

Data Mining

This page intentionally left blank

Data Mining
Know It All

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Soumen Chakrabarti

Earl Cox

Eibe Frank

Ralf Hartmut Güting

Jaiwei Han

Xia Jiang

Micheline Kamber

Sam S. Lightstone

Thomas P. Nadeau

Richard E. Neapolitan

Dorian Pyle

Mamdouh Refaat

Markus Schneider

Toby J. Teorey

Ian H. Witten

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400
Burlington, MA 01803

This book is printed on acid-free paper.

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
scanning, or otherwise, without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Chakrabarti, Soumen.
  Data mining: know it all / Soumen Chakrabarti et al.
    p.  cm. — (Morgan Kaufmann know it all series)
  Includes bibliographical references and index.
  ISBN 978-0-12-374629-0 (alk. paper)
  1.  Data mining.  I.  Title.
QA76.9.D343C446 2008
005.74—dc22	 2008040367

For information on all Morgan Kaufmann publications,
visit our Website at www.mkp.com or www.books.elsevier.com

Printed in the United States
08 09 10 11 12  10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Contents

About This Book..	 ix
Contributing Authors...	 xi

CHAPTER 1	 What’s It All About?...	 1
1.1	 Data Mining and Machine Learning....................................	 1
1.2	 Simple Examples: The Weather Problem

and Others..	 7
1.3	 Fielded Applications...	 20
1.4	 Machine Learning and Statistics...	 27
1.5	 Generalization as Search...	 28
1.6	 Data Mining and Ethics...	 32
1.7	 Resources..	 34

CHAPTER 2	 Data Acquisition and Integration................................	 37
2.1	 Introduction..	 37
2.2	 Sources of Data...	 37
2.3	 Variable Types..	 39
2.4	 Data Rollup...	 41
2.5	 Rollup with Sums, Averages, and Counts..........................	 48
2.6	 Calculation of the Mode...	 49
2.7	 Data Integration..	 50

CHAPTER 3	 Data Preprocessing..	 57
3.1	 Why Preprocess the Data?..	 58
3.2	 Descriptive Data Summarization..	 61
3.3	 Data Cleaning..	 72
3.4	 Data Integration and Transformation.................................	 78
3.5	 Data Reduction...	 84
3.6	 Data Discretization and Concept

Hierarchy Generation...	 98

3.7	 Summary...	 108
3.8	 Resources..	 109

CHAPTER 4	 Physical Design for Decision Support,
Warehousing, and OLAP...	 113

4.1	 What Is Online Analytical Processing?...............................	 113
4.2	 Dimension Hierarchies...	 116
4.3	 Star and Snowflake Schemas..	 117
4.4	 Warehouses and Marts..	 119
4.5	 Scaling up the System..	 122
4.6	 Dss, Warehousing, and Olap

Design Considerations..	 124
4.7	 Usage Syntax and Examples for Major

Database Servers...	 125
4.8	 Summary...	 128
4.9	 Literature Summary...	 129
	 Resources..	 129

CHAPTER 5	 Algorithms: The Basic Methods..................................	 131
5.1	 Inferring Rudimentary Rules...	 132
5.2	 Statistical Modeling...	 136
5.3	 Divide and Conquer: Constructing Decision Trees...........	 144
5.4	 Covering Algorithms: Constructing Rules..........................	 153
5.5	 Mining Association Rules..	 160
5.6	 Linear Models..	 168
5.7	 Instance-based Learning..	 176
5.8	 Clustering..	 184
5.9	 Resources..	 188

CHAPTER 6	 Further Techniques in Decision Analysis.................	 191
6.1	 Modeling Risk Preferences...	 191
6.2	 Analyzing Risk Directly...	 198
6.3	 Dominance..	 200
6.4	 Sensitivity Analysis..	 205
6.5	 Value of Information...	 215
6.6	 Normative Decision Analysis..	 220

CHAPTER 7	 Fundamental Concepts of
Genetic Algorithms...	 221

7.1	 The Vocabulary of Genetic Algorithms..............................	 222
7.2	 Overview...	 230
7.3	 The Architecture of a Genetic Algorithm..........................	 241
7.4	 Practical Issues in Using a Genetic Algorithm...................	 285

vi    Contents

7.5	 Review..	 290
7.6	 Resources..	 290

CHAPTER 8	 Data Structures and Algorithms for Moving
Objects Types..	 293

8.1	 Data Structures..	 293
8.2	 Algorithms for Operations on Temporal

Data Types..	 298
8.3	 Algorithms for Lifted Operations..	 310
8.4	 Resources..	 319

CHAPTER 9	 Improving the Model..	 321
9.1	 Learning from Errors...	 323
9.2	 Improving Model Quality, Solving Problems.....................	 343
9.3	 Summary...	 395

CHAPTER 10	 Social Network Analysis...	 397
10.1	 Social Sciences and Bibliometry...	 398
10.2	 Pagerank and Hyperlink-induced Topic Search................	 400
10.3	 Shortcomings of the Coarse-grained Graph Model...........	 410
10.4	 Enhanced Models and Techniques.....................................	 416
10.5	 Evaluation of Topic Distillation..	 424
10.6	 Measuring and Modeling the Web.....................................	 430
10.7	 Resources..	 440

Index	 ..	 443

Contents   vii

This page intentionally left blank

About This Book

All of the elements about data mining are here together in a single resource written
by the best and brightest experts in the field! This book consolidates both intro-
ductory and advanced topics, thereby covering the gamut of data mining and
machine learning tactics—from data integration and preprocessing to fundamental
algorithms to optimization techniques and web mining methodology.

Data Mining: Know It All expertly combines the finest data mining material
from the Morgan Kaufmann portfolio with individual chapters contributed by a
select group of authors. They have been combined into one comprehensive book
in a way that allows it to be used as a reference work for those interested in new
and developing aspects of data mining. This book represents a quick and efficient
way to unite valuable content from leaders in the data mining field, thereby creat-
ing a definitive, one-stop-shopping opportunity to access information you would
otherwise need to round up from disparate sources.

This page intentionally left blank

Contributing Authors

Soumen Chakrabarti (Chapter 10) is an associate professor of computer science
and engineering at the Indian Institute of Technology in Bombay. He is also a
popular speaker at industry conferences, the associate editor for ACM “Trans
actions on the Web,” as well as serving on other editorial boards. He is also the
author of Mining the Web, published by Elsevier, 2003.

Earl Cox (Chapter 7) is the founder and president of Scianta Intelligence, a next-
generation machine intelligence and knowledge exploration company. He is a
futurist, author, management consultant, and educator dedicated to the epistemol-
ogy of advanced intelligent systems, the redefinition of the machine mind, and
the ways in which evolving and interconnected virtual worlds affect the sociology
of business and culture. He is a recognized expert in fuzzy logic and adaptive
fuzzy systems and a pioneer in the integration of fuzzy neural systems with
genetic algorithms and case-based reasoning. He is also the author of Fuzzy
Modeling and Genetic Algorithms for Data Mining Exploration, published by
Elsevier, 2005.

Eibe Frank (Chapters 1 and 5) is a senior lecturer in computer science at the
University of Waikato in New Zealand. He has published extensively in the area
of machine learning and sits on editorial boards of the Machine Learning Journal
and the Journal of Artificial Intelligence Research. He has also served on the
programming committees of many data mining and machine learning conferences.
He is the coauthor of Data Mining, published by Elsevier, 2005.

Ralf Hartmut Güting (Chapter 8) is a professor of computer science at the Uni-
versity of Hagen in Germany. After a one-year visit to the IBM Almaden Research
Center in 1985, extensible and spatial database systems became his major research
interests. He is the author of two German textbooks on data structures and algo-
rithms and on compilers, and he has published nearly 50 articles on computational
geometry and database systems. Currently, he is an associate editor of ACM Trans-
actions on Database Systems. He is also a coauthor of Moving Objects Database,
published by Elsevier, 2005.

xii    Contributing Authors

Jaiwei Han (Chapter 3) is director of the Intelligent Database Systems Research
Laboratory and a professor at the School of Computing Science at Simon Fraser
University in Vancouver, BC. Well known for his research in the areas of data
mining and database systems, he has served on program committees for dozens
of international conferences and workshops and on editorial boards for several
journals, including IEEE Transactions on Knowledge and Data Engineering and
Data Mining and Knowledge Discovery. He is also the coauthor of Data Mining:
Concepts and Techniques, published by Elsevier, 2006.

Xia Jiang (Chapter 6) received an M.S. in mechanical engineering from Rose
Hulman University and is currently a Ph.D. candidate in the Biomedical Informat-
ics Program at the University of Pittsburgh. She has published theoretical papers
concerning Bayesian networks, along with applications of Bayesian networks to
biosurveillance. She is also the coauthor of Probabilistic Methods for Financial
and Marketing Informatics, published by Elsevier, 2007.

Micheline Kamber (Chapter 3) is a researcher and freelance technical writer
with an M.S. in computer science with a concentration in artificial intelligence.
She is a member of the Intelligent Database Systems Research Laboratory at Simon
Fraser University in Vancouver, BC. She is also the coauthor of Data Mining:
Concepts and Techniques, published by Elsevier, 2006.

Sam S. Lightstone (Chapter 4) is the cofounder and leader of DB2’s autonomic
computing R&D effort and has been with IBM since 1991. His current research
interests include automatic physical database design, adaptive self-tuning resources,
automatic administration, benchmarking methodologies, and system control. Mr.
Lightstone is an IBM Master Inventor. He is also one of the coauthors of Physical
Database Design, published by Elsevier, 2007.

Thomas P. Nadeau (Chapter 4) is a senior technical staff member of Ubiquiti
Inc. and works in the area of data and text mining. His technical interests include
data warehousing, OLAP, data mining, and machine learning. He is also one of the
coauthors of Physical Database Design, published by Elsevier, 2007.

Richard E. Neapolitan (Chapter 6) is professor and Chair of Computer Science
at Northeastern Illinois University. He is the author of Learning Bayesian Net-
works (Prentice Hall, 2004), which ha been translated into three languages; it is
one of the most widely used algorithms texts worldwide. He is also the coauthor
of Probabilistic Methods for Financial and Marketing Informatics, published by
Elsevier, 2007.

Dorian Pyle (Chapter 9) has more than 25 years of experience is data mining
and is currently a consultant for Data Miners Inc. He has developed a number of
proprietary modeling and data mining technologies, including data preparation

Contributing Authors   xiii

and data surveying tools, and a self-adaptive modeling technology used in direct
marketing applications. He is also a popular speaker at industry conferences, the
associate editor for ACM “Transactions on Internet Technology,” and the author
of Business Modeling and Data Mining (Morgan Kaufman, 2003).

Mamdouh Refaat (Chapter 2) is the director of Professional Services at ANGOSS
Software Corporation. During the past 20 years, he has been an active member in
the community, offering his services for consulting, researching, and training in
various areas of information technology. He is also the author of Data Preparation
for Data Mining Using SAS, published by Elsevier, 2007.

Markus Schneider (Chapter 8) is an assistant professor of computer science at
the University of Florida, Gainesville, and holds a Ph.D. in computer Science from
the University of Hagen in Germany. He is author of a monograph in the area of
spatial databases, a German textbook on implementation concepts for database
systems, coauthor of Moving Objects Databases (Morgan Kaufmann, 2005), and
has published nearly 40 articles on database systems. He is on the editorial board
of GeoInformatica.

Toby J. Teorey (Chapter 4) is a professor in the Electrical Engineering and Com-
puter Science Department at the University of Michigan, Ann Arbor; his current
research focuses on database design and performance of computing systems. He
is also one of the coauthors of Physical Database Design, published by Elsevier,
2007.

Ian H. Witten (Chapters 1 and 5) is a professor of computer science at the Uni-
versity of Waikato in New Zealand and is a fellow of the ACM and the Royal Society
in New Zealand. He received the 2004 IFIP Namur Award, a biennial honor
accorded for outstanding contributions with international impact to the awareness
of social implications of information and communication technology. He is also
the coauthor of Data Mining, published by Elsevier, 2005.

This page intentionally left blank

Data Mining

This page intentionally left blank

CHAPTER  

1What’s It All About?

Human in vitro fertilization involves collecting several eggs from a woman’s
ovaries, which, after fertilization with partner or donor sperm, produce several
embryos. Some of these are selected and transferred to the woman’s uterus. The
problem is to select the “best” embryos to use—the ones that are most likely to
survive. Selection is based on around 60 recorded features of the embryos—char-
acterizing their morphology, oocyte, follicle, and the sperm sample. The number
of features is sufficiently large that it is difficult for an embryologist to assess them
all simultaneously and correlate historical data with the crucial outcome of whether
that embryo did or did not result in a live child. In a research project in England,
machine learning is being investigated as a technique for making the selection,
using as training data historical records of embryos and their outcome.

Every year, dairy farmers in New Zealand have to make a tough business deci-
sion: which cows to retain in their herd and which to sell off to an abattoir.
Typically, one-fifth of the cows in a dairy herd are culled each year near the end
of the milking season as feed reserves dwindle. Each cow’s breeding and milk
production history influences this decision. Other factors include age (a cow is
nearing the end of its productive life at 8 years), health problems, history of dif-
ficult calving, undesirable temperament traits (kicking or jumping fences), and not
being in calf for the following season. About 700 attributes for each of several
million cows have been recorded over the years. Machine learning is being inves-
tigated as a way of ascertaining which factors are taken into account by successful
farmers—not to automate the decision but to propagate their skills and experience
to others.

Life and death. From Europe to the antipodes. Family and business. Machine
learning is a burgeoning new technology for mining knowledge from data, a tech-
nology that a lot of people are starting to take seriously.

1.1	DATA MINING AND MACHINE LEARNING
We are overwhelmed with data. The amount of data in the world, in our
lives, continues to increase—and there’s no end in sight. Omnipresent personal

�    CHAPTER 1  What’s It All About?

computers make it too easy to save things that previously we would have trashed.
Inexpensive multigigabyte disks make it too easy to postpone decisions about
what to do with all this stuff—we simply buy another disk and keep it all. Ubiq-
uitous electronics record our decisions, our choices in the supermarket, our
financial habits, our comings and goings. We swipe our way through the world,
every swipe a record in a database. The World Wide Web overwhelms us with
information; meanwhile, every choice we make is recorded. And all these are just
personal choices: they have countless counterparts in the world of commerce and
industry. We would all testify to the growing gap between the generation of data
and our understanding of it. As the volume of data increases, inexorably, the
proportion of it that people understand decreases, alarmingly. Lying hidden in all
this data is information, potentially useful information, that is rarely made explicit
or taken advantage of.

This book is about looking for patterns in data. There is nothing new about
this. People have been seeking patterns in data since human life began. Hunters
seek patterns in animal migration behavior, farmers seek patterns in crop growth,
politicians seek patterns in voter opinion, and lovers seek patterns in their part-
ners’ responses. A scientist’s job (like a baby’s) is to make sense of data, to discover
the patterns that govern how the physical world works and encapsulate them in
theories that can be used for predicting what will happen in new situations. The
entrepreneur’s job is to identify opportunities, that is, patterns in behavior that
can be turned into a profitable business, and exploit them.

In data mining, the data is stored electronically and the search is automated—
or at least augmented—by computer. Even this is not particularly new. Econo-
mists, statisticians, forecasters, and communication engineers have long worked
with the idea that patterns in data can be sought automatically, identified, vali-
dated, and used for prediction. What is new is the staggering increase in oppor-
tunities for finding patterns in data. The unbridled growth of databases in recent
years, databases on such everyday activities as customer choices, brings data
mining to the forefront of new business technologies. It has been estimated that
the amount of data stored in the world’s databases doubles every 20 months,
and although it would surely be difficult to justify this figure in any quantitative
sense, we can all relate to the pace of growth qualitatively. As the flood of data
swells and machines that can undertake the searching become commonplace, the
opportunities for data mining increase. As the world grows in complexity, over-
whelming us with the data it generates, data mining becomes our only hope for
elucidating the patterns that underlie it. Intelligently analyzed data is a valuable
resource. It can lead to new insights and, in commercial settings, to competitive
advantages.

Data mining is about solving problems by analyzing data already present in
databases. Suppose, to take a well-worn example, the problem is fickle customer
loyalty in a highly competitive marketplace. A database of customer choices, along
with customer profiles, holds the key to this problem. Patterns of behavior of
former customers can be analyzed to identify distinguishing characteristics of

1.1  Data Mining and Machine Learning   �

those likely to switch products and those likely to remain loyal. Once such char-
acteristics are found, they can be put to work to identify present customers who
are likely to jump ship. This group can be targeted for special treatment, treatment
too costly to apply to the customer base as a whole. More positively, the same
techniques can be used to identify customers who might be attracted to another
service the enterprise provides, one they are not presently enjoying, to target
them for special offers that promote this service. In today’s highly competitive,
customer-centered, service-oriented economy, data is the raw material that fuels
business growth—if only it can be mined.

Data mining is defined as the process of discovering patterns in data. The
process must be automatic or (more usually) semiautomatic. The patterns discov-
ered must be meaningful in that they lead to some advantage, usually an economic
advantage. The data is invariably present in substantial quantities.

How are the patterns expressed? Useful patterns allow us to make nontrivial
predictions on new data. There are two extremes for the expression of a pattern:
as a black box whose innards are effectively incomprehensible and as a transpar-
ent box whose construction reveals the structure of the pattern. Both, we are
assuming, make good predictions. The difference is whether or not the patterns
that are mined are represented in terms of a structure that can be examined,
reasoned about, and used to inform future decisions. Such patterns we call struc-
tural because they capture the decision structure in an explicit way. In other
words, they help to explain something about the data.

Now, finally, we can say what this book is about. It is about techniques for
finding and describing structural patterns in data. Most of the techniques that we
cover have developed within a field known as machine learning. But first let us
look at what structural patterns are.

1.1.1  Describing Structural Patterns

What is meant by structural patterns? How do you describe them? And what form
does the input take? We will answer these questions by way of illustration rather
than by attempting formal, and ultimately sterile, definitions. We will present
plenty of examples later in this chapter, but let’s examine one right now to get a
feeling for what we’re talking about.

Look at the contact lens data in Table 1.1. This gives the conditions under
which an optician might want to prescribe soft contact lenses, hard contact lenses,
or no contact lenses at all; we will say more about what the individual features
mean later. Each line of the table is one of the examples. Part of a structural
description of this information might be as follows:

If tear production rate = reduced then recommendation = none
Otherwise, if age = young and astigmatic = no
              then recommendation = soft

Structural descriptions need not necessarily be couched as rules such as
these. Decision trees, which specify the sequences of decisions that need to

�    CHAPTER 1  What’s It All About?

Table 1.1 The Contact Lens Data

Age
Spectacle
Prescription Astigmatism

Tear Production
Rate

Recommended
Lenses

Young Myope No Reduced None

Young Myope No Normal Soft

Young Myope Yes Reduced None

Young Myope Yes Normal Hard

Young Hypermetrope No Reduced None

Young Hypermetrope No Normal Soft

Young Hypermetrope Yes Reduced None

Young Hypermetrope Yes Normal Hard

Pre-presbyopic Myope No Reduced None

Pre-presbyopic Myope No Normal Soft

Pre-presbyopic Myope Yes Reduced None

Pre-presbyopic Myope Yes Normal Hard

Pre-presbyopic Hypermetrope No Reduced None

Pre-presbyopic Hypermetrope No Normal Soft

Pre-presbyopic Hypermetrope Yes Reduced None

Pre-presbyopic Hypermetrope Yes Normal None

Presbyopic Myope No Reduced None

Presbyopic Myope No Normal None

Presbyopic Myope Yes Reduced None

Presbyopic Myope Yes Normal Hard

Presbyopic Hypermetrope No Reduced None

Presbyopic Hypermetrope No Normal Soft

Presbyopic Hypermetrope Yes Reduced None

Presbyopic Hypermetrope Yes Normal None

1.1  Data Mining and Machine Learning   �

be made and the resulting recommendation, are another popular means of
expression.

This example is a simplistic one. First, all combinations of possible values are
represented in the table. There are 24 rows, representing three possible values of
age and two values each for spectacle prescription, astigmatism, and tear produc-
tion rate (3 × 2 × 2 × 2 = 24). The rules do not really generalize from the data;
they merely summarize it. In most learning situations, the set of examples given
as input is far from complete, and part of the job is to generalize to other, new
examples. You can imagine omitting some of the rows in the table for which tear
production rate is reduced and still coming up with the rule

If tear production rate = reduced then recommendation = none

which would generalize to the missing rows and fill them in correctly. Second,
values are specified for all the features in all the examples. Real-life datasets invari-
ably contain examples in which the values of some features, for some reason or
other, are unknown—for example, measurements were not taken or were lost.
Third, the preceding rules classify the examples correctly, whereas often, because
of errors or noise in the data, misclassifications occur even on the data that is used
to train the classifier.

1.1.2  Machine Learning

Now that we have some idea about the inputs and outputs, let’s turn to machine
learning. What is learning, anyway? What is machine learning? These are philo-
sophic questions, and we will not be much concerned with philosophy in this
book; our emphasis is firmly on the practical. However, it is worth spending a
few moments at the outset on fundamental issues, just to see how tricky they are,
before rolling up our sleeves and looking at machine learning in practice. Our
dictionary defines “to learn” as follows:

n	 To get knowledge of by study, experience, or being taught.
n	 To become aware by information or from observation.
n	 To commit to memory.
n	 To be informed of, ascertain.
n	 To receive instruction.

These meanings have some shortcomings when it comes to talking about comput-
ers. For the first two, it is virtually impossible to test whether learning has been
achieved or not. How do you know whether a machine has got knowledge of
something? You probably can’t just ask it questions; even if you could, you
wouldn’t be testing its ability to learn but would be testing its ability to answer
questions. How do you know whether it has become aware of something? The
whole question of whether computers can be aware, or conscious, is a burning
philosophic issue. As for the last three meanings, although we can see what
they denote in human terms, merely “committing to memory” and “receiving

�    CHAPTER 1  What’s It All About?

instruction” seem to fall far short of what we might mean by machine learning.
They are too passive, and we know that computers find these tasks trivial. Instead,
we are interested in improvements in performance, or at least in the potential for
performance, in new situations. You can “commit something to memory” or “be
informed of something” by rote learning without being able to apply the new
knowledge to new situations. You can receive instruction without benefiting from
it at all.

Earlier we defined data mining operationally as the process of discovering
patterns, automatically or semiautomatically, in large quantities of data—and the
patterns must be useful. An operational definition can be formulated in the same
way for learning:

Things learn when they change their behavior in a way that makes them per
form better in the future.

This ties learning to performance rather than knowledge. You can test learning
by observing the behavior and comparing it with past behavior. This is a much
more objective kind of definition and appears to be far more satisfactory.

But there’s still a problem. Learning is a rather slippery concept. Lots of things
change their behavior in ways that make them perform better in the future, yet
we wouldn’t want to say that they have actually learned. A good example is a
comfortable slipper. Has it learned the shape of your foot? It has certainly changed
its behavior to make it perform better as a slipper! Yet we would hardly want to
call this learning. In everyday language, we often use the word “training” to
denote a mindless kind of learning. We train animals and even plants, although it
would be stretching the word a bit to talk of training objects such as slippers that
are not in any sense alive. But learning is different. Learning implies thinking.
Learning implies purpose. Something that learns has to do so intentionally. That
is why we wouldn’t say that a vine has learned to grow round a trellis in a vine-
yard—we’d say it has been trained. Learning without purpose is merely training.
Or, more to the point, in learning the purpose is the learner’s, whereas in training
it is the teacher’s.

Thus, on closer examination the second definition of learning, in operational,
performance-oriented terms, has its own problems when it comes to talking about
computers. To decide whether something has actually learned, you need to see
whether it intended to or whether there was any purpose involved. That makes
the concept moot when applied to machines because whether artifacts can behave
purposefully is unclear. Philosophic discussions of what is really meant by “learn-
ing,” like discussions of what is really meant by “intention” or “purpose,” are
fraught with difficulty. Even courts of law find intention hard to grapple with.

1.1.3  Data Mining

Fortunately, the kind of learning techniques explained in this book do not present
these conceptual problems—they are called machine learning without really pre-

supposing any particular philosophic stance about what learning actually is. Data
mining is a practical topic and involves learning in a practical, not a theoretic,
sense. We are interested in techniques for finding and describing structural pat-
terns in data as a tool for helping to explain that data and make predictions from
it. The data will take the form of a set of examples—examples of customers who
have switched loyalties, for instance, or situations in which certain kinds of
contact lenses can be prescribed. The output takes the form of predictions about
new examples—a prediction of whether a particular customer will switch or a
prediction of what kind of lens will be prescribed under given circumstances. But
because this book is about finding and describing patterns in data, the output
may also include an actual description of a structure that can be used to classify
unknown examples to explain the decision. As well as performance, it is helpful
to supply an explicit representation of the knowledge that is acquired. In essence,
this reflects both definitions of learning considered previously: the acquisition of
knowledge and the ability to use it.

Many learning techniques look for structural descriptions of what is learned,
descriptions that can become fairly complex and are typically expressed as sets
of rules such as the ones described previously or the decision trees described later
in this chapter. Because people can understand them, these descriptions explain
what has been learned and explain the basis for new predictions. Experience
shows that in many applications of machine learning to data mining, the explicit
knowledge structures that are acquired, the structural descriptions, are at least as
important, and often much more important, than the ability to perform well on
new examples. People frequently use data mining to gain knowledge, not just
predictions. Gaining knowledge from data certainly sounds like a good idea if you
can do it. To find out how, read on!

1.2	SIMPLE EXAMPLES: THE WEATHER PROBLEM
AND OTHERS

We use a lot of examples in this book, which seems particularly appropriate con-
sidering that the book is all about learning from examples! There are several
standard datasets that we will come back to repeatedly. Different datasets tend to
expose new issues and challenges, and it is interesting and instructive to have in
mind a variety of problems when considering learning methods. In fact, the need
to work with different datasets is so important that a corpus containing around
100 example problems has been gathered together so that different algorithms
can be tested and compared on the same set of problems.

The illustrations used here are all unrealistically simple. Serious application
of data mining involves thousands, hundreds of thousands, or even millions of
individual cases. But when explaining what algorithms do and how they work,
we need simple examples that capture the essence of the problem but are small
enough to be comprehensible in every detail. The illustrations we will be working

1.2  Simple Examples: The Weather Problem and Others   �

�    CHAPTER 1  What’s It All About?

with are intended to be “academic” in the sense that they will help us to under-
stand what is going on. Some actual fielded applications of learning techniques
are discussed in Section 1.3, and many more are covered in the books mentioned
in the Further Reading section at the end of the chapter.

Another problem with actual real-life datasets is that they are often proprietary.
No corporation is going to share its customer and product choice database with
you so that you can understand the details of its data mining application and how
it works. Corporate data is a valuable asset, one whose value has increased enor-
mously with the development of data mining techniques such as those described
in this book. Yet we are concerned here with understanding how the methods
used for data mining work and understanding the details of these methods so that
we can trace their operation on actual data. That is why our illustrations are simple
ones. But they are not simplistic: they exhibit the features of real datasets.

1.2.1  The Weather Problem

The weather problem is a tiny dataset that we will use repeatedly to illustrate
machine learning methods. Entirely fictitious, it supposedly concerns the condi-
tions that are suitable for playing some unspecified game. In general, instances in
a dataset are characterized by the values of features, or attributes, that measure
different aspects of the instance. In this case there are four attributes: outlook,
temperature, humidity, and windy. The outcome is whether or not to play.

In its simplest form, shown in Table 1.2, all four attributes have values that are
symbolic categories rather than numbers. Outlook can be sunny, overcast, or
rainy; temperature can be hot, mild, or cool; humidity can be high or normal;
and windy can be true or false. This creates 36 possible combinations (3 × 3 ×
2 × 2 = 36), of which 14 are present in the set of input examples.

A set of rules learned from this information—not necessarily a very good
one—might look as follows:

If outlook = sunny and humidity = high  then play = no
If outlook = rainy and windy = true    	 then play = no
If outlook = overcast                  	 then play = yes
If humidity = normal                   	 then play = yes
If none of the above                   	 then play = yes

These rules are meant to be interpreted in order: the first one; then, if it doesn’t
apply, the second; and so on.

A set of rules intended to be interpreted in sequence is called a decision list.
Interpreted as a decision list, the rules correctly classify all of the examples in the
table, whereas taken individually, out of context, some of the rules are incorrect.
For example, the rule if humidity = normal, then play = yes gets one of
the examples wrong (check which one). The meaning of a set of rules depends
on how it is interpreted—not surprisingly!

In the slightly more complex form shown in Table 1.3, two of the attributes—
temperature and humidity—have numeric values. This means that any learning
method must create inequalities involving these attributes rather than simple

equality tests, as in the former case. This is called a numeric-attribute problem—
in this case, a mixed-attribute problem because not all attributes are numeric.

Now the first rule given earlier might take the following form:

If outlook = sunny and humidity > 83 then play = no

A slightly more complex process is required to come up with rules that involve
numeric tests.

The rules we have seen so far are classification rules: they predict the classi-
fication of the example in terms of whether or not to play. It is equally possible
to disregard the classification and just look for any rules that strongly associate
different attribute values. These are called association rules. Many association
rules can be derived from the weather data in Table 1.2. Some good ones are as
follows:

If temperature = cool                  	 then humidity = normal
If humidity = normal and windy = false 	then play = yes
If outlook = sunny and play = no       	 then humidity = high
If windy = false and play = no         	 then outlook = sunny
  	   and humidity = high.

Table 1.2 The Weather Data

Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

1.2  Simple Examples: The Weather Problem and Others   �

10    CHAPTER 1  What’s It All About?

All these rules are 100 percent correct on the given data; they make no false
predictions. The first two apply to four examples in the dataset, the third to three
examples, and the fourth to two examples. There are many other rules: in fact,
nearly 60 association rules can be found that apply to two or more examples of
the weather data and are completely correct on this data. If you look for rules that
are less than 100 percent correct, then you will find many more. There are so
many because unlike classification rules, association rules can “predict” any of the
attributes, not just a specified class, and can even predict more than one thing.
For example, the fourth rule predicts both that outlook will be sunny and that
humidity will be high.

1.2.2  Contact Lenses: An Idealized Problem

The contact lens data introduced earlier tells you the kind of contact lens to pre-
scribe, given certain information about a patient. Note that this example is intended
for illustration only: it grossly oversimplifies the problem and should certainly not
be used for diagnostic purposes!

Table 1.3 Weather Data with Some Numeric Attribute

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 70 96 False Yes

Rainy 68 80 False Yes

Rainy 65 70 True No

Overcast 64 65 True Yes

Sunny 72 95 False No

Sunny 69 70 False Yes

Rainy 75 80 False Yes

Sunny 75 70 True Yes

Overcast 72 90 True Yes

Overcast 81 75 False Yes

Rainy 71 91 True No

The first column of Table 1.1 gives the age of the patient. In case you’re won-
dering, presbyopia is a form of longsightedness that accompanies the onset of
middle age. The second gives the spectacle prescription: myope means short-
sighted and hypermetrope means longsighted. The third shows whether the
patient is astigmatic, and the fourth relates to the rate of tear production, which
is important in this context because tears lubricate contact lenses. The final
column shows which kind of lenses to prescribe: hard, soft, or none. All possible
combinations of the attribute values are represented in the table.

A sample set of rules learned from this information is shown in Figure 1.1. This
is a large set of rules, but they do correctly classify all the examples. These rules
are complete and deterministic: they give a unique prescription for every conceiv-
able example. Generally, this is not the case. Sometimes there are situations in
which no rule applies; other times more than one rule may apply, resulting in
conflicting recommendations. Sometimes probabilities or weights may be associ-
ated with the rules themselves to indicate that some are more important, or more
reliable, than others.

You might be wondering whether there is a smaller rule set that performs
as well. If so, would you be better off using the smaller rule set and, if so, why?
These are exactly the kinds of questions that will occupy us in this book. Because
the examples form a complete set for the problem space, the rules do no more
than summarize all the information that is given, expressing it in a different and
more concise way. Even though it involves no generalization, this is often a useful

FIGURE 1.1

Rules for the contact lens data.

If tear production rate = reduced then recommendation = none

If age = young and astigmatic = no and

 tear production rate = normal then recommendation = soft

If age = pre-presbyopic and astigmatic = no and

 tear production rate = normal then recommendation = soft

If age = presbyopic and spectacle prescription = myope and

 astigmatic = no then recommendation = none

If spectacle prescription = hypermetrope and astigmatic = no and

 tear production rate = normal then recommendation = soft

If spectacle prescription = myope and astigmatic = yes and

 tear production rate = normal then recommendation = hard

If age = young and astigmatic = yes and

 tear production rate = normal then recommendation = hard

If age = pre-presbyopic and

 spectacle prescription = hypermetrope and astigmatic = yes

 then recommendation = none

If age = presbyopic and spectacle prescription = hypermetrope

 and astigmatic = yes then recommendation = none

1.2  Simple Examples: The Weather Problem and Others   11

12    CHAPTER 1  What’s It All About?

thing to do! People frequently use machine learning techniques to gain insight
into the structure of their data rather than to make predictions for new cases. In
fact, a prominent and successful line of research in machine learning began as an
attempt to compress a huge database of possible chess endgames and their out-
comes into a data structure of reasonable size. The data structure chosen for this
enterprise was not a set of rules, but a decision tree.

Figure 1.2 presents a structural description for the contact lens data in the form
of a decision tree, which for many purposes is a more concise and perspicuous
representation of the rules and has the advantage that it can be visualized more
easily. (However, this decision tree—in contrast to the rule set given in Figure
1.1—classifies two examples incorrectly.) The tree calls first for a test on tear
production rate, and the first two branches correspond to the two possible out-
comes. If tear production rate is reduced (the left branch), the outcome is none.
If it is normal (the right branch), a second test is made, this time on astigmatism.
Eventually, whatever the outcome of the tests, a leaf of the tree is reached that
dictates the contact lens recommendation for that case.

1.2.3  Irises: A Classic Numeric Dataset

The iris dataset, which dates back to seminal work by the eminent statistician
R. A. Fisher in the mid-1930s and is arguably the most famous dataset used in data
mining, contains 50 examples each of three types of plant: Iris setosa, Iris versi-
color, and Iris virginica. It is excerpted in Table 1.4. There are four attributes:
sepal length, sepal width, petal length, and petal width (all measured in centi
meters). Unlike previous datasets, all attributes have numeric values.

FIGURE 1.2

Decision tree for the contact lens data.

Normal

Tear production rate

Reduced

HypermetropeMyope

None Astigmatism

Soft

Hard None

Spectacle prescription

YesNo

Table 1.4 The Iris Data

Sepal Length
(cm)

Sepal Width
(cm)

Petal Length
(cm)

Petal Width
(cm) Type

1 5.1 3.5 1.4 0.2 Iris setosa

2 4.9 3.0 1.4 0.2 Iris setosa

3 4.7 3.2 1.3 0.2 Iris setosa

4 4.6 3.1 1.5 0.2 Iris setosa

5 5.0 3.6 1.4 0.2 Iris setosa

. . .

51 7.0 3.2 4.7 1.4 Iris versicolor

52 6.4 3.2 4.5 1.5 Iris versicolor

53 6.9 3.1 4.9 1.5 Iris versicolor

54 5.5 2.3 4.0 1.3 Iris versicolor

55 6.5 2.8 4.6 1.5 Iris versicolor

. . .

101 6.3 3.3 6.0 2.5 Iris virginica

102 5.8 2.7 5.1 1.9 Iris virginica

103 7.1 3.0 5.9 2.1 Iris virginica

104 6.3 2.9 5.6 1.8 Iris virginica

105 6.5 3.0 5.8 2.2 Iris virginica

. . .

The following set of rules might be learned from this dataset:

If petal length < 2.45 then Iris setosa
If sepal width < 2.10 then Iris versicolor
If sepal width < 2.45 and petal length < 4.55 then Iris versicolor
If sepal width < 2.95 and petal width < 1.35 then Iris versicolor
If petal length ≥ 2.45 and petal length < 4.45 then Iris versicolor
If sepal length ≥ 5.85 and petal length < 4.75 then Iris versicolor
If sepal width < 2.55 and petal length < 4.95 and
   petal width < 1.55 then Iris versicolor
If petal length ≥ 2.45 and petal length < 4.95 and
   petal width < 1.55 then Iris versicolor
If sepal length ≥ 6.55 and petal length < 5.05 then Iris versicolor

1.2  Simple Examples: The Weather Problem and Others   13

14    CHAPTER 1  What’s It All About?

If sepal width < 2.75 and petal width < 1.65 and
   sepal length < 6.05 then Iris versicolor
If sepal length ≥ 5.85 and sepal length < 5.95 and
   petal length < 4.85 then Iris versicolor
If petal length ≥ 5.15 then Iris virginica
If petal width ≥ 1.85 then Iris virginica
If petal width ≥ 1.75 and sepal width < 3.05 then Iris virginica
If petal length ≥ 4.95 and petal width < 1.55 then Iris virginica

These rules are very cumbersome; more compact rules can be expressed that
convey the same information.

1.2.4  CPU Performance: Introducing Numeric Prediction

Although the iris dataset involves numeric attributes, the outcome—the type of
iris—is a category, not a numeric value. Table 1.5 shows some data for which the
outcome and the attributes are numeric. It concerns the relative performance of
computer processing power on the basis of a number of relevant attributes; each
row represents 1 of 209 different computer configurations.

The classic way of dealing with continuous prediction is to write the outcome
as a linear sum of the attribute values with appropriate weights, for example:

PRP MYCT MMIN MMAX CACH= − + + + +
−
55 9 0 0489 0 0153 0 0056 0 6410

0 27

.

. 000 1 480CHMIN CHMAX+ .

Table 1.5 The CPU Performance Data

Cycle Main Memory (KB) Cache Channels

Time (ns) Minimum Maximum (KB) Minimum Maximum Performance

MYCT MMIN MMAX CACH CHMIN CHMAX PRP

1 125 256 6000 256 16 128 198

2 29 8000 32000 32 8 32 269

3 29 8000 32000 32 8 32 220

4 29 8000 32000 32 8 32 172

5 29 8000 16000 32 8 16 132

. . .

207 125 2000 8000 0 2 14 52

208 480 512 8000 32 0 0 67

209 480 1000 4000 0 0 0 45

(The abbreviated variable names are given in the second row of the table.) This
is called a regression equation, and the process of determining the weights is
called regression, a well-known procedure in statistics. However, the basic regres-
sion method is incapable of discovering nonlinear relationships (although variants
do exist).

In the iris and central processing unit (CPU) performance data, all the attributes
have numeric values. Practical situations frequently present a mixture of numeric
and nonnumeric attributes.

1.2.5  Labor Negotiations: A More Realistic Example

The labor negotiations dataset in Table 1.6 summarizes the outcome of Canadian
contract negotiations in 1987 and 1988. It includes all collective agreements

Table 1.6 The Labor Negotiations Data

Attribute Type 1 2 3 . . . 40

Duration Years 1 2 3 2

Wage increase first year Percentage 2% 4% 4.3% 4.5

Wage increase second year Percentage ? 5% 4.4% 4.0

Wage increase third year Percentage ? ? ? ?

Cost of living adjustment {none, tcf, tc} None Tcf ? None

Working hours per week Hours 28 35 38 40

Pension {none, ret-allw, empl-cntr} None ? ? ?

Standby pay Percentage ? 13% ? ?

Shift-work supplement Percentage ? 5% 4% 4

Education allowance {yes, no} Yes ? ? ?

Statutory holidays Days 11 15 12 12

Vacation {below-avg, avg, gen} Avg Gen Gen Avg

Long-term disability
assistance

{yes, no} No ? ? Yes

Dental plan contribution {none, half, full} None ? Full Full

Bereavement assistance {yes, no} No ? ? Yes

Health plan contribution {none, half, full} None ? Full Half

Acceptability of contract {good, bad} Bad Good Good Good

1.2  Simple Examples: The Weather Problem and Others   15

16    CHAPTER 1  What’s It All About?

reached in the business and personal services sector for organizations with at least
500 members (teachers, nurses, university staff, police, etc.). Each case concerns
one contract, and the outcome is whether the contract is deemed acceptable
or unacceptable. The acceptable contracts are ones in which agreements were
accepted by both labor and management. The unacceptable ones are either known
offers that fell through because one party would not accept them or acceptable
contracts that had been significantly perturbed to the extent that, in the view of
experts, they would not have been accepted.

There are 40 examples in the dataset (plus another 17 that are normally
reserved for test purposes). Unlike the other tables here, Table 1.6 presents the
examples as columns rather than as rows; otherwise, it would have to be stretched
over several pages. Many of the values are unknown or missing, as indicated by
question marks.

This is a much more realistic dataset than the others we have seen. It contains
many missing values, and it seems unlikely that an exact classification can be
obtained.

Figure 1.3 shows two decision trees that represent the dataset. Figure 1.3(a)
is simple and approximate: it doesn’t represent the data exactly. For example, it
will predict bad for some contracts that are actually marked good. But it does
make intuitive sense: a contract is bad (for the employee!) if the wage increase in
the first year is too small (less than 2.5 percent). If the first-year wage increase is
larger than this, it is good if there are lots of statutory holidays (more than 10
days). Even if there are fewer statutory holidays, it is good if the first-year wage
increase is large enough (more than 4 percent).

Figure 1.3(b) is a more complex decision tree that represents the same dataset.
In fact, this is a more accurate representation of the actual dataset that was used
to create the tree. But it is not necessarily a more accurate representation of the
underlying concept of good versus bad contracts. Look down the left branch.
It doesn’t seem to make sense intuitively that, if the working hours exceed 36, a
contract is bad if there is no health-plan contribution or a full health-plan contribu-
tion but is good if there is a half health-plan contribution. It is certainly reasonable
that the health-plan contribution plays a role in the decision but not if half is good
and both full and none are bad. It seems likely that this is an artifact of the par-
ticular values used to create the decision tree rather than a genuine feature of the
good versus bad distinction.

The tree in Figure 1.3(b) is more accurate on the data that was used to train
the classifier but will probably perform less well on an independent set of test
data. It is “overfitted” to the training data—it follows it too slavishly. The tree in
Figure 1.3(a) is obtained from the one in Figure 1.3(b) by a process of pruning.

1.2.6  Soybean Classification: A Classic Machine Learning Success

An often-quoted early success story in the application of machine learning to
practical problems is the identification of rules for diagnosing soybean diseases.

FIGURE 1.3

Decision trees for the labor negotiations data.

≤ 2.5

Statutory
holidays

> 2.5

Bad

≤ 36

Health plan
contribution

> 36

Good

> 10

Wage increase
first year

Wage increase
first year

Working hours
per week

≤ 10

Bad

None

Good

Half

Bad

Full

Bad

≤ 4

Good

> 4

(b)

Wage increase first year

Bad

≤ 2.5

Statutory holidays

> 2.5

Good

> 10

Wage increase first year

≤ 10

Bad

≤ 4

Good

> 4

(a)

The data is taken from questionnaires describing plant diseases. There are about
680 examples, each representing a diseased plant. Plants were measured on 35
attributes, each one having a small set of possible values. Examples are labeled
with the diagnosis of an expert in plant biology: there are 19 disease categories
altogether—horrible-sounding diseases, such as diaporthe stem canker, rhizocto-
nia root rot, and bacterial blight, to mention just a few.

1.2  Simple Examples: The Weather Problem and Others   17

18    CHAPTER 1  What’s It All About?

Table 1.7 gives the attributes, the number of different values that each can
have, and a sample record for one particular plant. The attributes are placed into
different categories just to make them easier to read.

Here are two example rules, learned from this data:

If    [leaf condition is normal and
     	 stem condition is abnormal and
     	 stem cankers is below soil line and
     	 canker lesion color is brown]
then
     	 diagnosis is rhizoctonia root rot

If   	[leaf malformation is absent and
     	 stem condition is abnormal and
     	 stem cankers is below soil line and
     	 canker lesion color is brown]
then
     	 diagnosis is rhizoctonia root rot

These rules nicely illustrate the potential role of prior knowledge—often called
domain knowledge—in machine learning, because the only difference between
the two descriptions is leaf condition is normal versus leaf malformation
is absent. in this domain, if the leaf condition is normal, then leaf malformation
is necessarily absent, so one of these conditions happens to be a special case of
the other. Thus, if the first rule is true, the second is necessarily true as well. The
only time the second rule comes into play is when leaf malformation is absent

Table 1.7 The Soybean Data

Attribute Number of Values Sample Value

Environment Time of occurrence 7 July

Precipitation 3 Above normal

Temperature 3 Normal

Cropping history 4 Same as last year

Hail damage 2 Yes

Damaged area 4 Scattered

Severity 3 Severe

Plant height 2 Normal

Plant growth 2 Abnormal

Seed treatment 3 Fungicide

Germination 3 Less than 80%

1.2  Simple Examples: The Weather Problem and Others   19

Table 1.7 Continued

Attribute Number of Values Sample Value

Seed Condition 2 Normal

Mold growth 2 Absent

Discoloration 2 Absent

Size 2 Normal

Shriveling 2 Absent

Fruit Condition of fruit pods 3 Normal

Fruit spots 5 –

Leaf Condition 2 Abnormal

Leaf spot size 3 –

Yellow leaf spot halo 3 Absent

Leaf spot margins 3 –

Shredding 2 Absent

Leaf malformation 2 Absent

Leaf mildew growth 3 Absent

Stem Condition 2 Abnormal

Stem lodging 2 Yes

Stem cankers 4 Above soil line

Canker lesion color 3 –

Fruiting bodies on stems 2 Present

External decay of stem 3 Firm and dry

Mycelium on stem 2 Absent

Internal discoloration 3 None

Sclerotia 2 Absent

Root Condition 3 Normal

Diagnosis Diaporthe stem

19 Canker

20    CHAPTER 1  What’s It All About?

but leaf condition is not normal—that is, when something other than malforma-
tion is wrong with the leaf. This is certainly not apparent from a casual reading
of the rules.

Research on this problem in the late 1970s found that these diagnostic rules
could be generated by a machine learning algorithm, along with rules for every
other disease category, from about 300 training examples. The examples were
carefully selected from the corpus of cases as being quite different from one
another—”far apart” in the example space. At the same time, the plant pathologist
who had produced the diagnoses was interviewed, and his expertise was trans-
lated into diagnostic rules. Surprisingly, the computer-generated rules outper-
formed the expert’s rules on the remaining test examples. They gave the correct
disease top ranking 97.5 percent of the time compared with only 72 percent
for the expert-derived rules. Furthermore, not only did the learning algorithm
find rules that outperformed those of the expert collaborator, but the same
expert was so impressed that he allegedly adopted the discovered rules in place
of his own!

1.3	FIELDED APPLICATIONS
The examples that we opened with are speculative research projects, not pro
duction systems. And the preceding illustrations are toy problems: they are delib-
erately chosen to be small so that we can use them to work through algorithms
later in the book. Where’s the beef? Here are some applications of machine learn-
ing that have actually been put into use.

Because they are fielded applications, the illustrations that follow tend to stress
the use of learning in performance situations, in which the emphasis is on ability
to perform well on new examples. This book also describes the use of learning
systems to gain knowledge from decision structures that are inferred from the
data. We believe that this is as important—probably even more important in the
long run—a use of the technology as merely making high-performance predic-
tions. Still, it will tend to be underrepresented in fielded applications because
when learning techniques are used to gain insight, the result is not normally a
system that is put to work as an application in its own right. Nevertheless, in three
of the examples that follow, the fact that the decision structure is comprehensible
is a key feature in the successful adoption of the application.

1.3.1  Decisions Involving Judgment

When you apply for a loan, you have to fill out a questionnaire that asks for rel-
evant financial and personal information. The loan company uses this information
as the basis for its decision as to whether to lend you money. Such decisions are
typically made in two stages. First, statistical methods are used to determine clear

“accept” and “reject” cases. The remaining borderline cases are more difficult and
call for human judgment. For example, one loan company uses a statistical deci-
sion procedure to calculate a numeric parameter based on the information sup-
plied in the questionnaire. Applicants are accepted if this parameter exceeds a
preset threshold and rejected if it falls below a second threshold. This accounts
for 90 percent of cases, and the remaining 10 percent are referred to loan officers
for a decision. On examining historical data on whether applicants did indeed
repay their loans, however, it turned out that half of the borderline applicants
who were granted loans actually defaulted. Although it would be tempting simply
to deny credit to borderline customers, credit industry professionals pointed out
that if only their repayment future could be reliably determined it is precisely
these customers whose business should be wooed; they tend to be active custom-
ers of a credit institution because their finances remain in a chronically volatile
condition. A suitable compromise must be reached between the viewpoint of a
company accountant, who dislikes bad debt, and that of a sales executive, who
dislikes turning business away.

Enter machine learning. The input was 1000 training examples of borderline
cases for which a loan had been made that specified whether the borrower had
finally paid off or defaulted. For each training example, about 20 attributes were
extracted from the questionnaire, such as age, years with current employer, years
at current address, years with the bank, and other credit cards possessed. A
machine learning procedure was used to produce a small set of classification rules
that made correct predictions on two-thirds of the borderline cases in an indepen-
dently chosen test set. Not only did these rules improve the success rate of the
loan decisions, but the company also found them attractive because they could
be used to explain to applicants the reasons behind the decision. Although the
project was an exploratory one that took only a small development effort, the loan
company was apparently so pleased with the result that the rules were put into
use immediately.

1.3.2  Screening Images

Since the early days of satellite technology, environmental scientists have been
trying to detect oil slicks from satellite images to give early warning of ecologic
disasters and deter illegal dumping. Radar satellites provide an opportunity for
monitoring coastal waters day and night, regardless of weather conditions. Oil
slicks appear as dark regions in the image whose size and shape evolve depending
on weather and sea conditions. However, other look-alike dark regions can be
caused by local weather conditions such as high wind. Detecting oil slicks is an
expensive manual process requiring highly trained personnel who assess each
region in the image.

A hazard detection system has been developed to screen images for subsequent
manual processing. Intended to be marketed worldwide to a wide variety of

1.3  Fielded Applications   21

22    CHAPTER 1  What’s It All About?

users—government agencies and companies—with different objectives, applica-
tions, and geographic areas, it needs to be highly customizable to individual cir-
cumstances. Machine learning allows the system to be trained on examples of
spills and nonspills supplied by the user and lets the user control the trade-off
between undetected spills and false alarms. Unlike other machine learning appli-
cations, which generate a classifier that is then deployed in the field, here it is the
learning method itself that will be deployed.

The input is a set of raw pixel images from a radar satellite, and the output is
a much smaller set of images with putative oil slicks marked by a colored border.
First, standard image processing operations are applied to normalize the image.
Then, suspicious dark regions are identified. Several dozen attributes are extracted
from each region, characterizing its size, shape, area, intensity, sharpness and jag-
gedness of the boundaries, proximity to other regions, and information about the
background in the vicinity of the region. Finally, standard learning techniques are
applied to the resulting attribute vectors.

Several interesting problems were encountered. One is the scarcity of training
data. Oil slicks are (fortunately) very rare, and manual classification is extremely
costly. Another is the unbalanced nature of the problem: of the many dark regions
in the training data, only a small fraction are actual oil slicks. A third is that the
examples group naturally into batches, with regions drawn from each image
forming a single batch, and background characteristics vary from one batch to
another. Finally, the performance task is to serve as a filter, and the user must be
provided with a convenient means of varying the false-alarm rate.

1.3.3  Load Forecasting

In the electricity supply industry, it is important to determine future demand for
power as far in advance as possible. If accurate estimates can be made for the
maximum and minimum load for each hour, day, month, season, and year, utility
companies can make significant economies in areas such as setting the operating
reserve, maintenance scheduling, and fuel inventory management.

An automated load forecasting assistant has been operating at a major utility
supplier over the past decade to generate hourly forecasts 2 days in advance. The
first step was to use data collected over the previous 15 years to create a sophis-
ticated load model manually. This model had three components: base load for the
year, load periodicity over the year, and the effect of holidays. To normalize for
the base load, the data for each previous year was standardized by subtracting the
average load for that year from each hourly reading and dividing by the standard
deviation over the year. Electric load shows periodicity at three fundamental
frequencies: diurnal, where usage has an early morning minimum and midday
and afternoon maxima; weekly, where demand is lower at weekends; and sea-
sonal, where increased demand during winter and summer for heating and
cooling, respectively, creates a yearly cycle. Major holidays such as Thanksgiving,
Christmas, and New Year’s Day show significant variation from the normal load

and are each modeled separately by averaging hourly loads for that day over the
past 15 years. Minor official holidays, such as Columbus Day, are lumped together
as school holidays and treated as an offset to the normal diurnal pattern. All of
these effects are incorporated by reconstructing a year’s load as a sequence of
typical days, fitting the holidays in their correct position, and denormalizing the
load to account for overall growth.

Thus far, the load model is a static one, constructed manually from historical
data, and implicitly assumes “normal” climatic conditions over the year. The final
step was to take weather conditions into account using a technique that locates
the previous day most similar to the current circumstances and uses the historical
information from that day as a predictor. In this case the prediction is treated as
an additive correction to the static load model. To guard against outliers, the 8
most similar days are located and their additive corrections averaged. A database
was constructed of temperature, humidity, wind speed, and cloud cover at three
local weather centers for each hour of the 15-year historical record, along with
the difference between the actual load and that predicted by the static model. A
linear regression analysis was performed to determine the relative effects of these
parameters on load, and the coefficients were used to weight the distance function
used to locate the most similar days.

The resulting system yielded the same performance as trained human fore
casters but was far quicker—taking seconds rather than hours to generate a daily
forecast. Human operators can analyze the forecast’s sensitivity to simulated
changes in weather and bring up for examination the “most similar” days that the
system used for weather adjustment.

1.3.4  Diagnosis

Diagnosis is one of the principal application areas of expert systems. Although the
handcrafted rules used in expert systems often perform well, machine learning
can be useful in situations in which producing rules manually is too labor
intensive.

Preventative maintenance of electromechanical devices such as motors and
generators can forestall failures that disrupt industrial processes. Technicians
regularly inspect each device, measuring vibrations at various points to determine
whether the device needs servicing. Typical faults include shaft misalignment,
mechanical loosening, faulty bearings, and unbalanced pumps. A particular chem-
ical plant uses more than 1000 different devices, ranging from small pumps to
very large turbo-alternators, which until recently were diagnosed by a human
expert with 20 years of experience. Faults are identified by measuring vibrations
at different places on the device’s mounting and using Fourier analysis to check
the energy present in three different directions at each harmonic of the basic
rotation speed. The expert studies this information, which is noisy because
of limitations in the measurement and recording procedure, to arrive at a diagno-
sis. Although handcrafted expert system rules had been developed for some

1.3  Fielded Applications   23

24    CHAPTER 1  What’s It All About?

situations, the elicitation process would have to be repeated several times for dif-
ferent types of machinery; so a learning approach was investigated.

Six hundred faults, each comprising a set of measurements along with the
expert’s diagnosis, were available, representing 20 years of experience in the field.
About half were unsatisfactory for various reasons and had to be discarded; the
remainder were used as training examples. The goal was not to determine whether
or not a fault existed but to diagnose the kind of fault, given that one was there.
Thus, there was no need to include fault-free cases in the training set. The mea-
sured attributes were rather low level and had to be augmented by intermediate
concepts, that is, functions of basic attributes, which were defined in consultation
with the expert and embodied some causal domain knowledge. The derived attri-
butes were run through an induction algorithm to produce a set of diagnostic
rules. Initially, the expert was not satisfied with the rules because he could not
relate them to his own knowledge and experience. For him, mere statistical evi-
dence was not, by itself, an adequate explanation. Further background knowledge
had to be used before satisfactory rules were generated. Although the resulting
rules were complex, the expert liked them because he could justify them in light
of his mechanical knowledge. He was pleased that a third of the rules coincided
with ones he used himself and was delighted to gain new insight from some of
the others.

Performance tests indicated that the learned rules were slightly superior to the
handcrafted ones that the expert had previously elicited, and subsequent use in
the chemical factory confirmed this result. It is interesting to note, however, that
the system was put into use not because of its good performance but because the
domain expert approved of the rules that had been learned.

1.3.5  Marketing and Sales

Some of the most active applications of data mining have been in the area of
marketing and sales. These are domains in which companies possess massive
volumes of precisely recorded data, data that—it has only recently been real-
ized—is potentially extremely valuable. In these applications, predictions them-
selves are the chief interest: the structure of how decisions are made is often
completely irrelevant.

We have already mentioned the problem of fickle customer loyalty and the
challenge of detecting customers who are likely to defect so that they can be
wooed back into the fold by giving them special treatment. Banks were early
adopters of data mining technology because of their successes in the use of
machine learning for credit assessment. Data mining is now being used to reduce
customer attrition by detecting changes in individual banking patterns that may
herald a change of bank or even life changes, such as a move to another city, that
could result in a different bank being chosen. It may reveal, for example, a group
of customers with above-average attrition rate who do most of their banking by
phone after hours when telephone response is slow. Data mining may determine

groups for whom new services are appropriate, such as a cluster of profitable,
reliable customers who rarely get cash advances from their credit card except in
November and December, when they are prepared to pay exorbitant interest rates
to see them through the holiday season. In another domain, cellular phone com-
panies fight churn by detecting patterns of behavior that could benefit from new
services and then advertise such services to retain their customer base. Incentives
provided specifically to retain existing customers can be expensive, and success-
ful data mining allows them to be precisely targeted to those customers where
they are likely to yield maximum benefit.

Market basket analysis is the use of association techniques to find groups of
items that tend to occur together in transactions, typically supermarket checkout
data. For many retailers, this is the only source of sales information that is available
for data mining. For example, automated analysis of checkout data may uncover
the fact that customers who buy beer also buy chips, a discovery that could be
significant from the supermarket operator’s point of view (although rather an
obvious one that probably does not need a data mining exercise to discover). Or
it may come up with the fact that on Thursdays, customers often purchase diapers
and beer together, an initially surprising result that, on reflection, makes some
sense as young parents stock up for a weekend at home. Such information could
be used for many purposes: planning store layouts, limiting special discounts to
just one of a set of items that tend to be purchased together, offering coupons for
a matching product when one of them is sold alone, and so on. There is enormous
added value in being able to identify individual customer’s sales histories. In fact,
this value is leading to a proliferation of discount cards or “loyalty” cards that
allow retailers to identify individual customers whenever they make a purchase;
the personal data that results will be far more valuable than the cash value of the
discount. Identification of individual customers not only allows historical analysis
of purchasing patterns but also permits precisely targeted special offers to be
mailed out to prospective customers.

This brings us to direct marketing, another popular domain for data mining.
Promotional offers are expensive and have an extremely low—but highly profit-
able—response rate. Any technique that allows a promotional mailout to be more
tightly focused, achieving the same or nearly the same response from a much
smaller sample, is valuable. Commercially available databases containing demo-
graphic information based on ZIP codes that characterize the associated neigh
borhood can be correlated with information on existing customers to find a
socioeconomic model that predicts what kind of people will turn out to be actual
customers. This model can then be used on information gained in response to an
initial mailout, where people send back a response card or call an 800 number
for more information, to predict likely future customers. Direct mail companies
have the advantage over shopping mall retailers of having complete purchasing
histories for each individual customer and can use data mining to determine those
likely to respond to special offers. Targeted campaigns are cheaper than mass-
marketed campaigns because companies save money by sending offers only to

1.3  Fielded Applications   25

26    CHAPTER 1  What’s It All About?

those likely to want the product. Machine learning can help companies to find
the targets.

1.3.6  Other Applications

There are countless other applications of machine learning. We briefly mention a
few more areas to illustrate the breadth of what has been done.

Sophisticated manufacturing processes often involve tweaking control param-
eters. Separating crude oil from natural gas is an essential prerequisite to oil refine-
ment, and controlling the separation process is a tricky job. British Petroleum used
machine learning to create rules for setting the parameters. This now takes just
10 minutes, whereas previously human experts took more than a day. Westing-
house faced problems in its process for manufacturing nuclear fuel pellets and
used machine learning to create rules to control the process. This was reported
to save the company more than $10 million per year (in 1984). The Tennessee
printing company R. R. Donnelley applied the same idea to control rotogravure
printing presses to reduce artifacts caused by inappropriate parameter settings,
reducing the number of artifacts from more than 500 each year to fewer
than 30.

In the realm of customer support and service, we have already described adju-
dicating loans and marketing and sales applications. Another example arises when
a customer reports a telephone problem and the company must decide what kind
of technician to assign to the job. An expert system developed by Bell Atlantic in
1991 to make this decision was replaced in 1999 by a set of rules acquired using
machine learning, which saved more than $10 million per year by making fewer
incorrect decisions.

There are many scientific applications. In biology, machine learning is used to
help identify the thousands of genes within each new genome. In biomedicine,
it is used to predict drug activity by analyzing not just the chemical properties of
drugs but also their three-dimensional structure. This accelerates drug discovery
and reduces its cost. In astronomy, machine learning has been used to develop a
fully automatic cataloging system for celestial objects that are too faint to be seen
by visual inspection. In chemistry, it has been used to predict the structure of
certain organic compounds from magnetic resonance spectra. In all these applica-
tions, machine learning techniques have attained levels of performance—or should
we say skill?—that rival or surpass human experts.

Automation is especially welcome in situations involving continuous monitor-
ing, a job that is time consuming and exceptionally tedious for humans. Ecologic
applications include the oil spill monitoring described earlier. Some other applica-
tions are rather less consequential—for example, machine learning is being used
to predict preferences for TV programs based on past choices and advise viewers
about the available channels. Still others may save lives. Intensive care patients
may be monitored to detect changes in variables that cannot be explained by
circadian rhythm, medication, and so on, raising an alarm when appropriate.

Finally, in a world that relies on vulnerable networked computer systems and is
increasingly concerned about cyber security, machine learning is used to detect
intrusion by recognizing unusual patterns of operation.

1.4	MACHINE LEARNING AND STATISTICs
What’s the difference between machine learning and statistics? Cynics, looking
wryly at the explosion of commercial interest (and hype) in this area, equate data
mining to statistics plus marketing. In truth, you should not look for a dividing
line between machine learning and statistics because there is a continuum—and
a multidimensional one at that—of data analysis techniques. Some derive from the
skills taught in standard statistics courses, and others are more closely associated
with the kind of machine learning that has arisen out of computer science. His-
torically, the two sides have had rather different traditions. If forced to point to a
single difference of emphasis, it might be that statistics has been more concerned
with testing hypotheses, whereas machine learning has been more concerned
with formulating the process of generalization as a search through possible hypoth-
eses. But this is a gross oversimplification: statistics is far more than hypothesis
testing, and many machine learning techniques do not involve any searching
at all.

In the past, similar methods have developed in parallel in machine learning
and statistics. One is decision tree induction. Four statisticians (Breiman et al.
1984) published a book, Classification and Regression Trees, in the mid-1980s,
and throughout the 1970s and early 1980s a prominent machine learning
researcher, J. Ross Quinlan, was developing a system for inferring classification
trees from examples. These two independent projects produced similar methods
for generating trees from examples, and the researchers only became aware of
one another’s work much later. A second area in which similar methods have
arisen involves the use of nearest-neighbor methods for classification. These are
standard statistical techniques that have been extensively adapted by machine
learning researchers, both to improve classification performance and to make the
procedure more efficient computationally.

But now the two perspectives have converged. The techniques we will examine
in this book incorporate a great deal of statistical thinking. From the beginning,
when constructing and refining the initial example set, standard statistical methods
apply: visualization of data, selection of attributes, discarding outliers, and so on.
Most learning algorithms use statistical tests when constructing rules or trees and
for correcting models that are “overfitted,” in that they depend too strongly on
the details of the particular examples used to produce them (we have already seen
an example of this in the two decision trees of Figure 1.3 for the labor negotia-
tions problem). Statistical tests are used to validate machine learning models and
to evaluate machine learning algorithms. In our study of practical techniques for
data mining, we will learn a great deal about statistics.

1.4  Machine Learning and Statistics   27

28    CHAPTER 1  What’s It All About?

1.5	GENERALIZATION AS SEARCH
One way of visualizing the problem of learning—and one that distinguishes it from
statistical approaches—is to imagine a search through a space of possible concept
descriptions for one that fits the data. Although the idea of generalization as search
is a powerful conceptual tool for thinking about machine learning, it is not essen-
tial for understanding the practical methods described here. That is why this
section is considered optional.

Suppose, for definiteness, that concepts—the result of learning—are expressed
as rules such as the ones given for the weather problem in Section 1.2 (although
other concept description languages would do just as well). Suppose that we list
all possible sets of rules and then look for ones that satisfy a given set of examples.
A big job? Yes. An infinite job? At first glance it seems so because there is no limit
to the number of rules there might be. But actually the number of possible rule
sets is finite. Note first that each individual rule is no greater than a fixed maximum
size, with at most one term for each attribute: for the weather data of Table 1.2
this involves four terms in all. Because the number of possible rules is finite, the
number of possible rule sets is finite, too, although extremely large. However,
we’d hardly be interested in sets that contained a very large number of rules. In
fact, we’d hardly be interested in sets that had more rules than there are examples
because it is difficult to imagine needing more than one rule for each example.
So if we were to restrict consideration to rule sets smaller than that, the problem
would be substantially reduced, although still very large.

The threat of an infinite number of possible concept descriptions seems more
serious for the second version of the weather problem in Table 1.3 because these
rules contain numbers. If they are real numbers, you can’t enumerate them, even
in principle. However, on reflection, the problem again disappears because the
numbers really just represent breakpoints in the numeric values that appear in the
examples. For instance, consider the temperature attribute in Table 1.3. It involves
the numbers 64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, and 85—12 different
numbers. There are 13 possible places in which we might want to put a break-
point for a rule involving temperature. The problem isn’t infinite after all.

So the process of generalization can be regarded as a search through an enor-
mous, but finite, search space. In principle, the problem can be solved by enu-
merating descriptions and striking out those that do not fit the examples presented.
A positive example eliminates all descriptions that it does not match, and a nega-
tive one eliminates those it does match. With each example, the set of remaining
descriptions shrinks (or stays the same). If only one is left, it is the target descrip-
tion—the target concept.

If several descriptions are left, they may still be used to classify unknown
objects. An unknown object that matches all remaining descriptions should be
classified as matching the target; if it fails to match any description, it should be
classified as being outside the target concept. Only when it matches some descrip-
tions, but not others, is there ambiguity. In this case, if the classification of the

unknown object were revealed, it would cause the set of remaining descriptions
to shrink because rule sets that classified the object the wrong way would be
rejected.

1.5.1  Enumerating the Concept Space

Regarding it as search is a good way of looking at the learning process. However,
the search space, although finite, is extremely big, and it is generally impractical
to enumerate all possible descriptions and then see which ones fit. In the weather
problem there are 4 × 4 × 3 × 3 × 2 = 288 possibilities for each rule. There are
four possibilities for the outlook attribute: sunny, overcast, rainy, or it may not
participate in the rule at all. Similarly, there are four for temperature, three for
weather and humidity, and two for the class. If we restrict the rule set to contain
no more than 14 rules (because there are 14 examples in the training set), there
are around 2.7 × 1034 possible different rule sets. That’s a lot to enumerate, espe-
cially for such a patently trivial problem.

Although there are ways of making the enumeration procedure more feasible,
a serious problem remains: in practice, it is rare for the process to converge on a
unique acceptable description. Either many descriptions are still in the running
after the examples are processed or the descriptors are all eliminated. The first
case arises when the examples are not sufficiently comprehensive to eliminate all
possible descriptions except for the “correct” one. In practice, people often want
a single “best” description, and it is necessary to apply some other criteria to select
the best one from the set of remaining descriptions. The second problem arises
either because the description language is not expressive enough to capture the
actual concept or because of noise in the examples. If an example comes in with
the “wrong” classification because of an error in some of the attribute values or
in the class that is assigned to it, this will likely eliminate the correct description
from the space. The result is that the set of remaining descriptions becomes
empty. This situation is very likely to happen if the examples contain any noise
at all, which inevitably they do except in artificial situations.

Another way of looking at generalization as search is to imagine it, not as a
process of enumerating descriptions and striking out those that don’t apply, but
as a kind of hill-climbing in description space to find the description that best
matches the set of examples according to some prespecified matching criterion.
This is the way that most practical machine learning methods work. However,
except in the most trivial cases, it is impractical to search the whole space exhaus-
tively; most practical algorithms involve heuristic search and cannot guarantee to
find the optimal description.

1.5.2  Bias

Viewing generalization as a search in a space of possible concepts makes it clear
that the following are most important decisions in a machine learning system.

1.5  Generalization as Search   29

30    CHAPTER 1  What’s It All About?

n	 The concept description language.
n	 The order in which the space is searched.
n	 The way that overfitting to the particular training data is avoided.

These three properties are generally referred to as the bias of the search and are
called language bias, search bias, and overfitting-avoidance bias. You bias the
learning scheme by choosing a language in which to express concepts, by search-
ing in a particular way for an acceptable description, and by deciding when the
concept has become so complex that it needs to be simplified.

Language Bias
The most important question for language bias is whether the concept description
language is universal, or whether it imposes constraints on what concepts can be
learned. If you consider the set of all possible examples, a concept is really just a
division of it into subsets. In the weather example, if you were to enumerate all
possible weather conditions, the play concept is a subset of possible weather
conditions. A “universal” language is one that is capable of expressing every pos-
sible subset of examples. In practice, the set of possible examples is generally
huge, and in this respect our perspective is a theoretic, not a practical, one.

If the concept description language permits statements involving logical
or, that is, disjunctions, then any subset can be represented. If the description
language is rule based, disjunction can be achieved by using separate rules.
For example, one possible concept representation is just to enumerate the
examples:

If outlook = overcast and temperature = hot and humidity = high
   and windy = false then play = yes
If outlook = rainy and temperature = mild and humidity = high
   and windy = false then play = yes
If outlook = rainy and temperature = cool and humidity = normal
   and windy = false then play = yes
If outlook = overcast and temperature = cool and humidity = normal
   and windy = true then play = yes
. . .
If none of the above then play = no

This is not a particularly enlightening concept description; it simply records
the positive examples that have been observed and assumes that all the rest are
negative. Each positive example is given its own rule, and the concept is the
disjunction of the rules. Alternatively, you could imagine having individual rules
for each of the negative examples, too—an equally uninteresting concept. In
either case, the concept description does not perform any generalization; it simply
records the original data.

On the other hand, if disjunction is not allowed, some possible concepts—sets
of examples—may not be able to be represented at all. In that case, a machine
learning scheme may simply be unable to achieve good performance.

Another kind of language bias is that obtained from knowledge of the particu-
lar domain being used. For example, it may be that some combinations of attribute
values can never happen. This would be the case if one attribute implied another.
We saw an example of this when considering the rules for the soybean problem
described earlier. Then, it would be pointless to even consider concepts that
involved redundant or impossible combinations of attribute values. Domain knowl-
edge can be used to cut down the search space. Knowledge is power: a little goes
a long way, and even a small hint can reduce the search space dramatically.

Search Bias
In realistic data mining problems, there are many alternative concept descriptions
that fit the data, and the problem is to find the “best” one according to some
criterion—usually simplicity. We use the term fit in a statistical sense; we seek
the best description that fits the data reasonably well. Moreover, it is often com-
putationally infeasible to search the whole space and guarantee that the descrip-
tion found really is the best. Consequently, the search procedure is heuristic, and
no guarantees can be made about the optimality of the final result. This leaves
plenty of room for bias: different search heuristics bias the search in different
ways.

For example, a learning algorithm might adopt a “greedy” search for rules by
trying to find the best rule at each stage and adding it in to the rule set. However,
it may be that the best pair of rules is not just the two rules that are individually
found to be the best. Or when building a decision tree, a commitment to split
early on using a particular attribute might turn out later to be ill considered in
light of how the tree develops below that node. To get around these problems, a
beam search could be used in which irrevocable commitments are not made but
instead a set of several active alternatives—whose number is the beam width—are
pursued in parallel. This will complicate the learning algorithm considerably but
has the potential to avoid the myopia associated with a greedy search. Of course,
if the beam width is not large enough, myopia may still occur. There are more
complex search strategies that help to overcome this problem.

A more general and higher-level kind of search bias concerns whether the
search is done by starting with a general description and refining it or by starting
with a specific example and generalizing it. The former is called a general-to-
specific search bias, the latter a specific-to-general one. Many learning algorithms
adopt the former policy, starting with an empty decision tree, or a very general
rule, and specializing it to fit the examples. However, it is perfectly possible to
work in the other direction. Instance-based methods start with a particular example
and see how it can be generalized to cover nearby examples in the same class.

Overfitting-Avoidance Bias
Overfitting-avoidance bias is often just another kind of search bias. But because it
addresses a rather special problem, we treat it separately. Recall the disjunction

1.5  Generalization as Search   31

32    CHAPTER 1  What’s It All About?

problem described previously. The problem is that if disjunction is allowed,
useless concept descriptions that merely summarize the data become possible,
whereas if it is prohibited, some concepts are unlearnable. To get around this
problem, it is common to search the concept space starting with the simplest
concept descriptions and proceeding to more complex ones: simplest-first order-
ing. This biases the search toward simple concept descriptions.

Using a simplest-first search and stopping when a sufficiently complex concept
description is found is a good way of avoiding overfitting. It is sometimes called
forward pruning or prepruning because complex descriptions are pruned away
before they are reached. The alternative, backward pruning or postpruning, is
also viable. Here, we first find a description that fits the data well and then prune
it back to a simpler description that also fits the data. This is not as redundant as
it sounds: often the only way to arrive at a simple theory is to find a complex one
and then simplify it. Forward and backward pruning are both a kind of overfitting-
avoidance bias.

In summary, although generalization as search is a nice way to think about the
learning problem, bias is the only way to make it feasible in practice. Different
learning algorithms correspond to different concept description spaces searched
with different biases. This is what makes it interesting: different description
languages and biases serve some problems well and other problems badly. There
is no universal “best” learning method—as every teacher knows!

1.6	DATA MINING AND ETHICS
The use of data—particularly data about people—for data mining has serious
ethical implications, and practitioners of data mining techniques must act respon-
sibly by making themselves aware of the ethical issues that surround their par-
ticular application.

When applied to people, data mining is frequently used to discriminate—who
gets the loan, who gets the special offer, and so on. Certain kinds of discrimina-
tion—racial, sexual, religious, and so on—are not only unethical but also illegal.
However, the situation is complex: everything depends on the application. Using
sexual and racial information for medical diagnosis is certainly ethical, but using
the same information when mining loan payment behavior is not. Even when
sensitive information is discarded, there is a risk that models will be built that rely
on variables that can be shown to substitute for racial or sexual characteristics.
For example, people frequently live in areas that are associated with particular
ethnic identities, so using an area code in a data mining study runs the risk of
building models that are based on race—even though racial information has been
explicitly excluded from the data.

It is widely accepted that before people make a decision to provide personal
information they need to know how it will be used and what it will be used
for, what steps will be taken to protect its confidentiality and integrity, what the

consequences of supplying or withholding the information are, and any rights of
redress they may have. Whenever such information is collected, individuals should
be told these things—not in legalistic small print but straightforwardly in plain
language they can understand.

The potential use of data mining techniques means that the ways in which a
repository of data can be used may stretch far beyond what was conceived when
the data was originally collected. This creates a serious problem: it is necessary
to determine the conditions under which the data was collected and for what
purposes it may be used. Does the ownership of data bestow the right to use it
in ways other than those purported when it was originally recorded? Clearly in
the case of explicitly collected personal data it does not. But in general the situa-
tion is complex.

Surprising results emerge from data mining. For example, it has been reported
that one of the leading consumer groups in France has found that people with
red cars are more likely to default on their car loans. What is the status of such a
“discovery”? What information is it based on? Under what conditions was that
information collected? In what ways is it ethical to use it? Clearly, insurance com-
panies are in the business of discriminating among people based on stereotypes—
young males pay heavily for automobile insurance—but such stereotypes are not
based solely on statistical correlations; they also involve commonsense knowledge
about the world. Whether the preceding finding says something about the kind
of person who chooses a red car, or whether it should be discarded as an irrele-
vancy is a matter for human judgment based on knowledge of the world, rather
than on purely statistical criteria.

When presented with data, you need to ask who is permitted to have access
to it, for what purpose it was collected, and what kind of conclusions is it legiti-
mate to draw from it. The ethical dimension raises tough questions for those
involved in practical data mining. It is necessary to consider the norms of the
community that is used to dealing with the kind of data involved, standards that
may have evolved over decades or centuries but ones that the information special-
ist may not know. For example, did you know that in the library community, it is
taken for granted that the privacy of readers is a right that is jealously protected?
If you call your university library and ask who has such-and-such a textbook out
on loan, they will not tell you. This prevents a student from being subjected to
pressure from an irate professor to yield access to a book that she desperately
needs for her latest grant application. It also prohibits inquiry into the dubious
recreational reading tastes of the university ethics committee chairperson. Those
who build, say, digital libraries may not be aware of these sensitivities and might
incorporate data mining systems that analyze and compare individuals’ reading
habits to recommend new books—perhaps even selling the results to publishers!

In addition to community standards for the use of data, logical and scientific
standards must be adhered to when drawing conclusions from it. If you do come
up with conclusions (such as red car owners being greater credit risks), you need
to attach caveats to them and back them up with arguments other than purely

1.6  Data Mining and Ethics   33

34    CHAPTER 1  What’s It All About?

statistical ones. The point is that data mining is just a tool in the whole process:
it is people who take the results, along with other knowledge, and decide what
action to apply.

Data mining prompts another question, which is really a political one: To what
use are society’s resources being put? We mentioned previously the application
of data mining to basket analysis, where supermarket checkout records are ana-
lyzed to detect associations among items that people purchase. What use should
be made of the resulting information? Should the supermarket manager place the
beer and chips together, to make it easier for shoppers, or farther apart, making
it less convenient for them, maximizing their time in the store, and therefore
increasing their likelihood of being drawn into unplanned further purchases?
Should the manager move the most expensive, most profitable diapers near the
beer, increasing sales to harried fathers of a high-margin item and add further
luxury baby products nearby?

Of course, those who use advanced technologies should consider the wisdom
of what they are doing. If data is characterized as recorded facts, then informa-
tion is the set of patterns, or expectations, that underlie the data. You could go
on to define knowledge as the accumulation of your set of expectations and
wisdom as the value attached to knowledge. Although we will not pursue it
further here, this issue is worth pondering.

As we saw at the very beginning of this chapter, the techniques described in
this book may be called on to help make some of the most profound and intimate
decisions that life presents. Data mining is a technology that we need to take
seriously.

1.7	RESOURCES
This section describes papers, books, and other resources relevant to the material
covered in this chapter. The human in vitro fertilization research mentioned in
the opening of this chapter was undertaken by the Oxford University Computing
Laboratory, and the research on cow culling was performed in the Computer
Science Department at the University of Waikato, New Zealand.

The example of the weather problem is from Quinlan (1986) and has been
widely used to explain machine learning schemes. The corpus of example prob-
lems mentioned in the introduction to Section 1.2 is available from Blake et al.
(1998). The contact lens example is from Cendrowska (1998), who introduced
the PRISM rule-learning algorithm. The iris dataset was described in a classic early
paper on statistical inference (Fisher 1936). The labor negotiations data is from
the Collective Bargaining Review, a publication of Labour Canada issued by the
Industrial Relations Information Service (BLI 1988), and the soybean problem was
first described by Michalski and Chilausky (1980).

Some of the applications in Section 1.3 are covered in an excellent paper that
gives plenty of other applications of machine learning and rule induction (Langley

& Simon 1995); another source of fielded applications is a special issue of the
Machine Learning Journal (Kohavi & Provost 1998). The loan company applica-
tion is described in more detail by Michie (1989), the oil slick detector is from
Kubat et al. (1998), the electric load forecasting work is by Jabbour et al. (1988),
and the application to preventative maintenance of electromechanical devices is
from Saitta and Neri (1998). Fuller descriptions of some of the other projects
mentioned in Section 1.3 (including the figures of dollars saved and related litera-
ture references) appear at the websites of the Alberta Ingenuity Centre for Machine
Learning and MLnet, a European network for machine learning.

The book Classification and Regression Trees mentioned in Section 1.4 is by
Breiman et al. (1984), and the independently derived but similar scheme of Quinlan
was described in a series of papers that eventually led to a book (Quinlan
1993).

The first book on data mining appeared in 1991 (Piatetsky-Shapiro & Frawley
1991), a collection of papers presented at a workshop on knowledge discovery
in databases in the late 1980s. Another book from the same stable has appeared
since (Fayyad et al. 1996) from a 1994 workshop. There followed a rash of
business-oriented books on data mining, focusing mainly on practical aspects of
how it can be put into practice with only superficial descriptions of the technol-
ogy that underlies the methods used. They are valuable sources of applications
and inspiration. For example, Adriaans and Zantige (1996) from Syllogic, a Euro-
pean systems and database consultancy, provide an early introduction to data
mining. Berry and Linoff (1997), from a Pennsylvania-based company specializing
in data warehousing and data mining, give an excellent and example-studded
review of data mining techniques for marketing, sales, and customer support. The
work of Cabena et al. (1998), written by people from five international IBM labo-
ratories, presents an overview the data mining process with many examples of
real-world applications. Dhar and Stein (1997) give a business perspective on data
mining and include broad-brush, popularized reviews of many of the technologies
involved. Groth (1998), working for a provider of data mining software, gives a
brief introduction to data mining and then a fairly extensive review of data mining
software products; the book includes a CD containing a demo version of his
company’s product. Weiss and Indurkhya (1998) look at a wide variety of statisti-
cal techniques for making predictions from what they call “big data.” Han and
Kamber (2001) cover data mining from a database perspective, focusing on the
discovery of knowledge in large corporate databases. Finally, Hand et al. (2001)
produced an interdisciplinary book on data mining from an international group
of authors who are well respected in the field.

Books on machine learning, on the other hand, tend to be academic texts
suited for use in university courses rather than practical guides. Mitchell (1997)
wrote an excellent book that covers many techniques of machine learning,
including some—notably genetic algorithms and reinforcement learning—that are
not covered here. Langley (1996) offers another good text. Although the previ-
ously mentioned book by Quinlan (1993) concentrates on a particular learning

1.7  Resources   35

36    CHAPTER 1  What’s It All About?

algorithm, C4.5, it is a good introduction to some of the problems and techniques
of machine learning. An excellent book on machine learning from a statistical
perspective is from Hastie et al. (2001). This is a theoretically oriented work and
is beautifully produced with apt and telling illustrations.

Pattern recognition is a topic that is closely related to machine learning, and
many of the same techniques apply. Duda et al. (2001) offer the second edition
of a classic and successful book on pattern recognition (Duda & Hart 1973). Ripley
(1996) and Bishop (1995) describe the use of neural networks for pattern
recognition. Data mining with neural networks is the subject of a book by Bigus
(1996) of IBM, which features the IBM Neural Network Utility Product that he
developed.

There is a great deal of current interest in support vector machines. Cristianini
and Shawe-Taylor (2000) give a nice introduction, and a follow-up work general-
izes this to cover additional algorithms, kernels, and solutions with applications
to pattern discovery problems in fields such as bioinformatics, text analysis, and
image analysis (Shawe-Taylor & Cristianini 2004). Schölkopf and Smola (2002)
provide a comprehensive introduction to support vector machines and related
kernel methods by two young researchers who did their PhD research in this
rapidly developing area.

CHAPTER

2Data Acquisition
and Integration

2.1	 INTRODUCTION
This chapter first provides a brief review of data sources and types of variables
from the point of view of data mining. Then it presents the most common proce-
dures of data rollup and aggregation, sampling, and partitioning.

2.2	SOURCES OF DATA
In most organizations today, data is stored in relational databases. The quality and
utility of the data, as well as the amount of effort needed to transform the data to
a form suitable for data mining, depends on the types of the applications the
databases serve. These relational databases serve as data repositories for the fol-
lowing applications.

2.2.1  Operational Systems

Operational systems process the transactions that make an organization work. The
data from these systems is, by nature, transient and keeps accumulating in the
repository. A typical example of these systems is any banking transaction process-
ing system that keeps records of opened and closed accounts, deposits, withdraw-
als, balances, and all other values related to the money moving among accounts,
clients, and the outside world. Data extracted from such operational systems is
the most raw form of data, in the sense that it has not been transformed, cleansed,
or changed. It may contain errors as a result of data entry procedures or applica-
tions and usually has many missing values. It is also usually scattered over several
tables and files. However, it is the most honest representation of the status of any
business.

38    CHAPTER 2  Data Acquisition and Integration

2.2.2  Data Warehouses and Data Marts

Data warehouses and data marts were conceived as a means to facilitate the com-
pilation of regular reports on the status of the business by continuously collecting,
cleaning, and summarizing the core data of the organization. Data warehouses
provide a clean and organized source of data for data mining. In most cases,
however, data warehouses were not created to prepare data for data modelers;
they were rather created with a certain set of reporting functions in mind. There-
fore, data residing in them might have been augmented or processed in a special
way to facilitate those functions. Ideally, a specialized data mart should be created
to house the data needed for data mining modeling and scoring processes.

2.2.3  Online Analytical Processing Applications

Online analytical processing (OLAP) and similar software are often given the name
business intelligence tools. These applications reside in the data warehouse, or
have their own data warehouse, and provide a graphical interface to navigate,
explore, and “slice and dice” the data. The data structures that OLAP applications
operate on are called cubes. They also provide comprehensive reporting capa-
bilities. OLAP systems could be a source of data for data mining because of the
interactive exploration capabilities that they offer the user. Therefore, the user
would find the interesting data elements related to the problem through OLAP
applications and then apply data mining modeling for prediction.

Alternatively, data mining can offer the identification of the significant variables
that govern the behavior of some business measure (such as profit), and then
OLAP can use these variables (as dimensions) to navigate and get qualitative
insight into existing relationships. Data extracted from OLAP cubes may not be
granular enough for data mining. This is because continuous variables are usually
binned before they can be used as dimensions in OLAP cubes. This binning
process results in the loss of some information, which may have a significant
impact on the performance of data mining algorithms.

2.2.4  Surveys

Surveys are perhaps the most expensive source of data because they require direct
interaction with customers. Surveys collect data through different communication
channels with customers, such as mail, email, interviews, and forms on websites.
There are many anecdotes about the accuracy and validity of the data collected
from the different forms of surveys. However, they all share the following two
common features:

1.	 The number of customers who participate in the survey is usually limited
because of the cost and the number of customers willing to participate.

2.	 The questions asked in the survey can be designed to directly address the
objective of the planned model. For example, if the objective is to market new

products, the survey would ask customers about their preferences in these
products, whether they would buy them, and what price would they pay for
them.

These two points highlight the fact that, if well designed and executed, surveys
are indeed the most accurate representation of possible customer behavior.
However, they usually generate a limited amount of data because of the cost
involved.

2.2.5  Household and Demographic Databases

In most countries, databases are commercially available that contain detailed
information on consumers of different products and services. The most common
type is demographic databases based on a national census, where the general
demographic profile of each residential area is surveyed and summarized. Data
obtained from such database providers is usually clean and information rich. Their
only limitation is that data is not provided on the individual customer or record
level but rather is averaged over a group of customers, for example, on the level
of a postal (ZIP) code. Such limitations are usually set by privacy laws aimed at
protecting individuals from abuse of such data.

The use of averaged data in models could lead to diluting the model’s ability
to accurately define a target group. For example, extensive use of census-like
variables in a customer segmentation model would eventually lead to a model that
clusters the population on the basis of the used census demographics and not in
relation to the originally envisaged rate of usage or buying habits of the planned
products or services.

It is not uncommon that analysts collect data from more than one source to
form the initial mining view and for the scoring of mining models.

2.3	VARIABLE TYPES
Designers of applications that use databases and different file systems attempt
to optimize their applications in terms of the space required to keep the data
and the speed of processing and accessing the data. Because of these consider-
ations, the data extracted from databases is often not in optimal form from the
point of view of data mining algorithms. To appreciate this issue, we provide the
following discussion of the types of variables that most data mining algorithms
deal with.

2.3.1  Nominal Variables

Nominal, or categorical, variables describe values that lack the properties of order,
scale, or distance between them. For example, the variables representing the type
of a housing unit can take the categories House, Apartment, or Shared Accom-

2.3  Variable Types   39

40    CHAPTER 2  Data Acquisition and Integration

modation. One cannot enforce any meaning of order or scale on these values.
Other examples include Gender (Male, Female), Account Type (Savings, Check-
ing), and type of Credit Card (VISA, MasterCard, American Express, Diners Club,
EuroCard, Discover, etc.).

From the point of view of data mining algorithms, it is important to retain the
lack of order or scale in categorical variables. Therefore, it is not desirable that a
category be represented in the data by a series of integers. For example, if the
type of a house variable is represented by the integers 1 to 4 (1 = Detached, 2 =
Semidetached, 3 = Townhome, 4 = Bungalow), a numeric algorithm may inadver-
tently add the numbers 1 and 2, resulting implicitly in the erroneous and meaning-
less statement of “Detached + Semidetached = Townhome”! Other erroneous, and
equally meaningless, implications that “Bungalow > Detached” or “Bungalow −
Semidetached = Townhome − Detached.” The most convenient method of storing
categorical variables in software applications is to use strings. This should force
the application to interpret them as nominal variables.

2.3.2  Ordinal Variables

Ordinal, or rank or ordered scalar, variables are categorical variables with the
notion of order added to them. For example, we may define the risk levels of
defaulting on a credit card payment into three levels (Low, Medium, High). We
can assert the order relationships High ≥ Medium ≥ Low. However, we cannot
establish the notion of scale. In other words, we cannot accurately say that the
difference between High and Medium is the same as the difference between
Medium and Low levels of risk.

Based on the definition of ordinal variables, we can realize the problem that
would arise when such variables are represented by a series of integers. For
example, in the case of the risk level variable, representing these levels with
numbers from 1 to 3 such that (Low = 1, Medium = 2, High = 3) would result in
the imposition of an invalid notion of distance between the different values. In
addition, this definition would impose the definition of scale on the values by
implying that Medium risk is double the risk of Low, and High risk is three times
the risk of Low.

Some ordinal variables come with the scale and distance notions added to
them. These are best represented by a series of positive integers. They usually
measure the frequency of occurrence of an event. Examples of such ordinal mea-
sures are number of local telephone calls within a month, number of people using
a credit card in a week, and number of cars purchased by a prospective customer
in her or his lifetime.

A typical problem, especially in data warehouses, exists in the representation
of ordinal measures. Some ordinal measures are often subjected to binning to
reduce the values we need to store and deal with. For example, a data warehouse
may bin the number of times a customer uses a credit card per month to the
representation 0–5 → 1, 6–10 → 2, 11–20 → 3, more than 20 → 4. Although this

2.4  Data Rollup   41

leads to a more compact representation of the variables, it may be detrimental to
data mining algorithms for two reasons: (1) it reduces the granularity level of the
data, which may result in a reduction in the predictive model accuracy, and
(2) it distorts the ordinal nature of the original quantity being measured.

2.3.3  Real Measures

Real measures, or continuous variables, are the easiest to use and interpret.
Continuous variables have all the desirable properties of variables: order, scale,
and distance. They also have the meanings of zero and negative values defined.
There could be some constraints imposed on the definition of continuous vari-
ables. For example, the age of a person cannot be negative and the monthly bill
of a telephone line cannot be less than the subscription fees. Real measures are
represented by real numbers, with any reasonably required precision.

The use of ratios in constrained continuous variables is sometimes trouble-
some. For example, if we allow the balance of a customer to be negative or
positive, then the ratio between $ −10,000.00 and $ −5,000.00 is the same as that
between $ +10,000.00 and $ +5,000.00. Therefore, some analysts like to distin-
guish between the so-called interval and ratio variables. We do not make that
distinction here because in most cases the context of the implementation is clear.
For example, if we wished to use the ratio of balances, we would restrict the bal-
ances to positive values only; if negative values occurred, we would devise another
measure to signify that fact.

With the three types of variable from the mining point of view, the first task
the analyst should consider, when acquiring the data, is to decide on the type of
data to be used for each variable depending on its meaning. Of special interest
are variables that represent dates and times. With the exception of time series
analysis, dates and times are not useful in their raw form. One of the most effec-
tive methods of dealing with date and time values is to convert them to a period
measure, that is, to calculate the difference between the values and a fixed refer-
ence value. For example, instead of dealing with the date of opening an account,
we deal with total tenure as the difference between today’s date and the date of
opening the account. In fact, we use this method every day by referring to the
age of a person instead of her or his birth date. In this way, we convert dates and
times to real measures, with some constraint if necessary, as in the case of a
person’s age. (Negative age is not well defined!)

2.4	DATA ROLLUP
The simplest definition of data rollup is that we convert categories to variables.
Let us consider an illustrative example.

Table 2.1 shows some records from the transaction table of a bank where
deposits are denoted by positive amounts and withdrawals are shown as negative

42    CHAPTER 2  Data Acquisition and Integration

amounts. We further assume that we are building the mining view as a customer
view. Because the first requirement is to have one, and only one, row per cus-
tomer, we create a new view such that each unique customer ID appears in one
and only one row. To roll up the multiple records on the customer level, we
create a set of new variables to represent the combination of the account type
and the month of the transaction. This is illustrated in Figure 2.1. The result of
the rollup is shown in Table 2.2.

Table 2.1 shows that we managed to aggregate the values of the transactions
in the different accounts and months into new variables. The only issue is what
to do when we have more than one transaction per account per month. In this
case, which is the more realistic one, we have to summarize the data in some
form. For example, we can calculate the sum of the transactions values, or their
average, or even create a new set of variables giving the count of such transactions
for each month–account type combination.

It is obvious that this process will lead to the generation of possibly hundreds,
if not thousands, of variables in any data-rich business applications. Dealing with
such a large number of fields could present a challenge for the data preparation
and data mining software tools. It is therefore required that we keep the number

Table 2.1 A Sample of Banking Transactions

Customer ID Date Amount Account Type

1100-55555 11Jun2003 114.56 Savings

1100-55555 21Jun2003 −56.78 Checking

1100-55555 07Jul2003 359.31 Savings

1100-55555 19Jul2003 89.56 Checking

1100-55555 03Aug2003 1000.00 Savings

1100-55555 17Aug2003 −1200.00 Checking

1100-88888 14June2003 122.51 Savings

1100-88888 27June2003 42.07 Checking

1100-88888 09July2003 −146.30 Savings

1100-88888 09July2003 −1254.48 Checking

1100-88888 10Aug2003 400.00 Savings

1100-88888 11Aug 2003 500.00 Checking

. . .

2.4  Data Rollup   43

FIGURE 2.1

Data rollup.

Customer ID
1100-55555
1100-55555
1100-55555
1100-55555
1100-55555
1100-55555

Date
11June2003
21June2003
07Jul2003
19Jul2003
03Aug2003
17Aug2003

Amount
114.56

–56.78
359.31

89.56
1000.00

–1200.00

Account Type
Savings
Checking
Savings
Checking
Savings
Checking

Customer ID

Rolled-up DataTransaction Data

1100-55555
Checking—June 2003

–56.78

{

Table 2.2 Result of Rolling up the Data of Table 2.1

Cust. ID C-6 C-7 C-8 S-6 S-7 S-8

1100-55555 −56.78 89.56 −1200.00 114.56 359.30 1000.00

1100-88888 42.07 −1254.00 500.00 122.51 −146.30 400.00

of these new fields to a minimum while keeping as much information about the
nature of the data as possible. Unfortunately, there is no magic recipe to achieve
this balance. However, a closer look at the preceding data reveals that the key to
controlling the number of new variables is to decide on the level of granularity
required to perform the rollup. For example, is it necessary to roll up the transac-
tions of each month, or is it enough to roll up the data per quarter? Similarly, in
our simplified case, we had only two categories for the account type, but typically,
there would be many more categories. Then comes the question of which
categories we can group together, or even ignore, to reduce the number of new
variables.

In the end, even with careful selection of the categories and resolution of
combining the different categories to form new variables, we usually end up with
a relatively large number of variables, which most implementations of data mining
algorithms cannot handle adequately. However, we should not worry too much
about this problem for the moment because data reduction is a basic step in our
planned approach. In later chapters, we will investigate techniques to reduce the
number of variables.

In the last example demonstrating the rollup process, we performed the rollup
on the level of two variables: the account type and the transaction month. This
is usually called multilevel rollup. On the other hand, if we had had only one type
of account, say only savings, then we could have performed a simpler rollup using
only the transaction month as the summation variable. This type of rollup is called
simple rollup. In fact, multilevel rollup is only an aggregation of several simple

44    CHAPTER 2  Data Acquisition and Integration

rollups on the row level, which is the customer ID in our example. Therefore,
data preparation procedures, in either SAS or SQL, can use this property to
simplify the implementation by performing several simple rollups for each com-
bination of the summarization variables and combining them. This is the approach
we will adopt in developing our macro to demonstrate the rollup of our sample
dataset.

Now let us describe how to perform the rollup operation using SAS. We will
do this using our simple example first and then generalize the code using macros
to facilitate its use with other datasets. We stress again that in writing the code
we preferred to keep the code simple and readable at the occasional price of
efficiency of execution, and the use of memory resources. You are welcome to
modify the code to make it more efficient or general as required.

We use Table 2.1 to create the dataset as follows:

Data Transaction;
Informat CustID $10.;
Informat TransDate date9.;
format TransDate Date9.;
input CustID $ TransDate Amount AccountType$; Cards;
55555        11Jun2003   	 114.56  	 Savings
55555        12Jun2003   	 119.56  	 Savings
55555        21Jun2003   	 −56.78  	 Checking
55555        07Jul2003   	 359.31  	 Savings
55555        19Jul2003    	 89.56  	 Checking
55555        03Aug2003  	 1000.00  	 Savings
66666        22Feb2003   	 549.56  	 Checking
77777        03Dec2003   	 645.21  	 Savings
55555        17Aug2003 	 −1200.00  	 Checking
88888        14Jun2003   	 122.51  	 Savings
88888        27Jun2003    	 42.07  	 Checking
88888        09Jul2003  	 −146.30  	 Savings
88888        09Jul2003 	 −1254.48  	 Checking
88888        10Aug2003   	 400.00  	 Savings
88888        11Aug2003   	 500.00  	 Checking
;
run;

The next step is to create the month field using the SAS Month function:

data Trans;
 set Transaction;
  Month = month(TransDate);
run;

Then we accumulate the transactions into a new field to represent the balance in
each account:

proc sort data=Trans;
      by CustID month AccountType;
run;

2.4  Data Rollup   45

/* Create cumulative balances for each of the accounts */
data Trans2;
 retain Balance 0;
 set Trans;
  by CustID month AccountType;
  if first.AccountType then Balance=0;
   Balance = Balance + Amount;
   if last.AccountType then output;
   drop amount;
run;

Finally, we use PROC TRANSPOSE to roll up the data in each account type and
merge the two resulting datasets into the final file:

/* Prepare for the transpose */
proc sort data=trans2;
  by CustID accounttype;
  run;

proc transpose data =Trans2 out=rolled_C prefix=C_;
  by CustID accounttype;
ID month ;
var balance ;
where AccountType='Checking';
run;

proc transpose data =Trans2 out=rolled_S prefix=S_;
by CustID accounttype;
ID month ;
var balance ;
where AccountType='Savings';
run;

data Rollup;
 merge Rolled_S Rolled_C;
 by CustID;
 drop AccountType _Name_;
run;

To pack this procedure in a general macro using the combination of two vari-
ables, one for transaction categories and one for time, we simply replace the Month
variable with a TimeVar, the customer ID with IDVar, and the AccountType with
TypeVar. We also specify the number of characters to be used from the category
variable to prefix the time values. Finally, we replace the two repeated TRANSPOSE
code segments with a %do loop that iterates over the categories of the TypeVar
(which requires extracting these categories and counting them). The following
steps detail the resulting macro.

46    CHAPTER 2  Data Acquisition and Integration

Step 1
Sort the transaction file using the ID, Time, and Type variables:

proc sort data=&TDS;
by &IDVar &TimeVar &TypeVar;
run;

Step 2
Accumulate the values over time to a temporary _Tot variable in the temporary
table Temp1 (see Table 2.3). Then sort Temp1 using the ID and the Type variables:

data Temp1;
retain _TOT 0;
set &TDS;
by &IDVar &TimeVar &TypeVar;
if first.&TypeVar then _TOT=0;
_TOT = _TOT + &Value;
if last.&TypeVar then output;
drop &Value;
   run;
proc sort data=Temp1;
by &IDVar &TypeVar;
run;

Step 3
Extract the categories of the Type variable, using PROC FREQ, and store them in
macro variables:

proc freq data =Temp1 noprint;
tables &TypeVar /out=Types ;
run;

Table 2.3 Parameters of TBRollup() Macro

TBRollup (TDS, IDVar, TimeVar, TypeVar, Nchars, Value, RDS)
Header Parameter Description

TDS Input transaction dataset

IDVar ID variable

TimeVar Time variable

TypeVar Quantity being rolled up

Nchars Number of characters to be used in rollup

Value Values to be accumulated

RDS The output rolled up dataset

2.4  Data Rollup   47

data _null_;
set Types nobs=Ncount;
if &typeVar ne “ then
call symput('Cat_'||left(_n_), &TypeVar);
if _N_=Ncount then call symput('N', Ncount);
run;

Step 4
Loop over these N categories and generate their rollup part:

%do i=1 %to &N;
proc transpose
data =Temp1
out=_R_&i
prefix=%substr(&&Cat_&i, 1, &Nchars)_;
by &IDVar &TypeVar;
ID &TimeVar ;
var _TOT ;
where &TypeVar=“&&Cat_&i”;
run;
%end;

Step 5
Finally, assemble the parts using the ID variable:

data &RDS;
merge %do i=1 %to &N; _R_&i %end ; ;
by &IDVar;
drop &TypeVar _Name_;
run;

Step 6
Clean the workspace and finish the macro:

proc datasets library=work nodetails;
delete Temp1 Types %do i=1 %to &N; _R_&I %end; ;
run;
quit;

%mend;

We can now call this macro to roll up the previous example Transaction dataset
using the following code:

data Trans;
set Transaction;
Month = month(TransDate);
drop transdate;
run;

48    CHAPTER 2  Data Acquisition and Integration

  %let IDVar  	= CustID;     	 /* The row ID variable */
  %let TimeVar	= Month;      	 /* The time variable */
  %let TypeVar	= AccountType;	/* The Type variable */
  %let Value  	= Amount;     	 /* The time measurement variable */
  %let Nchars 	= 1;          	 /* Number of letters in Prefix */
  %let TDS    	 = Trans;       	/* The value variable */
  %let RDS    	 = Rollup;     	 /* the rollup file */
  %TBRollup(&TDS, &IDVar, &TimeVar, &TypeVar, &Nchars, &Value,
&RDS);

The result of this call is shown in Table 2.4.

Table 2.4 Result of Rollup Macro

CustID C6 C7 C8 C12 S6 S7 S8 S12

5555 −56.78 89.56 −1200 . 234.12 359.31 1000 .

6666 . . . 549.56

7777 645.21

8888 42.07 −1254.48 500 . 122.51 −146.3 400 .

2.5	ROLLUP WITH SUMS, AVERAGES, AND COUNTS
In addition to finding the sum of a value variable during the rollup, it may also be
more meaningful sometimes to calculate average value or the number of records
that represent certain events—for example, number of deposits, number of with-
drawals, or number of mailings a customer received responding to an offer.

In our rollup macro, these requirements would alter only the middle part of
our code, where we calculated the cumulative value of the Value variable. The
following code segment would modify the macro to calculate the average value
and the number of transactions for each account type instead of the total:

Step 2

data _Temp1;
retain _TOT 0;
retain _NT 0;
set &TDS;
by &IDVar &TimeVar &TypeVar;
if first.&TypeVar then _TOT=0;
_TOT = _TOT + &Value;
if &Value ne . then _NT=_NT+1;
if last.&TypeVar then
do;

_AVG=_TOT/_NT;
output;
_NT=0;
end;
drop &Value;
run;

Furthermore, the code inside the %do loop should also reflect our interest in trans-
posing the values of the average variable, _AVG. Therefore, the code will be as
follows:

Step 4

%do i=1 %to &N;
0proc transpose
data =_Temp1
out=_R_&i
prefix=%substr(&&Cat_&i, 1, &Nchars)_;
by &IDVar &TypeVar;
ID &TimeVar;
var _AVG;
where &TypeVar=“&&Cat_&i”;
run;
%end;

The complete code for the modified code to roll up the average value is
included in the macro ABRollup().

2.6	CALCULATION OF THE MODE
Another useful summary statistic is the mode, which is used in both the rollup
stage and the event-driven architecture (EDA). The mode is the most common
category of transaction. The mode for nominal variables is equivalent to the use
of the average or the sum for the continuous case. For example, when customers
use different payment methods, it may be beneficial to identify the payment
method most frequently used by each customer.

The computation of the mode on the mining view entity level from a transac-
tion dataset is a demanding task because we need to search for the frequencies
of the different categories for each unique value of the entity variable. The macro
shown in Table 2.5 is based on a classic SQL query for finding the mode on the
entity level from a transaction table. The variable being searched is XVar, and the
entity level is identified through the unique value of the variable IDVar:

%macro VarMode(TransDS, XVar, IDVar, OutDS);
/* A classic implementation of the mode of transactional
   data using SQL */
proc sql noprint;
create table &OutDS as

2.6  Calculation of the Mode   49

50    CHAPTER 2  Data Acquisition and Integration

SELECT &IDVar , MIN(&XVar) AS mode
FROM (
               SELECT &IDVar, &XVar
               FROM &TransDS p1
               GROUP BY &IDVar, &XVar
               HAVING COUNT(*) =
                     (SELECT MAX(CNT)
                     FROM (SELECT COUNT(*) AS CNT
                           FROM &TransDS p2
                           WHERE p2.&IDVar= p1.&IDVar
                           GROUP BY p2.&XVar
                           ) AS p3
                     )
               ) AS p
         GROUP BY p.&IDVar;
quit;
%mend;

The query works by calculating a list holding the frequency of the XVar catego-
ries, identified as CNT, then using the maximum of these counts as the mode. The
query then creates a new table containing IDVar and XVar where the XVar cate-
gory frequency is equal to the maximum count, that is, the mode.

The preceding compound SELECT statement is computationally demanding
because of the use of several layers of GROUP BY and HAVING clauses. Indexing
should always be considered when dealing with large datasets. Sometimes it is
even necessary to partition the transaction dataset into smaller datasets before
applying such a query to overcome memory limitations.

2.7	DATA INTEGRATION
The data necessary to compile the mining view usually comes from many different
tables. The rollup and summarization operations described in the last two sections
can be performed on the data coming from each of these data sources indepen-

Table 2.5 Parameters of VarMode() Macro

Header Parameter VarMode (TransDS, XVar, IDVar, OutDS)
Description

TransDS Input transaction dataset

XVar Variable for which the mode is to be calculated

IDVar ID variable

OutDS The output dataset with the mode for unique IDs

dently. Finally, we would be required to assemble all these segments in one mining
view. The most used assembly operations are merging and concatenation. Merging
is used to collect data for the same key variable (e.g., customer ID) from different
sources. Concatenation is used to assemble different portions of the same data
fields for different segments of the key variable. It is most useful when preparing
the scoring view with a very large number of observations (many millions). In this
case, it is more efficient to partition the data into smaller segments, prepare each
segment, and finally concatenate them together.

2.7.1  Merging

SAS provides several options for merging and concatenating tables together using
DATA step commands. However, we could also use SQL queries, through PROC
SQL, to perform the same operations. In general, SAS DATA step options are more
efficient in merging datasets than PROC SQL is. However, DATA step merging may
require sorting of the datasets before merging them, which could be a slow
process for large datasets. On the other hand, the performance of SQL queries can
be enhanced significantly by creating indexes on the key variables used in
merging.

Because of the requirement that the mining view have a unique record
per category of key variable, most merging operations required to integrate
different pieces of the mining view are of the type called match-merge with
nonmatched observations. We demonstrate this type of merging with a simple
example.

Example 2.1

We start with two datasets, Left and Right, as shown in Table 2.6.
The two tables can be joined using the MERGE–BY commands within a DATA step

operation as follows:

DATA Left;
 INPUT ID Age Status $;
 datalines;
 1  30  Gold
 2  20  .
 4  40  Gold
 5  50  Silver
 ;
RUN;

DATA Right;
INPUT ID Balance Status $;
 datalines;
 2  3000  Gold
 4  4000  Silver
;
RUN;

2.7  Data Integration   51

52    CHAPTER 2  Data Acquisition and Integration

DATA Both;
 MERGE Left Right;
 BY ID;
RUN;

PROC PRINT DATA=Both;
RUN;

The result of the merging is the dataset Both given in Table 2.7, which shows that the
MERGE-BY commands did merge the two datasets as needed using ID as the key variable.
We also notice that the common file Status was overwritten by values from the Right
dataset. Therefore, we have to be careful about this possible side effect. In most practical
cases, common fields should have identical values. In our case, where the variable repre-
sented some customer designation status (Gold or Silver), the customer should have had
the same status in different datasets. Therefore, checking these status values should be one
of the data integrity tests to be performed before performing the merging.

Merging datasets using this technique is very efficient. It can be used with more than
two datasets as long as all the datasets in the MERGE statement have the common variable
used in the BY statement. The only possible difficulty is that SAS requires that all the data-
sets be sorted by the BY variable. Sorting very large datasets can sometimes be slow.

Table 2.6 Two Sample Tables: Left and Right

Table: Left Table: Right

ID Age Status ID Balance Status

1 30 Gold 2 3000 Gold

2 20 . 4 4000 Silver

4 40 Gold

5 50 Silver

Table 2.7 Result of Merging: Dataset Both

Obs ID Age Status Balance

1 1 30 Gold .

2 2 20 Gold 3000

3 4 40 Silver 4000

4 5 50 Silver .

You have probably realized by now that writing a general macro to merge a
list of datasets using an ID variable is a simple task. Assuming that all the datasets
have been sorted using ID before attempting to merge them, the macro would
simply be given as follows:

%macro MergeDS(List, IDVar, ALL);
DATA &ALL;
    MERGE &List; by
    &IDVar;
run;
%mend;

Finally, calling this macro to merge the two datasets in Table 2.6 would simply
be as follows:

%let List=Left Right;
%let IDVar=ID;
%let ALL = Both;
%MergeDS(&List, &IDVar, &ALL);

2.7.2  Concatenation

Concatenation is used to attach the contents of one dataset to the end of another
dataset without duplicating the common fields. Fields unique to one of the two
files would be filled with missing values. Concatenating datasets in this fashion
does not check on the uniqueness of the ID variable. However, if the data acqui-
sition and rollup procedures were correctly performed, such a problem should
not exist.

Performing concatenation in SAS is straightforward. We list the datasets to be
concatenated in a SET statement within the destination dataset. This is illustrated
in the following example.

Example 2.2

Start with two datasets TOP and BOTTOM, as shown in Tables 2.8 and 2.9.
We then use the following code to implement the concatenation of the two datasets into

a new dataset:

DATA TOP;
 input ID Age Status $;
 datalines;
 1  30  Gold
 2  20  .
 3  30  Silver
 4  40  Gold
 5  50  Silver
 ;
run;

2.7  Data Integration   53

54    CHAPTER 2  Data Acquisition and Integration

DATA BOTTOM;
input ID Balance Status $;
 datalines;
 6  6000  Gold
 7  7000  Silver
 ;
run;

DATA BOTH;
 SET TOP BOTTOM;
run;

DATA BOTH;
 SET TOP BOTTOM;
run;

The resulting dataset is shown in Table 2.10.
As in the case of merging datasets, we may include a list of several datasets in the SET

statement to concatenate. The resulting dataset will contain all the records of the contribut-
ing datasets in the same order in which they appear in the SET statement.

Table 2.8 Table: TOP

Obs ID Age Status

1 1 30 Gold

2 2 20 .

3 3 30 Silver

4 4 40 Gold

5 5 50 Silver

Table 2.9 Table: BOTTOM

Obs ID Balance Status

1 6 6000 Gold

2 7 7000 Silver

The preceding process can be packed into the following macro:

%macro ConcatDS(List, ALL);
DATA &ALL;
 SET &List;
run;
%mend;

To use this macro to achieve the same result as in the previous example, we use
the following calling code:

%let List=TOP BOTTOM;
%let ALL = BOTH;
%ConcatDS(&List, &ALL);

Table 2.10 Table: BOTH

Obs ID Age Status Balance

1 1 30 Gold .

2 2 20 . .

3 3 30 Silver .

4 4 40 Gold .

5 5 50 Silver .

6 6 . Gold 6000

7 7 . Silver 7000

2.7  Data Integration   55

This page intentionally left blank

CHAPTER

3Data Preprocessing

Today’s real-world databases are highly susceptible to noisy, missing, and incon-
sistent data because of their typically huge size (often several gigabytes or more)
and their likely origin from multiple, heterogenous sources. Low-quality data will
lead to low-quality mining results.

How can the data be preprocessed in order to help improve the quality of the
data and, consequently, of the mining results? How can the data be preprocessed
so as to improve the efficiency and ease of the mining process?

There are a number of data preprocessing techniques. Data cleaning can be
applied to remove noise and correct inconsistencies in the data. Data integration
merges data from multiple sources into a coherent data store, such as a data ware-
house. Data transformations, such as normalization, may be applied. For example,
normalization may improve the accuracy and efficiency of mining algorithms
involving distance measurements. Data reduction can reduce the data size by
aggregating, eliminating redundant features, or clustering, for instance. These
techniques are not mutually exclusive; they may work together. For example, data
cleaning can involve transformations to correct wrong data, such as by transform-
ing all entries for a date field to a common format. Data processing techniques,
when applied before mining, can substantially improve the overall quality of the
patterns mined or the time required for the actual mining.

In Section 3.1 of this chapter, we introduce the basic concepts of data prepro-
cessing. Section 3.2 presents descriptive data summarization, which serves as a
foundation for data preprocessing. Descriptive data summarization helps us study
the general characteristics of the data and identify the presence of noise or outli-
ers, which is useful for successful data cleaning and data integration. The methods
for data preprocessing are organized into the following categories: data cleaning
(Section 3.3), data integration and transformation (Section 3.4), and data
reduction (Section 3.5). Concept hierarchies can be used in an alternative form
of data reduction where we replace low-level data (such as raw values for age)
with higher-level concepts (such as youth, middle-aged, or senior). This form
of data reduction is the topic of Section 3.6, wherein we discuss the automatic
generation of concept hierarchies from numeric data using data discretization

58    CHAPTER 3  Data Preprocessing

techniques. The automatic generation of concept hierarchies from categorical data
is also described.

3.1	WHY PREPROCESS THE DATA?
Imagine that you are a manager at AllElectronics and have been charged with
analyzing the company’s data with respect to the sales at your branch. You imme-
diately set out to perform this task. You carefully inspect the company’s database
and data warehouse, identifying and selecting the attributes or dimensions to be
included in your analysis, such as item, price, and units_sold. Alas! You notice
that several of the attributes for various tuples have no recorded value. For your
analysis, you would like to include information as to whether each item purchased
was advertised as on sale, yet you discover that this information has not been
recorded. Furthermore, users of your database system have reported errors,
unusual values, and inconsistencies in the data recorded for some transactions. In
other words, the data you wish to analyze by data mining techniques are incom-
plete (lacking attribute values or certain attributes of interest, or containing only
aggregate data), noisy (containing errors, or outlier values that deviate from the
expected), and inconsistent (e.g., containing discrepancies in the department
codes used to categorize items). Welcome to the real world!

Incomplete, noisy, and inconsistent data are commonplace properties of large
real-world databases and data warehouses. Incomplete data can occur for a number
of reasons. Attributes of interest may not always be available, such as customer
information for sales transaction data. Other data may not be included simply
because it was not considered important at the time of entry. Relevant data may
not be recorded because of a misunderstanding or because of equipment malfunc-
tions. Data that were inconsistent with other recorded data may have been deleted.
Furthermore, the recording of the history or modifications to the data may have
been overlooked. Missing data, particularly for tuples with missing values for some
attributes, may need to be inferred.

There are many possible reasons for noisy data (having incorrect attribute
values). The data collection instruments used may be faulty. There may have been
human or computer errors occurring at data entry. Errors in data transmission can
also occur. There may be technology limitations, such as limited buffer size for
coordinating synchronized data transfer and consumption. Incorrect data may also
result from inconsistencies in naming conventions or data codes used, or incon-
sistent formats for input fields, such as date. Duplicate tuples also require data
cleaning.

Data cleaning routines work to “clean” the data by filling in missing values,
smoothing noisy data, identifying or removing outliers, and resolving inconsisten-
cies. If users believe the data are dirty, they are unlikely to trust the results of any
data mining that has been applied to it. Furthermore, dirty data can cause confu-
sion for the mining procedure, resulting in unreliable output. Although most

mining routines have some procedures for dealing with incomplete or noisy data,
they are not always robust. Instead, they may concentrate on avoiding overfitting
the data to the function being modeled. Therefore, a useful preprocessing step is
to run your data through some data cleaning routines. Section 3.3 discusses
methods for cleaning up your data.

Getting back to your task at AllElectronics, suppose that you would like to
include data from multiple sources in your analysis. This would involve integrating
multiple databases, data cubes, or files, that is, data integration. Yet some attri-
butes representing a given concept may have different names in different data-
bases, causing inconsistencies and redundancies. For example, the attribute for
customer identification may be referred to as customer_id in one data store and
cust_id in another. Naming inconsistencies may also occur for attribute values.
For example, the same first name could be registered as “Bill” in one database but
“William” in another, and “B.” in the third. Furthermore, you suspect that some
attributes may be inferred from others (e.g., annual revenue). Having a large
amount of redundant data may slow down or confuse the knowledge discovery
process. Clearly, in addition to data cleaning, steps must be taken to help avoid
redundancies during data integration. Typically, data cleaning and data integration
are performed as a preprocessing step when preparing the data for a data ware-
house. Additional data cleaning can be performed to detect and remove redundan-
cies that may have resulted from data integration.

Getting back to your data, you have decided, say, that you would like to use
a distance-based mining algorithm for your analysis, such as neural networks,
nearest-neighbor classifiers, or clustering. Such methods provide better results if
the data to be analyzed have been normalized, that is, scaled to a specific range
such as (0.0, 1.0). Your customer data, for example, contain the attributes age
and annual salary. The annual salary attribute usually takes much larger
values than age. Therefore, if the attributes are left unnormalized, the distance
measurements taken on annual salary will generally outweigh distance measure-
ments taken on age. Furthermore, it would be useful for your analysis to obtain
aggregate information as to the sales per customer region—something that is not
part of any precomputed data cube in your data warehouse. You soon realize that
data transformation operations, such as normalization and aggregation, are
additional data preprocessing procedures that would contribute toward the
success of the mining process. Data integration and data transformation are dis-
cussed in Section 3.4.

“Hmmm,” you wonder, as you consider your data even further. “The dataset I
have selected for analysis is huge, which is sure to slow down the mining process.
Is there any way I can reduce the size of my dataset without jeopardizing the data
mining results?” Data reduction obtains a reduced representation of the dataset
that is much smaller in volume yet produces the same (or almost the same) ana-
lytical results. There are a number of strategies for data reduction. These include
data aggregation (e.g., building a data cube), attribute subset selection (e.g.,
removing irrelevant attributes through correlation analysis), dimensionality reduc-

3.1  Why Preprocess the Data?   59

60    CHAPTER 3  Data Preprocessing

tion (e.g., using encoding schemes such as minimum length encoding or wavelets),
and numerosity reduction (e.g., “replacing” the data by alternative, smaller repre-
sentations such as clusters or parametric models). Data reduction is the topic of
Section 3.5. Data can also be “reduced” by generalization with the use of concept
hierarchies, where low-level concepts, such as city for customer location, are
replaced with higher-level concepts, such as region or province_or_state. A
concept hierarchy organizes the concepts into varying levels of abstraction. Data
discretization is a form of data reduction that is very useful for the automatic gen-
eration of concept hierarchies from numeric data. This is described in Section 3.6,
along with the automatic generation of concept hierarchies for categorical data.

Figure 3.1 summarizes the data preprocessing steps described here. Note that
the categorization just described is not mutually exclusive. For example, the

FIGURE 3.1

Forms of data preprocessing.

Data cleaning

Data integration

Data transformation

Data reduction Attributes Attributes

A1 A2 A3 ... A126

�2, 32, 100, 59, 48 �0.02, 0.32, 1.00, 0.59, 0.48

T1
T2
T3
T4
...
T2000

Tr
an

sa
ct

io
n

s

Tr
an

sa
ct

io
n

s A1 A3 ...

T1
T4
...
T1456

A115

3.2  Descriptive Data Summarization   61

removal of redundant data may be seen as a form of data cleaning, as well as data
reduction.

In summary, real-world data tend to be dirty, incomplete, and inconsistent.
Data preprocessing techniques can improve the quality of the data, thereby
helping to improve the accuracy and efficiency of the subsequent mining process.
Data preprocessing is an important step in the knowledge discovery process,
because quality decisions must be based on quality data. Detecting data anomalies,
rectifying them early, and reducing the data to be analyzed can lead to huge
payoffs for decision making.

3.2	DESCRIPTIVE DATA SUMMARIZATION
For data preprocessing to be successful, it is essential to have an overall picture
of your data. Descriptive data summarization techniques can be used to identify
the typical properties of your data and highlight which data values should be
treated as noise or outliers. Thus, we first introduce the basic concepts of descrip-
tive data summarization before getting into the concrete workings of data prepro-
cessing techniques.

For many data preprocessing tasks, users would like to learn about data char-
acteristics regarding both central tendency and dispersion of the data. Measures
of central tendency include mean, median, mode, and midrange, whereas mea-
sures of data dispersion include quartiles, interquartile range (IQR), and vari-
ance. These descriptive statistics are of great help in explaining the distribution
of the data. Such measures have been studied extensively in the statistical litera-
ture. From the data mining point of view, we need to examine how they can be
computed efficiently in large databases. In particular, it is necessary to introduce
the notions of distributive measure, algebraic measure, and holistic measure.
Knowing what kind of measure we are dealing with can help us choose an effi-
cient implementation for it.

3.2.1  Measuring the Central Tendency

In this section, we look at various ways to measure the central tendency of
data. The most common and most effective numeric measure of the “center” of
a set of data is the (arithmetic) mean. Let x1, x2, . . . xN be a set of N values or
observations, such as for some attribute, like salary. The mean of this set of
values is

	 x = =
+ + +=

∑ x

N

x x x

N

i

i

N

N1 1 2 
	 (3.1)

This corresponds to the built-in aggregate function, average (avg() in SQL),
provided in relational database systems.

62    CHAPTER 3  Data Preprocessing

A distributive measure is a measure (i.e., function) that can be computed
for a given dataset by partitioning the data into smaller subsets, computing the
measure for each subset, and then merging the results in order to arrive at the
measure’s value for the original (entire) dataset. Both sum() and count() are dis-
tributive measures because they can be computed in this manner. Other examples
include max() and min(). An algebraic measure is a measure that can be com-
puted by applying an algebraic function to one or more distributive measures.
Hence, average (or mean()) is an algebraic measure because it can be computed
by sum()/count(). When computing data cubes, sum() and count() are typically
saved in precomputation. Thus, the derivation of average for data cubes is
straightforward.

Sometimes, each value xi in a set may be associated with a weight wi, for
i = 1, . . . , N. The weights reflect the significance, importance, or occurrence
frequency attached to their respective values. In this case, we can compute

	 x

w x

w

w x w x w x

w w w

i i

i

N

i

i

N

N N

N

= =
+ + +

+ + +
=

=

∑

∑
1

1

1 1 2 2

1 2




	 (3.2)

This is called the weighted arithmetic mean or the weighted average. Note
that the weighted average is another example of an algebraic measure.

Although the mean is the single most useful quantity for describing a dataset,
it is not always the best way of measuring the center of the data. A major problem
with the mean is its sensitivity to extreme (e.g., outlier) values. Even a small
number of extreme values can corrupt the mean. For example, the salary of a few
highly paid managers may substantially push up the mean salary at a company.
Similarly, the average score of a class in an exam could be pulled down quite a
bit by a few very low scores. To offset the effect caused by a small number of
extreme values, we can instead use the trimmed mean, which is the mean
obtained after chopping off values at the high and low extremes. For example,
we can sort the values observed for salary and remove the top and bottom 2
percent before computing the mean. We should avoid trimming too large a
portion (such as 20 percent) at both ends as this can result in the loss of valuable
information.

For skewed (asymmetric) data, a better measure of the center of data is the
median. Suppose that a given dataset of N distinct values is sorted in numeric
order. If N is odd, then the median is the middle value of the ordered set; oth-
erwise (i.e., if N is even), the median is the average of the middle two values.

A holistic measure is a measure that must be computed on the entire dataset
as a whole. It cannot be computed by partitioning the given data into subsets and
merging the values obtained for the measure in each subset. The median is an
example of a holistic measure. Holistic measures are much more expensive to
compute than distributive measures such as those listed previously.

3.2  Descriptive Data Summarization   63

We can, however, easily approximate the median value of a dataset. Assume
that data are grouped in intervals according to their xi data values and that the
frequency (i.e., number of data values) of each interval is known. For example,
people may be grouped according to their annual salary in intervals such as 10 to
20 K, 20 to 30 K, and so on. Let the interval that contains the median frequency
be the median interval. We can approximate the median of the entire dataset
(e.g., the median salary) by interpolation using the formula:

	 median L
N freq

freq
widthl

median

= +
− ()





∑

1

2
	 (3.3)

where L1 is the lower boundary of the median interval, N is the number of values
in the entire dataset, (∑ freq)l is the sum of the frequencies of all of the intervals
that are lower than the median interval, freqmedian is the frequency of the median
interval, and width is the width of the median interval.

Another measure of central tendency is the mode. The mode for a set of data
is the value that occurs most frequently in the set. It is possible for the greatest
frequency to correspond to several different values, which results in more than
one mode. Datasets with one, two, or three modes are respectively called uni-
modal, bimodal, and trimodal. In general, a dataset with two or more modes
is multimodal. At the other extreme, if each data value occurs only once, then
there is no mode.

For unimodal frequency curves that are moderately skewed (asymmetric), we
have the following empirical relation:

	 mean mode mean median− = × ×()3 	 (3.4)

This implies that the mode for unimodal frequency curves that are moderately
skewed can easily be computed if the mean and median values are known.

In a unimodal frequency curve with perfect symmetric data distribution, the
mean, median, and mode are all at the same center value, as shown in Figure
3.2(a). However, data in most real applications are not symmetric. They may
instead be either positively skewed, where the mode occurs at a value that is
smaller than the median (Figure 3.2(b)), or negatively skewed, where the mode
occurs at a value greater than the median (Figure 3.2(c)).

The midrange can also be used to assess the central tendency of a dataset. It
is the average of the largest and smallest values in the set. This algebraic measure
is easy to compute using the SQL aggregate functions, max() and min().

3.2.2  Measuring the Dispersion of Data

The degree to which numeric data tend to spread is called the dispersion, or
variance of the data. The most common measures of data dispersion are range,
the five-number summary (based on quartiles), the interquartile range, and the
standard deviation. Boxplots can be plotted based on the five-number summary
and are a useful tool for identifying outliers.

64    CHAPTER 3  Data Preprocessing

Range, Quartiles, Outliers, and Boxplots
Let x1; x2, . . . xN be a set of observations for some attribute. The range of the set
is the difference between the largest (max()) and smallest (min()) values. For the
remainder of this section, let’s assume that the data are sorted in increasing
numeric order.

The kth percentile of a set of data in numeric order is the value xi having the
property that k percent of the data entries lie at or below xi. The median (dis-
cussed in the previous subsection) is the 50th percentile.

The most commonly used percentiles other than the median are quartiles.
The first quartile, denoted by Q1, is the 25th percentile; the third quartile,
denoted by Q3, is the 75th percentile. The quartiles, including the median, give
some indication of the center, spread, and shape of a distribution. The distance
between the first and third quartiles is a simple measure of spread that gives the
range covered by the middle half of the data. This distance is called the inter-
quartile range (IQR) and is defined as

	 IQR Q Q= −3 1 	 (3.5)

Based on reasoning similar to that in our analysis of the median in Section 3.2.1,
we can conclude that Q1 and Q3 are holistic measures, as is IQR.

No single numeric measure of spread, such as IQR, is useful for describing
skewed distributions. The spreads of two sides of a skewed distribution are
unequal (Figure 3.2). Therefore, it is more informative to also provide the two
quartiles Q1 and Q3, along with the median. A common rule of thumb for identify-
ing suspected outliers is to single out values falling at least 1.5 × IQR above the
third quartile or below the first quartile.

Because Q1, the median, and Q3 together contain no information about the
endpoints (e.g., tails) of the data, a fuller summary of the shape of a distribution
can be obtained by providing the lowest and highest data values as well. This is
known as the five-number summary. The five-number summary of a distri
bution consists of the median, the quartiles Q1 and Q3, and the smallest and the

FIGURE 3.2

Mean, median, and mode of symmetric (a) versus positively (b) and (c) negatively skewed
data.

Mode

Median

Mean Mode

Median

MeanMean
Median
Mode

(a) (b) (c)

3.2  Descriptive Data Summarization   65

largest individual observations, written in the order Minimum, Q1, Median, Q3,
Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorpo-
rates the five-number summary as follows:

n	 Typically, the ends of the box are at the quartiles, so that the box length
is the interquartile range, IQR.

n	 The median is marked by a line within the box.
n	 Two lines (called whiskers) outside the box extend to the smallest

(Minimum) and largest (Maximum) observations.

When dealing with a moderate number of observations, it is worthwhile to
plot potential outliers individually. To do this in a boxplot, the whiskers are
extended to the extreme low and high observations only if these values are less
than 1.5 × IQR beyond the quartiles. Otherwise, the whiskers terminate at the
most extreme observations occurring within 1.5 × IQR of the quartiles. The
remaining cases are plotted individually. Boxplots can be used in the comparisons
of several sets of compatible data. Figure 3.3 shows boxplots for unit price data
for items sold at four branches of AllElectronics during a given time period. For
branch 1, we see that the median price of items sold is $80, Q1 is $60, Q3 is $100.
Notice that two outlying observations for this branch were plotted individually,

FIGURE 3.3

Boxplot for the unit price data for items sold at four branches of AllElectronics during a
given time period.

20

40

60

80

100

120

140

160

180

200

U
ni

t p
ri

ce
 (

$)

Branch 1 Branch 4Branch 3Branch 2

66    CHAPTER 3  Data Preprocessing

as their values of 175 and 202 are more than 1.5 times the IQR here of 40. The
efficient computation of boxplots, or even approximate boxplots (based on
approximates of the five-number summary), remains a challenging issue for the
mining of large datasets.

Variance and Standard Deviation
The variance of N observations, x1; x2, . . . xN, is

	 σ2 2

1

2 21 1 1
= −() = − ()



=

∑ ∑∑
N

x x
N

x
N

xi

i

N

i i 	 (3.6)

where x is the mean value of the observations, as defined in Equation 3.1. The
standard deviation, σ, of the observations is the square root of the variance,
σ2.

The basic properties of the standard deviation, σ, as a measure of spread are

n	 σ measures spread about the mean and should be used only when the
mean is chosen as the measure of center.

n	 σ = 0 only when there is no spread, that is, when all observations have
the same value. Otherwise σ > 0.

The variance and standard deviation are algebraic measures because they can be
computed from distributive measures. That is, N (which is count() in SQL), Σxi
(which is the sum() of xi), and Σ xi

2 (which is the sum() of xi
2) can be computed

in any partition and then merged to feed into the algebraic Equation 3.6. Thus,
the computation of the variance and standard deviation is scalable in large
databases.

3.2.3  Graphic Displays of Basic Descriptive Data Summaries

Aside from the bar charts, pie charts, and line graphs used in most statistical or
graphical data presentation software packages, there are other popular types of
graphs for the display of data summaries and distributions. These include histo-
grams, quantile plots, q-q plots, scatter plots, and loess curves. Such graphs are
very helpful for the visual inspection of your data.

Plotting histograms, or frequency histograms, is a graphical method for
summarizing the distribution of a given attribute. A histogram for an attribute A
partitions the data distribution of A into disjoint subsets, or buckets. Typically, the
width of each bucket is uniform. Each bucket is represented by a rectangle whose
height is equal to the count or relative frequency of the values at the bucket. If A
is categorical, such as automobile_model or item_type, then one rectangle is
drawn for each known value of A, and the resulting graph is more commonly
referred to as a bar chart. If A is numeric, the term histogram is preferred. Par-
titioning rules for constructing histograms for numeric attributes are discussed in
Section 3.5.4. In an equal-width histogram, for example, each bucket represents
an equal-width range of numeric attribute A.

3.2  Descriptive Data Summarization   67

Figure 3.4 shows a histogram for the dataset of Table 3.1, where buckets are
defined by equal-width ranges representing $20 increments and frequency is the
count of items sold. Histograms are at least a century old and a widely used uni-
variate graphical method. However, they may not be as effective as quantile plot,
q-q plot, and boxplot methods for comparing groups of univariate observations.

FIGURE 3.4

A histogram for the dataset of Table 3.1.

6000

5000

4000

3000

2000

1000

0

C
ou

nt
 o

f
it

em
s

so
ld

40–59 60–79 80–99 100–119 120–139

Unit price ($)

Table 3.1 A Set of Unit Price Data for Items Sold
at a Branch of AllElectronics

Unit Price ($) Count of Items Sold

40 275

43 300

47 250

.

74 360

75 515

78 540

.

115 320

117 270

120 350

68    CHAPTER 3  Data Preprocessing

A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute (allowing
the user to assess both the overall behavior and unusual occurrences). Second, it
plots quantile information. The mechanism used in this step is slightly different
from the percentile computation discussed in Section 3.2.2. Let xi, for i = 1 to N,
be the data sorted in increasing order so that x1 is the smallest observation and xN
is the largest. Each observation, xi, is paired with a percentage, fi, which indicates
that approximately 100 fi percent of the data are below or equal to the value xi. We
say “approximately” because there may not be a value with exactly a fraction, fi, of
the data below or equal to xi. Note that the 0.25 quantile corresponds to quartile
Q1, the 0.50 quantile is the median, and the 0.75 quantile is Q3.

Let

	 f
i

N
i =

− 0 5.
	 (3.7)

These numbers increase in equal steps of 1/N, ranging from 1/2N (which is slightly
above zero) to 1 − 1/2N (which is slightly below one). On a quantile plot, xi is
graphed against fi. This allows us to compare different distributions based on their
quantiles. For example, given the quantile plots of sales data for two different time
periods, we can compare their Q1, median, Q3, and other fi values at a glance.
Figure 3.5 shows a quantile plot for the unit price data of Table 3.1.

A quantile-quantile plot, or q-q plot, graphs the quantiles of one univariate
distribution against the corresponding quantiles of another. It is a powerful visu-
alization tool in that it allows the user to view whether there is a shift in going
from one distribution to another.

Suppose that we have two sets of observations for the variable unit price,
taken from two different branch locations. Let x1, . . . xN be the data from the first
branch and y1, . . . yM be the data from the second, where each dataset is sorted
in increasing order. If M = N (i.e., the number of points in each set is the same),
then we simply plot yi against xi, where yi and xi are both (i − 0.5)/N quantiles

FIGURE 3.5

A quantile plot for the unit price data of Table 3.1.

140

120

100

80

60

40

20

0
0.000 0.250 0.500 0.750 1.000

f-value

U
n

it
 p

ri
ce

 (
$)

3.2  Descriptive Data Summarization   69

of their respective datasets. If M < N (i.e., the second branch has fewer observa-
tions than the first), there can be only M points on the q-q plot. Here, yi is the
(i − 0.5)/M quantile of the y data, which is plotted against the (i − 0.5)/M quantile
of the x data. This computation typically involves interpolation.

Figure 3.6 shows a quantile-quantile plot for unit price data of items sold at
two different branches of AllElectronics during a given time period. Each point
corresponds to the same quantile for each dataset and shows the unit price of
items sold at branch 1 versus branch 2 for that quantile. For example, here the
lowest point in the left corner corresponds to the 0.03 quantile. (To aid in com-
parison, we also show a straight line that represents the case of when, for each
given quantile, the unit price at each branch is the same. In addition, the darker
points correspond to the data for Q1, the median, and Q3, respectively.) We see
that at this quantile, the unit price of items sold at branch 1 was slightly less than
that at branch 2. In other words, 3 percent of items sold at branch 1 were less
than or equal to $40, whereas 3 percent of items at branch 2 were less than or
equal to $42. At the highest quantile, we see that the unit price of items at branch
2 was slightly less than that at branch 1. In general, we note that there is a shift
in the distribution of branch 1 with respect to branch 2 in that the unit prices of
items sold at branch 1 tend to be lower than those at branch 2.

A scatter plot is one of the most effective graphical methods for determining
if there appears to be a relationship, pattern, or trend between two numeric attri-
butes. To construct a scatter plot, each pair of values is treated as a pair of coor-
dinates in an algebraic sense and plotted as points in the plane. Figure 3.7 shows
a scatter plot for the set of data in Table 3.1. The scatter plot is a useful method
for providing a first look at bivariate data to see clusters of points and outliers,
or to explore the possibility of correlation relationships.1 In Figure 3.8, we see

FIGURE 3.6

A quantile-quantile plot for unit price data from two different branches.

120

110

100

90

80

70

60

50

40
40 50 60 70 80

Branch 1 (unit price $)

B
ra

n
ch

 2
 (

u
n

it
 p

ri
ce

 $
)

90 100 110 120

1A statistical test for correlation is given in Section 3.4.1 on data integration (Equation 3.8).

70    CHAPTER 3  Data Preprocessing

FIGURE 3.7

A scatter plot for the dataset of Table 3.1.

Unit price ($)

It
em

s
so

ld
700

600

500

400

300

200

100

0
0 20 40 60 80 100 120 140

FIGURE 3.8

Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.

examples of positive and negative correlations between two attributes in two dif-
ferent datasets. Figure 3.9 shows three cases for which there is no correlation
relationship between the two attributes in each of the given datasets.

When dealing with several attributes, the scatter-plot matrix is a useful
extension to the scatter plot. Given n attributes, a scatter-plot matrix is an n × n
grid of scatter plots that provides a visualization of each attribute (or dimension)
with every other attribute. The scatter-plot matrix becomes less effective as the
number of attributes under study grows. In this case, user interactions, such as
zooming and panning, become necessary to help interpret the individual scatter
plots effectively.

A loess curve is another important exploratory graphic aid that adds a smooth
curve to a scatter plot in order to provide better perception of the pattern of
dependence. The word loess is short for “local regression.” Figure 3.10 shows a
loess curve for the set of data in Table 3.1.

To fit a loess curve, values need to be set for two parameters—α, a smoothing
parameter, and λ, the degree of the polynomials that are fitted by the regression.

3.2  Descriptive Data Summarization   71

Whereas α can be any positive number (typical values are between 1
4 and 1), λ

can be 1 or 2. The goal in choosing α is to produce a fit that is as smooth as pos-
sible without unduly distorting the underlying pattern in the data. The curve
becomes smoother as α increases. There may be some lack of fit, however, indi-
cating possible “missing” data patterns. If α is very small, the underlying pattern
is tracked, yet overfitting of the data may occur where local “wiggles” in the curve
may not be supported by the data. If the underlying pattern of the data has a
“gentle” curvature with no local maxima and minima, then local linear fitting is
usually sufficient (λ = 1). However, if there are local maxima or minima, then local
quadratic fitting (λ = 2) typically does a better job of following the pattern of the
data and maintaining local smoothness.

In conclusion, descriptive data summaries provide valuable insight into the
overall behavior of your data. By helping you to identify noise and outliers, they
are especially useful for data cleaning.

FIGURE 3.9

Three cases where there is no observed correlation between the two plotted attributes in
each of the datasets.

FIGURE 3.10

A loess curve for the dataset of Table 3.1.

Unit price ($)

It
em

s
so

ld

700

600

500

400

300

200

100

0
0 20 40 60 80 100 120 140

72    CHAPTER 3  Data Preprocessing

3.3	DATA CLEANING
Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or
data cleansing) routines attempt to fill in missing values, smooth out noise while
identifying outliers, and correct inconsistencies in the data. In this section, you
will study basic methods for data cleaning. Section 3.3.1 looks at ways of handling
missing values. Section 3.3.2 explains data smoothing techniques. Section 3.3.3
discusses approaches to data cleaning as a process.

3.3.1  Missing Values

Imagine that you need to analyze AllElectronics sales and customer data. You note
that many tuples have no recorded value for several attributes, such as customer
income. How can you go about filling in the missing values for this attribute? Let’s
look at the following methods.

1.	 Ignore the tuple. This is usually done when the class label is missing
(that is, assuming the mining task involves classification). This method is not
very effective, unless the tuple contains several attributes with missing values.
It is especially poor when the percentage of missing values per attribute varies
considerably.

2.	 Fill in the missing value manually. In general, this approach is time consum-
ing and may not be feasible given a large dataset with many missing values.

3.	 Use a global constant to fill in the missing value. Replace all missing attribute
values by the same constant, such as a label like “Unknown” or—∞. If missing
values are replaced by, say, “Unknown,” then the mining program may mis-
takenly think that they form an interesting concept, as they all have a value in
common—that of “Unknown.” Hence, although this method is simple, it is not
foolproof.

4.	 Use the attribute mean to fill in the missing value. For example, suppose that
the average income of AllElectronics customers is $56,000. Use this value to
replace the missing value for income.

5.	 Use the attribute mean for all samples belonging to the same class as the
given tuple. For example, if classifying customers according to credit risk,
replace the missing value with the average income value for customers in the
same credit-risk category as that of the given tuple.

6.	 Use the most probable value to fill in the missing value. This may be deter-
mined with regression, inference-based tools using a Bayesian formalism, or
decision tree induction. For example, using the other customer attributes in
your dataset, you may construct a decision tree to predict the missing values
for income.

Methods 3 to 6 bias the data. The filled-in value may not be correct. Method
6, however, is a popular strategy. In comparison to the other methods, it uses the

most information from the present data to predict missing values. By considering
the values of the other attributes in its estimation of the missing value for income,
there is a greater chance that the relationships between income and the other
attributes are preserved.

It is important to note that, in some cases, a missing value may not imply an
error in the data! For example, when applying for a credit card, candidates may
be asked to supply their driver’s license number. Candidates who do not have a
driver’s license may naturally leave this field blank. Forms should allow respon-
dents to specify values such as “not applicable.” Software routines may also be
used to uncover other null values, such as “don’t know,” “?,” or “none.” Ideally,
each attribute should have one or more rules regarding the null condition. The
rules may specify whether or not nulls are allowed or how such values should be
handled or transformed. Fields may also be intentionally left blank if they are to
be provided in a later step of the business process. Hence, although we can try
our best to clean the data after they are seized, good design of databases, and of
data entry procedures, should minimize the number of missing values or errors in
the first place.

3.3.2  Noisy Data

“What is noise?” Noise is a random error or variance in a measured variable. Given
a numeric attribute such as, say, price, how can we “smooth” out the data to
remove the noise? Let’s look at the following data smoothing techniques:

Binning. Binning methods smooth a sorted data value by consulting its “neighbor-
hood”—that is, the values around it. The sorted values are distributed into a
number of “buckets,” or bins. Because binning methods consult the neighbor-
hood of values, they perform local smoothing. Figure 3.11 illustrates some
binning techniques. In this example, the data for price are first sorted and then
partitioned into equal-frequency bins of size 3 (i.e., each bin contains three
values). In smoothing by bin means, each value in a bin is replaced by the
mean value of the bin. For example, the mean of the values 4, 8, and 15 in Bin
1 is 9. Therefore, each original value in this bin is replaced by the value 9.
Similarly, smoothing by bin medians can be employed, in which each
bin value is replaced by the bin median. In smoothing by bin boundaries,
the minimum and maximum values in a given bin are identified as the bin
boundaries. Each bin value is then replaced by the closest boundary value. In
general, the larger the width, the greater the smoothing’s effect. Alternatively,
bins may be equal-width, where the interval range of values in each bin is
constant. Binning is also used as a discretization technique and is further
discussed in Section 3.6.

Regression. Data can be smoothed by fitting the data to a function, such as with
regression. Linear regression involves finding the “best” line to fit two attri-

3.3  Data Cleaning   73

74    CHAPTER 3  Data Preprocessing

butes (or variables), so that one attribute can be used to predict the other.
Multiple linear regression is an extension of linear regression, where more
than two attributes are involved and the data are fit to a multidimensional
surface. Regression is further described in Section 3.5.4.

Clustering. Outliers may be detected by clustering, where similar values are orga-
nized into groups, or “clusters.” Intuitively, values that fall outside of the set
of clusters may be considered outliers (Figure 3.12).

Many methods for data smoothing are also methods for data reduction involv-
ing discretization. For example, the binning techniques described previously
reduce the number of distinct values per attribute. This acts as a form of data
reduction for logic-based data mining methods, such as decision tree induction,
which repeatedly make value comparisons on sorted data. Concept hierarchies
are a form of data discretization that can also be used for data smoothing. A
concept hierarchy for price, for example, may map real price values into inexpen-
sive, moderately priced, and expensive, thereby reducing the number of data
values to be handled by the mining process. Data discretization is discussed in
Section 3.6. Some methods of classification, such as neural networks, have built-in
data smoothing mechanisms.

3.3.3  Data Cleaning as a Process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far,
we have looked at techniques for handling missing data and for smoothing data.

FIGURE 3.11

Binning methods for data smoothing.

“But data cleaning is a big job. What about data cleaning as a process? How
exactly does one proceed in tackling this task? Are there any tools out there to
help?”

The first step in data cleaning as a process is discrepancy detection. Discrepan-
cies can be caused by several factors, including poorly designed data entry forms
that have many optional fields, human error in data entry, deliberate errors (e.g.,
respondents not wanting to divulge information about themselves), and data decay
(e.g., outdated addresses). Discrepancies may also arise from inconsistent data
representations and the inconsistent use of codes. Errors in instrumentation
devices that record data, and system errors, are another source of discrepancies.
Errors can also occur when the data are (inadequately) used for purposes
other than originally intended. There may also be inconsistencies caused by data
integration (e.g., where a given attribute can have different names in different
databases).2

FIGURE 3.12

A 2-D plot of customer data with respect to customer locations in a city, showing three data
clusters. Each cluster centroid is marked with a “+,” representing the average point in space
for that cluster. Outliers may be detected as values that fall outside of the sets of clusters.

2Data integration and the removal of redundant data that can result from such integration are further
described in Section 3.4.1.

3.3  Data Cleaning   75

76    CHAPTER 3  Data Preprocessing

“So how can we proceed with discrepancy detection?” As a starting point, use
any knowledge you may already have regarding properties of the data. Such
knowledge, or “data about data,” is referred to as metadata. For example, what
are the domain and data type of each attribute? What are the acceptable values
for each attribute? What is the range of the length of values? Do all values fall
within the expected range? Are there any known dependencies between attri-
butes? The descriptive data summaries presented in Section 3.2 are useful here
for grasping data trends and identifying anomalies. For example, values that are
more than two standard deviations away from the mean for a given attribute may
be flagged as potential outliers. In this step, you may write your own scripts or
use some of the tools that we discuss later. From this, you may find noise, outliers,
and unusual values that need investigation.

As a data analyst, you should be on the lookout for the inconsistent use of
codes and any inconsistent data representations (such as “2004/12/25” and
“25/12/2004” for date). Field overloading is another source of errors that typi-
cally results when developers squeeze new attribute definitions into unused (bit)
portions of already defined attributes (e.g., using an unused bit of an attribute
whose value range uses only, say, 31 out of 32 bits).

The data should also be examined regarding unique rules, consecutive rules,
and null rules. A unique rule says that each value of the given attribute must be
different from all other values for that attribute. A consecutive rule says that
there can be no missing values between the lowest and highest values for the
attribute and that all values must also be unique (e.g., as in check numbers). A
null rule specifies the use of blanks, question marks, special characters, or other
strings that may indicate the null condition (e.g., where a value for a given attri-
bute is not available) and how such values should be handled. As mentioned in
Section 3.3.1, reasons for missing values may include (1) the person originally
asked to provide a value for the attribute refuses, or finds that the information
requested is not applicable (e.g., a license-number attribute left blank by nondriv-
ers); (2) the data entry person does not know the correct value; or (3) the value
is to be provided by a later step of the process. The null rule should specify how
to record the null condition, for example, such as to store zero for numeric attri-
butes, a blank for character attributes, or any other conventions that may be in
use (such as that entries like “don’t know” or “?” should be transformed to
blank).

There are a number of different commercial tools that can aid in the step of
discrepancy detection. Data scrubbing tools use simple domain knowledge
(e.g., knowledge of postal addresses and spell-checking) to detect errors and make
corrections in the data. These tools rely on parsing and fuzzy matching techniques
when cleaning data from multiple sources. Data auditing tools find discrepancies
by analyzing the data to discover rules and relationships and detecting data that
violate such conditions. They are variants of data mining tools. For example, they
may employ statistical analysis to find correlations, or they may use clustering to

identify outliers. They may also use the descriptive data summaries that were
described in Section 3.2.

Some data inconsistencies may be corrected manually using external refer-
ences. For example, errors made at data entry may be corrected by performing
a paper trace. Most errors, however, will require data transformations. This is
the second step in data cleaning as a process. That is, once we find discrepancies,
we typically need to define and apply (a series of) transformations to correct
them.

Commercial tools can assist in the data transformation step. Data migration
tools allow simple transformations to be specified, such as to replace the string
gender by sex. Extraction/transformation/loading (ETL) tools allow users to
specify transforms through a graphical user interface (GUI). These tools typically
support only a restricted set of transforms so that, often, we may also choose to
write custom scripts for this step of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to
correct discrepancies) iterates. This process, however, is error prone and time
consuming. Some transformations may introduce more discrepancies. Some nested
discrepancies may only be detected after others have been fixed. For example, a
typo such as “20004” in a year field may only surface once all date values have
been converted to a uniform format. Transformations are often done as a batch
process while the user waits without feedback. Only after the transformation is
complete can the user go back and check that no new anomalies have been
created by mistake. Typically, numerous iterations are required before the user is
satisfied. Any tuples that cannot be automatically handled by a given transforma-
tion are typically written to a file without any explanation regarding the reasoning
behind their failure. As a result, the entire data cleaning process also suffers from
a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s
Wheel, for example, is a publicly available data cleaning tool (see http://control.
cs.berkeley.edu/abc) that integrates discrepancy detection and transformation.
Users gradually build a series of transformations by composing and debugging
individual transformations, one step at a time, on a spreadsheet-like interface. The
transformations can be specified graphically or by providing examples. Results are
shown immediately on the records that are visible on the screen. The user can
choose to undo the transformations, so that transformations that introduced addi-
tional errors can be “erased.” The tool performs discrepancy checking automati-
cally in the background on the latest transformed view of the data. Users can
gradually develop and refine transformations as discrepancies are found, leading
to more effective and efficient data cleaning.

Another approach to increased interactivity in data cleaning is the develop-
ment of declarative languages for the specification of data transformation opera-
tors. Such work focuses on defining powerful extensions to SQL and algorithms
that enable users to express data cleaning specifications efficiently.

3.3  Data Cleaning   77

78    CHAPTER 3  Data Preprocessing

As we discover more about the data, it is important to keep updating the
metadata to reflect this knowledge. This will help speed up data cleaning on future
versions of the same data store.

3.4	DATA INTEGRATION AND TRANSFORMATION
Data mining often requires data integration—the merging of data from multiple
data stores. The data may also need to be transformed into forms appropriate for
mining. This section describes both data integration and data transformation.

3.4.1  Data Integration

It is likely that your data analysis task will involve data integration, which com-
bines data from multiple sources into a coherent data store, as in data warehous-
ing. These sources may include multiple databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema
integration and object matching can be tricky. How can equivalent real-world
entities from multiple data sources be matched up? This is referred to as the entity
identification problem. For example, how can the data analyst or the computer
be sure that customer id in one database and cust number in another refer to the
same attribute? Examples of metadata for each attribute include the name, meaning,
data type, and range of values permitted for the attribute, and null rules for han-
dling blank, zero, or null values (Section 3.3). Such metadata can be used to help
avoid errors in schema integration. The metadata may also be used to help trans-
form the data (e.g., where data codes for pay type in one database may be H and
S, and they may be 1 and 2 in another). Hence, this step also relates to data clean-
ing, as described earlier.

Redundancy is another important issue. An attribute (such as annual revenue,
for instance) may be redundant if it can be “derived” from another attribute or
set of attributes. Inconsistencies in attribute or dimension naming can also cause
redundancies in the resulting dataset.

Some redundancies can be detected by correlation analysis. Given two
attributes, such analysis can measure how strongly one attribute implies the other,
based on the available data. For numeric attributes, we can evaluate the correla-
tion between two attributes, A and B, by computing the correlation coefficient
(also known as Pearson’s product moment coefficient, named after its inventor,
Karl Pearson). This is

	 r

a A b B

N

a b NAB

N
A B

i i

i

N

A B

i i

i

N

A B
, =

−() −()
=

() −
= =
∑ ∑

1 1

σ σ σ σ
	 (3.8)

where N is the number of tuples, ai and bi are the respective values of A and B
in tuple i, Ā and B are the respective mean values of A and B, σA and σB are the

respective standard deviations of A and B (as defined in Section 3.2.2), and S (aibi)
is the sum of the AB cross-product (that is, for each tuple, the value for A is mul-
tiplied by the value for B in that tuple). Note that −1 ≤ rA,B ≤ +1. If rA,B is greater
than 0, then A and B are positively correlated, meaning that the values of A
increase as the values of B increase. The higher the value, the stronger the cor-
relation (i.e., the more each attribute implies the other). Hence, a higher value
may indicate that A (or B) may be removed as a redundancy. If the resulting value
is equal to 0, then A and B are independent and there is no correlation between
them. If the resulting value is less than 0, then A and B are negatively correlated,
where the values of one attribute increase as the values of the other attribute
decrease. This means that each attribute discourages the other. Scatter plots can
also be used to view correlations between attributes (Section 3.2.3).

Note that correlation does not imply causality. That is, if A and B are correlated,
this does not necessarily imply that A causes B or that B causes A. For example,
in analyzing a demographic database, we may find that attributes representing the
number of hospitals and the number of car thefts in a region are correlated. This
does not mean that one causes the other. Both are actually causally linked to a
third attribute, namely, population.

For categorical (discrete) data, a correlation relationship between two attri-
butes, A and B, can be discovered by a χ2 (chi-square) test. Suppose A has c
distinct values, namely a1 , a2 , ac. B has r distinct values, namely b1 , b2 , br. The
data tuples described by A and B can be shown as a contingency table, with the
c values of A making up the columns and the r values of B making up the rows.
Let (Ai , Bj) denote the event that attribute A takes on value ai and attribute B takes
on value bj , that is, where (A = ai , B = bj). Each and every possible (Ai , Bj) joint
event has its own cell (or slot) in the table. The χ2 value (also known as the
Pearson χ2 statistic) is computed as

	 χ2

2

11

=
−()

==
∑∑ o e

e
i j i j

i jj

r

i

c

	 (3.9)

where oij is the observed frequency (i.e., actual count) of the joint event (Ai, Bj)
and eij is the expected frequency of (Ai , Bj), which can be computed as

	 e
count A a count B b

N
i j

i j=
=() × =()

	 (3.10)

where N is the number of data tuples, count (A = ai) is the number of tuples
having value ai for A, and count (B = bj) is the number of tuples having value bj
for B. The sum in Equation 3.9 is computed over all of the r × c cells. Note that
the cells that contribute the most to the χ2 value are those whose actual count is
very different from that expected.

The χ2 statistic tests the hypothesis that A and B are independent. The test is
based on a significance level, with (r − 1) × (c − 1) degrees of freedom. We will

3.4  Data Integration and Transformation   79

80    CHAPTER 3  Data Preprocessing

illustrate the use of this statistic in the example that follows. If the hypothesis can
be rejected, then we say that A and B are statistically related or associated.

Let’s look at a concrete example.

EXAMPLE 3.1

Correlation Analysis of Categorical Attributes Using χ2

Suppose that a group of 1500 people was surveyed. The gender of each person was noted.
Each person was polled as to whether his or her preferred type of reading material was
fiction or nonfiction. Thus, we have two attributes, gender and preferred reading. The
observed frequency (or count) of each possible joint event is summarized in the contingency
table shown in Table 3.2, where the numbers in parentheses are the expected frequencies
(calculated based on the data distribution for both attributes using Equation 3.10).

Using Equation 3.10, we can verify the expected frequencies for each cell. For example,
the expected frequency for the cell (male, fiction) is

e
count male count fiction

N
11

300 450

1500
90=

() × ()
=

×
=

and so on. Notice that in any row, the sum of the expected frequencies must equal the total
observed frequency for that row, and the sum of the expected frequencies in any column
must also equal the total observed frequency for that column. Using Equation 3.9 for χ2
computation, we get

χ2
2 2 2 2250 90

90

50 210

210

200 360

360

1000 840

840

2

=
−()

+
−()

+
−()

+
−()

= 884 44 121 90 71 11 30 48 507 93.+ + + =

For this 2 × 2 table, the degrees of freedom are (2 − 1)(2 − 1) = 1. For 1 degree of
freedom, the χ2 value needed to reject the hypothesis at the 0.001 significance level is
10.828 (taken from the table of upper percentage points of the χ2 distribution, typically
available from any textbook on statistics). Because our computed value is above this, we
can reject the hypothesis that gender and preferred_reading are independent and conclude
that the two attributes are (strongly) correlated for the given group of people.

Table 3.2 A 2 × 2 Contingency Table for Data in Example
3.1: Are Gender and preferred_Reading Correlated?

Male Female Total

fiction 250 (90) 200 (360) 450

non-fiction 50 (210) 1000 (840) 1050

Total 300 1200 1500

In addition to detecting redundancies between attributes, duplication should
also be detected at the tuple level (e.g., where there are two or more identical
tuples for a given unique data entry case). The use of denormalized tables (often
done to improve performance by avoiding joins) is another source of data redun-
dancy. Inconsistencies often arise between various duplicates because of inaccu-
rate data entry or updating some but not all of the occurrences of the data. For
example, if a purchase order database contains attributes for the purchaser’s name
and address instead of a key to this information in a purchaser database, discrep-
ancies can occur, such as the same purchaser’s name appearing with different
addresses within the purchase order database.

A third important issue in data integration is the detection and resolution of
data value conflicts. For example, for the same real-world entity, attribute values
from different sources may differ. This may be due to differences in representa-
tion, scaling, or encoding. For instance, a weight attribute may be stored in
metric units in one system and British imperial units in another. For a hotel
chain, the price of rooms in different cities may involve not only different
currencies but also different services (such as free breakfast) and taxes. An attri-
bute in one system may be recorded at a lower level of abstraction than the
“same” attribute in another. For example, the total sales in one database may
refer to one branch of All_Electronics, whereas an attribute of the same name in
another database may refer to the total sales for All_Electronics stores in a given
region.

When matching attributes from one database to another during integration,
special attention must be paid to the structure of the data. This is to ensure that
any attribute functional dependencies and referential constraints in the source
system match those in the target system. For example, in one system, a discount
may be applied to the order, whereas in another system it is applied to each indi-
vidual line item within the order. If this is not caught before integration, items in
the target system may be improperly discounted.

The semantic heterogeneity and structure of data pose great challenges in data
integration. Careful integration of the data from multiple sources can reduce and
avoid redundancies and inconsistencies in the resulting dataset. This can improve
the accuracy and speed of the subsequent mining process.

3.4.2  Data Transformation

In data transformation, the data are transformed or consolidated into forms
appropriate for mining. Data transformation can involve the following:

Smoothing, which works to remove noise from the data. Such techniques include
binning, regression, and clustering.

Aggregation, where summary or aggregation operations are applied to the data.
For example, the daily sales data may be aggregated so as to compute monthly

3.4  Data Integration and Transformation   81

82    CHAPTER 3  Data Preprocessing

and annual total amounts. This step is typically used in constructing a data
cube for analysis of the data at multiple granularities.

Generalization of the data, where low-level or “primitive” (raw) data are
replaced by higher-level concepts through the use of concept hierarchies. For
example, categorical attributes, like street, can be generalized to higher-level
concepts, like city or country. Similarly, values for numeric attributes, like age,
may be mapped to higher-level concepts, like youth, middle-aged, and
senior.

Normalization, where the attribute data are scaled so as to fall within a small
specified range, such as −1.0 to 1.0, or 0.0 to 1.0.

Attribute construction (or feature construction), where new attributes are con-
structed and added from the given set of attributes to help the mining
process.

Smoothing is a form of data cleaning and was addressed in Section 3.3.2.
Section 3.3.3 on the data cleaning process also discussed ETL tools, where users
specify transformations to correct data inconsistencies. Aggregation and general-
ization serve as forms of data reduction and are discussed in Sections 3.5 and 3.6,
respectively. In this section, we therefore discuss normalization and attribute
construction.

An attribute is normalized by scaling its values so that they fall within a small
specified range, such as 0.0 to 1.0. Normalization is particularly useful for classi-
fication algorithms involving neural networks or distance measurements such as
nearest-neighbor classification and clustering. If using the neural network back-
propagation algorithm for classification mining, normalizing the input values for
each attribute measured in the training tuples will help speed up the learning
phase. For distance-based methods, normalization helps prevent attributes with
initially large ranges (e.g., income) from outweighing attributes with initially
smaller ranges (e.g., binary attributes). There are many methods for data normal-
ization. We study three: min-max normalization, z-score normalization, and
normalization by decimal scaling.

Min-max normalization performs a linear transformation on the original
data. Suppose that minA and maxA are the minimum and maximum values of an
attribute, A. Min-max normalization maps a value, v, of A to v′ in the range
[new_minA, new_maxA] by computing

	 ′ =
−

−
−() +v

v
new new newA

A A
A A A

min

max min
max min min_ _ _ 	 (3.11)

Min-max normalization preserves the relationships among the original data
values. It will encounter an “out-of-bounds” error if a future input case for nor-
malization falls outside of the original data range for A.

EXAMPLE 3.2

Min-Max Normalization

Suppose that the minimum and maximum values for the attribute income are $12,000 and
$98,000, respectively. We would like to map income to the range (0.0, 1.0]. By min-max
normalization, a value of $73,600 for income is transformed to

73 600 12 000

98 000 12 000
1 0 0 0 0 716

, ,

, ,
. .

−
−

−() + =

In z-score normalization (or zero-mean normalization), the values for an
attribute, A, are normalized based on the mean and standard deviation of A. A
value, v, of A is normalized to v′ by computing

	 ′ =
−

v
v A

Aσ
	 (3.12)

where Ā and σA are the mean and standard deviation, respectively, of attribute A.
This method of normalization is useful when the actual minimum and maximum
of attribute A are unknown or when there are outliers that dominate the min-max
normalization.

EXAMPLE 3.3

z-Score Normalization

Suppose that the mean and standard deviation of the values for the attribute income are
$54,000 and $16,000, respectively. With z-score normalization, a value of $73,600 for
income is transformed to

73 600 54 000

16 000
1 225

, ,

,
.

−
=

Normalization by decimal scaling normalizes by moving the decimal point
of values of attribute A. The number of decimal points moved depends on the
maximum absolute value of A. A value, v, of A is normalized to v′ by computing

	 ′ =v
v

j10
	 (3.13)

where j is the smallest integer such that Max(|v′|) < 1.

EXAMPLE 3.4

Decimal Scaling

Suppose that the recorded values of A range from −986 to 917. The maximum absolute
value of A is 986. To normalize by decimal scaling, we therefore divide each value by 1000
(i.e., j = 3) so that −986 normalizes to −0:986 and 917 normalizes to 0:917.

3.4  Data Integration and Transformation   83

84    CHAPTER 3  Data Preprocessing

Note that normalization can change the original data quite a bit, especially the
latter two methods shown here. It is also necessary to save the normalization
parameters (such as the mean and standard deviation if using z-score normaliza-
tion) so that future data can be normalized in a uniform manner.

In attribute construction,3 new attributes are constructed from the given
attributes and added to help improve the accuracy and understanding of structure
in high-dimensional data. For example, we may wish to add the attribute area
based on the attributes height and width. By combining attributes, attribute con-
struction can discover missing information about the relationships between data
attributes that can be useful for knowledge discovery.

3.5	DATA REDUCTION
Imagine that you have selected data from the AllElectronics data warehouse for
analysis. The dataset will likely be huge! Complex data analysis and mining on
huge amounts of data can take a long time, making such analysis impractical or
infeasible.

Data reduction techniques can be applied to obtain a reduced representation
of the dataset that is much smaller in volume yet closely maintains the integrity
of the original data. That is, mining on the reduced dataset should be more efficient
yet produce the same (or almost the same) analytical results. Strategies for data
reduction include the following:

1.	 Data cube aggregation, where aggregation operations are applied to the data
in the construction of a data cube.

2.	 Attribute subset selection, where irrelevant, weakly relevant, or redundant
attributes or dimensions may be detected and removed.

3.	 Dimensionality reduction, where encoding mechanisms are used to reduce
the dataset size.

4.	 Numerosity reduction, where the data are replaced or estimated by alternative,
smaller data representations such as parametric models (which need store only
the model parameters instead of the actual data) or nonparametric methods
such as clustering, sampling, and the use of histograms.

5.	 Discretization and concept hierarchy generation, where raw data values for
attributes are replaced by ranges or higher conceptual levels. Data discretiza-
tion is a form of numerosity reduction that is useful for the automatic genera-
tion of concept hierarchies. Discretization and concept hierarchy generation
are powerful data mining tools, in that they allow the mining of data at mul-

3In the machine learning literature, attribute construction is known as feature construction.

tiple levels of abstraction. We therefore defer the discussion of discretization
and concept hierarchy generation to Section 3.6, which is devoted entirely to
this topic.

The remainder of this section discusses strategies 1 to 4. The computational
time spent on data reduction should not outweigh or “erase” the time saved by
mining on a reduced dataset size.

3.5.1  Data Cube Aggregation

Imagine that you have collected the data for your analysis. These data consist of
the AllElectronics sales per quarter, for the years 2002 to 2004. You are, however,
interested in the annual sales (total per year), rather than the total per quarter.
Thus, the data can be aggregated so that the resulting data summarize the total
sales per year instead of per quarter. This aggregation is illustrated in Figure 3.13.
The resulting dataset is smaller in volume, without loss of information necessary
for the analysis task.

We briefly introduce some concepts of data cubes here. Data cubes store mul-
tidimensional aggregated information. For example, Figure 3.14 shows a data cube
for multidimensional analysis of sales data with respect to annual sales per item
type for each AllElectronics branch. Each cell holds an aggregate data value,
corresponding to the data point in multidimensional space. (For readability, only
some cell values are shown.) Concept hierarchies may exist for each attribute,
allowing the analysis of data at multiple levels of abstraction. For example, a hier-
archy for branch could allow branches to be grouped into regions, based on their
address. Data cubes provide fast access to precomputed, summarized data, thereby
benefiting online analytical processing as well as data mining.

The cube created at the lowest level of abstraction is referred to as the base
cuboid. The base cuboid should correspond to an individual entity of interest,

FIGURE 3.13

Sales data for a given branch of AllElectronics for 2002 to 2004. On the left, sales are
shown per quarter. On the right, data are aggregated to provide annual sales.

Quarter

Year 2004

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Quarter

Year 2003

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Quarter

Year 2002

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Year Sales

2002
2003
2004

$1,568,000
$2,356,000
$3,594,000

3.5  Data Reduction   85

86    CHAPTER 3  Data Preprocessing

such as sales or customer. In other words, the lowest level should be usable, or
useful for the analysis. A cube at the highest level of abstraction is the apex cuboid.
For the sales data of Figure 3.14, the apex cuboid would give one total—the total
sales for all three years, for all item types and for all branches. Data cubes created
for varying levels of abstraction are often referred to as cuboids, so that a data
cube may instead refer to a lattice of cuboids. Each higher level of abstraction
further reduces the resulting data size. When replying to data mining requests,
the smallest available cuboid relevant to the given task should be used.

3.5.2  Attribute Subset Selection

Datasets for analysis may contain hundreds of attributes, many of which may be
irrelevant to the mining task or redundant. For example, if the task is to classify
customers as to whether they are likely to purchase a popular new CD at AllElec-
tronics when notified of a sale, attributes such as the customer’s telephone
number are likely to be irrelevant, unlike attributes such as age or music–taste.
Although it may be possible for a domain expert to pick out some of the useful
attributes, this can be a difficult and time-consuming task, especially when the
behavior of the data is not well known (hence, a reason behind its analysis!).
Leaving out relevant attributes or keeping irrelevant attributes may be detrimental,
causing confusion for the mining algorithm employed. This can result in discov-
ered patterns of poor quality. In addition, the added volume of irrelevant or
redundant attributes can slow down the mining process.

Attribute subset selection4 reduces the dataset size by removing irrelevant
or redundant attributes (or dimensions). The goal of attribute subset selection is

FIGURE 3.14

A data cube for sales at AllElectronics.

568

A

B

C

D

750

150

50

Home
Entertainment

Computer

Phone

Security

2002 2003

Year

It
em

 ty
pe

Bra
nc

h

2004

4In machine learning, attribute subset selection is known as feature subset selection.

to find a minimum set of attributes such that the resulting probability distribution
of the data classes is as close as possible to the original distribution obtained using
all attributes. Mining on a reduced set of attributes has an additional benefit. It
reduces the number of attributes appearing in the discovered patterns, helping to
make the patterns easier to understand.

“How can we find a ‘good’ subset of the original attributes?” For n attributes,
there are 2n possible subsets. An exhaustive search for the optimal subset of attri-
butes can be prohibitively expensive, especially as n and the number of data
classes increase. Therefore, heuristic methods that explore a reduced search space
are commonly used for attribute subset selection. These methods are typically
greedy in that, while searching through attribute space, they always make what
looks to be the best choice at the time. Their strategy is to make a locally optimal
choice in the hope that this will lead to a globally optimal solution. Such greedy
methods are effective in practice and may come close to estimating an optimal
solution.

The “best” (and “worst”) attributes are typically determined using tests of
statistical significance, which assume that the attributes are independent of one
another. Many other attribute evaluation measures can be used, such as the infor-
mation gain measure used in building decision trees for classification.5

Basic heuristic methods of attribute subset selection include the following
techniques, some of which are illustrated in Figure 3.15.

5The information gain measure is briefly described in Section 3.6.1 with respect to attribute
discretization.

FIGURE 3.15

Greedy (heuristic) methods for attribute subset selection.

Forward selection

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

Initial reduced set:
{}
=> {A1}
=> {A1, A4}
=> Reduced attribute set:
 {A1, A4, A6}

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

=> {A1, A3, A4, A5, A6}
=> {A1, A4, A5, A6}
=> Reduced attribute set:
 {A1, A4, A6}

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

=> Reduced attribute set:
 {A1, A4, A6}

Backward elimination Decision tree induction

A4?

A1? A6?

Class 1 Class 2 Class 1 Class 2

Y N

Y N Y N

3.5  Data Reduction   87

88    CHAPTER 3  Data Preprocessing

1.	 Stepwise forward selection. The procedure starts with an empty set of attri-
butes as the reduced set. The best of the original attributes is determined and
added to the reduced set. At each subsequent iteration or step, the best of the
remaining original attributes is added to the set.

2.	 Stepwise backward elimination. The procedure starts with the full set of
attributes. At each step, it removes the worst attribute remaining in the set.

3.	 Combination of forward selection and backward elimination. The stepwise
forward selection and backward elimination methods can be combined so that,
at each step, the procedure selects the best attribute and removes the worst
from among the remaining attributes.

4.	 Decision tree induction. Decision tree algorithms, such as ID3, C4.5, and
CART, were originally intended for classification. Decision tree induction con-
structs a flowchart-like structure where each internal (nonleaf) node denotes
a test on an attribute, each branch corresponds to an outcome of the test,
and each external (leaf) node denotes a class prediction. At each node, the
algorithm chooses the “best” attribute to partition the data into individual
classes.

When decision tree induction is used for attribute subset selection, a tree is
constructed from the given data. All attributes that do not appear in the tree are
assumed to be irrelevant. The set of attributes appearing in the tree form the
reduced subset of attributes.

The stopping criteria for the methods may vary. The procedure may employ a
threshold on the measure used to determine when to stop the attribute selection
process.

3.5.3  Dimensionality Reduction

In dimensionality reduction, data encoding or transformations are applied so as
to obtain a reduced or “compressed” representation of the original data. If the
original data can be reconstructed from the compressed data without any loss of
information, the data reduction is called lossless. If, instead, we can reconstruct
only an approximation of the original data, then the data reduction is called lossy.
There are several well-tuned algorithms for string compression. Although they are
typically lossless, they allow only limited manipulation of the data. In this section,
we instead focus on two popular and effective methods of lossy dimensionality
reduction: wavelet transforms and principal components analysis.

Wavelet Transforms
The discrete wavelet transform (DWT) is a linear signal processing technique
that, when applied to a data vector X, transforms it to a numerically different
vector, X′, of wavelet coefficients. The two vectors are of the same length. When
applying this technique to data reduction, we consider each tuple as an

n-dimensional data vector, that is, X = (x1, x2, . . . xn), depicting n measurements
made on the tuple from n database attributes.6

“How can this technique be useful for data reduction if the wavelet trans-
formed data are of the same length as the original data?” The usefulness lies
in the fact that the wavelet transformed data can be truncated. A compressed
approximation of the data can be retained by storing only a small fraction of the
strongest of the wavelet coefficients. For example, all wavelet coefficients larger
than some user-specified threshold can be retained. All other coefficients are set
to 0. The resulting data representation is therefore very sparse, so that operations
that can take advantage of data sparsity are computationally very fast if performed
in wavelet space. The technique also works to remove noise without smoothing
out the main features of the data, making it effective for data cleaning as well.
Given a set of coefficients, an approximation of the original data can be con-
structed by applying the inverse of the DWT used.

The DWT is closely related to the discrete Fourier transform (DFT), a signal
processing technique involving sines and cosines. In general, however, the DWT
achieves better lossy compression. That is, if the same number of coefficients is
retained for a DWT and a DFT of a given data vector, the DWT version will provide
a more accurate approximation of the original data. Hence, for an equivalent
approximation, the DWT requires less space than the DFT. Unlike the DFT, wave-
lets are quite localized in space, contributing to conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Figure 3.16
shows some wavelet families. Popular wavelet transforms include the Haar-2,
Daubechies-4, and Daubechies-6 transforms. The general procedure for applying
a discrete wavelet transform uses a hierarchical pyramid algorithm that halves

6In our notation, any variable representing a vector is shown in bold italic font; measurements
depicting the vector are shown in italic font.

FIGURE 3.16

Examples of wavelet families: (a) Haar-2; (b) Daubechies-4. The number next to a wavelet
name is the number of vanishing moments of the wavelet. This is a set of mathematical
relationships that the coefficients must satisfy and is related to the number of coefficients.

�1.0 �0.5 0.0 0.5 1.0 1.5 2.0 0 2 4 6

(a) (b)

0.8

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0.0

3.5  Data Reduction   89

90    CHAPTER 3  Data Preprocessing

the data at each iteration, resulting in fast computational speed. The method is as
follows:

1.	 The length, L, of the input data vector must be an integer power of 2. This
condition can be met by padding the data vector with zeros as necessary
(L ≥ n).

2.	 Each transform involves applying two functions. The first applies some data
smoothing, such as a sum or weighted average. The second performs a weighted
difference, which acts to bring out the detailed features of the data.

3.	 The two functions are applied to pairs of data points in X, that is, to all pairs
of measurements (x2i, x2i+1). This results in two sets of data of length L/2. In
general, these represent a smoothed or low-frequency version of the input data
and the high-frequency content of it, respectively.

4.	 The two functions are recursively applied to the sets of data obtained in the
previous loop, until the resulting datasets obtained are of length 2.

5.	 Selected values from the datasets obtained in the preceding iterations are
designated the wavelet coefficients of the transformed data.

Equivalently, a matrix multiplication can be applied to the input data in order
to obtain the wavelet coefficients, where the matrix used depends on the given
DWT. The matrix must be orthonormal, meaning that the columns are unit
vectors and are mutually orthogonal, so that the matrix inverse is just its transpose.
Although we do not have room to discuss it here, this property allows the recon-
struction of the data from the smooth and smooth-difference datasets. By factoring
the matrix used into a product of a few sparse matrices, the resulting “fast DWT”
algorithm has a complexity of O(n) for an input vector of length n.

Wavelet transforms can be applied to multidimensional data, such as a data
cube. This is done by first applying the transform to the first dimension, then to
the second, and so on. The computational complexity involved is linear with
respect to the number of cells in the cube. Wavelet transforms give good results
on sparse or skewed data and on data with ordered attributes. Lossy compression
by wavelets is reportedly better than JPEG compression, the current commercial
standard. Wavelet transforms have many real-world applications, including the
compression of fingerprint images, computer vision, analysis of time-series data,
and data cleaning.

Principal Components Analysis
In this subsection, we provide an intuitive introduction to principal components
analysis as a method of dimesionality reduction. A detailed theoretic explanation
is beyond the scope of this book.

Suppose that the data to be reduced consist of tuples or data vectors described
by n attributes or dimensions. Principal components analysis, or PCA (also
called the Karhunen-Loeve, or K-L, method), searches for k n-dimensional orthog-
onal vectors that can best be used to represent the data, where k ≤ n. The original

data are thus projected onto a much smaller space, resulting in dimensionality
reduction. Unlike attribute subset selection, which reduces the attribute set size
by retaining a subset of the initial set of attributes, PCA “combines” the essence
of attributes by creating an alternative, smaller set of variables. The initial data can
then be projected onto this smaller set. PCA often reveals relationships that were
not previously suspected and thereby allows interpretations that would not
ordinarily result.

The basic procedure is as follows:

1.	 The input data are normalized, so that each attribute falls within the same
range. This step helps ensure that attributes with large domains will not
dominate attributes with smaller domains.

2.	 PCA computes k orthonormal vectors that provide a basis for the normalized
input data. These are unit vectors that each point in a direction perpendicular
to the others. These vectors are referred to as the principal components. The
input data are a linear combination of the principal components.

3.	 The principal components are sorted in order of decreasing “significance” or
strength. The principal components essentially serve as a new set of axes for
the data, providing important information about variance. That is, the sorted
axes are such that the first axis shows the most variance among the data, the
second axis shows the next highest variance, and so on. For example, Figure
3.17 shows the first two principal components, Y1 and Y2, for the given set of
data originally mapped to the axes X1 and X2. This information helps identify
groups or patterns within the data.

4.	 Because the components are sorted according to decreasing order of “signifi-
cance,” the size of the data can be reduced by eliminating the weaker compo-
nents, that is, those with low variance. Using the strongest principal components,
it should be possible to reconstruct a good approximation of the original
data.

PCA is computationally inexpensive, can be applied to ordered and unordered
attributes, and can handle sparse data and skewed data. Multidimensional data of

FIGURE 3.17

Principal components analysis. Y1 and Y2 are the first two principal components for the
given data.

Y2

X2

Y1

X1

3.5  Data Reduction   91

92    CHAPTER 3  Data Preprocessing

more than two dimensions can be handled by reducing the problem to two dimen-
sions. Principal components may be used as inputs to multiple regression and
cluster analysis. In comparison with wavelet transforms, PCA tends to be better
at handling sparse data, whereas wavelet transforms are more suitable for data of
high dimensionality.

3.5.4  Numerosity Reduction

“Can we reduce the data volume by choosing alternative, ‘smaller’ forms of
data representation?” Techniques of numerosity reduction can indeed be applied
for this purpose. These techniques may be parametric or nonparametric. For
parametric methods, a model is used to estimate the data, so that typically only
the data parameters need to be stored, instead of the actual data. (Outliers may
also be stored.) Log-linear models, which estimate discrete multidimensional prob-
ability distributions, are an example. Nonparametric methods for storing reduced
representations of the data include histograms, clustering, and sampling.

Let’s look at each of the numerosity reduction techniques mentioned earlier.

Regression and Log-Linear Models
Regression and log-linear models can be used to approximate the given data. In
(simple) linear regression, the data are modeled to fit a straight line. For example,
a random variable, y (called a response variable), can be modeled as a linear
function of another random variable, x (called a predictor variable), with the
equation

	 y wx b= + 	 (3.14)

where the variance of y is assumed to be constant. In the context of data mining,
x and y are numeric database attributes. The coefficients, w and b (called regres-
sion coefficients), specify the slope of the line and the y intercept, respectively.
These coefficients can be solved for by the method of least squares, which
minimizes the error between the actual line separating the data and the estimate
of the line. Multiple linear regression is an extension of (simple) linear regres-
sion, which allows a response variable, y, to be modeled as a linear function of
two or more predictor variables.

Log-linear models approximate discrete multidimensional probability distri-
butions. Given a set of tuples in n dimensions (e.g., described by n attributes),
we can consider each tuple as a point in an n-dimensional space. Log-linear models
can be used to estimate the probability of each point in a multidimensional space
for a set of discretized attributes, based on a smaller subset of dimensional com-
binations. This allows a higher-dimensional data space to be constructed from
lower-dimensional spaces. Log-linear models are therefore also useful for dimen-
sionality reduction (because the lower-dimensional points together typically
occupy less space than the original data points) and data smoothing (because

aggregate estimates in the lower-dimensional space are less subject to sampling
variations than the estimates in the higher-dimensional space).

Regression and log-linear models can both be used on sparse data, although
their application may be limited. Although both methods can handle skewed data,
regression does exceptionally well. Regression can be computationally intensive
when applied to high-dimensional data, whereas log-linear models show good
scalability for up to ten or so dimensions.

Histograms
Histograms use binning to approximate data distributions and are a popular form
of data reduction. Histograms were introduced in Section 3.2.3. A histogram for
an attribute, A, partitions the data distribution of A into disjoint subsets, or
buckets. If each bucket represents only a single attribute-value/frequency pair, the
buckets are called singleton buckets. Often, buckets instead represent continuous
ranges for the given attribute.

EXAMPLE 3.5

Histograms

The following data are a list of prices of commonly sold items at AllElectronics (rounded to
the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10,
12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20,
20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.

Figure 3.18 shows a histogram for the data using singleton buckets. To further reduce
the data, it is common to have each bucket denote a continuous range of values for the
given attribute. In Figure 3.19, each bucket represents a different $10 range for price.

“How are the buckets determined and the attribute values partitioned?”
There are several partitioning rules, including the following:

Equal-width. In an equal-width histogram, the width of each bucket range is
uniform (such as the width of $10 for the buckets in Figure 3.19).

Equal-frequency (or equidepth). In an equal-frequency histogram, the buckets
are created so that, roughly, the frequency of each bucket is constant (that is,
each bucket contains roughly the same number of contiguous data samples).

V-Optimal. If we consider all of the possible histograms for a given number of
buckets, the V-Optimal histogram is the one with the least variance. Histogram
variance is a weighted sum of the original values that each bucket represents,
where bucket weight is equal to the number of values in the bucket.

MaxDiff. In a MaxDiff histogram, we consider the difference between each pair
of adjacent values. A bucket boundary is established between each pair for
pairs having the β−1 largest differences, where β is the user-specified number
of buckets.

3.5  Data Reduction   93

94    CHAPTER 3  Data Preprocessing

FIGURE 3.18

histogram for price using singleton buckets—each represents one price-value/frequency pair.

10

9

8

7

6

5

4

3

2

1

0
5 10 15 20 25 30

Price ($)

C
ou

n
t

FIGURE 3.19

equal-width histogram for price, where values are aggregated so that each bucket has
a uniform width of $10.

25

20

15

10

5

0
1–10 11–20 21–30

Price ($)

C
ou

n
t

V-Optimal and MaxDiff histograms tend to be the most accurate and practical.
Histograms are highly effective at approximating both sparse and dense data, as
well as highly skewed and uniform data. The histograms described earlier for
single attributes can be extended for multiple attributes. Multidimensional histo-
grams can capture dependencies between attributes. Such histograms have been
found effective in approximating data with up to five attributes. More studies are

needed regarding the effectiveness of multidimensional histograms for very
high dimensions. Singleton buckets are useful for storing outliers with high
frequency.

Clustering
Clustering techniques consider data tuples as objects. They partition the objects
into groups or clusters, so that objects within a cluster are “similar” to one another
and “dissimilar” to objects in other clusters. Similarity is commonly defined in
terms of how “close” the objects are in space, based on a distance function. The
“quality” of a cluster may be represented by its diameter, the maximum distance
between any two objects in the cluster. Centroid distance is an alternative measure
of cluster quality and is defined as the average distance of each cluster object from
the cluster centroid (denoting the “average object,” or average point in space for
the cluster). Figure 3.12 of Section 3.3.2 shows a 2-D plot of customer data with
respect to customer locations in a city, where the centroid of each cluster is
shown with a “+.” Three data clusters are visible.

In data reduction, the cluster representations of the data are used to replace
the actual data. The effectiveness of this technique depends on the nature of the
data. It is much more effective for data that can be organized into distinct clusters
than for smeared data.

In database systems, multidimensional index trees are primarily used
for providing fast data access. They can also be used for hierarchical data
reduction, providing a multiresolution clustering of the data. This can be used
to provide approximate answers to queries. An index tree recursively partitions
the multidimensional space for a given set of data objects, with the root node
representing the entire space. Such trees are typically balanced, consisting of
internal and leaf nodes. Each parent node contains keys and pointers to child
nodes that, collectively, represent the space represented by the parent node. Each
leaf node contains pointers to the data tuples they represent (or to the actual
tuples).

An index tree can therefore store aggregate and detail data at varying levels of
resolution or abstraction. It provides a hierarchy of clusterings of the dataset,
where each cluster has a label that holds for the data contained in the cluster. If
we consider each child of a parent node as a bucket, then an index tree can be
considered as a hierarchical histogram. For example, consider the root of a
B+-tree as shown in Figure 3.20, with pointers to the data keys 986, 3396, 5411,
8392, and 9544. Suppose that the tree contains 10,000 tuples with keys ranging
from 1 to 9999. The data in the tree can be approximated by an equal-frequency
histogram of six buckets for the key ranges 1 to 985, 986 to 3395, 3396 to 5410,
5411 to 8391, 8392 to 9543, and 9544 to 9999. Each bucket contains roughly
10,000/6 items. Similarly, each bucket is subdivided into smaller buckets, allowing
for aggregate data at a finer-detailed level. The use of multidimensional index trees
as a form of data reduction relies on an ordering of the attribute values in each
dimension. Two-dimensional or multidimensional index trees include R-trees,

3.5  Data Reduction   95

96    CHAPTER 3  Data Preprocessing

quad-trees, and their variations. They are well suited for handling both sparse and
skewed data.

There are many measures for defining clusters and cluster quality.

Sampling
Sampling can be used as a data reduction technique because it allows a large
dataset to be represented by a much smaller random data sample (or subset).
Suppose that a large dataset, D, contains N tuples. Let’s look at the most common
ways that we could sample D for data reduction, as illustrated in Figure 3.21:

Simple random sample without replacement (SRSWOR) of size s. This is created
by drawing s of the N tuples from D (s < N), where the probability of drawing
any tuple in D is 1/N, that is, all tuples are equally likely to be sampled.

Simple random sample with replacement (SRSWR) of size s. This is similar to
SRSWOR, except that each time a tuple is drawn from D, it is recorded and
then replaced. That is, after a tuple is drawn, it is placed back in D so that it
may be drawn again.

Cluster sample. If the tuples in D are grouped into M mutually disjoint “clusters,”
then an SRS of s clusters can be obtained, where s < M. For example, tuples
in a database are usually retrieved a page at a time, so that each page can be
considered a cluster. A reduced data representation can be obtained by apply-
ing, say, SRSWOR to the pages, resulting in a cluster sample of the tuples.
Other clustering criteria conveying rich semantics can also be explored. For
example, in a spatial database, we may choose to define clusters geographically
based on how closely different areas are located.

Stratified sample. If D is divided into mutually disjoint parts called strata, a
stratified sample of D is generated by obtaining an SRS at each stratum. This
helps ensure a representative sample, especially when the data are skewed.
For example, a stratified sample may be obtained from customer data, where
a stratum is created for each customer age group. In this way, the age group
having the smallest number of customers will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a
sample is proportional to the size of the sample, s, as opposed to N, the dataset

FIGURE 3.20

The root of a B+-tree for a given set of data.

986 3396 5411 8392 9544

FIGURE 3.21

Sampling can be used for data reduction.

size. Hence, sampling complexity is potentially sublinear to the size of the data.
Other data reduction techniques can require at least one complete pass through
D. For a fixed sample size, sampling complexity increases only linearly as the
number of data dimensions, n, increases, whereas techniques using histograms,
for example, increase exponentially in n.

3.5  Data Reduction   97

98    CHAPTER 3  Data Preprocessing

When applied to data reduction, sampling is most commonly used to
estimate the answer to an aggregate query. It is possible (using the central limit
theorem) to determine a sufficient sample size for estimating a given function
within a specified degree of error. This sample size, s, may be extremely small in
comparison to N. Sampling is a natural choice for the progressive refinement
of a reduced dataset. Simply increasing the sample size can further refine such
a set.

3.6	DATA DISCRETIZATION AND CONCEPT
HIERARCHY GENERATION

Data discretization techniques can be used to reduce the number of values
for a given continuous attribute by dividing the range of the attribute into
intervals. Interval labels can then be used to replace actual data values. Replacing
numerous values of a continuous attribute by a small number of interval labels
thereby reduces and simplifies the original data. This leads to a concise, easy-to-
use, knowledge-level representation of mining results.

Discretization techniques can be categorized based on how the discretization
is performed, such as whether it uses class information or which direction it pro-
ceeds (i.e., top-down versus bottom-up). If the discretization process uses class
information, then we say it is supervised discretization. Otherwise, it is unsuper-
vised. If the process starts by first finding one or a few points (called split points
or cut points) to split the entire attribute range, and then repeats this recursively
on the resulting intervals, it is called top-down discretization or splitting. This
contrasts with bottom-up discretization or merging, which starts by considering
all of the continuous values as potential split points, removes some by merging
neighborhood values to form intervals, and then recursively applies this process
to the resulting intervals. Discretization can be performed recursively on an
attribute to provide a hierarchical or multiresolution partitioning of the attribute
values, known as a concept hierarchy. Concept hierarchies are useful for mining
at multiple levels of abstraction.

A concept hierarchy for a given numeric attribute defines a discretization of
the attribute. Concept hierarchies can be used to reduce the data by collecting
and replacing low-level concepts (such as numeric values for the attribute age)
with higher-level concepts (such as youth, middle-aged, or senior). Although
detail is lost by such data generalization, the generalized data may be more mean-
ingful and easier to interpret. This contributes to a consistent representation of
data mining results among multiple mining tasks, which is a common requirement.
In addition, mining on a reduced dataset requires fewer input/output operations
and is more efficient than mining on a larger, ungeneralized dataset. Because of
these benefits, discretization techniques and concept hierarchies are typically
applied before data mining as a preprocessing step, rather than during mining. An
example of a concept hierarchy for the attribute price is given in Figure 3.22.

More than one concept hierarchy can be defined for the same attribute in order
to accommodate the needs of various users.

Manual definition of concept hierarchies can be a tedious and time-consuming
task for a user or a domain expert. Fortunately, several discretization methods can
be used to automatically generate or dynamically refine concept hierarchies for
numeric attributes. Furthermore, many hierarchies for categorical attributes are
implicit within the database schema and can be automatically defined at the
schema definition level.

Let’s look at the generation of concept hierarchies for numeric and categorical
data.

3.6.1  Discretization and Concept Hierarchy Generation
for Numeric Data

It is difficult and laborious to specify concept hierarchies for numeric attributes
because of the wide diversity of possible data ranges and the frequent updates of
data values. Such manual specification can also be quite arbitrary.

Concept hierarchies for numeric attributes can be constructed automatically
based on data discretization. We examine the following methods: binning, histo-
gram analysis, entropy-based discretization, χ2-merging, cluster analysis, and
discretization by intuitive partitioning. In general, each method assumes that
the values to be discretized are sorted in ascending order.

Binning
Binning is a top-down splitting technique based on a specified number of bins.
Section 3.3.2 discussed binning methods for data smoothing. These methods are
also used as discretization methods for numerosity reduction and concept hierar-
chy generation. For example, attribute values can be discretized by applying
equal-width or equal-frequency binning and then replacing each bin value by
the bin mean or median, as in smoothing by bin means or smoothing by bin

FIGURE 3.22

A concept hierarchy for the attribute price, where an interval ($X . . . $Y] denotes the range
from $X (exclusive) to $Y (inclusive).

($600...$800] ($800...$1000]($400...$600]($200...$400]($0...$200]

($0...$1000]

($900...
$1000]

($800...
$900]

($700...
$800]

($600...
$700]

($500...
$600]

($100...
$200]

($400...
$500]

($0...
$100]

($200...
$300]

($300...
$400]

3.6  Data Discretization and Concept Hierarchy Generation   99

100    CHAPTER 3  Data Preprocessing

medians, respectively. These techniques can be applied recursively to the result-
ing partitions to generate concept hierarchies. Binning does not use class informa-
tion and is therefore an unsupervised discretization technique. It is sensitive to
the user-specified number of bins, as well as the presence of outliers.

Histogram Analysis
Like binning, histogram analysis is an unsupervised discretization technique
because it does not use class information. Histograms partition the values for an
attribute, A, into disjoint ranges called buckets. Histograms were introduced in
Section 3.2.3. Partitioning rules for defining histograms were described in Section
3.5.4. In an equal-width histogram, for example, the values are partitioned into
equal-sized partitions or ranges (such as in Figure 3.19 for price, where each
bucket has a width of $10). With an equal-frequency histogram, the values are
partitioned so that, ideally, each partition contains the same number of data tuples.
The histogram analysis algorithm can be applied recursively to each partition to
automatically generate a multilevel concept hierarchy, with the procedure termi-
nating once a prespecified number of concept levels has been reached. A minimum
interval size can also be used per level to control the recursive procedure. This
specifies the minimum width of a partition, or the minimum number of values for
each partition at each level. Histograms can also be partitioned based on cluster
analysis of the data distribution, as described next.

Entropy-Based Discretization
Entropy is one of the most commonly used discretization measures. Claude
Shannon first introduced it in pioneering work on information theory and the
concept of information gain. Entropy-based discretization is a supervised, top-
down splitting technique. It explores class distribution information in its calcula-
tion and determination of split points (data values for partitioning an attribute
range). To discretize a numeric attribute, A, the method selects the value of A that
has the minimum entropy as a split point and recursively partitions the resulting
intervals to arrive at a hierarchical discretization. Such discretization forms a
concept hierarchy for A.

Let D consist of data tuples defined by a set of attributes and a class-label attri-
bute. The class-label attribute provides the class information per tuple. The basic
method for entropy-based discretization of an attribute A within the set is as
follows:

1.	 Each value of A can be considered as a potential interval boundary or split
point (denoted split_point) to partition the range of A. That is, a split point for
A can partition the tuples in D into two subsets satisfying the conditions
A ≤ split_point and A > split_point, respectively, thereby creating a binary
discretization.

2.	 Entropy-based discretization, as mentioned previously, uses information regard-
ing the class label of tuples. To explain the intuition behind entropy-based

discretization, we must take a glimpse at classification. Suppose we want to
classify the tuples in D by partitioning on attribute A and some split point.
Ideally, we would like this partitioning to result in an exact classification of the
tuples. For example, if we had two classes, we would hope that all of the tuples
of, say, class C1 will fall into one partition, and all of the tuples of class C2 will
fall into the other partition. However, this is unlikely. For example, the first
partition may contain many tuples of C1, but also some of C2. How much more
information would we still need for a perfect classification, after this partition-
ing? This amount is called the expected information requirement for classify-
ing a tuple in D based on partitioning by A. It is given by

	 Info D
D

D
Entropy D

D

D
Entropy DA () = () + ()1

1
2

2 	 (3.15)

where D1 and D2 correspond to the tuples in D satisfying the conditions A ≤
split_point and A > split_point, respectively; |D| is the number of tuples in D,
and so on. The entropy function for a given set is calculated based on the class
distribution of the tuples in the set. For example, given m classes, C1, C2, . . . ,
Cm, the entropy of D1 is

	 Entropy D p pi i

i

m

1 2

1

() = − ()
=
∑ log 	 (3.16)

where pi is the probability of class Ci in D1, determined by dividing the number
of tuples of class Ci in D1 by |D1|, the total number of tuples in D1. Therefore,
when selecting a split point for attribute A, we want to pick the attribute value
that gives the minimum expected information requirement (i.e., min(InfoA(D))).
This would result in the minimum amount of expected information (still)
required to perfectly classify the tuples after partitioning by A ≤ split_point
and A > split_point. This is equivalent to the attribute-value pair with the
maximum information gain. Note that the value of Entropy(D2) can be com-
puted similarly as in Equation 3.16.

“But our task is discretization, not classification!” you may exclaim. This
is true. We use the split point to partition the range of A into two intervals,
corresponding to A ≤ split_point and A > split_point.

3.	 The process of determining a split point is recursively applied to each partition
obtained, until some stopping criterion is met, such as when the minimum
information requirement on all candidate split points is less than a small
threshold, ε, or when the number of intervals is greater than a threshold,
max_interval.

Entropy-based discretization can reduce data size. Unlike the other methods
mentioned here so far, entropy-based discretization uses class information. This
makes it more likely that the interval boundaries (split-points) are defined to occur
in places that may improve classification accuracy. The entropy and information

3.6  Data Discretization and Concept Hierarchy Generation   101

102    CHAPTER 3  Data Preprocessing

gain measures described here are also used for decision tree induction. These
measures are revisited in greater detail in Section 3.3.2.

Interval Merging by χ2 Analysis
ChiMerge is a χ2-based discretization method. The discretization methods that we
have studied up to this point have all employed a top-down, splitting strategy.
This contrasts with ChiMerge, which employs a bottom-up approach by finding
the best neighboring intervals and then merging these to form larger intervals,
recursively. The method is supervised in that it uses class information. The basic
notion is that for accurate discretization, the relative class frequencies should be
fairly consistent within an interval. Therefore, if two adjacent intervals have a very
similar distribution of classes, then the intervals can be merged. Otherwise, they
should remain separate.

ChiMerge proceeds as follows. Initially, each distinct value of a numeric attri-
bute A is considered to be one interval. χ2 tests are performed for every pair
of adjacent intervals. Adjacent intervals with the least χ2 values are merged
together, because low χ2 values for a pair indicate similar class distributions. This
merging process proceeds recursively until a predefined stopping criterion is
met.

The χ2 statistic was introduced in Section 3.4.1 on data integration, where we
explained its use to detect a correlation relationship between two categorical
attributes (Equation 3.9). Because ChiMerge treats intervals as discrete categories,
Equation 3.9 can be applied. The χ2 statistic tests the hypothesis that two adjacent
intervals for a given attribute are independent of the class. Following the method
in Example 3.1, we can construct a contingency table for our data. The contin-
gency table has two columns (representing the two adjacent intervals) and m
rows, where m is the number of distinct classes. Applying Equation 3.9 here, the
cell value oij is the count of tuples in the ith interval and jth class. Similarly, the
expected frequency of oij is eij = (number of tuples in interval i) × (number of
tuples in class j)/N, where N is the total number of data tuples. Low χ2 values for
an interval pair indicate that the intervals are independent of the class and can,
therefore, be merged.

The stopping criterion is typically determined by three conditions. First,
merging stops when χ2 values of all pairs of adjacent intervals exceed some thresh-
old, which is determined by a specified significance level. A too (or very) high
value of significance level for the χ2 test may cause overdiscretization, whereas a
too (or very) low value may lead to underdiscretization. Typically, the significance
level is set between 0.10 and 0.01. Second, the number of intervals cannot be
over a prespecified max-interval, such as 10 to 15. Finally, recall that the premise
behind ChiMerge is that the relative class frequencies should be fairly consistent
within an interval. In practice, some inconsistency is allowed, although this should
be no more than a prespecified threshold, such as 3 percent, which may be esti-
mated from the training data. This last condition can be used to remove irrelevant
attributes from the dataset.

Cluster Analysis
Cluster analysis is a popular data discretization method. A clustering algorithm can
be applied to discretize a numeric attribute, A, by partitioning the values of A into
clusters or groups. Clustering takes the distribution of A into consideration, as
well as the closeness of data points, and therefore is able to produce high-quality
discretization results. Clustering can be used to generate a concept hierarchy for
A by following either a top-down splitting strategy or a bottom-up merging strat-
egy, where each cluster forms a node of the concept hierarchy. In the former,
each initial cluster or partition may be further decomposed into several subclus-
ters, forming a lower level of the hierarchy. In the latter, clusters are formed by
repeatedly grouping neighboring clusters to form higher-level concepts.

Discretization by Intuitive Partitioning
Although the preceding discretization methods are useful in the generation of
numeric hierarchies, many users would like to see numeric ranges partitioned into
relatively uniform, easy-to-read intervals that appear intuitive or “natural.” For
example, annual salaries broken into ranges like ($50,000, $60,000] are often more
desirable than ranges like ($51,263.98, $60,872.34], obtained by, say, some
sophisticated clustering analysis.

The 3-4-5 rule can be used to segment numeric data into relatively uniform,
natural-seeming intervals. In general, the rule partitions a given range of data into
3, 4, or 5 relatively equal-width intervals, recursively and level by level, based on
the value range at the most significant digit. We will illustrate the use of the rule
with an example later. The rule is as follows:

n	 If an interval covers 3, 6, 7, or 9 distinct values at the most significant digit,
then partition the range into three intervals (three equal-width intervals for 3,
6, and 9; and three intervals in the grouping of 2-3-2 for 7).

n	 If it covers 2, 4, or 8 distinct values at the most significant digit, then partition
the range into four equal-width intervals.

n	 If it covers 1, 5, or 10 distinct values at the most significant digit, then partition
the range into five equal-width intervals.

The rule can be recursively applied to each interval, creating a concept hierarchy
for the given numeric attribute. Real-world data often contain extremely large
positive or negative outlier values, which could distort any top-down discretiza-
tion method based on minimum and maximum data values. For example, the
assets of a few people could be several orders of magnitude higher than those of
others in the same dataset. Discretization based on the maximal asset values may
lead to a highly biased hierarchy. Thus, the top-level discretization can be per-
formed based on the range of data values representing the majority (e.g., 5th
percentile to 95th percentile) of the given data. The extremely high or low values
beyond the top-level discretization will form distinct interval(s) that can be handled
separately, but in a similar manner.

3.6  Data Discretization and Concept Hierarchy Generation   103

104    CHAPTER 3  Data Preprocessing

The following example illustrates the use of the 3-4-5 rule for the automatic
construction of a numeric hierarchy.

EXAMPLE 3.6

Numeric Concept Hierarchy Generation by Intuitive Partitioning

Suppose that profits at different branches of AllElectronics for the year 2004 cover a wide
range, from −$351,976.00 to $4,700,896.50. A user desires the automatic generation of a
concept hierarchy for profit. For improved readability, we use the notation (l . . . r] to repre-
sent the interval (l, r]. For example, (−$1,000,000 . . . $0] denotes the range from
−$1,000,000 (exclusive) to $0 (inclusive).

Suppose that the data within the 5th and 95th percentiles are between $159,876 and
$1,838,761. The results of applying the 3-4-5 rule are shown in Figure 3.23.

1.	 Based on the preceding information, the minimum and maximum values are MIN =
−$351,976.00, and MAX = $4,700,896.50. The low (5th percentile) and high (95th
percentile) values to be considered for the top or first level of discretization are
LOW = −$159,876, and HIGH = $1,838,761.

2.	 Given LOW and HIGH, the most significant digit (msd) is at the million dollar digit
position (i.e., msd = 1,000,000). Rounding LOW down to the million dollar digit, we get
LOW′ = −$1,000,000; rounding HIGH up to the million dollar digit, we get HIGH′ =
+$2,000,000.

3.	 Because this interval ranges over three distinct values at the most significant digit,
that is, (2,000,000 − (−1,000,000))/1,000,000 = 3, the segment is partitioned into
three equal-width subsegments according to the 3-4-5 rule: (−$1,000,000 . . . $0],
($0 . . . $1,000,000], and ($1,000,000 . . . $2,000,000]. This represents the top tier of the
hierarchy.

4.	 We now examine the MIN and MAX values to see how they “fit” into the first-level parti-
tions. Because the first interval (−$1,000,000 . . . $0] covers the MIN value, that is, LOW′
< MIN, we can adjust the left boundary of this interval to make the interval smaller. The
most significant digit of MIN is the hundred thousand digit position. Rounding MIN down
to this position, we get MIN′ = −$400,000. Therefore, the first interval is redefined as
(−$400,000 . . . 0].

Because the last interval, ($1,000,000 . . . $2,000,000], does not cover the MAX value—
that is, MAX > HIGH′—we need to create a new interval to cover it. Rounding up MAX at
its most significant digit position, the new interval is ($2,000,000 . . . $5,000,000]. There-
fore, the hierarchy’s topmost level contains four partitions: (−$400,000 . . . $0],
($0 . . . $1,000,000], ($1,000,000 . . . $2,000,000], and ($2,000,000 . . . $5,000,000].

5.	 Recursively, each interval can be further partitioned according to the 3-4-5 rule to form
the next lower level of the hierarchy:
n	 The first interval, (−$400,000 . . . $0], is partitioned into four subintervals:

(−$400,000 . . . −$300,000], (−$300,000 . . . −$200,000], (−$200,000 . . . −$100,000],
and (−$100,000 . . . $0].

n	 The second interval, ($0 . . . $1,000,000], is partitioned into five subintervals:
($0 . . . $200,000], ($200,000 . . . $400,000], ($400,000 . . . $600,000], ($600,000 . . .
$800,000], and ($800,000 . . . $1,000,000].

n	 The third interval, ($1,000,000 . . . $2,000,000], is partitioned into five subintervals:
($1,000,000 . . . $1,200,000], ($1,200,000 . . . $1,400,000], ($1,400,000 . . .
$1,600,000], ($1,600,000 . . . $1,800,000], and ($1,800,000 . . . $2,000,000].

n	 The last interval, ($2,000,000 . . . $5,000,000], is partitioned into three subintervals:
($2,000,000 . . . $3,000,000], ($3,000,000 . . . $4,000,000], and ($4,000,000 . . .
$5,000,000].

Similarly, the 3-4-5 rule can be carried on iteratively at deeper levels, as necessary.

FIGURE 3.23

Automatic generation of a concept hierarchy for profit based on the 3-4-5 rule.

(�$400,000...
�$300,000]

(�$300,000...
 �$200,000]

($0...
 $200,000]

(�$200,000...
 �$100,000]

($200,000...
 $400,000]

($400,000...
 $600,000]

($600,000...
 $800,000]

($800,000...
 $1,000,000]

(�$100,000...
 $0]

(�$1,000,000...$0]

($1,000,000...
 $1,200,000]

($2,000,000...
 $3,000,000]

($2,000,000...$5,000,000]($1,000,000...$2,000,000](0...$1,000,000](�$400,000...0]

(�$400,000...$5,000,000]Step 4

Step 5

($3,000,000...
 $4,000,000]

($4,000,000...
 $5,000,000]

($1,200,000...
 $1,400,000]

($1,400,000...
 $1,600,000]

($1,600,000...
 $1,800,000]

($1,800,000...
 $2,000,000]

($0...$1,000,000] ($1,000,000...$2,000,000]

(�$1,000,000...$2,000,000]Step 3

Count

Step 1

Step 2 msd � 1,000,000 LOW´ � �$1,000,000 HIGH´ � $2,000,000

�$351,976
MIN

�$159,876
LOW
(i.e., 5th percentile)

$1,838,761
HIGH
(i.e., 95th percentile)

$4,700,896.50
MAX

Profit

3.6  Data Discretization and Concept Hierarchy Generation   105

106    CHAPTER 3  Data Preprocessing

3.6.2  Concept Hierarchy Generation for Categorical Data

Categorical data are discrete data. Categorical attributes have a finite (but possibly
large) number of distinct values, with no ordering among the values. Examples
include geographic location, job category, and item type. There are several
methods for the generation of concept hierarchies for categorical data:

Specification of a partial ordering of attributes explicitly at the schema level by
users or experts. Concept hierarchies for categorical attributes or dimensions
typically involve a group of attributes. A user or expert can easily define a
concept hierarchy by specifying a partial or total ordering of the attributes at
the schema level. For example, a relational database or a dimension location
of a data warehouse may contain the following group of attributes: street, city,
province_or_state, and country. A hierarchy can be defined by specifying the
total ordering among these attributes at the schema level, such as street < city
< province_or_state < country.

Specification of a portion of a hierarchy by explicit data grouping. This is
essentially the manual definition of a portion of a concept hierarchy. In a large
database, it is unrealistic to define an entire concept hierarchy by explicit value
enumeration. On the contrary, we can easily specify explicit groupings for a
small portion of intermediate-level data. For example, after specifying that
province and country form a hierarchy at the schema level, a user could
define some intermediate levels manually, such as “{Alberta, Saskatchewan,
Manitobag} ⊂ prairies_Canada” and “{British Columbia, prairies_Canada}
⊂ Western Canada”.

Specification of a set of attributes, but not of their partial ordering. A user may
specify a set of attributes forming a concept hierarchy but omit to explicitly
state their partial ordering. The system can then try to automatically generate
the attribute ordering so as to construct a meaningful concept hierarchy.
“Without knowledge of data semantics, how can a hierarchical ordering for
an arbitrary set of categorical attributes be found?” Consider the following
observation that because higher-level concepts generally cover several subor-
dinate lower-level concepts, an attribute defining a high concept level (e.g.,
country) will usually contain a smaller number of distinct values than an attri-
bute defining a lower concept level (e.g., street). Based on this observation, a
concept hierarchy can be automatically generated based on the number of
distinct values per attribute in the given attribute set. The attribute with the
most distinct values is placed at the lowest level of the hierarchy. The lower
the number of distinct values an attribute has, the higher it is in the generated
concept hierarchy. This heuristic rule works well in many cases. Users or
experts may apply some local-level swapping or adjustments when necessary,
after examination of the generated hierarchy.

Let’s examine an example of this method.

EXAMPLE 3.7

Concept Hierarchy Generation Based on the Number of Distinct
Values per Attribute

Suppose a user selects a set of location-oriented attributes, street, country, province_or_
state, and city, from the AllElectronics database but does not specify the hierarchical order-
ing among the attributes.

A concept hierarchy for location can be generated automatically, as illustrated in Figure
3.24. First, sort the attributes in ascending order based on the number of distinct values in
each attribute. This results in the following (where the number of distinct values per attribute
is shown in parentheses): country (15), province_or_state (365), city (3567), and street
(674,339). Second, generate the hierarchy from the top down according to the sorted order,
with the first attribute at the top level and the last attribute at the bottom level. Finally, the
user can examine the generated hierarchy and, when necessary, modify it to reflect desired
semantic relationships among the attributes. In this example, it is obvious that there is no
need to modify the generated hierarchy.

FIGURE 3.24

Automatic generation of a schema concept hierarchy based on the number of distinct
attribute values.

country 15 distinct values

province_or_state

city

street

365 distinct values

3,567 distinct values

674,339 distinct values

3.6  Data Discretization and Concept Hierarchy Generation   107

Note that this heuristic rule is not foolproof. For example, a time dimension
in a database may contain 20 distinct years, 12 distinct months, and 7 distinct
days. However, this does not suggest that the time hierarchy should be “year <
month < days_of_the week” with days_of_the week at the top of the hierarchy.

Specification of only a partial set of attributes. Sometimes a user can be sloppy
when defining a hierarchy, or have only a vague idea about what should be
included in a hierarchy. Consequently, the user may have included only a small

108    CHAPTER 3  Data Preprocessing

subset of the relevant attributes in the hierarchy specification. For example,
instead of including all of the hierarchically relevant attributes for location,
the user may have specified only street and city. To handle such partially
specified hierarchies, it is important to embed data semantics in the database
schema so that attributes with tight semantic connections can be pinned
together. In this way, the specification of one attribute may trigger a whole
group of semantically tightly linked attributes to be “dragged in” to form a
complete hierarchy. Users, however, should have the option to override this
feature, as necessary.

EXAMPLE 3.8

Concept Hierarchy Generation Using Prespecified Semantic Connections

Suppose that a data mining expert (serving as an administrator) has pinned together the
five attributes number, street, city, province_ or_ state, and country, because they are closely
linked semantically regarding the notion of location. If a user were to specify only the attri-
bute city for a hierarchy defining location, the system can automatically drag in all of the
preceding five semantically related attributes to form a hierarchy. The user may choose to
drop any of these attributes, such as number and street, from the hierarchy, keeping city
as the lowest conceptual level in the hierarchy.

3.7	SUMMARY
Data preprocessing is an important issue for both data warehousing and data

mining, as real-world data tend to be incomplete, noisy, and inconsistent. Data
preprocessing includes data cleaning, data integration, data transformation,
and data reduction.

Descriptive data summarization provides the analytical foundation for data
preprocessing. The basic statistical measures for data summarization include
mean, weighted mean, median, and mode for measuring the central tendency
of data and range, quartiles, interquartile range, variance, and standard
deviation for measuring the dispersion of data. Graphical representations, such
as histograms, boxplots, quantile plots, quantile-quantile plots, scatter plots,
and scatter-plot matrices, facilitate visual inspection of the data and are thus
useful for data preprocessing and mining.

Data cleaning routines attempt to fill in missing values, smooth out noise while
identifying outliers, and correct inconsistencies in the data. Data cleaning is
usually performed as an iterative two-step process consisting of discrepancy
detection and data transformation.

Data integration combines data from multiple sources to form a coherent data
store. Metadata, correlation analysis, data conflict detection, and the resolution
of semantic heterogeneity contribute toward smooth data integration.

Data transformation routines convert the data into appropriate forms for mining.
For example, attribute data may be normalized so as to fall between a small
range, such as 0.0 to 1.0.

Data reduction techniques such as data cube aggregation, attribute subset selec-
tion, dimensionality reduction, numerosity reduction, and discretization can
be used to obtain a reduced representation of the data while minimizing the
loss of information content.

Data discretization and automatic generation of concept hierarchies for
numeric data can involve techniques such as binning, histogram analysis,
entropy-based discretization, χ2 analysis, cluster analysis, and discretization by
intuitive partitioning. For categorical data, concept hierarchies may be gener-
ated based on the number of distinct values of the attributes defining the
hierarchy.

Although numerous methods of data preprocessing have been developed, data
preprocessing remains an active area of research because of the huge amount of
inconsistent or dirty data and the complexity of the problem.

3.8	RESOURCES
Data preprocessing is discussed in a number of textbooks, including English
(1999), Pyle (1999), Loshin (2001), Redman (2001), and Dasu and Johnson (2003).
More specific references to individual preprocessing techniques are given here.

Methods for descriptive data summarization have been studied in the statistics
literature long before the onset of computers. Good summaries of statistical
descriptive data mining methods include Freedman, Pisani, and Purves (1997) and
Devore (1995). For statistics-based visualization of data using boxplots, quantile
plots, quantile-quantile plots, scatter plots, and loess curves, see Cleveland
(1993).

For discussion regarding data quality, see Redman (1992), Wang, Storey, and
Firth (1995); Wand and Wang (1996); Ballou and Tayi (1999); and Olson (2003).
Potter’s Wheel (http://control.cs.berkeley.edu/abc), the interactive data cleaning
tool described in Section 3.3.3, is presented in Raman and Hellerstein (2001). An
example of the development of declarative languages for the specification of data
transformation operators is given in Galhardas, Florescu, Shasha, et al. (2001). The
handling of missing attribute values is discussed in Friedman (1977); Breiman,
Friedman, Olshen, and Stone (1984); and Quinlan (1989). A method for the detec-
tion of outlier or “garbage” patterns in a handwritten character database is given
in Guyon, Matic, and Vapnik (1996).

Binning and data normalization are treated in many texts, including Kennedy,
Lee, Van Roy et al. (1998), Weiss and Indurkhya (1998), and Pyle (1999). Systems
that include attribute (or feature) construction include BACON by Langley, Simon,

3.8  Resources   109

110    CHAPTER 3  Data Preprocessing

Bradshaw, and Zytkow (1987), Stagger by Schlimmer (1986), FRINGE by Pagallo
(1989), and AQ17-DCI by Bloedorn and Michalski (1998). Attribute construction
is also described in Liu and Motoda (1998). Dasu, Johnson, Muthukr-ishnan, and
Shkapenyuk (2002) developed a system called Bellman wherein they propose a
set of methods for building a data quality browser by mining on the structure of
the database.

A good survey of data reduction techniques can be found in Barbará, Du
Mouchel, Faloutos, et al. (1997). For algorithms on data cubes and their precom-
putation, see Sarawagi and Stonebraker (1994); Agarwal, Agrawal, Deshpande,
et al. (1996); Harinarayan, Rajaraman, and Ullman (1996); Ross and Srivastava
(1997); and Zhao, Deshpande, and Naughton (1997). Attribute subset selection
(or feature subset selection) is described in many texts, such as Neter, Kutner,
Nachtsheim, and Wasserman (1996); Dash and Liu (1997); and Liu and Motoda
(1998a, 1998b). A combination forward selection and backward elimination
method was proposed in Siedlecki and Sklansky (1988). A wrapper approach to
attribute selection is described in Kohavi and John (1997). Unsupervised attribute
subset selection is described in Dash, Liu, and Yao (1997).

For a description of wavelets for dimensionality reduction, see Press,
Teukolosky, Vetterling, and Flannery (1996). A general account of wavelets can
be found in Hubbard (1996). For a list of wavelet software packages, see Bruce,
Donoho, and Gao (1996). Daubechies transforms are described in Daubechies
(1992). The book by Press et al. (1996) includes an introduction to singular value
decomposition for principal components analysis. Routines for PCA are included
in most statistical software packages, such as SAS (www.sas.com/SASHome.
html).

An introduction to regression and log-linear models can be found in several
textbooks, such as James (1985), Dobson (1990), Johnson and Wichern (1992),
Devore (1995), and Neter et al. (1996). For log-linear models (known as multipli-
cative models in the computer science literature), see Pearl (1988). For a general
introduction to histograms, see Barbará et al. (1997) and Devore and Peck (1997).
For extensions of single attribute histograms to multiple attributes, see Murali-
krishna and DeWitt (1988) and Poosala and Ioannidis (1997).

A survey of multidimensional indexing structures is given in Gaede and Günther
(1998). The use of multidimensional index trees for data aggregation is discussed
in Aoki (1998). Index trees include R-trees (Guttman, 1984), quad-trees (Finkel
and Bentley, 1974), and their variations. For discussion on sampling and data
mining, see Kivinen and Mannila (1994) and John and Langley (1996).

There are many methods for assessing attribute relevance. Each has its own
bias. The information gain measure is biased toward attributes with many values.
Many alternatives have been proposed, such as gain ratio (Quinlan, 1993), which
considers the probability of each attribute value. Other relevance measures include
the gini index (Breiman, Friedman, Olshen, and Stone, 1984), the χ2 contingency
table statistic, and the uncertainty coefficient (Johnson and Wichern, 1992). For
a comparison of attribute selection measures for decision tree induction, see

Buntine and Niblett (1992). For additional methods, see Liu and Motoda (1998b),
Dash and Liu (1997), and Almuallim and Dietterich (1991).

Liu, Hussain, Tan, and Dash (2002) performed a comprehensive survey of data
discretization methods. Entropy-based discretization with the C4.5 algorithm is
described in Quinlan (1993). In Catlett (1991), the D-2 system binarizes a numeric
feature recursively. ChiMerge by Kerber (1992) and Chi2 by Liu and Setiono (LS95)
are methods for the automatic discretization of numeric attributes that both
employ the χ2 statistic. Fayyad and Irani (1993) apply the minimum description
length principle to determine the number of intervals for numeric discretization.
Concept hierarchies and their automatic generation from categorical data are
described in Han and Fu (1994).

3.8  Resources   111

This page intentionally left blank

CHAPTER

4Physical Design for
Decision Support,
Warehousing, and OLAP

The concept of using a data storage area to support the calculations of a general-
purpose computer date back to the mid-nineteenth century. The year 1837 is not
a mistake for the above quotation! The source is a paper titled “On the Mathemati
cal Powers of the Calculating Engine” that was published by Charles Babbage in
1837. This paper details the analytical engine, a plan for a mechanical computer.
The organization of the analytical engine became the inspiration for the electronic
numerical integrator and computer (ENIAC) more than one hundred years later.
The ENIAC was the first general-purpose electronic computer, which in turn
influenced the organization of computers in common use today.

Surprisingly, this quote from well over 150 years ago describes the current data
warehousing and online analytical processing (OLAP) technologies. The original
data is placed in the fact tables and dimension tables of a data warehouse. Inter-
mediate results are often calculated and stored on disk as materialized views, also
known as materialized query tables (MQTs). The materialized views can be further
queried until the required results are found. We focus on two decision support
technologies in this chapter: data warehousing and OLAP. We detail the physical
design issues that arise relative to these decision support technologies.

4.1	WHAT IS ONLINE ANALYTICAL PROCESSING?
Online analytical processing is a service that typically sits on top of a data ware-
house. The data warehouse provides the infrastructure that supplies the detailed
data. Data warehouses often contain hundreds of millions of rows of historical
data. Answering queries posed directly against the detailed data can consume
valuable computer resources. The purpose of OLAP is to answer queries quickly
from the large amount of underlying data. The queries posed against OLAP systems

114    CHAPTER 4  Physical Design for Decision Support

typically “group by” certain attributes and apply aggregation functions against
other attributes. For example, a manager may be interested in looking at total cost,
grouped by year and region. Most OLAP systems offer a graphical representation
of the results (Figure 4.1).

Figure 4.1 includes two-dimensional attributes, namely location and model
year, organized orthogonally. The third axis represents the magnitude of the
measure of interest—the total cost. We are looking at a subset of the possible
dimensions and measures for this dataset. The database used to generate this graph
contains six dimension attributes available for “group by” and four measures avail-
able for aggregation. The schema for this database is discussed further in Sections
4.2 and 4.3. The user selected the location at the region level and the model year
dimensions along with the total cost in order to view the graph shown in Figure
4.1. The data space can be conceptualized as a hyperdimensional cube, with
dimension values slicing across each dimension. Each cell of the cube contains
values for the measures corresponding to the dimension values at that cell.

OLAP systems are organized for easy manipulation. Dimensions are easily
added, replaced, or removed from the display. For example, we can replace the
location dimension with the problem dimension using a simple drag-and-drop
action, quickly changing the view to observe the total cost grouped by problem
and model year. Likewise, we can change the measure to examine the sum of
labor costs, if we decide to focus on labor. If we spot a dominant problem, we
can double-click on the column of interest, and “drill down” into more detailed
data. OLAP systems make exploring large amounts of data easy and quick.

FIGURE 4.1

Graph example produced from Cognos PowerPlay.

TO
TA

L_
C

O
ST

12,000,000
10,000,000

8,000,000
6,000,000
4,000,000
2,000,000

0
United States

West Central
West

Southwest
Southeast

Northeast
Midwest 2000

2001

2002

MODEL
YEA

R

4.1  What is Online Analytical Processing?   115

How exactly is this service accomplished? Most OLAP systems rely on saving
summary results in materialized views. Because the materialized views are summary
data, they are usually much smaller than the tables containing the detailed infor-
mation. When a query is posed, the materialized views are utilized to obtain a
quick response, avoiding calculating the results from the huge amount of underly-
ing data. An OLAP system automatically decides which views to materialize to
achieve good performance.

There are three general categories of storage mechanisms in OLAP systems:
relational OLAP (ROLAP), multidimensional OLAP (MOLAP), and hybrid OLAP
(HOLAP). ROLAP uses standard relational tables to store data, typically using the
dimensions as a composite primary key. Each row represents a cell of the data
cube. Empty cells are not explicitly represented in ROLAP. MOLAP stores data on
disk organized by location in the cube. Each cell is represented by a fixed, calcu-
lable location. Empty cells consume space in MOLAP representations. It is possible
to utilize compression techniques to reduce the wasted space in MOLAP. It is
generally recognized that ROLAP is better when the data is sparse, and MOLAP is
good when the data is dense. Sparsity and density of the data can be measured in
terms of the number of distinct keys in the data, compared to the number of pos-
sible key combinations. Let’s illustrate with a simple example and then discuss
HOLAP.

Imagine a grocery store that tracks customer sales. The customer presents a
membership card and receives discounts for participating. The store tracks the
customer ID, the items, and the date sold. Figure 4.2 illustrates a small portion of
the data, showing the fruits bought by a single customer during one week. An X
in a cell means that a transaction took place for the given combination of dimen-
sion values. The customer bought apples and bananas on Monday and bought
oranges and strawberries on Wednesday. The table can be thought of as four
separate views. The upper left box contains the most detailed data. The weekly
subtotals for each fruit are contained in the upper right box. The fruit subtotals
for each day are contained in the lower left box. The grand total is contained in

FIGURE 4.2

Aggregation increases data density.

Apples

Bananas

Oranges

X

M Tu W Th F Week

X

X

X

X

X

X

X

X XX

Strawberries

Kiwis

Fruits

116    CHAPTER 4  Physical Design for Decision Support

the lower right box. The data density of the most detailed data, weekly subtotals,
fruit subtotals, and the grand totals, are 0.12, 0.4, 0.8, and 1.0, respectively. Gen-
erally, aggregating data from one view into another view increases the data
density.

The difference in data density from the core data to summary views can be
very marked. Extending our grocery store example, let’s say that the store has
3000 items available, and the average customer buys 30 distinct items per visit,
shopping once a week. The data density of the core data is (30/3000)(1/5) = 0.002.
However, if we summarize the data across all customers, then it would not be
unreasonable to have a data density of say 0.95 (i.e., most items have some units
sold on any given day). Because ROLAP performs well for sparse data and MOLAP
performs best for dense data, a useful strategy might be to store the sparse data
using ROLAP and the dense data using MOLAP. This hybrid approach is called
HOLAP. Some OLAP systems offer ROLAP, MOLAP, and HOLAP options.

4.2	DIMENSION HIERARCHIES
The ability to view different levels of detail is very useful when exploring data.
OLAP systems allow “drill-down” operations to move from summary to more
detailed data and “roll-up” operations to move from detailed to summary data. For
example, the user viewing the graph in Figure 4.1 may be curious to find out more
detail on the large amount of cost in the Midwest region. Drilling down on the
Midwest region shows summary data for states in the Midwest. Perhaps Michigan
dominates costs in the Midwest. The user may wish to further drill down on
Michigan to view data at the city or dealership level. The location information can
be stored in a dimension table named “Location.” The levels of the location dimen-
sion may be represented as attributes in the location table. Figure 4.3 is a simple
Unified Modeling Language (UML) class diagram, showing the attributes of the
location table, supporting a location hierarchy. We indicate the primary key using
the stereotype <<pk>>.

Notice that this dimension table is not normalized. Data warehouse design is
driven by efficiency of query response and simplicity. Normalization is not the

FIGURE 4.3

Example of a dimension table with hierarchy.

«pk» loc_id
dealership
city
state-province
region
country

Location

driving factor as it is in the design of databases for daily transactions. Dimensional
modeling is the dominant approach utilized for designing data warehouses. The
book on logical design (Teorey, Lightstone, & Nadeau 2006) includes an overview
of the dimensional modeling approach. Kimball and Ross (2002) is an excellent
and detailed resource covering the dimensional modeling approach for data
warehousing.

Figure 4.4 illustrates two date dimensions that are implemented as views. The
Production_Date dimension and the Repair_Date dimension are similarly struc-
tured, with the same underlying data. Following the recommendations of Kimball
and Ross (2002), in such cases we implement one underlying table and use a view
fulfilling each role, presenting separate date dimensions.

4.3	STAR AND SNOWFLAKE SCHEMAS
The dimension tables are used to group data in various ways, offering the user the
freedom to explore the data at different levels. The measures to be aggregated are
kept in a central table known as a fact table. The fact table is surrounded by the
dimension tables.

The fact table is composed of dimension attributes and measures. The dimen-
sion attributes are foreign keys referencing the dimension tables. Figure 4.5 illus-
trates what is commonly known as a star schema. The Warranty_Claim table is
the fact table, and the six surrounding tables are the dimension tables. Star
schemas are the dominant configuration in the context of data warehousing.

The foreign keys are indicated using the <<fk>> stereotype. Notice also the <<dd>>
stereotype on the claim_id attribute. This signifies a degenerate dimension. The
claim_id is included to maintain the granularity at the claim level in the fact
table. Degenerate dimensions do not have any associated dimension table. The
dimension attributes form a superkey to the fact table, because the values of the
dimension attributes uniquely identify a cell in the data cube and therefore deter-
mine the values of the measures associated with the cell. Sometimes the set of

FIGURE 4.4

Example of date dimensions with hierarchies.

«pk»Repair_date_id
Repair_date_desc
Repair_week
Repair_month
Repair_quarter
Repair_year

«view»
Repair_Date

«pk»prod_date_id
prod_date_desc
prod_week
prod_month
prod_quarter
prod_year

«view»
Production_Date

«pk»date_id
date_desc
week
month

yr
quarter

«table»
Date_Dimension

4.3  Star and Snowflake Schemas   117

118    CHAPTER 4  Physical Design for Decision Support

dimension attributes also forms the primary key of the fact table. It is possible for
a proper subset of the dimension attributes to form a candidate key. Such is the
case in Figure 4.5, where claim_id by itself determines all other attributes in the
table, making it a candidate key.

The star schema is an efficient design in the context of data warehousing.
Performance gains are possible with a star schema when the environment is
dominated by reads. This is exactly the case in a data warehouse environment.
Because the data is mostly historical, the reads predominate, and the star schema
is a winner.

The snowflake schema is another configuration that sometimes arises in data
warehouse design. If you normalize the dimension tables in a star schema, you
end up with a snowflake schema. Figure 4.6 shows the snowflake schema equiva
lent to the star schema of Figure 4.5. As you can see, there are many more tables.
Most queries require many joins with the snowflake schema, whereas the dimen-
sion tables in the star schema are only one step away from the fact table. Most
database systems implement an efficient “star join” to support the star schema
configuration. The efficiency and simplicity are the primary reasons why the star
schema is a common pattern in data warehouse design.

FIGURE 4.5

Example of a star schema.

«pk» loc_id
dealership
city
state-province
region
country

Location

«pk» prob_id
prob_desc
prob_type

Problem

«pk» part_id
part_desc
assembly
manufacturer

Part

«dd» claim_id
«fk» part_id
«fk» prob_id
«fk» loc_id
«fk» prod_date_id
«fk» model_year_id
«fk» repair_date_id
labor_hours
labor_cost
part_cost
total_cost

Warranty_Claim

«pk» repair_date_id
repair_date_desc
repair_week
repair_month
repair_quarter
repair_year

Repair_Date

«pk»
model_year_id
model_year_desc

Model_Year

«pk» prod_date_id
prod_date_desc
prod_week
prod_month
prod_quarter
prod_year

Production_Date

4.4	WAREHOUSES AND MARTS
Data warehouses typically contain large amounts of historical data. Data can feed
into the data warehouse from multiple databases. For example, a large company
may have many plants, each with its own database for managing day-to-day oper-
ations. The company may wish to look for overall trends across the data from all
plants. Each plant may have a different database schema. The names of the tables
and attributes can differ between source databases. A plant in the United States
may have an attribute named “state,” whereas another plant in Canada may use
an attribute named “province.” The values of corresponding attributes may vary
from plant to plant. Maybe one plant uses “B” as an operational code specifying
a “blue” widget, and another plant uses “B” to specify “black.” The pertinent data
needs to be extracted from the feeder database into a staging area. The data is
cleaned and transformed in the staging area. Corresponding attributes are mapped
to the same data warehouse attribute. Disparate operational codes are replaced
with consistent surrogate IDs. Terminology is standardized across the company.
Then the data is loaded into the data warehouse. Moving data from the feeder
databases into the data warehouse is often referred to as an extract, transform,
and load (ETL) process. Data in the warehouse can then be explored in a variety
of ways, including OLAP, data mining, report generators, and ad hoc query tools.
Figure 4.7 illustrates the overall flow of data.

Data warehouse schemas are typically arrived at through the dimensional mod-
eling approach. The business processes of interest are determined. For example,
a company may be interested in exploring data from scheduling, productivity

FIGURE 4.6

Example of a snowflake schema.

Problem

Part

Dealership

Prod_WeekAssembly Manufacturer

Problem_Type

Prod_Date

Prod_Month

Prod_Quarter

Repair_Date Repair_Week

Repair_Month

Repair_Quarter

CityState_Prov

Region Country

Model_Year

Warranty_Claim

4.4  Warehouses and Marts   119

120    CHAPTER 4  Physical Design for Decision Support

tracking, and job costing. The data from each business process is destined to
become a star schema. Some of the business processes may share dimensions. For
example, the Cost_Center dimension is meaningful for scheduling, productivity
tracking, and job costing. A useful tool for capturing the commonality of dimen-
sions between business processes is the data warehouse bus. Table 4.1 shows a
data warehouse bus where each row represents a business process and each
column represents a dimension. Each X indicates that the given dimension is
applicable to the business process. The dimensions that are shared across business
processes should be “conformed.” That is, each dimension and its levels should
be known by the same names and have the same meanings across the entire
enterprise; likewise for the values contained by said dimension levels. This is
important so that data can be compared across business processes where mean-
ingful, and people can discuss the data in the same terms from department to
department, facilitating meaningful communication. The dimension data can be
thought of as flowing through the data warehouse bus.

The data warehouse schema can contain multiple star schemas, with shared
dimensions as indicated by the data warehouse bus. Figure 4.8 illustrates the data
warehouse schema corresponding to the data warehouse bus shown in Table 4.1.

FIGURE 4.7

Basic data warehouse architecture.

Data
Warehouse

Ad hoc query tools

Report generators

feeder
DB1

Operational
applications

feeder
DB2

Operational
applications

feeder
DB3

Operational
applications

Staging area
transform

Data mining

OLAP

Extract Extract Extract

Load

Table 4.1 Example of Data Warehouse Bus

Sh
ap

e

Co
lo

r

Te
xt

ur
e

De
ns

ity

Si
ze

Es
tim

at
e

Da
te

W
in

 D
at

e

Cu
st

om
er

Pr
om

ot
io

n

Co
st

 C
en

te
r

Sc
he

d
St

ar
t

Da
te

Sc
he

d
St

ar
t

Ti
m

e

Sc
he

d
Fi

ni
sh

 D
at

e

Sc
he

d
Fi

ni
sh

 T
im

e

Ac
tu

al
 S

ta
rt

 D
at

e

Ac
tu

al
 S

ta
rt

 T
im

e

Ac
tu

al
 F

in
is

h
Da

te

Ac
tu

al
 F

in
is

h
Ti

m
e

Em
pl

oy
ee

In
vo

ic
e

Da
te

Scheduling x x x x x x x x x

Productivity
tracking

x x x x x x

Job costing x x x x x x x x x

FIGURE 4.8

Example of a data warehouse constellation.

Shape

«fact table»
Job_Costing_Detail

«fact table»
Scheduling_Detail

«fact table»
Productivity_Detail

Texture

Size

Color

Density

Estimate_Date

Sched_Finish_Date

Sched_Start_Time

Sched_Start_Date

Sched_Finish_Time Actual_Start_Date

Actual_Start_Time

Actual_Finish_Date

Actual_Finish_Time

Employee

Promotion

Customer

Win_Date

Cost_Center

Invoice_Date

4.4  Warehouses and Marts   121

122    CHAPTER 4  Physical Design for Decision Support

The attributes are elided because we are focusing on the fact tables and dimen-
sions. We have marked the fact tables using a <<fact table>> stereotype, whereas
the tables that are not marked are dimension tables. The configuration of multiple
star schemas in a data warehouse forms a constellation.

Even though the constellation forms a united schema for the data warehouse,
the people analyzing each business process may be interested only in their piece
of the puzzle. A scheduler will naturally focus on the scheduling star schema. Each
star schema can be thought of as a data mart for the corresponding business
process. It is possible to deploy data marts on physically different machines.
Perhaps the scheduling department has its own dedicated computer system that
it prefers. When deploying data to physically distinct data marts, it is still important
for the data to be conformed, so that everyone is communicating meaningfully.

4.5	SCALING UP THE SYSTEM
Horizontal table partitioning is common to many commercial systems, allowing
the storage of a large table in meaningful pieces, according to the dimension
values. The most common dimension for partitioning is time, but other dimensions
can also be good candidates for partitioning, depending on the query processing
required. For the time dimension, one option is to divide the data by month over
n years and have 12 × n partitions. The union of these partitions forms the whole
table. One advantage of horizontal partitioning is that new data often only affects
one partition, whereas the majority of the partitions remains unchanged. Partition-
ing can focus updates on a smaller set of data, improving update performance.
Another advantage of horizontal partitioning is that the partitions can be stored
on separate devices, and then a query can be processed in parallel, improving
query response. Multiple CPUs can divide the work, and the system is not input/
output (I/O) bound at the disks, because partitioning permits the number of disks
to scale up with the amount of data. Range partitioning can be used to horizontally
partition data.

To achieve parallel processing gains, many data warehouses and data marts
exploit shared nothing partitioning. This is the strategy used by IBM’s DB2 and
NCR’s Teradata products. Shared nothing partitioning horizontally partitions data
into multiple logical or physical servers by hashing each table record to a partition.
The technique has been massively successful, though design complexities are
introduced.

Vertical table partitioning allows dividing a table physically by groups of
columns. This has the advantage of putting rarely used columns out of the main-
stream of query processing, and in general it helps match the processing require-
ments with the available columns. Some overhead is incurred because the table
key must be replicated in each partition.

Pushing the query processing down toward the disks is a recent interesting
innovation that allows scalability through parallelism. Netezza Corporation has

patented technology (see Hindshaw et al.) that uses active disks in a massively
parallel processing (MPP) architecture. Figure 4.9 illustrates the general concept.
Clients pose queries to the database over a communications network. The central
database operation processor parses and optimizes the query, producing an execu-
tion plan where the query operations are broken into “snippets.” Each snippet is
assigned to a snippet processing unit (SPU). A SPU is composed of a SPU control-
ler coupled with a storage device, typically a disk drive. Database tables can be
distributed across the disk drives, either as redundant copies or sectioned with
records assigned to specific SPUs. The SPU controller executes query processing
of the snippet locally. Data can be streamed from the disk and processed without
materializing the raw data in memory. Only the processed data is sent back to the
central database operation processor, thereby reducing the demand on band-
width. Netezza’s approach exploits proprietary hardware. Other companies, like
DATAllegro, are currently attempting to deploy similar data warehouse appliance
technology using commodity components.

The Netezza approach is based on massive I/O parallelism, and one of Netezza’s
claims is that the technique obviates the need for index and materialized view
design. After all, do you need indexes when you can scan more than a terabyte
per minute? On the flip side, Netezza has no caching, no indexing. Every data
request requires access to disk. The strategy is best suited to query processing
needs and may not be ideal for active data warehousing, a current trend in data
warehousing where data warehouses are becoming increasingly near real time.
Active data warehouses include a larger and more frequent amount of inserts and
update activity. This interesting technology is emerging, and the next few years

FIGURE 4.9

Netezza’s asymmetric massively parallel processing architecture.

Central Database
Operation Processor

Client

Snippet Processing Unit

SPU Controller

Snippet Processing Unit

SPU Controller

Snippet Processing Unit

SPU Controller

Snippet Processing Unit

SPU Controller

Communication
Network

4.5  Scaling up the System   123

124    CHAPTER 4  Physical Design for Decision Support

will be telling in terms of its success. There are major gains in scalability from the
parallelism obtained by distributing the query processing.

4.6	DSS, WAREHOUSING, AND OLAP DESIGN
CONSIDERATIONS

Use the star schema approach rather than querying from normalized tables. The
facts are central to the star schema, and the dimensions are only one step away.
The star schema is efficient. The snowflake schema requires more joins and is less
intuitive to navigate. The dimension tables of the star schema contain redundant
data, but they are small compared to the fact table. Databases support efficient
star joins.

Index each dimension attribute of the fact table. The dimension tables are used
to select and group rows of the fact table. The dimension tables are the entrance
into the fact table. Indexing each dimension attribute of the fact table is crucial
for performance. Use bitmap indexes for each dimension attribute having a small
cardinality of distinct values. Bitmap indexes are fast and small compared to B+tree
indexes, when the number of distinct values is low. A bitmap index is imple-
mented with a bitmap for each distinct value of the attribute. Every bitmap has
one bit for each row in the table. Each bit indicates if the given row contains the
given value. When the user specifies conditions on multiple dimensions, conjunc-
tion operations using the bitmaps are very fast, determining exactly which rows
need to be fetched from the fact table.

Don’t use views, with the exception of a dimension table fulfilling multiple
roles. Views store a defining query rather than data. Every time a query is issued
against a view, the underlying query for the view is run to obtain the data. This
can lead to excessive processing. A web design company, unfamiliar with data
warehouse and OLAP technology, attempted to design an OLAP application for
one of its clients. The fact table was designed as a view built on base tables in
normalized form. Every time the fact table (actually a view in this case) was
accessed, the underlying query was run, leading to joins of huge tables. The OLAP
system could not process the initial load of the cube. The system would hang
endlessly. The gains of the data warehouse and OLAP are based on reusing results.
The use of views defeats the gains by processing the same query with each use.
As mentioned, there is a possible exception to the rule. If multiple dimensions
have the same underlying data but are used for different roles, then views can be
used to rename the underlying table and attributes. For example, the production
and repair dates of Figure 4.4 both rely on the same underlying date dimension.
Some designers eschew the use of views even in this case, copying the data to
multiple dimension tables. Kimball and Ross (2002) recommended using one
underlying table. In this instance, views reduce the resources required to maintain
the dimensions. Changes only need to occur once in a single underlying dimension
table. The heavier use of the single underlying table could also lead to better buffer

pool performance. The cost of using views to fulfill roles is small, because renam-
ing operations require few system resources.

4.7	USAGE SYNTAX AND EXAMPLES FOR MAJOR
DATABASE SERVERS

We give a few concrete examples utilizing specific commercial products in this
section to illustrate the implementation of some of the concepts we’ve discussed.
Recommendations for more complete coverage of specific products are given in
the Literature Summary section at the end of the chapter.

4.7.1  Oracle

Oracle offers many ways of partitioning data, including by range, by list, and by
hash value. Each partition can reside in its own tablespace. A tablespace in Oracle
is a physical location for storing data.

Partitioning by range allows data to be stored in separate tablespaces based on
specified value ranges for each partition. For example, we may want to separate
historical data from recent data. If recent data changes frequently, then isolating
the recent data in a smaller partition can improve update performance. The fol-
lowing is the definition of a materialized view for labor costs by repair date,
partitioned into historical and recent data, with 2006 acting as the dividing
point:

CREATE MATERIALIZED VIEW mv_labor_cost_by_repair_date
PARTITION BY RANGE(repair_year)
(PARTITION repair_to_2006 VALUES LESS THAN (2006)
TABLESPACE repairs_historical,
PARTITION repair_recent VALUES LESS THAN (MAXVALUE)
TABLESPACE repairs_recent)

AS
SELECT w.repair_date_id, repair_year, sum(labor_cost)
FROM warranty_claim w, repair_date r
WHERE w.repair_date_id=r.repair_date_id
GROUP BY w.repair_date_id, repair_year;

If the values of a column are discrete but do not form natural ranges, the rows
can be assigned to partitions according to defined lists of values. Here is a defini-
tion for a materialized view that partitions the rows into east, central, and west,
based on value lists:

CREATE MATERIALIZED VIEW mv_labor_cost_by_location
PARTITION BY LIST(region)
(PARTITION east VALUES(‘Northeast’,’Southeast’)
TABLESPACE east,
PARTITION central VALUES(‘Midwest’,’Westcentral’)
TABLESPACE central,

4.7  Usage Syntax and Examples for Major Database Servers   125

126    CHAPTER 4  Physical Design for Decision Support

PARTITION west VALUES(‘West’,’Southwest’)
TABLESPACE west)
AS
SELECT w.loc_id, region, sum(labor_cost)
FROM warranty_claim w, location l
WHERE w.loc_id=l.loc_id
GROUP BY w.loc_id, region;

Often, it is desirable to divide the data evenly between partitions, facilitating
the balancing of loads over multiple storage devices. Partitioning by hash values
may be a good option to satisfy this purpose. Here is a materialized view definition
that divides the labor cost by repair date rows into three partitions based on
hashing:

CREATE MATERIALIZED VIEW mv_labor_cost_by_repair_date
PARTITION BY HASH(repair_date_id)
PARTITIONS 3 STORE IN (tablespace1, tablespace2, tablespace3)
AS
SELECT repair_date_id, sum(labor_cost)
FROM warranty_claim
GROUP BY repair_date_id;

Partition by hash may not work well in the case where the distribution of
values is highly skewed. For example, if 90 percent of the rows have a given value,
then at least 90 percent of them will map to the same partition, no matter how
many partitions we use and no matter what hash function the system uses.

4.7.2  Microsoft’s Analysis Services

Microsoft SQL Server 2005 Analysis Services supported OLAP and data mining
operations. The analysis manager is used to specify a data source. Many options
are supported for the data source, including Open DataBase Connectivity (ODBC)
data sources. A database connection can be established to a Microsoft SQL Server
database (or any other ODBC-compliant database). The dimension tables and fact
tables are specified using GUI screens, and the data cube is then built. There are
a series of options available including ROLAP, HOLAP, and MOLAP. There are also
several options for specifying limits on the use of aggregates. The user can specify
a space limit.

Figure 4.10 shows a screen from the Storage Design Wizard. The wizard selects
views to materialize while displaying the progress in graph form. Note that
Microsoft uses the term “aggregations” instead of materialized views in this
context. OLAP systems improve performance by precalculating views and mate-
rializing the results to disk. Queries are answered from the smaller aggregations
instead of reading the large fact table. Typically, there are far too many possible
views to materialize them all, so the OLAP system needs to pick strategic views
for materialization.

In Microsoft Analysis Services, you have several options to control the process.
You may specify the maximum amount of disk space to use for the aggregates.

You also have the option of specifying the performance gain. The higher the
performance gain, the more disk space is required. The Microsoft documentation
recommends a setting of about 30 percent for the performance gain. Selecting a
reasonable performance gain setting is problematic, because the gain is highly
dependent on the data. The views are picked for materialization using a greedy
algorithm, so the graph will indicate a trend toward diminishing returns. You can
watch the gain on the graph and click the stop button anytime you think the gain
is not worth the disk space and the associated update costs. Also, if your specified
gain is reached and the curve is not leveling out, you can reset the gain higher
and continue if you wish.

FIGURE 4.10

Print screen from Microsoft Analysis Services, Storage Design Wizard.

4.7  Usage Syntax and Examples for Major Database Servers   127

TIPS AND INSIGHTS FOR DATABASE PROFESSIONALS

Tip 1. The dimensional design approach is appropriate for designing
a data warehouse. The resulting star schemas are much more efficient
than normalized tables in the context of a data warehouse.

Tip 2. Use star schemas rather than snowflake schemas. Star schemas
require fewer joins, and the schemas are more intuitive for users.

Tip 3. Conform dimensions across all business processes. Discussions
between different groups of users are more fruitful if terms carry the same
meaning across the entire enterprise.

128    CHAPTER 4  Physical Design for Decision Support

Tip 4. Index dimension attributes with bitmap indexes when the
attribute has a small to medium cardinality of distinct values. The
bitmap indexes are efficient for star joins.

Tip 5. Use materialized views when advantageous for speeding up
throughput. Note that OLAP systems automatically select views for mate-
rialization.

Tip 6. Use appropriate update strategies for refreshing materialized
views. Typically this means incremental updates during a designated
update window each night. However, company requirements may dictate
a real-time update strategy. Occasionally, when the nature of the data leads
to changes of large portions of a materialized view, it may be more efficient
to run a complete refresh of that materialized view.

Tip 7. If your OLAP system offers both ROLAP and MOLAP storage
options, use MOLAP only if the data is dense. ROLAP is more efficient
when the data is sparse. ROLAP is good overall, but MOLAP does not scale
well to large, sparse data spaces.

Tip 8. When datasets become huge, utilize partitioning and parallel
processing to improve scalability. Shared nothing systems are mas-
sively parallel processing platforms that have become extremely popular
for data warehousing. In general, once a data warehouse or data mart grows
larger than ~500GB of raw data (size before loading into the database),
shared nothing architectures will generally provide a superior architectural
platform compared to scaleup solutions that simply grow the database
server resources within a single box.

Tip 9. Don’t go nuts with dimension tables. Additional tables in the
system add complexity to the query execution plan selection process.
Simply put, every table that needs to be joined can be joined in multiple
ways (hash join, nested loop join, merge join, etc.). As the number of tables
to join grows, the join enumeration grows, and therefore so does the com-
pilation complexity. As a result, a large number of dimension tables can
cause increased complexity (and opportunity for error) within the query
compiler. Therefore, for very narrow dimension tables, 20 bytes wide or
less, consider denormalizing them. This is one of the practical trade-offs
between design purity and real world practicality.

4.8	SUMMARY
The decision support technologies of data warehousing and OLAP are overviewed
in this chapter. Some of the physical design issues are described, and some of the
solutions are illustrated with examples. The use of materialized views for faster
query response in the data warehouse environment is discussed. The different

general categories of OLAP storage are described, including ROLAP, MOLAP, and
HOLAP, along with general guidelines for determining when one may be more
appropriate than the others, based on data density. The dimensional design
approach is covered briefly, with examples illustrating star and snowflake schemas.
The usefulness of the data warehouse bus is demonstrated with an example,
showing the relationship of conformed dimensions across multiple business pro-
cesses. The data warehouse bus leads to a data warehouse constellation schema
with the possibility of developing a data mart for each business process. Approaches
toward efficient processing are discussed, including some hardware approaches,
the appropriate use of bitmap indexes, various materialized view update strate-
gies, and the partitioning of data.

Data warehousing offers the infrastructure critical for decision support based
on large amounts of historical data. OLAP is a service that offers quick response
to queries posed against the huge amounts of data residing in a data warehouse.
Data warehousing and OLAP technologies allow for the exploration of data,
facilitating better decisions by management.

4.9	LITERATURE SUMMARY
The books by Kimball et al. offer detailed explanations and examples for various
aspects of data warehouse design. The book The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling is a good starting point for those
interested in pursuing data warehousing. The ETL process is covered in The Data
Warehouse ETL Toolkit.

Product-specific details and examples for Oracle can be found in Oracle Data
Warehouse Tuning for 10 g by Powell. SQL Server Analysis Services 2005 with
MDX by Harinath and Quinn is a good source covering Microsoft data warehous-
ing, OLAP, and data mining.

The Patent Office web site takes some getting used to, but the effort can be
well worth it if you want to learn about emerging technology. Be prepared to sift,
because not every patent is valuable. You may discover what your competition is
pursuing, and you may find yourself thinking better ideas of your own.

RESOURCES
Harinath, S., and S. Quinn. SQL Server Analysis Services 2005 with MDX, John Wiley,

2006.
Hindshaw, F., J. Metzger, and B. Zane. Optimized Database Appliance, Patent No. U.S.

7,010,521 B2, Assignee: Netezza Corporation, Framingham, MA, issued March 7, 2006.
IBM Data Warehousing, Analysis, and Discovery: Overview. IBM Software—www-306.ibm.

com/software/data/db2bi.

Resources   129

130    CHAPTER 4  Physical Design for Decision Support

Kimball, R., L. Reeves, M. Ross, and W. Thornthwaite. The Data Warehouse Life Cycle
Toolkit, John Wiley, 1998.

Kimball, R., and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimen-
sional Modeling, 2nd ed., John Wiley, 2002.

Kimball, R., and J. Caserta. The Data Warehouse ETL Toolkit, 2nd ed., John Wiley, 2004.
Microsoft SQL Server: Business Intelligence Solutions—www.microsoft.com/sql/solutions/

bi/default.mspx.
Netezza Corporation, at netezza.com.
Oracle Business Intelligence Solutions—www.oracle.com/solutions/business_intelligence/

index.html.
Patent Full-Text and Full-Page Image Databases—www.uspto.gov/patft/index.html.
Powell, G. Oracle Data Warehouse Tuning for 10g, Elsevier, 2005.
Teorey, T., S. Lightstone, and T. Nadeau. Database Modeling and Design: Logical Design,

4th ed., Morgan Kaufmann, 2006.

CHAPTER

5Algorithms: The Basic
Methods

Now that we’ve seen how the inputs and outputs can be represented, it’s time to
look at the learning algorithms themselves. This chapter explains the basic ideas
behind the techniques that are used in practical data mining. We will not delve
too deeply into the trickier issues—advanced versions of the algorithms, optimiza-
tions that are possible, complications that arise in practice.

In this chapter we look at the basic ideas. One of the most instructive lessons
is that simple ideas often work very well, and we strongly recommend the adop-
tion of a “simplicity-first” methodology when analyzing practical datasets. There
are many different kinds of simple structure that datasets can exhibit. In one
dataset, there might be a single attribute that does all the work and the others
may be irrelevant or redundant. In another dataset, the attributes might contribute
independently and equally to the final outcome. A third might have a simple logical
structure, involving just a few attributes that can be captured by a decision tree.
In a fourth, there may be a few independent rules that govern the assignment of
instances to different classes. A fifth might exhibit dependencies among different
subsets of attributes. A sixth might involve linear dependence among numeric
attributes, where what matters is a weighted sum of attribute values with appro-
priately chosen weights. In a seventh, the distances between the instances them-
selves might govern classifications appropriate to particular regions of instance
space. And in an eighth, it might be that no class values are provided: the learning
is unsupervised.

In the infinite variety of possible datasets, many different kinds of structure
can occur, and a data mining tool—no matter how capable—that is looking for
one class of structure may completely miss regularities of a different kind, regard-
less of how rudimentary those may be. The result is one kind of baroque and
opaque classification structure instead of a simple, elegant, immediately compre-
hensible structure of another.

Each of the eight examples of different kinds of datasets sketched previously
leads to a different machine learning method well suited to discovering it. The
sections of this chapter look at each of these structures in turn.

132    CHAPTER 5  Algorithms: The Basic Methods

5.1	 INFERRING RUDIMENTARY RULES
Here’s an easy way to find simple classification rules from a set of instances. Called
1R for 1-rule, it generates a one-level decision tree expressed in the form of a set
of rules that all test one particular attribute. 1R is a simple, cheap method that
often comes up with good rules for characterizing the structure in data. It turns
out that simple rules frequently achieve surprisingly high accuracy. Perhaps this
is because the structure underlying many real-world datasets is rudimentary, and
just one attribute is sufficient to determine the class of an instance accurately. In
any event, it is always a good plan to try the simplest things first.

The idea is this: We make rules that test a single attribute and branch accord-
ingly. Each branch corresponds to a different value of the attribute. It is obvious
what is the best classification to give each branch: Use the class that occurs most
often in the training data. Then the error rate of the rules can easily be determined.
Just count the errors that occur on the training data—that is, the number of
instances that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value of the
attribute. Evaluate the error rate for each attribute’s rule set and choose the best.
It’s that simple! Figure 5.1 shows the algorithm in the form of pseudocode.

To see the 1R method at work, consider the weather data presented in Table
1.2 (we will encounter it many times again when looking at how learning algo-
rithms work). To classify on the final column, play, 1R considers four sets of rules,
one for each attribute. These rules are shown in Table 5.1. An asterisk indicates
that a random choice has been made between two equally likely outcomes. The
number of errors is given for each rule, along with the total number of errors for
the rule set as a whole. 1R chooses the attribute that produces rules with the
smallest number of errors—that is, the first and third rule sets. Arbitrarily breaking
the tie between these two rule sets gives

outlook:	sunny   	 → no
        	 overcast 	→ yes
        	 rainy   	 → yes

FIGURE 5.1

Pseudocode for 1R.

For each attribute,

 For each value of that attribute, make a rule as follows:

 count how often each class appears

 find the most frequent class

 make the rule assign that class to this attribute-value.

 Calculate the error rate of the rules.

Choose the rules with the smallest error rate.

5.1  Inferring Rudimentary Rules   133

We noted at the outset that the game for the weather data is unspecified. Oddly
enough, it is apparently played when it is overcast or rainy but not when it is
sunny. Perhaps it’s an indoor pursuit.

5.1.1  Missing Values and Numeric Attributes

Although a rudimentary learning method, 1R does accommodate both missing
values and numeric attributes. It deals with these in simple but effective ways.
Missing is treated as just another attribute value so that, for example, if the
weather data had contained missing values for the outlook attribute, a rule set
formed on outlook would specify four possible class values, one each for sunny,
overcast, and rainy and a fourth for missing.

We can convert numeric attributes into nominal ones using a simple discreti
zation method. First, sort the training examples according to the values of the
numeric attribute. This produces a sequence of class values. For example, sorting
the numeric version of the weather data (Table 1.3) according to the values of
temperature produces the sequence

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes no Yes Yes Yes no no Yes Yes Yes no Yes Yes no

Discretization involves partitioning this sequence by placing breakpoints in it.
One possibility is to place breakpoints wherever the class changes, producing the
following eight categories:

Table 5.1 Evaluating the Attributes in the Weather Data

Attribute Rules Errors Total Errors

1 Outlook Sunny	 → no 2/5 4/14

Overcast	→ yes 0/4

Rainy	 → yes 2/5

2 Temperature Hot	 → no* 2/4 5/14

Mild	 → yes 2/6

Cool	 → yes 1/4

3 Humidity High	 → no 3/7 4/14

Normal	 → yes 1/7

4 Windy False	 → yes 2/8 5/14

True	 → no* 3/6

*A random choice was made between two equally likely outcomes.

134    CHAPTER 5  Algorithms: The Basic Methods

yes | no | yes yes yes | no no | yes yes yes | no | yes yes | no

Choosing breakpoints halfway between the examples on either side places
them at 64.5, 66.5, 70.5, 72, 77.5, 80.5, and 84. However, the two instances
with value 72 cause a problem because they have the same value of temperature
but fall into different classes. The simplest fix is to move the breakpoint at 72 up
one example, to 73.5, producing a mixed partition in which no is the majority
class.

A more serious problem is that this procedure tends to form a large number
of categories. The 1R method will naturally gravitate toward choosing an attribute
that splits into many categories, because this will partition the dataset into many
classes, making it more likely that instances will have the same class as the major-
ity in their partition. In fact, the limiting case is an attribute that has a different
value for each instance—that is, an identification code attribute that pinpoints
instances uniquely—and this will yield a zero error rate on the training set because
each partition contains just one instance. Of course, highly branching attributes
do not usually perform well on test examples; indeed, the identification code
attribute will never predict any examples outside the training set correctly. This
phenomenon is known as overfitting.

For 1R, overfitting is likely to occur whenever an attribute has a large number
of possible values. Consequently, when discretizing a numeric attribute, a rule is
adopted that dictates a minimum number of examples of the majority class in each
partition. Suppose that minimum is set at three. This eliminates all but two of the
preceding partitions. Instead, the partitioning process begins

yes no yes yes | yes. . .

ensuring that there are three occurrences of yes, the majority class, in the first
partition. However, because the next example is also yes, we lose nothing by
including that in the first partition, too. This leads to a new division:

yes no yes yes yes | no no yes yes yes | no yes yes no

where each partition contains at least three instances of the majority class, except
the last one, which will usually have less. Partition boundaries always fall between
examples of different classes.

Whenever adjacent partitions have the same majority class, as do the first two
partitions shown here, they can be merged together without affecting the meaning
of the rule sets. Thus, the final discretization is

yes no yes yes yes no no yes yes yes | no yes yes no

which leads to the rule set

temperature: 	≤ 77.5 → yes
             	 > 77.5 → no

5.1  Inferring Rudimentary Rules   135

The second rule involved an arbitrary choice; as it happens, no was chosen. If
we had chosen yes instead, there would be no need for any breakpoint at all—and
as this example illustrates, it might be better to use the adjacent categories to help
to break ties. In fact, this rule generates five errors on the training set and so is
less effective than the preceding rule for outlook. However, the same procedure
leads to this rule for humidity:

humidity: 	≤ 82.5 → yes
          	 > 82.5 and ≤ 95.5 → no
          	 > 95.5 → yes

This generates only three errors on the training set and is the best “1-rule” for
the data in Table 1.3.

Finally, if a numeric attribute has missing values, an additional category is
created for them, and the preceding discretization procedure is applied just to the
instances for which the attribute’s value is defined.

5.1.2  Discussion

In a seminal paper titled “Very Simple Classification Rules Perform Well on Most
Commonly Used Datasets” (Holte 1993), a comprehensive study of the perfor-
mance of the 1R procedure was reported on 16 datasets that machine learning
researchers frequently use to evaluate their algorithms. Throughout, the study
used cross-validation to ensure that the results were representative of what inde-
pendent test sets would yield. After some experimentation, the minimum number
of examples in each partition of a numeric attribute was set at six, not three as
used for the preceding illustration.

Surprisingly, despite its simplicity 1R did astonishingly—even embarrass-
ingly—well in comparison with state-of-the-art learning methods, and the rules it
produced turned out to be just a few percentage points less accurate, on almost
all of the datasets, than the decision trees produced by a state-of-the-art decision
tree induction scheme. These trees were, in general, considerably larger than 1R’s
rules. Rules that test a single attribute are often a viable alternative to more
complex structures, and this strongly encourages a simplicity-first methodology
in which the baseline performance is established using rudimentary techniques
before progressing to more sophisticated learning methods, which inevitably
generate output that is harder for people to interpret.

The 1R procedure learns a one-level decision tree whose leaves represent the
various different classes. A slightly more expressive technique is to use a different
rule for each class. Each rule is a conjunction of tests, one for each attribute. For
numeric attributes the test checks whether the value lies within a given interval;
for nominal ones it checks whether it is in a certain subset of that attribute’s
values. These two types of tests—intervals and subset—are learned from the train-
ing data pertaining to each class. For a numeric attribute, the endpoints of the
interval are the minimum and maximum values that occur in the training data for

136    CHAPTER 5  Algorithms: The Basic Methods

that class. For a nominal one, the subset contains just those values that occur for
that attribute in the training data for the class. Rules representing different classes
usually overlap, and at prediction time the one with the most matching tests is
predicted. This simple technique often gives a useful first impression of a dataset.
It is extremely fast and can be applied to large quantities of data.

5.2	STATISTICAL MODELING
The 1R method uses a single attribute as the basis for its decisions and chooses
the one that works best. Another simple technique is to use all attributes and
allow them to make contributions to the decision that are equally important and
independent of one another, given the class. This is unrealistic, of course: What
makes real-life datasets interesting is that the attributes are certainly not equally
important or independent. But it leads to a simple scheme that again works sur-
prisingly well in practice.

Table 5.2 shows a summary of the weather data obtained by counting how
many times each attribute–value pair occurs with each value (yes and no) for play.
For example, you can see from Table 1.2 that outlook is sunny for five examples,
two of which have play = yes and three of which have play = no. The cells in the
first row of the new table simply count these occurrences for all possible values
of each attribute, and the play figure in the final column counts the total number
of occurrences of yes and no. In the lower part of the table, we rewrote the same
information in the form of fractions, or observed probabilities. For example, of
the 9 days that play is yes, outlook is sunny for 2 days, yielding a fraction of 2/9.
For play the fractions are different: they are the proportion of days that play is
yes and no, respectively.

Table 5.2 The Weather Data with Counts and Probabilities

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 3/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

Now suppose we encounter a new example with the values that are shown
in Table 5.3. We treat the five features in Table 5.2—outlook, temperature,
humidity, windy, and the overall likelihood that play is yes or no—as equally
important, independent pieces of evidence and multiply the corresponding frac-
tions. Looking at the outcome yes gives

	 likelihood of yes = × × × × =2 9 3 9 3 9 3 9 9 14 0 0053.

The fractions are taken from the yes entries in the table according to the values
of the attributes for the new day, and the final 9/14 is the overall fraction repre-
senting the proportion of days on which play is yes. A similar calculation for the
outcome no leads to

	 likelihood of no = × × × × =3 5 1 5 4 5 3 5 5 14 0 0206.

This indicates that for the new day, no is more likely than yes—four times more
likely. The numbers can be turned into probabilities by normalizing them so that
they sum to 1:

	 Probability of %yes =
+

=0 0053

0 0053 0 0206
20 5

.

. .
.

	 Probability of %no =
+

=0 0206

0 0053 0 0206
79 5

.

. .
.

This simple and intuitive method is based on Bayes’s rule of conditional prob-
ability. Bayes’s rule says that if you have a hypothesis H and evidence E that bears
on that hypothesis, then

	 Pr
Pr Pr

Pr
H E

E H H

E
[] = [] []

[]

We use the notation that Pr[A] denotes the probability of an event A and that
Pr[A|B] denotes the probability of A conditional on another event B. The hypoth-
esis H is that play will be, say, yes, and Pr[H|E] is going to turn out to be 20.5
percent, just as determined previously. The evidence E is the particular combina-
tion of attribute values for the new day, outlook = sunny, temperature = cool,
humidity = high, and windy = true. Let’s call these four pieces of evidence E1,
E2, E3, and E4, respectively. Assuming that these pieces of evidence are indepen-
dent (given the class), their combined probability is obtained by multiplying the
probabilities:

Table 5.3 A New Day

Outlook Temperature Humidity Windy Play

Sunny Cool High True ?

5.2  Statistical Modeling   137

138    CHAPTER 5  Algorithms: The Basic Methods

	 Pr yes E
E yes E yes E yes E yes yes[] = [] × [] × [] × [] × []Pr Pr Pr Pr Pr

Pr
1 2 3 4

EE[]

Don’t worry about the denominator: We will ignore it and eliminate it in the
final normalizing step when we make the probabilities of yes and no sum to 1,
just as we did previously. The Pr[yes] at the end is the probability of a yes outcome
without knowing any of the evidence E—that is, without knowing anything about
the particular day referenced—it’s called the prior probability of the hypothesis
H. In this case, it’s just 9/14, because 9 of the 14 training examples had a yes value
for play. Substituting the fractions in Table 5.2 for the appropriate evidence prob-
abilities leads to

	 Pr
Pr

yes E
E

[] = × × × ×
[]

2 9 3 9 3 9 3 9 9 14

just as we calculated previously. Again, the Pr[E] in the denominator will disap-
pear when we normalize.

This method goes by the name of Naïve Bayes, because it’s based on Bayes’s
rule and “naïvely” assumes independence—it is only valid to multiply probabilities
when the events are independent. The assumption that attributes are independent
(given the class) in real life certainly is a simplistic one. But despite the disparag-
ing name, Naïve Bayes works well when tested on actual datasets, particularly
when combined with attribute selection procedures that eliminate redundant, and
hence nonindependent, attributes.

One thing that can go wrong with Naïve Bayes is that if a particular attribute
value does not occur in the training set in conjunction with every class value,
things go badly awry. Suppose in the example that the training data was different
and the attribute value outlook = sunny had always been associated with the
outcome no. Then the probability of outlook = sunny given a yes—that is,
Pr[outlook = sunny|yes], would be zero, and because the other probabilities are
multiplied by this the final probability of yes, they would be zero no matter how
large they were. Probabilities that are zero hold a veto over the other ones. This
is not a good idea. But the bug is easily fixed by minor adjustments to the method
of calculating probabilities from frequencies.

For example, the upper part of Table 5.2 shows that for play = yes, outlook
is sunny for two examples, overcast for four, and rainy for three, and the lower
part gives these events probabilities of 2/9, 4/9, and 3/9, respectively. Instead, we
could add 1 to each numerator and compensate by adding 3 to the denominator,
giving probabilities of 3/12, 5/12, and 4/12, respectively. This will ensure that an
attribute value that occurs zero times receives a probability that is nonzero, albeit
small. The strategy of adding 1 to each count is a standard technique called the
Laplace estimator after the great eighteenth-century French mathematician Pierre
Laplace. Although it works well in practice, there is no particular reason for adding
to the counts: we could instead choose a small constant μ and use

	
2 3

9

4 3

9

3 3

9

+
+

+
+

+
+

μ
μ

μ
μ

μ
μ

, , and

The value of μ, which was set to 3, effectively provides a weight that deter-
mines how influential the a priori values of 1/3, 1/3, and 1/3 are for each of the
three possible attribute values. A large μ says that these priors are very important
compared with the new evidence coming in from the training set, whereas a small
one gives them less influence. Finally, there is no particular reason for dividing μ
into three equal parts in the numerators: we could use

	
2

9

4

9

3

9
1 2 3+

+
+
+

+
+

μ
μ

μ
μ

μ
μ

p p p
, , and

instead, where p1, p2, and p3 sum to 1. Effectively, these three numbers are a priori
probabilities of the values of the outlook attribute being sunny, overcast, and
rainy, respectively.

This is now a fully Bayesian formulation where prior probabilities have been
assigned to everything in sight. It has the advantage of being completely rigorous,
but the disadvantage that it is not usually clear just how these prior probabilities
should be assigned. In practice, the prior probabilities make little difference pro-
vided that there are a reasonable number of training instances, and people gener-
ally just estimate frequencies using the Laplace estimator by initializing all counts
to one instead of to zero.

5.2.1  Missing Values and Numeric Attributes

One of the really nice aspects of the Bayesian formulation is that missing values
are no problem at all. For example, if the value of outlook were missing in the
example presented in Table 5.3, the calculation would simply omit this attribute,
yielding

	
likelihood of

likelihood of

yes

no

= × × × =
= ×

3 9 3 9 3 9 9 14 0 0238

1 5 4

.

55 3 5 5 14 0 0343× × = .

These two numbers are individually a lot higher than they were before, because
one of the fractions is missing. But that’s not a problem because a fraction is
missing in both cases, and these likelihoods are subject to a further normalization
process. This yields probabilities for yes and no of 41 percent and 59 percent,
respectively.

If a value is missing in a training instance, it is simply not included in the fre-
quency counts, and the probability ratios are based on the number of values that
actually occur rather than on the total number of instances.

Numeric values are usually handled by assuming that they have a “normal” or
“Gaussian” probability distribution. Table 5.4 gives a summary of the weather
data with numeric features from Table 1.3. As before, for nominal attributes, we

5.2  Statistical Modeling   139

140    CHAPTER 5  Algorithms: The Basic Methods

calculated counts, and for numeric ones we simply listed the values that occur.
Then, whereas we normalized the counts for the nominal attributes into proba-
bilities, we calculated the mean and standard deviation for each class and each
numeric attribute. Thus, the mean value of temperature over the yes instances is
73, and its standard deviation is 6.2. The mean is simply the average of the preced-
ing values—that is, the sum divided by the number of values. The standard devia-
tion is the square root of the sample variance, which we can calculate as follows:
subtract the mean from each value, square the result, sum them together, and
then divide by one less than the number of values.

After we have found this sample variance, find its square root to determine the
standard deviation. This is the standard way of calculating mean and standard
deviation of a set of numbers. (the “one less than” has to do with the number of
degrees of freedom in the sample, a statistical notion that we don’t want to get
into in this book.)

The probability density function for a normal distribution with mean μ and
standard deviation σ is given by the rather formidable expression:

	 f x e
x

() =
−()

1

2

2

22

πσ

μ
σ

Table 5.4 The Numeric Weather Data with Summary Statistics

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 83 85 86 85 False 6 2 9 5

Overcast 4 0 70 80 96 90 True 3 3

Rainy 3 2 68 65 80 70

64 72 65 95

69 71 70 91

75 80

75 70

72 90

81 75

Sunny 2/9 3/5 Mean 73 74.6 Mean 79.1 86.2 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Std. dev. 6.2 7.9 Std. dev. 10.2 9.7 True 3/9 3/5

Rainy 3/9 2/5

But fear not! All this means is that if we are considering a yes outcome when
temperature has a value, say, of 66, we just need to plug x = 66, μ = 73, and σ =
6.2 into the formula. So the value of the probability density function is

	 f temperature yes e=() =
⋅

=
−()

⋅66
1

2 6 2
0 0340

66 73

2 6 2

2

2

π .
..

By the same token, the probability density of a yes outcome when humidity has
value, say, of 90 is calculated in the same way:

	 f humidity yes=() =90 0 0221.

The probability density function for an event is closely related to its probabil-
ity. However, it is not quite the same thing. If temperature is a continuous scale,
the probability of the temperature being exactly 66—or exactly any other value,
such as 63.14159262—is zero. The real meaning of the density function f(x) is
that the probability that the quantity lies within a small region around x, say,
between x − ε/2 and x + ε/2, is ε f(x). What we have written is correct if tem-
perature is measured to the nearest degree and humidity is measured to the nearest
percentage point. You might think we ought to factor in the accuracy figure ε
when using these probabilities, but that’s not necessary. The same ε would appear
in both the yes and no likelihoods that follow and cancel out when the probabil-
ities were calculated.

Using these probabilities for the new day in Table 5.5 yields

	
likelihood of

likeliho

yes = × × × × =2 9 0 0340 0 0221 3 9 9 14 0 000036. . .

ood of no = × × × × =3 5 0 0221 0 0381 3 5 5 14 0 000108. . .

which leads to probabilities

	 Probability of %yes =
+

=0 000036

0 000036 0 000108
25 0

.

. .
.

	 Probability of %no =
+

=0 000108

0 000036 0 000108
75 0

.

. .
.

These figures are very close to the probabilities calculated earlier for the new day
in Table 5.3, because the temperature and humidity values of 66 and 90 yield
similar probabilities to the cool and high values used before.

The normal-distribution assumption makes it easy to extend the Naïve Bayes
classifier to deal with numeric attributes. If the values of any numeric attributes

Table 5.5 Another New Day

Outlook Temperature Humidity Windy Play

Sunny 66 90 True ?

5.2  Statistical Modeling   141

142    CHAPTER 5  Algorithms: The Basic Methods

are missing, the mean and standard deviation calculations are based only on the
ones that are present.

5.2.2  Bayesian Models for Document Classification

One important domain for machine learning is document classification, in which
each instance represents a document and the instance’s class is the document’s
topic. Documents might be news items and the classes might be domestic news,
overseas news, financial news, and sport. Documents are characterized by the
words that appear in them, and one way to apply machine learning to document
classification is to treat the presence or absence of each word as a Boolean attri-
bute. Naïve Bayes is a popular technique for this application because it is fast and
accurate.

However, this does not take into account the number of occurrences of each
word, which is potentially useful information when determining the category of
a document. Instead, a document can be viewed as a bag of words—a set that
contains all the words in the document, with multiple occurrences of a word
appearing multiple times (technically, a set includes each of its members just once,
whereas a bag can have repeated elements). Word frequencies can be accom-
modated by applying a modified form of Naïve Bayes that is sometimes described
as multinominal Naïve Bayes.

Suppose n1, n2, . . . , nk is the number of times word i occurs in the document,
and P1, P2, . . . , Pk is the probability of obtaining word i when sampling from all
the documents in category H. Assume that the probability is independent of the
word’s context and position in the document. These assumptions lead to a mul-
tinomial distribution for document probabilities. For this distribution, the prob-
ability of a document E given its class H—in other words, the formula for
computing the probability Pr[E|H] in Bayes’s rule—is

	 Pr E H N
P

n
i
n

ii

k i

[] ≈ ×
=

∏!
!1

where N = n1 + n2 + . . . + nk is the number of words in the document. The reason
for the factorials is to account for the fact that the ordering of the occurrences of
each word is immaterial according to the bag-of-words model. Pi is estimated by
computing the relative frequency of word i in the text of all training documents
pertaining to category H. In reality there should be a further term that gives the
probability that the model for category H generates a document whose length is
the same as the length of E (that is why we use the symbol ≈ instead of =), but it
is common to assume that this is the same for all classes and hence can be
dropped.

For example, suppose there are only the two words, yellow and blue, in the
vocabulary, and a particular document class H has Pr[yellow|H] = 75 percent and
Pr[blue|H] = 25 percent (you might call H the class of yellowish green docu-
ments). Suppose E is the document blue yellow blue with a length of N = 3 words.

There are four possible bags of three words. One is {yellow yellow yellow}, and
its probability according to the preceding formula is

	 Pr yellow yellow yellow H{ }[] ≈ × × =3
0 75

3

0 25

0

27

64

3 0

!
.

!

.

!

The other three, with their probabilities, are

	

Pr

Pr

Pr

blue blue blue H

yellow yellow blue H

yello

{ }[] =

{ }[] =

1

64
27

64

ww blue blue H{ }[] = 9

64

Here, E corresponds to the last case (recall that in a bag of words the order is
immaterial); thus, its probability of being generated by the yellowish green docu-
ment model is 9/64, or 14 percent. Suppose another class, very bluish green
documents (call it H′), has Pr[yellow|H′] = 10 percent, Pr[blue|H′] = 90 percent.
The probability that E is generated by this model is 24 percent.

If these are the only two classes, does that mean that E is in the very bluish
green document class? Not necessarily. Bayes’s rule, given earlier, says that you
have to take into account the prior probability of each hypothesis. If you know
that in fact very bluish green documents are twice as rare as yellowish green
ones, this would be just sufficient to outweigh the preceding 14 percent to 24
percent disparity and tip the balance in favor of the yellowish green class.

The factorials in the preceding probability formula don’t actually need to be
computed because—being the same for every class—they drop out in the normal-
ization process anyway. However, the formula still involves multiplying together
many small probabilities, which soon yields extremely small numbers that cause
underflow on large documents. The problem can be avoided by using logarithms
of the probabilities instead of the probabilities themselves.

In the multinomial Naïve Bayes formulation a document’s class is determined,
not just by the words that occur in it, but also by the number of times they occur.
In general it performs better than the ordinary Naïve Bayes model for document
classification, particularly for large dictionary sizes.

5.2.3  Discussion

Naïve Bayes gives a simple approach, with clear semantics, to representing, using,
and learning probabilistic knowledge. Impressive results can be achieved using it.
It has often been shown that Naïve Bayes rivals, and indeed outperforms, more
sophisticated classifiers on many datasets. The moral is, always try the simple
things first. Repeatedly in machine learning people have eventually, after an
extended struggle, obtained good results using sophisticated learning methods

5.2  Statistical Modeling   143

144    CHAPTER 5  Algorithms: The Basic Methods

only to discover years later that simple methods such as 1R and Naïve Bayes do
just as well—or even better.

There are many datasets for which Naïve Bayes does not do so well, however,
and it is easy to see why. Because attributes are treated as though they were
completely independent, the addition of redundant ones skews the learning
process. As an extreme example, if you were to include a new attribute with the
same values as temperature to the weather data, the effect of the temperature
attribute would be multiplied: all of its probabilities would be squared, giving it
a great deal more influence in the decision. If you were to add 10 such attributes,
then the decisions would effectively be made on temperature alone. Dependen-
cies between attributes inevitably reduce the power of Naïve Bayes to discern
what is going on. They can, however, be ameliorated by using a subset of the
attributes in the decision procedure, making a careful selection of which ones
to use.

The normal-distribution assumption for numeric attributes is another restric-
tion on Naïve Bayes as we have formulated it here. Many features simply aren’t
normally distributed. However, there is nothing to prevent us from using other
distributions for the numeric attributes: there is nothing magic about the normal
distribution. If you know that a particular attribute is likely to follow some other
distribution, standard estimation procedures for that distribution can be used
instead. If you suspect it isn’t normal but don’t know the actual distribution, there
are procedures for “kernel density estimation” that do not assume any particular
distribution for the attribute values. Another possibility is simply to discretize the
data first.

5.3	DIVIDE AND CONQUER: CONSTRUCTING DECISION TREES
The problem of constructing a decision tree can be expressed recursively. First,
select an attribute to place at the root node and make one branch for each pos-
sible value. This splits up the example set into subsets, one for every value of the
attribute. Now the process can be repeated recursively for each branch, using
only those instances that actually reach the branch. If at any time all instances at
a node have the same classification, stop developing that part of the tree.

The only thing left to decide is how to determine which attribute to split on,
given a set of examples with different classes. Consider (again!) the weather data.
There are four possibilities for each split, and at the top level they produce trees
such as those in Figure 5.2. Which is the best choice? The number of yes and no
classes are shown at the leaves. Any leaf with only one class—yes or no—will not
have to be split further, and the recursive process down that branch will termi-
nate. Because we seek small trees, we would like this to happen as soon as pos-
sible. If we had a measure of the purity of each node, we could choose the
attribute that produces the purest daughter nodes. Take a moment to look at
Figure 5.2 and ponder which attribute you think is the best choice.

The measure of purity that we will use is called the information and is mea-
sured in units called bits. Associated with a node of the tree, it represents the
expected amount of information that would be needed to specify whether a new
instance should be classified yes or no, given that the example reached that node.
Unlike the bits in computer memory, the expected amount of information usually
involves fractions of a bit—and is often less than 1! We calculate it based on the
number of yes and no classes at the node; we will look at the details of the cal-
culation shortly. But first let’s see how it’s used. When evaluating the first tree in
Figure 5.2, the numbers of yes and no classes at the leaf nodes are [2,3], [4,0],
and [3,2], respectively, and the information values of these nodes are as follows:

	

info bits

info bits

info b

2 3 0 971

4 0 0 0

3 2 0 971

, .

, .

, .

[]() =
[]() =
[]() = iits

FIGURE 5.2

Tree stumps for the weather data.

yes
yes
no
no
no

sunny

yes
yes
yes
yes

overcast

yes
yes
yes
no
no

rainy

Outlook

(a)

yes
yes
yes

no
no

hot

yes
yes
no
no

yes
yes
yes
no

mild cool

Temperature

yes

(b)

yes
yes
yes
no
no
no
no

yes
yes
yes
yes
yes
yes
no

high normal

Humidity

(c)

yes
yes
yes
yes
yes
yes
no
no

yes
yes
yes
no
no
no

false true

Windy

(d)

5.3  Divide and Conquer: Constructing Decision Trees   145

146    CHAPTER 5  Algorithms: The Basic Methods

We can calculate the average information value of these, taking into account
the number of instances that go down each branch—five down the first and third
and four down the second:

	 info 2 3 4 0 3 2 5 14 0 971 4 14 0 5 14 0 971 0, , , , , . . .[] [] []() = () × + () × + () × = 6693 bits

This average represents the amount of information that we expect would be nec-
essary to specify the class of a new instance, given the tree structure in Figure
5.2(a).

Before we created any of the nascent tree structures in Figure 5.2, the training
examples at the root constituted nine yes and five no nodes, corresponding to an
information value of

	 info bits9 5 0 940, .[]() =

Thus, the tree in Figure 5.2(a) is responsible for an information gain of

	 gain info infooutlook() = []() − [] [] []() = −9 5 2 3 4 0 3 2 0 940 0, , , , , , . .6693 0 247= . bits

which can be interpreted as the informational value of creating a branch on the
outlook attribute.

The way forward is clear. We calculate the information gain for each attribute
and choose the one that gains the most information to split on. In the situation
of Figure 5.2:

	

gain bits

gain bits

gain

outlook

temperature

humi

() =
() =

0 247

0 029

.

.

ddity

windy

() =
() =

0 152

0 048

.

.

bits

gain bits

so we select outlook as the splitting attribute at the root of the tree. Hopefully
this accords with your intuition as the best one to select. It is the only choice for
which one daughter node is completely pure, and this gives it a considerable
advantage over the other attributes. Humidity is the next best choice because it
produces a larger daughter node that is almost completely pure.

Then we continue, recursively. Figure 5.3 shows the possibilities for a further
branch at the node reached when outlook is sunny. Clearly, a further split on
outlook will produce nothing new, so we only consider the other three attributes.
The information gain for each turns out to be

	

gain bits

gain bits

gain

temperature

humidity

win

() =
() =

0 571

0 971

.

.

ddy() = 0 020. bits

so we select humidity as the splitting attribute at this point. There is no need to
split these nodes any further, so this branch is finished.

Continued application of the same idea leads to the decision tree of Figure 5.4
for the weather data. Ideally, the process terminates when all leaf nodes are

pure—that is, when they contain instances that all have the same classification.
However, it might not be possible to reach this happy situation because there is
nothing to stop the training set containing two examples with identical sets of
attributes but different classes. Consequently, we stop when the data cannot be
split any further.

5.3.1  Calculating Information

Now it is time to explain how to calculate the information measure that is
used as a basis for evaluating different splits. We describe the basic idea in this
section, then in the next we examine a correction that is usually made to counter

FIGURE 5.3

Expanded tree stumps for the weather data.

... ...

no
no yes

sunny

hot mild cool

Outlook

Temperature

yes
no

(a)

... ...

no
no
no

yes
yes

sunny

high normal

Outlook

Humidity

(b)

... ...

yes
yes
no
no

yes
no

sunny

false true

Outlook

Windy

(c)

5.3  Divide and Conquer: Constructing Decision Trees   147

148    CHAPTER 5  Algorithms: The Basic Methods

a bias toward selecting splits on attributes that have a large number of possible
values.

Before examining the detailed formula for calculating the amount of informa-
tion required to specify the class of an example given that it reaches a tree node
with a certain number of yes’s and no’s, consider first the kind of properties we
would expect this quantity to have:

1.	 When the number of either yes’s or no’s is zero, the information is zero.
2.	 When the number of yes’s and no’s is equal, the information reaches a

maximum.

Moreover, the measure should be applicable to multiclass situations, not just to
two-class ones.

The information measure relates to the amount of information obtained by
making a decision, and a more subtle property of information can be derived by
considering the nature of decisions. Decisions can be made in a single stage, or
they can be made in several stages, and the amount of information involved is the
same in both cases. For example, the decision involved in

info 2,3,4[]()

can be made in two stages. First decide whether it’s the first case or one of the
other two cases:

info 2,7[]()

and then decide which of the other two cases it is:

info 3,4[]()

FIGURE 5.4

Decision tree for the weather data.

false true

yes

yes

no

sunny overcast rainy

Outlook

Humidity Windy

high normal

noyes

In some cases the second decision will not need to be made, namely, when
the decision turns out to be the first one. Taking this into account leads to the
equation

info 2,3,4 info 2,7 info 3,4[]() = []() + () × []()7 9

Of course, there is nothing special about these particular numbers, and a similar
relationship must hold regardless of the actual values. Thus, we can add a further
criterion to the preceding list:

3.	 The information must obey the multistage property illustrated previously.

Remarkably, it turns out that there is only one function that satisfies all these
properties, and it is known as the information value or entropy:

entropy p p p p p p p p pn n n1 2 1 1 2 2, , . . . , log log . . . log() = − − −

The reason for the minus signs is that logarithms of the fractions p1, p2, . . . , pn
are negative, so the entropy is actually positive. Usually the logarithms are
expressed in base 2, then the entropy is in units called bits—just the usual kind
of bits used with computers.

The arguments p1, p2, . . . of the entropy formula are expressed as fractions that
add up to one, so that, for example,

info 2,3,4 entropy 2 9[]() = (), ,3 9 4 9

Thus, the multistage decision property can be written in general as

entropy entropy entropyp q r p q r q r
q

q r

r

q r
, , , ,() = +() + +()

+ +




⋅

where p + q + r = 1.
Because of the way the log function works, you can calculate the information

measure without having to work out the individual fractions:

info 2,3,4[]() = − × − × − ×
= − − −

2 9 2 9 3 9 3 9 4 9 4 9

2 2 3 3 4

log log log

log log logg log4 9 9 9+[]

This is the way that the information measure is usually calculated in practice. So
the information value for the first leaf node of the first tree in Figure 5.2 is

info 2,3 bits[]() = − × − × =2 5 2 5 3 5 3 5 0 971log log .

5.3.2  Highly Branching Attributes

When some attributes have a large number of possible values, giving rise to a
multiway branch with many child nodes, a problem arises with the information
gain calculation. The problem can best be appreciated in the extreme case when
an attribute has a different value for each instance in the dataset—as, for example,
an identification code attribute might.

5.3  Divide and Conquer: Constructing Decision Trees   149

150    CHAPTER 5  Algorithms: The Basic Methods

Table 5.6 gives the weather data with this extra attribute. Branching on ID
code produces the tree stump in Figure 5.5. The information required to specify
the class given the value of this attribute is

info 0,1 info 0,1 info 1,0 info 1,0 info 0,[]() + []() + []() + + []() +. . . 11[](),

which is zero because each of the 14 terms is zero. This is not surprising: the ID
code attribute identifies the instance, which determines the class without any
ambiguity—just as Table 5.6 shows. Consequently, the information gain of this
attribute is just the information at the root, info([9,5]) = 0.940 bits. This is greater
than the information gain of any other attribute, and so ID code will inevitably
be chosen as the splitting attribute. But branching on the identification code is
no good for predicting the class of unknown instances and tells nothing about
the structure of the decision, which after all, are the twin goals of machine
learning.

The overall effect is that the information gain measure tends to prefer attributes
with large numbers of possible values. To compensate, a modification of the
measure called the gain ratio is widely used. The gain ratio is derived by taking
into account the number and size of daughter nodes into which an attribute

Table 5.6 The Weather Data with Identification Code

ID code Outlook Temperature Humidity Windy Play

a Sunny Hot High False No

b Sunny Hot High True No

c Overcast Hot High False Yes

d Rainy Mild High False Yes

e Rainy Cool Normal False Yes

f Rainy Cool Normal True No

g Overcast Cool Normal True Yes

h Sunny Mild High False No

i Sunny Cool Normal False Yes

j Rainy Mild Normal False Yes

k Sunny Mild Normal True Yes

l Overcast Mild High True Yes

m Overcast Hot Normal False Yes

n Rainy Mild High True No

splits the dataset, disregarding any information about the class. In the situation
shown in Figure 5.5, all counts have a value of 1, so the information value of the
split is

info 1,1, . . . ,1[]() = − × ×1 14 1 14 14log

because the same fraction, 1/14, appears 14 times. This amounts to log 14, or
3.807 bits, which is a very high value. This is because the information value of a
split is the number of bits needed to determine to which branch each instance is
assigned, and the more branches there are, the greater this value is. The gain ratio
is calculated by dividing the original information gain, 0.940 in this case, by the
information value of the attribute, 3.807—yielding a gain ratio value of 0.247 for
the ID code attribute.

Returning to the tree stumps for the weather data in Figure 5.2, outlook splits
the dataset into three subsets of size 5, 4, and 5 and thus has an intrinsic informa-
tion value of

info 5,4,5[]() = 1 577.

without paying any attention to the classes involved in the subsets. As we have
seen, this intrinsic information value is higher for a more highly branching attri-
bute such as the hypothesized ID code. Again we can correct the information gain
by dividing by the intrinsic information value to get the gain ratio.

The results of these calculations for the tree stumps of Figure 5.2 are summa-
rized in Table 5.7. Outlook still comes out on top, but humidity is now a much
closer contender because it splits the data into two subsets instead of three. In
this particular example, the hypothetical ID code attribute, with a gain ratio of
0.247, would still be preferred to any of these four. However, its advantage is
greatly reduced. In practical implementations, we can use an ad hoc test to guard
against splitting on such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompensates
and can lead to preferring an attribute just because its intrinsic information is
much lower than that for the other attributes. A standard fix is to choose the

FIGURE 5.5

Tree stump for the ID code attribute.

no yesno yes no

ID code

a b c ... m n

5.3  Divide and Conquer: Constructing Decision Trees   151

Ta
bl

e
5.

7
G

ai
n

R
at

io
 C

al
cu

la
tio

ns
 f

or
 t

he
 T

re
e

St
um

ps
 o

f
Fi

gu
re

 5
.2

Ou
tlo

ok
Te

m
pe

ra
tu

re
H

um
id

ity
W

in
dy

In
fo

:
0.

69
3

In
fo

:
0.

91
1

In
fo

:
0.

78
8

In
fo

:
0.

89
2

G
ai

n:
0.

94
0–

0.
24

7
G

ai
n:

0.
94

0–
0.

02
9

G
ai

n:
0.

94
0–

0.
15

2
G

ai
n:

0.
94

0–
0.

04
8

0.
69

3
0.

91
1

0.
78

8
0.

89
2

Sp
lit

 in
fo

:
1.

57
7

Sp
lit

 in
fo

:
1.

55
7

Sp
lit

 in
fo

:
1

Sp
lit

 in
fo

:
0.

98
5

In
fo

:
([

5,
4,

5]
)

In
fo

:
([

4,
6,

4]
)

In
fo

:
([

7,
7]

)
In

fo
:

([
8,

6]
)

G
ai

n
ra

tio
:

0.
24

7/

1.
57

7
0.

15
7

G
ai

n
ra

tio
:

0.
02

9/
1.

55
7

0.
01

9
G

ai
n

ra
tio

:
0.

15
2/

1
0.

15
2

G
ai

n
ra

tio
:

0.
04

8/

0.
98

5
0.

04
9

attribute that maximizes the gain ratio, provided that the information gain for that
attribute is at least as great as the average information gain for all the attributes
examined.

5.3.3  Discussion

The divide-and-conquer approach to decision tree induction, sometimes called
top-down induction of decision trees, was developed and refined over many years
by J. Ross Quinlan of the University of Sydney, Australia. Although others have
worked on similar methods, Quinlan’s research has always been at the forefront
of decision tree induction. The method that has been described using the informa-
tion gain criterion is essentially the same as one known as ID3. The use of the
gain ratio was one of many improvements that were made to ID3 over several
years; Quinlan described it as robust under a wide variety of circumstances.
Although a robust and practical solution, it sacrifices some of the elegance and
clean theoretic motivation of the information gain criterion.

A series of improvements to ID3 culminated in a practical and influential
system for decision tree induction called C4.5. These improvements include
methods for dealing with numeric attributes, missing values, noisy data, and gen-
erating rules from trees.

5.4	COVERING ALGORITHMS: CONSTRUCTING RULES
As we have seen, decision tree algorithms are based on a divide-and-conquer
approach to the classification problem. They work from the top down, seeking
at each stage an attribute to split on that best separates the classes, then recursively
processing the subproblems that result from the split. This strategy generates
a decision tree, which if necessary can be converted into a set of classification
rules—although if it is to produce effective rules, the conversion is not trivial.

An alternative approach is to take each class in turn and seek a way of cover-
ing all instances in it, at the same time excluding instances not in the class. This
is called a covering approach because at each stage you identify a rule that
“covers” some of the instances. By its very nature, this covering approach leads
to a set of rules rather than to a decision tree.

The covering method can readily be visualized in a two-dimensional space of
instances as shown in Figure 5.6(a). We first make a rule covering the a’s. For the
first test in the rule, split the space vertically as shown in the center picture. This
gives the beginnings of a rule:

If x > 1.2 then class = a

However, the rule covers many b’s as well as a’s, so a new test is added to the
rule by further splitting the space horizontally as shown in the third diagram:

If x > 1.2 and y > 2.6 then class = a

5.4  Covering Algorithms: Constructing Rules   153

154    CHAPTER 5  Algorithms: The Basic Methods

This gives a rule covering all but one of the a’s. It’s probably appropriate to
leave it at that, but if it were felt necessary to cover the final a, another rule would
be necessary—perhaps

If x > 1.4 and y < 2.4 then class = a

The same procedure leads to two rules covering the b’s:

If x ≤ 1.2 then class = b
If x > 1.2 and y ≤ 2.6 then class = b

Again, one a is erroneously covered by these rules. If it were necessary to exclude
it, more tests would have to be added to the second rule, and additional rules
would need to be introduced to cover the b’s that these new tests exclude.

5.4.1  Rules versus Trees

A top-down divide-and-conquer algorithm operates on the same data in a manner
that is, at least superficially, quite similar to a covering algorithm. It might first
split the dataset using the x attribute and would probably end up splitting it at

FIGURE 5.6

Covering algorithm: (a) covering the instances and (b) the decision tree for the same
problem.

(a)

x > 1.2 ?

b

no

y > 2.6?

yes

b

no

a

yes

(b)

the same place, x = 1.2. However, whereas the covering algorithm is concerned
only with covering a single class, the division would take both classes into account,
because divide-and-conquer algorithms create a single concept description that
applies to all classes. The second split might also be at the same place, y = 2.6,
leading to the decision tree in Figure 5.6(b). This tree corresponds exactly to the
set of rules, and in this case there is no difference in effect between the covering
and the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms
of the perspicuity of the representation. For example, rules can be symmetric,
whereas trees must select one attribute to split on first, and this can lead to trees
that are much larger than an equivalent set of rules. Another difference is that, in
the multiclass case, a decision tree split takes all classes into account, trying to
maximize the purity of the split, whereas the rule-generating method concentrates
on one class at a time, disregarding what happens to the other classes.

5.4.2  A Simple Covering Algorithm

Covering algorithms operate by adding tests to the rule that is under construction,
always striving to create a rule with maximum accuracy. In contrast, divide-and-
conquer algorithms operate by adding tests to the tree that is under construction,
always striving to maximize the separation among the classes. Each of these
involves finding an attribute to split on. But the criterion for the best attribute is
different in each case. Whereas divide-and-conquer algorithms such as ID3 choose
an attribute to maximize the information gain, the covering algorithm we will
describe chooses an attribute–value pair to maximize the probability of the desired
classification.

Figure 5.7 gives a picture of the situation, showing the space containing all the
instances, a partially constructed rule, and the same rule after a new term has
been added. The new term restricts the coverage of the rule: the idea is to include
as many instances of the desired class as possible and exclude as many instances
of other classes as possible. Suppose the new rule will cover a total of t instances,
of which p are positive examples of the class and t − p are in other classes—that

FIGURE 5.7

The instance space during operation of a covering algorithm.

Space of examples

Rule so far

Rule after adding new term

5.4  Covering Algorithms: Constructing Rules   155

156    CHAPTER 5  Algorithms: The Basic Methods

is, they are errors made by the rule. Then choose the new term to maximize the
ratio p/t.

An example will help. For a change, we use the contact lens problem of Table
1.1. We will form rules that cover each of the three classes, hard, soft, and none,
in turn. To begin, we seek a rule:

If ? then recommendation = hard

For the unknown term?, we have nine choices:

age = young                            	 2/8
age = pre-presbyopic                   	 1/8
age = presbyopic                       	 1/8
spectacle prescription = myope         	 3/12
spectacle prescription = hypermetrope  	1/12
astigmatism = no                       	 0/12
astigmatism = yes                      	 5/12
tear production rate = reduced         	 0/12
tear production rate = normal          	 5/12

The numbers on the right show the fraction of “correct” instances in the set
singled out by that choice. In this case, correct means that the recommendation
is hard. For instance, age = young selects eight instances, two of which recom-
mend hard contact lenses, so the first fraction is 2/8. (To follow this, you will
need to look back at the contact lens data in Table 1.1 and count up the entries
in the table.) We select the largest fraction, 4/12, arbitrarily choosing between
the seventh and the last choice in the preceding list, and create the rule:

If astigmatism = yes then recommendation = hard

This rule is an inaccurate one, getting only 4 instances correct out of the 12
that it covers, shown in Table 5.8. So we refine it further:

If astigmatism = yes and ? then recommendation = hard

Considering the possibilities for the unknown term ? yields the seven choices:

age = young                            	 2/4
age = pre-presbyopic                   	 1/4
age = presbyopic                       	 1/4
spectacle prescription = myope         	 3/6
spectacle prescription = hypermetrope  	1/6
tear production rate = reduced         	 0/6
tear production rate = normal          	 5/6

(Again, count the entries in Table 5.8.) The last is a clear winner, getting four
instances correct out of the six that it covers, and corresponds to the rule

If astigmatism = yes and tear production rate = normal
   then recommendation = hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no
matter how complex they become. Table 5.9 shows the cases that are covered
by the rule so far. The possibilities for the next term are now

age = young                            	 2/2
age = pre-presbyopic                   	 1/2
age = presbyopic                       	 1/2
spectacle prescription = myope         	 3/3
spectacle prescription = hypermetrope  	1/3

We need to choose between the first and fourth. So far we have treated the
fractions numerically, but although these two are equal (both evaluate to 1), they
have different coverage: one selects just two correct instances and the other
selects three. In the event of a tie, we choose the rule with the greater coverage,
giving the final rule:

If astigmatism = yes and tear production rate = normal
   and spectacle prescription = myope then recommendation = hard

This is indeed one of the rules given for the contact lens problem. But it only
covers three of the four hard recommendations. So we delete these three from

Table 5.8 Part of the Contact Lens Data for Which Astigmatism = Yes

Spectacle Tear production Recommended
Age Prescription Astigmatism Rate Lenses

Young Myope Yes Reduced None

Young Myope Yes Normal Hard

Young Hypermetrope Yes Reduced None

Young Hypermetrope Yes Normal Hard

Pre-presbyopic Myope Yes Reduced None

Pre-presbyopic Myope Yes Normal Hard

Pre-presbyopic Hypermetrope Yes Reduced None

Pre-presbyopic Hypermetrope Yes Normal None

Presbyopic Myope Yes Reduced None

Presbyopic Myope Yes Normal Hard

Presbyopic Hypermetrope Yes Reduced None

Presbyopic Hypermetrope Yes Normal None

5.4  Covering Algorithms: Constructing Rules   157

158    CHAPTER 5  Algorithms: The Basic Methods

the set of instances and start again, looking for another rule that is in following
the form:

If ? then recommendation = hard

Using the same process, we will eventually find that age = young is the best
choice for the first term. Its coverage is seven; the reason for the seven is that 3
instances have been removed from the original set, leaving 21 altogether. The best
choice for the second term is astigmatism = yes, selecting 1/3 (actually, this is a
tie); tear production rate = normal is the best for the third, selecting 1/1.

If age = young and astigmatism = yes and
   tear production rate = normal then recommendation = hard

This rule actually covers three of the original set of instances, two of which are
covered by the previous rule—but that’s all right because the recommendation is
the same for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with
the soft-lens ones in just the same way. Finally, rules are generated for the none
case—unless we are seeking a rule set with a default rule, in which case explicit
rules for the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It
generates only correct or “perfect” rules. It measures the success of a rule by the
accuracy formula p/t. Any rule with accuracy less than 100 percent is “incorrect”
in that it assigns cases to the class in question that actually do not have that class.
PRISM continues adding clauses to each rule until it is perfect: its accuracy is 100
percent. Figure 5.8 summarizes the algorithm. The outer loop iterates over the
classes, generating rules for each class in turn. Note that we reinitialize to the full
set of examples each time round. Then we create rules for that class and remove
the examples from the set until there are none of that class left. Whenever we
create a rule, start with an empty rule (which covers all the examples), and then

Table 5.9 Part of the Contact Lens Data for Which Astigmatism = Yes and Tear
Production Rate = Normal

Spectacle Tear production Recommended
Age Prescription Astigmatism Rate Lenses

Young Myope Yes Normal Hard

Young Hypermetrope Yes Normal Hard

Pre-presbyopic Myope Yes Normal Hard

Pre-presbyopic Hypermetrope Yes Normal None

Presbyopic Myope Yes Normal Hard

Presbyopic Hypermetrope Yes Normal None

restrict it by adding tests until it covers only examples of the desired class. At each
stage choose the most promising test—that is, the one that maximizes the accu-
racy of the rule. Finally, break ties by selecting the test with greatest coverage.

5.4.3  Rules versus Decision Lists

Consider the rules produced for a particular class, that is, the algorithm in Figure
5.8 with the outer loop removed. It seems clear from the way that these rules are
produced that they are intended to be interpreted in order—that is, as a decision
list, testing the rules in turn until one applies and then using that. This is because
the instances covered by a new rule are removed from the instance set as soon
as the rule is completed (in the third line from the end of the code in Figure 5.8);
thus, subsequent rules are designed for instances that are not covered by the rule.
However, although it appears that we are supposed to check the rules in turn,
we do not have to do so. Consider that any subsequent rules generated for this
class will have the same effect—they all predict the same class. This means that
it does not matter what order they are executed in: Either a rule will be found
that covers this instance, in which case the class in question is predicted, or no
such rule is found, in which case the class is not predicted.

Now return to the overall algorithm. Each class is considered in turn, and rules
are generated that distinguish instances in that class from the others. No ordering
is implied between the rules for one class and those for another. Consequently,
the rules that are produced can be executed independent of order.

Order-independent rules seem to provide more modularity by each acting as
an independent nugget of “knowledge,” but they suffer from the disadvantage that
it is not clear what to do when conflicting rules apply. With rules generated in
this way, a test example may receive multiple classifications—that is, rules that
apply to different classes may accept it. Other test examples may receive no clas-

FIGURE 5.8

Pseudocode for a basic rule learner.

For each class C

 Initialize E to the instance set

 While E contains instances in class C

 Create a rule R with an empty left-hand side that predicts class C

 Until R is perfect (or there are no more attributes to use) do

 For each attribute A not mentioned in R, and each value v,

 Consider adding the condition A=v to the LHS of R

 Select A and v to maximize the accuracy p/t

 (break ties by choosing the condition with the largest p)

 Add A=v to R

 Remove the instances covered by R from E

5.4  Covering Algorithms: Constructing Rules   159

160    CHAPTER 5  Algorithms: The Basic Methods

sification at all. A simple strategy to force a decision in these ambiguous cases is
to choose, from the classifications that are predicted, the one with the most train-
ing examples or, if no classification is predicted, to choose the category with the
most training examples overall. These difficulties do not occur with decision lists
because they are meant to be interpreted in order and execution stops as soon as
one rule applies: the addition of a default rule at the end ensures that any test
instance receives a classification. It is possible to generate good decision lists for
the multiclass case using a slightly different method.

Methods such as PRISM can be described as separate-and-conquer algorithms:
you identify a rule that covers many instances in the class (and excludes ones not
in the class), separate out the covered instances because they are already taken
care of by the rule, and continue the process on those that are left. This contrasts
nicely with the divide-and-conquer approach of decision trees. The separate step
greatly increases the efficiency of the method because the instance set continually
shrinks as the operation proceeds.

5.5	MINING ASSOCIATION RULES
Association rules are like classification rules. You could find them in the same
way, by executing a divide-and-conquer rule-induction procedure for each possi-
ble expression that could occur on the right side of the rule. But not only might
any attribute occur on the right side with any possible value; a single association
rule often predicts the value of more than one attribute. To find such rules, you
would have to execute the rule-induction procedure once for every possible com-
bination of attributes, with every possible combination of values, on the right
side. That would result in an enormous number of association rules, which would
then have to be pruned down on the basis of their coverage (the number of
instances that they predict correctly) and their accuracy (the same number
expressed as a proportion of the number of instances to which the rule applies).
This approach is not feasible. (Note that what we are calling coverage is often
called support and what we are calling accuracy is often called confidence.)

Instead, we capitalize on the fact that we are only interested in association
rules with high coverage. We ignore, for the moment, the distinction between
the left and right sides of a rule and seek combinations of attribute–value pairs
that have a prespecified minimum coverage. These are called item sets: an
attribute–value pair is an item. The terminology derives from market basket anal-
ysis, in which the items are articles in your shopping cart and the supermarket
manager is looking for associations among these purchases.

5.5.1  Item Sets

The first column of Table 5.10 shows the individual items for the weather data of
Table 1.2, with the number of times each item appears in the dataset given at the

Table 5.10 Item Sets for the Weather Data with Coverage 2 or Greater

One-Item Sets Two-Item Sets Three-Item Sets Four-Item Sets

1 Outlook = sunny (5) Outlook = sunny Outlook = sunny Outlook = sunny

Temperature = mild (2) Temperature = hot Temperature = hot

Humidity = high (2) Humidity = high

play = no (2)

2 Outlook = overcast (4) Outlook = sunny Outlook = sunny Outlook = sunny

Temperature = hot (2) Temperature = hot Humidity = high

Play = no (2) Windy = false

Play = no (2)

3 Outlook = rainy (5) Outlook = sunny Outlook = sunny Outlook = overcast

Humidity = normal (2) Humidity = normal Temperature = hot

Play = yes (2) Windy = false

Play = yes (2)

4 Temperature = cool (4) Outlook = sunny Outlook = sunny Outlook = rainy

Humidity = high (3) Humidity = high Temperature = mild

Windy = false (2) Windy = false

Play = yes (2)

5 Temperature = mild (6) Outlook = sunny Outlook = sunny Outlook = rainy

Windy = true (2) Humidity = high Humidity = normal

Play = no (3) Windy = false

Play = yes (2)

6 Temperature = hot (4) Outlook = sunny Outlook = sunny Temperature = cool

Windy = false (3) Windy = false Humidity = normal

Play = no (2) Windy = false

Play = yes (2)

7 Humidity = normal (7) Outlook = sunny Outlook = overcast

Play = yes (2) Temperature = hot

Windy = false (2)

8 Humidity = high (7) Outlook = sunny Outlook = overcast

Play = no (3) Temperature = hot

Play = yes (2)

5.5  Mining Association Rules   161

162    CHAPTER 5  Algorithms: The Basic Methods

Table 5.10 Item Sets for the Weather Data with Coverage 2 or Greater Continued

One-Item Sets Two-Item Sets Three-Item Sets Four-Item Sets

9 Windy = true (6) Outlook = overcast Outlook = overcast

Temperature = hot (2) Humidity = normal

Play = yes (2)

10 Windy = false (8) Outlook = overcast Outlook = overcast

Humidity = normal (2) Humidity = high

Play = yes (2)

11 Play = yes (9) Outlook = overcast Outlook = overcast

Humidity = high (2) Windy = true

Play = yes (2)

12 Play = no (5) Outlook = overcast Outlook = overcast

Windy = true (2) Windy = false

Play = yes (2)

13 Outlook = overcast Outlook = rainy

Windy = false (2) Temperature = cool

Humidity = normal
(2)

.

38 Humidity = normal Humidity = normal

Windy = false (4) Windy = false

Play = yes (4)

39 Humidity = normal Humidity = high

Play = yes (6) Windy = false

Play = no (2)

40 Humidity = high

Windy = true (3)

.

47 Windy = false

Play = no (2)

right. These are the one-item sets. The next step is to generate the two-item sets
by making pairs of one-item ones. Of course, there is no point in generating a set
containing two different values of the same attribute (such as outlook = sunny
and outlook = overcast), because that cannot occur in any actual instance.

Assume that we seek association rules with minimum coverage 2; thus, we
discard any item sets that cover fewer than two instances. This leaves 47 two-item
sets, some of which are shown in the second column along with the number of
times they appear. The next step is to generate the three-item sets, of which 39
have a coverage of 2 or greater. There are 6 four-item sets, and no five-item
sets—for this data, a five-item set with coverage 2 or greater could only correspond
to a repeated instance. The first row of the table, for example, shows that there
are five days when outlook = sunny, two of which have temperature = mild, and,
in fact, on both of those days humidity = high and play = no as well.

5.5.2  Association Rules

Shortly we will explain how to generate these item sets efficiently. But first let us
finish the story. Once all item sets with the required coverage have been gener-
ated, the next step is to turn each into a rule, or set of rules, with at least the
specified minimum accuracy. Some item sets will produce more than one rule;
others will produce none. For example, there is one three-item set with a cover-
age of 4 (row 38 of Table 5.10):

humidity = normal, windy = false, play = yes

This set leads to seven potential rules:

If humidity = normal and windy = false then play = yes        	 5/4
If humidity = normal and play = yes then windy = false        	 5/6
If windy = false and play = yes then humidity = normal        	 5/6
If humidity = normal then windy = false and play = yes        	 5/7
If windy = false then humidity = normal and play = yes        	 5/8
If play = yes then humidity = normal and windy = false        	 5/9
If – then humidity = normal and windy = false and play = yes  	4/12

The figures at the right show the number of instances for which all three con-
ditions are true—that is, the coverage—divided by the number of instances for
which the conditions in the antecedent are true. Interpreted as a fraction, they
represent the proportion of instances on which the rule is correct—that is, its
accuracy. Assuming that the minimum specified accuracy is 100 percent, only the
first of these rules will make it into the final rule set. The denominators of the
fractions are readily obtained by looking up the antecedent expression in Table
5.10 (though some are not shown in the table). The final rule shown here has no
conditions in the antecedent, and its denominator is the total number of instances
in the dataset.

Table 5.11 shows the final rule set for the weather data, with minimum cover-
age 2 and minimum accuracy 100 percent, sorted by coverage. There are 58 rules,

5.5  Mining Association Rules   163

164    CHAPTER 5  Algorithms: The Basic Methods

Table 5.11 Association Rules for the Weather Data

Association Rule Coverage Accuracy

1 Humidity = normal windy = false ⇒ Play = yes 5 100%

2 Temperature = cool ⇒ Humidity = normal 5 100%

3 Outlook = overcast ⇒ Play = yes 5 100%

4 Temperature = cool play = yes ⇒ Humidity = normal 3 100%

5 Outlook = rainy windy = false ⇒ Play = yes 3 100%

6 Outlook = rainy play = yes ⇒ Windy = false 3 100%

7 Outlook = sunny humidity = high ⇒ Play = no 3 100%

8 Outlook = sunny play = no ⇒ Humidity = high 3 100%

9 Temperature = cool windy = false ⇒ Humidity = normal 2 100%
Play = yes

10 Temperature = cool humidity = normal windy
= false

⇒ Play = yes 2 100%

11 Temperature = cool windy = false play = yes ⇒ Humidity = normal 2 100%

12 Outlook = rainy humidity = normal windy
= false

⇒ Play = yes 2 100%

13 Outlook = rainy humidity = normal play = yes ⇒ Windy = false 2 100%

14 Outlook = rainy temperature = mild windy
= false

⇒ Play = yes 2 100%

15 Outlook = rainy temperature = mild play
= yes

⇒ Windy = false 2 100%

16 Temperature = mild windy = false play = yes ⇒ Outlook = rainy 2 100%

17 Outlook = overcast temperature = hot ⇒ Windy = false 2 100%
Play = yes

18 Outlook = overcast windy = false ⇒ Temperature = hot 2 100%
Play = yes

19 Temperature = hot play = yes ⇒ Outlook = overcast 2 100%
Windy = false

20 Outlook = overcast temperature = hot windy
= false

⇒ Play = yes 2 100%

21 Outlook = overcast temperature = hot play
= yes

⇒ Windy = false 2 100%

Table 5.11 Continued

Association Rule Coverage Accuracy

22 Outlook = overcast windy = false play = yes ⇒ Temperature = hot 2 100%

23 Temperature = hot windy = false play = yes ⇒ Outlook = overcast 2 100%

24 Windy = false play = no ⇒ Outlook = sunny 2 100%
Humidity = high

25 Outlook = sunny humidity = high windy
= false

⇒ Play = no 2 100%

26 Outlook = sunny windy = false play = no ⇒ Humidity = high 2 100%

27 Humidity = high windy = false play = no ⇒ Outlook = sunny 2 100%

28 Outlook = sunny temperature = hot ⇒ Humidity = high 2 100%
Play = no

29 Temperature = hot play = no ⇒ Outlook = sunny 2 100%
Humidity = high

30 Outlook = sunny temperature = hot humidity
= high

⇒ Play = no 2 100%

31 Outlook = sunny temperature = hot play
= no

⇒ Humidity = high 2 100%

… … … …

58 Outlook = sunny temperature = hot ⇒ Humidity = high 2 100%

3 with coverage 4, 5 with coverage 3, and 50 with coverage 2. Only 7 have two
conditions in the consequent, and none has more than two. The first rule comes
from the item set described previously. Sometimes several rules arise from the
same item set. For example, rules 9, 10, and 11 all arise from the four-item set in
row 6 of Table 5.10:

temperature = cool, humidity = normal, windy = false, play = yes

which has coverage 2. Three subsets of this item set also have coverage 2:

temperature = cool, windy = false
temperature = cool, humidity = normal, windy = false
temperature = cool, windy = false, play = yes

and these lead to rules 9, 10, and 11, all of which are 100 percent accurate (on
the training data).

5.5  Mining Association Rules   165

166    CHAPTER 5  Algorithms: The Basic Methods

5.5.3  Generating Rules Efficiently

We now consider in more detail an algorithm for producing association rules with
specified minimum coverage and accuracy. There are two stages: generating item
sets with the specified minimum coverage and from each item set determining
the rules that have the specified minimum accuracy.

The first stage proceeds by generating all one-item sets with the given minimum
coverage (the first column of Table 5.10) and then using this to generate the two-
item sets (second column), three-item sets (third column), and so on. Each oper-
ation involves a pass through the dataset to count the items in each set, and after
the pass the surviving item sets are stored in a hash table—a standard data struc-
ture that allows elements stored in it to be found quickly. From the one-item sets,
candidate two-item sets are generated, and then a pass is made through the dataset,
counting the coverage of each two-item set; at the end, the candidate sets with
less than minimum coverage are removed from the table. The candidate two-item
sets are simply all of the one-item sets taken in pairs, because a two-item set cannot
have the minimum coverage unless both its constituent one-item sets have
minimum coverage, too. This applies in general: a three-item set can only have
the minimum coverage if all three of its two-item subsets have minimum coverage
as well, and similarly for four-item sets.

An example will help to explain how candidate item sets are generated.
Suppose there are five three-item sets—(A B C), (A B D), (A C D), (A C E), and (B
C D)—where, for example, A is a feature such as outlook = sunny. The union of
the first two, (A B C D), is a candidate four-item set because its other three-item
subsets (A C D) and (B C D) have greater than minimum coverage. If the three-
item sets are sorted into lexical order, as they are in this list, then we need only
consider pairs whose first two members are the same. For example, we do not
consider (A C D) and (B C D) because (A B C D) can also be generated from
(A B C) and (A B D), and if these two are not candidate three-item sets, then
(A B C D) cannot be a candidate four-item set. This leaves the pairs (A B C) and
(A B D), which we have already explained, and (A C D) and (A C E). This second
pair leads to the set (A C D E) whose three-item subsets do not all have the
minimum coverage, so it is discarded. The hash table assists with this check: we
simply remove each item from the set in turn and check that the remaining three-
item set is indeed present in the hash table. Thus, in this example there is only
one candidate four-item set, (A B C D). Whether or not it actually has minimum
coverage can only be determined by checking the instances in the dataset.

The second stage of the procedure takes each item set and generates rules
from it, checking that they have the specified minimum accuracy. If only rules
with a single test on the right side were sought, it would be simply a matter of
considering each condition in turn as the consequent of the rule, deleting it from
the item set, and dividing the coverage of the entire item set by the coverage of
the resulting subset—obtained from the hash table—to yield the accuracy of the
corresponding rule. Given that we are also interested in association rules with

multiple tests in the consequent, it looks like we have to evaluate the effect of
placing each subset of the item set on the right side, leaving the remainder of the
set as the antecedent.

This brute-force method will be excessively computation intensive unless item
sets are small, because the number of possible subsets grows exponentially with
the size of the item set. However, there is a better way. Note that if the double-
consequent rule

If windy = false and play = no then outlook = sunny
  and humidity = high

holds with a given minimum coverage and accuracy, then both single-consequent
rules formed from the same item set must also hold:

If humidity = high and windy = false and play = no
   then outlook = sunny
If outlook = sunny and windy = false and play = no
   then humidity = high

Conversely, if one or other of the single-consequent rules does not hold, there
is no point in considering the double-consequent one. This gives a way of building
up from single-consequent rules to candidate double-consequent ones, from
double-consequent rules to candidate triple-consequent ones, and so on. Of course,
each candidate rule must be checked against the hash table to see if it really does
have more than the specified minimum accuracy. But this generally involves
checking far fewer rules than the brute force method. It is interesting that this
way of building up candidate (n + 1)-consequent rules from actual n-consequent
ones is really just the same as building up candidate (n + 1)-item sets from actual
n-item sets, described earlier.

5.5.4  Discussion

Association rules are often sought for very large datasets, and efficient algorithms
are highly valued. The method described previously makes one pass through the
dataset for each different size of item set. Sometimes the dataset is too large to
read in to main memory and must be kept on disk; then it may be worth reducing
the number of passes by checking item sets of two consecutive sizes in one go.
For example, once sets with two items have been generated, all sets of three items
could be generated from them before going through the instance set to count the
actual number of items in the sets. More three-item sets than necessary would be
considered, but the number of passes through the entire dataset would be
reduced.

In practice, the amount of computation needed to generate association rules
depends critically on the minimum coverage specified. The accuracy has less
influence because it does not affect the number of passes that we must make
through the dataset. In many situations we will want to obtain a certain number
of rules—say 50—with the greatest possible coverage at a prespecified minimum

5.5  Mining Association Rules   167

168    CHAPTER 5  Algorithms: The Basic Methods

accuracy level. One way to do this is to begin by specifying the coverage to be
rather high and to then successively reduce it, reexecuting the entire rule-finding
algorithm for each coverage value and repeating this until the desired number of
rules has been generated.

The tabular input format that we use throughout this book, and in particular
a standard ARFF file based on it, is inefficient for many association-rule problems.
Association rules are often used when attributes are binary—either present or
absent—and most of the attribute values associated with a given instance are
absent. This is a case for sparse data representation; the same algorithm for finding
association rules applies.

5.6	LINEAR MODELS
The methods we have been looking at for decision trees and rules work most
naturally with nominal attributes. They can be extended to numeric attributes
either by incorporating numeric-value tests directly into the decision tree or rule
induction scheme or by prediscretizing numeric attributes into nominal ones.
However, there are methods that work most naturally with numeric attributes.
We look at simple ones here, ones that form components of more complex learn-
ing methods, which we will examine later.

5.6.1  Numeric Prediction: Linear Regression

When the outcome, or class, is numeric, and all the attributes are numeric, linear
regression is a natural technique to consider. This is a staple method in statistics.
The idea is to express the class as a linear combination of the attributes, with
predetermined weights:

x w w a w a w ak k= + + + +0 1 1 2 2 . . .

where x is the class; a1, a2, . . . , ak are the attribute values; and w0, w1, . . . , wk
are weights.

The weights are calculated from the training data. Here the notation gets a
little heavy, because we need a way of expressing the attribute values for each
training instance. The first instance will have a class, say x(1), and attribute values
a1

(1), a2
(1), . . . , ak

(1), where the superscript denotes that it is the first example.
Moreover, it is notationally convenient to assume an extra attribute a0 whose value
is always 1.

The predicted value for the first instance’s class can be written as

w a w a w a w a w ak k j j

j

k

0 0
1

1 1
1

2 2
1 1 1

0

() () () () ()

=
+ + + + = ∑. . .

This is the predicted, not the actual, value for the first instance’s class. Of interest
is the difference between the predicted and the actual values. The method of

linear regression is to choose the coefficients wj—there are k + 1 of them—to
minimize the sum of the squares of these differences over all the training instances.
Suppose there are n training instances; denote the ith one with a superscript (i).
Then the sum of the squares of the differences is

x w ai
j j

i

j

k

i

n
() ()

==
−





∑∑

01

2

where the expression inside the parentheses is the difference between the ith
instance’s actual class and its predicted class. This sum of squares is what we have
to minimize by choosing the coefficients appropriately.

This is all starting to look rather formidable. However, the minimization tech-
nique is straightforward if you have the appropriate math background. Suffice it
to say that given enough examples—roughly speaking, more examples than attri-
butes—choosing weights to minimize the sum of the squared differences is really
not difficult. It does involve a matrix inversion operation, but this is readily avail-
able as prepackaged software.

Once the math has been accomplished, the result is a set of numeric weights,
based on the training data, which we can use to predict the class of new instances.
An example of this can be seen when looking at the CPU performance data. A
formula can be used to predict the CPU performance of new test instances.

Linear regression is an excellent, simple method for numeric prediction, and
it has been widely used in statistical applications for decades. Of course, linear
models suffer from the disadvantage of, well, linearity. If the data exhibits a non-
linear dependency, the best-fitting straight line will be found, where “best” is
interpreted as the least mean-squared difference. This line may not fit very well.
However, linear models serve well as building blocks for more complex learning
methods.

5.6.3  Linear Classification: Logistic Regression

Linear regression can easily be used for classification in domains with numeric
attributes. Indeed, we can use any regression technique, whether linear or non-
linear, for classification. The trick is to perform a regression for each class, setting
the output equal to one for training instances that belong to the class and zero
for those that do not. The result is a linear expression for the class. Then, given
a test example of unknown class, calculate the value of each linear expression
and choose the one that is largest. This method is sometimes called multiresponse
linear regression.

One way of looking at multiresponse linear regression is to imagine that it
approximates a numeric membership function for each class. The membership
function is 1 for instances that belong to that class and 0 for other instances. Given
a new instance, we calculate its membership for each class and select the
biggest.

5.6  Linear Models   169

170    CHAPTER 5  Algorithms: The Basic Methods

Multiresponse linear regression often yields good results in practice. However,
it has two drawbacks. First, the membership values it produces are not proper
probabilities because they can fall outside the range 0 to 1. Second, least-squares
regression assumes that the errors are not only statistically independent but are
also normally distributed with the same standard deviation, an assumption that is
blatantly violated when the method is applied to classification problems because
the observations only ever take on the values 0 and 1.

A related statistical technique called logistic regression does not suffer from
these problems. Instead of approximating the 0 and 1 values directly, thereby
risking illegitimate probability values when the target is overshot, logistic regres-
sion builds a linear model based on a transformed target variable.

Suppose first that there are only two classes. Logistic regression replaces the
original target variable

Pr 1 1 2a a ak, , . . . ,[]

which cannot be approximated accurately using a linear function, with

log Pr Pr1 1 11 2 1 2a a a a a ak k, , . . . , , , . . . ,[]() − []()

The resulting values are no longer constrained to the interval from 0 to 1 but
can lie anywhere between negative infinity and positive infinity. Figure 5.9(a) plots
the transformation function, which is often called the logit transformation.

The transformed variable is approximated using a linear function just like the
ones generated by linear regression. The resulting model is

Pr 1 1 11 2 0 1 1a a a w w a w ak k k, , . . . , exp . . .[] = + − − − −()()

with weights w. Figure 5.9(b) shows an example of this function in one dimen-
sion, with two weights w0 = 0.5 and w1 = 1.

Just as in linear regression, weights must be found that fit the training data
well. Linear regression measures the goodness of fit using the squared error. In
logistic regression the log-likelihood of the model is used instead. This is given
by

1 1 1 1
1

1 2−() − []() +()

=

() () () ()∑ x a a a x ai

i

n
i i

k
i ilog , , . . . , logPr Pr 11 2

i i
k
ia a() () ()[](), , . . . ,

where the x(i) are either zero or one.
The weights wi need to be chosen to maximize the log-likelihood. There are

several methods for solving this maximization problem. A simple one is to itera-
tively solve a sequence of weighted least-squares regression problems until
the log-likelihood converges to a maximum, which usually happens in a few
iterations.

To generalize logistic regression to several classes, one possibility is to proceed
in the way described previously for multiresponse linear regression by performing
logistic regression independently for each class. Unfortunately, the resulting prob-

FIGURE 5.9

Logistic regression: (a) the logit transform and (b) an example logistic regression function.

–5

–4

–3

–2

–1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
(a)

0

0.2

0.4

0.6

0.8

1

–10 –5 0 5 10

(b)

ability estimates will not sum to 1. To obtain proper probabilities it is necessary
to couple the individual models for each class. This yields a joint optimization
problem, and there are efficient solution methods for this.

A conceptually simpler and very general way to address multiclass problems
is known as pairwise classification. Here a classifier is built for every pair of
classes, using only the instances from these two classes. The output on an unknown
test example is based on which class receives the most votes. This method
generally yields accurate results in terms of classification error. It can also be
used to produce probability estimates by applying a method called pairwise

5.6  Linear Models   171

172    CHAPTER 5  Algorithms: The Basic Methods

coupling, which calibrates the individual probability estimates from the different
classifiers.

If there are k classes, pairwise classification builds a total of k(k − 1)/2 classi-
fiers. Although this sounds unnecessarily computation intensive, it is not. In fact,
if the classes are evenly populated pairwise classification is at least as fast as any
other multiclass method. The reason is that each of the pairwise learning problem
only involves instances pertaining to the two classes under consideration. If n
instances are divided evenly among k classes, this amounts to 2n/k instances per
problem. Suppose the learning algorithm for a two-class problem with n instances
takes time proportional to n seconds to execute. Then the run time for pairwise
classification is proportional to k(k − 1)/2 × 2n/k seconds, which is (k − 1)n. In
other words, the method scales linearly with the number of classes. If the learning
algorithm takes more time—say proportional to n2—the advantage of the pairwise
approach becomes even more pronounced.

The use of linear functions for classification can easily be visualized in instance
space. The decision boundary for two-class logistic regression lies where the pre-
diction probability is 0.5, that is,

Pr 1 1 1 0 51 2 0 1 1a a a w w a w ak k k, , . . . , exp[] = + − − − −()() =

This occurs when

− − − − =w w a w ak k0 1 1 0. . .

Because this is a linear equality in the attribute values, the boundary is a linear
plane, or hyperplane, in instance, space. It is easy to visualize sets of points that
cannot be separated by a single hyperplane, and these cannot be discriminated
correctly by logistic regression.

Multiresponse linear regression suffers from the same problem. Each class
receives a weight vector calculated from the training data. Focus for the moment
on a particular pair of classes. Suppose the weight vector for class 1 is

w w a w a w ak k0
1

1
1

1 2
1

2
1() () () ()+ + + +. . .

and it is the same for class 2 with appropriate superscripts. Then, an instance will
be assigned to class 1 rather than class 2 if

w w a w a w w a w ak k k k0
1

1
1

1
1

0
2

1
2

1
2() () () () () ()+ + + > + + +.

In other words, it will be assigned to class 1 if

w w w w a w w ak k k0
1

0
2

1
1

1
2

1
1 2 0() () () () () ()−() + −() + + −() >. . .

This is a linear inequality in the attribute values, so the boundary between each
pair of classes is a hyperplane. The same holds true when performing pairwise
classification. The only difference is that the boundary between two classes is
governed by the training instances in those classes and is not influenced by the
other classes.

5.6.4  Linear Classification Using the Perceptron

Logistic regression attempts to produce accurate probability estimates by maximiz-
ing the probability of the training data. Of course, accurate probability estimates
lead to accurate classifications. However, it is not necessary to perform probabil-
ity estimation if the sole purpose of the model is to predict class labels. A different
approach is to learn a hyperplane that separates the instances pertaining to the
different classes—let’s assume that there are only two of them. If the data can be
separated perfectly into two groups using a hyperplane, it is said to be linearly
separable. It turns out that if the data is linearly separable, there is a simple algo-
rithm for finding a separating hyperplane.

The algorithm is called the perceptron learning rule. Before looking at it in
detail, let’s examine the equation for a hyperplane again:

w a w a w a w ak k0 0 1 1 2 2 0+ + + + =. . .

Here, a1, a2, . . . , ak are the attribute values, and w0, w1, . . . , wk are the weights
that define the hyperplane. We will assume that each training instance a1, a2, . . . is
extended by an additional attribute a0 that always has the value 1 (as we did in
the case of linear regression). This extension, which is called the bias, just means
that we don’t have to include an additional constant element in the sum. If the
sum is greater than zero, we will predict the first class; otherwise, we will predict
the second class. We want to find values for the weights so that the training data
is correctly classified by the hyperplane.

Figure 5.10(a) gives the perceptron learning rule for finding a separating hyper-
plane. The algorithm iterates until a perfect solution has been found, but it will
only work properly if a separating hyperplane exists—that is, if the data is linearly
separable. Each iteration goes through all the training instances. If a misclassified
instance is encountered, the parameters of the hyperplane are changed so that
the misclassified instance moves closer to the hyperplane or maybe even across
the hyperplane onto the correct side. If the instance belongs to the first class, this
is done by adding its attribute values to the weight vector; otherwise, they are
subtracted from it.

To see why this works, consider the situation after an instance a pertaining
to the first class has been added:

w a a w a a w a a w a ak k k0 0 0 1 1 1 2 2 2+() + +() + +() + + +(). . .

This means the output for a has increased by

a a a a a a a ak k0 0 1 1 2 2× + × + × + + ×. . .

This number is always positive. Thus, the hyperplane has moved in the correct
direction for classifying instance a as positive. Conversely, if an instance belonging
to the second class is misclassified, the output for that instance decreases after
the modification, again moving the hyperplane to the correct direction.

5.6  Linear Models   173

174    CHAPTER 5  Algorithms: The Basic Methods

FIGURE 5.10

The perceptron: (a) learning rule and (b) representation as a neural network.

Set all weights to zero

Until all instances in the training data are classified correctly

 For each instance I in the training data

 If I is classified incorrectly by the perceptron

 If I belongs to the first class add it to the weight vector

 else subtract it from the weight vector

(a)

1
(“bias”)

Attribute
a1

Attribute
a2

Attribute
a3

w0 w2w1 wk

(b)

These corrections are incremental and can interfere with earlier updates.
However, it can be shown that the algorithm converges in a finite number of
iterations if the data is linearly separable. Of course, if the data is not linearly
separable, the algorithm will not terminate, so an upper bound needs to be
imposed on the number of iterations when this method is applied in practice.

The resulting hyperplane is called a perceptron, and it’s the grandfather of
neural networks. Figure 5.10(b) represents the perceptron as a graph with nodes
and weighted edges, imaginatively termed a “network of neurons.” There are two
layers of nodes: input and output. The input layer has one node for every attribute,
plus an extra node that is always set to one. The output layer consists of just one
node. Every node in the input layer is connected to the output layer. The connec-
tions are weighted, and the weights are those numbers found by the perceptron
learning rule.

When an instance is presented to the perceptron, its attribute values serve to
“activate” the input layer. They are multiplied by the weights and summed up at

the output node. If the weighted sum is greater than 0, the output signal is 1,
representing the first class; otherwise, it is −1, representing the second.

5.6.5  Linear Classification Using Winnow

The perceptron algorithm is not the only method that is guaranteed to find a
separating hyperplane for a linearly separable problem. For datasets with binary
attributes, there is an alternative known as Winnow, shown in Figure 5.11(a). The
structure of the two algorithms is similar. Like the perceptron, Winnow only

FIGURE 5.11

The Winnow algorithm: (a) the unbalanced version and (b) the balanced version.

While some instances are misclassified

 for every instance a

 classify a using the current weights

 if the predicted class is incorrect

 if a belongs to the first class

 for each ai that is 1, multiply wi by a
 (if ai is 0, leave wi unchanged)

 otherwise

 for each ai that is 1, divide wi by a
 (if ai is 0, leave wi unchanged)

(a)

 While some instances are misclassified

 for every instance a

 classify a using the current weights

 if the predicted class is incorrect

 if a belongs to the first class

 for each ai that is 1,

 multiply wi
+ by a

 divide wi
– by a

 (if ai is 0, leave wi
+ and wi

- unchanged)

 otherwise for

 for each ai that is 1,

 multiply wi
– by a

 divide wi
+ by a

 (if ai is 0, leave wi
+ and wi

- unchanged)

(b)

5.6  Linear Models   175

176    CHAPTER 5  Algorithms: The Basic Methods

updates the weight vector when a misclassified instance is encountered—it is
mistake driven.

The two methods differ in how the weights are updated. The perceptron rule
employs an additive mechanism that alters the weight vector by adding (or sub-
tracting) the instance’s attribute vector. Winnow employs multiplicative updates
and alters weights individually by multiplying them by the user-specified param-
eter α (or its inverse). The attribute values ai are either 0 or 1 because we are
working with binary data. Weights are unchanged if the attribute value is 0,
because then they do not participate in the decision. Otherwise, the multiplier is
α if that attribute helps to make a correct decision and 1/α if it does not.

Another difference is that the threshold in the linear function is also a user-
specified parameter. We call this threshold θ and classify an instance as belonging
to class 1 if and only if

w a w a w a w ak k0 0 1 1 2 2+ + + + >. . . q

The multiplier α needs to be greater than 1. The wi are set to a constant at the
start.

The algorithm we have described doesn’t allow negative weights, which—
depending on the domain—can be a drawback. However, there is a version, called
Balanced Winnow, which does allow them. This version maintains two weight
vectors, one for each class. An instance is classified as belonging to class 1 if

w w a w w a w w ak k k0 0 0 1 1 1
+ − + − + −−() + −() + + −() >. . . q

Figure 5.11(b) shows the balanced algorithm.
Winnow effectively homes in on the relevant features in a dataset—therefore

it is called an attribute-efficient learner. That means that it may be a good candi-
date algorithm if a dataset has many (binary) features and most of them are irrel-
evant. Both Winnow and the perceptron algorithm can be used in an online setting
in which new instances arrive continuously, because they can incrementally
update their hypotheses as new instances arrive.

5.7	 INSTANCE-BASED LEARNING
In instance-based learning the training examples are stored verbatim, and a dis-
tance function is used to determine which member of the training set is closest
to an unknown test instance. Once the nearest training instance has been located,
its class is predicted for the test instance. The only remaining problem is defining
the distance function, and that is not difficult to do, particularly if the attributes
are numeric.

5.7.1  The Distance Function

Although there are other possible choices, most instance-based learners use Euclid-
ean distance. The distance between an instance with attribute values a1

(1), a2
(1), . . . ,

ak
(1) (where k is the number of attributes) and one with values a1

(2), a2
(2), . . . , ak

(2)
is defined as

a a a a a ak k1
1

1
2 2

2
1

2
2 2 1 2 2() () () () () ()−() + −() + + −(). . .

When comparing distances, it is not necessary to perform the square root opera-
tion; the sums of squares can be compared directly.

One alternative to the Euclidean distance is the Manhattan or city-block metric,
where the difference between attribute values is not squared but just added up
(after taking the absolute value). Others are obtained by taking powers higher
than the square. Higher powers increase the influence of large differences at the
expense of small differences. Generally, the Euclidean distance represents a good
compromise. Other distance metrics may be more appropriate in special circum-
stances. The key is to think of actual instances and what it means for them to be
separated by a certain distance—what would twice that distance mean, for
example?

Different attributes are measured on different scales, so if the Euclidean dis-
tance formula were used directly, the effects of some attributes might be com-
pletely dwarfed by others that had larger scales of measurement. Consequently,
it is usual to normalize all attribute values to lie between 0 and 1, by calculating

a
v v

v v
i

i i

i i

= −
−
min

max min

where vi is the actual value of attribute i, and the maximum and minimum are
taken over all instances in the training set.

These formulae implicitly assume numeric attributes. Here, the difference
between two values is just the numeric difference between them, and it is this
difference that is squared and added to yield the distance function. For nominal
attributes that take on values that are symbolic rather than numeric, the difference
between two values that are not the same is often taken to be one, whereas if the
values are the same the difference is zero. No scaling is required in this case
because only the values 0 and 1 are used.

A common policy for handling missing values is as follows. For nominal attri-
butes, assume that a missing feature is maximally different from any other feature
value. Thus, if either or both values are missing, or if the values are different, the
difference between them is taken as one; the difference is zero only if they are
not missing and both are the same. For numeric attributes, the difference between
two missing values is also taken as one. However, if just one value is missing, the
difference is often taken as either the (normalized) size of the other value or one
minus that size, whichever is larger. This means that if values are missing, the
difference is as large as it can possibly be.

5.7.2  Finding Nearest Neighbors Efficiently

Although instance-based learning is simple and effective, it is often slow. The
obvious way to find which member of the training set is closest to an unknown

5.7  Instance-Based Learning   177

178    CHAPTER 5  Algorithms: The Basic Methods

test instance is to calculate the distance from every member of the training set
and select the smallest. This procedure is linear in the number of training instances:
in other words, the time it takes to make a single prediction is proportional to the
number of training instances. Processing an entire test set takes time proportional
to the product of the number of instances in the training and test sets.

Nearest neighbors can be found more efficiently by representing the training
set as a tree, although it is not obvious how. One suitable structure is a kD-tree.
This is a binary tree that divides the input space with a hyperplane and then splits
each partition again, recursively. All splits are made parallel to one of the axes,
either vertically or horizontally, in the two-dimensional case. The data structure
is called a kD-tree because it stores a set of points in k- dimensional space, k being
the number of attributes.

Figure 5.12(a) gives a small example with k = 2, and Figure 5.12(b) shows the
four training instances it represents, along with the hyperplanes that constitute
the tree. Note that these hyperplanes are not decision boundaries: decisions are
made on a nearest-neighbor basis as explained later. The first split is horizontal
(h), through the point (7,4)—this is the tree’s root. The left branch is not split
further: it contains the single point (2,2), which is a leaf of the tree. The right
branch is split vertically (v) at the point (6,7). Its left child is empty, and its right
child contains the point (3,8). As this example illustrates, each region contains
just one point—or, perhaps, no points. Sibling branches of the tree—for example,
the two daughters of the root in Figure 5.12(a)—are not necessarily developed to
the same depth. Every point in the training set corresponds to a single node, and
up to half are leaf nodes.

FIGURE 5.12

A kD-tree for four training instances: (a) the tree and (b) instances and splits.

(2,2)

(7,4); h

(6,7); v

(3,8)
(a)

a1

a2

(2,2)

(7,4)

(6,7)

(3,8)

(b)

How do you build a kD-tree from a dataset? Can it be updated efficiently as
new training examples are added? And how does it speed up nearest-neighbor
calculations? We tackle the last question first.

To locate the nearest neighbor of a given target point, follow the tree down
from its root to locate the region containing the target. Figure 5.13 shows a space
like that of Figure 5.12(b) but with a few more instances and an extra boundary.
The target, which is not one of the instances in the tree, is marked by a star. The
leaf node of the region containing the target is colored black. This is not neces-
sarily the target’s closest neighbor, as this example illustrates, but it is a good first
approximation. In particular, any nearer neighbor must lie closer—within the
dashed circle in Figure 5.13.

To determine whether one exists, first check whether it is possible for a closer
neighbor to lie within the node’s sibling. The black node’s sibling is shaded in
Figure 5.13, and the circle does not intersect it, so the sibling cannot contain a
closer neighbor. Then back up to the parent node and check its sibling—which
here covers everything above the horizontal line. In this case it must be explored,
because the area it covers intersects with the best circle so far. To explore it, find
its daughters (the original point’s two aunts), check whether they intersect the

FIGURE 5.13

Using a kD-tree to find the nearest neighbor of the star.

5.7  Instance-Based Learning   179

180    CHAPTER 5  Algorithms: The Basic Methods

circle (the left one does not, but the right one does), and descend to see whether
it contains a closer point (it does).

In a typical case, this algorithm is far faster than examining all points to find
the nearest neighbor. The work involved in finding the initial approximate nearest
neighbor—the black point in Figure 5.13—depends on the depth of the tree, given
by the logarithm of the number of nodes, log2n. The amount of work involved in
backtracking to check whether this really is the nearest neighbor depends a bit
on the tree and on how good the initial approximation is. But for a well-
constructed tree whose nodes are approximately square, rather than long skinny
rectangles, it can also be shown to be logarithmic in the number of nodes.

How do you build a good tree for a set of training examples? The problem
boils down to selecting the first training instance to split at and the direction of
the split. Once you can do that, apply the same method recursively to each child
of the initial split to construct the entire tree.

To find a good direction for the split, calculate the variance of the data points
along each axis individually, select the axis with the greatest variance, and create
a splitting hyperplane perpendicular to it. To find a good place for the hyperplane,
locate the median value along that axis and select the corresponding point. This
makes the split perpendicular to the direction of greatest spread, with half the
points lying on either side. This produces a well-balanced tree. To avoid long
skinny regions, it is best for successive splits to be along different axes, which is
likely because the dimension of greatest variance is chosen at each stage. However,
if the distribution of points is badly skewed, choosing the median value may gen-
erate several successive splits in the same direction, yielding long, skinny hyper-
rectangles. A better strategy is to calculate the mean rather than the median and
use the point closest to that. The tree will not be perfectly balanced, but its regions
will tend to be squarish because there is a greater chance that different directions
will be chosen for successive splits.

An advantage of instance-based learning over most other machine learning
methods is that new examples can be added to the training set at any time. To
retain this advantage when using a kD-tree, we need to be able to update it incre-
mentally with new data points. To do this, determine which leaf node contains
the new point and find its hyperrectangle. If it is empty, simply place the new
point there. Otherwise split the hyperrectangle, splitting it along its longest dimen-
sion to preserve squareness. This simple heuristic does not guarantee that adding
a series of points will preserve the tree’s balance nor that the hyperrectangles will
be well shaped for nearest-neighbor search. It is a good idea to rebuild the tree
from scratch occasionally—for example, when its depth grows to twice the best
possible depth.

As we have seen, kD-trees are good data structures for finding nearest neigh-
bors efficiently. However, they are not perfect. Skewed datasets present a basic
conflict between the desire for the tree to be perfectly balanced and the desire
for regions to be squarish. More important, rectangles—even squares—are not the
best shape to use anyway, because of their corners. If the dashed circle in Figure

5.13 were any bigger, which it would be if the black instance were a little farther
from the target, it would intersect the lower right corner of the rectangle at the
top left and then that rectangle would have to be investigated, too—despite the
fact that the training instances that define it are a long way from the corner in
question. The corners of rectangular regions are awkward.

The solution? Use hyperspheres, not hyperrectangles. Neighboring spheres
may overlap, whereas rectangles can abut, but this is not a problem because the
nearest-neighbor algorithm for kD-trees described previously does not depend on
the regions being disjoint. A data structure called a ball tree defines k-dimensional
hyperspheres (“balls”) that cover the data points, and arranges them into a tree.

Figure 5.14(a) shows 16 training instances in two-dimensional space, overlaid
by a pattern of overlapping circles, and Figure 5.14(b) shows a tree formed from
these circles. Circles at different levels of the tree are indicated by different styles
of dash, and the smaller circles are drawn in shades of gray. Each node of the tree
represents a ball, and the node is dashed or shaded according to the same conven-
tion so that you can identify which level the balls are at. To help you understand
the tree, numbers are placed on the nodes to show how many data points are
deemed to be inside that ball. But be careful; this is not necessarily the same as
the number of points falling within the spatial region that the ball represents. The
regions at each level sometimes overlap, but points that fall into the overlap area
are assigned to only one of the overlapping balls (the diagram does not show
which one). Instead of the occupancy counts in Figure 5.14(b), the nodes of actual
ball trees store the center and radius of their ball; leaf nodes record the points
they contain as well.

To use a ball tree to find the nearest neighbor to a given target, start by travers-
ing the tree from the top down to locate the leaf that contains the target and find
the closest point to the target in that ball. This gives an upper bound for the
target’s distance from its nearest neighbor. Then, just as for the kD-tree, examine
the sibling node. If the distance from the target to the sibling’s center exceeds its
radius plus the current upper bound, it cannot possibly contain a closer point;
otherwise the sibling must be examined by descending the tree further. In Figure
5.15 the target is marked with a star and the black dot is its closest currently
known neighbor. The entire contents of the gray ball can be ruled out: it cannot
contain a closer point because its center is too far away. Proceed recursively back
up the tree to its root, examining any ball that may possibly contain a point nearer
than the current upper bound.

Ball trees are built from the top down, and as with kD-trees the basic problem
is to find a good way of splitting a ball containing a set of data points into two.
In practice you do not have to continue until the leaf balls contain just two points:
you can stop earlier, once a predetermined minimum number is reached—and
the same goes for kD-trees. Here is one possible splitting method. Choose the
point in the ball that is farthest from its center, and then a second point that is
farthest from the first one. Assign all data points in the ball to the closest one of
these two cluster centers, then compute the centroid of each cluster and the

5.7  Instance-Based Learning   181

182    CHAPTER 5  Algorithms: The Basic Methods

FIGURE 5.14

Ball tree for 16 training instances: (a) instances and balls and (b) the tree.

(a)

16

6 10

4624

2 2 4 2 2 2

2 2

(b)

minimum radius required for it to enclose all the data points it represents. This
method has the merit that the cost of splitting a ball containing n points is only
linear in n. There are more elaborate algorithms that produce tighter balls, but
they require more computation. We will not describe sophisticated algorithms for
constructing ball trees or updating them incrementally as new training instances
are encountered.

5.7.3  Discussion

Nearest-neighbor instance-based learning is simple and often works very well. In
the method described previously, each attribute has exactly the same influence
on the decision, just as it does in the Naïve Bayes method. Another problem is
that the database can easily become corrupted by noisy exemplars. One solution
is to adopt the k-nearest-neighbor strategy, where some fixed, small, number k of
nearest neighbors—say five—are located and used together to determine the class
of the test instance through a simple majority vote. (Note that we used k to denote
the number of attributes earlier; this is a different, independent usage.) Another
way of proofing the database against noise is to choose the exemplars that are
added to it selectively and judiciously; improved procedures address these
shortcomings.

The nearest-neighbor method originated many decades ago, and statisticians
analyzed k-nearest-neighbor schemes in the early 1950s. If the number of training
instances is large, it makes intuitive sense to use more than one nearest neighbor,
but clearly this is dangerous if there are few instances. It can be shown that when

FIGURE 5.15

Ruling out an entire ball (gray) based on a target point (star) and its current nearest
neighbor.

5.7  Instance-Based Learning   183

184    CHAPTER 5  Algorithms: The Basic Methods

k and the number n of instances both become infinite in such a way that k/n →
0, the probability of error approaches the theoretic minimum for the dataset. The
nearest-neighbor method was adopted as a classification method in the early 1960s
and has been widely used in the field of pattern recognition for more than three
decades.

Nearest-neighbor classification was notoriously slow until kD-trees began to
be applied in the early 1990s, although the data structure itself was developed
much earlier. In practice, these trees become inefficient when the dimension of
the space increases and are only worthwhile when the number of attributes is
small—up to 10. Ball trees were developed much more recently and are
an instance of a more general structure sometimes called a metric tree. Sophisti-
cated algorithms can create metric trees that deal successfully with thousands
of dimensions.

Instead of storing all training instances, you can compress them into regions.
A simple technique, mentioned at the end of Section 5.1, is to just record the
range of values observed in the training data for each attribute and category. Given
a test instance, you work out which ranges the attribute values fall into and choose
the category with the greatest number of correct ranges for that instance. A
slightly more elaborate technique is to construct intervals for each attribute and
use the training set to count the number of times each class occurs for each inter-
val on each attribute. Numeric attributes can be discretized into intervals, and
“intervals” consisting of a single point can be used for nominal ones. Then, given
a test instance, you can determine which intervals it resides in and classify it by
voting, a method called voting feature intervals. These methods are approximate,
but fast, and can be useful for initial analysis of large datasets.

5.8	CLUSTERING
Clustering techniques apply when there is no class to be predicted but rather
when the instances are to be divided into natural groups. These clusters presum-
ably reflect some mechanism at work in the domain from which instances are
drawn, a mechanism that causes some instances to bear a stronger resemblance
to each other than they do to the remaining instances. Clustering naturally requires
different techniques to the classification and association learning methods we have
considered so far.

The result of clustering can be expressed in different ways. The groups that
are identified may be exclusive so that any instance belongs in only one group.
Or they may be overlapping so that an instance may fall into several groups. Or
they may be probabilistic, whereby an instance belongs to each group with a
certain probability. Or they may be hierarchical, such that there is a crude division
of instances into groups at the top level, and each of these groups is refined
further—perhaps all the way down to individual instances. Really, the choice
among these possibilities should be dictated by the nature of the mechanisms that

are thought to underlie the particular clustering phenomenon. However, because
these mechanisms are rarely known—the very existence of clusters is, after all,
something that we’re trying to discover—and for pragmatic reasons too, the
choice is usually dictated by the clustering tools that are available.

We will examine an algorithm that forms clusters in numeric domains, parti-
tioning instances into disjoint clusters. Like the basic nearest-neighbor method of
instance-based learning, it is a simple and straightforward technique that has been
used for several decades.

5.8.1  Iterative Distance-Based Clustering

The classic clustering technique is called k-means. First, you specify in advance
how many clusters are being sought: this is the parameter k. Then k points are
chosen at random as cluster centers. All instances are assigned to their closest
cluster center according to the ordinary Euclidean distance metric. Next the cen-
troid, or mean, of the instances in each cluster is calculated—this is the “means”
part. These centroids are taken to be new center values for their respective clus-
ters. Finally, the whole process is repeated with the new cluster centers. Iteration
continues until the same points are assigned to each cluster in consecutive rounds,
at which stage the cluster centers have stabilized and will remain the same
forever.

This clustering method is simple and effective. It is easy to prove that choosing
the cluster center to be the centroid minimizes the total squared distance from
each of the cluster’s points to its center. Once the iteration has stabilized, each
point is assigned to its nearest cluster center, so the overall effect is to minimize
the total squared distance from all points to their cluster centers. But the minimum
is a local one; there is no guarantee that it is the global minimum. The final clus-
ters are sensitive to the initial cluster centers. Completely different arrangements
can arise from small changes in the initial random choice. In fact, this is true of
all practical clustering techniques: it is almost always infeasible to find globally
optimal clusters. To increase the chance of finding a global minimum, people often
run the algorithm several times with different initial choices and choose the best
final result—the one with the smallest total squared distance.

It is easy to imagine situations in which k-means fails to find a good clustering.
Consider four instances arranged at the vertices of a rectangle in two-dimensional
space. There are two natural clusters, formed by grouping together the two ver-
tices at either end of a short side. But suppose that the two initial cluster centers
happen to fall at the midpoints of the long sides. This forms a stable configuration.
The two clusters each contain the two instances at either end of a long side—no
matter how great the difference between the long and the short sides.

5.8.2  Faster Distance Calculations

The k-means clustering algorithm usually requires several iterations, each involv-
ing finding the distance of k cluster centers from every instance to determine its

5.8  Clustering   185

186    CHAPTER 5  Algorithms: The Basic Methods

cluster. There are simple approximations that speed this up considerably. For
example, you can project the dataset and make cuts along selected axes, instead
of using the arbitrary hyperplane divisions that are implied by choosing the nearest
cluster center. But this inevitably compromises the quality of the resulting
clusters.

Here’s a better way of speeding things up. Finding the closest cluster center
is not so different from finding nearest neighbors in instance-based learning. Can
the same efficient solutions—kD-trees and ball trees—be used? Yes! Indeed they
can be applied in an even more efficient way, because in each iteration of k-means
all the data points are processed together, whereas in instance-based learning test
instances are processed individually.

First, construct a kD-tree or ball tree for all the data points, which will remain
static throughout the clustering procedure. Each iteration of k-means produces
a set of cluster centers, and all data points must be examined and assigned to the
nearest center. One way of processing the points is to descend the tree from the
root until reaching a leaf and check each individual point in the leaf to find its
closest cluster center. But it may be that the region represented by a higher inte-
rior node falls entirely within the domain of a single cluster center. In that case
all the data points under that node can be processed in one blow!

The aim of the exercise, after all, is to find new positions for the cluster centers
by calculating the centroid of the points they contain. The centroid can be calcu-
lated by keeping a running vector sum of the points in the cluster, and a count
of how many there are so far. At the end, just divide one by the other to find the
centroid. Suppose that with each node of the tree we store the vector sum of the
points within that node and a count of the number of points. If the whole node
falls within the ambit of a single cluster, the running totals for that cluster can be
updated immediately. If not, look inside the node by proceeding recursively down
the tree.

Figure 5.16 shows the same instances and ball tree as Figure 5.14, but with
two cluster centers marked as black stars. Because all instances are assigned to
the closest center, the space is divided in two by the thick line shown in Figure
5.16(a). Begin at the root of the tree in Figure 5.16(b), with initial values for the
vector sum and counts for each cluster; all initial values are zero. Proceed recur-
sively down the tree. When node A is reached, all points within it lie in cluster
1, so cluster 1’s sum and count can be updated with the sum and count for node
A, and we need descend no further. Recursing back to node B, its ball straddles
the boundary between the clusters, so its points must be examined individually.
When node C is reached, it falls entirely within cluster 2; again, we can update
cluster 2 immediately and need descend no further. The tree is only examined
down to the frontier marked by the dashed line in Figure 5.16(b), and the advan-
tage is that the nodes below need not be opened—at least, not on this particular
iteration of k-means. Next time, the cluster centers will have changed and things
may be different.

FIGURE 5.16

A ball tree: (a) two cluster centers and their dividing line and (b) the corresponding tree.

(a)

16

6 10

4624

2 2 4 2 2 2

2 2

A B

C

(b)

5.8  Clustering   187

188    CHAPTER 5  Algorithms: The Basic Methods

5.8.3  Discussion

Many variants of the basic k-means procedure have been developed. Some produce
a hierarchical clustering by applying the algorithm with k = 2 to the overall dataset
and then repeating, recursively, within each cluster.

How do you choose k? Often nothing is known about the likely number of
clusters, and the whole point of clustering is to find out. One way is to try differ-
ent values and choose the best. To do this you need to learn how to evaluate the
success of machine learning.

5.9	RESOURCES
The 1R scheme was proposed and thoroughly investigated by Holte (1993). It was
never really intended as a machine learning “method”: the point was more to
demonstrate that simple structures underlie most of the practical datasets being
used to evaluate machine learning methods at the time and that putting high-
powered inductive inference methods to work on simple datasets was like using
a sledgehammer to crack a nut. Why grapple with a complex decision tree when
a simple rule will do? The method that generates one simple rule per class is the
result of work by Lucio de Souza Coelho of Brazil and Len Trigg of New Zealand,
and it has been dubbed hyperpipes. A simple algorithm, it has the advantage
of being extremely fast and is feasible even with an enormous number of
attributes.

Bayes was an eighteenth-century English philosopher who set out his theory
of probability in “An Essay towards Solving a Problem in the Doctrine of Chances,”
published in the Philosophical Transactions of the Royal Society of London
(Bayes 1763); the rule that bears his name has been a cornerstone of probability
theory ever since. The difficulty with the application of Bayes’s rule in practice is
the assignment of prior probabilities. Some statisticians, dubbed Bayesians, take
the rule as gospel and insist that people make serious attempts to estimate prior
probabilities accurately—although such estimates are often subjective. Others,
non-Bayesians, prefer the kind of prior-free analysis that typically generates statis-
tical confidence intervals. With a particular dataset, prior probabilities are usually
reasonably easy to estimate, which encourages a Bayesian approach to learning.
The independence assumption made by the Naïve Bayes method is a great stum-
bling block, however, and some attempts are being made to apply Bayesian
analysis without assuming independence. The resulting models are called
Bayesian networks (Heckerman et al., 1995).

Bayesian techniques had been used in the field of pattern recognition (Duda
& Hart, 1973) for 20 years before they were adopted by machine learning research-
ers (e.g., see Langley et al., 1992) and made to work on datasets with redundant
attributes (Langley & Sage, 1994) and numeric attributes (John & Langley, 1995).
The label Naïve Bayes is unfortunate because it is hard to use this method without

feeling simpleminded. However, there is nothing naïve about its use in appropri-
ate circumstances. The multinomial Naïve Bayes model, which is particularly
appropriate for text classification, was investigated by McCallum and Nigam
(1998).

The classic paper on decision tree induction is by Quinlan (1986), who
described the basic ID3 procedure developed in this chapter. A comprehensive
description of the method, including the improvements that are embodied in C4.5,
appears in a classic book by Quinlan (1993), which gives a listing of the complete
C4.5 system, written in the C programming language. PRISM was developed by
Cendrowska (1987), who also introduced the contact lens dataset.

Association rules are introduced and described in the database literature rather
than in the machine learning literature. Here the emphasis is very much on dealing
with huge amounts of data rather than on sensitive ways of testing and evaluating
algorithms on limited datasets. The algorithm introduced in this chapter is the a
priori method developed by Agrawal and his associates (Agrawal et al., 1993a,
1993b; Agrawal & Srikant, 1994). A survey of association-rule mining appears in
an article by Chen et al. (1996).

Linear regression is described in most standard statistical texts, and a particu-
larly comprehensive treatment can be found in a book by Lawson and Hanson
(1995). The use of linear models for classification enjoyed a great deal of popular-
ity in the 1960s; Nilsson (1965) provided an excellent reference. He defined a
linear threshold unit as a binary test of whether a linear function is greater or
less than zero and a linear machine as a set of linear functions, one for each class,
whose value for an unknown example is compared and the largest chosen as its
predicted class. In the distant past, perceptrons fell out of favor on publication of
an influential book that showed they had fundamental limitations (Minsky &
Papert, 1969); however, more complex systems of linear functions have enjoyed
a resurgence in recent years in the form of neural networks. Nick Littlestone
introduced the Winnow algorithms in his PhD thesis in 1989 (Littlestone, 1988,
1989). Multiresponse linear classifiers have found a new application recently for
an operation called stacking that combines the output of other learning algorithms
(see Wolpert, 1992). Friedman (1996) described the technique of pairwise clas-
sification, Fürnkranz (2002) further analyzed it, and Hastie and Tibshirani (1998)
extended it to estimate probabilities using pairwise coupling.

Fix and Hodges (1951) performed the first analysis of the nearest-neighbor
method, and Johns (1961) pioneered its use in classification problems. Cover and
Hart (1967) obtained the classic theoretic result that, for large enough datasets,
its probability of error never exceeds twice the theoretic minimum; Devroye
et al. (1996) showed that k-nearest neighbor is asymptotically optimal for large k
and n with k/n → 0. Nearest-neighbor methods gained popularity in machine
learning through the work of Aha (1992), who showed that instance-based learn-
ing can be combined with noisy exemplar pruning and attribute weighting and
that the resulting methods perform well in comparison with other learning
methods.

5.9  Resources   189

190    CHAPTER 5  Algorithms: The Basic Methods

The kD-tree data structure was developed by Friedman et al. (1977). Our
description closely follows an explanation given by Andrew Moore in his PhD
thesis (Moore, 1991); Moore, along with Omohundro (1987), pioneered its use in
machine learning. Moore (2000) described sophisticated ways of constructing ball
trees that perform well even with thousands of attributes. We took our ball tree
example from lecture notes by Alexander Gray of Carnegie-Mellon University. The
voting feature intervals method mentioned in the Discussion subsection at the
end of Section 5.7 is described by Demiroz and Guvenir (1997).

The k-means algorithm is a classic technique, and many descriptions and
variations are available (e.g., see Hartigan, 1975). The clever use of kD-trees to
speed up k-means clustering, which we chose to illustrate using ball trees instead,
was pioneered by Moore and Pelleg (2000) in their X-means clustering algorithm.
That algorithm also contains some other innovations.

CHAPTER

6Further Techniques
in Decision Analysis

This chapter presents techniques in the use of decision analysis. Most individuals
would not make a monetary decision by simply maximizing expected values if the
amounts of money involved were large compared to their total wealth. That is,
most individuals are risk averse. So, in general, we need to model an individual’s
attitude toward risk when using decision analysis to recommend a decision.
Section 6.1 shows how to do this using a personal utility function. Rather than
assess a utility function, a decision maker may prefer to analyze the risk directly.
In Section 6.2, we discuss risk profiles, which enable the decision maker to do
this. Some decisions do not require the use of utility functions or risk profiles
because one decision alternative dominates the other for all decision makers. In
Section 6.3, we present examples of such decisions. Both influence diagrams and
decision trees require that we assess probabilities and outcomes. Sometimes
assessing these values precisely can be a difficult and laborious task.

For example, it would be difficult and time consuming to determine whether
the probability that the S&P 500 will be above 1500 in January is 0.3 or 0.35.
Sometimes further refinement of these values would not affect our decision
anyway. Section 6.4 shows how to measure the sensitivity of our decisions to the
values of outcomes and probabilities. Often, before making a decision we have
access to information, but at a cost. For example, before deciding to buy a stock,
we may be able to purchase the advice of an investment analyst. In Section 6.5,
we illustrate how to compute the value of information, which enables us to deter-
mine whether the information is worth the cost.

6.1	MODELING RISK PREFERENCES
In some cases, we may choose the alternative with the largest expected value.
However, many people maximize expected value when the amount of money is
small relative to their total wealth. The idea is that in the long run they will end

192    CHAPTER 6  Further Techniques in Decision Analysis

up better off by so doing. When an individual maximizes expected value to reach
a decision, the individual is called an expected value maximizer. On the other
hand, most people would not invest $100,000 in NASDIP because that is too much
money relative to their total wealth. In the case of decisions in which an indi-
vidual would not maximize expected value, we need to model the individual’s
attitude toward risk in order to use decision analysis to recommend a decision.
One way to do this is to use a utility function, which is a function that maps
dollar amounts to utilities. We discuss such functions next.

6.1.1  The Exponential Utility Function

The exponential utility function is given by

U x er
x r() = − −1

In this function the parameter r, called the risk tolerance, determines the degree
of risk-aversion modeled by the function. As r becomes smaller, the function
models more risk-averse behavior. Figure 6.1(a) shows U500(x), whereas Figure
6.1(b) shows U1000(x). Notice that both functions are concave (opening down-
ward), and the one in Figure 6.1(b) is closer to being a straight line. The more
concave the function is, the more risk-averse is the behavior modeled by the func-
tion. To model risk-neutrality (i.e., simply being an expected value maximizer),
we would use a straight line instead of the exponential utility function, and to
model risk-seeking behavior, we would use a convex (opening upward) function.
Here we concentrate on modeling risk-averse behavior.

EXAMPLE 6.1

Suppose Sam decides his risk tolerance r is equal to 500. Then for Sam

FIGURE 6.1

The function U500(x) = 1 − e −x/500 function is (a), whereas the U1000(x) = 1 − e −x/1000 function
is in (b).

–1000

–0.5

0.5

1.0y

–1.0

1000 2000 3000 4000 5000
x

(a) (b)

–1000

–0.5

0.5

1.0y

–1.0

1000 2000 3000 4000 5000
x

6.1  Modeling Risk Preferences   193

EU(Buy NASDIP)

= ()
= () + () + ()
=

EU NASDIP

U U U0 25 500 0 25 1000 0 5 2000500 500 500. $. $. $

00 25 1 0 25 1 0 5 1

0 865

500 500 1000 500 2000 500. . .

.

−() + −() + −()
=

− − −e e e

004.

EU(Leave $1000 in bank) = U500($1005) = 1 − e−1005/500 = 0.86601

So Sam decides to leave the money in the bank.

EXAMPLE 6.2

Suppose Sue is less risk averse than Sam, and she decides that her risk tolerance r equals
1000. For Sue,

EU (Buy NASDIP)

= ()
= () + () +

EU NASDIP

U U U0 25 500 0 25 1000 0 5 20001000 1000 1000. $. $. $(()
= −() + −() + −()− − −0 25 1 0 25 1 0 5 1500 1000 1000 1000 2000 1000. . .e e e

== 0 68873. .

EU(Leave $1000 in bank) = U1000($1005) = 1 − e−1005/1000 = 0.63396

So Sue decides to buy NASDIP.

Assessing r
In the preceding examples, we simply assigned risk tolerances to Sam and Sue.
You should be wondering how an individual arrives at her or his personal risk
tolerance. Next, we show a method for assessing it.

One way to determine the personal value of r in the exponential utility
function is to consider a gamble in which you will win $x with probability 0.5
and lose −$x/2 with probability 0.5. Your value of r is the largest value of x
for which you would choose the lottery over obtaining nothing. This is illustrated
in Figure 6.2.

EXAMPLE 6.3

Suppose we are about to toss a fair coin. I would certainly like the gamble in which I win
$10 if a heads occurs and lose $5 if a tails occurs. If we increased the amounts to $100
and $50, or even to $1000 and $500, I would still like the gamble. However, if we increased
the amounts to $1,000,000 and $500,000, I would no longer like the gamble because I
cannot afford a 50 percent chance of losing $500,000. By going back and forth like this
(similar to a binary cut), I can assess my personal value of r. For me, r is about equal to
20,000. (Professors do not make all that much money.)

194    CHAPTER 6  Further Techniques in Decision Analysis

You may inquire as to the justification for using this gamble to assess r. In the following
notice that for any r

0 5 1 5 1 0 00832. . .−() + −() =− − − −()e er r r r

and

1 00− =−e r

We see that for a given value of risk tolerance r, the gamble in which one wins $r with
probability 0.5 and loses −$r/2 with probability 0.5 has about the same utility as receiving $0
for certain. We can use this fact and then work in reverse to assess r. That is, we determine
the value of r for which we are indifferent between this gamble and obtaining nothing.

Constant Risk Aversion
Another way to model a decision problem involving money is to consider one’s
total wealth after the decision is made and the outcomes occur. The next example
illustrates this condition.

EXAMPLE 6.4

Suppose Joe has an investment opportunity that entails a 0.4 probability of gaining $4000
and a 0.6 probability of losing $2500. If we let d1 be the decision alternative to take the
investment opportunity and d2 be the decision alternative to reject it (i.e., he receives $0
for certain), then

E d

E d

1 0 4 4000 0 6 2500 100

2 0

() = () + −() =
() =

. $. $ $

$

So if Joe were an expected value maximizer, clearly he would choose the investment
opportunity.

Suppose next that Joe carefully analyzes his risk tolerance, and he decides that for him
r = $5000. Then

FIGURE 6.2

You can assess the risk tolerance r by determining the largest value of x for which you
would be indifferent between d1 and d2.

D

A
d1

d2

0.5

0.5

$0

–$x/2

$x

6.1  Modeling Risk Preferences   195

EU d e e

E d

1 0 4 1 0 6 1 0 1690

2

4000 5000 2500 5000() = −() + −() = −
()

− − −(). . .

== − =−1 00 5000e

The solved decision tree is shown in Figure 6.3(a). So given Joe’s risk tolerance, he would
not choose this risky investment.

EXAMPLE 6.5

Suppose Joe’s current wealth is $10,000, and he has the same investment opportunity as
in the previous example. Joe might reason that what really matters is his current wealth after
he makes his decision and the outcome is realized. Therefore, he models the problem
instance in terms of his final wealth rather than simply the gain or loss from the investment
opportunity. Doing this, we have

EU d e e1 0 4 1 0 6 110 000 4000 5000 10 000 2500 5000() = −() + −− +() − −(). ., ,(() =
() = − =−

0 8418

2 1 0 864710 000 5000

.

.E d e ,

The solved decision tree is shown in Figure 6.3(b). The fact that his current wealth is
$10,000 does not affect his decision. The decision alternative to do nothing still has greater
utility than choosing the investment opportunity.

EXAMPLE 6.6

Suppose next that Joe rejects the investment opportunity. However, he does well in other
investments during the following year, and his total wealth becomes $100,000. Further
suppose that he has the exact same investment opportunity he had a year ago. That is, Joe
has an investment opportunity that entails a 0.4 probability of gaining $4000 and a 0.6
probability of losing $2500. He again models the problem in terms of his final wealth. We
then have

EU d e e1 0 4 1 0 6 1100 000 4000 5000 100 000 2500 50() = −() + −− +() − −(). ., , 000

0 9999999976

()
= .

E d e2 1 0 9999999980100 000 5000() = − =− , .

The solved decision tree is shown in Figure 6.3(c). Although the utility of the investment
opportunity is now close to that of doing nothing, it is still smaller, and he still should choose
to do nothing.

It is a property of the exponential utility function that an individual’s total
wealth cannot affect the decision obtained using the function. A function such
as this is called a constant risk-averse utility function. If one uses such a
function to model one’s risk preferences, one must reevaluate the parameters in
the function when one’s wealth changes significantly. For example, Joe should
reevaluate his risk tolerance r when his total wealth changes from $10,000 to
$100,000.

196    CHAPTER 6  Further Techniques in Decision Analysis

D

A

EU = –0.1690
d1

d2

0.6

(a)

0.4

$0
EU = 0

$4000

–$2500

D

A

EU = 0.8418
d1

d2

0.6

(b)

0.4

$10,000
EU = 0.8647

$10,000 + $4000

$10,000 – $2500

D

A

EU = 0.9999999976
d1

d2

0.6

(c)

0.4

$100,000

EU = 0.9999999980

$100,000 + $4000

$100,000 – $2500

FIGURE 6.3

The solved decision tree for Example 6.4 is shown in (a). Solved decision trees for that same
example when we model in terms of total wealth are shown in (b) and (c). The total wealth
in (b) is $10,000, whereas in (c) it is $100,000.

The reason the exponential utility function displays constant risk aversion is
that the term for total wealth cancels out of an inequality comparing two utilities.
For example, consider again Joe’s investment opportunity that entails a 0.4 prob-
ability of gaining $4000 and a 0.6 probability of losing $2500. Let w be Joe’s total
wealth. The first inequality in the following sequence of inequalities compares the

6.1  Modeling Risk Preferences   197

utility of choosing the investment opportunity to doing nothing when we consider
the total wealth w, whereas the last inequality compares the utility of choosing
the investment opportunity to doing nothing when we do not consider total
wealth. If you follow the inequalities in sequence, you will see that they are all
equivalent to each other. Therefore, consideration of total wealth cannot affect
the decision:

0 4 1 0 6 1 1

0 4

4000 5000 2500 5000 5000. .

.

−() + −() < −()− +() − −() −e e ew w w

11 0 6 1 15000 4000 5000 5000 2500 5000 50−() + −() < −− − − − −() −e e e e ew w w. 000

5000 4000 5000 5000 2500 50001 0 4 0 6 1− () − −() < −− − − − −(). .e e e e ew w −−

− − − − −()− () − −() <

w

w we e e e

5000

5000 4000 5000 5000 2500 50000 4 0 6. . −−

− () − () < −

−

−

− − −()

−

e

e e

e

w 5000

4000 5000 2500 5000

4000 50

4 0 6 1

0 4 1

.

. 000 2500 5000

4000 5000 25

0 6 1 1 1

0 4 1 0 6 1

() + −() < −

−() + −

− −()

− − −

.

. .

e

e e 000 5000 0 50001() −() < − e

6.1.2  A Decreasing Risk-Averse Utility Function

If a change in total wealth can change the decision obtained using a risk-averse
utility function, then the function is called a decreasing risk-averse utility func-
tion. An example of such a function is the logarithm function. We show this by
using this function to model Joe’s risk preferences.

EXAMPLE 6.7

As in Example 6.4, suppose Joe has an investment opportunity that entails a 0.6 probabil-
ity of gaining $4000 and a 0.4 probability of losing $2500. Again let d1 be the decision
alternative to take the investment opportunity and d2 be the decision alternative to reject it.
Suppose Joe’s risk preferences can be modeled using ln(x). First, let’s model the problem
instance when Joe has a total wealth of $10,000. We then have that

EU d

EU d

1 0 4 10 000 4000 0 6 10 000 2500 9 1723

2

() = +() + −() =
() =

. ln . ln ., ,

lln .10 000 9 2103, =

So the decision is to reject the investment opportunity and do nothing.
Next let’s model the problem instance when Joe has a total wealth of $100,000. We

then have that

EU d

EU d

1 0 4 100 000 4000 0 6 100 000 2500 11 5134

2

() = +() + −() =. ln . ln ., ,

(() = =ln .100 000 11 5129,

So now the decision is to take the investment opportunity.

Modeling risk attitudes is discussed much more in (Clemen, 1996).

198    CHAPTER 6  Further Techniques in Decision Analysis

6.2	ANALYZING RISK DIRECTLY
Some decision makers may not be comfortable assessing personal utility functions
and making decisions based on such functions. Rather, they may want to directly
analyze the risk inherent in a decision alternative. One way to do this is to use
the variance as a measure of spread from the expected value. Another way is to
develop risk profiles. We discuss each technique in turn.

6.2.1  Using the Variance to Measure Risk

We start with an example.

EXAMPLE 6.8

Suppose Patricia is going to make the decision modeled by the decision tree in Figure 6.4.
If Patricia simply maximizes expected value, it is left as an exercise to show

E d

E d

1 1220

2 1200

() =
() =

$

$

So d1 is the decision alternative that maximizes expected value. However, the expected
values by themselves tell us nothing of the risk involved in the alternatives. Let’s also
compute the variance of each decision alternative. If we choose alternative d1, then

FIGURE 6.4

The decision tree discussed in Example 6.8.

D

A

C

B

d1

d2

b2

a2

e2

e1

c1

C2

a3

b1

a1

0.8

0.8

0.2

0.1

0.1

0.3

0.7

$0

$0

$1000

$1000

$1000

$2000

$2000

E

P

P

P

2000 0 8 0 7 0 56

1000 0 1

0 0 8 0 3 0 1 0 34

() = × =
() =

() = × + =

. . .

.

. . . .

Notice that there are two ways $0 could be obtained. That is, outcomes a1 and c1 could
occur with probability 0.8 × 0.3, and outcome a2 could occur with probability 0.1. We then
have that

Var d P P P1 2000 1220 2000 1000 1220 1000 0 12202 2 2() = −() () + −() () + −() 00

2000 1220 0 56 1000 1220 0 1 0 1220 0 34

851

2 2 2

()

= −() × + −() × + −() ×
=

. . .

,,600
σd1 851600 922 82= =, .

It is left as an exercise to show that

Var d

d

2 160 000

4002

() =
=

,

σ

So if we use the variance as our measure of risk, we deem d1 somewhat more risky, which
means if Patricia is somewhat risk averse she might choose d2.

Using the variance alone as the measure of risk can sometimes be misleading,
as the next example illustrates.

EXAMPLE 6.9

Now suppose Patricia is going to make the decision modeled by the decision tree in Figure
6.5. It is left as an exercise to show that

E d

Var d

d

1 2900

1 32 490 000

57001

() =
() =

=

$

, ,

σ

D

A
d1

d2

0.9

0.1

$900

$1000

$20,000

FIGURE 6.5

The decision tree discussed in Example 6.9.

6.2  Analyzing Risk Directly   199

200    CHAPTER 6  Further Techniques in Decision Analysis

and

E d

Var d

d

2 900

2 0

02

() =
() =

=

$

σ

If Patricia uses only the variance as her measure of risk, she might choose alternative
d2 because d1 has such a large variance. Yet alternative d1 is sure to yield more return
that alternative d2.

We see that the use of the variance alone as our measure of risk can be very
misleading. This is a mistake some investors make. That is, they notice that one
mutual fund has had a much higher expected return over the past 10 years than
a second mutual fund, but they reject the first one because it also has had a much
higher variance. Yet if they looked at each year, they would see that the first one
always dominates the second one.

6.2.2  Risk Profiles

The expected value and variance are summary statistics, and therefore information
is lost if all we report are these values. Alternatively, for each decision alternative,
we could report the probability of all possible outcomes if the alternative is
chosen. A graph that shows these probabilities is called a risk profile.

EXAMPLE 6.10

Consider again Patricia’s decision—discussed in Example 6.8. There, we computed the
probability of all possible outcomes for each decision. We used those results to create the
risk profiles in Figure 6.6. From these risk profiles, Patricia can see that there is a good
chance she could end up with nothing if she chooses alternative d1, but she also has a
good chance of obtaining $2000. On the other hand, the least she could end up with is
$1000 if she chooses alternative d2, but probably this is all she will obtain.

A cumulative risk profile shows for each amount x the probability that the
payoff will be less than or equal to x if the decision alternative is chosen. A cumu-
lative risk profile is a cumulative distribution function. Figure 6.7 shows the
cumulative risk profiles for the decision in Example 6.8.

6.3	DOMINANCE
Some decisions do not require the use of utility functions or risk profiles because
one decision alternative dominates the other for all decision makers. We discuss
dominance next.

6.3.1  Deterministic Dominance

Suppose we have a decision that can be modeled using the decision tree in Figure
6.8. If we choose alternative d1, the least amount of money we will realize is $4,
whereas if we choose alternative d2, the most amount of money we will realize
is $3. Assuming that maximizing wealth is the only consideration in this decision,
there is then no reasonable argument one can offer for choosing d2 over d1, and
we say d1 deterministically dominates d2. In general, decision alternative d1
deterministically dominates decision alternative d2 if the utility obtained from
choosing dl is greater than the utility obtained from choosing d2 regardless of the
outcomes of chance nodes. When we observe deterministic dominance, there is
no need to compute expected utility or develop a risk profile.

FIGURE 6.6

Risk profiles for the decision in Example 6.8: (a) Risk profile for decision alternative d1;
(b) risk profile for decision alternative d2.

0.5

0.6

0.4

0.3

0.2

0.1

0.0
0 1000 2000

Dollars

(a)

(b)

P
ro

ba
bi

lit
y

0.5
0.6
0.7
0.8

0.9

0.4
0.3
0.2
0.1
0.0

0 1000 2000
Dollars

P
ro

ba
bi

lit
y

6.3  Dominance   201

202    CHAPTER 6  Further Techniques in Decision Analysis

FIGURE 6.7

Cumulative risk profiles for the decision in Example 6.8: (a) Cumulative risk profile for
decision alternative d1; (b) comulative risk profile for decision alternative d2.

0.8

1.0

0.6

0.4

0.2

0.0

0 1000500 1500 2000
Dollars

(a)

(b)

P
ro

ba
bi

lit
y

0.6

0.8

1.0

0.4

0.2

0.0

0 1000 20001500500
Dollars

P
ro

ba
bi

lit
y

FIGURE 6.8

Decision alternative d1 deterministically dominates decision alternative d2.

D

A

B

d1

b1

b2

a2

a1

d2

0.3

0.9

0.1

0.7

$2

$3

$4

$6

6.3.2  Stochastic Dominance

Suppose we have a decision that can be modeled using the decision tree in Figure
6.9. If the outcomes are a1 and b2, we will realize more money if we choose d1,
whereas if the outcomes are a2 and b1, we will realize more money if we choose
d2. So there is no deterministic dominance. However, the outcomes are the same
for both decisions, namely $6 and $4, and, if we choose d2, the probability is
higher that we will receive $6. So again, assuming that maximizing wealth is the
only consideration in this decision, there is no reasonable argument for choosing
d1 over d2, and we say alternative d2 stochastically dominates alternative d1.

A different case of stochastic dominance is illustrated by the decision tree in
Figure 6.10. In that tree, the probabilities are the same for both chance nodes,

FIGURE 6.9

Decision alternative d2 stochastically dominates decision alternative d1.

D

A

B

d1

b1

b2

a2

a1

d2

0.3

0.9

0.1

0.7

$4

$6

$4

$6

FIGURE 6.10

Decision alternative d2 stochastically dominates decision alternative d1.

D

A

B

d1

b1

b2

a2

a1

d2

0.3

0.7

0.3

0.7

$5

$7

$4

$6

6.3  Dominance   203

204    CHAPTER 6  Further Techniques in Decision Analysis

but the utilities for the outcomes of B are higher. That is, if b1 occurs we realize
$7, whereas if al occurs we realize only $6, and if b2 occurs we realize $5, whereas
if a2 occurs we realize only $4. So again, assuming that maximizing wealth is the
only consideration in this decision, there is no reasonable argument for choosing
d1 over d2, and we say alternative d2 stochastically dominates alternative d1.

Although it often is not hard to recognize stochastic dominance, it is a bit tricky
to define the concept. We do so next in terms of cumulative risk profiles. We say
that alternative d2 stochastically dominates alternative d1 if the cumulative risk
profile F2(x) for d2 lies under the cumulative risk profile F1(x) for d1 for at least
one value of x and does not lie over it for any values of x. That is, for at least one
value of x

F x F x2 1() < ()

and for all values of x

F x F x2 1() ≤ ()

This is illustrated in Figure 6.11.
Why should this be the definition of stochastic dominance? Look again at Figure

6.11. There is no value of x such that the probability of realizing $x or less is
smaller if we choose d1 than if we choose d2. So there is no amount of money
that we may want or require that would make d1 the better choice.

Figure 6.12 shows two cumulative risk profiles that cross, which means we do
not have stochastic dominance. Now the decision alternative chosen can depend
on an individual’s preference. For example, if the amounts are in units of $100,
and Mary needs at least $400 to pay her rent or else be evicted, she may choose
alternative d1. On the other hand, if Sam needs at least $800 to pay his rent or
else be evicted, he may choose alternative d2.

FIGURE 6.11

If F1(x) is the cumulative risk profile for d1 and F2(x) is the cumulative risk profile for d2,
then d2 stochastically dominates d1.

0.0
0 1 2 3 4 5 6 7

F1(X)

F2(X)

8 9 11 12
x

10

0.2

0.4

0.6

0.8

1.0

6.3.3  Good Decision versus Good Outcome

Suppose Scott and Sue are each about to make the decision modeled by the deci-
sion tree in Figure 6.10, Scott chooses alternative d1, and Sue chooses alternative
d2. Suppose further that outcomes a1 and b2 occur. So Scott ends up with $6,
and Sue ends up with $5. Did Scott make a better decision than Sue? We just
claimed that there is no reasonable argument for choosing d1 over d2. If we accept
that claim, we cannot now conclude that Scott made the better decision. Rather,
Scott made a bad decision with a good outcome, whereas Sue made a good
decision with a bad outcome. The quality of a decision must be judged based
on the information available when the decision is made, not on outcomes realized
after the decision is made.

One of the authors (Rich Neapolitan) amusingly remembers the following story
from his youth. When his uncle Hershell got out of the army, he used his savings
to buy a farm in Texas next to his parents’ farm. The ostensible reason was that
he wanted to live near his parents and resume his life as a farmer. Somewhat later,
oil was discovered on his farm, and Hershell became wealthy as a result. After that
Rich’s dad used to say, “Everyone thought Hershell was not too bright when he
wasted money on a farm with such poor soil, but it turns out he was shrewd like
a fox.”

6.4	SENSITIVITY ANALYSIS
Both influence diagrams and decision trees require that we assess probabilities
and outcomes. Sometimes assessing these values precisely can be a difficult and
laborious task. As noted earlier, it would be difficult and time consuming to deter-
mine whether the probability that the S&P 500 will be above 1500 in January is
0.3 or 0.35. further refinement of these values may not affect a decision. Next,

FIGURE 6.12

There is no stochastic dominance.

0.0
0 1 2 3 4 5 6 7

F1(X)

F2(X)

8 9 11 12
x

10

0.2

0.4

0.6

0.8

1.0

6.4  Sensitivity Analysis   205

206    CHAPTER 6  Further Techniques in Decision Analysis

we discuss sensitivity analysis, which is an analysis of how the values of out-
comes and probabilities can affect our decision. After introducing the concept
with simple models, we show a more detailed model.

6.4.1  Simple Models

We show a sequence of examples.

EXAMPLE 6.11

Suppose that currently IBM is at $10 a share, and you feel there is a 0.5 probability it will
be go down to $5 by the end of the month and a 0.5 probability it will go up to $20. You
have $1000 to invest, and you will either buy 100 shares of IBM or put the money in the
bank and earn a monthly interest rate of 0.005. Although you are fairly confident of your
assessment of the outcomes, you are not very confident of your assessment of the proba-
bilities. In this case, you can represent your decision using the decision tree in Figure 6.13.
Notice in that tree that we represented the probability of IBM going up by a variable p. We
then have

E Buy IBM p p

E Bank

() = () + −()()
() =

2000 1 500

1005$

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

p p2000 1 500 1005() + −()() >

Solving this inequality for p, we have

p > 0 337.

We have determined how sensitive our decision is to the value of p. As long as we feel
that the probability of IBM going up is at least equal to 0.337, we will buy IBM. We need
not refine our probabilistic assessment further.

FIGURE 6.13

As long as p is greater than 0.337, buying IBM maximizes expected value.

D

IBM

Bank

Buy IBM

1 – p

p

$5

$20
$2000

$1005

$500

EXAMPLE 6.12

Suppose you are in the same situation as in the previous example, except that you feel that
the value of IBM will be affected by the overall value of the Dow Jones Industrial Average
in 1 month. Currently, the Dow is at 10,500 and you assess that it will either be at 10,000
or 11,000 at the end of the month. You feel confident assessing the probabilities of your
stock going up dependent on whether the Dow goes up or down, but you are not confident
assessing the probability of the Dow going up or down. Specifically, you model your decision
using the decision tree in Figure 6.14. We then have

E Buy IBM p p

E Bank

() = × + ×() + −() × + ×()0 6 2000 0 4 500 1 0 3 2000 0 7 500. . . .

(() = 1005

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

p p0 6 2000 0 4 500 1 0 3 2000 0 7 500 1005. . . .× + ×() + −() × + ×() >

Solving this inequality for p, we have

p > 0 122.

As long as we feel that the probability of the Dow going up is at least equal to 0.122, we
will buy IBM.

In a two-way sensitivity analysis we simultaneously analyze the sensitivity of our decision
to two quantities. The next example shows such an analysis.

FIGURE 6.14

As long as p is greater than 0.122, buying IBM maximizes expected value.

D
0.7

0.3

0.4

0.6

DOW

IBM1

IBM2

$5

$5

$20

$20

$2000

$2000

$500

$500

$1005
Bank

Buy IBM

11,000

10,000

1 – p

p

6.4  Sensitivity Analysis   207

208    CHAPTER 6  Further Techniques in Decision Analysis

EXAMPLE 6.13

Suppose you are in the same situation as in the previous example, except you are confident
in your assessment of the probability of the Dow going up, but you are not confident in your
assessment of the probabilities of your stock going up dependent on whether the Dow goes
up or down. Specifically, you model your decision using the decision tree in Figure 6.15.
We then have

E Buy IBM q q r r

E Bank

() = × + −() ×() + × + −() ×()0 4 2000 1 500 0 6 2000 1 500. .

(() = 1005

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

0 4 2000 1 500 0 6 2000 1 500 1005. .q q r r× + −() ×() + × + −() ×() >

Simplifying this inequality, we obtain

q
r> −101

120
3
2

The line q = 101/120 − 3r/2 is plotted in Figure 6.16.
Owing to the previous inequality, the decision that maximizes expected value is to buy

IBM as long as the point (r,q) lies above that line. For example, if r = 0.6 and q = 0.1 or r
= 0.3 and q = 0.8, this would be our decision. However, if r = 0.3 and q = 0.1, it would not
be the decision.

FIGURE 6.15

For this decision we need to do a two-way sensitivity analysis.

D

0.6

0.4

DOW

IBM1

IBM2

$5

$5

$20

$20

$2000

$2000

$500

$500

$1005
Bank

Buy IBM

11,000

10,000

1 – r

1 – q

r

q

EXAMPLE 6.14

Suppose you are in the same situation as in the previous example, except you are not
comfortable assessing any probabilities in the model. However, you do feel that the prob-
ability of IBM going up if the Dow goes up is twice the probability of IBM going up if the
Dow goes down. Specifically, you model your decision using the decision tree in Figure 6.17.
We then have

E Buy IBM p q q p q q

E B

() = × + −() × + −() () × + −() ×[()2000 1 500 1 2 2000 1 2 500

aank() = 1005

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

p q q p q

q

× + −() ×() + −() () ×(
+ −() ×) >

2000 1 500 1 2 2000

1 2 500 1005
Simplifying this inequality yields

q
p

>
+
101

150 150
.

Figure 6.18 plots the curve q = 101/(150 + 150p). The decision that maximizes expected
value is to buy IBM as long as the point (p,q) lies above that curve.

We can also investigate how sensitive our decision is to the values of the out-
comes. The next example illustrates this sensitivity.

FIGURE 6.16

The line q = 101/120 − 3r/2. As long as (r,q) is above this line, the decision that maximizes
expected value in Example 6.13 is to buy IBM.

0.0
0.0 0.1 0.2 0.3 0.4 0.5

Bank

Buy IBM

0.6 0.7 0.8 0.9 1.0
r

q

0.2

0.4

0.3

0.1

0.6

0.8

0.9

0.7

0.5

1.0

6.4  Sensitivity Analysis   209

210    CHAPTER 6  Further Techniques in Decision Analysis

FIGURE 6.17

For this decision, we need to do a two-way sensitivity analysis.

D

DOW

IBM1

IBM2

$5

$5

$20

$20

$2000

$2000

$500

$500

$1005
Bank

Buy IBM

11,000

10,000

1 – q/2

q/2

1 – q

1 – p

p

q

FIGURE 6.18

The curve q = 101/(150 + 150p). As long as (p,q) is above this curve, the decision that
maximizes expected value in Example 6.14 is to buy IBM.

0.0
0.0 0.1 0.2 0.3 0.4 0.5

Bank

Buy IBM

0.6 0.7 0.8 0.9 1.0
p

q

0.2

0.4

0.3

0.1

0.6

0.8

0.9

0.7

0.5

1.0

EXAMPLE 6.15

Suppose you are in the situation discussed in Example 6.11. However, you are not confident
as to your assessment of how high or low IBM will go. That is, currently IBM is at $10 a
share, and you feel there is a 0.5 probability it will go up by the end of the month and a
0.5 probability it will go down, but you do not assess how high or low it will be.

As before, you have $1000 to invest, and you will either buy 100 shares of IBM or put
the money in the bank and earn a monthly interest rate of 0.005. In this case, you can
represent your decision using the decision tree in Figure 6.19. We then have

E Buy IBM x y

E Bank

() = () + ()
() =

0 5 100 0 5 100

1005

. .

$

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

0 5 100 0 5 100 1005. .x y() + () >

Simplifying this inequality yields

y x> −201
10

Figure 6.20 plots the curve y = 201/10 − x. The decision that maximizes expected value
is to buy IBM as long as the point (x,y) lies above that curve.

6.4.2  A More Detailed Model

The examples given so far have been oversimplified and therefore do not repre-
sent decision models one would ordinarily use in practice. We did this to illustrate
the concepts without burdening you with too many details. Next, we show an
example of a more detailed model, which an investor might actually use to model
a decision.

FIGURE 6.19

This decision requires a two-way sensitivity analysis of the outcomes.

D

IBM

Bank

Buy IBM

$y

$x

$1005

0.5

0.5

$100y

$100x

6.4  Sensitivity Analysis   211

212    CHAPTER 6  Further Techniques in Decision Analysis

EXAMPLE 6.16

Some financial analysts argue that the small investor is best served by investing in mutual
funds rather than in individual stocks. The investor has a choice of many different types of
mutual funds. Here we consider two that are quite different. “Aggressive” or “growth” mutual
funds invest in companies that have high growth potential and ordinarily do quite well when
the market in general performs well, but they do quite poorly when the market does poorly.
“Allocation” funds distribute their investments among cash, bonds, and stocks. Further-
more, the stocks are often in companies that are considered “value” investments because
for some reason they are considered currently undervalued. Such funds are ordinarily more
stable. That is, they do not do as well when the market does well or as poorly when the
market performs poorly.

Assume that Christina plans to invest $1000 for the coming year, and she decides she
will either invest the money in a growth fund or in an allocation fund or will put it in a 1-year
CD which pays 5 percent. To make her decision, she must model how these funds will do
based on what the market does in the coming year, and she must assess the probability of
the market performance in the coming year. Based on how these funds have done during
market performances in previous years, she is comfortable assessing how the funds will do
based on market performance. She feels that the market probably will not do well in the
coming year because economists are predicting a recession, but she is not comfortable
assessing precise probabilities. So she develops the decision tree in Figure 6.21. Given that
tree, the growth fund should be preferred to the bank if

1600 1000 300 1 1050p q p q+ + − −() >

Simplifying this expression yields

q p> −()15 26 14

FIGURE 6.20

The line y = 201/10 − x. As long as (x,y) is above this line, the decision that maximizes
expected value in Example 6.15 is to buy IBM.

0

5

10

15

20

0 5 10 15 20

Bank

Buy IBM

x

y

Based on this inequality, Figure 6.22(a) shows the region in which she should choose
the growth fund and the region in which she should choose the bank if these were her only
choices. Notice that the regions are bounded above by the line q = 1 − p. The reason is
that we must have q + p ≤ 1.

The allocation fund should be preferred to the bank if

1300 1200 900 1 1050p q p q+ + − −() >

Simplifying this expression yields

q p> −()3 8 6

Based on this inequality, Figure 6.22(b) shows the region in which she should choose
the allocation fund and the region in which she should choose the bank if these were her
only choices.

The growth fund should be preferred to the allocation fund if

1600 1000 300 1 1300 1200 900 1p q p q p q p q+ + − −() > + + − −()

Simplifying this expression yields

q p> −()6 9 4

Based on this inequality, Figure 6.22(c) shows the region in which she should choose
the growth fund and the region in which she should choose the allocation fund if these were
her only choices.

FIGURE 6.21

A decision tree modeling the decision whose alternatives are a growth mutual fund, an
allocation mutual fund, and the bank.

D

Market

Market

Bank

Growth
fund

Allocation
fund

p

p

1 – p – q

1 – p – q

q

q

up

flat

down

up

flat

down

$1050

$700

$300

$1000

$1600

$1200

$1300

6.4  Sensitivity Analysis   213

214    CHAPTER 6  Further Techniques in Decision Analysis

Finally, the lines for all of the previous three comparisons are plotted in Figure 6.22(d).
This diagram shows the regions in which she should make each of the three choices when
all three are being considered.

The values in the previous examples were exaggerated from what we (the
authors) actually believe. For example, we do not believe growth funds will go
up about 60 percent in good market conditions. We exaggerated the values so
that it would be easy to see the regions in the diagram in Figure 6.22(d). Other
than that, this example illustrates how one of us makes personal investment deci-
sions. It is left as an exercise for you to assess your own values and determine the
resultant region corresponding to each investment choice.

FIGURE 6.22

If the only choice is between the growth fund and the bank, Christina should use (a); if it is
between the allocation fund and the bank, she should use (b); if it is between the growth
fund and the allocation fund, she should use (c); and if she is choosing from all three
alternatives, she should use (d).

0
0

0.25

0.75

1

0.5

0.25 0.5 0.75

(a)

1

Growth

Bank

p

q

0
0

0.25

0.75

1

0.5

0.25 0.5 0.75

(c)

1

Growth

p

q

0
0

0.25

0.75

1

0.5

0.25 0.5 0.75

(b)

1

Allocation

Allocation

0
0

0.25

0.75

1

0.5

0.25 0.5 0.75

(d)

1

Growth

p

q

Allocation

Bank

Bank

p

q

6.5	VALUE OF INFORMATION
Figure 6.23 shows the decision tree in Figure 6.21, but with values assigned to
the probabilities. It is left as an exercise to show that, given these values, the
decision that maximizes expected value is to buy the allocation fund, and

E D E() = () =allocation fund $1190

This is shown in Figure 6.23. Before making a decision, we often have the chance
to consult with an expert in the domain that the decision concerns.

Suppose in the current decision we can consult with an expert financial analyst
who is perfect at predicting the market. That is, if the market is going up, the
analyst will say it is going up; if it will be flat, the analyst will say it will be flat;
and if it is going down, the analyst will say it is going down. We should be willing
to pay for this information, but not more than the information is worth. Next, we
show how to compute the expected value (worth) of this information, which is
called the expected value of perfect information.

6.5.1  Expected Value of Perfect Information

To compute the expected value of perfect information we add another decision
alternative, which is to consult the perfect expert. Figure 6.24 shows the decision

FIGURE 6.23

Buying the allocation fund maximizes expected value.

D

Market

Market

Bank

Growth
fund

Allocation
fund

$1190

$1170

up

flat

down

up

flat

down
0.1

0.5

0.4

0.1

0.5

0.4

$1050

$700

$300

$1000

$1600

$1200

$1300

6.5  Value of Information   215

216    CHAPTER 6  Further Techniques in Decision Analysis

FIGURE 6.24

The maximum expected value without consulting the perfect expert is $1190, whereas the
expected value of consulting that expert is $1345.

E

Market

Market

Growth
fund

Allocation
fund

up

flat

down
0.1

0.5

0.4

up

up

Bank

flat

down
0.1

0.5

0.4

$300

$700

$1000

$1200

$1600

$1300

$1050

$1170

$1190

D

Market

Market

Market

Growth
fund

Allocation
fund

up

flat

down
0

0

0

0

0.4

1

1
up

Bank

flat

down

$300

$700

$1000

$1200

$1600

$1300

$1050

$1600

$1300

Market

Market

Growth
fund

Allocation
fund

up

flat

down
0

1

0.5

0.1

0

0.4
up

Bank

flat

down

$300

$700

$1000

$1200

$1600

$1300

$1050

$1000

$1200

$1600

$1345
$1200

says up

says flat

Consult
Perfect Analyst

0.5
D

Market

Market

Growth
fund

Allocation
fund

up

flat

down
1

0

0

1

0

0
up

up

Bank

flat

down

$300

$700

$1000

$1200

$1600

$1300

$1050

$300

$300
$1050

says down

0.1 D

tree in Figure 6.23 with that alternative added. Next, we show how the probabil-
ities for that tree were obtained. Because the expert is perfect, we have

P

P

Expert says up Market up

Expert says flat Market flat

= =() =
= =()

1

==
= =() =

1

1P Expert says down Market down

We therefore have

P(up | says up)

=
() ()

() () + () () +
P P

P P P P

says up up up

says up up up says flat up flat PP Psays down down down() ()

= ×
× + × + ×

=1 4

1 0 4 0 0 5 0 0 1
1

.

. . .

It is not surprising that this value is 1, because the expert is perfect. This value
is the far right and uppermost probability in the decision tree in Figure 6.24. It is
left as an exercise to compute the other probabilities and solve the tree. We see
that

E Consult Perfect Analyst() = $1345

Recall that without consulting this analyst, the decision alternative that maxi-
mizes expected utility is to buy the allocation fund, and

E D E() = () =allocation fund $1190

The difference between these two expected values is the expected value of
perfect information (EVPI). That is,

EVPI E E D= () − ()
= − =

Consult Perfect Analyst

$ $ $1345 1190 155

This is the most we should be willing to pay for the information. If we pay
less than this amount, we will have increased our expected value by consulting
the expert, whereas if we pay more, we will have decreased our expected
value.

We showed decision trees in Figures 6.23 and 6.24 so that you could see how
the expected value of perfect information is computed. However, as is usually the
case, it is much easier to represent the decisions using influence diagrams. Figure
6.25 shows the decision tree in Figure 6.23 represented as an influence diagram
and solved using Netica. Figure 6.26 shows the decision tree in Figure 6.24 rep-
resented as an influence diagram and solved using Netica. We have added the
conditional probabilities of the Expert node to that diagram. (Recall that Netica
does not show conditional probabilities.) Notice that we can obtain the EVPI

6.5  Value of Information   217

218    CHAPTER 6  Further Techniques in Decision Analysis

FIGURE 6.25

The decision tree in Figure 6.23 is represented as an influence diagram and solved using
Netica.

Market
up
flat
down

growth
allocation
bank

1170.00
1190.00
1050.00

40.0
50.0
10.0

U

D

FIGURE 6.26

The decision tree in Figure 6.24 is represented as an influence diagram and solved using
Netica.

Market
up
flat
down

40.0
50.0
10.0

Ugrowth
allocation
bank

D

says up
says flat
says down
not consulted

20.0
25.0
5.00
50.0

Expert

P(says up I up) = 1
P(says flat I up) = 0
P(says down I up) = 0

P(says up I flat) = 0
P(says flat I flat) = 1
P(says down I flat) = 0

P(says up I down) = 0
P(says flat I down) = 0
P(says down I down) = 1

consult
do not consult

1345.00
1190.00

E

directly from the values listed at decision node E in the influence diagram in Figure
6.26. That is,

.

EVPI E E= () − ()
= − =

consult do not consult

$ $ $1345 1190 155

6.5.2  Expected Value of Imperfect Information

Real experts and tests ordinarily are not perfect. Rather, they are only able to give
estimates, which are often correct. Let’s say we have a financial analyst who has
been predicting market activity for 30 years and has had the following results:

1.	 When the market went up, the analyst said it would go up 80 percent of
the time, would be flat 10 percent of the time, and would go down 10
percent of the time.

2.	 When the market was flat, the analyst said it would go up 20 percent of
the time, would be flat 70 percent of the time, and would go down 10
percent of the time.

3.	 When the market went down, the analyst said it would go up 20 percent
of the time, would be flat 20 percent of the time, and would go down 60
percent of the time.

We therefore estimate the following conditional probabilities for this expert:

P

P

Expert says up Market up

Expert says flat Market up

= =() =
= =()

0 8.

==
= =() =

=

0 1

0 1

.

.P

P

Expert says down Market up

Expert says up Market ==() =
= =() =

=

flat

Expert says flat Market flat

Expert says

0 2

0 7

.

.P

P down Market flat

Expert says up Market down

Ex

=() =
= =() =

0 1

0 2

.

.P

P ppert says flat Market down

Expert says down Market do

= =() =
= =

0 2.

P wwn() = 0 6.

Figure 6.27 shows the influence diagram in Figure 6.25 with the additional
decision alternative that we can consult this imperfect expert. We also show the

FIGURE 6.27

An influence diagram that enables us to compute the expected value of imperfect information.

Market
up
flat
down

40.0
50.0
10.0

Ugrowth
allocation
bank

D

says up
says flat
says down
not consulted

22.0
20.5
7.50
50.0

Expert

P(says up I up) = 0.8
P(says flat I up) = 0.1
P(says down I up) = 0.1

P(says up I flat) = 0.2
P(says flat I flat) = 0.7
P(says down I flat) = 0.1

P(says up I down) = 0.2
P(says flat I down) = 0.2
P(says down I down) = 0.6

consult
do not consult

1261.50
1190.00

E

6.5  Value of Information   219

220    CHAPTER 6  Further Techniques in Decision Analysis

conditional probabilities of the Expert node in that diagram. The increased
expected value we realize by consulting such an expert is called the expected
value of imperfect information (EVII). It is given by

EVII E E= () − ()
= − =

consult do not consult

$. $ $. .1261 50 1190 71 50

This is the most we should pay for this expert’s information.

6.6	NORMATIVE DECISION ANALYSIS
The analysis methodology presented in this and the previous chapter for recom-
mending decisions is called normative decision analysis because the methodol-
ogy prescribes how people should make decisions rather than describes how
people do make decisions. In 1954, L. Jimmie Savage developed axioms concern-
ing an individual’s preferences and beliefs. If an individual accepts these axioms,
Savage showed that the individual must prefer the decisions obtained using deci-
sion analysis. Tversky and Kahneman (1981) conducted a number of studies
showing that individuals do not make decisions consistent with the methodology
of decision analysis. That is, their studies indicate that decision analysis is not a
descriptive theory. Kahneman and Tversky (1979) developed prospect theory to
describe how people actually make decisions when they are not guided by deci-
sion analysis. In 2002, Dan Kahneman won the Nobel Prize in economics for this
effort. An alternative descriptive theory of decision making is regret theory (Bell,
1982).

CHAPTER

7Fundamental Concepts
of Genetic Algorithms

Evolutionary strategies address highly complex optimization and search problems
through an emulation of natural selection. They also incorporate a form of paral-
lel processing to effectively evaluate a large population of possible solutions. Their
ability to solve high-dimensional, highly complex problems that are often intrac-
table, slow, brittle, or difficult to formulate with conventional analytical tech-
niques has made genetic algorithms and evolutionary programming a critical
component in intelligent systems that require adaptive behavior, systematic explo-
ration of alternatives, and multiobjective and multiconstraint optimization. This
chapter introduces the concepts underlying genetic algorithms and evolutionary
programming. They are necessary in order to understand the nature of genetic
algorithms and evolutionary programming in the context of fuzzy model tuning
and in the context of advanced predictive and classification models.

Although not the first to explore the idea of combining the mechanics of evo-
lution and computer programming, the field of genetic and evolutionary algo-
rithms can be traced back to John H. Holland’s 1975 book Adaptation in Natural
and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence (see Resources). John Holland formalized the
concepts underlying the genetic algorithm and provided the mathematic founda-
tions for incrementally and formally improving their search techniques. Holland
was primarily interested in the nature of adaptive systems. The adaptive nature of
his genetic models provided the foundation for this broad and robust field of
computer science. As we will see in this chapter, evolutionary strategies allow
model designers and data mining engineers to optimize their models, generate
new and robust predictive models, and explore highly complex decision spaces.

222    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

7.1	THE VOCABULARY OF GENETIC ALGORITHMS
Much of the literature in evolutionary strategies adopts its nomenclature from
biologic models. Thus, we speak of chromosomes, alleles, mutations, breeding,
goodness of fit, and survival of the fittest. Before moving on with a complete and
detailed analysis of the algorithm and how it works, we need to understand the
principal nomenclatures and how they relate to the components of the algorithm.
A preview of the vocabulary will make reading and understanding the material in
this chapter much easier. It is not always possible, while maintaining an unclut-
tered and coherent discussion of the genetic process, to ensure that every term
is introduced before it is used.

7.1.1  Allele

The value at a particular locus in the genome is called the allele. In a binary
representation, this will be a one or a zero. In a real number representation, the
allele will be an integer or floating-point number.

7.1.2  Annealing

Annealing (often called simulated annealing) is a process for disrupting the
current state of a genetic algorithm to avoid premature convergence to a solution.
In a genetic algorithm, this is accomplished through mutation, the random
introduction of new individuals into a population, the retention of a few poor-
performing individuals, and changes in the size and compactness of future
populations.

7.1.3  Breeding

A new population of possible solutions to the current problem is primarily (but
not completely) created through a process that resembles biologic breeding. High-
performance individuals (those with very good fitness values) are mated to produce
offspring in a process somewhat analogous to sexual reproduction; that is, their
genetic material is distributed to one or more offspring. Figure 7.1 illustrates how
a crossover at a single point on the chromosome produces a new offspring from
two parents.

In this breeding example, a left part of one parent’s genome and a right part
of another parent’s genome are exchanged to create a new individual with the
combined genetic material from both parents.

7.1.4  Chromosome (Individual)

A collection of genomes representing a potential solution to the problem is called
a chromosome. This is the genetic material of the genetic algorithm. A chromo-
some may consist of multiple genomes, each expressing a feature of the target
system that must be considered a constraint or an objective function. For example,

a genetic algorithm that solves the traveling salesman problem (TSP)1 would
encode the order of cities in its chromosome. Figure 7.2 shows a collection of
cities and one possible route between these cities.

There are a large number of possible routes for even a small number of cities
(in that the number of routes grows with the factorial of the number of cities).

FIGURE 7.1

Breeding through a single-point crossover.

ABCDEF

Cross-over

UVWXYZ

Parent
chromosome 1

Parent
chromosome 2

Child
chromosome 1

Child
chromosome 2

ABWXYZ UVCDEF

1The objective of the traveling salesman problem (TSP) is to find the shortest route in time, capital,
or distance between all cities without visiting any city twice. The general TSP problem has appli-
cability in a wide range of configuration and design problems (such as the design and manufacture
of microprocessor chips).

FIGURE 7.2

One possible solution to a TSP.

New York

Baltimore

Atlanta
Dallas

Memphis

Chicago

Las Vegas

Seattle

San Francisco

Los Angeles

7.1  The Vocabulary of Genetic Algorithms   223

224    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

For eight cities, for example, the combinatorial complexity is 8! or more than
40,000 possible routes. We can simplify the encoding of the chromosome by
assigning each city an index number. Table 7.1 shows the index values for each
table.

Using this encoding, the TSP is encoded in a chromosome by specifying a pos-
sible path. The path is the set of edges in the route graph. In this problem, we
are always starting in Seattle. This becomes the start and end of the directed graph.
Figure 7.5 shows the chromosome for the route shown in Figure 7.3.

The chromosome defines a directed graph with the edges (10,9), (9,5), (5,6),
and so forth. If the TSP problem can start at any city, the starting city can be
encoded as part of the genome as a separate parameter. A potential solution can
be created for a path by generating a set of unique random numbers in the first
nine positions within the range [1,9], in that the last genome locus must return
the path to the origin (in this case, Seattle).

Table 7.1 The City Index Numbers

City Index

Atlanta 1

Baltimore 2

Chicago 3

Dallas 4

Los Angeles 5

Las Vegas 6

Memphis 7

New York 8

San Francisco 9

Seattle 10

FIGURE 7.3

A chromosome expressing a TSP solution.

TSP Chromosome

9 5 6 4 7 1 2 8 3 10

7.1.5  Constraints

Constraints define the feasibility of a schedule. Objectives define the optimality
of a schedule. Although objectives should be satisfied, constraints must be satis-
fied. In a crew-scheduling system, for example, the schedule might have three
constraints: the precedence relationship between jobs, the availability of the crew
at the time it is needed, and a match between the type of crew and the
skills required for the job. These constraints must be obeyed and define the
properties of a feasible and workable solution. (See Section 7.1.8 for additional
details.)

7.1.6  Convergence

The process of breeding a genetic algorithm’s population over a series of genera-
tions to arrive at the chromosome with the best fitness value is known as conver-
gence. That is, the population converges on a solution. Convergence is controlled
by the fitness function: Fitter chromosomes survive to the next generation and
breed new chromosomes that (hopefully) improve the average fitness of the
population. This continues until the fitness does not improve; thus, it converges
on a final value.

7.1.7  Crossover (Recombination)

The process of creating a new chromosome by combining or “mating” two or
more high-performance chromosomes is known as crossover. In a crossover, the
genetic material of one chromosome is swapped in some manner with the genetic
material of another chromosome to produce one or more offspring. There are
several techniques for combining the genetic material (genomes), such as one-
point, two-point, and uniform crossover. These techniques are discussed in the
detailed analysis of the algorithm.

7.1.8  Feasible Solution

A genetic algorithm must start with and always generate feasible solutions.
Otherwise, the solution, even if its goodness of fit is the best, is useless. Feasible
solutions must consider the nature of the objective function and constraints placed
on the system. For example, consider the TSP. If a business constraint on the route
plan specifies that the salesperson must visit all west coast cities before any other
cities, a schedule that creates an initial route from Seattle to Chicago violates this
constraint and is not a feasible solution. In a crew schedule, a solution that sched-
ules a task when a critical and necessary piece of equipment is unavailable or that
assigns a task to a crew that does not have the necessary skill set or cannot work
in the task’s geographic area is not a feasible solution.

7.1  The Vocabulary of Genetic Algorithms   225

226    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

7.1.9  Fitness Function

The fitness function is a measure associated with the collective objective functions
that indicates the fitness of a particular chromosome (or the phenotype) in terms
of a desired solution. A genetic algorithm is a directed search. This search is con-
trolled by the fitness function. For minimization problems, the fitness function
usually approaches zero as the optimal value. For maximization problems, the
fitness function usually approaches some upper boundary threshold as its optimal
value. For multiobjective functions, the fitness function often approaches some
saddle point in the overall solution space. In the TSP, we want to minimize the
distance, and thus we need a fitness function that approaches zero. One possible
fitness function, shown in Equation 7.1, is fairly straightforward (it is 1 minus the
inverse of the sum of the distances):

	 f
d c ci ii

N= −
()+=

−∑
1

1

11

1
,

	 (7.1)

For N cities, this function sums the distance between each successive city in
the graph stored in the current chromosome. This fraction is subtracted from 1.
Smaller distances will yield relatively larger fractions, thus driving the fitness func-
tion toward zero. When the entire population of potential paths has been evalu-
ated, those with the smallest fitness will be the best solution found during that
generation.

7.1.10  Generation

A genetic algorithm creates a new population of candidate solutions until a termi-
nation condition is reached. Each new population is known as a generation. A
maximum number of generations is one of the termination conditions for a genetic
algorithm.

7.1.11  Genome

A particular feature in the chromosome is represented by a genome. In many
cases, a chromosome may consist of a single genome, but for multiobjective and
multiconstraint problems, a chromosome can consist of several genomes. The
nature of a genome depends on the underlying data representation. For bit (or
binary) representations, the genome is a series of bits. For a real number repre-
sentation, the genome is an integer or floating-point number.

7.1.12  Genotype

The complete structure of a chromosome is often called the genotype. It is simply
a handy way of referring to all genomes. The actual instance of a chromosome
(the actual values of the genotype) is called the phenotype.

7.1.13  Goodness of Fit

The goodness of fit is a measure of how close the fitness function value is to
the optimum value. A fitness function returns a goodness-of-fit value for each
chromosome.

7.1.14  Locus

A locus in a chromosome is simply a position in the genome. In the TSP chromo-
some (see Figure 7.3), there are ten node positions in the genome. Each of these
values is a locus in the underlying chromosome.

7.1.15  Mutation

One of the ways in which a genetic algorithm attempts to improve the overall
fitness of a population as it moves toward a final, optimal solution is by randomly
changing the value of an allele. This process is called mutation. Mutation enriches
the pool of phenotypes in the population, combats local minimum and maximum
regions (and as such is a form of annealing), and ensures that new potential solu-
tions, independent of the current set of chromosomes, will emerge in the popula-
tion at large.

7.1.16  Objective Function

An objective function defines the purpose of the genetic algorithm and is the
value that will be either minimized or maximized. Each genetic algorithm must
have one or more objective functions. It is the objective function value that is
measured by the fitness function and evaluated for its goodness of fit.

7.1.17  Performance

A general way of looking at the fitness of a chromosome is its performance in
the population. Chromosomes with high goodness-of-fit values are considered
high-performance segments of the population. Those chromosomes below some
goodness-of-fit threshold are considered low-performance chromosomes.

7.1.18  Phenotype

The actual values of a genome (its position in the solution space) are called the
phenotype. Whereas the genotype expresses the overall properties of the genetic
algorithm by defining the nature of the chromosome, the phenotype represents
an individual expression of the genome (or genotype). This is somewhat similar
to the relationship between classes and objects in an object-oriented programming
language: A class represents the definition of an object, whereas an object repre-
sents a concrete instantiation of a class.

7.1  The Vocabulary of Genetic Algorithms   227

228    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

7.1.19  Population

A collection of chromosomes with their values is a population. A genetic algo-
rithm starts by creating a large population of potential solutions represented as
chromosomes. As the algorithm continues, new populations of old and new chro-
mosomes are created and processed. In some genetic algorithm implementations
the total population size is fixed, whereas in others the population size can
increase or decrease depending on the nature of the problem space.

7.1.20  Schema

Many of the mathematic foundations of genetic algorithms are built on the evalu-
ation of emerging and transient bit patterns in the population. A pattern of bits
that repeats through the high-performance region of the population provides a
method of explaining how a genetic algorithm converges on a solution. In general
practice, however, an understanding of schema patterns provides little, if any,
benefit in the management of a genetic algorithm.

7.1.21  Selection

How individual chromosomes are chosen for crossover and mutation is based on
the process of selection. Selection is used to pick the high-performance segment
of the population for crossover breeding, to pick a few chromosomes for muta-
tion, and in some problems to pick a few low-performance chromosomes for
inclusion in the next generation (simply to ensure a mix of genetic material).

7.1.22  Survival of the Fittest

In a fashion similar to natural evolution, individuals in a genetic algorithm survive
from one generation to the next based on their goodness-of-fit values. The fittest
individuals are preserved and reproduce (see Section 7.1.3), which is referred to
as survival of the fittest. In this way, the average goodness of fit of the entire
population begins to converge on the best possible set of solutions.

7.1.23  System

A genetic algorithm is connected to an underlying system. The current phenotype
values in the chromosome are the parameters used to run the system and evaluate
the system’s outcome in terms of goodness of fit. For example, a genetic algorithm
that solves the TSP has chromosomes containing possible paths between all cities.
The system it calls is the graph analyzer that computes the total travel time for
each chromosome. The graph analyzer generally contains an N × N table of
the distances between each city. Table 7.2 shows part of this table of intercity
distances.

In this route table (routes [10][10]), any chromosome phenotype can be
decoded though the following distance function.

Function real d(integer fromCity, integer toCity){
   return(routes[fromCity][toCity]);
}

(See the fitness function definition in Section 7.1.9 for the actual system fitness
function that uses this route intercity distance function.) Thus, the genetic algo-
rithm sets up the population of candidate routes. Each chromosome is then made
part of the parameters of the route analysis system, which computes and returns
the fitness.

7.1.24  Termination Conditions

A genetic algorithm must be told when to stop searching for a solution. The
criteria for stopping are called termination conditions. The criteria include the
maximum number of generations having been reached, the amount of computer
time having been exceeded, one or more individuals having fitness values that
satisfy the objective function, or the best fitness function in successive generations
having reached a plateau. A genetic algorithm can use one or more of these
terminating conditions.

Table 7.2 Intercity Distances for TSP Route Analysis

To

From 1 2 3 4 5 6 7 8 9 10

Atlanta 1 0 600 900 1200 2900 1800 400 800 2800 2500

Baltimore 2 600 0 450 1150 2890 1940 510 200 2820 2470

Chicago 3 900 450 0 640 2100 1100 480 700 1950 2200

Dallas 4 1200 1150 640 0 1100 570 630 1020 1500 2050

Los Angeles 5 2900 2890 2100 1100 . . .

Las Vegas 6 1800 1940 1100 570 . . .

Memphis 7 400 510 480 630 . . .

New York 8 800 200 700 1020 . . .

San Francisco 9 2800 2820 1950 1500 . . .

Seattle 10 2500 2470 2200 2050 . . .

7.1  The Vocabulary of Genetic Algorithms   229

230    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

7.2	OVERVIEW
One of the principal uses of a genetic algorithm is optimization: the process of
finding the best solution to a problem under a set of objectives and constraints.
Finding the best solution usually, but not necessarily, means finding the maximum
or minimum value for the variable representing the objective function. Because
genetic algorithms can search large, highly nonlinear, and often noisy landscapes,
they are ideal as solution engines for optimization problems involving a large
number of constraints and many different (sometimes conflicting) objective func-
tions. Some everyday examples include the following:

n	 Project, crew, and class scheduling; delivery and distribution routing (the TSP);
container packing (the classical “knapsack” problem); timetabling; assembly line
balancing; configuration management; and retail shelf-location planning.

n	 Regression and trend curve fitting, automatic cluster detection, and route
identification.

n	 Process control, engineering structural design, integrated circuit design, urban
planning, and highway capacity analysis.

n	 Evolution of neural networks, optimization of fuzzy models, general function
optimization, exploration of game theory scenarios, protein folding and related
modeling of molecular systems, and high-throughput screening and drug dis-
covery and design.

n	 Capital budgeting, portfolio suitability, balancing, and mix analysis; sales,
inventory, and consumption forecasting; new product pricing; and economic
models.

n	 Network topology configuration, server capacity planning, fault detection,
application scheduling, web design, and database design.

Genetic algorithms are also used in a wide spectrum of evolutionary program-
ming systems. Evolutionary programs breed and mutate mathematic, logical, and
fuzzy expressions to produce an optimal model. Not only are evolutionary pro-
grams another form of knowledge discovery (data mining), but they form an
important class of solutions for rule-based and mathematics-based models.

7.2.1  Generate and Test

A genetic algorithm is an enhancement to one of the earliest approaches in
machine problem solving. The approach is known as generate and test. Using this
strategy, a new solution to the current problem state (which, of course, may be
a partition of the final problem state) is generated and tested. If it satisfies
the criteria for a solution, it is accepted;2 otherwise, a new potential solution is

2In some cases, a set of candidate solutions is collected from the generate-and-test process. These
candidates are then ranked by additional evaluation criteria and the best of the potential solutions
is selected.

generated and tested. Because the generate-and-test method is always guided by
an allowable outcome, it is called a directed search. Figure 7.4 illustrates this
process.

A generator, using a model of constraints, creates a possible solution case to
the current problem. The testing program evaluates the solution according to the
current problem state. If the solution solves the current problem state, it is
accepted; otherwise, another potential solution is produced (or, if no other
solutions are available, the process terminates with a failure).

The core of the generate-and-test method is the ability of the generator to
produce a set of well-formed, nonredundant candidate solutions. The test process
incorporates two capabilities: the ability to run the candidate solution against the
target system and the ability to compare the results to a valid solution. It is the
comparison between a potential solution and an acceptable solution that drives
the generate-and-test methodology. Where the criteria for a successful solution
can be specified, the generate-and-test approach has proved to be a powerful tool
and has been used in variety of difficult and computationally intensive problems
in such areas as configuration, design, and graph generation.

7.2.2  The Genetic Algorithm

A genetic algorithm (GA) is a form of the generate-and-test paradigm. Like the
generate-and-test method, it is a directed search and works by generating a large
number of possible solutions and testing each of these against an allowable
outcome. The genetic algorithm, as the name implies, breeds a solution to complex

FIGURE 7.4

The generate-and-test process.

No

No

Yes

Yes

Case
exists?

Solution?

TestGenerate

Constraint
model

Accept

Failure

7.2  Overview   231

232    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

optimization and search problems using techniques that simulate the processes
of natural evolution. The genetic algorithm starts with a large population of poten-
tial (or feasible) solutions and through the application of recombination (also
called crossover) and mutation evolves a solution that is better than any previous
solution over the lifetime of the genetic analysis. Figure 7.5 shows the organization
of a genetic algorithm.

7.2.3  How a Genetic Algorithm Works

The genetic algorithm works by creating an initial population of N possible solu-
tions in the form of candidate chromosomes (or simply, individuals). Each of these
individuals represents the target system. The encoding of the target system’s
parameters in the individual is used to run the system and measure the outcome
against an objective function. The objective function measures the goodness of
fit of the individual. The better this goodness of fit, the closer the individual is to
representing a solution. After all individuals in the population have been evaluated
for their goodness of fit, we decide whether to continue or to stop. If the termi-
nating condition is not met, a new population is created by saving the top K best
individuals, removing the bottom M poorly performing individuals, and replacing
these with new individuals created by merging the parameters of the top best-
performing individuals. New chromosomes are also created by randomly mutating
the parameters in a few of the existing individuals.

As the genetic algorithm creates and tests each population of chromosomes,
it is searching for better and better solutions to the underlying problem. This

FIGURE 7.5

Organization of a genetic algorithm.

No

YesTerminate?

Generate

initial population

P (N)

Evaluate

each

individual

Breed

new population

Return best

search takes the form of a walkover of the underlying surface of the solution space.
For example, consider Equation 7.2 and a genetic algorithm that seeks to maximize
the variable z as a solution to the function in continuous variables x and y:

	 z f x y= (), 	 (7.2)

If we plot z over the possible values of x and y, we develop a terrain map of the
solution surface for this function. Figure 7.6 shows a portion of the terrain map
that we will use in the discussion of how the genetic algorithm works.

The genetic algorithm searches through this terrain to find the values of x and
y that maximize z. This is essentially a process known as hill climbing. In hill
climbing, the search mechanism explores the terrain around its current position
looking for values in the independent variables that will increase the value of the
target (or dependent) variable. It then moves in this direction (hence the analogy
with climbing a hill). A major problem with hill climbing is its tendency to become
stuck in a local maximum (or minimum, depending on the objective function).
For example, Figure 7.7 shows a hill-climbing mechanism selecting a random posi-
tion on the terrain.

Examining the surrounding terrain, the hill-climbing mechanism moves to the
left and up. Through a series of proximity tests, it works its way, as illustrated in
Figure 7.8, to the top of the hill.

By generating a series of values for x and y, the search mechanism can work
its way up the slope, always moving in the direction that gives a larger value of z.

FIGURE 7.6

The solution space terrain for z = f (x, y).

z

3010 20 40 50

x

60 70 80 90

100
120

140

y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

7.2  Overview   233

234    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

FIGURE 7.7

A random search point on the terrain.

z

3010 20 40 50

x

60 70 80 90

100
120

140

y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

FIGURE 7.8

Hill climbing moving up a hill.

z

10 20

50

40

30

20

10

0

–10

–20

–30

–40

–50

180
200

220

30 40 50

x

60 70 80 90
100

120
140

y

160

Eventually, as we can see in Figure 7.9, the search mechanism arrives at the top
of the hill. There is no way to go except back down.

This hill-climbing example illustrates not only the way the search mechanism
works but a significant weakness in the search methodology. Although we have
arrived at the top of a hill, it is not the hill that maximizes the value of z (this hill
lies off to the right). Once the hill-climbing mechanism starts up a slope, it has no
way of going back down to find another, perhaps better, hill. Thus, hill climbing
is always subject to finding local maximums (or minimums). We can compensate
for this tendency to find local maximum or minimum regions through a process
called simulated annealing. This approach saves the current maximum and then
in effect “shakes” the surface to start the search point rolling around the terrain.
It then starts the hill climbing from this new point. However, for any realistically
large, complex, and often noncontiguous surface, this approach is very inefficient.
In real-world systems, the underlying terrain is often very hilly, with gaps, steep
ravines, and long gullies.

Not only does a hill-climbing mechanism have little chance of finding a global
maximum in such a surface, but there is no way for the search mechanism to
ensure that any maximum is in fact the global maximum (or minimum).

A genetic algorithm significantly improves the hill-climbing methodology of
generate-and-test by selecting many possible maximums throughout the surface
and then using the fitness function to breed better and better solutions as each of
the randomly placed points moves up (or down) adjacent slopes. Figure 7.10
illustrates a population of potential solutions that would form the initial set of
chromosomes for a genetic algorithm.

FIGURE 7.9

Arriving at the top of the hill.

z

3010 20 40 50

x

60 70 80 90

100
120

140
y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

7.2  Overview   235

236    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

In Figure 7.10 we can see that the candidate solutions are scattered widely
over the underlying terrain. Each point with an x, y coordinate value yields a value
for z. Our fitness function is simply the value of z. The higher the value, the better
the goodness of fit. In the genetic algorithm, the initial population of solutions
and each subsequent population are subjected to a set of transformations, as
follows:

n	 A collection of the best chromosomes (solutions) is retained.

n	 The bottommost poor solutions are removed.

n	 The members of a random set of the best solutions are “mated” to produce a
set of children that shares the genetic material of their parents. This is the
process called crossover. For example, Table 7.3 shows a crossover for two
genomes. In this case, the first locus (the x value) is swapped to generate two
new children. The purpose of crossover is to increase variety and robustness in
the population while preserving the genetic values of the best solutions.

FIGURE 7.10

An initial population of possible solutions.

z

3010 20 40 50

x

60 70 80 90

100
120

140

y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

Table 7.3 Crossover Example

Parent Child

Genome N (50,120) (84,120)

Genome N + 1 (84,173) (50,173)

n	 Another random (but sparse) set of the population is subjected to mutation.
This involves randomly changing the value of a chromosome locus to a random
but permissible value. Mutation is a form of annealing, which introduces new
genetic material into the population.

n	 Every so often a completely new chromosome is created and inserted into the
population. This is also a form of annealing and, like mutation, introduces
completely new genetic material into the population.

This process of breeding new solutions (creating a new population) by select-
ing the chromosomes with the largest fitness value and applying crossover and
mutation continues for generation after generation. Figure 7.11 illustrates the
population after a few generations.

Although there are still a few poor-performance chromosomes (because of the
unpredictable random effects of individual crossovers and mutations), the average
performance of all chromosomes has improved. Most of the solution points are
beginning to move toward the global maximum. We also note that the points that
have climbed the local maximum slopes are also being removed because their
fitness function values are consistently less than the points that are moving toward
the global maximum.

As we continue this process over a large number of generations, the ranking
of chromosomes by their goodness of fit guides the search toward the global
maximum. Figure 7.12 shows the result: the fitness function eventually finds the
maximum (optimal) value of z.

FIGURE 7.11

The solution population after several generations.

z

3010 20 40 50

x

60 70 80 90

100
120

140
y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

7.2  Overview   237

238    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

In summary, genetic algorithms are a form of directed search. They work
through the repetitive application of genetic operators and a fitness function to a
population of potential solutions. The genetic operators breed new solutions. The
fitness function selects the best of these new solutions. The genetic algorithm
ranks the best solutions, applies the genetic operators to breed new solutions,
and evaluates these against the fitness function. This process usually continues
until no more improvement in a potential solution is found (or until another
termination condition is reached).

7.2.4  Strengths and Limitations of Genetic Algorithms

Although genetic algorithms are powerful tools for search and optimization, they
are not without their problems and limitations. In this section, we review a few
of their principal strong points and weak points.

The Ability to Solve Nonlinear, Noisy, and Discontinuous Problems
Although a genetic algorithm has many of the properties of a hill-climbing algo-
rithm, it is actually a more sophisticated form of a stochastic search engine. The
general capabilities of a stochastic search are more robust and broader than simple
hill climbing. In particular, genetic algorithms are capable of solving highly non-
linear problems that involve discontinuous surfaces, noise, and internal dependen-
cies (such as lead and lag relationships). Nonlinearity is a common property of
most real-world problems, occurring in manufacturing, inventory management,

FIGURE 7.12

The maximum (optimal) value of z.

z

3010 20 40 50

x

60 70 80 90

100
120

140
y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

portfolio mix optimization, construction, retailing, and a wide spectrum of other
industries.

For example, in the normal course of running a production line the cost to
assemble, paint, and ship 100 cars for the ABC Motor Company is $N. If N =
20,000, the cost per car is $200. What is the cost to assemble, paint, and ship a
single car? What is the individual cost to assemble, paint, and ship 1 million cars?
Both of these questions involve a nonlinear system. The cost of setup, labor, elec-
tricity, and other factors means that producing a single car (or any small number
of cars) is far more expensive than a large number of cars in a production system.
Figure 7.13 illustrates this nonlinear relationship between cost and production
line volume.

The plateau regions in the function are generally related to the cost of energy
and materials that often have quantity-based cost thresholds. On the other hand,
the wear and tear on equipment alone means that the cost per car on a run of 1
million cars will steadily increase. The growth and decay curves in these examples
are typical examples of nonlinear functions.

The Ability to Solve Complex Optimization Problems
The genetic algorithm’s ability to rapidly and thoroughly search a large, complex,
and high-dimensional space allows it to solve multiobjective and multiconstraint
optimization problems. In a multiple objective function schedule, the optimal
solution often represents a saddle (or compromise) point in the solution space.
Optimization in the presence of multiobjective functions usually means finding a

FIGURE 7.13

A nonlinear production cost curve.

C
os

t t
o

m
an

uf
ac

tu
re

 a
nd

 s
hi

p
1

ca
r

Production line steady state volume (cars/day)

1 1200

0

10,000

7.2  Overview   239

240    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

way to rank the utility or importance of each objective and then finding a way to
judge the optimality of a feasible solution based on the goodness of fit or rank of
their optimality measures.

As a rather simple example using a crew scheduler, if each objective function
(f) returns a value between 0 and 100, indicating how close the schedule is to
the optimal (0 = best, 100 = worst), we can find an optimality ranking for a multi
objective function schedule by evaluating Equation 7.3:

	 franked
f w

w

i ii

N

ii

N=
×

=

=

∑
∑

1

1

	 (7.3)

where N is the number of objective functions and wi is the weight (or utility)
value of that objective function. By selecting schedules with the smallest weighted
average objective function, the feasible schedules with the closest optimality fit
will continually percolate to the top. This form of evaluating a collection of objec-
tive functions makes it easy to combine both minimizing and maximizing objective
functions in the same analysis (maximizing functions simply return the inverse of
the fitness value).

A Complete Dependence on the Fitness Function
As a directed search technique, the fitness function evaluates each solution and
ranks it according to a goodness of fit. If a fitness function cannot be defined, a
genetic algorithm cannot be used to solve the problem. If a fitness function does
not correctly define a separable universe of good and bad solutions (or if the fitness
function is coded incorrectly), the genetic algorithm will behave according to the
clarity and focus of the faulty fitness function and will fail to find the correct solu-
tion. And because a genetic algorithm is highly sensitive to the underlying gradient
of the solution space, a fitness function must provide a way of guiding the search.
The algorithm must be able to tell when it is moving in the right direction—that
is, when in fact it is getting close to a solution.

Genetic algorithms are also sensitive to intelligent proximity and search capa-
bilities built into the search methodology. This is both a strength and a weakness.
The ability to encode intelligence into the fitness function so that degrees of fitness
can be evaluated allows the genetic algorithm to rank chromosomes that are “close
to” the main goodness-of-fit criteria. This process can help guide the search
through a rough or chaotic solution space. At the same time, a lack of focus in
the fitness function can spread the search over a larger segment of the population,
slowing and often obscuring the optimization process. Finding a balance between
the flexibility and brittleness of the fitness function is often a difficult task.

A Sensitivity to Genetic Algorithm Parameters
Genetic algorithms are intrinsically sensitive to the way in which new populations
are generated; that is, they are sensitive to the way in which future populations

7.3  The Architecture of a Genetic Algorithm   241

inherit high-performance properties and the way in which new potential solutions
emerge in future populations. Essentially, this means that the stability, coherence,
and convergence of genetic algorithms depend on the rate of mutation and the
crossover frequency. The higher the rate of the crossover and mutation properties,
the more variation appears in the population. This may initially provide a rich pool
of possible solutions. However, as the frequency rates increase, the continuity of
high-performance individuals is lost among the resulting randomness. At some
point, the algorithm becomes less and less stable and the genome itself becomes
more and more random.

Two significant problems are associated with a lack of robustness in a genetic
algorithm: premature convergence and delayed convergence. When the popula-
tion size is too small or the genetic diversity is too small, a genetic algorithm can
converge too quickly on a local optimum. On the other hand, if the population
size is too large or the genetic diversity is too large, an optimal solution may not
emerge (because of the continual emergence of randomness in the genomes) or
the convergence to a solution may take a long time.

A Sensitivity to Genome Encoding
Genetic algorithms are also responsive, but perhaps to a lesser degree, to the
underlying coding scheme used to represent the genome. Traditional genome
coding has been done through a bit string so that mutations can work in a way
similar to random genetic miscoding in biologic systems. Production genetic
algorithms—those that have been deployed into regular use and are solving
real-world problems, especially those used in complex, multiobjective business
applications—commonly use real numbers as genomes. The use of numbers
rather than bit strings provides not only higher evaluation performance but the
ability to more easily control the underlying distribution (statistical) properties
of the genome.

Summary of Genetic Algorithm Strengths and Limitations
To summarize, genetic algorithms belong to a class of directed search methods
that are be used for both solving optimization problems and modeling the core
of evolutionary systems. They use a heuristic rather than analytical approach, and
thus their solutions are not always exact and their ability to find a solution often
depends on a proper and sometimes fragile specification of the problem repre-
sentation and the parameters that drive the genetic algorithm.

7.3	THE ARCHITECTURE OF A GENETIC ALGORITHM
In the previous section, we discussed the underlying concepts of the genetic
algorithm and how the stochastic search and fitness functions work together to
find a value for an objective function. We also reviewed some of the principal
strengths and weaknesses of genetic algorithms. Now we turn to the actual

242    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

mechanics of the genetic algorithm; how a genetic algorithm is designed, struc-
tured, and organized for a particular problem; the meaning and application of the
algorithm parameters; and the specification of constraints, objectives, and fitness
functions.

To illustrate the mechanics of a genetic algorithm and how the various algo-
rithm parameters affect the search methods, we will use a small, five-city TSP. In
this problem, shown in Figure 7.14, we want to find the shortest complete path
(or tour) between cities Able, Baker, Charlie, Delta, and Echo. To simplify the
example, we are not attempting to find a circuit (that is, we need not return to
the starting city).

To compute the path between the cities, we need to store the intercity dis-
tances in a way that allows for a rapid evaluation of the path. The mileage between
these cities, shown in Table 7.4, is maintained in a distance matrix (D[][]),

An alternative way of storing city-to-city distances, of course, is through a grid
coordinate system. In this approach, each city is associated with an x-y coordinate
in an N × M map. Table 7.5 shows a coordinate table for the five cities.

Echo

Able

Charlie

Delta

Baker

12

10

5

30

8

13

28

15

22

9

FIGURE 7.14

The five-city TSP.

7.3  The Architecture of a Genetic Algorithm   243

With a coordinate table, the distance between any two cities (Cn, Cm) is the
Euclidean distance from the coordinates of Cn and Cm. Equation 7.4 is the distance
metric:

	 d C C x x y yn m m n m m,() = −() + −()2 2 	 (7.4)

The choice of representation depends to a large degree on how the distance
metric is actually used. If the distance must be associated with road, rail, water,
and other physical transportation systems, the intercity distance map is the pre-
ferred representation method because it can capture the actual mileage between
two cities based on actual driving or commuter rail distances (for example). Also,
when the distances between cities are not symmetric—that is, traveling from city
C1 to city C2 is not the same as traveling from city C2 to city C1—the intercity
matrix should be used. The Euclidean distance, on the other hand, is the straight-
line mileage between two cities. In some problems, where the approximate dis-
tance is sufficient, the grid coordinate method can be used.

With five cities, there are 120 possible paths (because there are 5! possible
combinations of cities). Our genetic algorithm will explore this space. Its objective
is to minimize the transit length among the cities.

Table 7.4 The Intercity Distance Matrix

Able Baker Charlie Delta Echo

Able 0 10 15 5 9

Baker 10 0 8 12 22

Charlie 15 8 0 30 13

Delta 5 12 30 0 28

Echo 9 22 13 28 0

Table 7.5 The City Coordinate Map

Grid Coordinates

x y

Able 3 3

Baker 5 1

Charlie 7 4

Delta 8 2

Echo 4 6

244    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Keeping the previous paragraph in mind, we can turn to the internal workings
of the genetic algorithm. Figure 7.15 shows the schematic flow of control and
analysis in the genetic algorithm.

7.3.1  One: Design a Genome Representation and Fitness Function

The efficiency and processing power of a genetic algorithm depend on the
way the problem is expressed in a chromosome and the fitness function that
evaluates the chromosome. This is the first step in using a genetic algorithm (see
1). The design of a chromosome or genome set to properly represent a problem

is one of the crucial architectural decisions in the use of a genetic algorithm.

FIGURE 7.15

The control and analysis flow in a genetic algorithm.

Yes

No

Terminate?

Generate
initial population

P (N)

Design
genome and

fitness function

For each P (n)

Evaluate
chromosome

Return best

Create new
population P (N)

Repeat
analysis

5

4

3

2

1

7.3  The Architecture of a Genetic Algorithm   245

Genome Structural Design
A population consists of a collection of chromosomes. Each chromosome consists
of one or more genomes. Every chromosome represents a possible solution. The
way in which the chromosome is designed can, therefore, have a significant effect
on processing speed, convergence, and the overall ease of crossover and mutation.
It is important to understand that the values of a chromosome are the parameters
of a solution and must always be associated with an evaluation system that can
use the parameters to produce a state or outcome of the system. The degree to
which this outcome is a better or worse solution, given the chromosome’s param-
eter values, is measured by the fitness function (which is discussed in the next
section).

In the TSP, an obvious chromosome representation is a genome with five loci,
representing the order in which the cities are visited. The number in the locus is
the city at the row location in the distance matrix (D[][]). Figure 7.16 shows a
possible chromosome (a phenotype) for a route through five cities.

This chromosome describes a tour: start at Able, travel to Charlie, travel to
Echo, travel to Delta, and then travel to Baker. A new chromosome can easily be
developed using this presentation by generating five unique random numbers
between 1 and 5. For a simple route through five cities, a chromosome that is a
permutation of the cities is most likely the simplest and the best.

Chromosome design is, however, highly dependent on the problem. Consider
a circuit through the same five cities. A circuit has the constraint that we must
return to the starting city.

We can either modify the fitness function to consider the implicit loop or
design a slightly different chromosome to make the circuit explicit and speed
up fitness computation. An extra locus is added to the end of the chromosome.
This site contains the city index of the first locus. Figure 7.17 shows a possible
chromosome (a phenotype) for a circuit through the five cities.

FIGURE 7.16

A route chromosome in the TSP.

Locus (allele) positions

1 2 3 4 5

1 3 5 4 2

FIGURE 7.17

A circuit chromosome in the TSP.

Locus (allele) position

1 2 3 4 5 6

1 3 5 4 2 1

246    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

In the circuit representation, however, the genetic algorithm is not free to
perform crossover and mutate operations over the complete chromosome. Locus
5 completes the circuit and must always have the same value as the first locus.
Thus, ease of representation increases complexity in the control strategies of the
genetic algorithm.

Chromosomes can consist of more than single values. A chromosome locus
can be a vector, a matrix, or a tree structure. The representation depends on the
problem. As a simple example, suppose we change the objective of the five-city
TSP to find the shortest route through the city considering traffic patterns during
the day. Heavy traffic in city Ci effectively extends the distance between cities
(Ci, Cj). We can represent this by a length multiplier associated with the from (or
starting) city. Table 7.6 lists the effective lengths between cities—with the travel
time between each city pair extended by the traffic multiplier.

For example, for the route segment Able to Baker (or to any other city) at 1615
(4:15 p.m.), the multiplier is 1.4, indicating, perhaps, moderately heavy rush-hour
traffic. The distance from Able to Baker is 10 miles. The multiplier converts this
to an effective distance of 14 miles (10 times 1.4). The chromosome representa-
tion now must consider two values: the city and the time of day of arrival at the
city. Figure 7.18 shows the organization of the city and time-of-day genome.

Table 7.6 The City Traffic Multipliers

Time of Day

From 0000 0531 0731 0931 1601 1901

To 0530 0730 0930 1600 1900 2400

Able 1.0 1.2 1.4 1.1 1.4 1.2

Baker 1.0 1.2 1.3 1.3 1.2 1.1

Charlie 1.0 1.5 1.7 1.4 1.3 1.2

Delta 1.0 1.3 1.5 1.4 1.1 1.0

Echo 1.3 1.4 1.2 1.0 1.0 1.0

FIGURE 7.18

The city route and time-of-day genome.

Locus position

1 2 3 4 5

City

Time of day

7.3  The Architecture of a Genetic Algorithm   247

Each genome locus in this representation consists of a 1 × 2 vector containing
the city and the time of day. An initial population is generated by selecting a
random permutation of cities and, for each city, a random arrival time.3 The search
process proceeds by breeding routes that minimize path length subject to the best
time of day of city arrival times. More complex route scheduling problems can be
solved in this manner.

For example, city Ci may have N possible routes though the city. Baltimore,
Maryland, for instance, has I-695 (the beltway), the harbor tunnel, the I-95 tunnel,
and the Francis Scott Key Bridge, each connecting cities south of Baltimore
(such as Washington, DC) to cities north of Baltimore (such as Wilmington and
Philadelphia). Each route has its own length, or a traffic multiplier. A TSP algorithm
could consider the order of the cities, the route through the city, and the time of
arrival. Because every city has a different number of possible routes, the routing
locus would be drawn from a different population of random highways associated
with the city in the city locus of the genome.

The TSP illustrates one of the structural difficulties in designing a chromosome
representation that is easy to use and amendable to genetic operators such as
crossover and mutation. As we will see in the discussion of breeding techniques
(see Conventional Crossover (Breeding) Techniques section), a genome with a
simple linear sequence of cities almost always produces an incorrect genome
when subjected to conventional “cut-and-splice” crossover operations, as well as
an incorrect genome when subjected to conventional locus (site) mutation. Fol-
lowing the conventional crossover and mutation operations, we will take up more
advanced issues in designing genomes for permutation and precedence-based
(time-sequenced) problems.4

Genome Representations
In addition to the most effective and efficient way to encode parameters into
chromosomes, the underlying form of the representation is also important. His-
torically, chromosomes have been encoded as bit strings. Figure 7.19 illustrates
the bit (or binary) organization of the five-city TSP search.

Unlike the use of actual numbers, which employ arrays or matrices for the
genome, a binary representation uses a continuous string of 1 and 0 values. The

3Nothing in the genetic search process requires a uniform distribution of random times. For busi-
ness trip schedules or crew scheduling, we might limit the random time to business hours, say
0630 to 1700 (or 1430 hours to allow end-of-day tear down and travel time). Naturally, as we will
see in the discussion of fitness functions, we could also assign very large multipliers to nonwork
times to force the search mechanism to only schedule trips during a specific range of work
hours.
4Separating the discussion of genome design into two sections makes it easier for readers unfamiliar
with either genetic algorithm breeding operators or with scheduling, routing, covering, and TSPs
to understand the fundamentals and then appreciate the difficulties in genomes that involve locus
dependencies.

248    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

chromosomes in Table 7.5 would be represented as 0001001100100100. Bit
strings provide several general benefits in genetic search:

n	 As a string of 1s and 0s, they are a compact representation.

n	 Crossover operations are simplified. The mating process simply slices the bit
string at some random point and appends the string fragments without regard
to the actual values.

n	 Mutation is a simple matter of flipping a random bit in the string.

n	 They provide a pattern analysis space for the evaluation of schemata (patterns
of high-performance genomes that move through the population). Whether or
not schemata analysis contributes any significant control improvement to genetic
algorithms is a matter of some debate. Most business genetic algorithms in
scheduling, production management, logistics, data exploration, pricing, and
similar areas evaluate the fitness function and the average fitness of the popula-
tion without regard to the propagation of schemata patterns.

Binary representations, however, all have some significant problems:

n	 They must be converted to a real number for use as a parameter to the underly-
ing system. This involves traversing the bit string from right to left, and for each
nonzero position, computing the value (2n, where n is the bit position) and
adding it to the total of the under-generation value.

n	 They make feasibility and unique chromosome constraint checking difficult (the
requirements for feasibility and uniqueness are discussed in Section 7.3.2).

n	 They make generating random values in a specific range a more tedious
process.

n	 They are often a source of deep representation problems in genetic algorithms.
Because we are (as a general rule) unaccustomed to working in base 2 arith
metic, debugging and tracing the operations of a genetic algorithm are often
difficult and are flawed by mistakes in either binary encoding or interpreting
the output of the algorithm.

n	 They are (generally) unnecessary. Nearly all problems can be expressed with
integer or floating-point numbers as the parameters. Using a variety of random
number generators (uniform, Gaussian, binomial, and so forth), these parame-
ters can be used in crossover and mutation operations in ways that are easy to

FIGURE 7.19

The binary route chromosome in the TSP.

Locus (allele) positions

1 2 3 4 5

0001 0011 0101 0100 0010

7.3  The Architecture of a Genetic Algorithm   249

understand, easy to implement, easy to constrain, and less prone to errors of
encoding or interpretation.

All genetic and evolutionary programming problems discussed in the Cox’s
book, Fuzzy Modeling and Genetic Algorithms for Data Mining and Explora-
tion (2005), use real numbers as loci in their chromosomes. This has proved, in
the problems designed and deployed by the author, to be an effective and robust
means of genome representation. Although there are some debates in the litera-
ture about the performance of real numbers versus bit strings, in actual applica-
tions (many involving large problem spaces and complex genomes) the difference
in genome representation has been far outweighed by the efficiencies associated
with ranking (sorting), selecting, and the evaluation of the fitness function in the
target system.

Fitness Functions
In the TSP, we have a single objective function and a small set of constraints.
Because we want to find the shortest route through the cities, the fitness
function (shown in Equation 7.5) is the sum of the paths between the cities in
the chromosome:

	 f d c ci i

i

N

= ()+
=

−

∑ , 1

1

1

	 (7.5)

Here,

f is the fitness of the chromosome.
N is the number of cities in the chromosome (in this case, five cities).
ci is the ith city in the chromosome. This is the ith locus in the genome and

indexes the corresponding row in the distance matrix.
d() is a function that returns the distance between two cities using their index

values in the distance matrix.

Genetic algorithms can be used to solve multiobjective and multiconstraint
problems. As a general practice, objective functions are encoded as a set of
genomes, whereas hard constraints are part of the underlying system evaluation
and affect the fitness function in terms of the feasibility of a solution. Soft con-
straints, on the other hand, are often encoded as penalty functions in the fitness
evaluation.

For example, suppose the TSP had two objectives: find the shortest and find
the least expensive route through the cites. The cost to travel from city ci to city
cj can be encoded, as illustrated in Table 7.7, by adding a table of highway tolls
to the problem.

Note that unlike distances, the toll costs are sometimes different depending on
whether the path is ci , cj or cj , ci, in that many toll roads charge for traffic moving
in one direction but not in another. With the city distance and the toll costs matri-
ces in hand, we can formulate a fitness function that looks for the minimum path

250    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

length and the minimum cost. One simple way to design a fitness function, as
illustrated in Equation 7.6, is to take the sum of the path length and the toll
costs:

	 f d c c t c ci i i i

i

N

= () + ()+ +
=

−

∑ , ,1 1

1

1

	 (7.6)

Here,

f is the fitness of the chromosome.
N is the number of cities in the chromosome (in this case, five cities).
ci is the ith city in the chromosome. This is the ith locus in the genome and

indexes the corresponding row in the distance matrix.
d() is a function that returns the distance between two cities using their index

values in the distance matrix.
t() is a function that returns the toll costs between two cities using their index

values in the toll matrix.

Thus, for equal path lengths, paths with no tolls (or very small tolls) will have
a better minimization fitness value than paths with larger tolls. We can also design
a fitness function to seek for the shortest path only on toll roads. In this case, we
want to penalize any solution that does not use a toll road. Equation 7.7 shows
one possible way to encode a penalty into the fitness function:

	 f d c c
t c c

i i
i ii

N

= () +
() ++

+=

−

∑ ,
,

1
11

1 1

1
	 (7.7)

In this case, when t() = 0 or near zero, the fraction is close to 1 and will
increase the value of the fitness function. For all values of t() >> 0, the fraction
becomes very small and contributes to the minimization of the solution. The
fitness function minimizes route distance and maximizes toll costs. Thus, this
fitness function will seek the shortest and most expensive route through the
cities.

Table 7.7 The Intercity Toll Matrix

Able Baker Charlie Delta Echo

Able 0 2 0 3 0

Baker 2 0 4 0 2

Charlie 2 4 0 0 2

Delta 3 0 0 0 0

Echo 0 2 2 0 0

7.3  The Architecture of a Genetic Algorithm   251

The idea of multiobjective and multiconstraint genetic searches can encompass
a large number of possible objective functions. The fitness function determines
the optimum balance between individual fitness and a composite solution. For
problems that involve many objective functions, it is not generally possible to find
a solution that is optimal for each objective function. In the previous example,
there are two objective functions:

1.	 Minimize the total route distance between N cities.
2.	 Minimize (or maximize) the toll costs.

We cannot simultaneously find the shortest route and the route with the least
costs unless they just happen to coincide. In the real world, the solution with the
minimum spanning route and the route that minimizes the toll costs will lie in a
space somewhere between the two objectives. As the number of objective func-
tions and penalty constraints increases, these saddle points become more and
more difficult to define. For example, consider a slightly more complex genetic
search system that incorporates, as shown in Table 7.8, a table of speed limits
between cities.

The genetic algorithm now has three objective functions:

1.	 Minimize the total route distance between N cities.
2.	 Minimize the toll costs.
3.	 Minimize the time to travel the route.

Finding the optimal saddle point in the solution space that simultaneously satisfies
all three constraints involves designing a fitness function that penalizes long
routes, penalizes routes that involve toll roads, and penalizes route segments that
have slow speed limits. Equation 7.8 shows one possible fitness function for this
problem:

	 f d c c t c c s c ci i i i i i

t

N

= () + () + − ()()+ + +
=

−

∑ , , ,1 1 1

1

1

70 	 (7.8)

Table 7.8 The Intercity Speed Limit Matrix

Able Baker Charlie Delta Echo

Able 0 55 65 70 65

Baker 55 0 70 60 65

Charlie 65 70 0 70 70

Delta 70 60 70 0 65

Echo 65 65 70 65 0

252    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Here,

f is the fitness of the chromosome.
N is the number of cities in the chromosome (in this case, five cities).
ci is the ith city in the chromosome. This is the ith locus in the genome and

indexes the corresponding row in the distance matrix.
d() is a function that returns the distance between two cities using their index

values in the distance matrix.
t() is a function that returns the toll costs between two cities using their index

values in the toll matrix.
s() is a function that returns the speed limit between two cities using their

index values in the speed limit matrix.

Knowing that the speed limit on interstate highways (which connect most of
the cities) is between 65 and 70 mph, we subtract the intercity speed limit from
70 (the maximum speed) to give a penalty weight to this part of the fitness func-
tion. The closer the city-to-city speed limit is to 70 mph the smaller the difference,
and hence the smaller the contribution to the size of the fitness function (and
thus, it contributes to minimizing the overall function). Naturally, other possible
encoding forms that require no knowledge of the maximum speed limit exist,
such as the inverse relationship we used to maximize the use of tolls (in that we
are, in effect, maximizing the speed over the route). See Equation 7.5 for this use
of the inverse (or fractional) weighting.

Multigenome Fitness Functions
In the previous discussion, the fitness function was associated with a single route
through the cities. Each chromosome represented a possible route and had its
own fitness function. Every chromosome was also independent of every other
chromosome in the population (i.e., in terms of fitness, although chromosomes
are related to other individuals through parent–child relationships generated by
the crossover process). We now consider a slightly more complex TSP version—
one associated with crew scheduling, project management, assembly line balanc-
ing, and similar operations. Instead of a single five-city path, the genetic algorithm
is asked to schedule a set of N crews who must visit all five cities during the day.
We have an electrical, a road repair, and a vehicle maintenance crew, thus N = 3.
Figure 7.20 shows the organization of the crew trip-scheduling chromosome.

FIGURE 7.20

The crew trip-scheduling chromosome.

Crews

Electrical Road repair Vehicle maintenance

7.3  The Architecture of a Genetic Algorithm   253

The objective of the genetic search is to find the crew trip schedule that
minimizes the distance traveled by the three crews. One way to do this, as shown
in Equation 7.9, is through a direct minimization fitness function that simply sums
the path length for the three crews:

	 f f f fe r v= () + () + () 	 (7.9)

Here,

f is the fitness of the chromosome.
fe() is the fitness of the electrical path.
fr() is the fitness of the road repair crew path.
fv() is the fitness of the vehicle maintenance crew.

Another way to formulate a fitness function is to measure the fitness of a solu-
tion relative to the total distance traveled by any set of crews in a schedule. Thus,
the best solution will be the smallest relative to the crews that took the longest
path through the five cities. Equation 7.10 illustrates this type of fitness
function:

	 f
d

d
i= +1

max

	 (7.10)

Here,

f is the fitness of the chromosome.
di is the total distance traveled by the three crews.
dmax is the maximum distance traveled by any set of crews. This is discovered

by iterating through the population and finding the crew schedule with the
longest path length.

Basing a fitness function on factors spread over, or intrinsic to the population,
is often used when the individual solutions have a high degree of variability. For
example, consider a crew-scheduling system with the following characteristics:

n	 Crews are assigned pending jobs for the day.

n	 Depending on the distance to the jobs, crews may work on a variable number
of jobs (that is, because a crew can only work 8 hours, the mix of jobs and the
distance to each job—from the main office or from a previous job—determines
the number of jobs that can be done).

n	 The company wants as many jobs as possible completed each day.

In this case, we want to maximize jobs but minimize the travel time between
jobs (in that long travel times incur elevated fuel costs, can lead to excessive wear
and tear on equipment, and increase the probability that the previous job will
start late or remain incomplete for that day). A fitness function that only evaluates
the schedule of a single chromosome independent of all other schedules cannot
take into account the variability in the number of actual jobs scheduled coupled

254    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

to the distance traveled to satisfy those jobs. Hence, a population-based fitness
function is more appropriate. Equation 7.11 shows one possible fitness
function:

	 f N J
d

d
i

i= −() +
max

	 (7.11)

Here,

f is the fitness of the chromosome.
N is the total number of jobs being assigned to the crews on this day.
Ji is the number of jobs scheduled for the three crews.
di is the total distance traveled by the three crews.
dmax is the maximum distance traveled by any set of crews. This is discovered

by iterating through the population and finding the crew schedule with the
longest path length.

This is a minimization fitness function: the smaller the value, the better the
fitness. Thus, for two candidate schedules, s1 and s2, the one that schedules the
most jobs is the best (as Ji approaches N, the value becomes smaller and smaller).
If both schedules have the same number of planned jobs, the one with the
smallest overall distance traveled is the best.

Designing the genome representation of the problem parameters and selecting
a fitness function to measure each chromosome’s goodness of fit is the first phase
in using a genetic algorithm. We now turn to the actual mechanics of the algo-
rithm, exploring the iterative process of breeding a solution.

7.3.2  Two: Generate Initial Population—P(N)

A genetic algorithm begins with a population of potential solutions. These solu-
tions are encoded in the chromosomes. An initial population of potential routes
consists of randomly generated combinations of cities (see Figure 7.15, 2). Each
genome site (locus) is the next city in the route. Thus, a genome of (3,2,4,1) would
be a path from Charlie to Baker to Delta to Able. Table 7.9 is part of this popula-
tion of N potential solutions.

There are two general performance objectives on the generation of all popula-
tions in a genetic algorithm (and they apply to initial populations as well as future
populations that are bred from the initial population):

1.	 First, each potential solution must be a feasible solution. Feasibility means that
the solution obeys all hard constraints on the solution. If the TSP problem, for
example, specifies a particular city as the starting point, randomly generated
solutions that do not start with this city are not feasible solutions. It is often
difficult in real-world problems to ensure that each solution is feasible, and this
constraint often means that the mechanics of the genetic algorithm are intri-
cately connected to the mechanics of the application.

7.3  The Architecture of a Genetic Algorithm   255

2.	 Second, each potential solution must be a unique solution. This is a constraint
on the population that is often overlooked in the literature on genetic algo-
rithms, generally because most of the problems in the academic literature
involve solving simple problems (such as this small TSP problem in which
duplicate paths would not appreciably slow down the search process). Finding
duplicate or nonunique solutions is often a difficult task because a duplicate
genome is not always obvious. For example, if the direction of the path is
immaterial, the genome (1,2,3,4) is the same as (4,3,2,1) because both repre-
sent the same path.

In some applications, of course, one or both of these objectives cannot be met,
either because knowing what is a feasible solution is impossible outside the inter-
nals of the application or because recognizing duplicates is either topologically
impossible or would cost more in evaluation time than actually reevaluating a
duplicate chromosome. The inability to recognize duplicate chromosomes is more
often true in evolutionary programming models than in genetic algorithms.

Population Diversity
A critical factor that bears on the performance of a genetic algorithm is population
diversity. Diversity is a measure of the robustness of chromosome representa-
tions—that is, how well they are distributed over the possible solution space. Early
diversity is essential in the genetic algorithm, whereas later diversity indicates a
problem with convergence. Diversity can be assessed in several ways; the follow-
ing are two common methods.

Table 7.9 A Population of TSP Solutions

Genome Locus Values

1 1 3 2 5 4

2 3 5 4 1 2

3 2 1 4 3 5

4 3 1 4 5 2

5 5 2 4 3 1

6 1 5 2 4 3

:

:

N 1 4 5 3 2

256    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

By computing the variation in the fitness values over a population. This is
essentially, as shown in Equation 7.12, the standard error of the fitness function
(the degree of variation from the average fitness):

	 f
N

f fv
a i

i

N

= −()
=
∑1 2

1

	 (7.12)

Here,

f v is the average variance of the population chromosomes as measured by
the variance of their fitness values.

N is the total number of chromosomes in the population.
fa is the average population fitness.
fi is fitness of the ith chromosome.

A large variance indicates a robust degree of variation in the fitness functions,
whereas a small variance indicates a more compact and less varied population
of fitness functions.

By computing the average change in fitness between successive generations.
The idea behind a genetic algorithm is convergence, through selective breed-
ing, on an optimal set of solutions. One way of examining diversity in the
population is by computing the change in average fitness from one generation
to the next. Equation 7.13 shows a simple method of tracking this change:

	 f
k

f fn n

n

K

D = − −
=

∑1
1

2

	 (7.13)

Here,

fD is the average change in the fitness from one generation to the next.
K is the total number of generations elapsed in the genetic search.
f fn n− −1 is the average fitness of the nth generation.

Plotting the change in the average population fitness from one generation
to the next is a key indicator of convergence. As new and better solutions are
created, the difference between the average fitness in each successive genera-
tion should move toward zero.

Diversity measures the richness of the gene pool and plays an important part
in the early stages of a genetic search. Creating an initial population with high
diversity depends on a deep understanding of the problem space and the ability
to create chromosomes that are scattered throughout the possible solution terrain.
Maintaining genetic diversity through the search process rests on both the nature
of the crossover operations as well as the rate of mutations and spontaneous birth
in the overall population.

7.3  The Architecture of a Genetic Algorithm   257

Population Size
Determining the size of the initial population is a difficult but crucial step in using
a genetic algorithm. Each chromosome in the population represents a point some-
where in the solution terrain. When the population is too small, as illustrated in
Figure 7.21, the genetic algorithm can only search a small region of the possible
solution space.

When the population is very small in relation to the possible search space, a
genetic algorithm will either take a long time to find a reasonable solution or will
wander around the terrain, often locking on a local minimum or maximum. On
the other hand, a population that is too large, as shown in Figure 7.22, relative to
the solution space covers too much of the underlying search space.

Such a large population often lacks genetic diversity (because it covers so
much terrain) and can require a very high number of generations to percolate
high-performing chromosomes out of the large number of lower- or moderate-
performing chromosomes.

An analysis of the optimal population size for many combinatorial and permu-
tation problems in which the potential solution space becomes very large for even
a small number of variables (such as the TSP) rests on the use of probability theory
to judge the probability that an optimal solution lies within a population N chro-
mosomes. These studies indicate that the performance of even large TSPs is not
critically dependent on the population size if the population is reasonably large
(144 chromosomes for a 30-city problem, and 409 chromosomes for a 75-city
problem).

FIGURE 7.21

A small population spread over the solution space.

z

3010 20 40 50

x

60 70 80 90

100
120

140

y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

258    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

A good rule of thumb connects the initial population size to the number of
variables in the algorithm (the number of loci in the chromosome) and the number
of possible states in the solution space. An initial population, as shown in Equation
7.14, should be at least as large as five times the number of variables or about half
the maximum number of possible states, whichever is smaller:

	 p v s= ×() ×()()min ,5
1

2
	 (7.14)

Here,

p is the population estimate.
v is the total number of variables or chromosome loci.
s is the number of possible states in the solution space.

In a TSP, the maximum number of routes is n! (1 × 2 × 3 × 4 . . . × n), meaning
that the solution space has grown very large very fast. The five-city TSP, however,
has only 120 possible routes. With this rule of thumb, the population size estimate
is 25 individuals: the minimum of 25 (five times the five chromosome loci) and
60 (one-half the possible 120 states). Although the maximum number of states is
small enough to include all possible solutions in the initial population, this would
actually impede the genetic search. The genetic process of breeding and mutating
new solutions in a population that as an initial condition already contains all pos-
sible solutions can easily result in a protracted search through the population, as
the crossover process will simply produce duplicates that must be discarded.

FIGURE 7.22

A large population spread over the solution space.

z

3010 20 40 50

x

60 70 80 90

100
120

140
y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

7.3  The Architecture of a Genetic Algorithm   259

7.3.3  Three: Evaluate the Chromosome

This is the core functional component of the genetic algorithm: evaluating a chro-
mosome associates a goodness-of-fit or performance measure to each chromosome
in the population (see Figure 7.15, 3). But assigning this goodness of fit is not
necessarily a part of the genetic algorithm itself. In many large-scale business
applications (e.g., inventory optimization, manufacturing assembly line balancing,
and crew and project scheduling), the solution represents a configuration or a set
of parameters that must be processed by the connected system. As illustrated
schematically in Figure 7.23, the system generates an actual outcome whose
degree of performance (or “goodness”) is measured by the fitness function.

Figure 7.23 outlines the basics of the genetic algorithm’s evaluation process.
The iterative analysis of each chromosome creates a population of solutions
ranked by their “goodness” as measured by the fitness function. The process is
fairly straightforward:

1.	 The evaluation process is applied to each chromosome (potential solution) in
the current population. Much of the mechanism in a genetic algorithm is
concerned with the production of this population of chromosomes.

FIGURE 7.23

Evaluating a chromosome.

Get chromosome

Chromosome

population

Run

system

Produce solution

Apply fitness

Repeat

5

4

3

2

1

6

E
va

lu
at

e
po

te
nt

ia
l s

ol
ut

io
n

260    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

2.	 The next chromosome is selected from the population.

3.	 The solution configuration in the chromosome is used to execute the underly-
ing system. In some cases, the system itself is embedded in the fitness function
(as is the case with the TSP). In many other cases, the chromosome’s values
are passed to a larger system. For example, consider a genetic algorithm that
performs trend fitting. The chromosome might contain the coefficients and
powers of the equation terms. These values are passed to a regression engine
that forms the equation, reads a file of data points, and computes the standard
error from the differences between actuals and estimates. The regression
engine is the “system” connected to the genetic algorithm.

4.	 From the chromosome configuration, a solution is produced by the underlying
system. In some cases, of course, the chromosome and the system are the same
(as in the TSP model). In other cases, such as the trend-fitting model, the solu-
tion is the standard error of estimate produced from the equation described by
the chromosome’s coefficients and exponent values.

5.	 Apply a fitness function to the solution in order to assign a performance rank
to the current chromosome. The fitness analysis actually changes the content
of the chromosome by storing a goodness-of-fit measure.

6.	 Go back and get the next chromosome in the population. The evaluation
process is repeated for each chromosome (unless some special application-
specific control strategy interrupts this cycle).

Thus, in summary, a chromosome is a potential solution. The “system” is the
process that creates an outcome state (a solution) based on the content of a chro-
mosome. It is this outcome space that is evaluated by the genetic algorithm based
on the fitness function. Because the evaluation process is the core of the genetic
algorithm and because it is dependent completely on the fitness function, the
genetic algorithm as a whole is critically dependent on a proper formulation of
its fitness function.

7.3.4  Four: Terminate

Like biologic evolution that goes on and on, a genetic algorithm continues to run,
evolving solutions until explicitly terminated. After each population is evaluated,
the algorithm checks a set of termination conditions (see Figure 7.15, 4). The fol-
lowing are several common termination conditions used in genetic algorithms:

n	 The maximum number of generations has been reached.

n	 A maximum elapse (wall clock) time has been reached.

n	 A maximum amount of computer resources has been used.

n	 A chromosome with a particular fitness value emerges.

n	 The average (or best) fitness function value reaches a steady state over successive
generations. Normally this is a tolerance comparison (for example, stop when
the change in the fitness function is less than 0.001 over 100 generations).

7.3  The Architecture of a Genetic Algorithm   261

n	 The average (or best) fitness function value oscillates over the generations.

n	 The average fitness reaches an early steady state or begins to decay. A sudden
or gradual lack of average fitness indicates a problem in the way high-performing
chromosomes are bred and their offspring propagated into the next generation.
This is sometimes caused by mutation rates that are too high.

These termination conditions are often used in combination. A genetic algo-
rithm can be terminated after a certain number of generations, when a particular
average fitness has been achieved, or when the fitness function does not change
after a specific number of generations.

A genetic algorithm’s termination conditions can also include a set of policy
rules associated with the underlying application. These if-then-else rules are often
invoked to check the way the search behavior is evolving, as well as to apply
additional postevaluation logic to the population.

7.3.5  Five: Create a New Population—P(N)

Next to the evaluation of each chromosome’s fitness, the techniques for breeding
each succeeding generation of chromosomes are the most crucial components of
a genetic algorithm. It is this phase that is intended to balance the dual and often
conflicting objectives of increasing the average population fitness and increasing
genetic diversity (see Figure 7.15, 5). Figure 7.24 outlines the step-by-step process
of breeding a new generation from an old generation; descriptions of the steps
follow.

FIGURE 7.24

Breeding a new population of chromosomes.

Cross-over
c% best

chromosomes

Save top N
best

chromosomes

Mutate
m% of

chromosomes

Insert n%
new

chromosomes
4

3

2

1

New (outgoing)
population

Current (incoming)
population

262    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

1.	 The top N best (high-performance) chromosomes are retained. Some percent-
age of the chromosomes with the best fitness values is retained and moved to
the next generation. These chromosomes will also form the core (but not
complete) collection of chromosomes for the breeding (crossover) process that
generates new child chromosomes.

2.	 Of the fittest chromosomes, a percentage (c%) of these will become parents
and generate one or more children in the new population. There are several
stochastic-based techniques for selecting which pair of chromosomes will be
mated, the most common being a form of roulette wheel that assigns a chromo-
some a chance of being selected based on its degree of fitness. These tech-
niques are discussed in more detail later in this chapter.

3.	 After selecting the top-performing individuals and breeding new child chromo-
somes from the randomly chosen parents, a small number of chromosomes
(m%) in the new population are subjected to mutation. Mutation increases
genetic diversity by a process of selecting a random locus in the chromosome
and changing its value to a random (but allowable) value.

4.	 Not a usual part of traditional genetic algorithms, inserting a small number (n%)
of new chromosomes with randomly valued genomes can, along with muta-
tion, increase genetic diversity in the population. Inserting new chromosomes
often provides an effective form of simulated annealing when the mutation rate
alone appears to be insufficient.

The idea behind breeding a new population is analogous to the evolution of
fitter organisms in a biologic population. Crossover (the equivalent of sexual
reproduction) exchanges the genetic material of two parents and produces one
or more offspring. If the genetics of the parents have a high degree of fitness, the
crossover (or breeding) process is designed to produce children that also have
genetics with an elevated degree of fitness, but because of the scrambling of the
genomes their chromosomes will lie in a slightly different area of the solution
terrain. Mutation, the equivalent of a fault in chromosome transcription during
biologic reproduction, is designed to introduce a small amount of genetic diversity
in the population. Like biologic mutation, some are advantageous and others are
fatal (in terms of improving the fitness of the population). Although there is no
direct biologic counterpart to the insertion of new individuals into the population
(aside from some ancient beliefs in spontaneous generation), one way of looking
at the creation of new chromosomes is a localized form of complete genome
mutation.

Strategies for Chromosome Selection
Which chromosomes in the current population do we select to become members
of the next generation, to breed with another chromosome, or to have their exist-
ing genome changed through mutation? This is the process of selection. In many
cases, a different process is used for selecting the set of fittest individuals, for

7.3  The Architecture of a Genetic Algorithm   263

selecting parents for crossover, or for selecting chromosomes for mutation.
Different selection techniques have differing access probabilities depending on
how they are used in the genetic algorithm. We now discuss several common
techniques.

The Elitist Strategy

Using an elitist strategy, a percentage of the chromosomes with the best fitness
function values are selected. Elitism is not only used to pick chromosomes for
breeding but to directly copy chromosomes into the next generation. In many
cases, an elitist technique is used in combination with other selection methods to
ensure that some of the strongest chromosomes always make it into successive
generations. The elitist selection technique is implicit in the first step of the
genetic algorithm mechanism shown in Figure 7.13.

Proportional Fitness

Using a proportional (or roulette wheel) fitness strategy, a wide spectrum of chro-
mosomes with varying degrees of fitness is selected. The selection is biased toward
chromosomes with best fitness values. Proportional fitness works in two steps: it
first creates a conceptual roulette wheel weighted according to the best fitness
function values, and then it essentially spins the wheel and finds the chromosome
that fits in the currently weighted slot. In a conventional approach to proportional
selection, the ratio of each unique fitness value and the sum of the total fitness
values in the population is used to create the roulette wheel. For populations that
contain repeating fitness functions, using a weighted frequency count of the
fitness function provides a way of maintaining the same type of roulette wheel
approach.

Equation 7.15 shows how the wheel slice is calculated:

	 w
f

f

i

k

k

N=

=
∑

1

	 (7.15)

Here,

fi is the fitness of the ith chromosome.
fk is the fitness of the kth chromosome.
N is the number of chromosomes in the population.

This equation works well for maximization functions because the larger the indi-
vidual fitness value, the larger its fraction of the sum of all fitness values and the
larger its proportion of the wheel. For minimization functions, the magnitude of
the numbers must be reversed. Equations 7.16 and 7.17 show one way of revers-
ing the magnitude of the fitness functions:

	 f f fR
i= −() +max 1 	 (7.16)

264    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

	
w

f

f

R

k
R

k

N=

=
∑

1

	 (7.17)

Here,

f R is the reversed magnitude fitness function.
fi is the fitness of the ith chromosome.
fmax is the maximum fitness among all chromosomes in the population.
fk is the fitness of the kth chromosome.
N is the number of chromosomes in the population.

Examining a small portion of the TSP population illustrates how the weighted
roulette wheel is created from the fitness value. Because we are attempting to
minimize the route through the five cities, the wedge expression from Equation
7.17 is used. Table 7.10 shows the fitness (path length) values for a set of city
routes, their adjusted fitness values, and their proportion of the fitness roulette.

The ratio (w) derived from the total sum of adjusted fitness values in the
population specifies the weighted slot in the underlying roulette wheel. Figure
7.25 shows this roulette wheel (not exactly to scale) proportioned according to
the magnitude of the adjusted fitness values.

The actual proportional fitness algorithm is easy to understand and implement.
Listing 7.1 shows the basic logic. This code computes a random fitness level (max_
fitness) from the sum of the population’s individual fitness values. The algorithm
then loops through the population, summing each chromosome’s fitness (into
cumm_ fitness). When the algorithm encounters a chromosome with a fitness
greater than or equal to the max_ fitness value, that chromosome is selected.
Note that it is important that the population not be sorted by fitness. Otherwise,
the selection process is significantly biased (and will simply function as a slightly
more complicated form of elitism).

Table 7.10 The TSP Fitness and Fitness Ratios

Tour Raw Fitness
Magnitude
Adjusted w

1 Able, Baker, Echo, Delta, Charlie 90 1 0.007

2 Able, Echo, Charlie, Baker, Delta 34 57 0.387

3 Able, Echo, Delta, Baker, Charlie 57 34 0.232

4 Able, Baker, Charlie, Echo, Delta 59 32 0.217

5 Able, Charlie, Echo, Delta, Baker 68 23 0.156

Sum 308 147 1.000

7.3  The Architecture of a Genetic Algorithm   265

Listing 7.1  The proportional fitness approach.

Proportional Selection:
   For each chromosome (i)
      total_fitness = total_fitness + chromosome(i).fitness
   End for each

   max_fitness = total_fitness * random()
   cumm_fitness=0
   for each chromosome(i)
      cumm_fitness = cum_fitness + chromosome(i).fitness
      If chromosome(i).fitness > max_fitness
         Then select(chromosome(i))
   end for each

Proportional fitness selection suffers from two general problems. This first has
already been directly encountered: It is difficult to use on minimization problems.
Often, the fitness function for minimization must be converted to a maximization
function. Although to some degree this solves the selection problem, it introduces
semantic confusion into the problem (the best chromosome in the TSP problem,
for instance, will continually be assigned a fitness value that is the maximum of
all other fitness functions, and thus we are seeking the minimum tour but the
fitness maximizes the fitness value). The second problem is directly related to how
the roulette wheel is constructed. The proportional fitness selection will fail (it
will drive the population to early convergence) if some of the chromosomes have
fitness values that are much larger than all other fitness values.

FIGURE 7.25

The proportional fitness roulette wheel.

57
38.77%

34
23.13%

32
23.81%

23
14.96%

1
>1%

266    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Ranking Using a linear ranking strategy, an ordered population of chromosomes is
assigned fitness values based on their position or rank within the population.
There are many mathematic means of converting a rank into a relative or subjec-
tive fitness:

	 f
N r f f

N
fi

u u
u=

−() × −()
−

+max min
min

1
	 (7.18)

Here,

N is the number of chromosomes in the population (the population count,
obviously, must be greater than 1).

r is the current rank of the chromosome. In most cases (but not necessarily
all) for the ith chromosome r = i.

fi is the fitness assigned to the ith chromosome.
f u

max is the maximum user fitness that should be assigned to the best-
performing individual.

f u
min is the minimum user fitness that should be assigned to the worst-

performing individual.

The ranking strategy prevents extremely fit individuals from dominating the
population during the early generations of the search process. Thus, the ranking
technique can effectively maintain diversity and inhibit convergence. The outcome
of ranking can be used with an elitist selection or with other selection approaches
(such as proportional fitness). One constraint on the use of ranking is the require-
ment that the population be reordered and reranked for each generation.

Tournament Generally used for large diverse populations, this approach is some-
what akin to the divide-and-conquer strategy in search and sorting. In a tourna-
ment selection, a set of k chromosomes is selected randomly from the population
(where k = 2 is the usual size). From the set of k chromosomes, the individual
with the best fitness is selected. For example, using the TSP chromosomes in Table
7.10, the tournament strategy could select genomes 2 (Able, Echo, Charlie, Baker,
Delta) and 4 (Able, Baker, Charlie, Echo, Delta). Chromosome 2 would be selected
over 4 because 2 has a better raw fitness function (34 miles instead of 59 miles).
This process of selecting a group and picking the best (fittest) chromosome is
continued as long as a selection process is needed.

Tournament differs from proportional fitness because it is indifferent to the
relative frequency or range of fitness values. It is only sensitive to the fitness
ranking within the population. Because it is essentially probing the population in
blocks of k chromosomes (with replacement, so that chromosomes may partici-
pate in multiple tournaments), the tournament approach can select a wider spec-
trum of chromosomes with varying degrees of fitness.

Random Using a random strategy, a random chromosome in the population is
selected. Random selection is used to pick chromosomes for breeding and to

7.3  The Architecture of a Genetic Algorithm   267

directly copy chromosomes into the next generation. In hybrid algorithms, a
random strategy is used in combination with other selection methods to ensure
that a mix of chromosomes with a wide spectrum of fitness values always makes
it into successive generations.

Selection strategies are malleable; that is, a genetic algorithm can switch from
one strategy to the next during the search. An example is using an elitist strategy
for a few generations to quickly increase the average fitness and then switching
to proportional fitness to ensure some continued measure of fitness diversity in
the population. In the next section, we will discuss the actual process of breeding
new chromosomes. The breeding mechanism is tightly coupled to the selection
strategy.

Conventional Crossover (Breeding) Techniques
A genetic algorithm derives its name from the way in which potential solutions
are developed. They are bred from existing solutions using a process with analo-
gies to sexual reproduction in biologic organisms. The process of mating and
reproduction in a genetic algorithm is called crossover. This name follows from
the way in which genetic material is exchanged. Pieces of the genetic material
from two parents are exchanged by extracting a set of loci from one parent and
a set of loci from another parent and appending or inserting them in the corre-
sponding position in each other’s genome. Thus, they move in an X pattern as
the genome segments cross over each other. Figure 7.26 illustrates the way two
chromosomes mate and breed two offspring.

FIGURE 7.26

Mating and breeding of chromosomes.

Cross-over

method

Parent

chromosome 1

Parent

chromosome 2

Child

chromosome 1

Child

chromosome 2

268    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Like biologic reproduction, reproduction in genetic algorithms is intended to
create better chromosomes from already highly performing parents while at the
same time adding genetic diversity to the gene pool (the population of chromo-
somes in the current generation). Philosophically, a genetic algorithm is a directed
eugenics program designed to breed better and better individuals. This section
examines the principal methods of crossover and explains how they work in the
search algorithm’s breeding program. As discussed in the section on genome
design (see Genome Structural Design section), conventional crossover cannot be
used for the TSP. Breeding and mutation techniques for the TSP and similar con-
nectionist problems are discussed in the section titled Advanced Crossover and
Mutation Techniques.

A Crew Scheduling Cost Model

To illustrate crossover (and mutation, in the next section), we will explore a small
and quite simple cost modeling system for crew-to-job assignment. The model
contains two tables: an N × M matrix of jobs and their duration times and an N ×
M matrix of crews and their daily charge rates. Table 7.11 shows the job and crew
schedules.

This is a cost minimization problem. We want to assign the crews to the jobs
in order to find the minimum cost schedule. There are fewer crews than jobs, and
thus some crews will be assigned to multiple jobs. The total cost for a schedule
is shown in Equation 7.19 (which is also the fitness function):

	 f d i r c i
i

K

= () × ()()
=
∑

1

	 (7.19)

Here,

K is the number of jobs. In this case, there are five jobs.
f is the total cost of the job assignments and is the fitness assigned to the

ith job-to-crew chromosome.

Table 7.11 Job ID and Duration and Crew ID and Rate

Job ID Duration Crew ID Rate

J1 6 C1 10

J2 5 C2 15

J3 9 C3 20

J4 8

J5 3

7.3  The Architecture of a Genetic Algorithm   269

d() is duration of the ith job (chromosome locus).
r() is the rate of the crew assigned to the ith job.
c() is the crew found in the ith genome locus.

Because the number of jobs is static, the genome representation can be straight-
forward: five locus sites. Each locus contains the crew assigned to the job (that
is, it contains the index to Table 7.11, the crew table). Figure 7.27 is a schematic
of the job-to-crew costing chromosome.

The genetic search mechanism generates a population of candidate cost plans
by assigning crews randomly to the five jobs. Our only constraint is that every
crew must be used at least once. Table 7.12 shows a small part of the initial
population.

This small job-cost planning model now provides the background needed to
explore the various types of conventional crossover techniques. These techniques
are used to breed new cost models based on the genetic material in parents (ulti-
mately chosen through one of the selection strategies). The next section explores
the single-point crossover in some detail. The remaining crossover patterns are
extensions of this basic concept.

FIGURE 7.27

The job-to-crew assignment genome.

Crew assignments

J1 J2 J3 J4 J5

Table 7.12 Initial Population of Job Cost Genomes

Jobs with Crew Assignment

J1 J2 J3 J4 J5

1 C1 C3 C3 C2 C3

2 C2 C3 C1 C1 C1

3 C2 C1 C2 C3 C3

4 C3 C1 C2 C2 C1

5 C2 C2 C2 C1 C3

6 C3 C2 C2 C1 C3

270    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Single-Point Crossover

In single-point crossover, a single point along the genome is selected. Two parent
chromosomes are selected from the population. A crossover point is chosen at
random. The genome segments to the right (or left) of the point are swapped,
creating two new chromosomes (the children). Figure 7.28 schematically illus-
trates the crossover process that produces new children from the genetic material
of the parents. The single-point crossover is immediately after the second locus
in the chromosome.

In this example, the children inherit the first two loci from the parents. Child
1 inherits the right-hand genetic material from parent 2, whereas child 2 inherits
the right-hand genetic material from parent 1. The children are usually inserted
into the new population, displacing either the parents or two chromosomes
whose fitness values are less than the parents’ fitness value. Table 7.13 shows the
small job assignment population with each chromosome’s fitness (cost) and the
average population fitness.

Through some selection process, individuals 2 and 4 are chosen as parents.
The single-point crossover is at the second locus (at job J2). As Table 7.14 shows,
the crossover generates two new chromosomes (c1 and c2). Both have fitness
values less than the maximum fitness of the two parents. Even without removing
two lower-performing chromosomes, this average population is improved (a
change of 16.91).

If the genetic algorithm maintains a steady population size (as is conventional
in most but not all situations), the two new children replace poorer-performing
genomes. In this case, chromosomes 1 and 4 are removed and the new children

FIGURE 7.28

The single-point crossover process.

Single point

cross-over

Parent

chromosome 1

Parent

chromosome 2

Child

chromosome 1

Child

chromosome 2

AB CDEF TU VWXYZ

ABVWXYZ TUCDEFG

7.3  The Architecture of a Genetic Algorithm   271

Table 7.13 Job Cost Genomes with Fitness Values (Costs)

Jobs with Crew Assignments

J1 J2 J3 J4 J5 Cost

1 C1 C3 C3 C2 C3 520.00

2 C2 C3 C1 C1 C1 318.00

3 C2 C1 C2 C3 C3 495.00

4 C3 C1 C2 C2 C1 455.00

5 C2 C2 C2 C1 C3 440.00

6 C3 C2 C2 C1 C3 470.00

Average Fitness 449.66

Table 7.14 Job Cost Genomes with Fitness Values (Costs)

Jobs with Crew
Assignments

J1 J2 J3 J4 J5 Cost

1 C1 C3 C3 C2 C3 520.00

2 C2 C3 C1 C1 C1 318.00

3 C2 C1 C2 C3 C3 495.00

4 C3 C1 C2 C2 C1 455.00

c1 C2 C3 C2 C2 C1 370.00

c2 C3 C1 C1 C1 C1 394.00

5 C2 C2 C2 C1 C3 440.00

6 C3 C2 C2 C1 C3 470.00

Average Fitness 432.75

take their place. Table 7.15 shows both the new population with the children of
2 and 4 and the significant increase in the average population fitness.

Not every crossover will improve the fitness of the population. In fact, in addi-
tion to the goal of finding better and better chromosomes, breeding has the goal
of increasing genetic diversity in the population. Only through genetic diversity
can a genetic algorithm economically and effectively explore a sufficient portion

272    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

of the solution terrain. The other forms of crossover provide different approaches
to breeding new offspring. Each technique has its own place in attempts to gain
better (fitter) individuals.

Double-Point Crossover

In double-point crossover, two points along the genome are selected at random.
The genome segment to the left of the rightmost point is swapped with the
genome to the right of the leftmost point, creating two new children. Figure 7.29
schematically illustrates the crossover process that produces new children from
the genetic material of the parents. The crossover points are immediately after the
second locus and immediately before the last locus in the chromosome.

In terms of exchanging genetic material and how it is used, the double-point
process is almost exactly like the single-point process: the children inherit the loci
to the right of the rightmost point and to the left of the leftmost point. The genetic
material to be swapped is bounded by the two random point values. Child 1
inherits bounded genetic material from parent 2, whereas child 2 inherits the
bounded genetic material from parent 1. The advantage of the double-point cross-
over is its inherent ability to introduce a higher degree of variability (randomness)
into the selection of genetic material.

Uniform Crossover

Uniform crossover works at the individual locus level rather than with segments
of the genome. Loci positions are picked at random from the genomes and
exchanged. Figure 7.30 schematically illustrates the crossover process that pro-
duces new children from the genetic material of parents.

Table 7.15 Job Cost Genomes with Fitness Values (Costs)

Jobs with Crew
Assignments

J1 J2 J3 J4 J5 Cost

1 C2 C3 C2 C2 C1 370.00

2 C2 C3 C1 C1 C1 318.00

3 C3 C1 C1 C1 C1 394.00

4 C3 C1 C2 C2 C1 455.00

5 C2 C2 C2 C1 C3 440.00

6 C3 C2 C2 C1 C3 470.00

Average Fitness 407.83

7.3  The Architecture of a Genetic Algorithm   273

FIGURE 7.29

The double-point crossover process.

Double point

cross-over

Parent

chromosome 1

Parent

chromosome 2

Child

chromosome 1

Child

chromosome 2

AB CDEF G TU VWXY Z

ABVWXYZ TUCDEFZ

FIGURE 7.30

The uniform crossover process.

Uniform
cross-over

Parent
chromosome 1

Parent
chromosome 2

Child
chromosome 1

Child
chromosome 2

A

TBCDXFZ AUVWEYG

BCD E F G T UVW X Y Z

The probability of selecting a locus for exchange, called the mixing rate, can
be very low or very high. A mixing rate of 0.5, for example, means that any locus
in the genome has a 50 percent chance of being selected for exchange. The mixing
rate acts like a variable rheostat, increasing or decreasing the probability that the
nth locus on the genome in parent 1 will exchange its value with the nth locus
on the genome in parent 2. Although uniform crossover has the advantage of

274    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

precisely controlling the amount of genetic variability in the population, it also
has two significant disadvantages. First, because the crossover is done at the indi-
vidual gene (locus) level rather with sets or patterns of genes, behavior that
evolves as patterns in the population will not normally be preserved. Second, if
the mix rate is too high, too much genetic diversity (that is, noise) emerges in
each successive population and the search mechanism cannot find an accurate
solution. On the other hand, if the mix rate is too low, not enough genetic diver-
sity will emerge and the search mechanism cannot efficiently spread over the
solution terrain.

Weighted (Arithmetic) Crossover

Weighted (or arithmetic) crossover is unlike the other crossover operations.
Weighted crossover modifies rather than exchanges genetic material and works
at the complete genome level rather than with segments of the genome. The
crossover appears in the way a weighting factor is used. A weighting factor (w)
in the range [0,1] is selected before each crossover. Loci are picked at random
from the genomes and exchanged. Equation 7.20 is the crossover process that
produces new children from the genetic material of the parents:

	 c w p w p

c w p w p

1 1 2

2 1 2

1

1

= ×() + −() ×()
= −() ×() + ×()

	 (7.20)

Here,

c1 is child 1 from the crossover operation.
c2 is child 2 from the crossover operation.
p1 is the first selected parent.
p2 is the second selected parent.
w is the weighing factor in the range [0,1].

The weight values act like scaling factors over the range of the chromosome.
The values are rescaled (from 0 … n, where n is the value of the genome at that
locus). Table 7.16 illustrates the creation of child c1 from two parents when the
scaling weight is 0.4 (see Table 7.13 for the underlying chromosomes).

Arithmetic scaling mathematically distorts the genome values in a predictable
manner, but it does not rely on the mixing of genetic materials. From the author’s
experience in production models, weighted crossover (unless the weight is care-
fully adjusted) tends to produce lower average population fitness than the single-
or double-point crossover. Table 7.17 (based on the data in Table 7.13) shows the
result of applying weighted crossover to individuals (2,4).

In this instance, the crossover reduces the average fitness of the population.
Naturally, the same decrease in fitness can result from any of the other crossover
techniques. This example simply illustrates that different crossover methods yield

7.3  The Architecture of a Genetic Algorithm   275

different fitness values (as you would expect), and, in this case, the single-point
crossover for these two parents results in a better set of offspring.

Analytical Crossover

The analytical crossover method is a final crossover technique that, like the
weighted approach, works at the complete chromosome level. This technique is
somewhat iterative and, like tournament selection, considers the best and worst
fitness of two selected parents:

	
c p s p p

c p

b b w

b

1

2

= + × −()
=

	 (7.21)

Table 7.16 Creating Child c1 from Parents (2,4), where w = (0.4)

J1 J2 J3 J4 J5

P1 90.00 100.00 90.00 80.00 30.00

P2 120.00 50.00 135.00 120.00 30.00

P1* w 36.00 40.00 36.00 48.00 12.00

P2* (1-w) 72.00 30.00 81.00 72.00 18.00

Total 108.00 70.00 117.00 120.00 30.00

Table 7.17 Job Cost Genomes with Fitness Values (Costs)

Jobs with Crew Assignments

J1 J2 J3 J4 J5 Cost

1 C1 C3 C3 C2 C3 520.00

2 90.00 100.00 90.00 80.00 30.00 318.00

3 C2 C1 C2 C3 C3 495.00

4 120.00 50.00 135.00 120.00 30.00 455.00

c1 108.00 70.00 117.00 120.00 30.00 445.00

c2 173.60 80.00 75.60 76.60 30.00 435.80

5 C2 C2 C2 C1 C3 440.00

6 C3 C2 C2 C1 C3 470.00

Average Fitness 596.46

276    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Here,

c1 is child 1 from the crossover operation.
c2 is child 2 from the crossover operation.
pb is the parent with the best fitness.
pw is the parent with the worst fitness.
s is a scaling factor in the range [0,1].

The scaling factor is a random number that changes the range of the difference
between each of the parent genome sites. This can sometimes lead to infeasible
solutions because the scaled value is unallowable. As a consequence, analytical
crossover generally has a search parameter, k, that attempts to find a new value
of s that will produce a feasible solution. After the number of searches exceeds
k, s = 0, so that the best-fit parent is also returned as the first child. Other modi-
fications to this technique are also implemented, such as searching through the
population for acceptable parents instead of changing the scaling factor.

Breeding techniques create new chromosomes in the population. By breeding
individuals with a high fitness ranking, the genetic search process hopes to intro-
duce new individuals that are slightly superior to some other chromosomes in the
population. These fitter chromosomes, over generations, place selective pressure
on the population and slowly replace less fit individuals. Breeding alone, however,
is insufficient in many cases. Genetic algorithms can become locked in a local
region of the solution space because of a general lack of diversity in the current
gene pool. The next section takes up issues and techniques related to one of the
conventional methods for recovering genetic diversity.

Conventional Mutation (Diversity) Techniques
Genetic algorithms are sensitive to genetic diversity. In some cases, the diversity
introduced by crossover breeding is insufficient to explore the underlying solution
space. The population becomes confined to a small region of the solution space.
Breeding simply moves the search around and around this region. Figure 7.31
illustrates this problem. Each point represents the average fitness of the entire
population.

In this figure, the genetic algorithm is wandering around a small region of the
potential solution space. Any combination of the current genetic material is insuf-
ficient to produce individuals that move outside this region. To solve this problem,
genetic algorithms use the concept of mutation. Mutation, as the name implies,
randomly changes the value of a genome locus. Through mutation, genetic
diversity can be maintained or reintroduced into the population. Figure 7.32 illu
strates the locked population in Figure 7.31 with a few mutations in one of the
generations.

Mutation operators must be applied carefully and sparingly to the population.
Too much mutation and the genome loses its ability to retain any pattern, and
although the population may be scattered over a wide region of the solution
terrain, the search mechanism has no way of improving its performance. Only a

7.3  The Architecture of a Genetic Algorithm   277

FIGURE 7.31

A population without sufficient genetic diversity.

z

3010 20 40 50

x

60 70

= Average population fitness

80 90

100
120

140
y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

FIGURE 7.32

Genetic diversity through mutation.

z

3010 20 40 50

x

60 70

= Average population fitness

80 90

100
120

140
y

50

40

30

20

10

0

–10

–20

–30

–40

–50

160
180

200
220

= Average population fitness (without mutation)

278    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

small number of individuals should be subject to mutation during a generation. In
many genetic algorithms, a parameter of the search system itself determines
whether or not a mutation is applied to any chromosomes during the current
generation. This section discusses the various types of conventional mutation
operators. With the exception of the binary inversion technique, these mutation
operators are designed to work on integer and real-number genomes. A knowledge
of the loci allowed range of values is necessary for each operator that works on
numbers instead of bit strings.

Binary (Bit) Inversion

For genomes represented by binary (bit) strings, the inversion operator simply
flips the value of a randomly chosen bit. A 1-bit becomes zero, and a 0-bit becomes
one. Because of the nature of binary chromosomes, this is the primary and
often principal mutation operator used in classical (binary-represented) genetic
algorithms.

Uniform Replacement

Uniform mutation replaces a randomly selected gene (locus) with a value chosen
from a uniform random distribution between the upper and lower domain bounds
for the gene. This is the most frequently used mutation operator because it
requires only the range of allowed values for the gene.

Distribution-Based Replacement

Instead of a value uniformly drawn from the domain of the gene, this operator
updates the gene position with a statistical value drawn from some probability
distribution. Normally, a Gaussian distribution is used (and the value is truncated
or regenerated if it lies outside the allowable range for the gene). However, a
binomial (Poisson or other type) of distribution can also be used.

Central-and-Limits Replacement

The central-and-limits mutation replaces the gene value with one of three
randomly chosen values: the upper boundary value from the gene’s domain, the
lower boundary value from the gene’s domain, or the value from the center of
the domain (upper-lower)/2). Generally, the mutation operator has differing prob-
abilities for each assignment: a high probability for boundary values and a smaller
probability for the center of distribution value. The central-and-limits mutation
operator often provides a way of introducing a significant amount of genetic
diversity into the population and is useful in the early stages of evolution. The
sharp three-step process of assigning the minimum, maximum, or middle domain
values “shakes” the genome in a way similar to simulated annealing.

7.3  The Architecture of a Genetic Algorithm   279

Nonuniform Decay

The nonuniform decay operator is designed to slowly reduce genetic diversity
caused by mutation as the number of generations increases. The operation begins
to drive the probability of a mutation toward zero as the number of generations
increases. Equation 7.22 shows one possible representation for the decay mutation
operator:

	 p p
l

g
m m c

= × 





min ,1 	 (7.22)

Here,

pm is the current probability that a gene will mutate.
t is the switchover limit. When l = 1, the decay begins right after the first

generation. When l > 1, the mutation probability stays at its initial value
until gc = l, after which time it begins to fall.

gc is the current generation count (1,2,3, . . . , n).

The nonuniform decay operator keeps genetic diversity relatively high during
the early generations of the search but slowly eliminates mutation as the search
mechanism begins to evolve toward the target solution. In many cases, a form of
decay mutation is switched on by the search mechanism if it determines that
convergence is being inhibited (possibly by too much mutation).

Advanced Crossover and Mutation Techniques
Breeding approaches that use the conventional crossover and mutation methods
discussed in the previous section will not work for a large family of problems
involving structural, time, and flow dependencies between genes. Typical exam-
ples include the following:

n	 Resource-constrained project, crew, and machine (job shop) scheduling.
n	 Packing and containerization problems in logistics.
n	 Transportation route scheduling (such as the TSP family of problems).
n	 Configuration planning.

These problems are encountered frequently in the real worlds of business, indus-
try, and government. They all share a common property: the sequence of genome
values represents a collection of discrete objects that are being arranged in a
particular order. It is the attributes of the objects that determine the goodness of
fit, not the value of the object itself. For example, returning to the TSP, consider
the single-point crossover operation (at the second locus) shown in Table 7.18.

The crossover operators generate tours with duplicate cities (Charlie in child
1 and Able in child 2). Conventional mutation operators also generate duplicate
tours (because a tour includes all cities, mutating any of the five cities to another
city will automatically create a duplicate city in the tour). To address these prob-
lems, a large number of alternate crossover and mutation techniques have been

280    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

developed. This section discusses a few of the more common and easy-to-imple-
ment methods, addressing crossover issues first and then mutation techniques.

Greedy Crossover

The greedy crossover approach (also called the nearest-neighbor crossover) was
first formalized by Grefenstette in 1985 (see Resources). The algorithm assembles
offspring tours in a small but effective number of steps, as shown in Listing 7.2.

Listing 7.2  Algorithm for offspring tours.

Let t be the current tour
Let ci be the current city

Select one parent as the base
The first city in the parent is chosen as the starting node.
   This is the current city (ci)
   t = ci

Repeat:
   Examine the connecting edges leaving ci in both parents.
   Make a list of all cities on the connecting edges
   Remove any cities already in the tour
   If the list is empty exit repeat
   The edge with the shorter duration is used as the next city in
the tour.

   Set this next city as ci
   t = append(ci)
End repeat
For each unused city (cu)
   t = append(cu)
End for each
child = t

The idea of crossover occurs as the algorithm searches for the next segment
in a tour by comparing the length of the next edge in the tour. The algorithm is
repeated for each parent to produce two children. In this section we examine,

Table 7.18 Invalid Conventional Crossover for the TSP

City Tour

p1 Charlie Baker Charlie Able Echo

p2 Baker Able Echo Delta Charlie

c1 Charlie Baker Echo Delta Charlie

c2 Baker Able Charlie Able Echo

7.3  The Architecture of a Genetic Algorithm   281

for compactness, the generation of one child from the two candidate parents.
Figure 7.33 shows the two tours defined by the distance measurements in Table
7.4. The numbers on the edges are the distances between the connected cities.

Using these two tours, the greedy crossover works in the following steps to
produce one of two possible children:

1.	 Select a parent as the base. In this example, we choose the second parent. This
starts the template for constructing a child. The template now appears as
follows:

Baker ? ? ? ?

FIGURE 7.33

Two five-city tours.

Charlie

Delta

Delta

Able

Able

Echo

Echo

Baker

Baker
Charlie

12

8

15

9

2815

10
13

Parent 2

Parent 1

282    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

2.	 Find the edges in both parents from Baker to the next city. These are
(Baker,Able) in parent 2 and (Baker,Charlie) in parent 1. Choose the edge
that has the shortest distance. This edge becomes the next segment in the tour.
The shortest edge is (Baker,Charlie) in parent 2, with a length of 8 miles. The
template now appears as follows:

Baker Charlie ? ? ?

3.	 Find the edges in both parents from Charlie to the next city. These are
(Charlie,Echo) in parent 2 and (Charlie,Able) in parent 1. The shortest edge
is (Charlie,Echo) in parent 2, with a length of 13 miles. This becomes the next
edge and the template now appears as follows:

Baker Charlie Echo ? ?

4.	 Find the edges in both parents from Echo out to the next city. These are
(Echo,Delta) and (Echo,<terminate>). Thus, Delta is selected as the next city
node, as follows:

Baker Charlie Echo Delta ?

5.	 Find the edges in both parents from Delta out to the next city. These are
(Delta,Baker) in parent 1 and (Delta,<terminate>) in parent 2. Baker has
already been used in the tour and is removed from the candidate list. Delta is
a terminal city in the parent 2 tour and is removed. We now complete the tour
by adding Able, the only unused city, as follows:

Baker Charlie Echo Delta Able

Figure 7.34 shows the tour created by the greedy crossover, using parent 2 as
the starting point (the template basis).

The greedy algorithm has created a valid tour with a length of 54 miles
(8 + 13 + 28 + 5). This is about midway between the lengths of the incoming
parents, which have tour length of 44 and 66, respectively. A second child is
created by selecting the remaining parent (parent 1) as the base and reapplying
the algorithm.

The greedy (or nearest-neighbor) crossover approach produces feasible off-
spring tours with a minimum of exception processing. This is a by-product of its
reliance on graph theory to drive the generation of a tour based on edges. To
complete this section on advanced crossover techniques, we examine two methods
that are modeled after the conventional single-point crossover. Both of these gen-
erate infeasible solutions and must employ exception handling to compensate for
duplicate and missing cities.

City Pivot Crossover

The city pivot approach selects a city in the tour at random. This city becomes
the crossover point in the same manner as conventional single-point crossover

7.3  The Architecture of a Genetic Algorithm   283

except that (1) the crossover position is not the same for both chromosomes but
is relative to the location of the city in each tour and (2) a compression technique
must be used to ensure that duplicate cities do not appear in the offspring
chromosomes. Table 7.19 illustrates how a child chromosome is produced from
the city pivot crossover when Baker is selected as the crossover city.

In the crossover at Baker, we have two tour segments sliced by Baker: (Delta,
Baker) in parent 1 and (Able,Echo,Delta) in parent 2. Delta is a duplicate and is
removed from the second segment. When they are spliced together, the offspring
(Delta,Baker, Able,Echo,Charlie) form a valid tour.

Position Pivot Crossover

The position pivot crossover approach, shown in Table 7.20, is similar to the
conventional single-point crossover discussed previously. In this method, a cross-
over position is selected at random along the length of the tour. The child chro-
mosome consists of the tour in parent 1 on the left and parent 2 on the right.

FIGURE 7.34

The child tour from greedy crossover.

Able

Baker

Echo

Charlie

Delta

5

8

13

28

Table 7.19 City Pivot Crossover on Baker

City Tour

p1 Delta Baker Charlie Echo Able

p2 Able Echo Delta Baker Charlie

c1 Delta Baker Able Echo Charlie

284    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

However, this crossover approach must also ensure that (1) any duplicate cities
(those that appear, for instance, to the left of the crossover point) are not included
in the final tour and (2) any missing cities (those that for example appear to the
left of the crossover but are not included in the left-hand chromosome) are
included in the final chromosome.

In the crossover at locus 2, we have two tour segments: (Charlie,Echo,Able)
in parent 1 and (Delta,Baker,Charlie) in parent 2. Delta is a duplicate and is
removed from the second segment. Able is missing from the offspring when the
left set of p1 (Delta,Baker) is crossed with the right side of p2 (Delta,Baker,Charlie).
We now delete Delta and push Able onto the tour. When they are spliced
together, the offspring (Delta,Baker, Able,Baker,Charlie) form a valid tour.

The next section discusses the various types of genome mutations. For chro-
mosomes in which relationships are defined as connected edges, these mutation
operators change the chromosome structure instead of changing the value of a
single gene.

Random Swap Mutation

In random swap, two loci (chosen at random) have their values swapped. As
illustrated in Table 7.21, this results in a valid tour.

Move-and-Insert Gene Mutation

Using move-and-insert, a genome locus (chosen at random) is moved before or
after another randomly chosen locus in the genome. Table 7.22 shows the off-
spring when Baker is selected as an insert before a point and Echo is selected as
the city node to move.

Table 7.20 Position Pivot Crossover on Locus 2

City Tour

p1 Delta Baker Charlie Echo Able

p2 Able Echo Delta Baker Charlie

c1 Delta Baker Able Baker Charlie

Table 7.21 The Random Swap Mutation

City Tour

p1 (before) Delta Baker Charlie Echo Able

p1 (after) Delta Able Charlie Echo Baker

Move-and-Insert Sequence Mutation

Sequence mutation is similar to the gene move-and-insert, but instead of a single
locus a sequence of loci are moved and inserted. Table 7.23 shows the offspring
when Baker is selected as an insert before a point and the gene sequence
(Charlie,Echo,Able) is selected as the set of nodes to move.

Order Reversal Mutation

With order reversal, a series of the genome loci (chosen at random) have their
values reversed. As illustrated in Table 7.24, this results in a valid tour. Although
treated here as important mechanisms for modifying the organization of a sched-
ule, configuration, or route, they can also be used with conventional genetic
algorithms (with varying degrees of effect on the population diversity).

7.4	PRACTICAL ISSUES IN USING A GENETIC ALGORITHM
To use a genetic algorithm, generally you must have the ability to perform the
following functions:

Table 7.22 The Move-and-Insert Gene Mutation

City Tour

p1 (before) Delta Baker Charlie Echo Able

p1 (after) Delta Echo Baker Charlie Able

Table 7.23 The Move-and-insert Gene Mutation

City Tour

p1 (before) Delta Baker Charlie Echo Able

p1 (after) Delta Charlie Echo Able Baker

Table 7.24 The Order Reversal Mutation

City Tour

p1
(before) Delta Baker Charlie Echo Able

p1
(after) Delta Echo Charlie Baker Able

7.4  Practical Issues in Using a Genetic Algorithm   285

286    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

n	 Generate possible solutions to a problem.
n	 Set the properties of the genetic algorithm so that it can converge on a

solution.
n	 Measure the goodness of those solutions in terms of the outcome from

the underlying model.
n	 Change the system if the solutions are not very good.

The practical issues confronted with analysts in using a genetic algorithm usually
fall within two areas: properly setting the population, breeding, and mutation
properties of the genetic algorithm; and finding ways to model large, highly
complex systems without executing the real-world model itself. The next section
addresses the last two of these issues.

7.4.1  Execution Times for Real-World Systems

In many cases, the execution time is fairly straightforward; that is, the fitness
function and the system that processes the potential solution are essentially the
same. Finding the maximum value for a function, the shortest circuit through a
set of cities, the least cost to assemble a piece of equipment, or the maximum
carrying capacity of a road system are straightforward applications of mathematic
models. That is, a genetic algorithm does not need to depend on dispatching a
fleet of vehicles to follow a potential tour and then actually clocking their time
between cities spread over several states to find the shortest route. A road atlas
and a table of intercity distances from the atlas are sufficient to build a credible
and accurate TSP model. On the other hand, this disconnect between physical
reality and the genetic model does not always exist. In such cases, a genetic
algorithm may be difficult or impossible to use. This brings us to a set of issues
associated with applying genetic algorithms to complex, large-scale, real-world
models.

This disconnect is not universal. Some genetic algorithms are attached to
complex business, industrial, and government policy models. In these cases,
running one generation of 50 chromosomes could take anywhere from several
hours to several days. For example, suppose we want a genetic algorithm to opti-
mize (that is, minimize) point-of-sales transaction throughput time in a commercial
relational database. Unless we have a reliable mathematic model of how the data-
base performs under specific loads with a specific set of configuration parameters,
the genetic algorithm must run its evaluation against a working relational database.
Our genetic algorithm can generate configuration parameters for the relational
database, feed in a large collection of transactions, and measure the throughput
time. The same set of transactions is used over and over to measure the change
in processing and total throughput times.

Some combination of virtual-memory-swap area size, disk space, table page
size, transaction (or job) queue length, number of page buffers, and column
indexing will produce the best database configuration. However, the time to

reconfigure a dedicated relational database with a new page size, buffer count,
and different column indexing could take anywhere from 4 to 5 minutes. Process-
ing all transactions (say a mix of 150,000 query and update transactions, with a
reasonable amount of noise such as bad SKU numbers, invalid quantities, out of
stock responses, and so on) might take an additional 3 minutes. Thus, Equation
7.23 is the time per chromosome:

	 c t t tt t r p= + + 	 (7.23)

Here,

ct is the current chromosome evaluation elapse time.
tt is the tear-down and setup time for each evaluation.
tr is the runtime to evaluate the chromosome.
tp is the intergeneration processing time.

As a result, the total time to optimize the database, shown in Equation 7.24, is
the sum of the individual chromosome evaluation times the number of chromo-
somes in the population times the total number of generations used to evolve the
solution:

	 E N ct it

i

P

≈ × ()
=
∑

1

	 (7.24)

Here,

Et is the total evolution elapse time.
N is the total number of generations.
P is the number of chromosomes in the population.
gt is generation elapse time (see the previous equation).
tr is the runtime.
tp is the intergeneration processing time.

When ct is 8 minutes, then for 50 chromosomes a database-tuning generation
will take 400 minutes or 6.6 hours (a bit less than a full workday of processing).
For 20 generations, the total optimization time is 132 hours (or 5.5 full days). This
time frame is not the norm, but it can be typical for many real-world applications
that involve large-scale complex systems.

7.4.2  Setting Process Parameters

Translating the concepts of a genetic algorithm into a working engine involves
not only designing ways to represent the basic data structures but ways of setting
the principal properties or parameters of the genetic algorithm. Most commercial
or off-the-shelf genetic algorithms provide default values for these parameters, but
a brief review of the typical values for each major parameter also provides a
checklist for the control properties necessary in a genetic algorithm.

7.4  Practical Issues in Using a Genetic Algorithm   287

288    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

Population Size
The initial number of chromosomes in the population depends on the number of
variables in the search. For a “typical” problem of moderate complexity, a popu-
lation of 50 chromosomes is often a good starting point. In many genetic algo-
rithms, the population size remains the same from generation to generation. In
others, the population size can expand or contract depending on the degree of
genetic diversity, the rate of convergence, or other factors in the search
process.

Population Generation
There are generally two types of population management techniques in a genetic
algorithm. In the steady-state model, a single population is constantly updated. In
the dynamic-state model, a new population is created form the old population of
each generation. As a general guideline, dynamic populations are often easier to
maintain and usually provide a higher intrinsic degree of diversity.

Maximum Number of Generations
One of the primary termination conditions is a limitation on the maximum number
of generations. The default value for this parameter is difficult to set independently
of the number of variables and the number of objective functions. However, a
default of 2.5 times the population size is often a good maximum generation count
estimate.

Type of Crossover
The type of crossover used in breeding depends on the nature of the chromo-
some—that is, whether it is a binary or real number representation, the length of
the chromosome, the possible number of states that can exist, and the amount of
genetic diversity needed in the search model. A relatively good choice is double-
point crossover during the early generations of the model, converting to single-
point crossover in later generations. For scheduling, configuration, and other
dependency problems, the greedy (or nearest-neighbor) algorithm is almost always
the best choice.

Type of Mutation
The type of permissible mutation depends on the genome representation. The bit
inversion technique is used for binary chromosomes, whereas a wider range of
mutation options is available for real-number representations. For real numbers,
the uniform replacement is an excellent default mutation type (and for scheduling
and network or dependency problems, random swap is a good default mutation
technique).

Retention Rate
The retention rate is a percentage of the population and determines how many
of the top-performing chromosomes in a ranked (sorted) population will be

selected and copied into the next generation (or for steady-state modes that will
remain in the existing population). A default value of 10 to 15 percent is a good
estimate.

Breeding Rate
Whether or not a chromosome is selected for breeding (crossover) is often deter-
mined by a probability tied to its fitness relative to all other fit chromosomes in
the population (this is the case with proportional fitness). In many cases, however,
the algorithm selects the first 2n + 1 chromosomes in the population and breeds
these (subject to the crossover rate) in order to create the next generation of
offspring. The quantity n is tied to the breeding rate, which is expressed as a
percentage of the population.

Crossover Rate
The crossover rate is a probability that a chromosome will be selected for breed-
ing. This is used when the search algorithm uses a breeding rate to pick chromo-
somes for crossover. A default value between [0.5] and [0.9] (say 0.66) is a good
default estimate for the crossover rate. In some genetic searches, the crossover
rate can begin low and increase if the average fitness of the population does not
significantly improve over a specified number of generations.

Mutation Rate
The mutation rate determines the probability that a chromosome will have one
of its genes changed through a mutation technique. In general, mutation rates
should be very low to sustain genetic diversity but not overwhelm the population
with too much noise. Equation 7.25 shows a good default mutation probability
rate:

	 m
N

r = ()max . ,0 01
1

	 (7.25)

Here,

mr is the current probability of mutation.
N is the population size.

The mutation rate is inversely proportional to the population size, but not less
than 0.001 is a good default value. For a population of 125 chromosomes, this is
max(0.01,0.008), or [0.01].

New Individual Rate
In some genetic algorithms, new individuals are introduced into the next genera-
tion. These individuals have randomly valued genes (created in the same way as
the genetic algorithm’s initial population). New individuals can significantly
increase genetic diversity but can also have an adverse effect on convergence if

7.4  Practical Issues in Using a Genetic Algorithm   289

290    CHAPTER 7  Fundamental Concepts of Genetic Algorithms

overused. As a rule of thumb, if new individuals are introduced into the popula-
tion, the probability should be half the mutation rate (0.5 * mr).

7.5	REVIEW
Genetic algorithms form a family of directed optimization and search techniques
that can solve highly complex and often highly nonlinear problems. They can be
used to explore very large problem spaces and find the best solution based on
multiobjective functions under a collection of multiple constraints. In this chapter
we examined the fundamental nature of genetic algorithms, how they work, and
how they evolve or breed solutions to problems. You should now understand the
principal nature of the genetic algorithm and be familiar with such concepts and
ideas as the following:

n	 The types of problems solved by genetic algorithms.
n	 The organization and flow of control in a genetic algorithm.
n	 How a problem solution is encoded in a chromosome
n	 The design and use of a fitness function.
n	 How to introduce and limit diversity in a population.
n	 How to measure and control convergence in a population.
n	 How to select the correct crossover and mutation types and rates.
n	 How to set the process parameters for a genetic algorithm.
n	 The strengths and weaknesses of genetic algorithms.

Genetic algorithms play an important role in tuning, optimizing, and measuring
the performance of adaptive models. They can be instrumental in evolving param-
eters that keep models responsive to many external stresses.

7.6	RESOURCES
Cox, E. “Fundamental Concepts of Genetic Algorithms,” Fuzzy Modeling and Genetic

Algorithms for Data Mining and Exploration, Morgan Kaufmann, 2005.
Goldberg, D. E. “A Note on Boltzmann Tournament Selection for Genetic Algorithms and

Population-Oriented Simulated Annealing,” in Complex Systems, Volume 4, pp. 445–460,
1990.

Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

Goldberg, D. E. “Real-Coded Genetic Algorithms, Virtual Alphabets, and Blocking,” Complex
Systems, Volume 5, pp. 139–167, 1991.

Goldberg, D. E., and K. Deb. “A Comparative Analysis of Selection Schemes Used in Genetic
Algorithms,” Foundations of Genetic Algorithms, G. J. E. Rawlins (ed.), pp. 69–93,
Morgan Kaufmann, 1991.

Goldberg, D. E., and J. Richardson. “Genetic Algorithms with Sharing for Multimodal Func-
tion Optimization,” Genetic Algorithms and Their Applications: Proceedings of the
Second International Conference on Genetic Algorithms, pp. 41–49, 1987.

Goldberg, D. E., K. Deb, and J. H. Clark. “Genetic Algorithms, Noise, and the Sizing of
Populations,” Complex Systems, Volume 6, pp. 333–362, 1992.

Grefenstette, J., R. Gopal, R. Rosmaita, and D. Gucht. “Genetic Algorithms for the Traveling
Salesman Problem,” Proceedings of the Second International Conference on Genetic
Algorithms, Erlbaum, 1985.

Holland, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence, University of Michigan
Press, 1975.

Krishnakumar, K. “Micro-Genetic Algorithms for Stationary and Non-Stationary Function
Optimization,” SPIE: Intelligent Control and Adaptive Systems, Volume 1196, 1989.

Syswerda, G. “Uniform Crossover in Genetic Algorithms,” Proceedings of the Third Inter-
national Conference on Genetic Algorithms, J. Schaffer (ed.), pp. 2–9, Morgan Kaufmann,
1989.

7.6  Resources   291

This page intentionally left blank

CHAPTER

8Data Structures and
Algorithms for Moving
Objects Types

In this chapter, based on the discrete model described in Section 8.3, we develop
data structures for its data types as well as algorithms for a selected collection of
its operations. In the design of operations in the abstract model (Section 8.2), all
operations have been defined to be applicable to all combinations of argument
types for which they could make any sense for the user (i.e., they are overloaded).
This leads to a large set of functionalities for operations. At the implementation
level, the number of algorithms for the operations increases, because it is not
always the case that different argument types for one overloaded operation can
be handled by the same algorithm. Hence, we reduce the scope of our study; the
kind of reduction will be described in Section 8.2.1.

Section 8.1 describes the employed data structures in detail. This is the basis
for describing and analyzing algorithms. Section 8.2 introduces algorithms for
operations on temporal data types, and Section 8.3 investigates algorithms for
lifted operations.

8.1	DATA STRUCTURES
Data structures designed for use as attribute data types in a database environment
must satisfy some requirements.

8.1.1  General Requirements and Strategy

Values are placed into memory under the control of the database management
system (DBMS), which in turn, implies that one should not use pointers, and
representations should consist of a small number of memory blocks that can be
moved efficiently between secondary and main memory.

294    CHAPTER 8  Data Structures and Algorithms

One way to satisfy these requirements is described in the following text. Data
types are generally represented by a record (called the root record), which con-
tains some fixed-size components and possibly one or more references to arrays.
Arrays are used to represent the varying size components of a data type value and
are allocated to the required size. All pointers are expressed as array indexes.

Another aspect is that many of the data types are set valued. Sets will be rep-
resented in arrays. We always define a unique order on the set domains and store
elements in the array in that order. In this way, we can enforce that two set values
are equal if, and only if, their array representations are equal; this makes efficient
comparisons possible. Further, all implemented algorithms must run on these
block-based data structures.

A final aspect is that different algorithms processing the same kind of objects
usually prefer different internal object representations. In contrast to traditional
work on algorithms, the focus here is not on finding the most efficient algorithm
for one single problem (operation), together with a sophisticated data structure,
but rather on considering our algebra as a whole and on reconciling the various
requirements posed by different algorithms within a single data structure for each
data type. In addition, it is our goal to identify algorithmic schemes that can be
applied to a large number of operations.

8.1.2  Nontemporal Data Types

The base types int, real, string, bool, and instant are represented by a record,
which consists of a corresponding programming language value together with a
Boolean flag indicating whether the value is defined. For string, the value is a
character array of fixed length. For instant, the value is of an auxiliary data type
coordinate, which is a rational number of a certain precision. Two predefined
constants, mininstant and maxinstant, describe the first and last representable
instants in the past and the future, respectively. This means we assume a bounded
and not an infinite time domain at the discrete level.

Next, we look at the spatial data types, which all use the type coordinate for
representing coordinates. A point value is represented by a record with two
values x and y of the coordinate type and a defined flag. A points value is a finite
set of points in the plane. It is represented by a (root) record containing a refer-
ence to an array. Each element of the array represents one point by its two coor-
dinates. Points are in (x, y)-lexicographic order.

A line value at the discrete level is a finite set of line segments that are inter-
section free.1 It is represented as a root record with one array of halfsegments.
The idea of halfsegments is to store each segment twice: once for the left (i.e.,
smaller) endpoint and once for the right endpoint. These are called the left and
right halfsegments, respectively, and the relevant point in the halfsegment is

1The reason is that we can then reuse the so-called ROSE algebra implementation, which has this
requirement. Of course, it is also possible to allow intersections of segments that lead to different
algorithms if lines are involved.

called the dominating point. The purpose of this is to support plane-sweep algo-
rithms, which traverse a set of segments from left to right and have to perform
an action (e.g., insertion into a sweep status structure) on encountering the left
and another action on meeting the right endpoint of a segment. Each halfsegment
is represented as a pair of point values for the endpoints plus a flag to indicate
the dominating endpoint. Halfsegments are ordered in the array following a lexi-
cographic order extended by an angle criterion to treat halfsegments with the
same dominating point.

A region value is given by the set of line segments forming its boundary. At a
higher structural level, it is a finite set of edge-disjoint faces. A region value is
represented by a root record with three arrays. The first array (segments) contains
a sequence of records, where each record contains a halfsegment plus an additional
field next-in-cycle, which links the segments belonging to a cycle (in clockwise
order for outer cycles, counterclockwise for hole cycles, so the area of the face
is always to the right). Therefore, one can traverse cycles efficiently. The second
and third arrays (cycles and faces arrays) represent the list of cycles and faces,
respectively, belonging to the region value. They are also suitably linked together
so that one can traverse the list of cycles belonging to a face, for example.

Exercise 8.1  Let us have a closer look at the halfsegment representation of the
types line and region.

1.	 Let N ∈{I, , } (i.e., N is either the set of integer numbers, rational numbers,
or real numbers). Let P = N × N be the set of points based on N. Define the
lexicographical order relation <P on P.

2.	 Let H be the set of halfsegments defined over P. Define an order relation <H
on H. Take into account the possible topological configurations of two halfseg-
ments. Assume the ROSE algebra case in which two halfsegments are intersec-
tion free (i.e., either disjoint or share exactly one common end point).

3.	 Draw a region consisting of two triangles, one inside the other; name the seg-
ments s1, . . . , s6. Determine the region’s halfsegment sequence. To each half-
segment attach a flag indicating on which side the interior of the region is
located.	 ■

For the three data types points, line, and region we also introduce several
summary fields stored in the respective root records. Their goal is to provide
certain data about the object in constant time instead of executing an expensive
algorithm for their computation. Values for these fields can be easily calculated
during the construction of a spatial object. The minimum bounding box of an
object, which is an axis-parallel rectangle, is given by the field object_mbb. The
field no_components keeps the number of points for a points value, the number
of connected components for a line value, and the number of faces for a region
value. For line values, the field length returns the total length of line segments
as a real number. The fields perimeter and area store corresponding real numbers
for a region value. In addition, for all the arrays used in the representation there

8.1  Data Structures   295

296    CHAPTER 8  Data Structures and Algorithms

is a field giving their actual length. Hence, one can determine the number of seg-
ments or faces for a region value, for example.

The range data types rint, rreal, rstring, rbool, and periods are repre-
sented by a root record containing an array whose entries are interval records
ordered by value (all intervals must be disjoint and nonadjacent—hence, there is
a total order). An interval record contains four components (s, e, lc, rc), where s
and e are the start and end value of the interval, respectively (therefore of type
int, real, etc.), and lc and rc are Booleans indicating whether the interval is left
closed or right closed, respectively. Summary fields are also defined for range
types. The number of intervals is stored in the field no_components as an integer.
The minimal and maximal values assumed in a set of intervals are given in the
fields min and max, respectively, of the corresponding data types. For periods
values, the sum of the lengths of all intervals is kept in the field duration.

An intime value of type iint, ireal, istring, ibool, ipoint, or iregion is
represented by a corresponding record (instant, value), where value is of the
corresponding data type.

8.1.3  Temporal Data Types

All temporal data types are represented by the so-called sliced representation
(Section 8.3.1). It describes a value of a temporal (moving) data type as a set of
units. A unit is represented by a record containing a pair of values (interval,
unit function). The interval defines the time interval for which the unit is valid;
it has the same form (s, e, lc, rc) as intervals in the range types. The unit function
represents a “simple” function from time to the corresponding nontemporal type
α, which returns a valid α value for each time instant in interval. For each tem-
poral type there will be a corresponding unit function data structure. The time
intervals of any two distinct units are disjoint; hence, units can be totally ordered
by time.

Units for the discretely changing types const(int), const(string), and
const(bool) use as a unit function a value of the corresponding nontemporal
type. Hence, for a unit (i, v), the function is f(t) = v.

The ureal unit function is represented by a record (a, b, c, r), where a, b, c
are real numbers and r is a Boolean value. The function represented by this four-
tuple is

f t at bt c r false() = + +2 if

and

f t at bt c r true() = + +2 if is

Hence, we can represent (piecewise) quadratic polynomials and square roots.
A upoint unit function is represented by a record (x0, x1, y0, y1), representing

the function f(t) = (x0 + x1 t, y0 + y1 t). Such functions describe a linearly moving
point. We also call the tuple (x0, x1, y0, y1) an mpoint (“moving point”).

A uregion unit function is represented by a record containing three arrays:
an msegments array, a cycles array, and a faces array. The msegments (“moving
segments”) array stores the “msegments” of the unit, using lexicographic order
on the tuples defining the msegment. As for region, each msegment record
has an additional field next-in-cycle, and msegments of a cycle are linked in
cyclic order, always having the interior of the face at their right. The cycles
and faces arrays are managed the same as region. The cycles array keeps a
record for each cycle in the uregion unit, containing a pointer (represented
by an array index) to the first-mseg-in-cycle and a pointer to the next-cycle-in-
face. The faces array stores one record per face, with a pointer to the first-cycle-
in-face.

A value of a temporal data type incorporates a collection of units and is
represented as a root record containing an array of units ordered by their time
interval.

Summary fields, which are later used in various algorithms, are added to the
root record of the moving object or to the record representing the unit, respec-
tively. At the object level, for all temporal types, the field no_units keeps the
number of units as an integer, and the field deftime stores a periods value repre-
senting the set of time intervals for which the moving object is defined. The value
for deftime is obtained from merging the definition time intervals of the units. We
also call this the deftime index. The information in the root record of the periods
value is integrated into the root record of the moving object, which now contains
a deftime array as well as its units array. For the nonspatial temporal types mint,
mreal, mstring, and mbool, the fields min and max contain the minimum and
maximum values of the respective data type that the object takes in all its defini-
tion time. For the spatiotemporal types mpoint and mregion, the field object_pbb
constitutes the projection bounding box, which represents the minimum rect-
angle of all points in the 2D space that at some time instant belong to the spatio-
temporal object.

At the unit level, for the ureal type, the fields unit_min and unit_max hold
real numbers for the minimum and maximum values, respectively, assumed by
the unit function. For the types upoint and uregion, the field unit_pbb contains
the unit projection bounding box for the spatial projection of the unit. For the
uregion type, the field unit_no_components contains the number of moving
faces of the unit as an integer; the fields unit_perimeter and unit_area represent
ureal unit functions describing the development of the perimeter and the area
during the unit interval; and the field unit_ibb includes the unit interpolation
bounding box, which is a “moving rectangle” and a more precise filter than the
unit projection bounding box. It connects the bounding box of the uregion pro-
jection at the start time of the unit with the bounding box of the projection at
the end time. It is stored as a record (axmin, bxmin, axmax, bxmax, aymin, bymin, aymax,
bymax), representing one linear function fi for each bounding box coordinate (xmin,
xmax, ymin, and ymax), with the value fi = ait + bi. The various projection bounding
boxes are later used for a sequence of filter steps.

8.1  Data Structures   297

298    CHAPTER 8  Data Structures and Algorithms

8.2	ALGORITHMS FOR OPERATIONS ON TEMPORAL
DATA TYPES

This section gives algorithmic descriptions of operations on temporal data types
for projection into domain and range (Section 8.2.2), for interaction with values
from domain and range (Section 8.2.3), and for rate of change (Section 8.2.4).

8.2.1  Common Considerations

Selecting a Subset of Algorithms
The abstract model described in Section 8.2 puts the emphasis on consistency,
closure, and genericity; in particular, all operations have been defined to be appli-
cable to all combinations of argument types for which they could make any sense.
The result is a large set of functionalities for operations. This set is even enlarged
by the fact that it is not always the case that the same algorithm can handle dif-
ferent argument types for one operation. To make it manageable, we reduce the
scope of our algorithm descriptions as follows. First, we do not study algorithms
for operations on nontemporal types as such; this type of algorithm on static
objects has been studied before in the computational geometry and spatial data-
base literature.

An example would be an algorithm for testing whether a point value is located
in a region value. However, we will study the lifted versions of these operations
that involve moving objects. Second, we do not consider the types mpoints and
mline or any signature of an operation involving these types. These types have
been added to the abstract model mainly for reasons of closure and consistency;
they are by far not as important as the types mpoint and mregion, which are in
the focus of interest. Third, we do not consider predicates based on topology;
these are the predicates touches, attached, overlaps, on_border, and in_
interior. They are, of course, useful, but we limit the scope of our considerations
here. Fourth, we do not deal with the mregion × mregion case, because its treat-
ment follows a rather complex algorithmic scheme. You are referred to the
original literature (see Section 8.4).

Together with the restrictions just mentioned, it is not so easy to figure out
which functionalities remain. Therefore, in the following sections, we list explic-
itly which signatures remain to be considered for each operation.

Notations
From now on, we denote the first and second operand of a binary operation by
a and b, respectively. We denote the argument of unary operations by a. In com-
plexity analysis, m and n are the numbers of units (or intervals) of, respectively,
a and b, whereas r is the number of units in the result. If a is a type having a
variable size, we denote by M the number of “components” of a. That is, for
example, if a is of type points, then M is the number of points contained in a;
but if a is of type mregion, then M is the number of moving segments comprising

8.2  Algorithms for Operations on Temporal Data Types   299

a. In any case, the size of a is O(M). For the second argument b and for the result
of an operation, we use the same meaning N and R, respectively. If a (respectively,
b, or the result) is of type mregion, we denote by u (respectively, v, w) the number
of moving segments comprising one of its units and by umax (respectively, vmax,
wmax) the maximum number of moving segments contained in a unit. Finally, let
d denote the size of the deftime index of a moving object. For easy lookup, these
notations are summarized in Table 8.1.

All complexity analyses done in this chapter consider CPU time only. So this
assumes that the arguments are already in main memory and does not address the
problem of whether they need to be loaded entirely or if this can be avoided.

Most of the operations are polymorphic (i.e., allow for several combinations
of argument and result types). To avoid long listings of signatures but still to be
precise about which signatures are admitted, we use the following abbreviation
scheme, illustrated here for the rangevalues operator: For α ∈ {int, bool,
string, real}:

rangevalues    mα   → rα

Here, α is a type variable ranging over the types mentioned; each binding of
α results in a valid signature. Hence, this specification expands into the list:

rangevalues  	mint   	→ rint
             	 mbool  	→ rbool
             	 mstring	→ rstring
             	 mreal  	→ rreal

Refinement Partitions
We now describe an algorithmic scheme that is common to many operations. In
the following text, we call an argument of a temporal type a moving argument.
Every binary operation whose arguments are moving ones requires a preliminary
step, where a refinement partition of the units of the two arguments is computed.
A refinement partition is obtained by breaking units into other units (Figure 8.1)

Table 8.1 Notations

Symbol Meaning

a, b First and second argument

m, n, r Numbers of units of first and second arguments and of the result

M, N, R Sizes of arguments and of result

u, v, w Sizes of two argument units and of a result unit

umax, vmax, wmax Maximal sizes of units for the two arguments and for the result

d Size of a deftime index

300    CHAPTER 8  Data Structures and Algorithms

that have the same value but are defined on smaller time intervals, so that a result-
ing unit of the first argument and one of the second argument are defined either
on the same time interval or on two disjoint time intervals. We denote the number
of units in the refinement partition of both arguments by p. Note that p = O(n +
m). We use M ′ (respectively, N ′) with the same meaning as M (respectively, N),
referring to the size of the refined partition of the units of a (respectively, b). We
compute the refinement partition by a parallel scan of the two lists of units with
a complexity of O(p).

This complexity is obvious for all types that have units of a fixed size—hence,
for all types but mregion. Even for the latter type, this complexity can be achieved
if region units are not copied, but pointers to the original units are passed to the
subalgorithm processing a pair of units for a given interval of the refinement par-
tition. If the refinement partition for two mregion arguments is computed explic-
itly (copying units), the complexity is O(M′ + N′).

For many operations, whose result is one of the temporal types, a postprocess-
ing step is needed to merge adjacent units having the same value. This requires
time O(r).

Filtering Approach
Even if not stated, each algorithm filters its arguments using the auxiliary informa-
tion (i.e., the summary fields) provided by them, which varies according to argu-
ment types (see Section 8.1). The term filter is widely used in geometric query
processing to describe a prechecking on approximations. For example, a spatial
join on two sets of regions may be implemented by first finding pairs of overlap-
ping bounding boxes (also called MBRs, minimal bounding rectangles) and then
performing a precise check of the qualifying pairs’ geometries. The first is then
called the filter step and the latter the refinement step. In this book and elsewhere,
the term is also used to describe prechecking on approximations of two single
spatial data type values, before running a more expensive precise algorithm.

For filtering, minimum and maximum values (stored in the min and max fields
of the root record) for moving nonspatial types as well as bounding boxes for
nontemporal spatial types are used. For mpoint and mregion, filtering is performed
using projection bounding boxes. Moreover, for mregion, two more filtering steps,

FIGURE 8.1

Two sets of time intervals are on the left; their refinement partition is on the right.

Time

8.2  Algorithms for Operations on Temporal Data Types   301

with increased selectivity, are performed using first projection bounding boxes
and then interpolation bounding boxes of individual units.

8.2.2  Projection to Domain and Range

The operations described in this section get a moving or intime value as operand
and compute different kinds of projections either with respect to the temporal
component (i.e., the domain) or the function component (i.e., the range) of a
moving value.

deftime. This operation returns all times for which a moving object is defined.
The signatures for all α ∈ {int, bool, string, real, point, region} are
as follows:

deftime   mα → periods

The algorithmic scheme for all operations is to read the intervals from the
deftime index incorporated into each argument object. The time complexity is
O(r) = O(d).

rangevalues. This operation is defined for one-dimensional argument types only
and returns all unit values assumed over time as a set of intervals. We obtain
the following signatures for α ∈ {int, bool, string, real}:

rangevalues   mα → rα

For the type mbool, in O(1) time we look up the minimal range value min and
the maximal range value max of the moving Boolean. The result is one of the
interval sets {[false, false]}, {[true, true]}, or {[false, true]}. For the types mint
and mstring, we scan the mapping (i.e., the unit function values), insert the range
values into a binary search tree, and finally traverse the tree and report the ordered
sequence of disjoint intervals. This takes O(m + m log k) time if k is the number
of different values in the range. For the type mreal, we use the summary fields
unit_ min and unit_max of each real unit. As each unit function is continuous,
it is guaranteed that all values in the range [unit_min, unit_max] are assumed so
that we obtain an interval of values. The task is to compute the union of all these
intervals as a set of disjoint intervals. This can be done by sorting the endpoints
of intervals and then sweeping along this one-dimensional space, maintaining
a counter to keep track of whether the current position is covered or not, in O
(m log m) time.

The projection of a moving point into the plane may consist of points and
of lines; these can be obtained separately by the operations locations and
trajectory.

locations. This operation returns the isolated points in the projection of an
mpoint as a points value. This kind of projection is especially useful when a

302    CHAPTER 8  Data Structures and Algorithms

moving point never changes its position or does it in discrete steps only. Thus,
its signature is as follows:

locations   mpoint → points

In the first step, we scan all units of the mpoint value and compute for each
unit the projection of its three-dimensional segment into the plane. As a result,
we obtain a collection of line segments and points (the latter given as degenerate
line segments with equal endpoints). This computation takes O(m) time. From
this result, only the points have to be returned, and only those points that do not
lie on one of the line segments. Therefore, in the second step, we perform a
segment intersection algorithm with plane sweep, where we traverse the collec-
tion from left to right and only insert line segments into the sweep status structure.
For each point, we test whether there is a segment in the current sweep status
structure containing the point. If this is the case, we ignore the point; otherwise,
the point belongs to the result and is stored (automatically in lexicographic order)
in a points value. This step and also the total time takes O((m + k) log m), if k
is the number of intersections of the projected segments.

trajectory. This operation computes the more natural projection of a continu-
ously moving point as a line value. Its signature is as follows:

trajectory   mpoint → line

In the first step, we scan all units of the mpoint value, ignore those units
with three-dimensional segments vertical to the xy-plane, and compute for
each remaining unit the projection of its three-dimensional segment into the
plane. This takes O(m) time. In the second step, we perform a plane sweep
algorithm to find all pairs of intersecting, collinear, or touching line segments, and
we return a list of intersection-free segments. This needs O(m′ log m) where
m′ = m + k and k is the number of intersections in the projection. Note that
k = O(m2). In the third step, we insert the resulting segments into a line value.
Because sorting is needed for this, O(m′ log m′) time is required; this is also the
total time needed for this algorithm, which can be as bad as O(m2 log m2) in terms
of parameter m.

traversed. This operation computes the projection of a moving region into the
plane:

traversed   mregion → region

Let us first consider how to compute the projection of a single region unit into
the plane. We use the observation that each point of the projection in the plane
either lies within the region unit at its start time or is traversed by a boundary
segment during the movement. Consequently, the projection is the geometric

8.2  Algorithms for Operations on Temporal Data Types   303

union of the start value of the region unit and all projections of moving segments
of the region unit into the plane.

The algorithm has four steps. In the first step, all region units are projected
into the plane. In the second step, the resulting set of segments is sorted, to
prepare a plane sweep. In the third step, a plane sweep is performed on the
projections in order to compute the segments forming the contour of the
covered area of the plane. In the fourth step, a region value has to be constructed
from these segments. In a bit more detail, the algorithm is as shown in
Figure 8.2.

The time complexity of the first step is O(M). The second step needs O(M
log M); the third step needs O(M′ log M), where M′ = M + K and K is the number
of intersections of segments in the projection. The final step takes O(R log R),
where R is the number of segments in the contour of the covered area. In
the worst case, we may have R = Θ(M′). Hence, the total time complexity is
O(M′ log M′).

FIGURE 8.2

Algorithm traversed.

304    CHAPTER 8  Data Structures and Algorithms

inst, val. For values of intime types, these two trivial projection operations
yield their first and second component, respectively, in O(1). For α ∈ {int,
bool, string, real, point, region} we obtain the signatures:

inst   iα → instant
val    iα → α

8.2.3  Interaction with Domain/Range

atinstant. This operation restricts the moving entity given as an argument to a
specified time instant. For α ∈ {int, bool, string, real, point, region}
we obtain the following signatures:

atinstant   mα × instant → iα

The algorithmic scheme, which is the same for all types, first performs a binary
search on the array containing the units to determine the unit containing the
argument time instant t and then to evaluate the moving entity at time t. For types
mint, mbool, and mstring, this is trivial. For types mpoint and mreal, it is simply
the evaluation of low-degree polynomial(s) at t. For all these types the time needed
is O(log m). For type mregion, each moving segment in the appropriate region
unit is evaluated at time t to get a line segment. A proper region data structure is
then constructed, after a lexicographic sort of halfsegments, in time O(R log R).
The total complexity is O(log m + R log R).

atperiods. This operation restricts the moving entity given as an argument to a
specified set of time intervals. For α ∈ {int, bool, string, real, point, region}
we obtain the following:

atperiods   mα × periods → mα

For all types, it is essentially required to form an intersection of two ordered
lists of intervals, where in each list binary search is possible. There are three kinds
of strategies. The first strategy is to perform a parallel scan on both lists returning
those units of a (or parts thereof) whose time interval is contained in time inter-
vals of b. The complexity is O(m + n). The second strategy performs for each unit
in a a binary search on b for its start time. Then it scans along b to determine
intersection time intervals and produce corresponding copies of this unit. The
complexity is O(m log n + r). A variant is to switch the role of the two lists and
hence obtain complexity O(n log m + r). The third strategy is more sophisticated.
For the first interval in b, we perform a binary search for the unit s in a contain-
ing (or otherwise following) its start time. For the last interval in b, we perform
a binary search for the unit e in a containing (or otherwise preceding) its end
time. Compute q as the number of units between s and e (using the indexes of s
and e). This has taken O(log m) time so far. Now, if q < n log m, then do a paral-
lel scan of b and the range of a between s and e computing result units. Otherwise,
first for each interval in b, perform a binary search on a for its start time, and

8.2  Algorithms for Operations on Temporal Data Types   305

afterward scan along a to determine intersection time intervals and produce cor-
responding copies of this unit. The time required is either O(log m + n + q), if
q < n log m, or O(n log m + r), if q ≥ n log m. The total time required is
O(log m + n + min(q, n log m) + r), because if q < n log m, then q = min(q, n
log m); otherwise, n log m = min(q, n log m).

We expect that often m will be relatively large and n and r be small. For
example, let n = 1 and r = 0. In this case, the complexity reduces to O(log m).
On the other hand, if n log m is large, then the complexity is still bounded by
O(log m + n + q) (note that r ≤ q), which is in turn bounded by O(m + n) (because
q ≤ m). Hence, this strategy gracefully adapts to various situations, is output sen-
sitive, and never more expensive than the simple parallel scan of both lists of
intervals.

For type mregion copying into result units is more expensive and requires a
complexity of O(log m + n + min(q, n log m) + R), where R is the total number
of msegments in the result.

initial, final. These operations provide the value of the operand at the first
and last instant of its definition time, respectively, together with the value of
the time itself. For α ∈ {int, bool, string, real, point, region} we
obtain the following signatures:

initial, final   mα → iα

For all types the first (last) unit is accessed and the argument is evaluated at
the start (end) time instant of the unit. The complexity is O(1), but for type
mregion it is O(R log R) required to build the region value.

present. This operation allows us to check whether the moving value exists at
a specified instant or is ever present during a specified set of time intervals.
For α ∈ {int, bool, string, real, point, region}, we obtain the follow-
ing signatures:

present   mα × instant → bool
         	 mα × periods → bool

When the second parameter is an instant, for all types the approach is to
perform a binary search on the deftime array for the time interval containing the
specified instant. Time complexity is O(log d). When the second parameter is a
period, for all types the approach is similar to the one used for atperiods. Dif-
ferences are as follows: Instead of using the list of units of the first parameter, its
deftime array is used; as soon as the result becomes true, the computation can
be stopped (early stop); and no result units need to be reported. Time complex-
ity is, depending on the strategy followed, O(d + n), O(d log n) or O(n log d),
O(log d + n + min(q, n log d)). An overall strategy could be to determine q in
O(log d) time and then—because all parameters are known—to select the cheap-
est among these strategies.

306    CHAPTER 8  Data Structures and Algorithms

at. The purpose of this operation is the restriction of the moving entity to a
specified value or range of values. For α ∈ {int, bool, string, real} and
β ∈ {point, points, line, region} we obtain the following signatures:

at  	mα × α          	 → mα
    	mα ×     rα     	 → mα
    	mpoint × β      	 → mpoint
    	mregion × point 	→ mpoint
    	mregion × region	→ mregion

The general approach for the restriction to a specified value is based on a scan
of each unit of the first argument, which is checked for equality with the second
argument. For mbool, mint, and mstring, the equality check for units is trivial,
whereas for mreal and mpoint we need to solve equations, produce a correspond-
ing number of units in the output, and possibly merge adjacent result units with
the same value. In any of the previous cases complexity is O(m).

For mregion × point, we use the algorithm for the more general case of the
operation inside(mpoint × mregion) (see Section 8.3). The kernel of this algo-
rithm is the intersection between a line in 3D, which corresponds to a (moving)
point, and a set of trapeziums in 3D, which corresponds to a set of (moving) seg-
ments. In the increasing order of time, with each intersection the (moving) point
alternates between entering and leaving the (moving) region represented by
trapeziums, and the list of resulting units is correspondingly produced. In this
particular case, point b corresponds to a vertical line in 3D (assuming an
(x, y, t))-coordinate system, and the complexity is O(M + K log kmax), where K is
the overall number of intersections between moving segments of a and (the line
of) point b, and kmax is the maximum number of intersections between b and the
moving segments of a unit of a.

For the restriction to a specified range of values, different approaches are used.
For mbool, it is simply a scan of a’s units, with O(m) complexity. For mint and
mstring, a binary search on b’s range is performed for each unit of a, with an
O(m log n) complexity.

For mreal, the problem is illustrated in Figure 8.3. For each unit of a, we have
to find parts of the unit function intersecting b by means of a binary search on
the intervals of b (using the lowest value of a given by the min field in the current
unit) plus a scan along b. For each intersection of the unit function of a with an
interval of b, we return a unit with the same unit function and an appropriately
restricted time interval. The complexity is O(m log n + r).

For mpoint × points, for each unit of a, we do a binary search on b with the
x interval of the unit_pbb to find the first point of b that is inside that x interval.
Starting from the found point, we scan the points of b checking each of them first
to see if they are in the unit_pbb and then whether they intersect the moving
point. Then, we sort the resulting units. The complexity is O(m log N + K′ +
r log r), where K′ is the sum, over all units, of the number of points of b that are
inside the x interval of the respective unit_pbb. An alternative approach is to

8.2  Algorithms for Operations on Temporal Data Types   307

compute for each unit of a the intersection of the unit_pbb and of the object_pbb
of b as a filter. If the bounding boxes intersect, we compute the intersection of
the moving point with each point of b and then sort the resulting units. The
complexity is O(mN + r log r).

For mpoint × line, for each unit of a, we prefilter by intersecting its unit_pbb
with b’s object_mbb and process intersecting pairs by computing the intersection
between the mpoint value of a’s current unit (a line segment in 3D) and each line
segment of b (which is a vertical rectangle in 3D), producing result units corre-
sponding to intersections. Afterward, we sort the result units. The complexity is
O(mN + r log r).

For mpoint × region, we use the algorithm for the more general case of
operation inside(mpoint × mregion). This means, that initially we convert the
region value into a uregion unit, replacing segments by corresponding (vertical)
msegments. The complexity is O(mN + K log kmax), where K is the total number
of intersections of mpoints (3D segments) in a with msegments in b, and kmax is
the maximal number of msegments of b intersected by a single mpoint value.

For mregion × region, we use the algorithm for intersection in the more
general case, mregion × mregion (see Section 8.3).

atmin, atmax. These operations restrict the moving value to the time when it is
minimal or maximal. For α ∈ {int, bool, string, real}, we obtain the
following signatures:

atmin, atmax mα   → mα

For all types we scan the units to see if their value is the minimum (respec-
tively, maximum) as given by the min (respectively, max) field of the moving
object. For mreal the comparison is done with the unit_min or unit_max
summary field. If the unit qualifies, its time interval is reduced to the correspond-
ing instant or interval. The complexity is O(m).

FIGURE 8.3

The at operation on a real unit and a set of real intervals. Two units with the same unit
function and the time intervals shown at the bottom are returned.

t

v

308    CHAPTER 8  Data Structures and Algorithms

passes. This allows us to check whether the moving value ever assumed (one
of) the value(s) given as a second argument. For α ∈ {int, bool, string,
real} and β ∈ {point, points, line, region}, we obtain the following
signatures:

passes  	mα     × α	 → bool
        	mpoint  × β	 → bool
        	mregion × β	 → bool

For mbool, compare b with index min or max, with a complexity of O(1). For
mint, mstring, and mreal, we scan each unit (in the latter case use unit_min and
unit_max values as a filter) and stop when a matching value is found. The com-
plexity is O(m).

For mpoint × β and mregion × β, we proceed as for the at operation, but
stop and return true as soon as an intersection is discovered. In the worst case,
complexities are the same as for the at operation.

8.2.4  Rate of Change

The following operations deal with an important property of any time-dependent
value—namely, its rate of change:

derivative  	mreal 	→ mreal
derivable   	mreal 	→ mbool
speed       	 mpoint	→ mreal
velocity    	mpoint	→ mpoint
mdirection  	mpoint	→ mreal

They all have the same global algorithmic scheme and scan the mapping of the
units of the argument moving object a, computing in constant time for each unit
of a a corresponding result unit, possibly merging adjacent result units with the
same value. The total time needed is O(m). In the following text, we briefly discuss
the meaning of an operation and how the result unit is computed from the
argument unit.

derivative. This operation has the obvious meaning (i.e., it returns the derivative
of a moving real as a moving real). Unfortunately, in this discrete model it
cannot be implemented completely. Recall that a real unit is represented as
u = (i, (a, b, c, r)), which, in turn, represents the real function

at bt c2 + +

if r = false, and the function

at bt c2 + +

if r = true, both defined over the interval i. Only in the first case is it possible
to represent the derivative again as a real unit—namely, the derivative is

8.2  Algorithms for Operations on Temporal Data Types   309

2at + b—which can be represented as a unit u′ = (i, (0, 2a, b, false)). In the
second case, r = true, we assume that the result unit function is undefined.
Because for any moving object units exist only for time intervals with a defined
value, we return no result unit at all.

This partial definition is problematic, but it seems to be better than not offer-
ing the operation at all. On the other hand, the user must be careful when apply-
ing this function. To alleviate the problem, we introduce next an additional
operation: derivable (not present and not needed in the abstract model).

derivable. This new operation checks for each unit of a moving real whether
or not it describes a quadratic polynomial whose derivative is representable
by a real unit. It returns a corresponding Boolean unit.

speed. This operation computes the speed of a moving point as a real function.
Because each upoint unit describes a linear movement, the resulting ureal
unit contains just a real constant, whose computation is trivial.

velocity. This operation computes the velocity of a moving point as a vector
function. Again, because of the linear movement within a upoint unit, the
velocity is constant at all times of the unit’s interval [t0, t1]. Hence, each result
unit contains a constant moving point representing the vector function:

velocity u t
x t x t

t t

y t y t

t t
, ,() =

() − ()
−

() − ()
−







1 0

1 0

1 0

1 0

mdirection. For all times of a moving point’s life span, it returns the angle
between the x-axis and the tangent (i.e., the direction) of a moving point at
time t. Because of linear movement within a upoint unit, the direction is also
constant within the unit’s interval. A special case arises if, for two temporally
consecutive units u and v, two endpoints coincide—that is, if, xu(t1) = xv(t0)
and yu(t1) = yv(t0). Then, mdirection(v, t) is assigned to this common endpoint,
in agreement with the formal definition of semantics from the abstract
model.

Exercise 8.2  Let v be a upoint unit and t be a time instant. Give the precise
formula for mdirection(v, t).	 ■

turn. This operation computes the change of direction of a moving point at
all times of its life span. Within a upoint unit u, there is no change of the
direction, because the unit function is linear. Hence (also in the endpoints),
turn(u, t) = 0 holds for all times of the unit’s interval and for all upoint units.
This is not an interesting result; hence, this operation need not be implemented
within this particular discrete model.

310    CHAPTER 8  Data Structures and Algorithms

8.3	ALGORITHMS FOR LIFTED OPERATIONS
This section gives algorithmic descriptions of lifted operations. Recall that these
are operations originally defined for nontemporal objects are now applied to
“moving” variants of the arguments. We consider predicates (Section 8.3.1), set
operations (Section 8.3.2), aggregation (Section 8.3.3), numeric properties (Section
8.3.4), distance and direction (Section 8.3.5), and Boolean operations (Section
8.3.6).

8.3.1  Predicates

isempty. This predicate checks, for each time instant, whether the argument
is defined. For α ∈ {int, bool, string, real, point, region}, we obtain
the signatures:

isempty   mα → mbool

The result is defined from mininstant to maxinstant (the “bounds” of time
introduced in Section 8.1.2). We scan the deftime index returning units with value
true for intervals where a is defined and units with value false in the other case.
The complexity is O(d).

=, ≠. These predicates check for equality of the arguments over time. For α ∈
{int, bool, string, real, point, region}, we obtain the signatures:

1. mα × α  → mbool
2. mα × mα → mbool

The general approach for operations of group 1 is based on a scan of each unit
of the first argument, which is checked for equality with the second argument.
The equality check for all cases but mregion is done as in the corresponding cases
for the at operation (see Section 8.2.3), except that a Boolean unit is returned,
and so complexities are the same. For mregion the equality check for units is done
as follows. First, check whether u and N are equal numbers. If not, we report a
single unit (i, false), where i is the time interval of the argument unit. Otherwise,
we proceed as follows: We consecutively take each moving segment s of the
current unit of a. If s is static (i.e., does not change in time), we search for a
matching segment in b (*). If this search fails, we return (i, false). Otherwise, we
continue this procedure, until s is not static or s is the last segment. If s is the last
segment and static, we return (i, true) (i.e., the projection of the unit is equal to
b). Otherwise, s is not static, and we compare s with all segments of b, finding k
intersections at the instants t1, . . . , tk such that s is equal to a segment in b. If
k = 0, we return (i, false). Otherwise, for each intersection at time ti, we do the
following: For each moving segment s of the current unit, we evaluate s at time

ti and take this segment to search for a matching segment in b (*). If the search
succeeds for all s, we have found a matching region and return (i, true). Other-
wise, we continue with ti+1. If for all ti no matching regions have been found, we
return (i, false).

This algorithm is based on the observation that if the uregion unit has only a
single moving segment, then it can be equal to a static region only in a single
instant of time. Steps labeled (*) take time O(log N), because halfsegments in the
region representation are ordered lexicographically. The worst-case complexity
per unit is O(kN log N). In the worst case, k = O(N), but in most practical cases,
k is a small constant. Assuming the latter, the total complexity is O(mN log N).
In fact, in practice, in almost all cases during the evaluation of a unit an early
stop will occur so that most units will be evaluated in O(1) time, and if the
moving region is never equal to the static region, this can be determined in O(m)
time.

The general approach for the operations of group 2 is based on a parallel scan
of units of the refinement partition. Each pair of units is checked for equality. For
mbool, mint, and mstring, such a check is trivial. For mreal and mpoint we first
check whether coefficients are the same: if so, we produce the output unit;
otherwise, we intersect the curves and produce the output units (at most a small
constant number). In any of the previous cases, the complexity is O(p).

For mregion, we process each pair of units with time interval i of the refine-
ment partition as follows: If u and v are different, then we return (i, false).
Otherwise, we perform a parallel scan of the lists of moving segments to find a
pair (s1, s2) of different segments. If no pair of different segments is discovered,
we return (i, true). Otherwise, let s′ be the smaller segment among s1 and s2
(this segment is guaranteed not to appear in the other list) and compare s′
with the remaining segments of the other list, finding k intersections at times
t1, . . . , tk such that s′ finds an equal counterpart. If k = 0, we return (i, false).
Otherwise, for each time ti we evaluate both units, sort the obtained segments,
and perform a parallel scan to check for equality. We can stop early if a non
matching pair of segments is found. Otherwise, we return an appropriate result
unit (*).

Noting that a step labeled (*) requires time O(u log u), the per-unit time com-
plexity is O(ku log u). In the worst case k = O(u), but in most practical cases, k
is a small constant. Assuming the latter, the total complexity is O(p umax log umax).
Again, if the two moving regions are never equal, then a pair of units will almost
always be handled in O(1) time, and the total time will be O(p).

intersects. This predicate checks whether the arguments intersect. Signatures
considered are as follows:

intersects  	points	 ×  mregion	 → mbool
            	 region	 ×  mregion	 → mbool
            	 line	 ×  mregion	 → mbool
            	 mregion	×  mregion	 → mbool

8.3  Algorithms for Lifted Operations   311

312    CHAPTER 8  Data Structures and Algorithms

For points × mregion, we use the corresponding algorithm for the inside
predicate (see the following text). The mregion × mregion case for a number
of operations is rather complex and not described here (see Section 8.4).
This scheme can be specialized to the cases region × mregion and line ×
mregion.

inside. This predicate checks if a is contained in b. Signatures considered are as
follows:

inside  	mregion	× points 	 → mbool
        	 mregion	× line   	 → mbool
        	 mpoint 	 × region 	 → mbool
        	 point  	 × mregion	→ mbool
        	 mpoint 	 × mregion	→ mbool
        	 points 	 × mregion	→ mbool
        	 mpoint 	 × points 	 → mbool
        	 mpoint 	 × line   	 → mbool
        	 line   	 × mregion	→ mbool
        	 region 	 × mregion	→ mbool
        	 mregion	× region 	 → mbool
        	 mregion	× mregion	→ mbool

In the first two cases, the result of the operation is always false. For mpoint ×
region and point × mregion we use the more general algorithm for case mpoint
× mregion (briefly described in Section 8.2.3). For each unit, the upoint value is
a line segment in 3D that may stab some of the moving segments of the uregion
value, which are trapeziums in 3D. In the order of time, with each intersection
the upoint value alternates between entering and leaving the uregion value.
Hence, a list of Boolean units is produced that alternates between true and false.
In case no intersections are found, we need to check whether, at the start time
of the unit interval, the point was inside the region. This can be implemented by
a well-known technique in computational geometry—the “plumbline” algorithm—
which counts how many segments in 2D are above the point in 2D. The complex-
ity is O(N′ + K log kmax).

Exercise 8.3  Assume a upoint unit up and a uregion unit ur with the same unit
interval i = (s, e, lc, rc) after the refinement partition. According to this descrip-
tion, formulate an algorithm upoint_inside_uregion(up, ur) that computes a
mapping (sequence) of constant Boolean units expressing when up was and was
not inside ur during i. For simplicity, assume that i is closed. It is straightforward
but a bit lengthy to treat the other cases.	 ■

In case of points × mregion, for each of the points of a use the algorithm for
the case point × mregion. The complexity is O(M(N + K log kmax)). For mpoint
× points, consider each unit of a, and for each point of b check whether the
moving point passes through the considered point. If so, we produce a unit with
a true value at the right time instant. Afterward sort all produced units by time,

then add remaining units with a false value. The complexity is O(mN + r log r).
The case mpoint × line is similar to the previous one, but also consider that, if
the projection of a moving segment overlaps with a segment of b, the correspond-
ing result unit is defined on a time interval rather than a single instant. For line
× mregion, region × mregion, and mregion × region proceed as in the more
general case mregion mregion.

<, ≤, ≥, >. These predicates check the order of the two arguments. For α
∈{int, bool, string, real}, we obtain the signatures:

<, ≤, ≥, >     α × mα	→ mbool
            	 mα × α 	 → mbool
            	 mα × mα	→ mbool

Algorithms are analogous to those for operation =.

8.3.2  Set Operations

We recall that for set operations regularized set semantics are adopted. For
example, forming the union of a region and a points value yields the same region
value, because a region cannot contain isolated points.

intersection. This predicate computes the intersection of the arguments. For
α ∈ {int, bool, string, real, point} and β ∈ {points, line, region},
we obtain the following signatures:

1.	mα       	× α      	 → mα
  	Mpoint  	× β      	 → mpoint
  	mregion 	× point  	 → mpoint
  	mregion 	× region 	→ mregion
2.	mα       	× mα     	 → mα
  	mpoint  	× mregion	→ mpoint
  	mregion 	× mregion	→ mregion

For all signatures of group 1, we use the corresponding algorithms for operation
at (see Section 8.2.3).

For the signatures of group 2 (both arguments are moving ones and belong to
the same point type), we do a parallel scan of the refinement partition units; for
time intervals where the values of the argument are the same, we produce a result
unit with such a value. For the cases mpoint and mreal, this requires solving
equation(s). In any case, the complexity is O(p).

The algorithm for case mpoint × mregion is analogous to the corresponding
one for the inside operation (see Section 8.3.1), but it reports upoint units with
the same value as a instead of Boolean units with a true value and no unit instead
of Boolean units with a false value. The mregion × mregion case is not treated
here (see Section 8.4).

8.3  Algorithms for Lifted Operations   313

314    CHAPTER 8  Data Structures and Algorithms

union. This operation computes the union of the arguments. Signatures consid-
ered are as follows:

union  	mpoint 	 × region 	 → mregion
       	 mpoint 	 × mregion	→ mregion
       	 point  	 × mregion	→ mregion
       	 mregion	× region 	 → mregion
       	 mregion	× mregion	→ mregion

For mpoin × region, the result is region b for all times for which a is defined
(because of the regularized set semantics). Hence, d corresponding uregion
units have to be constructed, getting time intervals from scanning the deftime
index of a. Because sorting is required once to put msegments in the uregion
units into the right order, the complexity is O(dN + N log N). For mpoint ×
mregion and point × mregion, we simply return b as the result. For mregion ×
region, we use the more general algorithm for the case mregion × mregion (see
Section 8.4).

minus. This operation computes the difference of a and b. For α ∈ {int, bool,
string, real, point} and β ∈ {points, line, region}, we obtain the fol-
lowing signatures:

1.	mα     	 × α      	 → mα
  	α      	 × mα     	 → mα
  	mα     	 × mα     	 → mα
  	mpoint 	× β      	 → mpoint
  	point  	× mregion	→ mpoint
  	mpoint 	× mregion	→ mpoint
2.	region 	× mpoint 	→ mregion
  	mregion	× point  	 → mregion
  	mregion	× mpoint 	→ mregion
  	mregion	× points 	→ mregion
  	mregion	× line   	 → mregion
3.	mregion	× region 	→ mregion
  	region 	× mregion	→ mregion
  	mregion	× mregion	→ mregion

For all cases where the type of a is a point type (group 1), algorithms are
similar to those for intersection, except for the production of result units. The
complexities are the same as for the corresponding algorithms for intersection.
Algorithms for the cases in group 2 are trivial because of the regularized set
semantics. For region × mpoint, we simply transform a into a moving region
defined on the same definition time as b, with a complexity O(dM + M log M) (as
discussed previously for union(mpoint × region)), whereas for other type com-
binations of group 2, we simply return a as the result. For mregion × region and
region × mregion, we use the algorithm for the more general case mregion ×
mregion (see Section 8.4).

8.3.3  Aggregation

Aggregation in the unlifted mode reduces sets of points to points. In the lifted
mode, it does this for all times of the life span of a moving object. In our reduced
type system, we only have to consider moving regions.

center. This operation computes the center of gravity of a moving region over
its whole life span as a moving point. The signature is as follows:

center   mregion × mpoint

The algorithm scans the mapping of uregion units. Because a uregion unit
develops linearly during the unit interval i = [t0, t1], the center of gravity also
evolves linearly and can be described as a upoint unit. It is, therefore, sufficient
to compute the centers of the regions at times t0 and t1 and to determine the
pertaining linear function afterward. For computing the center of a region, we
first triangulate all faces of the region. This can be done in time O(u log u) and
results in O(u) triangles (see Section 8.4). For each triangle in constant time, we
compute its center viewed as a vector and multiply this vector by the area of the
triangle. For all triangles, we sum up these weighted products and divide this sum
by the sum of all weights (i.e., the areas of all triangles). The resulting vector is
the center of the region. Please note that the center of gravity can lie outside of
all faces of the region. Altogether, the time complexity for computing the center
is O(u log u). For a uregion unit, by interpolation between the centers at its start
and end times, a corresponding upoint unit is determined. The total time for the
center operation on a moving region is O(M log umax).

Exercise 8.4  Let ur be a uregion unit and t be a time instant. Give the precise
formula for center(ur, t).	 ■

8.3.4  Numeric Properties

These operations compute some lifted numeric properties for moving regions:

no_components  	mregion → mint
perimeter      	 mregion → mreal
area           	 mregion → mreal

Here, no_components returns the time-dependent number of components
(i.e., faces) of a moving region as a moving integer, and perimeter and area yield
the respective quantities as moving reals. The algorithmic scheme is the same for
all three operations and very simple. We scan the sequence of units and return
the value stored in the respective summary field unit_no_components, unit_
perimeter, or unit_area, possibly merging adjacent units with the same unit
function. This requires O(m) time for m units.

The values for the summary fields are computed when their uregion unit
is constructed. The unit_no_components is determined as a by-product when

8.3  Algorithms for Lifted Operations   315

316    CHAPTER 8  Data Structures and Algorithms

the structure of faces within the unit is set up (see Section 8.1). For the unit_
perimeter function, we have to consider that the boundary of a uregion unit
consists of moving segments; for each of them, the length evolves by a linear
function. Hence, the perimeter, being the sum of these lengths, also evolves by a
linear function. The perimeter function can be computed either by summing up
the coefficients of all moving segments’ length functions or by a linear interpola-
tion between the start and end time perimeter of the unit.

For the unit_area function the computation is slightly more complex. The
area of a simple static polygon (a cycle) c consisting of the segments s0, . . . , sn–1
with si = ((xi, yi), (x(i+1) mod n, y(i+1) mod n)) may be determined by calculating the
areas of the trapeziums under each segment si down to the x axis2 and subtracting
the areas of the trapeziums under the segments at the bottom of the cycle from
the areas of the trapeziums under the segments at the top of the cycle. We can
express this by the following formula:

area c x x
y y

i n i
i n i

i

n() = −()⋅ +
+()

+()
=

−∑ 1
1

0

1

2
mod

mod

Note that if cycles are connected clockwise, then in this formula top segments
will yield positive area contributions and bottom segments negative ones, as
desired. Hence, the formula computes correctly a positive area value for outer
cycles (see Section 8.1.2). Indeed, for hole cycles (represented in counterclock-
wise order), it computes a negative value, which is also correct, because the areas
of hole cycles need to be subtracted from the region area. This means that we
can simply compute for all cycles of a region their area according to the previous
formula and form the sum of these area contributions to determine the area of
the region.

In a uregion unit, where we have moving segments, we can replace each xi
and each yi by a linear function. For a moving unit cycle c we therefore have

area c t x t x t
y t y t

i n i
i n i

i

n
, mod

mod() = () − ()()⋅
() + ()

+()
+()

=

−
1

1

0

1

2
∑∑

Each factor in the sum is the difference, respectively, sum of two linear func-
tions. Hence, it is a linear function again, and therefore the product is a quadratic
polynomial. The sum of all quadratic polynomials is a quadratic polynomial as
well. Again, we can sum up the area function contributions over all moving cycles
of a uregion unit to get the area function for the unit. The cost of computing the
unit_perimeter and unit_area fields is clearly linear in the size of the unit—that
is, O(u) time. In all cases, it is dominated by the remaining cost for constructing
the uregion unit.

2This assumes that y values are positive. If they are not, we can instead form trapeziums by subtract-
ing a sufficiently negative y value.

8.3.5  Distance and Direction

In this section, we discuss lifted distance and direction operations.

distance. The distance function determines the minimum distance between its
two argument objects for each instant of their common life span. The pertain-
ing signatures are for α, β ∈ {point, region}:

distance  	mreal	× real 	→ mreal
          	 mreal	× mreal	→ mreal
          	 mα  	 × β    	 → mreal
          	 mα  	 × mβ   	 → mreal

For all function instances, the algorithm scans the mapping of the units of the
moving object(s) and returns one or more ureal units for each argument unit.
The computation of the distance between an mreal value and a real value s
leads to several cases. If ur = (i, (a, b, c, r)) ∈ ureal with i = [t0, t1], t0 < t1, and
r = false, the unit function of ur describes the quadratic polynomial at2 + bt + c.
The distance between ur and s is then given by the function f(t) = at2 + bt +
c − s, which is a quadratic polynomial too. Unfortunately, this function usually
does not always yield a positive value for all t ∈ i, as required in the definition of
distance. Therefore, it is necessary to determine the instants of time when f(t) =
0 and to invert the value of the function in those time intervals when it is
negative.

To program this, we need to distinguish various cases, which is a bit tedious.
In any case, we obtain as a result either one, two, or three new ureal units. If
r = true, the function of ur describes the square root polynomial:

at bt c2 + +

The distance between ur and s is then given by the following function:

at bt c s2 + + −

Unfortunately, this term is not expressible by a square root polynomial and thus
not by an ureal unit. Hence, this operation is not implementable within this
discrete model.

Similarly as discussed previously for the derivative operation, we believe it
is better to offer a partial implementation than none. Hence, for square root poly-
nomial units, we consider the result as undefined and return no unit at all (again,
as for derivative). The derivative operation can also be used here to check for
which part of the argument the result could be computed. In both cases, the time
complexity is O(1) per unit and O(m) for a moving real.

The algorithm for computing the distance between two mreal values is similar
to the previous one, because a real value in the previous context can be regarded
as a “static” moving real. The difference is that first a refinement partition of both
moving reals has to be computed, which takes O(m + n). If ur = (i, (a, b, c, r))

8.3  Algorithms for Lifted Operations   317

318    CHAPTER 8  Data Structures and Algorithms

and vr = (i, (d, e, f, s)) are corresponding ureal units of both refined moving reals
with r = s = false, their distance is given by the quadratic polynomial (a − d)t2 +
(b −e)t + (c − f), which has to be processed as in the previous algorithm. If
r = true or s = true, no unit is returned. The time complexity of this algorithm is
O(m + n).

We now consider the case of an mpoint value and a point value p = (x′, y′)
with x′, y′ ∈ real. If up = (i, (x0, x1, y0, y1)) ∈ upoint with x0, x1, y0, y1 ∈ real,
the evaluation of the linearly moving point at time t is given by (x(t), y(t)) =
(x1t + x0, y1t + y0). Then, the distance is

distance up p t x t x y t y

x t x x y t

, ,()() = () − ′() + () − ′()

= + − ′() + +

2 2

1 0
2

1 yy y0
2− ′()

Further evaluation of this term leads to a square root of a quadratic polynomial
in t, which is returned as a ureal unit. The time complexity for a moving point
and a point is O(m). The distance calculation between two mpoint values requires
first the computation of the refinement partition in O(m + n) time. The distance
of two corresponding upoint units up and vp is then determined similarly to the
previous case and results again in a square root of a quadratic polynomial in t,
which is returned as a ureal unit. This algorithm requires O(m + n) time.

The remaining operation instances can be grouped according to two algorith-
mic schemes. The first algorithmic scheme relates to the distance computation
between a moving point and a region, between a moving point and a moving
region, and between a moving region and a point. The second algorithmic scheme
refers to the distance computation between a moving region and a region as well
as between two moving regions. The grouping is possible because the spatial
argument objects can be regarded as “static” spatiotemporal objects. Therefore,
the first algorithmic scheme deals with the distance between a moving point and
a moving region, and the second algorithmic scheme deals with the distance
between two moving regions. Both algorithmic schemes are rather complex and
are not dealt with here (see Section 8.4).

direction. This operation returns the angle of the line from the first to the
second point at each instant of the common life span of the argument
objects:

direction  	mpoint × point 	→ mreal
           	 point 	× point 	→ mreal
           	 mpoint × mpoint → mreal

Unfortunately, the results of these operation instances cannot be represented
as a moving real because their computation requires the use of the arc tangent
function. This can be shown as follows: Given two points p = (x1, y1) and q =
(x2, y2), the slope between the horizontal axis and the line through p and q can
be determined by the following:

tan . , arctanα α= −
−

= −
−

y y

x x

y y

x x
2 1

2 1

2 1

2 1

Thus holds

We can continue this to the temporal case. For two upoint units (after the calcu-
lation of the refinement partition), as well as for a upoint unit and a point value,
this leads to

a at
y t y t

x t x t
t

y t y

x t
() =

() − ()
() − ()

() =
() −

arctan arctan2 1

2 1

2 1

2

and
(() − x1

, respectively

Consequently, this operation is not implementable in this discrete model.

8.3.6  Boolean Operations

Boolean operations are included in the scope of operations to be temporally
lifted.

and, or. These operators represent the lifted logical conjunction disjunction
connectives, respectively. Their signatures are as follows:

and, or   mbool × bool 	→ mbool
         	 mbool × bool	 → mbool

For the first operator instance, we scan all Boolean units in a and evaluate for
each unit the unlifted logical connective applied to its Boolean value and to b,
returning a corresponding unit. Time complexity is O(m). For the second operator
instance, we compute the refinement partition and then proceed in the same way
for pairs of units. Time complexity is O(p).

not. This operation is the lifted logical negation operator. Its signature is as
follows:

not       mbool → mbool

Here, we just scan the units, negating their values, in O(m) time.

8.4	RESOURCES
The presentation in this chapter is based on the article by Cotelo Lema et al.
(2003), which gives a detailed study of algorithms for the operations using the
representations of the discrete model in Forlizzi et al. (2000). The article by Cotelo
Lema et al. (2003) especially deals with the mregion × mregion case for the set
operations intersection, union, and difference and for the predicates inter-
sects and inside, as well as with distance operations between two moving spatial

8.4  Resources   319

320    CHAPTER 8  Data Structures and Algorithms

objects. The more complicated algorithms have been omitted here. That article
also considers data structures for spatial data types, which are similar to those in
Güting et al. (1995) for the ROSE algebra.

Other resources about spatial data structures and algorithms can be found in
computational geometry literature (de Berg et al., 2000; Preparata & Shamos,
1991) and in spatial database literature (Rigaux et al., 2002; Shekhar & Chawla,
2003). The plane sweep paradigm is explained in Bentley and Ottmann (1979).
Triangulation of a region, needed for the center operation, is described in Garey
et al. (1978).

CHAPTER

9Improving the Model

This chapter looks at improving a model, which presupposes that at least a model
exists. However, just because a model exists doesn’t mean that it has no problems,
or that it is the best or most appropriate model that the data permits. This chapter
looks at the process of turning the initially created model into one that better fits
the data and the business problem. Although most of the processes apply as much
to improving an explanatory model as to improving a classificatory model, most
of the issues here are addressed as if the model to be improved is classificatory—
except, of course, where the issues discussed are specific to one type of model
or the other.

The process of improving a model can, for discussion purposes, be broken
into two broad categories: discovering where the model has problems and fixing
the discovered problems.

This chapter is divided into two major, but very connected, sections that align
with these two categories and their associated activities:

1.	 The first major section discusses how to determine model performance
by performing a number of checks.

2.	 The second major section covers what to do about the results of the
checks, or, essentially, how to fix the model.

These two activities—diagnosing model problems and applying remedies—are
both applied in order to refine the initial model. This chapter presents the second
step in the mining/refining process.

Regardless of where it occurs, the ultimate purpose underlying all of the issues
and processes discussed in this chapter is to deliver a model that represents the
business-relevant, meaningful relationships in the dataset as perfectly as the data
permits and to do so as simply as possible. (In fact, this can serve as a good defi-
nition of business data mining!)

It is in this stage of refining the initial mined model that a data miner must
expect to start revisiting earlier parts at least of the mining process and perhaps
of the whole modeling process. None of the processes is carried out in isolation
from any other part. Mining is an interactive whole, and all of the processes

322    CHAPTER 9  Improving the Model

interact—hopefully to improve the model. It is here, too, that the main use of
training and test datasets comes into its own. As Figure 9.1 shows, mining involves
many loops through an iterative cycle in order to create the best possible model
in the training dataset that performs as well as possible in the test dataset. That
bears repeating—models are created on the data in the training dataset, but all of
the checking for problems and improvements happens in the test dataset.

During the following discussion, it is very important to remain aware of which
dataset is being used for which purpose. In every case in this chapter, whenever
there’s a change to the data—to the variables included in a model, to the indi-
vidual variables, or to any other feature or parameter of the model, or if there is
any adjustment to the data—the cycle works as follows: rebuild the model in the
training dataset, and look for any change in results when applying the new model
in the test dataset.

If the data needs adjusting, remember to make the necessary adjustments in
all three datasets, but don’t change the instances (records) that are included in
the datasets. That is to say, for any individual model or integrated group of models,
it’s important that the same records stay in each dataset throughout. If the datasets
were rebuilt from scratch on each modification, as modeling progressed the model
would be tested on data that in earlier iterations had been used for training. This
mixing of training and test data would pretty much invalidate the purpose of the
separate datasets and wholly undermine the purpose of the evaluation dataset
altogether.

Throughout this chapter, the terms predict and predictive are used with
their usual colloquial meaning. In some cases, an exception is made so that a
clear distinction can be drawn between classification and prediction. This is
because, at the present state of the art, a miner builds predictive models only by
combining particular system modeling skills and techniques with classificatory and

FIGURE 9.1

Interaction between mining activities and datasets.

explanatory modeling. However, it is normal usage to speak of a classificatory
model “predicting” an output value when it is actually making a class assignment,
which is why in this chapter it is the colloquial use of prediction that is intended.
Where predictive is used other than in its meaning of “most likely class assign-
ment,” the context will make that clear.

9.1	LEARNING FROM ERRORS
We are all encouraged to learn from our mistakes, and it’s no different when mined
models make the mistakes. There is a lot to be learned from closely examining
the errors made by a classification model. These errors represent the difference
between what the model predicts and what the actual outcome turns out to be
in the real world. Whenever a model turns out to be worth considering for appli-
cation, the next step is to look at the errors that it makes in the test dataset—and
often, actually looking is a useful thing to do, not merely looking in a metaphoric
sense. However, suppose a model showed a binary outcome, BUYER, taking values
of either 1 or 0. The initial classification model made (with WizWhy) would likely
predict either 1 or 0. Graphical error plots aren’t very helpful in this case. The
absolute value of the error can only be either 0 or 1, and the best way to look at
binary outcome model performance is to use the confusion matrix. For a binary
classification model predicting a binary outcome, the confusion matrix reveals the
most about the model’s performance.

Suppose a model produced a continuous score that was turned into a binary
classification. The residual value, or simply the residual, is the name given to the
difference between the predicted and the actual values. In this case, actually
looking at the residuals from the continuous score as well as looking at the confu-
sion matrix begins to be helpful. Residual values are determined by subtracting
the predicted value from the actual value. Symbolically, this might be represented
as r = a − p, where r represents the residual value, a represents the actual value,
and p represents the predicted value. In the case of the continuous score classifi-
cation model, the actual values are all between 0 and 1, so the predictions should
also be (and actually are in this example) between 0 and 1—thus, all predicted
values are positive numbers. Obviously, in the case when the actual value is 0, all
of the residual values have to be negative, because 0 minus any positive number
has to give a negative result, and the predictions are all positive numbers. Similarly,
when the actual value is 1, all the residuals will be positive because 1 (the actual
value) minus any positive number between 0 and 1 (the prediction) has to return
a positive result.

It’s worth remarking that many tools do not limit the range of their predictions
to the range found in the training dataset, and using such a tool in this example
could result in predicted values that lie outside the range of 0–1. This would make
a difference in the appearance of the plotted graph, but it would make no material
difference to the interpretation of the plots.

9.1  Learning from Errors   323

324    CHAPTER 9  Improving the Model

9.1.1  Looking at Errors

The first graphical display (see Figure 9.2) shows the predicted values versus the
residual value. This is the place to start because at runtime—that is, when the
model is applied in the real world to real-world data—nothing is known about
the actual value except for the prediction made by the model. The prediction is
intended to be the best possible estimate of the actual value given the data avail-
able. (Usually, if the real-world, runtime data includes the value to be predicted,
there isn’t any need to make the prediction.) It is important to get a feel for (and
later to quantify) the differences between the model’s predictions of the values
and the actual values. In the training (and test and evaluation) datasets, the actual
value is known, because that is what is being used to train (test or evaluate) the
model. So it is quite possible to check the residuals made by the model. It is always
possible to characterize the pattern made by the residuals across the range of the
prediction. Very often, the pattern has nothing to offer toward improving the
model. However, sometimes the pattern of the residuals can be used to improve
the model, and it is this sort of pattern that a miner must seek.

Predicted versus Residual Diagnostic Plot
The points shown in Figure 9.2 form what is known as an XY plot. Each point is
plotted in a position on the graph to represent its values on two measurements,
the predicted value and the residual value. For example, the extreme left point
shown is at a value of about 0.75 on the prediction scale and about −0.75 on the
residual scale. The coincidence of these two values isn’t accidental. The residual

FIGURE 9.2

Prediction versus residual xy scatterplot in CREDIT estimating BUYER with continuous
prediction and binary actual values.

value indicates, being negative, that the actual value was 0 and, as shown, the
predicted value was 0.75. With an actual value of 0, using r = a − p to create the
residual, this has to produce a residual value equal in magnitude, but opposite in
sign, to the predicted value. Thus, with an actual value of 0 and a predicted value
of 0.75, the residual has to be r = 0 − 0.75 = −0.75. Because this is the case for
all the residuals when the actual value is 0, they have to line up in a 45-degree
slope because in every case, the magnitude of the residual is identical to the mag-
nitude of the prediction. When the actual value is 1, the magnitude of the residual
is not identical to the predicted value, but an analogous situation arises, and these
residuals too arrange themselves in a 45-degree sloping line. The two lines are
displaced only by whether the actual value was 0 or 1. (Because the graph is not
reproduced exactly square, the appearance of the angle of slope may not seem to
be 45 degrees. A simple algebraic calculation of line slope, however, will indicate
the slope as 45 degrees, and it is this algebraic sense of slope that is intended in
this discussion.)

Pay close attention to the almost horizontal line that crosses the plot at a value
of approximately 0.2 on the prediction (y) axis. This is a linear regression line
fitted to the residual values. Linear regression is often thought of as producing a
prediction and, although there is no interest in its predictive role here, if it were
to be used predictively, it would be estimating the predicted values using only
the information in the residuals. Clearly, if the model has done a good job, the
residuals won’t be useful for predicting the model’s predictions; if the residuals
did carry any information about how to make a better prediction, the prediction
could be improved—and that is precisely the point that the plot in Figure 9.2 is
used to check.

The almost horizontal regression line shown in Figure 9.2 indicates that in this
case, the residuals do, in fact, carry almost no additional information. In the regres-
sion equation shown above the illustration, the number “0.013” shows the amount
of slope. A slope of 0 is absolutely horizontal, and in this plot, it is very close to
horizontal. A slope of 0 would mean that regardless of the predicted value, the
best value to predict for the residual would be approximately 0.2, which is the
average value of all the residuals. But why is the regression line tilted even a little
bit? Doesn’t this indicate that there is some minute improvement possible?

Recall that the model was created on the training dataset. This plot and all of
the others examined here are built in the test dataset. In the training dataset, the
plot does produce an absolutely flat line. The test dataset, however, isn’t identical
with the training dataset; thus, the model isn’t quite a perfect fit. However,
by eyeball, this line is near enough flat to indicate that the model in practice fits
both datasets (training and test) about equally well, or equally badly. The average
residual error is about 0.2 regardless of the predicted value or the actual value.

For the more technically inclined reader, it is possible to determine if this slope
is statistically significantly different from one that is absolutely horizontal. However,
beware of such measures. With the very high numbers of instances prevalent in
data mining, every difference can become statistically significant, but statistical

9.1  Learning from Errors   325

326    CHAPTER 9  Improving the Model

significance, although important in context, isn’t a good measure in this case. For
a miner, by far the best practice is to eyeball the residuals and to become familiar
with the look and feel of these plots.

Predicted versus Actual Diagnostic Plot
The other useful XY plot that a miner needs to become familiar with shows pre-
dicted versus actual values. Figure 9.3 shows a predicted/actual plot for the same
model as in Figure 9.2. This is similar to the previous plot except that the values
form vertical columns. Because BUYER takes only two values, the predictions are
constrained to line up at one of those two values on this graph. The fitted regres-
sion line shown here crosses the column at BUYER = 0 with a prediction value
of about 0.19. At BUYER = 1, the prediction value is about 0.29. These two values
represent the mean of the predicted values in each column and therefore the mean
of the prediction values for each class. In other words, when the actual value of
BUYER is 0, the average value of all of the predicted values is about 0.19; when
the actual value of BUYER is 1, the average value of all of the predicted values
is about 0.29. The slope of the line, in some sense, represents the quality of the
model, but a considerable improvement over chance.

9.1.2  Predicting Errors

Looking at the errors in the form of residuals provides a fair amount of informa-
tion. However, if the original dataset could somehow be used to predict what the

FIGURE 9.3

Prediction versus actual xy scatterplot in CREDIT estimating BUYER with continuous
prediction and binary actual BUYER values.

errors were going to be, that prediction of the errors could be used to improve
the prediction. In a sense, that is what the linear regression tried to do with the
results shown in Figure 9.2.

Data mining tools are, or should be, very good at characterizing relationships,
whether linear or nonlinear. The resulting relationship between the actual and
predicted values, however rough and imprecise, should at least be linear, so a
linear comparison is quite a reasonable way to check on the actual relationship.
However, as a sort of “sanity check,” it’s worth building a model that attempts to
predict the value of the residual. Again, this model will be built using the training
dataset input battery and predicting the residual value in the training dataset as
the output battery. This process of creating the residual test model is illustrated
in Figures 9.4, 9.5, and 9.6.

To make the initial model and residual model:

1.	 Build an initial model (Figure 9.4).

2.	 Apply the initial model to the training dataset, creating a set of predictions
(Figure 9.4).

3.	 Calculate the residuals using the predicted values in the training dataset
(Figure 9.4).

4.	 Add a variable to the training dataset input battery containing the value of the
residual (Figure 9.5).

5.	 Build a second model to predict residuals using all of the training data except
the original output variable and the predicted values (Figure 9.5).

Thus, the residual test model must not include any actual values or predicted
values from the original model. If using a multiple-algorithm mining tool, it’s worth
building the second model with a different algorithm than the original model.

FIGURE 9.4

Initial model predicts the output battery.

9.1  Learning from Errors   327

328    CHAPTER 9  Improving the Model

FIGURE 9.5

Residual model uses original input battery and residual as output battery.

FIGURE 9.6

Residual test model adds prediction and predicted residual to original input battery to model
the original output battery.

Next, build the residual test model (Figure 9.6):

1.	 Include the prediction and predicted residuals in the input battery.
2.	 Build a model to predict the original output battery.

In doing this for the binary classification of BUYER, it turns out that the
residual model isn’t all that good. The original model shows a correlation

coefficient (one way of estimating how well a model makes its predictions) of
about 0.06. The model predicting the residuals has a correlation with the residu-
als of about 0.02. However, the test is what happens if the output from the two
models—the original prediction and the residual models—are combined to predict
BUYER, as shown in Figure 9.5. Is there any improvement?

Actually, applying the combined model to the training dataset does, in this
case, produce an apparent improvement—in the training dataset. However, when
the combined model is applied to the test dataset, the situation changes. Tables
9.1a and 9.1b show the story. Table 9.1a duplicates the confusion matrix for the
original model. This is the confusion matrix for the best classification model for
classifying BUYER. If the residual test model does in fact improve performance,
then the confusion matrix will show it. However, as Table 9.1b shows, although
model performance in the training dataset may have been improved, it certainly
hasn’t happened in the test dataset.

What has happened here is that the combined model has learned some of the
noise—relationships that exist in the training data but not in the test data. However,
do notice that whereas overall performance is down and performance classifying
BUYER = 1 is also down (both marginally), performance on classifying BUYER =
0 seems somewhat improved. In truth, these small changes are almost certainly
due to nothing more than noise and instability in the model and, to all intents and
purposes, information from the residuals in this case makes no meaningful differ-
ence. That is to say that minute fluctuations in performance of this magnitude (or
larger) should be expected simply by applying the model to different, fully repre-
sentative datasets. The conclusion? In this case, the residuals contain no additional
usable relationship in predicting the actual value.

Table 9.1a Original Model

Model Is 1 Is 0 Tot Efficiency

Class 1 313 420 733 42.70%

Class 0 334 1732 2066 83.83%

Tot 647 2152 2799 73.06%

Table 9.1b Residuals Test Model Result in Test Dataset

Model Is 1 Is 0 Tot Efficiency

Class 1 357 491 848 42.10%

Class 0 290 1661 1951 85.14%

Tot 647 2152 2799 72.10%

9.1  Learning from Errors   329

330    CHAPTER 9  Improving the Model

9.1.3  Continuous Classifier Residuals

With only two classes, the residual plot and predicted/actual plot can produce
only limited additional insight over that offered by the confusion matrix. In fact,
for a two-class output classification, the confusion matrix pretty much offers the
best insight into the workings of the model. When the output variable is to all
intents and purposes a continuous variable, confusion matrices become totally
impractical, and the only way to understand model performance is by using these
plots.

As in the previous example, start with an XY plot of the residual values versus
the predicted values. When the output variable is continuous, it is necessary to
order the residuals by the prediction value. It doesn’t really matter whether the
order is from least to greatest or greatest to least, just so long as the miner knows
which end represents which values.

Figure 9.7 shows the residuals plot for a real-world dataset. A couple of features
jump out from this image, even at a quick glance. One feature is that the mean
value of the errors is about 0. In fact, with the exception of a couple of distortions
(to be mentioned in a moment), the mean of the residual values is specifically set
by the model to be 0, and this point is significant enough to be worth additional
discussion.

Most algorithms that fit functions, curves, and other characterizations to data
use one of a relatively few methods to determine how good the fit is, and the
algorithms adjust their parameters until the fit, according to the criterion chosen,

FIGURE 9.7

Ordered residuals from a model predicting a continuous predictor variable.

is as good as possible. There are, in fact, relatively few metrics for determining
the level of fitness, but the most popular for continuous variables is mean least
squares (MLS). This involves minimizing the sum of the weighted squares of the
residuals. It is a feature of MLS, and of most of the other goodness of fit metrics,
that the mean of the residuals is 0—at least in the training dataset. There are other
metrics that do not require the best fit to produce residuals with a mean of 0,
but their popularity, at least in general purpose mining tools, is vanishingly
small compared to MLS. In fact, at this writing, all of the commercial tools
known to the author use goodness-of-fit tests that should produce mean-of-zero
residuals.

The point here is that when the miner looks at the residuals in the test dataset,
they may not have a mean of 0. Generally speaking, the divergence from 0 repre-
sents a problem of some sort—insufficient data, poor model, problems with the
data, inappropriate modeling tool, or some other problem. However, if the diver-
gence from 0 in the test dataset is large, it may be worth checking the mean of
the residuals in the training dataset. If it isn’t 0 there, either the tool or algorithm
is somehow “broken” or the tool is using some other best-fit metric. As noted, at
this writing, all of the commercially available tools should produce residuals aver-
aging 0 and will likely continue to do so. But there are alternatives. Just because
the residuals do not have a mean of 0, it does not necessarily follow that there is
a problem, but it does bear investigation.

In general then (and as of this writing), the mean of residuals in the test dataset
should be 0. In addition, a straight line fitted across the range of the prediction
with linear regression should fit through the center of the residual distribution
and should be flat along the zero point. Thus, ideally, not only should the mean
of the residuals be 0, but across the range of the prediction the residuals also
should fit around the zero line. The mean of the residual distribution in Figure 9.7
does fall along the zero point, but it doesn’t fit the zero line. At the left end of the
plot, the mean seems to be above the zero point, and at the right end below it.
Is this a problem?

The “shoulders” are illustrated in Figure 9.8 along with a zero line. In fact, this
is a fairly common appearance of residuals, and in this case, it doesn’t represent
any problem with the model at all. This is a case where the actual values of the
output range vary between 0 and 1. What is happening here is that the model is
limiting its predicted output to remain within the range of the actual values seen
when training. The residuals appear to be fairly random in size except where the
limiting clips them.

The underlying model in this case may attempt to make predictions that vary
outside the limits of 0 and 1. However, the limit on the output says, in effect, “If
the prediction attempted is less than 0, make it 0. If the prediction attempted
is greater than 1, make it 1. If it’s between 0 and 1, use the value as it is.” Thus,
as the range of the prediction approaches 0 (at the left end) and 1 (at the right
end), the possible range of the error is clipped, resulting in the regular “shoulders”
shown.

9.1  Learning from Errors   331

332    CHAPTER 9  Improving the Model

Even with these clipped shoulders, the distribution of the residuals is fairly
close to a normal distribution, as Figure 9.9 shows. This is a histogram of the
residuals, along with a normal curve for comparison. This is another diagnostic
test that the model has fit the data well. Recall that whatever the distribution of
the input data, and however nonlinear the relationships between input battery
and output battery, a mining tool should, if effective, characterize the fit between
input and output to include any peculiarities of distribution and to accommodate
any nonlinearity present. What remains should pretty much be random noise,
which is typically (although not always) characterized by being normally distrib-
uted. Almost all—from the author’s experience, more than 99 percent—of all
business mining situations produce residuals that are at least approximately normal
or distorted from normal. However, dealing with other types of residual distribu-
tion when modeling with continuous input and output battery variables is an
advanced modeling topic not covered here. In effect, if the residuals’ distribution
is far from normal, it almost certainly indicates a potential problem with the
model.

If the histogram of residuals in the test dataset is far from normal, compare it
with the histogram of residuals in the training dataset. If the distributions are dis-
similar between training and test datasets, the problem is most likely with the
data. If the distributions are similar and both are far from normal, the culprit may
well be the modeling tool. If possible, try a different algorithm and check again.
However, it’s possible that the input battery, while being generally representative,
isn’t representative over particular ranges. In other words, the input data may be

FIGURE 9.8

Ordered residuals highlighting features of the distribution.

clustered so that some parts of the range are relatively sparsely described by the
data available. The answer, of course, may be more, or better, or more balanced
data.

9.1.4  Continuous Classifier Residuals versus Actual Values Plot

Figures 9.7 and 9.8 showed the residual values plotted against the predicted values
in an XY plot. Recall that at runtime, the best available estimate of the actual value
is the prediction produced by the model. We know for sure that there will be
errors, and using training and test datasets (which have actual values for the output
variable available to train the model), it’s possible to know the actual residual
error. Looking at plots of residuals versus predicted values graphically shows what
can be expected when the model is actually deployed. Figures 9.7 and 9.8 show
that the model constructed in this data produces unbiased errors. This doesn’t
mean that the model is as good as it can be—it might be possible, for instance,
to reduce the variance of the residuals, which will result in a model that produces
more accurate predictions. However, what these figures do show is that there is
no systematic error in the model at runtime. If, for instance, all of the predictions
were high when the predict value was near the top of its range and low when
the predict value was near the bottom of its range, that would be a type of
systematic error, and it could be corrected. However, no such systematic error
appears.

FIGURE 9.9

Histogram of residual distribution.

9.1  Learning from Errors   333

334    CHAPTER 9  Improving the Model

Figure 9.10, on the other hand, seems to show exactly such a systematic error.
This shows the residuals, in the same dataset, and uses the same model as in Figure
9.8. This time, however, the residuals are plotted against the ordered actual value
rather than the ordered predicted value. The mean of these residuals is also 0, but
the linear regression line fitted shows a clear rise from left to right. Does this
represent a systematic error?

No, actually it doesn’t, at least not a systematic error in the model or in the
raw prediction. There is a systematic bias here, but with the data available, there
isn’t anything that can be done about it as far as the predictions produced by the
model are concerned. So what does it represent?

Actually, it’s no more than the result of the limit function. Consider the effect
of the limit function on the left end of the range. The raw model would make
errors by predicting values that are outside the output variable’s actual range.
These values are “trimmed” off by the limit function. On the left side where the
actual value is approaching 0 (as a result of trimming), all of the positive errors
that the unlimited model would have made have been truncated, leaving only
the negative errors, thus pulling down the average values. On the right side, the
reverse is true—the negative errors have been removed, leaving only the positive
errors. Thus, the limit function has produced this bias. So there is indeed a bias
in the estimates or predictions of the output value, but this bias has been delib-
erately and knowingly introduced to ensure that the predictions stay in the origi-
nal range of the output.

Beware when evaluating residual plots because, although bias is evident here,
it isn’t unanticipated and shouldn’t be unexpected. The algorithm embedded in

FIGURE 9.10

Actual versus residual plot.

the tool that produced these models is of a type that doesn’t inherently limit itself
to making predictions that remain in the original range of the output. The algo-
rithm in the tool, then, is occasionally trying to predict values of more than 1 and
less than 0. Some algorithms do indeed behave this way, whereas others inherently
will not make predictions that are outside the range present in the training data.
The tools that implement algorithms that can make out-of-range predictions often
do indeed “adjust” the predictions to maintain them inside the actual range in the
output battery. (One of the better-known statistical techniques that makes similar
adjustments is logistic regression, so this is not a “data mining algorithm problem.”
It’s simply one way of dealing with prediction range difficulties in any quantitative
model.)

So although there is bias here, there is nothing “wrong” in this particular case.
However, the miner needs to take careful note whenever this type of pattern
occurs and to make quite sure that the source of any bias like this is fully under-
stood and is not, in fact, a problem with the data, the modeling tool, or the
model.

9.1.5  Continuous Classifier Actual versus Predicted
Values Plot

Another plot that a miner should routinely examine is an XY plot of actual values
versus predicted values, as is shown in Figure 9.11. In addition to the data points,
shown by small circles, the line running from lower left to upper right is a linear

FIGURE 9.11

Actual versus predicted values scatterplot.

9.1  Learning from Errors   335

336    CHAPTER 9  Improving the Model

regression line fitted to the points. The equation for the line is shown below the
title of the plot.

A glance at this figure shows clearly that the actual values range from 0 to 1
and that the predicted values range only from 0 to 0.9. At first glance, this seems
to be strange, and it’s worth investigating why the tool produced predictions with
this pattern. Perhaps there is some error in the settings for the tool, or perhaps
the training data was somehow missing any values above 0.9. Whatever the reason,
this needs to be checked because it is an unexpected finding. (In this case, it
turned out to be a bug in the limit code.)

The problem here is that the distributions of predicted values and actual values
differ. Different distributions mean that the predictions are biased because, in an
ideal model, the distributions of predicted and actual values will be identical. A
quite reasonable way to check would be to compare histograms of the two dis-
tributions. However, the model checking techniques later in this section reveal
distribution problems as well as other useful information.

It’s also well worth the time to try to fit a curve to this type of plot, as shown
in Figure 9.12. The relationship should be linear, however much the points
vary about the diagonal. The curve fitted should be very close to a straight line,
although it almost certainly won’t be perfect. Data mining tools should model
nonlinearity very well, so the predicted/actual values relationship should be pretty
much linear, with all of the nonlinearity accounted for in the model. If there is an
evident curve that clearly fits the data better than the diagonal, it is an indication
that the model is underspecified, which means not complex enough to capture

FIGURE 9.12

Actual versus predicted values scatterplot with nonlinear fitted curve.

the nonlinearity present. (An overspecified model captures too much complexity,
so it characterizes noise.

Remember that the fit may not be a perfect straight line not only because of
random variation, but also because the model was fitted to the training data and
all of these evaluations have to be made in the test dataset. In Figure 9.12, the
curve shown potentially had a great deal of flexibility and could have been very
curved indeed—if the data warranted it. Except for the lower left portion, which
is essentially out of the range of the plot, the curve appears to be close to a straight
line; this shows that the model has done a good job of modeling any nonlinearity
present in the input battery to output battery relationship. (As it turns out, in the
dataset used for this illustration, there happened to be a highly nonlinear relation-
ship between the batteries, so the model has, in fact, done a good job of charac-
terizing it.)

Returning now to Figure 9.11, regardless of why the prediction range is trun-
cated, the diagonal regression line shows that this model has characterized the
relationships well. The ideal result would show that all of the predicted values
were identical to the actual values. If that were the case, the XY plotted points
would all fall exactly on the diagonal running from (predicted value, actual value)
0,0 to 1,1. The points themselves by no means fit this ideal, but the regression
fitted to this predicted/actual plot line does fall almost exactly on this ideal. On
the left of the plot, it passes almost exactly through the 0,0 point, and on the
right, it passes almost equally exactly through the 1,1 point. In addition, the slope
of the linear regression line is close to perfect, which would be a slope of 1 : 1.
The number “1.03” in the regression equation below the plot title in Figure 9.11
indicates that for every change of 1 unit in Y, this line changes by 1.03 in X, which
is indeed very close to 1 : 1.

Thus, on average, the model has pretty well captured the relationship between
the input dataset, as expressed in the Figure 9.12 scatterplot, of predicted value
versus actual output value. But pretty well on average isn’t perfect. Although there
are 10,000 points in this test dataset, some of them are poor as predicted values
because they lie far from the line. The final basic question that a miner needs to
be able to answer is, how good a model can be expected? Part of the answer
to that question can be determined from a variance plot, which is addressed in
the next section.

9.1.6  Continuous Classifier Variance Plot

Figure 9.13 shows the variance plot associated with this dataset. This shows the
variance of the error, or residual, across the range of the prediction. A prediction
of 0 is shown on the left increasing across the plot until, at the right side, there
is a prediction of maximum value (which should be 1, although we now know
that it’s actually 0.9 as a result of the bug in the limit function).

Variance is a straightforward measurement. It simply expresses how much the
value of a group of values varies from the mean value of the group. In this case,

9.1  Learning from Errors   337

338    CHAPTER 9  Improving the Model

the measurement is of how much the residual, or error, varies from the predicted
value. In this case, it indicates the limits of confidence for any particular value of
the prediction. (Showing confidence bands above and below the predicted value
is another way of showing the same information, but it is more difficult for a miner
to generate. A spreadsheet program such as Excel can be easily used to create
a variance plot—or almost any of the plots shown if they aren’t available else-
where—and can therefore be used as a basic mining technique.)

The curve shown fairly much speaks for itself. The variance is highest around
the middle values of the prediction and is lowest when the prediction is nearest
to 1. Variance can be extremely useful in understanding the model’s performance.
However, Figure 9.14 shows what, on a cursory glance, may seem to be an almost
identical plot. However, although the differences are small, for explaining model
performance this plot may serve better than the previous one. This figure shows
the standard deviation of the error over the range of the prediction.

Because we know (from Figure 9.9) that the distribution of the error term is
nearly normal, it is relatively easy to explain the “reliability” of the prediction from
the properties of the standard deviation. For instance (and these figures can easily
be found in a table describing the area under the standard normal curve in any
basic statistical text), because approximately 68 percent of the instances fall
within ± one standard deviation of the mean, then in the worst case prediction
(which seems to be a prediction of about 0.5), we know that 68 percent of the
actual values will fall between about 30.22 from the prediction value, so between
0.5 − 0.22 = 0.28 and 0.5 + 0.22 − 0.72. (The value of 0.22 is derived from the

FIGURE 9.13

Actual and smoothed variance in residual across the range of the prediction.

maximum height of the fitted curve in Figure 9.14.) Thus, it’s fairly easy to deter-
mine that about 70 percent of the time, when this model predicts the value to be
0.5, the true value will lie between 0.28 and 0.72.

Similarly, for any point on the curve, the reliability of the prediction can be
easily described in terms of how many of the actual values (as a percentage) can
be expected to be within what distance of the predicted value.

9.1.7  Perfect Models

Perfect models rarely, if ever, occur. Even very good models that are close to
perfect are highly suspicious. Genuinely, justifiably perfect models are only likely
when either the problem is utterly trivial and the relationship and predictions
are obvious, or when leakage from anachronistic variables feeds information back
from future to past. If any suspiciously good model turns up (that is, one that is
far better than expected), it is worth checking very, very carefully to discover the
nature and source of the error.

9.1.8  Summary of Classification Model Residual Checking

Looking at residuals and comparing them with actual and predicted values in the
structured way described here are important. This is a diagnostic technique used
to determine if there are problems with the data and with the modeling tool, the
model, or both. Although working through the explanations here may be time

FIGURE 9.14

Actual and smoothed standard deviation of error in residual across the range of the
prediction.

9.1  Learning from Errors   339

340    CHAPTER 9  Improving the Model

consuming and obtaining experience from many models may take time, with
practice and experience, performing the diagnostic checks shown here is a quick
and easy way to discover potential problems.

The miner uses residual error versus prediction plots to look for possible prob-
lems with the data, the model, or the modeling tool. Figure 9.15 illustrates an ideal
distribution of residuals. The fitted regression line is nearly flat and fits at the zero
point as well as possible. The residuals are uniform in amplitude and density across
the whole plot. Figure 9.16 shows one result from an underspecified model. In
this case, the model hasn’t captured all of the nonlinearity present in the dataset.
Figure 9.17 shows a different underspecification problem. In this case, the ampli-
tude of the residual increases as the prediction value increases. (It could also have
decreased as the prediction value increased, or it could have had some other
identifiable pattern.) In this case, it is most likely that the model has insufficient
flexibility to transform the nonlinearity in one or more of the input variables.

In the example discussed in this section (an example which is taken from an
actual engagement), it was quick and easy to discover a problem with the model-
ing tool used (Figure 9.11). It was also quick and easy to discover that an apparent
bias between actual and predicted values was in fact introduced by the modeling
tool and not, as had been suspected by the client, the result of a problem with
the model itself (Figure 9.10). In addition, using Figures 9.13 or 9.14, the modeler
is in a good position to begin to build an explanation of the performance of the
model. Figures 9.7, 9.8 (which expands the explanation of 9.7), and 9.9 quickly
demonstrated that the tool had built a robust model once the “shoulders” in Figure
9.7 had been explained.

FIGURE 9.15

Example of ideal residual distribution.

FIGURE 9.16

Residuals from an underspecified model showing nonlinearity.

FIGURE 9.17

Residuals from an underspecified model showing residual error scatterplot dependent on
prediction values.

9.1  Learning from Errors   341

In brief, looking at plots of residual values across the range of the predictions
can be illuminating to a miner and will help the miner get the model right.

342    CHAPTER 9  Improving the Model

9.1.9  Improving Explanatory Models

Diagnosing problems with an explanatory model is, in a sense, much easier and
less technically exact than doing so with classification models. Essentially, either
an explanatory model does provide a convincing, relevant, applicable explanation
that serves to address the business problem, or it doesn’t! If it does, no further
diagnosis is needed—the model works. If it doesn’t, that in itself is pretty much
the diagnosis.

Given a diagnosis that the model performance needs improving and that it is
because the model is at fault and not the miner’s ability to explain, several actions
may well improve the model’s quality.

One major problem arises when the data doesn’t seem to represent relation-
ships of interest. Perhaps it actually doesn’t. That’s not a problem with the model,
of course, but an indication that better data is needed. However, it often turns
out that reformatting the data will reveal relationships that seemed hidden. (See
Section 9.2.3.) Tools that display relationships, such as the self-organizing map
(SOM), are quite sensitive to distributional changes. (See the section titled Problem:
Reformatting Data.) Other tools, such as Single-Variable Chi-squared Automatic
Interaction Detection (SVCHAID), improve their explanatory power when
business-relevant features are extracted from the dataset.

Sometimes the model seems to reveal nothing of interest. The possible
conclusions derived from a model may be nothing but broad generalities that
are hard to practically apply to the problem. On other occasions, a model might
seem to deliver a host of trivial detail, but that very detail seems to obscure the
interesting relationships as if in a froth of trivia. Either of these circumstances
may be caused by having the model complexity, and its power to extract detail
from the data, set either too low (in the case of overly general models) or too
high (in the case of extremely detailed models). This ability of a model to capture
detail is called its specificity, and when the model does not capture enough
detail, it is called underspecified. When it captures only the froth of detail,
the model is overspecified. Setting an appropriate level of specification is as
important in an explanatory model as it is in a classificatory model. (See Section
9.2.4)

For explanatory models, it is essential that any important relationships be
presented as clearly as possible. All that has to be done to completely obfuscate
an explanation based on ordinal or categorical variable relationships is to assign
inappropriate numbers to those categories. Inappropriate numeration of categor-
ical values is a real problem when using explanatory tools that can only model
numeric variables, like a SOM. However, the appropriate numeration of categories
can retain clear explanations—an important consideration when explaining
categorical variable relationships. (See the section titled Reformatting Data:
Normalizing Ranges.)

Sometimes it is convenient, or easier to understand, if categories are used to
explain a relationship, even when the underlying variable is a continuous number.

9.2  Improving Model Quality, Solving Problems   343

A process called binning turns continuous variables into categories. The impor-
tant trick for explanatory models is to use meaningful categories rather than
arbitrary ones that may hide meaningful structure. Sometimes the implicit struc-
ture of the data reveals meaningful bin structures in a numeric variable, although
it is always preferable to use expert knowledge, if it’s available, to create and label
the bins. When relevant labels are applied to the bins, they can help clarify a
relationship more than trying to describe the relationship numerically. (See the
section Reformatting Data: Binning)

9.2	 IMPROVING MODEL QUALITY, SOLVING
PROBLEMS

Most of the rest of this chapter looks at how to address the problems that became
apparent from the diagnostic tests described in Section 9.1. This section focuses
on what changes might be made to improve the quality of the model given one
or more problems revealed by the model diagnostics. Unless the model is justifi-
ably perfect, one or more of the diagnostic checks will point to areas where the
initial model can be improved. Even if no particularly egregious problems were
revealed when the initial model was diagnosed, the model can probably still
be improved by applying the techniques in this section. In fact, although these
are presented as “solutions” to particular discovered problems, this section really
introduces techniques for improving a model’s quality. Thus, the techniques
described in this section shouldn’t be viewed as only a set of solutions to prob-
lems; these techniques should be employed in the pursuit of general good prac-
tices in basic data mining.

Improving the quality of a model means understanding what “quality”
means in terms of a model. There are lots of ways to characterize the quality of a
model. Partly, of course, it depends on the type of model. As far as evaluating the
quality of explanatory models goes, it’s the quality of the explanation that counts.
Based on the needs of the business problem, of course, judging the quality of an
explanatory model is pretty much a subjective exercise. There are some useful
guidelines for delivering the results of explanatory models to their greatest
advantage, which allow a miner to make the most of what any explanatory
model has to offer. But the actual performance of the explanatory model is a
qualitative, rather than a quantitative, assessment. If it works, it works. If not, it
doesn’t work.

However, the ability of classificatory models to address the business problem,
which is still pretty much a qualitative issue, can be judged against each other on
technical criteria. In addition to the diagnostic tests described in the previous
section, it’s useful to become familiar with understanding and interpreting any
other quality measures provided by a mining tool. The fundamental diagnostic
tests of a model’s quality were discussed in Section 9.1—interpreting confusion

344    CHAPTER 9  Improving the Model

matrices, XY plots of residuals, predicted values, actual values, and residual histo-
grams. These are the fundamental and crucial determinants of model quality.

If the quality measures provided by a mining tool leave any doubt about the
nature of the problem, the real answer is to return to the diagnostic tests described
in this chapter. These are powerful and useful precisely because they not only
reveal problems but also can be easily interpreted to reveal what needs to be done
to improve the model. Many model quality measures provided by mining tools are
useful, but only indicate model quality on some selected scale, giving no indication
of what might be done to improve the model. The key to successful modeling is
to use measures that both indicate quality and direct attention to what needs to
be adjusted.

The remainder of this section expands on and explains the catalyst methodol-
ogy MIII for improving model quality. It is intended to stand on its own, but its
full richness and power can be appreciated only when it is used to supplement
the methodology.

9.2.1  Problem: The Data Doesn’t Support the Model

A miner might find that the input battery doesn’t relate to the output battery—in
other words, the data doesn’t support the model needed. This might be indicated
when the following occurs:

n	 There is no significant difference in naïve and mined model performance.
n	 There is an almost flat regression line in the predicted versus actual XY

plot.
n	 There are significant clusters present in the input battery with a high

degree of separation between them.

This is a perennial data mining problem. The data available to fill the input
battery simply doesn’t have any useful relationship to the output battery. Given
the input and output batteries, no data miner is going to get a useful model if this
is genuinely the situation. However, all is certainly not lost!

For one important point, no is often a good answer. For some reason, we have
been trained to think of no as a bad answer. However, justified knowledge of the
limits of a dataset—to answer a question, to enable a decision, or to guide an
action—is useful, not useless, to know. Discovering that a dataset does not allow
an answer, at least as presently posed, is useful information that can be used
constructively to guide action, decisions, insight, and future activities. This mining-
justified discovery of the limits to knowledge available in a dataset is every bit as
useful, in context, as would have been the justified representations of relevant
relationships in data expressed as a mined model, had one been possible. It’s
useful in a different way, of course. The actions, decisions, insights, or activities
are different than if a useful model had been generated. At the very least, such an
answer may save the use of resources committed to a project on the basis of faulty
or unfounded decisions not supported by the data. At best, it may provoke, or
justify, collecting data that relates to the business problem of interest.

9.2  Improving Model Quality, Solving Problems   345

The best approach is to find more or different data—that is, data that hopefully
holds the relationships of interest. However, discovering that a dataset does not
contain any useful relationships to the object of interest is a useful contribution
of knowledge to the search for appropriate data. Part of the process of discovering
data to mine requires creating a pool of candidate measurements. Discovering that
a dataset doesn’t support the model of interest can contribute a great deal to the
search for appropriate candidate measurements because it clearly shows measure-
ments that need not be further considered. It may indeed show whole related
areas that need not be pursued.

The “useless” dataset may also provide clues as to what other dataset may be
worth investigating. The presence of such clues depends on the source of the sup-
plied dataset. The question is, was the mining dataset generated from original source
data or from some secondary source? If from a secondary source, and the original
data is available, it’s not at all unlikely that going back to the original data and begin-
ning again will turn up different, possibly better results. The problem is that second-
ary data, such as that from a data warehouse or from a standardized database, may
well have had many of the interesting relationships removed inadvertently.

This happens because data for, say, warehousing is cleaned, summarized, and
prepared to suit the needs of the warehouse. As far as the warehouse is concerned,
this is a necessary and useful contribution. However, preparing the data for the
warehouse imposes business and other rules, normalizes data, and performs other
adjustments needed from the viewpoint of what the warehouse is intended to
support. Cleaned and prepared in this way, the data may no longer have its
original relationships to the mining output battery intact. Although it may well be
a lot of work, it is always possible that the original data may be of more value
than the secondary source data.

As a final consideration, although by technical measures a model may seem
of little use, “it ain’t necessarily so!” The truth is that the credit card solicitation
model is, by most technical criteria, useless. The dataset hardly supports a predic-
tive model of any technical merit whatever. Nonetheless, for solving a business
problem, it is a very good model. Even in its raw form, it seems to hold the promise
of doubling the response rate, and it is no shabby model that can double a
response rate! So however little improvement there seems to be and however
poor a model seems to be, technical criteria are not the only—and may not even
be the most important—criteria by which to judge a model.

9.2.2  Problem: The Data Partially Doesn’t
Support the Model

Another possible problem is that the input battery doesn’t sufficiently define the
relationship to the output battery over all or part of the output range—in other
words, the data doesn’t support the model needed. This might be indicated when
the value of the smoothed residual variance estimate is so great over some or all
of the plot as to make the predictions unsatisfactory.

346    CHAPTER 9  Improving the Model

The issue here is that over some part of the output battery’s range, the predic-
tion is simply not accurate enough to provide the necessary level of confidence
to use the model—at least, not when it makes predictions in the problematic part
of the range. Depending on how much of the range is problematic, it is possible
that some of the suggested remedies in Section 9.2.1 might help. However, and
more to the point, because most of the output range of the model is working
sufficiently well, what is really needed is to improve the accuracy over the prob-
lematic part of the range.

Rather than rebuild the entire dataset from scratch, it is worthwhile to work
to discover additional data that better defines the relationship over the problem-
atic part of its range. First, look in the existing dataset itself. Careful explanatory
modeling may reveal features in the input battery that, when introduced into the
dataset as dummy variables, do elucidate the relationship more clearly.

Whether extracting features helps depends to some degree on which underly-
ing algorithm the modeling tool uses. Different algorithms are sensitive to different
types of patterns. Because this is the case, it’s often helpful to combine the outputs
of two different models, each generated by a different underlying algorithm. The
way to do this is straightforward. Build the best model with one tool supporting,
say, a decision tree. Build the best model with identical input and output batteries
with another tool supporting, say, a neural network. Take the two separate predic-
tions, form them into a new input battery, and, using the original output battery
as the new output battery, build a third model that combines the predictions of
the two original models. This method, illustrated in Figure 9.18, often results in
a model with less variance than either of the original models.

Another variant of the same technique may also help, even when using the
same underlying algorithm in this case. Good practice may have excluded a large
number of the variables in the input battery as redundant. (See, for example,
Section 9.2.16.) If this is the case, try constructing a separate model on the origi-
nal output battery, but form the input battery entirely from the discarded variables
from the original model’s input battery. With the second model in hand, combine
the two models as just described. These two models, even if constructed with the
same tool, may show less variance than a single model constructed with all of the
variables now in use.

9.2.3  Problem: Reformatting Data

A miner might find that the tool (algorithm) selected to make the model cannot
deal with the data in the format provided. This might be indicated when the fol-
lowing occurs:

n	 There is no significant difference in naïve and mined model performance.
n	 There is an almost flat regression line in predicted versus actual XY plot.
n	 The “tails” (outer edges) of the distribution are smaller than the

comparison normal curve shows should be expected.

9.2  Improving Model Quality, Solving Problems   347

n	 The fitted curve differs markedly from a straight line where it passes
through the data.

n	 The value of the smoothed residual variance estimate is so great over
some or all of the plot as to make the predictions unsatisfactory.

n	 You discover that an explanation is not convincing, relevant, or
applicable to the business problem.

This is a problem that turns up more frequently than it should, given that most
tools implement automated methods of transforming the variables of the input
battery into a form more suitable for whatever underlying algorithm the miner
chooses for a particular model. Although good transformation methods are avail-
able, not all tools do an equally good job of making the transformations. Because
the transformations are often made invisibly and automatically, a miner may not

FIGURE 9.18

Combining two models.

348    CHAPTER 9  Improving the Model

even be particularly aware that the tool is actually modeling a different version of
each variable in the input battery than that visible in the dataset.

Fortunately, the problem is relatively easy to address because the miner can
reformat the data before applying the modeling tool, so that the input battery
presents the variable formats in a way that is appropriate for the chosen under
lying algorithm. Generally speaking, tools only reformat data that the automated
transformation method recognizes as needing transformation. If the miner trans-
forms a variable, no other transformation is needed, and the underlying algorithm
models the data as presented.

Although not exactly a formatting problem, there is another issue with the
variable’s data format—that of missing values. Some algorithms cannot deal with
missing values at all; others deal with missing values poorly; and yet others appar-
ently have no particular problem with missing values. The importance of dealing
with the issue depends on the underlying modeling algorithm. However, it turns
out in practice that even algorithms that inherently aren’t meant to be affected
by missing values often perform better when the missing values are replaced using
good imputation methods. Thus, it is a good practice to replace all missing values
using well-founded imputation methods.

Most tools offer some method for replacing missing values, but many of these
methods are not well founded and can do more harm than good, despite their
being built into the tool. Just because they are included in the tool does not mean
that they work well! There are good methods of replacing missing values, but
unless the tool actually incorporates well-founded methods, missing value imputa-
tion methods have to be applied to datasets outside the tool’s environment, just
as, in general, with the reformatting methods.

There are three basic techniques for reformatting data, plus the not-exactly-
reformatting technique of replacing missing values:

n	 Binning.
n	 Normalizing range.
n	 Normalizing distribution.

Apply these techniques with care, as they are not all equally applicable under all
circumstances. This section looks at each technique in turn with guidelines for
when each is most likely to be applicable.

Reformatting Data: Binning
Mainly, binning is a simple and straightforward technique for turning continuous
variables into ordinal or categorical variables. It should be noted that ordinal and
categorical variables could also sometimes be usefully binned. However, binning
ordinal or categorical variables requires advanced binning tools and techniques,
such as information-based binning, discussed later in this section. Numeric vari-
ables often have to be binned because tools often use underlying algorithms—
decision trees and naïve Bayesian networks, for instance—that require the variables
to be categorical or ordinal rather than numeric.

9.2  Improving Model Quality, Solving Problems   349

Binning is so called, perhaps, because when binning a variable, various sub-
ranges of values of the variable are all put together into a bin. Figure 9.19 illustrates
the concept, using as an example a numeric variable measuring the temperature
of coffee (in degrees Celsius.). The temperature of coffee ranges, say, from just
below the freezing point of water to close to boiling. In daily conversation, we
don’t often discuss the temperature of coffee in terms of degrees of any tempera-
ture scale. Instead, we characterize the temperature in terms of classifications—
such as iced, cold, warm, and hot—which have a generally accepted colloquial
meaning and an understood subjective range of experience associated with each
label. In the terms used here, this is a form of binning in which each of the
categories is the bin label, and the upper and lower limits of the range of tem-
peratures associated with each bin form what are called the bin boundaries. Of
course, a mining tool doesn’t care if the bin labels are arbitrary or meaningful, but
it is good practice to make the labels as meaningful as possible.

The principle of binning is straightforward, even intuitive. However, whenever
any continuous variable is binned, it’s important to keep in mind that information
is unavoidably lost in the binning process. All of the separate values in any bin
are treated as if they were identical. All information about the distribution of values
across the range of the bin is lost.

On the other hand, the lost information may be a worthwhile sacrifice in order
to make the variable usable to a mining tool. And on some occasions, binning can
actually remove more noise than useful information, especially if the binning is
optimally done. This can sometimes result in better models, even for algorithms
that could use the variables in their unbinned form. The problem is in the
expression “if the binning is optimally done.” Optimal binning is not necessarily
straightforward.

The problem of deciding how to bin a variable is twofold: 1) discover how
many bins to use, and 2) determine how best to assign values to each bin.

Assigning Bin Boundaries

One simple way to assign bin boundaries is to divide the range of the variable into
a number of bins and let each bin cover its appropriate fraction of the range.

FIGURE 9.19

Binning numeric values.

350    CHAPTER 9  Improving the Model

Figure 9.20 shows ten bins in total. Eight bins cover the range of the variable
across its expected range, so each bin covers one-eighth (12.5 percent) of the
entire expected range of the variable. At each extreme of the range is a bin that
takes any values that fall outside the expected range of the variable. The too-large
and too-small values often turn up in real-world datasets, and it’s quite easy to put
in a couple of catchall bins to hold any that are found. Although not shown in the
figure, another bin is sometimes used for instances with missing values.

The bins in Figure 9.20 are shown across the ordered range of the variable
with, say, least values on the left and greatest on the right. Each bin covers the
same amount of the range of values of the variable as any other bin, and this
binning arrangement is called equal range binning. This arrangement might work
if the variables’ values were distributed fairly evenly across the range of the vari-
able, as indicated by the dashed horizontal line representing the distribution.
However, most variables don’t have particularly uniform distributions.

Figure 9.21 illustrates a nonuniform distribution that approximates a normal
distribution. Here it’s easy to see that most of the values cluster around the mean
value, which is indicated by the peak of the dashed line. If equal range binning
were used in this circumstance, it’s easy to see that the bins around the mean
would contain most of the instances, and the bins at the extremes would have
very few. In the absence of any specific reason to use some other arrangement,
it’s been found most generally useful to have bins with fairly equal numbers of
instances in each, so the bin boundaries illustrated in Figure 9.21 are adjusted
to evenly balance the bin contents. This arrangement, not surprisingly, is called
equal frequency binning because the bin boundaries are arranged so that, as
much as possible, all the bins have a similar number of instances in them.

However, it’s hard to know how many bins to have under either of these
arrangements. Exactly where the optimum number lies is difficult to determine.
Starting with 20 to 30 usually seems to work well. The key is to have enough bin
categories so that the mining tool can develop a sufficient complexity of patterns

FIGURE 9.20

Equal range bins.

9.2  Improving Model Quality, Solving Problems   351

in the input battery to map to the output battery. Experimenting with adjusting
the bin count and boundaries often helps with these simple binning strategies.

These are basic and fairly common methods of binning. Given a number of
bins, it’s fairly easy to arrange the boundaries automatically, and equal frequency
is the binning method to try first. The number of bins in the input battery needs
to be partly determined by the desired resolution of the output battery—more
resolution calls for more bins. Binning the output battery, if needed, has to be
driven by the needs of the business problem determined by the desired degree of
resolution. In general, with the simple binning methods, the input battery vari-
ables should start with approximately as many bins as the output battery if the
output battery is itself binned. If the output battery is left as a continuous variable,
try 20 or 30 equal-frequency bins.

These are two common, simple binning methods, and although they are not
optimal, mining tools usually offer at least these methods and sometimes only
these methods. Or, more appropriately put, there is no justification to think that
any particular arrangement of equal range, or equal frequency, bins will turn out
to be optimal. Many mining tools that offer alternative binning methods often
implement binning strategies that, although more complex and far less straight-
forward than these simple methods, are also not necessarily optimal. However,
there are methods of achieving binning strategies that are nearer to optimal.

Information-Based Binning

The simple binning strategies just discussed are unsupervised strategies. That is
to say, any binning of a variable is made without any reference to any other vari-
ables at all, including those in the output battery. Because a classificatory model
has an output battery, it is possible to use the output battery to direct the binning
of the input battery so that the binning reveals the maximum amount of informa-
tion about the output battery. This, of course, would be a supervised binning
strategy. Potentially, it can do a better job than the simple binning strategies

FIGURE 9.21

Equal frequency bins.

352    CHAPTER 9  Improving the Model

because it uses information from both the input battery variable and the output
battery.

Information content in variables can be measured according to the underlying
theory called information theory. It is possible to create a binning strategy
using information theory that retains in one variable the maximum amount of
information about another variable. There are several ways of implementing an
information-based binning strategy, but two are particularly useful.

Least information loss binning, as the name implies, creates bin boundaries
that optimally retain information in the input battery variable that describes the
output battery variable. This method retains any ordering present in the input
battery variable and creates bin boundaries accordingly. The boundaries are placed
to have neither equal frequency bins nor equal range bins, but so that the total
amount of information about the output variable in all the bins is greater than any
other arrangement of bin boundaries, or number of bins, provides.

Maximum information gain binning is potentially the most powerful
information-based binning strategy. This is another supervised binning strategy,
but in this case, the ordering of the input variable is not necessarily maintained,
and input battery variable values are mapped into bins so that maximum informa-
tion is gained about the output battery. For maximum information gain binning
to work, it is crucial to have a dataset that fully represents the actual distribution
to be modeled. Without it, this binning strategy will produce garbage. Surprisingly,
it is not always possible to represent the distribution of a population, however
large the sample size.

These are powerful binning strategies, but their practical implementation
requires a high degree of complexity and calculation. This is easy for a computer,
but totally impractical as a humanly applied technique. Optimal binning can be
crucial in deriving a good model from a dataset. Unfortunately, few mining tools
offer any sophisticated binning strategies, let alone optimal ones. Because binning
is so important to building good models, Dorian Pyle who wrote this chapter
for Business Modeling and Data Mining (Morgan Kaufmann, 2003) maintains a
website (www.modelandmine.com) that offers a binning tool to address a dataset
and determine the appropriate bin boundaries using several binning strategies,
including those described here. Once the binning tool has discovered the bin
boundaries, it’s easy to set them in any mining tool that allows custom bins to be
created. For readers who do not have easy access to adjust manual bin boundaries,
the binning tool will also write out a binned version of any variable, or set of
variables, so the miner can incorporate them into the input battery. This should
allow any reader of this book with access to the Internet to experiment with dif-
ferent binning strategies and to discover the power, importance, and effectiveness
of optimal binning.

Reformatting Data: Normalizing Ranges
Some algorithms, most notably neural networks, are highly restricted in the range
of values to which they are sensitive. Many of the most popular types of neural

9.2  Improving Model Quality, Solving Problems   353

networks require a numeric input range, including values either from −1 to +1
or from 0 to 1. For any tool implementing one of these algorithms, there’s no
problem whatsoever in modifying the input range of a numeric variable to match
the needs of the algorithm. The tool simply scans the input battery, determines
the maximum and minimum values present for all numeric variables, and rescales
the input values appropriately. However, any algorithm that requires all numeric
input has to deal somewhat differently with categorical or ordinal variables.

As an example, consider days of the week. A weekly cycle requires coding
into two variables with values; Figure 9.22 shows them as V1 and V2. However,
days of the week actually occur sequentially, one after the other from, say, Sunday
through Saturday. This naturally occurring sequence of days can be numbered as,
for the sake of this example, 1–7, and shown in the column headed “Seq.”

When the underlying algorithm of a mining tool can take variables only in
the form of numbers, it is necessary to recode any categorical or ordinal values
numerically to represent either a sequence or a cycle as needed. One common
practice, and one that some mining tools adopt in automated conversion of cat-
egorical variables into a numeric representation, is to simply assign numbers to
categories as they are encountered in a dataset. For the sake of this example, the
figure shows such a numeric assignment to the categories of day values based on
their alphabetical order. This numeric assignment is shown in the column headed
“Alpha” in Figure 9.22. But note that this assignment imposes an implied order
on the categories. In this case, the implied order imposed doesn’t match the
naturally occurring sequence. (There is no reason to suppose that assigning
numbers to categories in the order that they are encountered in a dataset will
match any naturally occurring sequence either.)

Figure 9.23 shows that if the natural sequence were appropriately matched,
the relationship between natural sequence and assigned order would be as shown
in the graph on the left. However, the arbitrary alphabetic assignment results in
a relationship between the natural sequence and the assigned sequence shown in
the graph on the right. This assignment produces what seems to be a complex,

FIGURE 9.22

Coding days of the week.

354    CHAPTER 9  Improving the Model

and certainly a nonlinear, relationship between the natural sequence and the
assigned values. Because the natural sequence is the one that occurs in the real
world, it is important to represent that sequential information to the model—and
as simply as possible.

For the few categories used in this example, the relationship is not terribly
complex, and it would be easy for any mining tool to discover and characterize
it. However, when the number of categories rises, say when using stock-keeping
units (SKUs) or ZIP codes, any natural ordering that exists in the real world can
be made so inaccessible to a mining tool that it becomes impossible to discover
any usable relationship.

The first point for any miner to note is that whenever there is a need to convert
categorical and ordinal—particularly ordinal—variables to numeric representa-
tions, it is important to discover if there is a naturally occurring order or sequence
for the categories and to distribute the categories in their appropriate locations
in the range of the numeric representation. As is often the case when dealing with
data, the rule is this: Wherever possible, look it up or dig it up rather than make
it up.

This issue of discovering an appropriate ordering is obviously important to the
quality of the resulting model. Yet what is to be done for categorical and ordinal
variables when there is no apparent rationale for assigning numeric values?

A dataset as a whole incorporates many patterns and relationships among its
variables. If a categorical variable actually does have a naturally occurring order,
as is always the case for an ordinal variable, this relationship is incorporated into
the structure of the relationships embodied in the dataset. It may be complex and
nonobvious on inspection, but it will nonetheless still be present. Although hard
for a miner, it is relatively easy for an automated tool to discover any ordinal rela-
tionship for any categorical variable in a dataset and to derive appropriate numeric
labels for each category.

Assigning appropriate numeric labels, if this can be done, is far better than
using an automated discovery of numeric labels. Adding appropriate numeric
labels actually adds information to a dataset. When this can’t be done, the

FIGURE 9.23

Different relationships for different day-of-week codings.

(a) (b)

9.2  Improving Model Quality, Solving Problems   355

automated assignment, although it doesn’t actually add any information to the
dataset, at least doesn’t add erroneous information, which arbitrary assignment of
numbers to labels almost certainly does. The arbitrary assignment simply adds
noise to a dataset and may well hamper a tool’s ability to discover and character-
ize the important and meaningful relationships that do exist. Automated discovery
of appropriate numeric labels at least avoids the possibility of actively adding
garbage!

Replacing an arbitrary numeric assignment of category values with those
reflected out of a dataset can considerably improve a model created by an algo-
rithm requiring all numeric representation. However, although easily accom-
plished, few tools are capable of discovering, let alone assigning, appropriate
numeration to categories. Thus, as with binning, and for all the same reasons, a
category numerating tool is available on Pyle’s website.

Reformatting Data: Normalizing Distribution
The distribution of a variable describes the way that the variable’s values spread
themselves through the range of the variable. Some distributions are fairly familiar,
such as what is known as the normal distribution, shown earlier in Figure 9.21.
In a normal distribution, the greatest number of values occurs clustered around
the mean (or average) of the distribution, with far fewer values falling at the
extremes. However, it’s not only numeric variables that have a distribution. Ordinal
and categorical variables also have values, although they aren’t numeric values,
and the values usually occur with frequencies different from each other. An easy
way to represent such a distribution is with a histogram, each column represent-
ing the number of instances in each class.

In spite of the similarity in name, normalizing a distribution isn’t necessarily
the process of making the distribution more like a normal distribution. Rather, the
term means regularizing or standardizing a distribution in some way. It is possible,
although unusual, to normalize categorical or ordinal distributions, although to
some extent that is what is going on if one of the more advanced binning tech-
niques is applied to such variables. Usually, it’s only numeric variables that have
their distributions normalized, and in this discussion, distribution normalization is
confined to numeric variables.

Equal frequency binning works as well as it does in part because it is a distri-
bution normalizing technique. Consider that any algorithm regards each of the
bins as just as significant as any other bin. However, in equal frequency binning,
each bin is arranged so that it contains the same number of instances as any other
bin, at least insofar as it’s possible to do so. This has redistributed the values in
the variable so that they are uniformly spread across the range of the variable. To
be sure, there are fewer values, only one value for each bin, but each bin value
occurs as often as any other bin value, so the distribution is as close to uniform
as this binning metric can get it. Thus, one strategy for normalizing a distribution
that can work quite well is to use equal frequency binning with a high bin count
(say, 101 bins), and assign each bin a value a uniform increment apart. If the

356    CHAPTER 9  Improving the Model

chosen bin value ranges from 0 to 1, the bins would be assigned values of 0, 0.01,
0,02, 0.03 . . . 0.98, 0.99, 1.00. This strategy normalizes both the range and the
distribution, of course. To normalize just the distribution, assign each bin the mean
value of the instances in the bin.

Note that it is also possible to continuously remap any numeric distribution so
that it is uniformly distributed across its range. “Continuous” means that there are
no bins and each value is uniquely mapped to some other unique value, rather
than mapped to a bin value shared by several adjoining values. Such a continuous
remapping allows every different value in a distribution to participate in contrib-
uting to the model and retains all of the information that a variable has to offer.
Binning always necessitates loss of information because, as already noted, all
of the values in a bin, no matter how different they are from each other, are all
assigned the same bin value. Few, if any, mining tools incorporate continuous
distribution normalization, so Pyle has included a tool that will perform continu-
ous remapping of numeric variables with the binning tool mentioned earlier in
this section.

Why Does Distribution Normalization Work?

Consider an extreme case of skew in a distribution. Think of the series of numbers
1, 2, 3, 4, 5, 6, 7, 8, 9, 1000. This series ranges from 1 to 1000. However, almost
all of the values fall in only 1 percent of this range. The value 1000 is called an
outlier because it lies far from the bulk of other values in the series. For this
example, it is a rather extreme outlier, but it may be quite impossible to say that
it is an error of any sort or even an erroneous value. Quite justifiably, this might
be a perfectly valid entry. For an example of a real-world situation in which such
extremes occur, consider insurance claims, where most are for very small amounts
but a few are huge. Or think of legal settlements. Now consider the problem for
a numeric mining algorithm. To span the range, it has to encompass values from
1 to 1000, yet almost all of the values are to all intents and purposes indistinguish-
able from each other. If these values were binned using a 101-bin equal-range
strategy, one bin at one end of the range would contain all but one of the values
in it, 99 of the bins would be totally empty, and 1 bin at the other extreme of the
range would contain a single instance. The mining algorithm would see only two
values! (This, of course, is why equal frequency binning is preferred, because it
wouldn’t have this problem.)

Without binning or some other redistribution strategy, almost all numerically
sensitive algorithms, when presented with this range of values, would have to
scale their inputs such that this actual distribution would be indistinguishable from
a dataset containing only two values. This means that any information carried by
the values 1 through 9 would be effectively lost.

Intuitively, the problem is similar, although by no means as severe, whenever
a distribution has some values that group together, even when the grouping is
fairly benign, such as that of the normal distribution. It takes at least a great deal

9.2  Improving Model Quality, Solving Problems   357

more complexity in any model to deal with clumping in distributions, and more
complex models are far more prone to learn noise rather than the desired relation-
ships, take longer to train, and are more difficult to understand than simpler
models. So although it may be theoretically possible for a mining tool to deal with
almost any distribution problem, in practice, in order to make the tool sufficiently
noise-resistant, the complexity has to be limited—and so is its ability to deal with
clumps and bumps in a distribution.

For such distributions as the example used here, either high-bin count, equal-
frequency unsupervised binning, continuous remapping, or supervised binning
handily finesses the problem by producing a variable with a distribution from
which any mining tool can extract the maximum information.

Distribution Normalization in Explanatory Models

Distribution normalization can play an important role in improving the perfor-
mance of classificatory models. However, it can play an even more important role
in building explanatory models, particularly when using clustering and especially
when using visually based clustering tools such as the SOM tool.

The problem is that when the range is broad, but most of the values are packed
into some small part of the range, a couple of things seem to happen on a map.
First, because color represents value, almost all of the values are represented by
a single hue. Second, because at least one of the extremes has few values, the
map seems to show an almost uniform hue, as if the variable had only a single
value for the vast majority of the instances. Thus, meaningful patterns that might
well actually exist are effectively invisible.

Figure 9.24 illustrates a variable that has a highly concentrated cluster of values
with an extreme outlier. The linear, or unmodified, distribution can be seen in
the left histogram, showing that almost all of the 30,000 instances have values of
less than 50 but at least 1, although certainly few instances have a value of over
12,000. When mapped or clustered, this appears to show a binary variable with,
as far as can be determined visually, all of the instances having a single value.
Redistributing the values as shown in the right histogram spreads the values that

FIGURE 9.24

Redistributing variable values.

358    CHAPTER 9  Improving the Model

are present across the displayable range, and makes any patterns present far easier
to see.

Reformatting Data: Replacing Missing Values
Replacing missing values doesn’t change the format of the data. However, it’s
necessary in some cases, and always worthwhile, for a number of reasons. For
those algorithms that cannot deal with missing values, something has to be
done—the miner has no choice. Some tools automatically ignore the whole
instance, and all of the values it contains, if one of them is missing. In many real-
world datasets, this can make some otherwise perfectly usable datasets totally
unminable as almost every instance has one value or another missing. Even for
those mining algorithms that can inherently deal with missing values, empirical
evidence suggests that replacing missing values with well-founded imputed values
turns out to improve the quality of the resulting model. The problem, of course,
is in the phrase “well-founded imputed values.” It turns out that many of the
missing value replacement options offered by many mining tools are actually
damaging to a dataset in that they add spurious relationships, obscure existing
relationships, and generally reduce model quality, sometimes severely. How does
this happen?

In almost all datasets, values are not missing at random. To see that this is so
in at least one real-world dataset, suppose you have a model—called the missing
value check model (MVCM)—built on a dataset that, within the input battery,
contains only and exclusively a characterization of which values are missing and
which values are present. The fact that many of the input battery variables had
interesting relationships with the output battery with only a missing/present flag
indicates that the values weren’t simply missing at random. Random occurrences
do not form consistent patterns, and these are consistent patterns. Of course, the
fact that it holds true in this one dataset is merely anecdotal evidence that missing
values are not missing at random, and it is only evidence that this is true in this
case. However, experience shows that in far and away the majority of cases, values
turn out not to be missing at random in most datasets with missing values.

Note that if it is indeed true that values are not missing at random, they must
be missing with some regularity, or pattern. Replacing missing values with any
constant value, exactly as was done in the MVCM, will reveal that pattern. Now
this isn’t in itself a bad thing because it may well be that those patterns need
to be explicated, which is why the MVCM technique calls for adding a variable
describing any useful discovered relationship. The problem is how replacing
missing values affects the other patterns in the dataset.

Notice that all the talk about patterns in datasets comes down to this: There
is a relationship between the values that any one variable takes in any particular
instance, and the values that the other variables in the same instance take. Some
of these relationships might be “tighter” than others in the sense that for some
variables, when one takes on certain values in an instance, it pretty much con-
strains another variable in the same instance to have values in a narrow range.

9.2  Improving Model Quality, Solving Problems   359

Some relationships might be “looser” in the sense that, when one variable takes
on certain values, another might have values that still tend to range around a fair
amount. But whatever the constraints on the ranges of values, a model describes
no more than what the ranges are and how tight the coupling is among all of the
variables in the input battery and how those relate to similar relationships in the
output battery. The key here is that, to a greater or lesser extent, all of the variables
change their values together and in lockstep. Whatever the patterns are, a good
model needs to characterize them as clearly and accurately as possible.

It is, regrettably, a common practice to replace missing values with some
constant value, such as the mean of a numeric variable or the most frequent cate
gory of a categorical. Many tools offer this as the only missing value replacement
method. What happens to the dataset’s relationships if some constant value is used
as a replacement for a missing value?

Because there is a pattern to the way that variables’ values occur in an instance,
it’s obvious that the pattern implies that any one variable’s value is related at least
somewhat to the values in the other variables. Given that such a relationship
between variable values—a pattern—exists, when one value is missing, any
replacement value has to take account of the other nonmissing values and find a
replacement value that best fits the existing pattern so as not to add to, modify,
distort, or damage it. There can be no generally good, single value that will serve
in all cases. The ideal value to plug in when one is missing has to be whatever
value turns out to best match the values that are present, given the relationships
that exist between them. However, if some inappropriate value is used instead,
the modeling tool has no choice but to incorporate that inappropriate value as a
true part of the actual pattern.

Note what occurs as a result of replacing any single value. The missing value
pattern discovered with the MVCM in a given variable is not a part of the inter-
related pattern of that variable to the other variables. The MVCM type of relation-
ship is a separate relationship that needs to be described separately, which is why
good practices call for it to be added as a separate variable. But the first thing
that any constant value replacement does is to comingle two patterns in one vari-
able—one is the pattern defined by the interrelationships with other variable
values, and the other is the MVCP-type pattern.

The second effect of using a constant value replacement is to confuse any
modeling tool into thinking that a variable actually takes on specific values in
relationship to all the other values when, in fact, no such relationship can possibly
be justified. There is actually no reason to suppose that the replacement value is
the one that would have existed had the value not been missing, and, in fact,
based on the other variables’ values, most of the time there’s good reason to think
that whatever fixed value is used is wrong!

In summary—and just considering these two effects alone, which are quite
bad enough—adding any constant value as a replacement for missing values over-
lays the actual pattern that exists with another pattern that exists and then addi-
tionally distorts the first pattern by specifying that the variable’s relationship

360    CHAPTER 9  Improving the Model

behaves in ways that it actually doesn’t. In short, missing value replacement with
a constant value can utterly destroy some relationships that do exist, hide others,
and make yet others inaccessible.

It should hardly be a surprise that inappropriate missing value replacement
often does more harm than good, and always—always—reduces the quality of
the best possible model. The best possible model from the damaged dataset simply
isn’t as good as the best possible model from the same dataset with well-founded
and appropriately imputed missing value replacements.

So what should the miner do? Well, part of the answer, of course, is already
accomplished, because the best practice of creating a separate variable where
necessary with the MVCM retains one pattern in the dataset without comingling,
and consequent obfuscation, of the two patterns just mentioned.

The other part of the answer is not to use any constant value as a replacement
for missing values. The answer—the only answer that does not damage data for
mining—is to use a value that takes account of all the values that are present in
a given instance. In fact, there are a number of methods that work well, some
more complex and theoretically well founded than others. These go by such
grandiose names as “maximum likelihood missing value estimation” and “covariate
imputation.” In practice, the method used seems to make little difference to the
final result. The difficulty, of course, is that once again, replacement of missing
values is most easily accomplished by automated tools as it is impractical to
manually make the necessary calculations to build the replacement algorithm.
Therefore, Pyle (2003) has made available a missing value replacement tool on his
website (www.modelandmine.com) so that the reader can explore the benefits
from a good practice (that is, well-founded missing value imputation when the
reader’s tool of choice doesn’t support it) or simply view the effect of different
imputation strategies. The tool will replace missing values and provide a dynamic
missing value algorithm developed from the training data for use at runtime.

9.2.4  Problem: Respecifying the Algorithm

One of the possible problems a miner might face is that the model wasn’t able to
characterize the relationships from the input battery to the output battery ade-
quately. This might be indicated when the following occurs:

n	 There is no significant difference in naïve and mined model performance.
n	 The residuals appear to contain information that could be used to improve

the prediction.
n	 The regression line fitted to the actual value versus residual XY plot is not

horizontal.
n	 The value of the smoothed residual variance estimate is so great over

some or all of the plot as to make the predictions unsatisfactory.
n	 You discover that an explanation is not convincing, relevant, or applicable

to the business problem.

9.2  Improving Model Quality, Solving Problems   361

The viewpoint here is that the difficulty in improving model performance may
not necessarily lie with the data but in the capabilities of the mining algorithm
and the way it has been specified. Recall that an underspecified model is one
in which the constraints on the algorithm were such that it didn’t have enough
flexibility to properly characterize the relationships in the data. An overspecified
model is one that has so much flexibility that it captured not only the underlying
relationships, but a lot of junk too. As with the tale of Goldilocks and the three
bears, the amount of specification that’s needed is “j-u-s-t r-i-g-h-t!” How is just
right to be determined? The answer lies with the training and test datasets.

As a reminder, the object of modeling is to create the best model possible in
the training dataset that works best in the test dataset: build in training, apply in
test. If the model performs about equally in both training and test datasets, then
it may—may—be underspecified because it’s possible that it hasn’t yet fully char-
acterized the noise-free relationships. If the model performs far better in the train-
ing dataset than in the test dataset, then the model is overspecified because, so
long as the datasets are properly representative; it has obviously learned noise that
exists in the training dataset but not in the test dataset.

The answer to determining when the model is well-specified—not too much,
not too little, but “j-u-s-t r-i-g-h-t”—is to keep improving the model until it is just
overspecified, and use the immediately previous iteration just before overspecifi-
cation set in. In other words, keep building more specific models in the training
dataset all the time the improved models do better in the test dataset. Regardless
of performance in the training dataset, as soon as a model returns worse results
in the test dataset than a previous iteration of the model, use the previous iteration
as the final specification level for the model.

It’s well worth noting that the iterations are needed for each diagnostic test.
The problem is that, strictly speaking, the diagnostic symptoms are not indepen-
dent. For instance, however appropriately specified a model is under one set of
circumstances, any change in, say, the dataset required to improve performance
on another diagnostic test will affect the model’s specificity. This implies that any
change in any of the model parameters requires a total recalibration of all the
others, leading to an almost endless improvement process. The practice is not so
tough. Improving model performance in any one of the diagnostic areas does not
usually have any dramatically detrimental impact on the other areas.

Each mining tool features a different set of knobs to twiddle to adjust the
algorithm in use, even when the different mining tools employ the same basic
algorithm. So although the particulars of what has to be done vary from tool to
tool (and even sometimes from release to release of the same tool), what can be
done with each mining algorithm incorporated in each tool is, in general, fairly
easy to describe. In some tool sets, the knobs that a miner could twiddle to tune
the algorithm are completely removed, in which case there’s nothing to be done
to adjust the algorithm. There are still some options to try. You could use a dif-
ferent algorithm, in the case of a multi-algorithm tool set, or you could try a dif-
ferent tool. As a general good practice, it is always worth having more than one

362    CHAPTER 9  Improving the Model

algorithm to try on a dataset. Just as there is no one right answer to most problems,
there is no one right mining tool, nor one right mining algorithm, for all datasets
and all problems.

This section next looks at the knobs that are available to generically adjust each
algorithm and presents them algorithm by algorithm. Note that the discussion here
assumes that the algorithms are wrapped in tools that have eliminated most of
the complexity that is involved in applying the raw algorithm to any dataset. The
techniques discussed here cover only those adjustments that tool vendors often
provide to allow for tuning of different algorithms. But this discussion covers only
algorithms as they are embedded in tools. This section does not cover tuning and
adjusting the various raw algorithms, which is a far more complex process than
covered here.

Just as a reminder, don’t necessarily expect to find controls in each tool that
allow a miner to make these adjustments. On the other hand, this discussion does
not cover all of the possible adjustments that could possibly be made to each
algorithm, just the more popular ones. Some vendors offer more knobs, some
vendors fewer, some none at all. The vendors’ problem is how much complexity
to expose; the miners’ is how much flexibility is available. To discover what any
individual tool offers, it’s important to read the documentation and work with the
help screens for each tool.

Algorithm Adjustment: Nearest Neighbor or Memory-Based Reasoning
Nearest neighbor algorithms offer only two types of basic adjustment: the number
of neighbors to be considered and the method of determining the estimated
value.

Adjusting the number of neighbors is fairly straightforward. The algorithm is
sometimes known as k-nearest neighbor, where k stands for the number of neigh-
bors. So one of the controls offered is sometimes simply called “k,” assuming that
the miner knows what it means.

Increasing k tends to make the model more resistant to noise and therefore
less sensitive to learning nuance. If the model seems underspecified, try reducing
k so that the model is more sensitive. If the model seems overspecified, try increas-
ing k. All that is happening here is that with more neighbors in consideration, the
estimated result is being averaged over a larger group; with fewer neighbors, it’s
averaged over a smaller group.

Ignoring for the moment the effect of the size of the group, the estimated value
is determined by looking at the output battery values for each of the k neighbors
and taking an average of them all as the estimate. In this basic method, all neigh-
bors contribute equally to the final result. Alternatively, weight the value of each
neighbor according to its distance from the instance to be estimated. With such
a weighting mechanism, more distant neighbors have less effect on the estimated
value than nearer ones. In general, with all neighbors equally weighted—using a
simple mean—the algorithm is less sensitive than when using distance weighting.
Thus, as far as neighbor weighting is concerned, if the model is underspecified,

9.2  Improving Model Quality, Solving Problems   363

try using a distance-weighted estimate. If the model is overspecified, use equally
weighted (or unweighted) estimates.

Algorithm Adjustment: Decision Trees
Decision trees split individual variables into leaves. At each leaf, the decision tree
selects the best variable to split that leaf from all of the available variables. The
root covers the whole dataset. At the first split, the smallest leaf cannot cover
more than 50 percent of the instances in a dataset, and it may cover less than 50
percent. (Consider that if the tree makes binary splits, an equal split between
the leaves would be 50/50, and it probably would not be equally balanced. A
nonbinary split tree [like the SVCHAID] would have the smallest leaf cover con-
siderably less than 50 percent.) At the split on the first-level leaf, the smallest next
leaf can cover no more than 25 percent of the instances. Thus, at each level of
splitting, each leaf covers a smaller and smaller amount of the dataset. Eventually
the number of instances covered by any leaf becomes so small that it isn’t repre-
sentative of the population, and the leaves at that point are only characterizing
noise.

It’s an odd difference between real trees and decision trees: whereas real trees
have their roots in the ground and their leaves in the air, a decision tree has its
root in the air (or at least, at the top) and its leaves in the ground (or at least, at
the bottom). In general, the higher up a decision tree that a leaf is located—that
is, the nearer to the root—the more general it is. The further from the root that
a leaf is located, the more specific (i.e., nongeneral) it is. Thus, one way to prevent
trees from learning noise is to set some minimum amount of instances that a leaf
must contain. If that limit is set too high, the tree will be underspecified. If the
limit is set too low, the tree will be overspecified.

There are other metrics that stop trees growing in some algorithms, such as
how significant each split is, with a tree not splitting below some chosen level of
significance. However, all of the methods prevent the tree from growing trivial
leaves that only represent noise. Some tree tools allow the miner to select leaves
to merge. This allows a miner to not only steer tree growth, but also to some
extent incorporate domain knowledge into the tree structure through this type
of guidance. Tree tools offering this feature should be looked on more favorably
than those that don’t.

Whatever technique is used to adjust the specificity of decision trees, it amounts
in the end to having as many leaves as possible that contain enough instances to
be representative of the underlying relationships in a dataset. Too few leaves, or
in other words, leaves with large numbers of instances, and the tree is under-
specified because it can only represent at best the main trends and no detail of
the relationships. Too many leaves, or in other words, leaves with few instances,
and the tree is overspecified because it then represents too great a level of detail.
The key here is to have as many representative leaves as possible so that all of
the detail is captured, and to ensure that they are all truly representative to make
certain that they represent real relationships, not noise.

364    CHAPTER 9  Improving the Model

Selecting Root Splits

Decision trees choose to split each leaf on the variable that the tree algorithm
determines as providing the best split. This applies to the root just as much as
to the other leaves. The SVCHAID tree algorithm used earlier can show a list of
variables ranked by the order in which the tree algorithm would choose each
variable to split the root (or any other leaf if desired). (See, for instance, Figure
9.4 or 9.5.) It is sometimes the case that a better-specified tree results if the second
or third choice variable is chosen to split the root. It’s important not to remove
any variables from consideration for the other leaves, so the first or second choice
candidate variables have to remain in the dataset for other leaves to be split on
those variables. Thus, simply removing the variable on which the initial tree split
the root from the input battery is not suggested here—just change the variable
that is allowed to split the root. (Not all tree tools implement this important
feature, so when using some tools, the miner may not be able to steer the tree
growth in this way. Trees without this feature are of extremely limited value to a
miner and should, if possible, be avoided.)

Empirically, the reason that better-specified trees result from not using the
“best” split of the root is that it rearranges the tree so that the later leaves are
more appropriately split and are more resistant to learning noise. Do note that a
totally different tree is likely to result from using a different variable to split the
root. Recall that there is no one “proper” explanation of a dataset, and there is no
“correct” model of a dataset. Left to its own devices, a tree will produce an expla-
nation or model, but this is not to be regarded as the only one, nor even neces-
sarily the best one. The best one is the one that most appropriately meets the
modeler’s/miner’s needs—and that may not be what the tree algorithm wants to
produce when left to itself. In this case, what’s needed is the best specified tree,
and the controls that need twiddling are leaf size and root split.

Algorithm Adjustment: Rule Extraction
Among the features of rules, there are three that are important to specification:

n	 They cover some number of instances.
n	 They have some probability of being true.
n	 Each rule has a level of complexity depending on how many conditions

can be included in each rule.

All these features can be adjusted to change the specificity of the model.
Rules are required to cover some minimum number of instances in the dataset.

If the rules are required to cover more instances, then this will result in generating
less specific rules. Contra wise, the fewer instances required as a minimum for a
rule to apply to (cover), the more specific the rule.

Rules will almost certainly not be perfect. In almost all cases, there will be
exceptions and counter-examples to any general rule. (These exceptions also can

9.2  Improving Model Quality, Solving Problems   365

be very interesting in explaining a dataset.) The number of instances in which the
rule is correct, divided by the number of instances to which the rule applies,
correct or not, gives the accuracy (also sometimes called probability level or
confidence level) of a rule. Requiring a higher minimum level of accuracy pro-
duces more general models; lowering the required minimum accuracy increases
specificity.

Rules can be constructed from multiple conditions. The conditions are the “if”
part of the rule. Each additional condition can be joined by logical connections
such as “If . . . and . . . and . . . then . . .” This rule has three conditions. Some rule
extractors—by no means all—can incorporate other logical connectors such as
“or” and “not.” The more conditions allowed in a rule, the more specific the rule
becomes; the fewer conditions permitted, the more general the rule. Similarly,
allowing more variety of logical connectors enables the resulting rules to be more
specific; less variety restricts the specificity.

Algorithm Adjustment: Clustering
There are many different algorithms that perform unsupervised clustering; there
are also many that perform supervised clustering. They do not work in the same
manner, and so each particular algorithm will almost certainly produce a different
set of clusters from the other clustering algorithms. However, and usefully for the
miner, regardless of the considerable technical differences, the “knobs” appear
much the same for all clustering techniques.

Clustering algorithms offer essentially two adjustments. One is the number of
clusters specified by the miner. It’s common that the algorithm requires the miner
to select some number of clusters for the algorithm to use to cluster the data. A
“good” number of clusters may not be apparent from any well-founded basis, even
to a highly experienced miner. It’s rather like simple binning—work with cluster-
ing, and discover what seems to work with the type of data on hand. Not a theo-
retically satisfactory state of affairs, but there it is. Obviously, the more clusters
selected, the more specific the resulting model; the fewer clusters selected, the
more general the model. This scenario is sometimes called k-means clustering.
The “k” is the number of clusters (rather like k-nearest neighbor—data miners are
apparently not an imaginative lot at naming algorithms!). The “means” part of the
name is derived from the fact that clustering algorithms of this basic type work
with the means (average values) of various clusters to decide which instances are
included in which clusters.

The second adjustment works with a set of slightly different clustering algo-
rithms that try to find some appropriate number of clusters, rather than having
the miner choose some arbitrary number. If left to themselves, these clustering
methods have a rather unfortunate habit of ending up with every instance in a
separate cluster. Thus, analogously to the instance count in decision tree leaves
and the instance count in extracted rules, in clustering algorithms that try to dis-
cover an appropriate number of clusters, as well as to which cluster to assign a
particular instance, it’s important to limit the algorithm’s enthusiasm and require

366    CHAPTER 9  Improving the Model

some minimum number of instances in each cluster discovered. Just as before,
the higher the minimum, the more general the model; the lower the minimum,
the more specific the model.

Algorithm Adjustment: Self-Organizing Maps
The specificity of a SOM requires a fairly straightforward adjustment—more
neurons, more specificity; fewer neurons, more generality. With very few neurons,
the map will be extremely general. Imagine a 10-neuron × 10-neuron map. Then
compare that map to one with 500 × 500 neurons. Obviously, with more neurons,
more detail shows. Adding neurons makes the map more specific in that it reveals
more detailed relationships.

An overspecified SOM (too many neurons) tends to show all of the fine
detail—the relationships that exist between small numbers of instances that are
likely mainly noise. An underspecified SOM (too few neurons) tends to show only
broad, sweeping generalities.

Note that creating a map in the training dataset and applying it to the test
dataset to see if it produces similar maps (the diagnostic test for over/underspecifi-
cation) works for SOMs just as well as for any other mining algorithm. However,
the key is to make sure that the explanations revealed by the map are similar, not
that the appearance of the two maps is approximately identical. The physical
layout will almost certainly be different, but the relationships should be the
same.

There is an additional way to judge the specificity of a SOM. If a SOM develops
very few clusters (say, two or three), so long as the data is reasonably complex,
the chances are that the SOM is underspecified. With more than 20 clusters, unless
the dataset is huge, the map may well be overspecified—but even if it isn’t, it may
be too complex to explain (which is the whole purpose of a SOM). If the com-
plexity is genuine, it’s worth breaking the dataset into overlapping sets of variables
in multiple input batteries and explaining the whole dataset, section by section.
The overlapping variables in input batteries help to connect the explanations in
one battery to the explanations in the next.

Although not directly related to appropriate specification of the SOM, a
useful technique for improving the explanatory insight from a SOM can be normal-
izing distributions. (See the section titled Reformatting Data: Normalizing Distribu-
tion.) SOMs sometimes appear to be underspecified—that is, they don’t show
much detail in the nature of the relationships—when the difficulty actually is
that the ranges of values in a variable are not presented to the SOM conveniently.
Normalizing distributions often produces more insight than trying for more
specification.

Algorithm Adjustment: Support Vector Machines
Support vector machines are another form of clustering (see the section titled
Algorithm Adjustment: Clustering) and have many similar issues. The main speci-
ficity issues that are particular to support vector machines concern how the

9.2  Improving Model Quality, Solving Problems   367

overlapping clusters are to be separated—and almost all clusters in real-world
datasets overlap. In addition to the same “knobs” that clustering algorithms
have, there is usually one that determines the “tightness” or “stiffness” of the
cluster boundary. The tension really determines the curvature of the boundary
between the clusters—more flexibility, more specification; less flexibility, less
specification.

Essentially, the more flexible the boundary, the more easily it is able to modify
each boundary to surround each cluster; but too much flexibility, and it will be
cutting out relationships that do exist in the training data, but not in the test
data.

Algorithm Adjustment: Linear Regression
The basic linear regression algorithm is a masterpiece of mathematic simplicity
and elegance. In its basic form, it has no “knobs” at all. However, no tool applies
linear regression in its basic form—usually multiple linear regression at the very
least. Modifications, all of them needed, deal with all kinds of problems—the need
for all numeric input, its inability to deal with missing values, and many similar
problems. Most of these problems, and how to deal with them, were discussed
earlier.

Linear regression inherently resists overspecification. After all, it can only
represent linear relationships, and in this sense is the ultimately “stiff” fit to any
dataset. It’s a linear relationship or nothing. However, although the data mining
interpretations of the linear regression theme still adhere to the basic premise of
a linear fit, there is one control that impacts specification in some datasets.

The linear regression algorithms in mining tools are usually one of a variety of
“robust” regressions. This means that they are modified to accommodate many of
the problems that beset nonrobust regression. The main one that concerns spec-
ification is the presence of outliers. The problem is that data points that lie a long
way from the regression plane, and are at the extremes of the range, dispropor-
tionately affect the results. Imagine it as a seesaw problem. The effect that any
rider has on the seesaw depends on how near to the ends each sits—the farther
out, the more effect. Riders in linear regression also get bigger (same as heavier)
the farther they are from the regression line. So imagine 20 children all sitting
near the pivot point of the seesaw. Moving one doesn’t make any huge effect.
However, sit an elephant on one end, and the elephant has more effect than all
the children you care to pile on the middle of the seesaw. The same thing occurs
with linear regression. The outliers can move the regression plane out of all
proportion to their actual importance. This oversensitivity to a few data points
(possibly only one) is an example of overspecification. The more robust a
linear regression, the more general it is; the less robust the regression, the more
specific.

However, an astute reader will note that normalizing the distribution (see the
section titled Reformatting Data: Normalizing Distribution) in part removes the
inordinate effect of outliers in any case. Robust regressions are really only needed

368    CHAPTER 9  Improving the Model

for datasets that are not prepared as described here. When the data is prepared
in accordance with good practice procedures for data mining, the robustness of
the regression makes little difference. Thus, this “knob” and any others intended
to affect specificity of linear regressions have little impact in adequately prepared
datasets.

Algorithm Adjustment: Curvilinear Regression
The real difference between linear regression and curvilinear regression is that
the seesaw referred to in the previous section is more like a piece of rope—not
much good for riding. But suppose that the children, fed up with an elephant
sitting on their seesaw, go off to play in the sandbox. They are scattered across
the sandbox in no particular order. A stiff plank of wood, no matter how it is
arranged to lie across the edges of the sandbox, probably won’t come close to
many of the denizens. A piece of rope, however, is flexible enough to be passed
from hand to hand so that all of them can, without moving their position, hang
on to it.

So much for children in sandboxes. When it comes to data points, the purpose
is to find a flexible line that best characterizes any curvature that exists in the
dataset. To do that, it has to pass as close as possible to all the points that repre-
sent the true curvature present in the data without being too flexible. Too much
flexibility and the curve starts to represent the fluctuations that are present in the
training dataset but that aren’t in the test dataset—or elsewhere in the world. Too
much flexibility and the curve represents noise.

The “knob” in nonlinear regression is the amount of curvature allowed in the
regression curve. It may be called “degrees of freedom” or “magnitude of expo-
nent” or “stiffness” or quite a lot of other things according to the toolmaker’s
whim. However, the knob simply adjusts the algorithm to allow more (or fewer)
kinks, twists, bends, and curves. The more flexible the curve is allowed to be, the
more specific the model; the less flexible the curvature, the less specific or more
general the model.

Algorithm Adjustment: Neural Networks
Neural networks offer the ultimate in flexibility of fitting a regression curve to a
dataset. Unlike curvilinear regression, if properly set, they can induce greater stiff-
ness on some parts of the curve than on other parts. Curvilinear regression is
limited to having the same degree of stiffness, or flexibility, over the whole of the
curve. Exactly as with curvilinear regressions, specificity of the models produced
using neural networks is accomplished by controlling the amount of flexibility
allowed the curve. However, along with the additional power of neural networks
goes a good deal more complexity.

Neural networks are built from artificial neurons. Conceptually, each of the
input battery variables is assigned to an input neuron, and each output battery
variable is assigned to an output neuron. Between the input and output neurons
there may be—and almost always are—what are called hidden neurons. They are

9.2  Improving Model Quality, Solving Problems   369

hidden in the sense that they are sandwiched between the input and output
neurons, and like the cheese in a cheese sandwich where the slices of bread hide
the cheese, so the input and output neurons hide the hidden neurons.

Hidden neurons are often arrayed in layers. A network containing one hidden
layer connects all of the input neurons to one side, and all of the output neurons
are connected to the other side. With more hidden layers, one layer connects to
the next—so you’d have input, hidden, hidden, and output in a four-layer network.
Several things contribute to the allowed flexibility of the fitted curve, but in
general they all boil down to more neurons, more flexibility. The number of input
and output neurons is fixed—one per variable—and can’t be altered without
changing the dataset. What varies is the number of hidden neurons. The number
of hidden layers can alter too, of course, but that has less effect on curve flexibil-
ity and more on learning speed.

Rule of thumb: Start with three layers (so one must be a hidden layer). Usually,
the output is a single neuron corresponding to the single-variable output battery.
Structure the hidden layer so that it has half the number of neurons as the input
layer. It’s a rule of thumb, and a starting point only, but in manually set net-
works, it often proves to be a good place to start. Many tools use automated
procedures to estimate an appropriate beginning network architecture.

In general, more neurons make for a more specific model; fewer neurons make
for a less specific model.

Algorithm Adjustment: Bayesian Nets
Naïve Bayesian networks look, if their architecture is drawn out, rather like neural
networks. However, these networks are built of nodes, not neurons. The internal
complexity of each node is different from that of neurons, but the architecture in
which the nodes are arranged appears similar. Naïve Bayesian networks may have
no hidden layer, so the inputs connect straight to the output. More complex
Bayesian networks still may not have layers, but separate clusters of nodes cross-
connected in complex ways.

As a rule of thumb, the complexity in Bayesian networks derives from both
the number of nodes and the number of interconnections between the nodes.
It’s more the complexity of interconnections that is important; but complexity of
interconnection is roughly proportional to the number of interconnections, and
it is easier to count interconnections than to try more involved methods of deter-
mining complexity. Sometimes, especially when a Bayesian network is induced
from a dataset, the network can be extremely complex indeed. Even there, count-
ing nodes and interconnections seems to work well as a complexity estimate in
practice.

370    CHAPTER 9  Improving the Model

Algorithm Adjustment: Evolution Programming
Evolution programming produces program fragments that can be embedded into
complete programs for execution. The fragments are usually more or less complex
logical or mathematic statements that express the relationship between input
battery and output battery. Internally, the algorithm uses populations of candidate
programs that evolve using techniques analogous to mating and mutating. Most
of the knobs that control the evolution process have more influence on speed
of convergence (how quickly the best program fragment is discovered) than on
specification of the resulting model. Of course, if the population sizes, breeding
rates, mutation rates, and so on aren’t appropriately set, the model might appear
to be underspecified, but that is really a result of a poor learning process, not
inherently in the way the model is specified. It’s worth noting, though, that of the
algorithms mentioned here, it is really only this one that separates the learning
process from model specification. It’s true that neural network algorithms also
separate the learning process from model specification, but not as presented in
mining tools, only in the raw algorithm. The commercially available tools imple-
menting evolution programming, however (at least those known to the author),
do expose knobs for adjusting model specification and, quite separately, controls
for adjusting the learning process. Commercial tools generally don’t expose con-
trols for adjusting the learning process for other algorithms.

The model resulting from an evolution programming tool is itself a program.
It has a degree of complexity that depends on how long it can be (that is, how
many lines of program code it can include) and what mathematic and logical func-
tions can be included. The longer the program, or the more the variety of func-
tions, the greater the complexity and the higher the degree of specification. The
shorter the program, or the fewer the variety of functions, the less the degree of
specification. In fact, program length has far more effect on level of specification
than variety of functions permitted. Program length, because it limits how many
discrete program steps can be included in the final program, seems to have far
more impact on specification than allowing or not allowing complex mathematic
or logical structures as part of the evolved program such as sine, exclusive, or
hyperbolic tangent, for instance.

Algorithm Adjustment: Some Other Algorithm
This listing of algorithms is certainly not comprehensive. There are other algo-
rithms included in some tools that are not covered here. The author has tried
to include the most popular algorithms, and those that seem to be gaining in

Rule of thumb: More complex networks are more likely to be overspecified
than less complex networks. So more nodes, more connections, or both means
more specificity. Fewer nodes, connections, or both means less specificity, thus
more generality.

9.2  Improving Model Quality, Solving Problems   371

popularity, even if not yet included in commercially available tools as of this
writing. However, new algorithms are continually being invented, and even were
that not the case, there are still several commercial mining tools that implement
algorithms not mentioned here. Those not mentioned here are usually only imple-
mented by a single vendor in their tool. However, at least a couple of dozen mining
algorithms are commercially available at this writing but are not included here.
Many of them are sufficiently similar to one of the algorithms mentioned here that
they are, as far as tuning specification goes, simply different flavors of those that
are already discussed. Others may seem to be sufficiently different to justify being
labeled as different algorithms. However, so far, all the mining algorithms have
certain broad features in common, at least as far as model specification goes.

First, all algorithms pretty much separate the learning process from the speci-
fication process. There are almost always some controls on raw algorithms—and
certainly on any of the more complex raw algorithms—that tune the training or
learning process and a pretty much separate set of knobs that tune the specifica-
tion process. It is generally the case that when wrapped in tools, the tool vendor
hides most or all of the complexity involved in the training or learning process.
When complexity is exposed, it is usually for knobs to tune the specification
process. This is because it turns out, in general, to be much harder to find a good
automatic specification tuning process than to find a good automatic training
tuning process.

All mining algorithms available in tools today can be viewed as working in one
of two fundamental ways. Either they chop instances up into discrete chunks, as
in decision tree leaves or clustering algorithm clusters, or they find continuous
estimates, as with regressions or neural networks.

With any algorithm that chops instances into discrete chunks, adjusting a knob
that decreases the minimum permitted size of the chunks always increases
specificity of the resulting model. Increasing the minimum permitted chunk size
decreases model specificity.

Algorithms that assemble a continuous estimate always seem to require a
number of internal structures. For neural networks, it’s neurons; for Bayesian
networks, it’s nodes and interconnections; for self-organizing maps, it’s neurons;
for evolution programs, it’s program steps; for nonlinear regression, it’s degrees
of freedom; and so the list goes on. Whatever the exact nature of the internal
structure, the rule of thumb is that more of it increases specificity, and less of it
decreases specificity of the resulting model.

These two generalizations about chunk size and internal complexity seem to
have held true so far, and there are also good theoretic grounds to support these
conclusions. Thus, whatever mining algorithm is embedded in a tool, if adjust-
ments affecting specificity are available, they will almost certainly influence, as
appropriate, either chunk size or internal structural complexity. Once a miner has
identified what these knobs are, adjusting them should tune the specificity of any
mining algorithm in any modeling tool.

372    CHAPTER 9  Improving the Model

9.2.5  Problem: Insufficient Data

One of the possible problems a miner might find is that the test dataset isn’t rep-
resentative of the same relationships that are in the training dataset. This might
be indicated when the following occurs:

n	 The regression line fitted to the predicted value versus residual value XY
plot isn’t effectively flat.

n	 The model’s predicted values are all systematically skewed to be either
higher than the actual values or lower than the actual values.

n	 The regression line fitted to the actual value versus predicted value XY
plot is far from laying on the lower-left, upper-right diagonal.

n	 The value of the smoothed residual variance estimate is so great over
some part of or all of the plot as to make the predictions unsatisfactory.

Having different underlying relationships in different datasets is normally a
problem with shortage of data. Without sufficient data, it often happens that
noise predominates because, when split into the three required datasets, there
isn’t enough data to truly represent the underlying relationships adequately
in the separate datasets. Because it’s hard to build accurate and reliable models
without representative data, rule-of-thumb checks can help a miner to make sure
that there is sufficient data, and that the training, test, and evaluation datasets
are all also representative of the underlying structures and patterns in the data
to produce accurate and reliable models. Earlier in this chapter (see the section
titled Reformatting Data: Replacing Missing Values), we discussed how to check
for data adequacy by building several check models. This discussion assumes
that these checks have been done, and that the dataset as a whole, and the sepa-
rate training, test, and evaluation datasets, passed those tests for consistency. If
those tests have not been done, or if the dataset did not pass the tests, then
the problem is almost certainly insufficient data—and considerably insufficient
data too. To arrive at this diagnosis almost certainly means that there simply isn’t
enough data available for a reliable model to be discovered, the rest of this
discussion notwithstanding.

If you are reading this section during model diagnosis, if the tests have not yet
been done, or if the tests indicated insufficient data, stop reading and go and find
more data, or accept the model as the best that can be had under the circum-
stances. The remainder of this section applies only if the earlier tests were applied
and successfully passed.

Anyone who is still reading this section as a diagnostic aid rather than for
general information almost certainly has a sampling problem—but it’s also prob-
ably exacerbated by a variable representation problem. Dividing a source dataset
into training, test, and evaluation datasets requires that each instance in the source
has a proportional chance of being assigned to one of the datasets. Thus, with a
60/20/20 division, any instance has to have a 60 percent chance of being assigned
to the training dataset, a 20 percent chance of being assigned to the test dataset,

9.2  Improving Model Quality, Solving Problems   373

and a 20 percent chance of being assigned to the evaluation dataset. Simply taking
the first 60 percent of a dataset as the training dataset, the next 20 percent as a
test dataset, and the remainder as an evaluation dataset is a dangerous practice
and is fraught with problems—even if the datasets produced this way pass the
rule of thumb tests for representativeness.

The potential problem comes from the fact that often, and frequently unbe-
knownst to the miner, the data in a source dataset is in some sort of order. The
CREDIT dataset, for instance, has all the BUYER = 1 instances first, and all the
BUYER = 0 instances following. This is because of the way that the dataset was
balanced in that all the BUYER = 1 records were selected first and the appropriate
BUYER = 0 records were later appended to the file to achieve the needed balance.
If the first 60 percent of this dataset were used for training, the test and evaluation
datasets would have no BUYER = 1 responders at all.

The rule of thumb checks for representativeness do not check all of the
variables in a dataset. They only work at all so long as the instances in the three
datasets are indeed chosen at random from the source data. So if the three datasets
were not built using random selection, rebuild them.

However, the possible problem that introduced this section—where training
and test datasets are not representative of the same relationships—may be an
indication that the dataset needs balancing. The fact that the relationships don’t
represent the same patterns in the test and training datasets only applies between
input and output batteries. It’s quite possible to have all of the three dataset input
batteries representative of the same patterns in all datasets but find that the output
battery isn’t representative—which is exactly the case in the unmodified CREDIT
dataset with BUYER = 1 occurring for about 1 percent of the instances. Even
testing input and output batteries separately to ensure that each is representative
doesn’t solve the problem, because it is possible to have the input battery repre-
sentative in all three datasets, the output battery representative in all three data
sets, but have dissimilar relationships between input and output batteries in all
three datasets. How?

In the CREDIT example, assume the input battery in all three datasets actually
is fully representative of the same patterns. Testing the output battery in all three
datasets would reveal only that, for the binary variable that constitutes the whole
output battery, about 1 percent had the value 1 and 99 percent had the value 0,
and that this was true in all three datasets. As far as possible, testing the input and
output battery separately would reveal each as being representative. However,
with such a low density of responders in the output battery, it is possible that the
few instances that did occur would have different relationships between input
and output battery in each dataset.

The only real answer is to check that the relationship between input and
output batteries is similar in all three datasets—but that isn’t accomplished by a
rule of thumb. That calls for full-scale modeling of any relationships, which is what
the miner is trying to do in constructing the model in the first place. There is no
shortcut, only good modeling practice.

374    CHAPTER 9  Improving the Model

Thus, the possible problem that introduced the section may well be a sign that
the dataset needs balancing in order to build a robust model. Failing that, rule-of-
thumb checks notwithstanding, there simply may not be enough data. The rule
of thumb is a guide, not a certainty, and only modeling finally discovers whether
the data is in fact sufficient to define a satisfactory model. If, despite all efforts,
this turns out to be the case, the only answer is to get more, or better, or more
and better data.

9.2.6  Problem: Uneven Data

Another problem a miner might find is that the training and test data represent
some relationships better than others. This may be indicated by some residual
values that are more common than others.

An input battery of any complexity contains a huge number of relationships.
The only ones of interest to a modeler are, in a classification model, those that
relate to the output battery and, in an explanatory model, those that relate to the
business problem. Naturally, some of the patterns in the input battery will be more
indicative of output battery states than other patterns (“better correlated,” to use
a more technical term). One problem is that the correlation of the patterns in the
input battery may change depending on various factors, such as the actual value
of the input battery variable(s).

Imagine a dataset containing a single-variable input battery and a single-variable
output battery. Suppose that when the values of the input battery are low in their
range, the correlation is very good, but as they increase, the correlation becomes
less in proportion to the magnitude of the input. What would the residuals look
like? A glance back at Figure 9.17 shows what might be expected.

The correlation between two variables, which is traditionally measured over
the whole of the range of both variables, usually does vary from one part of the
range to another. It is possible for multivariate datasets, as the input battery almost
always is, to behave this way too. However, the impact is usually more “blurred”
when many variables are involved. As the patterns in one set of input battery
variables lose their relevance, other patterns, perhaps in other variables, assume
higher relevance.

In many datasets, the correlation between input battery and output battery
turns out to be pretty even. It’s still true, nonetheless, that some parts of the
multivariate range will be more correlated with the output battery than other
parts. It is possible for the correlation between input battery and output battery
to change in “steps” rather than smoothly. When this happens (not often in prac-
tice) the residuals also tend to change in steps and to show “clumps” of common
residual values.

Far more common is the situation shown in Figure 9.25, or some variant of it
with more variables. In some parts of the range of data, the relationship is reason-
ably well defined. The problem is that in other parts there is no data to define the

9.2  Improving Model Quality, Solving Problems   375

relationship—if there is any. The dashed line indicating the relationship between
about 0.50 and 0.62 on the Y axis and 0.31 and 0.52 on the X axis simply has no
data defining what it might be. The mining algorithm can make a “best fit” through
this area based only on the influence of the distant points where data occurs more
densely. It’s not that the mining algorithm made any errors in discovering how to
make the best fit. The problem is that there aren’t many data points around in
important parts of the relationship to give much clue as to the true relationship
in that area. If the test dataset contains any data points in that area, the model is
not likely to have estimated the actual underlying relationship.

Now, to be sure, Figure 9.25 is an exaggeration to illustrate a point. The sorts
of datasets modeled in data mining will have far more data points than those
illustrated—and far more variables. However, the concept still applies. Where
input battery data in its multivariate distribution clusters together, the relation-
ships will be much better defined than in areas where the density of points is
less dense. If, as often happens, the data does have such clusters, variance of the
residuals will tend to increase and decrease with the density of the data in
the input battery. The “patches” or clusters in the input battery will tend to be
reflected as patches, or clusters, in the residuals.

Perhaps nothing can be done about the problem. Some things in life come in
patches or clusters, and the data simply reflects this as a fact of life. Data miners
don’t always accept this as a valid excuse and do things like balancing datasets
to account for it, which will work in this case too. However, before balancing a
dataset, it’s worth ensuring that the data as collected for mining does, in fact,
reflect the full range of behaviors that the world offers and that the dataset hasn’t
been selectively truncated in some way. Selectively including, or not including,
some instances introduces bias into a dataset, something that needs to be carefully
monitored. (See Section 9.2.7 for a fuller description of bias.)

FIGURE 9.25

Ill-defined portions of a relationship.

376    CHAPTER 9  Improving the Model

9.2.7  Problem: Estimation Bias When Mining a Model

A miner might find that the model is “biased” into preferentially producing certain
predicted values. (See Section 9.2.13 about variance bias.) This may be indicated
by the following:

n	 Patches, clumps, or clusters of residuals in the residual lines.
n	 The regression line fitted to the actual value versus predicted value XY

plot is far from laying on the lower-left, upper-right diagonal.

Bias here is used in exactly its colloquial meaning—to lean toward, to be pre-
disposed toward, or to favor something. In mining, therefore, a mined model is
said to be biased when it has a tendency to produce one, or several, particular
classifications. A mined model is also biased when it produces estimates that are
all offset by a fixed amount, or by an amount that varies in fixed relationship to
the magnitude or class of the estimate. As an example, a model choosing which
of several cross-sell products to offer that predominantly chooses the same product
from the selection available is biased in favor of that product. Similarly, a model
to estimate the return on investment from a project that consistently under
estimates the actual return by some fixed amount or by some fixed percentage is
also biased. Bias in the estimates of mined models are relatively easy to address
and may be produced by underspecification (see Section 9.2.4).

Although an appropriately specified model should not have any bias in its
residuals (see Sections 9.1 and 9.2.4), sometimes a mining algorithm may have
trouble if some of the relationships are not well represented in the data. When
this is the case for the output battery, it calls for balancing the dataset; this may
also work to help the model learn relationships that are important but not well
represented in the source dataset.

It’s worth noting that bias is a crucial issue when constructing datasets and
during deployment, but these issues don’t arise during mining and refining a model
and are not covered here.

9.2.8  Problem: Noise Reduction

A miner might discover that to avoid learning noise, the tool was too restricted
in the flexibility it was allowed when learning the relationships. This may be
indicated when the following occurs:

n	 There is no significant difference in naïve and mined model performance.
n	 The mean of the residuals is not 0.
n	 The curve fitted to the actual value versus predicted value XY plot differs

markedly from a straight line where it passes through the data.
n	 The value of the smoothed residual variance estimate is so great over

some or all of the plot as to make the predictions unsatisfactory. (See
Section 9.2.16 on noisy and irrelevant variables.)

9.2  Improving Model Quality, Solving Problems   377

Noise is a problem, and using an underspecified model is one technique that
makes the model more noise resistant. However, finding an appropriate specifica-
tion level is better than underspecifying a model just to enable it to resist learning
noise. (Section 9.2.4 describes in detail how to appropriately specify a mining
algorithm regardless of the level of noise in a dataset.) Nonetheless, it may be
possible to increase the specificity of the mining algorithm if some of the noise
present in a dataset can be reduced. The intuition here is that if some of the noise
can be removed from a dataset, the model can better learn the underlying relation-
ships without having to be as noise resistant. Naturally, any noise-removing tech-
niques that are applied to the source dataset have to be duplicated on any runtime
data during deployment, so the transformations to reduce noise have to be carried
forward.

One important noise-reduction technique is missing value replacement. (See
the section titled Reformatting Data: Replacing Missing Values.) Replacing missing
values may allow a more specific model to be created on a dataset than before
they were replaced. Replacement tends to have this noise-reducing effect even
on algorithms that can handle missing values without replacement. This action
also tends to reduce the variance of the residuals or, in other words, to produce
more precise (or more confident) estimates, even if the specification level of the
model isn’t changed.

Another noise-reduction technique is binning; the supervised binning tech-
niques for input battery variables are particularly useful. (See the section titled
Reformatting Data: Binning.) Another, perhaps preferable, alternative to binning
is normalizing the distribution of the input battery. (See the section titled Refor-
matting Data: Normalizing Distribution.) If the noise is in the output battery, equal
frequency binning is a good practice, although redistribution of the output battery
distribution is again a better alternative.

Manual aggregation of variable detail also sometimes works well, especially if
a dataset has several aggregation levels. It’s often beneficial to have variable aggre-
gations along some common metric. For instance, aggregating hourly sales to daily,
daily to weekly, or weekly to monthly (depending on the needs of the business
problem) may produce better estimates. If most of the aggregation periods are
monthly and sales are aggregated daily, for instance, a common aggregation period
could very well reduce noise. Either convert the aggregation period to daily by
taking 1/29th, 1/30th, or 1/31st of the monthly amounts as appropriate to the
month, or roll up daily to monthly sales amounts. Common aggregation periods
tend to introduce less noise and produce less residual variance. However, rolling
up isn’t a choice if the estimates needed are for short periods, say daily. The choice
then is to try a “roll down” of monthly to daily.

Another noise-reduction technique that works when there are a fair number
of variables in the input battery is to “bundle” groups of variables together. (This
is a data miner’s version of what statisticians think of as principal curves and
surfaces analysis.) Many mining tools provide information about how well the
variables correlate with each other. If the tool available doesn’t provide such

378    CHAPTER 9  Improving the Model

information, Excel will do the job, although it’s more time consuming. Take
bundles of variables that correlate well with each other, create a model using one
bundle at a time as the input battery, and use the original output battery to build
the bundle model. When all of the commonly correlated variables have been
grouped into bundles, replace the bundles in a new input battery with the bundle
predictions. Bring any unbundled variables forward into the combining model.
This creates a composite model built from several models, with input variables
feeding into bundling models, the output from which becomes the input to later
combining models. Figure 9.26 illustrates this concept.

Even when well specified, it is always tough to create a model that learns the
underlying relationships (called signal) and at the same time resists learning the
spurious relationships (called noise) that exist in any dataset. The ideal would be
to determine some sort of signal-to-noise ratio and use it to calibrate the model.
Unfortunately, that is an advanced mining topic not covered here. However, one
technique is to create an initial model that is as good as possible, then add the
output from that model to the original input battery as another variable, and
remodel the newly created input battery. The idea is that the initial model will
have learned some of the signal at least. The second model can use this as a start-
ing point and, with the initial model’s output as an added feature, may be able to
improve on the final output.

FIGURE 9.26

Combining bundles of variables to reduce noise.

9.2  Improving Model Quality, Solving Problems   379

9.2.9  Problem: Categorical Correlation

A miner might find that there are many categorical values in the input battery that
all represent a similar phenomenon or phenomena. This may be indicated when
the following occurs:

n	 The residuals histogram (and, therefore, the residuals distribution) is
obviously not normal.

n	 The apparent ranges of actual and predicted values are different or the
density of points is not uniform and not symmetrical about a diagonal line
from lower left to upper right in the actual value versus predicted value
XY plot.

n	 The curve fitted to the actual value versus predicted value XY plot differs
markedly from a straight line where it passes through the data.

Categorical variables, just as with other types of variables, can carry informa-
tion that is sufficiently similar to each other so that the variables seem effectively
identical to the modeling tool. Age and income are typical examples of this
phenomenon in many datasets. Age and income can be represented as categories,
and if this were done, both age and income, on average, might very well increase
together.

Sometimes there are several to many variables carrying essentially similar rela-
tionships. Many mining algorithms make what is called an assumption of inde-
pendence. Independent variables do not have similar relationships to each other.
Similarity of information content makes variables “dependent” on each other in
the sense that what value one variable takes on depends on the value taken by
another variable. When many variables carry similar information, some mining
algorithms give undue weight to the evidence that they provide—rather as a
human may be persuaded by the behavior of a crowd, even if everyone is making
a mistake. For instance, if everyone read the New York Times and was very much
influenced by the film critic, asking 100 people who all agreed that a film was
excellent doesn’t mean any more than the single critic’s opinion if the 100 all
reflect the critic’s opinion. Thus, the views of the readers would be dependent
on the views of the critic. It’s similar with variables. In the same way that you
might think that you had 100 independent reviews of a film, so the mining algo-
rithm “thinks” it has multiple sets of evidence leaning in a particular direction. If
all of the variables actually represent different expressions of the same underlying
phenomenon (technically called a latent phenomenon), the mining algorithm may
be unduly influenced by the apparent predominance of the evidence. Bundling
highly correlated variables serves, in part, to overcome this tendency toward bias.
(See Sections 9.2.7 and 9.2.8.)

Regardless of the desired resolution of the output, the output can’t have
any finer resolution than the granularity of the input battery allows. When many
variables carry few categories, and particularly when the input battery variables
are all highly dependent, the predicted values may be clumped into discrete

380    CHAPTER 9  Improving the Model

groups. Perhaps, after bundling, the categories in the input battery are still
too few to provide sufficient resolution for the prediction (or understanding,
if the model is an explanatory one). If the input battery does have many categories,
it may be that most of the categories are only sparsely represented, many of
them represented by relatively few instances as a proportion of the dataset.
In this case, it might be worth trying to balance the dataset carefully to better
represent categories of interest. In the end, it may simply be that the data
available doesn’t contain relationships sufficient to provide the resolution or
continuity of output needed. Then the only choice is to find data with more
variability.

9.2.10  Problem: Partial Colinearities

Another possible problem is that a large number of variables in the input battery
may carry similar information over parts of their range. This may be indicated
when the following occurs:

n	 The residuals histogram (and, therefore, the residuals distribution) is
obviously not normal.

n	 The apparent ranges of actual and predicted values are different, or the
density of points is not uniform, and not symmetrical about a diagonal line
from lower left to upper right in an actual value versus predicted value XY
plot.

n	 The curve fitted to the actual value versus predicted value XY plot differs
markedly from a straight line where it passes through the data.

Variables, quite naturally, vary their values over their range. However, the vari-
ance is usually not uniform over the range of the variable. This nonuniformity
shows up in the variable’s distribution, which in at least some sense is a descrip-
tion of the nonuniformity of variance of a variable. The central “hump” of the
normal distribution, for instance, represents a clustering of values about the
variable’s mean. Glance back, for instance, at Figure 9.9. It’s also possible for
variables to have actual, or relative, gaps in their distributions, as shown earlier
in Figure 9.25.

When individual variables exhibit such behaviors, it usually doesn’t cause a
problem. Even when many variables show such behaviors, it still causes little
problem—unless the variables are partially dependent on each other. Perhaps for
some parts of their range, the variables are somehow linked, whereas over the
rest they aren’t. Apart from common missing value ranges this situation is rare.
However, when it does happen, it can affect the output quite severely. The cor-
related subranges can bias the output values so that the residuals have a far higher
variance in some parts of their range than in other parts, or the residuals seem
patchy in some areas as the model makes systematic errors. Distribution normal-
ization, or possibly binning, may ameliorate this problem.

9.2  Improving Model Quality, Solving Problems   381

9.2.11  Problem: Data Not Representative of the Business Problem

A miner might face the problem of an input battery that, although it checks as
representative of the population, has some parts of the output battery range rep-
resented by very few instances (records) and other parts represented by very many
instances. This may be indicated when the following occurs:

n	 The residuals histogram (and, therefore, the residuals distribution) is
obviously not normal.

n	 The apparent ranges of actual and predicted values are different, or the
density of points is not uniform, and not symmetrical about a diagonal line
from lower left to upper right in an actual value versus predicted value XY
plot.

n	 The curve fitted to the actual value versus predicted value XY plot differs
markedly from a straight line where it passes through the data.

n	 The value of the smoothed residual variance estimate is so great over
some or all of the plot as to make the predictions unsatisfactory.

Consider a dataset in which only 1 percent of the instances were BUYER = 1.
These relatively few records would be insufficient for many mining tools to
adequately model. (“Adequately” only means “well enough to impact the business
problem.”) The answer is to balance the dataset. The reason for the rebalancing
is fundamental to the process of modeling and mining. Initially, it is important to
both modeler and miner for the dataset to be as unbiased as possible. Thus, the
dataset should represent as true a state of the world as is possible. It is only from
this beginning that the dataset can be carefully adjusted to least distort any other
relationships, save those specifically balanced. This ideally results in a dataset that
is still as representative of the world as possible but is more amenable to the needs
of the mining tool. The reason for the balancing adjustment is that although the
initial dataset may be as representative of the world as possible, it isn’t necessarily
representative of the business problem. Adjustment is needed to make the dataset
representative of the business problem as well as of the world.

9.2.12  Problem: Output Limiting

A miner might discover that the tool may be clipping the output predictions. This
may be indicated when the regression line fitted to the actual value versus resid-
ual XY plot is not horizontal.

Some tools limit the range of the output predictions to the range discovered
during mining; some don’t. The idea is, for instance, that if the minimum value in
the training dataset range was 0, it makes little sense to have a predicted value of,
say, −0.4. However, assuming that the model is not perfect, it will make errors,
and these will naturally tend to range both above and below the actual value—
including at the top and bottom of the range.

382    CHAPTER 9  Improving the Model

Whether or not the output limiting is important to the business problem, it
will produce apparent distortion in the residuals similar to that shown earlier in
Figures 9.7 and 9.8. As far as checking the residuals for systematic error is con-
cerned, output limiting is not a problem.

9.2.13  Problem: Variance Bias

One of the problems a miner might find is that there may be a bias that affects all
of the input battery variables. This may be indicated when the regression line
fitted to the actual value versus residual XY plot is not horizontal.

Any discussion of sampling bias needs to look at possible ways of seeing
the effects of bias on a dataset. As patterns in the input value change, it is to be
expected that, with some degree of confidence, the output battery will change
its value too. However, in general, regardless of the change in magnitude of either
input or output battery, the distribution remains fairly constant over the whole
range. Sometimes when bias is present, it may leave traces of its presence by
changing distribution as magnitude changes.

Another possible result of bias that affects the output variance is that, while
retaining a mean of 0, the variance is nonetheless correlated to prediction magni-
tude. Figure 9.17 illustrated this effect where the residual variance was low when
the predicted value was at one end of its range, and it was larger when the pre-
dicted value was at the other end, and the variance at any point was proportional
to the magnitude of the prediction.

Whatever is going on in the real world to produce such a change in residual
variance is outside the system of variables that form the input battery. Something
else changes that is biasing all of the input variables. This is a firm clue not only
that better data would improve the model but also that the data might be avail-
able—or at least a clue that the phenomenon might be measurable. If it affects
all, or a significant fraction, of the input battery variables so notably, it should be
possible to discover what is actually producing this effect.

9.2.14  Problem: The Modeling Tool Is Broken

A broken mining tool or algorithm may be indicated by almost any untoward
situation or circumstance. Mining tools or algorithms do break—but not often!
Data mining tools are computer programs—pieces of software—and as with all
other software, they are subject to the normal array of “features” (also known as
bugs and glitches). As a miner, if you discover one of these features, just shrug
your shoulders—such are the vagaries of fate. It’s worth contacting the vendor
with bugs and with usability feedback. As with any vendor, what your provider
chooses to do about helpful feedback (and unsolicited advice from data miners)
lies in the lap of the gods.

However, software bugs are not the main subject of this section. Occasion-
ally—very, very occasionally—the tool or algorithm is fundamentally flawed. The

9.2  Improving Model Quality, Solving Problems   383

example in this chapter illustrated in Figure 9.11, in which the tool actually fails
to make predictions in part of the range where it obviously should, is certainly a
flaw. Whether it is a bug or a fundamental problem greatly depends on the defini-
tion of each term and is irrelevant for the purposes of this discussion. It is a failure
in algorithm or program logic that is permanently embedded in this version of the
mining tool’s code. A workaround won’t fix it, it isn’t an intermittent or transient
problem, and it isn’t dependent on the data that a miner chooses to model. In this
case, the tool is broken and requires repair before it is again usable.

This situation really doesn’t happen often. Almost all data mining tools, and
certainly all of those that have been in the marketplace for some time, are not
likely to be broken in the sense discussed here. Naturally, they will all have their
idiosyncrasies and their unintended “features”; that is only to be expected.
However, nothing is perfect, and the example discussed in this chapter is not
contrived to prove a point. This example is drawn from a real business modeling
and data mining project, and it illustrates a real broken mining tool.

The corrective action here is simply to use another tool. Do, of course, report
the problem to the tool vendor. The point to note is that sometimes—not often,
for sure, and only after conscientious checking, but sometimes—a good worker
really is constrained to blame the tools!

9.2.15  Problem: Anachronistic Variables

Leakage from anachronistic variables may be indicated by a model making
perfect, or near perfect, classifications that are not explicable as either trivial or
obvious.

Anachronistic variables are a pernicious mining problem. However, they
aren’t any problem at all at deployment time—unless someone expects the model
to work! Anachronistic variables are out of place in time. Specifically, at data
modeling time, they carry information back from the future to the past. Many,
perhaps even most, business classification models are outcome models—that is,
they are modeling outcomes that occur later in time. For the purposes of mining,
the data has an arbitrary “now” point so that the model can learn to classify the
future outcomes that have, in fact, already occurred. The modeled outcomes are,
of course, only in the future relative to the arbitrary “now” point. Because the
dataset necessarily contains information about events that occur later than the
“now” point, it’s crucial to take scrupulous care that no later information leaks
back.

Any future information that does leak back will be present in all three datasets,
so it won’t be detected until the model is deployed; performance is far from the
anticipated model functioning because the needed information about the future
outcome will be missing. A clue that there’s temporal leakage is that the model
turns out to be too good to be true. Too good to be true usually is, and perfect
models are a dead giveaway. (See the section titled Reformatting Data: Normal-
izing Distribution.)

384    CHAPTER 9  Improving the Model

If any outcome classification model seems far better than reasonably expected,
check carefully for anachronistic variables. Build single variable models to discover
any variables that individually seem too good to be true. Think carefully about
how or why they might be anachronistic. Eventually, deployment will certainly
prove whether any temporal leakage occurred, but that is not the best time to
discover the problem.

9.2.16  Problem: Noisy or Irrelevant Variables

Another possible problem is that the input battery contains one or more very noisy
or completely irrelevant variables. This may be indicated when the following
occurs:

n	 There is no significant difference in naïve and mined model performance.
n	 The residuals appear to contain information that could be used to improve

the prediction.
n	 The value of the smoothed residual variance estimate is so great over

some or all of the plot as to make the predictions unsatisfactory.
n	 Significant clusters are present in the input battery with a high degree of

separation between them.

Noisy or totally irrelevant variables may be a problem, and they certainly are
for some algorithms. The problem is not with the noise, nor the irrelevancy, but
with the fact that they interfere with the algorithm’s ability to discover relation-
ships from the other variables. This may seem to be odd at first glance. If there
are variables in the input battery that have some specific degree of relationship
with the output battery, how is it that adding irrelevant or highly noisy variables
to the input dataset prevents the mining algorithm from learning the best relation-
ships that are present?

Consider this. If noisy or irrelevant variables do have an adverse impact, the
noisiest and most irrelevant certainly should have such an impact. A variable that
is all noise has to be totally irrelevant. Such a variable is one that is constructed
to be purely random. If it’s a binary variable, the toss of a fair coin to determine
its value would produce a random variable of this sort. Other analogous tech-
niques produce random variables of all types.

The interesting thing about random variables is that they don’t look random—
at least, not to human intuition. In fact, random variables are, perhaps surprisingly,
guaranteed to contain patterns. The longer the random sequence, the more pat-
terns the random variable will contain. If you have the patience, flip a fair coin
100 or more times and look at the result. What turns up has runs and sequences
in it that at first sight don’t look random at all. Nonetheless, random they are.
However, if there are patterns, they will correlate more or less with the output
battery. Algorithms that chop the dataset into smaller and smaller pieces, such as
decision trees or rule extractors, will eventually come to a piece in which the
apparently most suitable variable on which to split is the random variable—and

9.2  Improving Model Quality, Solving Problems   385

from there on it’s all downhill as this causes random fragmentation of the
dataset.

Even some continuous estimators, such as neural networks, are distracted
by the apparent, but actually spurious, patterns. In those parts of the dataset
where the random variable appears to have a correlated pattern, the continuous
estimator will incorporate the apparently useful pattern. Naturally, the test
dataset won’t have the same pattern, but learning will be halted before the model
is specific enough to extract the entire pattern that is actually available. (See
Section 9.2.4.)

As an aside, there are tools that are quite impervious to noisy or irrelevant
variables, such as naïve Bayes. However, these algorithms pay a heavy price
because they assume independence of variables, and where the variables carry
redundant information they are sorely swayed. That’s why one of the earlier tech-
niques advises removing correlated variables by bundling. (See Section 9.2.8.)

Many mining tools list the variables by “importance.” Be careful with this term.
Variables are ranked only as they are important for a specific model. Different
models of the same dataset, sometimes even with the same mining algorithm, can
rate the importance of variables differently for the separate specific models. This
is not to say that some variables don’t carry more information than others, and
it’s not to say that several different models created using different algorithms won’t
commonly select a similar set of variables. But the importance of variables is not
really something to be reported or counted on, except as they are important for
a specific model in a specific dataset. At this writing, there is no generally accepted
measure of importance for variables, no generally accepted method of determin-
ing importance, and no sign of one on the horizon. However, as an advanced data
mining technique, it is possible to measure how much information any variable
or set of variables carries about any output battery, and to define, before building
any model, how good it could be at its best. But this is not a measure of impor-
tance. Importance is relative only to specific models, not to datasets.

Nonetheless, and given the caveats in the preceding paragraph, many mining
tools do rate variable importance for the created model. After trying several itera-
tions of refining a model, if it turns out that some selection of variables are
consistently rated as unimportant, remove them. Recall that it is good practice
to create the simplest model, and one facet of “simple” is as few variables as
possible.

If an importance measure isn’t available, try building several models with small
but different selections of variables. Discard any variables that are commonly
present in the worst models.

9.2.17  Problem: Interaction Effects

One of the possible problems a miner might find is that the tool (algorithm)
selected does not inherently explore interaction effects when important interac-
tion effects are present. This may be indicated when the following occurs:

386    CHAPTER 9  Improving the Model

n	 The curve fitted to the actual value versus predicted value XY plot differs
markedly from a straight line where it passes through the data.

n	 The value of the smoothed residual variance estimate is so great over
some or all of the plot as to make the predictions unsatisfactory.

n	 An explanation is not convincing, relevant, or applicable to the business
problem.

Interaction effects can be crucial, and they are easy to understand. If you want
to carpet a room, it’s not enough to know just the length of the room, nor is it
enough to know just the width of the room. Interaction between length and width
gives the number of square feet of a room, and that is the information you need
to buy carpet. In this example, multiplication produces the interaction effect.

Several data mining algorithms do not incorporate interaction effects into their
modeling. Several other algorithms do. However, whether any algorithm does or
does not incorporate interaction effects, it is useful to explicitly incorporate them
where they are known. Even when an algorithm can learn interaction effects,
it speeds learning and better resists noise if the interaction effect is explicitly
included. (In this example, it would save the mining tool having to learn how to
multiply, which is easy, but why force it to learn something that the modeler/
miner already knows?)

For those algorithms that don’t incorporate interaction effects, explicitly rep-
resenting them in a dataset can make a crucial difference to the quality and power
of the model. An easy way of representing interacting variables is to multiply them
and add another variable to the input battery with the result. On the other hand,
it’s always worth at least checking performance using a tool with an algorithm
that does incorporate interaction effects, such as neural networks. Even if the
main model is, say, a decision tree, and it performs well, it’s still worth checking
the models against each other as a sort of “sanity check.”

Better still, if the tools are available, is to explicitly check for interactions. To
do that, it’s worth taking a quick look at what interactions are, how they affect
data and mining tools, and how to actually discover and characterize interactions
in a dataset.

Variable Interactions
Interactions between variables simply means that the effect that one input variable
has on the output variable changes depending on the value of some other variable.
So as an example, with “Y” as the output variable and “A” and “B” as input vari-
ables, the effect that “A” has on “Y” depends on the value of “B.”

All of the data mining algorithms available have different signature behaviors,
capabilities, and performance. For example, decision trees don’t inherently include
interactions and neural networks do. Does this mean that networks are inherently
better than decision trees? No! It does mean that if interactions are important,
they have to be explicitly included in the input battery for any algorithm that
doesn’t inherently discover them. However, other algorithms that do discover

9.2  Improving Model Quality, Solving Problems   387

such interactions still benefit from having them included. It requires greater
complexity in the algorithm to discover such interactions, and without sufficient
complexity, it still won’t discover the interactions.

Additional complexity can itself be a problem, mainly because of these three
things:

1.	 The increase in complexity might simply lead to the algorithm learning
noise instead of the desired relationship.

2.	 The complexity will slow the learning, sometimes to a crawl, making
discovering meaningful models a far slower process and possibly slowing
learning so much that the project becomes impractical.

3.	 There is no easy way to determine how much complexity is enough.

However, an easy way to determine whether the data contains important interac-
tions, and a good rule of thumb to indicate how to characterize the interactions,
is through the use of interaction indicator plots (IIPs).

Interaction Indicator Plots
Using IIPs allows the miner to put the important interactions into the input dataset
instead of into model complexity, even for those algorithms that could, if so con-
figured, characterize the interactions. Understanding the interactions can make an
enormous difference in explaining relationships in a dataset. For predictive models
with those algorithms that don’t inherently characterize such interactions, it
can improve the model enormously. It might at first glance seem easy to include
all of the interactions as a matter of course. However, this direction leads to a
variable explosion! For a dataset with 10 variables in the input battery, and includ-
ing only two interactions, say x2 and x3, this adds 10 × 9 × 2 × 180 additional
interaction variables to the original 10. For each of the 10 variables, every one can
interact with one of the other 9 (thus 10 × 9), and there are two possible interac-
tions proposed (x2 and x3). Try it with a 20-variable input battery, and it requires
760 extra interaction variables. Not only is this variable bloat damaging to the
dataset, but it’s also almost certainly unnecessary because many of these interac-
tions won’t carry any useful information. The answer is to pick and choose and
use only the interactions that are useful and appropriate. Understanding the use
of IIPs is a place to start.

The principle underlying IIPs is straightforward. It requires all the variables
to be numeric or recoded numerically using a principled recoding method if they
are categorical (see the section titled Reformatting Data: Normalizing Ranges). It’s
convenient to normalize the range of the input variables; 0–1 is usual. In essence,
an IIP plots the values of the output variable for every input variable, as influenced
by every one of the other input variables in turn. Thus, for an output variable, say
y, it’s discovering the interaction, if any, between two input variables, say a and
b, that is important.

To understand how this is done, start by considering the plot of how output
varies with a single variable. When a single variable is used, the result is called a

388    CHAPTER 9  Improving the Model

main effects plot, one of which is illustrated in Figure 9.27. It simply shows the
values for the output variable y over its range for the values of the input variable,
shown here as a, over its range.

Notice that in this figure variable b is shaded out because in a main effects plot
it’s only the relationship between y and a over the range of both variables that
shows up. To discover if there are interactions between a and b when y is the
output variable, the data is (at least conceptually) ordered on the variable b and
then split into two parts with equal numbers of instances in each part, as shown
in Figure 9.28.

FIGURE 9.27

Main effects plot.

FIGURE 9.28

Interaction effects plot.

9.2  Improving Model Quality, Solving Problems   389

One part of the divided dataset contains all instances of above average values
of b, and the other part contains all of the instances of average or less value for
b. A separate effects plot for each part of the dataset shows two plotted curves.
Each curve shows the relationship between y and a. However, because the vari-
ables have been ordered and separated into two parts based on the values of b, if
there are any differences in the relationship between y and a in the two plots, it
can only be because of the change in the value of b, because that is all that has
changed. Any differences in the relationship will show up as differences in the
height or shape of the two curves. Or to put it another way, if the relationship
between y and a in the two partitions is identical, the two curves will lie one on
top of the other, and it would appear to be a single curve. If two curves appear,
something changes in the relationship between y and a at different values of b.
The differences can only be because a interacts with b.

The differences in shape between the two curves indicate the nature of the
interaction between the two variables. Interpreting IIPs is quite straightforward
after only a little familiarity. Some typical interactions are shown in Figure 9.29.

Figure 9.29 shows IIPs for three variables; a, b, and c. In the left IIP showing
interactions of a with y, the response curves are similarly shaped and essentially
parallel to each other. The interaction that is present is clearly additive because
the plotted curves are at different heights. Because they are the same distance
apart and the same shape, it’s clear that the only difference in response for the
two bands of values is that band 1 has had a constant value added to it compared
to band 0. (Or conversely, band 0 has had some constant value subtracted
from it compared to band 1.) In any case, the response is identical except for
the addition (or subtraction) of some value. It’s usually not necessary to include
additive interaction explicitly in a dataset. (Also, note that in statistical terms
an additive interaction is called “no interaction” and is not distinguished from
the situation where the two plotted curves lie one on top of another. As far
as data miners are concerned, these purely additive effects can be important
and are most easily characterized as “additive interactions,” statistical use not
withstanding.)

FIGURE 9.29

Typical IIPs.

390    CHAPTER 9  Improving the Model

The central IIP showing interactions of b with y shows that the slope of the
interactions in the two bands changes, although the direction of curvature remains
the same. An IIP such as this suggests that a multiplicative relationship exists in
the output response between b and x. Thus, including an interaction variable
created from bx in the input battery is indicated.

The right side IIP displaying interactions of c with y shows two phenomena.
Not only does the slope change, but so does the direction of curvature. The slope
change again suggests a multiplicative interaction, as in the interaction with b.
However, the change in the direction in curvature suggests that higher degree
interaction is needed too: cx2. (Notice that on the left of this image both curves
are falling. However, about the middle of the image the upper curve begins to
rise while the lower curve keeps falling.)

In general, a change in slope suggests the interaction term x1 (usually shown
simply as x), and every additional curvature divergence suggests the need for an
additional degree of interaction, x2, x3, x4, and so on.

Figure 9.30 shows a set of IIPs for five variables, a through d in the input
battery with variable Y as output. Inspection of these IIPs suggests that interaction
effects ba (perhaps b2a), da, d2a, a2b, and cd should be included in the input
battery.

Why these particular interactions? Let’s take them individually:

n	 The plot in row A, column B has curves that are pretty much the same shape,
but diverge, or separate, in appearance from left to right. Recall that plot lines
that are essentially the same shape but at different distances apart at different
points in the plot show a multiplicative relationship, thus indicating that the
interaction can be represented as b × a, which is usually represented as ba or
“b times a.”

n	 In the same plot, row A and column B, it’s possible that at the right side the
curvature direction of the two plot lines are moving in different directions. Recall
that a change in the direction of curvature indicates the possibility of a higher-
order interaction (square, cube, and so on) with one additional power possibly
needed for each change in direction. The direction change here isn’t much, if
it’s there at all, so it’s just a hint that one additional order might be useful, so
this would be b2a. But it’s just a hint and probably not needed here.

n	 Consider the IIP in column D, row A. Notice that there is some divergence
between the two plot lines. Recall that divergence points to a multiplicative
interaction, so this points to da, as well as a possible change in direction of
slope. If so, d2a (that is, the square of d multiplied by a).

n	 Column A, row B. Is there some divergence here? Perhaps. Enough for a2b?
Perhaps.

n	 How about column C, row D? Looks like a multiplicative interaction because
the slopes diverge, so this points to the possible need for cd.

9.2  Improving Model Quality, Solving Problems   391

In practice, these plots are useful indeed. Figure 9.31 shows a screen shot from
a mining tool showing some of the IIPs for the CREDIT dataset. A quick glance
shows an interesting range of interactions among the variables shown. Notice
that the variables BEACON and DAS (top row, second box) seem to have a multi
plicative relationship. However, note carefully that DAS and BEACON (second
row, left column) have a very different relationship. Why?

Keep in mind that the Y variable is actually BUYER in this set of IIPs. So the
whole set shows the response of BUYER to several variables when ordered and
separated based on the values of other variables. The plots show first (top row,
second box) BEACON ordered by, and separated on, the variable DAS. The other
IIP (second row, left column) shows the interactions for DAS ordered by and
separated on BEACON. Thus, these are not symmetrical plots. DAS by BEACON
cannot be expected to look anything like BEACON by DAS. Mind you, although

FIGURE 9.30

IIPs for five variables a through d interacting with output variable Y.

392    CHAPTER 9  Improving the Model

different, if there is an interaction one way, then expect an interaction of some
type the other way too.

So far, so good (as Wile E. Coyote so often noted when pursuing the Road
Runner). This works fine with five or six variables. It might even be tractable with
ten input variables and one output variable so long as the modeler/miner has
access to automated IIP tools. But with many more than ten input variables, and
certainly when dealing with the many tens or hundreds of variables of most
minable datasets, this is not any sort of practical solution.

Note that it is, in principle, fairly easy to automate input variable interaction
detection and variable creation, including detecting the necessary degree of inter-
action, although few, if any, commercial data mining tools available at this writing
offer such an option. Alternatively, it’s also fairly simple in principle to add the
necessary interaction variables to a dataset using a data preparation tool separate
from the mining tool, but this too at this writing is not currently available as an
option in data mining or separate data preparation tools. It’s also worth noting
that to do the job properly, the interaction variables created should themselves

FIGURE 9.31

Interaction plots from the CREDIT dataset.

9.2  Improving Model Quality, Solving Problems   393

be checked for interactions. But to do all this by hand is to all intents and purposes
impossible—tough for people, although computationally not much of a problem
if it were automated.

There are noncommercial tools available that help, but short of such aids a
miner has to fall back on other methods. First, go back to the business problem
frame, the problem map, the cognitive map, the business process map, and the
cause and effect map. In all these places, there are clues as to where variables are
expected to interact and which variables they are. At least create IIPs for these
variables. If there is one, use the system simulation or a process simulation and
look at where the interactions occur in these simulations. Simulations allow a
priori (or before the fact) determination of probable interactions.

In addition, use mining tools to discover which variables are collinear. Datasets
with many variables almost certainly have large numbers of variables that are col-
linear or, in other words, are effectively carrying the same information as each
other. Create “bundles” of collinear variables (see Section 9.2.8). Use one variable
from the bundle, or a composite surrogate variable created from the bundle, to
represent the bundle. This will often reduce the number of variables in a dataset
to a manageable number to create IIPs, especially if an automated IIP tool is avail-
able. (It’s harder if they are built “by hand” using, say, Excel, but perhaps still
possible.)

The main point here is that incorporating interaction variables is essential
in creating the best quality models for some algorithms and extremely useful for
others. Including necessary interactions almost always improves a model and
never harms it. Conversely, not including them can be very damaging. Use any
means available to determine and incorporate the relevant interaction variables.

9.2.18  Problem: Insufficient Data

Sometimes the data available is limited in quantity, or instances describing specific
outcomes of particular business interest represent a low proportion of the total
number of instances and are insufficient to build a useful model, even with a bal-
anced dataset, and no further data is to be had. This is indicated when no further
data is available and the following is true:

n	 The instances (records) available are too few for modeling, and it is
known that the data represents the full range of behaviors of interest in
the business problem.

n	 Balancing the dataset to increase the relative prevalence of specific
outcomes requires reducing the total size of the dataset so that it is no
longer representative of the population.

The essence of this problem is that the existing instances somehow have to
be increased in number to a total number large enough for modeling. The data
has to somehow be increased in quantity in such a way that the expanded
sample remains at least as representative of the population as the original sample.

394    CHAPTER 9  Improving the Model

There are a couple of approaches to expanding, or multiplying, the quantity of
data, one far less technically complex than the other. Both have their benefits and
problems, and neither should be used as a substitute for getting more data if
possible. These are both last resort methods for use when no further data can
possibly be had.

Expanding the Data
The most straightforward method of increasing the apparent amount of data is
simply to duplicate the instances. Copy the original dataset and append the copy
to the original. Do this several times and the result appears to be a sizable dataset.
It’s just the original dataset in multiple copies, of course, but this certainly increases
the amount of data without introducing any changes in any of the data’s other
characteristics.

One problem here is that some algorithms won’t really notice this as more
data, simply multiple runs through the same dataset—which is true because that’s
what it is. In this case, this sort of expansion will not benefit the situation. Some
tools are actually sensitive to the order that the instances are presented and
because this expansion hasn’t reordered the records, it’s possible that randomly
ordering the expanded records will make a difference.

However, whether reordered or not, expanding the data in this way only
creates duplicates of the existing instances. Some mining algorithms are sensitive
only to differences in the instances. (Imagine clustering—all of the duplicated
instances fall on top of each other changing nothing about the state space at all.)
Nonetheless, data expansion as described so far does help model quality with
some tools. Sometimes additional benefit can be had by adding a small amount of
random noise to each value. The noise has to be constructed so that, if numeric,
the noise component itself has a mean of 0, or if categories, so that the modal
category is still the original category. This noise added to the duplicate instances
in total amounts to no change, but it makes each instance appear unique.

Multiplying the Data
A second approach to increasing the apparent amount of data, data multiplication,
requires the availability of appropriate and technically more complex tools than
those used for data expansion. The idea here is to determine the joint distribution
of the dataset and to create random values that have the same joint distribution
characteristics as the original dataset. This technique does not work if only the
univariate distributions are considered, and determining a multivariate distribution
requires tools specifically designed for the task.

To understand why using multivariate distributions is essential, consider the
univariate distributions for two variables, labeled “Y” and “X” in two datasets, “set
1” and “set 2.” Variables X and Y in both datasets are approximately normally
distributed. If univariate distributions were sufficient to duplicate the datasets,
both set 1 and set 2 should be identical. In both datasets, X and Y have the same
range, 0–1, and the same distribution, normal.

However, suppose that the joint ranges of these variables are totally different.
Of course, the dataset used to illustrate this point was specifically put together so
that the individual variables had the same range and distribution in both datasets,
yet none of the XY points in set 1 fall into the same space as those in set 2. This
issue is precisely the same in any real-world dataset—it’s the joint distribution,
the multivariate distribution, that is crucial to duplicate, not the univariate
distributions.

There is no substitute for having sufficient data. However, if sufficient data is
positively not to be had, multiplying the data that is available by adding random
instances that are similar in their total multivariate distribution to the original
dataset is usually far more effective than expanding the data in the way described
in the previous section.

9.3	SUMMARY
Refining the model is a crucial piece of the data mining process. Refining requires
methods for checking a model’s performance, insight for understanding what the
checks reveal, knowledge of what applicable techniques are relevant to improve
model performance, and methods for applying the techniques to modeling data,
or business problems, as appropriate. This chapter walks through the methods
of diagnosis to discover problems with examples and presents methods for apply-
ing the techniques. Insight and understanding come only with practice and
repetition.

No matter how technically effective the model appears and no matter how
well tested, the model has no value unless effectively deployed. Deployment is
where the technical effort blends into meeting the business needs. Deployment
is the final, utterly crucial step in effective data mining.

9.3  Summary   395

This page intentionally left blank

CHAPTER

10Social Network
Analysis

The size of the Web and the reach of search engines were both increasing rapidly
by late 1996, but there was growing frustration with traditional information
retrieval (IR) systems applied to Web data. IR systems work with finite document
collections, and the worth of a document with regard to a query is intrinsic to the
document. Documents are self-contained units and are generally descriptive and
truthful about their contents.

In contrast, the Web resembles an indefinitely growing and shifting universe.
Recall, an important notion in classic IR, has relatively little meaning for the Web;
in fact, we cannot even measure recall because we can never collect a complete
snapshot of the Web. Most Web search engines present the best 10 to 20 responses
on the first page, most users stop looking after the second page, and all that seems
to matter is the number of relevant “hits” within the first 20 to 40 responses—in
other words, the precision at low recall.

Focusing on precision is not a great help either. On one hand, Web documents
are not always descriptive or truthful. Site designers use nontextual content such
as images and Flash (www.adobe.com) to project the desired look and feel. Entire
businesses are built on stuffing pages with invisible keywords to lure search
engines to index pages under common queries. Often, the match between a query
and a Web page can be evaluated only by looking at the link graph neighborhood
of the page. On the other hand, the Web is also afflicted with the “abundance
problem.” For most short queries (such as “Java”) there are millions of relevant
responses. Most Web queries are two words long. How can we hope to identify
the best 40 documents matching a query from among a million documents if
documents are not self-complete and truthful?

Apart from the sheer flux and populist involvement, the most important fea-
tures that distinguish hypertext from a text collection for IR research are hyper-
links. Hyperlinks address the needs of amplification, elaboration, critique,
contradiction, and navigation, among others. The hyperlink graph of the Web
evolves organically, without any central coordination, and yet shows rich global
and local properties. Hyperlink graph information is a rich supplement to text,
sometimes even beating text in terms of information quality.

398    CHAPTER 10  Social Network Analysis

Starting around 1996, a frenzy of research efforts has sought to understand the
structure of the Web and to exploit that understanding for better IR. Research has
proceeded in a few major directions:

n	 Hyperlinks were used in conjunction with text for better topic classification.

n	 For broad queries that elicited large response sets from keyword search engines,
hyperlinks were used to estimate popularity or authority of the responses.
Google is a prime example of such techniques. This chapter in large part deals
with such techniques.

n	 Independent of specific applications, researchers made comprehensive mea-
surements on the Web and on the reach of search engines. They formulated
models of creation, modification, and destruction of nodes and links that closely
predicted observed data. The last part of this chapter deals with this area.

This chapter deals with a variety of link-based techniques for analyzing social
networks that enhance text-based retrieval and ranking strategies. As we shall
see, social network analysis was well established long before the Web, in fact,
long before graph theory and algorithms became mainstream computer science.
Therefore, later developments in evolution models and properties of random
walks, mixing rates, and eigensystems (Motwani & Raghavan, 1995) may make
valuable contributions to social network analysis, especially in the context of
the Web.

10.1	 SOCIAL SCIENCES AND BIBLIOMETRY
The Web is an example of a social network. Social networks have been exten-
sively researched long before the advent of the Web. Perhaps coincidentally,
between 1950 and 1980, around the same time that Vannevar Bush’s proposed
hypermedium called Memex was gaining acceptance, social sciences made great
strides in measuring and analyzing social networks. (See the authoritative text by
Wasserman and Faust [1994] for details.)

Networks of social interaction are formed between academics by coauthoring,
advising, and serving on committees; between movie personnel by directing and
acting; between musicians, football stars, friends, and relatives; between people
by making phone calls and transmitting infections; between countries via trading
relations; between papers through citation; and between Web pages by hyperlink-
ing to other Web pages.

Social network theory is concerned with properties related to connectivity and
distances in graphs, with diverse applications like epidemiology, espionage, cita-
tion indexing, and the like. In the first two examples, one might be interested in
identifying a few nodes to be removed to significantly increase average path length
between pairs of nodes. In citation analysis, one may wish to identify influential
or central papers.

10.1.1  Prestige

Using edge-weighted, directed graphs to model social networks has been quite
common. With this model, it has been clear that in-degree is a good first-order
indicator of status or prestige. More interestingly, as early as 1949, Seeley realized
the recursive nature of prestige in a social network (Seeley, 1949, pp. 234–35):

[W]e are involved in an “infinite regress”: [an actor’s status] is a function of the
status of those who choose him; and their [status] is a function of those who
choose them, and so ad infinitum.

Consider the node (vertex) adjacency matrix E of the document citation graph,
where E[i, j] = 1 if document i cites document j, and zero otherwise. Every node
v has a notion of prestige p[v] associated with it, which is simply a positive real
number. Over all nodes, we represent the prestige score as a vector p. Suppose
we want to confer to each node v the sum total of prestige of all u that links
to v, thus computing a new prestige vector p′. This is easily written in matrix
notation as

	 ′ =p pET 	 (10.1)

because

′[] = [] []

= [] []

∑
∑

p v E v u p u

E u v p u

T

u

u

,

,

To reach a fixpoint for the prestige vector, one can simply start with p =
(1, . . . , 1)T and turn Equation 10.1 into an iterative assignment p ← ETp, inter-
leaved with normalizing ||p||1 = ∑ u p[u] to 1, to avoid numeric overflow. This
process will lead to a convergent solution for p and is called power iteration in
linear algebra (Golub & van Loan, 1989). The convergent value of p, the fixpoint,
is called the principal eigenvector (i.e., the eigenvector associated with the eigen-
value having the largest magnitude) of the matrix ET. Clearly, work by Seeley and
others between 1949 and 1970 firmly established this eigen analysis paradigm.
Enhancements such as an attenuation factor (p′ = αETp) are also known.

10.1.2  Centrality

Various graph-based notions of centrality have been proposed in the social
network literature. The distance d(u, v) between two nodes u and v in a graph
without edge weights is the smallest number of links via which one can go from
u to v. (One can add up the edge weights in the case of a weighted graph to
derive the path length.) The radius of node u is r(u) = maxv d(u, v). The center
of the graph is arg minur(u), the node that has the smallest radius. One may look
for influential papers in an area of research by looking for papers u with small

10.1  Social Sciences and Bibliometry   399

400    CHAPTER 10  Social Network Analysis

r(u), which means that most papers in that research community have a short
citation path to u.

For other applications, different notions of centrality are useful. In the case of
trading partners and cartels, or in the study of epidemics, espionage, or suspected
terrorist communication on telephone networks, it is often useful to identify cuts:
a (small) number of edges that, when removed, disconnect a given pair of vertices.
Or one may look for a small set of vertices that, when removed (together with
edges incident with them), will decompose the graph into two or more connected
components.

The variations of graph-based formulations and measures that have been used
in the social sciences are too numerous to cover in detail; I will conclude this
section with the observation that no single measure is suited for all applications
and that the repertoire of measures is already quite mature.

10.1.3  Co-citation

If document u cites documents v and w, then v and w are said to be co-cited by
u. Documents v and w being co-cited by many documents like u is evidence that
v and w are somehow related to each other. Consider again the node (vertex)
adjacency matrix E of the document citation graph, where E[i, j] = 1 if document
i cites document j, and zero otherwise. Then

	

E E v w E v u E u w

E u v E u w

u u v E u w

T T

u

u

()[] = [] []

= [] []

= () ∈ () ∈

∑
∑

, , ,

, ,

: , , , EE{ } 	

(10.2)

The entry (v, w) in the (ETE) matrix is the co-citation index of v and w and
an indicator of relatedness between v and w. One may use this pairwise related-
ness measure in a clustering algorithm, such as multidimensional scaling (MDS).
MDS uses the document-to-document similarity (or distance) matrix to embed the
documents represented as points in a low-dimensional Euclidean space (such as
the 2D plane) while “distorting” interpoint distances as little as possible. Visual-
izing clusters based on co-citation reveals important social structures between and
within link communities. Such studies have been performed on academic publica-
tions several years back (McCain, 1992) and later by Larson on a small collection
from the Web (1996) concerning geophysics, climate, remote sensing, and ecology.
A sample MDS map is shown in Figure 10.1.

10.2	 PAGERANK AND HYPERLINK-INDUCED TOPIC SEARCH
Two algorithms for ranking Web pages based on links, PageRank and hyperlink
induced topic search (HITS), were developed around the fall of 1996 at Stanford

10.2  Pagerank and Hyperlink-Induced Topic Search   401

University by Larry Page1 and Sergey Brin, and at IBM Almaden by Jon Kleinberg.
Both sought to remedy the “abundance problem” inherent in broad queries,
supplementing precision with notions related to prestige in social network
analysis.

In PageRank, each page on the Web has a measure of prestige that is indepen-
dent of any information need or query. Roughly speaking, the prestige of a page
is proportional to the sum of the prestige scores of pages linking to it. In HITS, a

FIGURE 10.1

Social structure of Web communities concerning geophysics, climate, remote sensing, and
ecology. The cluster labels are generated manually. This image is taken from Larson (1996).

-3

-2

-1

0

1

2

3

-2-3 -1 0

MDS map of Web cocitations

Geography/GIS

Geophysics

Remote
sensing

Weather/Climate

Ecology/
Environment

1 2
Dimension 1

D
im

en
sio

n
2

R

F T

C G

L

H

Q

I

J
O

D

B

K
P

A

E
S

U

M

N

S1: A.P.S.
S11: Global Chan
S13: ICE
S15: Xerox Map V
S17: SeaWiFS
S19: Planet Eart
S20: GeoWeb
S22: ESRG
S24: NASA-MTPE
S26: NCGIA
S28: NOAA-NODC
S3: EOS
S31: NCAR
S33: Weather Map
S4: WeatherNet
S6: CRSSA
S8: EROS

SITE

B
D
F
H
J
L
N
P
R
T

D
F
H
J
L
N
P
R
T

D
F
H
J
L
N
P
R
T

BB

S10: Climate Dat
S12: Earth Scien
S14: Climate Pre
S16: Public Use
S18: USGS Data
S2: NSF IEIS
S21: Earthquake
S23: EOS Volcano
S25: Global Warm
S27: NGDC
S29: NOHRSC
S30: NOAA-E1 N
S32: USGS
S34: AVHRR
S5: NASA-GCRB
S7: EcoWeb
S9: EnviroWeb

C
E
G
I
K
M
O
Q
S
U

E
G
I
K
M
O
Q
S
U

E
G
I
K
M
O
Q
S
U

CC
AAA

1PageRank is named after Larry Page, a founder of Google.

402    CHAPTER 10  Social Network Analysis

query is used to select a subgraph from the Web. From this subgraph, two kinds
of nodes are identified: authoritative pages to which many pages link and hub
pages that consist of comprehensive collections of links to valuable pages on the
subject.

Although there are technical differences, all three measures are defined recur-
sively: prestige of a node depends on the prestige of other nodes, and the measure
of being a good hub depends on how good neighboring nodes are as authorities
(and vice versa). Both procedures involve computing eigenvectors for the adja-
cency matrix, or a matrix derived thereof, of the Web or a suitably relevant sub-
graph of the Web. In this section we will study these algorithms and take a careful
look at their strengths and weaknesses.

10.2.1	PageRank

Assume for the moment that the Web graph is strongly connected—that is, from
any node u there is a directed path to node v. (It is not; we come back to this
issue a little later.) Consider a Web surfer clicking on hyperlinks forever, picking
a link uniformly at random on each page to move on to the next page. Suppose
the surfer starts from a random node in accordance with a distribution


p0 , with

probability p0[u] of starting from node u, where ∑ u p0[u] = 1. Let the adjacency
matrix of the Web be E, where E[u, v] = 1 if there is a hyperlink (u, v) ∈ E, and
zero otherwise. We overload E to denote both the edge set and its corresponding
matrix.

After clicking once, what is the probability p1[v] that the surfer is on page v?
To get to v, the surfer must have been at some node u with a link to v in the
previous step and then clicked on the specific link that took her from u to v.

Given E, the out-degree of node u is given simply by

	 N E u vu

v

= []∑ , 	 (10.3)

or the sum of the uth row of E. Assuming parallel edges (multiple links from u to
v) are disallowed, the probability of the latter event given the former (i.e., being
at u) is just 1/Nu. Combining,

	 p v
p u

Nuu v E

1
0[] = []

()∈
∑
,

	 (10.4)

Let us derive a matrix L from E by normalizing all row-sums to one—that is,

	 L u v
E u v

E u

E u v

Nu

,
,

,

,[] = []
[]

= []
∑ b

b

	 (10.5)

With L defined as previously, Equation 10.4 can be recast as

	 p v L u v p u
u

1 0[] = [] []∑ , 	 (10.6)

or

10.2  Pagerank and Hyperlink-Induced Topic Search   403

	 p1 0= LT p 	 (10.7)

The form of Equation 10.7 is identical to that of Equation 10.1 except for the edge
weights used to normalize the degree. After the ith step, we will get

	 pi
T

iL+ =1 p 	 (10.8)

We will initially assume that nodes with no outlinks have been removed a
priori. If E and therefore L are irreducible (i.e., there is a directed path from every
node to every other node) and aperiodic (i.e., for all u, v, there are paths with
all possible number of links on them, except for a finite set of path lengths that
may be missing), the sequence (pi), i = 0, 1, 2, … will converge to the principal
eigenvector of LT—that is, a solution to the matrix equation p = LTp, also called
the stationary distribution of L. The prestige of node u, denoted p[u], is also
called its PageRank. Note that the stationary distribution is independent of p0.

For an infinitely long trip made by the surfer, the converged value of p is simply
the relative rate at which the surfer hits each page. There is a close correspon-
dence to the result of the “aimless surfer” model described earlier and the notion
of prestige in bibliometry: a page v has high prestige if the visit rate is high, which
happens if there are many neighbors u with high visit rates leading to v.

The simple surfing model does not quite suffice, because the Web graph is not
strongly connected and aperiodic. An analysis of a significant portion of the Web
graph (a few hundred million nodes) in 2000 showed that it is not strongly con-
nected as a whole (Bröder et al., 2000). Only a fourth of the graph is strongly
connected. Obviously, there are many pages without any outlinks, as well as
directed paths leading into a cycle, where the walk could get trapped.

A simple fix is to insert fake, low-probability transitions all over the place. In
the new graph, the surfer first makes a two-way choice at each node:

1.	 With probability d, the surfer jumps to a random page on the Web.
2.	 With probability 1 − d, the surfer decides to choose, uniformly at

random, an out-neighbor of the current node as before.

d is a tuned constant, usually chosen between 0.1 and 0.2. Because of the random
jump, Equation 10.7 changes to

pi
T

i i

T
N i

d L d

N N

N N

d L
d

N

+ = −() +












= −() +()
1 1

1 1

1 1

1 1

p p

p


  


simplifying notation,

	 = −() + ()1 1 1d L
d

N
T

i
Tp , . . . , 	 (10.9)

404    CHAPTER 10  Social Network Analysis

where N is the number of nodes in the graph. p[u] is the PageRank of node u.
Given the large number of edges in E, direct solution of the eigensystem is usually
not feasible. A common approach is to use power iterations (Golub & van Loan,
1989) which involves picking an arbitrary nonzero p0 (often with all components

set to 1/N), repeated multiplication by 1 1−() +d L
d

N
T

N , and intermittent scaling

|pi| to one. Because notions of popularity and prestige are at best noisy, numeric
convergence is usually not necessary in practice, and the iterations can be termi-
nated as soon as there is relative stability in the ordering of the set of prestige
scores.

There are two ways to handle nodes with no outlink. You can jump with prob-
ability one in such cases, or you can first preprocess the graph, iteratively remov-
ing all nodes with an out-degree of zero (removing some nodes may lead to the
removal of more nodes), computing the PageRanks of surviving nodes, and prop-
agating the scores to the nodes eliminated during the preprocessing step.

In this application, the exact values of pi are not as important as the ranking
they induce on the pages. This means that we can stop the iterations fairly quickly.
Page et al. (1998) reported acceptable convergence ranks in 52 iterations for a
crawl with 322 million links.

In Google, the crawled graph is first used to precompute and store the PageR-
ank of each page. Note that the PageRank is independent of any query or textual
content. When a query is submitted, a text index is used to first make a selection
of possible response pages. Then an undisclosed ranking scheme that combines
PageRank with textual match is used to produce a final ordering of response URLs.
All this makes Google comparable in speed, at query time, to conventional text-
based search engines.

PageRank is an important ranking mechanism at the heart of Google, but it is
not the only one: keywords, phrase matches, and match proximity are also taken
into account, as is anchor text on pages linking to a given page. Search Engine
Watch (www.searchenginewatch.com) reports that during some weeks in 1999,
Google’s top hit to the query “more evil than Satan” returned www.microsoft.
com, probably because of anchor text spamming. This embarrassment was fixed
within a few weeks. The next incident occurred around November 2000, when
Google’s top response to a rather offensive query was www.georgewbushstore.
com. This was traced to www.hugedisk.com, which hosted a page that had the
offensive query words as anchor text for a hyperlink to www.georgewbushstore.
com.

Although the details of Google’s combined ranking strategy are unpublished,
such anecdotes suggest that the combined ranking strategy is tuned using many
empirical parameters and checked for problems using human effort and regression
testing. The strongest criticism of PageRank is that it defines prestige via a single
random walk uninfluenced by a specific query. A related criticism is of the artificial
decoupling between relevance and quality, and the ad hoc manner in which the
two are brought together at query time, for the sake of efficiency.

10.2  Pagerank and Hyperlink-Induced Topic Search   405

10.2.2  Hyperlink-Induced Topic Search

In HITS, proposed by Kleinberg (1998), a query-dependent graph is chosen for
analysis, in contrast to PageRank. Specifically, the query q is sent to a standard IR
system to collect what is called a root set R of nodes in the Web graph. For reasons
to be explained shortly, any node u that neighbors any r ∈ R via an inbound or
outbound edge—that is, (u, r) ∈ E or (r, u) ∈ E—is included as well (E is the
edge set for the Web). The additional nodes constitute the expanded set and,
together with the root set, form the base set Vq. Edges that connect nodes from
the same host are now eliminated because they are considered “navigational” or
“nepotistic” (also see Section 10.3.1). Let us call the remaining edges Eq. We thus
construct the query-specific graph Gq = (Vq, Eq) (Figure 10.2). (I will drop the
subscript q where clear from context.)

Kleinberg observed that as in academic literature, where some publications
(typically in conferences) initiate new ideas and others consolidate and survey
significant research (typically in journals or books), the Web includes two flavors
of prominent or popular pages: authorities, which contain definitive high-quality
information, and hubs, which are comprehensive lists of links to authorities. Every
page is, to an extent, both a hub and an authority, but these properties are graded.
Thus, every page u has two distinct measures of merit: its hub score h[u] and
its authority score a[u]. Collectively, scores over all nodes in Gq are written as
vectors


a and


h , with the uth vector component giving the score for node u.

As in the case of PageRank, the quantitative definitions of hub and authority
scores are recursive. The authority score of a page is proportional to the sum of
hub scores of pages linking to it, and conversely, its hub score is proportional to
the authority scores of the pages to which it links. In matrix notation, this trans-
lates to the following pair of equations:

	
 
a E hT= 	 (10.10)

	
 
h Ea= 	 (10.11)

FIGURE 10.2

The HITS algorithm. lh and la are L1 vector norms.

Keyword query
u1

u2 v

a(v) = h(u1) + h(u2) + h(u3)

u3Search
engine

Root set

Expanded set

v1

v2u

h(u) = a(v1) + a(v2) + a(v3)

v3

→
a ← (1, . . . ,1)T,

→
h ← (1, . . . ,1)T

while
→
h and

→
a change "significantly" do

→
h ← E

→
a

 h ← ||h||1 = Σwh[w]

 h ← h/ h
 →

a ← ETh0 = ETE
→
a0

 a ← ||a||1 = Σwa[w]

→
a ←

→
a/ a

end while

406    CHAPTER 10  Social Network Analysis

Again, power iterations may be used to solve this system of equations itera-
tively, as shown in the pseudocode in Figure 10.2. When


a attains convergence,

it will be the principal eigenvector of ETE.

h will converge to the principal eigen-

vector of EET. Typically, runs with several thousand nodes and links “converge”
in 20 to 30 iterations, in the sense that the rankings of hubs and authorities
stabilize.

Summarizing, the main steps in HITS are as follows:

1.	 Send query to a text-based IR system and obtain the root set.
2.	 Expand the root set by radius one to obtain an expanded graph.
3.	 Run power iterations on the hub and authority scores together.
4.	 Report top-ranking authorities and hubs.

The entire process is generically called topic distillation. User studies (Chakrabarti
et al., 1999) have shown that reporting hubs is useful over and above reporting
authorities, because they provide useful annotations and starting points for users
to start exploring a topic.

Bipartite subgraphs are key to the reinforcement process in HITS. Consider
Figure 10.2. If in some transfer step node v1 collects a large authority score, in
the next reverse transfer, the hub u will collect a large hub score, which will then
diffuse to siblings v2 and v3 of node v1. Many times, such diffusion is crucial to
the success of HITS, but it can be overdone. Some causes and remedies are dis-
cussed in Sections 10.3 and 10.4.

The key distinction of HITS from PageRank is the modeling of hubs. PageRank
has no notion of a hub, but (Google) users seem not to regard this as a major
handicap to searching, probably because on the Web, great hubs soon accumulate
inlinks and thereby high prestige, thus becoming good authorities as well.

Higher-Order Eigenvectors and Clustering
If the query is ambiguous (e.g., “Java” or “jaguar”) or polarized (e.g., “abortion”
or “cold fusion”), the expanded set will contain a few, almost disconnected, link
communities. In each community there may be dense bipartite subgraphs. In such
cases, the highest-order eigenvectors found by HITS will reveal hubs and authori-
ties in the largest near-bipartite component. One can tease out the structure and
ranking within smaller components by calculating not only the principal eigenvec-
tor but also a few more. The iterations expressed in Equation 10.10 find the
principal eigenvectors of EET and ETE. Other eigenvectors can also be found using
the iterative method. Given an n × n matrix M (= ETE, say) for which we wish to
find k eigenvectors, we initialize an n × k matrix X (generalizing the n × 1 vector
before) with positive entries. Let X (i) be the ith column of X. The iterations are
generalized to the steps shown in Figure 10.3 (Golub & van Loan, 1989).

Similar to Larson’s study (Figure 10.1), higher-order eigenvectors can reveal
clusters in the graph structure. In the a or h vector, each graph node had only
one number as a representation. Thanks to using X, each node now has k hub
scores and k authority scores. These should not be interpreted as just more scores

10.2  Pagerank and Hyperlink-Induced Topic Search   407

for ranking but as a multidimensional geometric embedding of the nodes. For
example, if k = 2, one can plot each node as a point in the plane using its author-
ity (or hub) score row-vector. For a polarized issue like “abortion,” there are two
densely linked communities on the Web, with sparse connections in between,
mostly set up via eclectic hubs. A low-dimensional embedding and visualization
may bring out community clustering graphically in case a query matches multiple
link communities.

The Connection between HITS and Learning Style
Inventory/Singular Value Decomposition
There is a direct mapping between finding the singular value decomposition (SVD)
of E and the eigensystem of EET or ETE. Let the SVD of E be U∑VT, where UTU =
I and VTV = I and ∑ is a diagonal matrix diag (σ1, . . . ,σr) of singular values, where
r is the rank of E, and I is an identity matrix of suitable size. Then EET = U∑V TV∑UT
= U∑I∑UT = U∑2UT, which implies that EETU = U∑2. Here if E is n × n with rank
r, then U is n × r; ∑ and ∑2 are r × r. Specifically, Σ2

1
2 2= ()diag σ σ, . . . r . U∑2 n × r

as well. If U(j) is the jth column of U, we can write EE U j U jT
j() = ()σ2

which means that U(j) is an eigenvector of EET with corresponding eigenvalue
σ j

2 for j = 1, … , r. If ∑2 is arranged such that σ σ1
2 2≥ . . . r , it turns out that finding

the hub scores for E is the same as finding U(1), and more generally, finding
multiple hubs/authorities corresponds to finding many singular values of EET
and ETE.

Thus, the HITS algorithm is equivalent to running SVD on the hyperlink rela-
tion (source,target) rather than the (term,document) relation to which SVD is
usually applied. Recall that SVD finds us vector representations for terms and
documents in “latent semantic space.” As a consequence of the equivalence
shown above, a HITS procedure that finds multiple hub and authority vectors also
finds a multidimensional representation for nodes in a hypertext graph. We can
either present the SVD representation visually to aid clustering or use one of the
many clustering algorithms on this representation of documents.

FIGURE 10.3

Finding higher-order eigenvectors in HITS using power iterations.

408    CHAPTER 10  Social Network Analysis

10.2.3  Stochastic HITS and Other Variants

Several subsequent studies have provided deeper analysis and comparison of HITS
and PageRank. I provide here several observations that improve our understanding
of how these algorithms work.

HITS is sensitive to local topology. The two graphs in Figure 10.4(a) differ only
in the insertion of one node (5) to turn a single edge into a chain of two edges,
something that frequently happens on the Web owing to a redirection or reorga-
nization of a site. You can verify that this edge splitting upsets the scores for HITS
quite significantly, whereas it leaves PageRanks relatively unaffected. More spe-
cifically, the update equations for authorities change from the system

	 a a a2 2 42← + 	 (10.12)

	 a a a4 2 4← + 	 (10.13)

to the new system

	 a a a2 2 42← + 	 (10.14)

	 a a4 4← 	 (10.15)

	 a a a5 2 5← + 	 (10.16)

Thus, node 5 takes the place of node 4, the mutual reinforcement between the
authority scores of nodes 2 and 4 is lost, and node 4’s authority score vanishes to
zero compared to those of nodes 2 and 5.

HITS needs bipartite cores in the score reinforcement process. Consider the
graph in Figure 10.4(b): it has two connected components, each of which is a
complete bipartite graph, with 2 × 2 and 2 × 3 nodes. Let us assign all hub scores
to 1 and start HITS iterations. After the first iteration, each authority score in the

FIGURE 10.4

Minor perturbations in the graph may have dramatic effects on HITS scores (a). The principal
eigenvector found by HITS favors larger bipartite cores (b).

1

2 4

3

1 5

42

(a) (b)

3

0 1 0 0
0 0 0 0
0

E =
1 0 1

0 0 0 0

0 0 0 0
0 2 0 1
0

 ; ETE =
0 0 0

0 1 0 1

0 1 0 0
0 0 0 0
0E = 1 0 0
0 0 0 0

0 0 0 0
0 2 0 0
0; TE = 0 0 0
0 0 0 1

0 0 0 1 1 0 0

0
0
1
0

0
1
0
0

0 10

10.2  Pagerank and Hyperlink-Induced Topic Search   409

smaller component will be 2 and each authority score in the larger component
will be 3. The scores will progress as shown in Table 10.1.

Here I ignore score scaling, because the relative magnitude of the scores illus-
trates the point. In general, after i > 0 full iterations, we can show that asmall =
22i-1 and alarge = 32i-1. Thus, their ratio is alarge/asmall = (3/2)2i−1, which grows without
bound as i increases. Thus, in the principal eigenvector, the smaller component
finds absolutely no representation. In contrast, it can be verified that PageRank
will not be so drastic; the random jump will ensure some positive scores for the
prestige of all nodes.

Many researchers have sought to improve HITS by removing some of these
anomalies. Lempel and Moran (2001) proposed a stochastic algorithm for link
structure analysis (SALSA). The goal of SALSA was to cast bipartite reinforcement
in the random surfer framework. They proposed and analyzed the following
random surfer specification while maintaining the essential bipartite nature of
HITS:

1.	 At a node v, the random surfer chooses an inlink (i.e., an incoming edge
(u, v)) uniformly at random and moves to u.

2.	 Then, from u, the surfer takes a random forward link (u, w) uniformly
at random.

Thus, the transition probability from v to w is

	 p v w
v uu v u w E

,
, , ,

() =
() ()() ()∈

∑1 1

InDegree InDegree
	 (10.17)

This may be regarded as the authority-to-authority transition; a symmetric formu-
lation (follow an outlink and then an inlink) handles hub-to-hub transitions.

SALSA does not succumb to tightly knit communities to the same extent as
HITS. In fact, the steady-state node probabilities of the authority-to-authority tran-
sition (assuming it is irreducible and ergodic) have a simple form:

	 πv v∝ ()InDegree 	 (10.18)

Table 10.1 Authority Scores

Iteration hsmall asmall hlarge alarge

0 1 0 1 0

1a 1 2 1 3

1h 4 2 9 3

2a 4 8 9 27

2h 16 8 81 27

410    CHAPTER 10  Social Network Analysis

That is, the SALSA authority score is proportional to the in-degree. Although
the sum in Equation 10.17 suggests a kind of sibling link reinforcement, the prob-
abilities are chosen such that the steady-state node probabilities do not reflect any
nonlocal prestige diffusion. It might be argued that a total absence of long-range
diffusion is at the opposite extreme from HITS, and an intermediate level of rein-
forcement is better than either extreme.

A recent study by Ng et al. (2001) shows that HITS’s long-range reinforcement
is bad for stability: random erasure of a small fraction (say, 10 percent) of nodes
or edges can seriously alter the ranks of hubs and authorities. It turns out that
PageRank is much more stable to such perturbations, essentially because of its
random jump step. Ng et al. propose to recast HITS as a bidirectional random walk
by a “random surfer” similar to PageRank: Every timestep, with probability d, the
surfer jumps to a node in the base set uniformly at random. With the remaining
probability 1 − d:

n	 If it is an odd timestep, the surfer takes a random outlink from the current
node.

n	 If it is an even timestep, the surfer goes backward on a random inlink leading
to the current node.

Ng et al. showed that this variant of HITS with random jumps has much better
stability in the face of small changes in the hyperlink graph, and that the stability
improves as d is increased. (They also showed this to be the case with PageRank.)
Obviously, d = 1 would be most stable but useless for ranking: scores would
diffuse all over. There is no recipe known for setting d based on the graph struc-
ture alone. It is clear that, at some stage, page content must be reconciled into
graph models of the Web to complete the design of Web IR systems (Haveliwala,
2002).

10.3	 SHORTCOMINGS OF THE COARSE-GRAINED
GRAPH MODEL

Both HITS and PageRank use a coarse-grained model of the Web, where each page
is a node in a graph with a few scores associated with it. The model takes no
notice of either the text or the markup structure on each page. (HITS leaves the
selection of the base set to an external IR algorithm.)

In real life, Web pages are more complex than the coarse-grained model sug-
gests. An HTML page sports a tag-tree structure, which is rendered by browsers
as roughly rectangular regions with embedded text and hyperlinks. Unlike HITS
or PageRank, human readers do not pay equal attention to all the links on a page.
They use the position of text and links (and their interpretation of the text, of
course) to carefully judge where to click to continue on their (hardly random)
surfing.

Algorithms that do not model the behavior of human information foragers may
fall prey to many artifacts of Web authorship, which I illustrate in this section. In
the next section, I will describe several enhancements to the model and algorithms
that avoid such pitfalls.

10.3.1  Artifacts of Web Authorship

The central assumption in PageRank and HITS is that a hyperlink confers author-
ity. Obviously, this holds only if the hyperlink was created as a result of editorial
judgment based on the contents of the source and target pages, as is largely the
case with social networks in academic publications. Unfortunately, that central
assumption is increasingly being violated on the Web.

Much has changed about authoring Web pages ever since those algorithms
were proposed. HTML is increasingly generated by programs, not typed in by
hand. Pages are often generated from templates or dynamically from relational and
semistructured databases (e.g., Zope; zope.org). There are sites designed by com-
panies whose mission is to increase the number of search engine hits for their
customers. Their common strategies include stuffing irrelevant words in pages
and linking up their customers in densely connected cliques, even if those custom-
ers have nothing in common. The creation and dissemination of hypertext happens
at an unprecedented scale today and is inexorably coupled with commerce and
advertising. I will describe three related ways in that these authoring idioms
manifest themselves.

Nepotistic Links
Kleinberg summarily discarded links connecting pages on the same host,
because these links, largely authored by the same person, did not confer authority
in the same sense as an academic citation, and could therefore be regarded as
“nepotistic.”2

Soon after HITS was published, Bharat and Henzinger (Bharat & Henzinger,
1998) found that the threat of nepotism was not necessarily limited to same-site
links. Two-site nepotism (a pair of websites endorsing each other) was on the rise.
In many trials with HITS, they found two distinct sites h1 and h2, where h1 hosted
a number of pages u linking to a page v on h2, driving up a(v) beyond what may
be considered fair.

Two-host nepotism can also happen because of Web infrastructure issues, for
example, in a site hosted on multiple servers such as www.yahoo.com and dir12.
yahoo.com, or the use of the relative URLs with regard to a base URL specified
with the HTML construct. If it is a simple case of mirroring, algo-
rithms can generally be developed to fix the problem, but deliberate nepotism
also exists on the Web.

2Page et al. do not discuss nepotistic links in their paper.

10.3  Shortcomings of the Coarse-Grained Graph Model   411

412    CHAPTER 10  Social Network Analysis

Clique Attacks
Over time, two-host nepotism evolved into multihost nepotism, thanks to the
culture of professional Web-hosting and “portal” development companies. It is
now surprisingly common to encounter query response pages with elaborate
navigation bars that have links to other sites with no semantic connection, just
because these sites are all hosted by a common business. I show one example in
Figure 10.5, but the Web has plenty of such pages and sites.3 These sites form a
densely connected graph, sometimes even a completely connected graph, which
led me to name the phenomenon a “clique attack.”

Sometimes members of the clique have URLs sharing substrings, but they may
map to different Internet protocol (IP) addresses. It is not easy to judge from the
graph alone whether the clique is a bona fide, content-inspired link community,
or has been created deliberately. An example of a clique attack is shown in Figure
10.6. Both HITS and PageRank can fall prey to clique attacks, although by tuning
d in PageRank, the effect can be reduced.

Mixed Hubs
Another problem with decoupling the user’s query from the link-based ranking
strategy is that some hubs may be mixed without any attempt on the part of the
hub writer to confound a search engine. Technically, this is hard to distinguish
from a clique attack, but it probably happens even more frequently than clique
attacks. For example, a hub u containing links relevant to the query “movie
awards” may also have some links to movie production companies. If a node v1
relevant to movie awards gains authority score, the HITS algorithm (see Figure
10.2) would diffuse the score through u to a node v2, which could be a movie
production company homepage. Another example, in the form of a section of
links about “Shakespeare” embedded in a page about British and Irish literary
figures in general, is shown in Figure 10.7. Mixed hubs can be a problem for both
HITS and PageRank, because neither algorithm discriminates between outlinks on
a page. However, a system (such as Google) using PageRank may succeed at sup-
pressing the ill effects by filtering on keywords at query time.

10.3.2  Topic Contamination and Drift

The expansion step in HITS was meant to increase recall and capture a larger
graph Gq, which was subjected to eigen analysis. Why was this needed? Here is
one reason. As of late 1996, the query “browser” would fail to include Netscape’s
Navigator and Communicator pages, as well as Microsoft’s Internet Explorer page
in the root set, because at that time these sites avoided a boring description like
“browser” for their products. However, millions of pages included blurbs such as

3Although these sites might disappear with time, I will give some more examples: www.411web.
com, www.depalma-enterprises.com, www.cyprus-domains.com, and www.usa.worldweb.com.

FIGURE 10.5

Hyperlinks generated from templates in navigation bars do not reflect content-based editorial
judgment and often implement “clique attacks” that foil HITS-like algorithms. There are only
a handful of links related to cheese on this page, but there are more than 60 nepotistic links
going to different hosts from ads.qaz.com through women.qaz.com.

“this page is best viewed with a frames-capable browser such as . . .” and linked
to these authoritative browser pages.

Conversely, sometimes good authorities would be included in the root set, but
hubs linking to them might not be adequately represented in the root set for HITS
to be able to estimate reliable authority scores for the former pages. The radius-1
expansion step of HITS would include nodes of both categories into the expanded
graph Gq. Thus, the expansion step in HITS is primarily a recall-enhancing device.
However, this boost in recall sometimes comes at the price of precision.

10.3  Shortcomings of the Coarse-Grained Graph Model   413

414    CHAPTER 10  Social Network Analysis

FIGURE 10.6

How a clique attack takes over link-based rankings.

shop.qaz.com

art.qaz.com

Expanded set

cheese.qaz.com

Root set

ski.qaz.com

FIGURE 10.7

A mixed hub on British and Irish authors with one section dedicated to Shakespeare.
(The horizontal line has been added by hand to demarcate the section.)

Consider a set of topics such as proposed by Yahoo!, and for simplicity assume
that each Web page belongs to exactly one topic. Experimental evidence (Chakrab-
arti, van den Berg, & Dom, 1999; Davison, 2000) suggests that there is locality of
content on the Web—that is, if a page is about cycling, following an outlink is
more likely to lead to a page about cycling as well, compared to sampling a page
uniformly at random from the Web. (The probability that the latter action will get
us a page with a specific topic c is the fraction of pages in the Web belonging to
topic c.)

This locality works in a very short radius, however. The probability of a page
linking to another page of the same topic falls short of one for nontrivial topics,
and the more specific the topic is, the smaller is this probability. Within a small
number of links, the probability that all nodes have the same topic as the starting
point vanishes rapidly.

Expansion by a single link was the maximum that could usually be tolerated
by HITS; at radius two, most of the pages would be off-topic and the output of
HITS would be largely unsatisfactory. (Indefinite graph expansion with HITS
would make it degenerate to a PageRank-like scoring system with no connection
to any specific query.) Even at radius one, severe contamination of the root set
may occur, especially if pages relevant to the query are often linked to a broader,
more densely linked topic. For example, at one time4 the graph Gq corresponding
to the query “movie awards” included a large number of movie company pages
such as MGM and Fox, together with a number of hubs linking to them more
densely than the subgraph that contained pages related to Oscar, Cannes, and so
on. As a result, the hub and authority vectors have large components concentrated
in nodes about movies rather than movie awards.

The preceding example is one of topic generalization. Another possible
problem is that of topic drift. For example, pages on many topics are within a
couple of links of sites like Netscape, Internet Explorer, and Free Speech Online.
Given the popularity of these sites, HITS (and PageRank) runs the danger of raising
these sites to the top once they enter the expanded graph. Drift and contamina-
tion can sometimes be purposefully engineered, as in Figure 10.5. In effect, a
Trojan horse page connected to a large clique can overwhelm any purely graph-
based analysis (as in Figure 10.6).

An ad hoc fix is to list known stop-sites that would be removed from the
expanded graph, but this could have undesirable effects, as the notion of a “stop-
site” is often context-dependent. For example, for the query “java,” www.java.
sun.com is a highly desirable site, whereas for a narrower query like “swing,” it
may be considered too general.

Topic contamination may affect both HITS and PageRank. The top results from
HITS may drift away from the query. The PageRank of irrelevant nodes may
become unduly large because of membership or proximity to dense subgraphs.

4Both the Web and HITS have undergone significant evolution, so these specific anecdotes may be
transient, although similar examples abound.

10.3  Shortcomings of the Coarse-Grained Graph Model   415

416    CHAPTER 10  Social Network Analysis

Again, a system (such as Google) using PageRank as one of many scores in
ranking may be able to avoid problems by using a suitable relative weighting of
scores.

10.4	 ENHANCED MODELS AND TECHNIQUES
In this section we will consider hyperlink information in conjunction with text
and markup information, model HTML pages at a finer level of detail, and propose
enhanced prestige ranking algorithms.

The models that we have discussed thus far offer simple and elegant represen-
tations for hypertext on the Web. Consequently, the mature fields of graph theory
and matrix algebra can then be brought to bear. As we observed in the previous
section, such simple graph models break down in a variety of ways. This section
offers solutions to some of the problems with the simplistic models.

10.4.1  Avoiding Two-Party Nepotism

Bharat and Henzinger (1998) invented a simple and effective fix for two-site
nepotism (the B&H algorithm). They observed that ascribing one unit of voting
power to each page pointing to a given target may be too extreme, especially if
those source pages are all on the same website. They proposed that a site, not a
page, should be the unit of voting power. Therefore, if it is found that k pages on
a single host link to a target page, these edges are assigned a weight of 1/k. This
is unlike HITS, where all edges have unit weight.

This modification changes E from a zero–one matrix to one with zeros and
positive real numbers. However, EET and ETE remain symmetric, and the rest of
the HITS computation goes through as before. In particular, all eigenvectors are
guaranteed to be real, and higher-order vectors can be used to identify clusters
and link-based communities. Bharat and Henzinger evaluated the weighted scheme
with the help of volunteers, who judged the output to be superior to unweighted
HITS.

Although it is easy to modify the PageRank formulation to take edge weights
into account, it is not publicly known if the implementation of PageRank in Google
uses edge weights to avoid two-party (or other forms of) nepotism. Another idea
worth experimenting with is to model pages as getting endorsed by sites, not
single pages, and compute prestige for sites as well, represented by some sort of
aggregated supernodes.

Although the B&H edge-weighting scheme reduces the problems of two-host
nepotism, multihost nepotism is harder to isolate from a genuinely authoritative
Web community. We shall study one approach to reducing that problem in Section
10.4.4.

10.4.2  Outlier Elimination

Bharat and Henzinger (1998) observed that keyword search engine responses are
largely relevant to the query (even if they are not of the highest quality or popu-
larity). It is the indiscriminate expansion of links that is mostly responsible for
contaminating the expanded graph. They devised a content-based mechanism to
reduce contamination and resulting drift. Before performing the link expansion,
they computed the term vectors of the documents in the root set (using the Term
Frequency, Inverse Document Frequency [TFIDF] model) and the centroid μ of
these vectors. When the link expansion was performed, any page v that was “too
dissimilar” to the centroid μ (i.e., the cosine between the vector representation
of v and μ was too small) was discarded, and HITS-like iterations were performed
only over the surviving pages.

In HITS, expansion to a radius more than one could be disastrous. Outlier
elimination in the B&H algorithm has quite a stabilizing effect on graph expansion,
especially if the relevant root set is large. One may envisage a system that contin-
ues indefinite expansion and keeps pruning outliers in the vector space. However,
the centroid will gradually drift, even if much more slowly than in HITS, and
eventually the expanded set will bear little relevance to the query.

10.4.3  Exploiting Anchor Text

There is a simple if crude way in which the initial mapping from a keyword query
to a root set followed by the graph expansion can be folded into a single step, in
fact, one that does not involve power iterations. Consider each page in the root
set not as a single node in a graph but as a nested graph that is a chain of
“micronodes.” Each micronode is either a textual token or an outbound hyperlink.
Tokens that appear in the query are called activated. (Assume for simplicity that
the query has no negated token and a phrase is a compound token.)

Prepare a map from URLs to integer counters, initialized to all zeros. Pick a
positive integer k. Consider all outbound URLs that are within a distance of k links
of any activated node. Increment the counter associated with the URL once for
every activated node encountered. Finally, sort the URLs in decreasing order of
their counter values and report the top-rated URLs. The procedure, called Rank-
and-File (Chakrabarti and Dom, 1998), is illustrated in Figure 10.8. Note that only
the root set is required for the analysis.

With some tuning of k, the answers from Rank-and-File are astonishingly good
for many broad queries. Note that although pages outside the root set are not
fetched (and this makes the method substantially faster than HITS or B&H), URLs
outside the root set are being rated. In effect, this method is like spreading an
activation from terms to neighboring links.

Just like HITS may return better results than those obtained by sorting by
indegree, the simple one-step procedure above can be improved by bringing

10.4  Enhanced Models and Techniques   417

418    CHAPTER 10  Social Network Analysis

power iterations back into it. The simplest way to do this is to tweak the edge
weights in the graph on which power iterations are performed. In HITS, all edges
have unit weight. Taking the cue from Rank-and-File, we can increase the weights
of those hyperlinks whose source micronodes are “close” to query tokens. This
is how the Clever5 project and search system (Chakrabarti et al., 1999) combined
HITS and Rank-and-File.

Another modification is to change the shape of the activation window. In Rank-
and-File, the activation window used to be a zero-one or rectangular window of
width 2k. Instead, we can make the activation window decay continuously on
either side of a query token.6 The activation level of a URL v from page u can be
the sum of contributions from all query terms near the HREF to v on u.

The decay is an attempt to reduce authority diffusion, which works reasonably
well, even though mixed hubs often have sharp section boundaries. For example,
a personal bookmark hub may have a series of sections, each with a list of URLs
with corresponding annotations. A query term matching terms in the first annota-
tion of section i may activate the last few URLs in section (i − 1). The heuristics
in Clever work reasonably well, partly because not all multisegment hubs will
encourage systematic drift toward a fixed topic different from the query topic.

A stock of queries with preranked answers and a great deal of human effort is
necessary to make the best choices and tune all the parameters. This was indeed
the case with the Clever project; three or four researchers spent a few hours per
week over a year running experiments and inspecting results for anomalies.

FIGURE 10.8

A simple ranking scheme based on evidence from words near anchors.

Keyword query =
set of words {q}

One
response

document

Hash table
mapping
URLs to

score,
initialized
to zero

Another
page

Hyperlink

Look up
HREF target
in hash table
and increment
score

Activation sliding
window width 2K

A query term q

Response
documents

Search engine

5Clever was intended to be an acronym for client-side eigenvector enhanced retrieval.
6Negated terms can be used for the keyword search, but there seems to be no clear way to use
them in the activation step.

10.4.4  Exploiting Document Markup Structure

Here I sketch the key transitions in modeling Web content that characterize the
discussion thus far in this chapter.

HITS. Each page is a node without any textual properties. Each hyperlink is an
edge connecting two nodes with possibly only a positive edge weight prop-
erty. Some preprocessing procedure outside the scope of HITS chooses what
subgraph of the Web to analyze in response to a query.

B&H algorithm. The graph model is as in HITS, except that nodes have additional
properties. Each node is associated with a vector-space representation of the
text on the corresponding page. After the initial subgraph selection, the B&H
algorithm eliminates nodes whose corresponding vectors are far from the
typical vector computed from the root set.

Rank-and-File. This replaced the hubs-and-authorities model with a simpler one.
Each document is a linear sequence of tokens. Most are terms, some are outgoing
hyperlinks. Query terms activate nearby hyperlinks. No iterations are involved.

Clever. A page is modeled at two levels. The coarse-grained model is the same as in
HITS. At a finer grain, it is a linear sequence of tokens as in Rank-and-File. Prox-
imity between a query term on page u and an outbound link to page v is repre-
sented by increasing the edge’s weight (u, v) in the coarse-grained graph.

All these models are approximations to what HTML-based hypermedia really is.
Figure 10.9 shows a more faithful view. HTML pages are characterized by tag-trees,
also called the document object model (DOM). DOM trees are interconnected by
regular HREFs. (For simplicity, I remove location markers indicated by a # sign from
URLs, which occurs in a very small fraction of search engine responses. Thus, all
HREF targets are DOM tree roots.) I will call this the fine-grained model.

Segmenting Document Object Model Trees
Upon encountering the pages shown in Figures 10.5 or 10.7, a human surfer will
have no problem in focusing on links appearing in zone(s) relevant to his interest
and avoiding links in other zones. For uniformity, clique attack and mixed hubs
will be collectively called multitopic pages in this section.

We can name at least two kinds of clues that help users identify relevant zones
on a multitopic page. An obvious one is text. In Figure 10.5, the term “cheese”
occurs in only a limited area, and likewise for “Shakespeare” in Figure 10.7. The
other clue to a zone’s promise is its density of links to relevant sites known to the
user. I will focus on textual clues for the rest of this discussion.

Perhaps the first idea that comes to mind is to give preferential treatment to
document object model subtrees where query terms occur frequently. This scheme
will not work well for some queries, even if we could somehow define what
“frequently” means. For example, for the query “Japanese car maker,” DOM sub-

10.4  Enhanced Models and Techniques   419

420    CHAPTER 10  Social Network Analysis

FIGURE 10.9

Characterization of hypertext as a collection of interconnected trees. The HTML tag-tree of a
multitopic hub can be segmented into relevant and irrelevant subtrees.

Relevant
subtree

teddingtoncheese.co.ukwww.fromages.comski.qaz.com

HTML

head body

art.qaz.com

table

table

Irrelevent
subtree

tr tr td

tr tr

ul

td

tr li lili

a atd tdtd

a a

Frontier of
differentiation

<html> ... <body> ...
<table ...>
<tr><td>
 <table ...>
 <tr><td>art</td></tr>
 <tr><td>ski</td></tr>...
 </table>
</td></tr>
<tr><td>

 Fromages.com
 French cheese ...
 Teddington...
 Buy online...
 ...

</td></tr>
</table>...
</body></html>

trees with links to www.honda.com and www.toyota.com rarely use any of the
three query words; they instead use just the names of the companies, such as
“Honda” and “Toyota.” Therefore, depending on direct syntactic matches between
query terms and the text in DOM subtrees can be unreliable.

One idea from the B&H algorithm comes to our aid. Even though query terms
are difficult to find near good links, the centroid of the root set features “Honda”
and “Toyota” with large weights. Figure 10.10 shows similar examples. Therefore,
to estimate the relevance of a DOM subtree rooted at node u with regard to a

query, we can simply measure the vector-space similarity (like B&H) between the
root set centroid and the DOM subtree’s text, associating u with this score.

For a multitopic page (such as the one in Figure 10.5, shown as a DOM in Figure
10.9), what kind of pattern can we expect to see in these scores? If we already knew
the frontier of differentiation in Figure 10.9, we would expect the irrelevant subtree
(containing the clique attack or nepotistic links) to have a small score and the
subtree related to cheese to have a larger score. Above the frontier, these scores
would be averaged out somewhat because of the cosine measure (the Jaccard
measure may do the same). The score at the page’s root in Figure 10.9 would be in
between the scores at the relevant subtree root and irrelevant subtree root. By the
same token, relevant subtree root descendants will also have scores distributed both
above and below the subtree root score. So what is special about the frontier?

To answer this question, we need a generative model for the text embedded
in the DOM tree. Atomic blocks of text occur only at some leaves in the DOM tree
(e.g., between <A> and or between <P> and </P>); we consider these micro-
documents. Each internal node represents a collection of microdocuments, those
that appear as leaves in the subtree rooted at that internal node. We can use any
of the generative models to characterize the distribution of terms in a collection
of microdocuments. Such a generic term distribution is represented as Φ.

Let the term distribution over all microdocuments over all Web pages in Vq be
Φ0. One may imagine a “superroot” node whose children are the DOM roots of
all Web pages in Vq. Then Φ0 is the term distribution associated with this super-
root. Smaller sets of microdocuments about specific topics will have term distribu-
tions different from Φ0. Subtrees concerning different topics in a multitopic page
are expected to have somewhat different term distributions.

Given a DOM subtree with root node u, we can greedily decide if it is “pure”
or “mixed” by comparing some cost measure for the following two options:

1.	 The tree Tu rooted at u is pure, and a single term distribution Φu suffices to
generate the microdocuments in Tu with large probability. In this case, we
prune the tree at u.

2.	 u is a point of differentiation (see Figure 10.9), and each child v of u has a
different term distribution Φv from which the microdocuments in their corre-
sponding subtrees were generated. In this case, we expand the tree at u.

We can start this process at the root and continue expansion until no further
expansion is profitable as per the cost measure, as shown in Figure 10.11.

FIGURE 10.10

Despite a few Web-specific words (“click,” “site”) and mild generalizations (“drug”), the
largest components of root set centroid vectors are extremely intuitive.

10.4  Enhanced Models and Techniques   421

422    CHAPTER 10  Social Network Analysis

As with applications of the minimum description length (MDL) principle, we
can devise a model cost and data cost to drive the search for the frontier. The
model cost at DOM node u is the number of bits needed to represent the param-
eters of Φu, denoted L(Φu), which is encoded with regard to some prior distribu-
tion Π on the parameters, approximately −log Pr(Φu|Π). The data cost at node u
is the cost of encoding all the microdocuments in the subtree Tu rooted at u with
regard to the model Φu at u, approximately

− ()
∈∑ log Pr d ud Tu

Φ

Fine-Grained Topic Distillation
We will now integrate the segmentation step described before into a HITS/B&H-
style topic-distillation algorithm.

There is a certain asymmetry between how people interpret hubs and author-
ities, despite the symmetric formulation of HITS. A good authority page is expected
to be dedicated in its entirety to the topic of interest, whereas a hub is acceptable
if it has a reasonable number of links relevant to the topic of interest, even if there
are some irrelevant links on the page. The asymmetry is reflected in hyperlinks:
Unless used as navigational aids, hyperlinks to a remote host almost always point
to the DOM root of the target page.7

We will use DOM segmentation to contain the extent of authority diffusion
between co-cited pages (like v1 and v2 in Figure 10.2) through a multitopic hub
u. If we believe that u should be segmented into unrelated regions, we should
represent u not as a single node but with one node for each segmented subtree
of u, which will have the desirable effect of disaggregating the hub score of u,
preventing the relevant portion of hub scores from reinforcing the putative author-
ities linked from irrelevant regions of the hub DOM tree. For example, in Figure
10.9, two nodes would be created, one for the unwanted subtree and one for the

FIGURE 10.11

Greedy DOM segmentation using MDL.

7To be fair, authors avoid linking to internal regions of pages also because the HREF will break if
the author of the target pages removes the <a name…> marker.

FIGURE 10.12

To prevent unwanted authority diffusion, we aggregate hub scores along the frontier nodes
(no complete aggregation up to the DOM root) followed by propagation to the leaves. Initial
values of leaf hub scores are indicated (a). Must-prune nodes are marked (b). Frontier
microhubs accumulate scores (c). Aggregate hub scores are copied to leaves (d).

0.
10

0.
20

0.
01

0.
06

0.
05

0.
13

0.
10

0.
20

0.
12

0.
12

0.
12

0.
13

0.
10

0.
12

0.
20

0.
13

(a) (b)

(c) (d)

10.4  Enhanced Models and Techniques   423

favored subtree. We expect that the latter will take an active role in reinforcing
good authorities, whereas the former’s score will dwindle in comparison. Figure
10.12 illustrates this step.

The complete algorithm is given in Figure 10.13. We allow only the DOM tree
roots of root set nodes to have a nonzero authority score when we start, unlike
HITS and B&H, which set all scores to positive numbers. We believe that positive
authority scores should diffuse out from the root set only if the connecting hub
regions are trusted to be relevant to the query. Accordingly, the first half-iteration
implements the h ← Ea transfer.

For the transfer steps, the graph represented by E does not include any inter-
nal nodes of DOM trees. The new steps segment and aggregate are the only
steps that involve internal DOM nodes. Therefore, only DOM roots have positive
authority scores, and only DOM leaves (corresponding to HREFs) have positive
hub scores.

I have focused on text-based DOM segmentation, but I said near the beginning
of Section 10.4.4 that outlinks to known authorities can also help us segment a
hub. Specifically, if all large leaf hub scores are concentrated in one subtree of a
hub DOM, we may want to limit authority reinforcement to this subtree. At the
end of an h ← Ea transfer step, we could use only the leaf hub scores (instead of

424    CHAPTER 10  Social Network Analysis

text) to segment the hub DOMs. The general approach to DOM segmentation
remains unchanged; we only have to propose a different Φ and Π. When only
hub score–based segmentation is used in Figure 10.13, let us call the resulting
algorithm DOMHITS. We can also combine clues from text and hub scores
(Chakrabarti, Joshi, & Tawde, 2001). For example, we can pick the shallowest
frontier or we can design a joint distribution combining text and hub scores. Let
us call such an algorithm DOMTextHITS. We discuss the performance of DOMHITS
and DOMTextHITS in the next section.

10.5	 EVALUATION OF TOPIC DISTILLATION
The huge success of Google speaks for itself, but then, Google today is much more
than just PageRank alone. From the perspective of controlled, reproducible
research experiments, it is extremely difficult to evaluate HITS, PageRank, and
similar algorithms in quantitative terms, at least until benchmarks with the extent,
detail, and maturity of IR benchmarks are constructed. Currently the evaluation
seems largely based on an empirical and subjective notion of authority. As one
example of the subjective nature of the formulation, there is no upfront reason
why conferral of authority ought to be linear, or even compoundable. In this
section I will discuss a few papers that have sought to measure, using human
effort or machine learning techniques, the efficacy of various algorithms for social
network analysis applied to the Web.

10.5.1  HITS and Related Algorithms

Kleinberg’s original paper (1998) and a follow-up experience report (Gibson,
Kleinberg, & Raghavan, 1998) describe a number of experiments with HITS. HITS

FIGURE 10.13

Fine-grained topic distillation. Note that the vertex set involved in E includes only DOM roots
and leaves and not other internal nodes. Internal DOM nodes are involved only in the steps
marked segment and aggregate.

has been found reasonably insensitive to the exact choice of the root set. This
property was tested by picking a root set with 200 nodes and iterating HITS 50
times to derive the “ground truth” set of ten hubs and ten authorities, which we
may call C10(200, 50), in general, C10(r, i) for r root set pages and i iterations.
Figure 10.14 shows the size of intersections between C10(200, 50) and C10(r, i) for
r = 25, 50, 100, 200 and i = 1, 3, 10, 50 for six topics.

One may also use different search engines to generate the root set. A 1998
study by Bharat and Bröder (1998) showed that the portions of the Web covered
by major search engines have small overlap. When seeded from different search
engines (AltaVista, Infoseek, and Excite) the principal communities (i.e., the com-
munities corresponding to the largest eigenvalue) discovered by HITS were dif-
ferent. Ng et al.’s study (2001) of the stability of HITS corroborates this observation.
However, the principal community found using one search engine was often
found as a nonprincipal community (corresponding to some other eigenvalue)
using another search engine. Another way to perturb the root set is to ask the
query in different languages, for example, “astrophysics” and “astrophysique.” The
top authorities in the principal community for the query “astrophysics” were
found to largely overlap with the top authorities in a nonprincipal community for
the query “astrophysique.”

There are two recent careful empirical evaluations of the efficacy of various
link-based ranking strategies. Amento et al. (Amento, Terveen, & Hill, 2000) chose
five queries that corresponded to broad topics in Yahoo! They used Yahoo! to
assemble the root set. Some of the rank orderings used were as follows:

n	 PR. PageRank as computed over the expanded graph (not large crawls of
the Web).

n	 HITS. HITS with B&H edge weights, as described in Section 10.4.1.
n	 IN. The number of sites that link to this site, computed on a coarse

site-level graph.

Forty volunteers ranked URLs, which were then used to judge the quality of
these orderings. Amento et al. first confirmed that there were large, significant
correlations (in the range of 0.6 to 0.8) between the rankings produced by the
volunteers, indicating that consistent notions of quality exist. (Otherwise the other
measurements would have been pointless.)

From volunteer input, it was found that about a 0.32 fraction of all documents
were of high quality, the precision at rank 5 is about 0.75, and the precision at
rank 10 about 0.55 using the various link-based rankings, which were all compa-
rable in performance. The correlation between the various ranking methods is
shown in Table 10.2. Of course, these numbers do not mean that the notion of
“all links are not equal” underlying the HITS family of algorithms is invalidated.
The queries and communities experimented with were quite different (compare
the topics in Figure 10.14 with those in Table 10.2), as were the times of experi-
mentation (1997 and 2000).

Surprisingly, a simple scoring heuristic called NumPages performed quite close
to the link-based strategies. NumPages simply set the score of page u to the

10.5  Evaluation of Topic Distillation   425

426    CHAPTER 10  Social Network Analysis

FIGURE 10.14

For six test topics HITS shows relative insensitivity to the root-set size r and the number of
iterations i: (a) Harvard, (b) cryptography, (c) English literature, (d) skiing, (e) optionization,
and (f) operations research. In each case, the y-axis shows the overlap between the top ten
hubs and top ten authorities (20 pages total) and the “ground truth” obtained by using r =
200 and i = 50.

25

5

10

15

20

50 100

O
ve

rl
ap

 w
ith

 fu
ll

co
m

m
un

ity

(a)
200 25

10

5

15

20

10

5

15

20

50 100
(b)

200

25 50 100

O
ve

rl
ap

 w
ith

 fu
ll

co
m

m
un

ity

(c)
200

1 3 10 50Iterations:

25

5

10

15

20

50 100
(d)

200

25

5

10

15

20

50 100

O
ve

rl
ap

 w
ith

 fu
ll

co
m

m
un

ity

Root set size
(e)

200 25

5

10

15

20

50 100
Root set size

(f)

200

number of pages published on the host serving the page u, which is a rough
indication of how extensive the site is on the topic of the query. This measure
was surprisingly strongly correlated with authority scores.

The second user study has been conducted by Singhal and Kaszkiel (2001).
The National Institute of Standards and Technology (trec.nist.gov) organizes
an annual IR competition called the Text REtrieval Conference (TREC). Since
1998, TREC has added a “Web Track” featuring 500,000 to 700,000 pages from a
1997 Web crawl collected by the Internet Archive (Hawking et al., 2000) and
real-life queries collected from commercial search engine logs. TREC personnel
assesses the top 1000 results returned by competition participants to generate
precision scores. The goal in this competition is not to compile a collection
of high-quality links about a topic, but to locate the obvious page/site from a
keyword description. Although this task is not directly comparable to topic distil-
lation, the results of the study are instructive, the main result being that link-based
ranking strategies decisively beat a state-of-the-art IR system on Web workloads
(Figure 10.15).

10.5.2  Effect of Exploiting Other Hypertext Features

Clever (Chakrabarti et al., 1999) was evaluated using 26 queries first used in the
Automatic Resource Compilation (ARC) system (Chakrabarti et al. 1998) and later
by Bharat and Henzinger (1998). Clever, Yahoo!, and AltaVista were compared.
AltaVista and Clever directly used the query as shown in Figure 10.16. For Yahoo!,
the query was mapped manually to the best-matching leaf category. The top ten
pages were picked from AltaVista, the top five hubs and authorities were picked
using Clever, and ten random URLs were picked from Yahoo!. These were rated
as bad, fair, good, and fantastic by 37 volunteers, with good and fantastic ratings
regarded as relevant. Clever won in 50 percent of the queries; Clever and Yahoo!

Table 10.2 Authority Rank Correlation across Different Ranking Strategies Shows
Broad Agreement

Topic IN and HITS IN and PR HITS and PR

Babylon 5 0.97 0.93 0.90

Buffy 0.92 0.85 0.70

Simpsons 0.97 0.99 0.95

Smashing Pumpkins 0.95 0.98 0.92

Tori Amos 0.97 0.92 0.88

Spearman average 0.96 0.93 0.87

Kendall average 0.86 0.83 0.75

10.5  Evaluation of Topic Distillation   427

428    CHAPTER 10  Social Network Analysis

FIGURE 10.15

Link-based ranking beats a traditional text-based IR system by a clear margin for Web
workloads. One hundred queries were evaluated. The x axis shows the smallest rank where
a relevant page was found, and the y axis shows how many out of the 100 queries were
satisfied at that rank. A standard TFIDF ranking engine is compared with four well-known
Web search engines (Raging Search, Lycos, Google, and Excite). Their respective identities
have been withheld in this chart by Singhal and Kaszkiel (2001).

1
0

10

20

30

40

50

60

70

80

90

100

2 3 4 5
Rank of relevant page

Q
ue

ri
es

 s
at

isf
ie

d
at

 r
an

k
(%

)

6 7 8 9 10

TFIDF SE1 SE2 SE3 SE4

FIGURE 10.16

In studies conducted in 1998 over 26 queries and 37 volunteers, Clever reported better
authorities than Yahoo!, which in turn was better than AltaVista. Since then, most search
engines have incorporated some notion of link-based ranking.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ffi

rm
at

iv
e

ac
tio

n

R
el

at
iv

e
pr

ec
isi

on

A
lc

oh
ol

ism
A

m
us

em
en

t
pa

rk
B

ic
yc

lin
g

B
lu

es
C

he
es

e
C

la
ss

ic
al

 g
ui

ta
r

C
om

pu
te

r
vi

sio
n

C
ru

ise
s

Fi
el

d
ho

ck
ey

G
ar

de
ni

ng
G

ra
ph

ic
 d

es
ig

n
G

ul
f W

ar
H

IV
/A

ID
S

Ly
m

e
di

se
as

e
M

ut
ua

l f
un

ds
Pa

ra
lle

l a
rc

hi
te

ct
ur

e
R

ec
yc

lin
g

ca
ns

R
oc

k
cl

im
bi

ng
Sh

ak
es

pe
ar

e
St

am
p

co
lle

ct
in

g
Su

sh
i

T
ab

le
 t

en
ni

s
Te

le
co

m
m

ut
in

g
T

ha
ila

nd
 t

ou
ri

sm
V

in
ta

ge
 c

ar

A
ve

ra
ge

Alta Vista Yahoo! Clever

tied in 38 percent of the queries; Yahoo! won in 19 percent of the queries; and
AltaVista never beat the others.8

Experiments based on the same query collection were also used for evaluating
the B&H topic system, again using volunteer input. Results shown in Figure 10.17
show relative precision for HITS, HITS enhanced with edge weights to fight two-
host nepotism, and this in turn enhanced with outlier elimination (documents
with similarity better than median to the centroid of the base set were retained).
Significant improvements are seen in the precision judgments.

DOMHITS and DOMTextHITS show visible resistance to topic drift as com-
pared to HITS (Chakrabarti, Joshi, & Tawde, 2001). These experiments did not
depend on volunteers. Instead, the following strategy was used:

1.	 The Open Directory from dmoz.org (a topic taxonomy like Yahoo!) was mas-
saged to form a classification system with about 250 classes covering most
major topics on the Web, together with at least 1000 sample URLs per topic.

2.	 A text classifier called Rainbow was trained on these classes.

3.	 A few topics (/Arts/Music/Styles/classical/Composers, /Arts/Visual_
Arts, /Business/Human_Resources, and /Computers/Security) were chosen
from the complete set for experimentation. For each topic chosen, 200 URLs
were sampled at random from the available examples to form the root set.

4.	 HITS, DOMHITS, and DOMTextHITS were run starting from each of these root
sets.

8Results today are likely to differ; since our experiments, most search engines appear to have
incorporated some link-based ranking strategy.

FIGURE 10.17

B&H improves visibly beyond the precision offered by HITS. (“Auth5” means the top five
authorities were evaluated.) Edge weighting against two-site nepotism already helps, and
outlier elimination improves the results further.

Auth5
0

0.1
0.2
0.3
0.4
0.5

R
el

at
iv

e
pr

ec
isi

on

0.6
0.7
0.8
0.9

1

Hubs5 Auth10

HITS +Edge weighting +Outlier

Hubs10

10.5  Evaluation of Topic Distillation   429

430    CHAPTER 10  Social Network Analysis

5.	 For each class/topic c, the top 40 authorities, excluding pages already in the
root set, were submitted to the Rainbow classifier. For each such document d,
Rainbow returned a Bayesian estimate of Pr(c|d), the posterior probability that
document d was generated from (i.e., is relevant to) topic c.

6.	 By linearity of expectation, ∑dPr(c|d) = ∑dE([d ∈ c]) = E(∑d[d ∈ c]) is the expected
number of authorities relevant to c—a measure of “staying on topic.”

Figure 10.18 shows that across the topic, DOMTextHITS is more resistant to
topic drift than DOMHITS, which is more resistant than HITS. How do DOMHITS
and DOMTextHITS resist drift? Figure 10.19 shows the number of DOM nodes
pruned (that is, judged to be on the frontier) and expanded in the first few itera-
tions of the while-loop in Figure 10.13 (using DOMHITS). Two queries are shown.
For the first query, “bicycling,” there is no danger of drift, and the number of
pruned nodes increases quickly, whereas the number of expanded nodes falls.
This means that DOMHITS accepts a large number of pages as pure hubs. For the
other query, “affirmative action,” there is a clique attack from popular software
sites owing to a shareware of that name. In this case, the number of expanded
nodes keeps increasing with subsequent iterations, meaning that DOMHITS rightly
suspects mixed hubs and expands the frontier until they reach leaf DOM nodes,
suppressing unwanted reinforcement.

10.6	 MEASURING AND MODELING THE WEB
So far in this chapter we have discussed a variety of techniques for analyzing the
Web graph and exploiting it for better searches. Most of these techniques depend
implicitly on locality in various guises, for example, textual similarity, link neigh-

FIGURE 10.18

Top authorities reported by DOMTextHITS have the highest probability of being relevant to
the Open Directory topic whose samples were used as the root set, followed by DOMHITS
and finally HITS. This means that topic drift is smallest in DOMTextHITS.

Music
0

5

10

15

20

Su
m

 o
f r

oo
t

cl
as

s
pr

ob
ab

ili
tie

s

25

30

35

40

Visual arts HR

HITS DOMHITS DOMTextHITS

Security

borhoods, and page structure. Furthermore, although actions such as adding or
removing pages, terms, and links are local, they can be characterized by very
robust global properties.

Early works on the theory of random graphs (with a fixed number of nodes n)
have studied various properties such as the number of connected components
and vertex connectivity under simple edge creation models, a common one being
that each of the n(n − 1) potential edges is materialized with a fixed probability
p. It is hardly surprising that these models are not suitable for the Web: the Web
graph was obviously not created by materializing edges independently at
random.

10.6.1  Power-Law Degree Distributions

One of the earliest regularities in Web structure to be measured and modeled has
been the degree distribution of pages, both in-degree and out-degree. To a first
approximation, Web page degree follows the power-law distribution:

	 Pr out-degree is outk ka() ∝1 	 (10.19)

	 Pr in-degree is ink ka() ∝1 	 (10.20)

This property has been preserved modulo small changes in aout and ain as the
Web has grown, and this has been experimentally verified by a number of
people.

It is easy to fit data to these power-law distributions, but that does not explain
how largely autonomous page and link creation processes can end up producing
such a distribution. An early success in this direction came from the work of

FIGURE 10.19

The number of nodes pruned versus expanded may change significantly across iterations of
DOMHITS, but it stabilizes within 10 to 20. For base sets where there is no danger of drift,
there is a controlled induction of new nodes into the response set owing to authority
diffusion via relevant DOM subtrees. In contrast, for queries that led HITS/B&H to drift,
DOMHITS continued to expand a relatively larger number of nodes in an attempt to
suppress drift.

0
0

1 2 3 4 5
Bicycling

6 7 8 9 10

500
1000
1500
2000
2500
3000
3500
4000

0
0

1 2 3 4 5
Affirmative action

6 7 8 9 10

200

400

600

800

1000

1200

Data: # prune # expand

10.6  Measuring and Modeling the Web   431

432    CHAPTER 10  Social Network Analysis

Barabási and Albert (1999). They proposed that the graph (let it be undirected to
simplify the following discussion) continually adds nodes to increase in size, as is
eminently the case with the Web. They also proposed a key property in their
model called preferential attachment, which dictates that a new node is linked
to existing nodes not uniformly at random, but with higher probability to existing
nodes that already have large degree, a “winners take all” scenario that is not far
removed from reality in most social networks.

The graph starts with m0 nodes. Time proceeds in discrete steps. In each step,
one node is added. This new node u comes with a fixed number of m edges
(m ≤ m0), which connect to nodes already existing in the graph. Suppose at
this timestep an existing node v is incident on dv existing edges. Associate v with
a probability pv = dv/∑wdw, where w ranges over all existing nodes. Node u makes
m choices for neighbors. For each trial, node v is chosen with probability pv.

If this system evolves for t timesteps, the resulting graph has m0 + t nodes
and mt edges, and therefore the total degree over all nodes is 2mt. Let us approx-
imate the degree ki(t) of node i at timestep t as a continuous random variable. Let
ki(t) be shorthand for E(ki(t)). At time t, the infinitesimal expected growth rate of

ki is m
k

mt

k

t
i i× =

2 2
, by linearity of expectation. Thus, we can ∂ki/∂t = ki/2t, which

leads to the solution

	 k t m
t

t
i

i

() = 	 (10.21)

by enforcing the boundary condition ki(ti) = m.
Next let us find the number of nodes i at time t that have ki(t) > k for some

fixed k. For ki(t) > k to be true, we need ti < m2t/k2, and therefore the fraction

of nodes that satisfies this condition is
m t

m t k

2

0
2+() because the total number

of nodes is m0 + t at this time. Approximating k to be a continuous variable as
well, and differentiating with regard to k, we get that the fraction of nodes having
expected degree k is roughly

	 − ∂
∂ +()

=
+()k

m t

m t k

m t

m t k

2

0
2

2

0
3

2
	 (10.22)

This establishes the power law with an exponent of three. If the system runs
for a long time (t → ∞), the degree distribution of the resulting graph becomes
independent of m0, the only arbitrary parameter in the model.

Exponents from Web measurements differ from 3; they range between 2.1 and
2.5 (Figure 10.20). One reason could be that the simple linear model for probability
of attachment may not be accurate. Power-law degree distributions have been con-
firmed by a number of other measurements, such as by Bröder and others (2000).

Closer inspection of additional data showed that the pure power-law model
does not fit well for low values of k. It appeared that winners did not quite take

FIGURE 10.20

The in- and out-degree of Web nodes closely follow power-law distributions, except at low
degrees.

100

N
um

be
r

of
 p

ag
es

In-degree
100 100000

1

10

100

1000

10,000

100,000

1e+06

1e+07

1e+08

1e+09

1e+10
In-degree (total, remote-only) distribution

100

N
um

be
r

of
 p

ag
es

Out-degree

Out-degree (total, remote-only) distribution

100 1000
1

10

100

1000

10,000

100,000

1e+06

1e+07

1e+08

1e+09

1e+10

Total in-degree Power law, exponent 2.09
Remote-only in-degree Power law, exponent 2.1

10.6  Measuring and Modeling the Web   433

434    CHAPTER 10  Social Network Analysis

all—the degree distribution actually has a peak at a modest value of k. The pref-
erential attachment model described here does not explain this phenomenon.

A refinement that has been found to improve the fit is the following two-choice
behavior in generating links: With some probability d, newly generated node will
link uniformly at random to an existing node. With probability (1 − d), the earlier
preferential attachment rule is followed. Basically, the mixing parameter d gives
as-yet unpopular pages a chance to eventually attain prominence.

10.6.2  The “Bow Tie” Structure and Bipartite Cores

In November 1999, Bröder et al. (2000) mapped a large Web crawl containing
more than 200 million nodes to expose the large-scale structure of the Web graph
as having a central, strongly connected core (SCC); a subgraph (IN) with directed
paths leading into the SCC, a component (OUT) leading away from the SCC, and
relatively isolated tendrils attached to one of the three large subgraphs. These four
regions were each about a fourth the size of the Web, which led the authors to
call this the “bow tie” model of the Web (Figure 10.21). They also measured

FIGURE 10.21

The Web as a bow tie (Bröder et al., 2000).

IN
44 million nodes

OUT
44 million nodes

SCC
56 million nodes

Tendrils
44 million nodes

Tubes

Disconnected components

Region SCC

56,463,993 43,343,168 43,166,185 43,797,944 16,777,756 203,549,046

IN OUT Tendrils Disconnected Total

Size

interesting properties like the average path lengths between connected nodes and
the distribution of in- and out-degree. Follow-up work by Dill et al. (2001) showed
that subgraphs selected from the Web as per specific criteria (domain restriction,
occurrence of keyword, etc.) also appear to often be bow tie–like, although the
ratio of component sizes varies somewhat. There are no theories predicting the
formation of a bow tie in a social network, unlike power-law degree distributions.
We do not even know if the bow tie will be the most prominent structure in the
Web graph 10 years from now.

Kumar et al. (1999) wrote programs to search a large crawl of the Web for
bipartite cores (e.g., those that take an active role in topic-distillation algorithms).
They discovered tens of thousands of bipartite cores and empirically observed that
a large fraction are in fact topically coherent. A small bipartite core is often an
indicator of an emerging topic that may be too fine-grained to be cataloged
manually into Web directories.

10.6.3  Sampling Web Pages at Random

Many of the measurements discussed in this section involve sampling the Web.
The precision of some of the estimated parameters clearly depends on the unifor-
mity of the sample obtained.

We must be careful how we define “sampling from the Web,” because the
Web has dynamic pages generated in response to an unlimited number of possible
queries or an unlimited variety of browser cookies. The Web also has malicious
or accidental “spider traps,” which are infinite chains and trees of pages generated
by a combination of soft links, CGI scripts, and Web server mappings. Clearly, we
need to settle on a finite graph before we can measure the quality of a sample.

As a result of an ongoing race, Web crawlers do a good job of avoiding such
pitfalls while collecting pages to index, although this may mean that they leave
out some safely indexable pages. We may use this notion of a public, indexable
subset of the Web as our universe and consider sampling in the context of this
universe. This is not a precise characterization either, because the Web is not
strongly connected, and therefore what ground a crawler can cover depends on
the starting point.

To make progress without getting bogged down by the technicalities described
here, let us set up the problem from a perspective of a fixed crawling strategy,
starting from a fixed set of pages. Assume for simplicity that the Web does not
change while the crawl completes. At the end of the crawl, the crawler may
output the set of all URLs crawled. From this set, a URL may be readily sampled
uniformly at random. The key question is, can a URL be sampled uniformly at
random without undertaking a full crawl?

Why is uniform sampling of URLs from the Web of interest? I will propose a
few applications. Sampling may be used to quickly and approximately answer
aggregate queries about the Web, such as “What fraction of Web pages are in the
.co.jp domain?” Answering such a question may help balance crawling load

10.6  Measuring and Modeling the Web   435

436    CHAPTER 10  Social Network Analysis

across a distributed team of crawlers. Assuming one has a reasonably reliable clas-
sifier for a given topic taxonomy such as Yahoo! one may ask what fraction of
Web pages belongs to each of the topics. This may be useful for channeling effort
toward cataloging topics for that the taxonomy is underrepresented in proportion
to the Web. Such measurements can be extended to links. One may sample links
and classify the two endpoints to estimate how often a page related to one topic
links to a page on another topic. Clusters of densely connected topics may be
used to redesign or reorganize topic taxonomies. In the rest of this section, we
will study a progression of ideas for uniform sampling from the Web.

PageRank-Like Random Walk
One way to approximate a random sample is to implement a suitable random walk
on the graph to be crawled. If the graph satisfies certain properties, a random
walk is guaranteed to visit nodes at a rate that quickly approaches the stationary
distribution of prestige given in Equation 10.7, forgetting any effects of the start-
ing point with high probability.

Henzinger et al. (2000) and others have proposed to use the “random surfer”
notion underlying PageRank (see Section 10.2.1) directly to derive random samples.
Recall the transition matrix L used there, and also recall the uniform jump to avoid
getting trapped somewhere in the Web graph. The uniform jump can be modeled

as a simple jump matrix J
N

N VN= =1
1 , where . As we discussed before,

the random surfer uses J with probability d and L with the remaining probability
1 − d. Thus, as in Equation 10.9,

	 p pi
T

idJ d L+ = + −()()1 1 	 (10.23)

or

p v
d

V
d

p u

N
i

i

uu v E

+
()∈

[] = + −() []∑1 1
,

Because all elements of J are positive and 0 < d < 1, (dJ + (1 − d)LT) represents
an irreducible and aperiodic Markovian transition process with a unique, well-
defined stationary distribution that is the principal eigenvector of (dJ + (1 − d)LT).

Unfortunately, in an actual implementation of the random surfer, there is no
way to jump to a random node in V, because that is the problem we are trying to
solve! Henzinger et al. approximate the jump by running 1000 walks at the same
time that use a pooled collection of URLs visited thus far to implement the jump.
This introduces what is called the initial bias, which tends to keep the surfer
closer to the starting set of URLs than would be the case if a truly random jump
were possible.

The basic approach here is to first run a random walk for some time, then
sample from the page set thus collected. For any page v,

Pr Pr Prv v v vis sampled is crawled is sampled is crawled() = () ()   (10.24)

We must set Pr(v is sampled|v is crawled) in a way such that Pr(v is sampled)
is the same for all v. To do this, we need to first estimate Pr(v is crawled).

Let the steady-state PageRank vector corresponding to Equation 10.23 be p*.
In a sufficiently long walk that visits w nodes in all, we would expect node v to
be visited w p*[v] times. Even much shorter walks of about V hops, if limited
to the SCC of the Web, are also expected to suffice. Most nodes will appear at
most once in short walks of length at most V . (This is similar to the claim that
you need about 365 people in a party before you get two people with the same
birthday.) Under this assumption, we can approximate

	

Pr v E v

wp v

is crawled number of times is visited

*

() = ()
= [] 	

(10.25)

From Equations 10.24 and 10.25, it is clear that we must set

	 Pr v v p vis sampled is crawled *() ∝ []1 	 (10.26)

Again, we cannot know p* and must approximate it. The simple solution is to use
the actual visit ratio of each page—that is, the number of visits to each page
divided by the walk length. This is not perfect, because the visit ratio is discrete
and has large jumps compared to the smallest PageRank values.

Given the approximations and biases involved, how can we evaluate the quality
of such sampling algorithms? Because we cannot hope to “know” the whole Web
graph, it is best to generate a finite, unchanging, artificial graph that resembles
the Web graph in some important properties (such as degree distribution). Now
one can sample from this graph and thus generate, say, a sampled degree distribu-
tion. Comparing this with the true degree distribution will give an indication of
the uniformity of the algorithm. In fact, any property can be arbitrarily assigned
to each node (such as two colors, red and blue) and the sample properties com-
pared with the global properties (e.g., fraction of red nodes).

Henzinger et al. generated synthetic graphs with controlled in- and out-degree
distributions and compared the true degree distributions with those derived from
their sampling algorithms. The results, presented in Figure 10.22, show negligible
deviations for out-degree distribution and small deviations for in-degree distribu-
tion. They also explore a number of applications of random sampling, such as
estimating the fraction of URLs in various top-level domains and estimating search
engine coverage.

Random Walk on a Regular Graph
The probability “inversion,” Equation 10.26, is problematic with a large number
of nodes that are never visited during short walks. In an attempt to reduce this
problem, Bar-Yossef and others (2000) sought to alter the graph in such a way
that a sufficiently long random walk leads directly to a uniform sample.

It is easy to see that a vector with all elements set to 1/|V| is an eigenvector
for the adjacency matrix of an undirected graph where every node has the same

10.6  Measuring and Modeling the Web   437

438    CHAPTER 10  Social Network Analysis

FIGURE 10.22

Random walks based on PageRank give sample distributions close to the true distribution
used to generate the graph data, in terms of out-degree, in-degree, and PageRank.

5 8 11 14 17 20
0

5

10

15

Pe
rc

en
t

20

25

30

Out-degree

4
0

5

10

15

Pe
rc

en
t

20

25

30

6 8 10 12
In-degree

14 16 18

0.6 .08 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

Pe
rc

en
t

20

25

30

PageRank factor

Original graph PageRank sample Random sample

degree. It also turns out that this is the principal eigenvector (Golub & van Loan,
1989). Therefore, if only the Web graph were undirected and regular (i.e., all
nodes have the same degree), we would be done.

Bar-Yossef et al. forced these two properties to roughly hold for the graph they
walk, in the following manner. First, when making a transition from one node u
to the next, candidates are considered not only from out-neighbors of u but also
in-neighbors of u. (This can be done by a “backlink” query interface, provided by
many search engines.) Thus, the Web graph is in effect rendered undirected.
Second, the degree of all nodes is equalized by adding Nmax − Nv self-loops to node
v, where Nmax is the maximum degree.

You may immediately protest that using a search engine to find backlinks voids
a previously stated goal. This criticism is valid, but for many applications, includ-
ing crawling, an older crawl is available to approximately answer the backlink
queries. That the backlink database is incomplete and out of date introduces yet
other biases into the strategy, requiring empirical checks that their effects are
mild. The “ideal” walk (if the backlink database were complete and up to date)
and the realistic implementation WebWalker are shown in Figure 10.23. The key
modification is that WebWalker maintains its own in- and out-neighbor list for
each node, and this must not be modified once created, even if new paths are
found to nodes as the crawl proceeds. It turns out that, like Henzinger’s random
walk, WebWalker also needs a random jump to take it out of tight cycles and
cliques (Berg, 2001), but for simplicity this is not shown in the pseudocode.

FIGURE 10.23

Random walks on regular graphs derived from the Web graph.

10.6  Measuring and Modeling the Web   439

440    CHAPTER 10  Social Network Analysis

As with the PageRank-based random walk, one can stage sampling problems
where the answer is known. Bar-Yossef et al. used a real Web crawl with between
100 and 200 million nodes collected by Alexa Internet (www.alexa.com) in 1996.
They sorted the nodes in that crawl by degree and computed the deciles of the
degree distribution. Next they performed a random walk on this graph and col-
lected the samples into buckets according to the same deciles. If the sample is
unbiased, each bucket should have about one-tenth of the pages in the sample.
Figure 10.24 shows that this is the case except for some bias toward high-degree
nodes, which is expected.

10.7	 RESOURCES
An in-depth treatment of social network theory dating from the 1950s and before
the growth of the Web can be found in the classic text by Wasserman and Faust
(1994). Larson (1996) and Pirolli, Pitkow, and Rao (1996) discuss document clus-
tering based on combinations of text and link attributes. In the context of the
Web, hyperlink-based authority rating systems were first reported by Page and
Brin (1998) and Page et al. 1998) and Kleinberg (1998). Carriere and Kazman
proposed an early system for visual searching and ranking using hyperlinks (1997).
Kleinberg’s (1999) HITS system was improved by a number of research efforts,
such as Clever, and topic distillation (Bharat & Henzinger, 1998).

FIGURE 10.24

Random walks performed by WebWalker give reasonably unbiased URL samples; when
sampled URLs are bucketed along degree deciles in the complete data source, close to
10 percent of the sampled URLs fall into each bucket.

10 20 30 40 50
Deciles of nodes ordered by degree (%)

60 70 80 90 100
0

5

10

15

20

N
od

es
 fr

om
 w

al
k

(%
)

25

30

35

40

0 3Incoming links from search engines per page:

Gibson and others (1998) studied convergence properties of HITS, as well as
graph clusters identified by multiple eigenvectors output by HITS. Barabási and
Albert were among the first to analyze the degree distribution of the Web graph
and propose models to explain it Barabási and Albert (1999). Later work by
Pennock and others (1996) showed that winners do not take all; a slight modifica-
tion to the model of Barabäsi and Albert shows a much better fit to Web data.

Kumar and others (1999) have proposed alternative models that explain the
power-law degree distribution. Bharat and Bröder (1998) were among the first to
consider sampling Web pages systematically to find the sizes of and overlaps in
the crawl graphs collected by major search engines. The PageRank-based sampling
technique is a result of the work of Henzinger and others (2000). The regular
graph sampling idea results from the work of Bar-Yossef and others (2000).

References
Amento, B., L. G. Terveen, and W. C. Hill. Does “authority” mean quality? Predicting expert

quality ratings of Web documents. SIGIR, pp. 296–303. ACM, 2000.
Bar-Yossef, Z., A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz. Approximating aggregate

queries about Web pages via random walks. Proceedings of the 26th International
Conference on Very Large Databases (VLDB), pp. 535–544, 2000.

Barabási, A.-L., and R. Albert. Emergence of scaling in random networks. Science, 286:509–
512, 1999.

Berg, A. Random jumps in Web Walker. Personal communication, April 2001.
Bharat, K., and A. Bröder. A technique for measuring the relative size and overlap of public

Web search engines. Proceedings of the 7th World Wide Web Conference (WWW7),
1998.

Bharat, K., and M. R. Henzinger. Improved algorithms for topic distillation in a hyperlinked
environment. Proceedings of the 21st International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 104–111, August 1998.

Blum, A., and T. M. Mitchell. Combining labeled and unlabeled data with co-training. Com-
putational Learning Theory, pp. 92–100, 1998.

Brin, S., and L. Page. The anatomy of a large-scale hypertextual Web search engine. Pro-
ceedings of the 7th World Wide Web Conference (WWW7), 1998.

Bröder, A., R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener. Graph structure in the Web: Experiments and models. WWW9, pp. 309–320,
Amsterdam, May 2000.

Bush, V. As we may think. The Atlantic Monthly, July 1945.
Carriere, J., and R. Kazman. WebQuery: Searching and visualizing the Web through con-

nectivity. WWW6, pp. 701-711, 1997.
Chakrabarti, S., and B. E. Dom. Feature diffusion across hyperlinks. U.S. Patent No. 6,125,361,

April 1998. IBM Corp.
Chakrabarti, S., B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Automatic

resource compilation by analyzing hyperlink structure and associated text. Proceedings
of the 7th World Wide Web Conference (WWW7), 1998.

Chakrabarti, S., B. E. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, D. Gibson,
and J. Kleinberg. Mining the Web’s link structure. IEEE Computer, 32(8):60–67, 1999.

Chakrabarti, S., M. M. Joshi, and V. B. Tawde. Enhanced topic distillation using text, markup
tags, and hyperlinks. SIGIR, vol. 24, New Orleans, September 2001.

10.7  Resources   441

442    CHAPTER 10  Social Network Analysis

Chakrabarti, S., M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-
specific Web resource discovery. Computer Networks, 31:1623–1640, 1999. First
appeared in the 8th International World Wide Web Conference, Toronto, May 1999.

Davison, B. D. Topical locality in the Web. Proceedings of the 23rd Annual International
Conference on Research and Development in Information Retrieval (SIGIR 2000),
pp. 272–279, Athens, July 2000.

Gibson, D., J. M. Kleinberg, and P. Raghavan. Inferring Web communities from link topol-
ogy. ACM Conference on Hypertext, pp. 225–234, 1998.

Golub, G. H., and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
1989.

Haveliwala, T. H. Topic-sensitive PageRank, WWW, pp. 517–526, Honolulu, May 2002.
Hawking, D., E. Voorhees, N. Craswell, and P. Bailey. Overview of the TREC-8 Web track.

In E. Voorhees and D. Harman (eds.), Proceedings of the 8th Text Retrieval conference
(TREC-8), NIST Special Publication 500-246:131–150, 2000.

Henzinger, M. R., A. Heydon, M. Mitzenmacher, and M. Najork. On near-uniform URL sam-
pling. WWW9, Amsterdam, May 2000.

Kleinberg, J. M. Authoritative sources in a hyperlinked environment. Proceedings of ACM-
SLAM Symposium on Discrete Algorithms, 1998. Also appears as IBM Research Report
RJ10076(91892).

Kumar, S. R., P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for emerging
cyber-communities. WWW8/Computer Networks, 31(11–16):1481–1493, 1999.

Larson, R. Bibliometrics of the World Wide Web: An exploratory analysis of the intellectual
structure of cyberspace. Annual Meeting of the American Society for Information
Science, 1996.

Lempel, R., and S. Moran. SALSA: The stochastic approach for link-structure analysis. ACM
Transactions on Information Systems (TOIS), 19(2):131–160, April 2001.

McCain, K. W. Core journal networks and cocitation maps in the marine sciences: Tools
for information management in interdisciplinary research. In D. Shaw (ed.), Proceedings
of the 55th ASIS Annual Meeting, pp. 3–7, Medford, NJ, 1992.

Motwani, R., and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

Ng, A., A. Zheng, and M. Jordan. Stable algorithms for link analysis. Proceedings of the 24th
Annual International ACM SIGIR Conference, New Orleans, September 2001.

Page, L., S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the Web. Unpublished manuscript, 1998.

Pennock, D. M., G. W. Flake, S. Lawrence, C. L. Giles, and E. J. Glover. Winners don’t take
all: Characterizing the competition for links on the Web. Proceedings of the national
Academy of Science, 2000.

Pirolli, P., J. Pitkow, and R. Rao. Silk from a Sow’s Ear: Extraction Usable Structures from
the Web. ACM CHI, 1996.

Seeley, J. R. The net of reciprocal influence: A problem in treating sociometric data. Cana-
dian Journal of Psychology, 3:234–240, 1949.

Singhal, A., and M. Kaszkiel. A case study in Web search using TREC algorithms. WWW10,
Hong Kong, May 2001.

Wasserman, S., and K. Faust. Social Network Analysis: Methods and Applications. Cam-
birdge University Press, 1994.

Amento, Brian, 425
Anachronistic variables, 383–384
Analysis Services, 126–127
Analytical crossover method, 275–276
Anchor text, 417–418
and operation, 319
Annealing, 222
Aperiodic matrices, 403
Apex cuboids, 86
ARC. See Automatic Resource Compilation

system
Architecture of genetic algorithms. See

Traveling salesman problem
area property, 315
ARFF files, 168
Arithmetic crossover, 274–275
Arithmetic means, 61–62
Arrays, 294–297
Artifacts of Web authorship, 411–412
Association rules, 160

discussion, 167–168
generating efficiently, 166–167
item sets

generating, 160–163
rules from, 163–165

weather problem, 9–10
Assumption of independence, 379
Astronomy applications, 26
at operation, 306–307, 313
atinstant operation, 304
atmax operation, 307
atmin operation, 307
atperiods operation, 304–305
Attribute-efficient learners, 176
Attributes

combinations, 160
construction, 82, 84
highly branching, 149–153
numeric, 133–135, 139–142
subset selection, 86–88
weather problem, 8–10

Authoritative pages, 402

Index

A
ABRollup macro, 49
Abundance problem, 401
Accuracy

attribute construction, 84
classification, 101
data integration, 81
preprocessing, 61
rules, 132, 155, 158–160, 163–168,

365
surveys, 38

Activated tokens, 417
Activating hyperlinks, 419
Additive interactions, 389
Aggregation

Analysis Services, 126
data cubes, 85–86
data transformation, 81–82
DOM trees, 424
lifted operations, 313–314
for noise reduction, 377

Albert, R., 432
Alexa Internet, 440
Algebraic measures, 62
Algorithms, 131–132

association rules. See Association
rules

clustering, 184–188
covering. See Covering algorithms
decision trees. See Decision trees
genetic. See Genetic algorithms
HITS. See HITS algorithm
inferring rudimentary rules, 132–136
instance-based learning, 176–184
lifted. See Lifted operations
linear models. See Linear models and

classification
PageRank, 400–404
respecifying. See Respecifying

algorithms
statistical modeling, 136–144

Allele values, 222

444    Index

Authority, hyperlinks for, 411
Authority pages, 405
Authority scores, 405–410, 412–413, 424,

427
Automatic Resource Compilation (ARC)

system, 427
Averages

formula, 61–62
rollup with, 48–49

B
B&H algorithm, 416–420
Babbage, Charles, 113
Backward elimination, 88
Backward pruning, 32
Bad decisions with good outcomes, 205
Bags of words, 142–143
Balanced Winnow, 176
Ball trees, 181–184, 186
Banking transactions, 41–48
Banks, 24
Bar charts, 66
Bar-Yossef, Ziv, 437, 439–441
Barabasi, A-L., 432
Base cuboids, 85
Base sets of nodes, 405
Bayes, Thomas, 188
Bayesian models for document

classification, 142–143
Bayesian networks

adjustments, 369–370
independence in, 188

Bayes’s rule, 138
Beam searches, 31
Beam width, 31
Bell Atlantic, 26
Bharat, Krishna, 411, 416–417, 425, 427
Bias, 29–30

estimation, 376
initial, 436
language, 30–31
overfitting-avoidance, 31–32
search, 31
variance, 382

Bibliometry, 398–400
Bimodal datasets, 63
Binary inversion, 278
Binary route chromosomes, 247–248

Binning, 99–100, 343, 348–349
boundaries, 73, 349–351
characteristics, 73–74
information-based, 351–352
for noise reduction, 377
OLAP, 38

Biology, 26
Biomedicine, 26
Bipartite cores, 408, 434–435
Bipartite subgraphs, 406
Bit inversion, 278
Bitmap indexes, 124
Bits, in information, 145
Boolean type

attributes, 142
bool, 294
ibool, 296
lifted operations, 319
mbool, 297
rbool, 296

Bottom-up discretization, 98
Boundaries, binning, 73, 349–351
Bow tie structures, 434–435
Boxplots, 65
Branching

highly branching attributes, 149–153
in kD-trees, 178

Breakpoints, 133–134
Breeding, 222–223, 237. See also Genetic

algorithms
conventional crossover techniques,

267–276
issues, 289
weighted crossover, 276

Brin, Sergey, 401
British Petroleum, 26
Broder, Andrei, 403, 425, 432, 434
Broken modeling tools, 382–383
Brute-force method for item sets, 167
Buckets, 66–67, 93–95, 100, 440. See also

Binning
Bush, Vannevar, 398
Business intelligence tools, 38

C
Canadian contract negotiations, 15–17
Candidate item sets, 166–167
Categorical correlation, 379–380

Index   445

Categorical data, 39–40, 106–108
Census data, 39
center operation, 314
Central-and-limits mutation, 278
Central tendency measurements, 61–64
Centrality, in social networks, 399–400
Centroid distances, 95
Centroids, 185
Chakrabarti, Soumen, 415, 424, 427,

429
Chess endgames, 12
Chi-square analysis

correlation relationships, 79–80
interval merging by, 102

ChiMerge discretization method, 102
Chromosomes, 222–224. See also Genetic

algorithms
design, 245–247
evaluation, 259–260
selection strategies, 261–265

City distances. See Traveling salesman
problem

City pivot crossover, 282–283
Classification

continuous classifier actual vs.
predicted values plots, 335–337

continuous classifier residuals,
330–333

continuous classifier residuals vs. actual
values plots, 333–335

continuous classifier variance plots,
337–339

document, 142–143
linear, 169–176
residual model summary, 339–342
soybean, 16–20

Classification and Regression Trees, 27
Classification rules, 9–10
Cleaning data, 58–59, 72

missing values, 72–73
noisy data, 73–74
as process, 74–78

Clever project, 418–419
Clique attacks, 412, 414
Clustering, 74

adjustments, 365–366
data reduction, 95–96
discretization methods, 103

discussion, 188
distance calculations, 185–187
HITS, 406–407
iterative distance-based, 185
numerosity reduction, 96
overview, 184–185
support vector machines, 366–367

Co-citation, in social networks, 400
Coarse-grained graph model, 410–416
Colinearities, partial, 380
Combinations of attributes, 160
Complex optimization genetic problems,

239–240
ConcatDS macro, 55
Concatenation, 53–55
Concept descriptions, 28
Concept hierarchies, 98–99

categorical data, 106–108
numeric data, 99–105

Concept space, enumerating, 29
Confidence levels of rules, 160, 365
Confidentiality issues, 32–33
Conflict detection and resolution, 81
Consecutive rule, 76
const type, 296
Constant risk-averse utility function, 195
Constant risk aversion, 194–197
Constants for missing values, 359–360
Constraints, 225
Constructing rules, 153–154

rules vs. decision lists, 159–160
rules vs. trees, 154–155
simple covering algorithms, 155–159

Contact lenses problem, 10–12
Contamination, topic, 412–416
Contingency tables, 79
Continuous classifier actual vs. predicted

values plots, 335–337
Continuous classifier residuals, 330–333
Continuous classifier residuals vs. actual

values plots, 333–335
Continuous classifier variance plots,

337–339
Continuous monitoring applications, 26
Continuous remapping numeric

distributions, 356
Continuous variables, 41
Contract negotiations, 15–17

446    Index

Conventional crossover techniques,
267–268

analytical, 275–276
crew scheduling cost model,

268–269
double-point, 272
single-point, 270–272
uniform, 272–274
weighted, 274–275

Conventional mutation techniques,
276–279

Convergence, 225, 241
Coordinate type, 294
Corporate data, 8
Correlation

categorical, 379–380
data integration, 78–79

Correlation coefficient, 78
Cost minimization crew scheduling

problem, 268–269
Counts, rollup with, 48–49
Covariate imputation, 360
Coverage by association rules, 160
Covering algorithms, 153–154

rules vs. decision lists, 159–160
rules vs. trees, 154–155
simple, 155–159

Cox, Earl, 249
Crawled graph, 404
Crew scheduling cost model,

268–269
Cross-validation, 135
Crossover techniques, 225, 279–280

city pivot, 282–283
conventional. See Conventional

crossover techniques
greedy, 280–282
issues, 288–289
position pivot, 283–284

Cubes
aggregation, 85–86
OLAP, 38

Cuboids, 85–86
Cumulative risk profiles, 200–202
Curvilinear regression, 368
Customer support and service, 26
Cut points, 98
Cycles array, 297

D
Data, 34

insufficient, 372–374, 393–395
preprocessing. See Preprocessing
reformatting. See Reformatting

data
uneven, 374–375

Data acquisition, 37
data rollup, 41–49
data sources, 37–39
mode calculation, 49–50
variable types, 39–41

Data auditing tools, 76
Data cleaning, 58–59, 72

missing values, 72–73
noisy data, 73–74
as process, 74–78

Data cubes
aggregation, 85–86
OLAP, 38

Data discretization, 98–99
categorical data, 106–108
numeric data, 99–105

Data doesn’t support model problem,
343–345

Data integration, 50–51, 59
concatenation, 53–55
merging, 51–53
overview, 78–81

Data migration tools, 77
Data mining overview

characteristics, 6–7
contact lenses problem, 10–12
CPU performance problem, 14–15
ethical implications, 32–34
irises dataset, 12–14
labor negotiations problem, 15–17
and machine learning, 1–3, 5–6
soybean classification, 16–20
structural patterns, 3–5
weather problem, 7–10

Data partially doesn’t support model
problem, 345–346

Data reduction techniques, 59, 84–85
attribute subset selection, 86–88
data cube aggregation, 85–86
dimensionality reduction, 88–92
numerosity reduction, 92–98

Index   447

Data rollup
OLAP, 116
overview, 41–48
with sums, averages, and counts, 48–49

Data scrubbing tools, 76
Data sources, 37

data warehouses and data marts, 38
household and demographic databases,

39
OLAP, 38
operational systems, 37
surveys, 38–39

Data structures, 293
general requirements and strategy,

293–294
lifted operations. See Lifted operations
nontemporal data types, 294–296
temporal data types. See Temporal data

types
Data summarization, 61

graphic displays, 66–71
measures of central tendency, 61–64
measures of dispersion, 63–66

Data transformations, 59, 77–78
data reduction, 84–98
overview, 81–84

Data types
nontemporal, 294–296
temporal. See Temporal data types

Data unrepresentative of business
problem, 381

Data warehouses, 38, 119–122
Databases, household and demographic,

39
DATAllegro company, 123
Date variables, 41
Daubechies wavelet transform, 89
Decay

activation window, 418
nonuniform decay mutation, 279

Decimal scaling, normalization by, 83–84
Decision analysis, 191

dominance, 200–205
normative, 220
risk analysis, 198–202
risk preferences modeling, 191–197
sensitivity analysis, 205–214
value of information, 215–220

Decision lists
vs. rules, 159–160
weather problem, 8

Decision trees, 144–147
adjustments, 363–364
calculating information, 147–149
contact lenses problem, 12
discussion, 153
highly branching attributes, 149–153
induction, 27, 88
labor negotiations problem, 16

Decisions involving judgment, 20–21
Decreasing risk-averse utility function, 197
defined flag, 294
deftime operation, 301
Degenerate dimensions, 117
Degree distributions, power-law, 431–434
Delayed convergence, 241
Demographic databases, 39
Dependence on fitness function, 240
Dependencies, in Naive Bayes method,

138, 144
derivable operation, 309
derivative operation, 308–309, 317
Descriptive data summarization, 61

graphic displays, 66–71
measures of central tendency, 61–64
measures of dispersion, 63–66

Detection and resolution of data conflicts,
81

Deterministic dominance, 201
DFT. See Discrete Fourier transform
Diagnosis, expert systems for, 23–24
Diagnostic plots

predicted vs. actual, 325
predicted vs. residual, 324–325

Diameters, cluster, 95
Differentiation, 421
Dill, Stephen, 435
Dilution, 39
Dimension tables, 124
Dimensionality reduction, 88

principal components analysis, 90–92
wavelet transforms, 88–90

Dimensions
hierarchies, 116–117
OLAP, 114

Direct marketing, 25–26

448    Index

Directed graphs, 224, 399
Direction, in lifted operations, 317–319
direction operation, 318
Disaggregating hub scores, 422–423
Discontinuous problems, genetic

algorithms for, 238–239
Discount cards, 25
Discrepancy detection, 75–76
Discrete Fourier transform (DFT), 89
Discrete wavelet transform (DWT),

88–89
Discretization, 98–99

entropy-based, 100–102
by intuitive partitioning, 103–105

Disjunctions, 30
Dispersion measures, 63–66
Distance-based clustering, 185
Distance function, 176–177
distance operation, 317–318
Distances

directed graphs, 399
lifted operations, 317–319
speedy calculations, 185–187
TSP. See Traveling salesman problem

Distillation, topic, 406, 424
fine-grained, 422–424
HITS and related algorithms, 424–427
hypertext features, 427–430

Distribution-based mutations, 278
Distributions

multinomial, 142
normal probability, 139–140
normalizing, 355–358
power-law degree, 431–434

Distributive measures, 62
Diversity, population, 255–256, 276–279
Divide and conquer techniques. See

Decision trees
Document classification, 142–143
Document markup structure, 419–424
Dom, Bryon E., 415
DOM (document object model) trees,

419–422, 424
Domain knowledge, 18
Domains

interaction with, 304–308
projection to, 301–304

DOMHITS procedure, 429–431

Dominance, 200
deterministic, 201
good decisions vs. good outcomes,

205
stochastic, 203–205

Dominating points, 295
DOMTextHITS procedure, 429–430
Double-point crossover, 272
Drift, 412–416
Drill-down operations, 116
Drug discovery, 26
DWT. See Discrete wavelet transform

E
Ecological applications, 26
EDA. See Event-driven architecture
Edge-weighted, directed graphs, 399
Eigenvectors

higher-order, 406–407
principal, 399, 406

Electricity load forecasting, 22–23
Electromechanical devices preventative

maintenance, 23–24
Elitist strategy for chromosome selection,

263
ENIAC (electronic numerical integrator

and computer), 113
Entity identification problem, 78
Entropy, 149
Entropy-based discretization, 100–102
Enumerating concept space, 29
Equal-frequency bins, 73, 350–351, 355
Equal-frequency histograms, 93, 100
Equal range bins, 349–350
Equal-width bins, 73
Equal-width histograms, 93
Errors and error handling, 5

classification model residual checking
summary, 339–342

continuous classifier actual vs. predicted
values plots, 335–337

continuous classifier residuals, 330–333
continuous classifier residuals vs. actual

values plots, 333–335
continuous classifier variance plots,

337–339
explanatory models improvements,

342–343

Index   449

perfect models, 339
predicted vs. actual diagnostic plots,

325
predicted vs. residual diagnostic plots,

324–325
predicting, 326–329

Estimation bias, 376
Ethical implications, 32–34
ETL. See Extract, transform, and load

process
Euclidean distances, 176–177, 243
Event-driven architecture (EDA), 49
Evolutionary strategies. See Genetic

algorithms
Execution times for real-world systems,

286–287
Expanded sets of nodes, 405
Expanding data, 394
Expected information requirements, 101
Expected value maximizers, 192
Expected value of imperfect information

(EVII), 218–220
Expected value of perfect information

(EVPI), 215–218
Expert systems, 23–24
Explanatory models

improving, 342–343
normalizing distribution in, 357–358

Exponential utility function, 192–197
Extract, transform, and load (ETL) process,

77, 119

F
faces arrays, 297
Fact tables, 117
Fast DWT algorithm, 90
Faster distance calculations, 185–187
Feasible solutions, 225
Feature construction, 82, 84
Field overloading, 76
Fielded applications, 20

decisions involving judgment, 20–21
diagnosis, 23–24
load forecasting, 22–23
marketing and sales, 24–26
miscellaneous, 26–27
screening images, 21–22

Filtering approaches, 300–301

final operation, 305
Fine-grained model, 419
Fine-grained topic distillation,

422–424
First-cycle-in-face pointers, 297
First quartiles, 64
Fisher, R. A., 12
Fitness functions, 226

dependence on, 240
designing, 244, 249–252
multigenome, 252–254
in population diversity, 256

Five-number summaries, 64
Fixpoints for prestige vectors, 399
Flash content, 397
Foreign keys, in star schemas, 117
Forward pruning, 32
Forward selection and backward

elimination, 88
Fragmentation of datasets, 385
FREQ procedure, 46
Frequency histograms, 66–67

G
Gain ratio, 150–152
Gaussian probability distribution, 139
General-to-specific search bias, 31
Generalization as search, 28–29

bias, 29–32
enumerating concept space, 29

Generalization of data, 60, 82
Generate-and-test process, 230–231
Generations, 226
Genetic algorithms, 221

adjustments, 370
architecture. See Traveling salesman

problem
generate-and-test process, 230–231
operation, 232–238
organization, 231–232
overview, 230
parameter sensitivity, 240–241
process parameters, 287–290
real-world systems execution times,

286–287
review, 290
strengths and limitations, 238–241
vocabulary, 221–229

450    Index

Genomes, 26, 226. See also Genetic
algorithms

encoding, 241
representations, 244, 247–249
structural design, 245–247

Genotypes, 226–227
Gibson, D., 424
Good decisions with bad outcomes, 205
Goodness of fit, 227
Google, 398, 404, 424
Graphs

basic descriptive data summaries, 66–71
coarse-grained, 410–416
directed, 224, 399
OLAP representation, 114
random walks on, 437–440

Greedy crossover approach, 280–283, 288
Greedy methods, 31, 87, 127
Grefenstette, John J., 280
Groups, OLAP, 114

H
Haar-2 wavelet transform, 89
halfsegments array, 294–295
Hazard detection system, 21–22
Henzinger, Monika R., 411, 416–417, 427,

436–437
Hidden neurons, 368–369
Hierarchical histograms, 95
Hierarchies, concept, 98–99

categorical data, 106–108
numeric data, 99–105

Hierarchies, dimension, 116–117
Higher-order eigenvectors, 406–407
Highly branching attributes, 149–153
Hill, Will, 425
Hill-climbing process, 233–235
Histograms, 66–67

analysis, 100
partitioning rules, 93–95
residuals, 332–333

HITS (hyperlink induced topic search)
algorithm, 400–402, 405–407

characteristics, 419
higher-order eigenvectors and clustering,

406–407
hypertext system, 429
stochastic, 408–410
and SVD, 407

Holistic measures, 62
Holland, John H., 221
Holte, R. C., 188
Horizontal table partitioning, 122
Household databases, 39
Hub pages, 402, 405–406
Hubs

disaggregating hub scores, 422–423
mixed, 412

Human judgment, in loan systems, 21
Hybrid OLAP (HOLAP), 115–116
Hyperlink induced topic search algorithm.

See HITS algorithm
Hyperlinks, 397–398

activating, 419
for authority, 411

Hyperpipes, 188
Hyperplanes

kD-trees, 178, 180
logistic regression, 172–173
perceptrons, 174
Winnow algorithm, 175–176

Hyperspheres, 181
Hypertext features, 427–430

I
ibool type, 296
ID3 algorithm, 88, 153, 155, 189
Idealized problems, 10–12
Identification codes, 134, 149–151
iint type, 296
IIPs. See Interaction indicator plots
Images, screening, 21–22
Imperfect information, expected value of,

218–220
Improvements, model, 321–323

learning from errors. See Errors and
error handling

quality improvements. See Quality
improvements and problem solving

Incomplete data, 58
Inconsistent data, 57–58, 61, 72, 75–76, 81
Independence

assumption of, 379
in Naive Bayes method, 138, 144

Independent variables, 379
Indexes

dimensions, 124
multidimensional index trees, 95

Index   451

Inferring rudimentary rules, 132–136
Information, 34

calculating, 147–149
gain measurements, 87
purity, 145

Information-based binning, 351–352
Information theory, 352
Information value, 149, 215

expected value of imperfect
information, 218–220

expected value of perfect information,
215–218

Initial bias, 436
initial operation, 305
Initial population generation,

254–258
Input node layers, in neural networks,

174–175
inside operation, 307, 312–313
Instance-based learning, 176

discussion, 183–184
distance function, 176–177
nearest neighbors, 177–183

instant type, 294
Insufficient data, 372–374, 393–395
int type, 294
Inter-city distances. See Traveling

salesman problem
Interaction effects, 385–393
Interaction indicator plots (IIPs),

387–393
Internet Archive, 427
Interquartile range (IQR), 64
intersection operation, 307, 313–314
intersects predicate, 311–312
Interval merging by chi-square analysis,

102
Interval records, 296
Intervals and subsets, 135
intime type, 296
Intuitive partitioning, 103–105
ipoint type, 296
ireal type, 296
iregion type, 296
Irises dataset, 12–14
Irreducible matrices, 403
Irrelevant variables, 384–385
isempty predicate, 310
istring type, 296

Item sets, in association rules
candidate, 166–167
generating, 160–163
rules from, 163–165

Iterative distance-based clustering, 185

J
Joshi, M. M., 424, 429
Jump matrices, 436

K
K-L. See Karhunen-Loeve method
K-means clustering, 185–186, 365
Kahneman, Daniel, 220
Karhunen-Loeve (K-L) method, 90–92
Kaszkiel, Marcin, 427
kD-trees, 178–181, 186
Kernel density estimation, 144
Kleinberg, Jon, 401, 405, 411, 424
Knowledge, 34
Kth percentiles, 64
Kumar, Ravi, 435

L
Labor negotiations problem, 15–17
Language bias, 30–31
Laplace, Pierre, 138
Laplace estimator, 138
Larson, R., 400–401, 406–407
Latent phenomenon, 379
Latent semantic space, 407
Lattices of cuboids, 86
Layers

hidden neurons, 369
neuron networks, 174–175

Learning from errors. See Errors and error
handling

Learning style inventory, 407
Least information loss binning, 352
Least-squares regression, 92, 170
Leaves

decision trees, 363–364
kD-trees, 179

left halfsegments array, 294
Lempel, R., 409
Lifted operations, 310

aggregation, 313–314
Boolean, 319
distance and direction, 317–319

452    Index

Lifted operations (cont’d)
numeric properties, 315–316
predicates, 310–313
set operations, 313–314

limit operation, 334
line type, 294–295
Linear machines, 189
Linear models and classification, 168

linear classification using perceptron,
173–175

linear classification using Winnow,
175–176

linear regression, 168–169
logistic regression, 169–172

Linear planes, 172
Linear ranking strategy, 266
Linear regression, 74, 168–169

adjustments, 367–368
multiple, 92
multiresponse, 169–170, 172

Linear threshold units, 189
Linearly separable data, 173
Links

hyperlinks, 397–398, 411, 419
nepotistic, 411

Load forecasting, 22–23
Loans, 20–21
Local smoothing, 73
locations operation, 301–302
Locus, 227
Loess curves, 70–71
Log-likelihood of models, 170
Log-linear models, 92
Logical operations, 30, 319
Logistic regression, 169–172
Logit transformations, 170
Lossless data reduction, 88
Lossy compression, 90
Lossy data reduction, 88
Loyalty cards, 25

M
Machine learning, 1–3, 5–6

image screening, 22
loan systems, 21
soybean classification, 16–20
and statistics, 27

Main effects plot, 388

Manual aggregation for noise reduction, 377
Manufacturing processes, 26
Maps, self-organizing, 342, 366
Market basket analysis, 25
Marketing and sales, 24–26
Marts, 38, 119–122
Massively parallel processing (MPP)

architecture, 123
Match-merge with nonmatched

observations, 51–53
Materialized OLAP views, 115
Materialized query tables (MQTs), 113
MaxDiff histograms, 93–94
Maximum information gain binning, 352
Maximum likelihood missing value

estimation, 360
Maximum number of generations, 288
maxinstant constant, 294
mbool type, 297
mdirection operation, 309
MDL. See Minimum description length

principle
MDS. See Multidimensional scaling
Mean least squares (MLS) method, 331
Means

formula, 61–62
rollup with, 48–49

Measures
central tendency, 61–64
data dispersion, 63–66

Medians, 62–63
Membership functions, in logistic

regression, 169
Memex hypermedium, 398
Memory-based reasoning algorithms,

362–363
MERGE-BY commands, 52
Merging, 51–53, 98
Metadata, 76
Method of least squares, 92, 170
Metric trees, 184
Microdocuments, 421
Micronodes, 417
Microsoft Analysis Services, 126–127
Midranges, 63
Min-max normalization, 82–83
Minimization problems in proportional

fitness strategy, 265

Index   453

Minimum description length (MDL)
principle, 421–422

Minimum interval size in histograms, 100
Mining association rules. See Association

rules
mininstant constant, 294
mint type, 297
minus operation, 314
Misclassification errors, 5
Missing value check model (MVCM),

358–360
Missing values

distance function, 177
for noise reduction, 377
replacing, 72–73, 358–360
rudimentary rules, 133–135
statistical modeling, 139–142

Mistake driven methods, 176
Mixed-attribute problem, 9
Mixed hubs, 412
Mixing rate, in uniform crossover,

273–274
MLS. See Mean least squares method
Mode calculation, 49–50
Model improvements, 321–323

learning from errors. See Errors and
error handling

quality improvements. See Quality
improvements and problem solving

Modeling tools, broken, 382–383
Modes

calculation, 49–50
dataset, 63

MOLAP. See Multidimensional OLAP
Month function, 44
Moran, S., 409
Move-and-insert gene mutation, 284–285
Move-and-insert sequence mutation, 285
Moving arguments, 299
Moving object types. See Data structures
Mpoints, 296
MPP. See Massively parallel processing

architecture
MQTs. See Materialized query tables
mreal type, 297
msegment arrays, 297
mstring type, 297
Multidimensional histograms, 94

Multidimensional index trees, 95
Multidimensional OLAP (MOLAP), 115–116
Multidimensional scaling (MDS), 400
Multigenome fitness functions, 252–254
Multihost nepotism, 412
Multilevel rollup, 43–44
Multimodal datasets, 63
Multinomial distributions, 142
Multinomial Naive Bayes, 142
Multiobjective and multiconstraint genetic

searches, 249–251
Multiple conditions, rules from, 365
Multiple linear regression, 74, 92
Multiplying data, 394–395
Multiresponse linear regression, 169–170,

172
Multitopic pages, 419, 421
Mutation techniques, 227

advanced, 284–285
issues, 288–289
move-and-insert gene, 284–285
move-and-insert sequence, 285
order reversal, 285
populations, 276–279
random swap, 284
rate, 289

MVCM. See Missing value check model

N
Naive Bayes method, 138, 141–144, 188
National census, 39
Neapolitan, Rich, 205
Nearest neighbor algorithms

adjusting, 362–363
crossover, 280–282
discussion, 183–184
distance function, 176–177
operation, 178–183

Nepotism, two-party, 416
Nepotistic links, 411–412
Nested discrepancies, 77
Netezza approach, 122–123
Netica, 217–218
Networks

neural, 174, 368–369
social. See Social network analysis

Next-cycle-in-face pointers, 297
next-in-cycle field, 295

454    Index

Ng, Andrew Y., 410, 425
no_components property, 315
Noise, 5

cleaning, 58, 73–74
decision trees, 364
genetic algorithms for, 238–239
reduction, 376–378

Noisy variables, 384–385
Nominal variables, 39–40, 106–108
Nonlinear problems, genetic algorithms

for, 238–239
Nontemporal data types, 294–296
Nonuniform decay mutation, 279
Normal probability distributions, 139–140,

350
Normalizing data, 59, 109, 355–356

benefits, 356–357
by decimal scaling, 83–84
in explanatory models, 357–358
ranges, 352–355
types, 82–84

Normative decision analysis, 220
not operation, 319
Notations for temporal data type

operations, 298–299
Null rule, 76
Numeric-attribute problem, 9–10
Numeric attributes

data discretization and concept
hierarchy generation, 99–105

rudimentary rules, 133–135
statistical modeling, 139–142

Numeric dataset for irises, 12–14
Numeric prediction

CPU performance, 14–15
linear regression, 168–169

Numeric properties, in lifted operations,
315–316

Numerosity reduction, 92
clustering, 95–96
histograms, 93–95
regression and log-linear models, 92–93
sampling, 96–98

NumPages heuristic, 425–426

O
Object matching, 78
Objective function, 227
Oil slicks, 21–22

1R (1-rule) method, 132, 134–135
Online analytical processing (OLAP), 38,

113–116, 124
Open DataBase Connectivity (ODBC) data

sources, 126
Operational systems as data source, 37
or operation, 319
Oracle for partitioning data, 125–126
Order reversal mutation, 285
Ordinal variables, 40–41
Orthonormal matrices, 90
Outliers

clustering for, 74
eliminating, 417
linear regression, 367
normalization for, 356
preprocessing, 58, 64–65

Output limiting, 381–382
Output node layers, in neural networks,

174–175
Overfitting, 134
Overfitting-avoidance bias, 31–32
Overloading, field, 76
Overspecified models, 337, 342

P
Page, Larry, 401, 404
PageRank algorithm, 400–404
PageRank-like random walk, 436–437
Pages

degree distributions, 431–434
hub, 402, 405–406
multitopic, 419, 421
sampling, 435–440

Pairwise classification, 171
Pairwise coupling, 171–172
Parallel processing, 122–123
Parameters for genetic algorithms, 240–

241, 287–290
Partial colinearities, 380
Partitioning

intuitive, 103–105
Oracle data, 125–126
table, 122

Partitions, refinement, 299–300
passes operation, 307
Patterns, 2–3

missing values, 358–360
structural, 3–5

Index   455

PCA. See Principal components analysis
Pearson chi-square statistic, 79
Pearson’s product moment coefficient, 78
Perceptron learning rule, 173–175
Perfect information, expected value of,

215–218
Perfect models, 339
Performance, 227
perimeter property, 315–316
Period measures, 41
periods type, 296
Phenotypes, 227
Plane-sweep algorithms, 295
Plants dataset, 12–14
Plumbline algorithm, 312
point type, 294–295
Pointers, 294
Political issues, 34
Populations, 228, 261–262

chromosome selection, 261–265
conventional mutation techniques,

276–279
crossover techniques, 279–284. See

also Conventional crossover
techniques

diversity, 255–256, 276–279
generating, 254–258, 288
mutation techniques, 284–285
random strategy, 266–267
ranking strategy, 266
size, 257–258, 288
tournament strategy, 266

Position pivot crossover, 283–284
Postpruning, 32
Potter’s Wheel tool, 77
Power demand, forecasting, 22–23
Power iterations, 399, 404, 406
Power-law degree distributions, 431–434
Predicates for lifted operations, 310–313
Predicted vs. actual diagnostic plots, 325
Predicted vs. residual diagnostic plots,

324–325
Predicting errors, 326–329
Predictor variables, 92
Preferential attachments, 432
Premature convergence, 241
Preprocessing, 57–58

benefits, 58–61
data cleaning, 72–78

data discretization and concept
hierarchy generation, 98–108

data integration and transformation,
78–84

data reduction. See Data reduction
techniques

descriptive data summarization, 61–71
summary, 108–109

Prepruning, 32
present operation, 305
Prestige, in social networks, 399, 401
Preventative maintenance, 23–24
Principal components analysis (PCA),

90–92
Principal curves and surfaces analysis, 377
Principal eigenvectors, 399, 406
Printing processes, 26
Prior probability of hypotheses, 138
PRISM method, 158–160
Privacy issues, 32–33
Probability density function, 139–141
Probability level of rules, 365
Problem solving. See Quality

improvements and problem solving
Process parameters for genetic algorithms,

287–290
Profiles, risk, 200–202
Projection bounding boxes, 297
Projection to domain and range, 301–304
Promotional offers, 25–26
Proportional fitness strategy, 263–265
Pruning, 32
Pyle, Dorian, 352, 355–356, 360
Pyramidal algorithm, 89–90

Q
Q-q plots, 68–69
Quality improvements and problem

solving, 343–345
anachronistic variables, 383–384
broken modeling tools, 382–383
categorical correlation, 379–380
data doesn’t support model problem,

343–345
data partially doesn’t support model

problem, 345–346
data unrepresentative of business

problem, 381
estimation bias, 376

456    Index

Quality improvements and problem solving
(cont’d)

insufficient data, 372–374, 393–395
interaction effects, 385–393
noise reduction, 376–378
noisy and irrelevant variables, 384–385
output limiting, 381–382
partial colinearities, 380
reformatting data. See Reformatting data
respecifying algorithms. See Respecifying

algorithms
uneven data, 374–375
variance bias, 382

Quantile plots, 68–69
Quantile-quantile plots, 68–69
Quartiles, 64
Quinlan, J. Ross, 27, 153

R
Radar satellite image screening, 21–22
Raghavan, P., 424
Rainbow text classifier, 429–430
Random error, 73
Random fragmentation of datasets, 385
Random missing values, 358
Random strategy for populations, 266–267
Random surfers, 436
Random swap mutation, 284
Random walks

PageRank-like, 436–437
on regular graphs, 437–440

Ranges
data types, 296
interaction with, 304–308
normalizing, 352–355
partitioning by, 125
projection to, 301–304
sets, 64

rangevalues operator, 299, 301
Rank-and-File procedure, 417–419
Rank variables, 40–41
Ranking strategy for populations, 266
Rate of change operation, 308–309
Ratios

constrained continuous variables, 41
gain, 150–152
visit, 437

rbool type, 296

Real measures, 41
real type, 294
Real-world systems execution times,

286–287
Recombination, 225
Reconstructed data, 88
Records, 293–297
Reduction techniques, 59, 84–85

attribute subset selection, 86–88
data cube aggregation, 85–86
dimensionality reduction, 88–92
noise, 376–378
numerosity reduction, 92–98

Redundancy, 78–80
Reference values, 41
Refinement partitions, 299–300
Refinement step, 300
Reformatting data, 346–348

binning for, 348–352
missing values, 358–360
normalizing distribution, 355–358
normalizing ranges, 352–355

region type, 295–296
Regression, 15, 74

adjustments, 367–368
curvilinear, 368
linear, 168–169
log-linear, 92
logistic, 169–172
multiresponse, 169–170, 172

Regression coefficients, 92
Regression equation, 15
Regret theory, 220
Relational OLAP (ROLAP), 115–116
Reliability of predictions, 338–339
Residuals and residual plots, 323

continuous classifier, 330–333
continuous classifier residuals vs. actual

values plots, 333–335
errors in, 326–329
predicted vs. actual diagnostic plots, 325
predicted vs. residual diagnostic plots,

324–325
Respecifying algorithms, 360–362

Bayesian nets, 369–370
clustering, 365–366
curvilinear regression, 368
decision trees, 363–364

Index   457

evolution programming, 370
linear regression, 367–368
miscellaneous, 370–371
nearest neighbor and memory-based

reasoning, 362–363
neural networks, 368–369
rule extraction, 364–365
self-organizing maps, 366
support vector machines, 366–367

Response variables, 92
Retention rate, 288–289
right halfsegments array, 294–295
rint type, 296
Risk and risk analysis, 198

decreasing risk-averse utility function,
197

exponential utility function, 192–197
modeling, 191–192
risk profiles, 200–202
risk tolerance, 192–194
variance for, 198–200

Robust regressions, 367–368
ROLAP. See Relational OLAP
Roll-up operations

OLAP, 116
overview, 41–48
with sums, averages, and counts, 48–49

Root records, 294, 297
Root sets of nodes, 405
Root splits, in decision trees, 364
Roots, in kD-trees, 178
ROSE algebra implementation, 294–295
Roulette wheel fitness strategy, 263–265
rreal type, 296
rstring type, 296
Rudimentary rule inference, 132–136
Rule-of-thumb checks, 372–373
Rules

algorithm adjustments, 364–365
association. See Association rules
constructing, 153–160
contact lenses problem, 11
vs. decision lists, 159–160
inferring, 132–136
infinite rule sets, 28
irises, 13
soybean classification, 20
weather problem, 8–10

S
Sales, 24–26
SALSA. See Stochastic algorithm for

link structure analysis
Sampling

numerosity reduction, 96–98
Web pages at random, 435–440

SAS
concatenation, 53–55
data rollup, 44–48
merging, 51–53

Satellite technology image screening,
21–22

Savage, L. Jimmie, 220
Scaling

MDS, 400
normalization by, 83–84
systems, 122–124
weighted crossover, 276

Scatter plots, 69–70
Scheduling cost model, 268–269
Schemas, 228

integration, 78
snowflake, 118–119
star, 117–118, 124

Scientific applications, 26
Screening images, 21–22
Search, generalization as, 28–29

bias, 29–32
enumerating concept space, 29

Search bias, 31
Search Engine Watch, 404
Seeley, J. R., 399
Segmenting DOM trees, 419–422,

424
SELECT statement, 50
Selections, 228

attribute subset, 86–88
chromosome strategies, 261–265

Self-loops, 439
Self-organizing maps (SOMs), 342,

366, 371
Sensitivity analysis, 205–206

detailed models, 211–214
simple models, 206–211

Separate-and-conquer algorithms,
160

SET statement, 53–54

458    Index

Sets
vs. bags, 142
item. See Item sets in association rules
lifted operations, 313–314
nodes, 405

Signal-to-noise ratio, 378
Simple random sample with replacement

(SRSWR), 96
Simple random sample without

replacement (SRSWOR), 96
Simple rollup, 43–44
Simplicity-first methodology, 131
Simulated annealing, 222
Singhal, Amit, 427
Single-point crossover, 270–272
Single-Variable Chi-squared Automatic

Interaction Detection (SVCHAID)
tool, 342, 363–364

Singleton buckets, 93–95
Singular value decomposition (SVD), 407
Size of populations, 257–258, 288
Sliced representation, 296
Smoothing

by bin boundaries, 73
by bin means, 73, 99
by bin medians, 73, 99–100
data transformation, 81

Snippet processing units (SPUs), 123
Snowflake schemas, 118–119
Social network analysis, 397

anchor text, 417–418
coarse-grained graph model, 410–416
document markup structure, 419–424
HITS, 400–402, 405–407
outlier elimination, 417
PageRank, 400–404
social sciences and bibliometry, 398–400
stochastic HITS, 408–410
topic distillation, 424–430
two-party nepotism, 416
web measuring and modeling, 430–440

Social sciences, 398–400
Solving problems. See Quality

improvements and problem solving
SOMs. See Self-organizing maps
Soybean classification, 16–20
Spatial data types, 294
Specific-to-general search bias, 31

Specificity of models, 342
speed operation, 309
Spider traps, 435
Split points, 98, 100–101
Splits

decision trees, 363–364
kD-trees, 178, 180

Splitting, 98
SPUs. See Snippet processing units
SQL procedure, 51
SRSWOR. See Simple random sample

without replacement
SRSWR. See Simple random sample with

replacement
Stability, in HITS, 410
Stacking operation, 189
Standard deviation, 66, 140
Star schemas, 117–118, 124
Stationary distributions of matrices, 403
Statistical modeling, 136–139

Bayesian models for document
classification, 142–143

decisions involving judgment, 20–21
discussion, 143–144
missing values and numeric attributes,

139–142
Statistics, 27
Status, in social networks, 399
Stepwise backward elimination, 88
Stepwise forward selection, 88
Stochastic algorithm for link structure

analysis (SALSA), 409–410
Stochastic dominance, 203–205
Stochastic HITS, 408–410
Stop-sites, 415
Storage Design Wizard, 126–127
Stratified samples, 96
string type, 294
Structural patterns and design

describing, 3–5
genome, 245–247

Structures. See Data structures
Sublinear sampling, 97
Subsets, 135

attributes, 86–88
item sets, 167

Summary fields, 295–297
Sums, rollup with, 48–49

Index   459

Supervised discretization, 98
Support, in association rules, 160
Support vector machines, 366–367
Surveys, 38–39
Survival of the fittest, 228
SVCHAID. See Single-Variable Chi-squared

Automatic Interaction Detection
tool

SVD. See Singular value decomposition
Systems

execution times, 286–287
expert, 23–24
genetic, 228
scaling up, 122–124

T
Table partitioning, 122
Tawde, V. B., 424, 429
TBRollup macro, 46
Temporal data types, 296–297

algorithm subset selection, 298
domain and range interaction, 304–308
domain and range projection, 301–304
filters, 300–301
lifted operations. See Lifted operations
notations, 298–299
rate of change, 308–309
refinement partitions, 299–300

Teradata products, 122
Term Frequency, Inverse Document

Frequency (TFIDF) model, 417
Termination conditions, 229, 260–261
Terveen, Loren, 425
Text, anchor, 417–418
Text REtrieval Conference (TREC), 427
Third quartiles, 64
3–4-5 rule, 103–104
Time variables, 41
Top-down discretization, 98
Top-down divide-and-conquer algorithm,

154–155
Top-down induction of decision trees,

153
Topic contamination, 412–416
Topic distillation, 406, 424

fine-grained, 422–424
HITS and related algorithms, 424–427
hypertext features, 427–430

Topic drift, 415
Topic generalization, 415
Tournament strategy for populations, 266
Training vs. learning, 6
trajectory operation, 302
Transactions, banking, 41–48
Transformations, 59, 77–78

data reduction, 84–98
overview, 81–84
wavelet, 88–90

TRANSPOSE procedure, 45
Traveling salesman problem (TSP),

223–224, 228–229, 242–244
chromosome evaluation, 259–260
genome representation and fitness

function design, 244
fitness functions, 249–254
genome representations, 247–249
genome structural design, 245–247

populations. See Populations
termination conditions, 260–261

traversed operation, 302–303
TREC. See Text REtrieval Conference
Trees

decision. See Decision trees
DOM, 419–422, 424
kD-trees, 178–181
vs. rules, 154–155

Trimmed means, 62
Trimodal datasets, 63
turn operation, 309
Tversky, Amos, 220
Two-site nepotism, 411–412, 416
Two-way sensitivity analysis, 207–211

U
Underspecified models, 337, 342
Uneven data, 374–375
Unified Modeling Language (UML) class

diagrams, 116
Uniform crossover, 272–274
Uniform mutation, 278
Unimodal datasets, 63
Union

partitions, 122
sets, 166, 313–314

union operation, 314
Unique rule, 76

460    Index

Unit interpolation bounding boxes, 297
Unit projection bounding boxes, 297
Units, 296–297
Universal languages, 30
upoint type, 296
ureal type, 296–297
uregion type, 297
Useless datasets, 345
Utility functions, 192
Utility load forecasting, 22–23

V
V-Optimal histograms, 93–94
Value of information, 149, 215

expected value of imperfect
information, 218–220

expected value of perfect information,
215–218

van den Berg, M., 415
Variables, 39

anachronistic, 383–384
interactions, 386–387
noisy and irrelevant, 384–385
nominal, 39–40
ordinal, 40–41
real measures, 41

Variance, 63–64, 140
formula, 66
for risk analysis, 198–200

Variance bias, 382
VarMode macro, 49–50
velocity operation, 309
Vertical table partitioning, 122

Views, 124
Visit ratio, 437
Voting feature intervals, 184

W
Warehouses, 119–122
Wavelet coefficients, 88
Wavelet transforms, 88–90
Weather

in electricity load forecasting, 23
machine learning problem, 7–10

Web authorship artifacts, 411–412
Web measuring and modeling, 430–431.

See also Social network analysis
bow tie structure and bipartite cores,

434–435
page sampling at random, 435–440
power-law degree distributions, 431–434

Web Track, 427
WebWalker, 439–440
Weighted averages, 62
Weighted crossover, 274–276
Well-founded imputed values, 358
Whiskers for boxplots, 65
Winnow, linear classification using, 175–

176
Wisdom, defined, 34

X
XY plots, 324–325

Z
Z-score normalization, 83

	Front cover
	Data Mining: Know It All
	Copyright page
	Table of contents
	About This Book
	Contributing Authors
	Chapter 1 What’s It All About?
	1.1	DATA MINING AND MACHINE LEARNING
	1.2	SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS
	1.3	FIELDED APPLICATIONS
	1.4	MACHINE LEARNING AND STATISTICs
	1.5	GENERALIZATION AS SEARCH
	1.6	DATA MINING AND ETHICS
	1.7	RESOURCES

	Chapter 2 Data Acquisition and Integration
	2.1	INTRODUCTION
	2.2	SOURCES OF DATA
	2.3	VARIABLE TYPES
	2.4	DATA ROLLUP
	2.5	ROLLUP WITH SUMS, AVERAGES, AND COUNTS
	2.6	CALCULATION OF THE MODE
	2.7	DATA INTEGRATION

	Chapter 3 Data Preprocessing
	3.1	WHY PREPROCESS THE DATA?
	3.2	DESCRIPTIVE DATA SUMMARIZATION
	3.3	DATA CLEANING
	3.4	DATA INTEGRATION AND TRANSFORMATION
	3.5	DATA REDUCTION
	3.6	DATA DISCRETIZATION AND CONCEPT HIERARCHY GENERATION
	3.7	SUMMARY
	3.8	RESOURCES

	Chapter 4 Physical Design for Decision Support, Warehousing, and OLAP
	4.1	WHAT IS ONLINE ANALYTICAL PROCESSING?
	4.2	DIMENSION HIERARCHIES
	4.3	STAR AND SNOWFLAKE SCHEMAS
	4.4	WAREHOUSES AND MARTS
	4.5	SCALING UP THE SYSTEM
	4.6	DSS, WAREHOUSING, AND OLAP DESIGN CONSIDERATIONS
	4.7	USAGE SYNTAX AND EXAMPLES FOR MAJOR DATABASE SERVERS
	4.8	SUMMARY
	4.9	LITERATURE SUMMARY
	RESOURCES

	Chapter 5 Algorithms: The Basic Methods
	5.1	INFERRING RUDIMENTARY RULES
	5.2	STATISTICAL MODELING
	5.3	DIVIDE AND CONQUER: CONSTRUCTING DECISION TREES
	5.4	COVERING ALGORITHMS: CONSTRUCTING RULES
	5.5	MINING ASSOCIATION RULES
	5.6	LINEAR MODELS
	5.7	INSTANCE-BASED LEARNING
	5.8	CLUSTERING
	5.9	RESOURCES

	Chapter 6 Further Techniques in Decision Analysis
	6.1	MODELING RISK PREFERENCES
	6.2	ANALYZING RISK DIRECTLY
	6.3	DOMINANCE
	6.4	SENSITIVITY ANALYSIS
	6.5	VALUE OF INFORMATION
	6.6	NORMATIVE DECISION ANALYSIS

	Chapter 7 Fundamental Concepts of Genetic Algorithms
	7.1	THE VOCABULARY OF GENETIC ALGORITHMS
	7.2	OVERVIEW
	7.3	THE ARCHITECTURE OF A GENETIC ALGORITHM
	7.4	PRACTICAL ISSUES IN USING A GENETIC ALGORITHM
	7.5	REVIEW
	7.6	RESOURCES

	Chapter 8 Data Structures and Algorithms for Moving Objects Types
	8.1	DATA STRUCTURES
	8.2	ALGORITHMS FOR OPERATIONS ON TEMPORAL DATA TYPES
	8.3	ALGORITHMS FOR LIFTED OPERATIONS
	8.4	RESOURCES

	Chapter 9 Improving the Model
	9.1	LEARNING FROM ERRORS
	9.2	IMPROVING MODEL QUALITY, SOLVING PROBLEMS
	9.3	SUMMARY

	Chapter 10 Social Network Analysis
	10.1	SOCIAL SCIENCES AND BIBLIOMETRY
	10.2	PAGERANK AND HYPERLINK-INDUCED TOPIC SEARCH
	10.3	SHORTCOMINGS OF THE COARSE-GRAINED GRAPH MODEL
	10.4	ENHANCED MODELS AND TECHNIQUES
	10.5	EVALUATION OF TOPIC DISTILLATION
	10.6	MEASURING AND MODELING THE WEB
	10.7	RESOURCES

	Index

