section, we give

5For a proof, see J. Ingersoll, Jr. (1987).
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precise definitions of risk aversion and the certainty equivalent.
A decision maker is risk averse if he would avoid a gamble with expectation

zero. Formally,

Definition 4.7 ( Risk aversion) A decision maker with utility function U is
risk averse if

U(W ) > E[U(W + ε)] (4.8)

for a gamble with E[ε] = 0.

It can be shown that

Theorem 4.3 A decision maker is risk averse if and only if his utility func-
tion is strictly concave.

Usually, it is assumed that U(W ) is twice continuously differentiable (for
tractability), increasing (more is preferred to less), and strictly concave (risk
aversion). For tractability, in Section 4.6, we shall further restrict the class of
utility functions that we consider in this book.

Given the notions of a utility function, the Expected Utility Maximization
Theorem, and a risk averse investor, it is natural to ask the following questions:

(i) How much would we have to compensate an investor to take a fair
gamble?

(ii) How much of an insurance premium would a risk averse investor pay to
avoid a fair gamble?

Indeed, as we shall see in Chapter 8.6, such notions arise naturally in the
context of monetary measures of model performance.

We now develop precise, implicit formulas to answer these questions. Let ε
denote a fair gamble, i.e., we suppose that E[ε] = 0. Then the amount, ΠC

that we would have to compensate an investor to take a fair gamble is given
by

E[U(W + ΠC + ε)] = U(W ) (4.9)

and the insurance premium, Πi, that an investor would pay to avoid a fair
gamble is given by

E[U(W + ε)] = U(W − Πi). (4.10)

If risk is small and utility function is smooth, ΠC ≈ Πi The quantity W −Πi

is known as the certainty equivalent of the gamble W + ε.
Next, we work toward measures of risk aversion; the first is based on (4.10).

In (4.10), the insurance premium, Πi, is subtracted from wealth; that is, Πi

represents an absolute insurance payment. After some manipulation, we shall
obtain a corresponding so-called absolute measure of risk aversion. Assuming
that the risk is small and U is smooth, the Taylor expansion of (4.10) is given
by:

E[U(W )+ εU ′(W )+
1

2
ε2U ′′(W )+ o(ε2)] = U(W )−ΠiU

′(W )+ o(Πi) (4.11)
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so

1

2
var(ε)U ′′(W ) ≈ −ΠiU

′(W ).

Solving,

Πi ≈ −1

2

U ′′(W )

U ′(W )
var(ε).

Thus, Πi, the insurance premium that a risk averse investor would pay
to avoid a fair gamble, is, approximately, proportional to the Arrow-Pratt
absolute risk aversion coefficient

A(W ) = −U
′′(W )

U ′(W )
. (4.12)

By assuming that the payment is a fraction, Π, of wealth (that is, the
payment amount is relative to the level of wealth), we obtain the defining
relation for a corresponding so-called relative risk aversion:

E[U(W (1 + ε))] = U(W (1 − Π)). (4.13)

For smooth U and small risk, one can deduce (see Exercise 4.14) the relative
risk aversion measure

−W U ′′(W )

U ′(W )
. (4.14)

4.4 Some Popular Utility Functions

In this section, we provide examples of several popular utility functions. All
are special (sometimes limiting) cases of the HARA (hyperbolic absolute risk
aversion) utility function:

U(W ) =
1 − γ

γ

(

aW

1 − γ
+ b

)γ

. (4.15)

The utility functions in the following examples are normalized so that U(1) =
0 and U ′(1) = 1.

Example 4.1 (Linear utility function)

U(W ) = W − 1. (4.16)

This utility function is, in effect, the utility function used in risk neutral
pricing (see, for example, Duffie (1996)).
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Example 4.2 (Exponential utility function, with risk aversion parameter, κ)

1 − e−κ(w−1)

κ
. (4.17)

This utility function can be particularly tractable for certain portfolio allo-
cation problems, due to its separability when W =

∑

i biYi, where i is the
index of the instrument in the portfolio, Yi is the price relative for the ith

instrument, and bi is the allocation to the ith instrument (see, for example,
Madan (2006)).

Example 4.3 (Power utility function, with constant relative risk aversion κ)

U(W ) =
W 1−κ − 1

1 − κ
. (4.18)

This utility function is commonly used (see, for example, Morningstar (2002)),
has constant relative risk aversion, and possesses striking optimality proper-
ties:

(i) an investor who wants to maximize the probability that the growth rate
of invested wealth will exceed a targeted growth rate has a power utility
function (see Stutzer (2003)), and

(ii) (from Luenberger (1998), p.427, under certain assumptions):

Growth efficiency proposition An investor who considers
only long-term performance will evaluate a portfolio on the
basis of its logarithm of single-period return, using only the
expected value and the variance of this quantity.

Luenberger then notes that the power utility function is approximately
a weighted sum of the expected logarithm of return and the variance of
that logarithm. That is, the power utility function suits the long-term
investor for whom the Growth efficiency proposition holds.

Example 4.4 (Logarithmic utility function)

U(W ) = log(W ). (4.19)

This is, in effect, the utility function that is maximized by the Kelly investor
of Section 3.3; it follows that investors with this utility function inherit the
optimality properties of Kelly investors.

Example 4.5 (Generalized logarithmic utility function)

U(W ) = (1 − γ) ln

(

w − γ

1 − γ

)

. (4.20)
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Some believe that there are compelling financial reasons for all investors to
adopt precisely this particular utility function (see, for example, Rubinstein
(1976) and Wilcox (2003)). As we shall see, this utility function arises nat-
urally in subsequent chapters and will play a prominent role in this book,
though it can appear with different context-appropriate parameterizations.
We note (see Exercise 8) that this utility function has a wealth dependent
relative risk aversion of W

W−γ ∈ (0, 1).

4.5 Field Studies

Is utility theory a reasonable approximation of behavior? In some empirical
and field studies (see, for example, Schoemaker (1980)), an attempt is made to
approximate an investor’s utility function by asking him a series of questions
that reveal his preferences with regard to simple lotteries. For example, if we
assume that U(1) = 0, and U(100) = 1, to find U(50), a subject is asked to
consider the choice:

(i) Obtain a wealth of 50 with certainty, or

(ii) Obtain wealth of 100 with probability p, or wealth of 1 with probability
1 − p.

The subject is then asked which p value makes him indifferent, i.e., for which
value of p is

U(50) = (1 − p)U(1) + pU(100) ? (4.21)

In this manner, it is possible to calibrate and interpolate utility functions.
The results of such experiments are mixed. According to Schoemaker (1980),

“People are poor intuitive statisticians.” Thus, it might not be easy to identify
an investor’s utility function, and, of course, allocation decisions (and their
consequences) based on expected utility maximization may be sensitive to
assumptions on the utility function.

4.6 Our Assumptions

We make the following assumptions about our investor throughout this
book.
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Assumption 4.1 Our investor subscribes to the axioms of utility theory.6

The investor has a utility function, U , that

(i) is strictly concave,

(ii) is twice differentiable,

(iii) is strictly monotone increasing, and

(iv) has the property (0,∞) ⊆ range(U ′).

Unless otherwise noted, these assumptions will hold for the remainder of this
book.

4.6.1 Blowup and Saturation

We note that condition (iv) of Assumption 4.1 is a technical condition that
we shall use to streamline the exposition, and that some of the results in
this book could be developed in more general settings. According to this last
condition, there exists a level of wealth, Wb ∈ [−∞,∞], such that

lim
W→W+

b

U ′(W ) = ∞ (4.22)

and there exists a level of wealth, Ws ∈ [−∞,∞], such that

lim
W→W−

s

U ′(W ) = 0. (4.23)

We formalize this discussion with the definitions

Definition 4.8 (Blowup) The utility function, U , blows up at the wealth level,
Wb, if

lim
W→W+

b

U ′(W ) = ∞. (4.24)

Definition 4.9 (Saturation) The utility function, U , is saturated at the
wealth level, Ws, if

lim
W→W−

s

U ′(W ) = 0. (4.25)

In Chapter 5, we shall revisit the notion of a horse race market and make
additional assumptions on the blowup point, Wb, and the saturation point,
Ws, and relate them to the payoffs in the market that we consider.

We note that many popular utility functions are consistent with the above
conditions.

6As we have seen in Section 4.2, Theorem 4.2, such an investor maximizes his expected
utility with respect to the probability measure that he believes.
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Example 4.6 (Blowup and saturation: power utility) The power utility blows
up at wealth zero and saturates at infinite wealth.

Example 4.7 (Blowup and saturation: logarithmic utility)
The generalized logarithmic utility

U(W ) = α log(W − γ) + β (4.26)

blows up at W = γ and saturates at W = ∞.

Example 4.8 (Blowup and saturation: exponential utility)
The exponential utility

U(W ) = 1 − e−W (4.27)

blows up at W = −∞ and saturates at W = ∞.

Example 4.9 (Blowup and saturation: quadratic utility)
The quadratic utility

U(W ) = (W − 1) − 1

2
(W − 1)2 (4.28)

blows up at W = −∞ and saturates at W = 2.

However, not all utility functions are consistent with the blowup and satura-
tion conditions listed above.

Example 4.10 (Blowup and saturation: a utility function that never satu-
rates)

The utility function
U(W ) = W − e−W (4.29)

does satisfy the first three conditions of Assumption 4.1 and does blow up at
W = −∞, but never saturates.

4.7 Exercises

1. Show that the sum in (4.5) converges.

2. Show that the sum in (4.5) is monotone decreasing in c with a range of
(−∞,∞).
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3. Show numerically that for the St. Petersburg paradox game, a logarith-
mic utility investor with initial wealth 1 ducat will borrow .67 ducats
and pay at most (assuming multiples of .01 ducats) 1.67 ducats to play
the game, an investor with 2 ducats will pay at most 2 ducats to play
the game, an investor with 1, 000 ducats will pay at most 5.96 ducats
to play, while an investor with 1, 000, 000 ducats will pay at most 10.93
ducats to play.

4. Which utility functions have constant Arrow-Pratt absolute risk aver-
sion? (Solve the appropriate ordinary differential equation.)

5. For small risk and smooth utility functions, derive the approximation
for the measure of relative risk aversion (4.14). (Hint: use Taylor expan-
sions.)

6. Which utility functions have constant relative risk aversion? (Solve the
appropriate ordinary differential equation.)

7. Justify the term HARA for the HARA utility function

U(W ) =
1 − γ

γ

(

aW

1 − γ
+ b

)γ

. (4.30)

Show how to set the parameters for the special cases described in Ex-
amples 4.1 to 4.5 (you may need additional additive constants).

8. Show that the generalized logarithmic utility function

U(W ) = (1 − γ) ln

(

W − γ

1 − γ

)

(4.31)

has a wealth dependent relative risk aversion given by

W

W − γ
∈ (0, 1). (4.32)

9. Confirm the blowup and saturation properties listed in Examples 4.6 to
4.10.

10. Confirm the constant relative risk aversion for the power utility function
of Example 4.3.





Chapter 5

The Horse Race and Utility

In Chapter 3, we considered the actions of a Kelly investor in the horse race
environment — the simplest possible probabilistic investment setting, where
each state in the probabilistic model has its own payoff. In this chapter, we
consider the actions of a (more general) expected utility maximizing investor
who operates in horse race environments.

We explore four settings: the unconditional discrete horse race, the con-
ditional discrete horse race, an unconditional “continuous,” and, finally, a
conditional horse race where the probabilities of the various states can be
described by a mixture of density functions and point masses. The material
in this chapter is invoked when we consider model performance and model
estimation issues.

5.1 The Discrete Unconditional Horse Races

In this section, we revisit the ideas of the discrete unconditional horse race
of Chapter 3, but we consider investors with more general utility functions. In
this setting, we discuss the compatibility of the horse race and the investor’s
utility function (as we shall see, not all horse races and utility functions are
compatible, in a certain sense), optimal allocation for general (compatible)
utility functions, horse races with homogeneous returns, the Kelly investor
(revisited), generalized logarithmic utility functions (which, as we shall see,
play a prominent role in this book), and the power utility.

5.1.1 Compatibility

We begin with an example.

Example 5.1 (An incompatible horse race and utility.) An investor has the
utility

U(W ) = log(W − 1). (5.1)

Suppose that this investor is to operate in a two-state horse race environment
with payoffs O1 = 2 and O2 = 2 that occur with probabilities p1 and p2,

111
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respectively. Allocating b1 to horse 1 and 1 − b1 to horse 2, his expected
utility would be

p1U(b1O1) + p2U((1 − b1)O2) = p1log(2b1 − 1) + p2log(2(1 − b1) − 1). (5.2)

This utility is equal to −∞ for any value of b1, since, for any allocation to the
two states, at least one of the terms in (5.2) will blow up.

Thus, not all horse races and utility functions are compatible (we give a formal
definition for compatibility below). There is nothing inherently wrong with
either the utility function or the horse race of Example 5.1. The problem is
that the utility function blows up at a (too large) value of wealth that is not
attainable with certainty in this particular horse race. No allocation will be
free of states where the payoff is less than the blowup point, resulting in an
expected utility that blows up (is −∞) for all allocations.

We see from the following example that in a more favorable horse race (with
higher odds ratios), the optimal allocation problem is well defined.

Example 5.2 (A compatible horse race and utility.)An investor has the util-
ity

U(W ) = log(W − 1). (5.3)

Suppose that this investor is to operate in a two-state horse race environment
with payoffs O1 = 3 and O2 = 3 that occur with probabilities p1 and p2,
respectively. Allocating b1 to horse 1 and 1 − b1 to horse 2, his expected
utility would be

p1U(b1O1) + p2U((1 − b1)O2) = p1log(3b1 − 1) + p2log(3(1 − b1) − 1) (5.4)

Note that this utility is a well-defined concave function of b1, suitable for
maximization, for b1 ∈

(

1
3
, 2

3

)

.

Fortunately, it is possible to identify conditions that guarantee that the
horse race and the investor’s utility are jointly tractable. We now seek such
conditions.

An investor operating in the discrete unconditional horse race setting with
the allocation b will derive utility

U(byOy) (5.5)

should state y occur. Suppose that the investor’s utility function blows up
at the wealth level Wb (possibly, Wb = −∞). In order for the utility of the
allocation b to be defined, his allocation must satisfy the constraint

byOy > Wb, (5.6)

for all y. We refer to allocations that do not cause the utility to blow up as
admissible allocations.
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Definition 5.1 An allocation is admissible if, for each horse race outcome,
the utility is finite.

It follows from the wealth constraint, (5.6), and the definition of the bank
account, B, that if there exists an admissible allocation b, we must have

1 =
∑

y

by >
∑

y

Wb

Oy
=
Wb

B
; (5.7)

so, we obtain the natural compatibility condition

Wb < B. (5.8)

That is, for the utility function U and the odds ratios Oy to admit an admis-
sible allocation, we must have Wb < B.

Next, using the representation of B, (3.1), we note that

B =
1

∑

y
1
Oy

<
1
1
O′

y

= Oy′ , ∀y′ ∈ Y, (5.9)

so
B < min

y
Oy. (5.10)

If we want our utility function to be increasing (not yet saturated) for each
of the horse race payoffs, we must have

Ws > max
y

Oy. (5.11)

From these two inequalities, we see that we must have

Ws > B. (5.12)

In this book, we confine our attention to utility functions and horse races
that are compatible in the sense that there always exists an admissible allo-
cation and the utility function is, in fact, strictly increasing for each of the
horse race payoffs. This discussion leads us to the following definition.

Definition 5.2 (Compatibility) The utility function, U , and a horse race with
bank account, B, are compatible if

(i) U blows up at the value Wb, with Wb < B (equivalently, (U ′)−1(∞) <
B), and

(ii) U saturates at a value Ws, with Ws > B (equivalently, (U ′)−1(0) > B),

where B denotes the bank account derived from the odds ratios, given by (3.1).
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We shall see below (Lemma 5.1) that if a utility function and a horse race
are compatible, then there indeed exists an admissible allocation.

We note that in the discrete market setting, whether these conditions are
satisfied or not depends on the investor’s utility function and the horse race
payoffs (the market). In the discrete market setting, these conditions have
nothing whatsoever to do with the probabilities associated with the horse
race.1

Example 5.3 (Compatibility: power utility) The power utility is compatible
with all horse races.

Example 5.4 (Compatibility: generalized logarithmic utility) The generalized
logarithmic utility

U(W ) = α log(W − γB) + β (5.13)

is compatible with all horse races provided that γ < 1. Thus, the usual loga-
rithmic utility, U(W ) = log(W ), is compatible with all horse races.

Example 5.5 (Compatibility: exponential utility) The exponential utility

U(W ) = 1 − e−W (5.14)

is compatible with all horse races.

Example 5.6 (Compatibility: quadratic utility) The quadratic utility

U(W ) = (W − 1) − 1

2
(W − 1)2 (5.15)

is compatible with all horse races for which B < 2.

As we shall see in Section 5.1.2, the compatibility conditions given in Defini-
tion 5.2 render the allocation problem tractable.

5.1.2 Allocation

We assume that our investor believes the model q and therefore allocates
his $1 so as to maximize his expected utility under q. It follows then from
that fact the investor’s wealth after the bet is byOy, if horse y won the race,
that our investor chooses the following allocation.

Definition 5.3 The optimal allocation for an investor who believes the model
q is

b∗(q) = arg max
{b:

P

y∈Y by=1}

∑

y∈Y
qyU(byOy) . (5.16)

1When we go beyond the discrete market setting, the probabilities will play a role in the
notion of compatibility.
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The following lemma gives an explicit expression for the optimal allocation.

Lemma 5.1 If the utility function U and the odds ratios O are compatible,
then

∑

y∈Y

1

Oy
(U ′)−1

(

λ

qyOy

)

(5.17)

is a strictly monotone decreasing function of λ, there exists a unique solution,
λ, to the equation

∑

y∈Y

1

Oy
(U ′)−1

(

λ

qyOy

)

= 1, (5.18)

and

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

. (5.19)

We note that it is straightforward to find the optimal allocation by numerical
methods: by the monotonicity of (5.17) in λ, one can solve (5.18) for λ nu-
merically by root search and obtain the optimal allocation by substituting λ
into (5.19).

Proof: The Lagrangian for the convex optimization problem posed by (5.16)
is

L = −
∑

y∈Y
qyU(byOy) + λ





∑

y∈Y
by − 1



 . (5.20)

In order to find the optimal allocation, we have to solve

∂L
∂by

∣

∣

∣

∣

b=b∗
= 0, (5.21)

i.e.,
−qyOyU

′(b∗yOy) + λ = 0 (5.22)

for b∗. So we must have

U ′(b∗yOy) =
λ

qyOy
, (5.23)

i.e.,

b∗y =
1

Oy
(U ′)−1

(

λ

qyOy

)

. (5.24)

From
∑

y∈Y
b∗y = 1 (5.25)



116 Utility-Based Learning from Data

it follows that λ must satisfy (5.18), i.e.,

∑

y∈Y

1

Oy
(U ′)−1

(

λ

qyOy

)

= 1 . (5.26)

We note that by the strict concavity of U(W ), U ′(W ) is a strictly decreasing
function of W , so (U ′)−1 is a strictly decreasing function. It follows that the
left hand side of (5.26) is a strictly decreasing function of λ.

Since U and B are compatible, we have

(U ′)−1(0) = Ws > B (5.27)

and
(U ′)−1(∞) = Wb < B. (5.28)

Since the left hand side of (5.26) is a strictly decreasing function of λ, the
maximum (minimum) value for the left hand side of (5.26) can be obtained
by allowing λ to approach 0 (∞). Under the conditions (5.27) and (5.28),
we see that the maximum (minimum) value is greater (less) than 1. Since
(5.26) depends continuously and monotonically on λ, by the Intermediate
Value Theorem, there exists a λ that satisfies (5.26). 2

Corollary 5.1 by is bounded above and below, as follows:

(i)

b∗y(q) ≥ Wb

Oy
(5.29)

and

b∗y(qy) =
Wb

Oy
if and only if qy = 0. (5.30)

(ii)

b∗y(q) ≤ 1 −Wb

∑

y 6=y′

1

Oy
(5.31)

and

b∗y(qy) = 1 −Wb

∑

y 6=y′

1

Oy
if and only if qy = 1. (5.32)

Proof:

(i) (U ′)−1 is a decreasing function with

lim
x→∞

(U ′)−1(x) = Wb. (5.33)
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From (5.19), since (U ′)−1 is a decreasing function, (U ′)−1 must be
greater than Wb for positive values of qy, with (considering the extended
value x = ∞) (U ′)−1(∞) = Wb. So, by (5.19), we have

b∗y(q) ≥ Wb

Oy
, (5.34)

and

b∗y(qy) =
Wb

Oy
if and only if qy = 0. (5.35)

(ii) By the definition of b, we have

b∗y′ = 1 −
∑

y 6=y′

by (5.36)

≤ 1 −
∑

y 6=y′

Wb

Oy
(by (i)) (5.37)

= 1 −Wb

∑

y 6=y′

1

Oy
(5.38)

and

b∗y(qy) = 1 −Wb

∑

y 6=y′

1

Oy
if and only if qy = 1. (5.39)

2

Corollary 5.2 If U blows up at a nonnegative value, then b∗y(q) > 0, ∀q > 0.

Proof: If Wb ≥ 0, then

lim
x→∞

(U ′)−1(x) = Wb ≥ 0. (5.40)

Since (U ′)−1, is a decreasing function, (U ′)−1 must be positive, and so, by
(5.19), must b∗y. 2

We now consider the excess allocation over the bank account allocation

b̃y ≡ by − B

Oy
. (5.41)

Summing both sides, we see that

∑

y

b̃y = 0. (5.42)

Rewriting, we have

by =
B

Oy
+ b̃y. (5.43)
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That is, the allocation by can be thought of as the sum of the bank account
allocation and a “market neutral” allocation in the sense of (5.42). Equations
(5.43) and (5.42) collectively reveal that, in a horse race, an investor effectively
bets so that $1 is allocated to the bank account and a net allocation of $0 is
distributed among the horses. It follows from Lemma 5.1 and (5.41) that the
optimal “market neutral” excess allocation is given by

b̃∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

− B

Oy
. (5.44)

In the following sections, we examine allocation in four important contexts
that will recur throughout this book.

5.1.3 Horse Races with Homogeneous Returns

As we shall soon see, horse races with homogeneous returns are particularly
tractable. Moreover, as we shall see when we discuss model performance mea-
surement and model estimation, it is possible to make certain approximations
for horse races with nearly homogeneous returns.

Consider the homogeneous expected return measure from Definition 3.3, in
Chapter 3, which is given by

p(h) =

{

p(h)
y =

B

Oy
, y ∈ Y

}

, (5.45)

where B is the bank account payoff. Recall that, under this measure, the
expected payoff for a bet placed on a single horse, y, is always B, independent
of y, i.e., that

p(h)
y Oy +

(

1 − p(h)
y

)

0 = B, ∀y ∈ Y . (5.46)

In order to compute the optimal allocation for our investor, we substitute
(5.46) into Lemma 5.1, (5.19), and obtain

b∗y

(

p(h)
)

=
1

Oy
(U ′)−1

(

λ

B

)

=
p
(h)
y

B
(U ′)−1

(

λ

B

)

.

Summing and using (5.18), we see that

1 =
1

B
(U ′)−1

(

λ

B

)

, (5.47)

so

λ = BU ′(B), and (5.48)

b∗y

(

p(h)
)

= p(h)
y . (5.49)

That is, under the homogeneous expected return measure, we allocate accord-
ing to the bank account allocation.
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5.1.4 The Kelly Investor Revisited

In Section 3.3, we discussed the Kelly investor who allocates his assets so as
to maximize his expected wealth growth rate (see Definition 3.6, in Chapter
3). As we shall soon see, the Kelly investor can be viewed as an expected
utility maximizing investor with a particular utility function.

According to Definition 3.5, the expected wealth growth rate corresponding
to a probability measure q and a betting strategy b is given by

W (b, q) = Eq [log (b,O)] =
∑

y∈Y
qy log(byOy) . (5.50)

Comparing this to the expected utility, Eq [U (b,O)], we see that the Kelly
investor is, in fact, an expected utility maximizing investor with the utility
function

U(W ) = logW . (5.51)

It follows from Lemma 5.1, (5.18), that λ = 1 and from (5.19) that

b∗y(q) = qy , (5.52)

which is consistent with Theorem 3.1.
The logarithmic utility function is important both for its tractability and

the following optimality properties:2

(i) the probability that the ratio of the wealth of a Kelly investor to the
wealth of a non-Kelly investor after n trials will exceed any constant can
be made as close to 1 as we please, for n sufficiently large, and

(ii) the expected time to double the wealth is smaller for the Kelly investor
than for any other investor.

However, in spite of these optimality properties, the logarithmic utility may
not be appropriate for many investors. For a criticism of the logarithmic util-
ity function, see Samuelson (1971) and Samuelson (1979); for a justification of
nearly, but not quite, logarithmic utility functions, see Luenberger (1998) pp.
426-427. Browne and Whitt (1996) and Janeček (2002) discuss drawdown con-
sequences of the logarithmic and power utilities and show that the logarithmic
utility function can lead to investment strategies that are quite aggressive.

2For proofs of these statements, see, for example, Cover and Thomas (1991), Chapter 6,
or Breiman (1961). Some of these properties also hold for Kelly investors who invest in
continuous-time markets (see Merton (1971), Karatzas et al. (1991), Jamishidian (1992),
and Browne and Whitt (1996)).
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5.1.5 Generalized Logarithmic Utility Function

In this section, we discuss the generalized logarithmic utility function, which
will play a crucial role in the remainder of this book. We motivate this utility
function by first considering two extremes with respect to conservatism in
allocation. Recall that the bank account allocation

by =
B

Oy
(5.53)

results in the payoff B, no matter which horse wins the race. This is the
ultimate conservative strategy — there is no uncertainty in the outcome —
no risk. It is possible to identify another extreme: the growth-optimal and
doubling-time-optimal Kelly allocation strategy

by = qy, (5.54)

which is too aggressive for many investors (there are riskier strategies, but
none that have the optimality properties of the Kelly strategy, so, at least
from the perspective of these optimality properties, there is nothing to be
gained by considering them, since they provide more risk and suboptimal
growth).

It is natural to consider the weighted allocation strategy

by = (1 − γ)qy + γ
B

Oy
(5.55)

and ask the question: for what utility function (if any) is the weighted strategy
optimal for an expected utility maximizing investor, for general odds ratios
O and probability measures, q? To answer this question, we solve

b∗y(q) = (1 − γ)qy + γ
B

Oy
. (5.56)

From (5.19), we must have

1

Oy
(U ′)−1

(

λ

qyOy

)

= (1 − γ)qy + γ
B

Oy
. (5.57)

It follows that

U ′ ((1 − γ)qyOy + γB) =
λ

qyOy
. (5.58)

Integrating with respect to qyOy, we obtain

1

1 − γ
U ((1 − γ)qyOy + γB) = λ log(qyOy) + const. (5.59)

Putting
W = (1 − γ)qyOy + γB, (5.60)
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we obtain

U(W ) = (1 − γ)λ log

(

W − γB

1 − γ

)

+ const = α log(W − γB) + β, (5.61)

where
α = (1 − γ)λ (5.62)

and β is a constant incorporating an integration constant. Since the blowup
point must be less than B, for this function to be compatible with the horse
race, we must have γ < 1.

Thus, by considering weighted combinations of the two extreme allocations
optimal for

(i) the rather aggressive Kelly investor, and

(ii) the conservative investor who tolerates no risk,

we are naturally led to the generalized logarithmic family of utility functions,
defined as follows.

Definition 5.4 The generalized logarithmic utility function is defined by

U(W ) = α log(W − γB) + β , α > 0 . (5.63)

Here γB represents the blowup wealth level; as we have seen, for this utility
to be compatible with all horse races, we must have γ < 1. As we have
seen, the special case of this utility function with γ = 0 was suggested by
Bernoulli (1738) in his solution to the St. Petersburg paradox. The more
general form (5.63) has been advocated by Rubinstein (1976) in a widely cited
article entitled The Strong Case for the Generalized Logarithmic Utility as
the Premier Model of Financial Markets and by Wilcox (2003). We note that
neither Rubinstein nor Wilcox focuses on statistical learning problems and
their motivations are quite different from ours. Rubinstein is more interested
in utility functions that can be used to make effective financial models. Wilcox
is more interested in investment tools that can accommodate conservative
investors who wish to avoid shortfalls.

One can show directly, as an exercise, that a generalized logarithmic utility
investor allocates according to

b∗y(q) = (1 − γ) qy + γ
B

Oy
. (5.64)

That is, the allocation is the weighted sum of the allocation of the Kelly
investor and the bank account allocation, where the weights are given by
1 − γ and γ, respectively.

This investor will never experience a wealth less than γB. To see this, note
that, from (5.64),

b∗y(q)Oy = (1 − γ) qyOy + γB > γB, for γ < 1. (5.65)
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It follows from (5.65) that

b∗y(q) > γ
B

Oy
> 0, for γ > 0. (5.66)

Thus, we have shown that

Theorem 5.1 An expected utility maximizing investor allocates according to
the weighted average of the Kelly allocation and the bank account allocation

(1 − γ)qy + γ
B

Oy
(5.67)

if and only if his utility function is a generalized logarithmic utility function,

U(W ) = α log(W − γB) + β , α > 0, γ < 1. (5.68)

An investor with this utility function is guaranteed to have wealth exceeding
γB.

As we shall see, the generalized logarithmic utility will play an important
role in this book in the context of model performance measurement and model
estimation.

An investor who allocates according to such a generalized logarithmic utility
acts exactly as an investor who first allocates the fraction γ of his wealth to
a bank account, and then allocates the remaining fraction 1− γ of his wealth
as would a Kelly investor with wealth 1 − γ.

Among strategies that “insure” a payoff not less than γB, this strategy
inherits the optimality properties of the Kelly investor on the remaining frac-
tion, 1 − γ, of initial wealth (see Exercises 5 and 6):

(i) the probability that the ratio of the wealth of a generalized logarithmic
utility expected utility maximizing investor to the wealth of an alterna-
tive investor, who “banks” γB, after n trials will exceed any constant
can be made as close to 1 as we please, for n sufficiently large, and,

(ii) the expected time to double the generalized logarithmic utility investor’s
wealth is smaller than for any alternative investor.

5.1.6 The Power Utility

As an additional optimal allocation example, we consider an investor with
a power utility function, which is given by

Uκ(W ) =
W 1−κ − 1

1 − κ
→ log(W ) as κ → 1, (5.69)
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where κ ≥ 0. The power utility family is compelling because it is the most
general family with constant relative risk aversion. We see from (5.18) that

λ =





∑

y′

1

Oy′

(qy′Oy′)
1
κ





κ

; (5.70)

from (5.19), we see that

b∗y(q) =

1
Oy

(qyOy)
1
κ

∑

y′
1

Oy′
(qy′Oy′ )

1
κ

. (5.71)

It follows that

Uκ(b∗y(q)Oy) =
1

1 − κ











(qyOy)
1
κ

∑

y′
1

Oy′
(qy′Oy′)

1
κ





1−κ

− 1






. (5.72)

5.2 Discrete Conditional Horse Races

We shall see that most of the definitions and results from Section 5.1 can
be easily generalized to the discrete conditional horse race setting.

We consider probabilities of a random variable Y with state space Y given
values of the random variableX with state space X , and denote marginal and
conditional probability measures simply by qx and qy|x, respectively, rather

than qX
x and q

Y |X
y|x . We take the point of view of a conditional investor sim-

ilar to the one defined in Definition 3.11 (only now, we consider investors
with more general utility functions), in a conditional horse race, as defined in
Definition 3.7. A number of probabilistic learning modeling problems can be
viewed as taking place in such a discrete conditional horse race setting, for
example, the corporate default probability model discussed in Section 12.1.1,
or the text classification model discussed in Section 12.3.

5.2.1 Compatibility

Before discussing the question of allocating to maximize expected utility,
we discuss conditions which must hold for the allocation problem to be well-
defined.

Given an observation, x, an investor operating in the discrete unconditional
horse race setting with the allocation b will derive the utility

U(by|xOy|x) (5.73)
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should state y occur. Suppose that the investor’s utility function blows up
at the wealth level Wb (possibly, Wb = −∞). In order for the utility of the
allocation b to be defined for any x, his allocation must satisfy the constraint

by|xOy|x > Wb; (5.74)

for all x and y.
It follows from the wealth constraint, (5.74), and the definition of B, that

if there exists an admissible allocation for each x, then we must have

1 =
∑

y

by|x >
∑

y

Wb

Oy|x
=
Wb

Bx
; (5.75)

so, we obtain the natural compatibility condition

Wb < Bx, ∀x. (5.76)

That is, for the utility function U and the odds ratios Oy|x to admit an
allocation with utility greater than negative infinity for all x, we must have
Wb < Bx, ∀x.

Next, we note that

Bx =
1

∑

y
1

Oy|x

<
1
1

Oy′ |x

= Oy′|x, ∀y′ ∈ Y, (5.77)

so
Bx < Oy|x, ∀y ∈ Y. (5.78)

If we want our utility function to be increasing (not yet saturated), for all x,
for at least one of the horse race payoffs, we must have

Ws > min
y

Oy|x > Bx, ∀x. (5.79)

This discussion leads us to

Definition 5.5 (Compatibility, conditional discrete horse race) The utility
function, U , and a conditional horse race with bank accounts, Bx, are com-
patible if

(i) U blows up at the value Wb, with Wb < Bx, ∀x ∈ X (equivalently,
(U ′)−1(∞) < Bx, ∀x ∈ X ), and

(ii) U saturates at a value Ws, with Ws > Bx, ∀x ∈ X (equivalently,
(U ′)−1(0) > Bx, ∀x ∈ X ),

where Bx denotes the conditional bank account derived from the odds ratios,
Oy|x (see Definition 3.8).
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With, at most, slight modification, the conditions under which the utility
functions listed in Examples 5.3 to 5.6 are essentially identical to those that
render the utilities compatible in this discrete conditional horse race setting.

Example 5.7 (Power utility) The power utility is compatible with all horse
races.

Example 5.8 (Generalized logarithmic utility) The generalized logarithmic
utility

U(W ) = α log(W − γB) + β (5.80)

is compatible with all horse races if γ < 1, where B denotes the worst condi-
tional bank account defined in Definition 3.9.

Example 5.9 (Exponential utility) The exponential utility

U(W ) = 1 − e−W (5.81)

is compatible with all horse races.

Example 5.10 (Quadratic utility) The quadratic utility

U(W ) = (W − 1) − 1

2
(W − 1)2 (5.82)

is compatible with all horse races for which Bx < 2, ∀x ∈ X .

5.2.2 Allocation

We generalize Definition 5.3 as follows.

Definition 5.6 The optimal allocation for a conditional investor who believes
the (conditional probabilistic) model q is

b∗(q) = arg max
{b:

P

y∈Y by|x=1 }

∑

y∈Y
qy|xU(by|xOy|x) . (5.83)

Other definitions are possible; in particular, one could define the optimal
allocation via

b∗(q) = arg max
{b:

P

y∈Y by|x=1 }

∑

x∈X
qx

∑

y∈Y
qy|xU(by|xOy|x) . (5.84)

This definition leads to exactly the same allocation as Definition 5.6. The
reason for this equivalence is that the alternative definition prescribes a max-
imization of a linear combination of the terms that are maximized under
Definition 5.6. Since the coefficients of the linear combination are all positive,
each term can be maximized independently, as per Definition 5.6.

The following lemma, which generalizes Lemma 5.1, gives an explicit ex-
pression for the optimal allocation.
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Lemma 5.2 If the utility function U and the odds ratios Oy|x are compatible,
then

∑

y∈Y

1

Oy|x
(U ′)−1

(

λx

qy|xOy

)

(5.85)

is a strictly monotone decreasing function of λx, there exists a unique solution,
in λx, to the equation

∑

y∈Y

1

Oy|x
(U ′)−1

(

λx

qy|xOy

)

= 1, (5.86)

and

b∗y|x(q) =
1

Oy|x
(U ′)−1

(

λx

qy|xOy|x

)

. (5.87)

Proof: The proof is essentially the same as the one for Lemma 5.1 in Section
5.1.2.

5.2.3 Generalized Logarithmic Utility Function

It follows from Lemma 5.2 that for a utility function of the form,

U(W ) = α log(W − γB) + β (5.88)

with α > 0 and γB < minx∈X (Bx), the optimal betting weights are given by

b∗y|x(q) = qy|x

[

1 − γB

Bx

]

+
γB

Oy|x
. (5.89)

5.3 Continuous Unconditional Horse Races

Until now we have discussed horse races on a random variable Y with a
discrete (finite) state space. We now consider horse races where payoffs depend
on random variables that can take any value in a volume element by taking
the small-size limit of horse races associated with a series of discretizations of
the support of Y .

This section contains no new ideas beyond a technical discussion allowing
us to pass from the sums of the discrete setting of the previous sections in this
chapter to a continuous setting which makes use of integrals. Readers who are
not interested in such technical details may skip this section.

5.3.1 The Discretization and the Limiting Expected Utility

We denote the support of the continuous, possibly vector valued, random
variable Y by Y and assume that Y ⊂ Rd. For the sake of convenience, we
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have chosen the same notation (Y) to represent the support of the random
variable considered in this section as the notation for the finite state spaces
in the previous section; it will always be clear from the context which type of
support we are referring to. We denote by q a bounded probability density on
Y, which has the property

∫

Y
q(y)dy = 1 . (5.90)

In order to define horse races for probability densities, we discretize Y. To
this end, we define a set of partitions,

{Y(n)
k }n

k=1, (5.91)

of Y, indexed by n, with
n
⋃

k=1

Y(n)
k = Y, (5.92)

Y(n)
k ∩ Y(n)

j = ∅ for j 6= k . (5.93)

We assume that this sequence of partitions has the following property.

max
k

∆
(n)
k → 0, as n→ ∞ , (5.94)

where ∆
(n)
k =

∫

Y(n)

k

dy . (5.95)

Let y
(n)
k ∈ Y(n)

k , k = 1 . . . , n. The probability that Y ∈ Y(n)
k is then

q
(n)
k =

∫

Y(n)
k

q(y)dy = q(y
(n)
k )∆

(n)
k + o(∆

(n)
k ) . (5.96)

We now introduce the “odds ratio density” O(y) and assume that the odds

ratio for a bet on Y ∈ Y(n)
k , O(n)

k , is related to this “odds ratio density” via

O(n)
k =

O(y
(n)
k )

∆
(n)
k

+
o(∆

(n)
k )

∆
(n)
k

. (5.97)

This crucial assumption is plausible; as the partition elements, Y(n)
k , become

smaller, more numerous, and less probable, the market maker must pay more
to attract an investor. We can think of the odds ratio density, together with
a particular discretization, as generating a discrete horse race. Together with
(5.96), (5.97) implies that

Eq(payoff on a $1 bet on Y ∈ Y(n)
k ) = q

(n)
k O(n)

k + 0(1 − q
(n)
k )

= q(y
(n)
k )O(y

(n)
k ) +

o(∆
(n)
k )

∆
(n)
k

. (5.98)
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Suppose that our investor allocates

b
(n)
k =

∫

y
(n)
k

b(y)dy = b(y
(n)
k )∆

(n)
k + o(∆

(n)
k ) (5.99)

to a bet that Y ∈ Y(n)
k , where b(y) denotes a bounded “allocation density.”

Under this betting scheme, we have expected utility (under q)

u
(n) =

n
X

k=1

q
(n)
y U(b

(n)
k O

(n)
k )

=

(n)
X

k=1

[q(y
(n)
k )∆

(n)
k + o(∆

(n)
k )]U

 

[b(y
(n)
k )∆

(n)
k + o(∆

(n)
k )]

"

O(y
(n)
k )

∆
(n)
k

+
o(∆

(n)
k )

∆
(n)
k

#!

(by (5.96), (5.97) and (5.99))

=

n
X

k=1

[q(y
(n)
k )∆

(n)
k + o(∆

(n)
k )]U

 

[b(y
(n)
k )O(y) + o(∆

(n)
k )

O(y
(n)
k )

∆
(n)
k

+ o(∆
(n)
k )]

!

.

Expanding U to leading order, we have

u
(n) =

n
X

k=1

[q(y
(n)
k )∆

(n)
k + o(∆

(n)
k )]

 

U(b(y
(n)
k )O(y)) +

o(∆
(n)
k )O(y)

∆n
k

U
′(b(yn

k )O(yn
k ))]

!

=

n
X

k=1

[q(yn
k )U(b(yn

k )O(yn
k ))∆n

k + o(∆n
k )].

Under the assumption of equation (5.94), we see that

lim
n→∞

un =

∫

Y
q(y)U(b(y)O(y))dy , (5.100)

i.e., that the limit of the expected utilities associated with the sequence of
discrete horse races defined by the method of this section, will be given by
the right hand side of (5.100). We note that, informally, the right hand side
of this expression can be derived from its discrete counterpart by replacing a
summation by an integral.

5.3.2 Compatibility

Before discussing the question of allocating to maximize expected utility,
we discuss conditions which must hold for the allocation problem to be well-
defined.

Assuming that
1

O(y)
(5.101)
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is an integrable function, we note that the allocation

b(y) =

1
O(y)

∫

1
O(y)dy

(5.102)

“pays”

b(y)O(y) =
1

∫

1
O(y)

dy
(5.103)

in each state; that is, the allocation in (5.102) has a fixed, deterministic payoff
density, no matter which state occurs. From the point of view of the sequence
of discrete horse races discussed in the previous section, note that we have
observed that

b
(n)
k O(n)

k = b(y
(n)
k )O(y) + o(∆

(n)
k ); (5.104)

so under the discrete allocations derived from (5.102), the discrete horse races
will have the payoff

1
∫

1
O(y)

dy
+ o(∆

(n)
k ). (5.105)

This suggests the following definition for the bank account in this contin-
uous horse race setting:

B =
1

∫

1
O(y)

dy
. (5.106)

We define compatibility in this context in a manner similar to that used to
define compatibility in Sections 5.1 and 5.2 (but, here, the probability measure
enters the picture, and we require two additional technical conditions).

Definition 5.7 (Compatibility, continuous unconditional horse race) The
utility function, U , continuous horse race with odds ratio density O(y), prob-
ability measure q(y), and bank account, B, are compatible if

(i) U blows up at the value Wb, with Wb < B (equivalently, (U ′)−1(∞) <
B),

(ii) U saturates at a value Ws, with Ws > B (equivalently, (U ′)−1(0) > B),

(iii) the function
1

O(y)
(5.107)

is integrable, over Y, and

(iv) the quantity q(y)O(y) is bounded above,

where B denotes the bank account, defined in (5.106), derived from the odds
ratio density.
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Condition (iii) is necessary to guarantee that the bank account exists. How-
ever, conditions (i) to (iii) are not sufficient to guarantee the existence of a
maximum expected utility allocation. By adding condition (iv), as we shall
see, we can always explicitly calculate the maximum expected utility alloca-
tion when U , O(y), and q(y) are compatible.

Example 5.11 (Power utility) The power utility is compatible with all con-
tinuous horse races with odds ratio densities O(y), and all probability mea-
sures q(y) for which conditions (iii) and (iv) in Definition 5.7 hold.

Example 5.12 (Generalized logarithmic utility) The generalized logarithmic
utility

U(W ) = α log(W − γB) + β (5.108)

is compatible with all continuous horse races with odds ratio densities O(y),
and all probability measures q(y) for which conditions (iii) and (iv) in Defi-
nition 5.7 hold provided that γ < 1.

Example 5.13 (Exponential utility) The exponential utility

U(W ) = 1 − e−W (5.109)

is compatible with all continuous horse races with odds ratio densities O(y),
and all probability measures q(y) for which conditions (iii) and (iv) in Defi-
nition 5.7 hold.

Example 5.14 (Quadratic utility) The quadratic utility

U(W ) = (W − 1) − 1

2
(W − 1)2 (5.110)

is compatible with all continuous horse races with odds ratio densities O(y),
and all probability measures q(y) for which conditions (iii) and (iv) in Defi-
nition 5.7 hold, provided that B < 2.

5.3.3 Allocation

In light of the limit expressed in (5.100), an expected utility maximizing
investor in this setting will allocate according to

b∗[q](y) = arg max
{b:

R

Y
b(y)dy=1}

∫

Y
q(y)U(b(y)O(y))dy. (5.111)

The following lemma gives an explicit expression for the optimal allocation.

Lemma 5.3 If the utility function U , the odds ratios O(y), and the probability
measure q(y) are compatible, then

∫

Y

1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

dy (5.112)
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is a strictly monotone decreasing function of λ, there exists a unique solution,
λ, to the equation

∫

Y

1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

dy = 1, (5.113)

and

b∗[q](y) =
1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

, (5.114)

where λ is the solution of (5.113).

Proof: The proof is similar to that given for Lemma 5.1, but in this contin-
uous setting, we make use of the first variation of the Lagrangian.

The Lagrangian for the convex optimization problem posed by (5.111) is

L = −
∫

y∈Y
q(y)U(b(y)O(y))dy + λ

(∫

y∈Y
b(y)dy − 1

)

. (5.115)

Taking the first variation of the Lagrangian resulting from a variation in b(y),
δb(y), we obtain

δL = −
∫

y∈Y
q(y)U ′(b(y)O(y))O(y)δb(y)dy + λ

∫

y∈Y
δb(y)dy. (5.116)

If δL = 0 for all variations, δb(y), we must have

−q(y)U ′(b(y)O(y))O(y)δb(y) + λδb(y) = 0, (5.117)

which implies that for b∗[q] we must have

U ′(b∗[q](y)O(y)) =
λ

q(y)O(y)
, (5.118)

i.e.,

b∗[q](y) =
1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

. (5.119)

Next, we show that under the assumption that q(y)O(y) is bounded above
(condition (iv) of Definition 5.7), the integral

∫

y∈Y

1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

dy (5.120)

exists for all positive values of λ. Suppose that q(y)O(y) is bounded above by
M . Then

λ

q(y)O(y)
>

λ

M
. (5.121)
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We note that by the strict concavity of U(W ), U ′(W ) is a strictly decreasing
function ofW , so (U ′)−1 is a strictly decreasing function; so, applying (5.121),
we see that
∫

y∈Y

1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

dy ≤
∫

y∈Y

1

O(y)
(U ′)−1

(

λ

M

)

dy, (5.122)

which is integrable, by condition (iii) of Definition 5.7.
From

∫

y∈Y
b∗[q](y)dy = 1 (5.123)

it follows that λ must satisfy (5.113), i.e.,

∫

y∈Y

1

O(y)
(U ′)−1

(

λ

q(y)O(y)

)

dy = 1 . (5.124)

We also see (from the fact that (U ′)−1 is a strictly decreasing function) that
the left hand side of (5.124) is a strictly decreasing function of λ.

Since U and B are compatible, we have

(U ′)−1(0) = Ws > B (5.125)

and
(U ′)−1(∞) = Wb < B. (5.126)

Since the left hand side of (5.124) is a strictly decreasing function of λ, the
maximum (minimum) value for the left hand side of (5.124) can be obtained
by allowing λ to approach 0 (∞). Under the conditions (5.125) and (5.126),
we see that the maximum (minimum) value is greater (less) than 1. Since
(5.124) depends continuously and monotonically on λ, by the Intermediate
Value Theorem, there exists a λ that satisfies (5.124). 2

5.3.4 Connection with Discrete Random Variables

Suppose that there is a sequence of bounded probability density functions

qm(y) →
∑

i

qyi
δ(y − yi) as m→ ∞ , (5.127)

where the yi are a set of points in Y.
Each qm is a bounded density on Y, so we may apply the expression (5.100)

for the expected utility. We see that each qm has associated expected utility

um =

∫

Y
qm(y)U(b(y)O(y))dy. (5.128)
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So we have

lim
m→∞

um =

∫

Y

∑

i

qyi
δ(y − yi)U(b(y)O(y))dy =

∑

i

qyi
U(b(yi)O(yi)) ,

(5.129)
i.e., we have recovered the expected utility for a discrete setting.

Thus, this scheme applied to horse race type betting on continuous densities
leads to betting consistent with the discrete case.

5.4 Continuous Conditional Horse Races

In this section, we describe a still more general horse race, where the
probability of various outcomes can be described by a conditional density
model which may include point masses. We suppose that certain individual
states can occur with finite probability and that others are best described
with a probability density function. That is, the vector valued random vari-
able Y has the continuous conditional probability density q(y|x) on the set
Y ⊂ Rn and the finite conditional point probabilities qρ|x on the set of points
{yρ ∈ Rn, ρ = 1, 2, ...,m}, where x denotes a value of the vector X of ex-
planatory variables which can take any of the values x1, ..., xM, xi ∈ Rd. This
setting can be associated with interesting applications such as the modeling of
recovery values of defaulted debt that we will discuss in Section 12.1.2 (from
historical defaulted debt data, it is evident that discounted defaultable debt
indeed has point masses that occur at 0 and 100% of the amount borrowed,
with a continuous distribution over other values).

This section contains no new ideas beyond a technical discussion allowing us
to pass from the sums of the discrete conditional setting to a continuous con-
ditional setting which makes use of integrals. Readers who are not interested
in such technical details may skip this section.

We can think of this setting as the limit of a series of discrete horse races,
with horses of two types:

(i) horses associated with the partition elements of Section 5.3.1, and

(ii) horses associated with the discrete points {yρ ∈ Rn, ρ = 1, 2, ...,m}.

5.4.1 Compatibility

Before discussing the question of allocating to maximize expected utility,
we discuss conditions which must hold for the allocation problem to be well-
defined.
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Assuming that, given x,
1

O(y|x) (5.130)

is an integrable function, we note that, given x, the allocation

b(y|x) =

1
O(y|x)

∫

1
O(y|x)dy +

∑

ρ
1

Oρ|x

, bρ|x =

1
Oρ|x

∫

1
O(y|x)dy +

∑

ρ
1

Oρ|x

(5.131)

“pays”

b(y|x)O(y|x) =
1

∫

1
O(y|x)dy +

∑

ρ
1

Oρ|x

or bρ|xOρ|x =
1

∫

1
O(y|x)dy +

∑

ρ
1

Oρ|x

(5.132)
in each state; that is, the allocation in (5.131) has a fixed, deterministic payoff
density, no matter which state occurs. From the point of view of the sequence
of discrete horse races discussed in the previous section, note that for the
discretization of the continuous horse race, we have already observed that

b
(n)
k O(n)

k = b(y
(n)
k )O(y) + o(∆

(n)
k ); (5.133)

so under the discrete allocations derived from (5.131), the discrete horse races
will have the payoff

1
∫

1
O(y|x)

dy +
∑

ρ
1

Oρ|x

+ o(∆
(n)
k ). (5.134)

This suggests the following definition for the bank account in this setting:

Bx =
1

∫

1
O(y|x)

dy +
∑

ρ
1

Oρ|x

. (5.135)

We define compatability in this context.

Definition 5.8 (Compatibility, continuous conditional horse race) The util-
ity function, U , the continuous conditional horse race with odds ratio density
O(y|x) and discrete conditional odds ratios Oρ|x, bank accounts, Bx, and prob-
ability measure with conditional density q(y|x) and point probabilities qρ|x are
compatible if

(i) U blows up at the value Wb, with Wb < infxBx (equivalently,
(U ′)−1(∞) < infxBx),

(ii) U saturates at a value Ws, with Ws > supxBx (equivalently,
(U ′)−1(0) > supxBx),

(iii) the function
1

O(y|x) (5.136)

for all x is integrable, over Y, and
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(iv) the quantity q(y|x)O(y|x) is bounded above, for all x

where Bx denotes the bank account, defined in (5.135), derived from the odds
ratio density.

5.4.2 Allocation

We assume that our investor allocates b(y|x) to the event3 Y = y and bρ|x
to the event Y = yρ, if X = x was observed, where

1 =

∫

Y
b(y|x)dy +

m
∑

ρ=1

bρ|x . (5.137)

This means that an investor who believes the model q allocates according to

b∗[q] = arg max
{b∈B}

[

∫

Y
q(y|x)U(b(y|x)O(y|x))dy +

∑

y

qρ|xU(bρ|xOx,ρ)

]

,

where

B = {(b(y|x), bρ|x) :

∫

Y
b(y|x)dy +

m
∑

ρ=1

bρ|x = 1}

denotes the set of betting weights consistent with (5.137). The following
lemma gives an explicit expression for the optimal allocation.

Lemma 5.4 If the utility function U , the horse race with odds ratios O(y|x)
and Oρ|x, and the probability measure with density q(y|x) and point probabil-
ities qρ|x are compatible for every x, then

∑

ρ

1

Oρ|x
(U ′)−1

(

λ

qρ|xOρ|x

)

+

∫

Y

1

O(y|x) (U ′)−1

(

λ

q(y|x)O(y|x)

)

dy (5.138)

is a strictly monotone decreasing function of λ, there exists a unique solution,
λ, to the equation

∑

ρ

1

Oρ|x
(U ′)−1

(

λ

qρ|xOρ|x

)

+

∫

Y

1

O(y|x) (U ′)−1

(

λ

q(y|x)O(y|x)

)

dy = 1,

(5.139)
and

b∗[q](y|x) =
1

O(y|x) (U ′)−1

(

λ

q(y|x)O(y|x)

)

and

b∗ρ|x =
1

Oρ|x
(U ′)−1

(

λ

qρ|xOρ|x

)

,

3To be precise, we consider a sequence of betting schemes over finite partitions of Y as
described in Section 5.3.1.
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where λ is the solution of (5.139).

Proof: The proof is similar to those of Lemmas 5.1, 5.2, and 5.3. The La-
grangian for the convex optimization problem posed by (5.16) is

L = −
∫

y∈Y
q(y|x)U(b(y|x)O(y|x))dy +

∑

ρ

qρ|xU(bρ|xOρ|x)

+λ

(

∫

y∈Y
b(y|x)dy +

∑

ρ

bρ|x − 1

)

.

Taking the first variation of the Lagrangian with respect to b(y|x), δb(y|x),
we obtain

δL = −
∫

y∈Y
q(y|x)U ′(b(y|x)O(y|x))O(y|x)δb(y|x)dy + λ

∫

y∈Y
δb(y|x)dy.

(5.140)
If δL = 0 for all variations, δb(y|x), we must have

−q(y|x)U ′(b(y|x)O(y|x))O(y|x)δb(y|x) + λδb(y|x) = 0, (5.141)

which implies that for b∗[q] we must have

U ′(b∗[q](y|x)O(y|x)) =
λ

q(y|x)O(y|x) , (5.142)

i.e.,

b∗[q](y|x) =
1

O(y|x) (U ′)−1

(

λ

q(y|x)O(y|x)

)

. (5.143)

Taking the partial derivative of the Lagrangian with respect to bρ|x and
setting to zero, we must have

∂L
∂bρ|x

∣

∣

∣

∣

b=b∗

= 0, (5.144)

i.e.,
−qρ|xOρ|xU

′(b∗ρ|xOρ|x) + λ = 0 (5.145)

for b∗. So we must have

U ′(b∗ρ|xOρ|x) =
λ

qρ|xOρ|x
, (5.146)

i.e.,

b∗ρ|x =
1

Oρ|x
(U ′)−1

(

λ

qρ|xOρ|x

)

. (5.147)

From
∫

Y
b(y|x)dy +

m
∑

ρ=1

bρ|x = 1 (5.148)
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it follows that λ must satisfy the following equation:

∑

ρ

1

Oρ|x
(U ′)−1

(

λ

qρ|xOρ|x

)

+

∫

Y

1

O(y|x) (U ′)−1

(

λ

q(y|x)O(y|x)

)

dy = 1 ,

(5.149)
where we know that the integral on the left hand side exists by reasoning
similar to that in the proof of Lemma 5.3.

We note that by the strict concavity of U(W ), U ′(W ) is a strictly decreasing
function of W ; so (U ′)−1 is a strictly decreasing function. It follows that the
left hand side of (5.149) is a strictly decreasing function of λ.

Since U and this horse race are compatible, we have

(U ′)−1(0) = Ws > sup
x
Bx (5.150)

and
(U ′)−1(∞) = Wb < inf

x
Bx. (5.151)

Since the left hand side of (5.149) is a strictly decreasing function of λ, the
maximum (minimum) value for the left hand side of (5.149) can be obtained
by allowing λ to approach 0 (∞). Under the conditions (5.150) and (5.151),
we see that the maximum (minimum) value is greater (less) than 1. Since
(5.149) depends continuously and monotonically on λ, by the Intermediate
Value Theorem, there exists a λ that satisfies (5.149). 2

5.4.3 Generalized Logarithmic Utility Function

One can show (see Exercise 7) that for a utility function of the form

U(W ) = α log(W − γB) + β, (5.152)

with α > 0 and γB < minx∈X (Bx), the optimal betting weights are given by

b∗ρ|x(q) = qρ|x

[

1 − γB

Bx

]

+
γB

Oρ|x
(5.153)

and

b∗[q](y|x) = q(y|x)
[

1 − γB

Bx

]

+
γB

O(y|x) . (5.154)

5.5 Exercises

1. Starting with the generalized logarithmic utility, use Lemma 5.1, (5.18),
and Definition 3.2 to calculate λ and show directly that for this utility



138 Utility-Based Learning from Data

function, the allocation is the weighted sum of the allocation of the Kelly
investor and the bank account allocation, where the weights are given
by 1 − γ and γ, respectively.

2. Derive the optimal allocation for a discrete horse race for an investor
with a HARA utility function.

3. Prove the statements, regarding compatibility, in Examples 5.3 to 5.6.

4. Show directly that if Wb ≥ B, then the expected utility in the discrete
horse race setting, under any probability measure, is −∞.

5. Show that in the discrete horse race setting, the probability that the
ratio of the wealth of an expected generalized logarithmic utility max-
imizing investor to the wealth of an alternative investor, who “banks”
γB, after n trials will exceed any constant can be made as close to 1
as we please, for n sufficiently large. You may rely on the analogous
statement for the U(W ) = log(W ) investor.

6. Show that in the discrete horse race setting, the expected time to double
the generalized logarithmic utility investor’s wealth is smaller than for
any alternative investor. You may rely on the analogous statement for
the U(W ) = log(W ) investor.

7. Show that for a utility function of the form

U(W ) = α log(W − γB) + β, (5.155)

with α > 0 and γB < minx∈X (Bx), the optimal betting weights in a
continuous conditional horse race are given by

b∗ρ|x(q) = qρ|x

[

1 − γB

Bx

]

+
γB

Oρ|x
(5.156)

and

b∗[q](y|x) = q(y|x)
[

1 − γB

Bx

]

+
γB

O(y|x) . (5.157)

8. Derive an expression for the allocation b when the investor has a linear
utility.



Chapter 6

Select Methods for Measuring
Model Performance

In this chapter, we introduce some methods for measuring the performance of
a probabilistic model. It is not our aim to give a comprehensive overview over
this topic. We discuss the rather popular rank-based approaches (not related
to our utility-based approach) for two-state problems in Section 6.1. We then
discuss approaches more closely related to our utility-based approach: the
likelihood in Section 6.2 and performance measurement via a loss function in
Section 6.3. We discuss model performance measurement in our utility-based
framework in detail in Chapter 8.

6.1 Rank-Based Methods for Two-State Models

There are a great number of practical problems that involve classification
or conditional probability estimation on a two-state outcome. For example:

• Given a woman’s age, age at menarche, number of previous breast biop-
sies, number of first degree relatives who have developed breast cancer,
and age at first live birth, what is the probability that she will develop
breast cancer?

• Given financial statement data for a particular firm (which may default
over the next year, or not), what is the probability that the firm will
default?

• Given the text of an article, is it a sports article or a business article?

These and other applications will be discussed more fully in Chapter 12. Spe-
cial methods, appropriate for two-state classification and conditional proba-
bility estimation, have been developed to measure model performance for such
problems. Perhaps the most popular concept is the ROC (Receiver Operator
Characteristic) curve. There are a number of closely related ideas including the
accuracy ratio, Power Curves (also known as Gini Curves), Cumulative Accu-
racy Profiles, Kolmogorov Smirnov methods, and the U statistic (see Hosmer

139
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and Lemeshow (2000)) and the references therein for further discussion). In
this section, we shall confine our discussion to ROC methods.

ROC methods were first used in the 1940’s by the U.S. military to better
understand why the U.S. RADAR “receiver operators” failed to identify the
Japanese attack on Pearl Harbor (see Wikipedia (2010)). ROC methods arise
naturally from basic concepts in statistical hypothesis testing. Consider the
two hypotheses:

H0: the signal does not represent an enemy aircraft (null hypothesis —
a straw man hypothesis that we may reject), and

H1: the signal represents an enemy aircraft (the alternative hypothesis
that we want to test).

There are four possible outcomes of a statistical test on these hypotheses.
These outcomes can be represented in the “confusion matrix” displayed in
Table 6.1. There are two ways to make an error: rejecting the null hypothesis

TABLE 6.1: Confusion Matrix.

Signal\ Test Outcome H0 Not Rejected H0 Rejected
Not Enemy Aircraft prob{accept H0|H0 is true} prob{reject H0|H0 is true}

Specificity Type I error
=1-False Positive Rate

Enemy Aircraft prob{accept H0|H0 is false} prob{reject H0|H0 is false}
Type II error Sensitivity

=true positive rate

when it is true (Type I error) and accepting the null hypothesis when it is
false (Type II error). It is desirable to have a statistical test with

• high specificity (we are likely to accept H0 when it is true — for the
example above, we identify a nonenemy aircraft as a nonenemy aircraft),
and

• high sensitivity (we are likely to reject H0 when it is false — for the
example above, we identify an enemy aircraft as an enemy aircraft).

Equivalently, we would prefer statistical tests that generate low false positive
rates and high true positive rates. ROC plots display information on the false
positive rates and true positive rates for a collection of tests generated by a
model. To gain insight into how this plot is constructed, we can first imagine
two overlapping populations of signals, as depicted in Figure 6.1.

Consider the test criterion: reject H0 if the signal exceeds the cutoff level, c.
As the cutoff level is varied, the false positive rate and true positive rates of the
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FIGURE 6.1: Probability densities for signals from the two populations.
Here, the curve to the left denotes the enemy aircraft probability density and
the curve to the right denotes the nonenemy aircraft probability density.

test vary. For extremely high cutoffs, there is almost no chance of rejecting H0;
so, for high cutoffs, the false positive rate will be low. However, for extremely
high cutoffs, since there is almost no chance of rejecting H0, the true positive
rate will be low. For extremely low cutoffs, the false positive rate will be high
and the true positive rate will be high. As the cutoff is varied, the results of
the test trace out points in the (false positive)-(true positive plane). The ROC
curve generated by the populations in Figure 6.1 is displayed in Figure 6.2.

In the case of a two-state classification or conditional probability model, it
is possible to construct ROC curves by considering a collection of hypothesis
tests of the form: reject H0 if p(Y = 1|x) > c, and construct ROC curves
by plotting the false positive rates and true positive rates associated with
various levels of the cutoff, c. Likewise, one can construct an ROC curve for a
classification model, where classification is based on the output of the classifier
relative to the cutoff, c.

It is interesting to note that, for a conditional probability model, any mea-
sure of model performance derived from the ROC curve will depend only on
the ranks of the probabilities and not on the actual values of the probabili-
ties.1 To see this, let FP (c, q) denote the percentage of observations classified

1We assume in our discussion that the ROC based performance measure is constructed
from the ROC curve, a collection of points {(FPi, TPi), i = 1, . . . , n}. If the ROC curve is
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FIGURE 6.2: ROC Curve. For our example: True Positive Rate — enemy
aircraft identified as enemy aircraft. False Positive Rate — nonenemy aircraft
identified as enemy aircraft

as positive (yi = 1) that are actually negative (yi = 0), given the cutoff value
c and the conditional probability model q. Let TP (c, q) denote the percentage
of observations classified as positive that are actually positive. We have

FP (c, q) =

∑

{i:yi=0} 1qY =1|xi
≥c

∑

{i:yi=0} 1
(6.1)

and

TP (c, q) =

∑

{i:yi=1} 1qY =1|xi
≥c

∑

{i:yi=1} 1
. (6.2)

Let
t(qY =1|xi

), (6.3)

where t : [0, 1] → [0, 1] denotes a monotone increasing function. From our
monotonicity assumption, it follows that the condition

qY =1|xi
≥ c is equivalent to t(qY =1|xi

) ≥ t(c). (6.4)

supplemented with additional information related to the relation of the index i with the
cutoff c, it may be possible to construct a more general performance measure; in this case,
of course, the performance measure depends on more than just the ROC curve.
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It therefore follows that

FP (c, q) = FP (t(c), t(q)) and TP (c, q) = TP (t(c), t(q)). (6.5)

We see that the ROC curve is preserved under the transformation t. Since t
is a generic rank preserving transformation, it follows that any performance
measure derived from the ROC curve is based only on the ranks of the prob-
abilities, not their actual values. Thus, there is some question as to whether
ROC analysis could lead to definitive conclusions for a model user whose
actions would reflect the values of the conditional probabilities, rather than
merely the ranks of the probabilities.

Model builders often wish to compare or benchmark models in the hope
of choosing a good model. Given two models, each model would generate its
own ROC curve. Under the assumption that a good model is one that leads to
good statistical tests, in the sense of high specificity and sensitivity, one ROC
curve is viewed as dominating another if for every level of the false positive
rate, the true positive rate is higher. Equivalently, one ROC curve is viewed
as dominating another if for every level of the true positive rate, the false
positive rate is lower. That is, if the ROC curve generated by model A lies to
the “northwest” of the ROC curve generated by model B, then model A can
be viewed as dominating model B. This is illustrated in Figure 6.3.

FIGURE 6.3: The model that generated the dashed ROC curve dominates
the model that generated the solid ROC curve.
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In practice, ROC curves often cross each other. In order to generate a single
summary statistic to determine which curve is “better” in this circumstance,
people often consider the area under the curve (AUC), which is equivalent
to the Mann-Whitney U-statistic. It is known (see, for example, Hosmer and
Lemeshow (2000)) that the AUC can be interpreted as the percentage of
occurrences where prob(Yi = 1|xi) ≥ prob(Yj = 1|xj), given that yi = 1 and
yj = 0. Given two AUC values corresponding to the ROC curves generated
by two models, there are statistical tests on the hypothesis that the higher
AUC value is due to chance.2

ROC curves are often compared in these ways. However, there are a number
of questions that arise. The area under the curve is strongly affected by cutoff
values that generate tests with large false positive rates. It is not clear whether
the AUC is perhaps unduly influenced by these cutoff values (few would ac-
tually use such values for classification or statistical testing purposes).

6.2 Likelihood

The likelihood of a model is the probability of observing a given set of data
under the assumption that the model is correct. This concept, which was first
introduced by Fisher (1922), plays a central role in classical statistics; it is
widely used for measuring the performance of probabilistic models and for
building such models. In this section, we discuss the likelihood and some of
the reasons why it is useful. For a more detailed review, we refer the reader to
textbooks such as the ones by Jaynes (2003), Robert (1994), Berger (1985),
Davidson and MacKinnon (1993), or Bernardo and Smith (2000).

There are a number of reasons for measuring model performance in terms
of the likelihood. One of these reason is that Bayesian logic implies that the
probability of a model given observed data is proportional to the likelihood;
another one is that the likelihood provides an optimal model selection criterion
in the sense of the Neyman-Pearson lemma.

Measuring model performance by means of the likelihood is closely related
to the likelihood principle, which states that the information provided be
an observation about a model is entirely contained in the likelihood of the
model. This principle is equivalent to the conjunction of the sufficiency and
the conditionality principle.

There are also decision-theoretic arguments that underpin model perfor-
mance measurement via likelihood. This type of argument is, of course, the
main focus of this book. Therefore, we will explore the decision-theoretic ap-
proach to likelihood at various places. In this section, we will do so in the

2See DeLong et al. (1988).
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setting of a horse race gambler who maximizes his expected wealth growth
rate. decision makers with more general risk preferences will be considered in
later chapters.

First, we will introduce and discuss the likelihood in the context of discrete
unconditional probabilities, and subsequently we will generalize to conditional
probabilities and modify it for the case of probability densities.

6.2.1 Definition of Likelihood

We consider a random variable Y that can take values in a finite set Y and
a probability measure p for this random variable.

Definition 6.1 (Likelihood for unconditional probabilities) The likelihood of
a probability measure p, given the set D = {y1, ..., yN} of N independent
observations for Y , is given by

LD(p) =

N
∏

i=1

pyi
. (6.6)

It is straightforward to generalize the likelihood to observations that are
not necessarily independent. However, the above definition is general enough
for the methods we shall discuss in this book.

Definition 6.2 (Log-likelihood ratio for unconditional probabilities) The log-
likelihood ratio of the measures p(1) and p(2), given the set D = {y1, ..., yN} of
N independent observations for Y corresponding to the empirical probability
measure (relative frequencies) p̃, is given by

l
(

p(1), p(2)
)

= log

(

LD
(

p(2)
)

LD
(

p(1)
)

)
1
N

=
∑

y∈Y
p̃y log

(

p
(2)
y

p
(1)
y

)

. (6.7)

For the sake of convenience, we have not indicated the dependence on the
observed data in our notation; it will always be clear from the context which
data we refer to. It would perhaps be more precise to call l the sample-averaged
log-likelihood ratio of an observation, or to define l with a prefactor N so
that it can be interpreted as the logarithm of the likelihood ratio on the set
of N observations. None of these modifications, however, would lead to any
substantial change; so we use the above definition, which is more convenient.

6.2.2 Likelihood Principle

Let us consider a family of parametric models, pθ, that is parameterized
by the vector θ. The likelihood principle (see Fisher (1922), Fisher (1959),
Barnard (1949), Birnbaum (1962), or Robert (1994) for a review) gives us
guidance as to how to compare models that belong to the same family and
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infer their parameters from data. It can be formulated as follows.

Likelihood principle: The information about the parameter vector θ con-
tained in the data D is entirely contained in the likelihood function LD

(

pθ
)

.

Moreover, if for two observed datasets, D1 and D2, LD1

(

pθ
)

= cLD2

(

pθ
)

, ∀θ
with some constant c, then the two datasets contain the same information
about θ.

The most commonly used implementation of the likelihood principle is the
maximum-likelihood method, which we shall discuss below, in Section 9.1.3.
In this method, one usually conjectures a family of parametric models, pθ, and
finds the parameter vector θ such that it maximizes the likelihood function
on a set of observations. This means that one implicitly assumes that models
are ranked according to their likelihood function, i.e., that one chooses the
likelihood as a model performance measure, at least for ranking models. We
note that this argument is restricted to parametric families of models, although
the usage of the likelihood as a model performance measure is not.

Birnbaum’s motivation of the likelihood principle

The likelihood principle itself might seem somewhat ad hoc; however, it can
be related to the following more basic principles.

Sufficiency principle: Two observations, y1 and y2, that lead to the same
value of a sufficient statistic, T , i.e., with T (y1) = T (y2), lead to the same
inference on the parameter vector θ. Here, a sufficient statistic is a function
of Y such that, if Y has the probability distribution pθ, the probabilities
of Y given T (Y ) are independent of θ. Intuitively, a sufficient statistic, if it
exists, contains all the information about the parameter vector θ that can be
extracted from the data.

Conditionality principle: If two experiments, E1 and E2, are available and
one of these experiments is selected randomly, the resulting inference on the
parameter vector θ should only depend on the actually selected experiment.

These two principles are plausible and generally accepted, and they lead to
the likelihood principle, as the following theorem states.

Theorem 6.1 (Equivalence result from Birnbaum (1962)) The likelihood
principle is equivalent to the conjunction of the sufficiency and the condi-
tionality principles.

Proof: (We follow the logic of the proof of Theorem 1.3.8 from Robert (1994)
here.) We first prove that the conjunction of the sufficiency and the condi-
tionality principle implies the likelihood principle. To this end, let us denote
by E∗ the sequential experiment of first picking j with probability πj and
then executing Ej. Furthermore, we denote by e(Ej , yj) the evidence provided
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by the outcome yj of the experiment Ej and by e(E∗, (j, yj)) the evidence
provided by the outcome (j, yj) of the experiment E∗. In this notation, the
conditionality principle can be formulated as

e(E∗, (j, yj)) = e(Ej , yj) , j = 1, 2 . (6.8)

Next, we consider two outcomes y0
1 and y0

2 of the experiments E1 and E2,
respectively, with the property

Ly0
1

(

pθ
)

= cLy0
2

(

pθ
)

, ∀θ , (6.9)

and we define the function

T (j, yj) =

{

(1, y0
1) if j = 2 and y2 = y0

2

(j, yj) otherwise.
(6.10)

This function defines a sufficient statistic for the experiment E∗. In order
to see this, we denote by Y ∗ the outcome of E∗, and compute P (Y ∗ =
(j, yj)|T (Y ∗) = t). We obtain the following

(i) If t 6= (1, y0
1),

Ppθ (Y ∗ = (j, yj)|T (Y ∗) = t) =

{

1 if t = (j, yj)
0 otherwise

(by (6.10)) ,

and,

(ii) if t = (1, y0
1), under the probabilities pθ for each experiment,

Ppθ (Y ∗ = (j, yj)|T (Y ∗) = t) =







cπ1

cπ1+π2
if (j, yj) = (1, y0

1)
π2

cπ1+π2
if (j, yj) = (2, y0

2)

0 otherwise

(by (6.9) and (6.10)),

which is independent of θ. Hence, T is a sufficient statistic for the experiment
E∗.

The sufficiency principle, in conjunction with (6.10), then implies that

e(E∗, (1, y0
1)) = e(E∗, (2, y0

2)) . (6.11)

Combining this equation with (6.8), we obtain

e(E1, y
0
1) = e(E2, y

0
2) . (6.12)

Hence, any outcomes y0
1 and y0

2 of the experiments E1 and E2, for which (6.9)
holds, provide the same evidence about θ. This is the likelihood principle,
i.e., the conjunction of the sufficiency and the conditionality principle implies
the likelihood principle. So we have proved that part of theorem that is the
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most important for our ends, which is to motivate the likelihood as a model
performance measure.

That the likelihood principle implies the conditionality principle follows
from the fact that the likelihood functions corresponding to (i, yj) and yj

are proportional to each other. That the likelihood principle implies the suffi-
ciency principle follows from the factorization theorem (for more details, see
for example, Robert (1994), Section 1.3). 2

Bayesian motivation of the likelihood principle

The Bayesian framework provides an alternative to the classical approach to
estimating parameters of a probabilistic model. We will discuss this approach
in Section 9.3, and refer the reader to that section or to the textbooks by
Bernardo and Smith (2000), Robert (1994), Jaynes (2003), or Gelman et al.
(2000) for a more comprehensive review. Here, we only state the main ideas of
the Bayesian approach and shall see how it leads to the likelihood as a model
performance measure.

In the Bayesian framework, we assume that the parameter vector, θ, of
a probability measure, is a random variable, the probability distribution of
which needs to be estimated. Before we have observed the data we would like
to base our inference on, we perceive the so-called prior probability measure,
P (θ), for θ. This probability measure reflects the knowledge about θ we have
prior to analyzing the data. After having seen the data, we can derive, using
Bayes’ law, the so-called posterior distribution, which gives the probability
P (θ|D) of observing the parameter value θ given the observed data D (if θ is
continuous, P (θ|D) is a conditional probability density). By Bayes’ rule, we
obtain

P (θ|D) =
P (θ)P (D|θ)

P (D)

∝ P (θ)P (D|θ) ,
where by ‘∝’ we mean that equality holds up to a θ-independent proportion-
ality factor. If we assume that the data are sampled from a member of the
family of parametric model, pθ, we have

P (θ|D) ∝ P (θ)LD
(

pθ
)

,

where LD is given by Definition 6.1.
If we assume furthermore that the prior probability measure is uniform, then

the probability of a parameter-vector value θ is proportional to the likelihood.
Hence, if we compare models within the family of models of the form pθ, we
measure their relative probabilities by their likelihood ratio. So, if we identify
a model’s performance with the probability of the model, the likelihood ratio
is implicitly used as a relative model performance measure. In the case of a
nonuniform prior measure, this statement is not true anymore; however, the
likelihood of a model still affects its probability.
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6.2.3 Likelihood Ratio and Neyman-Pearson Lemma

The likelihood ratio also plays an important role in statistical testing.
This role derives from the Neyman-Pearson lemma (see Neyman and Pearson
(1933)), which states that the likelihood ratio provides an optimal decision
criterion for model selection tests. In what follows, we explain this result in
more detail. Our exposition is close to the one from Cover and Thomas (1991),
Section 12.7.

Suppose we have data, D, which are generated by the probability measure
p, and we have two candidate models, p(1) and p(2), that might explain the
data. So we consider the following two hypotheses.

H1 : p = p(1) , and

H2 : p = p(2) .

When we design a statistical test, we are interested in the probabilities of the
two possible errors (type I and type II):

α = P (H2 accepted|H1 true) , and

β = P (H1 accepted|H2 true) .

Ideally, we would like to find a test that minimizes the probabilities of both
errors. However, there is a trade-off: decreasing one of the error probabilities
usually increases the other one. All we can hope for is a test that minimizes
one of the error probabilities under a given upper bound of the other error
probability. As the following lemma states, the likelihood ratio test has this
property.

Theorem 6.2 (Neyman-Pearson lemma) Let D = {y1, ..., yN} be indepen-
dent observations of a random variable Y ∈ Y with probability measure p. Let
R denote a decision region for the following statistical test: accept the hypoth-
esis H1 : p = p(1) if D ∈ R and accept the hypothesis H2 : p = p(2) if D /∈ R;
and let

αR = P (H2 accepted|H1 true) = P (1) (D /∈ R) , and (6.13)

βR = P (H1 accepted|H2 true) = P (2) (D ∈ R) , (6.14)

where P (i)(...) denotes the probability of an event under the assumption that
p = p(i), denote the error probabilities associated with this test. For t ≥ 0, we
define the decision region

A(t) =

{

D :
LD
(

p(1)
)

LD
(

p(2)
) > t

}

, (6.15)

in Y×N . Let B 6= A(t) be another decision region in Y×N . Then, αB ≤ αA(t)

implies βB ≥ βA(t), and, βB ≤ βA(t) implies αB ≥ αA(t).
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Proof: (We follow the logic of the proof of Theorem 12.7.1 from Cover and
Thomas (1991) here.) For all D ∈ Y×N , we have

[

IA(t)(D) − IB(D)
]

[

LD
(

p(1)
)

− tLD
(

p(2)
)]

≥ 0 ,

which can be seen by separately considering the cases D ∈ A(t) and D /∈ A(t)
and using (6.15). Inserting LD

(

p(i)
)

= P (i)(D), multiplying out and summing
over D, we obtain

0 ≤
∑

D∈Y×N

IA(t)(D)
[

P (1)(D) − tP (2)(D)
]

−
∑

D∈Y×N

IB(D)
[

P (1)(D) − tP (2)(D)
]

≤
[

P (1)(A(t)) − tP (2)(A(t))
]

−
[

P (1)(B) − tP (2)(B)
]

≤
[

(1 − αA(t)) − tβA(t)

]

− [(1 − αB) − tβB ] (by (6.13) and (6.14))

≤ t(βB − βA(t)) − (αA(t) − αB) .

The theorem follows from this equation and t ≥ 0. 2

Theorem 6.2 states that we cannot simultaneously lower the probabilities
of both types of error below those of the likelihood ratio test, defined by
the decision region A(t). Therefore, it is optimal in some sense to choose the
likelihood ratio as a decision criterion when we have to decide between two
models, i.e., rank model performance according to the likelihood ratio.

6.2.4 Likelihood and Horse Race

In order to give a first decision-theoretic motivation for using the likelihood
as a model performance measure, we consider a Kelly investor in a horse race
with odds ratios O. We follow closely the logic from Cover and Thomas (1991),
Chapter 6. Later in this book, we shall revisit the horse race gambler, and
consider more general risk preferences than the ones of the Kelly investor.

We have seen in Theorem 3.1 in Section 3.3 that a Kelly investor who
believes the model p chooses the (expected-wealth-growth-rate optimal) allo-
cation

b∗y(p) = py . (6.16)

Let us evaluate the model p in terms of the test set-averaged wealth growth
rate resulting from our investor’s optimal strategy, which, according to Defi-
nition 3.5, is given by

W (b∗(p), p̃) =
∑

y∈Y
p̃y log(b∗y(p)Oy)

=
∑

y∈Y
p̃y log(pyOy) (by (6.16)) , (6.17)
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where p̃ denotes the empirical probabilities (relative frequencies) on the test
set. Consistent with the above performance measure, we evaluate the relative
performance of the two models, p(1) and p(2), by means of

W
(

b∗
(

p(2)
)

, p̃
)

−W
(

b∗
(

p(1)
)

, p̃
)

=
∑

y∈Y
p̃y[log(p(2)

y Oy)] (6.18)

−
∑

y∈Y
p̃y[log(p(1)

y Oy)]

=
∑

y∈Y
p̃y log

(

p
(2)
y

p
(1)
y

)

= l
(

p(1), p(2)
)

(6.19)

(by Definition 6.2) ,

i.e., by means of the log-likelihood ratio between the two models. So (6.20)
gives a decision-theoretic motivation for the log-likelihood ratio as a model
performance measure. We will revisit and generalize the above logic in Chapter
8.

6.2.5 Likelihood for Conditional Probabilities and Probabil-
ity Densities

So far we have discussed the likelihood for unconditional probabilities of
a discrete random variable Y . In this section, we generalize this concept to
conditional probabilities and adapt it to probability densities.

Conditional probabilities

We consider the random variables X and Y with state spaces X and Y,
respectively, and a conditional probability measure p = {py|x , x ∈ X , x ∈
X}.

Definition 6.3 (Likelihood for conditional probabilities) The likelihood of a
conditional probability measure p, given the set D = {((x1, y1), ..., (xN, yN)}
of N independent observations for (X, Y ), is given by

LD(p) =

N
∏

i=1

pyi|xi
. (6.20)

Definition 6.4 (Log-likelihood ratio for conditional probabilities) The log-
likelihood ratio of the conditional probability measures p(1) and p(2), given
the set D = {((x1, y1), ..., (xN, yN)} of N independent observations for (X, Y )
corresponding to the empirical joint probability measure (relative frequencies)
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p̃, is given by

l
(

p(1), p(2)
)

= log

(

LD
(

p(2)
)

LD
(

p(1)
)

) 1
N

=
∑

y∈Y

∑

x∈X
p̃x,y log





p
(2)
y|x

p
(1)
y|x



 . (6.21)

We will give a decision-theoretic interpretation of the log-likelihood ratio
for conditional probabilities in Section 8.3.

Probability densities

In the case of a continuous random variable Y with an unconditional (condi-
tional) probability density p, we define the likelihood by the same equation
as in Definition 6.1 (Definition 6.3), and the log-likelihood ratio by the same
equation as in Definition 6.2 (Definition 6.4). We will give a decision-theoretic
interpretation of the log-likelihood ratio for probability densities in Section
8.4.

6.3 Performance Measurement via Loss Function

In this section, we briefly review the main ideas behind measuring model
performance by means of a loss function. For an in-depth discussion of this
topic, we refer the reader to Robert (1994) or Berger (1985).

The concept of a loss function is a useful tool that can be used to evaluate
the performance of a parametric model pθ. In the context of model evaluation,
a loss function is usually defined as a function Λ that assigns a loss, i.e., a
positive number, to a pair (θ, θ̂), where θ is a parameter (vector) and θ̂ is a

parameter estimate. The value Λ(θ, θ̂) can be viewed as the loss incurred by

a model builder who estimates the model parameter by θ̂, i.e., who believes

the model pθ̂, in a world that can be described by pθ.
In practical applications, it is often not obvious what the appropriate loss

function should be. For this reason, many practitioners resort to generic loss
function such as

(i) the quadratic loss

Λ(θ, θ̂) = ‖θ − θ̂‖2 ,

where ‖...‖ denotes the quadratic norm of a vector,

(ii) the absolute error loss (for one-dimensional θ)

Λ(θ, θ̂) = |θ− θ̂| ,
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(iii) the relative entropy

Λ(θ, θ̂) = D
(

pθ
∥

∥ pθ̂
)

(see Definition 2.7 for D), or

(iv) the Hellinger distance

Λ(θ, θ̂) =
1

2
Epθ











√

pθ̂

pθ
− 1





2





.

From a Bayesian point of view, an appropriate performance measure for the

model pθ̂ is the posterior expected loss,

Epost[L|D, θ̂] =

∫

θ

Λ(θ, θ̂)P (θ|D)dθ . (6.22)

Here D is the observed dataset and P (θ|D) =
LD(pθ)P(θ)

P(D) is the posterior

probability measure of θ, where LD is the likelihood from Definition 6.1.
Since the choice of a parameter estimate θ̂ can be viewed as a decision by

the model builder, the above approach is decision-theoretic in nature, and
the loss function can be identified with the negative of a utility function.
We shall not discuss the above loss-function approach further, but rather
focus on a somewhat different, but related, decision-theoretic approach. The
latter approach, which we shall introduce in Chapter 8, differs from the above
approach in the following respects.

(i) The performance measure from Chapter 8 differs from the posterior
expected loss, (6.22), in that it is not restricted to parametric models.

(ii) The performance measure from Chapter 8 is an average over a test
dataset as opposed to an average over a theoretical distribution. This
seems to be the most natural choice in a framework that is not restricted
to parametric models.

(iii) In Chapter 8, we specify the loss function as the utility loss experienced
by someone who uses the model to invest in a horse race.

6.4 Exercises

1. Show that if
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(i) nonenemy aircraft signals are drawn from a population that is dis-
tributed normally with mean 0 and variance 1, and

(ii) enemy aircraft signals are drawn from a population that is dis-
tributed normally with mean µ and variance σ2,

then the ROC curve is given by

ROC(x) = N

(

µ+
N−1(x)

σ

)

, for 0 < x < 1, (6.23)

where N(·) is the cumulative standard normal distribution function.

2. Let pθ be the family of normal distributions for the one-dimensional ran-
dom variable Y . Compute the posterior expected loss for the estimator
θ̂, assuming a Gaussian prior for θ and a single observation y′.

3. Let us define the Bayes estimator as the estimator θ̂ that minimizes the
posterior expected loss for a given observed dataset D. Prove that, for
a quadratic loss function, the Bayes estimator is the posterior mean.

4. Derive the maximum likelihood estimate for a normal probability density
function.

5. Construct an example where the Bayesian logic gives higher posterior
probabilities to models with a lower likelihood than to models with a
higher likelihood.



Chapter 7

A Utility-Based Approach to
Information Theory

Information theory provides powerful tools that have been successfully applied
in a great variety of diverse fields, including statistical learning theory, physics,
communication theory, probability theory, statistics, economics, finance, and
computer science (see, for example, Cover and Thomas (1991)). As we have
seen in Chapter 3, the fundamental quantities of information theory, such as
entropy and Kullback-Leibler relative entropy, can be interpreted in terms
of the expected wealth growth rate for a Kelly investor who operates in a
complete market. Alternatively, as we shall see below, one can describe these
information theoretic quantities in terms of expected utilities for an investor
with a logarithmic utility function.

In this chapter, we extend these interpretations and explore decision-
theoretic generalizations of the fundamental quantities of information theory
along the lines of Friedman and Sandow (2003b) and Friedman et al. (2007).
Our discussion takes place in the discrete setting. Slomczyński and Zastaw-
niak (2004) and Harańczyk et al. (September, 2007) discuss related ideas in a
more general setting.

We shall see that some of the quantities and results of classical information
theory, discussed in Section 2.3, have more general analogs. U -entropy and
relative U -entropy, generalizations of entropy and Kullback-Leibler relative
entropy, respectively, are particularly important because they share a great
number of properties with entropy and Kullback-Leibler relative entropy (for
example, a form of the Second Law of Thermodynamics). Moreover, U -entropy
and relative U -entropy, as well as the more general (U,O)-entropy and relative
(U,O)-entropy, lend themselves to framing statistical learning problems that
are robust, in a sense to be made precise later (Chapter 10). Later in this
book, we shall also use ideas from this chapter to describe model performance
measures (Chapter 8).

In Sections 7.1 to 7.3, we motivate and define decision-theoretic general-
izations of entropy and Kullback-Leibler relative entropy, the (U,O)-entropy
and relative (U,O)-entropy, respectively, and discuss various properties pos-
sessed by these quantities. In Section 7.4, we define U -entropy and relative
U -entropy and state a number of properties that generalize well-known results
from classical information theory.

155
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7.1 Interpreting Entropy and Relative Entropy in the
Discrete Horse Race Context

Theorems 3.2 and 3.3 from Section 3.4, restated below for convenience,
suggest that we can interpret entropy and Kullback-Leibler relative entropy,
respectively, in terms of the expected wealth growth rate for a certain type of
an investor who operates in the horse race setting.

Theorem 3.2 (from Section 3.4) A Kelly investor who knows that the horses
in a horse race win with the probabilities given by the measure p has the ex-
pected wealth growth rate

W ∗
p (p) = W ∗∗

p −H(p) , (7.1)

where
W ∗∗

p = Ep [logO] (7.2)

is the wealth growth rate of a clairvoyant investor, i.e., of an investor who
wins every bet.

Interpretation: From (7.1), we see that entropy, H(p), is the discrepancy
between

(i) the expected wealth growth rate of the clairvoyant investor, who attains
the growth rate W ∗∗

p , and

(ii) the expected wealth growth rate of the expected wealth growth rate
maximizing investor, who attains expected wealth growth rate W ∗

p (p).

Thus, entropy is the gap, in expected wealth growth rate, between a clairvoy-
ant and an expected wealth growth rate maximizing investor.

Theorem 3.3 (from Section 3.4) In a horse race where horses win with the
probabilities given by the measure p, the difference in expected wealth growth
rates between a Kelly investor who knows the probability measure p and a
Kelly investor who believes the (misspecified) probability measure q is given by

W ∗
p (p) −W ∗

p (q) = D(p‖q) . (7.3)

Interpretation: From (7.3), we see that Kullback-Leibler relative entropy,
D(p‖q), is the discrepancy between

(i) the expected wealth growth rate for an expected wealth growth rate
maximizing investor who believes and allocates according to the cor-
rectly specified probability measure, p, and
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(ii) the expected wealth growth rate for an expected wealth growth rate
maximizing investor who believes and allocates according to the mis-
specified probability measure, q.

Thus, Kullback-Leibler relative entropy is the gap, in expected wealth growth
rate, between the investor who allocates according to a correctly specified
probability measure and an investor who allocates according to a misspecified
measure.

7.2 (U,O)-Entropy and Relative (U,O)-Entropy for Dis-
crete Unconditional Probabilities

Before generalizing entropy and relative entropy, we recall the definition
of the expected wealth growth rate in the discrete unconditional horse race
setting, restated here for convenience:

Definition 3.5 (from Section 3.4) The expected wealth growth rate corre-
sponding to a probability measure p and a betting strategy b is given by

W (b, p) = Ep [log (b,O)] =
∑

y∈Y
py log(byOy) . (7.4)

Note that the expected wealth growth rate can be interpreted as the ex-
pected utility, for an investor with a logarithmic utility function. Thus the
interpretations of Section 7.1 can be expressed in terms of expected utility for
an investor with a logarithmic utility function.

Motivated by this interpretation, we shall define the (U,O)-entropy,
HU,O(p), to be the difference between

(i) the expected utility of the clairvoyant investor, who has expected utility
Ep[U(O)] =

∑

y pyU(Oy), and

(ii) the expected utility of the expected utility maximizing investor, who
has expected utility Ep[U(b∗(p), O)] =

∑

y pyU(b∗y(p)Oy).

Formally, we have:

Definition 7.1 ((U,O)-entropy) Given a utility function, U , a compatible
system of market prices, O, and a probability measure, p, the (U,O)-Entropy
is given by:

HU,O(p) = Ep[U(O)] −Ep[U(b∗(p), O)] (7.5)

=
∑

y

pyU(Oy) −
∑

y

pyU(b∗y(p)Oy), (7.6)

where the optimal allocation b∗(p) is with respect to the utility function, U .
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Thus, (U,O)-entropy is a measure of uncertainty, expressing the gap in
expected utility between an expected utility maximizing investor and a clair-
voyant. Entropy is a special case, where the investor has logarithmic utility.

Similarly, generalizing the interpretation below (7.3), we shall define the
relative (U,O)-entropy, DU,O(p‖q), to be the difference between

(i) the expected utility of the expected utility maximizing investor, betting
under the correctly specified probability measure, p, who has expected
utility Ep[U(b∗(p), O)] =

∑

y pyU(b∗y(p)Oy), and

(ii) the expected utility of the expected utility maximizing investor, betting
under the misspecified probability measure, q, who has expected utiltiy
Ep[U(b∗(q), O)] =

∑

y pyU(b∗y(q)Oy).

Formally, we have:

Definition 7.2 (Relative (U,O)-entropy) Given a utility function, U , a com-
patible system of market prices, O, and probability measures, p and q, the
relative (U,O)-entropy is given by:

DU,O(p‖q) = Ep[U(b∗(p), O)]− Ep[U(b∗(q), O)] (7.7)

=
∑

y

pyU(b∗y(p)Oy) −
∑

y

pyU(b∗y(q)Oy), (7.8)

where the optimal allocations b∗(p) and b∗(q) are with respect to the utility
function, U .

Thus, relative (U,O)-entropy is a measure of the discrepancy between proba-
bility measures, expressing the gap in expected utility between two investors,
one of whom allocates according to the correctly specified probability mea-
sure, with the other allocating according to a misspecified probability measure.
In the special case, where the investor has logarithmic utility, we obtain the
Kullback-Leibler relative entropy.

Throughout this section, and in the remainder of the book, whenever we
refer to a quantity involving the pair (U,O), we shall assume that the market,
the utility function, and associated probability measures are compatible in
the sense of Definitions 5.2, 5.5, 5.7, or 5.8 as appropriate.

7.2.1 Connection with Kullback-Leibler Relative Entropy

It so happens that relative (U,O)-entropy essentially reduces to Kullback-
Leibler relative entropy for a logarithmic family of utilities. In this case, re-
markably, the odds ratios drop out of the relative entropy. Moreover, this is
the most general family of utility functions for which this is so. We summarize
this in the following theorem.
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Theorem 7.1 The relative (U,O)-entropy, DU,O(p||q), is independent of the
odds ratios, O, for any candidate model p and prior measure, q, if and only
if the utility function, U , is a member of the logarithmic family

U(W ) = γ1 log(W − γ) + γ2 , (7.9)

where γ1 > 0, γ2 and γ < B are constants. In this case,

DU,O(p||q) = γ1Ep

[

log

(

p

q

)]

= γ1D(p||q) . (7.10)

Proof: It follows from Lemma 5.1, (5.18), and Definition 3.2 that

λ =
γ1

1 − γ
B

, (7.11)

and from Lemma 5.1, (5.19), that the optimal betting weights are given by

b∗y(q) =
γ1

λ
qy +

γ

Oy
. (7.12)

Inserting (7.11) into (7.12), we obtain

b∗y(q) = qy

[

1 − γ

B

]

+
γ

Oy
. (7.13)

From (7.13), we have

U(b∗y(q)Oy) = γ1 log qy + γ1 log
(

Oy

[

1 − γ

B

])

+ γ2 . (7.14)

By inserting this expression into Definition 7.2 one can see that the relative
(U,O)-entropy reduces to (7.10).

For the converse, see Friedman and Sandow (2003a), Theorem 3. 2

It follows that relative (U,O)-entropy reduces, up to a multiplicative con-
stant, to Kullback-Leibler relative entropy, if and only if the utility is a mem-
ber of the logarithmic family (7.9). We note that the odds ratios, O, drop
out of both (U,O)-entropy and relative (U,O)-entropy in the special case of
logarithmic family utility functions. The odds ratios do not drop out for more
general utility functions. This will have important implications. In cases where
the odds ratios are not known with certainty, it may make sense for the model
builder or model performance assessor to approximate his utility function with
a utility from the logarithmic family. We shall elaborate on these points in
Chapters 8 and 10.

7.2.2 Properties of (U,O)-Entropy and Relative (U,O)-
Entropy

The Kullback-Leibler relative entropy satisfies the information inequality,
that is, the relative entropy between two probability measures is nonnegative
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and is zero if and only if the measures are the same. We shall now show that
(U,O)-relative entropy also has this property. Note that since

b∗(p) = arg max
{b:

P

y by=1}

∑

y

pyU(byOy), (7.15)

we must have
∑

y

pyU(byOy) ≤
∑

y

pyU(b∗y(p)Oy) (7.16)

for general b, so, in particular,

∑

y

pyU(b∗y(q)Oy) ≤
∑

y

pyU(b∗y(p)Oy), (7.17)

with equality for q = p, so

∑

y

pyU(b∗y(p)Oy) −
∑

y

pyU(b∗y(q)Oy) ≥ 0, with equality for q = p. (7.18)

Note that 0 ≤ HU,O(p) ≤∑y py

(

U(Oy) − U
(

Oy

m

))

, where m = |Y|. The

first inequality follows from the fact that b∗(p) ≤ 1 and U is monotone increas-
ing. The first inequality is tight. To see this, note that in the deterministic
case m = 1, b∗(p) = 1 and the right hand side of (7.6) is zero. To prove the
second inequality, note that from (7.16), with q = 1

m , we have

∑

y

pyU

(Oy

m

)

≤
∑

y

pyU(b∗y(p)Oy). (7.19)

Substituting into (7.6), we obtain the second inequality. The second inequality
is not tight. Note that for U(W ) = log(W ), we recover the entropy and
Kullback-Leibler relative entropy.
HU,O(p) and DU,O(p‖q) have additional important properties summarized

in the following theorem.

Theorem 7.2 The relative (U,O)-entropy, DU,O(p‖q), and the (U,O)-
entropy, HU,O(p), have the following properties

(i) DU,O(p‖q) is a strictly convex function of p,

(ii) DU,O(p‖q) ≥ 0 with equality if and only if p = q (information inequality),

(iii) HU,O(p) ≥ 0, and

(iv) HU,O(p) is a strictly concave function of p.
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Proof: For property (i), we first show convexity.1 Note that by Definition
7.2,

DU,O(p‖q) = sup
b

(Ep[U(b, O)]−Ep[U(b∗(q), O)]) . (7.20)

That is, DU,O(p‖q) is the supremum over a set of functions that are linear in
p. By Lemma 2.2, DU,O(p‖q) is convex in p.

Suppose that DU,O(p‖q) is not strictly convex in p. Then there exists a pair
p1 6= p2 and a µ ∈ (0, 1) such that

DU,O(µp1 + (1 − µ)p2‖q) = µDU,O(p1‖q) + (1 − µ)DU,O(p2‖q). (7.21)

Equivalently,

∑

y

(µp1 + (1 − µ)p2)yU(b∗y(µp1 + (1 − µ)p2)Oy)

−
∑

y

(µp1 + (1 − µ)p2)yU(b∗y(q)Oy)

= µ

(

∑

y

p1yU(b∗y(p1)Oy) −
∑

y

p1yU(b∗y(q)Oy))

)

(7.22)

+ (1 − µ)

(

∑

y

p2yU(b∗y(p2)Oy) −
∑

y

p2yU(b∗y(q)Oy))

)

.

Canceling terms involving q, we obtain

∑

y

(µp1 + (1 − µ)p2)yU(b∗y(µp1 + (1 − µ)p2)Oy)

= µ
∑

y

p1yU(b∗y(p1)Oy) + (1 − µ)
∑

y

p2yU(b∗y(p2)Oy).

By definition of b∗ we have

µ
∑

y

p1yU(b∗y(p1)Oy) ≥
∑

y

µp1yU(b∗y(µp1 + (1 − µ)p2)Oy) (7.23)

and

(1−µ)
∑

y

p2yU(b∗y(p2)Oy) ≥
∑

y

(1−µ)p2yU(b∗y(µp1 +(1−µ)p2)Oy). (7.24)

For equality to hold in (7.22), we must have

∑

y

p1yU(b∗y(p1)Oy) =
∑

y

p1yU(b∗y(µp1 + (1 − µ)p2)Oy) (7.25)

1Key ideas for the following proof were provided by Huang (2003).
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and

∑

y

p2yU(b∗y(p2)Oy) =
∑

y

p2yU(b∗y(µp1 + (1 − µ)p2)Oy). (7.26)

The problem

sup
{b:

P

y by=1}

∑

y

p1yU(by(p1)Oy) (7.27)

is a strictly concave problem that has a unique solution, by Theorem 2.8.
Given the equality in (7.25) and the uniqueness of the solution to the opti-
mization problem (7.27), which implies that there can be only one argument
that maximizes both sides, we must have

b∗y(p1)Oy = b∗y(µp1 + (1 − µ)p2)Oy, ∀y, (7.28)

which, by Lemma 5.1, implies that

(U ′)−1

(

λ1

p1yOy

)

= (U ′)−1

(

λ′

(µp1 + (1 − µ)p2)yOy

)

, ∀y, (7.29)

where λ′ denotes the Lagrange multiplier for the optimal allocation under the
probability measure µp1 + (1 − µ)p2. The strict concavity of U implies that
(U ′)−1 is a strictly monotone function, so we must have

p1y =
λ1

λ′
(µp1 + (1 − µ)p2)y, ∀y. (7.30)

Summing over y, we see that λ′ = λ1 and µ = 1, contradicting the assumption
that µ ∈ (0, 1). Thus, we have shown that DU,O(p‖q) is strictly convex in p.

For property (ii), see (7.18), which indicates that DU,O(p‖q) is nonnegative
and that DU,O(p‖q) = 0, if p = q. The fact that DU,O(p‖q) = 0, only if p = q
follows from property (i) and Theorem 2.8. We showed that property (iii)
is true in the discussion following Definition 7.1. Property (iv) follows from
property (ii) and the fact that the sum of HU,O(p) and DU,O(p‖q) is linear in
p. 2

Thus, from Theorem 7.2, we see that the relative (U,O)-entropy and (U,O)-
entropy, which include relative entropy and entropy, respectively, as special
cases, preserve a number of important properties of relative entropy and en-
tropy.

7.2.3 Characterization of Expected Utility under Model
Misspecification

Suppose that an investor operates in a horse race environment described
by the probability measure p, but allocates so as to maximize his expected
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utility under the misspecified probability measure, q. It is easy to show (see
Exercise 2) that

Ep[U(b∗(q), O)] = Ep[U(O)]−HU,O(p) −DU,O(p‖q); (7.31)

that is, the expected utility that can be attained by such an investor can be
expressed as the expected utility that can be attained by a clairvoyant, minus
the expected utility loss related to the uncertainty (expressed by entropy),
minus the expected utility loss from allocating according to a misspecified
measure.

7.2.4 A Useful Information-Theoretic Quantity

In Chapter 10, when we shall formulate optimization problems to estimate
probabilistic models, we shall see that such problems can be elegantly ex-
pressed in terms of the following information-theoretic quantity, the gain in
expected utility under the probability measure p from allocating according to
measure p2, rather than p1.

Definition 7.3

GU,O(p2, p1; p) =
∑

y

py[U(b∗y(p
2)Oy) − U(b∗y(p1)Oy)]. (7.32)

We note that it is possible to express DU,O(p||q) in terms of G:

DU,O(p‖q) =
∑

y

pyU(b∗y(p)Oy) −
∑

y

pyU(b∗y(q)Oy) (7.33)

= GU,O(p, q; p). (7.34)

7.3 Conditional (U,O)-Entropy and Conditional Relative
(U,O)-Entropy for Discrete Probabilities

In this subsection, we (briefly) generalize the notions of conditional entropy
and conditional Kullback-Leibler relative entropy.

Using the same ideas and interpretations that we used to define the (U,O)-
entropy and relative (U,O)-entropy for discrete unconditional probabilities in
Section 7.2, we define these quantities for discrete conditional probabilities.

Definition 7.4 (Conditional (U,O)-entropy for discrete probabilities) Given
a utility function, U , and a system of market prices, O, the conditional (U,O)-
entropy is given by:

HU,O(py|x) =
∑

x

px

∑

y

py|xU(Oy|x) −
∑

x

px

∑

y

py|xU(b∗y|x(py|x)Oy|x).

(7.35)
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That is, the conditional (U,O)-entropy is the difference between the expected
utility that a clairvoyant could attain in a conditional horse race market gov-
erned by the conditional probability measure py|x, and the expected utility
that could be attained by an expected utility maximizing investor allocating
under the conditional probability measure py|x.

Definition 7.5 (Conditional relative (U,O)-entropy) Given a utility func-
tion, U and a system of market prices, O, the conditional relative (U,O)-
entropy is given by:

DU,O(py|x‖qy|x) =
∑

x

px

∑

y

py|xU(b∗(py|x)Oy|x)

−
∑

x

px

∑

y

py|xU(b∗y|x(qy|x)Oy|x).

That is, the conditional relative (U,O)-entropy is the difference between

(i) the expected utility that could be attained in a conditional horse race
market governed by the conditional probability measure py|x when al-
location is computed according to the conditional probability measure
py|x, and

(ii) the expected utility that could be attained by an expected utility maxi-
mizing investor allocating under the misspecified conditional probability
measure qy|x.

HU,O(py|x) and DU,O(py|x‖qy|x) have important properties summarized in
the following theorem, which we state without proof.2

Theorem 7.3 The conditional relative (U,O)-entropy, DU,O(py|x‖qy|x), and
the conditional (U,O)-entropy, HU,O(py|x), have the following properties

(i) DU,O(py|x‖qy|x) ≥ 0 with equality if and only if p = q,

(ii) DU,O(py|x‖qy|x) is a strictly convex function of p,

(iii) HU,O(py|x) ≥ 0, and

(iv) HU,O(py|x) is a strictly concave function of p.

2The proof is analogous to the proof of Theorem 7.2.
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7.4 U-Entropy for Discrete Unconditional Probabilities

We have seen that DU,O(p‖q) ≥ 0 represents the expected gain in utility
from allocating under the “true” measure p, rather than allocating according
to the misspecified measure q under market odds O for an investor with utility
U . One of the goals of this chapter is to explore what happens when we set
qy equal to the homogeneous expected return measure of Definition 3.3,

qy =
B

Oy
, (7.36)

where B represents the value of the bank account of Definition 3.1. Much of
the material in this section can be found in Friedman et al. (2007), which
generalizes some results from Cover and Thomas (1991).

Readers familiar with finance will recognize qy as the risk neutral pricing
measure3 generated by the odds ratios. In finance, a risk neutral pricing mea-
sure is a measure under which the price of any contingent claim is equal to the
discounted (by the bank account) expectation of the payoff of the contingent
claim. In the horse race setting, there is only one such measure, given by (7.36).
We shall see in Chapter 10 that there are compelling reasons to consider this
case — statistical learning problems formulated under this specialization are
robust in a well-defined sense.

In this case, with qy equal to the homogeneous expected return measure of
Definition 3.3,

Oy =
B

qy
, (7.37)

and

DU, B
q
(p‖q) =

∑

y

pyU

(

B
b∗y(p)

qy

)

−
∑

y

pyU(B),

so

DU, B
q
(p‖q) =

∑

y

pyU

(

B
b∗y(p)

qy

)

− U(B). (7.38)

Thus, in this special case, DU, B
q
(p‖q) can be interpreted as the excess perfor-

mance from allocating according to the true measure p over the (risk-neutral)
measure q derived from the odds ratios.

3See, for example, Duffie (1996). We note that the risk neutral pricing measure generated
by the odds ratios need not coincide with any “real world” measure.
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Likewise, under (7.37), we have

HU,B
q
(p) =

∑

y

pyU

(

B

qy

)

−
∑

y

pyU

(

B
b∗y(p)

qy

)

=
∑

y

pyU

(

B

qy

)

−DU, B
q
(p‖q) − U(B).

In the special case where q is the uniform distribution, qy = 1
|Y| , which we

denote by 1
|Y| , we obtain

HU,|Y|B(p) =
∑

y

pyU (|Y|B) −DU,B|Y|

(

p‖ B|Y|

)

− U(B). (7.39)

For simplicity, we assume that B = 1 and U(B) = 0 from now on.4

7.4.1 Definitions of U-Entropy and Relative U-Entropy

Let
BY = {b :

∑

y∈Y
by = 1} . (7.40)

Motivated by (7.38) and the fact that

b∗ = arg max
b
Ep[U(b,O)], (7.41)

we make the following definition:

Definition 7.6 The relative U -entropy from the probability measure p to the
probability measure q is given by

DU (p‖q) = sup
b∈BY

∑

y

pyU

(

by
qy

)

. (7.42)

Motivated by (7.39), we define the U -entropy:5

Definition 7.7 The U -entropy of the probability measure p is given by

HU(p) = U(|Y|)−DU

(

p‖ 1

|Y|

)

. (7.43)

4It is straightforward to develop the material below under more general assumptions.
5Harańczyk et al. (September, 2007) compare this definition of U -entropy in the discrete
setting with the definition of u-entropy in Slomczyński and Zastawniak (2004), which is
made in a more general setting; they note that U -entropy and u-entropy in the discrete
setting are related by monotone transformations.
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Of course, these specializations of (U,O)-entropy and relative
(U,O)-entropy inherit all of the properties stated in Section 7.2.2. It is easy
to show that for logarithmic utilities, they reduce to entropy and Kullback-
Leibler relative entropy, respectively; so these quantities are generalizations
of entropy and Kullback-Leibler relative entropy, respectively.

We see that the information-theoretic quantities that we have just defined
fall midway between the classical information-theoretic quantities and the
more general (U,O) quantities in terms of generality; we shall see below, in
Section 7.4.2 of this chapter, that they also fall midway between the classi-
cal information-theoretic quantities and the more general (U,O) quantities
in terms of their information-theoretic properties, since they share certain
“thermodynamic” properties with the entropy and relative entropy.

Before exploring these properties, we extend the above definitions to con-
ditional probability measures. To keep our notation simple, we use px and py

to represent the probability distributions for the random variables X and Y ,
and py|x to denote the conditional distribution for Y = y, given X = x. We
use HU(p) to represent the U -entropy for the random variable Y which has
probability measure p.

Definition 7.8 The conditional relative U -entropy from the probability mea-
sure p to the probability measure q is given by

DU (py|x‖qy|x) =
∑

x

pxDU (py|x‖qy|x)

=
∑

x

px sup
b(·|x)∈BY

∑

y

py|xU

(

by|x
qy|x

)

.

Definition 7.9 The conditional U -entropy from the probability measure p to
the probability measure q is given by

HU (Y |X) =
∑

x∈X
pxHU(Y |X = x)

= U(|Y|)−
∑

x∈X
px sup

{by|x:
P

y by|x=1,by|x>0,∀y}

∑

y

py|xU(|Y|by|x).

We note that we could have stated the preceding definitions as special
cases of conditional (U,O)-entropy and conditional relative (U,O)-entropy of
Sections 7.3.

The following definition generalizes mutual information.

Definition 7.10 The mutual U -information between the probability measures
p and q is defined as

IU (X; Y ) = DU (px,y‖pxpy). (7.44)
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Thus, the mutual information between X and Y is symmetric in X and Y and
captures the discrepancy between the joint distribution of X and Y and the
distribution that has marginal distributions, X and Y , where X and Y are
independent. When the X and Y are independent, the mutual information is
zero. When the joint distribution is far from independent in X and Y , the
mutual information is large. Thus, the greater the mutual information between
X and Y , the greater the amount of information that X contains about Y
and the greater the amount of information that Y contains about X.

7.4.2 Properties of U-Entropy and Relative U-Entropy

As a special case of Theorem 7.2, we have

Corollary 7.1 The relative (U,O)- entropy, DU (p‖q), and the (U,O)-
entropy, HU(p), have the following properties

(i) DU (p‖q) ≥ 0 with equality if and only if p = q,

(ii) DU (p‖q) is a strictly convex function of p,

(iii) HU(p) ≥ 0, and

(iv) HU(p) is a strictly concave function of p.

We now establish that many properties that hold for the classical quanti-
ties of information theory (but need not hold for (U,O)-entropy and relative
(U,O)-entropy) also hold in this more general setting.

Theorem 7.4 HU(Z|X, Y ) ≤ HU(Z|X) (extra conditioning information re-
duces entropy).

Proof: By definition,

HU(Z|X, Y ) =
∑

x,y

px,yHU (Z|X = x, Y = y) (7.45)

=
∑

x,y

px,y

(

U(|Z|) −DU

(

pz|x,y‖
1

|Z|

))

= U(|Z|) −
∑

x

px

∑

y

py|xDU

(

pz|x,y‖
1

|Z|

)

(7.46)

≤ U(|Z|) −
∑

x

pxDU

(

∑

y

py|xpz|x,y‖
1

|Z|

)

(7.47)

(by convexity of DU (·‖ 1
|Z| )) (7.48)

= U(|Z|) −
∑

x

pxDU

(

pz|x‖
1

|Z|

)

(7.49)

= HU(Z|X). 2 (7.50)
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That is, knowing the outcome of an additional random variable (Y , in addition
to X) can only reduce the uncertainty (entropy) of the random variable of
interest (Z). This idea is most simply stated in the following corollary.

Corollary 7.2 HU (Y |X) ≤ HU(Y ) (Conditioning reduces entropy)

Proof: The proof follows as a direct consequence of Theorem 7.4. 2

The next corollary shows that if we “further randomize” a random variable
X, by applying a random permutation T to X, the resulting random variable
TX has a U -entropy that is at least as large as the U -entropy of X.

Corollary 7.3 (Shuffles increase entropy). If T is a random shuffle (permu-
tation) of a deck of cards and X is the initial position of the cards in the deck
and if the choice of shuffle T is independent of X, then

HU(X) ≤ HU(TX) (7.51)

where TX is the permutation of the deck induced by the shuffle T.

Proof: We follow the proof sketched on page 48 of Cover and Thomas (1991).
First, notice that for any fixed permutation T = t, from the definition of HU ,
we have

HU(tX) = HU (X) (7.52)

(since we have only reordered the states, but we have not changed the prob-
abilities associated with the states). So

HU(TX) ≥ HU(TX|T )

(by Corollary 7.2)

=
∑

t

ptHU (TX|T = t)

=
∑

t

ptHU (tX)

(by (7.52))

= HU(X). 2

There are a number of important information theoretic results on Markov
chains and Markov processes, such as the second law of thermodynamics and
the data processing inequality (see Cover and Thomas (1991)); in the remain-
der of this section, we discuss some U -entropy generalizations of these results.
First, we define a Markov chain.

Definition 7.11 (Markov chain) The random variables X, Y , and Z form
a Markov chain in that order, denoted by X → Y → Z, if the conditional
distribution of Z depends only on Y and is independent of X.
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It then follows (see Exercise 6) from the definition of a Markov chain that
for the Markov chain X → Y → Z, the joint probability function of X, Y, and
Z satisfies

p(x, y, z) = p(x)p(y|x)p(z|y). (7.53)

From Theorem 7.4, we know that, in general, extra conditioning reduces
conditional U -entropy, i.e., that HU(Z|Y,X) ≤ HU (Z|Y ). As we now show,
this inequality is saturated if the random variables X, Y, Z form a Markov
chain X → Y → Z.

Theorem 7.5 If the random variables X, Y, Z form a Markov chain X →
Y → Z, then HU (Z|X, Y ) = HU(Z|Y ).

Proof:

HU(Z|X, Y ) =
∑

x,y

px,y

(

U(|Z|)−DU

(

pz|x,y‖
1

|Z|

))

= U(|Z|)−
∑

x,y

px,yDU

(

p(z|y)‖ 1

|Z|

)

(by the Markov property)

= U(|Z|)−
∑

y

pyDU

(

p(z|y)‖ 1

|Z|

)

= HU(Z|Y ). 2

That is, for a Markov chain X → Y → Z, additional conditioning of Z on X
(in addition to Y ) does not reduce the conditional U -entropy.

The next result shows that for a Markov chainX → Y → Z, the conditional
U -entropy that results from conditioning Z on X exceeds that obtained by
conditioning Z on Y .

Corollary 7.4 If the random variables X, Y, Z form a Markov chain X →
Y → Z, then HU (Z|X) ≥ HU(Z|Y ) and HU(X|Z) ≥ HU (X|Y ).

Proof: We prove the first inequality by noting that by Corollary 7.2,

HU (Z|X) ≥ HU(Z|X, Y ), (7.54)

and by Theorem 7.5,
HU (Z|X, Y ) = HU (Z|Y ). (7.55)

The second inequality follows from the fact that X → Y → Z is equivalent to
Z → Y → X. 2

Our next results pertain to interpretations of the second law of thermody-
namics. The idea here is that in an isolated system, the uncertainty, in some
sense, increases over time. Before stating such results precisely, we define a
discrete time stochastic process, a stationary process, and a Markov process.
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Definition 7.12 (Discrete stochastic process) A stochastic process is an in-
dexed sequence of random variables.

Example 7.1 Discrete time approximation to geometric Brownian motion.
We consider the stochastic process, S0, S1, . . . , for the end-of-day closing stock
prices for a particular stock, where

Sn+1 = Sn(1 + µ∆T + σ
√

∆Tεn), (7.56)

where εn ∼ N(0, 1), S0 is given, the drift and volatility parameters µ and σ
are known, and ∆T represents one trading day (in years) — usually taken to
be 1

252 , based on a year of 252 trading days.

Definition 7.13 (Stationary process) A stochastic process is stationary if for
any subset of the sequence of random variables, the joint distribution function
is invariant with respect to shifts of the index of the random variables, i.e., if

prob(X1 = x1, . . . , Xn = xn) = prob(Xk+1 = x1, . . . , Xk+n = xn), (7.57)

for every shift k and all x1, . . . , xn.

Example 7.2 For the discrete time geometric Brownian motion approxima-
tion of Example 7.1, the stochastic process Sn is not stationary, but the
stochastic process Sn+1

Sn
is stationary (see Exercise 8).

Definition 7.14 (Markov process) A stochastic process X1, . . . , Xn, . . . is a
Markov process if

prob(Xn+1 = xn+1 | Xn = xn, Xn−1, xn−1 . . . , X1 = x1)

= prob(Xn+1 = xn+1|Xn = xn),

for all x1, . . . , xn, xn+1.

If Xn is a stationary Markov process, then the U -entropy, HU (Xn), is con-
stant for all n. However, the conditional U -entropy, for a time horizon, n,
increases with n, for a stationary Markov process. This is a generalization
of one of the interpretations of the second law of thermodynamics stated in
Cover and Thomas (1991).

Corollary 7.5 (Second law of thermodynamics, I.) The conditional entropy
HU(Xn |X1) increases with n for a stationary Markov process.

Proof: The proof is essentially the same as that given on page 36 of Cover and
Thomas (1991). See Exercise 9. 2

We now address a different interpretation of the second law of thermody-
namics, formulated in terms of relative U -entropy.
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Theorem 7.6 (Second law of thermodynamics, II.) Let µn and µ′
n be two

probability distributions on the state space of a Markov process at time n,
and let µn+1 and µ′

n+1 be the corresponding distributions at time n+1. Then
DU (µn‖µ′

n) decreases with n.

Proof: Let the corresponding joint probability function be denoted by
p(xn, xn+1) and q(xn, xn+1) and let r(·|·) denote the probability transition
function for the Markov process. Then p(xn, xn+1) = p(xn)r(xn+1|xn) and
q(xn, xn+1) = q(xn)r(xn+1|xn).

DU (p(xn, xn+1) ‖ q(xn, xn+1))

= sup
b∈BX×X

∑

xn

∑

xn+1

p(xn, xn+1)U

(

b(xn, xn+1)

q(xn, xn+1)

)

= sup
b∈BX×X

∑

xn

p(xn)
∑

xn+1

r(xn+1|xn)U

(

b(xn, xn+1)

q(xn, xn+1)

)

≤ sup
b∈BX×X

∑

xn

p(xn)U





∑

xn+1

r(xn+1|xn)
b(xn, xn+1)

q(xn)r(xn+1|xn)





(Here, we have used Jensen’s inequality

and the fact that U is concave.)

= sup
b∈BX×X

∑

xn

p(xn)U

(
∑

xn+1
b(xn, xn+1)

q(xn)

)

≤ sup
b∈BX

∑

xn

p(xn)U

(

b(xn)

q(xn)

)

(since b(xn) =
∑

xn+1
b(xn, xn+1) ∈ BX )

= DU (p(xn)‖q(xn)).

By Theorem 7.7,

DU (p(xn, xn+1)‖q(xn, xn+1)) ≥ DU (p(xn+1)‖q(xn+1)), (7.58)

hence,

DU (p(xn)‖q(xn)) ≥ DU (p(xn, xn+1)‖q(xn, xn+1)) ≥ DU (p(xn+1)‖q(xn+1)).

2

We express another interpretation of the second law of thermodynamics,
formulated in terms of the stationary distribution of a Markov process.

Corollary 7.6 (Second law of thermodynamics, III.) The relative U -entropy
DU (µn‖µ) between a distribution µn on the state space of a Markov process at
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time n and a stationary distribution µ of the same Markov process decreases
with n.

Proof: This is a special case of Theorem 7.6, where µ′
n = µ for any n. 2

Specializing to the case where the uniform distribution is a stationary dis-
tribution on the state space of a Markov process, we obtain another interpre-
tation of the second law of thermodynamics.

Corollary 7.7 (Second law of thermodynamics, IV.) If the uniform distribu-
tion 1

|X | is a stationary distribution on the state space of a Markov process,

then the entropy HU (µn) increases with n.

Not all of the results that hold for relative entropy hold for relative U -
entropy. In general, the chain rule for relative U -entropy does not hold, i.e.,

DU (px,y‖qx,y) 6= DU (px‖qx) +DU (py|x‖qy|x). (7.59)

However, we do have the following two inequalities.

Theorem 7.7

(i) DU (px‖qx) ≤ DU (px,y‖qx,y), and

(ii) DU (py|x‖qy|x) ≤ DU (px,y‖qx,y).

Proof: By definition,

DU (px,y‖qx,y) = sup
b∈BX×Y

∑

x,y

px,yU

(

bx,y

qx,y

)

(7.60)

≥ sup
b∈BX

∑

x,y

px,yU

(

bxqy|x
qxqy|x

)

(7.61)

(since bxqy|x ∈ BX×Y) (7.62)

= sup
b∈BX

∑

x

px

∑

y

py|xU

(

bx
qx

)

(7.63)

= DU (px‖qx) (7.64)

and

DU (px,y‖qx,y) = sup
b∈BX×Y

∑

x,y

px,yU

(

bx,y

qx,y

)

(7.65)

= sup
b∈BX×Y

∑

x

px

∑

y

py|xU

(

bx,y

qx,y

)

(7.66)

≥
∑

x

px sup
by|x∈BY

∑

y

py|xU

(

by|xqx

qy|xqx

)

(7.67)

(since b̃x,y = by|xqx ∈ BX×Y) (7.68)

= DU (py|x‖qy|x). 2 (7.69)
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We have already discussed, in Corollary 7.5, Theorem 7.6, Corollary 7.6, and
Corollary 7.7, various interpretations of the second law of thermodynamics, as
our horizon recedes into the future. We now discuss an increase of a different
type of uncertainty — we now show that more refined horse races have higher
relative U -entropies.

Theorem 7.8 (More refined horse races have higher relative U -entropies) Let
τ : X → Y be any onto function and pτ

y , q
τ
y be the induced probabilities on Y,

i.e.,

pτ
y =

∑

{x:τx=y}
px, (7.70)

and
qτ
y =

∑

{x:τx=y}
qx. (7.71)

Then

DU (pτ
y‖qτ

y) ≤ DU (px‖qx). (7.72)

Proof:

DU (pτ
y‖qτ

y ) = sup
b∈BY

∑

y

pτ
yU

(

by
qτ
y

)

(7.73)

= sup
b∈BY

∑

y





∑

{x:τx=y}
px



U

(

by
∑

{x:τx=y} qx

)

. (7.74)

Define b̃x =
qxby

P

{x′ :τ(x′)=y} q(x′)
. Then b̃x ∈ BX and

∑

y





∑

{x:τx=y}
px



U

(

by
∑

{x:τx=y} qx

)

=
∑

x

pxU

(

b̃x
qx

)

(7.75)

≤ DU (px‖qx). (7.76)

2

Theorem 7.8 can also be regarded as a special case of Theorem 7.7, part
(i).

We shall end this section with a statement of a generalized version of another
of the pillars of information theory: the data processing inequality, which is
expressed in terms of the mutual information of Definition 7.10. The data
processing inequality tells us that for the Markov chain X → Y → Z, the
mutual information between Y and X exceeds the mutual information of
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the “downstream” Z and X. A corollary tells us that no transformation of
the variable Y will increase the information that we can derive about X.
Before stating the data processing inequality, we state and prove the following
Theorem.

Theorem 7.9 The mutual information defined in Definition 7.10 has the fol-
lowing properties:

(i) IU (X; Y ) = IU (Y ;X), and

(ii) IU (X; Y ) ≤ IU (X; Y, Z).

Proof: (i) is obvious. To prove (ii), note that by definition

IU (X; Y ) = sup
b∈BX×Y

∑

x,y

px,yU

(

bx,y

pxpy

)

(7.77)

= sup
b∈BX×Y

∑

x,y,z

px,y,zU

(

bx,ypz|y
pxpy,z

)

(7.78)

≤ sup
b∈BX×Y×Z

∑

x,y,z

px,y,zU

(

bx,y,z

pxpy,z

)

(7.79)

= IU (X; Y, Z). (7.80)

2

We now state and prove a relative U -entropy generalized version of the data
processing inequality.

Theorem 7.10 (Data processing inequality): For the Markov chain X →
Y → Z, IU (X; Y ) ≥ IU (X;Z).

Proof: We will first show that IU (X; Y ) = IU (X; Y, Z). From the previous
result,

IU (X; Y ) ≤ IU (X; Y, Z) (7.81)
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On the other hand,

IU (X; Y, Z) = sup
b∈BX×Y×Z

∑

x,y,z

px,y,zU

(

bx,y,z

pxpy,z

)

(7.82)

= sup
b∈BX×Y×Z

∑

x,y

px,y

∑

z

pz|x,yU

(

bx,y,z

pxpy,z

)

(7.83)

≤ sup
b∈BX×Y×Z

∑

x,y

px,yU

(

∑

z

pz|x,y
bx,y,z

pxpy,z

)

(7.84)

(by Jensen’s inequality) (7.85)

= sup
b∈BX×Y×Z

∑

x,y

px,yU

(∑

z bx,y,z

pxpy

)

(7.86)

(since pz|x,y = pz|y, by the Markov property) (7.87)

≤ sup
b∈BX×Y

∑

x,y

px,yU

(

bx,y

pxpy

)

(7.88)

= IU (X; Y ) (7.89)

so IU (X; Y ) = IU (X; Y, Z) ≥ IU (X;Z). 2

Thus the information that Y encodes with respect to X is greater than the

information that the “downstream”Z encodes with respect to X.

Corollary 7.8 For the Markov chain X → Y → Z, if Z = g(Y ), we have
IU (X; Y ) ≥ IU (X; g(Y )).

Thus, no transformation of Y will provide more information about X than Y
itself.

7.4.3 Power Utility

Consider the power utility, from Example 4.3 and Section 5.1.6, given by

Uκ(W ) =
W 1−κ − 1

1 − κ
. (7.90)

In this section, we compute the associated U -entropy and relative U -entropy,
explore limiting behavior, and compare with Tsallis entropy. We recall from
Section 5.1.6 that the power utility is commonly used, has desirable optimality
properties, and the constant relative risk aversion property. We note that for
this utility function, the (constant) relative risk aversion is given by

R(W ) = −W U ′′(W )

U ′(W )
= κ . (7.91)
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From Section 5.1.6, with Oy = 1
qy

, we have

b∗y(p) = qy

(

py

λqy

)
1
κ

(7.92)

where

λ =

(

∑

y

qy

(

py

qy

)
1
κ

)κ

. (7.93)

After some algebra, we obtain

DUκ
(p‖q) =

(

∑

y p
1
κ
y q

1− 1
κ

y

)κ

1 − κ
− 1

1 − κ
. (7.94)

7.4.3.1 U-Entropy for Large Relative Risk Aversion

Let us consider the limit of infinite risk aversion, which for the power utility
corresponds to κ → ∞, as can be seen from (7.91). It follows from (7.92) and
(7.93) that a power utility investor with infinite risk aversion invests all his
money in the bank account, i.e., allocates according to

b∗(p)y =
B

Oy
=

1

Oy
, (7.95)

no matter what his belief-measure, p, is, so that his after-bet wealth is B = 1
with certainty. Such an investor makes no use of the information provided by
the model, so no model can outperform another and, therefore,

lim
κ→∞

DUκ
(p‖q) = 0 , (7.96)

for any measures p, q and any utility function U .
What happens if the relative risk aversion of a power utility investor, i.e.,
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κ, is large but finite? To answer this question, we expand (7.94) as follows.

DUκ
(p‖q) =

1

1 − κ

[

∑

y

(

py

qy

) 1
κ

qy

]κ

− 1

1 − κ

=
1

1 − κ

[

∑

y

(

1 +
1

κ
log

py

qy
+

1

2κ2

(

log
py

qy

)2

+ O(κ−3)

)

qy

]κ

− 1

1 − κ
( since z

1
κ = 1 +

1

κ
log(z) +

1

2κ2
(logz)

2
+ O(κ−3) )

=
1

1 − κ

[

1 +
1

κ

∑

y

qylog
py

qy
+

1

2κ2

∑

y

qy

(

log
py

qy

)2

+O(κ−3)

]κ

− 1

1 − κ

=
1 − e

P

y
qylog

py
qy

κ
+

1 − e
P

y
qylog

py
qy

[

1 + 1
2varq

(

log
py

qy

)]

κ2

+O
(

κ−3
)

,

where the last equality follows from the fact that

1

1− κ

(

1 +
a

κ
+

b

2κ2
+

c

κ3

)κ

− 1

1 − κ
=

1 − ea

κ
+

1 − ea
(

1 + b−a2

2

)

κ2

+O
(

κ−3
)

.

So

DUκ
(p‖q) =

1 − e−D(q‖p)

κ
+

1 − e−D(q‖p)
[

1 + 1
2varq

(

log
py

qy

)]

κ2
+O

(

κ−3
)

.

(7.97)
Thus, we have related, for large κ, DUκ

(p‖q) to the Kullback-Leibler relative
entropy.

7.4.3.2 Relation with Tsallis and Rényi Relative Entropies and the
f-Divergence

In this section, we briefly describe other generalizations of relative entropy:

(i) Tsallis relative entropy,

(ii) Rényi relative entropy, and

(iii) the f−divergence,

and relate these quantities to the relative U−entropy in the case of a power
utility function.
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The Tsallis entropy (see Tsallis (1988)) provides a theoretical framework
for a nonextensive thermodynamics, i.e., for a thermodynamics for which the
entropy of a system made up of two independent subsystems is not simply the
sum of the entropies of the subsystems. Examples for physical application of
such a theory might be astronomical self-gravitating systems (see, for example,
Plastino and Plastino (1999)).

The Tsallis entropy is given by

HT
α (X) =

∑

y p
α
x − 1

1 − α
(7.98)

and can be generalized to the Tsallis relative entropy (see, for example, Tsallis
and Brigatti (2004)),

DT
α (p‖q) =

∑

y p
α
y q

1−α
y − 1

α− 1
. (7.99)

It turns out that there is a simple monotonic relationship between the rel-
ative U -entropy and the relative Tsallis entropies:

DUκ
(p‖q) =

(

DT
1
κ

(p‖q)
(

1
κ − 1

)

+ 1
)κ

− 1

1 − κ
. (7.100)

It is easy to see that the Rényi generalized divergence of order α (see Rényi
(1961))

1

α− 1
log

(

∑

y

pα
y

qα−1
y

)

(7.101)

and the Tsallis relative entropy are continuous and monotone increasing func-
tions of each other.

Csiszár (1972) defines another generalization of relative entropy, the f-
divergence

∑

y

qyf

(

py

qy

)

, (7.102)

where f : R+ → R is a strictly convex function. We note that in the case that
f(u) = uα, it is easy to see that the f-divergence is a monotone increasing
function of the Tsallis relative entropy.

Thus, we see that the power utility, the relative U -entropy, the Tsallis and
Rényi relative entropies, as well as the f-divergence, where f is a power func-
tion, are related via monotone transformations.

7.5 Exercises

1. Express DU (p‖q), HU,O(p), and HU(p) in terms of GU,O(p2, p1; p).



180 Utility-Based Learning from Data

2. Show that a horse race investor operating in a horse race governed by
the probability measure, p, but allocating to maximize his expected
utility under the (misspecified) measure q, attains the expected utility
Ep[U(b∗(q), O)], where

Ep[U(b∗(q), O)] = Ep[U(O)]−HU,O(p) −DU,O(p‖q). (7.103)

3. Interpret (7.103) for a Kelly investor.

4. Prove Theorem 7.3.

5. State and prove an analog of Exercise (2) for the case of discrete condi-
tional distributions.

6. Show that for the Markov chain X → Y → Z, we must have

p(x, y, z) = p(x)p(y|x)p(z|y). (7.104)

7. Show that for the Markov chain X → Y → Z, we must have

p(x, z|y) = p(x|y)p(z|y). (7.105)

8. Show that for the discrete time approximation of Example 7.1,

Sn+1 = Sn(1 + µ∆T + σ
√

∆Tεn), (7.106)

the stochastic process Sn is not stationary, but the stochastic process
Sn+1

Sn
is stationary.

9. Prove Corollary 7.7: The conditional entropy HU(Xn|X1) increases with
n for a stationary Markov process.



Chapter 8

Utility-Based Model Performance
Measurement

In Chapters 3 and 5, we introduced the horse race investor as an idealization
of a decision maker in an uncertain environment. We have analyzed the use-
fulness of a probabilistic model to this investor, assuming that the investor
aims at maximizing his expected wealth growth rate or expected utility. In
this chapter we reconsider such an investor who is trying to measure the
performance of a probabilistic model. This will lead us to utility-based per-
formance measures for probabilistic models. The main ideas underlying these
performance measures can be summarized in the following principle, which is
depicted in Figure 8.1.

Principle 8.1 (Model Performance Measurement) Given

(i) an investor with a utility function, and

(ii) a market setting (in this chapter, a horse race or a conditional horse
race) in which the investor can allocate,

the investor will allocate according to the model (so as to maximize his expected
utility under the model).

We will then measure the performance of the candidate model for this in-
vestor via the average utility attained by the investor on an out-of-sample test
dataset.

This performance measure that results from this principle can be used to
measure the performance of any, parametric or nonparametric, probabilistic
model. It does not rely on any specific functional form of the model, any as-
sumptions about model parameters, or any real-world interpretation of prob-
abilities (see, for example, Jaynes (2003), de Finetti (1974), Savage (1954),
Bernardo and Smith (2000), or Grünwald (2002) for various interpretations of
probabilities); it directly estimates the usefulness of the model to an investor
in a horse race. In this sense, the above model performance measure is more
closely related to predictive accuracy measures used in the machine learning
community than the traditional statistical tests (for a discussion of these dif-
ferent approaches, see, for example, Breiman (2001) and the comments by
Cox (2001), Efron (2001), Hoadley (2001), and Parzen (2001)).

The above performance measure should provide a useful tool for practical
model building purposes; however, it might have to be balanced with other

181
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FIGURE 8.1: Model performance measurement principle.
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objectives, such as model interpretability. It might also be useful to consider
multiple test datasets instead of a single test dataset and take into account the
variation of the performance measure over these test datasets, when building
a model. We will briefly touch upon such considerations in Chapters 10 and
12, but they lie outside the scope of this book.

We shall see that our performance measure takes a particularly simple form
for an investor who has a generalized logarithmic utility function. For such an
investor, and only for such an investor, the relative performance of two models
can essentially be measured by the likelihood ratio of the two models, and is
therefore independent of the odds ratios in the horse race. Moreover, any
investor who ranks models for variables with more than two states according
to their likelihood ratio must have a generalized logarithmic utility function,
and therefore uses the likelihood ratio not only to rank but also to measure
model performance.

In Sections 8.1 and 8.2, we explicitly discuss the above model performance
measures for discrete probability models, which is the simplest setting of prac-
tical interest and clearly illustrates the approach. In the subsequent sections,
we generalize the performance measures to conditional probability models (see
Section 8.3) and to probability density models (see Sections 8.4 and 8.5).

Based on the idea of the certainty equivalent, one can formulate model
performance measures that are similar to the utility-based ones, but can be
expressed as monetary values. We will introduce such performance measures
in Section 8.6 and discuss its properties. In particular, we shall see that these
monetary performance measures are monotone functions of the corresponding
utility-based performance measures, and therefore lead to the same model
rankings.

8.1 Utility-Based Performance Measures for Discrete
Probability Models

In this section, we define decision-theoretic performance measures for dis-
crete probability models, and discuss some of their properties.

We consider a random variable Y with the finite state space Y. We denote
model probability measures for Y by q, q(1), q(2) etc. and the empirical measure
on a test dataset by p̃. In order to measure the performance of probability
measures for Y , we adapt the viewpoint of an investor, as defined in Definition
3.4, in a horse race, as defined in Definition 3.1, and assume that the investor
has a utility function that is compatible with the horse race, as discussed in
Chapter 5. We recall from Definitions 3.1 and 3.4 that, for each y ∈ Y, our
investor bets the amount by on the event Y = y such that

∑

y∈Y = 1, and
that each bet pays Oy if horse y wins and nothing otherwise. We have denoted
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the investor’s allocation by b = {by, y ∈ Y}.
In order to measure the performance of the probability measure q, we as-

sume, as in Chapter 5, that our investor believes the model q and therefore
allocates his $1 so as to maximize his expected utility under q. Recall that
our investor would then allocate according to

b∗(q) = arg max
{b:

P

y∈Y by=1}

∑

y∈Y
qyU(byOy), (8.1)

which implies that

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

, (8.2)

where λ is the solution of

∑

y∈Y

1

Oy
(U ′)−1

(

λ

qyOy

)

= 1. (8.3)

It is natural to measure model performance by the average utility over
a test set under the expected utility-optimal allocation. Making the further
assumption that such a test (out-of-sample) dataset is available, we define the
following model performance measure.

Definition 8.1 (Performance measure) For an investor with utility function
U , the expected utility model-performance measure for the model q is

Ep̃[U(b∗(q),O)] =
∑

y∈Y
p̃yU(b∗y(q)Oy) (8.4)

where p̃ is the empirical probability measure of the test set.

This performance measure belongs to the larger class of decision-theoretic per-
formance measures that can be constructed within the so-called M-completed
framework (see Bernardo and Smith (2000), Section 6.1.3, for more details on
the M-completed framework). If we view the above performance measure from
the M-completed perspective, the empirical measure of the test set plays the
role of the “actual belief model,” as it does in the cross-validation method dis-
cussed in Bernardo and Smith (2000), Section 6.1.6. The performance measure
from Definition 8.1 is specific to the horse race setting, which describes a fairly,
but not completely, general situation. The horse race specification allows us to
explicitly express the performance measure in terms of the payoffs associated
with the states.

The following lemma follows directly from the definition of b∗ (see 8.1) and
Definition 8.1.

Lemma 8.1 For any probability measure q,

Ep̃[U(b∗(q),O)] ≤ Ep̃ [U(b∗(p̃),O)] , with equality if q = p̃ . (8.5)
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This lemma states that the best performance is achieved by a model that
accurately predicts the frequency distribution of the test set. In the language
of Bernardo and Smith (2000), this means that the above approach leads to
a proper score function for probability measures. The property (8.5) holds
for an investor with an arbitrary utility function; all investors agree on what
is the perfect probability measure; however they may disagree (if they have
different utility functions) on the ranking of imperfect probability measures.

In light of Definition 8.1, it is natural to compare two models by means of
the following relative performance measures.

Definition 8.2 (Relative performance measure) For an investor with utility
function U , the expected utility relative model-performance measure for the
models q(1) and q(2) is

∆U

(

q(1), q(2),O
)

= Ep̃

[

U
(

b∗
(

q(2)
)

,O
)]

−Ep̃

[

U
(

b∗
(

q(1)
)

,O
)]

.

Although the performance measure ∆U

(

q(1), q(2),O
)

depends on the empiri-
cal measure, p̃, for the sake of brevity, we didn’t indicate this in the notation;
this shouldn’t cause any confusion.

8.1.1 The Power Utility

As an example, we explicitly derive ∆U

(

q(1), q(2),O
)

for the power utility
function. Recall, from Chapter 5, that an investor with a power utility function
given by

Uκ(W ) =
W 1−κ − 1

1 − κ
→ log(W ) as κ → 1, (8.6)

where κ ≥ 0, allocates according to

b∗y(q) =

1
Oy

(qyOy)
1
κ

∑

y′
1

Oy′
(qy′Oy′ )

1
κ

. (8.7)

It follows that

Uκ(b∗y(q)Oy) =
1

1 − κ











(qyOy)
1
κ

∑

y′
1

Oy′
(qy′Oy′)

1
κ





1−κ

− 1






≡ Φκ

y (q), (8.8)

and
∆Uκ

(

q(1), q(2),O
)

=
∑

y

p̃y

[

Φκ
y (q(2)) − Φκ

y(q(1))
]

. (8.9)

We shall consider a specific numerical example in Section 8.1.7.
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8.1.2 The Kelly Investor

In Sections 3.3 and 5.1.4 we have discussed the Kelly investor who allocates
his assets so as to maximize his expected wealth growth rate (see Definition
3.6). Next, we compute the relative performance measure from Definition 8.2
for such an investor.

According to Definition 3.5, the expected wealth growth rate corresponding
to a probability measure q and a betting strategy b is given by

W (b, q) = Eq [log (b,O)] =
∑

y∈Y
qy log(byOy) . (8.10)

Comparing this to the expected utility, Eq [U (b,O)], we see that the Kelly
investor is an expected utility-maximizing investor with the utility function

U(W ) = logW . (8.11)

Recall from Section 5.1.4 that in this setting,

b∗y(q) = qy , (8.12)

which is consistent with Theorem 3.1. It follows then from Definition 8.2 that
our relative performance measure for the Kelly investor is the log-likelihood
ratio (see Definition 6.2), i.e., that the following theorem holds.

Theorem 8.1 (∆ for Kelly investor and log-likelihood ratio) The Kelly in-
vestor has the relative model performance measure

∆log

(

q(1), q(2)
)

= l
(

q(1), q(2)
)

. (8.13)

Recall that l
(

q(1), q(2)
)

denotes the log-likelihood ratio (see Definition 6.1).
It also follows that, for an expected utility maximizing investor with the log-

arithmic utility function, our relative performance measure, ∆log

(

q(1), q(2)
)

,
can be interpreted as the estimated gain in expected wealth growth rate for the
investor who uses the model q(2), rather than model q(1), under the empirical
probability measure p̃.

In Theorem 8.2 in Section 8.1.4 below, we shall generalize Theorem 8.1 and
recover the log-likelihood ratio as a relative performance measure for a whole
family of utility functions.

8.1.3 Horse Races with Homogeneous Returns

As another example, we compute the performance measure of the homoge-
neous expected return measure from Definition 3.3, which is given by

p(h) =

{

p(h)
y =

B

Oy
, y ∈ Y

}

, (8.14)
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where B is the bank account payoff. Recall that, under this measure, the
expected payoff for a bet placed on a single horse, y, is always B, independent
of y, i.e., that

p(h)
y Oy +

(

1 − p(h)
y

)

0 = B, ∀y ∈ Y . (8.15)

In order to compute the optimal allocation for our investor, we substitute

p
(h)
y Oy = B into (8.2), and obtain

b∗y

(

p(h)
)

=
1

Oy
(U ′)−1

(

λ

B

)

=
p
(h)
y

B
(U ′)−1

(

λ

B

)

.

Summing and using (8.3), we see that

1 =
1

B
(U ′)−1

(

λ

B

)

, (8.16)

so

λ = BU ′(B), (8.17)

b∗y

(

p(h)
)

= p(h)
y (as for the Kelly investor!), and (8.18)

b∗y

(

p(h)
)

Oy = B . (8.19)

It follows from (8.19) that the model performance measure from Definition
8.1 is

Ep̃

[

U
(

b∗
(

p(h)
)

,O
)]

= B . (8.20)

That is, under the homogeneous expected return measure, p(h), any investor,
regardless of his utility function, will allocate according to b∗ = p(h), which
leads to the payoff, B, in any state. Thus, the expected utility performance
measure, for any investor, regardless of utility function, leads to the same
performance, B, under any empirical probability measure, p̂.

8.1.4 Generalized Logarithmic Utility Function and the Log-
Likelihood Ratio

In this section, we discuss model performance measurement for an investor
with a generalized logarithmic utility function and relate it to the likelihood
ratio. Recall that the generalized logarithmic utility function is given by

U(W ) = α log(W − γB) + β , α > 0 . (8.21)

This utility function was suggested by Bernoulli (1738) in his solution to
the St. Petersburg paradox. It is often used in financial modeling (see, for
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example, Rubinstein (1976)), and seems to well describe the behavior of some
fund managers (see Ziemba and MacLean (2005)).1

The utility function (5.63) has some very interesting properties. In particu-
lar, as the following theorem shows, it leads to the likelihood ratio as a model
performance measure.

Theorem 8.2 For a utility function of the form

U(W ) = α log(W − γB) + β (8.22)

with α > 0 and γ < 1, the relative performance measure, ∆U

(

q(1), q(2),O
)

, is
given by

∆U

(

q(1), q(2),O
)

= α∆log

(

q(1), q(2)
)

(8.23)

= α l
(

q(1), q(2)
)

, (8.24)

i.e., is proportional to the log-likelihood ratio. Moreover, the optimal betting
weights are given by

b∗y(q) = qy [1 − γ] +
γB

Oy
. (8.25)

We note that the above relative performance measure

(i) is independent of the odds ratios, O,

(ii) does not depend on the constants β and γ, and

(iii) depends on the constant α only in a trivial way.

Proof: From Section 5.1.5, we have (8.25). From (8.25), we have

U(b∗y(q)Oy) = α log qy + α log (Oy [1 − γ]) + β . (8.26)

By inserting this expression into Definition 8.2 one can see that our relative
performance measure is

∆U

(

q(1), q(2),O
)

= α
∑

y

p̃ylog

(

q
(2)
y

q
(1)
y

)

. (8.27)

Equation (8.24) follows from Definition 6.2 and (8.23) then follows from The-
orem 8.1. 2

The condition γ < 1 in Theorem 8.2 insures compatibility between the
utility function and the horse race, as discussed in Section 5.1.5.

We shall consider a specific example in Section 8.1.7.

1For a criticism of the logarithmic utility function, see Samuelson (1971) and Samuel-
son (1979); for a justification of nearly, but not quite, logarithmic utility functions, see
Luenberger (1998) pp. 426-427. Janeček (2002) discusses drawdown consequences of the
logarithmic and power utilities; he shows that the logarithmic utility function can lead to
investment strategies that are quite aggressive. Thorp (1997) discusses his long term invest-
ment experience using the Kelly criterion, i.e., using a special case of the utility function
(5.63).
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8.1.5 Approximating the Relative Model Performance Mea-
sure with the Log-Likelihood Ratio

We have seen in Section 5.1.5 that for an investor with a generalized loga-
rithmic utility function, the relative model performance measure is essentially
the likelihood ratio. Obviously, this is not the case for an arbitrary utility
function. However, since the generalized logarithmic utility function has three
parameters, it can locally approximate any other utility function up to second
order. This is illustrated in Figure 8.2. So we might expect that, if expected
returns are sufficiently homogeneous, the relative performance measure for
an investor with an arbitrary utility function can be approximated by the
likelihood ratio. This is indeed the case, as the following theorem states.

FIGURE 8.2: Approximation of the power utility with power 2.

Theorem 8.3 Let us assume that the two models q(1) and q(2) define nearly
homogeneous expected returns, i.e., that

q(i)y Oy = B
(

1 + ε(q
(i))

y

)

, i = 1, 2 . (8.28)
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Then, in the limit maxy,i |ε(q
(i))

y | → 0,

∆U

(

q(1), q(2),O
)

=
BU ′(B)

R(B)
∆log

(

q(1), q(2)
)

+ o (ε′) (8.29)

=
BU ′(B)

R(B)
l
(

q(1), q(2)
)

+ o (ε′) , (8.30)

where
ε′ = max

y∈Y,i=1,2
|ε(q(i))

y | , (8.31)

and

R(B) = −BU
′′(B)

U ′(B)
(8.32)

is the investor’s relative risk aversion at the wealth level B.

Proof: See Section 8.7.1.

We emphasize that, to leading order in ε′, these performance measures do
not depend on the odds ratios.

8.1.6 Odds Ratio Independent Relative Performance Mea-
sure

In general, our relative performance measure ∆ depends on the odds ratios.
This can be an encumbrance in practical application; the odds ratios are often
unknown or they can depend on time. For this reason, it may be desirable to
have a relative performance measure that doesn’t depend on the odds ratios.
We ask the following question: Are there any utility functions for which the
relative performance measure is independent of the odds ratios? As we have
seen, the answer to this questions is “Yes.” In the following theorem, we state
the general form that the utility function must have in order to lead to a
relative performance measure that is independent of the odds ratios:

Theorem 8.4 If, for any empirical measure, p̃, and candidate model mea-
sures, q(1), q(2), the relative model performance measure, ∆U

(

q(1), q(2),O
)

, is
independent of the odds ratios, O, then the utility function, U , has to have
the form

U(W ) = α log(W − γB) + β , (8.33)

where α, β, and γ are constants.

Proof: See Section 8.7.2.
We note that we have encountered again the generalized logarithmic utility

function. We have seen in Theorem 8.2 that, for this utility function, the
relative performance measure, ∆, is indeed independent of the odds ratios.
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FIGURE 8.3: Example: Three probability measures.

8.1.7 A Numerical Example

As an example, let us consider a random variable Y with the state space
Y = {1, 2, ..., 10} and the probability measures q(1), q(2), and quniform, which
are shown in Figure 8.3. We assume that we have observed data with the
empirical measure p̃, which is also shown in Figure 8.3. Let us further assume
that the odds ratios are given by Oy = B

p̃y
with B = 1.2 (these odds ratios

might have been set by a bookie who believes the empirical measure, p̃, and
expects the same return for each horse, no matter what the associated risk
is).

We compute relative performance measures between these probability mea-
sures

(i) for an investor with the power utility function (5.69) with κ = 2, and

(ii) for an investor with the generalized logarithmic utility function, with
α = 1

Bκ chosen2 such that (8.30) gives the appropriate approximation
for the power utility investor in the nearly homogeneous return case (the
choice of β and γ does not affect our relative performance measures).

The results are shown in Table 8.1. We first note that the performance differ-
ence between q(1) and p̃ is small (compared to the other values in the table)
and, within the displayed precision, the same for both investors. The reason

2To see that this choice is appropriate, see Exercise 5.
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for the smallness is that the two probability measures are fairly similar; the
reason why both investors have basically the same ∆ is that the returns are
homogeneous under p̃ and nearly homogeneous under q(1), so that we can
apply the nearly homogeneous returns approximation from Theorem 8.3.

The other relative performance measures in Table 8.1 are all taken with re-
spect to the uniform measure quniform, which might be chosen by an unbiased
investor before he sees the data. For both investors, the largest among these
relative performance measures is ∆U

(

quniform, p̃,O
)

. This is so because p̃ is
the best performing probability measure (see Lemma 8.1). The second best
outperforming probability measure is q(1) for both investors. In fact q(1) out-
performs quniform almost as well as p̃, which, of course, is no surprise since
∆U

(

q(1), p̃
)

is small and ∆U is transitive. The probability measure q(2) con-
siderably underperforms the uniform measure, which, again, is no surprise
considering Figure 8.3.

We note that, because quniform doesn’t correspond to nearly homogeneous
returns, the approximation from Theorem 8.3 doesn’t work too well here,
i.e., the two investors have different relative performance measures between
quniform and any of the other three probability measures.

TABLE 8.1: Relative performance measure ∆U for the specific models
from Figure 8.3. In this example, Oy = B

p̃y
, B = 1.2, and κ = 2. The

choices for β and γ do not affect the performance measures.

U(W ) = W1−κ−1
1−κ

U(W ) = 1
Bκ

log(W + γ) + β

∆U

(

q(1), p̃,O
)

: 0.0013 0.0013
∆U

(

quniform, p̃,O
)

: 0.0342 0.0456
∆U

(

quniform, q(1),O
)

: 0.0329 0.0443

∆U

(

quniform, q(2),O
)

: -0.1868 -0.1581

8.2 Revisiting the Likelihood Ratio

We have seen in Theorem 8.2 that, for the generalized logarithmic utility,
our relative model performance measure, ∆, reduces, up to a positive multi-
plicative constant, to the log-likelihood ratio. The following question arises:
are there any other utility functions for which our relative performance mea-
sure, ∆, essentially reduces to the log-likelihood ratio? In other words, what
kind of utility function can an investor have if he evaluates relative model
performance via the log-likelihood ratio? It turns out that we are able to an-
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swer this question by answering the following more general question: what
kind of utility function can an investor have if he ranks (but not necessarily
evaluates) relative model performance via the log-likelihood ratio? To elab-
orate the difference between ranking and evaluating models, let us consider
an investor who has three models, q(1), q(2), and q(3), and aims at ordering
his model preferences, i.e., would like to make a statement of the type “q(2)

is better than q(1), which is better than q(3),” but does not necessarily make
statements of the type “the performance difference between the models q(1)

and q(2) is bigger than the one between q(2) and q(3).” Such an investor ranks
models only, but doesn’t completely evaluate their performance. If he uses the
log-likelihood ratio for ranking models, then his model performance measure
can be any monotone transformation of the log-likelihood ratio. Obviously,
if he uses the log-likelihood ratio for measuring model performance, i.e., for
evaluating models, he also ranks models according to the log-likelihood ratio.

In order to answer our question, we first state and prove the following
theorem.

Theorem 8.5 Let us assume that

(i) the utility function U is defined for all arguments W ≥ W0, where W0

is some positive number,

(ii) for any number of states, |Y| ≥ 3, odds ratios, O, and candidate model
measures, q, there exists a λ that solves (5.18), and

(iii) for any empirical measure, p̃, number of states, |Y| ≥ 3, odds ratios, O,
and candidate model measures, q(1) and q(2), the relative model perfor-
mance measure can be expressed as

∆U

(

q(1), q(2),O
)

= hO,m,p̃





∑

y∈Y
p̃ygO,m,y

(

q(1)
y , q(2)

y

)



 , (8.34)

where hO,m,p̃ and gO,m,y are real functions that are parameterized as the
notation indicates.

Then the utility function, U , must have the form

U(W ) = α log(W − γB) + β , (8.35)

with some constants α, β, and γ, and the relative performance measure is

∆U

(

q(1), q(2)
)

= α l
(

q(1), q(2)
)

, (8.36)

where l is the log-likelihood ratio as defined in Definition 6.2.

Proof: see Section 8.7.3

The following corollary is a straightforward consequence of the above the-
orem.
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Corollary 8.1 If Assumptions (i) and (ii) of Theorem 8.5 hold and for any
empirical measure, p̃, number of states, |Y| ≥ 3, odds ratios, O, and candidate
model measures, q(1), q(2), the relative model performance measure can be
expressed as

∆U

(

q(1), q(2),O
)

= hO,m,p̃

(

l(q(1), q(2))
)

, (8.37)

where l is the observed log-likelihood ratio from Definition 6.2 and hO,m,p̃ is
a real function that is parameterized as the notation indicates, then the utility
function, U , must have the form

U(W ) = α log(W − γB) + β , (8.38)

with some constants α, β, and γ, and the relative performance measure is

∆U(q(1), q(2),O) = α l
(

q(1), q(2)
)

. (8.39)

This corollary answers our question: In an uncertain environment with more
than two states, under some mild technical assumptions, even an investor who
uses the log-likelihood ratio only for ranking models must have a generalized
logarithmic utility function for his ranking criterion to be consistent with our
decision-theoretic framework.

8.3 Utility-Based Performance Measures for Discrete
Conditional Probability Models

In this section, we will generalize the model performance measures from
Section 8.1 to conditional probability models. We shall see that most of the
definitions and results from Section 8.1 can be easily generalized.

We consider probabilities of a random variable Y with state space Y given
values of the random variable X with state space X , and denote probability
measures simply by q (there is no need for a more explicit notation such
as qY |X in this section, since we don’t simultaneously consider conditional
and unconditional measures here). We take the point of view of a conditional
investor, as defined in Definition 3.11, in a conditional horse race, as defined
in Definition 3.7, and assume that the investor has a utility function and the
horse race is compatible, as discussed in Chapter 5.

We recall from Chapter 5 that the optimal allocation for a conditional
investor who believes the (conditional probability) model q is

b∗(q) = arg max
{b:

P

y∈Y by|x=1 , ∀x∈X}

∑

y∈Y
qy|xU(by|xOy|x) . (8.40)
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Other definitions are possible, but Definition 5.6 seems to be most useful when
we want to evaluate (or construct) conditional probabilities qy|x, as opposed
to joint probabilities qx,y.

We recall from Chapter 5 that when the conditional discrete horse race and
utility are compatible,

∑

y∈Y

1

Oy|x
(U ′)−1

(

λx

qy|xOy

)

∑

y∈Y

1

Oy|x
= 1 (8.41)

has a solution for λx for each x ∈ X , and

b∗y|x(q) =
1

Oy|x
(U ′)−1

(

λx

qy|xOy|x

)

, (8.42)

where the λx is the solutions of (8.41).
Next, we generalize the model performance measure from Definition 8.1.

Definition 8.3 For a conditional investor with utility function U , the ex-
pected utility model-performance measure for the (conditional probability)
model q is

Ep̃ [U(b∗(q),O)] =
∑

x∈X
p̃x

∑

y∈Y
p̃y|xU

(

b∗y|x(q)Oy|x
)

(8.43)

where p̃ is the empirical probability measure of the test set.

For the sake or brevity, we have used the same notation as in Definition 8.1
here; it will always be clear from the context whether we refer to conditional
or unconditional measures.

As in the unconditional case, Lemma 8.1 holds, i.e., the best performance is
achieved by a model that accurately predicts the frequency distribution of the
test set. This is the case for an investor with an arbitrary utility function; all
investors agree on what is the perfect probability measure; however they may
disagree (if they have different utility functions) on the ranking of imperfect
probability measures.

We generalize the relative model performance measure from Definition 8.2
as follows.

Definition 8.4 For a conditional investor with utility function U , the ex-
pected utility relative model-performance measure for the models q(1) and q(2)

is

∆U

(

q(1), q(2),O
)

= Ep̃

[

U
(

b∗
(

q(2)
)

,O
)]

−Ep̃

[

U
(

b∗
(

q(1)
)

,O
)]

.

This definition might appear the same as the definition in Definition 8.2, but
the interpretation is different, since q(1) and q(2) are conditional probability
models in this section.
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8.3.1 The Conditional Kelly Investor

In Section 5.1.4, Theorem 8.1, we have seen that for a Kelly investor the
relative performance measure for unconditional probability models is the like-
lihood ratio. This can be generalized to the conditional Kelly investor from
Definition 3.13.

Theorem 8.6 (∆ for conditional Kelly investor and log-likelihood ratio) The
conditional Kelly investor has the relative model performance measure

∆log

(

q(1), q(2)
)

= l
(

q(1), q(2)
)

, (8.44)

where q(1) and q(2) denote conditional probability measures, ∆log is the relative
model performance measure from Definition 8.4 for the case U(W ) = logW ,
and l denotes the conditional log-likelihood ratio from Definition 6.4.

Proof: The proof is essentially the same as the one for Theorem 8.1.

As in the unconditional case, for an expected utility maximizing investor
with the logarithmic utility function, our relative performance measure,
∆log

(

q(1), q(2)
)

, can be interpreted as the estimated gain in expected wealth

growth rate for the investor who uses the model q(2), rather than model q(1),
under the empirical probability measure p̃.

8.3.2 Generalized Logarithmic Utility Function, Likelihood
Ratio, and Odds Ratio Independent Relative Perfor-
mance Measure

We generalize Theorem 8.2 as follows.

Theorem 8.7 For a utility function of the form

U(W ) = α log(W − γB) + β (8.45)

with α > 0 and γ < 1, where B denotes the worst conditional bank account
defined in Definition 3.9, the relative performance measure, ∆U

(

q(1), q(2),O
)

,

between the two conditional probability measures q(1) and q(2) is given by

∆U

(

q(1), q(2),O
)

= α∆log

(

q(1), q(2)
)

(8.46)

= α l
(

q(1), q(2)
)

, (8.47)

where ∆ and l are defined by Definitions 8.4 and 6.4, respectively, i.e., is
proportional to the (conditional) log-likelihood ratio. Moreover, the optimal
betting weights are given by

b∗y|x(q) = qy|x

[

1 − γB

Bx

]

− γB

Oy|x
. (8.48)
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Proof: The proof is essentially the same as the one for Theorem 8.2.

The above relative performance measure is independent of the odds ratios,
O, does not depend on the constants β and γ, and depends on the constant
α only in a trivial way.

Theorem 8.3 can be generalized as follows.

Theorem 8.8 Let us assume that Bx = 1
P

y∈Y
1

Oy|x

= B , ∀x ∈ X , for some

B, and that the two models q(1) and q(2) define nearly homogeneous returns,
i.e., that

pxq
(i)
y|xOy|x = B

(

1 + ε
(q(i))
y|x

)

, i = 1, 2 . (8.49)

Then, in the limit maxy,i |ε(q
(i))

y | → 0,

∆U

(

q(1), q(2),O
)

=
BU ′(B)

R(B)
∆log

(

q(1), q(2)
)

+ o (ε′) (8.50)

=
BU ′(B)

R(B)
l
(

q(1), q(2)
)

+ o (ε′) , (8.51)

where
ε′ = max

x∈X ,y∈Y,i=1,2
|ε(q

(i))
y|x | , (8.52)

R(B) = −BU
′′(B)

U ′(B)
(8.53)

is the investor’s relative risk aversion at the wealth level B, and ∆ and the
log-likelihood ratio, l, are defined by Definitions 8.4 and 6.4, respectively.

Proof: The proof is a straightforward generalization of the proof of Theorem
8.3.

Similar to Theorem 8.4, we have the following theorem.

Theorem 8.9 If, for any empirical measure, p̃, and candidate measures, q(1),
q(2), the relative model performance measure, ∆U

(

q(1), q(2),O
)

, is indepen-
dent of the odds ratios, O, then the utility function, U , has to have the form

U(W ) = α log(W − γB) + β , (8.54)

where α, β, and γ are constants.

Proof: The proof is essentially the same as the one for Theorem 8.4.
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8.4 Utility-Based Performance Measures for Probability
Density Models

In this chapter, until now, we have discussed models for a random variable Y
with a discrete (finite) state space. In many practical applications, however,
we are interested in random variables that can take any value in a volume
element. In this section, we will measure the performance of models for such
random variables, i.e., for probability density models. We do so by taking the
small-size limit of the discrete-Y model performance measure of a series of
discretization of the support of Y as discussed in Chapter 5.

8.4.1 Performance Measures and Properties

Similar to Definition 8.1 for discrete probabilities, we define the performance
measures for probability densities as follows.

Ep̃[U(b∗[q],O)] =
∑

i

p̃yi
U(b∗[q](yi)O(yi) , (8.55)

where p̃ is the empirical probability measure and the yi are the observed Y -
values on the test set. We note that p̃ is always a discrete measure, and not a
density, since any test set is finite. The argument b∗[q](yi)O(yi) of U in (8.55)
is consistent with (5.97) and (5.99), i.e., it is obtained in the limit n → ∞
of the after-bet wealth when the investor bets on the discretized horse race
described above.

It follows from Lemma 5.3, that, at least under the assumptions of the
lemma, the performance measure (8.55) has the same form as the one from
Definition 8.1 in Section 8.1. Thus, we are free to apply all results from Section
8.1 in the context of probability density model performance measures. In
particular, Definition 8.2 and Theorems 8.4 and 8.2 apply in this context.

8.5 Utility-Based Performance Measures for Condi-
tional Probability Density Models

In this section, we construct a performance measure for conditional prob-
ability density models of the form p(y|x), where y ∈ Y ⊂ Rdy and x ∈ X ⊂
Rdx . Since our performance measures will be evaluated on a real dataset,
there will be at most a finite number of discrete points in X .

We proceed by taking ideas from Sections 5.3 and 8.3. We discretize by
forming “chunks” in the cross product space X×Y . For the allocation b(y|x),
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with
∫

Y
b(y|x)dy = 1 for all x, (8.56)

we find that, under a conditional model q and the empirical X-probabilities,
the expected utility of these discretization schemes converges to

E[U ] =
∑

xi

p̃xi

∫

Y
q(y|x)U(b(y|x)Oy|x)dy . (8.57)

So we define the model performance measure

Ep̃[U(b∗[q],O)] =
∑

i

p̃xi,yi
U(b∗[q](yi|xi)O(yi|xi) , (8.58)

which has the same form as the one from Definition 8.3 in Section 8.3.

8.6 Monetary Value of a Model Upgrade

The expected utility performance measure from the previous sections can
be interpreted in a financial context; however, it is not a monetary value, but
rather an expected utility. In practice, on the other hand, probabilistic models
are often built or purchased at a cost — measured in dollars. Fortunately,
expected utilities can be related to monetary values based on the idea of a
certainty equivalent (see, for example, Luenberger (1998)). In this section,
which presents the material from Sandow et al. (2007), we use this notion
to construct model performance measures that are, in fact, monetary values.
In particular, we shall define the monetary value, V , of an upgrade from the
model q(1) to the model q(2) and show that this monetary value is a monotone
increasing function of the expected utility gain, ∆, corresponding to the same
model upgrade, i.e., that both of the performance measures, V and ∆, rank
models the same way.

Although the performance measures V and ∆ rank models the same way,
the numerical performance differences they assign to models are not the same.
However, we shall show in this section that, in the case of nearly homoge-
neous returns, these numerical differences are approximately proportional to
each other, with a model independent proportionality factor; in effect, this
proportionality factor serves as an exchange rate between utils and dollars.

We shall also derive explicit expressions for the monetary value, V , of a
model upgrade for investors with generalized logarithmic and power utility
functions. For the generalized logarithmic utility investor, V can be expressed
in terms of the likelihood ratio. This fact can be used to find a particularly
tractable approximation for V for an investor with an arbitrary utility func-
tion. For the power utility investor, we shall derive a general expression for
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V and a simple approximation that holds in the limit of large risk aversion.
We shall discuss the latter limit also for a general utility function and demon-
strate that the value of a model upgrade has an upper limit proportional to
the coefficient of (relative or absolute) risk aversion.

For ease of exposition, we shall focus our attention on the simplest possible
setting — unconditional probabilities. However, we shall also briefly discuss
the monetary value of a model upgrade for conditional probabilities.

8.6.1 General Idea and Definition of Model Value

Let us consider an investor who owns an additional (beyond his $1) amount
V that he doesn’t invest. The optimal allocation for this investor is

Definition 8.5 (Optimal allocation withholding V)

b∗(q, V ) = arg max
{b:

P

y∈Y by=1}

∑

y∈Y
qyU(byOy + V ) . (8.59)

We note that we have used the same notation, b, we have used previously;
this should not lead to any confusion, since the number of arguments and the
context should always make clear what we are referring to.

The following lemma gives an explicit expression for the above optimal
allocation.

Lemma 8.2 (Optimal allocation withholding V)

(i) If
∑

y∈Y

1

Oy
(U ′)−1

(

λ

qyOy

)

− V

B
= 1 (8.60)

has a solution for λ, then

b∗y(q, V ) =
1

Oy
(U ′)−1

(

λ

qyOy

)

− V

Oy
, (8.61)

where λ is the solution of (8.60).

(ii) If
1

(U ′)−1(0) − V
< B−1 <

1

max{0, (U ′)−1(∞) − V } , (8.62)

then (8.60) has a solution for λ.

Proof: The proof is a straightforward generalization of the proof of Lemma
5.1. It can be found in Sandow et al. (2007).

One can easily show that (8.62) holds for the logarithmic, and power utility
function, for any odds ratios; it holds for the quadratic utility function if
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B−1 > 1
(U ′)−1(0)−V . (8.62) holds for the utility function U(W ) = α log(W −

γB) + β, α > 0, for all odds ratios, if γ + V ≥ 0, and, if γ + V < 0, for odds
ratios that satisfy the constraint B + γ + V > 0. 2

Borrowing and modifying the idea of the certainty equivalent, we next define
the (relative) monetary value of a model.

Definition 8.6 (Monetary value of a model upgrade) The monetary value,
VU

(

q(1), q(2),O
)

, of upgrading from model q(1) to model q(2) is the solution
for V of the following equation:

∑

y∈Y
p̃yU

(

b∗y(q(2), 0)Oy

)

=
∑

y∈Y
p̃yU

(

b∗y(q(1), V )Oy + V
)

, (8.63)

where p̃ is the empirical probability measure of the test set.

VU

(

q(1), q(2),O
)

is the amount of money the investor who owns model q(1)

would have to be compensated with so that he is indifferent to

(i) the compensation, and

(ii) the model upgrade to model q(2).

8.6.2 Relationship between V and ∆

Definitions 8.2 and 8.6 define two relative model performance measures.
This raises the question which of those measures is more useful. The measure
∆ expresses the benefit of model 2 over model 1 in terms of an expected
utility. For an investor with logarithmic utility, ∆ is essentially equal to a
wealth growth rate and it is also essentially equal to the logarithm of the
likelihood ratio (see, for example, Cover and Thomas (1991)). However, utils
are not, in general, the most natural currency for those facing model purchase
decisions. Model vendors sell models for dollars; model buyers need to assess
model value in the same units to make informed purchase decisions. The model
performance measure V , on the other hand, is a monetary value. So both
measures, ∆ and V , seem to be useful. It would be desirable, if both measures
gave the same answer to model selection problems. The two performance
measures are generally not identical; however, both performance measures
rank candidate models the same way, which follows from the theorem below.

Theorem 8.10 For fixed p̃, q(0), U , and O, ∆U (q(0), q,O) is a strictly mono-
tone increasing function of VU (q(0), q,O).

Proof: See Section 8.7.4.

8.6.3 Best Upgrade Value

The following lemma follows directly from Theorem 8.10, Lemma 8.1, and
Definition 8.2.
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Lemma 8.3 For any probability measures q(0) and q,

VU (q(0), q,O) ≤ VU (q(0), p̃,O) , with equality if q = p̃ . (8.64)

That is, the highest monetary gain is achieved by upgrading to a model that
accurately predicts the frequency distribution of the test set.

8.6.4 Investors with Power Utility Functions

As an example, we consider an investor with a power utility function. For
such an investor, we have the following corollary.

Corollary 8.2 If our investor has the power utility function

Uκ(w) =
w1−κ − 1

1 − κ
, κ > 0 , (8.65)

the monetary value of an upgrade from model q(1) to model q(2) is

VUκ
(q(1), q(2),O) = B

[

(

Aκ(q(2),O)

Aκ(q(1),O)

)

1
1−κ Sκ(q(1),O)

Sκ(q(2),O)
− 1

]

, (8.66)

where Sκ(q,O) =
∑

y

1

Oy
(qyOy)

1
κ (8.67)

and Aκ(q,O) =
∑

y

p̃y (qyOy)
1−κ

κ . (8.68)

Proof: See Section 8.7.5.
From Corollary 8.2, we can derive the following approximation for an in-

vestor with large risk aversion, i.e., with a large value for κ.

Corollary 8.3 If our investor has the power utility function

Uκ(w) =
w1−κ − 1

1 − κ
, κ > 0 , (8.69)

then, in the limit κ → ∞, the value of an upgrade from model q(1) to model
q(2) is

VUκ,O(q(1), q(2)) =
B

κ

{

Ep(h)

[

log

(

q(1)

q(2)

)]

+ log

(

Ep̃

[

(q(1)O)−1
]

Ep̃

[

(q(2)O)−1
]

)}

+o

(

1

κ

)

,

where p(h) is the homogeneous return measure from Definition 3.3.
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Proof: See Section 8.7.5.
The following corollary follows immediately from Corollary 8.3 and Defini-

tion 3.3.

Corollary 8.4 If our investor has the power utility function

U(w) =
w1−κ − 1

1 − κ
, (8.70)

then, in the limit κ→ ∞, the value of an upgrade from the empirical measure,
p̃, to the homogeneous return measure p(h) is

VUκ,O
(

p(h), p̃
)

=
B

κ
D
(

p(h)
∥

∥

∥ p̃
)

+ o

(

1

κ

)

, (8.71)

where D(q‖p) is the Kullback-Leibler relative entropy between q and p.

8.6.5 Approximating V for Nearly Homogeneous Expected
Returns

In general, the two performance measures, ∆ and V , are different. Although
they rank models the same way, the numerical performance differences they
assign to models are not the same. However, it turns out that, in the case of
approximately homogeneous expected returns, these numerical differences are
approximately proportional to each other, with a model independent propor-
tionality factor; effectively this proportionality factor serves as an exchange
rate between utils and dollars. The following theorem makes this statement
precise.

Theorem 8.11 Let us assume that the two models q(1) and q(2) define nearly
homogeneous expected returns, i.e., that

q(i)y Oy = B
(

1 + ε(q
(i))

y

)

, i = 1, 2 . (8.72)

Then, in the limit maxy∈Y,i

∣

∣

∣ε
(q(i))
y

∣

∣

∣→ 0, the following holds:

(i) The monetary value of an upgrade from model q(1) to q(2) is given by

VU

(

q(1), q(2),O
)

=
B

R(B)
∆log

(

q(1), q(2)
)

+ o (ε′) (8.73)

=
B

R(B)
l
(

q(1), q(2)
)

+ o (ε′) , (8.74)

where
ε′ = max

y∈Y,i=1,2

∣

∣

∣ε(q
(i))

y

∣

∣

∣ , (8.75)

R(B) = −BU
′′(B)

U ′(B)
(8.76)
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is the investor’s relative risk aversion at the wealth level B, and the
log-likelihood ratio, l, is defined by Definition 6.4.

(ii)

∆U

(

q(1), q(2),O
)

= U ′(B)VU

(

q(1), q(2),O
)

+ o (ε′) . (8.77)

Proof: See Section 8.7.6.

8.6.6 Investors with Generalized Logarithmic Utility Func-
tions

As stated in the following theorem, for an investor with a generalized
logarithmic utility function, the value of a model upgrade is odds-ratio-
independent and is related to the likelihood ratio.

Theorem 8.12 If our investor has the following utility function

U(W ) = α log(W − γB) + β , (8.78)

the value of a model upgrade is

VU

(

q(1), q(2),O
)

= B(1 − γ)
(

e∆log(q(1),q(2)) − 1
)

(8.79)

= B(1 − γ)
(

el(q(1),q(2)) − 1
)

. (8.80)

Proof: Let γ′ = −γB. We use Lemma 8.2 to derive the following explicit
expression for b∗(q).

b∗y(q, V ) = qy

[

1 +
γ′ + V

B

]

− γ′ + V

Oy
. (8.81)

Hence

U [b∗y(q, V )Oy + V ] = α log

(

qyOy

[

1 +
γ′ + V

B

])

+ β, (8.82)

where we have assumed, for the moment, that B + γ′ + V > 0. So (8.63) in
Definition 8.6 becomes

0 =
∑

y∈Y
p̃y

(

log
q
(2)
y

q
(1)
y

− log
B + γ′ + V

B + γ′

)

. (8.83)

Solving this equation, we obtain

VU

(

q(1), q(2),O
)

= (B + γ′)



e

P

y∈Y p̃ylog
q
(2)
y

q
(1)
y − 1



 , (8.84)

which, in conjunction with Definition 6.2 and Theorem 8.1, results in (8.79)
and (8.80). We note that (8.84) implies that indeed B + γ′ + V > 0. This
concludes the proof of the theorem. 2
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8.6.7 The Example from Section 8.1.7

In this section, we revisit the example from Section 8.1.7, i.e., we consider a
random variable Y with the state space Y = {1, 2, ..., 10} and the probability
measures q(1) , q(2), and quniform, which are shown in Figure 8.3. We assume
that we have observed data with the empirical measure p̃, which is also shown
in Figure 8.3. We assume further that the odds ratios are given by Oy = B

p̃y

with B = 1.2.
We compute relative performance measures between these probability mea-

sures

(i) for an investor with the power utility function (5.69) with κ = 2, and

(ii) for an investor with a generalized logarithmic utility function, with γ =
κ−1

κ (γ was chosen such that the generalized logarithmic utility function
locally, around B, approximates the power utility function; the choice
of α and β does not affect our relative performance measures, which
follows from Theorem 8.12).

The results are shown in Table 8.2. We can make the same observations as
we have made in Section 8.1.7 for the expected utility performance measures.
The upgrade value from q(1) to p̃ is small (compared to the other values in
the table) and, within the displayed precision, the same for both investors.
The reason for the smallness is that the two probability measures are fairly
similar; the reason why both investors have basically the same V is that the
returns are homogeneous under p̃ and nearly homogeneous under q(1), so that
we can apply the nearly homogeneous returns approximation from Theorem
8.3.

The other upgrade values in Table 8.2 are all taken with respect to the uni-
form measure quniform. For both investors, the largest among these relative
performance measures is VU,O

(

quniform, p̃
)

, which is a consequence of Lemma

8.3. The second best outperforming probability measure is q(1) for both in-
vestors. In fact q(1) outperforms quniform almost as well as p̃. The probability
measure q(2) considerably underperforms the uniform measure, in line with
Figure 8.3 and Table 8.1.

8.6.8 Extension to Conditional Probabilities

So far we have computed monetary values of model upgrades for uncondi-
tional models for a single variable Y . Practitioners, on the other hand, are
often interested in evaluating conditional probability measures for a variable
Y givenX; so we would like to generalize the ideas from the previous sections.
In Section 8.3, we have introduced the expected utility performance measure
for conditional probability measures, using the notion of the conditional horse
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TABLE 8.2: Value of a model upgrade VU,O for the specific models
from Figure 8.3. In this example, Oy = B

p̃y
, B = 1.2 , κ = 2, and

γ = B 1−κ
κ . The choices for α and β do not affect the upgrade values.

U(W ) = W1−κ−1
1−κ U(W ) = α log(W + γ) + β

VU

(

q(1), p̃,O
)

: 0.0019 0.0019
VU

(

quniform, p̃,O
)

: 0.0492 0.0693
VU

(

quniform, q(1),O
)

: 0.0473 0.0672
VU

(

quniform, q(2),O
)

: -0.2126 -0.1894

race. This performance measure is given by

∆U

(

q(1), q(2),O
)

=
∑

x

p̃x

∑

y

p̃y|x
[

U
(

b∗y|x

(

q(2), 0
)

Oy|x
)

− U
(

b∗y|x

(

q(1), 0
)

Oy|x
)]

,

where Oy|x is the odds ratio for a bet on horse y when x is known, and the
b∗y|x(q, 0) are the optimal betting weights in the conditional horse race for
an investor who believes the conditional probability measure q and has the
withholding amount V = 0.

We can define, in a manner similar to that in Definition 8.6, the value,
VU

(

q(1), q(2),O
)

, of a model upgrade as the solution for V of the following
equation.

∑

x

p̃x

∑

y

p̃y|x U
(

b∗y|x(q(2), 0)Oy|x
)

=
∑

x

p̃x

∑

y

p̃y|xU
(

b∗y|x(q(1), V )Oy|x + V
)

.

One can derive an explicit expression for the value of a model upgrade in the
case of a generalized logarithmic utility, i.e., for U(W ) = α log(W − γB) + β,
under the additional assumption that

1
∑

y
1

Oy|x

= B , ∀x . (8.85)

In this case we obtain

VU

(

q(1), q(2),O
)

= B(1 − γ)
(

e∆log(q(1),q(2)) − 1
)

, (8.86)

where

∆log

(

q(1), q(2)
)

=
∑

x,y

p̃x,ylog
q
(2)
y|x

q
(1)
y|x

(8.87)

is the conditional log-likelihood ratio.
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8.7 Some Proofs

8.7.1 Proof of Theorem 8.3

We follow the lines of the proof of Theorem 2 in Sandow et al. (2007). First
we state and prove the following lemma.

Lemma 8.4 Let us assume that our investor believes a model, q, with nearly
homogeneous returns, i.e., with

qyOy = B
(

1 + ε(q)y

)

. (8.88)

Then, in the limit maxy∈Y
∣

∣

∣ε
(q)
y

∣

∣

∣→ 0, the investor allocates according to

b∗y(q) =
1

Oy

(

B +
B

R(B)
ε(q)y

)

+ o
(

ε(q)
)

, (8.89)

where
ε(q) = max

y∈Y

∣

∣

∣ε(q)y

∣

∣

∣ , (8.90)

and

R(B) = −BU
′′(B)

U ′(B)
(8.91)

is the investor’s relative risk aversion at the wealth level B.

Proof: First we note that it follows from
∑

y∈Y qy = 1, (8.88), and the
definition of the bank account, Definition 3.2, that

∑

y∈Y

ε
(q)
y

Oy
= 0 . (8.92)

Next, we use Lemma 5.1. We first solve (5.18), which after inserting (8.88)
reads

1 =
∑

y∈Y

1

Oy
(U ′)−1





λ

B
(

1 + ε
(q)
y

)





=
∑

y∈Y

1

Oy

[

(U ′)−1

(

λ

B

)

− ε(q)y

λ

B

(

(U ′)−1
)′
(

λ

B

)

+ o(ε(q))

]

=
1

B
(U ′)−1

(

λ

B

)

+ o(ε(q)) (by (8.92) and Definition 3.2) , (8.93)

for λ. The solution is
λ = BU ′(B) + o(ε(q)) . (8.94)
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Inserting (8.94) and (8.88) into (5.19), i.e., into

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

,

we obtain

b∗y(q)Oy = (U ′)−1

(

U ′(B)

1 + ε
(q)
y

+ o(ε(q))

)

= (U ′)−1
(

U ′(B) − ε(q)y U ′(B) + o(ε(q))
)

= B − U ′(B)

U ′′(B)
ε(q)y + o(ε(q)) , (8.95)

which, in conjunction with (8.91), results in (8.89). This concludes the proof
of Lemma 8.4. 2

Next, we prove Theorem 8.3. To this end, we expand, using Lemma 8.4,

U
(

b∗y(q(i))Oy

)

= U (B) +
B

R(B)
ε(q

(i))
y U ′ (B) + o (ε′) , (8.96)

where
ε′ = max

y∈Y,i=1,2
|ε(q(i))

y | . (8.97)

We insert (8.96) into the definition of ∆, Definition 8.2, and obtain

∆U

(

q(1), q(2),O
)

=
BU ′(B)

R(B)

∑

y∈Y
p̃y

[

ε(q
(2))

y − ε(q
(1))

y

]

+ o (ε′) . (8.98)

Next, we use

log
q
(2)
y

q
(1)
y

= log
q
(2)
y Oy

q
(1)
y Oy

= log
B
(

1 + ε
(q(2)))
y

)

B
(

1 + ε
(q(1)))
y

) + o (ε′) by (8.28))

= ε(q
(2))

y − ε(q
(1))

y + o (ε′) (8.99)

to write (8.98) as

∆U

(

q(1), q(2),O
)

=
BU ′(B)

R(B)

∑

y∈Y
p̃y log

q
(2)
y

q
(1)
y

+ o (ε′) , (8.100)

which, in conjunction with Definition 6.2 and Theorem 8.1, proves (8.29) and
(8.30). This completes the proof of Theorem 8.3. 2
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8.7.2 Proof of Theorem 8.4

In this section, following the lines of Friedman and Sandow (2003b),
we prove Theorem 8.4, which states that if, for any empirical measure, p̃,
∆U

(

q(1), q(2),O
)

is independent of the odds ratios, O, then the utility func-
tion, U , has to have the form

U(W ) = α log(W + γ′) + β , (8.101)

where α, β, and γ are constants, γ′ = −γB, and γ < 1.
We prove the theorem by considering the markets of the form

Oy = O , ∀y ∈ Y , (8.102)

and by considering the two models

q(1)
y =

1

m
, ∀y ∈ Y , (8.103)

where m = |Y| , (8.104)

q(2)
y =

1

m
, y /∈ {y1, y2} , (8.105)

q(2)
y1

=
1

m
+ ε , (8.106)

and q(2)
y2

=
1

m
− ε . (8.107)

Furthermore, we choose O such that

∃δ such that Nδ

(O
m

)

⊂ (0,∞)∩ dom(U) , (8.108)

where Nδ(x) denotes a δ-neighborhood of the point x. As we shall see below,
this condition ensures that, for both of the triples (U,O, q(1)) and (U,O, q(2)),
we can find the optimal betting weights according to Lemma 5.1.

Before we prove Theorem 8.4, we state and prove two lemmas.

Lemma 8.5 Under the market assumption (8.102), the model assumptions
(8.103)-(8.107), and the condition (8.108), the optimal betting weights for
y = y1 for the two models are

b∗y1
(q(1)) =

1

O (U ′)−1

(

λ(1)

1
m
O

)

, (8.109)

b∗y1
(q(2)) =

1

O
(U ′)−1

(

λ(2)

(

1
m + ε

)

O

)

, (8.110)

and the Lagrange multipliers (defined in equations (5.19) and (5.18)) are re-
lated as

λ(2)

(

1
m + ε

)

O =
mλ(1)

O − ε
m2λ(1)

O + o(ε) . (8.111)
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Proof: First, we consider λ(1). Substituting (8.102) and (8.103) into Lemma
5.1, (5.18), we obtain

1 =
∑

y∈Y

1

O (U ′)−1

(

λ(1)

1
m
O

)

. (8.112)

Simplifying, we have
mλ(1)

O = U ′
(O
m

)

. (8.113)

Note that, by (8.108), this equation has a solution for λ(1). Therefore (5.18)
has a solution, and, by Lemma 5.1, the optimal betting weights are given by
(5.19), which, by (8.103), leads to (8.109).

Next, we consider λ(2). Substituting (8.102) and (8.105)-(8.107) into Lemma
5.1, (5.18), we have

O =
∑

y /∈{y1,y2}
(U ′)−1

(

λ(2)

1
mO

)

+(U ′)−1

(

λ(2)

(

1
m + ε

)

O

)

+(U ′)−1

(

λ(2)

(

1
m − ε

)

O

)

.

(8.114)
Note that

λ(2)

(

1
m ± ε

)

O =
mλ(2)

O ∓ ε
m2λ(2)

O + o(ε). (8.115)

Substituting this equation into (8.114), we obtain

O = (m− 2)(U ′)−1

(

mλ(2)

O

)

+(U ′)−1

(

mλ(2)

O − ε
m2λ(2)

O + o(ε)

)

+(U ′)−1

(

mλ(2)

O + ε
m2λ(2)

O + o(ε)

)

= (m− 2)(U ′)−1

(

mλ(2)

O

)

+(U ′)−1

(

mλ(2)

O

)

− ε
m2λ(2)

O
(

(U ′)−1
)′
(

mλ(2)

O

)

+ o(ε)

+(U ′)−1

(

mλ(2)

O

)

+ ε
m2λ(2)

O
(

(U ′)−1
)′
(

mλ(2)

O

)

+ o(ε)

= m(U ′)−1

(

mλ(2)

O

)

+ o(ε). (8.116)

By (8.108), this equation has a solution for λ(2) if ε is small enough. Therefore
(5.18) has a solution, and, by Lemma 5.1, the optimal betting weights are given
by (5.19), which, by (8.106), leads to (8.110).
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We note that, in (8.116), the terms of first order in ε have canceled each
other. Rearranging (8.116) and using (8.113), we obtain

mλ(2)

O = U ′
(O
m

)

+ o(ε) =
mλ(1)

O + o(ε). (8.117)

Combining this equation with (8.115), we obtain

λ(2)

(

1
m

+ ε
)

O =
mλ(1)

O − ε
m2λ(1)

O + o(ε) , (8.118)

i.e., (8.111). This completes the proof of the lemma. 2

Lemma 8.6 Let U be a strictly concave, strictly increasing function. Let

f(x) = U
(

(U ′)−1(x)
)

(8.119)

and suppose that

d

dx
(xf ′(x)) = 0 , ∀ x ∈ (U ′(W ), U ′(W )) , (8.120)

for some constants W ≤W . Then we must have

U(W ) = α log(W + γ′) + β , ∀W ∈ (W,W ) , (8.121)

where α, β, and γ′ are constants.

Proof: It follows from (8.120) that

0 = f ′(x) + xf ′′(x) , ∀ x ∈ (U ′(W ), U ′(W )) . (8.122)

All solutions of this differential equation have the form

f(x) = α′ log x+ β′ , ∀ x ∈ (U ′(W ), U ′(W )) , (8.123)

with constants α′ and β′.
What is the form of the function U then? U is related to f by means of

(8.119), so we have

U
(

(U ′)−1(x)
)

= α′ log x+ β′ , ∀ x ∈ (U ′(W ), U ′(W )) . (8.124)

Let
W = (U ′)−1(x) . (8.125)

We notice that, since x can take all values in (U ′(W ), U ′(W )), W can take all
values in (W,W ). Therefore (8.124) reads

U(W ) = α′ logx+ β′, (8.126)
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which we exponentiate to obtain

e
(U(W )−β′ )

α′ = x. (8.127)

Comparing (8.125) and (8.127), we see that

U ′(W ) = e
(U(W )−β′)

α′ , ∀W ∈ (W,W) . (8.128)

The solution to this nonlinear first order equation in W is known to exist and
be unique, given initial conditions (see Braun (1975), Theorem 2’, p. 106). It
is given by

U(W ) = −α′ log

(

W + γ′

α′

)

+ β′ , ∀W ∈ (W,W ) , (8.129)

i.e., it has the form

U(W ) = α log(W + γ′) + β , ∀W ∈ (W,W ) (8.130)

where α, β, and γ′ are constants. 2

We now prove Theorem 8.4. Our performance measure is

∆U

(

q(1), q(2),O
)

=
∑

y∈Y
p̃y

(

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

))

.

(8.131)
We note that, in particular, by the assumptions of the theorem, ∆ has to
be independent of the payoffs for a set of empirical measures that assign
probability one to a particular state and zero to all others. This leads to the
requirement that

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

)

(8.132)

does not depend on O, for any y ∈ Y. Using our market assumption, (8.102),
for y = y1, we see that

U
(

b∗y1

(

q(2)
)

O
)

− U
(

b∗y1

(

q(1)
)

O
)

(8.133)

does not depend on O. It follows from Lemma 8.5 (see (8.110)) that

b∗y1
(q(2))O = (U ′)−1

(

λ(2)

O
(

1
m + ε

)

)

. (8.134)

Also from Lemma 8.5 (see (8.109)) , it follows that

b∗y1
(q(1))O = (U ′)−1

(

λ(1)

O 1
m

)

. (8.135)
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Substituting these expression into (8.133), we see that

U

(

(U ′)−1

(

λ(2)

O
(

1
m + ε

)

))

− U

(

(U ′)−1

(

λ(1)

O 1
m

))

(8.136)

does not depend on O. Hence

f

(

λ(2)

O
(

1
m + ε

)

)

− f

(

λ(1)

O 1
m

)

, (8.137)

where
f(x) = U

(

(U ′)−1(x)
)

(8.138)

does not depend on O.
Applying (8.111) from Lemma 8.5, we see that

f

(

mλ(1)

O − ε
m2λ(1)

O + o(ε)

)

− f

(

mλ(1)

O

)

= −εm
2λ(1)

O f ′
(

mλ(1)

O

)

+ o(ε)

(8.139)
does not depend on O. We have (after dividing by m and ε), to leading order,

mλ(1)

O f ′
(

mλ(1)

O

)

(8.140)

does not depend on O. Recall that

mλ(1)

O = U ′
(O
m

)

(by (8.113)); (8.141)

so, substituting into (8.140), we see that

U ′
(O
m

)

f ′
(

U ′
(O
m

))

(8.142)

does not depend on O. Letting

x = U ′
(O
m

)

, (8.143)

it follows that, since O
m

can take all values in the interior of (0,∞)∩ dom(U)
(see (8.108)), x takes all values in the interior of (U ′(∞), U ′(0)) ∩ range(U ′).
It follows that our first order condition (8.142) not depending on O is equiv-
alent to

xf ′(x) (8.144)

not depending on x, i.e., our first order condition (8.142) is equivalent to

d

dx
(xf ′(x)) = 0 , ∀x ∈ (U ′(∞), U ′(0)) ∩ range(U ′) , (8.145)



214 Utility-Based Learning from Data

where we have used the fact that, by (8.138) and Assumption 4.1, f ′ is differ-
entiable. By Lemma 8.6, we must have

U(W ) = α log(W + γ′) + β , ∀W > max{0,−γ′} (8.146)

where α, β, and γ′ are constants. 2.

8.7.3 Proof of Theorem 8.5

We follow the logic from Friedman and Sandow (2006b). First we state
and prove (with one exception, for which we give a reference) the following
lemmas.

Lemma 8.7 Under assumptions (ii) and (iii) of Theorem 8.5, the relative
model performance measure, ∆U

(

q(1), q(2),O
)

, must have the form

∆U

(

q(1), q(2),O
)

=
∑

y∈Y
p̃yGO,m,y(q(1)

y , q(2)
y ) , (8.147)

where the function GO,m,y is parameterized as indicated by the notation.

Proof: By Definition 8.2, the relative performance measure is defined as

∆U

(

q(1), q(2),O
)

=
∑

y∈Y
p̃y

[

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

)]

,

(8.148)
where b∗ is given by Definition 5.3, so that assumption (iii) of Theorem 8.5
reads

∑

y∈Y
p̃y

[

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

)]

= hO,m,p̃





∑

y∈Y
p̃ygO,m,y(q(1)

y , q(2)
y )



 ,

for all p̃. By choosing, for each y in turn, p̃ = p̃y = {p̃y′ = δy′,y, y
′ ∈ Y} , we

find
[

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

)]

= hO,m,p̃y

(

gO,m,y(q(1)
y , q(2)

y )
)

,

(8.149)
for all y ∈ Y. Defining the function GO,m,y by means of

GO,m,y(x1, x2) = hO,m,p̃y(gO,m,y(xx, x2)), (8.150)

we obtain
[

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

)]

= GO,m,y

(

q(1)
y , q(2)

y

)

. (8.151)

Inserting (8.151) into (8.148) results in (8.147), which completes the proof of
the lemma.2
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Lemma 8.8 (Bernardo (1979)) Let a score function be a mapping that as-
signs a real number to each pair (q, y), where q = {qy, y ∈ Y} is a probability
measure for Y . If a score function u is

(i) smooth, i.e., continuously differentiable as a function of the qy,

(ii) proper, i.e., has the property

sup
q

∑

y∈Y
pyu(q, y) =

∑

y∈Y
pyu(p, y) , (8.152)

and

(iii) local, in the sense that u(q, y) is independent of qy′ 6=y ,

and m = |Y| > 2, then the score function must be of the form

u(q, y) = a log qy + cy , (8.153)

where a > 0 and the cy are arbitrary constants.

Proof: See Bernardo (1979), or Proposition 2.29 in Bernardo and Smith
(2000).

Lemma 8.9 Under the assumptions (i)-(iii) of Theorem 8.5, the score func-
tion

u(q, y) = U(b∗y(q)Oy) (8.154)

is local in the sense that it is independent of qy′ 6=y , and the relative model
performance measure, ∆U

(

q(1), q(2),O
)

, must have the form

∆U

(

q(1), q(2),O
)

= Am(O) l
(

q(1), q(2)
)

, (8.155)

where l is the log-likelihood ratio from Definition 6.2, and Am is a positive-
valued function, possibly parameterized by m, of the odds ratios, O.

Proof: We will use Lemma 8.8 to prove Lemma 8.9. To this end, we first
prove that the assumptions of Lemma 8.8 hold.

The score function, u, as defined by (8.154), is smooth, which follows from
our assumptions about U , Assumption (ii) of Theorem 8.5, and (5.19).

Furthermore, the score function, u, is proper, which follows from the defi-
nition of the score function, (8.154), and the definition of b∗, Definition 5.3.

Next, we show that the score function defined by (8.154) is local. We write
the relative performance measure in terms of the score function as

∆U

(

q(1), q(2),O
)

=
∑

y∈Y
p̃y

{

u(q(2), y) − u(q(1), y)
}

. (8.156)
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In order to see that the score function is local, we use Assumption (iii) of
Lemma 8.9 (Theorem 8.5) and Lemma 8.7 to write

∆U

(

q(1), q(2),O
)

=
∑

y∈Y
p̃yGO,m,y(q(1)

y , q(2)
y ) , ∀p̃ , (8.157)

which, combined with (8.156), results in

∑

y∈Y
p̃y[u(q(2), y) − u(q(1), y)] =

∑

y∈Y
p̃yGO,m,y(q(1)

y , q(2)
y ). (8.158)

By choosing, for each y in turn, p̃ = p̃y = {p̃y′ = δy′,y, y
′ ∈ Y} , we find

u(q(2), y) − u(q(1), y) = GO,m,y(q
(1)
y , q(2)

y ) , (8.159)

which proves that u(q, y) is independent of the qy′ 6=y, i.e., that u is local.
Having shown that the score function is smooth, proper, and local, it follows

from Lemma 8.8 that the score function can be written as

u(q, y) = Am(O) log(qy) +Bm,y(O) , Am(O) > 0 . (8.160)

(At this point, we have used the assumption that the number of states is
greater than two, since Lemma 8.8 holds only under this condition.) Lemma
8.9 follows then from (8.156), (8.160), and Definition 6.2.2

Lemma 8.10 If a real continuous function F has the property

F
( y

m

)

= a (y) , ∀y ≥ mW0, m = M,M + 1, ... , (8.161)

for some real function a, some positive integer M , and some real positive
number W0, then F (y) and a(y) are independent of y for all y ≥W0.

Proof: It follows from (8.161) that

F
( y

m

)

= F
( y

M

)

, ∀y ≥mW0 , m = M,M + 1, ... . (8.162)

We now choose two integers m and n with

n ≥ m ≥M . (8.163)

Choosing y = nW0 implies y ≥ mW0 and, by means of (8.162),

F
( n

m
W0

)

= F
(

W0
n

M

)

, (8.164)

and choosing m = n in (8.164) implies

F (W0) = F
(

W0
n

M

)

. (8.165)
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Combining (8.164) with (8.165), we have

F
( n

m
W0

)

= F (W0) , ∀m = M,M + 1, ... , n = M,M + 1, ... with n ≥m .

(8.166)
The independence of F (y) of y then follows from the continuity of F and the
fact that any real number larger than one can be obtained as the limit of a
ratio n

m
with m ∈ {M,M + 1, ...} , n ∈ {M,M + 1, ...} and n ≥ m. It follows

from (8.161) that a(y) is independent of y too, which completes the proof of
the lemma.2

Next, we prove Theorem 8.5. Under the assumptions of the theorem (which
are identical with those of Lemma 8.9), it follows from Lemma 8.9 that

∆U

(

q(1), q(2),O
)

= Am(O) l
(

q(1), q(2)
)

, i.e., (8.167)

∑

y∈Y
p̃y

(

U
(

b∗y

(

q(2)
)

Oy

)

− U
(

b∗y

(

q(1)
)

Oy

))

= Am(O)
∑

y∈Y
p̃y log

(

q
(2)
y

q
(1)
y

)

.

(8.168)
The preceding equation must hold for any choice of the odds ratios; in par-
ticular it must hold if

Oy = O > mW0 , ∀y . (8.169)

(The constraint on the admissible values for O ensures that the performance
measures exist, at least for certain models, as we shall see below.) In this case,
(8.168) reads

m
∑

y=1

p̃y

(

U(b∗y(q(2))O) − U(b∗y(q(1))O)
)

= am(O)

m
∑

y=1

p̃y log

(

q
(2)
y

q
(1)
y

)

, (8.170)

where am(O) = A(O1, ..,Om)|O1=O,..,Om=O .

According to the above equation, the function am(O) is indexed by the num-
ber, m, of states. However, it turns out that it is independent of m. In order
to see this, we add an additional state, y = m + 1, to the existing states,

which we denote by y = 1, ..., m, with the property q
(1)
m+1 = q

(2)
m+1. For each of

the original states we multiply p̃y by the factor 1 − κ , 0 < κ < 1; the state
y = m+ 1 gets p̃m+1 = κ. Under this setup, (8.170) reads

(1 − κ)

m
∑

y=1

p̃y

(

U(b∗y(q
(2))O) − U(b∗y(q(1))O)

)

+κ
(

U(b∗m+1(q
(2))O) − U(b∗m+1(q

(1))O)
)

= am+1(O)(1 − κ)

m
∑

y=1

p̃y log

(

q
(2)
y

q
(1)
y

)

+ κ log

(

q
(2)
m+1

q
(1)
m+1

)

. (8.171)
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On both sides of this equation, the terms corresponding to y = m+1 are zero

because q
(1)
m+1 = q

(2)
m+1 and the score function U(b∗y(q)O) is local (see Lemma

8.9). Hence, we obtain

m
∑

y=1

p̃y

(

U(b∗y(q(2))O) − U(b∗y(q(1))O)
)

= am+1(O)

m
∑

y=1

p̃y log

(

q
(2)
y

q
(1)
y

)

.

(8.172)

This equation holds for any choice of q
(1)
m+1 = q

(2)
m+1; in particular it holds for

q
(1)
m+1 = q

(2)
m+1 = 0, in which case we recover the original m-state setup. In the

latter case, (8.170) holds as well. Comparing (8.172) with (8.170) results in
am+1(O) = am(O). Hence, the function am does not depend on m; for the
sake of convenience we will drop the index m.

(8.170) must hold for any empirical measure, p̃, in particular for a measure
that is concentrated at a particular value y. Therefore, we must have

U
(

b∗y

(

q(2)
)

O
)

− U
(

b∗y

(

q(1)
)

O
)

= a(O) log

(

q
(2)
y

q
(1)
y

)

. (8.173)

The above equation must hold for any choice of models; in particular it must
hold for

q(1)
y =

1

m
, ∀y , (8.174)

where m = |Y| , (8.175)

q(2)
y =

1

m
, y /∈ {y1, y2} , (8.176)

q(2)
y1

=
1

m
+ ε , (8.177)

and q(2)
y2

=
1

m
− ε . (8.178)

For the above models, (8.173) reads for y = y1:

U
(

b∗y1

(

q(2)
)

O
)

− U
(

b∗y1

(

q(1)
)

O
)

= a(O) log (1 +mε) . (8.179)

It follows from Lemma 8.5 that

b∗y1
(q(2))O = (U ′)−1

(

λ(2)

O
(

1
m + ε

)

)

(8.180)

and b∗y1
(q(1))O = (U ′)−1

(

λ(1)

O 1
m

)

. (8.181)

Substituting these expressions into (8.179), we must have

f

(

λ(2)

O
(

1
m

+ ε
)

)

− f

(

λ(1)

O 1
m

)

= a(O) log (1 +mε) , (8.182)
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where
f(x) = U

(

(U ′)−1(x)
)

. (8.183)

Applying again Lemma 8.5, we see that

f

(

λ(2)

O
(

1
m + ε

)

)

− f

(

λ(1)

O 1
m

)

= f

(

mλ(1)

O
− ε

m2λ(1)

O
+ o(ε)

)

− f

(

mλ(1)

O

)

= −εm
2λ(1)

O f ′
(

mλ(1)

O

)

+ o(ε) . (8.184)

Therefore, (8.182) can be rewritten as

mε
mλ(1)

O f ′
(

mλ(1)

O

)

+ o(ε) = −a(O)mε . (8.185)

It follows from (5.18) and (8.174) that

mλ(1)

O
= U ′

(O
m

)

. (8.186)

Substituting the above equation into (8.185), we see that

mεU ′
(O
m

)

f ′
(

U ′
(O
m

))

+ o(ε) = −a(O)mε , ∀ε > 0 , m = 3, 4, ...

and O ≥ mW0 , (8.187)

i.e., that

U ′
(O
m

)

f ′
(

U ′
(O
m

))

+
o(ε)

mε
= −a(O) , ∀ε > 0 , m = 3, 4, ...

and O ≥ mW0 . (8.188)

Taking the limit of the left hand side as ε→ 0+, we obtain

U ′
(O
m

)

f ′
(

U ′
(O
m

))

= −a(O) , ∀m = 3, 4, ... and O ≥ mW0 . (8.189)

It follows then from Lemma 8.10 that the function a must be constant. Next,
we define

x = U ′
(O
m

)

; (8.190)

we see that, since O
m can take all values ≥W0, x takes all values in the interior

of (U ′(∞), U ′(W0)]. It follows from (8.189) and the fact that a is a constant
function that

d

dx
(xf ′(x)) = 0 , ∀x ∈ (U ′(∞), U ′(W0)] , (8.191)
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where we have used the fact that f ′ is differentiable. By Lemma 8.6 and
(8.183), we must have

U(W ) = α log(W + γ) + β , ∀W > max{W0,−γ} (8.192)

where α, β, and γ are constants. This is the same as (8.35).
Finally, (8.36) follows from Theorem 8.2. 2

8.7.4 Proof of Theorem 8.10

Following the logic from Sandow et al. (2007), we first state and prove the
following lemma.

Lemma 8.11 The expression

U
[

b∗y

(

q(0), V
)

Oy + V
]

(8.193)

is strictly monotone increasing in V .

Proof: Since U is strictly concave, U ′ and therefore (U ′)−1 are strictly mono-
tone decreasing. It follows from (8.60) that λ decreases when V increases.

Next, we use (8.61) to write

U
[

b∗y

(

q(0), V
)

Oy + V
]

= U

(

(U ′)−1

(

λ

q
(0)
y Oy

))

. (8.194)

The function
f(x) = (U ′)−1 (x) (8.195)

is strictly monotone decreasing, since its derivative

f ′(x) =
1

U ′′ ((U ′)−1(x))
< 0 (because U is strictly concave) . (8.196)

Since furthermore U is strictly monotone increasing, the function

U
(

(U ′)−1 (x)
)

(8.197)

is strictly monotone decreasing too. It follows then from (8.194) and the fact
that λ decreases when V increase that U

[

b∗y
(

q(0), V
)

Oy + V
]

is a strictly
monotone increasing function of V . 2

Next, we prove Theorem 8.10. To this end, we have to show that, for fixed
p̃, q(0) and O, ∆U

(

q(0), q,O
)

is a strictly monotone increasing function of

VU

(

q(0), q,O
)

. For fixed p̃, q(0) and O, we can view ∆ and V as functions of

U(q) =
∑

y

p̃yU
[

b∗y (q, 0)Oy

]

. (8.198)
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We have
∆U

(

q(0), q,O
)

= U(q) − c , (8.199)

where
c =

∑

y

p̃yU
[

b∗y

(

q(0), 0
)

Oy

]

(8.200)

does not depend on q, and

VU

(

q(0), q,O
)

= F−1(U(q)) , (8.201)

where the function F is defined as

F (V ) =
∑

y

p̃yU
[

b∗y

(

q(0), V
)

Oy + V
]

. (8.202)

Combining (8.199) and (8.201), we obtain

VU

(

q(0), q,O
)

= F−1
(

∆U

(

q(0), q,O
)

+ c
)

. (8.203)

It follows from Lemma 8.11 and (8.202) that F , and consequently F−1, are
strictly monotone increasing in V . Theorem 8.10 follows then from (8.203). 2

8.7.5 Proof of Corollary 8.2 and Corollary 8.3

The proofs that follow are the ones from Sandow et al. (2007).

Proof of Corollary 8.2: In order to prove (8.66), we first use Lemma 5.1. We
see from (8.60) that

λ =





∑

y′

1

Oy′

(qy′Oy′)
1
κ





κ
(

1 +
V

B

)−κ

. (8.204)

We see, from (8.61), that

b∗y(q, V )Oy =

(

1 +
V

B

)

(qyOy)
1
κ

Sκ(q,O)
− V , (8.205)

where Sκ(q,O) =
∑

y
1
Oy

(qyOy)
1
κ (see (8.67)). It follows that

U(b∗y(q, V )Oy + V ) =
1

1 − κ





(

1 +
V

B

)1−κ
(

(qyOy)
1
κ

Sκ(q,O)

)1−κ

− 1



 . (8.206)

Inserting this equation into (8.63) from Definition 8.6, we obtain

0 =
Aκ(q(2),O)

(

Sκ(q(2),O)
)1−κ − Aκ(q(1),O)

(

Sκ(q(1),O)
)1−κ

(

1 +
V

B

)1−κ

, (8.207)
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where Aκ(q,O) =
∑

y p̃y (qyOy)
1−κ

κ (see (8.68)). Solving for V results in
(8.66). 2

Proof of Corollary 8.3: Using (8.67), the expansion

(qyOy)
1
κ = 1 +

1

κ
log(qyOy) + o

(

1

κ

)

,

and Definition 3.3, we obtain

Sκ(q,O) =
1

B
+

1

Bκ
Ep(h) [log(qO)] + o

(

1

κ

)

. (8.208)

This leads to

Sκ(q(1),O)

Sκ(q(2),O)
= 1 − 1

κ
Ep(h)

[

log

(

q(2)

q(1)

)]

+ o

(

1

κ

)

. (8.209)

Next, we expand the term
(

Aκ(q(2),O)
Aκ(q(1),O)

)
1

1−κ

. We substitute κ by 1
α

into this

term, and define it as a function of α:

f(α) =

(

A 1
α
(q(2),O)

A 1
α
(q(1),O)

)
α

α−1

. (8.210)

Then

log f(α) =
α

α− 1

[

log(A 1
α
(q(2),O)) − log(A 1

α
(q(1),O))

]

, (8.211)

and we obtain

f ′(α)

f(α)
= (log(f(α)))′

= − 1

(α− 1)2

[

log(A 1
α
(q(2),O)) − log(A 1

α
(q(1),O))

]

+
α

α− 1

[

log(A 1
α
(q(2),O)) − log(A 1

α
(q(1),O))

]′
. (8.212)

Based on

lim
α→0

f(α) = 1 , (8.213)

lim
α→0

A 1
α
(q(1),O) =

∑

y

p̃y(q(1)
y Oy)−1 , (8.214)

lim
α→0

A 1
α
(q(2),O) =

∑

y

p̃y(q(2)
y Oy)−1 , (8.215)
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and
lim
α→0

α

α− 1
[log(A 1

α
(q(2),O)) − log(A 1

α
(q(1),O)]′ = 0 , (8.216)

(8.212) leads to

f ′(0) = log

(

∑

y

p̃y(q(1)
y Oy)−1

)

− log

(

∑

y

p̃y(q(2)
y Oy)−1

)

. (8.217)

So we get the expansion

„

Aκ(q(2),O)

Aκ(q(1),O)

«

1
1−κ

= 1 +
1

κ

(

log

 

X

y
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y Oy)−1

!

− log

 

X

y

p̃y(q(2)
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!)

+o

„

1

κ

«

.

Combining this equation with (8.66) and (8.209), we get

VUκ
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q
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, q
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B
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q(1)
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(q(1)O)−1
i

Ep̃ [(q(2)O)−1]

1

A

9

=

;

+o

„

1

κ

«

.

(8.218)

This completes the proof of the corollary . 2

8.7.6 Proof of Theorem 8.11

Following the logic from Sandow et al. (2007), we first state and prove the
following lemma.

Lemma 8.12 Let us assume that our investor

(i) has initial capital of $(1 + V ) and allocates $1 to the horse race, and

(ii) believes a model, q, with nearly homogeneous returns, i.e., with

qyOy = B(1 + ε(q)y ) . (8.219)

Then, in the limit maxy∈Y
∣

∣

∣ε
(q)
y

∣

∣

∣→ 0, the investor allocates according to

b∗y(q, V ) =
1

Oy

(

B +
B + V

R(B + V )
ε(q)y

)

+ o
(

ε(q)
)

, (8.220)

where
ε(q) = max

y∈Y

∣

∣

∣ε(q)y

∣

∣

∣ , (8.221)

and

R(W ) = −WU ′′(W )

U ′(W )
(8.222)

is the investor’s relative risk aversion at the wealth level W .
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Proof: First we note that it follows from
∑

y∈Y qy = 1, (8.219), and Defini-
tion 3.2 that

∑

y∈Y

ε
(q)
y

Oy
= 0 . (8.223)

Next, we solve (8.60), which after inserting (8.219) reads

1 +
V

B
=
∑

y∈Y

1

Oy
(U ′)−1

(

λ

B(1 + ε
(q)
y )

)

=
∑

y∈Y

1

Oy

[

(U ′)−1

(

λ

B

)

− ε(q)y

λ

B

(

(U ′)−1
)′
(

λ

B

)

+ o(ε(q))

]

=
1

B
(U ′)−1

(

λ

B

)

+ o(ε(q)) (8.224)

(by (8.223) and Definition 3.2) ,

for λ. The solution is

λ = BU ′(B + V ) + o(ε(q)) . (8.225)

Inserting (8.225) and (8.219) into (8.61), we have

b∗yOy = (U ′)−1

(

U ′(B + V )

1 + ε
(q)
y

+ o(ε(q))

)

− V

= B − U ′(B + V )

U ′′(B + V )
ε(q)y + o(ε(q)) , (8.226)

which, in conjunction with (8.222), results in (8.89). This concludes the proof
of Lemma 8.12. 2

Next, we prove Theorem 8.11. To this end, we expand VU

(

q(1), q(2),O
)

with respect to the ε
(q(i))
y . Let V0 and V1 denote the first two terms in this

expansion; we have

VU

(

q(1), q(2),O
)

= V0 + V1 + o(ε′) , (8.227)

where ε′ = max
y∈Y,i=1,2

∣

∣

∣ε(q
(i))

y

∣

∣

∣ (see (8.75)) , (8.228)

V0 = O(1) , and (8.229)

V1 = O(ε′) . (8.230)

Since V0 = limε′→0 VU

(

q(1), q(2),O
)

and the limit ε′ → 0 corresponds to the
case of two (identical) homogeneous-return models, we must have V0 = 0, i.e.,
we obtain

VU

(

q(1), q(2),O
)

= V1 +O(ε′) . (8.231)
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Next, we prove statement (i) of Theorem 8.11. It follows from Lemma 8.12
and V = O(ε′) that

b∗y(q(2), 0) =
B

Oy

(

1 +
ε
(q(2))
y

R(B)

)

+ o (ε′) , and

b∗y(q(1), V ) =
B

Oy

(

1 +
ε
(q(1))
y

R(B)

)

+ o (ε′) . (8.232)

Now we expand

U
(

b∗y(q(2), 0)Oy

)

= U (B) +
B

R(B)
ε(q

(2))
y U ′ (B) + o (ε′) , and

U
(

b∗y(q
(1), V )Oy + V

)

= U (B) +

[

B

R(B)
ε(q

(1))
y + V1

]

U ′ (B) + o (ε′)

(since V1 = O(ε′) ).

We insert this into the definition of V , which is

∑

y∈Y
p̃yU

(

b∗y(q(2), 0)Oy

)

−
∑

y∈Y
p̃yU

(

b∗y(q(1), V )Oy + V1

)

= o (ε′) , (8.233)

(see Definition 8.6), and obtain

B

R(B)

∑

y∈Y
p̃yε

(q(2))
y − B

R(B)

∑

y∈Y
p̃yε

(q(1))
y − V1 = 0 + o (ε′) , (8.234)

i.e.,

VU

(

q(1), q(2),O
)

= V1 + o (ε′)

=
B

R(B)

∑

y∈Y
p̃y

[

ε(q
(2))

y − ε(q
(1))

y

]

+ o (ε′) . (8.235)

We see from this equation that indeed V1 = O(ε′), as we have assumed. Next,
we use

log
q
(2)
y

q
(1)
y

= log
q
(2)
y Oy

q
(1)
y Oy

= log
B
(

1 + ε
(q(2)))
y

)

B
(

1 + ε
(q(1)))
y

) + o (ε′) (from (8.72))

= ε(q
(2))

y − ε(q
(1))

y + o (ε′) (8.236)
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to write (8.235) as

VU

(

q(1), q(2),O
)

=
B

R(B)

∑

y∈Y
p̃y log

q
(2)
y

q
(1)
y

+ o (ε′) . (8.237)

The above equation, together with Definition 6.2 and Theorem 8.1, proves
statement (i) of the theorem. Statement (ii) follows then from Theorem 8.3,
which concludes the proof of Theorem 8.11. 2

8.8 Exercises

1. Construct an example for which side information improves the expected
utility of an investor who aims at maximizing the latter.

2. A coin has probability p̃1 = 0.55 of turning up heads and probability
p̃2 = 0.45 of turning up tails. The odds ratios for a bet on a toss of this
coin are O1 = O2 = $2.1. Compute for an expected utility maximizing
investor, the gain in expected utility with respect to an investor who
believes the uniform measure. Assume that the investor has a generalized
logarithmic utility function and that he believes the probability measure

(a) q1 = 1 − q2 = 0.55, or

(b) q1 = 1 − q2 = 0.9.

Compute, for the same investor, the monetary value of upgrading from
the uniform measure to the above model q.

3. Assume the same setting as in the previous problem, except that the
investor has a power utility now. Plot the investor’s gain in expected
utility and the monetary value of the model upgrade as functions of the
investor’s risk aversion.

4. A hypothetical, expected wealth growth rate-maximizing trader places
bets on whether companies default (Y = 1) or survive (Y = 0) over
the course of a year, given side information x ∈ Rd (the financials of
the firm, economic conditions, etc.). He gets his probabilities from the
conditional probability model q(Y = y|x), y ∈ {0, 1}.

(a) What is expected wealth growth rate cost of making Kelly (i.e.,
expected growth rate optimal) bets according to the model q(Y =
y|x) rather than the “true” model p(Y = y|x), measured on the
equally likely points {x1, . . . , xN}?
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(b) If the model q(Y = y|x) was produced by a maximum-likelihood
logistic regression

q(Y = 1|x) =
1

1 + exp(−β0 + β · x) (8.238)

trained on the set {(xi, yi), i = 1, . . . , N}, prove that

1

N

∑

i

q(Y = 1|xi) = percentage of defaulters in the training set.

(8.239)
(Hint: Derive the dual for the MRE problem subject to the above
equation as a constraint.)

5. Which value must be chosen for α, so that the generalized logarithmic
utility function

U(W ) = α log(W − γB) + β (8.240)

approximates a power κ utility function locally near wealth level B?

6. Derive an explicit expression for the performance measure ∆ in the case
of a linear utility function.





Chapter 9

Select Methods for Estimating
Probabilistic Models

In Chapters 6 and 8, we have measured the performance of probabilistic mod-
els from a statistical and from a decision-theoretic point of view. Obviously,
before we can evaluate a model, we have to build it, preferably such that it
performs well according to our chosen evaluation criterion. How one can do
this is the topic of this and the following chapter. In this chapter we review
some commonly used methods, and in the next chapter we will recast these
methods in a decision-theoretic framework. We note that the review in this
chapter is far from complete, but rather restricted to those methods that can
be related to the decision-theoretic framework that is the main topic of this
book.

In this chapter, we shall restrict ourselves to the simplest possible setting,
which is the estimation of unconditional probabilities of a discrete random
variable. We have chosen this setting for the sake of convenience; it allows
us to clarify the main ideas. A generalization to conditional probabilities and
continuous random variables is in most cases straightforward; we will address
this issue in later chapters.

In Section 9.1, we shall review classical parametric inference, introducing
the main ideas of parametric inference and discussing maximum likelihood
inference in some detail. In maximum likelihood inference, the parameters of
a model are chosen so as to maximize the likelihood. This approach is consis-
tent with measuring model performance via the likelihood; we have discussed
various motivations for doing so in Sections 6.2, 8.1, and 8.2. Some of these
motivations are of a decision-theoretic nature.

In Section 9.2, we discuss the problem of overfitting and regularized max-
imum likelihood inference. Overfitting is the often-observed phenomenon of
an estimated model matching the training data very well but out-of-sample
data poorly. Regularization is a way to mitigate overfitting. In the regularized
maximum-likelihood method, one doesn’t maximize the log-likelihood itself
but an objective function that is the sum of the likelihood and a term that pe-
nalizes nonsmooth distribution. The resulting distributions are smoother than
the ones obtained from a maximum-likelihood estimation, and are therefore
less likely to overfit.

Another powerful method for estimating probabilistic models is Bayesian in-
ference. In Section 9.3, we review the main ideas of this approach, such as prior

229
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and posterior measures. We shall demonstrate that, for large sample sizes, it is
related to maximum-likelihood inference. Regularization of the latter method
can then be interpreted as the consequence of choosing a nonuniform prior.

An alternative approach to estimating probabilities is the minimum rela-
tive entropy (MRE) method. We review this method in Section 9.4 in this
chapter, and, in the next chapter, we shall relate it to the decision-theoretic
framework from Chapter 8. In Section 9.4, we discuss the MRE method with
equality constraints, i.e., the standard MRE problem, and with relaxed in-
equality constraints, i.e., the relaxed MRE problem. We shall see that the
dual of the standard MRE problem is a maximum-likelihood problem and
the dual of the relaxed MRE problem is a regularized maximum-likelihood
problem for a family of exponential distributions.

9.1 Classical Parametric Methods

In the classical parametric approach to probabilistic model building one
assumes that the probability measure we are to estimate is a member of para-
metric family, and one infers the “true” parameter value from data. In this
section, we will briefly discuss the main ideas behind this approach and the
maximum-likelihood method as the most commonly used method for param-
eter inference. For a more detailed review of this topic we refer the reader to
textbooks on classical statistics, such as the one by Davidson and MacKinnon
(1993).

To be specific, we set out to estimate a probability measure for the ran-
dom variable Y with the finite state space Y. We have chosen this setting
for the sake of convenience; it is straightforward to generalize to conditional
probabilities or to consider infinite state spaces.

9.1.1 General Idea

In classical parametric statistics, we assume that the random variable Y
with the state space Y has a “true” probability measure of the form

pθ = {pθ
y , y ∈ Y} , (9.1)

where θ is a vector of parameters. However, we don’t know the “true” value,
θ0, of the parameter vector, θ, and, therefore, have to estimate it from the
data. An example for a parametric measure of the type (9.1) is the binomial
distribution, which assigns the probabilities pθ

y =
(

n
y

)

θy(1 − θ)n−y, with the

parameter θ to the random variable Y with the state space Y = {0, 1, ..., n}.
We shall not discuss the validity of the above assumption here; interesting

discussions of this topic can be found, for example, in Jaynes (2003). We would
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like to point out though that the existence of a “true” underlying probability
measure, or, equivalently, of a data generating process, is not necessary in the
decision-theoretic approaches that we shall introduce in Chapter 10.

There are various methods for estimating the parameter vector θ; the most
widely used one is arguably the maximum-likelihood method. Alternatives
to the maximum-likelihood method are M-estimators and the method of mo-
ments; these methods are beyond the scope of this book. We shall describe the
maximum-likelihood method below, in Section 9.1.3. However, before we do
so, we shall discuss some general desirable properties of parameter estimators.

9.1.2 Properties of Parameter Estimators

Let us consider an estimator θ̂N for θ, that was inferred from a sample of
size N . It is often useful to know if this estimator has the properties defined
below.

Bias

The bias of an estimator θ̂N for θ is

‖E[θ̂N ] − θ0‖ ,

where ‖...‖ denotes the norm of a vector, and θ0 is the “true” parameter

vector. An estimator θ̂N is said to be unbiased if

E[θ̂N ] = θ0

and asymptotically unbiased if

lim
N→∞

E[θ̂N ] = θ0 .

We generally prefer estimators with a small bias, since, everything else being
equal, they are more likely to be close to the “true” parameter value.

Below we list some examples for biased and unbiased estimators. In all of
these examples we denote the observed values for Y by y1, ..., yN.

(i) The sample mean

yN =
1

N

N
∑

i=1

yi (9.2)

is an unbiased estimator for Epθ0 [Y ] (see Exercise 1).

(ii) The sample variance

σ̂2
N =

1

N

N
∑

i=1

(yi − yN )2 (9.3)

is a biased estimator for the variance of Y under pθ0 (see Exercise 2).
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(iii) The following variance estimator is unbiased

1

N − 1

N
∑

i=1

(yi − yN)2

(see Exercise 3).

Variance and efficiency

We generally prefer estimators with a low variance, since they are less likely
to be far from their mean. This follows from the Chebyshev inequality, which,
in the case of a one-dimensional θ, implies

P
(

(θ̂ −E[θ̂])2 > c2
)

≤ V ar(θ̂)

c2
.

The following definition is useful for expressing the above preference: One
unbiased estimator is said to be more efficient than another if the difference
between their covariance matrices is a nonnegative definite matrix.

We note that, although low bias and low variance are both desirable, the
two objectives cannot always be achieved at the same time. Therefore, we
often have to consider the tradeoff between bias and variance.

Consistency
An estimator θ̂N for θ is consistent if

plimN→∞ θ̂N = θ . (9.4)

Recall that

plimN→∞aN = a

means that, for any ε and δ > 0, there exists an N such that for all n > N

P (||an − a|| > ε) < δ .

So consistency means that, at a given confidence level, we can, at least theo-
retically, get θ̂N arbitrarily close to θ0 by increasing the sample size.

We note that although consistency and unbiasedness are closely related,
they are different and neither one implies the other (see, for example, the
discussion in Davidson and MacKinnon (1993), Section 4.5).

Asymptotic normality

An estimator θ̂N for θ (on a sample of size N) is said to be asymptotically
normal-distributed if its distribution converges to a normal distribution as
N → ∞.

An estimator θ̂N for θ is usually asymptotically normal-distributed if the
central limit theorem applies (see Davidson and MacKinnon (1993), Section
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4.6). For example, the variance estimator

σ̂2
N =

1

N

N
∑

i=1

(yi − yN)2

(see (9.3)) is asymptotically normal. This follows from the central limit theo-
rem, since the above expression can be written as the sum ofN−1 independent
random variables (assuming that the yi are i.i.d.).

If an estimator is asymptotically normal-distributed, we know its approx-
imate distribution (in case of a large sample) whenever we can estimate its
mean and variance. This is useful for hypothesis testing.

Invariance under reparameterization

Let us transform the model parameters (i.e., reparameterize the model) as

θ′ = g(θ) , (9.5)

where g is some differentiable function. Then we call the estimator θ̂ for θ
invariant under the reparameterization if

θ̂′ = g(θ̂) . (9.6)

This means that we have the same probabilities for Y after reparameterization.
Since the parameterization of a model is completely arbitrary, we generally

prefer estimators that are invariant under arbitrary reparameterization. We
note that, however, invariance under reparameterization of an estimator im-
plies that, in general, the estimator cannot be unbiased. In order to see this,
suppose an estimator is unbiased for a given parameterization, i.e.,

E[θ̂] = θ0 , (9.7)

and that we reparameterize with a nonlinear function g as

θ′ = g(θ) . (9.8)

Assuming invariance, i.e.,

θ̂′ = g(θ̂) ,

we have

E[θ̂′] = E[g(θ̂)] . (9.9)

On the other hand, the “true” value of θ′ is

θ′0 = g(θ0)

= g(E[θ̂]) (by (9.7)) . (9.10)
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Since, in general, E[g(θ̂)] 6= g(E[θ̂]), (9.9) and (9.10) imply

θ′0 6= E[θ̂′] .

This means that the transformed parameter estimator is biased.

Computability

For practical ends, it is important that an estimator can be computed, at
least numerically. Typically, one has to solve an optimization problem to do
so. Convex optimization problems are generally preferable to nonconvex prob-
lems, since they avoid the issue of local minima. So there is some advantage
to estimators that are the solution of a convex optimization problem.

9.1.3 Maximum-Likelihood Inference

The perhaps most widespread method of parametric inference is the
maximum-likelihood method. When following this method, we estimate the
value of a parameter-vector θ by maximizing the likelihood. The following
definition makes this formal.

Definition 9.1 The maximum-likelihood estimator for the parameter θ of the
probability measure pθ is given by

θ̂(ML) = arg max
θ

logLD
(

pθ
)

, (9.11)

where D = {y1, y2, ..., yN} are the observed data and LD
(

pθ
)

=
∏N

i=1 p
θ
yi

denotes the likelihood from Definition 6.1.

We note that maximum likelihood inference works the same way for condi-
tional probability measure if we use Definition 6.3 for the likelihood and for
probability densities if pθ is such a density.

Maximum-likelihood inference is the logical consequence of using the likeli-
hood as a model performance measure. In Sections 6.2, 8.1, and 8.2, we have
discussed in some detail why the likelihood is a reasonable model performance
measure; the reasons are the following.

(i) The likelihood is, by definition, the probability of the data under the
model measure (see Definition 6.1).

(ii) The likelihood principle is equivalent to the conjunction of the condi-
tionality principle and the sufficiency principle (see Birnbaum (1962),
or Section 6.2.2).

(iii) The likelihood ratio provides a decision criterion for model selection that
is optimal in the sense of the Neyman-Pearson lemma (see Neyman and
Pearson (1933), or Section 6.2.3).
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(iv) The likelihood principle is consistent with Bayesian logic (see Jaynes
(2003), or Section 6.2.2).

(v) An investor who bets in a horse race so as to optimize his wealth growth
rate measures relative model performance by means of the likelihood
ratio (see Cover and Thomas (1991), or Section 6.2.4).

(vi) An expected utility maximizing investor with a utility function of the
form U(W ) = α log(W −γB)+β who bets in a horse race measures rel-
ative model performance by means of the likelihood ratio (Theorem 8.2).

Maximum-likelihood estimators have the following properties.

(i) They are generally biased. An example for a biased estimator is the
maximum-likelihood estimator for θ of the probability distribution

pθ
y = θe−θy , y ≥ 0 , θ > 0 ,

which can easily be shown to have the expectation

Epθ0

[

θ̂(ML)
]

≈ θ0

(

1 +
1

N

)

, for large N .

(ii) Maximum-likelihood estimators are, under some technical conditions,
consistent (Wald’s consistency theorem, see, for example, Davidson and
MacKinnon (1993), Theorem 8.1).

(iii) Maximum-likelihood estimators are, under some technical conditions,
asymptotically normal (see, for example, Davidson and MacKinnon
(1993), Theorem 8.3).

(iv) Maximum-likelihood estimators are invariant under reparameterization
(see, for example, Davidson and MacKinnon (1993), Section 8.3).

(v) Maximum-likelihood estimation generally leads to a nonconvex opti-
mization problem. However, in certain interesting special cases, some of
which we will encounter later in this book, the optimization problem is
convex.

Properties (ii)-(iv) are generally viewed as desirable. These properties,
along with the reasons discussed above, make the maximum-likelihood method
the arguably most popular method of parameter estimation in classical statis-
tics.
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9.2 Regularized Maximum-Likelihood Inference

Maximum-likelihood inference tends to work well for well-specified para-
metric models as long as the model isn’t too complex and there are enough
observations available. If, on the other hand, the model specification is too
complex for the dataset we train it on, the maximum-likelihood method can
lead to so-called overfitting. A model is said to overfit, if it fits the training
data well, but generalizes poorly. Somebody who measures model performance
by means of the likelihood would consider a model overfit if it has an out-
of-sample likelihood that is much lower than its in-sample likelihood. This
oft-observed phenomenon occurs in many practical situations (see, for exam-
ple, the discussion in Hastie et al. (2009), for more details); we will encounter
some examples later in this book.

A commonly used approach to mitigating overfitting is regularization, also
often called penalization. The main idea of this approach is to choose the
model parameters such that they maximize the sum of the log-likelihood and
an additional regularization term that penalizes nonsmoothness. The resulting
model has, by construction, a lower in-sample likelihood than the unregular-
ized maximum-likelihood model; however, its out-of-sample likelihood can be
higher than the one of the maximum-likelihood model.

In order to define the regularized maximum-likelihood estimator, let us
assume that the family of measures pθ is parameterized such that lower values
of the |θj| correspond to smoother measures than higher values, where the θj

are the elements of the parameter vector θ = (θ1 , ..., θJ)T . An example for

such a parameterization is the measure pθ
y ∝ e−θ1|y|−θ2y2

. We have used the
term smoothness in a loose sense here; it can be defined precisely, for example,
in terms of the sum of the squared (discretize) derivatives of pθ

y with respect
to y. We make the following definition.

Definition 9.2 The φ-regularized maximum-likelihood estimator for the pa-
rameter vector θ of the probability measure pθ is given by

θ̂(φ)(α) = arg max
θ∈RJ

{

1

N
logLD

(

pθ
)

− αφ(θ)

}

, (9.12)

where D = {y1, y2, ..., yN} are the observed data, LD
(

pθ
)

=
∏N

i=1 p
θ
yi

denotes

the likelihood from Definition 6.1, and φ is a continuous function on RJ that is
increasing in |θj| , ∀j = 1...J . The parameter α ≥ 0 is called the regularization
parameter.

The larger the regularization parameter is chosen, the smoother is the prob-

ability measure pθ̂(φ)(α), which is a consequence of the following lemma.

Lemma 9.1 If α1 > α2, then
∣

∣

∣θ̂
(φ)
j (α1)

∣

∣

∣ ≤
∣

∣

∣θ̂
(φ)
j (α2)

∣

∣

∣ , ∀j = 1...J .
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Proof: We prove the lemma by contradiction. Suppose that α1 > α2 and
∣

∣

∣
θ̂
(φ)
j (α1)

∣

∣

∣
>
∣

∣

∣
θ̂
(φ)
j (α2)

∣

∣

∣
for some j . (9.13)

It follows from (9.12) that

LD
(

pθ̂(α1)
)

− α1φ(θ̂(α1)) ≥ LD
(

pθ̂(α2)
)

− α1φ(θ̂(α2)) ,

and LD
(

pθ̂(α2)
)

− α2φ(θ̂(α2)) ≥ LD
(

pθ̂(α1)
)

− α2φ(θ̂(α1)) ,

which implies

α1

[

φ(θ̂(α1)) − φ(θ̂(α2))
]

≤ LD
(

pθ̂(α1)
)

− LD
(

pθ̂(α2)
)

≤ α2

[

φ(θ̂(α1)) − φ(θ̂(α2))
]

,

i.e.,

α1

[

φ(θ̂(α1)) − φ(θ̂(α2))
]

≤ α2

[

φ(θ̂(α1)) − φ(θ̂(α2))
]

.

It follows then from (9.13) and the fact φ is increasing in the |θj | that

φ(θ̂(α1)) − φ(θ̂(α2)) > 0 and, consequently,

α1 ≤ α2 , (9.14)

which contradicts our assumption. 2

We note that ∣

∣

∣θ(φ)(α)
∣

∣

∣ ≤
∣

∣

∣θ(φ)(0)
∣

∣

∣ =
∣

∣

∣θ(ML)
∣

∣

∣ (9.15)

follows from Lemma 9.1.
The quality of the parameter estimator, θ(φ)(α), from Definition 9.2 depends

obviously on the choice of the regularization-parameter α. Many practitioners
simply try a variety of values for α, test each model via cross validation, and
pick the model with the largest out-of-sample likelihood.

The idea of regularization is closely related to the principle of structural risk
minimization (see Vapnik (1998)). According to this principle, one minimizes
the guaranteed risk for a given dataset; this leads to a complexity penalization,
i.e., a regularization, that is a function of a risk error estimate. The resulting
regularization terms can be distribution-free, such as the ones based on the VC
dimension (see Vapnik and Chernovenkis (1968) and Vapnik and Chernovenkis
(1971)), or data-dependent (see, for example, Lugosi and Nobel (1999), or
Massart (2000)). An overview over some of these methods is provided by
Bartlett et al. (2000).

Regularization is also related to the various information criteria that can
be used for model selection. These criteria usually consist of the sum of like-
lihood of a model and a complexity penalty. The best known of these criteria
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are perhaps the Akaike information criterion (AIC) from Akaike (1973) and
the Bayesian information criterion (BIC) from Schwarz (1978). We shall not
discuss these criteria in detail, but rather refer the reader to textbook by
Burnham and Anderson (2002).

9.2.1 Regularization and Feature Selection

Often one assumes that the probability measure pθ contains a number of
so-called features, each of which corresponds to a component of the parameter
vector θ, where features denote functions of y. A typical form, which we will
encounter later in this book, is

pθ
y ∝ e

PJ
j=1 θjfj(y) , (9.16)

where the fj are the features. When, in later sections, we consider condi-
tional probabilities, each feature could correspond to a particular explanatory
variable.

A model builder often faces the question of which features should be in-
cluded in the model. A fair amount of research is focused on this very inter-
esting and important question (see, for example, Blum and Langley (1997), or
Guyon and Elisseeff (2003), for reviews). We will not discuss feature selection
in detail here, but we shall explore its link to regularization. In particular, we
shall discuss whether and when regularization can induce feature selection.
To this end, we state the following lemma.

Lemma 9.2 Let logLD
(

pθ
)

be concave and differentiable with respect to θ,
and let φ be convex. If, for some j,

α
∂−φ(θ)

∂−θj

∣

∣

∣

∣

θ=(0,...,0)T

≤ 1

N
log

∂LD
(

pθ
)

∂θj

∣

∣

∣

∣

∣

θ=(0,...,0)T

≤ α
∂+φ(θ)

∂+θj

∣

∣

∣

∣

θ=(0,...,0)T

,

where ∂+ and ∂− denote right-hand derivative and the left-hand derivative,
respectively, then

θ̂
(φ)
j (α) = 0 , (9.17)

where the θ̂
(φ)
j (α) are the components of the estimated parameter vector (9.12).

Proof: The lemma follows directly from (9.12) after expanding logLD
(

pθ
)

and φ(θ) around θ = (0, ..., 0) for a small positive and for a small negative
θj and using the fact that, since logLD

(

pθ
)

− αφ(θ) is concave, each local
maximum is also a global one (see Theorem 2.7). 2

Lemma 9.2 relates regularization to feature selection: since we have assumed
that each component θj of the parameter vector corresponds to a feature, set-
ting θj = 0 is equivalent to excluding, i.e., “unselecting”, the feature from the
model. Therefore, the regularized estimator from Definition 9.2 corresponds

to a model, pθ(φ)(α), that may contain only some but not all the features that
other models in the family contain; we have selected features.
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9.2.2 `κ-Regularization, the Ridge, and the Lasso

A popular regularization method is the `κ-regularization, where the regu-
larization function φ in Definition 9.2 is the `κ-norm. This specification leads
to the following definition.

Definition 9.3 The `κ-regularized maximum-likelihood estimator for the pa-
rameter θ of the probability measure pθ is given by

θ̂(`κ)(α) = arg max
1
N

log θ∈RJ

{

LD
(

pθ
)

− α`κ(θ)
}

, (9.18)

where κ ≥ 1, α ≥ 0, D = {y1, y2, ..., yN} are the observed data, LD
(

pθ
)

=
∏N

i=1 p
θ
yi

denotes the likelihood from Definition 6.1, and `κ = 1
κ

∑

j |θj|κ de-
notes the `κ-norm.

Two particularly often used powers in the `κ-regularization are κ = 1 and
κ = 2; we shall discuss them next.

`1-Regularization

This regularization is a well-known tool in the context of linear regression,
where it was introduced by Tibshirani (1996) and is known as the Lasso. It has
also been used in the maximum-likelihood context (see, for example, Perkins
et al. (2003), Riezler and Vasserman (2004), or Ng (2004)). We shall discuss
examples for this regularization later in this book.

According to Lemma 9.2, `1-regularization can lead to feature selection:

since ∂−`1(θ)
∂−θj

∣

∣

∣

θ=(0,...,0)T
= −1 and ∂+`1(θ)

∂+θj

∣

∣

∣

θ=(0,...,0)T
= 1 , all features with

1

N

∣

∣

∣

∣

∣

∣

∂ logLD
(

pθ
)

∂θj

∣

∣

∣

∣

∣

θ=(0,...,0)T

∣

∣

∣

∣

∣

∣

≤ α (9.19)

have θ̂
(`1)
j (α) = 0 , i.e., are not selected. If α is large enough, there will be

such unselected features. In fact, there exists some value for α for which no
feature is selected at all and the resulting distribution is uniform.

`2-Regularization

`2-Regularization is the same regularization that is used in a ridge regression,
which is the minimization of an `2-regularized sum of square errors. The latter
is a standard regression method (see, for example, Hastie et al. (2009)). `2-
regularization is also often used in the maximum-likelihood context, i.e., for
estimators of the form (9.18); we shall discuss a number of examples below.
`2-regularization doesn’t lead to feature selection beyond the, usually nonex-

istent, selection by the maximum-likelihood method. This is consistent with
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Lemma 9.2, since ∂−`2(θ)
∂−θj

∣

∣

∣

θ=(0,...,0)T
= ∂−`2(θ)

∂−θj

∣

∣

∣

θ=(0,...,0)T
= 0, so that, accord-

ing to Lemma 9.2, the condition of feature exclusion is
∂LD(pθ)

∂θj

∣

∣

∣

∣

θ=(0,...,0)T

=

0 .

Comparison of `1-regularization with `2-regularization

Both of these regularizations have been shown to be useful for practical appli-
cations. Empirical evidence and theoretical arguments seem to suggest that
`1-regularization is the better method in the sparse scenario, i.e., when many
of the features we have included are actually irrelevant, while `2-regularization
is the better method in the dense scenario, i.e., when most of the features are
actually important (see, Ng (2004), and Friedman et al. (2004)). The the-
oretical result from Ng (2004), which was proved in the context of logistic
regression but might apply to more general situations, is particularly interest-
ing. Ng (2004) has shown that, using `1-regularization, the number of training
observations required to learn ”well” grows only logarithmically in the num-
ber of irrelevant features, while, using `2-regularization, (at least in the worst
case) it grows at least linearly in the number of irrelevant features.

9.3 Bayesian Inference

In this section, we briefly discuss the Bayesian method for estimating prob-
abilistic models. We limit our discussion to those aspects of Bayesian infer-
ence that relate to the decision-theoretic methods that are the subject of this
book. For a more comprehensive review, we refer the reader to the textbooks
by Bernardo and Smith (2000), Jaynes (2003), and Robert (1994) for more
detailed analysis of the Bayesian view on probabilities and their estimation,
and to Gelman et al. (2000) for a practical guide to Bayesian inference.

In this section, we restrict ourselves to the simplest setting, i.e., we aim at
estimating the (unconditional) probabilities of the (discrete) random variable
Y with a finite state space Y. The generalization to continuous random vari-
ables and to conditional probabilities is straightforward, but we won’t discuss
it here.

9.3.1 Prior and Posterior Measures

As we did in Sections 6.2.2, 9.1, and 9.2, we assume that the probability
measure of Y is a member of a family of parametric measures, pθ, that is pa-
rameterized by the vector θ. This assumption is crucial to standard Bayesian
inference. Another crucial ingredient to Bayesian analysis is the view that the
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parameter θ is a random variable itself. It is the objective of Bayesian infer-
ence to infer the probability distribution of θ from a set D = {y1, ..., yN} of
independent observations for Y . (We have made the assumption of indepen-
dence for the sake of convenience here; it is not essential.) To this end, we
assume that the model builder, before seeing the data D, assigns the proba-
bility density

P (θ)

to the parameter vector θ. The above probability measure is called the prior
measure, since it reflects the model builder’s knowledge prior to inferring from
the data D. We have assumed here that θ is a continuous parameter, as it is
the case in the majority of practical applications; if θ has a discrete state
space, we have to interpret P (θ) as probabilities and replace the integrals
below by sums, in order to develop the Bayesian framework.

The observed data, D, provide the model builder with information about
the parameter vector θ. As a consequence, he will update the probabilities for
θ to the so-called posterior measure,

P (θ|D) .

As the notation indicates, the posterior probabilities are the probabilities of θ
given the observed data, D. This conditioning on the observed data is perhaps
the most fundamental difference between Bayesian and classical statistics.

Bayes’ law implies that the posterior measure is related to the prior measure
as follows:

P (θ|D) =
P (θ)P (D|θ)

P (D)
, (9.20)

Since we have assumed that the probability measure of Y is a member of a
family of parametric measures, pθ, the probability P (D|θ) of observing the
data D given the parameter value θ is equal to the probability of D under the
measure pθ. The latter one is, according to Definition 6.1, the likelihood ratio
LD
(

pθ
)

. Moreover, it follows from the same assumption that

P (D) =

∫

Θ

LD
(

pθ
)

P (θ)dθ ,

where Θ denotes the state space of θ. So we have

P (θ|D) =
P (θ)LD

(

pθ
)

∫

Θ LD (pθ′
)P (θ′)dθ′

. (9.21)

The denominator in the right hand side of the above equation is independent
of θ; so it can be viewed as a normalization constant. One often writes the
above equation as

P (θ|D) ∝ Q(θ,D) , (9.22)
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where
Q(θ,D) = LD

(

pθ
)

P (θ) , (9.23)

and ”∝” means that equality holds up to a θ-independent proportionality fac-
tor. The expression Q(θ,D) is often referred to as the unnormalized posterior
measure. It plays an important role in practical applications.

9.3.2 Prior and Posterior Predictive Measures

In most practical applications, the model builder is interested in the prob-
abilities of the random variable Y or in some expectations with respect to
these probabilities. Before the data are considered, the model builder believes
that Y has a probability measure of the form pθ and that θ has the prior
probability measure. So he assigns the probabilities

P (y) =

∫

Θ

P (y, θ)

=

∫

Θ

P (θ)P (y|θ)dθ

=

∫

Θ

P (θ)pθ
ydθ (9.24)

to the possible values y of Y . We refer to the above measure as the prior
predictive measure.

After we have observed the data D, we update the probabilities of θ from
the prior to the posterior ones, and we update the prior predictive measure to
the posterior predictive measure, which is given by the following expression.

P (y|D) =

∫

Θ

P (y, θ|D)dθ

=

∫

Θ

P (θ|D)P (y|θ,D)dθ

=

∫

Θ

P (θ|D)pθ
ydθ (9.25)

(since we have assumed that P (y|θ,D) = P (y|θ) = pθ
y) .

Inserting (9.21) in the above equation, we obtain

P (y|D) =

∫

Θ
pθ

yP (θ)LD
(

pθ
)

dθ
∫

Θ
LD (pθ)P (θ)dθ

(9.26)

∝
∫

Θ

pθ
yP (θ)LD

(

pθ
)

dθ , (9.27)

where “∝” means here that equality holds up to a y-independent proportion-
ality factor. This means that a model builder who has the prior P (θ) infers



Select Methods for Estimating Probabilistic Models 243

the probability measure (9.26) for Y from the data D. This measure depends
on the data only through the likelihood function, i.e., as we have discussed in
Section 6.2.2, the Bayesian model builder abides by the likelihood principle.

9.3.3 Asymptotic Analysis

Asymptotic analysis plays an important role in classical (frequentist) statis-
tics. In this type of analysis, one studies the properties of an estimator for a
parameter in the limitN → ∞, where N is the number of observations we use
for inferring the parameters. The importance of these asymptotic properties
derives from the fact that, in classical statistics, one assumes that there is
an underlying “true” model, which is identical with the empirical measure,
i.e., with the relative frequencies, that an infinite-size sample would have. In
Bayesian inference, on the other hand, we usually don’t work with the notion
of a “true” measure and we always condition on the sample we have actu-
ally observed. Therefore, asymptotic analysis plays a less fundamental role in
Bayesian inference; in fact, some textbooks, such as Robert (1994), don’t dis-
cuss it at all. Even so, asymptotic analysis can help us building some intuition
about what to expect for large sample sizes. For this reason, we briefly discuss
it here, in an informal way. For more details, we refer the reader to Gelman
et al. (2000), Appendix B, or Bernardo and Smith (2000), Section 5.3.

Let us assume in this section that we have observed the data DN =
{y1, ..., yN} (we added an index N to the notation here to indicate the sample-
size dependence), and that these data are sampled from independent and
identically distributed random variables, each of which has the probability
measure f . We note that this assumption essentially amounts to assuming
the existence of a “true” measure, i.e., to an assumption that we usually
don’t make in Bayesian analysis or in the decision-theoretic framework this
book focuses on. We make it only for the sake of the asymptotic analysis; it
is not needed for the remainder of this book.

An important result from Bayesian asymptotic analysis is the following.

Convergence: Let us assume that the relative entropy D(f‖pθ) has the
unique minimum

θ0 = arg min
θ
D(f‖pθ) (9.28)

with respect to θ. If θ is defined on a compact set and A is a neighborhood of
θ0 with nonzero probability, then P (θ ∈ A|DN) → 1 as N → ∞.

This statement points to an interesting connection between relative entropy
and the asymptotic Bayes estimator, θ0 ; the latter one minimizes the relative
entropy from the “true” measure, f .

Sketch of proof of convergence: We follow the logic from Gelman et al.
(2000), Appendix B, here. Unlike in the rest of our section on Bayesian anal-
ysis, we assume here that θ has a finite state space. Proving convergence for
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this simple case illuminates the general case, which we shall not prove here.
Let us consider the posterior odds

log

(

P (θ|DN)

P (θ0|DN)

)

= log

(

P (θ)

P (θ0)

)

+
N
∑

i=1

log

(

pθ
yi

pθ0
yi

)

(9.29)

(by (9.21) and Definition 6.1 ) .

The second term on the right hand side is the sum of N i.i.d. random variables,
each of which has the mean

Ef

[

log

(

pθ
yi

pθ0
yi

)]

= D(f‖pθ0 )) −D(f‖pθ)

{

= 0 if θ = θ0
< 0 if θ 6= θ0

(9.30)

(by the definition of θ0, (9.28)).
It follows that, if θ 6= θ0, the second term in the right hand side of (9.29) is

the sum of N i.i.d. random variables with negative mean. By the law of large
numbers, this sum approaches −∞ as N → ∞. Therefore,

lim
N→∞

log

(

P (θ|DN )

P (θ0|DN)

)

= −∞ for θ 6= θ0 . (9.31)

It follows that
lim

N→∞
P (θ|DN) = 0 for θ 6= θ0 . (9.32)

Since all probabilities sum to one, we must have P (θ0|DN) = 1. This com-
pletes the proof of the above convergence statement for the special case we
have considered here. 2

Another important result from Bayesian asymptotic analysis is the follow-
ing.

Asymptotic normality: Under some regularity assumptions, as N → ∞,
the posterior measure of θ approaches normality with mean θ0 and variance
(NJ(θ0))

−1
, where θ0 is the value that minimizes the relative entropy between

pθ and f and

J(θ) = −Ef

[

∂2 logpθ

∂θ2

]

(9.33)

is the Fisher information.
Before we sketch a proof of this statement, we would like to emphasize that

the variance of the posterior measure decreases towards zero with N , i.e., that
the posterior measure becomes increasingly localized as N increases, and that
in the limit N → ∞ the posterior measure depends solely on the data and
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not on the prior.

Sketch of proof of asymptotic normality: We roughly follow the logic from
Gelman et al. (2000), Appendix B, here. In order to get an idea of how a proof
would work, we consider the following special case.

(i) The parameter vector θ is one-dimensional and continuous,

(ii) θ0 from (9.28) is unique, and

(iii) f(y) = pθ̂, for some θ̂, i.e., f is in our parametric family of measures.

It follows from assumption (ii) and (iii), and the fact that

arg min
q∈Q

D(f‖q) = f , (9.34)

if f ∈ Q (see Lemma 2.10, (iv)), that

θ0 = arg min
θ
D(f‖pθ) (by (9.28))

= arg min
θ
D(pθ̂‖pθ)

= θ̂ . (9.35)

Next, we assume that, in accordance with the above convergence result, for
large N , a small neighborhood of θ̂ = θ0 has all the probability mass, and we
expand the posterior distribution around θ0 :

logP (θ|DN ) ≈ logP (θ0|DN) +
1

2
(θ − θ0)

2 d2

dθ2
logP (θ|DN)

∣

∣

∣

∣

θ=θ0

. (9.36)

Using (9.20), i.e.,

logP (θ|DN) = logP (θ) +

N
∑

i=1

log pθ
yi
− logP (DN) , (9.37)

we obtain

d2

dθ2
logP (θ|DN)|θ=θ0

≈ d2

dθ2
logP (θ)

∣

∣

∣

∣

θ=θ0

+

N
∑

i=1

d2

dθ2
log pθ

yi

∣

∣

∣

∣

θ=θ0

.(9.38)

The second term on the right hand side is the sum of N i.i.d. (according to
f) random variables; so, by the law of large numbers, we can approximate:

N
∑

i=1

d2

dθ2
logpθ

yi

∣

∣

∣

∣

θ=θ0

≈ NEf

[

d2

dθ2
log pθ

yi

∣

∣

∣

∣

θ=θ0

]

≈ −NJ(θ0) (by (9.33)) . (9.39)
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Combining (9.38) with (9.39), we obtain

d2

dθ2
logP (θ|DN)|θ=θ0

≈ d2

dθ2
logP (θ)

∣

∣

∣

∣

θ=θ0

−NJ(θ0)

≈ −NJ(θ0) ,

which, after combination with (9.36), results in

logP (θ|DN) ≈ logP (θ0|DN) − 1

2
NJ(θ0)(θ − θ0)

2 − logP (DN) . (9.40)

This completes the sketch of the proof of the above asymptotic normality
statement for the special case considered here.2

9.3.4 Posterior Maximum and the Maximum-Likelihood
Method

For a large number of observations, the posterior measure is, under some
technical conditions, fairly localized around its maximum (see Section 9.3.3).
This suggests that the following approximation holds reasonably well if N is
large.

P (θ|D) ≈ δ(θ − θ̂) , (9.41)

where

θ̂ = arg max
θ
P (θ|D)

is the maximum of posterior measure, and δ is Dirac’s delta. It follows from
the definition of Dirac’s delta that

∫

P (θ|D)dθ = 1; , (9.42)

so the measure in the r.h.s of (9.41) is properly normalized.
Since the normalized and the unnormalized posterior measure differ only

by a θ-independent factor, it follows from (9.42) that

θ̂ = arg max
θ
Q(θ,D) , (9.43)

where Q is the unnormalized posterior measure from (9.23).
The approximation (9.41) leads to the following posterior predictive mea-

sure for Y .

P (y|D) =

∫

Θ

pθ
yP (θ|D)dθ (by (9.25))

≈
∫

Θ

pθ
yδ(θ − θ̂)dθ (by (9.41))

≈ P (y|θ̂) . (9.44)
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Therefore, in the approximation (9.41), the Bayesian model builder infers
a single model from the pθ-family, just as a classical (non-Bayesian) model
builder would do. His parameter estimator (in the classical sense) is given by
(9.43), i.e., by

θ̂ = arg max
θ

[

LD
(

pθ
)

P (θ)
]

(by (9.23) and (9.43))

= arg max
θ

[

logLD
(

pθ
)

+ logP (θ)
]

(since the log is monotone). (9.45)

Let us consider some specific priors.

(i) Uniform prior: In this case,

θ̂ = arg max
θ

logLD
(

pθ
)

, (9.46)

which is the maximum-likelihood estimator from Definition 9.1. The
above equation, in conjunction with (9.44), states that a Bayesian model
builder with a uniform prior who uses the approximation (9.41) infers the
probability measure for Y by means of the (unregularized) maximum-
likelihood method.

(ii) Gaussian prior: If

P (θ) ∝ e−(θT −θ
T

)Σ−1(θ−θ) , (9.47)

where θ is some mean parameter vector and Σ is a covariance matrix,
then

θ̂ = arg max
θ

[

logLD
(

pθ
)

− (θT − θ
T
)Σ−1(θ − θ)

]

. (9.48)

The above estimator has, after the appropriate parameter transforma-
tion, the same form as the `2-regularized maximum-likelihood estimator
from Definition 9.3 with κ = 2. It follows then, in conjunction with
(9.44), that a Bayesian model builder with a Gaussian prior who uses
the approximation (9.41) infers the probability measure for Y by means
of the `2-regularized maximum-likelihood method.

(iii) Exponential prior: If

P (θ) ∝ e−
P

j
αj|θj| , (9.49)

then

θ̂ = arg max
θ



logLD
(

pθ
)

−
∑

j

αj|θj |



 . (9.50)

After an appropriate parameter rescaling, the above estimator has the
same form as the `1-regularized maximum-likelihood estimator from
Definition 9.3 with κ = 1. It follows then, in conjunction with (9.44),
that a Bayesian model builder with a Gaussian prior who uses the ap-
proximation (9.41) infers the probability measure for Y by means of the
`1-regularized maximum-likelihood method.
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9.4 Minimum Relative Entropy (MRE) Methods

In the minimum relative entropy (MRE) approach, one estimates a proba-
bility measure such that it minimizes, under certain constraints, the relative
entropy with respect to a prior measure. One rationale for this method is
that we would like our probability measure to contain as little information
beyond the prior information as possible while being consistent with our con-
straints, which might be the result of reliable observations. We will discuss a
decision-theoretic motivation later in this book, in Chapter 10.

Historically, the MRE approach was introduced by Jaynes (1957a) as the
maximum entropy (ME) method; the latter is a special case of the former
for a uniform prior measure. Jaynes (1957a) used the ME approach to derive
the canonical and grand-canonical probability distribution from statistical
physics, thereby giving an information-theoretic interpretation to these prob-
ability measures. More recently, Globerson and Tishby (2004) have formulated
a minimum mutual information (MMI) principle, which, it has been argued,
is particularly appropriate for conditional probability estimation problems.

The ME and MRE approaches have since been used to infer probabilities
for a variety of problems in numerous fields of science and engineering. Physi-
cists have used MRE methods to restore images from space telescope data
(see, for example, Wu (1997)) and nuclear magnetic resonance data (see, for
example, Hore (1991)). MRE has been used for natural language processing
(see, for example, Berger et al. (1996), or Chen and Rosenfeld (1999)), sen-
timent identification (see, for example, Mehra et al. (2002)), named entity
recognition (see, for example, Chieu and Ng (2002)), and QA systems (see,
for example, Ravichandran et al. (2003)). Biomedical applications of ME and
MRE methods include gene ontology (see Raychaudhuri et al. (2002)) and
gene selection for cancer classification (see, for example, Liu et al. (2005)).
The MMI principle has been used in neural code analysis (see Globerson
et al. (2009)). Financial theorists and practitioners have used these MRE and
ME methods to calibrate option pricing models to market data (see, for exam-
ple, Gulko (2002), Avellaneda (1998), Frittelli (2000), and Cont and Tankov
(1999)) and estimate conditional probabilities from real-world data (see, for
example Golan et al. (1996)). More examples for applications can be found in
Buck and Macaulay (1991), Wu (1997), and below in this book.

In this section, we briefly review MRE methods, from the traditional per-
spective, in the simplest setting, i.e., for discrete unconditional probabilities.
Then, in Chapter 10, we shall reinterpret these methods from a decision-
theoretic point of view, and generalize them to conditional probabilities and
to probability densities. In Chapter 10, we shall also formulate a generalized
MRE method, which is based on the relative (U,O)-entropy.
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9.4.1 Standard MRE Problem

We aim at finding a probability measure for the random variable Y with
the finite state space Y. In the MRE approach, we do so by minimizing, under
certain constraints, the relative entropy with respect to a prior measure, q0.
The constraints are usually defined in terms of certain functions fj , j = 1...J ,
of Y , the so-called feature functions.

Problem 9.1 (Standard MRE problem) Find the MRE measure, which is
given by

q∗ = arg min
q∈R|Y|

D(q‖q0) (9.51)

subject to 1 =
∑

y∈Y
qy , (9.52)

qy ≥ 0 , ∀y ∈ Y , (9.53)

and Eq[fj] = Ep̃[fj] , ∀j = 1, ..., J . (9.54)

Here, D(q‖q0) is the relative entropy from Definition 2.7, and p̃ is the empir-
ical measure corresponding to the observed data D = {y1, y2, ..., yN}.

The above MRE problem is a convex problem, and, as we shall show in the
next theorem, it has the following dual.

Problem 9.2 (Dual of Standard MRE problem)

Find β∗ = arg max
β∈RJ

[

1

N
logLD

(

q̂(β)
)

]

, (9.55)

where q̂(β)
y =

1

Z(β)
q0y e

βT f(y) , (9.56)

Z(β) =
∑

y∈Y
q0ye

βT f(y) , (9.57)

D = {y1, y2, ..., yN} is the observed dataset, and LD
(

q̂(β)
)

is the likelihood
from Definition 6.1.

The following theorem relates Problems 9.1 and 9.2 to each other and makes
a statement about the solution to Problem 9.1.

Theorem 9.1 If a finite β∗ as defined by (9.55) exists, then the solution to
Problem 9.1 is unique, and it is given by

q∗ = q̂(β
∗) , (9.58)

where β∗ is the solution to Problem 9.2.
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Proof: See Section 9.4.4.
That is, the MRE measure q∗ is an exponential distribution, the parameters

of which are estimated by means of the maximum-likelihood method. The
exact functional form of the measure q∗ is determined by the choice of feature
functions.

Like the primal problem, Problem 9.1, the dual problem, Problem 9.2, is a
convex optimization problem. This follows from the general fact that duals of
convex problems are convex problems (see Section 2.2.5).

The practical importance of Theorem 9.1 lies in the fact that the dual
problem, i.e., Problem 9.2, has the dimension J , while the primal problem, i.e.,
Problem 9.1, has the dimension |Y|, and that in most practical applications
|Y| > J .

The following corollary, which follows directly from Theorems 9.1 and 2.11,
gives a sensitivity interpretation to the parameter vector β∗ of the exponential
distribution q̂(β

∗).

Corollary 9.1

β∗
j =

∂D
(

q̂(β
∗)|q0

)

∂Ep̃[fj]
. (9.59)

9.4.2 Relation of MRE to ME and MMI

As we have mentioned, the ME problem can be obtained as a special case of
the MRE problem, when the prior measure is constant. We shall say a bit more
about the relation between MRE and MMI in Chapter 10, after introducing
conditional probability estimation problems.

9.4.3 Relaxed MRE

It is well known that the standard MRE problem, i.e., Problem 9.1, can
lead to overfitting models when there are relatively few data in the training
set and the number of features is relatively large. This is not surprising, since
the dual of Problem 9.1 is a maximum-likelihood estimation, and, as we have
discussed in Section 9.2, the latter type of estimation can produce models that
overfit.

One can mitigate overfitting by relaxing the equality constraints in the
MRE problem. An oft-used way to do this is the following.

Problem 9.3 (Relaxed MRE Problem) Find the relaxed MRE measure, which
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is given by

q∗ = arg min
q∈R|Y|

D(q‖q0) (9.60)

subject to 1 =
∑

y∈Y
qy , (9.61)

qy ≥ 0 , ∀y ∈ Y , (9.62)

Eq[fj] −Ep̃[fj] = cj , ∀j = 1, 2, ..., J , (9.63)

and
1

ω
`ωω(c) ≤ α . (9.64)

Here, D(q‖q0) is the relative entropy from Definition 2.7, `ω(c) =
(

∑J
j=1 |cj|ω

) 1
ω

denotes the `ω-norm with ω > 1, and α is a positive num-

ber.

For the sake of convenience, we have used the same notation as for the
standard MRE problem here. It shall always become clear from the context
which setting we refer to.

The set of feasible measures of Problem 9.3, i.e., the set of measures for
which the constraints of the problem hold, is a superset of the set of feasi-
ble measures of Problem 9.1. In particular, the former set can be nonempty,
even if the latter one is empty. So we can view the relaxation of the equality
constraints also as a way to transform certain problems that have no solu-
tions, because their constraints are too restrictive, into problems that do have
solutions.

Alternatively, one could replace the constraint (9.64) by an additive term
in the objective function that penalizes large values of the |cj| (see, for exam-
ple, Lebanon and Lafferty (2001), or Friedlander and Gupta (2003)). Under
certain conditions, this formulation leads to the same result as Problem 9.3
(see Exercise 17 in Section 2.4).

As we shall show in the next theorem, the dual of Problem 9.3 is the fol-
lowing.

Problem 9.4 (Dual of relaxed MRE problem)

Find β∗ = arg max
β∈RJ

{

1

N
logLD

(

q̂(β)
)

− α
1
ω q

1
ω (κ− 1)−

1
ω `κ(ν)

}

, (9.65)

where q̂(β)
y =

1

Z(β)
q0y e

βT f(y) , (9.66)

Z(β) =
∑

y∈Y
q0ye

βT f(y) , (9.67)

D = {y1, y2, ..., yN} is the observed dataset, and LD
(

q̂(β)
)

is the likelihood

from Definition 6.1, `κ(β) =
(

∑J
j=1 |βj|κ

) 1
κ

denotes the `κ-norm, and κ =
ω

ω−1
.
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The following theorem relates Problems 9.3 and 9.4 to each other.

Theorem 9.2 If a finite β∗ as defined by (9.65) exists, then the solution to
Problem 9.3 is unique, and it is given by

q∗ = q̂(β
∗) , (9.68)

where β∗ is the solution to Problem 9.4.

Proof: Equation (9.68), i.e., the equivalence of Problems 9.3 and 9.4, follows
from Theorems 2.13 and 9.1. The uniqueness of the solution follows from the
strict convexity of the relative entropy (see Lemma 2.10, (iii)) and Theorem
2.8). 2

By virtue of Corollary 2.1, Theorem 9.2 also holds for the important case
ω = ∞ and κ = 1.

We note that, by Corollary 2.2, one can replace the second term in the
objective function of Problem 9.4 by α`κκ(ν) and obtain the same family of
solutions.

Like the dual of the standard MRE problem, Problem 9.4 is a convex opti-
mization problem.

As in the standard MRE case, the practical importance of Theorem 9.2
lies in the fact that the dual problem, i.e., Problem 9.4, has the dimension J ,
while the primal problem, i.e., Problem 9.3, has the dimension |Y|, and that
in most practical applications |Y| > J .

Theorem 9.2 states that the relaxed MRE measure is an exponential distri-
bution, the parameters of which are estimated by means of an `κ-regularized
maximum-likelihood method, i.e., are given by the `κ-regularized maximum-
likelihood estimator from Definition 9.3. Hence, we can use the results from
Section 9.2 to analyze the properties of the relaxed-MRE measure.

As it is the case for the standard MRE problem, the parameters of the ex-
ponential distribution q̂(β

∗) are related to the sensitivities of this distribution
with respect to the right hand sides of the equality constraints, i.e., Corollary
9.1 holds.

The most popular choices for the norm parameter ω are ω = ∞, which
corresponds to κ = 1 (see, for example, Goodman (2003), Perkins et al. (2003),
Riezler and Vasserman (2004), Dudik et al. (2004), or Kazama and Tsujii
(2003)), and ω = 2, which corresponds to κ = 2 (see, for example, Chen and
Rosenfeld (1999), Lebanon and Lafferty (2001), Skilling (1991), or Wu (1997)).
In the first case, we perform an `1-regularized maximum-likelihood estimation,
in which regularization is combined with feature selection. The second choice
does not lead to any feature selection, but the resulting measure is regularized.
As we have discussed in Section 9.2.2, both of these choices can perform well
in practical applications; which of them performs better depends on various
factors such as the number of irrelevant features and the sample size.
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Feature transformation

The standard MRE problem, Problem 9.1, is invariant with respect to a linear
feature transformation of the form

f ′(y) = Af(y) + a , ∀y ∈ Y , (9.69)

where f(y) = (f1(y), ..., fJ(y))T is the feature vector, A is an invertible J×J-
matrix, and a is a J-vector. That is, if we replace the constraint (9.54) in
Problem 9.1, which is

Eq[f ] = Ep̃[f ] (9.70)

by

Eq[Af + a] = Ep̃[Af + a] , (9.71)

the problem has exactly the same solution as before. The reason for this is
that, for invertible A, (9.70) implies (9.71) and vice versa. This invariance
seems desirable, since there is usually no practical guidance to choosing the
scale and offset of features or to how to combine them.

The relaxed MRE problem, Problem 9.3, on the other hand, is not invariant
with respect to a transformation of the form (9.69). This can be seen from
the fact that replacing f by f ′ in the constraints (9.63) and (9.64) of Problem
9.3 results in

Eq[Af + a]− Ep̃[Af + a] = c (9.72)

and `ω(c) ≤ α , (9.73)

which is equivalent to

Eq[f ] − Ep̃[f ] = c′ (9.74)

and `ω
(

A−1c′
)

≤ α , (9.75)

but generally different from the original constraints. We can see from the fact
that the above equation doesn’t contain the constant vector a that Problem
9.3 is invariant with respect to a constant shift. However, it is not invariant
with respect to rescaling the features or rotating the features vector.

In practical applications, one often assumes that the features are normal-
ized in some sense. For example, one can assume that each feature is scaled
such that its empirical variance is one (see, for example, Lebanon and Laf-
ferty (2001), or Chen and Rosenfeld (1999)). This leaves us still with a non-
uniqueness, since one can find linear combination of variance-one features that
have a variance of one too. To overcome this nonuniqueness, one sometimes
makes the stronger assumption that the empirical covariance matrix of the fea-
ture is the identity matrix (see, for example, Wu (1997), or Skilling (1991)).
Another way to choose a scale for features is to fix all their empirical minima
and maxima to given values, say zero and one.
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9.4.4 Proof of Theorem 9.1

In order to prove this theorem, we apply the framework from Section 2.2.5.
Based on this framework and on Definition 2.7 of the relative entropy, we find
the Lagrangian of Problem 9.1:

L(q, β, µ, ξ) =
∑

y∈Y
qy log

(

qy

q0y

)

− βT
∑

y∈Y
qyf(y) + βTEp̃[f ]

+µ







∑

y∈Y
qy − 1







−
∑

y∈Y
ξyqy , (9.76)

where β ∈ RJ , µ ∈ R, and ξ ∈ (R+)|Y| are Lagrange multipliers.
We minimize w.r.t. q by solving

0 =
∂L(q, β, µ, ξ)

∂qy
(9.77)

= 1 + log

(

qy

q0y

)

− βT f(y) + µ− ξy . (9.78)

The solution is
q̂(β)
y = q0y e

βT f(y)−1−µ+ξy > 0 . (9.79)

It follows that q̂
(β)
y > 0 and from complementary slackness, or, equivalently,

from the KKT conditions, that the optimal ξy is ξ∗y = 0. The optimal µ has

to be chosen such that
∑

y∈Y q
(β)
y = 1, i.e., as

µ∗ = −1 − logZ(β) , (9.80)

where Z(β) =
∑

y∈Y
q0y e

βT f(y) . (9.81)

So we can write

q̂(β)
y =

1

Z(β)
q0y e

βT f(y) . (9.82)

It follows from (9.76) that the Lagrangian at the optimal points for q, µ, and
ξ is given by

L(q̂(β), β, µ∗, ξ∗) = − logZ(β) + βTEp̃[f ]

= Ep̃

[

log
q̂(β)

q0

]

. (9.83)

We note that

Ep̃

[

log
q̂(β)

q0

]

=
1

N

[

logLD
(

q(β)
)

− logLD
(

q0
)

]

, (9.84)
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where D = {y1, y2, ..., yN} is the observed dataset and LD denotes the likeli-
hood from Definition 6.1. So it follows from (9.83) that

L(q̂(β), β, µ∗, ξ∗) =
1

N

[

logLD
(

q̂(β)
)

− logLD
(

q0
)

]

. (9.85)

It follows from (9.82), (9.81), (9.85), and the fact that LD
(

q0
)

is independent
of β, that Problem 9.2 is the dual of Problem 9.1. (9.58) follows then from
Theorem 2.9.

The uniqueness of the solution of Problem 9.1 follows from the fact that
D(q‖q∗) is a strictly convex function of q (see Lemma 2.10, (iii)) and Theorem
2.8. This completes the proof of the theorem.2

9.5 Exercises

1. Let y1, ..., yN denote the observed values for Y . Show that the sample
mean,

yN =
1

N

N
∑

i=1

yi,

is an unbiased estimator for Epθ0 [Y ].

2. Let y1, ..., yN denote the observed values for Y . Show that the following
variance estimator

σ̂2
N =

1

N

N
∑

i=1

(yi − yN )2

is a biased estimator for the variance of Y under pθ0 .

3. Let y1, ..., yN denote the observed values for Y . Show that the following
variance estimator

1

N − 1

N
∑

i=1

(yi − yN)2

is an unbiased estimator for the variance of Y under pθ0 .

4. Let Y be the number of heads in N spins of a coin, whose probability of
“head” is θ. We did an experiment (with n spins) in which y heads were
observed. Assuming a prior distribution for θ that is uniform on [0, 1],
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(a) derive the posterior distribution for θ,

(b) derive the prior predictive distribution for Y ,

(c) derive the posterior predictive distribution for Y ,

(d) show that the posterior mean of θ lies always between the prior
mean, and the observed relative frequency of heads, y

N , and

(e) plot the posterior predictive distribution for Y for the case y = 5
and N = 10.

5. Suppose you want to estimate the parameter vector θ = (θ1, ..., θJ) of the
probability distribution of a random variable Y in a Bayesian approach
by finding the maximum of the posterior distribution. Let the resulting
estimator be θ̂B . Assume that the prior distribution of θ is given by

P (θ) =
αJ

2J
e−α

PJ
j=1 |θj| , (9.86)

where α > 0 is some parameter.

(a) Write down, in its general form, the optimization problem you have

to solve in order to find θ̂B .

(b) State two limits in which θ̂B = θ̂ML, where θ̂ML is the maximum-
likelihood estimator for θ?

(c) Assume that the model distribution is from the single-parameter
(J = 1) family

P (y|θ) =
1√
2π

e−
(y−θ1)2

2 (9.87)

and that we have one observation with Y = 1. Compute

i. θ̂ML,

ii. θ̂B for α = 0.1, and

iii. θ̂B for α = 2.

6. A coin has the probability θ for showing heads when tossed. In an ex-
periment, the coin was tossed N times and heads were observed k̃ times.
Our prior for θ is a beta-distribution with parameters α and β.

(a) What is the posterior distribution for θ?

(b) What is the posterior distribution for θ in a normal approximation,
assuming that N is large?

7. Suppose you have N observations, D = {y1, ..., yN} of a random variable
Y , you believe that the probability measure of Y is from the family pθ,
and your prior measure for θ is P (θ). Show that the following to Bayesian
estimation procedures give the same result.
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(i) Sequentially use the information provided by the data, i.e., use the
first observation to imply a posterior measure for θ, then use this
posterior measure as your prior and imply a new posterior from
the second observation, and repeat this procedure till all data are
used.

(ii) Use all the information provided in the dataset D in one step to
imply a posterior measure for θ.





Chapter 10

A Utility-Based Approach to
Probability Estimation

In Chapter 8, we assumed that there are a number of candidate models and
that a decision maker seeks the most useful of these models. A related, but
harder, question is: how can a decision maker learn a useful model from data?
We address this question in this chapter. The approach that we describe in
this chapter is the one outlined in Section 1.3 of the introduction to this book,
specialized to the horse race setting, which was introduced in Chapter 1. Under
this approach, we explicitly take into account the decision consequences of
the model, measuring these decision consequences as discussed in Chapter 8.
That is, we measure, on an out-of-sample dataset, the decision consequences
by the success of the strategy that a rational investor (who believes the model)
would choose to place bets in the horse race setting. We assume that a decision
maker strives to build models that perform well with respect to this model
performance measure.

Our discussion, which is based on material from Friedman and Sandow
(2003a) and Grünwald and Dawid (2004),1 occurs on two levels:

(I) (Model estimation principles) establishing three equivalent economically
motivated model estimation principles,

(i) the robust outperformance principle, Principle 10.1, below (which
is built around the model performance measurement principle —
Principle 8.1 — in Chapter 8),

(ii) the minimum market exploitability principle, Principle 10.2, below,
and

(iii) the minimum relative (U,O)-principle, Principle 10.3, below

and

(II) (Tuning consistency with the data and dual problem formulation) given
one of these (equivalent) model estimation principles and a set of fea-
tures, establishing a method to tune the extent to which the model is

1The setting in Friedman and Sandow (2003a) is less general than that of Grünwald and
Dawid (2004), which allows for development of certain explicit results that do not seem to
be available in the more general setting.

259
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consistent with the data (depending on the set of features, a model that
is too consistent with the sample-averaged feature values can overfit).
We also develop dual problem formulations suited for numerical imple-
mentation.

The model estimation principles and the formulation of the primal problems
(in Sections 10.1.4 and 10.2.2, below) can be developed in a more general set-
ting than the horse race. However, our dual problem formulation (see Sections
10.1.5 and 10.2.3, below) depends on the horse race setting. To keep things as
simple as possible, we shall confine the discussion in this chapter to the horse
race setting.

Model estimation principles
As in the introductory chapter, Section 1.3.2, we use the robust outperfor-
mance principle in order to maximize (over all measures) the worst-case (over
all measures consistent with the data-consistency constraints) outperformance
over a rival investor. By employing such a robust measure, we hope to im-
munize ourselves against attuning our model too precisely to the individual
observations in the training set.

We then show that the robust outperformance principle is equivalent to a
minimum market exploitability principle, under which we select the model
that minimizes (over all data-consistent measures) the maximum (over all
allocation strategies) outperformance over a rival investor.

In this chapter, we are more explicit about the setting (the horse race) than
we were in the introduction to this book; this allows for a more explicit formu-
lation of the model building problem. In this setting, the minimum market ex-
ploitability principle can be interpreted as a minimum relative (U,O)-entropy
principle.

Tuning consistency with the data and dual problem formulation
The above model estimation principles provide some protection from overfit-
ting, i.e., from models that fit the training data well but perform poorly out
of sample. However, in practical application, there often remains some risk of
overfitting; the magnitude of this risk depends on the data and the choice of
data consistency constraints. In order to mitigate this risk, we shall introduce
a family of data consistency constraint sets, and estimate a model as follows:

(i) for each set of data consistency constraints, estimate a model via the
aforementioned principles (stated precisely as Principle 10.1, or, equiv-
alently, Principle 10.2 or Principle 10.3, below), and then

(ii) from the collection of models obtained in step (i), select the one with the
best performance (in the sense of Principle 8.1) on a test dataset (or via
k-fold cross validation). This step is stated more precisely in Principle
10.4, below.
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We recast this approach as a search among models on an efficient frontier
(Pareto optimal models),2 which we shall define in terms of consistency with
a prior (benchmark or rival) model, measured by means of the relative (U,O)-
entropy introduced in Chapter 7, and in terms of consistency with the data,
measured by means of functions of feature expectations.

The models on the efficient frontier, each of which can be obtained by solv-
ing a convex optimization problem (see Problems 10.2 and 10.8 below), form a
single-parameter family. Given the equivalence of the robust outperformance
principle and the minimum (U,O)-relative entropy principle (Principles 10.1
and 10.3, respectively), it follows that each Pareto optimal model is robust in
the sense that, for its level of consistency with the data, the model maximizes
the worst-case outperformance relative to the benchmark model.

For each level of consistency with the data, we derive the dual problem
(see Problems 10.3, 10.4, and 10.9) which has a Pareto optimal measure as its
solution; this dual problem amounts to the maximization of expected utility
with a regularization penalty over a well-defined family of functions.3

Once we have obtained the models on the efficient frontier, we rank the
models by estimating their expected utilities on a hold-out sample, and select
the model with maximum estimated expected utility. For ease of exposition,
we consider only one hold-out sample; our procedure can be modified for k-
fold cross validation.

Odds ratio independent formulations
The above economic paradigm, in general, requires the specification of the
payoff structure of the horse race. In situations where such a structure is
not obvious, this requirement imposes an encumbrance on the model builder.
However, as we shall see, the optimization problems that follow from this
paradigm are independent of the payoffs if (and only if) the investor’s utility
function is in the generalized logarithmic family U(z) = γ1 log(z − γB) + γ2.
As we have seen in Section 8.1.5, this logarithmic family is rich enough to de-

2We shall define these terms precisely below; the notion of an efficient frontier originally
comes from portfolio theory, where it represents the collection of portfolios that cannot be
improved upon, allowing for the tradeoff between risk and reward.
3It is possible to formulate these dual problems and interpret them in terms of maximization
of expected utility (with a regularization penalty) over a family of functions, by virtue of
the following:

(i) we have used a monotone, concave utility function, rather than a more general (neg-
ative) loss function,

(ii) we have adopted the appropriate compatibility conditions,

(iii) the decision maker invests in a horse race setting, and

(iv) the right hand side of our data consistency constraints is expressed in terms of
empirical expectations,

but not in more general settings. As far as we know, the aforementioned formula-
tion/interpretation is not possible in completely general situations.
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scribe a wide range of risk aversions, and it can be used to well-approximate
(under reasonable conditions) nonlogarithmic utility functions; it is therefore
applicable to many practical problems. In the case of a utility function from
this logarithmic family, we obtain a regularized relative entropy minimization
similar to the method discussed in Section 9.4. This means that the above
economic principles provide additional motivation for this regularized relative
entropy minimization.

Robust absolute performance
So far, in this chapter introduction, the model estimation principles that we
have discussed have been formulated, or could be formulated, in terms of
performance relative to that of a benchmark investor. It is also possible to
formulate a generalized MRE problem for which the solution is robust in an
absolute sense, rather than the relative sense of the robust outperformance
principle, Principle 10.1.

Organization of this chapter
In Section 10.1, we formulate our modeling approach in the simplest con-
text: we seek a discrete probability model. In Section 10.2, we briefly dis-
cuss the same in a more general context: we seek a model that describes the
conditional distribution of a possibly vector-valued random variable with a
continuous range and discrete point masses. In Section 10.3, we discuss es-
timation methods geared to maximizing robust (absolute) performance. In
Section 10.4, we show how the data consistency constraints can be expressed
in purely economic terms. Numerical experiments based on methods consis-
tent with the methodology described in this chapter are reported in a wide
variety of sources. For particular examples, see Chapter 12.

10.1 Discrete Probability Models

In this section, we describe a decision-theoretic modeling paradigm in the
simplest context:

(i) an investor has a utility function that satisfies Assumption 4.1 stated in
Section 4.6,

(ii) this investor operates in the discrete horse race setting of Section 3.1,

(iii) the horse race and the investor’s utility function are compatible, in the
sense of Definition 5.2 of Section 5.1.1. This (technical) compatibility
condition is imposed to insure that the investor’s optimal allocation is
well defined,



A Utility-Based Approach to Probability Estimation 263

(iv) the investor allocates his assets so as to maximize his expected utility
according to his beliefs, i.e., the investor allocates so as to maximize
the expectation of his utility under the model probability measure he
believes, and

(v) the investor measures model performance as per Principle 8.1, in Chap-
ter 8.

We explicitly develop,4 in the horse race setting, three model estimation
principles,

(i) the robust outperformance principle (which is built around the model
performance measurement principle (Principle 8.1) in Chapter 8),

(ii) the minimum market exploitability principle, and

(iii) the minimum relative (U,O)-principle.

We interpret these principles and show that they are equivalent. In the sections
that follow, we introduce the notion of data constraint relaxation as a way
to balance consistency with the data and “prior beliefs,” a dual problem, and
discuss the importance of the logarithmic family.

10.1.1 The Robust Outperformance Principle

Suppose that there is an investor who wants to estimate a model that he
can use to make decisions in the future. At first blush, it might seem natural
for this investor to choose the model that maximizes the utility-based per-
formance measures on the data available for building the model (the training
data). However, it can be shown (see Lemma 8.1 of Section 8.1) that this
course of action leads to the selection of the empirical measure — the model
that we obtain by assigning the empirical frequency of each datum to its prob-
ability — which can be a very poor model indeed, if we want our model to
generalize well on out-of-sample data. We illustrate this idea in the follow-
ing Example, which is a slightly more detailed version of Example 1.3 from
Section 1.6.

Example 10.1 An overfit model

Let the random variable X denote the daily return of a stock. We observe
the daily stock returns x1, . . . , x10, over a two week period (10 trading days).

4The approach that we take follows the same logic as the approach described in Chapter 1,
but we are more explicit here, in the horse race setting, making use of results from previous
chapters.
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The empirical measure is then

prob(X = x) =

{

1
10 , if x ∈ {x1, . . . , x10}, and
0, otherwise,

(10.1)

assuming that the daily returns are unique. A model builder who aims to
maximize the utility-based performance measure on the observed data would
pick the above empirical measure as his model. This model reflects the train-
ing data perfectly, but will fail out-of-sample, since it only attaches nonzero
probability to events that have already occurred. If this model is to be be-
lieved, then it would make sense to risk all on the bet that X ∈ {x1, . . . , x10},
a strategy doomed to fail when a previously unobserved return (inevitably)
occurs.

In Exercise 1, we see that when the investor and market are compatible,
the model performance measure of Chapter 8 yields a value of −∞ if there is
a datum in the test dataset that is not in the training set, {x1, . . . , x10}.

Though it is, generally speaking, unwise to build a model that adheres too
strictly to the individual outcomes that determine the empirical measure, the
observed data contain valuable statistical information that can be used for
the purpose of model estimation. We incorporate statistical information from
the data into a model via data consistency constraints, expressed in terms of
features, as described in Section 1.3.1.1 and 9.4.1.

Armed with the notions of features and data-consistency constraints, we
return to the model estimation problem. The empirical measure typically does
not generalize well because it is all too precisely attuned to the observed
data. We seek a model that is consistent with the observed data, in the sense
of conforming to the data-consistency constraints, yet is not too precisely
attuned to the data. The question is, which data-consistent measure should
we select? We want to select a model that will perform well (in the sense of the
model performance measurement principle, Principle 8.1, in Chapter 8), no
matter which data-consistent measure might govern a potential out-of-sample
test set. To address this question, below, we suppose that we have a rival
and consider a game against nature5 (who sides with our rival) that occurs
in the horse race setting. We recall that in this setting, our investor allocates
according to

b∗(q) = arg max
{b:

P

y by=1}

∑

y

qyU(byOy). (10.2)

From Lemma 5.1 in Section 5.1.2, we know that the investor’s optimal allo-
cation exists, is unique, and is given by

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

, (10.3)

5This game is a special case of a game in Grünwald and Dawid (2004), which was preceded
by the “log loss game” of Good (1952).
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where λ is the solution of the following equation:

∑

y

1

Oy
(U ′)−1

(

λ

qyOy

)

= 1. (10.4)

We also suppose that a rival, or benchmark investor, allocates according to
the measure q0, i.e., he allocates according to

b∗y(q0) =
1

Oy
(U ′)−1

(

λ0

q0yOy

)

, (10.5)

where λ0 is the solution of the following equation:

∑

y

1

Oy
(U ′)−1

(

λ0

q0yOy

)

= 1. (10.6)

Having specified how our investor and his rival allocate, we specify the game;
in the game specification we allocate according to the (to be determined)
measure q, and our rival allocates according to the measure q0.

To make headway, we will need the following assumption.

Assumption 10.1 (Compactness and convexity of the set of data-consistent
measures) The set of data-consistent measures, which we denote by K, is
compact and convex.

We shall see below that this assumption holds for the sets of data-consistent
measures considered in the book.

A game against “nature” in the horse race setting Let Q denote the
set of all probability measures and let K denote the set of data-consistent
probability measures.

(i) (Our move) We choose a model, q ∈ Q; then,

(ii) (Nature’s move) given our choice of a model, and, as a consequence, the
allocations we would make, “nature,” who sides with our rival investor,
cruelly inflicts on us the worst (in the sense of our outperforming the
rival model with respect to the model performance measurement princi-
ple, Principle 8.1, in Chapter 8) possible data-consistent measure; that
is, “nature” chooses the measure6

p∗ = arg min
p∈K

Ep[U(b∗(q),O) − U(b∗(q0),O)], (10.7)

6The careful reader will observe that in (10.7), by writing min, rather than inf, we have
tacitly assumed that the minimum in fact exists. We could argue that this must be so,
based on the convexity and compactness of K, and the convexity in p of the expectation,
Ep. We shall not expend much effort on such justifications going forward, using min’s or
max’s without explicit justification, rather than more correctly using sup’s or inf’s, and then
providing justification. For a rigorous related treatment, the reader can consult Grünwald
and Dawid (2004).
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where

Ep[U(b∗(q),O) − U(b∗(q0),O)] ≡ Ep[U(b∗(q),O)] −Ep[U(b∗(q0),O)]
(10.8)

and (using the same notation as in Chapter 8 — see Section 8.1),

Ep[U(b∗(q),O)] =
∑

y

pyU(b∗y(q)Oy)

and

Ep[U(b∗(q0),O)] =
∑

y

pyU(b∗y(q0)Oy).

If we want to perform as well as possible in this game we will estimate our
model according to the following principle:

Principle 10.1 (Robust Outperformance Principle) Given a set of data-
consistent measures, K, we seek

q∗ = arg max
q∈Q

min
p∈K

Ep[U(b∗(q),O) − U(b∗(q0),O)]. (10.9)

By solving (10.9), we estimate a measure that (as we shall see later7) con-
forms to the data-consistency constraints; moreover, by construction, this
measure is robust, in the sense that the excess (over our rival) expected utility
that we can derive from it will be attained, or surpassed, no matter which
data-consistent measure “nature” chooses. The resulting estimate therefore,
in particular, avoids being too precisely attuned to the individual observations
in the training dataset, thereby mitigating overfitting.8

If we allocate according to q∗, we maximize the worst-case outperformance
over our competitor (who allocates according to the measure q0 ∈ Q), in the
presence of a “nature” that conforms to the data-consistency constraints and
tries to minimize our outperformance (in the sense of the model performance
measurement principle, Principle 8.1, in Chapter 8) over our rival.

We note that this formulation has been cast entirely in the language of
utility theory. The model that is produced is therefore specifically tailored
to the risk preferences of the model user with utility function U . We also
note that we have not made use of the concept of a “true” measure in this
formulation.

7See Theorem 10.1, below.
8This strategy does not guarantee a cure to overfitting, though! If there are too many data-
consistency constraints, or the data consistency constraints are not chosen wisely, problems
can arise. We shall discuss these issues, and countermeasures that can be taken to further
protect against overfitting, at greater length later in this chapter.
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10.1.2 The Minimum Market Exploitability Principle

In this section, we shall state the minimum market exploitability principle9

and show that, for the discrete horse race, the model obtained from the robust
outperformance principle is the same as the model obtained from the minimum
market exploitability principle.

Principle 10.2 (Minimum Market Exploitability Principle) Given a set of
data-consistent measures, K, we seek

p∗ = arg min
p∈K

max
q∈Q

Ep[U(b∗(q),O) − U(b∗(q0),O)]. (10.10)

Here,
Ep[U(b∗(q),O) − U(b∗(q0),O)] (10.11)

can be interpreted as the gain in expected utility, for an investor who allocates
according to the model q, rather than q0, when the “true” measure is p. Under
the minimum market exploitability principle, we seek the data-consistent mea-
sure, p, that minimizes the maximum gain in expected utility over an investor
who uses the model q0. After a little reflection, this principle is consistent with
a desire to avoid overfitting. The intuition here is that the data-consistency
constraints completely reflect the characteristics of the model that we want
to incorporate, and that we want to avoid introducing additional (spurious)
characteristics. Any additional characteristics (beyond the data-consistency
constraints) could be exploited by an investor; so, to avoid introducing addi-
tional such characteristics, we minimize the exploitability of the market by an
investor, given the data-consistency constraints.

We now return to our goal of establishing the equivalence of Principles 10.1
and 10.2. To see the equivalence of the two principles, we first recall that
from Lemma 5.1 from Section 5.1.2, we know that when the investor and the
horse race market are compatible, given a measure, q, the investor’s optimal
allocation exists, is unique, and is given by

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

, (10.12)

where λ is the solution of the following equation:

∑

y

1

Oy
(U ′)−1

(

λ

qyOy

)

= 1. (10.13)

Suppose, on the other hand, that we are given an optimal allocation, b∗y,
and we seek the probability measure that generated it. It is easy to show10

9Also discussed in Section 1.3.2.2.
10See Exercise 2 to fill in the details.
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that

qy(b
∗
y) =

1

OyU ′(b∗yOy)

1
∑

y′
1

Oy′U ′(b∗
y′Oy′ )

. (10.14)

Given that for every q there is a b∗, and for every b∗, there is a q, we can
cast our robust outperformance principle in terms of robust allocations, rather
than robust measures, and seek the robust allocation

b∗ = arg max
b∈B

min
p∈K

Ep[U(b,O) − U(b∗(q0),O)], (10.15)

where B denotes the set of allocations generated (under (10.12)) by the mea-
sures q ∈ Q. From Corollary 5.1, we see that B is a bounded set that is a
subset of {b :

∑

y by = 1} that contains all of it limit points.11 Thus, B is
closed and bounded and is therefore compact. The convex combination of any
two points in B is also in B, so B is a convex set.12 For a fixed value of p, the
function

Ep[U(b,O)− U(b∗(q0),O)] (10.16)

is concave in b, by the definition of (10.16) and the concavity of the utility
function, U . For a fixed b, (10.16) is linear in p and therefore convex in p.
Both B and K are convex and compact.13 We can therefore apply a minimax
theorem (see Section 2.2.8), obtaining

max
b∈B

min
p∈K

Ep[U(b,O)− U(b∗(q0),O)] = min
p∈K

max
b∈B

Ep[U(b,O)− U(b∗(q0),O)].

(10.17)
Again, we can use that fact that for every q there is a b∗, and for every b∗, there
is a q, to cast the maximization over b as a maximization over q, obtaining

min
p∈K

max
q∈Q

{

Ep [U(b∗(q),O)]− Ep

[

U(b∗(q0),O)
]}

(10.18)

= max
q∈Q

min
p∈K

{

Ep [U(b∗(q),O)] −Ep

[

U(b∗(q0),O)
]}

.

The maxmin problem on the right attains its maximum for some pair of
measures (q∗, p∗). We must have q∗ = p∗. To see this, assume that q∗ 6= p∗.
Then with p∗ fixed, it would be possible to increase the quantity

{

Ep∗ [U(b∗(q),O)] − Ep∗

[

U(b∗(q0),O)
]}

(10.19)

by putting q = p∗ (by definition of the optimal betting weights under p∗),
contradicting our assumption that the maximum is attained for the pair of
measures (q∗, p∗).

Thus, we have obtained the following theorem:

11See Exercise 3 to fill in the details.
12See Exercise 3 to fill in the details.
13K is compact and convex by Assumption 10.1.



A Utility-Based Approach to Probability Estimation 269

Theorem 10.1 (Equivalence of the robust outperformance principle, Prin-
ciple 10.1, and the minimum market exploitability principle, Principle 10.2)
Let Q denote the set of all possible probability measures, and let K ⊂ Q be
compact and convex. Then

p∗ = arg min
p∈K

max
q∈Q

{

Ep [U(b∗(q),O)] −Ep

[

U(b∗(q0),O)
]}

= arg max
q∈Q

min
p∈K

{

Ep [U(b∗(q),O)] −Ep

[

U(b∗(q0),O)
]}

= q∗.

By solving the resulting minimax problem, we obtain the solution to the
maxmin problem (10.9) arising from the robust outperformance principle.
Thus, the robust outperformance principle is equivalent to the minimum mar-
ket exploitability principle.

It is interesting to note that under the robust outperformance principle,
we seek a measure with robust outperformance over all measures in Q; that
is, we do not require that the measure with robust outperformance be data-
consistent (i.e., in K). The fact that q∗ ∈ K follows as a logical consequence
of the equivalence that we have just established.

10.1.3 Minimum Relative (U,O)-Entropy Modeling

By starting with the minimum market exploitability principle, Principle
10.2, which, as we have seen is equivalent to the robust outperformance prin-
ciple, Principle 10.1, we are led to the minimum relative (U,O)-entropy prin-
ciple, Principle 10.3, below.

To see this, we start with the definition of relative (U,O)-entropy (Definition
7.2):

DU,O(p||p0) = Ep [U(b∗(p),O)]− Ep

[

U(b∗(p0),O)
]

.

By Definition 5.3 of the optimal betting weights, b∗,

Ep [U(b∗(p),O)] ≥ Ep [U(b∗(q),O)] , (10.20)

for any measure q ∈ Q. Therefore, we have

DU,O(p||p0) = max
q∈Q

{

Ep [U(b∗(q),O)] −Ep

[

U(b∗(p0),O)
]}

;

so the minimum market exploitabilty principle is equivalent to minimum rel-
ative (U,O)-entropy minimization in the discrete unconditional horse race
setting:

min
p∈K

DU,O(p||p0) = min
p∈K

max
q∈Q

{

Ep [U(b∗(q),O)] − Ep

[

U(b∗(p0),O)
]}

. (10.21)

This motivates the following principle as well as the following theorem.
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Principle 10.3 (Minimum Relative (U,O)-Entropy) Given a set of data-
consistent measures, K, we seek

p∗ = arg min
p∈K

DU,O(p||p0). (10.22)

We summarize the relations among Principles 10.1, 10.2, and 10.3 in the
following theorem:

Theorem 10.2 (Equivalence of the robust outperformance principle, Princi-
ple 10.1, the minimum market exploitability principle, Principle 10.2, and the
minimum relative (U,O)-entropy principle, Principle 10.3) Let Q denote the
set of all possible probability measures, and let K ⊂ Q be compact and convex.
Then

arg min
p∈K

max
q∈Q

{

Ep [U(b∗(q),O)] −Ep

[

U(b∗(q0),O)
]}

= arg max
q∈Q

min
p∈K

{

Ep [U(b∗(q),O)] −Ep

[

U(b∗(q0),O)
]}

= arg min
p∈K

DU,O(p||p0).

We note that this theorem can be proved in a more general setting.14

Fortunately, as we shall see later in this chapter (making use of the proper-
ties of relative (U,O)-entropy developed in Chapter 7), the minimum relative
(U,O)-entropy principle leads to a convex optimization problem with an as-
sociated dual problem that in many cases can be solved robustly via efficient
numerical techniques. Moreover, as we shall also see later in this chapter, this
dual problem can be interpreted as a utility maximization problem over a
parametric family, and can be solved robustly via efficient numerical tech-
niques.

Thus, given the equivalence of

(i) the robust outperformance principle,

(ii) the minimum market exploitability principle, and

(iii) the minimum relative (U,O)-entropy principle,

all of these principles lead us down the same path — to a tractable approach
to estimate statistical models tailor-made to the risk preferences of the end
user.

Henceforth, we estimate models by invoking the relative (U,O)-entropy
principle, making use of the properties of relative (U,O)-entropy developed
in Chapter 7, knowing that, by virtue of the equivalence of Principles 10.1,
10.2, and 10.3, the robust outperformance and minimum market exploitability
properties are baked into the solution.

14See Grünwald and Dawid (2004), who adopt a more general approach; their nomenclature
is different from ours: in their game against nature, rather than maximize the worst case
performance in terms of expected utility, they minimize the greatest expected loss, etc.
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10.1.4 An Efficient Frontier Formulation

Under Principle 10.3, given a set of data consistency constraints, K, we
seek the measure with minimum relative (U,O)-entropy. But how, given a set
of features, should we determine K? Should we require that the expectation,
under the model that we seek, agrees exactly with the sample-average values
of the features, or should we adopt a more relaxed requirement, and require
only that the feature expectations under the model that we seek be “close
enough” to the sample average values of the features? How can we decide
what is “close enough?”

In this section, we answer these questions and build models accordingly; to
do so, we consider the tradeoff between consistency with the data and con-
sistency with our investor’s prior beliefs. Given a set of feature functions, we
shall consider a family of sets of data-consistency constraints, with the goal
of finding the set K in this family, for which an application of the minimum
relative (U,O)-entropy minimization principle, Principle 10.3, leads to good
out-of-sample performance, in the sense of the model performance measure-
ment principle, Principle 8.1. We accomplish these goals as follows:

(i) for each set of data-consistency constraints, estimate a model via the
aforementioned principles (states precisely as Principle 10.1, or, equiva-
lently, Principle 10.2 or Principle 10.3, below),15 and then

(ii) from the collection of models obtained in step (i), select the one with the
best performance (in the sense of Principle 8.1) on a test dataset (or via
k-fold cross validation). This step is stated more precisely in Principle
10.4, below.

We recast this approach as a search among models on an efficient frontier
(Pareto optimal models), which we shall define in terms of consistency with a
prior (benchmark or rival) model, measured by means of the relative (U,O)-
entropy introduced in Chapter 7, and in terms of consistency with the data,
measured by means of functions of feature expectations.

Given models equally consistent with the investor’s prior beliefs, we assume
that the investor prefers a model that is more consistent with the data; given
models equally consistent with the data, we assume that the investor prefers
a model that is more consistent with the investor’s prior beliefs. We make all
of this precise below.

10.1.4.1 Consistency with the Data

For a model measure q ∈ Q, let µdata(q) denote the investor’s measure of
the consistency of q with the data; this consistency is expressed in terms of
expectations of the feature vector, f(y) = (f1(y), . . . , fJ(y))T ∈ RJ where

15In practice, we estimate a finite number of models associated with a finite number of
data-consistency constraints; we will describe this in greater detail below.
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each feature, fj(y) = fj(y1, . . . , ym), is a mapping from the state space Y of
Y to R. We make the following assumption:

Assumption 10.2 The investor measures the consistency,16 µdata(q), of the
model q ∈ Q with the data via the nonnegative convex function ψ, with

µdata(q) = ψ(c), (10.23)

where

c = (c1, . . . , cJ)T ,

with
cj = Eq[fj ] −Ep̃[fj], (10.24)

and ψ(0) = 0.

We can think of the function ψ(c) as a measure of the discrepancy between
the expected feature values under the model that we seek and under the
empirical measure.

We shall see below that Assumption 10.2 leads to data-consistency con-
straints for which Assumption 10.1 (the measures satisfying the data-
consistency constraints form a convex compact set) holds.17 Recall that we
used Assumption 10.1 to establish Theorem 10.1, which stated the equiva-
lence between the robust outperformance principle, Principle 10.1, and the
minimum market exploitability principle, Principle 10.2.

We now motivate and describe a few possible concrete choices for the dis-
crepancy function ψ(c):

1. Mahalanobis distance: Given a positive definite matrix Σ ∈ Rn×n, and
two vectors, x1 and x2 in Rn, the Mahalanobis distance between x1 and
x2 is given by18

(x2 − x1)
′Σ−1(x2 − x1). (10.25)

This distance arises naturally in connection with the multivariate Gaus-
sian distribution, and, as we shall see, can be used to measure the dis-
tance from a model measure to an empirical measure in terms of the
feature covariance structure.

Consider the large sample probability density of the sample feature
means, evaluated at the model q feature expectations, Eq[f ]. To elab-
orate, for a fixed measure q ∈ Q, the model feature mean, Eq[fj ], is a
deterministic quantity depending on q. The sample mean of fj, however,

16More precisely, low µ values are associated with highly consistent models and high µ

values are associated with less consistent models.
17See Exercise 9.
18See, for example, Kullback (1997), p. 190.
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depends on the sample set and is therefore a random variable, φj. The
quantityEp̃[fj ] is therefore an observation of the random variable φj. By
the Central Limit Theorem, for a large number of observations, N , the
random vector φ = (φ1, . . . , φJ)T is approximately normally distributed
with mean Ep̃[f ] and covariance matrix 1

N Σ, where Σ is the empirical
feature covariance matrix. Therefore, for a given measure q ∈ Q, the
probability density for the random variable φ, evaluated at Eq[f ], is
(approximately) given by

pc(c) ≡ pdf(φ)|φ=Eq [fj ] = (2π)−
1
2JN

1
2 |Σ|−1

2 e−
N
2 cT Σ−1c, (10.26)

where

c = (c1, . . . , cJ)T

and
cj = Eq[fj ]− Ep̃[fj]. (10.27)

The level sets of this unimodal probability density form a set of nested
regions around the mean point Eq[fj ], suggesting the following measure
of consistency with the data:

µdata(q) = ψ(c) ≡ NcT Σ−1c ≥ 0. (10.28)

This measure (the Mahalanobis metric) has been used to measure con-
sistency of a model measure with the data; see, for example, Wu (1997),
and Gull and Daniell (1978).

We note that though we have used the Central Limit Theorem to moti-
vate this measure, we have not made any assumption on the probability
distribution of the measures q ∈ Q.

Equally consistent measures, q, lie on the same level set of the function
µdata(q). We parameterize the nested family of sets, consisting of points
q ∈ Q that are equally consistent with the data. We note that since the
feature covariance matrix Σ−1 is a nonnegative definite matrix, µdata(q)
is, indeed, a convex function of q.

Note that, by construction, in this case, µdata(q) is invariant with respect
to translations and rotations of the feature vectors.19

In order to estimate the number of elements in the feature covariance
matrix, we would hope that the number of observations, N , far exceeds

the number of elements in the feature covariance matrix, J(J+1)
2

; that

is, we would hope that J(J+1)
2 << N . However, for many applications,

this is not the case. In such cases (and others as well), it is often possible
to obtain better numerical results by putting the off-diagonal elements
of Σ to zero.

19James Huang (2003) first pointed this out to the authors.
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2. `2-norm: The `2-norm is suggested by the large sample density of feature
means, with the off-diagonal elements of Σ put to zero.

3. `∞-norm: As indicated in Sections 9.2.2 and Section 9.4.3, the `∞-norm
allows us to combine regularization with feature selection.

10.1.4.2 Consistency with the Prior Measure

To quantify consistency of the model, q ∈ Q, with the investor’s prior
beliefs,20 we make use of the relative (U,O)-entropy DU,O(q||q0), where U is
the investor’s utility function and O is the set of odds ratios.

Assumption 10.3 The investor measures the consistency, µprior(q), of the
model q ∈ Q with the prior, q0, by the relative (U,O)-entropy, DU,O(q||q0).

More precisely, low µ values are associated with highly consistent models and
high µ values are associated with less consistent models.

10.1.4.3 Pareto Optimal Measures

To characterize the measures q∗ ∈ Q which are optimal (in a sense to be
made precise), we define dominance, Pareto optimal probability measures, the
set of achievable measures, and the efficient frontier. These notions are from
vector optimization theory (see, for example, Boyd and Vandenberghe (2004))
and portfolio theory (see, for example, Luenberger (1998)).

Definition 10.1 q1 ∈ Q dominates q2 ∈ Q with respect to µdata and µprior

if

(i)

(µdata(q1), µprior(q1)) 6= (µdata(q2), µprior(q2))

and

(ii)

µdata(q1) ≤ µdata(q2)

and

µprior(q1) ≤ µprior(q2).

Definition 10.2 A model, q∗ ∈ Q, is Pareto optimal if and only if no measure
q ∈ Q dominates q∗ with respect to µdata(q) and µprior(q) = DU,O(q||q0). The
efficient frontier is the set of Pareto optimal measures.

20Alternatively, the notion of bounding the closeness to a prior measure can be interpreted
as bounding the extent to which a market can be exploited.
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We note that for any Pareto optimal measure q∗ ∈ Q,

µdata(q) ≤ µdata(q∗) implies that DU,O(q||q0) ≥ DU,O(q∗||q0) (10.29)

for all q ∈ Q.
The Pareto optimal measures are contained in the achievable set, A, which

is defined as follows:

Definition 10.3 The achievable set, A, is given by

A = {(α,D)|µdata(q) ≤ α and DU,O(q||q0) ≤ D for some q ∈ Q} ⊂ R2.

By (10.27) and (10.28), measures q that are equally consistent with the
data lie on the same level set of the function µdata(q). In specific cases, for
example, the Mahalanobis metric,

µdata(q) = ψ(c) = N(Eq[f ] −Ep̃[f ])
T Σ−1(Eq[f ] − Ep̃[f ]), (10.30)

we would parameterize the nested family of sets, consisting of points q ∈ Q
that are equally consistent with the data, by (10.30).

The achievable set, A, is convex. A is convex by the convexity of µdata(q)
and DU,O(q||q0) (see, for example, Boyd and Vandenberghe (2004), Section
4.7). The convexity of the achievable set follows from the particular choice
µdata(q) and µprior(q) = DU,O(q||q0).

We may visualize the achievable set, A, and the efficient frontier as displayed
in Figure 10.1, which also incorporates the following lemma.

Lemma 10.1 If q∗ is a Pareto optimal measure, then

(i) µdata(q∗) ≤ αmax, where

αmax = µdata(q0) (10.31)

(ii) (µdata(q∗), DU,O(q∗||q0)) lies on the lower D-boundary of A.

Proof: (i) For the measure q0, we have µdata(q0) = αmax and D =
DU,O(q0||q0) = 0. If µdata(q) > αmax, then q cannot be identical to q0, and so
DU,O(q||q0) > 0; so q is dominated by q0 and cannot be efficient. (ii) follows
directly from (10.29). 2

We shall make use of the preceding lemma when we formulate our opti-
mization problem.

We make the following assumption, which is equivalent to adopting the min-
imum relative (U,O)-entropy principle, Principle 10.3 (which is itself equiv-
alent to the robust outperformance principle and the minimum market ex-
ploitability principle — principles 10.1 and 10.2, respectively).

Assumption 10.4 The investor selects a measure on the efficient frontier.

Thus, given a set of measures equally consistent with the prior, our investor
prefers measures that are more consistent with the data, and, given a set of
measures equally consistent with the data, he prefers measures that are more
consistent with the prior. He makes no assumptions about the precedence of
these two preferences.
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FIGURE 10.1: Achievable set, A: shaded region above curve; Efficient
Frontier: points on bold curve with 0 ≤ α ≤ αmax. (This figure originally
appeared in Friedman and Sandow (2003a).)

10.1.4.4 Convex Optimization Problem

We seek the set of Pareto optimal measures. That is, motivated by Lemma
10.1, for all q ∈ Q with µdata(q) = α, we seek all solutions of the following
problem, as α ranges from 0 to αmax, where αmax is defined in (10.31).

Problem 10.1 (Initial Problem, Given α, 0 ≤ α ≤ αmax)

Find arg inf
q∈(R+)m,c∈RJ

DU,O(q||q0) (10.32)

under the constraints 1 =
∑

y

qy (10.33)

and ψ(c) = α (10.34)

where cj = Eq[fj] − Ep̃[fj ] . (10.35)

Problem 10.1 is not the standard convex optimization problem discussed
in Section 2.2, since (10.34) is a nonaffine equality constraint. However, we
formulate a different (convex optimization) problem, which, as we shall show,
has the same solutions:

Problem 10.2 (Initial Convex Problem, Given α, 0 ≤ α ≤ αmax)

Find arg min
q∈(R+)m,c∈RJ

DU,O(q||q0) (10.36)

under the constraints 1 =
∑

y

qy (10.37)

and ψ(c) ≤ α (10.38)

where cj = Eq[fj] − Ep̃[fj ] . (10.39)

Lemma 10.2 Problem 10.2 is a convex optimization problem and Problems
10.1 and 10.2 have the same unique solution.
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Proof: See Section 10.5.1.

In order to visualize the solutions to Problem 10.2, we define

Sα = {q : µdata(q) = α, q ∈ Qc}, (10.40)

where

Qc = {q : q ≥ 0,
∑

y

qy = 1,
∑

y

qyfj(y) = cj + Ep̃[fj], j = 1, . . . , J}.

By solving Problem 10.2, for each α, we generate a one-parameter family
of candidate models, q∗(α), indexed by α. We can visualize these models as
the points of tangency (on the probability simplex, Q) of the nested surfaces
of the families Sα and the level sets of DU,O(q||q0) (see Figure 10.2). Each
candidate model, q∗(α), is a solution of Problem 10.2; accordingly, each point
(α,DU,O(q∗(α)||q0)) is a point on the efficient frontier (see Figure 10.1), and
the efficient frontier consists of all points of the form (α,DU,O(q∗(α)||q0)), as
α ranges from (0, αmax).

FIGURE 10.2: The sets Sα (see (10.40)), centered at S0, the q∗(α)-curve,
and the level sets of DU,O(q||q0), centered at q0, on the probability simplex
Q. (This figure originally appeared in Friedman and Sandow (2003a).)

10.1.4.5 Choosing a Measure on the Efficient Frontier

According to the above paradigm, the best candidate model lies on a one-
parameter efficient frontier. In order to choose the best candidate model from
this one-parameter family, we make the following assumption.

Assumption 10.5 The investor chooses α so as to maximize his expected
utility on an out-of-sample dataset.
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Thus, given a compatible utility function, U , and odds ratios, O, as well as
a prior belief, q0, and Assumptions 4.1 to 10.5, we are led to a method for
finding a probability measure, which we state in the following principle:

Principle 10.4 (Data Consistency Tuning Principle) Given a family of data
constraint sets indexed by the parameter α, we tune the level of data consis-
tency with respect to out-of-sample performance by selecting

q∗∗ = q∗(α∗) ,

with α∗ = arg max
α

Ep̃[U(b∗(q∗(α)),O)] ,

where p̃ is the empirical measure of the test set and q∗(α) is the minimum
relative (U,O)-entropy measure associated with the parameter α.

Thus, according to Principle 10.4, the relative importance of the data and the
prior is determined by the out-of-sample performance (expected utility) of the
model. Principle 10.4 affords a mechanism to tune the regularization of the
model (produced according to the minimum relative (U,O)-entropy. Principle
10.3 or, equivalently, Principle 10.1 or 10.2) in the hope that the model will
generalize well.21

10.1.5 Dual Problem

We have shown in Section 10.1.4 that, in order to find the Pareto optimal
model, q∗, for a given α, we have to solve Problem 10.2. As we have seen, this
problem is strictly convex. We know from Section 2.2, that we can formulate
a corresponding dual problem.

We show in Section 10.5.2 that the dual of Problem 10.2 can be formulated
as:

21If α∗ = 0, no regularization is necessary, which suggests that it is possible that the
collection of features should be enriched so that the model can learn more from the data,
i.e., it might be worthwhile to add additional features.
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Problem 10.3 (More Easily Interpreted Version of Dual Problem, Given α)

Find β∗ = arg max
β

h(β) (10.41)

with h(β) =
∑

y

p̃yU(b∗y(q∗)Oy)

− inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

, (10.42)

where b∗y(q∗) =
1

Oy
(U ′)−1

(

λ∗

q∗yOy

)

(10.43)

and q∗y =
λ∗

OyU ′ (U−1(Gy(q0, β, µ∗)))
, (10.44)

with Gy(q0, β, µ∗) = U(b∗y(q0)Oy) + βT f(y) − µ∗ , (10.45)

where µ∗ solves 1 =
∑

y

1

Oy
U−1

(

Gy(q
0, β, µ∗)

)

, (10.46)

and

λ∗ =

{

∑

y

1

OyU ′ (U−1(Gy(q0, β, µ∗)))

}−1

. (10.47)

Here, the β terms arise as Lagrange multipliers (see Section 10.5.2 for de-
tails) and (10.44) is the connecting equation.

We also show in Section 10.5.2 that an alternative formulation of the dual
problem is the following:

Problem 10.4 (More Easily Implemented Version of Dual Problem, Given
α)

Find β∗ = arg max
β

h(β) (10.48)

with h(β) = βTEp̃[f ] − µ∗

− inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

, (10.49)

where µ∗ solves 1 =
∑

y

1

Oy
U−1

(

Gy(q0, β, µ∗)
)

(10.50)

with Gy(q0, β, µ∗) = U(b∗y(q0)Oy) + βT f(y) − µ∗ . (10.51)

The optimal probability distribution is then

q∗y =
λ∗

OyU ′ (U−1(Gy(q0, β∗, µ∗)))
, (10.52)

with λ∗ =

{

∑

y

1

OyU ′ (U−1(Gy(q0, β∗, µ∗)))

}−1

. (10.53)
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Next, we examine some important special cases for the primal relaxation
term and associated dual relaxations.

1. Ψ(c) = 1
ω `

ω
ω(c), 1 < ω < ∞. Recall that by Corollary 2.1, if the primal

relaxation term is given by

Ψ(c) =
1

ω
`ωω(c) , 1 < ω <∞ , (10.54)

then the dual relaxation term

inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

(10.55)

is given by
α

1
ω κ

1
ω (κ− 1)−

1
ω `κ(β) , (10.56)

where `κ(β) =
(

∑J
j=1 |βj |κ

)
1
κ

denotes the `κ-norm, and κ = ω
ω−1 .

Fortunately, when considering the α-parameterized family of solutions,
it is possible to recast this dual relaxation term in a less cumbersome
equivalent form, as indicated by Corollary 2.2 of Section 2.2.

2. Ψ(c) = `∞(c). Also, by Corollary 2.1 of Section 2.2, if the primal relax-
ation term is given by

Ψ(c) = `∞(c) , (10.57)

then the dual relaxation term

inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

(10.58)

is given by
α`1(β) , (10.59)

where `1 =
∑J

j=1 |βj | denotes the `1-norm.

3. Mahalanobis metric. The dual relaxation term for the case where Ψ(c)
is given by the Mahalanobis metric

NcT Σ−1c (10.60)

can be obtained from the 1
2`

2
2 primal regularization by the transforming

coordinates. We obtain the dual directly:

Ψ∗(y) = sup
c

{

cT y −NcT Σ−1c
}

. (10.61)

This is an unconstrained concave maximization problem. Let

c∗ = arg sup
c

{

cT y −NcT Σ−1c
}

. (10.62)
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Putting the gradient with respect to c to zero, we obtain

y − 2NΣ−1c∗ = 0, (10.63)

so

c∗ =
1

2N
Σy (10.64)

and

Ψ∗(y) =
1

4N
yT Σy. (10.65)

Applying Corollary 2.1, we see that the dual relaxation term for the
Mahalanobis relaxation is given by

inf
ξ

1

4Nξ
βT Σβ + αξ. (10.66)

This is an unconstrained convex optimization problem. Putting the
derivative with respect to ξ to zero, we obtain

ξ∗ =

√

1

4αN
βT Σβ. (10.67)

Substituting into (10.66), we obtain the dual relaxation term

√

α

N
βT Σβ. (10.68)

We note that for the Mahalanobis metric, we can obtain the same α-
parameterized family of solutions to Problems 10.3 and 10.4, if we allow
α to vary over [0,∞), by dropping the square roots in the above relax-
ation term; this follows from the material in Section 2.2.9.

We state the following theorem:

Theorem 10.3 Problems 10.2, 10.3, and 10.4 have the same unique solution,
q∗y.

Proof: see Section 10.5.2.

Problems 10.3 and 10.4 are equivalent. Problem 10.4 is easier to implement
and Problem 10.3 is easier to interpret. The first term in the objective function
of Problem 10.3 is the utility (of the utility maximizing investor) averaged over
the training sample. Thus, our dual problem is a regularized maximization of
the training sample-averaged utility, where the utility function, U , is the utility
function on which the relative (U,O)-entropy DU,O(q||q0) depends.

We know from Section 2.2 that the dual problems, Problems 10.3 and 10.4,
are J-dimensional (J is the number of features), unconstrained, concave max-
imization problems that can be recast in the form of standard convex min-
imization problems. The primal problem, Problem 10.2, on the other hand,
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is an m-dimensional (m is the number of states) convex minimization with
convex constraints. The dual problem, Problem 10.4, may be easier to solve
than the primal problem, Problem 10.2, ifm > J . In the more general context
that we shall discuss in Section 10.2, the dual problem will always be easier
to solve than the primal problem.

10.1.5.1 Example: The Generalized Logarithmic Family of Utilities

We consider a utility of the form

U(z) = γ1log(z − γB) + γ2 , (10.69)

where γ < 1 to ensure compatibility with the horse race and γ1 > 0 to ensure
the proper monotonicity for the utility function.

In Section 10.5.3, we show that the dual problem is given by:

Problem 10.5 (Dual Problem for the Generalized Logarithmic Family of
Utilities)

Find β∗ = arg max
β

h(β)

with h(β) =
∑

y

p̃y log q∗y − inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

,

where q∗y =
1

∑

y q
0
ye

βT f(y)
q0y e

βT f(y) .

This problem is equivalent to a regularized maximum-likelihood search,
which is independent of the odds ratios, O; this is consistent with Section
10.1.6, where we show that the odds ratios drop out of the primal problem
for this logarithmic family of utility functions.

10.1.5.2 Example: Power Utility

We consider a utility of the form

U(z) =
z1−κ − 1

1 − κ
, (10.70)

discussed in Section 4.4. In order to specify the dual problem for this utility,
note that

U ′(z) = z−κ , (10.71)

U−1(z) = [1 + (1 − κ)z]
1

1−κ (10.72)

and U ′(U−1(z)) = [1 + (1 − κ)z]
−κ
1−κ . (10.73)



A Utility-Based Approach to Probability Estimation 283

Recall from Section 5.1.6 that

b∗(q) =
(qyOy)

1
κ

OyB(q,O)
(10.74)

with B(q,O) =
∑

y

1

Oy
(qyOy)

1
κ . (10.75)

Using this equation, we can write Gy(q0, β, µ∗) from (10.45) as

Gy(q
0, β, µ∗) =

1

1 − κ

[(

(q0yOy)
1−κ

κ

(B(q0,O))1−κ

)

− 1

]

+ βT f(y) − µ∗ . (10.76)

Inserting (10.72) and (10.76) into (10.46) gives

1 =
∑

y

1

Oy

[

(q0yOy)
1−κ

κ

(B(q0,O))1−κ
+ (1 − κ)[βT f(y) − µ∗]

]
1

1−κ

, (10.77)

which is our condition for µ∗. Next, we specify the condition (10.47) for λ∗.
We use (10.73) and (10.76) to write (10.47) as

λ∗ =







∑

y

1

Oy

[

(q0yOy)
1−κ

κ

(B(q0 ,O))1−κ
+ (1 − κ)[βT f(y) − µ∗]

]
κ

1−κ







−1

. (10.78)

By means of (10.44), (10.73), and (10.76) we obtain for the optimal probability
distribution

q∗y =
1

Oy

[

(q0yOy)
1−κ

κ

(B(q0,O))1−κ
+ (1 − κ)[βT f(y) − µ∗]

]
κ

1−κ

. (10.79)

We note from this connecting equation that q∗y is reminiscent of the Student
t-distribution. Collecting (10.77), (10.75), (10.78), and (10.79), we obtain:

Problem 10.6 (Dual Problem for Power Utility)

Find β∗ = arg max
β

h(β)

with h(β) = βTEp̃[f ] − µ∗ − inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

(10.80)

where µ∗ solves 1 =
∑

y

1

Oy

[

(q0yOy)
1−κ

κ

(B(q0,O))1−κ
+ (1 − κ)[βT f(y) − µ∗]

]
1

1−κ

with B(q0 ,O) =
∑

y

1

Oy
(q0yOy)

1
κ .
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The optimal probability distribution is then

q∗y =
λ∗

Oy

[

(q0yOy)
1−κ

κ

(B(q0 ,O))1−κ
+ (1 − κ)[β∗T f(y) − µ∗]

]
κ

1−κ

with λ∗ =







∑

y

1

Oy

[

(q0yOy)
1−κ

κ

(B(q0,O))1−κ
+ (1 − κ)[β∗T f(y) − µ∗]

]
κ

1−κ







−1

.

10.1.5.3 Summary of Dual Problem Solution Method (Suitable for
Numerical Implementation)

The modeling approach described in Sections 10.1.4 and 10.1.5 was for-
mulated in terms of an investor who selects a Pareto optimal model, i.e., a
model on an efficient frontier, which we have defined in terms of consistency
with the training data and consistency with a prior distribution. We measured
the former by means of the large-sample distribution of a vector of sample-
averaged features, and the latter by means of a relative (U,O)-entropy. We
have seen that the measures on the efficient frontier form a family which is
parameterized by the single parameter α ∈ (0, αmax), and that, for a given
α, the Pareto optimal measure is the unique solution of Problem 10.2, which
is a strictly convex optimization problem. For a given α, the Pareto optimal
measure can be found by solving the dual (concave maximization) problem
in the form of Problem 10.16 or in the form of Problem 10.4. Solving this
dual problem amounts to a regularized expected utility maximization (over
the training sample) over a certain family of measures; for many practical
examples, solving the dual problem can be easier than solving the primal
problem. Having thus computed an α-parameterized family of Pareto optimal
measures, we pick the measure with highest expected utility on a hold-out
sample.

We note that the procedure to select α is, by virtue of the fact that α is
one-dimensional, both tractable and barely susceptible to overfitting on the
hold-out sample set.

The approach that we have discussed boils down to the following procedure:

1. Break the data into a training set and a hold-out sample, for example,
taking 75% or 80% of the data, selected randomly, to train the model.

2. Choose a discrete set A = {αk ∈ (0, αmax), k = 1, . . . , K}.
3. For k = 1, . . . , K,

• Solve Problem 10.4 for β∗(αk), based on the training set,

• Compute the out-of-sample performance Pk = Ep̃[U(b∗(q∗(αk)),O)]
on the out-of-sample test set, where p̃ is the empirical measure on
this test set, and q∗ is determined from (10.52) with parameters
β∗(αk), and b∗ is determined from (10.3).



A Utility-Based Approach to Probability Estimation 285

4. Put k∗ = arg maxk Pk.

5. Our model, q∗∗, is determined from (10.52) with parameters β∗(αk∗).

A refinement: repeat on different data partitions in order to find an optimal
α∗∗, then retrain the model using α∗∗ on the complete set of available training
data.

10.1.6 Utilities Admitting Odds Ratio Independent Prob-
lems: A Logarithmic Family

In the setting of this chapter, model builders who use probabilistic mod-
els make decisions (bets) which result in well defined benefits or ill effects
(payoffs) in the presence of risk. In principle, the payoffs associated with the
various outcomes can be assigned precise values; in practice, it may be diffi-
cult to assign such values. Outside the financial modeling context, for example,
there may be no “market makers” who set odds ratios. Even in the financial
modeling context, the data for the payoffs (or, equivalently, market prices or
odds ratios) may not exist or be of poor quality. In this context, given market
prices on instruments which have nonzero payoffs for more than one state,
we would need a complete market in order to calculate the odds ratios (see,
for example, Duffie (1996), for a definition of complete markets). In the ab-
sence of high-quality data, one might consider modeling the odds ratios, but
that introduces additional complexity; moreover, the resulting model, under
a general utility function, will be sensitive to the odds ratio model.

For these reasons, we seek the most general family of utility functions for
which our problem formulation is independent of the odds ratios. We recall
Theorem 7.1, restated below, which specifies this family.

Theorem 7.1 The relative (U,O)-entropy, DU,O(q||q0), is independent of
the odds ratios, O, for any candidate model q and prior measure, q0, if and
only if the utility function, U , is a member of the logarithmic family

U(W ) = γ1 log(W − γB) + γ2 , (10.81)

where γ1 > 0 and γ < 1. In this case,

DU,O(q||q0) = γ1Eq

[

log

(

q

q0

)]

. (10.82)

From this theorem and Problem 10.2, we obtain

Corollary 10.1 For utility functions of the form (10.81), Problem 10.2 re-
duces to Problem 10.7.
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Problem 10.7 (Initial Strictly Convex Problem for U in the Generalized Log-
arithmic Family, Given α, 0 ≤ α ≤ αmax)

Find arg min
q∈(R+)m,c∈RJ

γ1Eq

[

log

(

q

q0

)]

under the constraints 1 =
∑

y

qy

and ψ(c) = α (10.83)

where cj = Eq[fj ]− Ep̃[fj] . (10.84)

We have already explicitly derived the dual problem for utility functions of
the form (10.81) in Section 10.1.5.1. We note that this is the same problem
that we encountered in Section 9.4.

10.1.7 A Summary Diagram

We display some of the relationships discussed above, in the horse race
setting of this chapter, in Figure 10.3.22

10.2 Conditional Density Models

In this section we briefly discuss the above approach in the context of a
conditional density model which may include point masses, i.e., for the case
where the random variable Y has the continuous conditional probability den-
sity q(y|x) on the finite set Y ⊂ Rn and the finite conditional point proba-
bilities qρ|x on the set of points {yρ ∈ Rn, ρ = 1, 2, ...,m}, where x denotes
a value of the vector X of explanatory variables which can take any of the
values x1, ..., xM, xi ∈ Rd.

We have only assumed that the explanatory variable vector can take a finite
number of values (those that are observed in our training dataset). However,
as we shall see, the models that we derive based on this assumption will
allow us, potentially, to compute conditional probabilities for all x ∈ Rd. This
setting has interesting applications such as the modeling of recovery values of
defaulted debt, which we shall discuss in Section 12.1.2.

As in Section 10.1, we make assumptions; we assume that

(i) an investor has a utility function that satisfies Assumption 4.1 stated in
Section 4.6,

22We shall also consider settings more general than the horse race; see Section 11.2.
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FIGURE 10.3: Model estimation approach.
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(ii) this investor operates in the conditional horse race setting described in
Section 5.4,

(iii) for every value of x, the conditional horse race conditioned on x, the
investor’s utility function, and any conditional density q(y|x) under con-
sideration are compatible, in the sense of Definition 5.8 of Section 5.4.
These compatibility conditions are imposed to ensure that the investor’s
optimal allocation is well defined.

(iv) the investor allocates his assets so as to maximize his expected utility
according to his beliefs, i.e., the investor allocates so as to maximize the
expectation of his utility under the model probability measure.

(v) the investor measures model performance as per Principle 8.1, in Chap-
ter 8.

10.2.1 Preliminaries

In order to generalize the results and definitions from Section 10.1, we let
p̃x denote the empirical probability of the vector, X, of explanatory variables,
and define the following conditional probability measures:

Definition 10.4

p̃ = {(p̃(y|x), p̃ρ|x), y ∈ Y, ρ = 1, 2, ..., m, x= x1, ..., xM}
= empirical conditional probability measure

q = {(q(y|x), qρ|x), y ∈ Y, ρ = 1, 2, ..., m, x= x1, ..., xM}
= model conditional probability measure

Assumption 10.6 (px = p̃x and some consequences) We assume that the
following relations between conditional and joint probabilities hold:

qx = p̃x,

q(y, x) = p̃xq(y|x), and

qρ,x = p̃xqρ|x.

Next, we identify the probabilistic problem with the conditional horse race of
Section 5.4, and consider an investor who places bets. We assume that our
investor has allocation density b(y|x) and allocates bρ|x to the event Y = yρ,
if X = x was observed, where

1 =

∫

Y
b(y|x)dy +

m
∑

ρ=1

bρ|x . (10.85)
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This means that, assuming that q, U , and O are compatible, such an investor
who believes the model q will allocate according to

b∗[q] = arg max
{b∈B}

[

∫

Y
q(y|x)U(b(y|x)O(y|x))dy +

∑

y

qρ|xU(bρ|xOρ|x)

]

,

(10.86)
where

B = {(b(y|x), bρ|x) :

∫

Y
b(y|x)dy +

m
∑

ρ=1

bρ|x = 1}

denotes the set of betting weights consistent with (10.85). From Lemma 5.4,
the optimal betting density and betting weights are given by

b∗[q](y|x) =
1

O(y|x) (U ′)−1

(

λ∗x
q(y|x)O(y|x)

)

, (10.87)

b∗ρ|x[q] =
1

Oρ|x
(U ′)−1

(

λ∗x
qρ|xOρ|x

)

, (10.88)

respectively, where λ∗x, is the solution (which is known to exist) of the following
equation:

1 =

∫

Y

1

O(y|x) (U ′)−1

(

λ∗x
q(y|x)O(y|x)

)

dy +
∑

ρ

1

Oρ|x
(U ′)−1

(

λ∗x
qρ|xOρ|x

)

.

(10.89)
Recall the definition of relative (U,O)-entropy from the discrete setup of

Section 7.2,

DU,O(q||q0) = Eq[U(b∗[q],O)] − Eq[U(b∗[q0],O)] . (10.90)

We note that this definition, which is expressed in terms of expectations,
utility, and allocation to a horse race, can be easily generalized to our current
setting. In our setting, we have

Eq1 [U(b∗[q2],O)] =
∑

x

p̃x

∫

Y
q1(y|x)U(b∗[q2](y|x)O(y|x))dy

+
∑

x,ρ

p̃xq
1
ρ|xU(b∗ρ|x[q2]Oρ|x) . (10.91)

This suggests the following definition for the conditional relative (U,O)-
entropy for (conditional) probability densities with point masses.

Definition 10.5 Given a utility function, U , and a compatible system of mar-
ket prices, O, and probability measures, q and q0, the conditional relative
(U,O)-entropy is given by:

DU,O(q||q0) = Eq[U(b∗[q],O)] − Eq[U(b∗[q0],O)] , (10.92)
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where the optimal allocations b∗(q) and b∗(q0) are with respect to the utility
function, U , and where the expectation of a function gx(y) is defined as

Eq[g] =
∑

x

p̃xEq[g|x] (10.93)

with Eq[g|x] =

{∫

Y
q(y|x)gx(y)dy +

∑

ρ

qρ|xgx(y)

}

.

10.2.2 Modeling Approach

In this section, we generalize the modeling approach from Section 10.1.4 to
the case of a conditional probability density with point masses. To this end,
let us define the spaces

Q = {(q(y|x), qρ|x)} , (10.94)

and Q+ = {q : q ∈ Q, q(y|x) ≥ 0, qρ|x ≥ 0}.

We further assume that Assumptions 10.2-10.6 hold; that is, we assume
that the investor

(i) measures the consistency of the model with the data in terms of a convex
function of the difference between expectations of the feature vector
under the model and the empirical measures,

(ii) measures the consistency of the model with the prior via the conditional
relative (U,O)-entropy,

(iii) selects a measure on the efficient frontier, and

(iv) selects the measure on the efficient frontier that maximizes his expected
utility on an out-of-sample test set.

This leads to

Problem 10.8 (Minimum Relative (U,O)-Entropy Problem: Conditional,
Given α)

Find arg min
q∈Q+,c∈RJ

DU,O(q||q0) (10.95)

under the constraints 1 = Eq[1|x] (10.96)

and ψ(c) ≤ α (10.97)

where cj = Eq[fj ]− Ep̃[fj] . (10.98)

Here, as in the context of discrete probabilities, fj denotes a feature; there
are J features, each of which is a real-valued function of x and y.

According to Assumption 10.5, i.e., by applying the data consistency tuning
principle, Principle 10.4, our investor will choose the measure that maximizes
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his expected utility among the measures that are the family (parameterized
by α) of solutions to Problem 10.8.

We note that we haven’t proved that the solution to Problem 10.8 exists.
From a practical point of view, we can solve Problem 10.8 and then check the
solution for compatibility (in the sense of Definition 5.8).

We now argue heuristically23 that the minimum conditional relative (U,O)-
entropy problem, Problem 10.8, is equivalent to the minimum market ex-
ploitability principle. To see this, we shall cast the definition of conditional
relative entropy, Definition 10.5, as a maximization over measures, rather than
an expectation over optimal allocations.

To do this, we first need to show that Definition 10.5 can be cast as a
maximization over allocations. Note that the quantities b∗[q] in Definition
10.5, which are given by (10.87) and (10.88), result from maximizations of
expected utility, given the particular individual value x. On the other hand,
the maximization

b̃[q] = max
(b(y|x),bρ|x)∈B

(

Eq[U(b,O)] − Eq[U(b∗[q0],O)]
)

(10.99)

is (see the definition of Eq in (10.93)) a maximization over weighted sums
of terms involving concave increasing functions of b(y|x) or bρ|x, where

(b(y|x), bρ|x) ∈ B). This difference notwithstanding, we must have b̃[q] = b∗[q].
To see this, note that the right hand side of the preceding equation consists of
finite nonnegatively-weighted sums of terms of the form of the objective func-
tion in (10.86); such sums can be maximized by maximizing the individual
terms that comprise the sum. The solution that results coincides with that
given by (10.87) and (10.88).

Therefore we can write

DU,O(q||q0) = max
(b(y|x),bρ|x)∈B

(

Eq[U(b,O)] − Eq[U(b∗[q0],O)]
)

. (10.100)

From (10.87) and (10.88), for every b there is a q and conversely; thus,
the conditional relative entropy can also be viewed as a maximization over
measures, rather than allocations; that is,

DU,O(q||q0) = max
(q(y|x),qρ|x)∈Q+

(

Eq[U(b∗[q],O)] − Eq[U(b∗[q0],O)]
)

.

(10.101)
Thus, the minimum (conditional) relative entropy problem, Problem 10.8, can
be written as the minimum market exploitability problem

Find arg min
q∈K

max
(q(y|x),qρ|x)∈Q+

(

Eq[U(b∗[q],O)] − Eq[U(b∗[q0],O)]
)

23For a more rigorous argument, see Grünwald and Dawid (2004).
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where we have used K to denote the subset of Q+ that satisfies the constraints
(10.96) to (10.98).

Rigorously proving that the Pareto-optimal, i.e., conditional relative (U,O)-
entropy minimizing, measure is robust is a considerably more difficult under-
taking than proving the analogous statement in the discrete setting. We refer
the reader to Grünwald and Dawid (2004) for a discussion. For our purposes,
in the continuous market setting, we take the minimum market exploitability
principle as our starting point.

10.2.3 Dual Problem

Like Problem 10.2, Problem 10.8 has a dual. We indicate how this dual is
obtained in Section 10.5.4.

Problem 10.9 (Dual Problem: Conditional Probability Density, Given α)

Find β∗ = arg max
β

h(β) (10.102)

with h(β) = Ep̃[U(b∗[q∗],O)]

− inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

(10.103)

where b∗[q∗](y|x) =
1

O(y|x) (U ′)−1

(

λ∗x
q∗(y|x)O(y|x)

)

, (10.104)

b∗ρ|x[q∗] =
1

Oρ|x
(U ′)−1

(

λ∗x
q∗ρ|xOρ|x

)

, (10.105)

and q∗(y|x) =
λ∗x

O(y|x)U ′ (U−1(G(x, y, q0, β, µ∗
x)))

, (10.106)

q∗ρ|x =
λ∗x

Oρ|xU ′
(

U−1(Gρ|x(q0, β, µ∗
x))
) , (10.107)

with

G(x, y, q0, β, µ∗
x) = U(b∗[q0](y|x)O(y|x)) + βT f(x, y) − µ∗

x, (10.108)

Gρ|x(q0, β, µ∗
x) = U(b∗ρ|x[q0]Oρ|x) + βT f(x, yρ) − µ∗

x ,(10.109)

where µ∗
x solves 1 =

∫

Y

1

O(y|x)U
−1
(

G(x, y, q0, β, µ∗
x)
)

dy (10.110)

+
∑

ρ

1

Oρ|x
U−1

(

Gρ|x(q0, β, µ∗
x)
)

, (10.111)

and (λ∗x)−1 =

∫

Y

1

O(y|x)U ′ (U−1(G(x, y, q0, β, µ∗
x)))

dy

+
∑

ρ

1

Oρ|xU ′
(

U−1(Gρ|x(q0, β, µ∗
x))
) . (10.112)
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This dual problem is a generalization of the dual problem for discrete proba-
bilities, Problem 10.3. In general, it is easier to solve the dual problem than
the primal problem, since the primal problem is an infinite dimensional op-
timization problem, and the dual problem is a J dimensional optimization
problem, where J is the length of the feature function vector. Even so, the
dual problem need not be well posed. For example, the integrals that must be
evaluated depend on the prior measure, q0(y|x), the feature vector, f(x, y),
and the odds ratios, O(y|x). In order to solve this problem, these functions
of y must be compatible in the sense that the integrals that involve them
converge.

10.2.3.1 Example: The Generalized Logarithmic Family and Ma-
halanobis Distance

Because of its practical relevance, we state the above dual problem for the
case of a generalized logarithmic utility and the Mahalanobis distance as ψ.
We assume that

ψ(c) = NcT Σ−1c. (10.113)

It is easy to see that, in this case, the (10.87)-(10.89) for the optimal betting
weights give:

b∗ρ|x[q] = qρ|x



1 − γB
∑

ρ′

1

Ox,ρ′



+
γB

Oρ|x
(10.114)

b∗[q](y|x) = q(y|x)



1 − γB
∑

y′

1

O(x, y′)



+
γB

O(y|x) . (10.115)

The conditional relative (U,O)-entropy, which enters Problem 10.8, is then

DU,O(q||q0) = γ1Eq

[

log

(

q

q0

)]

. (10.116)

Inserting (10.69), (10.114), and (10.115) into Problem 10.9, with ψ(c) put to
the Mahalanobis distance, we derive the dual problem as:

Problem 10.10 (Dual Problem for Probability Densities and the Generalized
Logarithmic Family of Utilities)

Find β∗ = arg max
β

h(β)

with h(β) =
γ1

N

∑

i

log q(β)(yi|xi) −
√

α

N
βT Σβ , (10.117)
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where q(β)(y|x) = Z−1
x eβT f(x,y) ×

{

q0ρ|x if y = yρ for some ρ

q0(y|x) otherwise ,

and Zx =

∫

Y
q0(y|x)eβT f(x,y)dy +

∑

ρ

q0ρ|xe
βT f(x,yρ) ,

where the (xi, yi) are the observed values andN is the number of observations.
The measure on the efficient frontier is then

q∗ = {(q∗(y|x), q∗ρ|x), y ∈ Y, ρ = 1, 2, ...,m, x= x1, ..., xM}
with q∗(y|x) = q(β

∗)(y|x)
and q∗ρ|x = q(β

∗)(yρ|x) .

Recall (from Section 2.2.9) that we can obtain the same α-parameterized
family of solutions to Problem 10.10, if we allow α to vary over [0,∞), by
dropping the square root in (10.117).

10.2.3.2 Example: Conditional MRE in the Discrete Setting

We note that in the special case where U(W ) is in the generalized loga-
rithmic family (10.69), Y = ∅, and α = 0, the minimum conditional relative
(U,O)-entropy problem becomes:

Problem 10.11 (MRE When Seeking a Conditional Discrete Distribution)
Find

q∗ρ|x = arg min
qρ|x≥0,

P

ρ qρ|x=1
D(q‖q0), (10.118)

subject to
Eq[f ] = Ep̃[f ], (10.119)

where the conditional relative entropy, D(q‖q0), is given by

D(q‖q0) =
∑

x

p̃x

∑

ρ

qρ|x log
qρ|x
q0ρ|x

, (10.120)

Eq[f ] =
∑

x

p̃x

∑

ρ

qρ|xf(x, ρ), (10.121)

and
Ep̃[f ] =

∑

x

p̃x

∑

ρ

p̃ρ|xf(x, ρ). (10.122)

This problem has the associated dual problem:

Problem 10.12 (Dual Problem Associated with MRE When Seeking a Con-
ditional Discrete Distribution)
Find

β∗ = arg max
β

∑

x,ρ

p̃xp̃ρ|x log q
(β)
ρ|x, (10.123)
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where

q
(β)
ρ|x =

eβT f(x,ρ)

Z(β, x)
q0ρ|x, (10.124)

and
Z(β, x) =

∑

ρ

eβT f(x,ρ)q0ρ|x. (10.125)

The solution of Problem 10.11 is then given by

q∗ρ|x = q
(β∗)
ρ|x , (10.126)

where β∗ is the solution of Problem 10.12.

10.2.3.3 Example: Conditional ME in the Discrete Setting

We note that in the special case where U(W ) is in the generalized loga-
rithmic family (10.69), Y = ∅, the prior is flat, and α = 0, the minimum
conditional relative (U,O)-entropy problem becomes:

Problem 10.13 (ME When Seeking a Conditional Distribution)
Find

q∗ρ|x = arg max
qρ|x≥0,

P

ρ qρ|x=1
H(q), (10.127)

subject to
Eq[f ] = Ep̃[f ], (10.128)

where
H(q) = −

∑

x

p̃x

∑

ρ

qρ|x log qρ|x, (10.129)

Eq[f ] =
∑

x

p̃x

∑

ρ

qρ|xf(x, ρ), (10.130)

and
Ep̃[f ] =

∑

x

p̃x

∑

ρ

p̃ρ|xf(x, ρ). (10.131)

This problem has the associated dual problem:

Problem 10.14 (Dual Problem Associated with ME When Seeking a Condi-
tional Discrete Distribution)
Find

β∗ = arg max
β

∑

x,ρ

p̃xp̃ρ|x log q
(β)
ρ|x, (10.132)

where

q
(β)
ρ|x =

eβT f(x,ρ)

Z(β, x)
, (10.133)

and
Z(β, x) =

∑

ρ

eβT f(x,ρ). (10.134)
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The solution of Problem 10.13 is then given by

q∗ρ|x = q
(β∗)
ρ|x , (10.135)

where β∗ is the solution of Problem 10.14.

10.2.3.4 Example: Conditional MMI in the Discrete Setting

Recall (from Definition 2.10) the definition of mutual information:

I(X; ρ) =
∑

x,ρ

qx,ρlog
qx,ρ

qxqρ
, (10.136)

which can be rewritten as

I(X; ρ) =
∑

x

qx

∑

ρ

qρ|xlog
qρ|xqx

qxqρ
=
∑

x

qx

∑

ρ

qρ|xlog
qρ|x
qρ

, (10.137)

So, under Assumption 10.6,24 the mutual information can be written as

I(X; ρ) =
∑

x

p̃x

∑

ρ

qρ|xlog
qρ|x
qρ

. (10.138)

and the MMI principle is a special case of the MRE principle where the prior
distribution is given by qρ.

10.2.3.5 Example: Logistic Regression

We note that in the special case where U(W ) is in the generalized logarith-
mic family (10.69), Y = ∅, m = 2, the prior is flat, and α = 0, and the jth

feature, fj , is given by

fj(x, y) =

(

y − 1

2

)

xj, j = 1, . . . , J, (10.139)

the dual problem, Problem 10.10, has a solution of the form

q(ρ = 1|x) =
1

1 + e−βT x
. (10.140)

The optimal parameters, β∗, are found by maximizing likelihood. This proce-
dure (calibrating β in (10.140)) is known as logistic regression.

24We note that p̃x enters the sum on the right hand side of (10.138) only as a sample average
weight term. For those who are unwilling to make Assumption 10.6, there are (significantly
more complicated) methods to minimize the mutual information while simultaneously esti-
mating qx (see Globerson and Tishby (2004) and Globerson et al. (2009)).
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10.2.4 Summary of Modeling Approach

The logic of our modeling approach in this section’s more general context
is similar to the logic described in Section 10.1.5.3. We have the following
procedure:

1. Break the data into a training set and a hold-out sample, for example,
taking 75% or 80% of the data, selected randomly, to train the model.

2. Choose a discrete set A = {αk ∈ (0, αmax), k = 1, . . . , K}.

3. For k = 1, . . . , K,

• Solve Problem 10.9 for β∗(αk),

• Compute the out-of-sample performance

Pk = Ep̃[U(b∗(q∗(αk)),O)]

on the out-of-sample test set, where p̃ is the empirical measure
on this test set, and q∗ is determined from (10.106) and (10.107)
with parameters β∗(αk), and b∗ is determined from (10.104) and
(10.105).

4. Put k∗ = arg maxk Pk.

5. Our model, q∗∗, is determined from (10.106) and (10.107) with param-
eters β∗(αk∗).

A refinement: repeat on different data partitions in order to find an optimal
α∗∗, then retrain the model using α∗∗ on the complete set of available training
data.

10.3 Probability Estimation via Relative U-Entropy
Minimization

In this section, we address, in the discrete horse race setting, the following
question: is it possible to formulate a generalized MRE problem for which the
solution is robust in an absolute sense, rather than the relative sense of the
robust outperformance principle, Principle 10.1?25

This is indeed possible, as the following Corollary, which follows directly
from the robust outperformance principle, Principle 10.1, indicates:

25Much of the material in this section can be found in Friedman et al. (2007).
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Corollary 10.2 If

q0y =
B

Oy
=

1

Oy
, ∀y ∈ Y, (10.141)

then

q∗ = arg min
q∈K

DU (q||q0) = arg max
q∈Q

min
q′∈K

Eq′ [U(b∗(q),O)], (10.142)

where Q is the set of all possible probability measures and K is the set of all
q ∈ Q that satisfy the feature constraints.

This Corollary states that, by choosing q∗, a rational (expected utility-
optimizing) investor maximizes his (model-based optimal) expected utility in
the most adverse environment consistent with the feature constraints. There-
fore, an investor with a general utility function, who bets on this horse race
and wants to maximize his worst case (in the sense of (10.142)) expected util-
ity can set q0 to the homogeneous expected return measure determined by
the odds ratios and solve the following problem:26

Problem 10.15 (MRUE Problem)
Find

q∗ = arg min
q∈Q

DU (q||q0) (10.143)

s.t. Eq[f
j] − Ep̃[f

j ] = 0 , j = 1, . . . , J , (10.144)

where each fj represents a feature (i.e., a function that maps X to R), q0

represents the prior measure, p̃ represents the empirical measure, and Q is
the set of all probability measures.

As before, q0, here, has a specific and nontraditional interpretation. It no
longer represents prior beliefs about the real world measure that we estimate
with q∗. Rather, it represents the homogeneous expected return measure. In
the horse race setting, the homogeneous expected return measure is equivalent
to a prominent measure from finance: the risk neutral pricing measure consis-
tent with the odds ratios. If an investor wants the measure that he estimates
to have the optimality property (10.142), he is not free to choose q0 to repre-
sent his prior beliefs, in general. To attain the optimality property (10.142),
he can set q0 to represent the risk neutral pricing measure determined by the
odds ratios. The MRUE measure, q∗, is a function of the odds ratios (which
are incorporated in the measure q0).

In order to obtain the dual to Problem 10.15, we specialize, in Problem 10.3,
relative (U,O)-entropy to relative U -entropy by setting the “prior” measure
to the risk neutral pricing measure generated by the odds ratios, q0y = 1

Oy
,

with α = 0. We obtain

26As noted above, we keep the context and notation as simple as possible by confining our
discussion to unconditional estimation without regularization. Extensions are straightfor-
ward.
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Problem 10.16 (Dual of MRUE Problem)
Find

β∗ = arg max
β

∑

y

p̃yU
(

b∗(q̂β
y )Oy

)

, (10.145)

where b∗(q̂β
y ) =

1

Oy
(U ′)−1

(

λ∗

q̂β
yOy

)

(10.146)

and q̂β
y =

λ∗

OyU ′ (U−1(βT fy − µ∗))
, (10.147)

where µ∗ solves 1 =
∑

x

U−1
(

βT fy − µ∗)

Oy
, (10.148)

and

λ∗ =

{

∑

x

1

OyU ′ (U−1(βT fy − µ∗))

}−1

. (10.149)

Problem 10.16 is easy to interpret.27 The objective function of Problem
10.16 is the utility (of the expected utility maximizing investor) averaged
over the training sample. Thus, our dual problem is a maximization of the
training sample-averaged utility, where the utility function, U , is the utility
function on which the U -entropy depends.

We note that the primal problem (Problem 10.15) and the dual problem
(Problem 10.16) have the same solution, in the sense that q∗ = q̂β∗ .

This problem is a J-dimensional (J is the number of features), uncon-
strained, concave maximization problem. The primal problem, Problem 10.15,
on the other hand, is an m-dimensional (m is the number of states) convex
minimization with linear constraints. The dual problem, Problem 10.16, may
be easier to solve than the primal problem, Problem 10.15, if m > J . For con-
ditional probability models, the dual problem will always be easier to solve
than the primal problem.

As we have seen above, in cases where odds ratios are available, the MRUE
problem yields a solution with the optimality property (10.142). However, in
real statistical learning applications, as mentioned above, it is often the case
that odds ratios are not observable. In this case, the builder of a statistical
learning model can use assumed odds ratios, on which the model will depend.
Given the relation

q0y =
B

Oy
=

1

Oy
, ∀y ∈ Y, (10.150)

as a perhaps more convenient alternative, the model builder can directly spec-
ify a risk neutral pricing measure consistent with the assumed odds ratios.

27A version that is more easily implemented is given in Friedman and Sandow (2003a).
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Either way, the model will possess the optimality property (10.142) under the
odds ratios consistent with the assumption. The necessity of providing a risk
neutral pricing measure, perhaps, imposes an onus on the MRUE modeler
comparable to the onus of finding a prior for the MRE modeler. However,
we note that, as for MRE models, the importance of p0 will diminish as the
number of feature constraints grows.

The benefits of solving the MRUE problem, rather than the MRE problem,
extend beyond being able to tailor probabilistic models to the risk preferences
of investors. By solving the MRUE problem, it is possible to discover compact,
elegant representations of flexible, yet fat-tailed models. At first blush, it might
appear that this is possible with MRE methods, since, subject to technical
regularity conditions, MRE methods can, in principle, be used to generate
any probability distribution function, if we are prescient in our selection of a
prior distribution or feature functions. To see this, consider the standard MRE
problem, Problem 9.1 and its dual problem, Problem 9.2, with the connecting
equation

q̂(β)
y =

1

Z(β)
q0y e

βT f(y). (10.151)

Given a“target” distribution function qy, suppose that we take q0y = qy; in

this case, if β = 0, q̂
(β)
y from (10.151) will reproduce our target distribution

function. Alternatively, by choosing a feature of the form log qy together with
a flat prior distribution, we can recover qy.

Of course, in practice, we are not prescient in our selection of a prior
distribution and features. If we restrict ourselves to polynomial features or
fractional-power features, as we can see by a quick inspection of (10.151),
MRE methods result in thin-tailed distributions, regardless of the prior distri-
bution. We are not aware of a “spanning” set of features that lend themselves
to fitting, via convex programming methods, a rich set of fat-tailed flexible
distributions via MRE methods.

Given the recent roiling of financial markets often attributed to reliance
on models that do not adequately capture the likelihood of extreme events,
fat-tailed distributions seem to be of particular interest (see, for example, the
following recent New York Times articles: Nocera (2009), Bookstaber (2009),
and Safire (2009)).

MRUE methods provide a way of building compact, flexible, parametric,
fat-tailed models, using a small set of well-chosen features. Such methods are
employed by Friedman et al. (2010b), who consider the MRUE problem in
the particularly tractable and important case where the utility function is the
power utility,

U(W ) =
W 1−κ − 1

1 − κ
, (10.152)

where κ denotes the investor’s (constant) relative risk aversion.28 They note

28As we have mentioned, power utility functions are used widely in industry (see, for ex-
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that, given a seat of features, increased relative risk aversion results in thicker
tailed distributions. They also note that a number of well-known power-law
distributions, including the student-t, generalized Pareto, and exponential dis-
tributions, can be obtained as special cases of the connecting equation associ-
ated with MRUE approach with power utility and linear or quadratic features;
the skewed generalized-t distribution is a special case with power features.
We briefly review their approach in Section 12.4.

10.4 Expressing the Data Constraints in Purely Eco-
nomic Terms

The primal problems described earlier in this chapter were expressed in
terms of feature expectation constraints. We shall see that we can express these
problems in purely economic terms by making use of the following quantity,
defined in (7.32),

GU,O(p2, p1; p) =
∑

y

py[U(b∗y(p2)Oy) − U(b∗y(p1)Oy)], (10.153)

which is the gain in expected utility, under the measure p, from allocating
according to p2, rather than p1.

Consistency of the (model) probability measure q with the data is often
measured in terms of quantities of the form

cj(q) = Eq[f
j ]− Ep̃[f

j ], j = 1, . . . , J, (10.154)

where the fj are functions fj : R → R, which are usually referred to as
features, and p̃ refers to the empirical measure on the training set.

Here we provide a decision-theoretic interpretation of cj. To do so, we in-
troduce the data-probing measures qj , which can be used to generate features
fj via

fj(y) = U(b∗y(qj)Oy) − U(b∗y(q0)Oy). (10.155)

That is, the feature values can be interpreted as utility gains for an investor
who allocates according to the data-probing measures rather than the bench-
mark measure. In the case of the generalized logarithmic family of utilities,
we obtain

fj(y) = γ1 log
qj
y

q0y
. (10.156)

ample, Morningstar (2002)). Moreover, power utility functions have constant relative risk
aversion and important optimality properties (see, for example, Stutzer (2003)).
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By (10.153), (10.154), and (10.155), we see that

cj(q) = GU,O(qj , q0; q) −GU,O(qj , q0; p̃). (10.157)

Thus, for each j, cj is a measure of the consistency of the candidate model
with the data that is defined in terms of relative performance (as measured by
expected utility) for an investor who allocates according to the data-probing
measure qj.

For a general logarithmic utility, we note that the cj do not depend on the
odds ratios and that

cj(q) = γ1

∑

y

(

qylog
qj
y

q0y
− p̃ylog

qj
y

q0y

)

. (10.158)

We now reformulate our decision-theoretic, robust modeling approach.

Problem 10.17 Find

q∗ = max
q∈Q

min
w∈Q

GU,O(q, q0;w) (10.159)

s.t. ψ(w) ≤ α , j = 1, . . . , J, (10.160)

where

cj(w) = GU,O(qj , q0;w) −GU,O(qj , q0; p̃) , j = 1, . . . , J . (10.161)

Here, α ≥ 0 is a hyperparameter that controls consistency with the data and
Q is the probability simplex. That is, for each candidate model q, we consider
the most adverse environment, as described by w∗(q), where

w∗(q) = arg min
w∈Q

GU,O(q, q0;w)

s.t. ψ(w) ≤ α , j = 1, . . . , J,

where cj(w) = GU,O(qj , q0;w) −GU,O(qj , q0; p̃) , j = 1, . . . , J.

We select the measure q ∈ Q with the greatest outperformance, over the
benchmark model, in its own most adverse environment. Models that are
completely consistent with the data (α = 0, which implies cj = 0 for all j)
may generalize poorly on out-of-sample sets (overfitting). We allow imperfect
consistency with the data by allowing α to be positive.

In light of (10.157), the constraints (10.160) and (10.161) require that some
convex function of the difference between the gains from

(i) allocating according to qj rather than q0 under q, and

(ii) allocating according to qj rather than q0 under p̃

is less than or equal to α. That is, model consistency with the data is enforced
by regulating (via the tolerance, α) the consistency of the gains GU,O(qj , q0; ·)
under q and p̃.

We note that cj(w) is linear in w and that it is possible to generalize the
constraints (10.160) to any convex function of the vector c(w).
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10.5 Some Proofs

10.5.1 Proof of Lemma 10.2

We restate Lemma 10.2:
Lemma 10.2 Problem 10.2 is a strictly convex optimization problem and
Problems 10.1 and 10.2 have the same unique solution.

Proof: We note that the objective function, DU,O(q||q0), is strictly con-
vex (see Theorem 7.2 in Section 7.2.2). The inequality constraint, (10.38), of
Problem 10.2 is also convex; this follows from the fact that Σ is a covariance
matrix and therefore nonnegative definite. The equality constraints, (10.37)
and (10.39), are both affine. Therefore, Problem 10.2 is a strictly convex pro-
gramming problem (see Problem 2.1).

We now show that Problems 10.1 and 10.2 have the same unique solution.
We first assume that α < αmax, and show that, in this case, the solution to

Problem 10.2 satisfies

ψ(c) = α.

To this end, recall from Theorem 7.2 that DU,O(q||q0) is strictly convex in
q, for q in the simplex Q, and that the global minimum of the function
DU,O(q||q0) occurs at q = q0, which occurs only if α = αmax; therefore,

∇qDU,O(q||q0) 6= 0 (10.162)

for q 6= q0. Suppose that q∗ is such that ψ(c(q∗)) < α where

c(q) = Eq[f ] −Ep̃[f ].

Then there exists a neighborhood of q∗ on the simplex Q, such that for all
q in the neighborhood, ψ(c(q)) ≤ α. From (10.162), we see that there is a
direction of decrease of the objective function DU,O(q||q0) on the simplex Q,
so q∗ cannot be the optimal solution. Therefore, we cannot have ψ(c(q∗)) < α.
It follows that ψ(c(q∗)) = α, so the solution to Problem 10.2 is the solution
to 10.1 for the case α < αmax.

In the case α = αmax, it is obvious that both problems have the unique
solution q∗ = q0.

The objective function, DU,O(q||q0), is strictly convex in q, so the solution
of Problem 10.2 is unique (see, for example, Rockafellar (1970), Section 27).
It follows that the solution to Problem 10.1 is also unique. 2

10.5.2 Proof of Theorem 10.3

We will show that Problem 10.2, which we restate below for convenience,
has the (equivalent) dual formulations Problems 10.3 and 10.4.
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Problem 10.2 (Initial Convex Problem, Given α, 0 ≤ α ≤ αmax)

Find min
q∈(R+)m,c∈RJ

DU,O(q||q0) (10.163)

under the constraints 1 =
∑

y

qy (10.164)

and ψ(c) ≤ α (10.165)

where cj = Eq[fj] −Ep̃[fj] . (10.166)

We will derive the dual of Problem 10.2 now. To do so, we shall first de-
rive the dual in the special case where the feature expectation constraints
are satisfied exactly. We will then apply Theorem 2.13 to obtain the dual
in the general case. Note that the Lagrangian, when the feature expectation
constraints are satisfied exactly, is given by

L(q, c, β, µ, ν) = DU,O(q||q0) + βT {Ep̃[f ] −Eq[f ]}

+ µ

{

∑

y

qy − 1

}

− νTq, (10.167)

where β = (β1, ..., βJ)T , µ, and νT = (ν1, . . . , νm) ≥ 0 are Lagrange multipli-
ers and q varies over Rm.

10.5.2.1 The Connecting Equation

In order to derive the connecting equation, we have to solve

0 =
∂L(q, c, β, ξ, µ, ν)

∂qy
. (10.168)

In order to solve (10.168), we insert (10.167) and the equation (see Exercise
5)

∂DU,O(q||q0)
∂qy

= U(b∗y(q)Oy) − U(b∗y(q0)Oy) , (10.169)

into (10.168), and obtain

0 = U(b∗y(q)Oy) − U(b∗y(q0)Oy) − βT f(y) + µ− νy . (10.170)

We rewrite this equation as

U(b∗y(q)Oy) = Gy(q
0, β, µ, ν) (10.171)

with Gy(q
0, β, µ, ν) = U(b∗y(q0)Oy) + βT f(y) − µ+ νy , (10.172)
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where Gy(q0, β, µ, ν) does not depend on q. In order to solve for q, we substi-
tute (10.3) into (10.171), to obtain

U

(

U ′−1

(

λ

qyOy

))

= Gy(q
0, β, µ, ν) . (10.173)

Solving for qy, we obtain the connecting equation

q∗y ≡ λ

OyU ′ (U−1(Gy(q0, β, µ, ν)))
. (10.174)

From (10.174), by the positivity of the Oy and the fact the U is a monotone
increasing function, we conclude that all of the q∗y and λ have the same sign.
We note, from (10.164), that the q∗y and λ must be positive. From the Karush-
Kuhn-Tucker conditions, we must have νyq

∗
y = 0; it follows that ν∗y = 0 for all

y. Accordingly, we may suppress the dependence of G and L on ν .
The connecting equation, (10.174), depends on β, λ, and µ. We now show

how to calculate λ and µ in terms of β. Solving (10.173) for U ′−1
(

λ
qyOy

)

and

substituting into (10.4), we obtain a condition for µ∗:

∑

y

1

Oy
U−1

(

Gy(q0, β, µ∗)
)

= 1 . (10.175)

This equation is easy to solve numerically for µ∗, by the following lemma.

Lemma 10.3 There exists a unique solution, µ∗, to (10.175). The left hand
side of (10.175) is a strictly monotone decreasing function of µ∗.

Proof: First, we note that since U is a strictly increasing function,

(U−1)′ =
1

dU
dW

> 0,

so U−1 is a strictly increasing function and the left hand side of (10.175) is a
strictly decreasing function of µ∗.

Letting

µ = max
y
βT f(y),

we see that

βT f(y) − µ ≤ 0 for all y.

In this case, it follows from (10.172) that

Gy(q0, β, µ) ≤ U(b∗y(q
0)Oy) for all y;
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so, by the monotonicity of U−1,

∑

y

1

Oy
U−1

(

Gy(q0, β, µ)
)

≤
∑

y

1

Oy
U−1

(

U(b∗y(q0)Oy)
)

(10.176)

=
∑

y

b∗y(q
0) = 1.

Note that Gy(q
0, β, µ) ∈ dom(U−1) for all y, by (10.171). Similarly, by letting

µ = min
y
βT f(y),

we can guarantee that

∑

y

1

Oy
U−1

(

Gy(q
0, β, µ)

)

≥ 1.

By the Intermediate Value Theorem and the monotonicity and continuity of
the left hand side of (10.175), there exists a unique solution to (10.175). 2

We now show how to calculate λ in terms of β and µ∗. We insert (10.174)
into (10.164), and obtain:

1 = λ
∑

y

1

OyU ′ (U−1(Gy(q0, β, µ∗)))
;

solving for λ, we obtain

λ∗ ≡
{

∑

y

1

OyU ′ (U−1(Gy(q0, β, µ∗)))

}−1

. (10.177)

Summarizing the result of this subsection:

The connecting equation, which describes q∗ as a member of a parametric
family (in β), is given by

q∗y =
λ∗

OyU ′ (U−1(Gy(q0, β, µ∗)))
, (10.178)

where we determine µ∗ from (10.175) via Lemma 10.3 and λ∗ from (10.177).

10.5.2.2 Dual Problems

We now show that

Lemma 10.4 Problem 10.4 is the dual of Problem 10.2.
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Proof: (10.174), together with the (10.175) and (10.177), gives the probabil-
ities q∗y and the Lagrange multipliers µ∗, ν∗ for which the Lagrangian is at its
minimum for given multipliers β. This allows us to formulate the dual prob-
lem as an optimization with respect to β. To this end, we have to compute
L(q∗, c∗, β, µ∗).

Substituting DU,O(q∗||q0) (from Definition 7.2) into (10.167), we obtain:

L(q∗, c∗, β, µ∗) =
∑

y

q∗yU(b∗y(q∗)Oy) −
∑

y

q∗yU(b∗y(q0)Oy)

+βT

{

Ep̃[f ] −
∑

y

q∗yf(y)

}

+µ∗
{

∑

y

q∗y − 1

}

;

so

L(q∗, c∗, β, µ∗) =
∑

y

q∗y
{

U(b∗y(q
∗)Oy) − U(b∗y(q

0)Oy) − βT f(y) + µ∗}

+βTEp̃[f ] − µ∗ .

Because of (10.170), the first line on the right hand side of above equation is
zero, i.e., we obtain

L(q∗, c∗, β, µ∗) = βTEp̃[f ] − µ∗ . (10.179)

The dual problem is to maximize the function h(β) = L(q∗, c∗, β, µ∗) with
respect to β. Now we are ready to formulate the dual problem: maximize
h(β) = L(q∗, c∗, β, µ∗) with respect to β. From (10.179), (10.172), (10.178),
(10.177), (10.175), and an application of Theorem 2.13 we obtain Problem
10.4, which completes the proof of the equivalence of the solutions to Problems
10.4 and 10.2. 2

In the following lemma, we show that we can express the dual problem
objective function in a more easily interpreted form.

Lemma 10.5 Problem 10.4 can be restated as Problem 10.3.

Proof: Using (10.170) to replace βTEp̃[f ]− µ∗ in (10.49), and noticing that
U(b∗y(q0)Oy) does not depend on β, we obtain:

h(β) =
∑

y

p̃yU(b∗y(q∗)Oy) − inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

, (10.180)

up to an unimportant constant. This means that the dual problem can be
restated as in Problem 10.3. 2
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The proof of Theorem 10.3 is a direct consequence of Lemmas 10.4 and
10.5 and the fact that the primal problem satisfies the Slater condition and
therefore there is no duality gap (see, for example, Section V, Theorem 4.2 in
Berkovitz (2002)). The primal problem is strictly convex and therefore has a
unique solution (see, for example, Rockafellar (1970), Section 27).

10.5.3 Dual Problem for the Generalized Logarithmic Util-
ity

In order to specify the dual problem for the generalized logarithmic utility
(10.69), we first notice that

U ′(z) =
γ1

z − γB
, (10.181)

U−1(z) = e
z−γ2

γ1 − γ (10.182)

and U ′(U−1(z)) = γ1e
− z−γ2

γ1 . (10.183)

Using the relation

b∗y(q) = qy [1 − γ] − γ

Oy
(10.184)

(see (5.56)), we can write Gy(q0, β, µ∗) from (10.45) as

Gy(q0, β, µ∗) = γ1

[

log
(

q0yOy [1 − γ]
)

+ βT f(y) − µ∗]+ γ2 . (10.185)

Inserting (10.182) and (10.185) into (10.46) gives

1 =
∑

y

1

Oy

{

q0yOy [1 − γ] eβT f(y)−µ∗ − γ
}

(10.186)

= e−µ∗

[1 − γ]
∑

y

[

q0ye
βT f(y)

]

− γ
∑

y′

1

Oy′

, (10.187)

which can be solved for µ∗:

µ∗ = log

(

∑

y

q0ye
βT f(y)

)

. (10.188)

Next, we solve (10.47) for λ∗. We use (10.183) and (10.185) to write (10.47)
as

1 = λ∗
∑

y

{

1

Oy

(

q0yOy [1 − γ] eβT f(y)−µ∗
)

}

= λ∗ [1 − γ]
∑

y

{

q0ye
βT f(y)−µ∗

}

.
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After inserting (10.188) we can solve for λ∗ and get:

λ∗ =
1

1 − γ
. (10.189)

By means of (10.44), (10.183), (10.189), and (10.185) we obtain for the optimal
probability distribution

q∗y =
1

1 − γ

1

Oy

(

q0yOy [1 − γ] eβT f(y)−µ∗
)

= q0y e
βT f(y)−µ∗

(10.190)

=
1

∑

y q
0
ye

βT f(y)
q0y e

βT f(y) (by (10.188)) . (10.191)

We can now compute the objective function h(β). Based on (10.42) and
(10.190), we obtain

h(β) =
∑

y

p̃y log q∗y − inf
ξ≥0

{

ξΨ∗
(

β

ξ

)

+ αξ

}

, (10.192)

up to the constants Ep̃[log q0y] and γ2 and the factor γ1.
Collecting (10.191) and (10.192), we obtain Problem 10.5.

10.5.4 Dual Problem for the Conditional Density Model

In order to derive this dual problem (Problem 10.9), we note that Q× RJ

is a convex subset of a vector space, the constraints expressed by (10.96)-
(10.98) can be rewritten in terms of convex mappings into a normed space,
and the equality constraints expressed by (10.96) and (10.98) are linear. By
Theorem 1 of Section 8.6 in Luenberger (1969), the dual problem is the
maximization over ξ ≥ 0, β = (β1, ..., βJ)T , µ = {µx, x = x1, ..., xM},
and ν = {(ν(y|x) ≥ 0, νρ|x ≥ 0), y ∈ Y, ρ = 1, 2, ..., m, x = x1, ..., xM} of
infq∈Q,c∈RJ L(q, c, β, ξ, µ, ν), where

L(q, c, β, ξ, µ, ν) = DU,O(q||q0) + βT {c−Eq[f ] +Ep̃[f ]} + ξ {ψ(c) − α}
+
∑

x

µxp̃x {Eq[1|x]− 1} − Eq[ν ]

is a generalization of the Lagrangian (10.167) for the case of discrete proba-
bilities. One can find infq∈Q,c∈RJ L(q, c, β, ξ, µ, ν) the same way as we do in
Section 10.5.2 for discrete probabilities; the only difference is that we have to
use Fréchet derivatives instead of ordinary ones. As a result, we obtain the
analog of the connecting equation described in Section 10.5.2. We can then
continue along the lines from Section 10.5.2, showing that ν = 0 and finding
ξ∗ and µ∗. This leads to the dual of Problem 10.8: Problem 10.9.
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10.6 Exercises

1. Show that in the setting of Example 10.1, when the investor and market
are compatible, the model performance measure of Chapter 8 yields a
value of −∞ whenever there exists a test set datum that is not in the
training dataset.

2. Show that by solving the following equation for qy:

b∗y =
1

Oy
(U ′)−1

(

λ

qyOy

)

, (10.193)

we obtain

qy(b
∗
y) =

1

OyU ′(b∗yOy)

1
∑

y′
1

Oy′U ′(b∗
y′Oy′ )

. (10.194)

3. Let B denote the set of all allocations generated by

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

, (10.195)

as q ranges over the probability simplex Q. Prove that

(i) B contains all of it limit points, and

(ii) the convex combination of any two points in B is also in B.

4. Prove the statement in Section 10.2.3.5; in particular, show explicitly
that the connecting equation for the logistic regression problem is indeed
of the form

p(ρ = 1|x) =
1

1 + e−βT x
. (10.196)

5. Show that

∂DU,O(q||q0)
∂qy

= U(b∗y(q)Oy) − U(b∗y(q0)Oy) . (10.197)

6. A more general form of logistic regression includes a constant term β0,
i.e., is given by (10.196). What feature function needs to be added to
the problem formulation from Section 10.2.3.5, in order to obtain this
more general form?

7. Derive the dual to Problem 10.2 for an exponential utility function (see
Section 4.4).
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8. Derive the minimum relative (U,O)-measure under the following as-
sumptions:

(i) discrete unconditional horse race,

(ii) U is a generalized logarithmic utility, and

(iii) q0y = Iy=y′ where I is the indicator function and y′ is some value.

9. Let ψ(c) denote a nonnegative convex function of

c = (c1, . . . , cJ)T ,

with
cj = Eq[fj ]− Ep̃[fj], (10.198)

and ψ(0) = 0. Prove that the set of measures for which ψ(c) ≤ α is
convex and compact.

10. Suppose that px,ρ and p0
x,ρ share the same marginal distribution in

x, i.e., px = p0
x. Show that, under this assumption, the relative en-

tropy D(px,ρ‖p0
x,ρ) is the same as the conditional relative entropy,

D(pρ|x‖p0
ρ|x).

11. Recall (from Definition 2.10) the definition of mutual information:

I(X; ρ) =
∑

x,ρ

px,ρlog
px,ρ

pxpρ
, (10.199)

which can be rewritten as

I(X; ρ) =
∑

x

px

∑

ρ

pρ|xlog
pρ|xpx

pxpρ
=
∑

x

px

∑

ρ

pρ|xlog
pρ|x
pρ

. (10.200)

(i) Interpret I(X; ρ) from (10.199) in terms of the outperformance
under px,ρ of an investor with a generalized logarithmic utility,
who allocates according to px,ρ in a discrete unconditional horse
race on (X, ρ) over an investor who allocates under the assumption
of independence of X and ρ.

(ii) Interpret I(X; ρ) from (10.200) in terms of the outperformance
under pρ|x of an investor with a generalized logarithmic utility, who
allocates according to pρ|x in a discrete conditional horse race on
ρ|x over an investor who does not make use of the side information,
X.

(iii) For the generalized logarithmic utility investor, both of the pre-
ceding interpretations are consistent with the same definition of
I(X; ρ). Is the same true for investors with other utility functions?
Formulate two analogs to mutual information, based on the inter-
pretations in (i) and (ii) for investors with general utility functions.





Chapter 11

Extensions

In this chapter we generalize the utility-based model performance measures
and model building approaches from Chapters 8 and 10 to performance mea-
sures for leveraged investors in a horse race and for investors in incomplete
markets. We also introduce a utility-based performance measure for regression
models.1

11.1 Model Performance Measures and MRE for Lever-
aged Investors

In Chapter 8, we have measured the performance of a probabilistic model
from the point of view of a gambler who invests a fixed amount of money in a
horse race. A perhaps more realistic idealization of a general decision maker,
at least in a financial context, is an investor who can withhold or borrow cash
according to the opportunities the horse race offers. In this section, we shall,
following Friedman and Sandow (2004), consider such a leveraged investor,
and we shall see that most of the interesting results from Chapter 8 can be
easily generalized. We shall also briefly discuss the (U,O)-entropy and MRE
model building from the viewpoint of a leveraged investor.

For ease of exposition, we restrict ourselves to evaluating probabilistic mod-
els of a random variable Y with values, y, in a finite set Y. However, the results
in this section can be generalized to conditional probability and probability
density models.

11.1.1 The Leveraged Investor in a Horse Race

As in Chapter 8, we consider the horse race from Definition 3.1. We gener-
alize, however, the definition of an investor, Definition 3.4, as follows.

1Another extension of the utility-based model building approaches from Chapter 10, which
is not discussed in this book, is the semi-supervised learning approach from Sandow and
Zhou (2007).
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Definition 11.1 (Leveraged investor) An investor is a gambler with $1 ini-
tial capital, who allocates by to the event Y = y, with the constraint

B ≤ b̂ ≤ B , (11.1)

where b̂ =
∑

y∈Y
by − 1 , (11.2)

and B ≤ 0, B ≥ 0 are constants. We denote the investor’s allocation by

b = {by, y ∈ Y} . (11.3)

As in Definition 3.4, we have made the assumption of $1 initial capital for the
sake of convenience, but without loss of generality; we may view this $1 as the
investor’s total wealth in some appropriate currency. We have not required by
to be nonnegative. The investor may choose to “short” a particular horse.

Since we did not require that
∑

y∈Y by = 1, we have included the possibility
that the investor does not bet all his capital or borrows additional money to
leverage his bet. The investor keeps the amount

b̂ =
∑

y∈Y
by − 1 (11.4)

in cash. We have defined b̂ such that b̂ < 0 describes an investor who borrows
the amount −b̂, i.e., a leveraged investor. The constraint (11.1) limits the
size of the investor’s bets. Such limits exist in most practical problems; they
certainly do in financial markets.

For the sake of simplicity, we assume that the investor can borrow cash
or lend withheld cash at an interest rate of 0. It is easy to generalize our
discussion to nonzero interest rates.

Based on the above assumptions, the investor’s wealth after the bet is

W = by′Oy′ − b̂ , (11.5)

where y′ denotes the winning horse.

11.1.2 Optimal Betting Weights

As in Chapter 8, we assume that our investor is rational and has a utility
function, U , for which Assumption 4.1 holds. According to Utility Theory,
a rational investor who believes the measure q allocates so as to maximize
the expectation, under q, of his utility function (as applied to his post-bet
wealth). In conjunction with (11.5), this means that our investor chooses the
following allocation.

Definition 11.2 (Optimal allocation for a leveraged investor)

b∗(q) = arg max
b∈B

Êq[U(b,O)] , (11.6)
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where

Êq[U(b,O)] =
∑

y∈Y
qyU(byOy − b̂) , (11.7)

b̂ =
∑

y∈Y
by − 1 , (11.8)

and
B = {b : B ≤ b̂ ≤ B} . (11.9)

The following lemma shows how the optimal betting weights can be computed.

Lemma 11.1

(i) If the equation

1 +
(

1 −B−1
)

b̂∗ =
∑

y∈Y

1

Oy
(U ′)−1

(

λ

qyOy

)

, (11.10)

where B is given by Definition 3.2 and

b̂∗ =







B if B < 1

∈ [B,B] if B = 1
B if B > 1 ,

(11.11)

has a solution for λ, then b̂∗ is an optimal borrowed cash amount (which
is unique for B 6= 1) and the optimal betting weights are given by

b∗y(q) =
1

Oy
(U ′)−1

(

λ

qyOy

)

+
b̂∗

Oy
. (11.12)

(ii) If

1

(U ′)−1(0) − b̂∗(B − 1)
< B−1 <

1

max{0, (U ′)−1(∞) − b̂∗(B − 1)}
,

(11.13)
then (11.10) has a solution for λ.

Proof: The proof of statement (i) is a straightforward generalization of the
proof of Lemma 5.1. It can be found in Friedman and Sandow (2004). State-

ment (ii) follows from Lemma 8.2 by setting V = b̂∗(B − 1). 2

In the case of fair odds, i.e., for B = 1, the optimal allocation (11.12) is not

unique, since the cash amount, b̂∗, can be chosen arbitrarily in [B,B]. The

reason for this is that allocating b̂′

Oy
on each horse y (which requires a total

allocation of b̂′
∑

y∈Y
1
Oy

= b̂′

B
= b̂′) always results in the payoff b̂′, no matter

which horse wins. Therefore, borrowing an additional (feasible) b̂′ and adding
it to the bet according to (11.12) has no effect.
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11.1.3 Performance Measure

We generalize Definition 8.1 as follows.

Definition 11.3 For a leveraged investor with utility function U , the utility-
based model performance measure for the model q is

Êp̃[U(b∗(q),O)] , (11.14)

where

Êp̃[U(b,O)] =
∑

y∈Y
p̃yU(byOy − b̂). (11.15)

We note that, because of (11.6), for any measure q,

Êp̃[U(b∗(q),O)] ≤ Êp̃[U(b∗(p̃),O)] ,with equality if q = p̃ . (11.16)

This means that the best performance is achieved by a model that accurately
predicts the frequency distribution of the test set. This statement holds true
for an investor with an arbitrary utility function. All investors agree on what is
the perfect probability measure; they may disagree only (if they have different
utility functions) on the ranking of imperfect probability measures.

We also note that, in general, our performance measure depends on the
odds ratios, O; we will get back to this point later.

Next, we generalize Definition 8.2 as follows.

Definition 11.4 For a leveraged investor with utility function U , the utility-
based relative model-performance measure for the models q(1) and q(2) is

∆U

(

q(1), q(2),O
)

= Êp̃

[

U
(

b∗
(

q(1)
)

,O
)]

− Êp̃

[

U
(

b∗
(

q(1)
)

,O
)]

.

In the special case B = 1, if the assumptions of Lemma 11.1 hold, the above
performance measures reduce to the ones from Section 8.1. This follows from
Lemmas 5.1 and 11.1.

Example: the power utility

The power utility is given by

U(W ) =
W 1−κ − 1

1 − κ
, (11.17)

where κ ≥ 0. It follows from Lemma 11.1, (11.10), that

λ =

{∑

y∈Y
1
Oy

(qyOy)
1
κ

1 + (1 −B−1) b̂∗

}κ

; (11.18)
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and from (11.12), we see that

b∗y(q) = {1 +
(

1 −B−1
)

b̂∗}
1
Oy

(qyOy)
1
κ

∑

y′∈Y
1

Oy′
(qy′Oy′)

1
κ

+ b̂∗ . (11.19)

Hence,

U(b∗y(q)Oy − b̂∗)

=
1

1 − κ









{1 +
(

1 − B−1
)

b̂∗} (qyOy)
1
κ

∑

y′∈Y
1

Oy′
(qy′Oy′)

1
κ





1−κ

− 1







≡ Φ̂κ
y(q) ,

and
∆
(

q(1), q(2),O
)

=
∑

y∈Y
p̃y

{

Φ̂κ
y(q(2)) − Φ̂κ

y(q(1))
}

. (11.20)

11.1.4 Generalized Logarithmic Utility Functions: Likeli-
hood Ratio as Performance Measure

In this section, we discuss the generalized logarithmic family of utility func-
tions, for which the relative performance measure from Definition 8.2 is odds-
ratio independent and essentially reduces to the likelihood ratio of the two
models that we compare. We begin by stating the following theorem:

Theorem 11.1 For a utility function of the form

U(W ) = α log(W − γB) + β (11.21)

with α > 0 and

γ < 1 +
(

1 − B−1
)

b̂∗ , (11.22)

where B and b̂∗ are given by Definition 3.2 and (11.11), respectively, the
relative performance measure, ∆U

(

q(1), q(2),O
)

), is given by

∆U

(

q(1), q(2),O
)

= α∆log

(

q(1), q(2)
)

(11.23)

= α l
(

q(1), q(2)
)

. (11.24)

Proof: See Section 11.1.7.
It follows from Theorem 11.1 that for a generalized logarithmic utility func-

tion of the form (11.21) the performance measure, ∆U

(

q(1), q(2),O
)

), does not
depend — apart from a trivial factor — on the parameters α, β, and γ of the
utility function, and does not depend on the odds ratios, O. This means that



318 Utility-Based Learning from Data

all investors with utility functions from the family (11.21) have the same model
performance measure. This performance measure is, up to a positive multi-
plicative constant, the likelihood ratio, no matter what the investor’s specific
utility function is, and that this performance measure does not depend on the
odds ratios.

11.1.5 All Utilities That Lead to Odds-Ratio Independent
Relative Performance Measures

We have seen in Section 11.1.4 that generalized logarithmic utility func-
tions lead to relative model performance measures that are independent of
the odds ratios. In our next theorem, we answer the following question: are
there other utility functions that lead to odds-ratio independent relative per-
formance measures?

Theorem 11.2 If, for any empirical measure, p̃, any cash limits B ≤ 0 and
B ≥ 0, and any candidate model measures, q(1), q(2), the relative model perfor-
mance measure, ∆U(q(1), q(2),O), is independent of the odds ratios, O, then
the utility function, U , must have the form

U(W ) = α log(W − γB) + β , (11.25)

where α, β, and γ are constants.

Proof: Since we demand independence of the odds ratios for any cash limits
B ≤ 0 and B ≥ 0, we demand it, in particular, for B = B = 0. Theorem 8.4,
which considers the case B = B = 0, therefore implies Theorem 11.2. 2

11.1.6 Relative (U,O)-Entropy and Model Learning

In order to generalize the relative (U,O)-entropy learning approach from
Chapter 10, we replace the expectations, E[·] in Definition 7.2, by the ex-
pectations Ê[·] from Definition 11.3. This provides a definition of the relative
(U,O)-entropy for leveraged investors. The learning approach from Chapter
10 can then be generalized in a straightforward manner. In particular, µdata

remains unchanged, and µprior can be defined in terms of the more general
relative (U,O)-entropy

11.1.7 Proof of Theorem 11.1

Let γ′ = −γB. We note that, for a utility function of the form (11.21),

U ′(z) =
α

z + γ′
, and (11.26)

(U ′)−1(z) =
α

z
− γ . (11.27)
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Next, we solve (11.10), i.e.,

1 + (1 −B−1)b̂∗ =
∑

y∈Y

1

Oy

[

αqyOy

λ
− γ

]

(11.28)

=
α

λ
− γ′B−1 , (11.29)

for λ (we have inserted (11.27) into (11.10)). The solution is

λ =
α

1 + (1 − B−1)b̂∗ + γ′B−1
. (11.30)

By Lemma 11.1, (11.12) we obtain

b∗y =
1

Oy

[

αqyOy

λ
− γ′

]

+
b̂∗

Oy
. (11.31)

From (11.31) we obtain

U(b∗yOy − b̂∗) = U

(

αqyOy

λ
− γ′

)

(11.32)

= α log

(

αqyOy

λ

)

+ β (11.33)

= α log
(

qyOy[1 + (1 −B−1)b̂∗ + γ′B−1]
)

+ β (11.34)

(by (11.30) ).

The condition (11.22) in Theorem 11.1 ensures the existence of the logarithm.
By means of Definition 11.4, we now proceed to compute the relative per-

formance measure

∆U

(

q(1), q(2),O
)

= Ep̃

[

U
(

b∗
(

q(2)
)

,O
)]

−Ep̃

[

U
(

b∗
(

q(1)
)

,O
)]

=
∑

y∈Y
p̃y

[

U
(

b∗y

(

q(2)
)

Oy − b̂∗
)

− U
(

b∗y

(

q(1)
)

Oy − b̂∗
)]

= α
∑

y∈Y
p̃y log

(

q
(2)
y

q
(1)
y

)

, (11.35)

where we have used (11.35) and the fact that b̂∗, B−1, and O are independent
of the model measure. Theorem 11.1 follows then from Definition 6.2 and
Theorem 8.1.2
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11.2 Model Performance Measures and MRE for In-
vestors in Incomplete Markets

In the previous chapters, we have evaluated and built probabilistic models
for a gambler in a horse race. This horse race gambler, which we have defined in
Chapter 3, is an idealization of a decision maker in an uncertain environment.
In this idealized picture, the decision maker can place a bet on each possible
state that the environment might take, i.e., for each possible state there is a bet
that pays off only if the state occurs. It is obvious that this assumption doesn’t
always hold in practice. For example, financial markets are often incomplete,
i.e., they don’t offer bets on all the possible market states, but rather a set
of trading instruments that corresponds to bets that pay off for more than a
single state. In this section, following Huang et al. (2006), we briefly discuss
a generalization of the approach from prior chapters for investors in such an
incomplete market. Assuming that the market is arbitrage free, i.e., doesn’t
offer any opportunities for riskless return in excess over the bank account,
we generalize our model performance measures, the relative U -entropy and
the MRE-principle. We will restrict our attention to discrete unconditional
probability measures and to one-period markets, but the ideas in this section
can be generalized.

In Figure 11.1, below, we depict the modeling approach that we shall de-
scribe in the incomplete market setting of this section; Figure 11.1 is the
analog of Figure 10.3, which depicts the modeling approach in the horse-race-
setting of Chapter 10. As we shall see, the minimum market exploitability
principle, Principle 10.2, is closely related to the least favorable market com-
pletion principle discussed below. Also, Figure 11.1 reflects the fact that we
do not formulate a dual problem in this more general setting.

In this section, we assume that the reader has some familiarity with con-
tingent claim pricing (see, for example, Duffie (1996)).

11.2.1 Investors in Incomplete Markets

We consider models (probability measures) that assign positive probabil-
ities to the states y ∈ Y of the random variable Y , where Y is a finite set
representing states that occur over a single trading period. If q is such a prob-
ability measure, qy denotes the probability that Y = y. We denote the set of
all such (positive) probability measures on Y by Q.

Incomplete market

We define an incomplete market as follows

Definition 11.5 (Incomplete market) An incomplete market is characterized
by a random variable Y with finite state space Y and a set Z of instruments
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FIGURE 11.1: Model estimation approach for incomplete markets.
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(contingent claims) on Y . The payoff for one dollar invested in instrument z
is Ωz,y ≥ 0 if the state y occurs. The market is arbitrage-free and frictionless,
and there exists a bank account (risk-free investment) with the payoff B on a
$1-investment.

The above definition refers to the concept of arbitrage, which is funda-
mental to modern financial theory. An arbitrage is a “free lunch,” i.e., an
investment strategy that requires no initial capital, leads to a positive proba-
bility of a gain, and zero probability of a loss. We assume that our market is
arbitrage-free, i.e., offers no arbitrage opportunities. This is a fairly reasonable
assumption in financial markets, since arbitrage opportunities are rare, and,
when they occur, they get exploited by those market participants who notice
them and, as a consequence, disappear quickly.

We have also assumed that our market is frictionless, i.e., that there are no
costs or restraints associated with transactions.

The absence of arbitrage opportunities in the market implies that there
exists a set, Π 6= ∅, of pricing measures (see, for example, Duffie (1996),
Luenberger (1998), or Bingham and Kiesel (2004)), which we can define as
follows.

Definition 11.6 (Pricing measures)

Π =







π , πy > 0 , y ∈ Y ,
1

B

∑

y∈Y
πyΩz,y = 1 , ∀z ∈ Z







. (11.36)

The pricing measures π ∈ Π are normalized, i.e.,
∑

y∈Y πy = 1, which follows
from the above definition for the special case where z = z′ is the bank account,
i.e., for Ωz′,y = B , ∀y ∈ Y. Although the pricing measures have the same
mathematical form as probability measures, they should not be interpreted
as probabilities. Only in a market where the market makers are risk-neutral
(which, in practice, they are not), i.e., don’t expect any reward for the risk
they are taking, the market makers would set the payoffs to Ω if they believed
in some π ∈ Π as a probability measure for the random variable Y (see, for
example, Duffie (1996), Luenberger (1998), or Bingham and Kiesel (2004)).
This explains why the πy are often referred to as risk-neutral probabilities.
Another commonly used name for the πy is state prices.

It follows from Definition 11.6 that all information about the market is
contained in Π, so we can view the market as being specified by Π.

In what follows we will use the set of all contingent claims with price $1,
which can be expressed in terms of Π as follows.

Definition 11.7 ($1 Claims)

WΠ =







w ,
∑

y∈Y
wyπy = 1, ∀π ∈ Π







. (11.37)
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Here, wy is the discounted (divided by B) payoff of the contingent claim w,
which costs $1, in the state y. Alternatively, we could have considered more
general claims with the constant price V ; in this case, the above definition
would still be meaningful with wy representing the contingent claim’s payoff
divided by V B.

The interpretation of the preceding definition is reinforced by the following
lemma, in which we express WΠ in terms of the payoffs.

Lemma 11.2

WΠ =

{

w

∣

∣

∣

∣

∣

wy =
1

B

∑

z∈Z
βzΩz,y,

∑

z∈Z
βz = 1

}

. (11.38)

Proof: See Lemma 1 in Huang et al. (2006).
Here, β plays the role of the allocation in the horse race.

The incomplete-market investor

We make the following definition.

Definition 11.8 (Incomplete-market investor) An incomplete-market in-
vestor is somebody who invests $1 in an incomplete market, i.e., who in-
vest in a contingent claim from WΠ. The investor has a utility function,
U : R→ R ∪ {−∞}, that

(i) is strictly concave on {t|U(t) > −∞},

(ii) is twice differentiable on {t|U(t) > −∞},

(iii) is strictly monotone increasing on {t|U(t) > −∞},

(iv) limt→∞U ′(t) = 0,

(v) satisfies

(a) limt→α+ U
′(t) = ∞ if dom(U) = (α, ∞), α < 1 , and

(b) limt→−∞ U ′(t) = ∞ if dom(U) = R,

where dom(U) is the interior of the set {t|U(t) > −∞}, and

(vi) has the property U(B) = 0 (this doesn’t cause any loss of generality
since, as is well known, adding a constant to an investor’s utility func-
tion does not affect his behavior).

We have made slightly different assumptions about the investor’s utility func-
tions here than we have made for the horse race investors in the previous
chapters. The reason for this is of a technical nature. As it was the case
for our previous assumptions, most popular utility functions (for example,
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the logarithmic, exponential, and power utilities (see Luenberger (1998))) are
consistent with the assumptions we made in this section.

By Lemma 11.2, the assumption that our investor invests in a contingent
claim from WΠ is equivalent to assuming that our investor allocates his $1 to
the traded instruments Z ∈ Z.

For the sake of simplicity, we assume from now on that B = 1, i.e., that the
bank account pays off exactly the invested amount.

In the financial context, the setting of this section corresponds to a discrete
market with a single trading period and zero interest rate. One can generalize
the results from this section to multiple trading periods and to the more
general state spaces considered by Kallsen (2002), Karatzas et al. (1991), and
Schachermayer (2004). One can also generalize the approach to conditional
probabilities and probability densities. These generalizations, however, are
beyond the scope of this book.

11.2.2 Relative U-Entropy

We generalize the relative U -entropy from Definition 7.6 to the incomplete
market setting.

Definition 11.9 The relative U−entropy is the maximum expected utility for
an incomplete-market investor with $1 endowment, i.e., the relative U -entropy
is given by

DU (q‖Π) = sup
w∈WΠ

∑

y∈Y
qyU(wy). (11.39)

In the special case of a complete market, where Π has only the single element
π, the above expression reduces to the relative U -entropy DU (q‖π) from Def-
inition 7.6. Specializing further to a generalized logarithmic utility function
we obtain the Kullback-Leibler relative entropy.

We shall justify below why we call DU (q‖Π) a relative entropy; we shall
show that DU (q‖Π) indeed has many properties one would expect a relative
entropy to have. In particular, we shall see that DU (q‖Π) is

(i) a measure of the discrepancy between the probability measure, q, and
the set of probability measures, Π,

(ii) consistent with the second law of thermodynamics.

The following theorems, which are proved in Huang et al. (2006), make
these statements precise and list some additional properties of the relative
U -entropy in an incomplete market.

Theorem 11.3

(i) DU (q‖Π) is convex in q.
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(ii) DU (q‖Π) ≥ 0, with equality if and only if q ∈ Π.

(iii) If Π(1) ⊂ Π(2), then DU (q‖Π(1)) ≥ DU (q‖Π(2)).

Like Kullback-Leibler relative entropy, our relative U -entropy is consistent
with the Second Law of Thermodynamics.

Theorem 11.4 (Second law of thermodynamics in incomplete markets) Let
q(n) be a probability distribution over time-n states of a stationary Markov
chain with transition matrix rỹ|y, i.e., let

q
(n+1)
ỹ =

∑

y∈Y
q(n)
y rỹ|y , (11.40)

and let Π(n) be the set of pricing measures corresponding to time n. Then
DU (q(n)‖Π(n)) decreases with n.

Next, we relate the relative U -entropy to the concept of least favorable
market completion. Since each π ∈ Π is a pricing measure, which can be
used to price all securities on Y, it specifies a complete market. In general, an
expected utility maximizing investor will prefer such a complete market to the
incomplete market specified by Π, because (by Theorem 11.3, (iii))DU (q‖π) ≥
DU (q‖Π), i.e., his expected utility is greater for the complete market. However,
if there exists a π∗ ∈ Π, such that DU (q‖π∗) = DU (q‖Π), the investor will
derive the same optimal expected utility in both the incomplete market and
the completed market, so he will not be motivated to make use of or invest
in any of the new, fictitious securities used to complete the market. In this
case, it makes sense to use π∗ as the pricing measure for all securities, since
the completed market is equivalent to the original market from the point of
view of an expected utility maximizer.

By Theorem 11.3, (iii), if such a measure, π∗ exists, we can make the fol-
lowing definition.

Definition 11.10 (Least favorable market completion) The least favorable
market completion is given by

π∗ = arg min
π∈Π

DU (q‖π) . (11.41)

The following theorem shows that such a measure exists.

Theorem 11.5 (Relative U -entropy characterization of the least favorable
market completion) Let Π be the set of all pricing probabilities of some market,
then

(i) the least favorable market completion,

π∗ = arg min
π∈Π

DU (q‖π), (11.42)

exists and is unique, and
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FIGURE 11.2: The discrepancy between a probability measure, q, and a
set of probability measures, Π, is the minimum of all discrepancies between
q and each of the elements of Π. (This figure originally appeared in Huang
et al. (2006).)

(ii)
DU (q‖Π) = DU (q‖π∗). (11.43)

Proof: See Karatzas et al. (1991), Schachermayer (2004), or Theorem 5 from
Huang et al. (2006).

It follows from Theorem 11.5 that, if we measure discrepancy by the relative
U -entropy, the discrepancy between a probability measure, q, and a set of
probability measures, Π, is the minimum of all discrepancies between q and
each of the elements of Π. This property is depicted in Figure 11.2.

One can easily derive some explicit expressions for the optimal contingent
claim (the claim that affords the greatest expected utility)

w∗ = arg max
w∈WΠ

∑

y

qyU(wy) (11.44)

and the least favorable market completion pricing measure. For that purpose,
we pick a finite subset {π(j)}j=1,2,..J ⊂ Π which spans Π, i.e.,

Π ⊂ aff({π(j)}j=1,2,..J), (11.45)

where aff(S) denotes the affine hull of S

aff(S) = {λs1 + (1 − λ)s2|s1, s2 ∈ S; λ ∈ R}. (11.46)
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We have

(i) The optimal contingent claim can be represented as:

w∗
y = (U ′)−1

(

∑

j λjπ
(j)
y

qy

)

, (11.47)

where the λj ’s are picked such that
∑

y w
∗
yπ

(j)
y = 1. (This follows from

Lagrangian optimization.)

(ii) The least favorable completion is given by the Davis Formula (see, for
example, Bingham and Kiesel (2004), p. 291):

π∗
y =

qy · U ′(w∗
y)

∑

ỹ qỹU ′(w∗
ỹ)

(11.48)

=

∑

j λjπ
(j)
y

∑

ỹ

∑

j λjπ
(j)
ỹ

(11.49)

(this follows from Lagrangian optimization).

11.2.3 Model Performance Measure

In this section we measure the performance of probabilistic models for in-
vestors in incomplete markets. To accomplish this, we utilize the same ideas
that we have used in Section 8.1 for investors in a complete market, i.e., we
assume that there is a rational investor who believes the candidate model
and invests so as to maximize his expected utility, and we measure model
performance by means of an (out-of-sample) estimate of the expected utility
attained by this investor. In the incomplete market setting considered in this
section, we make the following definition.

Definition 11.11 (Relative model performance measure in incomplete mar-
ket) Let p̃ denote the empirical measure on our test set. The relative perfor-
mance, ∆, between the models q(1) and q(2) is

∆U

(

q(1), q(2),Ω
)

= Ep̃

[

U

(

∑

z∈Z
β∗

z (q(2))Ωz,·

)]

−Ep̃

[

U

(

∑

z∈Z
β∗

z (q(1))Ωz,·

)]

,

(11.50)
where

β∗(q) = arg max
β:

P

z∈Z βz=1

∑

y∈Y
qyU

(

∑

z∈Z
βzΩz,y

)

(11.51)

is an optimal betting strategy corresponding to the model q.
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From Lemma 11.2, it follows that we can express this relative model per-
formance measure in terms of the optimal contingent claims as follows.

∆U

(

q(1), q(2),Ω
)

= Ep̃

[

U
(

w∗(q(2))
)]

−Ep̃

[

U
(

w∗(q(1))
)]

, (11.52)

where
w∗(q) = arg max

w∈WΠ

Eq[U(w)] (11.53)

is the optimal $1 contingent claim the investor chooses based on the model q,
and WΠ is related to Ω via Lemma 11.2. The optimal claim w∗ is known to
exist and to be unique (see Theorem 2.18 of Schachermayer (2004)).

Below we shall compute the above performance measure for a particular
utility function and discuss a numerical example.

Model performance measure for an investor with a generalized logarithmic
utility

The theorem below expresses our relative model performance measure for
an investor with a generalized logarithmic utility in terms of the differences
between two log-likelihood ratios.

Theorem 11.6 For an investor with the utility function

U(W ) = α log(W − γB) + β , (11.54)

the relative performance, ∆, between the models q(1) and q(2) is

∆U

(

q(1), q(2),Ω
)

= α
[

l
(

q(1), q(2)
)

− l
(

π∗
(

q(1)
)

, π∗
(

q(1)
)) ]

, (11.55)

where
π∗(q) = arg min

π∈Π
Eq

[

log
( q

π

)]

, (11.56)

Π is related to Ω via Definition 11.6, and l denotes the log-likelihood ratio
from Definition 6.2.

Proof: See Section 11.2.6.

Theorem 11.6 states that for a generalized-logarithmic utility investor, the
relative performance measure between two models is — up to a constant
positive factor — the difference between the log-likelihood ratio of the two
models and the log-likelihood ratio of the least favorable pricing measures
corresponding to the two models.

As an example, let us consider Theorem 11.6 in an extreme case: a complete
market, i.e., a market that allows an investor to place bets on every possible
state; such a complete market is the same as the horse race from Chapter
3. In a complete market with odds ratios O, it follows from Definition 11.6
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that Π = {π : πy = BO−1
y }, i.e., that the set Π contains only a single pricing

measure. It follows then from (11.56) that π∗
y(q) = BO−1

y . Therefore, by

(11.55), ∆U

(

q(1), q(2),Ω
)

= αEp̃

[

log
(

q(2)

q(1)

)]

= α l
(

q(1), q(2)
)

, where l denotes

the log-likelihood ratio from Definition 6.2. That is, in a complete market, the
model performance measure (for an investor with a generalized logarithmic
utility function) is, up to a constant positive factor, the log-likelihood ratio.
This, of course, we have shown already in Chapter 8, where we considered
investors in a horse race, i.e., investors in a complete market (see Theorem
8.2). Hence Theorem 11.6 is consistent with the results from Chapter 8.

As a second example, let us consider the other extreme: a market that offers
the bank account as its only traded instrument. In this case, it follows from
Definition 11.6 that Π = {π :

∑

y∈Y πy = 1}, i.e., that Π is the set of all
measures, and it follows from (11.56) that π∗

y(q) = qy. Therefore, by (11.55),

we have ∆U

(

q(1), q(2),Ω
)

= 0. That is, in a market that offers only the bank
account, all models perform the same. This is consistent with our intuition:
if all the investor can do is put his money in a bank account, he has no
opportunity to exploit the information (we use the word in loose sense here)
contained in a model; therefore, this information is useless from a decision-
theoretic perspective and doesn’t contribute to the model’s performance.

Example: Loss models for defaultable debt

As an example, we measure the relative performance of loss models for default-
able debt from the viewpoint of an investor with the generalized logarithmic
utility. We consider probabilistic models for the random variable Y , which
is the loss relative to the par amount of a defaultable debt security. Let us
assume that the state space for Y is Y = {0, 1

m−1 ,
2

m−1 , ..., 1}where m is some
large integer. Here, the event of no default is captured by the state Y = 0.
We further assume that there are the following three traded instruments.

(i) a bank account with the payoff

Ω1,y = B , ∀y , (11.57)

(ii) a defaultable zero-coupon bond with the payoff

Ω2,y = a(1 − y) , (11.58)

and

(iii) a digital default swap with the payoff

Ω3,y = c (1 − δy,0) . (11.59)

(For the sake of simplicity, we assume that y > 0 whenever there is a
default, i.e., that there is no complete recovery in the case of default.)
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In order to compute our relative model performance measure, we first com-
pute the worst-case pricing measure. From (11.56) and Definition 11.6 we
obtain

π∗(q) = arg min
π∈Π

Eq

[

log
( q

π

)]

, (11.60)

where

Π =







π,
∑

y∈Y
πy = 1,

∑

y∈Y
πyy =

a− B

b
, π0 =

c−B

c
, πy > 0 , y ∈ Y







.

(11.61)
It follows from Lagrangian duality (see Huang et al. (2006) for details) that
the solution of the problem posed by (11.60) is

π∗
y(q) =

qy

λ∗ + η∗y + ν∗δy,0
, (11.62)

where

(λ∗, η∗, ν∗) = arg max
λ,η,ν:λ+ηy+νδy,0>0 , ∀y∈Y

h(λ, η, ν) (11.63)

and

h(λ, η, ν) =
∑

y∈Y
qy log (λ + ηy + νδy,0) − λ− η

a−B

a
− ν

c− B

c
. (11.64)

Based on these equations and Theorem 11.6, we can compute the relative
performance measure for the models q(1) and q(2); we obtain

∆U

(

q(1), q(2),Ω
)

= αEp̃

[

log

(

λ∗2 + η∗2y + ν∗2δy,0

λ∗1 + η∗1y + ν∗1δy,0

)]

, (11.65)

where the λ∗i , η
∗
i , ν

∗
i are given by (11.63) with q replaced by q(i).

We note that this performance measure depends only on three parame-
ters per model, which encode all the model information necessary to evaluate
model performance.

We illustrate the above logic via a numerical example. Suppose that we have
a defaultable loan with a = 1.2, a bank account with B = 1.05, and a digital
default swap with c = 1.3. We assume that the empirical loss distribution is the
one shown in Fig. 11.3, and that we want to evaluate the relative performance
of the probability measures q(1), q(2), and q(3) from Fig. 11.3 with respect
to the reference measure q(0) shown in Fig. 11.3. The probability measures
q(0), q(1), q(2), and p̃ all assign the probability 0.95 to the state Y = 0, i.e., to
the event of no default; measure q(3) assigns the probability 0.9 to the state
Y = 0. The measures p̃, q(0), q(1), and q(2) differ in the probabilities that they
assign to loss, given that a default has occurred. The measure q(3) assigns the
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same (conditional) probabilities to loss given default as q(1). The default-
conditioned measures q(1), q(2), and q(3) are discretized beta-distributions for
Y > 0, while the measure q(0) is uniform for Y > 0.

Using (11.65), we compute the performance measures ∆U

(

q(0), p,Ω
)

, where

we have set α = 1 and p is p̃, q(1), q(2), or q(3). For comparison, we also com-

pute the complete-market performance measure ∆
(c)
U

(

q(0), p,Ω
)

= l(q(0), p),
which reflects the model performance from the viewpoint of an investor who
invests in a market that allows for bets on each state of Y ∈ Y. We note
that ∆

(c)
U

(

q(0), p,Ω
)

is generally different from ∆U

(

q(0), p,Ω
)

although the
two expected utility terms in the latter measure can be expressed as expected
utilities in certain worst-case complete markets. The reason for this difference
is that the least favorable complete market depends on the model.

The results are shown in Table 11.1. In a complete market (see the third
column of Table 11.1), where an investor can bet on every possible outcome,
an investor who knows the empirical measure, p̃, achieves the best outper-
formance (with respect to the reference investor), an investor who believes
the model q(1) fares almost as well as the p̃-investor, and an investor who be-
lieves one of the misleading models q(2) or q(3) does worse than the reference
investor. In our incomplete market the model performance measures reflect
a different picture: the differences between the models p̃, q(1), and q(2) are
much smaller than for the complete market, while the model q(3) consider-
ably underperforms, as is the case for the complete market. The reason for the
similarity in the performance of the models p̃, q(1), and q(2) (and the bench-
mark q(0)) is that these measures differ only in the conditional probabilities
of loss given default, on which the investor can bet only in a very crude way.
The reason for the significant underperformance of the model q(3) is that the
digital default swap allows for bets on the event of default.

The above example illustrates that the relative model performance measure
∆ rewards only that information from a model that can be used to improve in-
vestment strategies. On the other hand, information that cannot be exploited
by an investor is not reflected in ∆.

11.2.4 Model Value

We generalize Definition 8.6 (see Section 8.6) of the monetary value of a
model upgrade to the incomplete market setting as follows.

Definition 11.12 (Monetary value of a model upgrade in incomplete market)
The monetary value, VU

(

q(1), q(2),Ω
)

, of upgrading from model q(1) to model

q(2) is the solution for V of the following equation:

Ep̃

[

U

(

∑

z∈Z
β∗

z

(

q(2), 0
)

Ωz,.

)]

= Ep̃

[

U

(

∑

z∈Z
β∗

z

(

q(1), V
)

Ωz,. + V

)]

,

(11.66)
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FIGURE 11.3: Conditional probabilities of loss given default (correspond-
ing to the empirical probabilities p̃, the reference measure q(0), and the three
models, q(1), q(2), and q(3)) for a particular loan as an example. Only the
probabilities for Y > 0 given default are shown; the probability for Y = 0
given default is zero (the default probabilities are 0.05 for p̃, q(0), q(1), and
q(2), and 0.1 for q(3)). (This figure originally appeared in Huang et al. (2006).)

where

β∗(q, V ) = arg max
β:

P

z∈Z βz=1

∑

y∈Y
qyU

(

∑

z∈Z
βzΩz,y + V

)

, (11.67)

and p̃ is the empirical probability measure of the test set.

It is easy to show that in the case of a generalized logarithmic utility func-
tion, i.e., for U(W ) = α log(W − γB) + β, the following equation holds

VU,Ω

(

q(1), q(2)
)

= B(1 − γ)
(

e
1
α

∆U(q(1),q(2),Ω) − 1
)

, (11.68)

as it does for a complete market (see Theorem 8.12).

11.2.5 Minimum Relative U-Entropy Modeling

We modify the MRE approach from Section 10.3 by replacing the horse-
race relative U -entropy by the incomplete-market relative U -entropy from
Definition 11.9. This leads to the following problem.
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TABLE 11.1: Relative performance
measures, ∆U

(

q(0), ·,Ω
)

, for an investor
in our incomplete market, and

∆
(c)
U

(

q(0), ·,Ω
)

, for an investor in a
complete market, for various loss
probability measures (see Fig. 11.3) with
respect to the measure q(0).

Model ∆U

(

q(0), ·,Ω
)

∆
(c)
U

(

q(0), ·,Ω
)

p̃ 0.0003 0.0092
q(1) 0.0002 0.0088
q(2) -0.0041 -0.0240
q(3) -0.0165 -0.0079

Problem 11.1 Find

q∗ = arg min
q∈K

DU (q‖Π) (11.69)

where K = {q, q ∈ Q , Ep[f ] = Ep̃[f ]} , (11.70)

where f is a (vector-valued) features function of Y .

We note that by Theorem 11.3, Problem 11.1 is a convex problem.
From an information-theoretic viewpoint, q∗ is the measure that minimizes,

by means of DU (q‖Π), the “distance” to the set of pricing measures Π among
all measures consistent with the constraint. From an expected utility point
of view, on the other hand, it is not obvious why q∗ is a useful probability
measure. Its usefulness is derived from the property stated in the following
theorem, which is based on the same argument from Topsøe (1979) that we
have used in Theorem 10.2 in the horse race context.

Theorem 11.7 Suppose that the domain of the utility function U is (ζ,∞],

limt→ζ+ U(t) = −∞, and that there exists p(0) ∈ K, such that p
(0)
y > 0, ∀y ∈

Y, then
arg min

q∈K
DU (q‖Π) = arg max

q∈Q
min
p′∈K

Ep′ [U(w∗(p))] (11.71)

where
w∗(p) = arg max

w∈WΠ

Ep[U(w)] (11.72)

is the optimal $1 contingent claim the investor chooses based on the model p.

Proof: See Theorem 6 from Huang et al. (2006).
This theorem states that, under additional (beyond the assumption from

Definition 11.8) regularity conditions, by choosing q∗ an expected utility max-
imizing investor maximizes his (model-based optimal) expected utility in the
most adverse environment consistent with the feature constraints. In other
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words, the measure q∗ is the worst-case optimal measure — this measure is a
measure that could be used by an investor who bets in an incomplete market
and wants to maximize his worst-case (in the sense of (11.71)) expected util-
ity. Thus, Problem 11.1 specifies a statistical learning problem appropriate for
this investor.

11.2.6 Proof of Theorem 11.6

Let γ′ = −γB. Equation (11.56) follows directly from Definition 11.10. In
order to prove (11.55), we start with (11.48), i.e., with

π∗
y(q) =

qy ·U ′(w∗
y)

∑

ỹ qỹU ′(w∗
ỹ)
, (11.73)

which specializes for the utility function U(W ) = α log(W + γ′) + β, to

π∗
y(q) =

qy

(w∗
y + γ′)S

, (11.74)

where
S =

∑

y∈Y

qy

w∗
y + γ′

. (11.75)

(11.74) can be written as

π∗
y(q)w∗

y + γ′π∗
y(q) =

1

S
qy. (11.76)

Summing over y and using the fact that w ∈ WΠ together with Definition
11.7, the above equation results in

S =
1

1 + γ′
. (11.77)

Combining this equation with (11.74), we obtain

w∗
y + γ′ = (1 + γ′)

qy

π∗
y(q)

, (11.78)

which, after inserting into (11.52) and using Definition 6.2, results in (11.55).
This completes the proof of the theorem. 2

11.3 Utility-Based Performance Measures for Regres-
sion Models

So far we have discussed performance measures for models that provide
conditional or unconditional probability distributions. However, many mod-
els that practitioners use do not provide probabilities, but rather relate some
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characteristics of a certain variable, such as its conditional expectation, to a
vector of explanatory variables. Let us, in a slight deviation from the usual
convention, call such models regression models. In this section, following Fried-
man and Sandow (2006a), we introduce utility-based performance measures
for such regression models that are constructed in the same spirit as the prob-
abilistic model performance measures from Chapter 8.

As in Chapter 8, we adopt the viewpoint of an investor in a horse race who
uses a model to place his bets. The investor has a regression model, but does
not have a probability measure for the variable under consideration. All he
knows is some expectations of this variable, and he has no way of attaching
weights to all (usually infinitely many) probability measures that are com-
patible with these expectations. We assume that our investor is conservative
and, therefore, prepares himself for the most adverse (as measured by the
expected utility) scenario. This leads to the following paradigm for regression
model valuation: We evaluate the strategy that maximizes the gain in ex-
pected utility under the most adverse probability measure consistent with the
model, where the gain is defined with respect to the investor’s prior strategy
(the strategy that seems expected utility-optimal based on the investor’s prior
knowledge). We do so by measuring the out-of-sample gain in expected utility
of the investor who invests in a horse race according to this strategy.

We shall see that there is an interesting relationship between the above
model performance measure and the relative (U,O)-entropy, which allows for
an alternative interpretation of the performance measure: The investor con-
structs a probabilistic model from the regression model by minimizing the
information-theoretic distance to his prior over all measures consistent with
the regression model, and then evaluates this probabilistic model; the result
is the above performance measure for regression models.

If the investor’s utility function is a member of the generalized logarithmic
family, the problem of minimizing the relative (U,O)-entropy takes a partic-
ularly simple form and the model performance measure is independent of the
odds ratios. We shall derive the dual problem of the relative (U,O)-entropy
minimization in this case, which leads to a recipe for calculating model per-
formance measures.

We shall discuss in more detail the performance measures for a few specific,
commonly used, regression models, under the assumption that the investor’s
utility function is from the generalized logarithmic family. Under some addi-
tional assumptions, we derive approximations for these performance measures,
which can be easily implemented. By means of an example, we demonstrate
how the different pieces of information that are provided by the specific re-
gression models create value for an investor.

The approach we take to measuring the performance of regression models
overcomes some of the drawbacks of measuring model performance in terms of
the mean squared error or some related quantity, which is arguably the most
commonly used approach (see, for example, Davidson and MacKinnon (1993),
or Hastie et al. (2009)). One of these drawbacks, for example, is the fact that
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the mean squared error does not make a distinction between an upward and a
downward prediction error. Of course, there are alternatives to this approach
that don’t suffer from this deficiency. Such alternatives include various loss
functions (see, for example, Hastie et al. (2009), or Berger (1985)), or the
recently introduced deviation measures from Rockafellar et al. (2002b) and
Rockafellar et al. (2002a). The latter ones are closely related to the coherent
risk measures from Artzner et al. (1999). We shall not discuss any of these
alternatives in this book.

11.3.1 Regression Models

We consider models that relate some characteristics of the random variable
Y (with values, y, in a finite set Y ⊂ Rn) to the random variable X (with
values, x, in a finite set X ⊂ Rd). Throughout Section 11.3, we assume that X
is the set of actually observed X-values in the test set, so that p̃x > 0 , ∀x ∈
X , where p̃ is the empirical measure on the test set. We have chosen finite
state spaces for the sake of convenience; it is straightforward to generalize
the performance measures in this section to models on infinite state spaces.
Specifically, we consider models of the following type.

Definition 11.13 (Regression model) A regression model is a collection of
relations between the random variables X and Y of the following form:

fj(X, Y ) = f j(X) + εj , j = 1, ..., Nf , (11.79)

gj(X, Y ) = gj + ζj , j = 1, ..., Ng , (11.80)

where the εj and the ζj are random variables with some unknown joint prob-
ability measure, p, such that

Ep[εj|X = x] = 0 , ∀ x ∈ X , j = 1, ..., Nf (11.81)

and Ep[ζj] = 0 , ∀ j = 1, ..., Ng . (11.82)

We denote the regression model by the quadruple (f, f , g, g), where
f = (f1, ..., fNf

)T , f = (f1, ..., fNf
)T , g = (g1, ..., gNg

)T and

g = (g1, ..., gNg
)T .

The above definition of a regression model is slightly more general than the
standard definition (see, for example, Davidson and MacKinnon (1993), or
Hastie et al. (2009)). Usually, the term “regression model” refers to a model
of the form y = µ(x) + δ; our definition can include “side information,” for
example, about the conditional variance. Also, according to our definition, a
regression model might provide the conditional variance, without providing
the conditional expectation.

In Definition 11.13, we assume that the probability distribution for the error
terms is unknown; in the case where the distribution is known, it is possible
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to apply the performance measures for conditional probability models from
Chapter 8.

Below, we provide a few simple examples where Y ⊂ R1.

Model 11.1 (Point estimator)

Y = µ(X) + ε1 . (11.83)

Model 11.2 (Point estimator with unconditional variance)

Y = µ(X) + ε1 , (11.84)

and (Y − y)2 = σ2 + ζ1, (11.85)

where Y = y + ζ2 . (11.86)

We assume that the model parameters are such that the model is consistent.

Model 11.3 (Point estimator with conditional variance)

Y = µ(X) + ε1 (11.87)

and (Y − µ(X))2 = σ2(X) + ε2. (11.88)

11.3.2 Utility-Based Performance Measures

As we have done in Section 8.3 when we evaluated conditional probability
models, we evaluate a regression model in terms of its usefulness for an in-
vestor who places bets in a conditional horse race (see Definition 3.7 for the
conditional horse race). A regression model typically provides less informa-
tion than a complete probabilistic model; it is consistent with more than one
probability measure. In order to evaluate a regression model, we assume that
our investor is conservative and prepares for the most adverse measure consis-
tent with the regression model. Hence, we assume that our investor chooses a
betting strategy (the so-called robust allocation) that maximizes the gain in
expected utility under a worst-case measure compatible with the model; we
measure the gain with respect to the prior strategy

b(0) = b∗
(

q(0)
)

, (11.89)

where q(0) is the prior probability measure and b∗ is the optimal allocation
corresponding to this prior measure (see Definition 5.6). We then measure
model performance in terms of the gain in expected utility under this strategy
on an out-of-sample dataset. Thus, we measure model performance based on
the following two definitions.

Definition 11.14 (Robust allocation for a regression model) The robust al-
location for the model M = (f, f , g, g) is given by

b̂(M) = arg max
b∈B

min
p∈C(M)

{

Ep[U(b,O)]−Ep

[

U
(

b(0),O
)]}

, (11.90)
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where

Ep[U(b,O)] =
∑

x∈X
p̃x

∑

y∈Y
py|xU(by|xOy|x) , (11.91)

B =







b,
∑

y∈Y
by|x = 1 , x ∈ X







, (11.92)

p̃ is the empirical measure of an out-of-sample test set, C(M) denotes the set
of all measures compatible with the model M , i.e.

C(M) = {p, 0 ≤ py|x ≤ 1,
∑

y∈Y
py|x = 1 , Ep[f |x] = f(x) , ∀x ∈ X , Ep[g] = g},

(11.93)
and b(0) ∈ B is the prior strategy from (11.89).

Definition 11.15 (Regression model performance measure) The performance
of the model M is measured by

∆U

(

M, b(0),O
)

= Ep̃

[

U
(

b̂(M),O
)]

− Ep̃

[

U
(

b(0),O
)]

. (11.94)

According to Definition 11.14, our investor uses a minimax decision rule
(see, for example, Berger (1985) for minimax decision rules). As we shall see,
the robust allocation is also optimal with respect to less adverse measures.

Depending on how many relations the regression model provides, the set,
C(M), of probability measures consistent with the regression model can con-
tain many or few measures. If there are relatively few relations in our regres-
sion model, C(M) contains many probability measures. In this case, preparing
for a worst-case measure may suggest a rather conservative allocation strategy,
which leads to a rather conservative performance measure. For a regression
model with relatively many relations, on the other hand, there is a relatively
limited set of probability measures consistent with the model. In this case,
preparing for a worst-case measure may suggest a less conservative alloca-
tion strategy, which leads to a less conservative performance measure. In the
extreme case, where the regression model consists of a set of relations (for ex-
ample δ-kernels for all states) that completely define a conditional probability
measure, the model performance measure from Definition 11.15 is identical to
the one for conditional probability models from Definition 8.4.

11.3.3 Robust Allocation and Relative (U,O)-Entropy

In Chapter 7, we have introduced the relative (U,O)-entropy, DU,O(p||q(0))
(see Definition 7.2), which can be interpreted as the loss in expected utility
experienced by an investor who bets according to model q(0) when p is the
“true” probability measure, and we have discussed the minimum relative en-
tropy (MRE) problem. The following theorem relates the robust allocation
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from the previous section to the MRE measure, i.e., to the measure that min-
imizes the relative (U,O)-entropy.

Theorem 11.8 If dom(U) is a closed set or dom(U) = (ξ,∞) and
limW→ξ+ U(W ) = −∞, then the robust allocation exists, is unique, and can
be expressed as

b̂(M) = b∗(p∗) , (11.95)

where p∗ = arg min
p∈C(M)

DU,O(p||q(0)) , (11.96)

b∗(p∗) = arg max
b∈B

Ep∗ [U(b,O)] (11.97)

=

{

1

Oy|x
(U ′)−1

(

λx

p∗y|xOy|x

)

, x ∈ X , y ∈ Y
}

, (11.98)

and, for each x ∈ X , λx is the solution of

∑

y∈Y

1

Oy|x
(U ′)−1

(

λx

p∗
y|xOy|x

)

= 1 . (11.99)

Proof: See Friedman and Sandow (2006a).
According to Theorem 11.8, the smooth MRE measure induces an allocation

that is robust, in the sense that it maximizes the outperformance under the
most extreme measures consistent with the model.

While the MRE measure, p∗, and the robust allocation, b̂ = b∗(p∗), are
unique, there is no unique worst-case measure, i.e., there is no unique mini-
mizer

min
p∈C(M)

K(b̂, p)

of the outperformance

K(b̂, p) = Ep[U(b̂,O)]− Ep[U(b∗(q(0)),O)] . (11.100)

This point is illustrated in Figure 11.4 for an example where U(W ) = log(W ),
X has one state, Y = {1, 2}, b = (b1, 1 − b1), p = (p1, 1 − p1), q

(0) = (1
2 ,

1
2),

we obtain K(b, p) = p1 log(b1) + (1 − p1) log(1 − b1), with b̂ = (1
2 ,

1
2), and

p∗ = (1
2 ,

1
2). For b1 = b̂1 = 1

2 , K(b, p) = log
(

1
2

)

(the bold line) is independent

of p1, and therefore minp∈C(M)K(b̂, p) is not unique.
The practical importance of Theorem 11.8 lies in the fact that it leads to

efficient numerical solution schemes for finding performance measures for re-
gression models. When one uses the theorem, it is only necessary to solve one
measure-related optimization problem, rather than a measure-related opti-
mization problem for each allocation in Definition 11.15. In order to compute
the model performance measure, we first have to compute the MRE measure,
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FIGURE 11.4: Outperformance K(b, p) for a particular example. (This
figure originally appeared in Friedman and Sandow (2006a).)

p∗, by means of (11.96). This amounts to a minimization of a relative (U,O)-
entropy under constraints that can be expressed in terms of expectations over
the measure we have to find. Having computed p∗, we can proceed to com-
pute the robust allocation, b̂, by means of (11.95) and (11.98). Finally, we
can compute the relative performance measure, ∆U(M, b(0),O), by means of
(11.94) in Definition 11.15.

Theorem 11.8 is also interesting from a theoretical perspective, since it pro-
vides an alternative interpretation of our performance measure: The investor
constructs a probabilistic model from the regression model by minimizing the
information-theoretic distance to his prior over all measures consistent with
the regression model. We then evaluate this probabilistic model (with respect
to the prior model, which underlies the prior allocation) as in Section 8.3, i.e.,
by means of Definition 8.4.

11.3.4 Performance Measure for Investors with a General-
ized Logarithmic Utility Function

We consider an investor with the generalized logarithmic utility function
from Definition 5.4, i.e., with the utility function

U(W ) = γ1 log(W − γB) + γ2 , (11.101)
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with γ < 1 and γ1 > 0. We have seen in Section 8.3.2 that, under certain
conditions, a relative performance measure based on a utility function from
this family can be used to approximate the relative performance measure for
probabilistic models for an investor with a different utility function. Since
our performance measure has the same mathematical structure as the one for
probabilistic models, we can make the same approximation here.

For utility functions in the generalized logarithmic family, the conditional
relative (U,O)-entropy, which enters the optimization problem (11.96), is
given by

DU,O(p||q(0)) = γ1

∑

x∈X
p̃x

∑

y∈Y
py|x



log





py|x

q
(0)
y|x







 , (11.102)

which is (up to a constant factor) the Kullback-Leibler conditional relative
entropy. From (11.96) in Theorem 11.8, (11.93), and (11.102) we can see that
the MRE measure, p∗, is the solution of the following convex optimization
problem:

Problem 11.2 (MRE Problem for U from the Generalized Logarithmic Fam-
ily)

Find p∗ = arg min
p∈R|X||Y|

∑

x∈X
p̃x

∑

y∈Y
py|x



log





py|x

q
(0)
y|x







 (11.103)

s.t. py|x ≥ 0 , ∀x ∈ X , y ∈ Y , (11.104)
∑

y∈Y
py|x = 1 , ∀x ∈ X , (11.105)

Ep[f |x] = f(x) , ∀x ∈ X , (11.106)

and Ep[g] = g . (11.107)

We show in Section 11.3.5 that the dual of the above problem is the following
problem.

Problem 11.3 (Dual of MRE Problem for U from the Generalized Logarith-
mic Family)

Find (β∗, η∗) = arg max
(β,η)

h(β, η) (11.108)

with h(β, η) =
∑

x∈X
p̃x

{

βT
x f(x) − logZx(β, η)

}

+ ηT g , (11.109)

and Zx(β, η) =
∑

y∈Y
q
(0)
y|xe

βT
x f(x,y)+ηT g(x,y) , (11.110)

where each of the βx is an Nf -dimensional real vector, β is the vector with
components βx , x ∈ X , and η is an Ng-dimensional real vector. The MRE
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measure is given by

p∗y|x = Z−1
x (β∗, η∗) q(0)

y|x e
(β∗

x)T f(x,y)+(η∗)T g(x,y) . (11.111)

Having computed p∗ (e.g., by means of solving Problem 11.3), we can use Def-
inition 11.15 and Theorems 11.8 to compute our model performance measure
as

∆U (M, b(0)) = γ1

∑

x∈X ,y∈Y
p̃x,y log

(

p∗y|x

q
(0)
yx

)

. (11.112)

This performance measure is essentially the likelihood ratio between the prior
measure, q(0), and the robust measure, p∗.

We can now combine Problem 11.3 with (11.112) to obtain the following
theorem:

Theorem 11.9 For a utility function of the form

U(z) = γ1 log(z − γB) + γ2 , γ > max
x∈X

(−Bx) , γ1 > 0 , (11.113)

the regression model performance measure is given by

∆U(M, b(0)) = γ1

∑

x,y

p̃x,y

[

(β∗
x)T f(x, y) + (η∗)T g(x, y)

− log(Zx(β∗, η∗))] , (11.114)

where

(β∗, η∗) = arg max
(β,η)

[

∑

x∈X
p̃x

{

βT
x f(x) − log(Zx(β, η))

}

+ ηT g

]

,(11.115)

and Zx(β, η) =
∑

y∈Y
q
(0)
y|xe

βT
x f(x,y)+ηT g(x,y) . (11.116)

The above model performance measure is independent of the odds ratios, O,
independent of γ and γ2, and it depends on γ1 only in a trivial way. Therefore,
this performance measure ranks models equivalently under all utility functions
in the family. In light of the results from Section 8.3.2, this is, of course, not
surprising.

The performance measure from Theorem 11.9 can be used for practical ends.
The optimization problem, which must be solved, is a strictly convex problem
with no constraints. The dimension of this problem is Nf ×|X |+Ng. For most
practical problems, Nf and Ng are small. However |X | can be quite large. If
this is the case, the optimization problem can be rather hard to solve, however,
as we shall see below, the problem simplifies for many practical applications.
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Models with conditional constraints only

For models that have only conditional constraints, i.e., constraints of the type
(11.79), and no unconditional constraints (constraints of type (11.80)), the
optimization problem from Theorem 11.9 simplifies considerably. The reason
for this is that the βx-derivative of the objective function from (11.115) does
not depend on βx′ for any x′ 6= x. Therefore, the condition for the optimal β∗

x,
which is Ep∗ [f |x] = f(x), does not depend on β∗

x′ for any x′ 6= x. Hence, the
system of Nf ×|X | equations we have to solve decouples into |X | independent
systems of Nf equations each. Since for most practical problems Nf is small
(typically 1 or 2), each of these independent systems of equations is easy to
solve.

For example, Models 11.1 and 11.3 from Section 11.3.1 have only conditional
constraints; therefore the computation ∆U for these models is fairly easy.

Some specific regression models

Next, we specialize Theorem 11.9 to the specific models introduced in Section
11.3.1:

Model 11.1: (Point estimator) The regression model performance measure
is given by

∆U(M, b(0)) = γ1

∑

x,y

p̃x,y [β∗
xy − logZx(β∗)] , (11.117)

where β∗ = arg max
β

[

∑

x∈X
p̃x {βx µ(x) − logZx(β)}

]

, (11.118)

and Zx(β) =
∑

y∈Y
q
(0)
y|xe

βxy . (11.119)

The above optimization problem simplifies further if the prior is uniform with

q
(0)
y|x = 1

|Y| , ∀x ∈ X , y ∈ Y, and Y is a uniform grid, i.e.,

Y = {y0 + (k − 1)δ , k = 1, ..., Ny} (11.120)

with constants y0, δ, and an integer constant Ny . In this case, since (11.119)
is a geometric sum, we have

Zx(β) =
1

|Y|
eβx(Nyδ+y0) − eβxy0

eβxδ − 1
.

Hence, the conditions for the optimum,

0 = µ(x) − 1

Zx(β)

∂Zx(β)

∂βx
for x ∈ X , (11.121)
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form a set of |X | decoupled transcendental equations (see the above discussion
of models with conditional constraints only). Each of these equations has a
unique solution, which is easy to find numerically by root search.

Model 11.2 (Point estimator with unconditional variance) Our performance
measure is given by

∆U(M, b(0)) = γ1

∑

x,y

p̃x,y

[

β∗
xy + η∗y2 − logZx(β∗, η∗)

]

, (11.122)

where

(β∗, η∗) = arg max
(β,η)

[

∑

x∈X
p̃x {βx µ(x) − logZx(β, η)} + η(σ2 + y2)

]

,

and
Zx(β, η) =

∑

y∈Y
q
(0)
y|xe

βxy+ηy2

.

Here we have assumed that the model consistency condition y =
∑

x∈X p̃xµ(x)
holds, and we have rewritten the constraint Ep[(y − y)2] = σ2 as Ep[y

2] =
σ2 + y2.

Assuming again that the prior is uniform and Y has the form (11.120) and,
furthermore, Ny � 1, δ � σ, y0 � µ(x) − σ, and y0 +Nyδ � µ(x) + σ, the
above optimization problem can be easily solved by approximating the sums
by integrals. The result is

β∗
x ≈ µ(x)

σ2
, and (11.123)

η∗ ≈ − 1

2σ2
. (11.124)

We can convince ourselves that this is correct, by using the fact that the MRE

measure is ∝ q
(0)
y|xe

β∗
xy+η∗y2

with (β∗, η∗) chosen such that the constraints

(11.106) and (11.107) of the primal problem hold. Indeed, the measure p∗y|x ∝
e−

(y−µ(x))2

2σ2 with (β∗, η∗) given by (11.123) and (11.124), respectively, approx-
imately satisfies the constraints Ep∗ [y|x] = µ(x) and [Ep∗ [(y − y)2] = σ2.

Model 11.3: (Point estimator with conditional variance) The regression
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model performance measure is given by

∆U (M, b(0)) = γ1

∑

x,y

p̃x,y

[

β∗
1,xy + β∗

2,xy
2 − logZx(β∗)

]

, (11.125)

where β∗ = arg max
β

[

∑

x∈X
p̃x

{

β1,xµ(x) + β2,x(σ2(x) + µ2(x))

− logZx(β, η)}
]

, (11.126)

and Zx(β) =
∑

y∈Y
q
(0)
y|xe

β1,xy+β2,xy2

. (11.127)

We can approximately solve the optimization problem if the prior is uniform,Y
has the form (11.120),Ny � 1, δ � σ, y0 � µ(x)−σ, and y0+Nyδ � µ(x)+σ.
Following the same logic as for Model 11.2, we obtain

β∗
1,x ≈ µ(x)

σ2(x)
, and (11.128)

β∗
2,x ≈ − 1

2σ2(x)
. (11.129)

Example 11.1 Let us consider a numerical example. We assume that X =
{1, 2, ..., 10} and Y = { k

100 , k = 0, ..., 100}. Our test dataset consists of 1,000
observations with the empirical X-probabilities

p̃x =
1

10
, ∀x ∈ X , (11.130)

and the Y -values drawn from the following conditional distribution

py|x =
1

Ẑx

e
− (y−µ̂x)2

σ̂2
x , ∀x ∈ X , y ∈ Y , (11.131)

with µ̂x = 0.1 + 0.05 x , (11.132)

σ̂x = 0.01 + 0.01 x , (11.133)

and Ẑx =
∑

y∈Y
e
− (y−µ̂x)2

σ̂2
x . (11.134)

This test dataset is depicted in Figure 11.5.
Table 11.2 shows The regression model performance measure, ∆U , for the

specific regression models from Section 11.3.1 as measured on the test sam-
ple shown in Figure 11.5, with respect to a uniform prior. The models were
specified such that the constraints are consistent with the measure (11.131)-
(11.134), from which the test-dataset was sampled. The table also shows
the performance of the (test data-generating) probabilistic model (11.131)-
(11.134), which was measured by means of the probabilistic model perfor-
mance measure (8.46). We can see from the table how adding information
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FIGURE 11.5: Test sample drawn from the conditional probability mea-
sure (11.131)-(11.134) and x-values chosen according to (11.130). We note
that the conditional mean and variance increase with x. (This figure origi-
nally appeared in Friedman and Sandow (2006a).)

improves the performance of a model. Model 11.1, for which the MRE mea-
sure is exponential with an exponent linear in y, leads to a gain in expected
utility of 0.24. By adding the unconditional variance to the model we arrive at
Model 11.2, for which the MRE measure is a discretized Gaussian on a finite
interval with the correct conditional means and (incorrect) X-independent
conditional variances. The gain in expected utility over the prior is 1.14. If
we add even more information to the model in terms of the conditional vari-
ances, the gain in expected utility over the prior is 1.27. This is the same
gain in expected utility an investor would achieve if he knew the measure
(11.131)-(11.134) or the empirical measure, p̃, on the test set. (The latter two
models perform the same within the precision we have displayed.) The reason
for this is that the MRE measure for Model 11.3 is the same as the measure
(11.131)-(11.134), which means that the robust allocation is optimal for the
measure (11.131)-(11.134). This surprising result is related to the fact that
we have sampled from a (truncated and discretized) normal distribution and
relies on the assumption that Model 11.3 provides us with the correct (up
to some error that is not reflected in ∆U at the accuracy level we consider)
empirical conditional means and variances.
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TABLE 11.2: Performance measure ∆U for the specific
models from Section 11.3.1, for the model (11.131)-(11.134), and
for the empirical test-set measure, as measured on the test sample
from Figure 11.5, with respect to a uniform prior. The performance
of the probabilistic model (11.131)-(11.134) was measured by
means of (8.46). The constraints in the models are assumed to be
consistent with the measure (11.131)-(11.134). We have set γ1 = 1.

Model ∆U

Model 11.1 (point estimator) 0.24
Model 11.2 (point estimator with unconditional variance) 1.14
Model 11.3 (point estimator with conditional variance) 1.27
model (11.131)-(11.134) 1.27
p̃ 1.27

11.3.5 Dual of Problem 11.2

In order to derive the dual of Problem 11.2, we follow the logic from Section
2.2.5. The Lagrangian is

L(p, β, η, ν, ξ) =
∑

x∈X
p̃x







∑

y∈Y

[

py|x log

(

py|x
q0y|x

)

− νy|xpy|x

]

−ξx





∑

y∈Y
py|x − 1





−βT
x





∑

y∈Y
py|xf(x, y) − f(x)











−ηT





∑

x∈X
p̃x

∑

y∈Y
py|xg(x, y) − g



 , (11.135)

where the βx are Nf -dimensional vector-valued parameters, η is a Ng-
dimensional vector-valued parameter, the ξx and νy|x ≥ 0 are real parameters,
β (ξ) denotes the set of all βx (ξx) with x ∈ X , and ν denotes the set of all
νy|x with x ∈ X , y ∈ Y.

The dual is the maximization over β, η, ν ≥ 0, ξ of L(p̂(β, η, ν, ξ), β, η, ν, ξ)
with

p̂(β, η, ν, ξ) = arg min
p

L(p, β, η, ν, ξ). (11.136)
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In order to find p̂, we solve

0 =
∂L(p, β, η, ν, ξ)

∂py|x

∣

∣

∣

∣

p=p̂

= log

(

p̂y|x
q0y|x

)

+ 1 − νy|x − ξx − βT
x f(x, y) − ηT g(x, y)

(since p̃x 6= 0). (11.137)

We obtain

p̂y|x(β, η, ν, ξ) = q0y|xe
−1+νy|x+ξx+βT

x f(x,y)+ηT g(x,y) . (11.138)

From (11.135) and (11.137) we obtain

L(p̂(β, η, ν, ξ)), β, η, ν, ξ) =
∑

x∈X
p̃x







−
∑

y∈Y
p̂y|x + ξx + βT

x f(x)







+ηT g . (11.139)

It follows from complementary slackness and (11.138), which implies the pos-
itivity of p̂ (assuming that q0y|x > 0), that

ν∗y|x = 0 . (11.140)

The maximum of the Lagrangian (11.139) with respect to ξ is attained if
ξ = ξ∗ is such that the p̂ is normalized to one. By defining Zx(β, η) = e−ξ∗+1,
we can rewrite p̂ as

p̂y|x(β, η, ν∗, ξ∗) = Z−1
x (β, η)q0y|xe

βT
x f(x,y)+ηT g(x,y) (11.141)

with Zx(β, η) =
∑

y∈Y
q0y|xe

βT
x f(x,y)+ηT g(x,y) , (11.142)

and we get for the Lagrangian

L(p̂(β, η, ν∗, ξ∗), β, η, ν∗, ξ∗) =
∑

x∈X
p̃x

{

βT
x f(x) − logZx(β, η)

}

+ ηT g ,

(11.143)
i.e., the dual of Problem 11.2 is Problem 11.3. 2



Chapter 12

Select Applications

The techniques described in this book can be applied to myriad applications
too numerous to list. Suffice it to say that there are applications in virtually
all fields in the natural and behavioral sciences. Potential applications exist
wherever people are interested in understanding nondeterministic phenomena
and need to estimate probabilities. In this chapter, we describe five important
applications drawn from financial credit modeling, medicine, and text classi-
fication. Mathematically, these problems can all be described as conditional
probability estimation problems of the form p(Y = y|x), where Y ∈ Y, and Y,
the set of states, can have two elements, k > 2 elements, and a continuum of
elements. We apply the methods discussed in this book to each of the appli-
cations. We would like to note that each of the applications discussed in this
chapter can be approached via different methods not discussed in this book.
We also very briefly mention recently developed methods to calibrate, via
convex programming methods, financial asset return models that incorporate
fat tails while maintaining model flexibility.

12.1 Three Credit Risk Models

Individual consumers, corporations, and governments take on debt to fi-
nance various endeavors worldwide. In the aggregate, the amount of debt
worldwide is staggering. In the first quarter of 2006, the amount of outstand-
ing public and private bond market debt, in the U.S. alone, exceeded $25 tril-
lion (see BondMarkets.com (2006)), with worldwide issuance of debt, equity,
and equity-related issuance exceeding $1.8 trillion (see Thompson Financial
(2006)). These figures do not include consumer debt, which currently exceeds
$2 trillion in the U.S. alone (see Federal Reserve Board (2006)).

Holders of such debt (the lenders) are subject to a number of different types
of risk, including interest rate risk and credit risk. Interest rate risk is the risk
to the value of a security that results from the possibility of change in the
interest rate environment: when rates rise, for example, the holder of a debt
instrument that pays fixed coupons will fall, since the present value of the
coupons will fall in the new, higher-rate environment. In this section, we fo-

349
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cus on credit risk — the risk that the debt issuer will default on the debt.
Credit risk can be substantial; even single obligor defaults, such as the $30 bil-
lion default of WorldCom Inc. in 2002 or the $128 billion default of Lehman
Brothers in 2008, can have significant economic impact.1 Moreover, credit
risk can vary from obligor to obligor (based on obligor-specific information)
and over the economic cycle: for example, the aggregate global annualized
quarterly default rate exceeded 12% in 1991, was less than 2% in 1997, and
exceeded 10% in 2002 and was less than 2% in 2005 (see Standard & Poor’s
Global Fixed Income Research (2007)). The 12-month-trailing global corpo-
rate speculative-grade default rate increased by more than a factor of 12 from
the 25 year low of 0.79%, recorded in November 2007, to 9.71% in October
2009 (see Standard & Poor’s Global Fixed Income Research (2009)). Given
the high stakes and lack of homogeneity with respect to obligor and macroeco-
nomic conditions, there is considerable interest in estimating models for credit
risk.

Below, we discuss three fundamental aspects of credit risk and review es-
timation procedures for associated models. In Section 12.1.1, we describe a
model of the probability that the debt issuer will default over a fixed time
horizon, given a variety of explanatory variables.

Once an obligor has defaulted, the debt issuer and creditor participate in a
legal process under which claims against the issuer are resolved. As a result
of this process, the holder of the debt may receive a full recovery of the loan
amount, no recovery, or something in between.2 This amount is called the
ultimate recovery. In the interim, before the legal process is resolved, the debt
might trade in the secondary market at a certain value; this value is referred
to as the trading price recovery. In Section 12.1.2, we describe conditional
probabilistic models of the ultimate discounted recovery rate.

Investors who are concerned about default risk sometimes rely on credit rat-
ings produced by rating agencies, such as Standard & Poor’s, Moody’s KMV,
Fitch and Dominion Bond Rating Service (DBRS). The value of high quality
credit debt, for which the chance of default is remote, is highly correlated with
the obligor rating. For this reason, investors are interested in a firm’s single
period ratings transition probability vector. In Section 12.1.3, we discuss a
model of the single period conditional probability of rating transition, given
a set of explanatory variables.3

1In fact, shortly after the Lehman Brothers bankruptcy filing, the financial markets grew
quite volatile, with the Dow Jones Industrial Average setting records for single day point
loss, single day point gain, and intraday point range.
2In a small percentage of cases, debt is exchanged for equity that rises sufficiently so that
the discounted ultimate recovery exceeds the face value of the debt. It is interesting to
note that the data show that a significant percentage of the time, the discounted ultimate
recovery takes one of the two values, 0,1.
3We confine our discussion in this book to single period models. We note that the ideas
described in this book can be useful in other modeling contexts. For example, in recent
work, Friedman et al. (2010a) model transitions to default, as well as credit ratings tran-
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12.1.1 A One-Year Horizon Private Firm Default Probabil-
ity Model

A company’s creditworthiness can affect its ability to raise funds, the value
of its debt in the secondary markets, and stock price. In addition, regulatory
requirements and risk management considerations force holders of debt and
loan portfolios to consider the default probabilities of the firms in their portfo-
lios. In fact, there is a large body of literature analyzing default probabilities
(see, for example, Schönbucher (2003), and the sources cited therein).

In this section, we review the work of Zhou et al. (2006), who estimate
private firm default probabilities over a one year time horizon, given side
information, which includes financial ratios, economic indicators, and market
prices. They estimate their model via the `1-regularized maximum-likelihood
methods described in Section 9.2.2.

This approach, which can be viewed as a generalization of linear logistic
regression, is flexible enough to conform to certain nonlinearities in the data,
but avoids overfitting. A comparison with various benchmark models indicates
that the model produced by this approach performs well (in the sense of the
utility-based performance measure described in Section 8.3.2) with respect to
the benchmark models.

12.1.1.1 Modeling Method

Let x denote the vector of explanatory variables (which are listed in Section
12.1.1.4, below). Let the random variable Y ∈ {0, 1} indicate default (Y = 1)
or survival (Y = 0) over the one year time interval starting from the date
of observation of x ∈ Rd. We can imagine a conditional horse race setting,
where, given x, there are two horses corresponding to the two states: survival
and default, with market makers who will accept bets on either outcome and
pay odds ratios, corresponding to the “winning horse.” For investors with
generalized logarithmic utilities, as we have seen in Chapter 10, these odds
ratios drop out. The goal is to estimate the conditional probability measure
p(y|x) = Prob(Y = y|x) closest to prior beliefs that is consistent with the
feature expectation constraints.

Training data consist of the pairs
(

x(k), y(k)
)

, k = 1, . . . , N . Individual firms
are observed annually and therefore can appear several times. All observations
over all times and all firms are collected; these observations are indexed by

sitions, over various future time horizons. Their approach is built around the notion of the
deteriorating value of side information (that is, the value of the information contained in
the explanatory variable values declines as the side information “ages” and the model is
applied to times further and further in the future). They define the value of side information
in economic terms, in the conditional horse race setting described in this book, report that
the predictive variables that they examine exhibit pronounced information value decay,
and benchmark models that incorporate this decay against alternative approaches; they
find that the models that incorporate this decay outperform the benchmark models, on the
datasets they examine.
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the superscript. The order of the observation does not matter. Under the
assumption that the x vectors are unique,4 these data generate empirical
probability measures

p̃(x) =
1

N
Ix∈X (12.1)

and
p̃(y|x) = Iy=ỹ(x), (12.2)

where X =
{

x(1), . . . , x(N)
}

, I is the indicator function, and ỹ is the observed
Y -value corresponding to x. That is, p̃(x) represents the observed frequency
of a particular x and p̃(y|x) represents the observed frequency of y, given x.

The model makes use of two fundamental notions:

(i) a prior probability measure (the model that we believe before we observe
data), p0, and

(ii) a vector of features, f .

The `1-regularized likelihood maximization problem is given by

Problem 12.1 (`1-Regularized Maximum Likelihood)

Find β∗ = arg max
β∈RJ



L(p(β)) − α
∑

j

|βj|



 , (12.3)

where L(p) =
1

N

N
∑

k=1

log p
(

y(k)|x(k)
)

(12.4)

is the log-likelihood function,

p(β)(y|x) =
1

Zx
p0(y|x)eβT f(y,x) (12.5)

and Zx(β) =
∑

y

p0(y|x)eβT f(y,x) . (12.6)

This method (discussed in Sections 9.2.2 and 10.1.5) combines

(i) a large dictionary of nonlinear features that provides enough flexibility
for the model to conform to the data, and

(ii) a consistent method to eliminate unnecessary features and regularize
the model to avoid overfitting.

4It is assumed that each x occurs only once to simplify notation. It is possible to lift this
restriction.
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We note that linear logistic regression, given by

p(1|x) =
1

1 + e−
P

i βixi
, (12.7)

where the parameters, βi, are chosen to maximize the likelihood function, is
a special case of Problem 12.1. In this case, there is no regularization (i.e.,
α = 0), the features are of the form fj(y, x) = (y − 1

2)xj, and the prior is
independent of x.

As has been indicated in Section 9.2.2, `1-regularized methods often lead
to models in which certain features do not contribute to the optimal model
at all, i.e., certain elements of the vector β∗ are zero.

The x-independent prior probability measure is assumed to be

p0(1|x) =
1

N

N
∑

k=1

p̃(1|x(k)). (12.8)

The estimation procedure incorporates four types of features:

(i) Linear features

f(y, x) =

(

y − 1

2

)

xj (12.9)

where xj denotes the jth coordinate of x, with the convention that
x0 = 1.

(ii) Quadratic features

f(y, x) =

(

y − 1

2

)

xixj , and (12.10)

(iii) Cylindrical kernel features

f(y, x) =

(

y − 1

2

)

g(l(x)) (12.11)

where l(x) = xj and l(x) = xi ± xj, where i = 1, 2, ...d, j = 1, 2...d and

i 6= j, and g(x) = e−
(x−a)2

σ2 .

(iv) Two-dimensional kernel features

f(y, x) =

(

y − 1

2

)

g(l(x)) (12.12)

where l(x) represents a 2-dimensional subvector of x ∈ Rd, and g(x) =
1

2πσ2
j

exp[− (x−ξi)
2

2σ2
j

], where ξi, i = 1, 2, ...m are local centers of x and σj,

j = 1, 2, ...n are bandwidths.
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12.1.1.2 Numerical Procedure

The estimation makes use of the numerical procedure, described in Riezler
and Vasserman (2004), that approximately solves Problem 12.1. The opti-
mal hyperparameter value, α∗, was chosen to maximize a 5-fold out-of-sample
average performance (see Zhou et al. (2006) for details). Once α∗ was deter-
mined, all the training data were used to train a final version of the model.

12.1.1.3 Benchmark Models

The model was benchmarked against the linear logit, additive logit, and
additive probit models, which are described in this section.

The additive logit and probit models are generalizations of the logit and
probit models; these generalizations depend on transformations φi(xi), such
as those described, for example, in Falkenstein (2000); the functions, φi(xi),
are themselves models of default frequency as a function of each univariate ex-
planatory variable. The parameters, βi, are chosen to maximize the likelihood
function.

The additive logit model is given by

p(1|x) =
1

1 + e−
P

i βiφi(xi)
. (12.13)

The additive probit model is given by

p(1|x) =

∫

P

i βiφi(xi)

−∞

1√
2π
e−

z2

2 dz. (12.14)

12.1.1.4 Variables and Data

The data were drawn from the Standard and Poor’s Credit Risk Tracker
North America database, consisting of historical data (about 77,000 observa-
tions of 24 explanatory variables and a one-year default indicator, collected
between 1995-2002). The explanatory variables that were used5 were:

1. Net Income,

2. Equity / Total Assets,

3. 4-Quarter Moving Average Industrial Production,

4. Cash over Total Liabilities,

5. Current Liabilities,

6. 4-Quarter Moving Average Delinquency Rates,

5Zhou et al. (2006) have selected these variables from a much larger set of candidate vari-
ables via a step-forward selection process.
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7. Year-over-Year Change in Net Sales,

8. EBITDA Margin (EBITDA / Net Sales),

9. Asset Turnover (Net Sales / Average Total Assets),

10. Total Liabilities and Net Worth,

11. Average 3-Month Treasury Yield (quarterly),

12. Total Liability / Equity,

13. 4-Quarter Moving Average Change in Nonrevolving Consumer Credit,

14. Working Capital Ratio, which is defined as (Current Assets-Current
Liabilities) / Total Assets,

15. Retained Earnings,

16. Industry Average Year-over-Year Change in Sales,

17. Industry Average S&P Credit Rating,

18. CBOE Volatility Index (VXO),

19. Industry Median Distance to Default,

20. Industry Median One-Year Stock Price Rank, and

four industry-sector indicator variables.6 All variables were rank transformed.
Defaults in this dataset were consistent with the definition given in Basel

Committee on Banking Supervision (2003)).
Features were constructed as indicated in Section 12.1.1.1 on the raw vari-

ables described above. The candidate set of features contained 1,379 features.
Only 79 were selected by the procedure described in Section 12.1.1.2.

12.1.1.5 Benchmarking

The model produced using the method described in Section 12.1.1.1, and the
data and explanatory variables described in Section 12.1.1.4, was compared
with the benchmark approaches described in Section 12.1.1.3.

Table 12.1 shows average performance measure results (from 5-fold cross
validation on out-of-sample datasets) for three benchmark models.

6In order to determine the relevant groups of industries, Zhou et al. (2006) categorized the
firms under consideration into the following four broad industry groups:

1. Agriculture, mining, oil and gas extraction, manufacturing;

2. Wholesale and retail trade, eating and drinking places, repair services, motion pic-
tures;

3. Utilities, transportation, real estate, hotels; and

4. Printing and publishing, contractors, and other services.
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TABLE 12.1: 5-fold cross validation performance measure
averages. We express ∆ (described in Section 8.3.2) and Model
Value (described in Section 8.6) with respect to the prior measure
p0. (We take S = $1 billion and B = 1.05.)

Model ROC ∆log Monetary Value
(bps) (in Millions of Dollars)

Linear logistic model 0.8512 75.35 3.97
Additive logit model 0.8413 70.98 3.74
Additive probit model 0.8425 69.94 3.68
`1-Regularized model 0.8622 81.51 4.30

Table 6.1 displays the results of statistical tests (DeLong et al. (1988)),
on ROC curves from the two models, which indicate that the `1-regularized
model significantly outperformed, at 5% level, the linear logit model four out
of five times.

TABLE 12.2: Statistical test results on 5 pairs of
out-of-sample ROC curves.

`1-Regularized model ROC Linear Logit ROC p-value
0.8534 0.8413 0.0190
0.8826 0.8716 0.0336
0.8557 0.8370 0.0067
0.8695 0.8590 0.0325
0.8496 0.8469 0.3580

All one-year default probabilities on a pure hold-out dataset containing
15,207 firm-year observations including 258 defaults were computed. These
firm-year observations were not used in the model training. The ROC values
for the `1-regularized model and the linear logit model were 0.8275 and 0.8155,
respectively. The statistical test, described in DeLong et al. (1988), on the
null hypothesis that the `1-regularized model is no better than the linear
logit model, shows that the `1-regularized model significantly outperforms
the linear logit model, with a p-value of 0.0060 (i.e., the null hypothesis is
rejected with a confidence of 99.4%) .

12.1.2 A Debt Recovery Model

The value of a debt security depends to a large extent on the probability of
default and the probability distribution of recovery given default (RGD). In
this section, we review the work of Friedman and Sandow (2003c), who con-
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sider discounted recovery rates of defaulted debt at the time that the obligor
emerges from bankruptcy. They estimate the conditional probability distri-
bution of the discounted recovery rate as a function of collateral, debt below
class, debt above class, and economy-wide default rates. This estimation was
based on the utility-based estimation described in Chapter 10. The model’s
performance is also measured in economic terms along the lines indicated in
Chapter 8. Numerical studies indicate that this model has a clear advantage
over certain models under which the recovery rate is β-distributed.

12.1.2.1 Conditional Probabilities

Let x denote a vector of explanatory variables, which are quality of collat-
eral, debt below class, debt above class, and the aggregate (US economy-wide)
default rate. Let the random variable R denote the (discounted ultimate) re-
covery rate of a defaulted debt instrument7 (with its values denoted by r).
R is assumed to take values in the interval I = [0, rmax], where rmax = 1.2
as the data suggest.8 The conditional probability of the recovery rate, R, is
estimated under the condition that the explanatory variables have values x.
It is assumed that there is a continuous probability density function (pdf) in
the interval I = [0, rmax] and positive probabilities at the points R = 0 and
R = 1,9 i.e., the probability measure is assumed to be of the form

p(r|x) = pI(r|x) + p0(x)δ(r) + p1(x)δ(r − 1) , (12.15)

where δ denotes Dirac’s delta function. Here, pI(r|x)dr is the probability that
R ∈ (r, r + dr)\{0, 1} given x, p0(x) is the probability that R = 0 given x,
and p1(x) is the probability that R = 1 given x. This measure is normalized
as follows:

1 = lim
ε→0

−

∫ rmax

ε

p(r|x)dr =

∫ rmax

0

pI(r|x)dr+
∑

ρ=0,1

pρ(x) . (12.16)

(Below we will write
∫

I
instead of limε→0−

∫ rmax

ε
.)

12.1.2.2 Maximum Expected Utility Principle and Dual Problem

The modeling approach used is described in Section 10.2 with a generalized
logarithmic utility function, U(W ) = η0 log(W−γB)+η1 . We can imagine the

7Here, R = 0 corresponds to zero recovery, and R = 1 corresponds to complete recovery.
The value at emergence from bankruptcy was discounted to the last date on which a cash
payment was made, based on the coupon of the debt.
8Sometimes, debt is exchanged for equity before emergence; increases in equity values can
lead to discounted recoveries greater than 1. This was the case for about 3.5% of the
observations.
9The point probabilities were introduced to account for the fact that roughly 10% of the
observations have R = 0, and roughly 20% have R = 1.
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setting as a continuous horse race with market makers who pay odds ratios
if a particular horse (recovery value) “wins.” As we have seen in Chapter
10, these odds ratios drop out for the logarithmic family that is used. In
this setting, the MRE primal problem arises as the solution to the problem
of finding the conditional probability measure closest to prior beliefs that is
consistent with the feature expectation constraints. This means that, for each
value α, the Pareto optimal measure is found by minimizing, over measures p,
the discrepancy (Kullback-Leibler relative entropy) between p and the prior
measure p0 = p0

I(r|x) + p0
0(x)δ(r) + p0

1(x)δ(r − 1):

D(p‖p0) =
∑

x

p̃(x)

{∫ rmax

0

pI(r|x) log
pI(r|x)
p0

I(r|x)
dr

+
∑

ρ=0,1

pρ(x) log
pρ(x)

p0
ρ(x)

}

, (12.17)

subject to NcT Σ−1c ≤ α , (12.18)

with c = Ep[f ] − Ep̃[f ] , (12.19)

Ep[f ] =
∑

x

p̃(x)

∫

I

p(r|x)f(r, x) dr (12.20)

and Ep̃[f ] =
∑

x

p̃(x)

∫

I

p̃(r|x)f(r, x) dr . (12.21)

Here, f(r, x) = (f1(r, x), . . . , fJ(r, x))T is the vector of features, p̃ denotes the
empirical distribution, N is the number of observations, and Σ is the empirical
covariance matrix of the features. The solutions to the above optimization
problems form a family of measures which is parameterized by α. Each of
these measures is robust in the sense that it maximizes the worst-case (over all
potential true measures) outperformance relative to the prior measure. After
computing a number of these measures, the hyperparameter value associated
with the best out-of-sample performance, as measured by the expected utility
for an investor with a generalized logarithmic utility (see Sections 8.5 and
8.3.2), is selected.

As we have seen in Section 10.2.3, the dual of the above optimization prob-
lem is the following:

Find β∗ = arg max
β

h(β) (12.22)

with h(β) =
1

N

N
∑

k=1

log p(β)(rk|xk) −
√

α

N
βT Σβ (12.23)

with p(β)(r|x) =
1

Zx(β)
eβT f(r,x) (12.24)
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and

Zx(β) =

∫ rmax

0

p0
I(r|x)eβT f(r,x)dr +

∑

ρ=0,1

p0
ρ(x)e

βT f(ρ,x) , (12.25)

where the (xk, rk) are the observed (x, r)-pairs and β = (β1, . . . , βJ)T is a
parameter vector. The optimal (in the sense of the dual and of the original
optimization problem) probability measure is then:

p(r|x) = p(β∗)(r|x)p0(r|x) . (12.26)

The problem (12.22)-(12.25) amounts to a regularized maximum likelihood
estimation, or an expected utility maximization, of the parameter vector β

for an exponential distribution. The regularization term,
√

α
N β

T Σβ, penal-

izes large β vectors by an amount proportional to
√
α. This dual perspective

on regularization and the role of α is consistent with the primal perspective.
We note that the dual formulation of the problem leads to a J-dimensional
optimization problem (the primal problem is an infinite dimensional problem).
The dual formulation is used to numerically find this optimal measure.10 The
objective function of the maximization problem (12.22)-(12.25) is strictly con-
cave. For this reason, the problem is amenable to a robust numerical solution.
In particular, as a consequence of convex optimization theory, the solution
depends continuously on the data, and the solution is unique.

For the data and features of this problem, the results depend little on the
prior measure; the results described below were obtained for the following
convenient choice:

p0(r|x) =
1

2 + rmax
[1 + δ(r) + δ(r − 1)] . (12.27)

12.1.2.3 Features

The features we use here can be partitioned into two classes:

• Global features: fj(r, x) is defined on the whole interval I = [0, rmax] for
r.

• Point features: fj(r, x) is defined only for r = 0 or for r = 1.

12.1.2.4 Global Features

Global features are of the type

fj(r, x) = rnxm
i , where xi is the ith component of x, (12.28)

10For a practical implementation, we can drop the square root in the second term of (12.23);
the resulting family, indexed by α, of solutions is the same (see Section 2.2.9, Theorem 2.13).
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with n = 1, 2, 3 and m = 0, 1. Using such features, we obtain

Ep[r
nxm

i ] − Ep̃[r
nxm

i ] = cj. (12.29)

These features force the theoretical (noncentered) covariances of rn and xm
i

to coincide with the empirical ones — up to the features-error term cj .

12.1.2.5 Point Features

Point features are of the form

fj(r, x) =

{

xm
i if r = ρ, where xi is the ith component of x

0 otherwise,
(12.30)

where m = 0, 1 and ρ = 0, 1. In this case, the features equation, (12.19),
becomes:

Pr(r = ρ)Ep[x
m
i |r = ρ] − P̃ r(r = ρ)Ep̃[xm

i |r = ρ] = cj , (12.31)

where Pr(r = ρ) (P̃ r(r = ρ)) is the probability of finding r = ρ under the
model (empirical) measure.

12.1.2.6 Evaluating Model Performance

Model performance was measured via the scaled log-likelihood difference,
∆log , between the model and the (noninformative) prior measure, as estimated
on an out-of-sample dataset (see Chapter 8). This performance measure is
given by

∆log(p) =
1

N

N
∑

k=1

logp(β∗)(rk|xk) , (12.32)

where the (xk, rk) are the (x, R)-pairs and N the number of observations of
the test sample (recall that p(r|x) = p(β∗)(r|x)p0(r|x) according to (12.26)).
As we have seen in Chapter 8, ∆log can be interpreted as the gain in expected
logarithmic utility experienced by an investor who uses the model p to design
a utility-optimal investment strategy, where the gain is measured with respect
to an investor who has no information beyond his prior beliefs and therefore
invests according to the prior measure, p0.

To compute the performance measure, ∆log , the data were randomly split
into two parts, one with 75% of the (≈ 1400) observations and another one
with the remaining 25%. The model was trained on the first dataset and
tested on the second one. This procedure was repeated 120 times to ensure
the reliability of the results.

In order to get an idea what kind of values to expect for the performance
measure, ∆log was compared with analogous quantities associated with the
following simple models:
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1. Naive model:

p0(x) = w0 , p1(x) = w1 , pI(r|x) =
1 − w0 − w1

rmax
, (12.33)

where w0 and w1 are the observed frequencies of finding R = 0 and R = 1.

2. Simple β-model: this model — probably the most widely used method to
estimate conditional recovery rates — is built by means of a linear regres-
sion of a transformed R on the explanatory variables, where R is transformed
such that it becomes approximately normal under the assumption that it is
originally β-distributed and has no point probabilities at R = 0 and R = 1.
For the latter problem, there are no point probabilities at R = 0 or R = 1 as
for the ultimate recoveries studied here, so that a β-distribution might be a
reasonable approximation.

3. Generalized β-model: This model generalizes the β-distribution by in-
cluding the point probabilities (p0 and p1) at R = 0 and R = 1. It as-
sumes that p0(x) and p1(x) are linear logistic functions of x, and that the
density pI(r|x) on the interval I = [0, rmax] is a β-distribution, i.e., that

pI(r|x) ∝
(

r
rmax

)κ1(x) (

1 − r
rmax

)κ2(x)

, where κ1(x) and κ2(x) are linear in

the explanatory variables, x. Model parameters were estimated by maximizing
the log-likelihood, i.e., by maximizing the investor’s expected utility.

12.1.2.7 Data

The ultimate discounted recovery values from Standard & Poor’s US
LossStatsTMDatabase (for more details on the database see Bos et al. (2002))
were used. The database contains loans and bonds that have defaulted and
emerged since 1988. There are a few recoveries larger than 1.2 which were
excluded, leaving a sample of about 1,400 observations. The following factors
were used as explanatory variables:

1. Collateral quality. The collateral quality of the debt was classified into
17 categories, ranging from “unsecured” to “all assets,” and then ranked
(see Table 12.3). The model was based on this rank.

2. Debt below class. This is the percentage of debt on the balance sheet
that is inferior to the class of the debt instrument considered.

3. Debt above class. This is the percentage of debt on the balance sheet
that is superior to the class of the debt instrument considered.

4. Aggregate default rate. This is the percentage of S&P-rated US bonds
that default within the twelve months prior to bankruptcy announce-
ment.

The data for the first three variables were drawn from Standard & Poor’s US
LossStatsTMDatabase, and the data for the fourth variable were drawn from
Standard & Poor’s CreditPro R©. All data are available at the time of default.
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TABLE 12.3: Collateral Ranks.
(This table originally appeared in
Friedman and Sandow (2003c).)

Collateral Rank
All assets 1
Most assets 2
Cash 3
Inventories/receivables 4
All Noncurrent assets 5
Non-current Assets 6
PP&E 7
Equipment 8
O&G reserves 9
Real estate 10
Guarantee 11
Capital stock of operating units 12
Intercompany debt 13
Second lien 14
Intellectual property 15
Unsecured 16

12.1.2.8 Results

The performance of this model was measured by means of ∆log (see Sections
8.5 and 8.3.2). The result is ∆log = 0.63. We can interpret ∆log as the dif-
ference in the expected utilities or, equivalently, in the wealth growth rates,
that result from two investment strategies: one based on the target model
and another one based on a (noninformative) prior probability measure. This
means that the wealth of the investor using the utility-based model grows by
e0.63 − 1 ≈ 0.88, i.e., by approximately 88%, faster than the wealth of an in-
vestor who knows only the noninformative prior measure. This wealth growth
pickup is large; however, we note that 88% is only a relative wealth growth
rate. This does not mean that the investor realizes this wealth growth.

For comparison, Table 12.4 shows the performance measure ∆log for the
simple β-model, the naive model, and the generalized β-model from Section
12.1.2.6. The first two of these models perform much worse than the utility-
based model. The generalized β-model is closer to the utility-based model;
however, the difference of 0.16 (i.e., 16%) in the expected wealth growth rate
is substantial.

Figure 12.1.2.8 shows the conditional probability density as a function of
each of the explanatory variables and the recovery rate. The shapes of these
functions are consistent with our intuition: the better the collateral, the debt
superiority, or the economic environment, the more likely is a high recovery.
We can also see from the figure that the effect of collateral, debt below class,
and debt above class on recoveries is very strong, while the effect of the ag-
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TABLE 12.4: Gain in
expected utility (wealth
growth rate), ∆log , for various
models (see Section 12.1.2.6
for the definition of ∆log and
the models). (This table
originally appeared in
Friedman and Sandow
(2003c).)

Model ∆log

Simple β-model 0.07
Naive model 0.25
Generalized β-model 0.47
Utility-based model 0.63

gregate default rates is weaker. One can also observe that the recoveries are
highly uncertain. This is consistent with the results from Van de Castle and
Keisman (1999) and Bos et al. (2002).

Figure 12.1.2.8 shows some curves of the same probability density together
with the actual data. We can see from this picture that the probability densi-
ties are consistent with the data: highly concentrated data points correspond
to high model densities.

Figure 12.1.2.8 shows the conditional probabilities of finding R = 0 or
R = 1. The model probabilities are consistent with our intuition and with the
data. Better collateral, capital structure, and economic environment variables
are associated with higher probabilities that R = 1 and lower probabilities
that R = 0.

Figure 12.1.2.8 shows the conditional averages and standard deviations that
the model predicts for the recovery rates. They are also consistent with our
intuition: the better the collateral, the debt superiority, or the economic envi-
ronment, the greater the expected recovery. Note that the standard deviation
is generally high (mostly in the range of 0.3 to 0.4).

12.1.3 Single Period Conditional Ratings Transition Proba-
bilities

Many investors who are concerned about default risk rely on credit ratings
produced by rating agencies, such as Standard & Poor’s, Moody’s KMV,
Fitch, A. M. Best Company, and Dominion Bond Rating Service. The value of
debt of high credit quality, for which the chance of default is remote, depends
strongly on the obligor rating. For this reason, investors are interested in
a firm’s ratings transition probability vector. Many risk management tools
depend strongly on ratings transition assumptions. Often, historical average
rating transition rates are input to such models; however, such average rates
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FIGURE 12.1: Conditional probability density (PDF) as a function of each
explanatory variable and the recovery given default (RGD). For each plot, the
remaining variables are chosen to be in the middle of their observed ranges.
(These plots originally appeared in Friedman and Sandow (2003c).)
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FIGURE 12.2: Conditional probability density (PDF) as a function of
each explanatory variable and the recovery given default (RGD), and actual
data. For each plot, the remaining variables are chosen to be in the middle
of their observed ranges. The lines represent the probability density, and the
dots represent observed data. (These plots originally appeared in Friedman
and Sandow (2003c).)
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FIGURE 12.3: Conditional point probabilities for recovery given default
(RGD) of zero and one. The lines represent the conditional probabilities. The
balls represent observed data; the size of the balls is proportional to the num-
ber of observations at the same position. (These plots originally appeared in
Friedman and Sandow (2003c).)
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FIGURE 12.4: Conditional average and standard deviation of the recovery
given default (RGD) as functions of each explanatory variable. For each plot,
the remaining variables are chosen to be in the middle of their observed ranges.
(These plots originally appeared in Friedman and Sandow (2003c).)



368 Utility-Based Learning from Data

may not accurately capture the transition probabilities at a given point in
time. Moreover, such rates ignore current firm specific side information that
could better inform a conditional probability model. For these reasons, it is
interesting to estimate the conditional probability model for ratings transition.

In the case of the Standard & Poor’s ratings system, there are 20 categories:

{AAA,AA+, AA,AA−, A+, A, A−, BBB+, BBB,BBB−,
BB+, BB,BB−, B+, B, B−, CCC+, CCC, CCC−, D}.

We discuss a way to estimate the probability distribution over these 20 cat-
egories, given the current rating and other explanatory variables, including
ratios derived from financial statements and macroeconomic variables.

That is, we seek a model of the form P (Y = y|x), where the random variable
Y denotes a rating that the analyst might give at the end of some fixed time
horizon, with Y = y ∈ {1, . . . , 20} and x ∈ Rd denotes a vector of explanatory
variables, including the current rating. We might imagine a logarithmic util-
ity investor participating in a conditional horse race setting, where, given the
explanatory variable values, there are market makers who will pay off odds
ratios on the various horses (y-values), depending on which horse (rating)
“wins.” As we have seen, we can formulate a minimum relative entropy prob-
lem formulation or we can solve the dual problem — a maximum-likelihood
problem (with or without regularization) over an exponential family. For this
MRE formulation, with logarithmic utility, as we have seen, the odds ratios
will drop out of the problem formulation. Given the finite number of states,
this problem can be viewed as mathematically equivalent to the recovery rate
distribution problem of the preceding section, except, since the states are dis-
crete in this context, the integrals are replaced by sums. In the remainder
of this section, we describe how such a method could be used to estimate
conditional rating transition probabilities.

12.1.3.1 Modeling Method

Our training data would consist of the pairs
(

x(k), y(k)
)

, k = 1, . . . , N . In-
dividual rated firms would be observed annually and could therefore appear
numerous times. We would collect all observations, over all times and all firms;
these observations are indexed by the superscript. The order of the observation
would not matter.11 Under the assumption, which holds in practical applica-
tions, that the x vectors are unique,12 these data would generate empirical
probability measures

p̃(x) =
1

N
Ix∈X (12.34)

11The model would be sensitive to the economic cycle since some of the explanatory vari-
ables are macroeconomic quantities.
12We make the assumption that each x occurs only once to simplify notation. It is possible
to lift this restriction.
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and
p̃(y|x) = Iy=ỹ(x), (12.35)

where X =
{

x(1), . . . , x(N)
}

, I is the indicator function, and ỹ is the observed
Y -value corresponding to x. That is, p̃(x) would represent the observed fre-
quency of a particular x and p̃(y|x) the observed frequency of y, given x.

Our model would make use of two fundamental notions:

(i) a prior probability measure (the model that we believe before we observe
data), p0,

(ii) a vector of features, f .

The `1-regularized likelihood maximization problem is given by

Problem 12.2 (`1-regularized Maximum Likelihood)

Find β∗ = arg max
β∈RJ



L(p(β)) − α
∑

j

|βj|



 , (12.36)

where L(p) =
1

N

N
∑

k=1

log p
(

y(k)|x(k)
)

(12.37)

is the log-likelihood function,

p(β)(y|x) =
1

Zx
p0(y|x)eβT f(y,x) (12.38)

and Zx(β) =
∑

y

p0(y|x)eβT f(y,x) . (12.39)

We take as a prior probability measure the x-independent measure

p0(y|x) =
1

N

N
∑

k=1

p̃(y|x(k)). (12.40)

12.1.3.2 Features

We would use features of the form

fj(y, x) = ynxm
i , where xi is the ith component of x, (12.41)

with n = 1, 2, 3 and m = 0, 1. Using such features, we would obtain

Ep[y
nxm

i ] − Ep̃[y
nxm

i ] = cj. (12.42)

These features would force the theoretical (noncentered) covariances of yn and
xm

i to coincide with the empirical ones — up to the features-error term cj .
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12.1.3.3 Numerical Procedure

We could estimate the models via a numerical procedure, described in Rie-
zler and Vasserman (2004), that approximately solves Problem 12.2.

We would seek the hyperparameter value, α, in Problem 12.2 that would
maximize performance on an out-of-sample dataset. The procedure is as fol-
lows.

1. Randomly partition the entire training dataset into five portions. The
splitting is purely random. Each one-year observation of a firm appears
in only one partition. If a firm has multiple year observations, the firm
may or may not appear in different partitions.

2. For a given candidate α,

(a) Hold one portion as an “out-of-sample dataset,” and build a model
on the combined complementary four portions;

(b) Evaluate the model on the “out-of-sample dataset” and record the
value of model performance measure (log-likelihood).

(c) Repeat the above two steps five times. Each time we hold a different
portion as the “out-of-sample dataset;”

(d) Calculate the average performance measure over the five times of
evaluation.

3. Repeat step two for all candidate α values, producing a curve of the
average “out-of-sample” performance measure vs. α values.

4. Determine the optimal α which maximizes the average performance
measure on the “out-of-sample datasets.”

After the optimal α value has been determined, we use all the training data
to train a final version of the model.

12.2 The Gail Breast Cancer Model

In this section, we briefly review the Gail breast cancer model described in
Gail et al. (1989), which is used to generate risk estimates that allow decision
makers to weigh various breast cancer prevention options, including chemo-
prevention and tamoxifen. Specifically, the model provides an estimate of the
probability that a woman will develop breast cancer over a specified interval,
given her age, age at menarche, age at first live birth, number of previous
biopsies, and number of first degree relatives (parents, siblings, and children)
with breast cancer.
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Gail et al. (1989) decompose the problem of estimating the probability of
developing breast cancer into three subproblems:

(i) attribute selection, and relative risk estimation, for a woman at a given
age conditioned on risk factors, relative to a woman who does not have
those risk factors,

(ii) baseline age-specific breast cancer incidence rate estimation for a woman
who does not have the risk factors described in (i), above, and

(iii) estimation of the long-term probability of developing breast cancer, tak-
ing into account competing risks, as well as (i) and (ii) above.

The Gail model was developed using data from the Breast Cancer Detection
Demonstration Project (BCDDP). For specific details regarding the selection
of data, see Gail et al. (1989). In the next few sections, we briefly describe the
above three subproblems.

12.2.1 Attribute Selection and Relative Risk Estimation

Attributes were determined and relative risk was estimated based on an
extension of a case-control study. Cases were drawn from white BCDDP par-
ticipants with in situ or invasive cancer incident between 1973 and 1980,
but not prevalent at the first screening. Controls were matched from women
who did not receive a recommendation for biopsy over the same period. The
matching variables were

(i) age at entry into the screening program in 5-year age groups,

(ii) race,

(iii) center at which the participant was screened,

(iv) calendar time of entry into the screening program within 6 months, and

(v) length of participation in the screening program.

The analysis was based on 2,852 white cases with 3,146 white controls, with
4,496 matched pairs.

A variety of potential explanatory factors were considered individually. Fac-
tors that did not affect the risk of developing breast cancer or affected a very
limited number of women were eliminated. The five factors on which the model
were based, which were identified in earlier studies, were

(i) age (AGECAT = 0 for age less than 50 years and AGECAT = 1 for age
50 years or more),

(ii) age at menarche (AGEMEN = 0 for age at menarche ≥ 14, 1, for age
at menarche = 12 or 13, and 2, for age at menarche < 12),
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(iii) number of previous breast biopsies (NBIOPS = 0, for no previous biop-
sies, 1, for 1 previous biopsies, and 2, for 2 or more previous biopsies),

(iv) age at first live birth (AGEFLB = 0, for age of first live birth < 20, 1
for age of first live birth ∈ [20, 24], 2 for age of first live birth ∈ [25, 29],
and 3, for age of first live birth ≥ 30 ),

(v) and number of first-degree relatives (mother or sisters) with breast can-
cer (NUMREL = 0, for no first-degree relatives, 1, for 1 first-degree
relative, and 2, for 2 or more first-degree relatives).

A logistic regression (see Section 10.2.3.5)was performed on the case-control
data with the preceding five variables, as well as the quadratic interaction
terms

(i) NBIOPS × AGECAT, and

(ii) AGEFLB× NUMREL,

to produce an estimate for p(Y = 1|x), where Y = 1 denotes an incidence of
cancer over the test period and x denotes the vector

(AGECAT,AGEMEN,NBIOPS,AGEFLB,NUMREL,

NBIOPS × AGECAT,AGEFLB× NUMREL).

This resulted in the model

log
p(Y = 1|x)

1 − P (Y = 1|x) = −0.74948 + 0.09401(AGEMEN) + 0.52926(NBIOPS)

+0.21863(AGEFLB) + 0.95830(NUMREL)

+0.01081(AGECAT) − 0.28804(NBIOPS × AGECAT)

−0.19081(AGEFLB× NUMREL). (12.43)

When viewed from the perspective of a profit-oriented insurance company,
in our horse race context, the two states (horses, Y = 1 and Y = 0) correspond
to contracting cancer or not. The odds ratios can be thought of as payments
in either state — perhaps a payment from an idealized insurance policy, if
Y = 1, or from an idealized annuity if Y = 0.13

12.2.2 Baseline Age-Specific Incidence Rate Estimation

Next, the authors estimate the baseline incidence rate; that is, the inci-
dence rate for a woman without the risk factors (with explanatory variable
values AGEMEN=0, NBIOPS=0, AGEFLB=0, and NUMREL=0). Let h∗1(t)

13We provide this example for illustrative purposes; we do not suggest that such financial
instruments exist at this time.
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denote the incidence rate, over the entire (composite) BCDDP set, associated
with breast cancer. In this notation, the superscript ∗ signifies that this is a
composite incidence rate; the subscript 1 signifies that this incidence rate is
associated with breast cancer — other incidences (competing causes of death)
have subscript 2. The goal in this section is to estimate h1(t), the baseline
incidence rate.

To do so, the authors, using the five discrete raw explanatory variables,
partition the dataset into I = 2× 3× 3 × 4 × 3 = 216 risk groups. They then
let Pi(t) denote the proportion of women of age t in risk group i. Then

h∗1(t) =

I
∑

i=1

Pi(t)h1(t)ri(t), (12.44)

where ri(t) denotes the relative risk of the ith risk group, relative to the
baseline group. Let ρ̂i(t) denote the observed proportion of cases aged t in
risk group i. Then ρ̂i(t) is an estimate for

ρi(t) =
Pi(t)h1(t)ri(t)

h∗1(t)
. (12.45)

Dividing by ri(t), multiplying by h∗1(t), and summing over i, the authors
obtain

h1(t) = h∗1(t)
I
∑

i=1

ρi(t)

ri(t)
≡ h∗1(t)F (t). (12.46)

The authors estimate h∗1(t) from the general population, ρ̂i(t) from the
cases, and r̂i(t) from the case control study, and substitute into (12.46) to
obtain an estimate for h1(t).

12.2.3 Long-Term Probabilities

With age-dependent relative risk given by (12.43) and denoted by r(t),
and baseline age-specific incidence rates h1(t) and h2(t), the authors apply
standard methods in competing risk analysis to compute the probability that
a woman of age a who has age-dependent relative risk r(t) will develop breast
cancer by age a+ τ

P {a, τ, r(t)} =

∫ a+τ

a

h1(t)r(t)e
−

R

t

a
h1(u)r(u)du S2(t)

S2(a)
dt, (12.47)

where
S2(t) = e−

R

t

0
h2(u)du. (12.48)
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12.3 A Text Classification Model

In this section, we review the work of Genkin et al. (2006), which discusses
a particular automated approach to text classification — the classification of
a document written in natural language into one of two or more categories.
Genkin et al. (2006) solve the `1-regularized maximum-likelihood problem
(over an exponential family of models) described in Chapters 9 and 10 and
produce models trained and tested on three text categorization collections.
Each of these collections consists of a large number of natural language doc-
uments that human beings, after an enormous amount of work, have catego-
rized. The documents in each collection contain tens of thousands of unique
terms, the frequencies of which serve as possible explanatory variables for the
text classification models. Given the huge number of possible explanatory vari-
ables, feature selection is a very important aspect of the text categorization
problem. The models produced are of the form p(Y = y|x), where y ∈ {−1, 1}
denotes membership in a particular category of documents and the explana-
tory variable x is derived from a particular document as discussed below.

The authors benchmark the `1-regularized maximum likelihood models
against two state-of-the-art text categorization methods: support vector ma-
chines (SVMs) and ridge regression. For a general discussion of support vector
machines, see Vapnik (1999). In particular Genkin et al. (2006) benchmark
against SVM-Lite (see http://svmlight.joachims.org/). Ridge regression
was discussed in Chapters 9 and 10 of this book. The authors also provide a
numerical algorithm suitable for such high dimensional optimization problems.
The authors concluded that the models produced via `1-regularized maximum
likelihood were clearly more effective than the ridge regression model and com-
petitive with support vector machine models; moreover, the `1-regularized
maximum likelihood models used only a very small fraction of the set of pos-
sible attributes. It should also be noted that the support vector machines
do not directly produce probabilities (though probability estimates can be
produced by an additional modeling layer).

12.3.1 Datasets

(i) ModApte, a subset of the Reuters-21578 collection of news stories, de-
scribed in Lewis et al. (2004). The Reuters-21578 collection is a test
collection that is often used by text categorization researchers. This
collection of Reuters, Ltd. news articles was collected and labeled by
Carnegie Group, Inc. and Reuters, Ltd. The ModApte subset is a partic-
ular training/testing split of the Reuters-21578 collection — with 9,603
training instances and 3,299 test instances. The training set contained
18,978 unique terms (that is, 18,978 possible explanatory variables). For
further information, see Lewis (2004).
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(ii) RCV1-v2, a collection of 804,414 manually categorized newswire sto-
ries collected by Reuters, Ltd. The authors used the LYRL2004 split,
with 23,149 training documents and 781,265 test documents. According
to Lewis (2004),the RCV1 collection is likely to supersede the Reuters-
21578 collection. The training set contained 47,152 unique terms (pos-
sible explanatory variables).

(iii) Medline (the bibliographic database for the U.S. National Library of
Medicine) records from 1987 to 1991 — part of the OSHUMED test col-
lection described in Hersh et al. (1994)). The authors used a subset of
233,445 records with nonempty title, abstract, and MeSH (Medical Sub-
ject Headings) category fields. The authors used 83,944 documents from
1987 and 1988 to train and 149,501 documents from later years to test.
The training set contained 73,269 unique terms (possible explanatory
variables).

12.3.2 Term Weights

In order to train a conditional probability model, each document must first
be represented as a vector of numerical values. The authors construct such a
vector via the following steps:

(i) They use the Lemur toolkit (see Lemur Project (2007)) to

– tokenize the text into words (using the TreeParser module),

– discard words from the SMART stopword list of 572 words (avail-
able at ftp://ftp.cs.cornell.edu/pub/smart/english.stop),

– remove word endings using the Lemur variant of the Porter stem-
mer.

(ii) They convert each unique term to a numerical value related to14

logTF × IDF, (12.49)

where TF denotes the term frequency and IDF denotes the inverse
document frequency. They then assemble these numerical values into a
vector, with one element for each unique term in the document.

(iii) Finally, they apply the cosine transformation to the above vector to
produce the vector of explanatory variables, where the cosine transfor-
mation of the vector x is given by

x

‖x‖ 1
2

. (12.50)

14For details, they refer the reader to Lewis et al. (2004).
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12.3.3 Models

The authors seek a text classifier y = f(x) from the training examples
D = {(x1, y1), . . . , (xn, yn)}, where the components of x are determined as
described in Section 12.3.2.

This setup can be viewed as a conditional horse race market (see Section
3.5), where, given x, odds ratios Oy|x are paid by a market maker on “horses”
y ∈ {0, 1} (membership in the category under consideration). In this mar-
ket, suppose that an investor with a generalized logarithmic utility function
from Definition 5.4 who allocates according to p(Y = y|x) generated by the
authors manages the tradeoff between consistency with the prior distribution
consistency with the data by solving the `1 regularized MRE problem and the
associated regularized maximum likelihood dual problem of Section 10.1.4. As
we have seen (see Section 10.2.3.5), this setup, with appropriate features, can
lead to logistic regression models.

The authors seek logistic regression models of the form

p(Y = 1|x) =
1

1 + exp(−βT x)
, (12.51)

where y = 1 denotes membership in the category in question. Optimal pa-
rameters for maximum likelihood are found by maximizing

l(β) =

n
∑

i=1

log(1 + exp(−βT xiyi)). (12.52)

Optimal parameters for maximum likelihood ridge regression are found by
maximizing

lridge(β) = l(β) + λ
∑

j

β2
j (12.53)

and optimal parameters for maximum likelihood (`1-regularized) lasso regres-
sion are found by maximizing

llasso(β) = l(β) + λ
∑

j

|βj|, (12.54)

where λ is a hyperparameter selected via cross validation.15

15For the purpose of making a comparative study of models when the number of features
was fixed at 6, 51, and 501, the authors sometimes adjusted the value of λ for the lasso
model, so that the lasso model would select the desired number of features; for more details,
see Genkin et al. (2006).
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12.4 A Fat-Tailed, Flexible, Asset Return Model

Fat-tailed distributions seem to be of particular interest,16 given recent
financial market turbulence sometimes attributed to reliance on models that
do not adequately capture the likelihood of extreme events.17 In this section,
we briefly discuss the work of Friedman et al. (2010b) who describe

(i) an application of the MRUE method with power-law utility,

U(W ) =
W 1−κ − 1

1 − κ
, (12.55)

where κ denotes the investor’s (constant) relative risk aversion,18 for es-
timating fat-tailed probability distributions for continuous random vari-
ables,

(ii) practical numerical techniques necessary for such an undertaking, and

(iii) numerical experiments in which power-law probability distributions are
calibrated to asset return data.

They show that, using MRUE methods, even with relatively simple features, it
is possible to estimate flexible power law (fat-tailed) distributions. A probabil-
ity distribution is said to be a power-law distribution19 if it can be expressed
as

p(y) ∝ L(y)y−α , (12.56)

where α > 1 and L(y) is a slowly varying function, in the sense that

lim
y→∞

L(ty)

L(y)
= 1, (12.57)

where t is constant.
In particular, the authors have shown that by taking the MRUE approach,

with power utility functions and fractional power features, it is possible to

16See, for example, the following recent New York Times articles: Nocera (2009), Bookstaber
(2009), and Safire (2009).
17See the the end of Section 10.3 for a discussion of MRE methods and the calibration of
fat-tailed models.
18As we have mentioned, power utility functions are used widely in industry (see, for ex-
ample, Morningstar (2002)). Moreover, power utility functions have constant relative risk
aversion and important optimality properties (see, for example, Stutzer (2003)).
19Power-law distributions have been proposed for an enormous variety of natural and social
phenomena including website popularity, the popularity of given names, conflict severity,
the number of words used in a document, and financial asset returns (see Gabaix et al.
(2003)). For additional discussion, see, for example, Mitzenmacher (2004), Newman (2005),
and Clauset et al. (2009).
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obtain a rich family of power-law distributions by solving a continuous alter-
native version of the convex programming problem, Problem 10.16, with a flat
prior distribution, odds ratios set according to (10.150), and a power utility.
They note that, given a collection of features, greater relative risk aversion
is associated with fatter-tailed distributions. They also note that a number
of well-known power-law distributions, including the student-t, generalized
Pareto, and exponential distributions, can be obtained as special cases of the
connecting equation associated with MRUE approach with power utility and
linear or quadratic features; the skewed generalized-t distribution is a special
case with power features.

The authors have calibrated such methods to financial asset return data and
reported performance superior to that of alternative benchmark models, with
respect to log-liklihood, which they attribute to the ability of their models to
incorporate fat tails where data are extreme and sparse, with flexibility where
data are more plentiful.
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