THE EXPERT'S VOICE® IN SQL SERVER

Pro

SQL Server
2005

Arem youirself with the essenifad knvoeededge amd knoer-Row
woee need b brold effective SOV Server 2005 apyplications,

Thomas Rizzo
Adam Machanic, Julian Skinner, Louis Davidson,
lobin Dewson, Jan Narkiewicz, Joseph Sack, and Rob Walters

Apress

Pro SQL Server 2005

Thomas Rizzo, Adam Machanic,
Julian Skinner, Louis Davidson,
Robin Dewson, Jan Narkiewicz,
Joseph Sack, Rob Walters

Apress-

Pro SQL Server 2005

Copyright © 2006 by Thomas Rizzo, Adam Machanic, Julian Skinner, Louis Davidson, Robin Dewson,
Jan Narkiewicz, Joseph Sack, Rob Walters

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-477-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis

Technical Reviewers: Sajal Dam, Cristian Lefter, Alejandro Leguizamo, Alexzander Nepomnjashiy,
Andrew Watt, Richard Waymire, Joe Webb, Roger Wolter

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editors: Ami Knox, Nicole LeClerc

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Susan Glinert

Proofreaders: Kim Burton, Linda Marousek, Linda Seifert, Liz Welch

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

This book is dedicated to my loving wife, Stacy, who provided the support, love,
and encouragement that made this endeavor possible.

—Thomas Rizzo

Contents

ADOULThe AUTNOIS ... e e e Xvii
About the Technical ReVIEWEISt e Xix
ACKNOWIBAgMBNES . .. oo e XXi
INtrOdUCHION . ..o xxiii
CHAPTER 1 SQL Server Overview and Installation 1
Evolution of SQL Server ... e 1

SQL Server 2005 OVEIVIEWottt e 3

EditiONS 3

Features. ... 4

Installation 8

Minimum System Requirements.l 8

Installation Processcc i 10

Server Registration.............. ... 19

Sample Databasest 22

Side-by-Side Installation..............l 23

Upgrading from SQL Server 2000and 7.0coinan.. 23

SUMMaAIY .. 23

CHAPTER 2 SQL Server Management Technologies 25
Connecting to and Managing Your SQL Servers 25

Context-Sensitive Menus for Each Object Type 26

Mobile Database Support 27

SQL Server 2000 Support 28

User Interface Enhancementsl 28

Asynchronous Treeview and Object Filtering 29

Nonmodal and Resizable Dialog Boxes 29

Script and Schedule Enhancements. 30

Code AUthOTINGo 31
ResultsPane............... i 33

Activity Monitor. 34

SUMMary VIeWsS 34

vi CONTENTS

CHAPTER 3

CHAPTER 4

Functional Enhancements i 35
Dedicated Administrator Connection 35
Deadlock Visualization................... ... i 36
Performance Monitor Correlation................................. 37
Server Registration Import/Export. 38
Maintenance Plan Designer. 38
SQL Server AgentChanges ... 39
Database Mail........ ... 39
Catalog Views and Dynamic ManagementViews.................... 41
Default ServerTrace ...t 43
Profiler Enhancements. i 44
SQL Configuration Managercc i 44
Surface Area Configurator............. il 45
Enhanced Help and Community Integration 47

SALCMD .. 48

Server Management Objects i 49

SUMMIAIY . 52

T-SQL Enhancements for Developers 53

Enhancements Affecting DML i 53
0ld-Style Outer Joins Deprecated 54
Common Table EXpPressionsoviiriiiie i, 55
TOP 63
Extensionstothe FROM Clausecoooiiiiin... 66
OUTPUT .. 76
Ranking Functions 77
EXCEPT and INTERSECTo 83
S NONYMS . et 85

General Development 86
ErrorHandling. ... 87
WRITE Extension to the UPDATE Statement........................ 94
EXECUTE 96
Code Security Context 96
NET Declarations. 99

SUMMIAIY .o e 101

T-SQL Enhancements forDBAs 103

Metadata Views 103
Compatibility Views ... o 104
Catalog VIEWSo 104

Dynamic Management Views and Functions....................... 106

CHAPTER 5

CONTENTS

DL THOOBIS .ttt 107
Creating and Altering DDL Triggerscovvivieiennnnn 108
Dropping DDLTHQQErscooi e 109
Enabling and Disabling DDL Triggers.ccovvieann... 109
Enumerating DDL Triggers Using Catalog Views 109
Programming DDL Triggers with the eventdata() Function 110
Indexing and Performance Enhancements 112
OnlineIndexing.cco i 112
Controlling Locking During Index Creation 113
Creating Indexes with Additional Columns Included. 113
Altering Indexes 114
Using Statistics for Correlated DATETIME Columns 117
Improving Performance of Ordering for Tertiary Collations 118
Table and Index Partitioning i 119
Partition Functions 120
Partition Schemes 120
Creating Partitioned Tablesand Indexes 121
Adding and Removing Partitions........................ 122
Modifying Partition Functions and Schemes....................... 123
Switching Tables into and out of Partitions........................ 124
Managing Table and Index Partitions............................. 125
Enhancementsto Tablesand Views 125
Enhancements to Indexed Views 125
Persisted Computed Columns.c.ciiiiiiiin... 126
SNAPShOtS ... 127
SNAPSHOT Isolation Level. ... 127
Database Snapshots i 130

Data Integrity Enhancements 132
Verifying a Database’sPages o il 132
Putting a Database into an Emergency State 132
SUMMIAIY . 133
NET Integration ... 135
Introduction to SQL Server .NET Integration 135
Why Does SQL Server 2005 Hostthe CLR?........................ 136
WhentoUse CLRRoutings ..., 136
When Not to Use CLRRoutines.ccoviiiiinas, 136

How SQL Server Hosts .NET: An Architectural Overview 137

SQL Server .NET Programming Model 137
Enhancements to ADO.NET for SQL Server Hosting................. 138

Overview of the New .NET Namespaces for SQL Server 138

vii

viii CONTENTS

CHAPTER 6

Programming a CLR Stored Procedure 139
Starting a Visual Studio 2005 SQL Server Project. 140
Anatomy of a Stored Procedurel 143
Adding Parameters.c i 144
Definingthe Problem 144
Usingthe SalPipe 146
Putting It All Together: Coding the Body of the Stored Procedure. 148
Testing the Stored Proceduret 151
Debuggingthe Procedureco i 152
Throwing Exceptionsin CLRRoutines 153

Deploying CLRROULINESo 157

SUMMAIY .. 159

Programming Assemblies 161

CLR User-Defined TYPES . ..o ot 161
Applications for User-Defined Types ..o, 162
Adding a User-Defined Type to a SQL Server Project................ 162
Parts of aUser-Defined Type ..., 164
A Simple Example: The PhoneNumber Type....................... 167
Another Example: The StringArray Typeooiits. 175
Managing User-Defined Typest 182

CLR User-Defined Functionsco i, 183
Adding a User-Defined Function to a Visual Studio Project........... 184
The Visual Studio 2005 User-Defined Function Template............ 184
The SqlFunction Attribute 184
Scalar User-Defined Functions 185
Table-Valued User-Defined Functions 188
Managing CLR User-Defined Functions........................... 192

CLR User-Defined Aggregates ..., 193
Adding a User-Defined Aggregate to a SQL Server Project........... 193
Parts of a User-Defined Aggregate. 195

CLR User-Defined Triggerso 200
Adding a CLR User-Defined Trigger to a SQL Server Project.......... 200
Programming CLR Triggers.oooiiii i 201
Managing User-Defined Triggerscooiiiiiiinn 205

Managing Assemblies 205

A Note Regarding Visual Studio 2005cccoviiiiiin.. 206

SUMMIAIY .o e 206

CHAPTER 7

CHAPTER 8

CONTENTS
SQLServerand XML ... 207
What Is XML? ... 207
What Are XPath and the XMLDOM?, 208
XPath Syntax. ... 210
XPathFunctions 211
The XMLDOM-XML Document Object Model 211

The XPathDocument, XPathNavigator, and
XPathExpression Classes............coiviiiii i, 212
Getting XML into the Databasecciiiiiiiiiii., 213
WhatIs SQLXML? 214
Configuring SQL Server.o 214
OPENXML ..o 215
SQLXML: XML Views Using Annotated XML Schemas............... 220
SQLXML Updategrams. ...t e 226
XMLBulkLoad. 228
Getting XML Out of the Database: FORXML 230
FOR XML (Server-Side)cooviiiii i 230
FOR XML (Client-Side)cooiii e 236
Using Templates.c i 236
Enhancementsto FORXML i, 237
Programming SQLXML from NETand COM 238
SgIXmiCommand 238
SqIXmlParameter 239
SgIXmIAdapter ... 240
SqIXmIEXception. ... 240
Code SampIeS. ... 240
FOR XML: Server-Side and Client-Side 242
Using an XMLTextReader. i, 242
Using Parameters with SQLXML. 243
Executing XPath or SQL Queries with Templates 244
Interoperating with the ADO.NET Dataset 244
Programming Updategrams, 245
SUMMIAIY o 245
SQL Server 2005 XML and XQuery Support 247
Using the XML Datatype ... 248
Understanding How XML Is Stored by SQL Server 249
Creating XML ColumnSt 250
Setting Permissions for Schema Creation......................... 254
Constraining XML Columnst 255

Examining the XML Datatype Limitations 256

CONTENTS

CHAPTER 9

Inserting Data into XML Columns ...t 257
Using SSISwith XML Data. ...t 257
Bulkloading XML.o 259
Writing a Custom Query or Application 259

Querying XML Datao i 260
XQUery 10T ..o 260
Basic XML Query Methods, 266
Cross-Domain QUENES.ovii e 268

Modifying XML Data ..ot 269
Limitations of XML Modification................................. 270

Indexing XML for Performance ... 270
Understanding How XML IndexingWorks 271
Examining Secondary XML Indexescoiviiiiin... 272

Full-Text Search and the XML Datatype 273

Dynamic Management Viewsand XML 274

Applicationsand XML i 274

XML Web Services Support ... 275
CreatinganEndpoint i 276
Using Advanced Web Services ..., 280
Monitoring Performance of XML Web Services. 285

SUMMAIY . 286

SQL Server 2005 Reporting Services 287

Reporting Services Components il 287
Report Server 289
Metadata Catalog 289
Report Designer 289
Report Manager Web Application................................ 291
Reporting Services Security 292

Building a Basic Report with SSRS2000 293
Launching the Designer. i 293
Working with Data Sources and Datasets......................... 293
Laying Out and Previewing the Report............................ 294
Working with EXpressions. ... 294
Deploying Your Report. 295

Upgrading from SQL Server 2000 Reporting Services 295

Licensing Changes for Reporting Services 296

SQL Server Management Studio Integration 297
Walkthrough: Management Studio and Reporting Services. 298

Management Changes 304
WMIProvider. 305
Management and Execution Web Services 307

Reporting Services Configuration Tool 307

CHAPTER 10

CONTENTS
Report Design and Execution Improvements 308
Expression Editor 309
Multivalued Parameters. i 310
DatePicker forDate Valuescciiiaat. 312
Interactive Sorting 313
Analysis Services Integrationl 314
Walkthrough: Building a ReportinBIDS. 315
Floating Headers. 322

Data Source Changes: Expressions, XML/Web Services,
SSIS,and SAP 323
Custom Report ltemso 328
Visual Studio Integration and ReportViewer Controls 329
Using WinForm Controls it 329
Working with the ReportViewer Controls Programmatically 332
LocalReport and ServerReport Objects 336
SharePoint Integration 337
End-User Ad Hoc Query and Reportingcoiiiiin, 337
The Report Builder Client. ... 338
The Semantic Model Definition Language......................... 338
Walkthrough: Report Builder................., 339
QUMM .. 346
Analysis Services 347
SSAS 2005 Enhancements 347
Architecture. ... 348
Performance, Scalability, Availability 349
Usability. 349
Development. 350
Installation 351
What Is Analysis? ... 352
OLAP, OLTP, and Data Warehouses.....................coovvnnn. 352
OLAP CONCEPES ..ttt e e 353
CUDES. . e 353
CellS. o 354
Measuresand FactTables, 354
Dimensions and Attributes 354
Hierarchies 354
Analysis Services Projectsco 355
Defining Data Sources. ...t 356
Designersvs. Wizards ... 359
Defining Data Source Views 360
Defining Cubes o 363
Deploying Projects and Configuring Projects for Deployment......... 367

Cube Operations.ouii i 369

Xi

Xii

CONTENTS

CHAPTER 11

Browsing CUbESot 370
Browsing Cubes with Hierarchies................................ 372
Managing DisplayedData 374
Calculationsand MDX i 376
Key Performance Indicators (KPIS) 379
Analysis Services Scripting Language (ASSL)o..L. 382
Example ASSL Object: A Data Source View with a Named Query. 382
ASSL Drilldown. 384
SUMMIAIY o 385
Security ... 387
AWordaboutsa 387
Surface Area Configuration i, 387
Remote Connectionso i 388
Dedicated Administrator Connection 388
NET Framework. ... 388
Database Mail............. ... o i 389
SALMail. 389
Service BroKer 389
HTTP Connectivityco i 390
Database Mirroring.t 390
Web Assistant. ... 390
xp_emdshell 390
Ad Hoc Remote Queries. ..., 390
OLE Automation XPs. 390
SMOanNdDMO XPS. ..o 391
Principals and Securables 391
Principals. 391
Securables 398
PermMISSIONS 401
Types of Permission. i 401
Managing Permissions. i 403
Code ACCESS SECUNtY ...\ 405
Imperative and Declarative CAS 406
Using CAS with SQL Server. ...t 406
EnCryption ... 410
The SQL Server 2005 Encryption Hierarchy 411
Encryption with a User-supplied Password. 41
Encryption with a SymmetricKey................................ 412
Asymmetric Key Encryption.l 413
Encryption with a Certificate. 414
Certificates and Web Services il 415

SUMMAIY . 416

CHAPTER 12

CHAPTER 13

CONTENTS

Service Broker 419
What Is Service Broker? i 419
Service Broker Architecture L 420
Service Broker Scenarios 422
Creating Service Broker Applicationst 423
Enabling Service Broker. 423
Creating Message TYPeSo i 424
Creating Contracts i 424
Creating QUBUES.ot e 424
Creating ServiCeSot e 425
Creating Service Broker Stored Procedures 425

A Simple Service Broker Example 428
Service Broker Routing and Securityl 434
Creating Distributed Service Broker Applications................... 434
Distributed Service Broker Example.............................. 437
SUMMANY . 457
Automation and Monitoring 459
SQL Server Agent 459
Step 1: Connectto SQL Server..............ot 460

Step 2: Create the AgentJob s, 461
Security Enhancements. o i 465
AgentSubsytems ... 473
Sharing Job Schedules 474
Logging to the sysjobstepslogs Table 476

WMI Events and Agent Alerts 476
Agent Performance Counters ..., 478
AgentUpgrade ...t e 479
Maintenance Plans i 480
Creating a Maintenance Planccoiii... 481
TO0IDOX ..\ 482
Maintenance Plan Designer Document Window.................... 483
SALCMD 488
Connectingto SQL Server i 488
Passing Variables.............. ... 489
Using the Dedicated Admin Connection. 490
Creating Scripts 490
Database Mail 491
OVBIVIBW . . 492
Configuring Database Mail 493

Sending Mail. 497

xiii

Xiv

CONTENTS

CHAPTER 14

SQAL Profiler 498
Performance Monitor Correlation 501
ShowPlan 502
Deadlock Visualization....................o i 504

SUMMIAIY o e 505

Integration Services ... 507

What's New in SSIS? 508

SSIS'SNeW IDE 509
Connecting to SSIS in Management Studio........................ 509
Creating a New SSIS ProjectinBIDS 511

SSISFundamentals 511
Control Flow Design Surface...............ccviiiii i, 512
Data Flow Design Surface. ..., 514
Event Handlers Design Surface. ...t 526
Package Explorer 528
Connection Managersc.ouuiiiriieii i 529
Solution Explorer ... 529
Properties Window 529

Control Flow Toolbox Tasksccooiiiiiii it 530
Containers. ... 531
Analysis Services Tasks. 535
DataFlow Task.o e 535
Execute Package Tasks...............co i 536
BulkInsertTask ... 536
Execute SALTaSK. ...t 536
Execute Process Task ... 537
FileSystem Task ... 537
File Transfer Protocol Taskooo it 538
Maintenance PlanTaskst 538
Message Queue TasK. ..ottt 538
SendMail Task. ... 539
Scripting Tasks. ... 539
Web Service TasK. 542
WIMITaSKS. . ..o 542
XMLTasK. ..o 542

Data Flow Designer Tasksccoiiiiiiiiiiiii i, 542
Source Adapters. 543
Destination Adapters i 543
Transformations 544

000 550

CHAPTER 15

CONTENTS

Configurationso 554
Using the Package Configuration Organizer 554
Variables 556
Precedence Constraintsc i 559
Checkpoints 559
Transactionsco i e 560
Debugging 560
Control Flow Visual Debugging................cooii i, 560
Data Flow Visual Debuggingt 562
Data Viewers. ... 562
Breakpoints Window 562
Other Debug Windows 563
The SSIS Package Deployment Utility 563
Migrating SQL Server 2000 Packagesc..ccoviiiinnnn. 564
Schedulingan SSISPackage ... 564
SUMMAIY . 565
Database Mirroring .. 567
High Availability Defined o 568
Database Mirroring Overview i 569
Database Mirroring in Context i i, 571
Setting Up Database Mirroring i 572
Prerequisites, Connectivity, and Security 573
Back Up and Restore the Principal Database 576
Establish the Principal/Mirror Partnership......................... 577
Changing Transaction Safety Levels 577
Database Mirroring States, Heartbeats, and Quorums 578
Initiating a Failover. ... 579
Suspending and Resuming Mirroring. 579
Terminating Database Mirroring. 580
Full-Text Indexing and Mirroring., 580
Service Broker and Database Mirroring........................... 580
Setting Up Mirroring Using Management Studio. 581
Client Applications and Database Mirroring 587
Monitoring Database Mirroring il 588
Catalog VIEWSo 588
Performance Monitor Counters.................................. 592
Profiler. ..o 593
Windows Event Log and SQL Server ErrorLog 593
Performance Considerations for Mirroring 594
Limitations of Database Mirroringcciiiiiii... 594

Sample Application Walk-Throught 595

Xv

XVi

CONTENTS

CHAPTER 16

Database Snapshots and Mirroringo 601
Database Snapshots Qverviewcoiiiiinn.s. 601
Working with Snapshots in T-SQL 603
Performance Considerations When Using Snapshots on Mirrors 604
Using, Monitoring, and Managing Database Snapshots.............. 604
Programming Database Snapshots 605
Limitations of Database Snapshots 605

Windows Clustering in SQL Server2005ccoina.. 606

Replication in SQL Server 2005ot 607

SUMMAIY . 607

Notification Services ... 609

Notification Services Architecturel 610
SUDSCHIDEIS . .. o 611
Subscriptions 611
EVeNtS ..o 611
Notifications i 612

Building a Notification Services Application 612
Defining an NS Instance: The Instance Configuration File............ 613
Defining the NS Application: The Application Definition File 617

Compiling and Running Your NS Application 633

Monitoring and Troubleshooting Your NS Application 636

Programmatically Working with NS, 639
Programming NS from Visual Studio 639
Managing NS Programmatically 642

SUMMIAIY .o e 643

About the Authors

TOM RIZZ0 is a director in the SQL Server group at Microsoft. Being an 11-year veteran at Microsoft,
Tom has worked on a number of the different Microsoft server technologies such as BizTalk, SharePoint,
and Exchange Server before joining the SQL Server group. Tom is a published author on topics
ranging from SQL Server to developing collaborative applications using Microsoft’s collaboration
Servers.

Tom authored Chapters 2, 7, 8, 9, 15, and 16.

ADAM MACHANIC is a database-focused software engineer, writer, and speaker based in Boston,
Massachusetts. He has implemented SQL Server for a variety of high-availability OLTP and large-
scale data warehouse applications, and he also specializes in .NET data access layer performance
optimization. He is a Microsoft Most Valuable Professional (MVP) for SQL Server and a Microsoft
Certified Professional (MCP).

Adam authored Chapters 4, 5, and 6.

JULIAN SKINNER studied Germanic etymology to PhD level before joining Wrox Press as an indexer
in 1998 in order to get a real job. He became a technical editor shortly after that, later working as a
technical architect and commissioning editor, before moving to Apress in 2003. He has consequently
spent most of the last six years reading books about programming, focusing in particular on Microsoft
technologies and, since 2000, on C# and the .NET Framework. He recently left Apress to concentrate
on writing code.

Julian contributed many sections and code samples—and often whole chapters—to the books
he worked on at Wrox, mostly hiding behind the relative anonymity of an “additional material”
credit, but he is credited as a coauthor of Professional ADO.NET, Professional ASP Data Access, and
Beginning SQL. He is also a coauthor of The Programmer’s Guide to SQL, published by Apress.
Julian authored Chapters 11 and 12.

LOUIS DAVIDSON has been in the information technology industry for ten years, as a corporate database
developer and architect. Currently, he is serving as a database administrator for Compass Technology
Management in their Nashville data center, supporting the Christian Broadcasting Network and
NorthStar Studios.

Davidson has a bachelor’s degree from the University of Tennessee at Chattanooga in computer
science with a minor in mathematics (though the minor in math is more of an indication of the
amount of math required at UTC to get a computer science degree, rather than any great love or skill
in the subject).

The majority of his experience, with slight deviations into Visual Basic, has been spent with
Microsoft SQL Server from version 1.0 to whatever the latest version is in beta. Louis’s primary areas
of expertise are in database architecture and coding in Transact-SQL, and he has written thousands
of numerous stored procedures and triggers throughout the years.

Louis was the sole author of Professional SQL Server 2000 Database Design, and he was a contributor
to SQL Server 2000 Stored Procedure Handbook. It is said that in his ridiculously small amount of
spare time he tends to play a lot of Nintendo (what is it with that silly princess—she’s been captured
by the freaking dragon again!) as well as watching a great deal of television that was popular in a

Xvii

xvili

ABOUT THE AUTHORS

different era, most notably old English programs such as The Avengers, The Saint, Monty Python’s
Flying Circus, and Black Adder, to name a few. Quite often this spare time is also spent with his note-
book computer writing something pertaining to SQL.

Louis authored Chapter 3.

ROBIN DEWSON has been hooked on programming ever since he bought his first computer, a Sinclair
7X80, in 1980. His first main application of his own was a Visual FoxPro application that could be
used to run a fantasy league system.

From there, realizing that the market place for Visual FoxPro in the United Kingdom was limited,
he decided to learn Visual Basic and SQL Server. Starting out with SQL Server 6.5, he soon moved to
SQL Server 7 and Visual Basic 5, where he became involved in developing several applications for
clients in both the UK and the United States. He then moved on to SQL Server 2000 and Visual Basic 6,
through to SQL Server Yukon and Visual Basic .NET.

Robin is a consultant mainly in the city of London, where he has been for nearly eight years.
He also has been developing a rugby-related website as well as maintaining his own site at

http://www.fat-belly.com.
Robin authored Chapter 1.

JAN D. NARKIEWICZ (jann@softwarepronto.com) is chief technical officer of Software Pronto, Inc. His
areas of expertise include Microsoft technologies, Oracle, and DB2. Jan also write books for Apress
and serves as academic coordinator for U.C. Berkeley Extension’s NET/Windows program. His clients
include E*Trade, Visa, eBay, and Oracle. Jan also acts as an expert witness in patent, copyright, and
licensing-related litigation.

Jan authored Chapter 10.

JOSEPH SACK is a database administration and developer based in Minneapolis, Minnesota. Since 1997,
he has been developing and supporting SQL Server environments for clients in financial services, IT
consulting, manufacturing, and the real estate industry. Joseph received his bachelor’s degree in
psychology from the University of Minnesota. He is the author of SQL Server 2000 Fast Answers for
DBAs and Developers, the coauthor of Beginning SQL Server 2000 DBA: From Novice to Professional,
and is a Microsoft Certified Database Administrator (MCDBA).

Joe authored Chapter 14.

ROB WALTERS is a program manager in the SQL Server group of Microsoft. He has seven years of
experience in software development and relational databases. When not talking about databases,
Rob enjoys spending time with his wife, Tammie, their son, Bryan, and two overfed St. Bernard dogs.
Rob authored Chapter 13.

About the Technical Reviewers

SAJAL DAM works as an IT strategist at Dell, managing one of the largest SQL Server environments.
The challenges of database performance tuning excite him the most. He has written a couple of
books on SQL Server query performance tuning and is in the process of starting his next book on SQL
Server 2005 performance tuning.

Besides his technical acumen, Sajal is passionate to learn how business decisions are made in
successful corporations. To fulfill his passion, he has started his executive MBA from Duke alongside
his other works.

In his free time, Sajal reviews other technical books and plays in the stock market. He can be
reached at sajaldami@hotmail.com.

CRISTIAN LEFTER is a SQL Server MVP, former developer, database administrator, and trainer. He is
currently CEO of MicroTraining, a consulting and training company.
In his spare time, Cristian is a tech reviewer, author, and leader of two user groups (ITBoard and
Romanian SQL Server User Group).

ALEJANDRO LEGUIZAMO has been working with SQL Server since 6.5, and with Microsoft Access since
Office 97. He is certified in SQL Server 2000, mainly focused in data warehousing and business
intelligence, plus ETL. He is certified in SQL Server 2000, and he has wide experience in training
and consulting.

Alejandro earned a degree in business management focused on executive information systems.
He is based in Bogotd, Colombia, and has been invited to participate as speaker and expert in the
United States, Puerto Rico, Peru, Ecuador, Spain, Venezuela, and other countries, at events like
internal trainings for Microsoft, the launch of SQL Server Reporting Services, Developer Days,
TechEd 2005, among others. Alejandro was awarded the Microsoft Most Valuable Professional (MVP)
award first in 2004, and again in 2005. Currently, he is a mentor to the well-known group of experts
in SQL Server, Solid Quality Learning (http://www.solidqualitylearning.com), for the Iberoamerican
operations and the BI division.

Currently, ALEXZANDER NEPOMNJASHIY is working as Microsoft SQL Server DBA with NeoSystems
North-West Inc., an ISO 9001:2000 certified software company. As a DBA, he is responsible for
drafting design specifications for solutions and building database-related projects based on these
specs. As an IT professional, Alexzander has more than 11 years of overall experience in DBMS plan-
ning, designing, securing, troubleshooting, and performance optimizing. He can be reached at
alexnep@onego.ru.

RICHARD WAYMIRE is a lead program manager with Microsoft and has worked on the development
of Microsoft SQL Server 7.0, 2000, and 2005. He is the author of several books on SQL Server,
including most recently Teach Yourself SQL Server 2000 in 21 Days, and he is also a contributing
editor to SQL Server Magazine.

Xix

XX

ABOUT THE TECHNICAL REVIEWERS

JOE WEBB is the founder and chief operating manager of WebbTech Solutions. He has over 11 years
of industry experience and has consulted extensively with companies in the areas of software devel-
opment, database design, and technical training. Joe also serves on the board of directors for PASS,
the Professional Association for SQL Server.

As a Microsoft MVP, Joe regularly speaks at technical conferences in the United States and in
Europe. He is also the author of The Rational Guide To: SQL Server Notification Services and The
Rational Guide To: IT Consulting (http://www.rationalpress.com).

When he’s not working, Joe enjoys the farm life on his small farm in the middle of Tennessee,
where he raises vegetables and livestock. He’s been blessed with a wonderful wife and family.

ROGER WOLTER has 27 years of experience in various aspects of the computer industry, including
jobs at Unisys, Infospan, and Fourth Shift. He has spent the last seven years as a program manager
at Microsoft. His projects at Microsoft include SQLXML, the Soap Toolkit, SQL Server Service Broker,
and SQL Server Express. His interest in the Service Broker was sparked by a messaging-based manu-
facturing system he worked on in a previous life. He’s currently splitting his time between the Service
Broker and the SQL Server Express projects in SQL Server 2005.

Acknowledgments

While there are too many people to acknowledge, I will give it my best shot. First, I'd like to
acknowledge the great team at Apress, including Tony Davis, the editor of this book, for his dedication
and hard work getting this off the ground. At some points during the early days of SQL Server 2005,
we thought this book would never make it due to shifting contributing authors and the shifting
product. This book is a testament to Tony’s dedication to providing the highest quality educational
materials to his readers. I also would like to thank Kylie Johnston, who worked hard to keep us all on
track. She had to herd cats—and sometimes very, very reluctant cats—but in the end she pushed us
hard and made this book better than we would have made it ourselves.

I'd like to also thank my technical reviewers, Sajal Dam, Cristian Lefter, Alejandro Leguizamo,
Alexzander Nepomnjashiy, Andrew Watt, Richard Waymire, Joe Webb, and Roger Wolter. They kept
me honest and pointed out where I could improve my explanations to the benefit of all readers.

Finally, there are a number of people that work with me on SQL Server that I have to thank for
their tireless explanations of the nitty-gritty technical details at all hours of the day. These include
Jason Carlson and Brian Welcker from the Reporting Services team, Shyam Panther from the NS
team, Michael Rys and Shankar Pal from the XML team, Srik Raghavan and Brian Deen from the
WebData team, Mark Wistrom and Christian Kleinerman from the SQL Server engine team, Mahesh
Prakriya from the Management Studio team, and Euan Garden, who used to be on the Management
Studio team but now heads up our product planning efforts for SQL Server.

Thomas Rizzo

XXi

Introduction

This book provides a critical examination of all of the major new functionality in SQL Server 2005,
covering such diverse topics as CLR integration, the new management tools, SQL Server Integration
Services, Service Broker, Transact-SQL (T-SQL) programming, and database mirroring.

The book does not profess or even try to be a comprehensive reference on any one of these areas—
as you are probably aware, this would often require a sizable book in itself. Instead, it provides practical,
in-depth coverage of the core topics in each area, illustrated with realistic examples. Hopefully, we’ve
done this in such a way that you will immediately be able to translate what you learn here into your
business environment and have a firm foundation for exploring a particular topic further, should it
be necessary.

SQL Server 2005 is a vast new release. This book provides you with a starting point, a road map,
and a strong foundation on which to build. Its practical nature and careful guidelines and advice
will mean that the book continues to be useful long after your initial assessment of SQL Server 2005
is complete.

Who This Book Is For

This book is for anyone who wants to learn about SQL Server 2005. The topics are diverse and deep,
and there is something in here for everyone, whether you are a DBA, developer, or business intelli-
gence (BI) practitioner. As long as you have a sound base knowledge of SQL and relational database
in general, then this book will teach you about the extensive new feature set of SQL Server 2005 and
about how best to put these features to work in your environment.

How This Book Is Structured

This book is written is such a way that you can read through the book cover to cover or dip in and out
for specific topics. It is structured as follows.

Chapter 1: SQL Server Overview and Installation

This chapter details a brief history on the evolution of SQL Server from a “desktop database” to a full-
fledged enterprise-class relational database management system (RDBMS). It provides a quick refer-
ence guide to the new SQL Server 2005 feature set for each of the SQL Server editions, and then steps
through the whole installation process. Many readers will already have SQL Server installed, but if
you're downloading it for the first time from MSDN (we recommend using SQL Server Developer
Edition), then this chapter will get you set up and ready to work through all of the examples in the book.

XXiii

XXiv

INTRODUCTION

Chapter 2: SQL Server Management Technologies

SQL Server Management Studio (SSMS) is the major new management tool for SQL Server 2005. It
combines most of the tools that you previously used separately (Enterprise Manager, Query Analyzer,
and so on), and adds additional capabilities. This chapter details the functional and interface
enhancements that have been made and how they might affect you. It also takes a look at the new
Server Management Objects (SMO) technology, the successor to SQL-DMO.

Chapter 3: T-SQL Enhancements for Developers

Reports of the imminent demise of T-SQL have been greatly exaggerated. This chapter explores the
feature and performance enhancements from a developer’s perspective, covering such topics as
common table expressions (CTEs), new join types, improved error handling, and more.

Chapter 4: T-SQL Enhancements for DBAs

This chapter switches focus to the numerous administration enhancements such as DDL triggers,
table and index partitioning, snapshots, and the new SNAPSHOT isolation level.

Chapter 5: .NET Integration

Although T-SQL is alive and well, there are some things that it just isn’t meant to do. Previously,
when T-SQL ran out of steam, developers were plunged into the complex world of extended stored
procedures. No longer. In many people’s eyes, the biggest advancement in 2005 is the inclusion of
the common language runtime, or CLR, within the database. As a result, developers can now create
objects (stored procedures, user-defined functions, and so on) using any of the .NET languages (VB .NET,
C#, C++, etc.) and compile them into .NET assemblies. These assemblies are deployed inside the
database and run by the CLR, which is hosted inside the SQL Server memory space. This chapter
introduces programming with CLR objects via a step-by-step tour through development of a CLR
stored procedure. It describes the .NET object model provided for SQL Server CLR development, along
with best practices for developing CLR objects and various deployment issues.

Chapter 6: Programming Assemblies

This chapter continues the exploration of CLR integration with some in-depth examples on the use
of CLR user-defined types, functions, aggregates, and triggers.

Chapter 7: SQL Server and XML

This chapter provides an overview of the XML technology as it relates to SQL Server. It takes a broad
look at XPath and XML Schema support in SQL Server 2005, and then drills down into how to get
XML into and out of the database. It covers how to get XML into your relational data columns using
OPENXML, updategrams, and SQLXML'’s XML Bulkload provider. It then shows how to query the rela-
tional columns and return the results as XML, using FOR XML.

Chapter 8: SQL Server 2005 XML and XQuery Support

This chapter investigates native XML support in SQL Server 2005, via the new XML datatype. It shows
how to create XML columns, insert data into those columns, and then retrieve that XML data using

XQuery.

INTRODUCTION

Chapter 9: SQL Server 2005 Reporting Services

SSRS 2005 is the latest and most powerful reporting technology from Microsoft. An integral part of
the SQL Server 2005 database, it allows you to design, author, render, and deploy reports via the Web
or a company intranet. This chapter starts out by showing you how to create a report using SQL
Server 2000 Reporting Services and then how to migrate that report to SSRS 2005. Next, it describes,
and shows how to take advantage of, the numerous SSRS 2005 feature enhancements, such as multi-
valued parameters, interactive sorting, and the use of the new ad-hoc Report Builder.

Chapter 10: Analysis Services

Databases store data, but they become truly profitable when that data can used and interpreted to
provide business intelligence (BI). Powered by the new Business Intelligence Development Studio
(BIDS), SQL Server Analysis Services (SSAS) is the major new suite of technologies designed to support
the development and administration of BI applications. Described in this chapter are the SSAS
mechanisms for exploiting Online Analytical Processing (OLAP) and data mining.

Chapter 11: Security

As with most areas of SQL Server, the security features built into SQL Server 2005 have undergone a
fairly radical overhaul. This chapter takes a look at the new features for granting and denying permis-
sions to access resources in the database, and the new system of schemas, which now resemble ANSI
SQL schemas far more closely. It addresses new security functionality, such as the Surface Area
Configurator (SAC) feature and the new encryption functions.

Chapter 12: Service Broker

One of the most important new features of SQL Server 2005 is Service Broker. Service Broker is a
message queuing technology that is native to SQL Server and allows developers to integrate SQL
Server fully into distributed applications. Service Broker provides an asynchronous system for data-
base-to-database communication; it allows a database to send a message to another without waiting
for the response, so the application will continue to function if the remote database is temporarily
unavailable. All of this is demonstrated in this chapter with in-depth working examples.

Chapter 13: Automation and Monitoring

SQL Server 2005 brings with it advancements in many areas that will make the daily administration
and maintenance of SQL Server much easier. The first half of this chapter takes an in-depth look at
SQL Server Agent 2005, the task scheduling service used by SQL Server to execute a variety of jobs,
including T-SQL, replication, and maintenance tasks. The chapter then moves on to examine tools
such as Maintenance Plans, SQLCMD, and database mail, and demonstrates how they can make a
SQL Server DBA’s life easier.

Chapter 14: Integration Services

SQL Server Integration Services (SSIS), formerly known as Data Transformation Services (DTS), is
Microsoft’s extraction, transformation, and loading tool that comes bundled with SQL Server 2005.
It has been massively overhauled and expanded, and this chapter will lead you through all of the
significant changes. It guides you through all of the data flow, control flow, and transformation tasks,
using plenty of hands-on examples along the way to really demonstrate the power of this new tool.

XXV

XXvi

INTRODUCTION

Chapter 15: Database Mirroring

Although disabled in the first SQL Server 2005 release, database mirroring is a very significant new
feature. Microsoft is committed to re-enabling it after a period of extra testing, so many DBAs will
want to find out what it can do and prepare for its adoption. This chapter investigates the new data-
base mirroring capability and gives detailed instructions on how to set up and use it. It relates database
mirroring to existing technologies, such as failover clustering, replication, and log shipping, and provides
advice on which technology is best to solve a particular problem.

Chapter 16: Notification Services

SQL Server 2005 now comes with a built-in dynamic subscription and publication mechanism—
namely, Notification Services (NS). This chapter fully describes the NS architecture, walks you
through how to create a NS application, and then covers how to program with NS: creating and
modifying your subscribers, devices, and subscriptions; submitting events to NS; working with
custom components; and so on.

Prerequisites

Ideally, you will be running the examples in this book on the final release version of SQL Server 2005
and Visual Studio 2005. However, at a minimum, you need at least the September CTP of SQL
Server 2005 and the release candidate of Visual Studio 2005.

While some chapters do not require Visual Studio, having Visual Studio will give you the best
overall experience with this book. Of course, you should follow the software prerequisites and system
requirements suggested by both the SQL Server 2005 and Visual Studio 2005 documentation.

Source Code and Updates

As you work through the examples in this book, you may decide that you want to type in all the code
by hand. Many readers prefer this because it is a good way to get familiar with the coding techniques
that are being used.

Whether you want to type the code in or not, all the source code for this book is available in the
Source Code area of the Apress website (http://www.apress.com). If you like to type in the code, you
can use the source code files to check the results you should be getting—they should be your first
stop if you think you might have typed in an error. If you don’t like typing, then downloading the
source code from Apress website is a must! Either way, the code files will help you with updates and
debugging.

Errata

Apress makes every effort to make sure that there are no errors in the text or the code. However, to
err is human, and as such we recognize the need to keep you informed of any mistakes as they’'re
discovered and corrected. An errata sheet will be made available on this book’s main page at
http://www.apress.com. If you find an error that hasn’t already been reported, please let us know.

The Apress website acts as a focus for other information and support, including the code from
all Apress books, sample chapters, previews of forthcoming titles, and articles on related topics.

INTRODUCTION XXvii

Contacting the Authors

You can contact this book’s lead author, Tom Rizzo, either via his e-mail address at
thomriz@microsoft.com or via his blog at http://www.sqljunkies.com/WebLog/tom rizzo/
default.aspx.

CHAPTER 1

SQL Server Overview and Installation

SQL Server 2005 is a major advancement over SQL Server 2000. Right from the very beginning of
your SQL Server 2005 experience, you will notice great changes in the installation process. You'll see
as you progress through this book that these changes continue throughout the product.

In this chapter, we’ll briefly overview how SQL Server has evolved in recent years, and then we’ll
look at the current editions of SQL Server 2005 and the features offered with each.

We'll then examine the compatibility of different editions (32-bit and 64-bit) of SQL Server with
the various available operating systems flavors and take a look at the minimum system requirements
for SQL Server 2005 installation.

Having done that, we’ll walk through the installation process itself step by step, discussing the
major considerations you'll need to take into account along the way. If you've performed or seen an
installation of Visual Studio .NET, then the SQL Server 2005 installation process will be familiar to
you—it’s very similar in its methodology. No longer do you have to run several installations to
ensure all the components you want are there. A treeview structure now lists all the possible compo-
nents and combinations, thereby allowing you to install everything you need in one pass. There are
also two new example databases you can install and use for testing new functionality provided with
SQL Server 2005.

Evolution of SQL Server

Table 1-1 briefly charts the evolution of SQL Server, up to SQL Server 2000.

The very first version of SQL Server emerged in 1989/1990. It was available for OS/2, and its
code base was essentially the same as Sybase SQL Server 4.0. The first edition of SQL Server for
Windows NT emerged in 1993 and was a basic port of Sybase SQL Server 4.0 from OS/2 to NT.

The emergence of SQL Server 6.5 marked the split from Sybase; the database engine was
completely rewritten specifically for NT. From that point on, SQL Server has evolved rapidly into a
powerful enterprise-level database. SQL Server started life as a small, inexpensive desktop database,
with some GUI management tools, and has been progressively expanding its enterprise feature set,

2 CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Table 1-1. History of SQL Server

Year Version Description

1993 SQL Server 4.2 A low-functionality desktop database, capable of meeting the data
(a desktop database) storage and handling needs of a small department. However, the
concept of a database that was integrated with Windows and had an
easy-to-use interface proved popular.

1995 SQL Server 6.5 A major rewrite of the core database engine. This was SQL Server’s first
(a small business “significant” release, and it included improved performance and impor-
database) tant feature enhancements. It still had a long way to go in terms of its

performance and feature set, but it was now capable of handling small e-
commerce and intranet applications, at a fraction of the cost of competitors’

offerings.
1998 SQL Server 7.0 Another significant rewrite to the core database engine. Version 7.0 was a
(a web database) defining release, providing a reasonably powerful and feature-rich data-

base that was a truly viable (and still cheap) alternative for small-to-
medium businesses, between a true desktop database such as Microsoft
Access and the high-end enterprise capabilities (and price) of Oracle and
DB2. It gained a good reputation for ease of use and for providing crucial
business tools (e.g., analysis services and data transformation services)
out of the box, which were expensive add-ons with competing databases.

2000 SQL Server 2000 Vastly improved performance scalability and reliability sees SQL Server
(an enterprise become a major player in the enterprise database market (now supporting
database) the online operations of businesses such as NASDAQ, Dell, and Barnes &

Noble). A stiff price increase slowed initial uptake, but 2000’s excellent
range of management, development, and analysis tools won new customers.

scalability, and performance to the point where it is a serious competitor—most significantly to
Oracle—in the medium-sized enterprise market (although, of course, SQL Server competes only on
the Windows platform).

It is interesting to contrast SQL Server’s journey from small business to enterprise with that of
Oracle’s, which in some ways has been pushing in the opposite direction. From the very start, Oracle
was designed to handle large databases, and high numbers of transactions and users. In terms of
“out-of-the-box” performance and scalability (i.e., the numbers of transactions and users per single
instance), many consider Oracle to still be the superior database. However, some perceive that this
superiority comes at the expense of high costs and complexity—but that the performance numbers
are getting closer.

Whatever the truth might be, it is certain that the competition between Oracle and SQL Server
is set to intensify with the release of SQL Server 2005. Certainly part of the drive behind the release of
Oracle 10g appears to be to reduce the total cost of ownership (TCO) of the database and to make it
easier to mange, introducing, as it does, a whole swath of “automated” management tools.!

In the meantime, SQL Server 2005 marks a significant advance in Microsoft’s march into the
enterprise database arena.

1. Ofcourse, this is not the whole story. Oracle has also invested heavily in technologies such as Real Application
Clusters (RAC), which ultimately is designed to reduce the cost of implementing highly scaleable enterprise
systems—although at the moment it is still a very expensive technology!

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

SQL Server 2005 Overview

SQL Server 2005 brings with it a vast array of new features, graphical user interfaces (GUIs), and
management tools, many of which are covered in this book. The following list should give you a brief
taste of these:

The ability to host the NET Framework common language runtime (CLR) in the database so
that you can now program assemblies in Visual Basic 2005 and C# in the database. This may
have interesting consequences for the SQL Server database programmer, who previously was
limited to SQL and T-SQL, and it will have dramatic implications for the way applications may
be architected.

Deep support for XML, via a full-fledged XML datatype that carries all the capabilities of rela-
tional datatypes. You can enter an XML document into your database, have it validated, and
extract just part of the document. This means that you can marry semistructured data with
relational data, storing them in the same place and treating them in the same way. Additionally,
server-side support is provided for XML Query (XQuery) and XML Schema Definition language
(XSD) standards.

A completely revamped GUI management tool called SQL Server Management Studio (SSMS),
which provides a single, integrated environment for most management/administration
requirements.

A reporting framework (SQL Server Reporting Services, or SSRS) as an integral part of the
database.

A new application framework, the Service Broker, for asynchronous message delivery.

Vastly improved and expanded SQL Server Integration Services (SSIS; formerly Data Trans-
formation Services), a tool for extracting, transforming, and loading data (again, a feature that
is a costly add-on with other relational database management systems).

The latter three are excellent examples of features that SQL Server provides as an integral part
of the product, rather than as (extra-cost) add-ons.

Editions

SQL Server 2005 is available in the following distinct editions:

Enterprise: This is the most powerful, scalable, and expensive SQL Server 2005 edition. It is
targeted, as its name suggests, at enterprise businesses where performance availability and
scalability are of paramount importance. It supports all available features.

Developer This is the same as the Enterprise Edition, but with restrictions on CPUs and licenses.

Standard: This edition is a cheaper option than Enterprise and Developer, and it is targeted at
small- and medium-sized businesses. It removes support for such features as partitioning
and online indexing, but it does support many of the “high-end” features, such as Analysis
Services, Integration Services, database mirroring, and so on.

Workgroup: This edition is designed for small- and medium-sized businesses and depart-
mental solutions. It supports many of the core SQL Server features, but it doesn’t include
high-availability features, and it also has limited analysis functionality.

Express: This edition replaces Microsoft SQL Server Desktop Engine (MSDE). However, it
inherits many (nonenterprise) features from SQL Server 2005 and comes complete with its
own dedicated (albeit limited) development and administration tools. It is freely available
and is an ideal database for departmental solutions, prototype or evaluation projects, and
hobbyists.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Table 1-2 outlines the CPU, memory, and size limitations for each edition.

Table 1-2. Hardware Limitations for Each SQL Server Edition

Feature Enterprise/Developer Standard Workgroup Express
Maximum number No limit 4 2 1

of CPUs

Maximum amount No limit No limit 3GB 2GB

of RAM

64-bit processor Yes Yes Windows Windows
supported on Windows on Windows
Maximum size No limit No limit No limit 4GB

for a database

Features

Table 1-3 provides an overview of the “core” new features of SQL Server 2005, with a brief descrip-
tion of each and an indication of the edition(s) in which it is supported.

Table 1-3. Core SQL Server 2005 Features

Feature Description Supported In

Advanced performance tuning Mining models can receive advanced Enterprise
performing tuning.

Advanced transforms such as data The Enterprise Edition allows the inclusion of =~ Enterprise

mining, text mining, and data Analysis Services-based transforms and mining

cleansing capabilities within the SSIS packages.

Database available for use while =~ Databases can be available for use duringthe = Enterprise
transaction undo operations in undo phase while a restore is in progress.
progress

Data flow integration SSIS can be used to improve the mining model Enterprise
for creating prediction queries.

Indexes on a view SQL Server allows creation of indexes Enterprise
on a view.

Parallel indexing operations Indexing can run in parallel on Enterprise
multiprocessor computers.

Online database restore A database can be restored without taking Enterprise
it offline.

Online indexing of tables Tables and views can be indexed while users Enterprise

and views are still working with the system.

Oracle replication SQL Server databases can now replicate to Enterprise

an Oracle database.

CHAPTER 1

Table 1-3. Core SQL Server 2005 Features (Continued)

SQL SERVER OVERVIEW AND INSTALLATION

Feature Description Supported In

Partitioning Tables can be split up (physically or logically) Enterprise
into smaller units to speed processing of data
and indexing.

Text mining Structured text can be created for SQL Enterprise
Server Analysis Services (SSAS) from
unstructured text.

Database mirroring Changes completed in one database are Enterprise
mirrored in another. Standard

Database Tuning Advisor (DTA) The DTA tool provides tuning advice for Enterprise
the whole database and replaces the Index Standard
Tuning Wizard.

Failover clustering A database can failover to another database Enterprise
on a point of failure. Standard

Integration Services, including Integration Services is a tool for extracting, Enterprise

graphical Extract, Transform, transforming, and loading data. This used to Standard

and Load (ETL) be known as DTS.

Notification Services, for Notification Services is used for applications Enterprise

sending out notifications to that generate and send notifications of events ~ Standard

subscribers that happen within SQL Server to any subscriber,
whether it is a PDA, mobile phone, etc.

Web services Support for native web services allows you to Enterprise
expose specific SQL Server objects such as Standard
stored procedures, user-defined functions, and
queries via HTTP(S).

Full-text searching Words or phrases can be searched in any Enterprise
column defined for full-text searching. Standard

Workgroup

Log shipping Transaction logs can be moved from one data- Enterprise

base to another to allow the transactions. Standard
Workgroup

SQL Server job scheduling Jobs can be created and processed using Enterprise
specific scheduling requirements. Failures can Standard
also trigger notification by e-mail, pager, etc. Workgroup

.NET integration The .NET Framework CLR is hosted in All
the database, so assemblies can now be
programmed in Visual Basic 2005 and C#,
in the database.

Advanced auditing, authentica- Windows authentication and authorization All

tion, and authorization can be used for user logins.

Auto database tune Databases can be tuned automatically. All

Data import and export Data can be imported and exported from All
external data sources, such as Excel.

Error handling, datatypes, and TRY...CATCH error handling, recursive queries, All

recursive queries

and new data types such as XML can be used.

CHAPTER 1

SQL SERVER OVERVIEW AND INSTALLATION

Table 1-3. Core SQL Server 2005 Features (Continued)

Feature Description Supported In
Express Manager tool This stand-alone tool for managing and All
working with SQL Server is available as a
separate download.
Hot Add Memory, dedicated New memory can be added without bringing All
admin connection down the server, and there is a permanent
admin connection for connecting to SQL Server
when the GUI won’t allow it.
Built-in data encryption Data is encrypted on the physical computer. All
Management Studio This new GUI for working with SQL Server All
development GUI replaces SQL Server Enterprise Manager and
resembles Visual Studio .NET’s layout and
method of working.
Management views and Reporting Services has new reporting manage- All
reporting enhancements ment and views to allow secure deployment
of reports.
Microsoft Baseline Security This tool, used to ensure that a system remains All
Analyzer (MBSA) integration secure, now has integration for SQL Server.
Information about MBSA can be found at
http://www.microsoft.com/technet/security/
tools/mbsahome.mspx.
Microsoft Update integration for ~ Any patches or service packs for download All
automatic software updates can be applied automatically.
Replication (merge and Replication allows data from one database All
transactional) to be copied to another database, either
transactionally from publisher to subscriber,
or via merge, where every database
publishes changes as well as subscribes
to changes.
Service Broker This tool offers asynchronous processing All
and reliable messaging between servers.
Stored procedures, triggers, These are basic database programming units All
and views for working with the data.
Best Practices Analyzer This separate, downloadable tool can be All
used to test that best practices within a
database are being adhered to (see http://
www.microsoft.com/downloads/
details.aspx?familyid=b352eb1f-d3ca-
44ee-893e-9e07339c1f228&displaylang=en).
UDTs User-defined datatypes can be created from All
base data types.
Native XML indexing and XML data can be indexed and full-text All
full-text search searched, just like other data types.
XQuery for XML datatypes This is a method for working with XML data All

types where XQuery is based on the XPath
query language, but enhanced (not yet
W3C ratified).

Table 1-4 summarizes the business intelligence (BI) features of SQL Server 2005 and the editions in

which they are supported:

CHAPTER 1

Table 1-4. Business Intelligence Features for Each Edition

SQL SERVER OVERVIEW AND INSTALLATION

Bl Feature Description Support
Account Intelligence, metadata Business analytics have improved to Enterprise
translation analytics include these analytics.

Autocaching Data can be automatically cached to Enterprise
improve performance.

Data-driven subscriptions Reports can be provided that have a Enterprise
data-driven subscription. The report
server gets the subscription settings prior
to publishing the report.

Dimension and cell writebacks =~ Dimension and cell writebacks allow Enterprise
client applications to write to the
partition’s data.

Infinite click-through Where the data allows, it’s possible to Enterprise
click through groups to refine output.

Partitioned cubes, parallel Advanced data management creates Enterprise

processing, and server partitions that allow the management

synchronization and storage of data that allows parallel
processing of the data.

Scale out report servers Report server instances can be scaled Enterprise
such that they are not on the same
report server.

Analysis Services SQL Server 2005 Analysis Services (SSAS) Enterprise
is Microsoft’s suite of technologies Standard
designed to support the development and
administration of business intelligence
applications (e.g., market segmentation
analysis, product profitability, etc.).

Data mining Improved data mining uses the new key Enterprise
performance indicator (KPI) and Unified Standard
Dimensional Model (UMD) functionality,
as well as data mining capabilities for
extracting and mining data from databases.

Data warehousing A data warehouse-based database can be Enterprise
built for SSAS. Standard

Multidimensional Expressions MDX scripts can be debugged, written in Enterprise

(MDX) scripts, debugger, .NET .NET, and have the ability to create key Standard

sprocs, and KPI Framework performance indicators (KPIs).

Unified Dimensional Enterprise-based data modeling can be Enterprise

Model (UDM) performed via the UDM within SSAS. Standard

Integration with Management SSAS is integrated with Management Enterprise

Studio, Profiler, etc. for Studio and other features. Standard

business intelligence

Workgroup

8 CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Table 1-4. Business Intelligence Features for Each Edition (Continued)

Bl Feature Description Support
Report builder for end users Users can build their own reports rather Enterprise
than have developer-based reports Standard
deployed to them. Workgroup
Business Intelligence SSMS is the GUI for SQL Server database All
Development Studio (BIDS) solutions. For SSAS solutions, BIDS is a

separate GUI built for the specifics of
SSAS-based work.

BI native support SSAS can use data from different All
for web services data sources.
Reporting Services This tool is used for producing SQL All

Server reports.

Reporting data sources The data used in reports can come from All
any SQL Server data source.

SQL analytical functions Analytical functions for SSAS-based data- All
bases deal with areas such as dimensions,
hierarchy, and levels.

Star query optimization Star queries found in SSAS can All
be optimized.

Installation

Microsoft has gone all the way back to the beginning of your experience of SQL Server with its instal-
lation procedure to conform the interface to the Microsoft standard. Let’s start with the system
requirements for installation.

Minimum System Requirements

The minimum requirements of SQL Server 2005 for the basic SQL Server installation have not changed
greatly from SQL Server 2000. You should have at a minimum a 500 MHz processor, but 1 GHz or
higher is recommended with at least 512MB of RAM (1GB or more is advisable), unless you are
running the Express Edition, which requires only 128MB of RAM.

You will need Internet Explorer 6 SP1 or above to run the help files, and you will need to have IIS
installed and configured for XML functionality and Reporting Services. Depending on your operating
system, there are also minimum service pack (SP) requirements. Tables 1-5 and 1-6 list the SQL
Server editions and which operating systems each can run on. Table 1-5 details SQL Server 2005
32-bit editions, and Table 1-6 details SQL Server 2005 64-bit editions.

Table 1-5. 32-bit Operating Systems Each Edition Can Be Installed On

Enterprise Developer Standard Evaluation Workgroup Express

Windows 2003 X X X X X X
Datacenter SP1
Windows 2003 X X X X X X

Enterprise SP1

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Table 1-5. 32-bit Operating Systems Each Edition Can Be Installed On

Enterprise Developer Standard Evaluation Workgroup Express

Windows 2003 X X X X X X
Standard SP1

Windows SBS 2003 X X X X X X
Premium

Windows SBS 2003 X X X X X X
Standard

Windows 2000 X X X X X X
Datacenter SP4

Windows 2000 X X X X X X
Advanced SP4

Windows 2000 X X X X X X
Server SP4

Windows XP X X X X
Professional SP2

Windows XP X X X X
Media SP2

Windows XP X X X X
Tablet SP2

Windows 2000 X X X X
Professional SP4

Windows XP Home X X
Windows 2003 X X
Server Web Edition

Table 1-6. 64-bit Operating Systems Each Edition Can Be Installed On

Enterprise IA64 Developer IA64 Standard IA64 Express

Windows 2003 Server SP1 64-bit X X X X
Itanium Datacenter

Windows 2003 Server SP1 64-bit X X X X
Itanium Enterprise
Windows 2003 Server SP1 X X X X

64-bit X64 Datacenter

Windows 2003 Server SP1 X X X X
64-bit X64 Enterprise

Windows 2003 Server SP1 X X X X
64-bit X64 Standard

Windows XP X64 Professional X

10

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Note Not all operating systems install IIS automatically, so you may need to install it manually.

Installation Process

The installation process for SQL Server 2005 is now in line with other Microsoft products’ installation
procedures. SQL Server 2005 has a two-stage process, with the first stage performing checks and
installing SQL Server 2005 prerequisites, and the second stage installing SQL Server itself. Both stages
run whether you're installing SQL Server from scratch or performing further installations/upgrades.

Installation Prerequisites

SQL Server 2005 requires a number of prerequisites to be successfully installed before you can actu-
ally install SQL Server itself. These prerequisites differ depending on your operating system and on
the functionality you require.

The main prerequisites are as follows:

¢ Application of the correct service pack

¢ Internet Explorer 6 with SP1

e NET Framework 2.0

Tip Alog file is produced that lists every action performed during the installation. It is recommended that you
store this log file, whether or not your installation was a success.

Installing SQL Server

Once you've installed all the prerequisites (see Figure 1-1), you can then proceed to run the SQL
Server Installation Setup Process. The setup process in SQL Server 2005 has been improved to reflect
the Microsoft standard of having all options available for installation in one pass.

Once the prerequisites have been taken care of, the installation wizard starts up. In the first
main screen, the setup checks your system configuration to ensure that previous steps have been
completed successfully and the required software is installed.

Checks performed at this stage include verifying that the operating system can cope with the
edition of SQL Server 2005 you want to install and confirming that the minimum service pack has
been installed. At the end of the process, alog file is created with the installation details. It is possible
to save and store this file as a record of what succeeded and failed during the installation.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION 11

P Microsoft SQL Server 2005 CTP Setup

Installing Prerequisites

Installz software components required prior to installing SGL
Seiver

SOL Server Component Update will install the following cormponents
required for SOL Server Setup:

MET Framework 2.0
Microsoft SOL Mative Client
Microsoft SOL Server 2005 CTP Setup Support Files

Click Install to continue,

Inztall | Cancel

Figure 1-1. SQL Server prerequisites

5 Microsoft SQL Server 2005 CTP Setup X

System Configuration Check

“Wait while the system iz checked for potential installation

problems.
b |
C ? 14 Total 0 Ermror
9 Success 13 Success 1 Warning
Details:
] Action Statuz Meszage -~

115 Feature Requirement Success

Pending Reboot Requirement Success

Performance Monitor Counter Require... Success

Default Installation Path Permission Re.. Success

0000000

Internet Explorer Requirement Success
COM Pluz Catalog Requirement Success
ASP Met Version Registration Require... Success
Minimum MDAL Yersion Requirement Success L

v

Filter = ‘ Feport VI
|

Figure 1-2. System Configuration Check dialog box

12

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Click Next to move to the Registration Information dialog box, and then click Next again. This
takes you to perhaps the most productive enhancement to the installation process: the Components
to Install dialog box (see Figure 1-3). Here, you can install all services in one pass. SQL Server and
Analysis Server can also be installed on the new virtual server technology.

i Microsoft SQL Server 2005 CIP Setup 3

Components to Install
Select the components ko install or upgrade.,

SQL Server Database Services
Analysis Services

Reporting Services
Matification Services
Inkegration Services

‘Workstation components, Books Online and development tools

For maore options, click Advanced.
T e e

Figure 1-3. Components to Install dialog box

Click Advanced to go to the installation tree, which we describe in the next section.

Installation Tree

The installation tree is part of the Feature Selection dialog box shown in Figure 1-4. This feature is
standard in virtually all Microsoft products, so chances are you have seen it before. This feature
removes the burden of the two or three installation passes you had to perform in SQL Server 2000
to install SQL Server, Analysis Services, and Full Text Editing. It also allows you to add or remove
components in one simple procedure.

The only main component that is not automatically selected in the tree is the Data Transforma-
tion Services (DTS) runtime for SQL Server 2000 DTS packages. If you are planning to migrate your
SQL Server 2000 packages to SQL Server 2005, then you will need to select this option. Also, some of
the samples and databases are not selected by default. There is now a specific example database for
data warehousing called AdventureWorksDW, which is linked to the SQL Server example database.
Finally, an example database for Analysis Services called AdventureWorksAS is also available.

After you click Next on the Feature Selection dialog box, you move to the Instance Name dialog
box shown in Figure 1-5. As with SQL Server 2000, you can specify a named instance or a default
instance.

Clicking Next moves you to the next area where the installation process has improved: security.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION 13

i Microsoft SQL Server 2005 CTP Setup

Feature Selection
Select the program Features you want installed,

i
Click an icon in the Following list ko change how a Feature is installed,
= - - 1 Feature description
- =- Analy5|.s Serwcx.es | Installs sample code and sample
(- =3 ¥ | Reporting Services applications, including samples For the
[+ =3 = | Motification Services Database Engine, Analysis Services,
=3+ | Integration Services gepo_rting Services, and Integration
[=3 = | Client Components ez
= i=3 = | Documentation, Samples, and Samg
= v| S0L Server Books Online
-l Sample Databases This Feature requires 18 MEB on your
= - | AdventureMiorks Sar hard drive.
< ! >

Installation path

[< Back] [ek =] [Cancel]

Figure 1-4. Installation tree

i Microsoft SQL Server 2005 CTP Setup X

Instance Name

‘fou can install a default instance or you can specify a named
instance.

Provide a name for the instance, For a default installation, click Default instance and click.

Mext. To upgrade an existing default instance, click Default instance. To upgrade an existing
named instance select Mamed instance and specify the instance name,

(%) Default instance

() Named instance

[< Back] l Mesxk = J [Cancel

Figure 1-5. Instance Name dialog box

14

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Improved Security

There are two major security enhancements to the SQL Server setup process. First, for each service
that is installed, you can define how the service logs on and whether it automatically starts with the
operating system (e.g., when the machine is rebooted).

SQL Server 2005 has ten services you can install:

e SQL Server relational engine: The service that runs SQL Server.

* SQL Server Agent: Used for running jobs set up within SQL Server. It also monitors SQL Server
and sends out alerts and SQL Server WMIs.

* Analysis Server: Used for Analysis Services.

* Report Server: When running SQL Server reports, the service that allows these reports to be
built and execute.

* Notification Services: The service that allows SQL Server notifications to be sent to any subscriber
to that subject, whether via e-mail, Web, PDA, or phone.

» [ntegration Services: The service that allows the new and superior SQL Server Integration
Services packages to run. Previously known as DTS.

* Full-text search: A service that provides the ability to search text for a literal.

¢ SQL Browser: A process that provides a list of SQL Server instances with the TCP/IP port or the
named pipe for each instance for client connections.

* SQL Server Active Directory Helper: A client uniquely identifies an instance of SQL Server via a
service principal name (SPN). If this name changes, this service will inform Microsoft Active
Directory.

* SQL Writer: Used to allow Windows-based backup programs to back up SQL Server data,
rather than SQL Server itself.

For each service, you can either use the Local System account or set up a Domain User account.
This allows system administrators to have different services set up with the minimum required priv-
ileges on the computer on which the services are running. For example, SQL Server needs very few
Windows system privileges, and using the Local System account gives this service administration
rights that it does not need. On the other hand, the SQL Server Agent service that runs batch jobs
does need administration rights.

With the settings shown in Figure 1-6, every service would use the Local System account and
would auto-start SQL Server, SQL Server Agent, and Analysis Services; these are the default settings
in the Autostart services area.

However, it is preferable that you give each service its own Domain User account to reflect the
necessary privileges, especially when the service must interact with network services. For example,
Reporting Services needs to interact with publishing reports for users via a web. SQL Server Agent
will also need a Domain User account if you are backing up to a network drive, as this will also need
to interact with network services. If you do create a Domain User account, it is recommended, espe-
cially for production systems, that these accounts have nonexpiring passwords; otherwise, you
might find that a crucial service is unable to run.

The second enhancement is that it is now obligatory to place a strong password on the sa login
when setting up the authentication mode, as shown in Figure 1-7. In SQL Server 2000, it was possible
to proceed with the installation process without entering a valid and strong password—this was
perhaps the largest security hole that existed in SQL Server 2000. In SQL Server 2005, this hole has
been plugged.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION 15

i Microsoft SQL Server 2005 CTP Setup

Service Account
Service accounts define which accounts to log in,

[Customize for each service account

(%) Use the built-in Syskem account |L0cal system v]

O Use a domain user account

Start services at the end of setup

|:| Reporting Services

SOL Server Agent |:| SOL Browser
Analysis Services

[< Back] [ek =] [Cancel

Figure 1-6. Service Account dialog box

i Microsoft SQL Server 2005 CTP Setup (%]

Authentication Mode

The authentication mode specifies the security used when
connecting ko SGL Server,

Select the authentication mode to use For this installation,

(%) Windows Authentication Mode

() Mized Mode {(Windows Authentication and SQL Server Authentication)

Specify the sa logon password below:

[< Back] [ek =] [Cancel

Figure 1-7. Authentication Mode dialog box

Click Next to move on to select collation settings.

16

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Collation Settings

The Collation Settings dialog box has undergone a marginal change, where for some reason the
default setup, SQL collations, uses the collation names and settings that existed in SQL Server 2000
and previous versions. These SQL collation names can become confusing; therefore, using the colla-
tion designator to create a Windows collation is the better option.

The collation settings have been simplified in SQL Server 2005, as you can see in Figure 1-8. You
now have a clearer collation designator. However, if you use the collation designator, then ensure
that you double-check the collation settings when you move from development to production.

i Microsoft SQL Server 2005 CTP Setup 3

Collation Settings
Collation settings define the sorting behavior For your server,

[¢ustomize for each service account

_ﬂ Analysis Services Collation: Latinl_General_CI_AS

() Collation designator and sort order:

() 501 collations {used For compatibility with previous versions of SOL Server)

[Binary order based on code point comparisan, for use with the 850 {Multiingual A ||
||Strick compatibility with version 1.x case-insensitive databases, for use with the — |
||Dictionary order, case-sensitive, for use with 1252 Character Set, =l
|| Dictionary order, cas itive, For use with 1252 Characker Set,

|Picticnare reder caca-incenditive nrneecace neeference For nee with 1252 Ch 7|

[< Back] [ek =] [Cancel

Figure 1-8. Collation Settings dialog box

The final action in the process is installing Reporting Services.

Reporting Services

Reporting Services were introduced as an addition to SQL Server 2000 late in 2003. The lack of a dedi-
cated tool with which to build and deploy reports was perhaps the biggest functionality gap that
existed in SQL Server. Up until then, all reporting had to be done through a third-party tool, with the
most prevalent being Crystal Reports. There are still some great reporting tools around, but they can
be complicated to use, because they are intended to work with a number of different data stores, not
just SQL Server.

Reporting Services runs through an IIS instance, therefore you need to create two virtual direc-
tories for the web server to use. The necessity for two virtual directories relates to how Reporting
Services works. There are two servers for producing reports: Report Server and Report Manager.
Report Server is used to hold report definitions and cached report data; it is the location from which
reports are produced. Report Manager is used to manage the reports defined in Report Server.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Another requirement is a database for Reporting Services to hold the reports and the details of
running the reports within a separate database. From a performance perspective, the most efficient
place to install the reporting database is on the same server as the data that will populate the reports.

However, if you have a heavily used instance, or reports that are intensive in their production,
it may be desirable to move the reporting database to a separate, dedicated instance. Another reason
to have the database in a different instance relates to the benefits in having a SQL Server instance
built just for reporting. It removes Reporting Services from the normal, day-to-day maintenance
tasks of the database and allows specific maintenance tasks to be built. Finally, having Reporting
Services away from the main SQL Server instance reduces complexity when it is necessary to scale
up any installation or apply any Reporting Services service packs, without your having to worry
about your production data repository. If you can afford the reduction in performance, a separate
SQL Server instance for reporting purposes is probably desirable.

Note Delivery of reports can be through the Web or by e-mail.

There are two ways to install Reporting Services: you can either take the default values or set up
the values yourself. Figure 1-9 shows that we are happy with the default values, which include the
account to use for logging into the service, the name of the virtual directories for the web reports,
and the name of the databases. We’ve also indicated that we want to create a connection for the Web
Services account.

i Microsoft SQL Server 2005 CTP Setup 3

Report Server Installation Options
Specify how to install a report server instance,

(%) Install the default configuration

(O Install but do not configure the server

Setup will install the report server and configure it ko use the default values, The
repart server is usable as soon as Setup is finished,

A Secure Socket Layer (55L) certificate is not installed on this computer, Microsoft
recommends that you use S50 in most Reporting Services installations,

[< Back] [Mexk =] [Cancel

Figure 1-9. Report Server default values dialog box

Clicking Next will show a list of the values that SQL Server will apply (see Figure 1-10).

17

18

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

i Microsoft SQL Server 2005 CTP Setup 3

Report Server Installation Information
Displays information about the default installation option,

Report Server Database:

SOL Server Instance: MSSQLSERVER

MName: ReportServer

The database will be accessed using the Service Context
virtual Directories:

Feport Server:

http: A P-PRO/ReportServer

Feport Manager:

http: A P-PRO/Reports

SSL Setting

4 Secure Socket Layer (SSL) certificate is not installed on this
computer, proceeding will result in & potentially unsecure deployrment

Figure 1-10. Report Server default values settings

We’ll examine Reporting Services in more detail in Chapter 9.

Error Reporting

The final step prior to the installation starting involves the new error-reporting feature that allows
fatal errors to be automatically sent to Microsoft or to your own reporting server (see Figure 1-11).
Sending error reports to Microsoft will not compromise the security of your installation, and it
increases the likelihood that the problem will be fixed in a future service pack. At the moment, there
is no way of defining your own internal server, but no doubt this capability will come in later builds.

It is also possible to send to Microsoft details of how you are using your SQL Server. This is a
great development, as Microsoft can then concentrate better on areas that are used the most and
give priority for future development and bug fixes to those areas affecting most users. Unless you
have a good reason to uncheck the two boxes shown in the Error and Usage Report Settings dialog
box, leave them selected.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

i Microsoft SQL Server 2005 CIP Setup 3

Error and Usage Report Settings

Help Microsoft improve some of the SOL Server 2005 components
and services,

Automatically send Error reports For SQL Server 2005 to Microsoft or your corporate error

reporting server, Error reports include information regarding the condition of SQL Server
2005 when an error occurred, your hardware configuration and other data, Error reports
may unintentionally include personal information, which will not be used by Microsoft.

Automatically send Feature Usage data for SQL Server 2005 to Microsoft, Usage data
includes anonymous information about your hardware configuration and how you use our
software and services.

Far more information on the error reporting feature and the type of information sent, click
Help.

[< Back] [ek =] [Cancel

Figure 1-11. Error and Usage Report Settings dialog box

The errors to be sent are not just blue screens, but any error that is fatal, such as your server
crashing.

Server Registration

Once you have installed SQL Server 2005, two workbenches will install, provided you chose all the
defaults: SQL Server Management Studio (SSMS) and Business Intelligence Development Studio (BIDS).

SSMS, covered in detail in Chapter 2, is the tool that you will probably use most frequently.
SSMS is an integrated management tool for developers and database administrators, whereas BIDS
is a replacement for SQL Server 2000’s Analysis Manager and is used for analysis services and building
cubes, dimensions, and so on.

Registering a server as well as a database in SSMS is almost exactly the same as in SQL Server
2000, except for the look of the interface, as shown in Figure 1-12. The server instance is the physical
name of the server on which SQL Server is installed.

19

20

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

Server

‘fou can replace the registered server name with a new name and
optional server description.

Server name: EAPRESS-SQLServer |

Server description: | Apress SOL Server 2005 |
|

Server Group

Select a server group:

_:J Data-b;ase Engine

= T T

Figure 1-12. Register Server dialog box

Once the server is registered, it is possible to view the properties of that server from within
Object Explorer. The first page of interest, shown in Figure 1-13, concerns memory and provides the
option to enable the Address Windowing Extensions (AWE) AP], via the “Use AWE to allocate memory”
check box. This feature provides a number of options for dealing with memory management. For
example, if the physical memory is greater than the virtual memory and you want SQL Server (when
required) to use this physical memory when the virtual memory is low, then AWE can alter the
amount of memory SQL Server is using dynamically.

F Server Properties - XP-PRO

S Script - ﬂ Help

General

Frocessors

Connections
[ratabaze Settings
Advanced
Permissions

Server
®P-PRO

Connection:
HP-PROMdewson

2 View connection properties

CHAPTER 1

SQL SERVER OVERVIEW AND INSTALLATION

9(=1E

Server memory options

[] Use AWE ta allocate memary

Minimum server memory [in MB]:

M aximumn server memory (in MB]:

=

Other memory options

Index creation memary (in KB, 0 = dynamic memany]:

(%) Configured values

() Running values

Ok] [Cancel

Figure 1-13. Server Properties: Memory

Next, take a look at the Processors screen in Figure 1-14. Here you can specify which CPUs SQL
Server can use on a multiprocessor machine, or you can choose to allow SQL Server to automatically
select the processor. Unless you have a specific need for a processor to not be used, then it is best to
let SQL Server automatically choose the processor. If you do select specific processors, you have to
keep in mind what other process threads might also use those processors.

21

22

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

F Server Properties - XP-PRO

= i = S Script = w Help
A Memony
4 gl

Enable processors

E‘ Security

._’i‘;‘ Connections . Processor Proceszor Affinity 1/00 Affirity i
A4 Database Settings : CRUD {m] = |

A Advanced
& Pemmigzions

CPL1 [m]

Automatically et processor affinity mask for all processors
Automatically set [0 affinity mask for all processors
Threads

I awirnum worker threads:

0] =
Server e
R oost erver prionty
#P-PRO B SOLS i
Connection:
HP-PROMdewson
2 View connection properties
Read
sacy (%) Configured values () Running values

Ok] [Cancel

Figure 1-14. Server Properties: Processors

Sample Databases

SQL Server has expanded to include a new sample database called Adventure Works, with the sad
loss of two stalwart but now outdated example databases, Northwind and Pubs. No sample data-
bases are installed by default—you need to explicitly request them as part of the feature selection or
install them during any future installation procedure.

Adventure Works is, in fact, three databases:

» AdventureWorks: This is the base, general-purpose relational schema for all standard examples.
e AdventureWorksDW: This is a relational schema for data warehousing examples.
* AdventureWorksAS: This database is available for use as an example of Analysis Services.

The following excerpt from SQL Server Books Online provides a concise overview of what the
Adventure Works databases are about:

Adventure Works Cycles is a large, multinational manufacturing company that produces
and distributes metal and composite bicycles to North American, European, and Asian
commercial markets. While its base operation is located in Bothell, Washington, in the
United States, with 500 employees, several regional sales teams are located throughout their
market base.

CHAPTER 1 SQL SERVER OVERVIEW AND INSTALLATION

In the year 2002, Adventure Works Cycles bought a small manufacturing plant, Importa-
dores Neptuno, located in Mexico. Importadores Neptuno manufactures several critical
subcomponents for the Adventure Works Cycles product line. These subcomponents are
shipped to the Bothell location for final product assembly. In 2003, Importadores Neptuno
became the sole manufacturer and distributor of the Touring 1000 models.

Coming off a successful fiscal year, Adventure Works Cycles is looking to broaden its market
share by targeting their sales to their best customers, extending their product availability
through an external website, and reducing their cost of sales through lower production costs.

Side-by-Side Installation

Itis possible to have SQL Server 2005 and SQL Server 2000 (or earlier) running on the same physical
machine, although it is recommended that you keep the installations separate if possible.

You can also have SQL Server 2005 set up so that the databases work as if they were within a SQL
Server 2000 environment. However, once you migrate any existing databases to SQL Server 2005,
the only way to move them back to a previous SQL Server version is to extract the database objects,
table objects, data, and so on, and reload them. You cannot restore a SQL Server 2005 backup to a
previous version.

Upgrading from SQL Server 2000 and 7.0

You can upgrade databases from SQL Server 7.0 or SQL Server 2000 to SQL Server 2005, or version
9.0. It is not possible to move back any upgraded databases set to SQL Server 2005 to any previous
SQL Server version, including their original version, once you do this upgrade, though.

It is possible to upgrade the database, any DTS, to SSIS packages as well as upgrade any
replicated databases.

The upgrade process in some instances is simple and straightforward. However, Microsoft
does provide an analysis tool called Upgrade Advisor that can help inform you of any code,
objects, and so forth that may exist in the database you wish to upgrade. You can find the Upgrade
Advisor tool at http://www.microsoft.com/downloads/details.aspx?familyid=cf28daf9-182e-
4ac2-8e88-12e936558bf2&4displaylang=en.

Once a server is registered, it is possible to attach and upgrade a database through SSMS. A
more common method is to restore a SQL Server 2000 or SQL Server 7.0 database from a backup. All
databases can be restored with the exception of the system databases. System databases can’t be
restored because they have been drastically modified for security purposes and the capability to
work with .NET assemblies, therefore the ability to restore any system databases prior to SQL Server
2005 is restricted to those that were user defined.

Summary

Installing SQL Server is no longer an awkward chore that requires several passes through the process
to complete. The SQL Server 2005 installation process now follows the Microsoft standard installa-
tion format. With all the components available to install in one pass, there should be less confusion
about the process and fewer installation problems.

SQL Server 2005 presents only a few new considerations to take into account during installation,
with these mainly relating to Reporting Services and the installation tree. Updating the installed
instance with new functionality, or even removing installed components, is much easier to decipher
than in previous versions, so you can be confident you’ll get it right the first time.

23

CHAPTER 2

SQL Server Management
Technologies

With SQL Server 2005, it is a brave new world for DBAs when it comes to server management. In
SQL Server 2000, you had scenarios where you would have to open four different tools to get your
work done: Enterprise Manager, Query Analyzer, Profiler, and Analysis Manager. Never mind that
the addition of new technologies such as Reporting Services and SQL Server 2005 Mobile Edition
(the renamed SQL Server CE Edition) present their own management tools separate from the ones
already pointed out. While each tool did its job well enough, the need to switch between tools and to
master different user interfaces and command syntax each time lessened users’ experiences with
SQL Server. As a direct result of this sort of feedback, SQL Server Management Studio was born.

SQL Server Management Studio (often referred to as simply Management Studio or SSMS)
combines most of the tools that you previously used separately and adds additional capabilities.

Furthermore, Management Studio is a completely rewritten application that uses the latest in
Microsoft technologies, namely Windows Forms and the .NET Framework. No longer, except when
using Computer Manager, do you have to deal with the idiosyncrasies of the Microsoft Management
Console (upon which Enterprise Manager was built), such as modal dialog boxes, when performing
your administrative tasks. This chapter will guide you through the new features and enhancements
in Management Studio as well as other new management technologies in SQL Server 2005. For
Management Studio, we’ll cover the following topics:

* How to connect to and manage multiple components of SQL Server from the unified
Management Studio console

* New user interface enhancements, including asynchronous treeview and filtering capabilities,
nonmodal dialog boxes, dialog boxes that can output scripts of their actions, robust code
authoring capabilities, and summary views

* New capabilities such as the dedicated admin connection, deadlock visualization, Performance
Monitor correlation, Maintenance Plan Designer, Database Mail, dynamic management
views, and enhanced help

¢ New command-line tools, such as SQLCMD

e Anew API called Server Management Objects (SMO), which replaces Distributed Manage-
ment Objects (DMO)

Connecting to and Managing Your SQL Servers

The very first thing you will notice in SQL Server 2005 is that you no longer have to fire up multiple
tools to manage different SQL Server services, from the relational engine to Analysis Services.

25

26

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Management Studio integrates all the essential management capabilities in one interface. You can
connect to multiple SQL Server components in Management Studio, as shown in Figure 2-1.

‘ Microsoft SQL Server Management Studio

Fle Edt Wew MningModel Tools Window Help

Duewouery | |GG 0 CHS B BORBRESFA,

1 - Execute = ARCAR) I B | =2 -
g SQLQuery3.sgl.. venturewarks* | SOLQuery1 sql.. ventureworks* | SQLQueryZ.sgl.. ventureWarks® “Summary | T X
H@E g ‘ng]: st |~ {@lReport -
ERT] Database Engine
| thomrizdbz
o | | Databases
THOMRIZDEZ|Databases & Ttem(s)
Name |

[System Databases
[Database Snapshats

Connect~ | 33 w0] [Advertureworks

= | THOMRIZDEZ (SQL Server 9.0,1186 - THOMRL | AdventureWarksDw
[0t abases | Reportserver
[security |_J ReportServer TempDE

2 Server Objects
- Replication
[Management.
[Motification Services
u‘b SCL Server Agent (Agent XPs disabled)
= IB THOMRIZDBZ (Microsoft Analysis Server 3.0 -7
[Databases
[Assemblies
= _6 THOMRIZDEZ (Inkegration Services 9.0,1186 -
[-3 Running Packages
[21 Stored Packages
£l [{il THOMRIZDBZ {THOMRIZDB2)Administrator)
2 Home
[Security
[shared Schedules
[Jobs
= [jj 5QL Serwer Mobile [My Computert. ., iMobileDat
[Tables
[Views
[Programmahiliy
[Replication

K [E— 1]

Ready

Figure 2-1. Connecting to multiple SQL Server components

Context-Sensitive Menus for Each Object Type

The components that you can manage with Management Studio are the relational engine, Analysis
Services, Reporting Services, Integration Services, Notification Services, and even SQL Server Mobile
Edition. Management Studio is smart enough to recognize when you click a particular type of object
to display the correct context menu for that type of object. For example, when you right-click an
Analysis Services cube, Management Studio lets you process the cube as one of the menu options, as
shown in Figure 2-2.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

B Microsoft SQL Server Management Studio [_Ta]x]
Eile Edit Yew MningModel Tools ‘Window Help

2 ttew query | Gy | £ 0 |3 |5 M G | 90 | (B0 () 2 B o9

! Becute o W0 B | 7 | & S E B = 2| =2
R SQLQuery3.sal...ventureWorks® 1 SQLQueryd sl ventureWorks® | 5QLQuery2.sql.. wentureworks®) Summary | s X
TR |,_g E-4 st |- @repart -
£ | Database Engine
16 thonrchz) Adventure Works
THOMRIZDEZ\DatabasesiAdventure Works D CubesiAdventure Warks 1 Item(s)

Marme |
[Measure Groups

Connect~ | &0 w4

= Lé THOMRIZDEZ (SQL Server 9.0.1186 - THOM |
E3 Databases
[Security
[Server Cbjects
[Replication
[Management
3 Motification Services
[501 Server agent
(SQL Server Mobile [My Computer!, ..\Mobile
Lg THOMRIZDEZ (Microsoft Analysis Server 9.0
= [Databases
I [£3 Adventure Works DWW
[Data Sources
[Data Source Yiews
= 4 Cubes
—]w e
[Mined C
1 Dimensions
[Mining Strut Process

Stript Cubs a5 ¥

[Rales
3 Assemblies | Delete
[Assemblies Refrash

B iy THOMRIZDEZ {Integraki
3 Running Packages
[Stored Packages

=] Hil THOMRIZNR? (THOM 17nH?\Mmim:rrar:]L|
Ll 3

Properties

Ready

Figure 2-2. Custom context-sensitive menus for different SQL components

Mobile Database Support

If you're using SQL technologies such as SQL Server Mobile Edition, you'll be able to manage your
mobile databases right from Management Studio. One caveat here is that you do need ActiveSync
installed on the machine running Management Studio, and the mobile device must be connected to
the physical machine as well.

Note SQL Server Mobile Edition will also run on the Tablet PC operating system, so you can build applications
that leverage Microsoft’s two mobile operating systems, Windows Mobile Edition (formerly known as Windows CE)
and Tablet PC, with one database.

Figure 2-3 shows how to connect to and browse mobile SQL Server databases from the
Management Studio console.

28 CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

.. Microsoft SQL Server Management Studio 18] x|
File Edt Yiew MnngModel Tools Window Help

e query | Oy |0 i 5| O |15 W @ | & Hadlib;j}gj;
: . l:l ! Execute 5 | 2 | A |

= B Column Properties - Customers _[alx]| = X
USEE R | Selectapa 2] Refresh @ Gohedule -5 Seipt ~ [Help ‘
= | Datsbase Engine 2 General
4 thomrizdb Koy [Hame [Daalwpe [Se= [idetty [Nus [Defat |
I_ Customerh ame: nvarchar(100] 200 No Yes L
O er
Connect+ | @3 m @ T
= m THOMRIZDEZ (SQL Server 9.0.1186 - THOMRL
[Databases
[0 Security
[Server Objects
[Replication
23 Management
3 Motification Services
B _% SQL Server Agent (Agent XPs disabled)
= [5L Server Mabile [My Computert...{MobileDat
[= [Tables
[System Tables
B 3 Customers
= 3 Columns
=] Customertiame (rwarchartigg) | Micraseft SOL Server 2005
Mobile Edition
[Z] Customeraddress {rwvarchar(1r
7 CustomerID (Pk, nvarchar{1o0 | MobieDiata. sdf
3 Indexes
3 Orders 2l View connection properies
[views
[Programmahilicy
P
5 Repeation
Ready
| |
Ready

Figure 2-3. SQL Server Mobile Edition support

SQL Server 2000 Support

Management Studio supports administering both SQL Server 2005 and SQL Server 2000 servers.
Features that are not supported by SQL Server 2000 such as database mirroring will, of course, not
appear in Management Studio. This allows you to use one tool to manage a mixed environment that
contains both versions of the database servers.

User Interface Enhancements

Beyond connecting to multiple components, Management Studio introduces a number of new user
interface features. Hopefully, these user interface enhancements fix some of the pet peeves of DBAs.
For example, have you ever wanted to open more than one dialog box in Enterprise Manager (EM)?
Unfortunately you can’t in EM, but you can in SSMS. In this section, we’ll step through some of these
SSMS user interface enhancements.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Asynchronous Treeview and Object Filtering

If you've worked with a large number of objects in Enterprise Manager, you know that when you
expand the treeview on the left-hand side, you can step away for a cup of coffee, have a quick game
of Ping-Pong with your fellow DBAs, and check the SQL Server newsgroups, all in the time it takes for
EM to return the information. With Management Studio, loading objects is done asynchronously, so
you can start opening an object that has many children while simultaneously performing other
activities in the user interface.

Another enhancement is the ability to do rich filtering in many of the views in Management
Studio. To filter, you just right-click the object container you are interested in filtering and select
Filter. Filters do not persist between shutdowns of SSMS. For example, you can filter tables based on
characters contained in the name of the table or the schema name, or based on the creation date of
the table, as shown in Figure 2-4.

Y Object Explorer Filter Settings x|

Server THOMRIZDEZ2
Database: Adventureiworks
Filter Criteria:

Froperty Operator | Walue |

Mame Containg

Schema Containg

Creation Date Between | LI

And

[< | May. 2005 [|

Sun Mon Tue Wed Thu Fri Sat
24025 2 O 2 23 30
1 2 3 4 & B 7
g 9 1112 13 14
15 16 17 18 13 20 21
2023 04 X% X XM
29 30 03 1 0z 3 4
[IToday: 5/10/2005

Select or type a creation date to include or exclude objects created at ar Ending date to include

or exclude objects created in that inclusive date range.

1 ()8 Cancel |/ Lo Help |

4

Figure 2-4. Filtering objects

Nonmodal and Resizable Dialog Boxes

I've lost count of the number of times I've heard a DBA curse EM for its modal mode of operation.
One of the most requested features for EM was the ability to have multiple dialog boxes open at
once. Among other things, this would allow the DBA to compare settings side-by-side for two objects.
Management Studio includes this capability and also allows resizing of the dialog boxes. Figure 2-5
shows the new dialog box user interface in Management Studio with multiple dialog boxes open.

29

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

!‘: Microsoft SQL Server Management Studio =] x|
Eile Edit Yiew MiningModel Tools Window Help
Sbenouery |5 BB B0 EES B EBERESA,
1 T Back Up Database - AdventureWorks o [=] | |,
Seleclapﬂ A Refiesh (D) Schedile € Goin < 7 Liain —m o= 3 -
T 2 Gereral (IR 5 T:ble Properties - AWBuildYersion [_ 1Ol =]
A
== Options SiEn | Selectapag] Refresh ¢5) Sehedule 25 Seipt = [Help
Bty 157 General
atabase: -1
Ey Peimissions =y |J
Recovery model: | 27 Estended Propeties i 4
) S Cunrent connection parameters
Backup tpe: Database Adventureiworks
Bl s Server THOMRIZDE2
User THOMRIZDE 24 dministrator
- ' Datspase = Description
a
o Fies and C 5/6/2005 311 AM
EBuidiersion
Backup set Schema dbe
Mame: System ofject Fals=
= Options
Degiiption: ANSIHULLs Tie
Backup set wil e Guut;d \dgntlfler True
3 Replication
© Ater Table is repicated Fake
“ on 3 Storage
Data space 0.008 ME
. Destination Filegroup FRIMARY
Brver Il 0.008 MEB
THOMRZDR2 Esill Patiton schene
Connection: Server: Row count 1
THOMRIZDE2Adrministrator THOMRIZDE2 Table iz partitioned False
24 View connection properties Cornection Text flegroup
THOMRIZDE2%Administrator
24 View connection properies
Ready
4 Progress
| Progress T
Fieady The name of the table
Ready i

Figure 2-5. The new dialog box interface

Script and Schedule Enhancements

Another issue with EM was that DBAs had no way of knowing what work EM was doing on their
behalf. For example, a DBA might be interested in knowing what EM did automatically behind the
scenes as a result of certain user interface dialog box settings, so he could write scripts to do the same
thing that could be executed on a defined schedule.

With Management Studio, you no longer have to fire up Profiler and start a trace, and then run
EM to see what commands are sent to the server. Instead, right from the user interface, you can tell
Management Studio to take what it would send to the server, based on your settings in the user inter-
face, and instead script out the commands to the file system, to the clipboard, or to a new query
window, or schedule them to execute at a later time.

Beyond scripting enhancements, you can now schedule the commands the server would run
based on your dialog box settings. Management Studio creates an agent job to run at whatever time
you schedule. This is useful if the server is busy and you want to have the actions run at another time
when the server is less busy, or you want to have the script that the dialog box creates run on a recurring
basis. In addition, multiple jobs can share the same schedule in the new SQL Server Agent, which mini-
mizes the management of scheduling for you. Figure 2-6 shows how to create a scheduled job, based
on the settings of a dialog box.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

E Job Schedule 21
Job name: | ackupob
Schedule name: IAW'SCheduH
Schedule type: |One time =

One-time occurnence

Date: [&A0/2008 =] Time: [1200:008M =
Frequency
Oocurs: IDaiI_l,l j

Fiecurs eveny: m EE]
[raily frequency

% Oeccurs orice gt lm
€ Ooours evens: m Im Starting at: lm
Ending at: lm

Diuration
Start date: I 51042005 'l 1 End date; I 51042005 'l
& Mo endldate
Summary
Deseription: Oceurs on 541042005 at 12:00:00 AM. ;I

QK I Cancel Help |

Figure 2-6. Scheduling a backup job

The first step to create your scheduled backup is to right-click the database you want to back up,
select Tasks, and then select Back Up. From there, fill out the properties in the dialog box, such as the
type of backup (full or differential) and the destination to which you want to back up. Scheduling the
backup is as easy as clicking the Schedule button at the top of the form.

If you take a look at the code generated by Management Studio to back up your database, you
can see the commands that Management Studio will send to the server. You can take the following
T-SQL that Management Studio generates and use it in your own applications, or just look through
it to see T-SQL best practices or learn how Management Studio performs its functionality against
the server.

BACKUP DATABASE [AdventureWorks] TO DISK =
N'c:\AdventureWorks.bak' WITH NOFORMAT, NOINIT, NAME =
N'AdventureWorks-Full Database Backup', SKIP, NOREWIND,
NOUNLOAD, STATS = 10

GO

Code Authoring

If you spend most of your time writing SQL Server code—whether you use T-SQL, Multidimensional
Expressions (MDX), XML for Analysis (XML/A), or Data Mining Extensions (DMX)—you will be
happy to know that all these languages are supported in Management Studio. SSMS also supports

31

32

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

dynamic help, so as you write your code, the relevant topics from SQL Server Books Online are
displayed to help you along the way. One new addition to the set of query languages that SQL Server
supports, both in the product and in the management tools, is XQuery, which we cover in detail in
Chapter 5.

Source Control

SSMS is tightly integrated with source control. You can check in and check out virtually everything
inside of Management Studio. This allows you to know who made a change and when they made it,
and to roll back to a previous version if necessary. Please note that SSMS supports Visual SourceSafe
(VSS) and other source control systems that are compatible with VSS. Figure 2-7 shows checking in
a script file in SSMS.

Check In EHE
Select items to check in:

EENE ==
Mame < Change type | Madified Time
= I~ uj Items below solution ‘Solution1'
e I~ Files below 'SCL Server Scripts1'
W 23 50L Server Scripts1 71292005 11:20:40 PM
e [¥ |2y BackupDatabase.sql Content 5/10/2005 12:3%:10 PM

Comments:

™ Don't show Check In dialog box when checking in items check In I Cancel

. | B

Figure 2-7. Using the check-in functionality in SSMS

Template Explorer

SSMS brings with it a greatly enhanced Template Explorer. SQL Server 2005 ships with templates for
the database engine, Analysis Services, and SQL Server Mobile Edition. These templates cover the
most common operations that you will want to perform from a code perspective, such as creating
databases, stored procedures, triggers, and so forth. As you can see in Figure 2-8, SSMS supports
many different templates to help you manage your server. Plus, Template Explorer is customizable
in that you can add your own folders and templates. Therefore, you can take your best templates and
put them in Template Explorer so they are always available to you. To do this, just right-click the
folder in Template Explorer where you want to create your template, select New, and then select
Template. From there, just write your code like you would any other script and save it. Now you have
a template.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Template

[FliER=

= [5GL Server Templates -
[Aoggregate
[Assembly
[Backup
[Certificate
= [Database
|5'1:| attach database
[} Bring Database Crline ||
|5'1:| Create Database on Multiple Fileg
|5'1:| create database
|5'1:| create snapshot
|5'1:| detach database
|5'1:| drop database
|5'1:| Take Database OFfline
1 Database Trigger
3 Default
[Eatlier versions
3 Endpoint

[Event Motification
= 5 Fvtandad Dranar b hd
«| | »
Recently Used Templates
Take D atabase Offline

detach databaze
create datsbase

) E—; Template Explorer/{.‘j Solution Explorer/

Figure 2-8. Template Explorer

When writing queries, Management Studio supports both an offline mode and a SQLCMD
mode. In offline mode, you can be disconnected from the server to write your queries. SQLCMD will
be covered in more detail later in the chapter, but for now you should know that in SQLCMD mode,
you can write SQLCMD commands directly in SSMS, giving you the editor experience of SSMS and
the ability to debug your SQLCMD code without having to run SQLCMD at the command line.

Autosave

The final enhancement is autosave. Since SSMS leverages the VS shell, you get recoverability built in.
Therefore, if SSMS crashes, you will be prompted on the next startup to recover any work from your
previous SSMS session.

Results Pane

You'll continue to see your familiar grid results window with SSMS, but there are a couple of useful
additions. First, you can now print directly from the results pane. Second, XML results are now
hyperlinked and can be opened in a separate window. This separate window is actually an XML
editor, so you can modify your XML in a richer way. The only downside is that even if you modify the
XML, there is no automatic save back to the database. You will have to save the XML to a file and
import it, or write T-SQL code to insert it back into the database. Figure 2-9 shows the new linked
XML result in SSMS.

33

34

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

K Microsoft SQL Server Management Studio

Ele Edt Yiew MningModel Iooks Window Help
Quewoeery | | BB EH DL EEHS @B E bb?ﬁ“‘ill—_

- 1 x /XML_F5ZEZB61...5F4991681.kml | View - Sales v1...ividualCustom |~ SQLQueryS.sdl.. ventureWarks® | T X

[@ 5] <i CustomerID="11000"> =
) 1) Database Engine <Demographics>
[thonrizd? <IndividualSurvey xmlns="http://schemas.microsoft.com/sqlserver/2004/07/ adventure-u

«TotalPurchaseVTD»>8248.99</ TotalPurchase¥TD>
<DateFirstPurchase»2001-07-22Z</DatefirstPurchasex>
<BirthDate>1966-04-082</Birthbate>
<MaritalStatussM</Maritalstatuss
<VearlyIncome>75001-100000</Vear lyIncome:>
«Gender>M</Genders
<TotalChildren»2</TotalChildrens
«MumberchildrenitHomes>0</HumberChildrenitHome s
<Education>Bachelors </Educations
H\Mnhllt‘al[’)lata]Pr_at- <occupationsProfessionald/Gooupat ions

<HomeOwnerF lag> 1</ HomeOwner F lacs>

<HNunberCarsovneds0</Nunber CarsOuned:

«<CommuteDistancer1-2 Miles</CommuteDistances

</ IndividualSurveys
</Demographics>
<z FirstMName="Jon" MiddleName="V" LastNamwe="Yang" Phone="1 (11) 500 555-0162" Emailid
<at AddressType="Home">

<sp StateProvincellame="Queensland">
<or CountryRegionName="iustralia” />

0 rer
Conneck ~ | 47
5} o

L L& S0l Server Mol
SQL Server Mabile [My Computeri.
=

_b THOMRIZDBZ {Integration Services 9.0.1186 -
‘_\,Tﬂ THOMRIZDEZ {THOMRIZDB2\Adrinistrator)

</sp>
</far
<faty
<fex
</ ix
<i CustomerID="11001">
<Demographics>
<IndividualSurvey xmlns="http://schemas.microsoft.com/sglaerver/2004/07/ adventure-w

<TotalPurchaseTTD>5363 .68</ TotalPurchase ¥ Th>

<DatefirstPurchase>2001-07-162Z</DatefirstPurchases

<BirthDate>1965-05-14Z</Firthbace>

<Marital3tatuss3</Marital3tatus>

<Vear lyIncome>50001-75000</ Year 1y Income> _lLI
»

e — o | KT |

Ready

Figure 2-9. Linked XML results open in an XML editor in SSMS

Activity Monitor

To see activity in the system such as processes and locks, you normally use the Activity Monitor,
which is located in Object Explorer under the Management node. With SQL Server 2005, the Activity
Monitor has been enhanced to support both filtering and automatic refresh, both of which are
useful when you are running large, complex SQL Server systems that may have many processes
running on a single server.

Summary Views

For those of you who have used the Taskpad feature in EM, Summary Views will not look much
different to you. The main difference is that Summary Views leverage a new user interface that can
display information using either a listview or the new SQL Server 2005 Reporting Services report
controls. Some of the most interesting reports are associated with the dynamic management view
features, which you will learn about later in this chapter. Figure 2-10 shows the new Summary Views
technology.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Eile Edit Wew Tools Window Help
Dvewouey [BB EH L SE 3 BEARRESA

icrosoft SQL Server Management Studio [(=] x]

SGLQuery3.sal.. ventureWarks® 1 SQLGueryl.sal. ventureWorks® 1 SQLQuery2.sal,. ventureworks® Summary T X
= WERF-4 4 t [~ @lreport -
B [Database Engine
| thomrizdbz Lj Tables
THOMRIZDEZ|Databases| Adventureworks| Tables 73 Item(s)
Hame [schema [created -
. n 1 awBwidversion dho 51612005
connect - | 3 Ei = Databaselog dbo 5/6/2005
| THOMRIZDEZ (30L Server 9.0.1138 - THOMRL S errorLog dho 5/6f2005
|5 5QL Server Mobile [My Computert. . \MobileDat lab_table1 dbo 5/10/2005
’g THOMRIZDER (Microsoft Analysis Server 8.0 - lab_tablez dho 5102005
-y THOMRIZDEZ (Integration Services 9.0,1156 - B Department HumanResources 5/6/2005
i) THOMRIZDEZ { THOMRIZDEZ|Administratar) = Employes HumanResources 5/6i2005
H Employesaddress HumanResources 5l6f2005 |
= EmployesDepartmentHistory HumanFesources 5/6f2005
 EmployesPayHistory HumanResources §/6f2005
= JobCandidate HumanResources 5l6f2005
=1 shift HumanResources 5/6{2005
= Address Person £l6f2005
[addressType Person 5l6f2005
= Contact Person 5/6{2005
= ContactType Person £l6f2005
= CountryReqgion Person 5l6f2005
1 StateProvince Person 5/6{2005
I BilloFmaterials Production §/6f2005
H Culture Production 5l6f2005
= bocument Production 5/6{2005
= Iustration Production §/6f2005
= Location Production 5l6f2005
= praduct Production 5/6{2005
= ProductCategory Production S/8i2005 -
< | _’lJ
| i
Ready

Figure 2-10. Summary Views show vital information about database objects.

Functional Enhancements

Management Studio is about a lot more than a few interface enhancements. It brings functional
enhancements and new, often timesaving, capabilities. We’ll look at some of these in this section.

Dedicated Administrator Connection

Have you ever had a server where the CPU was maxed out and you could not connect to the server
to kill off the query that was consuming all the resources? If so, the dedicated administrator connec-
tion (DAC) may well become your favorite feature of SQL Server 2005. Whenever the server starts up,
SQL reserves some resources for administrators to connect to the server.

Using the DAC, you can connect to the server or SQLCMD through SSMS. You can have only
one DAC open at a time to a server. Therefore, you cannot use tools that open other connections in
SSMS, such as the Activity Monitor or multiple explorers, such as Object Explorer and the Query
Editor. The DAC uses a special prefix when you pass your instance name: ADMIN:. For example, if
your instance is SERVER\INSTANCE, then to use the DAC you would use ADMIN: SERVER\INSTANCE.

A couple other things you should be aware of with the DAC as follows:

¢ Only members of the sysadmin role can use it.

e Out of the box, you can run the DAC only on the server. To enable network connections using
the DAC, you can use sp_configure and set the remote admin connections option to true or 1.

36 CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

* You can query dynamic management views, catalog views, or system processes.

¢ Do not run intensive queries using the DAC connection, such as running complex joins or re-
indexing the database. It has limited resources associated with it that should be used only for
debugging and killing off spids (using the KILL command) that may be bogging down the server.

Deadlock Visualization

Troubleshooting deadlocks is often a difficult process in any database system. To make this process
easier, SQL Server 2005 allows you to graphically display deadlocks in the system, as shown in Figure
2-11.You can use this graphical representation to quickly track down why the system is deadlocking
and take steps to minimize the deadlocks in the system.

ioix]
& File Edit View Replay Tools Window Help =& x|
dOsgraclr v mnANE DaE|P
| Eventiass | Testnata Applicationhame NTUseMame | LoginMame | CPU [Feads | wiites | Duration |
RPC:Completed EXEC Sp_reset_connection REPOFT SErver STYSTEM NT AUT... [[o
sQL:Batchstarting ... RepOrT Server SYSTEM NT AUT...
sQL:BatchCompleted ... Report Server SYSTEM NT AUT... o o 0
RPC:Completed exel Sp_executesgl N ... REPOFT Sefver SYSTEM NT AUT... [[o
RPC:Completed EXEC Sp_reset_connection REpOFT Server SYSTEM NT AUT... o o 0
sQL:Batchstarting ... FReport Server SYSTEM NT AUT...
caL:patchcompleted v.. REPOPT Sefver SYSTEM NT AUT... [[o
RPC:Completed exec sp_executesgl N ... RepOrT Server SYSTEM NT AUT... o o 0
sQL:Batchstarting USE pubs WHILE (1=1) BEGIN EEGIN... Microsoft 5Q... Adminis... THOMRI...
Lock:beadlock Chain peadlock Chain SPID = 54 (020l4fObe...
Lock:pneadlock chain peadlock Chain SPID = 53 (cfoodebal...
beadlock graph <deadlock-1ist> <deadlock wictime=... sa
Lock:beadlock (cfoodebal7sz) Microsoft 5Q... Adminis... THOMRI... 130
=0L:Batchcomplered USE pubs WHILE (1=1) BEGIN BEGIN... Microsoft sQ... Adminis... THOMRI... o 3 0 120
RFC:Completed exeC sp_reset_connection Report Server SYSTEM NT AUT... o o 0
sQL:Batchstarting ... Report Server SYSTEM NT AUT...
sqL:iBatchcompleted van REPOFT SErver STYSTEM NT AUT... 10 [o
RFC:Completed exec sp_executesgl N ... Report Server SYSTEM NT AUT... o o 0
RFC: Completed exec sp_reset_connection Report Server SYSTEM NT AUT... o o 0
RPCiCompleted ExEC GetMyRUNNinglobs @ComputerName... Report server STYSTEM NT AUT. .. o o] t
o7 - _'I_I
Key Lock
Server procass Id: 53 HoBt I0: T2057504038179120 Server process Id: 54
Servar batch Id: 0 . L3 5 . Sorver batch Id: 0
: . R il e o
Log Used: 602
S C————, ~*—owner Mode: X Koy Lock _Request Mader U 'rransac:g‘;:;:bﬁfsnzaunsaa
Statament HoBiID: 7205758403B321152 Statement
assoeiated objid: 72057 594038321152
Index name: UPKGL_auldind
Trace is stopped. [tnzz, colz [Rows: 31
[| Connections:o

Figure 2-11. Deadlock visualization

As you can see in Figure 2-11, the deadlock graph includes the process ID, which will be impor-
tant since you will use that ID to kill off one of the processes caught in the deadlock. Normally, SQL
Server handles deadlocking automatically. The server will pick a victim if it needs to and end the
process. However, if you find the system is not ending the deadlock, you can kill the deadlocked
process yourself through the Activity Monitor. The important thing about deadlocks is not to get
them after they happen—you should write your code to avoid having them happen at all, if possible.
Follow good practices like keeping your transactions short and single batched, accessing objects in
the same order every time, and using the new SNAPSHOT isolation level to try to prevent locking.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Performance Monitor Correlation

There may be times when you see spikes in Performance Monitor on your SQL Server machine, such
as a high CPU usage, a large amount of memory consumption, or overall slower performance. You
might be scratching your head, wondering what happened in SQL Server to cause this performance
anomaly. Before SQL Server 2005, you would have to use Profiler to capture a trace; use sysprocesses
that you looked at in Enterprise Manager; and capture your Performance Monitor logs, which required
you to fire up Performance Monitor. After doing all this across all these different tools, you would
need to manually reconcile what happened between them to figure out why performance was suffering
in the system, which meant slogging second-by-second through each of the logs returned. Not a very
fun experience, but it was useful if you wanted to get to the bottom of your performance problems.

With SQL Server 2005, you still need to capture a trace and examine your Performance Monitor
logs. However, Profiler now lets you attach Performance Monitor logs. It will then scroll through
your T-SQL statements and automatically show you, graphically, what happened in your Performance
Monitor logs. The scrolling also works if you click in the Performance Monitor user interface in
Profiler, which jumps you to the statement that correlates to that timestamp. This capability will
save you time in troubleshooting your SQL Server environment. Figure 2-12 shows an example of
Performance Monitor correlation in Profiler, where the vertical line in the chart is the point where
the highlighted event occurred.

ﬁSQL Profiler - [kon Tools Demo, perflos

& Fle Edt Wiew Replay Took Window Help =& x|
A0S EF2E(» 0 |ECEAANR D P
| Eventllass | ApplicationNa_ | Batch_[ClientFiocess_| Datshas_ | Databass. | Eventfequ. | HostN_ [IsSyst_ | LoginN_ [Laging | NTDomain_[| 5P| Semvel_ | Stat «|
| SOLBatchCompleted Microsoft 50.. 1 1600 5 Adventue.. 27576 KOMO.. REDM.. 0X010. REDMOND 67 (local 18
Evec Prepared S0L Microsoft 50 1 1600 5 fdventue.. | 27577 KOMO FEDM. 0X010. REDMOND = €5 flocall 318
RPC:Statting Microsoft 50.. 1 1600 5 Adventue.. | 27578 KOMO.. REDM.. 0X010. REDMOND €5 (local 318
FPC:Starting Microsoft 50 1 424 5 fdventue.. | 27587 KOMO FEDM. 0X010. REDMOND 63 flocall 318
RPC:Statting Microsoft 50.. 1 424 5 Adventue.. | 27588 KOMO.. REDM.. 0X010. REDMOND €3 (local 318
FPC:Starting Microsoft 50 1 424 5 fdventue.. | 27583 KOMO FEDM. 0X010. REDMOND 63 flocall 318
RPC:Statting Microsoft 50.. 1 424 5 Adventure.. | 27590 KOMO.. REDM.. 0X010. REDMOND €3 (local 318
50L BatchStating Microsoft 50 1 424 5 fdventure.. | 27591 KOMO FEDM. 0X010. REDMOND 63 flocall 318
ISDL SttStarting Microgoft 0. 1 424 5 A'dvenlule... 27592 KOMO.. REDM.. 0x010.. REDMOND B3 [locall 3ﬁﬂ
4 »
100 -
80—
£0-
40—
20—
- I I I I 1 1 1 1 1
111521 4M 1115:358M 11:15:43 AM 111603 4M 111617 AM 111631 4M 11:16:45 AM 111659 4M 11:17:19 Ak
3/18/2004
[Col | Scals | Counter | Object Instancs Computer Minalus Max Yalus A Walue Selected Valus | Selectsd
F— 000 Bulk Copy Fiows.. $0LServerData.. _Tetal \\KOWMODODEM 0.00 175281.70 44157.28 10488730 34184200
 r— 100 %Pracessar Ti Processar _Tetal \\KOMODODEM 0.00 10000 552 8328 34187200
Freleet ™ from [dbe] [DemaDest] =
« | »
Done. | Rows: 107
| Connections: 0

Figure 2-12. Performance Monitor correlation

37

38 CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Let’s now see how to do a Performance Monitor correlation in SQL Server 2005:

1. Start Performance Monitor and begin capturing some information from the database server.
The fastest way to start Performance Monitor is to go to the Start menu, click Run, type
perfmon, and press Enter.

2. From there, you'll want to create a new counter log under Performance Logs and Alerts by
right-clicking the Counter Logs node and selecting New Log Settings. Enter the name for
your new log.

3. Click the Add Counters button and add new counters, such as % Processor Time. You'll also
want to schedule your logging to start either manually or on a scheduled basis using the
Schedule tab.

4. Once you're done, click OK and make sure to start your logging if you select to use the
manual start option.

Next, you'll want to set up a trace on your SQL Server through Profiler. You can do this by
clicking New Trace under the File menu in Profiler. Make sure to include the StartTime and
EndTime in your trace. Name your trace, and make sure to set it to save the trace to a file.

Finally, you can blast your server to simulate some SQL activity. The easiest thing to do is to
use the SQL Server Integration Services (SSIS) import/export wizard to export the AdventureWorks
sample database and import that database to a new database. You can access the import/export
wizard by right-clicking the AdventureWorks database in Management Studio and then selecting
Export Data. Once this is done, you can stop capturing in both Performance Monitor and Profiler.
Close the trace file as well.

In Profiler, select Import Performance Data from the File menu. Select the location where you
stored your Performance Monitor log. Then, select File » Open » Trace. Select the location where
you stored your Profiler trace. Now, you can use Performance Monitor correlation between the two
to figure out what effect on the processor a certain SQL statement had.

Server Registration Import/Export

Another pet peeve of many SQL Server 2000 DBAs is the inability to import and export server regis-
tration information. For example, imagine you get all your server registrations just right in EM. Then
you bring up another machine that you want to use to manage your servers, or you rebuild your
client machine. Well, guess what—you have to re-create all your registrations on your new machine.
With SQL Server 2005, you can import and export server registrations from SSMS. Plus, it does not
matter what the type of server registration—you can import and export database engine, Analysis
Services, or Reporting Services registrations.

Maintenance Plan Designer

DBAs have a common set of database operations that need to be performed regularly, such as
backups, shrinking, integrity checks, and updating statistics. With SQL Server 2000, you could use
the Database Maintenance Wizard to create and schedule these tasks. With SQL Server 2005, the
Database Maintenance Wizard still exists, but it is now called Maintenance Plans.

The Maintenance Plan Designer, which you can launch from the Maintenance Plans node
under the Management node in SSMS, is based on the new SSIS designer. This means that you can
draw out your administrative tasks in a graphical workflow and define different courses of action
based on whether the tasks succeed or fail. Within the Maintenance Plan Designer, you can perform
several different tasks, such as running agent jobs or T-SQL scripts. With this level of flexibility, you
can use the Maintenance Plan Designer to draw out most of the workflow used for database main-
tenance. Figure 2-13 shows the Maintenance Plan Designer.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

icrosoft SQL Server Management Studio -5]x]

Fle Edt Yiew Format Tools Window Help

»

Qe comy | [| BB B0 @@ B OREFT,

MaintenancePlan [Design]*]’ S0LGQuery3.sql. ., venturetWaorks®]’ SQLQueryl.sgl., venkure'Waorks™®]’ SQLQuery2.sql., venkure'Warks®] F X
Connect - | 2 A
" Tatabace Mal | e [Msirtenanceplan
g Distributed Transacti :I
Full-Text Search Description ;I
[Legacy
3 Notification Services Schedule |(0n Demand) Mot scheduled _I x
1= [B SQL Server ngent
[Jobs Conneckions. .. | Logging. .. |
0 Alerts
= [Operatars
A& Tom Rizzo
1 Proxies
:‘; Silni&?gsr [Check Database Integrity Task Notify Operator Task
“ v |, Check Database integrity on Lacal ser... I * &) Matify Operator on Local s...
lj Databases: AdventureWorks Operator: Tam Rizzo

=/ Maintenance Plan Tasks Include indexes
I Fointer
2 Back Up Database Task '_]

| & Check Database Integrity Task Back Up Database Task
[} Execute SOL Server Agent Job .., Backup Database on Local server co...
2 Execute T-5QL Statement Task < Ei ?atabiseus‘ Adventureiorks
E = Type:Ful
_% History Cleanup Task Append existing
%] Maintenance: Cleanup Tack Destination: Disk

B, Notify Operator Task I

4, Rebuld Index Task

%2, Reorganize Index Task

Update Statistics Task

' Shrink Database Task 2 Update Statistics on Local se...
] Update Statistics Task ‘g Diatabases: Adventuretworks
= General Object: Tables and views

All existing statistics

There are no usable controls in this
group, Drag an item onto this kext
to add it ko the toolbox.

Ready

Figure 2-13. The new Maintenance Plan Designer

SQL Server Agent Changes

SQL Server Agent, which is a Windows service that executes scheduled administrative tasks, has
been vastly improved in SQL Server 2005. First, scalability has been improved so that Agent can run
more jobs while consuming fewer resources in the system. Second, it now supports Analysis Services
commands and SSIS packaged execution in addition to its previous support of T-SQL commands.
Finally, Agent now supports Windows Management Instrumentation (WMI) alerts beyond just SQL
Server alerts and SQL Server performance condition alerts. You can pass in any WMI query that you
want SQL Server to listen on. For example, you could use WMI to query server information outside
of SQL Server, such as CPU or memory information. This topic is covered extensively in Chapter 13.

Database Mail

No more MAPI. Yes, you read that right: no more MAPI. If you've ever set up SQLMail, you know that
you need to get MAPI onto your server and that MAPI can sometimes be fickle. SQL Server 2005
introduces Database Mail, which is SMTP based, not MAPI based. Beyond removing the MAPI
requirement, Database Mail has been integrated with the new Service Broker technology so that
mail is queued and handled asynchronously and applications do not have to wait for the mail to be
sent before continuing. This will allow you to scale your applications that use Database Mail. Finally,
Database Mail is 64-bit enabled, cluster aware, supports HTML mail, and allows you to specify more
than one SMTP server as a failover account.

There is a caveat, though, regarding Database Mail that will require you to keep SQLMail around
even in SQL Server 2005: Database Mail cannot read mail. This means that if you have applications

39

40

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

that need to read mail from a SQL Server stored procedure or other server-side code, you will need
to use SQLMail or write your own component that reads mail using Collaboration Data Objects
(CDO) or WebDAV to access your Exchange Server. Let’s take a look at how you would write some
code that uses Database Mail. This code does not show all the features of Database Mail, so if you
want to see even more functionality you can use, we’ll point you to SQL Books Online.

Note Before running the following code, you need to run the Configure Database Mail Wizard in the SQL Server
Surface Area Configurator.

The code that follows shows three examples.

¢ The first example sends the number of e-mails you specify to Database Mail. This is just to
show the better performance of e-mailing in SQL Server 2005 and how mails are queued using
Service Broker, even though they haven’t been delivered yet.

¢ The second example shows how you can send an e-mail with an attachment.

¢ The final example shows how you can send an e-mail with HTML formatting and an attach-
ment. HTML formatting is a new feature in Database Mail. By having this capability, you can
customize how your e-mails look for your end users.

JRRRRRksKskskskokokokokokokokokokokskskkkokokokokokokokokokokk /

/* Send @lots of emails */
JERRRRRR Rk kR Rk Rk KRRk KRR KKKk

DECLARE @i INT
,@lots INT
,@subject NVARCHAR (100)
,@start time DATETIME

SET @lots = 5
SET @start time = GETDATE()

SET @i = 1
WHILE(@i <= @lots)
BEGIN

SET @subject = 'Demo Message ' + CAST(@i AS VARCHAR)
EXECUTE sendimail sp @profile name = 'TestProfile'

,@recipients = 'useri@thomrizdomain.com'
,@body = 'My Test Message'
,@subject = @subject

SET @i = @1 + 1
END

PRINT 'Sent ' + CAST(@i-1 AS VARCHAR) + ' e-mails in ' +

CAST (DATEDIFF(ms, @start time, GETDATE())/1000.0 AS VARCHAR) +
' seconds’

GO

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

JFFRRRkkokskskskkokkofkokokokokokokskskkskskokofokokokokokokokok /

/* Send an email with an attachment */
JREFRRRRR Rk Rk Rk KRk

EXECUTE sendimail sp

@profile name = 'TestProfile’
,@recipients = 'user1@thomrizdomain.com’
,@body = 'Attached is the result of sysprocesses.
Danger! Will Robinson! Danger!"
,@subject = 'Result of sysprocesses'
,@query = 'SELECT spid, status, loginame FROM sysprocesses'

,@attach_query result as file =1
GO

JRRrRkRRRRRoRkkkokkkok ok ok Rk RoRoRkokkok ok ok ko ok

/* Send an HTML email with an attachment */
/**/

EXECUTE sendimail sp

@profile name = 'TestProfile'

,@recipients = 'useri@thomrizdomain.com’

,@body = '<BODY><H1><CENTER>Sunshine!</CENTER></H1></BODY>"
,@subject = 'To brighten your day'
,@file_attachments = 'C:\sunshine.jpg'
,@body format = 'HTML'

GO

Catalog Views and Dynamic Management Views

Users of SQL Server 2000 were accustomed to querying system tables such as sysprocesses,
sysobjects, syslocks, and syslockinfo to investigate what processes, objects, and locks existed in
the database server. In SQL Server 2005, these become system catalog views. Several views have been
added that have no equivalent in the old SQL Server 2000 system tables, for example:

e sys.modules: This view is used to find details of the modules loaded into SQL Server.
* sys.assemblies: This view is used to find out what .NET assemblies are loaded into the server.

e sys.sysprocesses: Information contained in this view can be used to build customized views
for waits, connections, and other information about processes running on an instance of the
database server.

Catalog views expose the metadata that the server uses. Many DBAs have hacked their way
around the system tables in SQL Server 2000 to get at metadata information. This is a bad practice
since the tables can change in future versions, as they have in SQL Server 2005. With catalog views,
rather than going directly to the tables, you use the views. Therefore, when the tables change under-
neath, your queries do not break, since compatibility is maintained with the view.

Dynamic management views, on the other hand, allow you to peek into the server as it’s running.
The way you can tell the difference between a catalog view and a dynamic management view is that
a dynamic management view is prefixed with sys.dm_. Think of dynamic management views as

41

42

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

runtime information about your database server that is not persisted to disk, such as locks, threads,
and tasks. System views, on the other hand, are the persisted information about your tables, sprocs,
and constraints. Before using dynamic management views, you need to have the right permissions
to view them. For server-wide dynamic management views, you need the VIEW SERVER STATE permission.
For database-scoped dynamic management views, you need the VIEW DATABASE STATE permission.

You can grant or deny these permissions using the GRANT or REVOKE keywords.

One of the interesting new SSMS features that takes advantage of dynamic management views
is Summary Views. Using the Report drop-down in SSMS, you can see the built-in reports that use
dynamic management views to diagnose long-running queries, queries that are taking a lot of
memory, and other system diagnostic information. Unfortunately, these reports are not customiz-
able in SSMS, but Microsoft is considering pulling these reports out of SSMS and letting you run
them in Reporting Services, which would make them customizable. Figure 2-14 shows dynamic
management view reports in SSMS.

R Microsoft S0L Server Management Studio

File Edit Yew Tools Window Help
Dewouery |y BB SHID SEHS & BEREBESR .

rer Summary | - X
Connect - | 33] CHER-, - [Ereport -
1 | £ THOMRIZDEZ (L Server 9.0.1186 - THOMRIZDEZ\Administr [¥] server bashosard =
=l [Databases —
3 System Databases Server Das Configuration Changes History
[Database Snapshots on THOMRIZDBZ Schema Changes Histary
| Adventuretorks
| AdventureworksDi [@ Configuration Details SRR
| ReportServer Merary Consumption
ReportServerTempDE N N N
Simnty 1 Activity Details: Activity - All Blocking Transactions
Server Objects Activity - All Cursors
3 Replication Activity - Top Cursors .
3 Managsment C ! eolE? ’ Logical 10 Performed(z) *
[Motffication Services Activity - All Sessions
[5L Server Agent Activity - Top Sessions

Ackivity - Dormant Sessions
Activity - Top Connections
Top Transactions by Age / 1
\ Top Transactions by Blacked Transactions Count \ 4
Top Transactions by Locks Count
Performance - Batch Execution Statistics
ReportSe .) L ReportServer Adhoc Queries
madb Perfarmance - Object Execution Statistics rmsdb
Performance - Top Queries by Average CPU Time
#:"CPU Usage" and "10 Pg Perfarmance - Top Queties by Average IO bases
Performance - Top Queries by Tatal CPU Time
Perfarmance - Top Queties by Total IO

Service Broker Statistics

Transaction Log Shipping Status

| 1 e | LILI

Ready

Figure 2-14. Dynamic management view reports in SSMS

You can also schedule an agent job to run to query the dynamic management views on a regular
basis to collect performance information and place this information into a data warehouse. Off the
data warehouse, you can use Reporting Services to figure out chart trending information for your
systems (see Chapter 7 for more information on Reporting Services). Figure 2-15 shows using the
new dynamic management views.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

icrosoft SQL Server Management Studio HEE

Eile Edit ¥iew Query Tools Window Help

=

Qo |3 [BB B0 SH@ B BOBETI,

1 =l 3 | adventureworks v | 1 Execute 30 W | 2 | AL | 3T iy 5
SCLGuery3 sql.. ventureWorks® "SOLQueryl sql.. venturew.:rks*r SQLQuery2 sql...ventureWorks* | T X
Connect ~ | & E| SELECT * FROM sys.dm_os_loaded modules =
sys.dm_exec_query_stats |
sys.dm_exec_guery_transformatic
sys.dm_exec_requests
sys.dm_exer_sessions
sys.dm_fts_active_catalogs
sys.dm_fts_index_population
sys.dm_fts_memory_buffers
sys.dm_fts_memory_pools
sys.dm_fts_population_ranges
sys,dm_in_backup_tapes
sys.dm_io_cluster_shared_drives
sys.dm_jo_pending_jo_requests
sys dm_aoff_by _default_madule_st
sys.dm_os_buffer_descriptors
sys.dm_os_chid_instances
sys.dm_os_chuster_nodes =
sys.dm_os_hosts
sys.dm_os_latch_stats 4 I LI—
sys.dm_os_Joaded_modules (3 Results | [y Messages |
sys.dm_os_memary_sllocations base_address | file_wersion product_wersian IJJJJJJ company [desciiption [hame ~
sys.dm_os_memory_cache_dock| | [4™I'n noanoo00 20003011860 | 3011880 Mictosot Corporation SGL Server Windows NT e
sys.dm_os_memary_cache_counte = ¥
sys.dm_as_memory_cache_entries 12 | 0«7CBOO000 5.2:37301830 5237301830 Microsaft Corporation NT Laper DLL Ll
sys.dm_os_memary_cache_hash_| 13 | Ox77E40000 5.2:3790.1830 5.2:3790.1830 Microzoft Corparation Windows NT BASE API Client DLL - C:w
sys.dm_os_memary_clerks 14 | 0«77FS0000 5237901830 5237301830 Microsoft Corporation Advanced Windows 32 Base APL T
sy5.dm_os_memory_nbjects 5 |ow77cs0000 52:37301630 5237901830 Microsoft Comporation Flemote Procedurs Call Purtims. | Gt
sy, _os_mnemory_pools 6 | Ours180000 5131:3790.1830 5131:3730.1830 Microsoft Corporation Crypto API32 Covd
sya.dnos perfomance counters | [7 7o rsisnonn 5237901830 | 5237901830 Micrasat Corparation AGN.1 Funtine APls [
sys.dm_os_ring_buffers —
sys.dm_os_schedulers 18 | 0+77BADOO0 7.0:379016830 6.1:8638.1830 Microsaft Corporation ‘wWindows NT CRT DLL Ll
sys,dm_os_stacks 19 | 0x77380000 5.2:37901830 5237300830 Microsoft Corparation ‘windows USER AP Client DLL Lo
sys.dm_os_sublatches (10 | 0«77CO0000 5237301830 5237301830 Microsoft Corporation GO Client DLL o
5ys.dm_os_sys_infa 11| 07Cd20000 8050215307 | BOS0215.307 Micrasoft Corporation _ Microsoft® Ce+ Fruntime Librsry | 4w/
sys.dm_os_tasks 4 | »
sys.dm_os_threads =
‘| | _,l_l v Query executed succes. |THOMRIZDB2 (3.0B3] | THOMRIZD B2 Administrator (B1] ‘Advenlule\/\f’olks |UU:EIEI:EI3 ‘83 [
Ready Ln1 Col5 NG

Figure 2-15. Dynamic management views

Default Server Trace

To enable tracking of server configuration changes over time, SQL Server 2005 allows you to turn on
a default server trace. Some of the reports in SSMS that you saw in the previous section use this
default trace to display these changes in a graphical way. You can open the trace file using Profiler or
by running the following T-SQL command:

SELECT *

FROM fn_trace gettable

('C:\Program Files\Microsoft SOL Server\MSSQL.1\MSSQL\LOG\log.trc', default)
GO

As its name implies, default trace is on by default. You can turn off default trace using
sp_configure. Since default trace islocated under the advanced options, you do need to first
enable showing advanced options in sp_configure. The following script does this for you and
disables the default trace:

sp_configure 'show advanced options', 1
reconfigure
GO

sp_configure 'default trace enabled',0
reconfigure
GO

Figure 2-16 shows the SSMS report that uses the default trace capabilities.

43

44

CHAPTER 2

SQL SERVER MANAGEMENT TECHNOLOGIES

R Microsoft SOL Server Management Studio HEER
Ble Edt Yew Tools Wndow Help
SArewowery [y BHE LIS B BEBRBET A
SQLQuery3 sql.. ventursWorks® | SQLQueryl sql...ventureWorks® |7 SQLQuery2.sql., ventureWorks® ' Summary | T X
Connect = | & | REP-g

=] [_d THOMRIZDEZ (SQL Server 9.0.1186 - TI
[[Databases

[System Databases

[Database Snapshots

| AdventureWorks

[Management

[Wotification Services

[B saL server Agent

|8 QL Server Mabile [My Computeri,. \Mc
% THOMRIZDEZ (Microsoft Analysis Server
iy THOMRIZDEZ (Integration Services 9.0

Py Configuration Changes History

on THOMRIZDE? at 5/10/2005 2:38:00 Pk

show advanced options
show advanced options
default full-text language
default language

show advanced options

5/10/2005 11:51:42 AM
5/8/2005 2:23.40 FM
5/9/2005 2:23:40 PM
5/8/2005 2:23.40 FM
5/8/2005 2:2339 FM

J AdventureworksDW Configuration Changes History [Since 57942005 223:39 PM).

) ReportServer Shows changes in server configuration and flags.
,SguiizurtSErverTampDB Configuration Option OIdYalue NewVYale Time User
[Server Objects show advanced options 1 0 5/10/200511:51:47 AM NT AUTHORITYASYSTEM
3 Replication Agent <Ps 0 1 5A0/2005 116147 4M NT AUTHORITYASYSTEM

NT AUTHORITYASYSTEM

__;_l_l'l THOMRIZDEZ (THOMRIZDEZ! Adrministra

fl _>|4| |

Ready

Figure 2-16. Default trace report in SSMS

Profiler Enhancements

With SQL Server 2005, Profiler gets an overhaul as well. The new Profiler supports the ability to trace
both SSIS and Analysis Services commands. SQL Server 2000 was limited to tracing relational data-
base calls only. With these capabilities, you can use traces to debug any problems you have in these
additional components of SQL Server. Also, Performance Monitor correlation works with these new
trace types.

Profiler allows you to save the trace file as XML. Furthermore, a traced ShowPlan result can be
saved as XML and then loaded into Management Studio for analysis.

Finally, Profiler also integrates with the new Database Tuning Advisor (DTA), which replaces
the Index Tuning Wizard. The DTA has a rich, new interface and works with the newer features in
SQL Server 2005, such as recommending partitioning your tables using the new table partitioning
features in the database engine. This topic is covered in detail in Chapter 13.

SQL Configuration Manager

Say good-bye to the Client Network Utility, Server Network Utility, and SQL Service Manager, and
say hello to SQL Configuration Manager. The SQL Configuration Manager supports a number of
different versions of SQL Server, including SQL Server 2000 and SQL Server 7.0, and components
other than just the relational engine, such as Analysis Services and Reporting Services. The SQL
Configuration Manager is a single interface where you can see whether your services are running
and how the connectivity is configured to your SQL components.

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

SQL Configuration Manager is MMC based and can be launched stand-alone or as part of the
Configuration Manager interface. Yes, MMC still is used in some parts of SQL Server management,
but for the most part you will be using the new Management Studio interface. By integrating with the
Configuration Manager, you can see your SQL information, such as protocol settings and service
status, as part of your overall system information. Plus, SQL Configuration Manager uses WMI to talk
to SQL Server, so it does not have to make queries to databases to get its information.

Figure 2-17 shows the new SQL Configuration Manager and its integration into the overall
Computer Manager. You can also use the SQL Configuration Manager in its own console window
rather than through Computer Manager.

O computer Management

=) Ele Ackion Wiew Window Help
le s BERE &
E Computer Management (Local) Name: [state [start Made [Logon as [Process ID [Service Type
=i, System Tools [Bi5aL Server Intsar... Running Automatic NT AUTHORITY\NET .. 2720 SSIS Server
: (& Event viewer #bymsftesgl Running Automatic LocalSystem 636 Full Tesxt
Shared Falders [h50L Server (M55Q... Running Automatic LocalSystem 1928 S0l Server
-4 Local Users and Groups ({500 Server Analys... Running Automatic LocalSystem 1956 Analysis Server
i g Performance Logs and Alerts [35QL Server Repor... Rurning Automatic Localsystem 2032 ReportServer
& @ Smi;:‘:e Manager @SQL Server Browser Stopp.ed Cther (Book, System.., LocalSystem 1] 5L Browser
"5 £ Romovable storsos [fyscL server Agent ... Rumning Manual LocalSystem 1712 QL Agerk
[D\sk Defragmenter
i L. Disk Management
{8 Servicss and Applications
A Telephony
- Services
-85 WML Control
-k s
. SGL Server 2005 Network Configuration
-5 SGL Mative Client Configuration
8 Indexing Service
3 Intemet Information Services (I15) Manager
< I H

Figure 2-17. The new SQL Configuration Manager

Surface Area Configurator

A new tool in your SQL Server arsenal is the Surface Area Configurator (SAC). By default, SQL Server
installs with the least amount of services and features enabled. For example, SQL Agent, SQLCLR,
and web services support are all off by default. Using SAC, you can go in and turn on these disabled
features and services. Everything you can do in SAC, you can also do via SQL commands. SAC runs
in two modes, with the first being configuration for services and connections, as shown in Figure 2-18.
The second is configuration for features, as shown in Figure 2-19.

45

46

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

#§ surface Area Configuration for Services and ns - localhost

SQL Server 2005 Surface Area Configuration
b Help Protect Your SQL Server

Enable only the services and connection types used by wour applications. Dizabling unuzed services and connections helps
protect your server by reducing the surface area. For default zeftings, see Help.

Select a component and then configure its services and connections:

= 5 MSSOULSERVER Dizable thiz service unless your applications use it.
B | J Database Engine
+ Service
Femote Connections Service name: IMSSQLSEHVEH
(@ Anaysis Serices Display name: [SOL Server [MSSELSERVER)
Feporting Services -
S0L Server Agent Description: Provides storage, processing and controlled access of data;l
;.'ﬁ Full-Text Search and rapid transaction processing. _I
= Integration Services
|2, SOL Server Brovser Startup type: IAutomatic j
Service statug: IHunning
Sitart | Stop Pauze Eesume |
 iew by In ce i ¥iew by Component
QK | Cancel Apply Help

Figure 2-18. SAC configuring services and connections

&), Surface Area Configuration for Features - localhost

SQL Server 2005 Surface Area Configuration
b Help Protect Your SQL Server

Enable only the features required by wour applications. Dizabling unuzed features helps protect your server by reducing the
surface area. For default settings, see Help.

Select a component, and then configure its features:

= 5 MSSOULSERVER The OFEMROWSET and OFEMDATASOURCE functions support ad hac
B [J Datshaze Engine connections to remote data sources without linked or remote servers. Enable these
+ AdHoc Remate Qusriss functions only if your applications and scripts call them.
CLR Integration
DaC
D atabase Mail

Mative XML Web Servic| [~ Enable DPENROWSET and DPENDATASOURCE suppart
OLE Automation

Service Broker

SAL Mail

web Assistant

#p_cmdshel
,J Analysis Services
Feporting Services

| B

ce i| Wiew by Component |

QK Cancel Apply Help

Figure 2-19. SAC configuring features

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Enhanced Help and Community Integration

One of our favorite features is the new dynamic help that is tightly integrated with the SQL commu-
nity as part of Management Studio. If you've used Visual Studio, you already know about dynamic
help. SQL Server 2005 can watch what you’re doing in Management Studio and, as you perform
tasks, the dynamic help window changes to offer topics that may interest you for your current task.
For example, as you are clicking through the treeview to manage your server, dynamic help displays
a link to the help on managing your server.

Ask any technologist what his or her favorite tools are when working with Microsoft technologies,
and Books Online, a web search engine, MSDN or TechNet, third-party SQL Server websites, and the
Microsoft newsgroups will almost always be mentioned. The reason for all these different resources
is that they each contain a wealth of information or at least access to a wealth of information. Through
the new help system, SQL Server 2005 combines all of these tools into a single location. From the
help, you can search not only Books Online locally, but also MSDN online and SQL community sites.
Also, if you have a question, you can post it to the newsgroups to try and get it answered. You can
determine whether you want Books Online results to appear in the main user interface as shown in
Figure 2-20, or you can make the other results, such as community search results, the primary
results, as shown in Figure 2-21.

@ Search - Microsoft SQL Server 2005 CTP June 2005 - Microsoft Document Explorer [_T=]x]
Fle Edt Wew Tooks Window Help
Back W A | @ HowDol - Q Search | 3Index &3 Contents o]Help Favorites &) fisk a Question €] A, _
In Wl | Search - X
Fitered by:
A i hd Search
(o filcer) =l =l —I
Lok Fors =l Language: Al
=l Technology: All
=l Topic Type: Al
- (comment character) f’
- (comment)

Lccent) Searched for: ADG JNET transactions Sort by Rank = 2l 120 of 500 results b bl
negative operakor)

-
- 0
- fnegative sign)
-
-

Types of Transactions

transaction. Resources held by the transaction are freed. ADO.NET and OLE DB You can also use explicit
transactions in ADO .MET and OLE DB. In ADO .MET, uss the BeginTransaction method on & SqlCsConnsction
object to start an expliit ...

Source: SQL Server 2005 Mobils Edition Concepts

4Local Help (500}
Types of Transactions
Controlling Transactions
Transactions [SQL Server ...

cublract operator)

- (subtract)

- negate apsrator [5515]

- subkract operator [3515]

-A tuning option [SCL Server]
D

MSDN Online {100}
Performing Distributed Tra, .
Manual Transactions and ...
Promokable Transactions i...

Controlling Transactions

frees resources held by the transaction. Using APIs Database APIs such as OLE DB and ADO NET contain functions
or methods used to delineate transactions. These are the primary mechanisms used to control transactions in a SQL
Server Mobile application ...

Source: SQL Server 2005 Mobile Edition Concepts

TA
-6 tuning option [SQL Server]
DTA
-d tuning option [SQL Server]
DTA

-D tuning option [SQL Server]
DTA Codezone Community {36)

T
1 tuning option [SGL Server]
DTA

1 {logical MOT) [5515]

1 command

1< (not less than operator)

1< (ot less than)

I=(not equal to operatar)

I=(not equal to)

1= (unequal) [5515]

1> {not greater than operator)

1> {not greater than)

$PARTITION Function

$PARTITION stakement

% (modulo operatar)

o (modula)

% {modulo) operator [5515]

% (wildcard - character(s) to match)
& (bitwise AND operator)

6 (bibwise ANDY

& (hitwiss AND) [5515]

2 (logical AND) [S5I5]

() parenthesis operator [S515] -

3 Index @Cont”.){j Help /

<

Transactions (SQL Server Mobile)

Microsoft SQL Server 2005: SQL Server Mobile does not support nesting of transactions but it does support parallel
transactions in ADO .NET, In SOL Server Mobils, if a cursor is opened within 3 transaction, the cursor exists within
the scope ...

Source: SQL Server 2005 Mobile Edition Concepts

ADO.NET Provider for SAP
SCL Server 2005 inchudes an ADO.MET provider for accessing SAP data, The ADDUMET provider for SAP lets you
create a package that has an ..

Source: Integration Services

Migrating From ADO MD To ADOMD.NET

from ADO MD ks ADOMD.NET is sasy, but thers ars a few important diffsrences regarding migration: Unlike ADO
MD, ADGMD.NET does not rsly on ADO to provide connectivity, Instead of requiring references ko both Adodb.dll and
Adomd ..

Source: ADOMD.NET

ADO.NET Connection Manager
An ADO.NET connsction manager enables a package to access data sourees by using a .NET provider. This

ADC,NET EBest Practices
A Pure Object-oriented Da...
How To Prepare Yourself F...

Questions (0)

Ready

Figure 2-20. Highlighted results from Books Online

47

48

CHAPTER 2

SQL SERVER MANAGEMENT TECHNOLOGIES

(@ Search - Microsoft SQL Server 2005 CTP June 2005 - Microsoft Document Explorer

Eile Edit Wwiew Tools ‘Window Help

e = == 2]

Filtered by:
ino filker) j

Loak For:

-- {comment character) i’

-~ {camment)

- (excepk)

- {negative operatar)

- {negative sign}

- {negative)

- (subtract operator)

- (subtract)

- negate aperator [5515]

- subtract operstar [5515]

-4 buning option [SGL Server]
o

T

-B tuning option [SQL Server]
DTA

-d tuning option [SQL Server]
DTA

-0 buning option [SGL Server]
oTA

-n buning option [SQL Server]

oTA
1 {lagical NOT) [5515]
1 comman
| (nok less than operator)
1< {nok less than)
1= {not equal to operator)
1= {not equal to)
1= {unequal) [5515]
1> {nok greater than operator)
1> (nok greater than)
$PARTITION Function
$PARTITION skakement
= (modulo operator)
“f (modulo)
“ (modulo) operator [S515]
%o (wildcard - character(s) to match)
& {bitwise AND operatar)
& (hitwise ANDY
2 (bitwise ANDY [5515]
2 (logical AND) [S5I5]

Eack W A | @HowDol » O search |3 Index 4% Contents] Help Favorites

¢ %) sk a Question ¥ LA

|- [=3]]

~Search

- X

JADO . NET transactions

| search

x| Language: Al
=l Technology: &l
(=] Topic Type: Al

Searched for: ADO W NET transactions Sort by: Rark. = 2l

1-20of 36resuls b bk

i ADOD.NET Best Practices

ADONET is a powerful toolbox but it's not a software magic wand. Learn about common best practices for using
three key element of any data access strategy: connections, security, and transactions.

Source: Dews Date: 11j26j2003

() parenthesis operator [S515] -

3 Index @Cunt‘../(jHelp /

A Pure Object-oriented Domain Model by a DB Guy, Part 5
This is the Fifth part in a series of atticles by Jimmy Nilsson on a new architecture For enterprise spplications in JNET.

The new architecturs is purely object-oriented with maintainability as the number one goal, whils still Focusing on
roundtri. .,

Source: Dewi Date: 1j14/2004

How To Prepare Yourself For Moving From ¥B6 To YB.NET
In this article, Jimmy Misson makes a few guesses of how you can change your coding style and prepare yourself
for the transition to make it as smooth as possible. He will focus on components, especially for the server-side.

Source: Devy Date: 1j14/2004

Building Websites with NET
Hew book, NET Content Management Systems Development, provides Web developers a cost-sffective way to
develop a CMS within the .NET Framswork.Lsarn how to develop a CMS Featuring dynamic content display by using
queries, transactions, and robust ...

Source: GotDothet Date: 11j1)2001

Editing Data with the Data Access Application Block
In this tutorial, Dimitrios Markatos discusses and examines editing data with ADO.MET and the Data Access
Application Block, He covers inserting, updating and deleting data, as well as covering transactional data editing.

Source: DotMetiunkies Dake: 3i30/2005

Calling Stored Procedures with ADO.NET
TF you're a Visual Basic \NET programmer who has to write stored procedures for M5 SQL Server, this article is For

you, Learn how to isolate S0L code from YB.NET code to clearly create divisions of labor and focus For your solution,

Source: CodeGuru Date: 11§19j2004

-
Local Help (500} =
Types of Transactions
Controling Transackions
Transactions (SQL Server ...

MSDN Online (10)
PetForming Distributed Tra. .
Manual Transactions and ...
Fromotable Transactions ... —

4Codezone Community (36)

ADOLHET Best Practices
& Pure Object-oriented Do...
How To Prepare Yourself F...

Questions (0)

Ready

Figure 2-21. Highlighted results from third-party community sites

SQLCMD

Replacing osql, which still ships with SQL Server 2005, is the new SQLCMD command-line utility.
Unlike its predecessors, SQLCMD uses the SQL Native Client, in particular the OLE DB provider
when used from the command line and the .NET SQL provider from SSMS, to connect and run the
T-SQL batches that you type into the tool. Plus, SQLCMD supports newer features in SQL Server
2005, such as the ability to connect to a server using the dedicated administration connection that
we discussed earlier.

SQLCMD also allows you to place parameters in your scripts and then pass those parameters to
SQLCMD programmatically. For example, you may want to script database backup, but you may not
want to have to write a script for every database or every backup device. Instead, you may want to
pass the name of the database and the name of the device to which to back up the database. With
SQLCMD, the script would contain the following line of code:

BACKUP DATABASE $(db) TO DISK = "$(path)\$(db).bak"

The dollar sign ($) tells SQLCMD that the script contains a variable, and then the name of the
variable is contained in parentheses. When you call SQLCMD, you can use the new -v parameter to
pass in the appropriate values for your script variables. For example, from the SQLCMD command
line, you could run backup.sql to back up the AdventureWorks database to a local folder, as follows:

SOLCMD /E /i backup.sql /v db="AdventureWorks" path="c:\backups"

Upon execution of this command, SQLCMD will return the following response:

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Processed 17112 pages for database 'AdventureWorks',

file 'AdventureWorks Data' on file 1. Processed 2 pages for
database 'AdventureWorks', file 'AdventureWorks Log' on file 1.
BACKUP DATABASE successfully processed 17114 pages

in 50.374 seconds (2.783 MB/sec).

You can also set variables in your scripts, whereby one script loads another script, possibly to
dynamically set variables from the second script. For example, you may want to take the backup
example and connect to 50 servers with 100 databases. You could use variables to quickly write a
SQLCMD script to perform this functionality. This topic is covered in much more detail in Chapter
13.

Server Management Objects

The final piece of new technology that we will look at for managing SQL Server 2005 is the new admin-
istration object model called Server Management Objects (SMO). This section will introduce you to
SMO, and Chapter 11 will provide more details on SMO. SMO is the successor to SQL-DMO. SMO
supports all versions of SQL Server back to SQL Server 7.0, so you can use SMO as your primary API
across multiple versions of SQL Server. SMO also allows you to automate the administration of new
features in SQL Server 2005, including XML, web services, and snapshot isolation, as well as many of
the other enhancements. The easiest way to learn about SMO is to look at a sample application.

The application you learn how to create is a simple object browser that will look at your data-
bases, the tables contained in those databases, and then the scripts used to create the databases. The
application is a Windows-based application written in C#.

To get started using SMO in Visual Studio, you need to first add a reference to the object model.
You can do this using the Add Reference option off the Project menu. You will find SMO under the
namespace Microsoft.SqlServer.SMO, as shown in Figure 2-22.

NET |COM I F‘mjectsl Bmwsel Hecentl

Component Name | Version | Runtime | PE:I
Microsoft. SqlServer. Reg SvrEnum 502420 v2 040426 C:
Microsoft. SqlServer Replication .MET Program... 9.0.242.0 v2 040426 C:
Microsoft. SqlServer. SendMail Task 502420 v2 040426 C:
Microsoft. Sql Server. C

Service BrokerEnum 502420 v2.0.40426
ver.Sma 3

.SqglServer. SmoEnum J
Microsoft. SqlServer. SqlEnum 502420 v2040426 C
Microsoft. SqlServer. SGLTask 502420 v2 040426 C:
Microsoft. SqlServer SQLTaskConnectionsWrap 9.0.242.0 v2 040426 C:
Microsoft. SglServer. TransferObjects Task 502420 v2 040426 C:
Microsoft. SqlServer WebService Task 502420 v2 040426 C:
Microsoft. Sql Server WMIDR Task 502420 v2 040426 C:
Microsoft. Sql Server WmiEnum 502420 v2 040426 C:
Microsoft. Sql Server WMIEW Task 502420 v2 040426 C:
Microsoft. Sgl Server. Xml Task 502420 v2 040426 C

1 |

ok | Cancel |

Figure 2-22. Adding a reference to SMO in Visual Studio

Now that you have your reference, you can start building the application. The application is a
couple of simple buttons, list boxes, and text boxes, so you can skip over the user interface creation
and instead jump to the code that implements the user interface functionality. Figure 2-23 shows
the completed user interface in Visual Studio.

49

50

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

/5 SMO Sample Application =] 3

Connect | Clear |

[dbo]. [AdventureWorks DW Build Version] -
[dbo] [DimAccount] I—
[dbo]. [DimCumency]

[ReportServer TempDE] [dbo] [DimCustomer]

[dbo].[DimDepartment Group]

[dbo]. [DimEmployee]

[dbo]. [DimGeography]
].[DimCrganization]

[dbo].[DimProduct Category]
[dbo].[DimProduct Subcategory]
[dbo].[DimPromotion]

[dbo]. [DimReseller]
[dbo].[DimSalesReason]
[dbo].[DimSales Temitory]
[dbo].[DimScenario]
[dbo].[DimTime] b
[dbo] [FactCurencyRate]
[dbo] [FactFinance]
[dbo].[Factintemet Sales]

SET ANSI_NULLS ON -
CREATE TABLE [dbo].[DimProduct](

K

Product Key] int] IDENTITY{1,1) NOT NULL,

ProductAltemateKey] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS MNULL,

Product SubcategoryKey] fint] NUILL,

Weight Unit MeasureCode] [ncharl{3) COLLATE SGL_Latin1_General_CP1_CI_AS NULL,

SizelUnitMeasureCode] [nchar]{3) COLLATE SGL_Latin1_General_CP1_CI_AS NULL,

EnglishProduct Mame] [nvarchar}{50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,

SpanishProduct Mame] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,

FrenchProduct Mame] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,

StandardCost] [money] MULL, LI

Figure 2-23. The user interface for the SMO application

To make it easier, you'll add a few using directives in your code for SMO, as well as other .NET
Framework classes you will use. The code that follows does this:

using Microsoft.SqlServer.Management.Smo;
using System.Collections.Specialized;
using System.Text;

After setting your directives, the code declares some variables that you will use across methods.
The first one declares a new Server object from SMO. The Server object is the factory class object
from which other objects are created in SMO. For example, you can retrieve databases, tables,
logins, and other database information from the children of the Server object.

Second, the code declares for arrays of different types such as Database and Table objects. We
use fixed-length arrays here for simplicity, but you could use dynamic arrays using the ArraylList
class. These arrays will hold the objects that the application uses for fast access to these object types.
You can specify the server name if you have more than one server when calling the constructor for
the Server object, or you can create a ServerConnection object and pass that along. Plus, you can use
SQL authentication rather than Windows-based authentication.

Server srvSQLServer = new Server();
//You could also use dynamic arrays here
//with Arraylist

Database[] arrDBs = new Database[100];
Table[] arrTables = new Table[1000];

CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Now to the meat of the code. Let’s take a look at what happens when you click the Connect
button in the user interface. The first thing that occurs is the user interface and arrays are cleared of
any existing information. Next, the code steps through all the Database objects in the Databases
collection under the Server object. If the database is not a system database, which is checked by
using the IsSystemObject property, the database is added to the array of Database objects:

private void btnConnect Click(object sender, EventArgs e)
{
listDatabases.Items.Clear();
listTables.Items.Clear();
txtSQLScript.Clear();
ClearArray();
listDatabases.DisplayMember = "Name";

int i = 0;
foreach(Database tmpdb in srvSQLServer.Databases){
if (!tmpdb.IsSystemObject){
listDatabases.Items.Add(tmpdb.ToString());
arrDBs[i] = tmpdb;
i++;

}

Next, when the user clicks a database in the user interface, the code walks through the tables in
that database using the Tables collection and Table object under the Database object.

private void listDatabases SelectedIndexChanged(object sender, EventArgs e)
{

listTables.Items.Clear();

txtSQLScript.Clear();

listTables.DisplayMember = "ToString()";

Database tmpdb = new Database();
tmpdb = arrDBs[listDatabases.SelectedIndex];

int i = 0;
foreach (Table tmptable in tmpdb.Tables){
if (tmptable.IsSystemObject != true){
listTables.Items.Add(tmptable.ToString());
arrTables[i] = tmptable;
i++;

51

52 CHAPTER 2 SQL SERVER MANAGEMENT TECHNOLOGIES

Finally, when the user selects a table in the user interface, the code uses the Script method to
have SMO generate the T-SQL script to re-create the table.

private void listTables SelectedIndexChanged(object sender, EventArgs e)
{

StringCollection sc = new StringCollection();

//Get the table's script
sc = arrTables[listTables.SelectedIndex].Script();

StringBuilder sb = new StringBuilder();

for (int i = 0; 1 < sc.Count; i++)

{
sb.AppendLine(sc[i]);

txtSQLScript.Text = sb.ToString();

}

There you go—your first SMO application! Of course, this is a simple example of what you can
do with SMO. As a developer, you will find that SMO is very functional and very approachable. One
thing to note is that even though SMO is 100 percent written in .NET, SMO supports COM interop-
erability so that you can call SMO through your COM code (e.g., Visual Basic or VBScript).

Summary

In this chapter, we’ve taken a whirlwind tour of the new management technologies in SQL Server
2005. You've seen how SQL Server 2005 takes SQL Server management to the next level with new
management tools, new APIs, and even new command-line tools. It’s important that you get familiar
with all of these technologies, since you will be using one or more of them to manage and monitor
your servers.

CHAPTER 3

T-SQL Enhancements for Developers

With all of the excitement around the new .NET programming extensions to SQL Server 2005, it
would be easy to overlook the new changes to Transact-SQL (T-SQL). As a matter of fact, Microsoft
has made quite a few changes to T-SQL, and several of the changes are quite impressive (error
handling and common table expressions are two of the most exciting) and take T-SQL to a whole
new level of programming power and ease of use.

In this chapter, we have grouped the changes into four major categories:

* Data Manipulation Language (DML): Changes to the base SQL statements used to
manipulate data

* General development: Changes to programming extensions, like procedures and functions
* Data Definition Language (DDL): Changes to commands used to define databases, tables,

indexes, and so on

The examples in this chapter, and subsequent chapters, will be applicable to the new
AdventureWorks database, the much improved test database that is shipped with SQL Server 2005.
It has far more realistic data and is far more normalized than previous efforts.

Note One thing you should note about the AdventureWorks database: unlike previous versions of SQL Server
demo databases, not every table is “owned” by dbo (database owner) any longer. Instead, all tables have been
segmented into schemas such as HumanResources, Sales, Person, and Production. We discuss schemas in detail,
but the key thing is that the schema is a container for objects in a database. Schemas and tables are owned by users
in the database, but they are not part of the syntax as they were in previous versions. A schema of dbo does still
exist and is the default, but best practices for future development will include the use of schemas.

Enhancements Affecting DML

Several really exciting changes have been made to the DML functionality in SQL Server 2005:

e Old-style outer joins deprecated: "=*" in a WHERE clause will now raise an error.

* TOP: This operator now allows you to do parameterized row counts, and works with more
DML than just SELECT.

* Common table expressions: This ANSI 99 feature allows for recursion and code simplification.

* FROM clause extensions: New join types improve usability of derived tables and table-based
functions.

53

54 CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

* OUTPUT clause: Use this clause to get information on data that has changed.
¢ Ranking functions: Find positional information within a resultset through these functions.
e EXCEPT and INTERSECT: These set operators that provide the ability to compare sets of like data.

* Synonyms: These give you the ability to provide alternate names for database objects.

Each of these changes (especially the common table expressions) will make the base DML state-
ments (INSERT, UPDATE, DELETE, SELECT) far more powerful and functional.

Old-Style Outer Joins Deprecated

This one should probably be in the title of the book, as it is going to be the most painful of all
changes. Microsoft has said over and over, and book authors and experts (not always the same
group, mind you) have said over and over: stop using non-ANSI-style joins, they will not be
supported in a future version. Well, the future is now. For example:

USE AdventureWorks --this is the default unless otherwise mentioned
GO
SELECT *
FROM sales.salesPerson as salesPerson,
sales.salesTerritory as salesTerritory
WHERE salesperson.territoryIld *= salesTerritory.territoryId

Trying this query will give you the following (really long and very descriptive) error message that
says it as good as we could:

Msg 4147, Level 15, State 1, Line 5

The query uses non-ANSI outer join operators ("*=" or "=*"). To run this query
without modification, please set the compatibility level for current database to 80
or lower, using stored procedure sp dbcmptlevel. It is strongly recommended to
rewrite the query using ANSI outer join operators (LEFT OUTER JOIN, RIGHT OUTER
JOIN). In the future versions of SQL Server, non-ANSI join operators will not be
supported even in backward-compatibility modes.

So what does this mean? It means that you need to rewrite your queries using ANSI join operators:

SELECT *
FROM sales.salesPerson as salesPerson
LEFT OUTER JOIN sales.salesTerritory as salesTerritory
on salesperson.territoryld = salesTerritory.territoryId

Note that this restriction is only for outer joins, not for inner joins. For example:

SELECT *

FROM sales.salesPerson as salesPerson,
sales.salesTerritory as salesTerritory

WHERE salesperson.territoryld = salesTerritory.territoryId

works just fine and likely always will. Clearly you should code this using an INNER JOIN, but the
preceding will work because this syntax is required for correlated subqueries.

Note This may be an issue for many people who have not heeded the warnings over the years about the new
join syntax. However, the old-style joins will still work if you change back into 80 Compatibility Mode (2000) or
earlier using the sp_dbcmptlevel system stored procedure.

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Common Table Expressions

The primary purpose of common table expressions (CTEs) is code simplification. They are loosely
analogous to views in that they are defined as a single SELECT statement.

Once defined, they are used exactly like views. To illustrate, we’ll take a look at a very simple
example. The following query defines a CTE named simpleExample that contains a single column
and row. Then a simple SELECT statement is issued to return the data defined by the CTE.

WITH simpleExample as
(

)

SELECT columnName
FROM simpleExample

SELECT 'hi' AS columnName

which returns the following:

columnName

What makes the CTE significantly different from a view is that the CTE is not created as an
object in the database and therefore is only available for this single statement. So in this sense, it will
be treated by the compiler more or less as if you had coded a derived table (a named table expression
that exists only for the duration of a query) as follows:

SELECT columnName
FROM (SELECT 'hi' AS columnName) AS simpleExample

This is an obviously simple example, but it serves to illustrate the basics of CTEs. If you needed
to reference a given derived table in your query multiple times, this method would be of great help,
since instead of recoding the query over and over, you would simply reference the CTE name. If the
derived table was very large, it would greatly simplify the final query, so debugging the final result
will be much easier.

The performance of the CTE should be on par with using derived tables. If you have queries
where you use multiple derived queries, such queries will be evaluated multiple times. The same
would be true for CTEs. In some cases, it will be better to use a temporary table to store the results of
the query that you will use in the CTE, especially for complex CTEs that are used multiple times in
a query.

There are two common uses for CTEs:

* Simplify complex queries: To encapsulate complex code in a way to make code cleaner

* Create recursive queries: To implement hierarchies traversing code in a single query
(something not possible previously)

Simplifying Complex Queries

Consider the following scenario: the client has a need for a query that has queries to calculate sales-
person totals year to date, compare that value to entire sales for the company, and then compare
their sales to their quota for the year.

First, consider how this would be done using the SQL Server 2000 syntax. Each subset could be
implemented as a derived table in a single query.

55

56 CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

--In SQL Server 2000
SELECT cast(c.LastName + ', ' + c.FirstName as varchar(30)) as SalesPerson

)
--YEAR TO DATE SALES
(SELECT amount
FROM (SELECT soh.SalesPersonID, sum(sod.LineTotal) as amount
FROM sales.SalesOrderHeader soh
JOIN sales.SalesOrderDetail sod
ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.Status = 5 -- complete
and soh.OrderDate >= '20040101'
GROUP by soh.SalesPersonID) as YTDSalesPerson
where YTDSalesPerson.salesPersonIld = salesperson.SalesPersonID) as YTDSales,

--PERCENT OF TOTAL
(SELECT amount
FROM (SELECT soh.SalesPersonID, sum(sod.LineTotal) as amount
FROM sales.SalesOrderHeader soh
JOIN sales.SalesOrderDetail sod
ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.Status = 5 -- complete
and soh.OrderDate >= '20040101'
GROUP by soh.SalesPersonID) as YTDSalesPerson
where YTDSalesPerson.salesPersonld = salesperson.SalesPersonID) /
(SELECT sum(amount)
FROM (SELECT soh.SalesPersonID, sum(sod.LineTotal) as amount
FROM sales.SalesOrderHeader soh
JOIN sales.SalesOrderDetail sod
ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.Status = 5 -- complete
and soh.OrderDate >= ‘20040101’
GROUP by soh.SalesPersonID) as YTDSalesPerson
) as percentOfTotal,

--COMPARE TO QUOTA
(SELECT amount
FROM (SELECT soh.SalesPersonID, sum(sod.LineTotal) as amount
FROM sales.SalesOrderHeader soh
JOIN sales.SalesOrderDetail sod
ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.Status = 5 -- complete
and soh.OrderDate >= '20040101'
GROUP by soh.SalesPersonID)as YTDSalesPerson
where YTDSalesPerson.salesPersonld = salesperson.SalesPersonID) -
salesPerson.SalesQuota as MetQuota

FROM sales.SalesPerson as salesPerson
join HumanResources.Employee as e
on salesPerson.salesPersonId = e.employeeld
join Person.Contact as c
on c.contactId = e.contactId

Ofreal interest here are the bold parts of the code. It is the same subquery over and over. This is
a beast of a query to follow, and not overly pleasant to write. You may also be thinking that each of

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS 57

the derived tables could be implemented as a view, but if this is the only situation where they will be
used, the management overhead of implementing three views in a production environment would
not be worth the effort. You might also use a temp table, which is what we generally end up doing
when we come upon this sort of situation. This is not necessarily the best way to implement some-
thing so complex in SQL Server 2000, but it was the only way to do it in one statement (a goal for
writing powerful SQL, but not always readable or maintainable code.)

Now we’ll reformulate this query using the new CTE syntax. As demonstrated in the following
query, we define two CTEs to replace the derived table and the main table to produce the exact same
results, with semantically the exact same query as we had in the previous example, only clearer to
understand.

-- SQL Server 2005 CTE syntax
WITH YTDSalesPerson
AS
(
SELECT soh.SalesPersonID, sum(sod.LineTotal) as amount
FROM sales.SalesOrderHeader soh
JOIN sales.SalesOrderDetail sod
ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.Status = 5 -- complete
and soh.OrderDate >= '20040101'
GROUP by soh.SalesPersonID

)s
SalesPersonInfo
AS
(
SELECT salesPersonld, SalesQuota as salesQuota,
cast(c.LastName + ', ' + c.FirstName as varchar(30)) as SalesPerson
FROM sales.SalesPerson as s
JOIN HumanResources.Employee as e
on s.salesPersonld = e.employeeld
JOIN Person.Contact as ¢
on c.contactId = e.contactId
)

SELECT SalesPersonInfo.SalesPerson,
(SELECT amount
FROM YTDSalesPerson
WHERE YTDSalesPerson.salesPersonld = salespersonInfo.SalesPersonID)
as YTDSales,

(SELECT amount

FROM YTDSalesPerson

WHERE YTDSalesPerson.salesPersonld = salespersonInfo.SalesPersonID)
/ (SELECT sum(amount) FROM YTDSalesPerson) as percentOfTotal,

(SELECT amount

FROM YTDSalesPerson

WHERE YTDSalesPerson.salesPersonld = salespersonInfo.SalesPersonID) -
salesPersonInfo.SalesQuota as MetQuota

FROM SalesPersonInfo

While this is still no beginner query, it is so much easier to read and understand, since the main
section of code is easier to follow and is code equivalent to the previous, much less readable version.
Not to mention that we can now test the CTE code by simply executing

58

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

WITH YTDSalesPerson
AS
(
SELECT soh.SalesPersonID, sum(sod.LineTotal) as amount
FROM sales.SalesOrderHeader soh
JOIN sales.SalesOrderDetail sod
ON sod.SalesOrderID = soh.SalesOrderID
WHERE soh.Status = 5 -- complete
and soh.OrderDate >= '20040101'
GROUP by soh.SalesPersonID
)
SELECT *
FROM YTDSalesPerson

instead of having to deal with pulling out large sections of code from your original query. And say
you make a correction or change to the calculation. It changes once and all usages change. All this
without having to persist any data or objects. SQL Server does the real work! Consider also that the
“black boxed” CTE works independently of the main query, so after testing it we won’t have to worry
if this part of the query works as we debug the larger query.

Using CTEs for Recursive Queries

The second use of CTEs allows for recursive hierarchies to be navigated without the need for complex
recursion logic done manually. Hierarchies are common in real-world situations, such as employees
and managers (managers are employees), or in manufacturing with parts within other parts (a auto-
mobile engine is a part, but it also consists of lots of other parts inside). However, using T-SQL, it was
previously complicated to build queries that dealt with hierarchies. If the number of levels in a hier-
archy was known beforehand, it was possible to use self-joins, but even this was very cumbersome.
If you had unlimited numbers of levels, it was practically impossible.

BASIC TREE HANDLING IN T-SQL

In dealing with tree structures in T-SQL, we use an algorithm to deal with the tree breadthwise, rather than depth-
wise. For example, consider the following tree:

ojololo

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

In functional programming languages, it would have been common to recursively traverse a tree one node at a
time, touching one node at a time. So you would go from node 1, to 1.1,t0o 1.1.1, back to 1.1, t0 1.1.2, back to 1.1,
back to 1, on to 1.2, etc. This works great for pointer-based languages, but in relational languages like T-SQL, a
much better algorithm is to access all the children of a node in one query, then all the children of these nodes, and
so on. So we would get node 1, then 1.1 and 1.2, and finally 1.1.1, 1.1.2, 1.2.1, and 1.2.2. It is a fantastic algorithm
for dealing with sets, but in the following code sample, you will see that it was not very clean to implement in SQL
Server 2000.

Take alook at an example that uses the employee table in the AdventureWorks database. This is
a classic example of a single-parent hierarchy with the managerId column identifying all employees
who report to a specified manager. Let’s look at a typical breadthwise hierarchical query used in SQL
Server 2000 to retrieve all employees who reported to the manager whose managerId was 140.

-- SQL Server 2000 example

DECLARE @managerId int
SET @managerId = 140

--holds the output treelevel, which lets us isolate a level in the looped query
DECLARE @outTable table (employeeId int, managerId int, treelLevel int)

--used to hold the level of the tree we are currently at in the loop
DECLARE @treelevel as int
SET @treelevel = 1

--get the top level

INSERT INTO @outTable

SELECT employeeld, managerId, @treelevel as treelevel
FROM HumanResources.employee as employee

WHERE (employee.managerId = @managerId)

WHILE (1 = 1) --imitates do...until construct
BEGIN

INSERT INTO @outTable
SELECT employee.employeeld, employee.managerld,
treelevel + 1 as treelevel
FROM HumanResources.employee as employee
JOIN @outTable as ht
ON employee.managerId = ht.employeeld
--this where isolates a given level of the tree
WHERE ~ EXISTS(SELECT *
FROM @outTable AS holdTree
WHERE treelevel = @treelevel
AND employee.managerId = holdtree.employeeld)

IF @@rowcount = 0
BEGIN
BREAK
END

59

60

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

SET @treelevel = @treelevel + 1
END

SELECT Employee.EmployeelID,Contact.LastName,Contact.FirstName
FROM HumanResources.Employee as Employee
INNER JOIN @outTable ot
ON Employee.EmployeeID = ot.EmployeeID
INNER JOIN Person.Contact as Contact
ON Contact.contactId = Employee.contactId

Using CTEs, however, we get a much cleaner implementation:

-- SOL Server 2005 syntax
DECLARE @managerId int
SET @managerId = 140;

WITH EmployeeHierarchy (EmployeeId, ManagerId)
AS
(
SELECT EmployeeID, ManagerID
FROM HumanResources.Employee as Employee
WHERE ManagerID=@managerId

UNION ALL

SELECT Employee.EmployeeID, Employee.ManagerID
FROM HumanResources.Employee as Employee
INNER JOIN EmployeeHierarchy
on Employee.ManagerID= EmployeeHierarchy.EmployeelID)

SELECT Employee.EmployeeID,Contact.LastName,Contact.FirstName
FROM HumanResources.Employee as Employee
INNER JOIN EmployeeHierarchy
ON Employee.EmployeeID = EmployeeHierarchy.EmployeeID
INNER JOIN Person.Contact as Contact
ON Contact.contactId = Employee.contactId

So let’s take this query apart and look at how it works. First, we define the name of the CTE and
define the names of the columns that will be output:

WITH EmployeeHierarchy (EmployeeID, ManagerID)
AS

(

Tip You may have noticed that we did not declare the names in previous examples. The column names being
returned are optional, just like with views.

The first query gets the top level in the hierarchy. It is not required that it only return a single
row, but in our case we are getting all rows where the managerId= 140, thatis, all people who work for
managerId = 140. We are using a variable here to keep it equivalent to the SQL Server 2000 example.

SELECT EmployeeID, ManagerID
FROM HumanResources.Employee as Employee
WHERE ManagerID=@managerId

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Tip Recursive CTEs require a top-level statement and a UNION ALL, or you will get a syntax error from
the compiler.

Then use UNION ALL to connect these rows to the next specified set:
UNION ALL

UNION ALL does not specify duplicates to be removed, so you will have to be careful to avoid
cyclical relationships in your data. The problem comes when you might have a child row that may
also be a predecessor to itself.

For example, consider the following table of data:

EmployeeID ManagerID
1 3
3 5
5 1

The manager of employee 1 is employee 3. Then when you get the manager for employee 3, itis
employee 5, and then employee 5’s manager is 1. So when you get to the next row, you would end up
in an infinite loop because you would find that the manager of 1 is 3, and we would just keep going
until we hit the nesting limit of SQL Server code (32).

So now we get to the cool part. We get the children of the rows we got in the first part of the
query by the name of the CTE, in our case EmployeeHierarchy. This is how the recursion works. It
joins to itself, but again contains itself (hence the recursive nature of a query calling itself). It continues
on until no EmployeeId is a manager of anyone else (down to where the real work gets done!).

SELECT Employee.EmployeeID, Employee.ManagerID
FROM HumanResources.Employee as Employee
INNER JOIN EmployeeHierarchy
on Employee.ManagerID= EmployeeHierarchy.EmployeeID

Finally, we use the CTE. The loop happens without us even noticing from the outside by mate-
rializing the set of rows, then joining that to the full Employee table. The result is all persons who
report to a given manager.

SELECT Employee.EmployeeID,Contact.LastName,Contact.FirstName
FROM HumanResources.Employee as Employee
INNER JOIN EmployeeHierarchy
ON Employee.EmployeeID = EmployeeHierarchy.EmployeeID
INNER JOIN Person.Contact as Contact
ON Contact.contactId = Employee.contactId

Before we leave CTEs altogether, there is one more really neat thing that we can do with them.
In the query that gets the top level of the hierarchy, you can introduce values into the CTE that you
can manipulate throughout the iterations of the query. The following query extends the query to
include a level indicator and a hierarchy of the employee’s managers, up to the top manager for the
employee. In the recursive part of the CTE, we put code to add one for each level. In our case, we
increment the tree level by one, and then we add the EmployeeId from the level to the hierarchy. We
use varchar(max) since we don’t know just how big the hierarchy will be (varchar(max) is one of the
very cool new datatypes added to SQL Server 2005).

61

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

DECLARE @managerId int
SET @managerId = 140;

WITH EmployeeHierarchy(EmployeeID, ManagerID, treelevel, heirarchy)
AS

(
SELECT EmployeeID, ManagerID,
1 as treeevel, CAST(Employeeld as varchar(max)) as heirarchy
FROM HumanResources.Employee as Employee
WHERE ManagerID=@managerId
UNION ALL
SELECT Employee.EmployeeID, Employee.ManagerID,
treelevel + 1 as treelevel,
heirarchy + '\' +cast(Employee.Employeeld as varchar(20)) as heirarchy
FROM HumanResources.Employee as Employee
INNER JOIN EmployeeHierarchy
on Employee.ManagerID= EmployeeHierarchy.EmployeelD
)

SELECT Employee.EmployeelD,Contact.LastName,Contact.FirstName,

EmployeeHierarchy.treelevel, EmployeeHierarchy.heirarchy
FROM HumanResources.Employee as Employee

INNER JOIN EmployeeHierarchy

ON Employee.EmployeeID = EmployeeHierarchy.EmployeeID
INNER JOIN Person.Contact as Contact
ON Contact.contactId = employee.contactId

ORDER BY heirarchy

Running this returns the following:

EmployeeID LastName FirstName level heirarchy
103 Barber David 1 103

139 Liu David 1 139

130 Walton Bryan 2 139\130
166 Tomic Dragan 2 139\166
178 Moreland Barbara 2 139\178
201 Sheperdigian Janet 2 139\201
216 Seamans Mike 2 139\216

59 Poe Deborah 2 139\59

94 Spoon Candy 2 139\94

30 Barreto de Mattos Paula 1 30

154 Chen Hao 2 30\154

191 Culbertson Grant 2 30\191

47 Johnson Willis 2 30\47

70 Martin Mindy 2 30\70

82 Luthra Vidur 2 30\82

71 Kahn Wendy 1 71

274 Word Sheela 2 71\274

164 Sandberg Mikael 3 71\274\164
198 Rao Arvind 3 71\274\198

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

223 Meisner Linda 3 71\274\223
231 Ogisu Fukiko 3 71\274\231
233 Hee Gordon 3 71\274\233
238 Pellow Frank 3 71\274\238
241 Kurjan Eric 3 71\274\241
244 Hagens Erin 3 71\274\244
261 Miller Ben 3 71\274\261
264 Hill Annette 3 71\274\264
266 Hillmann Reinout 3 71\274\266

So now we have our hierarchy, it is sorted by manager, and we know how far away an employee
is from the manager we passed in as a parameter.

CTEs are one of the cooler new T-SQL features in SQL Server 2005. They will be helpful in
cleaning up code for sure, but more importantly, recursive queries will be far easier to deal with than
ever before.

TOP

The TOP operator is used to specify the number of rows returned by a query. In previous versions of
SQL Server, TOP required a literal. So if you needed to parameterize the number of values to return
when a statement was coded, the alternative was to use SET ROWCOUNT @<variableName> to restrict the
rows returned. This, however, affected ALL following T-SQL statements. It was also an issue that you
needed to reset ROWCOUNT to 0 after every statement you used it on or big problems would occur when
you started only affecting a couple of rows in subsequent statements.

TOP only affects a single statement and now it allows a variable to set the number of rows affected.
For example, we can return a variable set of rows based on a variable from the AdventureWorks
Person.Contact table.

DECLARE @rowsToReturn int
SELECT @rowsToReturn = 10

SELECT TOP(@rowsToReturn) * --note that TOP requires parentheses to accept
--parameters but not for constant
FROM HumanResources.Employee

If the value of the TOP parameter is invalid, such as a NULL value or a negative value, SQL Server
will return an error. In SQL Server 2005, you may update views that are defined using the TOP oper-
ator. However, after you update the values that show up in the view, the rows may vanish from the view.

Beyond parameterization, another change to the TOP operator is that it will work with INSERT,
UPDATE, and DELETE (again with parameters if desired).

Tip When using TOP on INSERT, UPDATE, or DELETE statements, you must put parentheses around the expression,
even if itis a literal.

For example, say we have a table and you want to insert the top five rows from a resultset (in this
case, one that just has seven values from a UNION statement). We can do this with INSERT TOP (N):

CREATE TABLE testTop
(

)

value int primary Key

63

64

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

INSERT TOP (5) into testTop

SELECT * --this derived table returns seven rows

FROM (SELECT 1 as value wunion SELECT 2 union SELECT 3 union SELECT 4
union SELECT 5 union SELECT 6 union SELECT 7) as sevenRows

go
SELECT *

FROM testTop
go

Our derived table contains seven rows, but the TOP operator on the INSERT statement means that
this will return only five of them:

Now, we can use TOP on an UPDATE to change two rows only:
UPDATE TOP (2) testTop
SET value = value * 100
SELECT *
FROM testTop

which returns the following:

Finally, using DELETE, we can remove three rows from the table:
DELETE TOP(3) testTop
go
select * from testTop

which leaves us with this output:

Each of these techniques is basically only good when you are trying to batch-modify a set. So
you can do something like this:

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

INSERT TOP (10) otherTable (batchTableld, value)
FROM batchTable
WHERE not exists (SELECT *
FROM otherTable
WHERE otherTable.batchTableId = batchTable.batchTableId)

It is not a technique that will be extremely useful, but it is a much more elegant solution than
using SET ROWCOUNT because it is clear to the query processor what statement you intend to limit the
number of rows from. Any other statements in any subordinate objects like triggers needn’t be subject to
the limitation, as was the case with ROWCOUNT.

This example has a pretty big gotcha that may not be completely obvious to you. Notice there
was no mention of which rows would be modified or deleted. As cannot be stated too many times,
tables are unordered sets, and modification statements have no ORDER BY clause to order the set they
deal with. It will literally just INSERT, UPDATE, or DELETE whatever number of rows you state, purely at the
will of the optimizer (the SQL Server 2005 Books Online goes so far as to state that the rows affected when
TOP is used will be “random,” which, while technically true, is perhaps pushing it). It stands to reason
that whichever rows are easiest to modify, these rows will be the ones chosen. This is unlike how the
SELECT statement returned the rows based on an ORDER BY clause if one was present, and it can be a
bit confusing.

For example:

create table topl0sales
(

salesOrderId int,
totalDue money

)

insert TOP (10) topl0sales
SELECT salesOrderId, totalDue
FROM sales.salesOrderHeader
ORDER BY totalDue desc

Ten rows from the sales.salesOrderHeader table will be returned and inserted, but it will not be
the top ten highest values. For this, you can use

INSERT topi0sales

SELECT TOP (10) salesOrderId, totalDue
FROM sales.salesOrderHeader

ORDER BY totalDue desc

Now the values in the top10sales table are the top ten values in sales.salesOrderHeader.
totalDue.

The value of adding TOP to the INSERT, UPDATE, and DELETE statements is to facilitate batching
operations. For example, you might want to delete a large number of rows from a table, a few at a
time, to keep the transaction small, thereby assisting in maintaining concurrent use of the table,
with a small number of locks. So you could execute

BEGIN TRANSACTION
DECLARE @rowcount int
SET @rowcount = 100
WHILE (@rowcount = 100) --if it is less than 100, we are done, greater than 100
BEGIN --cannot happen
DELETE TOP(100) sales.salesOrderHeader
SET @rowcount = @@rowcount
END
ROLLBACK TRANSACTION --we don't want to actually delete the rows

65

66

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Note that using TOP is the preferred way of acting on only a fixed number of rows, rather than
using SET ROWCOUNT <N>. SET ROWCOUNT will be deprecated in a near-term release of SQL Server.

Change The TOP operator accepts variables as well as literal values and can be used with INSERT, UPDATE,
and DELETE statements.

This is a good addition, but bear in mind that TOP is merely a filter that tells SQL Server that once
it starts processing rows it only needs to return a portion of the rows that the query would return. If
the number is hard coded, it can help in optimization of the query, but using a variable means that
the optimizer will have to assume you want all rows. This could have performance implications.

Extensions to the FROM Clause

SQL Server 2005 includes a couple of really nice changes that allow the FROM clause to extend the way
you can manipulate data with the SELECT, INSERT, UPDATE, and DELETE SQL statements. The FROM
clause now supports the following:

e New join types: CROSS APPLY and OUTER APPLY aid with use of user-defined functions.

* Random data sampling: This enables you to return random sets of rows from a table.

New Join Types

One particular annoyance in previous versions of SQL Server was that derived tables could not be
correlated to other sets in the FROM clause. For example, the following type of query would not have
been allowed:

SELECT Product.productNumber, SalesOrderAverage.averageTotal
FROM Production.Product as Product
JOIN (SELECT AVG(lineTotal) as averageTotal
FROM Sales.SalesOrderDetail as SalesOrderDetail
WHERE product.ProductID=SalesOrderDetail.ProductID
HAVING COUNT(*) > 1
) as SalesOrderAverage

Of course, for the most part, a normal query like this was not a great problem because this query
could easily be rewritten as an inner join. However, in SQL Server 2000, Microsoft added table-valued
user-defined functions, for which rewriting as a join was not possible. The following example seems
natural:

SELECT Product.productNumber, SalesOrderAverage.averageTotal
FROM Production.Product as Product
JOIN dbo.getAverageTotalPerProduct(product.productId)
as SalesOrderAverage

but this is also illegal. Instead, the function would have to be coded to return all rows for all products,
which is probably not going to perform well at all, especially if you have a great many products.

This was one of the most frustrating problems with using table-based functions in SQL Server
2000. The APPLY operator allows queries of this style to make optimal use of derived tables and scalar
functions. What it does is inject column data from the left-hand table source into the right-hand
source (valued function or derived table). There are two forms of APPLY:

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS 67

e CROSS APPLY: Only returns a rowset if the right table source returns data for the parameter
values from the left table source columns.

e OUTER APPLY:Just like an outer join returns at least one row from the left table source, even if
no rowset is returned from the right.

Tip The names of the join types will likely be confusing. OUTER APPLY seems very much like an OUTER JOIN,
since a row is returned for each left table source regardless of what is returned in the right table source (note that
LEFT and RIGHT are not allowed). However, CROSS APPLY seems quite wrong. A CROSS JOIN would return all
rows in the left table source and all rows in the right table source. CROSS APPLY seems more like it should be called
an inner apply, but this is not the case.

In the next block of code, we use the CROSS APPLY operator to execute the derived table once per
row in the Production.Product table. The subquery gets only one row, which is the average amount
for asale of that product. Ifit hasn’t been sold yet, an empty resultset would be the result of the CROSS
APPLY operation and the Production.Product row would not be returned:

SELECT Product.productNumber, SalesOrderAverage.averageTotal
FROM Production.Product as Product
CROSS APPLY (SELECT AVG(1lineTotal) as averageTotal
FROM Sales.SalesOrderDetail as SalesOrderDetail
WHERE product.ProductID=SalesOrderDetail.ProductID
HAVING COUNT(*) > 0
) as SalesOrderAverage

This returns the following results (truncated for readability):

productNumber averageTotal
BB-7421 81.650630
BB-9108 183.775014
BC-Moo5s 9.990000
BC-R205 8.990000
BK-M18B-40 679.055917
BK-M18B-42 693.944595
BK-M18B-44 647.416582
BK-M18B-48 678.707431
BK-M18B-52 644.185253
BK-M18S-40 641.530154
BK-M18S-42 626.030041
BK-M18S-44 619.874742
BK-M18S-48 627.573507
BK-M185-52 683.637900
BK-M38S-38 945.020248

>> resultset truncated <<

The real power of CROSS APPLY is with user-defined functions. Instead of a derived table, we’ll
create a function that returns the value of the largest sale of a given product from the
Sales.SalesOrderDetail table.

68 CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

CREATE FUNCTION production.getAverageTotalPerProduct

(
@productId int
)
RETURNS @output TABLE (unitPrice decimal(10,4))
AS

BEGIN
INSERT INTO @output (unitPrice)
SELECT AVG(lineTotal) as averageTotal
FROM Sales.SalesOrderDetail as SalesOrderDetail
WHERE SalesOrderDetail.ProductID = @productId
HAVING COUNT(*) > 0

RETURN
END

Now the statement can be rewritten as follows:

SELECT Product.ProductNumber, AverageSale.UnitPrice
FROM Production.Product as Product
CROSS APPLY
production.getAverageTotalPerProduct(product.productId)
as AverageSale

This returns the same results as previously. Obviously, your multistatement table-valued functions
would usually be a lot more complex than this (otherwise, why bother to make it a function?), but for
the purposes of this example, this allows us to make use of the function in a very nice format that is
usable, and should have good performance. (Clearly what performs well enough varies on a case-by-
case basis. Don’t take anyone’s word for it—test, test, and test some more.)

In the previous example, any product rows where there were no matching unit sales were not
included in the output. We change this to an OUTER APPLY to get back all rows in the product table,
and NULLs for the unit price column where there have been no sales:

SELECT Product.ProductNumber, AverageSale.UnitPrice
FROM Production.Product as Product
OUTER APPLY
production.getAverageTotalPerProduct(product.productId)
as AverageSale

Products that don’t have any associated sales will return no rows, but you still get a row for
each product:

ProductNumber UnitPrice
AR-5381 NULL
BA-8327 NULL
BB-7421 81.6506
BB-8107 NULL
BB-9108 183.7750
BC-M005 9.9900
BC-R205 8.9900
BE-2349 NULL
BE-2908 NULL

BK-M18B-40 679.0559

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

BK-M18B-42 693.9446
BK-M18B-44 647.4166
BK-M18B-48 678.7074
BK-M18B-52 644.1853
BK-M18S-40 641.5302

>> resultset truncated <<

New Feature Using CROSS APPLY or OUTER APPLY allows a derived table or a table-valued function to have
parameters applied for each row, making table-valued functions tremendously more useful.

Random Data Sampling

Sometimes it is desirable to get an idea about the distribution of data in a table, but it is impractical
because there is just too much data. Obviously, it is seldom necessary to look at every piece of data
to get an idea of how the data looks in the table. Take elections, for an example. An exit poll only
needs to sample a small proportion of the population in order to predict the outcome with a high
degree of accuracy.

TABLESAMPLE lets you get a random set of rows. You can specify either a percentage of the table
or a given number of rows to return. However, what you will likely find weird about this operator is
that it seldom returns exactly the same number of rows.

In the next example, the query returns a different selection of rows each time it is executed.
What seems odd is just how large the variance in the rowcount will be. For this query, it typically
will be between 1800 and 3000, which is approximately 2 percent of the number of rows in the
sales.salesOrderDetail table, as there are 118,990 in the version of the table we are using and 2
percent is 2379).

SELECT *
FROM sales.salesOrderDetail TABLESAMPLE SYSTEM (2 PERCENT)

There is also an option to get a more exact count of rows:

SELECT *
FROM sales.salesOrderDetail TABLESAMPLE SYSTEM (500 rows)

Again, however, it will not actually return only 500 rows, and in testing, the count has been
between 200 and 800, where 500 rows was specified. If you want to get back the same results each
time you run one of these queries, you can specify the REPEATABLE option and a fixed seed for the
randomizer.

SELECT *
FROM sales.salesOrderDetail TABLESAMPLE SYSTEM (500 rows) REPEATABLE (123456)

Given the same seed, you will get the same rows back. One thing to note here: this is not like the
repeatable read isolation level. If another user makes changes to the data in the table, you will not get
back the exact same rows. It is only true for a given “version” of the table.

We must note that these commands really seem weird to us, since they will not return the exact
same number of rows each time, even when you specify a certain number of rows! It has to do with
the random nature of the TABLESAMPLE operator, and that they do the sample in a single pass through
the table. It should not hurt your queries, but if you need an exact number of rows for a test, you
could INTERSECT two table samples (INTERSECT is new and covered later in this chapter in the section
“EXCEPT and INTERSECT”) and use TOP to get your set.

69

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Pivoting Data

Excel has had pivot tables for quite some time, allowing users to rotate a table in such a way as to
turn rows into columns, and back again. In SQL Server 2005, two new relational operators are being
added to give some of the same functionality to T-SQL. These operators are PIVOT and UNPIVOT. In the
following two sections, we will look at how these commands work.

PIVOT

One thing that was almost impossible to do in T-SQL was to take a set of rows and pivot them to
columns. The PIVOT operator allows you to rotate the columns in a table to rows.

As a very simple example (as simple as it can be anyhow), consider the following table of data,
which we will call SalesByMonth. (We put it in the Sales schema; if you are not building this in the
AdventureWorks database, you may need to create the schema using the command CREATE SCHEMA
sales.)

CREATE TABLE sales.salesByMonth

(

year char(4),

month char(3),

amount money,

PRIMARY KEY (year, month)
)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004','Jan', 789.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004','Feb', 389.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004','Mar', 8867.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004",'Apr', 778.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004"','May', 78.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004"',"'Jun', 9.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004',"Jul', 987.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004"','Aug', 866.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004','Sep', 7787.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004','0ct', 85576.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004','Nov', 855.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2004', 'Dec', 5878.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2005',"'Jan', 7.0000)

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2005',"'Feb', 6868.0000)

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2005", 'Mar', 688.0000)
INSERT INTO sales.salesByMonth (year, month, amount)
VALUES('2005", "Apr', 9897.0000)

Most likely this would not be representative of a table in your database, but more likely the final
output of a query that summarized the data by month. While this is the natural format for a set-based
query, it is not likely that the user will want to look at the data this way; for starters, it is ordered
funny (alphabetic order because of the clustered index on the key!), but even if it was ordered by
month, it would still be pretty ugly. It is likely the desired output of this data might be

2004 789.0000 389.0000 8867.0000
2005 7.0000 6868.0000 688.0000

Using SQL Server 2000 coding techniques, the query would look something along the lines of
the following:

SELECT year,
SUM(case when month = 'Jan' then amount else
SUM(case when month = 'Feb' then amount else
SUM(case when month = 'Mar' then amount else
SUM(case when month = "Apr' then amount else
SUM(case when month = 'May' then amount else
SUM(case when month = 'Jun' then amount else
SUM(case when month = 'Jul' then amount else
SUM(case when month = "Aug' then amount else
SUM(case when month = 'Sep' then amount else
SUM(case when month = 'Oct' then amount else
SUM(case when month = 'Nov' then amount else
SUM(case when month = 'Dec' then amount else

FROM sales.salesByMonth

GROUP by year

end) AS 'Jan',
end) AS 'Feb',
end) AS 'Mar',
end) AS 'Apr',
end) AS 'May',
end) AS 'Jun’,
end) AS 'Jul',
end) AS 'Aug',
end) AS 'Sep',
end) AS 'Oct’,
end) AS "Nov',
end) AS 'Dec'

O OO OO OO0 OoOOoOOoOOo

Not terribly hard to follow, but pretty messy if you start to need more information. Using the
new PIVOT operator, the code is changed to

SELECT Year,[Jan],[Feb], [Mar], [Apr], [May],[Jun],
[Jul], [Aug],[Sep], [Oct], [Nov], [Dec]

FROM (
SELECT year, amount, month
FROM sales.salesByMonth) AS salesByMonth

PIVOT (SUM(amount) FOR month IN
([3an], [Feb], [Mar], [Apr], [May], [Jun],
[Jul],[Aug], [Sep],[Oct], [Nov],[Dec])
) AS ourPivot
ORDER BY Year

The most important part of this query is this:

PIVOT (SUM(amount) FOR month IN
([Jan], [Feb], [Mar], [Apr], [May], [Iun],
[Jull, [Augl, [Sep], [Oct], [Nov], [Dec])

7

72

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

It produces a value for each of the columns in the IN clause that match values in the month
column. This is done via the SUM (amount) FOR month section. The moderately confusing part is that
it groups on the columns that are not a part of the PIVOT statement. Since year was not in an aggre-
gate, it grouped the pivot on year. If we remove year from the query as follows:

SELECT [Jan],[Feb],[Mar], [Apr],[May],[Jun],
[3ul], [Aug], [Sep], [Oct], [Nov], [Dec]
FROM (SELECT amount, month
FROM sales.salesByMonth) AS salesByMonth
PIVOT (SUM(amount) FOR month IN
([9an], [Feb], [Mar], [Apr], [May],[Jun],
[3ul], [Aug], [Sep], [oct], [Nov], [Dec])
) AS ourPivot

it groups on all rows:

796.0000 7257.0000 9555.0000

When you need to store variable attributes in your schema and you cannot determine all of the
data requirements at design time, PIVOT is excellent. For example, a store that has many products
may have very different attributes for each product. Instead of having different tables with different
attributes for each type of product (a management nightmare), you implement a table that allows
for varying properties to be created and a value associated with them. Building these “property” or
“attribute” tables is an easy technique for associating values with a product, but writing queries to
deliver to the client can be very cumbersome. Using PIVOT, we’ll walk you through extending the
Person.Contact table by creating a Person.ContactProperty table that contains properties that we
did not know when the schema was designed. We will store the person’s dog name, hair color, and
even their car style:

Tip This kind of schema is generally only a good idea in extreme circumstances when the data is very variable.
If the schema can at all be predicted, it is important to go ahead and do a full design. A good example of where we
have used this sort of schema is storing the operating data from networking routers. They have tons of properties
and each model has slightly different ones.

CREATE TABLE Person.ContactProperty

(
ContactPropertyId int identity(1,1) PRIMARY KEY,
ContactId int REFERENCES Person.Contact(ContactId),
PropertyName varchar(20),
PropertyValue sql_variant,
UNIQUE (ContactID, PropertyName)

)

INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(1, 'dog name','Fido")

INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(1, '"hair color', 'brown')

INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(1, 'car style','sedan')

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(2, 'dog name', 'Rufus")

INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(2, "hair color', 'blonde")

INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(3, 'dog name','Einstein")
INSERT Person.ContactProperty (ContactId, PropertyName, PropertyValue)
VALUES(3, 'car style','coupe')

If we look at the data in a basic T-SQL statement:
SELECT cast(Contact.FirstName + ' ' + Contact.LastName as varchar(30)) as Name,

ContactProperty.PropertyName, ContactProperty.PropertyValue

FROM Person.Contact as Contact

INNER JOIN Person.ContactProperty as ContactProperty
ON ContactProperty.ContactId = Contact.ContactID

then we get the typical resultset of a row per attribute:

Name PropertyName PropertyValue
Gustavo Achong dog name Fido

Gustavo Achong hair color brown

Gustavo Achong car style sedan
Catherine Abel dog name Rufus
Catherine Abel hair color blonde

Kim Abercrombie dog name Einstein

Kim Abercrombie car style coupe

It will usually be more desirable to display this data as a single row in the user interface or
report. To do this currently, you would need to navigate the results and pivot the rows themselves.
Not that this is always the wrong way to go. Data formatting is usually best done using the presenta-
tion layer, but in some cases doing this in the data layer will be best; depending on what kinds of
clients are being used, or if you need to use the data in a different SQL query, data in this format may
be troublesome to deal with.

Instead, we can use the PIVOT operator to take the propertyName values and rotate the data to
provide a single row per contact. We use a derived table, selecting all of the columns required in the
PIVOT from our ContactProperty table. We then pivot this, getting the attribute values by PropertyName
for each ContactId.

SELECT cast(Contact.FirstName + ' ' + Contact.LastName as varchar(30)) as Name,
pivotColumns.* --demonstrating that * works, it should not
--be done this way in production code
FROM Person.Contact as Contact
INNER JOIN (SELECT ContactId, PropertyName,PropertyValue
FROM Person.ContactProperty as property)
as PivotTable
PIVOT(MAX(PropertyValue)
FOR PropertyName IN ([dog name],[hair color],[car style]))
AS PivotColumns
ON Contact.ContactId = PivotColumns.ContactId

We are getting the maximum value of the PropertyValue column for the rotated value, since
only one value can be nonnull. We are not restricted to only one unique value for the rotation, and

73

74

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

this allows all sorts of aggregation to take place, making the PIVOT operator incredibly powerful.
Then we specify the column that contains the values that we will pivot around. In our example, we
are using the PropertyName column, specifying the values that will become the columns in our output.
The query output is as follows (noting that there is a NULL value where there was no value for a given
property):

Name ContactId dog name hair color
Gustavo Achong 1 Fido brown
Catherine Abel 2 Rufus blonde

Kim Abercrombie 3 Einstein NULL

car style

sedan

NULL

coupe

Note, we just used the first three ContactId values from the Person.Contact table for this example.

New Feature The PIVOT takes a vertical set and converts it to a horizontal schema, allowing you to flatten a
resultset to make it easier to consume by a client.

UNPIVOT

The (almost) opposite effect of PIVOT is, not surprisingly, UNPIVOT. Less useful on a day-to-day-basis,
this is a fantastic tool to have when doing data conversions or dealing with poorly designed data-
bases. Going back to the set of data we created with our salesByMonth query, using the INTO clause
we create a table of data called dbo.salesByYear:

SELECT Year,[Jan],[Feb], [Mar], [Apr], [May], [Jun],
[3ul], [Aug], [Sep], [Oct], [Nov], [Dec]
INTO sales.salesByYear
FROM (
SELECT year, amount, month
FROM sales.salesByMonth) AS salesByMonth
PIVOT (SUM(amount) FOR month IN
([Jan], [Feb], [Mar], [Apr], [May], [Jun],
[3ul], [Aug], [Sep], [oct], [Nov], [Dec])
) AS ourPivot
ORDER BY Year

which contains the following output:

Year Jan Feb Mar
2004 789.0000 389.0000 8867.0000
2005 7.0000 6868.0000 688.0000

Now, to get this back to the original format, we can use a query like the following:

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS 75

SELECT VYear, cast(Month as char(3)) as Month, Amount
FROM sales.salesByYear
UNPIVOT (Amount FOR Month IN
([Jan], [Feb], [Mar], [Apr], [May], [Jun],
[Jul], [Aug],[Sep],[Oct],[Nov],[Dec])) as unPivoted

which returns

Year Month Amount
2004 Jan 789.0000
2004 Feb 389.0000
2004 Mar 8867.0000
2004 Apr 778.0000
2004 May 78.0000
2004 Jun 9.0000
2004 Jul 987.0000
2004 Aug 866.0000
2004 Sep 7787.0000
2004 Oct 85576.0000
2004 Nov 855.0000
2004 Dec 5878.0000
2005 Jan 7.0000
2005 Feb 6868.0000
2005 Mar 688.0000
2005 Apr 9897.0000

This is another really nice addition to what T-SQL can do natively and will come in handy in
quite a few cases. One thing you should note, however: UNPIVOT is not exactly the opposite of PIVOT.
Null values in the table will not be returned as rows in the UNPIVOTed output. So, if we had the
following table:

2004 NULL NULL 8867.0000
2005 7.0000 6868.0000 688.0000

we would not get rows in our output like the following:

Year Month Amount
2004 Jan NULL

2004 Feb NULL

2004 Mar 8867.0000

The first two rows would not exist in the output.

76

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

OUTPUT

In SQL Server 2005, there is now an OUTPUT clause as part of DML statements to assist in auditing
changes made during the statement. The OUTPUT clause specifies a statement to output a resultset of
changes to a table variable.

Just like triggers, you use the inserted and deleted tables to access the rows that have been
modified in a statement and the data that is being deleted.

For example, change FirstName in the Person.Contact table to the reverse of the original value. Note
begin transactionand rollback transaction to avoid corrupting the data in the Person.Contact table.

BEGIN TRANSACTION
DECLARE @changes table (change varchar(2000))

UPDATE TOP (10) Person.Contact
SET FirstName = Reverse(FirstName)
OUTPUT 'Was: ''' + DELETED.FirstName +
"**"' Is: """ + INSERTED.FirstName + '""'
INTO @changes

SELECT *
FROM @changes

ROLLBACK TRANSACTION
--note that local variable tables are not affected by transactions!

This returns the following (assuming you haven’t already made changes to the data in the
Person.Contact.FirstName column):

Was: 'Gustavo' Is: 'ovatsuG'
Was: 'Catherine' Is: 'enirehtaC'
Was: 'Kim' Is: 'miK'

Was: 'Humberto' Is: 'otrebmuH'
Was: 'Pilar' Is: 'raliP’

Was: 'Frances' Is: 'secnarF'
Was: 'Margaret' Is: 'teragraM'
Was: 'Carla’ Is: 'alraC'

Was: 'Jay' Is: 'yal'

Was: 'Ronald' Is: 'dlanoR'

New Feature The OUTPUT clause gives you the ability to access the changes from a DML statement without
building triggers or any other method.

This is a very interesting new feature, and you can see some interesting potential uses, such as
scanning the outputted table to see if certain changes were made, although audit trails will still be
easier to implement using triggers.

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS 77

Ranking Functions

Ranking functions are used to assist you in adding positional information to your resultset—for
example, the position of a row within a set that we are returning.

Tip We have also seen them referred to as windowed functions. Either terminology is fine.

Briefly, let's demonstrate this sort of operation using SQL Server 2000 code. Let’s consider
finding the position of a row within our set. This can easily be done using a subquery. Using the
AdventureWorks database, consider the Person.Contact table. To demonstrate, we will rank the
order of the contact names, using first name first, so there are duplicates. (Obviously, in a production
system, you would likely never do this sort of thing, but the point of doing this here is to get a small
set of data that we can work with to demonstrate how the ranking functions work. We will be using
the following view to limit our sets for each query.)

CREATE VIEW contactSubset

as
Select TOP 20 *
FROM Person.Contact
WHERE ~ FirstName like 'b%’

So we execute the following:

SELECT FirstName,
(SELECT count(*)
FROM contactSubset as c
WHERE c.FirstName < contactSubset.FirstName) + 1 as RANK
FROM contactSubset
ORDER BY FirstName

which returns the following:

FirstName RANK
Barbara 1
Barbara 1
Barbara 1
Baris 4
Bart 5
Benjamin 6
Bernard 7
Betty 8
Bev 9
Blaine 10
Bob 11
Bradley 12
Brenda 13
Brenda 13
Brian 15
Brian 15
Bridget 17
Brigid 18
Bruno 19

Bruno 19

78

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

The subquery gives us position or rank by counting the number of employees in a copy of
employee that has names that are less than the current name in alphabetic ordering. Works great, not
too messy, but what if we need two criteria? For the purposes of our example, say we want to use the
last name of our contacts. The query gets more and more complex:

SELECT FirstName, LastName,
(SELECT count(*)
FROM contactSubset as ¢
WHERE c.LastName < contactSubset.LastName
OR (c.LastName = contactSubset.LastName
AND c.FirstName< contactSubset.FirstName)
) + 1 as orderNumber
FROM contactSubset
ORDER BY LastName, FirstName

In SQL Server 2005, we get these four new functions:

e ROW_NUMBER: Returns the row number of a row in a resultset.

* RANK: Based on some chosen order of a given set of columns, gives the position of the row. It
will leave gaps if there are any ties for values. For example, there might be two values in first
place, and then the next value would be third place.

e DENSE_RANK: Same as RANK but does not leave gaps in the sequence. Whereas RANK might order
values 1,2,2,4,4,6,6, DENSE_RANK would order them 1,2,2,3,3,4,4.

e NTILE: Used to partition the ranks into a number of sections; for example, if you have a table
with 100 values, you might use NTILE(2) to number the first 50 as “1”, and the last 50 as “2”.

For each of these functions, you have to specify an OVER clause, which basically specifies a
sorting criterion that the functions will assign their ranking values. It does not have to be the same
ordering as the ORDER BY clause, and when it is not, the results will be interesting. There is also an
optional PARTITION BY criterion that you can apply to the OVER clause that allows you to break up the
sections into different groups. This will be demonstrated at the end of this section.

As an example, look again at our contact subset:

SELECT FirstName,
ROW_NUMBER() over (order by FirstName) as 'ROW_NUMBER',
RANK() over (order by FirstName) as 'RANK',
DENSE_RANK() over (order by FirstName) as 'DENSE_RANK',
NTILE(4) over (order by FirstName) as 'NTILE(4)'

FROM contactSubSet

ORDER BY FirstName

This returns the following:

FirstName ROW_NUMBER RANK DENSE_RANK NTILE(4)
Barbara
Barbara
Barbara
Baris
Bart
Benjamin
Bernard
Betty
Bev
Blaine

B OWoo~NOUTD WNBRE
P OWoO~NOoOUuUT DN R R
COC~N OV DA WNR R, P
NNNNNRRRRPR

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Bob 11 11 9 3
Bradley 12 12 10 3
Brenda 13 13 11 3
Brenda 14 13 11 3
Brian 15 15 12 3
Brian 16 15 12 4
Bridget 17 17 13 4
Brigid 18 18 14 4
Bruno 19 19 15 4
Bruno 20 19 15 4

You can see that we now have a ROW_NUMBER column that gives a unique ranking for each row,
based on the ordering criteria specified. The RANK function assigns a ranking value to each row. It
simply counts the number of rows with a lower value than the current one according to the ordering
criteria—so when ordering by first name, there are four values “lower” than Bart (three instances of
Barbara and a Baris), so Bart gets a rank of 5. This will inevitably leave “gaps” in the ranking numbers.
DENSE_RANK only counts distinct values, so Bart gets a DENSE_RANK of 3 since only two distinct groups
precede it.

Finally, have NTILE, which breaks up the set into a number of different groups, based on a
parameter (we show it set to 4 in this example). NTILE groups will have exactly the same number of
values in a group if it is possible to split them evenly (for example, two groups of 10 for 20 rows, three
groups of 3 for 9 rows, and so on). This is true even if all the values in the table are the same. Other-
wise, some groups may have fewer members.

We can specify multiple ordering criteria in the ORDER BY clause, as follows:

SELECT FirstName, LastName,
ROW_NUMBER() over (order by FirstName, LastName) as 'ROW_NUMBER',
RANK() over (order by FirstName,lastName) as 'RANK',
DENSE_RANK() over (order by FirstName,LastName) as 'DENSE_RANK',
NTILE(4) over (order by FirstName,LastName) as 'NTILE(4)'

FROM contactSubSet

ORDER BY FirstName

Executing this, we get the following:

FirstName LastName ROW_NUMBER RANK DENSE_RANK NTILE(4)
Barbara Calone 1 1 1 1
Barbara Decker 2 2 2 1
Barbara German 3 3 3 1
Baris Cetinok 4 4 4 1
Bart Duncan 5 5 5 1
Benjamin Becker 6 6 6 2
Bernard Duerr 7 7 7 2
Betty Haines 8 8 8 2
Bev Desalvo 9 9 9 2
Blaine Dockter 10 10 10 2
Bob Gage 11 11 11 3
Bradley Beck 12 12 12 3
Brenda Barlow 13 13 13 3
Brenda Diaz 14 14 14 3
Brian Goldstein 15 15 15 3
Brian Groth 16 16 16 4
Bridget Browgett 17 17 17 4
Brigid Cavendish 18 18 18 4

79

80

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Bruno Costa Da Silva 19 19 19 4
Bruno Deniut 20 20 20 4

This gives us pretty much the same results, but now since there are no duplicates, the values for
RANK and DENSE_RANK are the same as the ROW_NUMBER values.

What makes these functions so incredibly useful is that all of the ORDER BY clauses need not be
the exact same. You can even have the same criteria ascending and descending in the same query:

SELECT firstName,
ROW_NUMBER() over (order by FirstName) as ascending,
ROW_NUMBER() over (order by FirstName desc) as descending
FROM contactSubSet
ORDER BY FirstName

The preceding code returns the following:

FirstName ascending descending
Barbara 1 18
Barbara 2 19
Barbara 3 20
Baris 4 17
Bart 5 16
Benjamin 6 15
Bernard 7 14
Betty 8 13
Bev 9 12
Blaine 10 11
Bob 11 10
Bradley 12 9
Brenda 13 7
Brenda 14 8
Brian 15 5
Brian 16 6
Bridget 17 4
Brigid 18 3
Bruno 19 1
Bruno 20 2

Note Note that while the descending rows seem out of order, they are actually not, since the three values for
Barbara (and the other duplicates) can be ordered in either direction. It could make using the rows interesting, so if
it was important for 1 to correspond to 20 in the other column, using unique columns for ordering would be required.

As we mentioned earlier, there is also a PARTITION clause you can apply to your OVER clause that
will let you apply the ranking functions to individual groups in the data. In our example data, we
have several persons who have the same first name (for example, there are three persons named
Barbara, and two name Brenda, Brian, and Bruno). If we wanted to include rankings of names in the
subsets, in our case first name, we can change our query from earlier to be as follows:

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS 81

SELECT FirstName, LastName,
ROW_NUMBER()over (partition by FirstName order by lastName) as
"ROW_NUMBER ",
RANK()over (partition by FirstName order by LastName) as 'RANK',
DENSE_RANK()over (partition by FirstName order by LastName) as
'DENSE_RANK",
NTILE(2) over (partition by FirstName order by LastName) as

'NTILE(2)'
FROM contactSubSet
ORDER BY FirstName
which returns the following:
FirstName LastName ROW_NUMBER RANK DENSE_RANK ~ NTILE(2)
Barbara Calone 1 1 1 1
Barbara Decker 2 2 2 1
Barbara German 3 3 3 2
Baris Cetinok 1 1 1 1
Bart Duncan 1 1 1 1
Benjamin Becker 1 1 1 1
Bernard Duerr 1 1 1 1
Betty Haines 1 1 1 1
Bev Desalvo 1 1 1 1
Blaine Dockter 1 1 1 1
Bob Gage 1 1 1 1
Bradley Beck 1 1 1 1
Brenda Barlow 1 1 1 1
Brenda Diaz 2 2 2 2
Brian Goldstein 1 1 1 1
Brian Groth 2 2 2 2
Bridget Browgett 1 1 1 1
Brigid Cavendish 1 1 1 1
Bruno Costa Da Silva 1 1 1 1
Bruno Deniut 2 2 2 2

Now you can see that the row numbers and rankings are based on the firstName groups, not the
entire set. It isn’t hard to see that by combining various OVER clauses, you can build very complex
queries very easily.

The ranking functions are going to be incredibly valuable assets when writing many types of
queries. They will take the place of many of the tricks that have been used for adding sequence
numbers to sets, especially when dealing with partitioned sets. Understand, however, that there is
no order to SQL sets. The data may be in the table in any order, and unless you specify an ORDER BY
clause, the data that is returned to your client may be ordered by ROW_NUMBER, and it may not. For
starters, you can include more than one ROW_NUMBER call in your query that has different ordering.

For example, say you want to see the top ten products for raw sales last year (assuming the year
is 2005 right now!) and you want to see them grouped into quartiles. This is very easy to write using
the RANK() and NTILE() functions.

82

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

WITH salesSubset AS
(
SELECT product.name as product, sum(salesOrderDetail.lineTotal) as total
FROM sales.salesOrderDetail as salesOrderDetail
JOIN sales.salesOrderHeader as salesOrderHeader
ON salesOrderHeader.salesOrderId = salesOrderDetail.salesOrderId
JOIN production.product as product
ON product.productId = salesOrderDetail.productId
WHERE orderDate >= '1/1/2004' and orderDate < '1/1/2005'
GROUP BY product.name
)
SELECT product, total,
RANK() over (order by total desc) as 'RANK',
NTILE(4) over (order by total desc) as 'NTILE(4)'
FROM salesSubset

which returns the following:

product total RANK NTILE(4)
Mountain-200 Black, 38 1327957.407668
Mountain-200 Black, 42 1139429.487144
Mountain-200 Silver, 38 1136622.492744
Mountain-200 Silver, 46 1029170.763900
Mountain-200 Silver, 42 1011486.176127
Mountain-200 Black, 46 1011074.368428
Road-350-W Yellow, 48 897217.963419
Road-350-W Yellow, 40 840970.646693
Touring-1000 Blue, 60 835290.155817
Touring-1000 Yellow, 60 826141.287192
Touring-1000 Blue, 46 810708.725268 11
<results truncated>

P WOWoo~Noul s WwWN PR
Y = Y

This is probably a more efficient thing to do using Analysis Services, but you often need this
kind of ad hoc query against the OLTP database. These functions really add tremendous power to
the SQL language. Be careful with them, however, since they do not actually have to do with the
order of the table itself, rather they calculate a position within a set, which is specified in the OVER
clause.

You cannot use the ranking functions in a WHERE clause, so you will have to use a derived table,
or a CTE to preprocess the query: for example, say we wanted to only look at the bottom 10 percent
of sales, we can change our query to use NTILE with a parameter of 10 (10 equal groups) and get only
those in group 10:

WITH salesSubset AS
(
SELECT product.name as product, sum(salesOrderDetail.lineTotal) as total
FROM sales.salesOrderDetail as salesOrderDetail
JOIN sales.salesOrderHeader as salesOrderHeader
ON salesOrderHeader.salesOrderId = salesOrderDetail.salesOrderId
JOIN production.product as product
ON product.productId = salesOrderDetail.productId
WHERE orderDate >= '1/1/2004' and orderDate < '1/1/2005'
GROUP BY product.name

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

SELECT *
FROM (SELECT product, total,
RANK() over (order by total desc) as 'RANK',
NTILE(10) over (order by total desc) as 'NTILE(10)'
FROM salesSubset) as productOrders
WHERE [NTILE(20)] = 10

With NTILE, if you put a tiling number greater than the number of values in the set, you will get
a sequential number for all of the rows, in the proper order for the data, but you will not get all groups in
the data. It can be confusing.

New Feature T-SQL has added the standard SQL functions ROW_NUMBER, RANK, DENSE_RANK, and NTILE.
They make coding statements that require ordering far easier, as well as bring T-SQL a bit closer to standard SQL
in addition to PL/SQL and DB2 SQL, which already have them.

EXCEPT and INTERSECT

EXCEPT and INTERSECT are new clauses that are in the same family as UNION in that they are used to
combine multiple disparate query results into a single resultset. They give us the ability to do a few
more interesting sorts of things with the data. As you know, UNION takes two sets of data that are
shaped the same (same columns, same data types, or types that can be coerced into the same type)
and lets you combine them. EXCEPT and INTERSECT have the same requirements to have the sets be
alike, but they do different operations on them:

e EXCEPT: Takes the first set of data and compares it with the second set. Only values that exist
in the first set, but not in the second, are returned.

* INTERSECT: Compares the two sets and returns only rows that each set has in common.

As an example, consider that we have a table that has a list of users and the projects that they

have worked on (the actual table may be less readable, but the concept is the same):

CREATE TABLE projectPerson

(
personld VARCHAR (10),
projectId VARCHAR(10),
PRIMARY KEY (personld, projectId)

)

go

INSERT INTO projectPerson VALUES ('joeb','projBig')
INSERT INTO projectPerson VALUES ('joeb','projLittle')
INSERT INTO projectPerson VALUES ('fredf','projBig')
INSERT INTO projectPerson VALUES ('homerr','projLittle’)
INSERT INTO projectPerson VALUES ('stevegr','projBig')
INSERT INTO projectPerson VALUES ('stevegr','projLittle’)
go
So we can see that joeb worked on projBig and projLittle. Now we can write the following
queries. Using UNION, we could see who worked on one project or both projects:

83

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

SELECT personId

FROM projectPerson

WHERE projectId = 'projBig’
UNION

SELECT personId

FROM projectPerson

WHERE projectId = 'projLittle’

which returns the following:

personld
fredf
homerr
joeb
stevegr

Next, if you want to see who worked only on projLittle, but not projBig, this was pretty ugly in
SQL Server 2000.

SELECT personId
FROM projectPerson as projlLittle
WHERE projectId = 'projLittle’
AND NOT EXISTS (SELECT *
FROM projectPerson as projBig
WHERE projBig.projectId = 'projBig'
and projBig.personld = projLittle.personId)

In 2005, you can run the following:

--worked on projBig but not projlLittle
SELECT personId

FROM projectPerson

WHERE projectId = 'projlLittle’

EXCEPT

SELECT personId

FROM projectPerson

WHERE projectId = 'projBig’

This returns the following:

personld

homerr

Finally, say we want to see who worked only on both projects. In 2000, we need to run the query
we did for INTERSECT, and UNION the result with the opposite, which is just too messy to be of value
here. In 2005, the query is very straightforward:

SELECT personId

FROM projectPerson

WHERE projectId = 'projBig’
INTERSECT

SELECT personId

FROM projectPerson

WHERE projectId = 'projlLittle’

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

This returns

personId

joeb
stevegr

New Feature T-SQL has added the relational operators INTERSECT and EXCEPT to make determining
characteristics about like sets easier to perform.

Synonyms
Another feature that is being added to SQL Server 2005 is synonyms. Synonyms give you the ability
to assign different names to objects, for a couple of reasons:

* Ability to alias object names: For example, using the employee table as EMP

* Ability to shorten names: Especially when dealing with three and four part names—for example,
server.database.owner.object to object

Synonyms can be created for the following objects:

e Tables (including temporary tables)

e Views

* Stored procedures (CLR and T-SQL)

* Replication filter procedures

* Extended stored procedures

¢ Table-valued functions (CLR and T-SQL)

¢ SQL scalar functions (CLR and T-SQL)

» User-defined aggregate functions (CLR)

The commands for creating synonyms are quite simple:
o CREATE SYNONYM <synonym name> FOR <object name>
¢ DROP SYNONYM

For example, in the AdventureWorksDW database, say we wanted access to the Adventurelorks.
HumanResources.Employee table. We might create an Emp synonym, like this:

CREATE SYNONYM Emp FOR AdventureWorks.HumanResources.Employee
Now to see all of the Employees, we use the following:

SELECT * from Emp
Finally, we drop the synonym:

DROP SYNONYM Emp

Security is much like stored procedure security is in previous versions. If the object used is
owned by the same owner, and the user has rights to the synonym, then it is the same as giving this

85

86

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

user rights to the object (only via use of the synonym, not the base object). If the object and synonym
have different owners, then the security chain is broken, and rights to the base object must be checked.
For example, let’s create a new login and user in the AdventureWorks database:

CREATE LOGIN ANDREW WITH PASSWORD = 'ANDREW1'
CREATE USER ANDREW FOR LOGIN ANDREW

Now, we will create a synonym and a view on the sales.customer table.

CREATE SYNONYM synSecure FOR sales.customer

GO

CREATE VIEW viewSecure --as a contrasting example
As

SELECT *

FROM sales.customer

GO

Then we will grant all rights on each to user ANDREW on these two objects:

GRANT SELECT, INSERT,UPDATE,DELETE ON synSecure to ANDREW
GRANT SELECT,INSERT,UPDATE,DELETE ON viewSecure to ANDREW

Now, change security context to user ANDREW and try to select from the base table:

EXECUTE AS LOGIN='ANDREW'
SELECT * from sales.customer

This returns the expected error:

Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object 'Customer', database 'AdventureWorks',
schema 'Sales'.

while both of these will return the entire table:

SELECT * from viewSecure
SELECT * from synSecure

This works because both the synonym and the object are owned by the same user, in our case
dbo. If you want to change the owner of an object or schema, use the ALTER AUTHORIZATION command.

New Feature Synonyms give you the capability to reference objects using different names for simplification
or encapsulation.

General Development

In addition to the commands you use to define your DDL and DML, T-SQL supports commands to
implement functional code in stored procedures, functions, triggers, and batches. There have been
several changes and new features for T-SQL commands, and we will discuss these in this section:

e Error handling: Some ability to deal with errors in T-SQL code

* .WRITE extension to the UPDATE statement: Easy mechanism to support chunked updates to
(max) datatypes

e EXECUTE: Extensions to EXECUTE to specify a server at which to execute the code

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

* Code security context: Extensions to procedure and function declarations to specify security
context

e _NET declarations statements: Extensions to declare .NET assemblies for use in T-SQL

Error Handling

For as long as any T-SQL programmer can remember, error handling has been the weakest part of
writing T-SQL. The story in SQL Server 2005 is getting far better, as it will now support the use of
TRY...CATCH constructs for providing rich error handling.

Before we show you the TRY...CATCH construct, we’'ll establish how this would need to be done in
SQL Server 2000. We'll create the following two tables (again, if you're following along, create these
tables in your own database, or simply in tempdb):

CREATE SCHEMA Entertainment
CREATE TABLE TV

(
TVid int primary key,
location varchar(20),
diagonalWidth int
CONSTRAINT CKEntertainment tv_checkWidth CHECK (diagonalWidth >= 30)
)
go
CREATE TABLE dbo.error log
(
tableName sysname,
userName sysname,
errorNumber int,
errorSeverity int,
errorState int,
errorMessage varchar(4000)
)
GO

In previous versions of SQL Server, logging and handling errors was ugly, and required querying
the @@error system variable to see if a runtime error had occurred, and then you could do what you
wanted. Generally speaking, we like to include a facility for logging that an error occurs. For example:

CREATE PROCEDURE entertainment.tv$insert

(
@Tvid int,
@location varchar(30),
@diagonalWidth int

)

AS

declare @Error int
BEGIN TRANSACTION
--Insert a row

INSERT entertainment.TV (TVid, location, diagonalWidth)
VALUES(@TVid, @location, @diagonalWidth)

87

88

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

--save @@ERROR so we don't lose it.
SET @Error=@@ERROR
IF @Error<>0
BEGIN
-- an error has occurred
GOTO ErrorHandler
END

COMMIT TRANSACTION
GOTO ExitProc

ErrorHandler:
-- Rollback the transaction
ROLLBACK TRANSACTION
-- log the error into the error log table
INSERT dbo.error log (tableName, userName,
errorNumber, errorSeverity ,errorState ,
errorMessage)
VALUES('TV',suser_sname(),@Error,0,0, 'We do not know the message!')
ExitProc:
GO

If we execute the procedure with an invalid parameter value disallowed by our CHECK constraint:
exec entertainment.tv$insert @TVid = 1, @location = 'Bed Room', @diagonalWidth = 29

since our table has a CHECK constraint making sure that the diagonalWidth column is 30 or greater,
this returns the following:

Msg 547, Level 16, State 0, Procedure tv$insert, Line 13

The INSERT statement conflicted with the CHECK constraint

"CKEntertainment tv_checkWidth". The conflict occurred in database "AdventureWorks"
,table "TV", column 'diagonalWidth'.

The statement has been terminated.

Checking the error log table, the error was logged, though somewhat useless:
SELECT * FROM dbo.error_log

This produces

tableName userName errorID errorNumber errorSeverity errorState
TV DOMAINNAME\ LBDAVI 1 547 0 0
errorMessage

We do not know the message!

Error handling quickly becomes a rather large percentage of the code with repetitive blocks of
code used to check for an error. Even worse, we could not stop this message from being sent to the
client. So the burden of deciding what went wrong was placed on the client, based on using these

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

error messages. Needless to say, error handling in SQL Server 2000 and earlier was a real pain, and
this often lead to applications NOT using CHECK constraints.

TRY...CATCH lets us build error handling at the level we need, in the way we need to, by setting a
region where if any error occurs, it will break out of the region and head to an error handler. The
basic structure is

BEGIN TRY
<code>
END TRY
BEGIN CATCH
<code>
END CATCH

So if any error occurs in the TRY block, execution is diverted to the CATCH block and the error can
be dealt with. For example, take a look at the following simple code sample:

BEGIN TRY
RAISERROR ('Something is amiss',16,1)
END TRY
BEGIN CATCH
select ERROR_NUMBER() as ERROR_NUMBER,
ERROR_SEVERITY() as ERROR_SEVERITY,
ERROR_STATE() as ERROR_STATE,
ERROR_MESSAGE() as ERROR_MESSAGE
END CATCH

In the TRY block, all we are going to do is raise an error. Running this we get the following:

ERROR_NUMBER ERROR_SEVERITY ERROR_STATE ERROR_MESSAGE

50000 16 1 Something is amiss

Notice when you execute this, you never see

Msg 50000, Level 16, State 1, Line 1
Something is amiss

Now let’s look at a more detailed, more interesting example. First, we clear the tables we have
built for our examples:

DELETE FROM entertainment.TV --in case you have added rows
DELETE FROM dbo.error_ log

Next, we recode the procedure to employ TRY and CATCH blocks. Far less code is required, and it
is much clearer what is going on.

ALTER PROCEDURE entertainment.tv$insert
(
@TVid int,
@location varchar(30),
@diagonalWidth int

89

90 CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

AS
SET NOCOUNT ON
BEGIN TRY
BEGIN TRANSACTION
INSERT TV (TVid, location, diagonalWidth)
VALUES(@TVid, @location, @diagonalWidth)
COMMIT TRANSACTION
END TRY
BEGIN CATCH
ROLLBACK TRANSACTION
INSERT dbo.error log (tableName, userName,
errorNumber, errorSeverity ,errorState ,
errorMessage)
VALUES('TV',suser_sname(),ERROR_NUMBER(),
ERROR_SEVERITY(), ERROR STATE(), ERROR MESSAGE())
RAISERROR ('Error creating new TV row',16,1)
END CATCH

Execution goes into the TRY block, starts a transaction, and then creates rows in our table. If it
fails, we fall into the CATCH block where the error is sent to the log procedure as it was in the previous
example, only we get access to the error information so we can insert meaningful information,
rather than only the error number.

Now execute the procedure and check the error log table.

exec entertainment.tv$insert @TVid = 1, @location = 'Bed Room',
@diagonalWidth = 29

GO

SELECT * FROM dbo.error log

GO

This returns the error message we created:

Msg 50000, Level 16, State 1, Procedure tv$insert, Line 18
Error creating new TV row

And from the SELECT from the error log:

tableName userName errorID errorNumber errorSeverity errorState
v COMPASS.NET\LBDAVI 4 547 16 0
errorMessage

The INSERT statement conflicted with the CHECK constraint
"CKEntertainment_tv_checkWidth". The conflict occurred in database "AdventureWorks"
, table "TV", column 'diagonalWidth'.

we get the full error message. So we can save off the “ugly” error message and try to give a better
message. It is not perfect, but it is leaps and bounds above what we had. The main limitation is that
we will have to do some messy work to translate that constraint to a usable message. But at least this
message was not sent to the user.

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

But this is not all. TRY...CATCH blocks can be nested to give you powerful error handling capabilities
when nesting calls. For example, say we create the following procedure:

CREATE PROCEDURE dbo.raise an_error
AS
BEGIN
BEGIN TRY
raiserror ('Boom, boom, boom, boom',16,1)
END TRY
BEGIN CATCH --just catch it, return it as a select,
--and raise another error
SELECT ERROR_NUMBER() AS ErrorNumber,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState, ERROR_LINE() as Errorline,
ERROR_PROCEDURE() as ErrorProcedure,
ERROR_MESSAGE() as ErrorMessage
RAISERROR ('Error in procedure raise an_error',16,1)
END CATCH
END

go

So all this procedure will do is raise an error, causing our CATCH block to start, select out the error
as a resultset, and then reraise the error. This reraising of the error causes there to be a single point
of impact for error handling. You can decide what to do with it when you call the procedure. For
example, consider the following batch that we will use to call this procedure:

SET NOCOUNT ON
BEGIN TRY
exec raise_an_error --@no_parm = 1 (we will uncomment this for a test
select 'I am never getting here'
END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS ErrorNumber, ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState, ERROR_LINE() as Errorline,
Ecast(ERROR_PROCEDURE() as varchar(30)) as ErrorProcedure,
cast(ERROR_MESSAGE() as varchar(40))as ErrorMessage
END CATCH

Running this, which simply causes an error to be raised by the subordinate procedure, we get
two result sets:
First:

ErrorNumber ErrorSeverity ErrorState ErrorLine ErrorProcedure

50000 16 1 5 raise_an_error

Boom, boom, boom, boom

91

92

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Then:

ErrorNumber ErrorSeverity ErrorState ErrorLine ErrorProcedure

50000 16 1 12 raise an error

Error in procedure raise_an_error

Uncomment the @no_parm = 1 bit from the statement, and you will see that that error is trapped
and the message "Procedure raise an_error has no parameters and arguments were supplied.”
is returned as a resultset.

If you want to ignore errors altogether, you can include an empty CATCH block:

SET NOCOUNT ON

BEGIN TRY
exec raise an_error @no_parm = 1
select 'hi'

END TRY

BEGIN CATCH

END CATCH

You can also see that in all cases the code never executes the select 'hi' statement. There is no
RESUME type of action in the TRY...CATCH way of handling errors.

While there is an error raised because of the invalid parameter, it is not visible to the caller. So it
isincredibly important that you make certain that a CATCH handler is included unless you really don’t
want the error raised.

Warning Obviously, this is one of those places where you really need to be careful. In all probability, you will
want to send up a flag of some kind to the client for most errors, though there are times when this is not the case.

The one type of error that will not be handled by the TRY...CATCH mechanism is a syntax error.
For example:

SET NOCOUNT ON
BEGIN TRY
exeec procedure --error here is on purpose!

END TRY
BEGIN CATCH
END CATCH

This returns the following:

Msg 102, Level 15, State 1, Line 3
Incorrect syntax near 'exeec'.

The only case where TRY...CATCH captures syntax errors is when used in an EXECUTE ('<SQL CODE>")
situation. Here if you execute the following:

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

SET NOCOUNT ON
BEGIN TRY
exec ('seeelect *')

END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS ErrorNumber, ERROR SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState, ERROR_LINE() as Errorline,
cast(ERROR_PROCEDURE() as varchar(60)) as ErrorProcedure,
cast(ERROR_MESSAGE() as varchar(550))as ErrorMessage
END CATCH

an error will be returned via the SELECT statement in the CATCH block. One of the limitations that you
will have to deal with is when you are doing several operations in the same batch. For example,
consider our tv$insert procedure. Instead of inserting a single row, let’s say we are going to insert
tWO rows:

BEGIN TRANSACTION

INSERT TV (Tvid, location, diagonalWidth)
VALUES(@TVid, @location, @diagonalWidth)
--second insert:

INSERT TV (Tvid, location, diagonalWidth)
VALUES(@TVid, @location, @diagonalWidth / 2)

COMMIT TRANSACTION

How would we tell the two inserts apart if one of them had an error? It would not be possible, as
either statement could break the rules of the TV table’s CHECK constraint. In this case, one possible
way to deal with this would be a custom error message value. So you might do something like this:

ALTER PROCEDURE entertainment.tv$insert

(
@Tvid int,
@location varchar(30),
@diagonalWidth int

)

AS

SET NOCOUNT ON
DECLARE @errorMessage varchar(2000)
BEGIN TRY
BEGIN TRANSACTION
SET @errorMessage = 'Error inserting TV with diagonalWidth / 1'
INSERT TV (Tvid, location, diagonalWidth)
VALUES(@TVid, @location, @diagonalWidth)

--second insert:

SET @errorMessage = 'Error inserting TV with diagonalWidth / 2'
INSERT TV (Tvid, location, diagonalWidth)

VALUES(@TVid, @location, @diagonalWidth / 2)

COMMIT TRANSACTION
END TRY

93

94 CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

BEGIN CATCH
ROLLBACK TRANSACTION
INSERT dbo.error log VALUES('TV',suser_ sname(),
ERROR_NUMBER (), ERROR_SEVERITY(),
ERROR_STATE(), ERROR MESSAGE())
RAISERROR (@errorMessage,16,1)
END CATCH
GO

Now we can execute it:

exec entertainment.tv$insert @TVid = 10, @location = 'Bed Room',
@diagonalWidth = 30

This returns

Msg 50000, Level 16, State 1, Procedure tv$insert, Line 28
Error inserting TV with diagonalWidth / 1

And then again with a number big enough to satisfy it, but not when it is divided by two:

exec entertainment.tv$insert @TVid = 11, @location = 'Bed Room',
@diagonalWidth = 60

which returns

Msg 50000, Level 16, State 1, Procedure tv$insert, Line 28
Error inserting TV with diagonalWidth / 2

The key here (other than we really like TV and don’t like small ones) is to make sure to give your
CATCHblock enough information to raise a useful error, or the error messages you may produce using
the new error handling will not be all that much better than what we had before.

Error handling in SQL Server 2005 is vastly improved over previous versions, but it is going to
take a big mindshift to get us there. Once you start blocking errors from the client that has expected
errors in the past, you may break code by trying to fix it. So careful study and some re-engineering
will likely be in order to really start using the new error handling capabilities.

Change The new TRY and CATCH blocks make safe coding easier for handling errors, including stopping error
messages from ever making it to the client.

WRITE Extension to the UPDATE Statement

In previous versions of SQL Server, modifying the data in text and image columns was a real beast
using T-SQL code. There were arcane commands READTEXT and WRITETEXT to do “chunked” reads
and writes (just reading and writing part of a value to save the resources of fetching huge amounts of
data). In SQL Server 2005, the use of the text and image types is being deprecated for the new (max)
datatypes: varchar(max), nvarchar (max), and varrbinary(max). Text and image are still available, but
their use should be phased out in favor of the far better (max) types.

For the most part, you can treat the max datatypes just like their regular 8000 byte or less coun-
terparts, butif you are dealing with very large values, this may not be desired. Each of the (max) types
can store up to 2GB in a single column. Imagine having to fetch this value to the client, make some
changes, and then issue an UPDATE statement for a two-character change? RAM is cheap, but not

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

cheap enough to put 4GB on all of your machines. So we can do a “chunked” update of the data in
the row using a new extension to the UPDATE statement. (Note that you can do chunked reads simply
by using the substring function.)

As an example, consider the following simple table with a varchar(max) column:

create table testBIGtext
(

testBIGtextId int PRIMARY KEY,
value varchar (max)

Now we create a new value simply as an empty string:

insert into testBIGtext
values(1,'")

Next, we just build aloop and, using .WRITE, we put some text into the value at an offset for some
length. Note that the offset must be less than or equal to the current length of the value in the column.
The syntax is shown here:

UPDATE <tableName>
SET <(max)columnName> .WRITE(<scalar value>, <offset in column>,<# of bytes>
WHERE ...

Then we just start a loop and write 1000 of each letter of the alphabet into the value column:

DECLARE @offset int
SET @offset = 0
WHILE @offset < 26

BEGIN
UPDATE testBIGtext
--the text I am writing is just starting at the letter A --> char(97)
--and increasing by adding the value of offset to 97 char(97) = a
--char (98) = b. It is also used as the offset in the varchar(max) column.
--It is multiplied by the length of the data being written to fill a
--pattern of aaabbbccc...zzz only with a 1000 of each
SET value.write(replicate(char(97 + @offset),1000),@offset*1000, 1000)
WHERE testBIGTextId = 1
SET @offset = @offset + 1
END

Everything else is just plain SQL. To check to make sure our data is in there:

select testBIGtextId, len(value) as CharlLength
from testBIGtext

This returns the following:

testBIGtextId CharLength

This is a tremendous win for SQL programmers. Long datatypes can easily be worked with using
normal functions, plus there’s a chunking mechanism so that when we have a column holding a
couple hundred megabytes of information, we don’t have to replace the whole thing in one
operation.

95

96

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

New Feature .WRITE allows for writing “chunks” of data into a large varchar (max), nvarchar (max), or
varbinary(max) column.

EXECUTE

The EXECUTE command in previous versions of SQL Server could only be used to execute SQL on the
same server. In SQL Server 2005, EXECUTE has added an AT parameter to specify that the command be
executed on a linked server.

To see this in action, let’s set up our local server as a remote linked server. So we will create a
linked server using sp_addlinkedserver, call it LocalLinkedServer, and point this to our instance of
SQL Server:

--note, if you are not running SOL Server as the default instance, you may

--have to change where I have specified localhost to point to your server instance

EXECUTE sp_addlinkedserver @server='LocallinkedServer', @srvproduct="",
@provider="SQLOLEDB', @datasrc='localhost’

--enable the linked server to allow remote procedure calls
EXECUTE sp serveroption 'LocallinkedServer','RPC OUT',True
Now we can execute our T-SQL on the linked server by specifying AT and the linked server name:

EXECUTE('SELECT * FROM AdventureWorks.Production.Culture') AT LocallinkedServer

The query is executed on the linked server and the results returned. The AT parameter only
applies to using EXECUTE on batches of statements, not on explicit stored procedure or function calls.
You can then use sp_dropserver to get rid of the linked server:

EXECUTE sp_dropserver LocallinkedServer

New Feature The EXECUTE command allows the specifying of a linked server to send the T-SQL commands
to by using the AT keyword.

For completeness, we need to make mention that there already exists a method of executing a
batch of commands on another SQL Server, using sp_executesql. It has the added benefit of allowing for
parameter and return values. This procedure can also be called remotely as follows:

EXECUTE ourlinkedServer.master.dbo.sp executesql
@statement = N'SELECT * FROM AdventureWorks.Production.Culture’

Code Security Context

The EXECUTE AS clause on a procedure or function declaration allows you to define the security
context in which a stored procedure or function (other than inline table-valued functions) is executed.
Without this clause, the object executes in the security context of the CALLER. Note that this does not
affect the execution of the procedure unless there is a break in the ownership chain. Any object
owned by the creator of the procedure will be available to the user.

The syntax of this clause is

CREATE PROCEDURE <procedureName>
[parameters]
WITH EXECUTE AS <option>

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

AS
<Procedure definition>

It is the same syntax when used for functions. There are four possible values for the EXECUTE AS
option:

e EXECUTE AS CALLER (the default)
* EXECUTE AS SELF

e EXECUTE AS OWNER

e EXECUTE AS USER=<username>

You can also execute one of these as a stand-alone command to change the context of who is
executing the procedure back to the CALLER if needed. One additional statement is included: REVERT
to go back to the context set in the WITH clause of the procedure declaration. As an example, we're
going to create a user, named barney, and then a procedure that uses the EXECUTE AS option on a
procedure to show the basics of EXECUTE AS.

We'll start by creating several users, tables, and procedures:

--this user will be the owner of the primary schema
CREATE LOGIN mainOwner WITH PASSWORD = 'mainOwnery’
CREATE USER mainOwner FOR LOGIN mainOwner

GRANT CREATE SCHEMA to mainOwner

GRANT CREATE TABLE to mainOwner

--this will be the procedure creator

CREATE LOGIN secondaryOwner WITH PASSWORD = 'secondaryOwnery'
CREATE USER secondaryOwner FOR LOGIN secondaryOwner

GRANT CREATE SCHEMA to secondaryOwner

GRANT CREATE PROCEDURE to secondaryOwner

GRANT CREATE TABLE to secondaryOwner

--this will be the average user who needs to access data
CREATE LOGIN aveSchlub WITH PASSWORD = 'aveSchluby'
CREATE USER aveSchlub FOR LOGIN aveSchlub

Then we change to the context of the main object owner, create a new schema, and then create
a table with some rows:

EXECUTE AS USER='mainOwner'

GO

CREATE SCHEMA mainOwnersSchema

GO

CREATE TABLE mainOwnersSchema.person

(
personld int constraint PKtestAccess person primary key,
firstName varchar(20),
lastName varchar(20)

)

GO

INSERT INTO mainOwnersSchema.person
VALUES (1, 'Paul','McCartney')
INSERT INTO mainOwnersSchema.person
VALUES (2, 'Pete', 'Townshend")

GO

97

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Next, this user gives SELECT permissions to the secondaryOwner user:
GRANT SELECT on mainOwnersSchema.person to secondaryOwner

Then we set the context to the secondary user to create the procedure:

REVERT --we can step back on the stack of principals,
--but we can't change directly to secondaryOwner

go
EXECUTE AS USER = 'secondaryOwner'

go
Then we create a schema and another table:

CREATE SCHEMA secondaryOwnerSchema

GO

CREATE TABLE secondaryOwnerSchema.otherPerson

(
personld int constraint PKtestAccess person primary key,
firstName varchar(20),
lastName varchar(20)

)

GO

INSERT INTO secondaryOwnerSchema.otherPerson
VALUES (1, 'Rocky','Racoon’)

INSERT INTO secondaryOwnerSchema.otherPerson
VALUES (2, 'Sally','Simpson')

GO

Then we create two procedures as the secondary users, one for the WITH EXECUTE AS as CALLER,
which is the default, then SELF, which puts it in the context of the creator, in this case secondaryOwner:

CREATE PROCEDURE secondaryOwnerSchema.person$asCaller

WITH EXECUTE AS CALLER --this is the default

AS

SELECT personId, firstName, lastName

FROM secondaryOwnerSchema.otherPerson --<-- ownership same as proc
SELECT personld, firstName, lastName

FROM mainOwnersSchema.person --<-- breaks ownership chain

GO

CREATE PROCEDURE secondaryOwnerSchema.person$asSelf

WITH EXECUTE AS SELF --now this runs in context of secondaryOwner,
--since it created it

AS

SELECT personld, firstName, lastName

FROM secondaryOwnerSchema.otherPerson --<-- ownership same as proc

SELECT personld, firstName, lastName
FROM mainOwnersSchema.person --<-- breaks ownership chain
GO

Next, we grant rights on the procedure to the aveSchlub user:

GRANT EXECUTE ON secondaryOwnerSchema.person$asCaller to aveSchlub
GRANT EXECUTE ON secondaryOwnerSchema.person$asSelf to aveSchlub

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Then we change to the context of aveSchlub:

REVERT

GO

EXECUTE AS USER = 'aveSchlub'
GO

And execute the procedure:

--this proc is in context of the caller, in this case, aveSchlub
execute secondaryOwnerSchema.person$asCaller

which gives us the following output:

personId firstName lastName
1 Rocky Racoon
2 Sally Simpson

Msg 229, Level 14, State 5, Procedure person$asCaller, Line 4
SELECT permission denied on object 'person', database 'tempdb', schema
'mainOwnersSchema’.

Next, we execute the asSelf variant:

--secondaryOwner, so it works
execute secondaryOwnerSchema.person$asSelf

which gives us the following output:

personld firstName lastName
1 Rocky Racoon

2 Sally Simpson
personId firstName lastName
1 Paul McCartney
2 Pete Townshend

What makes this different is that when the ownership chain is broken, the security context we
are in is the secondaryUser, not the context of the caller, aveSchlub. This is a really cool feature, as we
can now give users temporary rights that will not even be apparent to them, and will not require
granting any permissions.

Itis not, however, a feature that should be overused, as it could be all too easy to just build your
procedures in the context of the dbo. One nice side effect of this is that we could use it instead of
chaining, by setting EXECUTE AS to a user who can access a different database directly, so the system
user may have rights to the database, but the executing user cannot. These are just the basics;
EXECUTE AS is discussed in more detail in Chapter 10.

NET Declarations

.NET is tightly integrated with SQL Server 2005. .NET integration is covered in greater depth in
Chapter 5, so in this section we are simply going to cover the commands to make assemblies available
for use in T-SQL code.

99

100

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Assembly Maintenance

Prior to using .NET assemblies in T-SQL code, you must declare and load them from the DLL file.
CREATE ASSEMBLY loads a managed class into SQL Server 2005 memory space so that the CLR data-
base objects can be created. (See the next section for more information on the CLR Database Object
declarations.)

The syntax of the CREATE ASSEMBLY command is as follows:

CREATE ASSEMBLY <assemblyName> FROM <assemblylocation>
For example:
CREATE ASSEMBLY dateObject FROM 'C:\projects\bin\Debug\setDate.dll'

After loading, the assembly can be subsequently removed using the DROP ASSEMBLY command, as
shown in this example:

DROP ASSEMBLY dateObject

An assembly cannot be dropped if any CLR database objects reference it. These references can
be seen using Management Studio by right-clicking the Assembly. The assembly commands have
more options to them that we will not cover here.

CLR Database Objects

Once an assembly has been created as an OS file and created as a database object, it can then be
used to declare objects, including stored procedures, functions, triggers, user-defined types, and
user-defined aggregate functions that it has been designed to. The syntax of CREATE and ALTER for the
T-SQL objects also includes the ability to reference CLR objects instead of T-SQL. The basic syntax
for these CLR extensions is

[CREATE][ALTER] DBOBIECTTYPE ([parameters])
AS EXTERNAL NAME assembly name:class_name

For example, to create a procedure that points to a .NET assembly that has been created as an
object on the SQL Server, in this case a fictitious one called getDateValueString, we could build the
following procedure:

CREATE PROCEDURE dateString
(
@dateValue datetime output
) AS EXTERNAL NAME dateObject:utf8string::getDateValueString

The following commands are affected by this change:

e CREATE/ALTER PROCEDURE
e CREATE/ALTER FUNCTION
e CREATE/ALTER TRIGGER

e CREATE/ALTER TYPE

e CREATE/ALTER AGGREGATE

This has been just a very brief introduction to the new SQL Server commands that revolve
around .NET integration. .NET integration is discussed in much more detail in Chapter 5 of this book.

CHAPTER 3 T-SQL ENHANCEMENTS FOR DEVELOPERS

Summary

In this chapter, we looked at a bunch of new features that have been added to T-SQL. The changes
are not vast, but several of them will affect the way you code objects in important ways. For example:

Error handling: Error handling had always been pretty bad in T-SQL, and it is vastly improved
in SQL Server 2005. Every stored procedure will likely be done differently based on the new
error handling.

CTEs: Using them will make some complex queries leaner, and make hierarchies easier to
deal with.

APPLY join operator: Table-based user-defined functions can now take columns as parameters
so they can be effectively used in the FROM clause of queries.

Ranking functions: Powerful functions that let you add sequence information about your sets.

.WRITE on UPDATE statement: Allows for chunked updates of large text objects using T-SQL
rather than READTEXT and WRITETEXT. (No pointers to deal with in code!)

Output Clause: Cool way to see what changes are made to a table without a trigger.
Synonyms: Allows you to virtually rename any object in SQL Server.

INTERSECT and EXCEPT: Set-based operators that work like UNION for finding rows that are in
both sets (INTERSECT) or the differences between two sets (EXCEPT).

PIVOT and UNPIVOT: Operators that give you the ability to shift the rows of a table to the
columns (PIVOT) and back again (UNPIVOT).

All of these changes extend an already good language and make it better, giving you power to
manipulate data in faster and more convenient ways.

101

CHAPTER 4

T-SQL Enhancements for DBAS

SQL Server 2005 includes a bevy of new T-SQL commands to make the jobs (and lives) of DBAs
easier and working with the database system more efficient. In this chapter, we’ll discuss these new
features and changes, including replacement of the cryptic system tables with a new set of more
usable metadata views, the addition of DDL triggers to simplify auditing of database object changes,
avariety of indexing and performance enhancements for tables and views, a new high-concurrency
isolation level, and a few new statements to assist with the ever-present question of data integrity.

Metadata Views

Most SQL Server DBAs do not exactly relish the idea of having to crawl through the system tables.

Remembering the various types of id columns (which are often misleadingly named) and attempting
to decode columns like xtype is often an error-prone task and not a productive use of the DBA’s time.
It can be surprising to new users of SQL Server 2000 that even a task as mundane as listing all of the

tables in a database with their columns and datatypes would require T-SQL as odd as the following:

SELECT

so.name AS theTable,

sc.name AS theColumn,

st.name AS theType
FROM sysobjects so
JOIN syscolumns sc ON so.id = sc.id
JOIN systypes st ON sc.xtype = st.xtype
WHERE

so.type = 'U'

The SQL Server 2005 data dictionary situation is quite a bit better. Even for this basic task, the
required query is simpler and easier to understand:

SELECT
t.name AS theTable,
c.name AS theColumn,
ty.name AS theType
FROM sys.tables t
JOIN sys.columns c ON t.object id = c.object id
JOIN sys.types ty ON c.system type id = ty.system type id

It’s not just the lack of a WHERE clause that makes this query more readable; it’s the little differences,
like primary key column names that actually make sense!

In SQL Server 2005, the system tables from SQL Server 2000 are deprecated, having been replaced
by two new sets of views. For backward-compatibility purposes, the system tables from previous
versions of SQL Server are also still around, in the form of a third set of views. The system tables

103

104

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

themselves are now hidden from direct user contact, but should you have legacy code written
against them, you’ll find that queries will still work and applications will not break; the views do a
good job of mimicking the tables’ functionality. However, the new metadata views offer much
greater usability.

Tables describing objects (e.g., sysobjects and syscolumns) have been replaced by a set of views
called the catalog views. Tables describing system state (e.g., syscacheobjects and syslocks) are
now represented by a set of views called the dynamic management views. And the older tables them-
selves can now be found in a set of views appropriately called the compatibility views. The ANSI
standard INFORMATION_SCHEMA views are also still around, but due to the fact that so much of
the functionality in SQL Server is not ANSI compliant, these views fail to provide much value in SQL
Server 2005.

Compatibility Views

All of the SQL Server 2000 system tables have been migrated into a collection of views in the sys
schema (see Chapter 11 for more on schemas) called the compatibility views. Their behavior is
mostly the same as it was in previous versions of SQL Server, with a few notable changes, primarily
to the sysindexes view. You should attempt to migrate existing code away from the compatibility
views, and start using the new catalog views instead.

Querying the views is basically the same in SQL Server 2005 as it was in previous versions.
SELECT * FROM sysobjects still returns information about objects in the current database. And
SELECT * FROM sysindexes still returns information about indexes. However, some columns have
been deprecated, so you should carefully test existing code before migrating it to SQL Server 2005.
For instance, in SQL Server 2000, the keys column of the sysindexes system table contained a list of
the columns that made up the index. But in SQL Server 2005, that column will always be NULL. Other
columns in the sys.sysindexes view that are not quite backward compatible are dpages, reserved,
used, rowmodctr, maxirow, and statblob. Code that uses these columns should be rewritten to use the
sys.indexes view.

Catalog Views

The catalog views are repositories for “static” metadata. They contain data about both serverwide
and database-specific objects, including logins, tables, and stored procedures, as opposed to more
“dynamic” data, such as locks and the state of the procedure cache. You'll find that they are both
more comprehensive and user-friendly than the system tables in SQL Server 2000 were. For instance,
the sysindexes table in SQL Server 2000 contained a column called indid that would hold various
codes depending on the index type: 0 meant the table was a heap; 1 was a clustered index; and a
value greater than 1 was a nonclustered index, unless it was 255, in which case it wasn’t an index at
all, but an indication that the table had a large object (TEXT or IMAGE) column!

In SQL Server 2005, these cryptic values are gone, and the indid column has been replaced in
the sys.indexes catalog view by a column called type_desc. This column can contain the following
self-explanatory character values: HEAP, CLUSTERED, NONCLUSTERED, and XML. Quite an improvement.
To find a list of all heap tables (tables without clustered indexes) in a SQL Server 2005 database, use
the following query:

SELECT

OBJECT NAME(object_id) AS theTable
FROM sys.indexes
WHERE

type desc = "HEAP'

Many other improvements have been made. For instance, almost all code numbers have been
replaced by English character strings, and bitmasks and other internal structures have been replaced

CHAPTER 4

T-SQL ENHANCEMENTS FOR DBAS 105

by normalized tables. One enhancement in particular that many DBAs will enjoy is the addition of a
column called modify date to the sys.objects views and other views that inherit from it (including
sys.procedures and sys.views). No more trying to pinpoint the last time someone ran an ALTER on
one of the database objects.
Table 4-1 lists some of the key system tables from SQL Server 2000 and the catalog views now
present in SQL Server 2005.

Table 4-1. System Tables and Their Catalog View Equivalents

System Table Catalog View(s) Description
syscolumns sys.columns The sys.columns view contains information about
sys.computed_columns every column in every table in the current database.
sys.foreign_key columns The other views can be used to get information
sys.identity columns about specific types of columns.
syscomments sys.sql modules The sys.sql_modules view and the OBJECT _DEFINITION
Also see the function allow DBAs to get the definition of T-SQL
OBJECT DEFINITION stored procedures, triggers, functions, and views.
function
sysconstraints sys.check constraints These views contain information about column- and
sys.default_constraints table-level CHECK, DEFUALT, PRIMARY KEY, and FOREIGN
sys.key_constraints KEY constraints.
sysdatabases sys.databases This view contains information about every database
on the server.
sysdepends sys.sql_dependencies This view helps DBAs determine which objects are
dependent upon other objects in the system. For
instance, SQL Server will attempt to determine which
tables are referenced by which stored procedures
and expose that mapping in this view. Note that this
view is not guaranteed to contain all dependencies in
the system; due to late binding and dynamic SQL,
some references may not be present at the time of
object creation.
sysfiles sys.database_files This view exposes information about the physical
files that back the current database.
sysforeignkeys sys.foreign keys These views contain data about FOREIGN KEY
sys.foreign key columns constraints.
sysindexes sys.indexes This view contains information about which indexes
have been created on which tables in the current
database.
sysindexkeys sys.index_columns This view, used in conjunction with sys.indexes,
allows DBAs to determine which columns participate
in indexes.
syslogins sys.sql_logins This view exposes data about system logins.
sysobjects sys.objects The sys.objects view contains information about every

sys.procedures
sys.tables
sys.views
sys.triggers

user object in the current database. For information
about specific object types, the sys.procedures,
sys.tables, sys.views, or sys.triggers view can
be used.

106

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Table 4-1 is by no means a comprehensive list of the available catalog views. Virtually every type
of object available in SQL Server 2005 has an associated catalog view. To see a complete list, navigate
to the System Views heading in Object Explorer in SQL Server Management Studio, as shown in
Figure 4-1 (note that in this image, Object Explorer’s filter is being used to limit results to objects in
the sys schema). Throughout the rest of this chapter, we’ll mention various catalog views in the
context of helping to manage the new features discussed.

Fer

Connect = 4 i}
= [Databases ~
= [System Databases
= | | master
[Tables

sys, all_objects
sys, all_parameters

) sys.all_sql_modules

) svs.all_views

[sys. allocation_units

[svs.assemblies

[svs.assembly_Files

[sys.assembly_modules

[sys.assembly_references

[svs.assembly_types

[sys.asymmetric_keys

[svs.backup_devices

[svs.certificates v

Figure 4-1. Catalog views appear in Management Studio under the System Views heading in
Object Explorer.

Dynamic Management Views and Functions

Whereas the catalog views contain data about “static” objects, the dynamic management views and
functions help the user investigate the ever-changing state of the server. Note that the dynamic
management functions are really nothing more than parameterized views—they are not used for
modifying data. These views and functions are, like the catalog views, collected in the sys schema,
but they are prefixed with dm_. Although these views also replace and improve upon system table
functionality from previous versions of SQL Server, the change that will excite most DBAs is the
number of new metrics now available.

One of the most useful new functions is dm_exec_query_plan. This function shows an XML
representation of query plans for cached and active queries and can take as input the plan_handle
value exposed by three of the dynamic management views. The first of these views, dm_exec_requests,
exposes information about what queries are active at the time the view is queried. The second,
dm_exec_query stats, stores aggregate statistics about stored procedures and functions, including
such statistics as last execution time and total working time—it’s a very useful new view! And the
dm_exec_cached plans view replaces the older syscacheobjects system table, with data about
compiled query plans.

As an example, to see the query plans for all active requests with valid plan handles, the following
T-SQL could be used:

SELECT thePlan.query plan

FROM sys.dm exec_requests

OUTER APPLY sys.dm exec_query plan(plan_handle) thePlan
WHERE plan_handle IS NOT NULL

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Note See Chapter 3 for information about the new OUTER APPLY relational operator.

Once an XML query plan has been retrieved, it can be saved to a file with the extension . sqlplan.
Double-click the file and it will open in SQL Server Management Studio, displayed as a graphical query
plan. This feature will prove quite useful for both archiving baseline query plans before performance-
tuning work and for remote troubleshooting. The XML can be opened with any instance of SQL
Server Management Studio, and it does not require connectivity to the server that generated it for
graphical display.

There are many other new dynamic management views—far too many to cover in this chapter.
However, they have been named extremely well for browsing. Those prefixed with dm_exec contain
data relating to actively executing processes. dm_os views contain operating system-related data.
dm_tran views refer to transaction state data. dn_broker and dm_repl views contain data for Service
Broker and replication, respectively. The dynamic management views are available in SQL Server
Management Studio under the System Views heading, as shown in Figure 4-2 (note that in this
image, Object Explorer’s filter is being used to limit results to objects with “dm_" in their name).

Object Explorer

Connect = 4 il

= [Databases ~

= [System Databases
= | | master
[Tables
= [Wiews
= [3

il (Filkered)

| sys,dm_broker_activated_tasks

| sys,dm_broker _connections

[svs.dm_broker_Forwarded_messages
[svs.dm_broker_gueue_monitors

[svs.dm_broker_transmission_status

| sys,dm_child_instances

| sys,dm_clr_appdomains

| sys,dm_clr_loaded_assemblies

| sys,dm_clr_properties

[svs.dm_clr_tasks

[sys.dm_database_mirroring_connections
[sys.dm_db_index_usage_stats

2 sys.dm_db_partition_stats

[svs.dm_exec_background_job_gueue w

Figure 4-2. Dynamic management views appear in Management Studio under the System Views
heading in Object Explorer.

DDL Triggers

A common security requirement for database projects is the ability to audit any kind of change to the
data. Although triggers as implemented in past versions of SQL Server made this very easy for data
modification (inserts and updates), it was quite difficult to audit changes to the underlying schema.
DDL triggers are the answer to this problem.

A DDL trigger can be defined at either a serverwide or databasewide granularity, and triggers
can be set to fire for creation, alteration, or deletion of virtually every SQL Server object type. Unlike
DML triggers, there are no inserted or updated tables, and the update() function does not apply.
Instead, data about the event that fired the trigger can be obtained via the eventdata() function.

DDL triggers are created, altered, and dropped using the same T-SQL statements as DML triggers,
with a slightly different syntax. DDL triggers, like DML triggers, can also be managed using catalog

107

108

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

views (more information on this is presented later in the section “Enumerating DDL Triggers Using
Catalog Views”).

Creating and Altering DDL Triggers
The syntax for creating or altering a DDL trigger is as follows:

{ CREATE | ALTER } TRIGGER trigger name

ON { ALL SERVER | DATABASE }

[WITH <ddl trigger option> [.,n]]

{ FOR | AFTER } { event_type | event group } [,...n]

AS { sql statement [...n] | EXTERNAL NAME < method specifier > }
(5]

<ddl_trigger option> ::=
[ENCRYPTION]
[EXECUTE AS Clause]

<method_specifier> ::=
assembly name.class _name.method name

Note that unlike DML triggers, DDL triggers are not defined on database objects and cannot be
defined as INSTEAD OF triggers.

The most important things to note here are that the triggers can be specified on either an ALL
SERVER or DATABASE level, and that the { event_type | event_group } section controls what event will
cause the trigger to fire. If a trigger is created ON ALL SERVER, it will fire for any event for which it’s
defined, on any database on the entire server. On the other hand, a trigger created on ON DATABASE
will fire only if the event occurs in the database in which it was created.

The ALL SERVER and DATABASE levels have their own event types and event groups for which triggers
can be defined. Database-level events such as CREATE_TABLE cannot be used for a server-level trigger,
and server-level events such as ALTER_LOGIN cannot be used for a database-level trigger. The following
server-level events can be used for DDL triggers:

e CREATE|ALTER|DROP LOGIN

e CREATE|DROP HTTP ENDPOINT

e GRANT|DENY|REVOKE SERVER ACCESS
» CREATE|ALTER|DROP CERT

All other events that can be used for DDL triggers are database-level events. These include
events such as CREATE|ALTER |DROP TABLE, CREATE|ALTER|DROP TRIGGER, and so on. Every DDL event
that can occur in the database can be caught using a DDL trigger. A complete list of the events avail-
able to DDL triggers can be found in the SQL Server Books Online topic “Event Groups for Use with
DDL Triggers.”

One particularly useful event group is the DDL_DATABASE LEVEL EVENTS catchall. This group
includes all DDL events that can occur in a database, and it is useful for situations in which a DBA
might wish to either log, or block, all changes to a database. For instance, the following DDL trigger,
which can be created in any database, will roll back any DDL modifications a user attempts to make,
unless the trigger itself is dropped or disabled:

CREATE TRIGGER NoChanges

ON DATABASE

FOR DDL_DATABASE LEVEL EVENTS
AS

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

SELECT 'DDL IS NOT ALLOWED IN THE CURRENT DATABASE!'
SELECT 'TO ALLOW DDL, DROP THE NoChanges trigger.'
ROLLBACK

Other changes to the trigger syntax that may not seem familiar to SQL Server 2000 DBAs are the
inclusion EXTERNAL NAME and EXECUTE AS clauses:

e The EXTERNAL NAME clause allows a trigger to fire a CLR object. More information on this can
be found in Chapters 5 and 6, which cover CLR integration.

e The EXECUTE AS clause allows the trigger to impersonate another user’s security credentials
when it fires. More information on this feature can be found in Chapter 11, which covers
security.

Dropping DDL Triggers

Dropping DDL triggers is slightly different than dropping DML triggers, as the trigger’s scope must
be specified in the statement. The syntax for dropping a DDL trigger is as follows:

DROP TRIGGER trigger name [,...n]
ON { DATABASE | ALL SERVER } [;]

It’s important to remember the additional ON clause when working with DDL triggers. Failing to
include it will yield an error message stating that the specified trigger does not exist. This can be frus-
trating when you know that the trigger exists, but the system insists that it can’t be found.

Enabling and Disabling DDL Triggers

DDL triggers, like DML triggers, can be enabled and disabled. In SQL Server 2005 this is done via two
new statements, ENABLE TRIGGER and DISABLE TRIGGER. These statements have similar syntax to DROP
TRICGER:

{ ENABLE | DISABLE } TRIGGER trigger name
ON { DATABASE | SERVER } [;]

Note that although DDL triggers can only be enabled or disabled using these statements, DML
triggers can still be enabled or disabled using ALTER TABLE.

Enumerating DDL Triggers Using Catalog Views

For obtaining information about database DDL triggers, DBAs can use the catalog views sys.triggers
and sys.trigger events. Server-level triggers can be enumerated using sys.server_ triggers and
sys.server trigger events. The sys.triggers and sys.server triggers views have the same
column definitions, except for two columns in the sys.triggers view that do not apply to DDL triggers:
is not for replicationandis instead of trigger.The events tables, on the other hand, have the
same column definitions.

The parent_class_desc column can be used to differentiate DDL triggers from DML triggers
when querying sys . triggers. The following query will return the name and creation date of all DDL
triggers in the current database:

SELECT
name,
create_date
FROM sys.triggers
WHERE parent class desc = 'DATABASE'

109

110

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

The events views are related to the triggers views by the object id column. To find out which
events the active server-level triggers in the system will be fired on, use the following query:

SELECT
tr.name,
ev.type desc
FROM sys.server triggers tr
JOIN sys.server trigger events ev ON tr.object id = ev.object id
WHERE tr.is_disabled = 0

Programming DDL Triggers with the eventdata() Function

Without a way to figure out under exactly what conditions the trigger fired, DDL triggers would be
relatively useless for tasks such as logging what events are taking place in a database and when they
are occurring. To provide this functionality, SQL Server 2005 includes the eventdata() function. This
function returns an XML document containing information about the event that fired the trigger.

Each event can return data using a different XML schema, but they all share common base
schemas. Server-level events use the following base schema:

<EVENT_INSTANCE>
<EventType>name</EventType>
<PostTime>date-time</PostTime>
<SPID>spid</SPID>
<ServerName>server name</ServerName>
<LoginName>login</LoginName>
</EVENT_INSTANCE>

Database-level events add a UserName element:

<EVENT_INSTANCE>
<EventType>name</EventType>
<PostTime>date-time</PostTime>
<SPID>spid</SPID>
<ServerName>server name</ServerName>
<LoginName>login</LoginName>
<UserName>user</UserName>

</EVENT_INSTANCE>

Various elements appear in the schemata for events as appropriate. For instance, the object-
based events (CREATE_TABLE, ALTER_PROCEDURE, etc.) add elements for DatabaseName, SchemaName,
ObjectName, and ObjectType, and a TSOLCommand element that contains SetOptions and CommandText
elements.

By querying the XML document, it’s possible to determine every aspect of the event that fired
the trigger. For instance, the following trigger echoes back the username, table name, and CREATE
TABLE syntax used every time a table is created or altered in the database:

CREATE TRIGGER ReturnkEventData
ON DATABASE
FOR CREATE_TABLE, ALTER TABLE
AS

DECLARE @eventData XML

SET @eventData = eventdata()

SELECT
@eventData.query('data(/EVENT_INSTANCE/UserName)') AS UserName,
@eventData.query('data(/EVENT_INSTANCE/ObjectName)') AS ObjectName,
@eventData.query('data(/EVENT_INSTANCE/TSQLCommand/CommandText)') AS CommandText

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Note For more information on working with XML documents in SQL Server, see Chapters 7 and 8.

Of course, this trigger doesn’t have to just select the data back. The data can just as easily be
inserted into a logging table:

CREATE TABLE DDLEventlog

(
EventDate DATETIME NOT NULL,
UserName SYSNAME NOT NULL,
ObjectName SYSNAME NOT NULL,
CommandText VARCHAR(MAX) NOT NULL

)
GO

CREATE TRIGGER ReturnEventData
ON DATABASE
FOR CREATE_TABLE, ALTER TABLE
AS

DECLARE @eventData XML

SET @eventData = eventdata()

INSERT DDLEventlLog (EventDate, UserName, ObjectName, CommandText)
SELECT
GETDATE() AS EventDate,
@eventData.value('data(/EVENT_INSTANCE/UserName)[1]", 'SYSNAME')
AS UserName,
@eventData.value('data(/EVENT_INSTANCE/ObjectName)[1]", 'SYSNAME')
AS ObjectName,
@eventData.value('data(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]",
"VARCHAR(MAX) ") AS CommandText

The event data can also be parsed and used to make decisions about what course of action to
take. For instance, if you have a table called DontDropMe, you could write the following trigger to keep
it from being dropped:

CREATE TRIGGER DontDropDontDropMe
ON DATABASE
FOR DROP_TABLE
AS
DECLARE @eventData XML
SET @eventData = eventdata()

DECLARE @objectName VARCHAR(MAX)
SET @objectName =
CONVERT (VARCHAR (MAX), @eventData.query('data(/EVENT INSTANCE/ObjectName)'))

IF @objectName = 'DontDropMe’

BEGIN
PRINT 'You can not drop DontDropMe!'
ROLLBACK

END

Since the transaction is rolled back if the object name is DontDropMe, it’s impossible to drop that

table when the DontDropDontDropMe trigger is applied to the database. When using DDL triggers for

111

112

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

this type of object-level protection, remember that the trigger fires after the event has finished, but
before the transaction has committed. If a large transaction has taken place and needs to be rolled
back, excessive locking could occur. Proceed with caution until, hopefully, you see instead-of DDL
triggers implemented in a future version of SQL Server.

Indexing and Performance Enhancements

SQL Server 2005 introduces a variety of performance enhancements that DBAs can exploit. These
include various indexing improvements, table and index partitioning, and persisted computed
columns.

The types of indexes available in the SQL Server 2005 relational engine are the same as those
available in SQL Server 2000, with the addition of a specialized XML index type. The basic index
types are clustered and nonclustered. Both types of indexes are implemented internally using a
variant of a B-Tree data structure. A clustered index reorganizes the base data pages of the indexed
table, whereas a nonclustered index is created in separate data pages. A table in SQL Server 2005 can
have a single clustered index and up to 249 nonclustered indexes.

Clustered indexes are generally used to support primary keys and should generally be used to
index “narrow” columns or groups of columns—many sources recommend that clustered index key
columns should not exceed a total of 16 bytes per row. This is due to the fact that the key column
data will be repeated in the leaf nodes of every nonclustered index.

Nonclustered indexes are, by default, used to support unique keys. They are also used for other
types of indexes added for query performance. It's important for DBAs to remember not to go overboard
when creating nonclustered indexes. Each data update of a column that participates in a nonclustered
index will have to be written once to the base table and once to the index pages. Creating too many
nonclustered indexes can, therefore, have a negative impact on data modification performance.

Although the basic index types and functionality (other than for XML) do not change in SQL
Server 2005, index creation and maintenance has been vastly improved. The improvements detailed
in this section will mostly help DBAs do their jobs better in high-performance and high-availability
environments.

Online Indexing

A common problem in high-availability scenarios is how and when to perform operations such as
index creation, which might decrease response times or totally block other transactions. As it’s often
impossible to predict all indexes that a system might require once it goes live, it’s important to be
able to apply these changes to the production system. SQL Server 2005 provides this capability using
its online indexing feature.

Creating, altering, and dropping clustered indexes produces schema modification locks that
block other processes from reading and writing to the table. And creating and altering nonclustered
indexes produces shared locks that block other processes from writing. Both of these can be avoided
using the online indexing feature. Using the feature will allow other processes to continue normal
operations, but performing the indexing operation may be quite a bit slower than in offline mode. If
it’s important that other processes should be able to continue normal operations during indexing—
for instance, when indexing a table in an active OLTP database—this feature should be used. If
concurrency is not important, the default offline indexing mode can be used to more quickly
complete indexing operations.

To use the online indexing option, use the WITH clause for CREATE INDEX, ALTER INDEX, or DROP INDEX:

CREATE INDEX ix_Table
ON Table (Column)
WITH (ONLINE = ON)

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

The default value for the ONLINE option is OFF. It should also be noted that this option is not
available for indexing operations on tables containing LOB datatypes (TEXT, NTEXT, and IMAGE) or
when creating XML indexes.

Controlling Locking During Index Creation

To further control the effects of indexing on other processes that might be attempting to access the
data simultaneously, SQL Server 2005 allows the DBA to specify whether the indexing process can
use row- or page-level locks. Tweaking these options can improve concurrency when creating
indexes in live production systems, but beware: overriding what might be the query optimizer’s best
option can mean that index creation will take a much longer time. These options should be used
only in specific situations in which problems are occurring due to lock contention during index
creation. In most cases, they should be left set to their default values.

The DBA can turn off row locking using the ALLOW_ROW_LOCKS option:

CREATE INDEX ix_Table
ON Table (Column)
WITH (ALLOW ROW_LOCKS = OFF)

Page locking can be turned off using the ALLOW_PAGE_LOCKS option:

CREATE INDEX ix Table
ON Table (Column)
WITH (ALLOW_PAGE LOCKS = OFF)

The default value for both of these options is ON, meaning that both row- and page-level locks
are allowed. You can combine the options with each other or the ONLINE option by separating the
options with a comma:

CREATE INDEX ix_Table
ON Table (Column)
WITH (ONLINE = ON, ALLOW ROW_LOCKS = OFF, ALLOW PAGE LOCKS = OFF)

Creating Indexes with Additional Columns Included

In previous versions of SQL Server, DBAs could add additional columns to nonclustered indexes to
“cover” affected queries. For instance, given the following table and index:

CREATE TABLE DatabaseSystems

(
DatabaseSystemId INT,
Name VARCHAR(35),
IsRelational CHAR(1),
IsObjectOriented CHAR(1),
SupportsXML CHAR(1),
FullSpecifications VARCHAR(MAX)

)

CREATE NONCLUSTERED INDEX IX Name
ON DatabaseSystems (Name)

a DBA might want to query this table to find out which databases with names starting with “S” also
happened to support XML:

SELECT Name, SupportsXML
FROM DatabaseSystems
WHERE Name LIKE 'S%'
AND SupportsXML = 'Y'

113

114

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

While the LIKE predicate is satisfied by the index, the database engine still has to do a lookup on
the base table to get the SupportsXML column. To eliminate the additional lookup and “cover” the
query (i.e., support all columns from the table used in the query) the index can be dropped and a
new one created to include the SupportsXML column:

DROP INDEX IX Name
CREATE NONCLUSTERED INDEX IX Name SupportsXML
ON DatabaseSystems(Name, SupportsXML)

The query engine can now get all of the data to satisfy the query from the nonclustered index—
without ever looking up data in the table itself.

But what if IX_Name had been a unique index? Or what if the DBA wanted to cover queries that
included the FullSpecifications column? Solving the first problem would require creating a new
index and leaving the previous one, a solution that would end up wasting space. And indexing the
FullSpecifications column was not possible at all. Indexes in SQL Server 2000 could contain only
up to 900 bytes per row. Indexing a large VARCHAR was simply not an option.

SQL Server 2005 includes a new indexing option designed to solve these problems. DBAs can
now specify additional columns to be included in a nonclustered index, using the INCLUDE keyword.
Included columns are nonindexed but are included in the data pages along with the indexed data,
such that they can be used to cover queries. There are no restrictions on width beyond those already
enforced at the table level, and uniqueness can be specified for the indexed columns.

To create a unique index that covers the query, use the following:

CREATE UNIQUE NONCLUSTERED INDEX IX_ Name
ON DatabaseSystems(Name)
INCLUDE (SupportsXML)

An index could also be created that would cover queries for either SupportsXML or
FullSpecifications—or both:

CREATE UNIQUE NONCLUSTERED INDEX IX Name
ON DatabaseSystems(Name)
INCLUDE (SupportsXML, FullSpecifications)

Keep in mind that creating large indexes that include many large columns can both use a lot of
disk space and require massive amounts of I/O when updating or inserting new rows. This is due to
the fact that any columns included in a nonclustered index will have their data written to disk twice:
once in the base table and once in the index. When using this option to eliminate clustered index
lookups, test to ensure that the additional disk strain will not be a problem when writing data.

Altering Indexes

SQL Server 2000 introduced a method of altering an existing index by creating a new one in its place,
using the WITH DROP_EXISTING option. This option is especially useful for altering existing clustered
indexes as it incurs less overhead than dropping and re-creating the index, by allowing the index to
be modified without rebuilding existing nonclustered indexes.

SQL Server 2005 upgrades this option by making index alteration a first-class T-SQL operation.
The ALTER INDEX syntax, while similar to that of CREATE INDEX, does not support altering an index’s
column list—the WITH DROP_EXISTING option of CREATE INDEX will still have to be used for that. However,
ALTER INDEX offers much additional functionality.

In the following sections, you'll see how a DBA can use ALTER INDEX to defragment an index
(replacing DBCC INDEXDEFRAG), rebuild an index (replacing DBCC DBREINDEX), or disable an index (a
brand-new feature).

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS 115

Defragmenting an Index

As indexes age, insertion and deletion of noncontiguous data can take its toll and cause fragmenta-
tion to occur. Although minor amounts of fragmentation won’t generally hurt performance, it’s a
good idea to occasionally defragment indexes to keep databases running as smoothly as possible.
Defragmentation, also known as index reorganization, defragments data within data pages, but does
not move data pages between extents. Since only data within pages is moved, very little blocking will
occur during the defragmentation process, and data can remain available to other processes. However,
because extents are not fragmented, this may not be an effective method for defragmenting larger,
heavily fragmented indexes. For those situations, index rebuilding is necessary (see the next section,
“Rebuilding an Index,” for more information).

To determine the level of fragmentation of an index, the dynamic management function
sys.dm_db_index_physical stats canbe used. This function replaces the DBCC SHOWCONTIG function,
which is deprecated in SQL Server 2005. The column avg_fragmentation_in_percent returns the
percentage of fragmented data. Unlike DBCC SHOWCONTIG, extent and logical scan fragmentation are
not displayed separately. Instead, the avg_fragmentation in percent column shows extent frag-
mentation for heap tables and logical scan fragmentation for tables with clustered indexes or when
displaying information about nonclustered indexes.

Although there is no hard and fast rule, a common recommendation is to keep index fragmen-
tation below 10 percent whenever possible. Microsoft recommends defragmenting indexes that are
30 percent or less fragmented and rebuilding indexes that are more than 30 percent fragmented.

To identify indexes in the current database that have more than 10 percent fragmentation, the
following query can be used:

SELECT
OBJECT_NAME(i.object _id) AS TableName,
i.name AS IndexName,
ips.avg fragmentation in percent
FROM sys.dm_db_index physical stats(DB ID(), NULL, NULL, NULL, 'DETAILED') ips
JOIN sys.indexes i ON
i.object_id = ips.object id
AND i.index_id = ips.index_ id
WHERE ips.avg fragmentation in percent > 10

The arguments to the sys.dm_db_index_physical stats function are database ID, table ID,
index ID, partition ID, and scan mode. In this example, DB_ID() is passed for the database ID, which
tells the function to scan tables in the current database. NULL is passed for table ID, index ID, and
partition ID, so that function does not filter on any of those criteria. Finally, a detailed scan is used.
Possible scan modes are LIMITED (the default), SAMPLED, and DETAILED. LIMITED scans only parent-
level nodes and is therefore the fastest scan mode. SAMPLED scans parent-level nodes and a percentage of
leaf nodes based on the number of rows in the table. DETAILED samples all nodes and is therefore the
slowest scan method.

Once a fragmented index is identified, it can be defragmented using ALTER INDEX with the
REORGANIZE option. The following query will defragment the index IX_CustomerName on the table
Customers:

ALTER INDEX IX CustomerName
ON Customers
REORGANIZE

Rebuilding an Index

Index defragmentation only reorganizes the leaf-level nodes of an index. Unfortunately, there are
times when that isn’t enough to eliminate index fragmentation, and the entire index needs to be

116

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

rebuilt. The REBUILD option of ALTER INDEX can be used to facilitate this process. This is equivalent to
the functionality of the DBCC DBREINDEX function, which is deprecated in SQL Server 2005.
Rebuilding an index is, by default, an offline operation, because pages and extents are being
shuffled. When rebuilding a clustered index, the base table will be locked for the duration of the
rebuild, and when rebuilding a nonclustered index, the index will be unavailable during the rebuild.
However, ALTER INDEX includes an online indexing option to get around this problem. To rebuild the
index IX_CustomerName on table Customers using the online indexing option, use the following query:

ALTER INDEX IX CustomerName
ON Customers

REBUILD

WITH (ONLINE=ON)

The ONLINE option works by indexing the data outside of the data pages in which the data
resides, applying deltas for any data modifications, and then updating pointers from the old index to
the new index. Because this operation occurs in a separate area, online re-indexing will use approx-
imately twice as much disk space as offline re-indexing. The process can also be slower, in the case
of databases that are very update intensive, due to the additional overhead associated with tracking
data changes. This option is therefore best used for databases that require very high availability;
if downtime is acceptable, the ONLINE option will provide no benefit.

Disabling an Index

SQL Server 2005 offers an intriguing new feature for indexing, namely the ability to disable indexes.
This feature is certain to generate plenty of speculation as to when and where it should be used, but
it’s best to clear the air up front. The fact is, this feature was not created for DBAs. Rather, Microsoft
included it to make updates and service packs easier to apply. There are no performance benefits or
any other “hot topic” uses for disabling an index. Nonetheless, this feature can be handy in some
situations.

Disabling a nonclustered index deletes the index’s data rows, but keeps its metadata—the
index’s definition—intact. Disabling a clustered index, on the other hand, keeps the data but renders
itinaccessible until the index is re-enabled. And disabling a nonclustered index that is being used to
enforce a primary key or unique constraint will disable the constraint.

To disable an index, use ALTER INDEX with the DISABLE option:

ALTER INDEX IX CustomerName
ON Customers
DISABLE

The index can be re-enabled using the REBUILD option:

ALTER INDEX IX CustomerName
ON Customers
REBUILD

Note that rebuilding a disabled index will require only as much disk space as the index requires,
whereas rebuilding a nondisabled index requires twice the disk space: disk space for the existing
index and disk space for the new, rebuilt index.

So when should index disabling be used? There are a few circumstances in which it will prove
useful. A common task during Extract, Transform, and Load (ETL) processes is dropping indexes
before doing bulk data loads, and then re-creating the indexes at the end of the process. Index
disabling will lead to fewer code changes; there will be no need to update the ETL code when index
definitions change.

Another scenario is systems with low disk space that need indexes rebuilt. Since rebuilding a
disabled index takes up half the space compared to rebuilding a nondisabled index, this could prove

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

useful in tight situations. However, it should be noted that unlike rebuilding a nondisabled index
using the ONLINE option, a disabled index will not be available for online operations during the
rebuild process.

A final possible use of index disabling is for testing various index configurations in situations in
which the query optimizer isn’t necessarily making the correct choice. Disabling and re-enabling
indexes should make this process a bit less painful for DBAs, by providing an automatic “backup” of
the indexes being worked with.

Using Statistics for Correlated DATETIME Columns

SQL Server 2005 includes an optimization to assist with queries on tables that share similar DATETIME
data. When turned on, extra statistics will be generated for DATETIME columns. Joining two tables,
each with DATETIME columns that share a foreign key reference, may allow the query optimizer to be
able to determine a better plan using the additional statistics.

For instance, the AdventureWorks sample database contains a table of orders called Sales.
SalesOrderHeader and a table of corresponding order detalil (line items) called Sales.SalesOrderDetail.
Each table contains a DATETIME column, ModifiedDate.

Assume that for auditing purposes, it’s a business requirement of Adventure Works Cycles that
any modification to an order detail row happen within 24 hours of a modification to the corresponding
order header row. This would mean that all ModifiedDate values in the Sales.SalesOrderDetail
table would fall into a range between the order header’s modified date and 24 hours later. The query
optimizer could potentially use this fact to improve performance of certain queries.

A requirement for the optimizer being able to use correlated DATETIME statistics is that at least
one of the tables’ DATETIME columns must be the key column for a clustered index. Since neither
table includes the ModifiedDate column in its clustered index, one of the clustered indexes would
have to be altered in order to use this optimization.

Once statistics are turned on and the correct indexes are in place, the query optimizer will be able
to use the statistics to help drive better query plans. For instance, given the Sales.SalesOrderHeader
and Sales.SalesOrderDetail tables, a user might want to see all orders modified in the last 24 hours
and their corresponding line items, using the following query:

SELECT *

FROM Sales.SalesOrderHeader SOH

JOIN Sales.SalesOrderDetail SOD ON SOH.SalesOrderId = SOD.SalesOrderId
WHERE SOH.ModifiedDate >= DATEADD(hh, -24, GETDATE())

If date correlation is enabled an the correct indexes are in place, the query optimizer can
analyze the DATETIME statistics for these two tables and determine that data for the ModifiedDate
column of the SalesOrderHeader table is always 24 hours or less before the ModifiedDate column of
the corresponding rows in the SalesOrderDetail table. This can allow the query to be internally
rewritten into the following, possibly more efficient format:

SELECT *

FROM Sales.SalesOrderHeader SOH

JOIN Sales.SalesOrderDetail SOD ON SOH.SalesOrderId = SOD.SalesOrderId
WHERE SOH.ModifiedDate >= DATEADD(hh, -24, GETDATE())

AND SOD.ModifiedDate >= DATEADD(hh, -24, GETDATE())

AND SOD.ModifiedDate <= GETDATE()

This form of the query can take advantage of a clustered index that involves the
SalesOrderDetails ModifiedDate column, thereby possibly avoiding an expensive clustered index
lookup operation. This will be especially advantageous the larger the dataset in each table grows and
the more highly selective the date columns become.

117

118

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

To turn on date correlation statistics for the AdventureWorks database, the following T-SQL
would be used:

ALTER DATABASE AdventureWorks
SET DATE_CORRELATION OPTIMIZATION ON

Note that when performing this action, the database must have no users connected or the only
connection should be the one running the ALTER DATABASE.

Once the optimization is enabled, it will be automatically maintained by the query engine. Due
to the extra work involved, there is a performance penalty for inserts or updates, so make sure to test
carefully before rolling this into production environments. To find out if a database has date corre-
lation turned on, query the is_date correlation on column of the sys.databases catalog view:

SELECT

Name,

is date_correlation on
FROM sys.databases

The column is_date correlation on will have a value of 1 if date correlation is turned on for a
database; otherwise, it will have a value of 0.

Improving Performance of Ordering for Tertiary Collations

For situations in which string case sensitivity is unimportant from a uniqueness perspective but
necessary for sorting purposes, SQL Server supports so-called tertiary collations. String data defined
with these collations will be ordered based on case sensitivity (uppercase letters will sort before
lowercase letters). However, grouping by or using the distinct operator on such a column will result
in uppercase and lowercase letters being treated identically.

For example, take the following table, which includes an indexed tertiary-collated column:

CREATE TABLE Characters

(
CharacterString CHAR(3)

COLLATE SOL_Latinil General CP437 CI AI
)

CREATE CLUSTERED INDEX IX Characters
ON Characters (Characterstring)

INSERT Characters VALUES ('aaa')
INSERT Characters VALUES ('Aaa')

Selecting the data from this table using an ORDER BY clause on the CharacterString column will
result in two rows being returned. The row with the value “Aaa” will sort first, followed by the row
with the value “aaa”. However, selecting the data from this table using the DISTINCT option returns
only a single row. Only sorting is case sensitive. Grouping and uniqueness operations are non-case-
sensitive.

Ordering a tertiary-collated column requires an intermediate step during which weights for
each character are determined. This step is expensive, so SQL Server 2005 provides users the ability
to precalculate the weights using the TERTIARY_WEIGHTS function.

Selecting data from the table ordered by CharacterString requires an intermediate computation
and sort, even though the data in the index is already sorted, as indicated by the execution plan for
on ordered SELECT statement on this table, shown in Figure 4-3.

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

]] :
3 Messages| 5 Ewecution plan

query 1: aquery cost (relative to the batch): 100%
SELECT Characterstring FROM Characters ORDER BY Characterstring

:I 4 I_;ju @dl

Clustered Index Scan
sort compute Scalar o ryndb]l[dba] . [Characters] . Dchar.
Cost: 80 M Cost: 0% Cost: 20 %

Figure 4-3. Sorting on tertiary-collated columns requires an intermediate step.

The solution to this problem in SQL Server 2005 is to create a computed column using the
TERTIARY_WEIGHTS function and add it to the index to be used for sorting. The table and index should
have been created this way:

CREATE TABLE Characters
(
CharacterString CHAR(3)
COLLATE SOL Latini General CP437 CI AI,
CharacterWeights AS (TERTIARY_WEIGHTS(CharacterString))

)

CREATE CLUSTERED INDEX IX Characters
ON Characters

(
CharacterString,
CharacterWeights

)

As Figure 4-4 illustrates, the intermediate sort is no longer required.

]] -
3 Messages| 5 Ewecution plan

Query 1: Query cost (relative to the batch): 100%
SELECT CharacterString FROM Characters ORDER BY Character3tring

4

Clustered Index Scan
Cmé’c‘f:_ Soca%lar [tempds] . [dbo]. [Characters] . [IX Cha.

Cost: 100 %

Figure 4-4. When a computed column using the TERTIARY WEIGHTS function is used in the index, the
intermediate step is no longer required.

Table and Index Partitioning

A common requirement in dealing with larger datasets is the ability to split the data into smaller
chunks to help improve performance. Performance degradation becomes apparent once tables
reach larger sizes, and splitting data across files and disks is one way to help databases scale.
Although previous versions of SQL Server supported various means of partitioning data—either
manually or via features like partitioned views—doing so has always been somewhat of a headache-
inducing experience. Partitioning in versions prior to SQL Server 2000 meant splitting data across
multiple tables, and then writing application code that could properly navigate the partitions.
Things got better with SQL Server 2000’s partitioned views feature, but it was difficult to swap data
in or out of the partitions without affecting data availability.

119

120

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

SQL Server 2005 makes data partitioning much easier, thanks to the inclusion of an entirely new
partitioning strategy that allows the server to automatically handle partitioning of tables and indexes
based on range data. Partition ranges are defined using functions called partition functions, and
ranges are assigned to one or more filegroups using partition schemes. After a function and scheme
are created, tables and indexes can use them for partitioning data. In this section we’ll examine how
to use these new features to build better-performing databases.

Note The new partitioning features are only available in the Enterprise and Developer Editions of SQL Server 2005.

Partition Functions

Partition functions are the means by which the DBA can control which ranges of data will be used to
enforce partition boundary values. These functions map partitions based on a datatype and ranges of
values for that datatype, but they do not actually partition anything. Due to the fact that they only
define partitions, partition functions are reusable; a single function can be used to partition many
tables or indexes using the same ranges. The basic syntax for creating a partition function is as follows:

CREATE PARTITION FUNCTION partition function name(input parameter type)
AS RANGE [LEFT | RIGHT]

FOR VALUES ([boundary value [,...n]])

(5]

Partition functions must take a single input parameter (i.e., a column) of a specific datatype—
multicolumn partition functions are not supported. The function is defined in terms of ranges, and
the LEFT or RICHT designator controls the placement of the actual boundary value. For a LEFT func-
tion, each partition will be defined as containing all values less than or equal to its upper bound. For
aRIGHT function, each partition will be defined as containing all values less than its upper bound; the
boundary value itself will go into the next partition.

Partition ranges cannot be designed to constrain input values to a given range. Values that fall
below the lowest bound will be placed into the lowest partition. Values that fall above the highest
bound will be placed into an automatically generated partition for values above that bound. For
example, to create a partition function based on fiscal quarters of 2005, the following T-SQL could
be used:

CREATE PARTITION FUNCTION pf FiscalQuarter2005 (DATETIME)
AS RANGE RIGHT FOR VALUES
('20050401", '20050701', '20051001', '20060101")

This function actually creates five partitions. The first partition contains every value less than
April 1, 2005 (remember, RANGE RIGHT defines less than values; if you wanted to include midnight for
April 1, 2005, you could use a RANGE LEFT partition). The second, third, and fourth partitions contain
all values less than July 1, 2005, October 1, 2005, and January 1, 2006, respectively. The final, implicit
partition contains all values greater than or equal to January 1, 2006.

Partition Schemes

Partition schemes are the means by which the boundary values defined in partition functions can be
mapped to physical filegroups. The DBA has the option of either mapping all of the partitions from
a function into the same filegroup (using the ALL option) or specifying a filegroup for each partition
individually. The same filegroup can be used for multiple partitions.

The basic syntax for creating a partition scheme is as follows:

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

CREATE PARTITION SCHEME partition_ scheme name

AS PARTITION partition function_name

[ALL] TO ({ file _group name | [PRIMARY] } [,...n])
(5]

To specify that all partitions from the partition function pf_FiscalQuarter2005 (defined in the
preceding section) should be mapped to the primary filegroup, the following T-SQL would be used:

CREATE PARTITION SCHEME ps_FiscalQuarter2005_ PRIMARY
AS PARTITION pf FiscalQuarter2005
ALL TO ([PRIMARY])

This example uses the ALL option to map all of the partitions to the same filegroup. It should
also be noted that the primary filegroup is always specified using square brackets when defining
partition schemes.

If the DBA wanted to map the first two partitions to the filegroup 0102 2005 and the other three
partitions to the filegroup 0304_2005, the following T-SQL would be used:

CREATE PARTITION SCHEME ps FiscalQuarter2005 Split
AS PARTITION pf FiscalQuarter2005
TO (Q102 2005, Q102 2005, Q3Q4 2005, Q304 2005, Q3Q4 2005)

Note that this example assumes that the filegroups have already been created in the database
using ALTER DATABASE ADD FILEGROUP.Also be aware that multiple schemes can be created for a single
function, so if there are several objects in a database that should be partitioned using the same data
ranges, but that should not share the same filegroups, multiple functions do not need to be created.

Creating Partitioned Tables and Indexes

Once partition functions and schemes have been defined, the DBA can begin using them to partition
tables and indexes, which is, of course, the point to this whole exercise. CREATE TABLE and CREATE
INDEX both have an ON clause that has been used in previous editions of SQL Server to specify a
specific filegroup in which the table or index should be created. That clause still functions as before,
but it has now been enhanced to accept a partition scheme.

Given the partition function and schemes created in the previous sections for fiscal quarters in
2005, the following T-SQL could be used to create a partitioned table to record sales amounts, parti-
tioned by the time of the sale:

CREATE TABLE SalesAmounts

(
SalesAmountId INT NOT NULL PRIMARY KEY NONCLUSTERED,
SalesAmount NUMERIC(9,2) NOT NULL,
SalesDate DATETIME NOT NULL

)
GO

CREATE CLUSTERED INDEX IX SalesAmounts SalesDate
ON SalesAmounts (SalesDate)
ON ps_FiscalQuarter2005 Split (SalesDate)

The table is created using a nonclustered primary key, leaving the table itself available for
indexing using a clustered index. Since a table’s clustered index organizes the data in the entire
table, creating the cluster on the partition range partitions the entire table.

Data from this table will now be partitioned based on the ps_FiscalQuarter2005_Split range
function, using SalesDate as the partitioning column. Data for any date less than July 1, 2005, will be
put into the 0102_2005 partition; data for any date greater than or equal to July 1, 2005, will be put

121

122

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

into the 0304 2005 partition. Likewise, when selecting data from this table using the SalesDate column
as a predicate in the WHERE clause, the query engine will need to seek only the necessary partitions for
the requested data.

Creating a partitioned index is very similar to creating a partitioned table; the ON clause is used
to specify a partition scheme. For instance, to create a nonclustered index on the SalesAmounts table
for seeking SalesAmount values, the following T-SQL syntax could be used:

CREATE INDEX IX Amount
ON SalesAmounts

(
)

ON ps_FiscalQuarter2005 PRIMARY (SalesDate)

SalesAmount

This index will be partitioned on the SalesDate column, and because the partition scheme
ps_FiscalQuarter2005 PRIMARY was specified, all five partitions will be maintained in the primary
filegroup. Note that the partitioning column, SalesDate, need not be included in the index.

Adding and Removing Partitions

In addition to creating new partitioned tables and indexes, SQL Server 2005 also exposes capabilities
for DBAs to partition existing tables, modify range boundaries of existing functions and schemes,
and swap data in and out of partitions.

Partitioning an existing table can be done in one of two ways. The easier method is to create a
clustered index on the table, partitioned using whatever partition scheme the DBA wishes to employ.
The other method requires manipulation of partition functions and will be covered in the next
section, “Modifying Partition Functions and Schemes.”

Assume that in the same database that contains the SalesAmounts table and related partition
function and schemes there exists the following table, which contains times that customers visited
the store:

CREATE TABLE Visitors
(
VisitorId INT NOT NULL,
VisitDate DATETIME NOT NULL,
CONSTRAINT PK_Visitors
PRIMARY KEY (VisitorId, VisitDate)

The DBA might wish to partition this table using the same scheme as the sales data, such that
data in similar date ranges will share the same filegroups. This table already has a clustered index,
implicitly created by the PK_Visitors primary key constraint. To partition the table, the constraint
must be dropped. The constraint then must be re-created using a partition scheme. The following
T-SQL code accomplishes that:

SET XACT_ABORT ON
BEGIN TRANSACTION

ALTER TABLE Visitors
DROP CONSTRAINT PK Visitors

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

ALTER TABLE Visitors
ADD CONSTRAINT PK Visitors
PRIMARY KEY (VisitorId, VisitDate)
ON ps_FiscalQuarter2005 Split (VisitDate)
COMMIT

To avoid inconsistent data, the entire operation should be carried out in a single transaction.
SET XACT_ABORT is used in order to guarantee that runtime errors in the transaction will force a rollback.

Converting this table back to a nonpartitioned table can be done using either the reverse oper-
ation (i.e., dropping the partitioned clustered index and re-creating the index nonpartitioned) or by
modifying the partition function to have only a single partition.

Modifying Partition Functions and Schemes

Partition functions can be altered in two primary ways. Ranges can be “merged” into other ranges
(i.e., dropped) or new ranges can be “split” off of existing ranges (i.e., added). Removing ranges using
the MERGE keyword is quite straightforward; splitting new ranges using the SPLIT keyword can be a
bit more involved, as the partition scheme must also be altered in order to handle the new partition.

For example, if the DBA wished to eliminate the range from pf FiscalQuarter2005 ending on
September 30, thereby creating a larger range that ends on December 31, the following T-SQL would
be used:

ALTER PARTITION FUNCTION
pf FiscalQuarter2005()
MERGE RANGE ('20051001')

The range specified in a merge must be exactly convertible to a range boundary that exists in the
partition function. As a result of a merge operation, the data will be merged into the next partition,
and the partition scheme(s) associated with the function will be updated appropriately. As mentioned
earlier, this can be one way of departitioning a table: alter the associated partition function, merging
the ranges until only a single partition remains.

Splitting a partition function to create new range boundaries requires first altering the associ-
ated scheme(s) to provide a “next used” filegroup, which will receive the additional partition range
data. Remember that a partition scheme must have exactly the same number of filegroups as its
underlying function has ranges.

To add a “next used” filegroup to a partition scheme—in this case, specifying that additional
partitions can be placed in the primary filegroup—the following T-SQL could be used:

ALTER PARTITION SCHEME ps_FiscalQuarter2005_Split
NEXT USED [PRIMARY]

Once the scheme has been appropriately altered, the partition function itself can have an addi-
tional range added. To add a range to pf_FiscalQuarter2005 for all of 2006 (not minding that the
function is now misnamed), the following T-SQL could be used:

ALTER PARTITION FUNCTION
pf FiscalQuarter2005()
SPLIT RANGE ('20070101')

Remember that because the function is a RANGE RIGHT function, this new range boundary ends
on December 31, 2006. Data from this range will be placed into the primary filegroup, as that was the
next used partition defined before it was created.

123

124

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Switching Tables into and out of Partitions

The capability exists to move data into partitions from unpartitioned tables and out of partitions
back into unpartitioned tables. The former can be useful for data loading processes, as data can be
bulk loaded into an unindexed table and then switched into a partitioned structure. The latter can
be useful for data archival or other purposes.

Assume that the following staging table has been created for 2006 visitor data:

CREATE TABLE VisitorStaging 2006

(
VisitorId INT NOT NULL,

VisitDate DATETIME NOT NULL
)

This table has the same exact schema as the Visitors table partitioned using the
ps_FiscalQuarter2005 split function. It should also have been created on whatever filegroup the
DBA wishes it to eventually end up on as part of the partition scheme. For the sake of this example,
that will be assumed to be the primary filegroup.

Once data for the 2006 time period has been bulk loaded into the table, the same indexes and
constraints must be created on the staging table as exist on the Visitors table. In this case, that’s
only the PRIMARY KEY constraint:

ALTER TABLE VisitorStaging 2006
ADD CONSTRAINT PK_Visitors_2006
PRIMARY KEY (VisitorId, VisitDate)

A CHECK constraint must also be created on the table to guarantee that the data falls within the
same range as the partition that the table will be switched into. This can be done with the following
T-SQL for this example:

ALTER TABLE VisitorStaging 2006
ADD CONSTRAINT CK Visitors 06012006 12012007
CHECK (VisitDate »>= '20060101' AND VisitDate < '20070101")

Once the CHECK constraint is in place, the table is ready to be switched into the new partition.
First, the partition boundary number for the new partition should be queried from the sys.
partition_functions and sys.partition range values catalog views:

SELECT rv.boundary id
FROM sys.partition functions f
JOIN sys.partition_range_values rv ON f.function_id = rv.function_id
WHERE rv.value = CONVERT(datetime, '20070101")
AND f.name = 'pf FiscalQuarter2005'

This value can then be plugged into the SWITCH TO option of ALTER TABLE. In this case, the
boundary ID is 4, so the following T-SQL switches the VisitorStaging 2006 table into that partition:

ALTER TABLE VisitorStaging 2006
SWITCH TO Visitors PARTITION 4

The data from the staging table can now be logically queried from the Visitors partitioned
table. The staging table can be deleted.

Switching tables out of partitions is much easier. Assuming that the DBA wanted to switch the
data back out of the partition just switched into from the staging table, the DBA could re-create the
staging table—again, on the same partition and with the same clustered index, but this time with no
CHECK constraint necessary. Once the empty table is in place, the data can be switched out of the
partition using the following T-SQL:

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

ALTER TABLE Visitors
SWITCH PARTITION 4 TO VisitorStaging 2006

Managing Table and Index Partitions

Management of table and index partitions is similar to management of tables and indexes, with one
major difference: it’s possible to re-index a specific partition in a table, should the DBA not wish to
re-index the entire table at once. In addition, SQL Server 2005 includes a series of catalog views to
assist with enumerating and viewing data related to partitions.

Rebuilding an index for a specific partition number is very similar to rebuilding an entire index,
with the addition of a new clause to the ALTER INDEX syntax: the PARTITION clause. This clause takes
a partition number as input. For instance, to rebuild partition 4 of the PK_Visitors index on the
Visitors table—assuming that the index is partitioned—the following T-SQL would be used:

ALTER INDEX PK Visitors
ON Visitors

REBUILD

PARTITION = 4

The ONLINE option and other indexing options are also available. This functionality can help DBAs to

more accurately pinpoint and eliminate performance bottlenecks in large partitioned tables.
Three catalog views are provided to assist with viewing partition function data. The sys.

partition functions view contains data about which partition functions have been created. The

sys.partition_range values view, used with the sys.partition_functions view in an example

in a previous section, contains the actual ranges specified for a function. Finally, the sys.

partition parameters function contains information about the parameter datatype used for a function.
The sys.partition_schemes view contains information about schemes. The sys.partitions

and sys.partition_counts views contain data about the actual mapping between tables and their

partitions, including row counts, used data pages, reserved data pages, and various other statistics.
Complete documentation of these views is beyond the scope of this book. Please refer to SQL

Server Books Online for a list of available columns.

Enhancements to Tables and Views

In addition to the indexing and general performance improvements to the SQL Server 2005 relational
engine, minor improvements have been made to both views and tables. Indexed views have added
capabilities having to do with greater expression-processing capabilities, and tables have been given
the ability to persist computed columns. As described in the sections that follow, these additions
make these features—which were useful to begin with—even more appealing for use in SQL Server 2005.

Enhancements to Indexed Views

Although indexed views are still fairly restrictive (e.g., DBAs cannot use subqueries, derived tables,
and many other constructs), they have been made slightly more flexible in SQL Server 2005 than they
were in SQL Server 2000. The query optimizer has been enhanced such that it can now match more
query types to indexed views. These include scalar expressions, such as (ColA + ColB) * ColC, and
scalar aggregate functions, such as COUNT_BIG(*).

For instance, the following indexed view could be created in the AdventureWorks database,
indexed on the OrderTotal column:

125

126

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

CREATE VIEW Sales.OrderTotals
WITH SCHEMABINDING
AS
SELECT
SalesOrderId,
SubTotal + TaxAmt + Freight AS OrderTotal
FROM Sales.SalesOrderHeader
GO

CREATE UNIQUE CLUSTERED INDEX IX OrderTotals
ON Sales.OrderTotals
(OrderTotal, SalesOrderId)

The query optimizer will now be able to consider queries such as the following for optimization
by using the indexed view:

SELECT SalesOrderId
FROM Sales.SalesOrderHeader
WHERE SubTotal + TaxAmt + Freight > 300

This optimization also includes better matching for queries against indexes that use user-
defined functions.

Persisted Computed Columns

In certain situations, it can be useful to create columns whose values are computed dynamically by
the SQL Server engine when referenced in a query, rather than inserted with an explicit value. Prior
versions of SQL Server included the computed column feature for this purpose. Computed columns
were able to be indexed, and the data existed within the index to be used for seeking or by queries
covered by the index. However, a noncovered query that needed the same data would not be able to
use the value persisted within the index, and it would have to be rebuilt dynamically at runtime. For
complex computed columns, this can become a serious performance drain.

To eliminate this problem, SQL Server 2005 introduces a new option when creating a computed
column, in the form of the PERSIST keyword. Its behavior is simple enough. Instead of the column’s
value being calculated at runtime, it is calculated only once, at insert or update time, and stored on
disk with the rest of the column data.

To add a new persisted computed column to a table, the following T-SQL could be used, assuming
that dbo.VeryComplexFunction() is a very complex function that is slowing down SELECT statements:

ALTER TABLE SalesData
ADD ComplexOutput AS
(dbo.VeryComplexFunction(CustomerId, Orderld))
PERSISTED

Note that existing computed columns cannot be made persisted—they will have to be dropped
and re-created as persisted computed columns. Likewise, persisted computed columns cannot be
altered back into regular computed columns. They also will need to be dropped and re-created.

To determine which computed columns are persisted, query the is_persisted column of the
sys.computed columns catalogview. is_persisted will have a value of 1 if the column is persisted and
0 otherwise. For instance, the following query shows which columns of which tables in the current
database are persisted computed columns:

SELECT OBJECT _NAME(object id), name
FROM sys.computed_columns
WHERE is persisted = 1

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Snapshots

A common problem in database systems is that of blocking and concurrency. The system needs to
ensure that a reader gets consistent data, so writes cannot take place during a read. Unfortunately,
larger systems often fall victim to huge scalability bottlenecks due to blocking problems. DBAs must
constantly do battle with queries, attempting to control lock granularities and transaction lengths in
order to keep blocking to a minimum. But after a while, many give up and take an easier route, risking
getting some inconsistent data from time to time by using “dirty reads,” the READ UNCOMMITTED
transaction isolation level, or the NOLOCK table hint.

It appears that those days are coming to an end, thanks to two new features in SQL Server 2005:
the snapshotisolation level and database snapshots. These features provide mechanisms for readers
to get consistent, committed data, while allowing writers to work unabated. Simply put, this means
no more blocking and no more inconsistent data.

Snapshots represent the best of both worlds, but they have a cost. DBAs will pay a disk I/0
penalty when using these new features due to the overhead of maintaining previous versions of rows.

SNAPSHOT Isolation Level

The SNAPSHOT isolation level is a new isolation level in SQL Server 2005 that can best be described as
a combination of the consistency of the REPEATABLE READ isolation level with the nonblocking char-
acteristics of the READ UNCOMMITTED isolation level. Transactions in the SNAPSHOT isolation level will
not create shared locks on rows being read. And repeated requests for the same data within a SNAPSHOT
transaction guarantee the same results.

This nonblocking behavior is achieved by storing previous committed versions of rows in the
tempdb database. When an update or delete occurs, the previous version of the row is copied to
tempdb and a pointer to the previous version is left with the current version. Readers that started
transactions before the write that have already read the previous version will continue to read that
version. Meanwhile, the write can occur and other transactions will see the new version.

This is a definite improvement over the behavior of either the REPEATABLE READ or READ
UNCOMMITTED isolation levels. The REPEATABLE READ isolation level creates shared locks for the dura-
tion of the read transaction, thereby blocking any writers. And the READ UNCOMMITTED isolation level,
while not creating locks, will also not return consistent, committed data if there are updates occur-
ring at the same time that the transaction is reading the data.

Due to its being used as a repository for maintaining data changes, the tempdb database will
see greatly increased activity when the SNAPSHOT isolation level is used for write-intensive databases.
To avoid problems, the isolation level should not be enabled by DBAs arbitrarily. Specific behaviors
that indicate that the isolation level may be helpful include performance issues due to blocking,
deadlocked transactions, and previous use of the READ UNCOMMITTED isolation level to promote increased
concurrency. Before enabling the isolation level in a production environment, test carefully to ensure
that tempdb can handle the additional load.

In addition to the snapshot isolation level, SQL Server 2005 also includes the ability to enhance
the READ COMMITTED isolation level to behave like snapshot isolation for individual queries not within
a transaction. The enhanced version is called READ COMMITTED SNAPSHOT.

Enabling SNAPSHOT Isolation for a Database

Use of the SNAPSHOT isolation level is not allowed by default in SQL Server 2005 databases. Enabling
it for production databases should be done only after careful testing in a development or quality

assurance environment. The row versioning feature that allows the isolation level to work requires
stamping every row in the database with a 14-byte structure that includes a unique identifier and a
pointer to the previous versions of the row in tempdb. The extra 14-byte overhead per row and the

127

128

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

work required to maintain the previous versions can add up to quite a bit of extra disk I/O, which is
why the feature is off by default (except in the master and msdb system databases, in which it is on
by default; these databases are small enough that the additional I/O will not cause problems). If you
don’t actually need row versioning capabilities, do not turn it on.

There are two options available for enabling row version in a database. One is for the SNAPSHOT
isolation level itself; the second is for the READ COMMITTED SNAPSHOT isolation level. Both of these are
options on ALTER DATABASE, and both are OFF by default. The database must have no users connected
when enabling or disabling row versioning.

To allow the SNAPSHOT isolation level to be used for a database called Sales, the following T-SQL
would be used:

ALTER DATABASE Sales
SET ALLOW_SNAPSHOT ISOLATION ON

For the READ COMMITTED SNAPSHOT isolation level, the following T-SQL would be used:

ALTER DATABASE Sales
SET READ_COMMITTED_SNAPSHOT ON

Note that these options are independent of each other—either or both can be on for a database.
However, since they use the same row versioning mechanism behind the scenes, turning a second
one on once the first is enabled will incur no additional overhead. The READ_COMMITTED_SNAPSHOT
option cannot be enabled in the master, tempdb, or msdb system databases.

To disable either of these options, simply change the flag to OFF:

ALTER DATABASE Sales
SET ALLOW_SNAPSHOT ISOLATION OFF

To find out which databases allow the SNAPSHOT isolation level or use the READ COMMITTED SNAPSHOT
isolation level, you can query the sys.databases catalog view. The snapshot_isolation state and
is read committed snapshot_on columns will contain 1 if either option is enabled or 0 otherwise.
The view can be queried for the Sales database using the following T-SQL:

SELECT
name,
snapshot_isolation_state,
is _read_committed snapshot on
FROM sys.databases

Enabling SNAPSHOT Isolation for a Transaction

Once the SNAPSHOT isolation level is turned on for a database, it can be set for a transaction using SET
TRANSACTION ISOLATION LEVEL SNAPSHOT. Its behavior as compared to other isolation levels is best
illustrated with a hands-on example.

The following table is created in a database with row versioning enabled:

CREATE TABLE TestSnapshot

(
ColA INT,

ColB VARCHAR(20)
)

INSERT TestSnapshot (ColA, ColB)
VALUES (1, 'Original Value')

Now assume that two SQL Server Management Studio connections are open to the database. In
the first, the following T-SQL is executed:

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
BEGIN TRANSACTION

SELECT ColB
FROM TestSnapshot
WHERE ColA =1

This query returns the value 'Original Value' for ColB.
With the transaction still running, the following T-SQL is executed in the second connection:

UPDATE TestSnapshot
SET ColB = 'New Value'
WHERE ColA =1

This update will execute successfully and will return the message ' (1 row(s) affected)'. Had
the REPEATABLE READ isolation level been used in the first connection, the update would have been
blocked waiting for the transaction to finish.

Back in the first window, the SELECT can again be run. It will still return the value 'Original
Value', even though the actual value has been updated. Had the transaction been using the READ
UNCOMMITTED isolation level, results would not be consistent between reads and the value returned
the second time would have been 'New Value'.

This is only a very simple example to show the power of the SNAPSHOT isolation level to deliver
consistent yet nonblocking results. It represents a very powerful addition to SQL Server 2005’s arsenal.

Handling Concurrent Writes in the SNAPSHOT Isolation Level

Although SNAPSHOT provides consistent repeated reads like the REPEATED READ isolation level, it has a
very different behavior when it comes to writing data. Should a SNAPSHOT isolated transaction read
some data and then attempt to update it after another transaction has updated it, the entire snap-
shot transaction will be rolled back. This is similar to a deadlock and will have to be handled the
same way in production code.

To illustrate this behavior, we’ll use the same TestSnapshot table from the previous example. In
this case, however, suppose that the goal is to select some data into a temporary table, perform some
very complex logic, and then update the table. First, the data is inserted into a temporary table:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
BEGIN TRANSACTION

SELECT ColB

INTO #Temp

FROM TestSnapshot
WHERE ColA =1

The temporary table, #Temp, now contains a row with the value 'Original Value'. As before,
another transaction is operating on the TestSnapshot table in another connection with an update:

UPDATE TestSnapshot
SET ColB = 'New Value'
WHERE ColA = 1

After this, the first transaction has completed its complex logic and goes to do an update of its own:

UPDATE TestSnapshot
SET ColB = 'Even Newer Value'
WHERE ColA = 1

129

130

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Unfortunately, this results in the following error:

Msg 3960, Level 16, State 1, Line 1
Cannot use snapshot isolation to access table 'TestSnapshot' in database 'Sales’.
Snapshot transaction aborted due to update conflict. Retry transaction.

So what’s the moral of this story? Treat any snapshot transaction that performs data updates
exactly like transactions that are susceptible to deadlocks. Put code in place around these transac-
tions to ensure that when this error occurs, an appropriate course of action will be taken.

Using the READ COMMITTED SNAPSHOT Isolation Level

Similar to the SNAPSHOT isolation level is the READ COMMITTED SNAPSHOT isolation level. This isolation
level is actually a modification of the default behavior of the READ COMMITTED isolation level. By
turning this option on, any single read query within an implicit or explicit READ COMMITTED transac-
tion will behave like a snapshot read—but only for the duration of the query. So repeatable reads do
not occur, but consistency is guaranteed.

Again, this is best illustrated through an example using the TestSnapshot table. Assume the
database has READ COMMITTED SNAPSHOT enabled. The following query is run on one connection:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

SELECT ColB
FROM TestSnapshot
WHERE ColA =1

This, of course, returns 'Original Value'. Now in a second connection, another transaction is
started, but not committed:

BEGIN TRANSACTION

UPDATE TestSnapshot
SET ColB = 'New Value'
WHERE ColA = 1

Rerunning the select in the first connection will return 'Original Value' again, because the
second transaction has not committed—no blocking occurs, like in the normal READ COMMITTED
isolation level. However, as soon as the second transaction commits, the first connection will now
see the updated value.

READ COMMITTED SNAPSHOT can be a good balance for databases that have a lot of read activity of
data that is regularly updated, where consistency is important but repeatable results within a single
transaction are not.

Database Snapshots

Like the SNAPSHOT isolation level, database snapshots give DBAs a way of presenting a consistent view
of data at a certain time. However, whereas the SNAPSHOT isolation level provides this only for small
amounts of data (that involved in a given transaction), database snapshots provide a frozen replica
of the database at the time the snapshot was created. This can be helpful for situations in which
DBAs need to provide timestamped data for reporting or auditing purposes.

What differentiates database snapshots from other methods of providing this same function-
ality (e.g., taking a backup) is that database snapshots have no data when they’re first created, and
they are therefore created almost instantaneously. This is made possible by a scheme similar to that
which allows the SNAPSHOT isolation level to work.

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

Instead of copying all of the data from the source database, the database snapshot begins life as
nothing more than a pointer to the original database. As data changes in that database, the older
versions of rows are migrated into the snapshot database, but at any time, the snapshot database is
only as large as the amount of data that’s changed since it was created. Of course, this works the
other way around as well. A database snapshot can grow to be as big as the original database was at
the moment the snapshot was created, so ensure that enough disk space exists to provide adequate
room for growth should it become necessary. DBAs should also attempt to place snapshot databases
on separate physical disks from production databases, to reduce contention due to additional write
operations when changes are migrated into the snapshot.

Creating Database Snapshots

Database snapshots are created using CREATE DATABASE with the AS SNAPSHOT OF option. To create a
snapshot, each logical filename from the original database must appear in the definition for the
snapshot, exactly as it was originally defined. The physical filename should be changed to have the
.ss extension, but drives or paths can also be changed.

A recommended naming scheme for database snapshots is the same name as the database,
followed by Snapshot, optionally followed by the date and time the snapshot was created. This
naming scheme should help users more quickly determine which snapshot they require for a task.
It’s also recommended that the snapshot’s physical filenames be similarly timestamped, to make
disk management easier.

As an example, assume that there is a database called Sales, with two filegroups, SalesPrimary
and SalesPrimary 01.It’s September 1, 2005. The following T-SQL could be used to create the snapshot:

CREATE DATABASE Sales Snapshot 20050901
ON
(NAME = SalesPrimary,
FILENAME = 'F:\Data\SalesPrimary 20040901.ss'),
(NAME = SalesPrimary 01,
FILENAME = 'F:\Data\SalesPrimary 01 20040901.ss")
AS SNAPSHOT OF Sales

Once a snapshot is created, it will appear to clients to be a read-only database and will persist
until it is explicitly dropped using DROP DATABASE. The base database cannot be dropped until all
referencing snapshots are dropped. Any number of snapshots can be created for a database, allowing
DBAs to keep a running tally of data states, as disk space allows. Remember, these databases will
grow as data changes in the base database.

Reverting to a Database Snapshot

One benefit of snapshots, beyond their providing a readily available view of the database at a specific
point in time, is that they can be used as a failsafe in case of accidental data corruption. Please note
that using database snapshots is no replacement for a solid backup plan. However, there are times
when reverting to a snapshot could be very useful. For instance, imagine a scenario in which a devel-
opment team is testing a data upgrade script. These kinds of development tasks generally require
the DBA to restore a database, run a version of the update script, regression test, and repeat the
process iteratively as bugs are discovered. Using a database snapshot and reverting will decrease a
lot of the downtime required for these kinds of tasks and generally make life easier for the DBA.
Reverting to a snapshot is very similar to restoring from a backup. For instance, to revert the
Sales database from a snapshot created on September 1, 2005, the following T-SQL could be used:

RESTORE DATABASE Sales
FROM
DATABASE_SNAPSHOT = Sales Snapshot 20050901

131

132

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS

A few restrictions apply. A restore from a snapshot can only occur if the database has only one
snapshot. So if multiple snapshots have been created, those other than the one to be restored from
will have to be dropped. The database can have no full-text indexes. Finally, during the restore
process, both the database and the snapshot will be unavailable for use.

Data Integrity Enhancements

Given that SQL Server 2000 is known to be very stable in terms of on-disk data integrity, it should
come as no surprise that there are few enhancements in this area in SQL Server 2005. Microsoft has
provided two interesting new features: a new checksum-based data page verification scheme in
addition to the torn page detection option from previous versions of SQL Server, and the ability to
put a database into an emergency, administrator-only access mode. We detail both features in the
sections that follow.

Verifying a Database’s Pages

SQL Server 2005 adds a new syntax to ALTER DATABASE for page verification, with two options: one
option to enable torn page detection and a newer checksum verification option. The checksum veri-
fication can detect most of the same types of failures as torn page detection, as well as various
hardware-related failures that torn page detection cannot. However, it is more resource intensive
than the older option, so as with any other change, careful testing should be done before rolling to
production environments.

Enabling the checksum-based page verification scheme for a database called Sales could be
done with the following T-SQL:

ALTER DATABASE Sales
SET PAGE_VERIFY CHECKSUM

To enable torn page detection, use the TORN_PAGE_DETECTION option:

ALTER DATABASE Sales
SET PAGE_VERIFY TORN_PAGE DETECTION

Note that only one of the two page verification types can be enabled at any given time.
To turn off page verification altogether, use the NONE option:

ALTER DATABASE Sales
SET PAGE_VERIFY NONE

To determine the current page verification setting for a given database, use the page_verify option
column of sys.databases:
SELECT page verify option
FROM sys.databases
WHERE name = 'abc'

The column will have a value of 0 if the NONE option is set, 1 for the TORN_PAGE_DETECTION option,
and 2 for the CHECKSUM option.

Putting a Database into an Emergency State

Unfortunately, even with data page verification and a very stable DBMS like SQL Server, problems
do sometimes occur. Should a problem arise, the DBA can set the database to the new emergency
state.

CHAPTER 4 T-SQL ENHANCEMENTS FOR DBAS 133

This state makes the database read-only and restricts access to members of the sysadmin fixed
server role. Although this sounds like a combination of the read-only and restricted user modes,
there is a very important enhancement available with the new emergency state option. This option
can be set on databases marked suspect, thereby allowing the DBA to get in and either fix errors or
pull out vital data if errors cannot be fixed.

To set the database to the emergency state, use the EMERGENCY option of ALTER DATABASE. To set
this mode for a database called Sales, the following T-SQL would be used:

ALTER DATABASE Sales
SET EMERGENCY

To turn off the emergency state, use the ONLINE option:

ALTER DATABASE Sales
SET ONLINE

Summary

SQL Server 2005 introduces a large number of new features for DBAs to add to their arsenals: catalog
views, performance enhancements, and better data-integrity tools than previous versions of SQL
Server. Although the learning curve can be steep with some of these new tools, in the long run use of
them will lead to higher-quality, better-performing systems—and more time for DBAs to kick back
and take a much-needed break!

CHAPTER 5

.NET Integration

Truly devoted (or is it insane?) SQL Server programmers might think back wistfully on days spent
debugging extended stored procedures, yearning for those joyfully complicated times. The rest of
us, however, remember plunging headfirst into a process that always felt a lot more esoteric than it
needed to be and never quite lived up to the functionality we hoped it could provide.

SQL Server 7.0 introduced the idea of extended stored procedures (XPs), which are DLLs—
usually written in C++—that can be used to programmatically extend SQL Server’s functionality.
Programming and debugging these is unfortunately quite difficult for most users, and their use gives
rise to many issues, such as memory leaks and security concerns, that make them less than desir-
able. Luckily, extended stored procedures are a thing of the past (or are deprecated, at the very least),
and SQL Server 2005 gives programmers much better options with tightly integrated common
language runtime (CLR) interoperability. Developers can now use any .NET language they feel
comfortable with to create powerful user-defined objects within SQL Server; note, however, that
only C#, VB .NET, and Managed C++ are officially supported languages. Although other languages
can be used, getting them to work properly may require a bit of additional effort.

In this chapter, programming with CLR objects will be introduced with a step-by-step tour
through development of a CLR stored procedure. Also discussed will be the .NET object model
provided for SQL Server CLR development, best practices for developing CLR objects, and various
deployment issues.

Chapter 6 builds upon this foundation, covering all of the other types of objects that can be
created in SQL Server using .NET: CLR user-defined types, CLR user-defined functions, CLR aggregates,
and CLR triggers.

Please note that both this chapter and Chapter 6 assume familiarity with .NET programming
using the C# language. Those readers who haven’t yet picked up .NET skills should consider starting
with Andrew Troelsen’s excellent book, C# and the .NET Platform, Second Edition (Apress, 2003).

Introduction to SQL Server .NET Integration

SQL Server developers have had few choices in the past when it came to doing things in the database
that Transact-SQL (T-SQL) wasn’t especially well suited for. This includes such things as complex or
heavily mathematical logic, connecting to remote services or data stores, and manipulating files and
other non-SQL Server—controlled resources. Although many of these tasks are best suited for opera-
tion on the client rather than within SQL Server, sometimes system architecture, project funding, or
time constraints leave developers with no choice—business problems must be solved in some way,
as quickly and cheaply as possible. Extended stored procedures were one option to help with these
situations, but as mentioned previously, these were difficult to write and debug, and were known for
decreasing server stability. Another option was to use the sp_OA (Object Automation) stored proce-
dures to call COM objects, but this had its own issues, including performance penalties and dealing
with COM “DLL hell” if the correct versions weren’t registered on the SQL Server.

135

136

CHAPTER 5 .NET INTEGRATION

CLR integration does away with these issues—and provides a structured, easy-to-use method-
ology for extending SQL Server in a variety of ways.

Why Does SQL Server 2005 Host the CLR?

There are some things that T-SQL just isn’t meant to do. For instance, it’s not known as a language
that excels at accessing data from web services. Although there are some ways that this can be done,
T-SQL isn’t something we developers would think of as the first choice for this operation. Another
good example is data structures; in T-SQL, there is only one data structure: tables. This works fine for
most of our data needs, but sometimes something else is needed—an array or a linked list, for instance.
And although these things can be simulated using T-SQL, it’s messy at best.

The common language runtime is a managed environment, designed with safety and stability
in mind. Management means that memory and resources are automatically handled by the runtime—
itis very difficult (if not impossible) to write code that will cause a memory leak. Management also means
that SQL Server can control the runtime if something goes wrong. If SQL Server detects instability, the
hosted runtime can be immediately restarted.

This level of control was impossible with the extended stored procedure functionality that was
present in earlier versions of SQL Server. Extended stored procedures were often known for
decreasing the stability of SQL Server, as there was no access control—an unwitting developer could
all too easily write code that could overwrite some of SQL Server’s own memory locations, thereby
creating a time bomb that would explode when SQL Server needed to access the memory. Thanks to
the CLR’s “sandboxing” of process space, this is no longer an issue.

The CLR builds virtual process spaces within its environment, called application domains. This
lets code running within each domain operate as if it has its own dedicated process, and at the same
time isolates virtual processes from each other. The net effect in terms of stability is that if code
running within one application domain crashes, the other domains won’t be affected—only the
domain in which the crash occurred will be restarted by the framework and the entire system won't
be compromised. This is especially important in database applications; developers certainly don’t
want to risk crashing an entire instance of SQL Server because of a bug in a CLR routine.

When to Use CLR Routines

T-SQL is a language that was designed primarily for straightforward data access. Developers are
often not comfortable writing complex set-based solutions to problems, and end up using cursors to
solve complex logical problems. This is never the best solution in T-SQL. Cursors and row-by-row
processing aren’t the optimal data access methods. Set-based solutions are preferred.

When non-set-based solutions are absolutely necessary, CLR routines are faster. Looping over
a SqlDataReader can be much faster than using a cursor. And complex logic will often perform much
better in .NET than in T-SQL. In addition, if routines need to access external resources such as web
services, using .NET is an obvious choice. T-SQL is simply not adept at handling these kinds of
situations.

When Not to Use CLR Routines

It’s important to remember an adage that has become increasingly popular in the fad-ridden world
of IT in the past few years: “To a hammer, everything looks like a nail.”

Just because you can do something using the CLR, doesn’t mean you should. For data access,
set-based T-SQLis still the appropriate choice in virtually all cases. Access to external resources from
SQL Server, which CLR integration makes much easier, is generally not appropriate from SQL Server’s
process space. Think carefully about architecture before implementing such solutions. External

CHAPTER 5 .NET INTEGRATION

resources can be unpredictable or unavailable—two factors that aren’t supposed to be present in
database solutions!

In the end, it’s a question of common sense. If something doesn’t seem to belong in SQL Server,
it probably shouldn’t be implemented there. As CLR integration matures, best practices will become
more obvious—but for the meantime, take a minimalist approach. Overuse of the technology will
cause more problems in the long run than underuse.

How SQL Server Hosts .NET: An Architectural Overview

The CLR is completely hosted by SQL Server. Routines running within SQL Server’s process space
make requests to SQL Server for all resources, including memory and processor time. SQL Server is
free to either grant or deny these requests, depending on server conditions. SQL Server is also free to
completely restart the hosted CLR if a process is taking up too many resources. SQL Server itself is in
complete control, and the CLR is unable to compromise the basic integrity that SQL Server offers.

Why Managed Objects Perform Well

SQL Server 2005 CLR integration was designed with performance in mind. Compilation of CLR
routines for hosting within SQL Server is done using function pointers in order to facilitate high-
speed transitions between T-SQL and CLR processes. Type-specific optimizations ensure that once
routines are just-in-time compiled (JITted), no further cost is associated with their invocation.

Another optimization is streaming of result sets from CLR table-valued functions (which will be
covered in detail in the next chapter). Unlike some other rowset-based providers that require the
client to accept the entire result set before work can be done, table-valued functions are able to
stream data a single row at a time. This enables work to be handled in a piecemeal fashion, thereby
reducing both memory and processor overhead.

Why CLR Integration Is Stable

SQL Server both hosts and completely controls the CLR routines running within the SQL Server
process space. Since SQL Server is in control of all resources, routines are unable to bog down the
server or access unavailable resources, like XPs were able to.

Another important factor is the HostProtection attribute, a new feature in the .NET 2.0 Base
Class Library. This attribute allows methods to define their level of cross-process resource interaction,
mainly from a threading and locking point of view. For instance, synchronized methods and classes
(for example, System.Collections.ArraylList.Synchronized) are decorated with the Synchronization
parameter of the attribute. These methods and classes, as well as those that expose a shared provider
state or manage external processes, are disallowed from use within the SQL Server-hosted CLR envi-
ronment, based on permission sets chosen by the DBA at deployment time. Permission sets are
covered in more detail later in this chapter, in the section “Deploying CLR Routines.”

Although an in-depth examination of CLR code safety issues is beyond the scope of this book,
it’s important that DBAs supporting the CLR features in SQL Server 2005 realize that this is no longer
the world of XPs. These objects can be rolled out with a great deal of confidence. And as will be
discussed later in this chapter, the DBA has the final say over what access the CLR code will have
once it is deployed within the server.

SQL Server .NET Programming Model

ADO.NET, the data access technology used within the .NET Framework, has been enhanced to
operate within SQL Server 2005 hosted routines. These enhancements are fairly simple to exploit; for
most operations, the only difference between coding on a client layer or within the database will be

137

138

CHAPTER 5 .NET INTEGRATION

modification of a connection string. Thanks to this, .NET developers will find a shallow learning
curve when picking up SQL CLR skills. And when necessary, moving code between tiers will be rela-
tively simple.

Enhancements to ADO.NET for SQL Server Hosting

CLR stored procedures use ADO.NET objects to retrieve data from and write data to the database.
These are the same objects you're already familiar with if you use ADO.NET today: SqlCommand,
SqlDataReader, DataSet, etc. The only difference is, these can now be run in SQL Server’s process
space (in-processes) instead of only on a client.

When accessing SQL Server via an ADO.NET client, the SqlConnection object is instantiated,
and a connection string is set, either in the constructor or using the ConnectionString property. This
same process happens when instantiating an in-process connection—but the connection string has
been rewired for SQL Server. Using the connection string "Context connection=true" tells SQL
Server to use the same connection that spawned the CLR method as the connection from which to
perform data access.

This means, in essence, that only a single change is all that’s necessary for migration of the
majority of data access code between tiers. To migrate code into SQL Server, classes and methods
will still have to be appropriately decorated with attributes describing how they should function (see
the section, “Anatomy of a Stored Procedure”), but the only substantial code change will be to the
connection string! Virtually all members of the SqlClient namespace—with the notable exception
of asynchronous operations—will work within the SQL Server process space.

The other major code difference between CLR routines and ADO.NET programming on clients
is that inside of CLR routines the developer will generally want to communicate back to the session
that invoked the routine. This communication can take any number of forms, from returning scalar
values to sending back a result set from a stored procedure or table-valued function. However, the
ADO.NET client has until now included no mechanisms for which to do that.

Overview of the New .NET Namespaces for SQL Server

Two namespaces were added to the .NET Framework for integration with SQL Server 2005. These
namespaces contain the methods and attributes necessary to create CLR routines within SQL Server
2005, and perform manipulation of database objects within those routines.

Microsoft.SqlServer.Server

The Microsoft.SqlServer.Server namespace contains attributes for defining managed routines, as
well as ADO.NET methods specific to the SQL Server provider.

In order for classes and methods to be defined as hosted CLR routines, they must be decorated
with attributes to tell SQL Server what they are. These attributes include, among others, the
SqlProcedureAttribute for defining CLR stored procedures, and the SqlFunctionAttribute for CLR
user-defined functions. All of these attributes will be explained in detail in the next chapter.

The namespace also contains ADO.NET methods that allow CLR routines to communicate back
to the session that invoked them. What can be communicated back depends on the type of CLR
routine. For instance, a stored procedure can return messages, errors, result sets, or an integer return
value. A table-valued user-defined function, on the other hand, can only return a single result set.

When programming CLR routines that need to return data, an object called SqlContext is avail-
able. This object represents a connection back to the session that instantiated the CLR routine.
Exposed by this object is another object, SqlPipe. This is the means by which data is sent back to the
caller. Sending properly formatted messages or result sets “down the pipe” means that the calling
session will receive the data.

CHAPTER 5 .NET INTEGRATION

Note that not all SqlContext features are available from all routine types. For instance, a scalar
user-defined function cannot send back a result set. Developers must remember to carefully test
CLR routines; using a feature that’s not available won'’t result in a compile-time error! Instead, an
error will occur at runtime when the system attempts to use the unavailable feature. It’s very impor-
tant to keep this in mind during development in order to avoid problems once routines are rolled to
production systems.

Programming a CLR Stored Procedure

Now that the basic overview of what’s available is complete, it’s time to get into some code! The
example used in this chapter will be a dynamic cross-tabulation of some sales data in the
AdventureWorks sample database that’s included with SQL Server 2005. Given the data in the
Sales.SalesOrderHeader and Sales.SalesOrderDetail tables, the goal will be to produce a report
based on a user-specified date range, in which the columns are sales months and each row aggregates
total sales within each month, by territory.

Before starting work on any CLR routine, the developer should ask the following question: “Why
should this routine be programmed using the CLR?” Remember that in most cases, T-SQL is still the
preferred method of SQL Server programming—so give this question serious thought before
continuing.

In this case, the argument in favor of using a CLR routine is fairly obvious. Although this problem
can be solved using only T-SQL, it’s a messy prospect at best. In order to accomplish this task, the
routine first must determine in which months sales occurred within the input date range. Then,
using that set of months, a query must be devised to create a column for each month and aggregate
the appropriate data by territory.

This task is made slightly easier than it was in previous versions of SQL Server, thanks to the
inclusion of the PIVOT operator (see Chapter 3 for more information on this operator). This operator
allows T-SQL developers to more easily write queries that transform rows into columns, a common
reporting technique known as either pivoting or cross-tabulating. However, PIVOT doesn’t provide
dynamic capabilities—the developer still needs to perform fairly complex string concatenation in
order to get things working. Concatenating strings is tricky and inefficient in T-SQL; using the .NET
Framework’s StringBuilder class is a much nicer prospect—and avoiding complex T-SQL string
manipulation is argument enough to do this job within a CLR routine.

Once the determination to use a CLR routine has been made, the developer next must ask,
“What is the appropriate type of routine to use for this job?” Generally speaking, this will be a fairly
straightforward question; for instance, a CLR user-defined type and a CLR user-defined trigger
obviously serve quite different purposes. However, the specific problem for this situation isn’t so
straightforward. There are two obvious choices: a CLR table-valued function and a CLR stored
procedure.

The requirement for this task is to return a result set to the client containing the cross-tabulated
data. Both CLR table-valued functions and CLR stored procedures can return result sets to the client.
However, as will be discussed in the next chapter, CLR table-valued functions must have their
output columns predefined. In this case, the column list is dynamic; if the user enters a three-month
date range, up to four columns will appear in the result set—one for each month in which there were
sales, and one for the territory sales are being aggregated for. Likewise, if the user enters a one-year
date range, up to 13 columns may be returned. Therefore, it isn’t possible to predefine the column
list, and the only choice is to use a CLR stored procedure.

139

140

CHAPTER 5 .NET INTEGRATION

Starting a Visual Studio 2005 SQL Server Project

Once you have decided to program a CLR routine, the first step is to start Visual Studio 2005 and
create a new project. Figure 5-1 shows the menu option to pick in order to launch the New Project
Wizard.

@2 Microsoft Visual Studio

File | Edit View Tools ‘Window Community Help
| Hew 3 | |] Project... Chrl+M "
Open [File... Ctrl+shift+M

Project From Existing Code. ..

Figure 5-1. Open a new project in Visual Studio 2005.

Visual Studio 2005 includes a project template for SQL Server projects, which automatically
creates all of the necessary references and can create appropriate empty classes for all of the SQL
Server CLR routine types. Although you could use a Class Library template instead and do all of this
manually, that’s not an especially efficient use of time. So we definitely recommend that you use this
template when developing CLR routines.

Figure 5-2 shows the SQL Server Project template being chosen from the available database
project templates. On this system, only C# has been installed; on a system with Visual Basic .NET,
the same option would appear under that language’s option tree.

Project bypes: Templates:
=) Wisual C# Yisual Studio installed templates
Windows
Smark Device @SQL Server Project
Database
Other Languages My Templates

Other Project Types
E Search Online Templates. ..

A project for creating classes to use in SOL Server

Mame: | SalesCrossTabs |
Location: | Ci\Projects v| [Browse, .,]
Solution Marme: | SalesCrossTabs | Create directory for solution

Ok H Cancel]

Figure 5-2. Select the SQL Server Project template.

This project has been named SalesCrossTabs, since it’s going to contain at least one cross-tabu-
lation of sales data—and perhaps more will be added in the future. A single SQL Server project can
contain any number of CLR routines. However, it’s recommended that any one project logically
groups only a small number of routines. If a single change to a single routine is made, you should not
have to reapply every assembly referenced by the database.

CHAPTER 5 .NET INTEGRATION 14

After clicking the OK button, a dialog box will appear prompting for a database reference, as
shown in Figure 5-3. This reference indicates the SQL Server and database to which the project can
be automatically deployed by Visual Studio for testing and debugging during the development process.

Add Database Reference

Choose a database connection to be added as a
database reference.

Available References:

3 s52005.master.dbo

Add Mew Reference. ..]

[Ok H Cancel]

Figure 5-3. Add a database reference to allow Visual Studio to automatically deploy the routine.

If the correct reference hasn'’t already been created, click the Add New Reference button, and
the dialog box shown in Figure 5-4 will appear. As development is being done for sales data in the
AdventureWorks database, that’s what has been selected for this reference. Once the server and
database have been selected and the connection has been tested, click the OK button to continue.

New Database Reference

Enter information to connect to the Microsoft SQOL Server that you wish
to deploy your SQL Server project ko, The server wersion must be 2005
o later,

Data source:
|Microsoft SGL Server (SqlClient) |

Server name:
|ss2005 v| [refresh

Log on to the server
(%) Use Windows Authentication
O Use SOL Server Authentication

Conneck ko a database

(%) Select or enter a database name:

(O attach a database File:

|
| |
o[o]

Figure 5-4. Create a new database reference if the correct one doesn’t already exist.

142

CHAPTER 5 .NET INTEGRATION

At this point, a new, blank project has been created and is ready to have some code added.
Right-click the project name in the Solution Explorer window, click Add, and then click Stored
Procedure, as shown in Figure 5-5.

25 E &a

Q Solution ‘SalesCrossTabs' {1 project)
[EBNE] 5alesCrossTabs
[:al Referer| [#] Refresh
[Test 5o
] Assemb) Bid
Rebuild
Deploy
Clean
5] Mew Item... Add 4
[5:] Existing Item... Add Reference. ..
[y Mew Folder Add Web Reference...
] User-Defined Funckion. .. Add Test Script
@ Stored Procedure, .. | c?.} Wiew Class Diagram
ﬁ Aggregate. ., Set as StartUp Project
] Trigger... Debug >
] User-Defined Type... % ocut
g Class... Th
>< Remove
Rename
Unload Project
Properties

Figure 5-5. Adding a stored procedure to the project

The final step in adding the new stored procedure is to name it. Figure 5-6 shows the window
that will appear after clicking Stored Procedure. The Stored Procedure template is selected, and the
procedure has been named GetSalesPerTerritoryByMonth. Developers should remember that, just
as in naming T-SQL stored procedures, descriptive, self-documenting names go a long way towards
making development—especially maintenance—easier.

CHAPTER 5 .NET INTEGRATION

Add New Item - SalesCrossTabs

HE|

Templates:

¥isual Studio installed templates

@ Stored Procedure @ User-Defined Function @ User-Defined Type
@ Trigger @ Aggregate i§_=1 Class

My Templates

E Search Online Templates. ..

An empty stored procedure

Mame: GetSalesPerTerritoryByMonth.cs |

Add] [Cancel

Figure 5-6. Naming the stored procedure

Anatomy of a Stored Procedure

After the new stored procedure has been added the project, the following code will be appear in the
editing window:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SglServer.Server;

public partial class StoredProcedures

{
[Microsoft.SqlServer.Server.SqlProcedure]
public static void CetSalesPerTerritoryByMonth()
{
// Put your code here
}
1

There are a few important features to notice here. First of all, note that the Microsoft.SqlServer.
Server and System.Data.SqlTypes namespaces have been automatically included in this project.
Both of these namespaces have very specific purposes within a routine—and will be necessary
within most SQL Server CLR projects.

143

144

CHAPTER 5 .NET INTEGRATION

The Microsoft.SqlServer.Server namespace is necessary, as previously mentioned, for the
attributes that must decorate all routines to be hosted within SQL Server. In this case, the
GetSalesPerTerritoryByMonth method has been decorated with the SqlProcedure attribute. This
indicates that the method is a stored procedure. The method has also been defined as static—since
this method will be called without an object instantiation, it would not be available if not defined as
static. The namespace is also included in order to provide access to the calling context, for data
access and returning data—but more on that shortly.

The System.Data.SqlTypes namespace is also included. This namespace provides datatypes
that correspond to each of the SQL Server datatypes. For instance, the equivalent of SQL Server’s
INTEGER datatype isn’t .NET’s System.Int32 datatype. Instead, it’s SqlTypes.SqlInt32. Although
these types can be cast between each other freely, not all types have direct equivalents—many of the
SQL Server types have slightly different implementations than what would seem to be their .NET
siblings. For that reason, and to provide some insulation in case of future underlying structural
changes, it’s important to use these types instead of the native .NET types when dealing with data
returned from SQL Server, including both parameters to the routine and data read using a
SqlDataReader or DataSet.

Aside from the included namespaces, note that the return type of the
GetSalesPerTerritoryByMonth method is void. SQL Server stored procedures can return either 32-bit
integers or nothing at all. In this case, the stored procedure won'’t have a return value. That’s gener-
ally a good idea, because SQL Server will override the return value should an error occur within the
stored procedure; so output parameters are considered to be a better option for returning scalar
values to a client. However, should a developer want to implement a return value from this stored
procedure, the allowed datatypes are SqlInt32 or SqlInt16.

Adding Parameters

Most stored procedures will have one or more parameters to allow users to pass in arguments that
can tell the stored procedure which data to return. In the case of this particular stored procedure,
two parameters will be added in order to facilitate getting data using a date range (one of the require-
ments outlined in the section “Programming a CLR Stored Procedure”). These parameters will be
called StartDate and EndDate, and each will be defined as type SqlDateTime.

These two parameters are added to the method definition, just like parameters to any C# method:

[Microsoft.SqlServer.Server.SqlProcedure]

public static void CetSalesPerTerritoryByMonth(SqlDateTime StartDate,
SqlDateTime EndDate)

{

}

// Put your code here

In this case, these parameters are required input parameters. Output parameters can be defined
by using the C# ref (reference) keyword before the datatype. This will then allow developers to use
SQL Server’s OUTPUT keyword in order to get back scalar values from the stored procedure.

Unfortunately, neither optional parameters nor default parameter values are currently supported
by CLR stored procedures.

Defining the Problem

At this point, the stored procedure is syntactically complete and could be deployed as is; but of
course, it wouldn’t do anything! It’s time to code the meat of the procedure. But first, it’s good to take
a step back and figure out what it should do.

CHAPTER 5 .NET INTEGRATION 145

The final goal, as previously mentioned, is to cross-tabulate sales totals per territory, with a column
for each month in which sales took place. This goal can be accomplished using the following steps:

1. Select a list of the months and years in which sales took place, from the
Sales.SalesOrderHeader table.

2. Using the list of months, construct a query using the PIVOT operator that returns the desired
cross-tabulation.

3. Return the cross-tabulated result set to the client.

The Sales.SalesOrderHeader table contains one row for each sale, and includes a column called
OrderDate—the date the sale was made. For the sake of this stored procedure, a distinct list of the
months and years in which sales were made will be considered. The following query returns that data:

SELECT DISTINCT
DATEPART(yyyy, OrderDate) AS YearPart,
DATEPART (mm, OrderDate) AS MonthPart
FROM Sales.SalesOrderHeader
ORDER BY YearPart, MonthPart

Once the stored procedure has that data, it needs to create the actual cross-tab query. This
query needs to use the dates from Sales.SalesOrderHeader and for each month should calculate the
sum of the amounts in the LineTotal column of the Sales.SalesOrderDetail table. And of course,
this data should be aggregated per territory. The TerritoryId column of the Sales. SalesOrderHeader
table will be used for that purpose.

The first step in creating the cross-tab query is to pull the actual data required. The following
query returns the territory ID, order date formatted as YYYY-MM, and total line item amount for
each line item in the SalesOrderDetail table:

SELECT
Territoryld,
CONVERT(CHAR(7), h.OrderDate, 120) AS theDate,
d.LineTotal
FROM Sales.SalesOrderHeader h
JOIN Sales.SalesOrderDetail d ON h.SalesOrderID = d.SalesOrderID

Figure 5-7 shows a few of the 121,317 rows of data returned by this query.

Termitoryld | theDate | LineT otal |
‘I_ 5 2001-07 2024.934000
2 | 2001-07 E074.982000
3 |5 2001-07 2024.934000
4 |5 2001-07 2039.994000
5 |s 2001-07 2039.994000
6 |5 2001-07 4079.988000
7 |5 2001-07 2039.994000
8 |5 2001-07 86.521200
9 |5 2001-07 28.840400
10 |5 2001-07 34.200000

Figure 5-7. Unaggregated sales data

Using the PIVOT operator, this query can be turned into a cross-tab. For instance, to report on
sales from June and July of 2004, the following query could be used:

146

CHAPTER 5 .NET INTEGRATION

SELECT
TerritoryId,
[2004-06],
[2004-07]
FROM
(
SELECT
TerritoryId,
CONVERT(CHAR(7), h.OrderDate, 120) AS YYYY_ MM,
d.LineTotal
FROM Sales.SalesOrderHeader h
JOIN Sales.SalesOrderDetail d ON h.SalesOrderID = d.SalesOrderID

)p
PIVOT

(
SUM (LineTotal)
FOR YYYY_ MM IN
(
[2004-06],
[2004-07]
)
) AS pvt
ORDER BY TerritoryId

Figure 5-8 shows the results of this query. The data has now been aggregated and cross-tabulated. Note
that a couple of the values are NULL—this indicates a territory that did not have sales for that month.

Teritoryld | 200405 | 200407 |
1k [779625.967724 10165.250000
2 |2 240725.227509 NULL
FINE 298101.019%8 NULL
4|4 993295.830953 9155.300000
5 |s 269604.574888 113.960000
6 _|s 717837.710783 10853.700000
7|7 JE740.799297 3491950000
8 |s 349467.104000 3604830000
FIE 711086.975552 9234.230000
10|10 £98354 968664 4221410000

Figure 5-8. Cross-tabulated sales data

In the actual stored procedure, the tokens representing June and July 2004 will be replaced by
tokens for the actual months from the input date range, as determined by the StartDate and EndDate
parameters and the first query. Then the full cross-tab query will be concatenated. All that’s left from
the three steps defined previously is to return the results to the caller—but you have a couple of
choices for how to tackle that challenge.

Using the SqlPipe

As mentioned in previous sections, SqlContext is an object available from within the scope of CLR
routines. This object is defined in the Microsoft.SqlServer.Server namespace as a sealed class with
a private constructor—so you don'’t create an instance of it; rather, you just use it. The following
code, for instance, is invalid:

//This code does not work -- the constructor for SqlContext is private
SqlContext context = new SqlContext();

CHAPTER 5 .NET INTEGRATION

Instead, just use the object as is. To use the SqlPipe, which is the object we need for this exer-
cise, the following code might be used:

//Get a reference to the SqlPipe for this calling context
SqlPipe pipe = SglContext.Pipe;

So what is the Sq1Pipe? This object allows the developer to send data or commands to be executed
from a CLR routine back to the caller.

The Send() Method

The Send() method, which as you can guess is used to actually send the data, has three overloads:

e Send(string message) sends a string, which will be interpreted as a message. Think InfoMessage
in ADO.NET or the messages pane in SQL Server Management Studio. Sending strings using
Send() has the same effect as using the T-SQL PRINT statement.

e Send(SqlDataRecord record) sends a single record back to the caller. This is used in conjunc-
tion with the SendResultsStart() and SendResultsEnd() methods to manually send a table a
row at a time. Getting it working can be quite a hassle, and it’s really not recommended for
most applications. See the section “Table-Valued User-Defined Functions” in the next
chapter for a much nicer approach.

e Send(SqlDataReader reader) sendsan entire table back to the caller, in one shot. This is much
nicer than doing things row-by-row, but also just as difficult to set up for sending back data
that isn’t already in a SqlDataReader object. Luckily, this particular stored procedure doesn’t
have that problem—it uses a SqlDataReader, so this method can be used to directly stream
back the data read from the SQL Server.

The Send() methods can be called any number of times during the course of a stored procedure.
Just like native T-SQL stored procedures, CLR procedures can return multiple result sets and
multiple messages or errors. But by far the most common overload used will be the one that accepts
SqlDataReader. The following code fragment shows a good example of the utility of this method:

command.CommandText = "SELECT * FROM Sales.SalesOrderHeader";
SqlDataReader reader = command.ExecuteReader();
SqlContext.Pipe.Send(reader);

In this fragment, it’s assumed that the connection and command objects have already been instan-
tiated and the connection has been opened. A reader is populated with the SQL, which selects all
columns and all rows from the Sales.SalesOrderHeader table. The SqlDataReader can be passed to
the Send() method as is—and the caller will receive the data as a result set.

Although this example is quite simplistic, it illustrates the ease with which the Send() method
can be used to return data back to the caller when the data is already in a SqlDataReader object.

Using the ExecuteAndSend() Method

The problem with sending a SqlDataReader back to the caller is that all of the data will be marshaled
through the CLR process space on its way back. Since, in this case, the caller generated the data (it
came from a table in SQL Server), it would be nice to be able to make the caller return the data on its
own—without having to send the data back and forth.

This is where the ExecuteAndSend () method comes into play. This method accepts a Sq1Command
object, which should have both CommandText and Parameters (if necessary) defined. This tells the
calling context to execute the command and process the output itself.

Letting the caller do the work without sending the data back is quite a bit faster. In some cases,
performance can improve by up to 50 percent. Sending all of that data between processes is a lot of

147

148

CHAPTER 5 .NET INTEGRATION

work. But this performance improvement comes at a cost; one of the benefits of handling the data
within the CLR routine is control. Take the following code fragment, for example:

command.CommandText = "SELECT * FROM Sales.ERRORSalesOrderHeader";
try
{
SqlDataReader reader = command.ExecuteReader();
SqlContext.Pipe.Send(reader);

}
catch (Exception e)
{
//Do something smart here
}

This fragment is similar to the fragment discussed in the “Using the Send() Method” section. It
requests all of the rows and columns from the table, and then sends the data back to the caller using
the Send() method. This work is wrapped in a try/catch block—the developer, perhaps, can do
something to handle any exceptions that occur. And indeed, in this code block, an exception will occur—
the table Sales.ERRORSalesOrderHeader doesn’t exist in the AdventureWorks database.

This exception will occur in the CLR routine—the ExecuteReader () method will fail. At that
point, the exception will be caught by the catch block. But what about the following code fragment,
which uses the ExecuteAndSend() method:

command.CommandText = "SELECT * FROM Sales.ERRORSalesOrderHeader";
try
{

}

catch (Exception e)

SqlContext.Pipe.ExecuteAndSend(command)

//Do something smart here

Remember that the ExecuteAndSend() method tells the caller to handle all output from what-
ever T-SQL is sent down the pipe. This includes exceptions; so in this case the catch block is hit, but
by then it’s already too late. The caller has already received the exception, and catching it in the CLR
routine isn’t especially useful.

So which method, Send() or ExecuteAndSend(), is appropriate for the sales cross-tabulation
stored procedure? Given the simplicity of the example, the ExecuteAndSend() method makes more
sense. It has greater performance than Send(), which is always a benefit. And there’s really nothing
that can be done if an exception is encountered in the final T-SQL to generate the result set.

Putting It All Together: Coding the Body of the Stored Procedure

Now that the techniques have been defined, putting together the complete stored procedure is a
relatively straightforward process.

Recall that the first step is to get the list of months and years in which sales took place, within
the input date range. Given that the pivot query will use date tokens formatted as YYYY-MM, it will
be easier to process the unique tokens in the CLR stored procedure if they’re queried from the data-
base in that format—so the query used will be slightly different than the one shown in the “Defining
the Problem” section. The following code fragment will be used to get the months and years into a
SqlDataReader object:

CHAPTER 5 .NET INTEGRATION

//Get a SglCommand object
SqlCommand command = new SqlCommand();

//Use the context connection
command.Connection = new SqlConnection("Context connection=true");
command.Connection.Open();

//Define the T-SQL to execute
string sql =
"SELECT DISTINCT " +
"CONVERT(CHAR(7), h.OrderDate, 120) AS YYYY MM " +
"FROM Sales.SalesOrderHeader h " +
"WHERE h.OrderDate BETWEEN @StartDate AND @EndDate " +
"ORDER BY YYYY_MM";
command.CommandText = sql.ToString();

//Assign the StartDate and EndDate parameters
SqlParameter param =

command.Parameters.Add("@StartDate", SqlDbType.DateTime);
param.Value = StartDate;
param = command.Parameters.Add("@EndDate", SqlDbType.DateTime);
param.Value = EndDate;

//Get the data
SqlDataReader reader = command.ExecuteReader();

This code uses the same SqlCommand and SqlDataReader syntax as it would if this were being used
for an ADO.NET client; keep in mind that this code won’t work unless the System.Data.SqlClient
namespace is included with a using directive. The only difference between this example and a client
application is the connection string, which tells SQL Server that this should connect back to the
caller’s context instead of a remote server. Everything else is the same—the connection is even
opened, as if this were a client instead of running within SQL Server’s process space.

As aresult of this code, the reader object will contain one row for each month in which sales
took place within the input date range (that is, the range between the values of the StartDate and
EndDate parameters). Looking back at the fully formed pivot query, you can see that the tokens for
each month need to go into two identical comma-delimited lists: one in the outer SELECT list and one
in the FOR clause. Since these are identical lists, they only need to be built once. The following code
handles that:

//Get a StringBuilder object
System.Text.StringBuilder yearsMonths = new System.Text.StringBuilder();

//Loop through each row in the reader, adding the value to the StringBuilder
while (reader.Read())
{

}

//Close the reader
reader.Close();

yearsMonths.Append("[" + (string)reader["YYYY MM"] + "], ");

//Remove the final comma in the list
yearsMonths.Remove(yearsMonths.Length - 2, 1);

149

150

CHAPTER 5 .NET INTEGRATION

A StringBuilder is used in this code instead of a System. string. This makes building the list a
bit more efficient. For each row, the value of the YYYY_MM column (the only column in the reader) is
enclosed in square brackets, as required by the PIVOT operator. Then a comma and a space are
appended to the end of the token. The extra comma after the final token is removed after the loop is
done. Finally, SqlDataReader is closed. When working with SqlDataReader, it’s a good idea to close it
as soon as data retrieval is finished in order to disconnect from the database and save resources.

Now that the comma-delimited list is built, all that’s left is to build the cross-tab query and send
it back to the caller using the ExecuteAndSend() method. The following code shows how that’s done:

//Define the cross-tab query
sql =
"SELECT TerritoryId, " +
yearsMonths.ToString() +
"FROM " +
"(II +
"SELECT " +
"TerritoryIld, " +
"CONVERT(CHAR(7), h.OrderDate, 120) AS YYYY MM, " +
"d.LineTotal " +
"FROM Sales.SalesOrderHeader h " +
"JOIN Sales.SalesOrderDetail d " +
"ON h.SalesOrderID = d.SalesOrderID " +
"WHERE h.OrderDate BETWEEN @StartDate AND @EndDate " +
Dopt
"PIVOT " +
ll(n +
"SUM (LineTotal) " +
"FOR YYYY_ MM IN " +

II(" +
yearsMonths.ToString() +
ll) " +
") AS pvt " +

"ORDER BY TerritoryId";

//Set the CommandText
command.CommandText = sql.ToString();

//Have the caller execute the cross-tab query
SqlContext.Pipe.ExecuteAndSend(command);

//Close the connection
command. Connection.Close();

Note that the same command object is being used as was used for building the comma-delimited
list of months in which sales took place. This command object already has the StartDate and EndDate
parameters set; since the cross-tab query uses the same parameters, the parameters collection
doesn’t need to be repopulated. Just like when programming in an ADO.NET client, the connection
should be closed when the process is finished with it.

At this point, the CLR stored procedure is completely functional as per the three design goals;
so it’s ready for a test drive.

CHAPTER 5 .NET INTEGRATION

Testing the Stored Procedure

Visual Studio 2005 makes deploying the stored procedure to the test SQL Server quite easy. Just
right-click the project name (in this case, SalesCrossTabs) and click Deploy. Figure 5-9 shows what
the option looks like.

Solution Explorer - ¢

= eNE s
R Solution ‘SalesCrossTabs' {1 project)
= 3
H- [Ref g Refresh
+- | Tes
C"_:] Ass

c§_=1 Gel Rebuild

| Deploy |

Clean

Figure 5-9. Deploying the assembly to the test server

Once the procedure is deployed, testing it is simple. Log in to SQL Server Management Studio
and execute the following batch of T-SQL:

USE AdventureWorks
GO

EXEC GetSalesPerTerritoryByMonth
@StartDate = '20040501",
@EndDate = '20040701'

GO

If everything is properly compiled and deployed, this should output a result set containing cross-
tabulated data for the period between May 1, 2004, and July 1, 2004. Figure 5-10 shows the correct
output.

Territaryld | 2004-05 2004-06 2004-07

: §37807.162368 77I625.967724 513.140000
[— P — P — NULL

3 243727 130221 293101013363 HULL

4 1007034715534 933295.830953 243.140000
5 264307 861300 2B3604.574338 HULL

3 533267 247346 717837710783 472150000
7 7E6232.284720 316740.739297 178.340000
a 407253.815030 343467.104000 143.230000
k| 551630.604000 711086.975552 221.730000
10 407520.435480 683354965664 51.460000

Figure 5-10. Cross-tabulated sales data for the period between May 1, 2004, and July 1, 2004

Note that running the stored procedure might result in the message, “Execution of user code in
the .NET Framework is disabled. Use sp_configure "clr enabled" to enable execution of user code
in the .NET Framework. If this happens, execute the following batch of T-SQL to turn on CLR inte-
gration for the SQL Server:

151

152

CHAPTER 5 .NET INTEGRATION

USE AdventureWorks
GO

EXEC sp_configure 'clr enabled', 1
RECONFIGURE
GO

Running the sp_configure system stored procedure to enable CLR integration is required
before CLR routines can be run in any database. Keep in mind that enabling or disabling CLR inte-
gration is a server-wide setting.

Once the stored procedure is running properly, it will appear that the stored procedure works
as designed! However, perhaps some deeper testing is warranted to ensure that the procedure really
is as robust as it should be. Figure 5-11 shows the output from the following batch of T-SQL:

USE AdventureWorks
GO

EXEC GetSalesPerTerritoryByMonth
@StartDate = '20050501",
@EndDate = '20050701'

GO

Msg 50000, Lewvel 16, sState 1, Line 1
Mo data present for the input date range.
Msg 6522, Lewel 16, State 1, Procedure GetsalesperTerritoryByMonth, Line O
A CMET Framework error occurred during execution of user defined routine or aggregate
System.bata. sglclient. sqlException: Mo data present for the input date range.
System. bata. sglclient. sqlException:
at System.Data.sglclient. sglConnection.onError(sqlException exception, Boolean hre
at System.Data.sglclient. sglinternalconnection.onerror(sglException exception, Boo
at System.Data.sglclient. sglinternalconnectionsmi. Processmessages()
at System.Data.sglclient. sqlcommand. RUNExecutenonguerysmi(Boolean sendToPipe)
at System.Data.sglclient. sglcommand. InternalExecutenonquery(bbasyncResult result, ¢
at System.Data.sglclient. sglcommand. ExecuteToPipe(smicontext pipeContext)
at microsoft.sglserver. server.sqlPipe. Executeandsend(sglcommand command)
at storedprocedures.GetsalesperTerritoryByMonth(sglDateTime StartDate, sglDateTime

Figure 5-11. Attempting to cross-tabulate sales data for the period between May 1, 2005, and July 1, 2005

Debugging the Procedure

What a difference a year makes! Luckily, since this stored procedure is being coded in Visual Studio,
the integrated debugging environment can be used to track down the problem. In the Solution
Explorer, expand the Test Scripts tree and double-click Test.sql. This will open a template that can
contain T-SQL code to invoke CLR routines for debugging. Paste the following T-SQL into the Stored
procedure section:

EXEC GetSalesPerTerritoryByMonth
@StartDate = '20050501",
@EndDate = '20050701'

Now return to the code for the managed stored procedure and put the cursor on the first line:
SqlCommand command = new SqlCommand();.Pressing the F9 key will toggle a breakpoint for that line.
Before starting the debug session, open the Server Explorer by clicking View » Server Explorer,
as shown in Figure 5-12. In the Server Explorer, right-click the database connection being used for
this project and make sure that both Application Debugging and Allow SQL/CLR Debugging are

CHAPTER 5 .NET INTEGRATION

checked, as shown in Figure 5-13. Keep in mind that allowing SQL/CLR debugging should not be
done on a production SQL Server. During debugging, all managed code running within the SQL
Server process will be halted should any breakpoints be hit. This can wreak havoc on a live system
that makes use of CLR routines, so make sure to only debug on development systems.

Wiews | Project Build Debug Tools W

j Open

Open With, ..
'—'j Solution Explarer Chrl+alt+1
5% Class View Chrl+5hift+C
..E Resource Yiew
| "4 Server Explorer Crl+alt+5 |
i Properties Window F4

Figure 5-12. Opening the Server Explorer in Visual Studio

L b
- [0, s52005.master.dba (2] Refresh

= &4 Servers X Delete
+ M 552005

Modify Connection. ..

Change View 3
Mew Cuery

. Application Debugging

Allow SOLICLR. Debuaging

Rename

Figure 5-13. Allowing SQL/CLR Debugging for the project’s database connection

Once debugging is enabled, press the F5 key, and Visual Studio will enter debug mode. If all is
working as it should, the breakpoint should be hit—and code execution will stop on the first line of
the stored procedure.

Use the F10 key to step through the stored procedure one line at a time, using the Locals pane
to check the value of all of the variables. Stop stepping through on the line
yearsMonths.Remove(yearsMonths.Length - 2, 1);,andlook at the value of the yearsMonths variable
in the Locals pane—it’s empty; no characters can be removed from an empty string!

As it turns out, this stored procedure wasn’t coded properly to be able to handle date ranges in
which there is no data. This is definitely a big problem, since the output requires a column per each
month in the input date range that sales occurred. Without any data, there can be no columns in the
output. The stored procedure needs to return an error if no data is present.

Throwing Exceptions in CLR Routines

Any exception that can be thrown from the CLR will bubble up to the SQL Server context if it’s not
caught within the CLR routine. For instance, the sales cross-tab stored procedure could be made a
bit more robust by raising an error if yearsMonths is zero characters long, instead of attempting to
remove the comma:

153

154

CHAPTER 5 .NET INTEGRATION

if (yearsMonths.Length > 0)

{
//Remove the final comma in the list
yearsMonths.Remove(yearsMonths.Length - 2, 1);
}
else
{
throw new ApplicationException("No data present for the input date range.");
}

Instead of getting a random error from the routine, a well-defined error is now returned—
theoretically. In reality, the error isn’t so friendly. As shown in Figure 5-14, these errors can get quite
muddled—not only is the error returned as with native T-SQL errors, but the call stack is also
included. And although that’s useful for debugging, it’s overkill for the purpose of a well-defined
exception.

Msg 6522, Lewel 16, State 1, Procedure GetSalesPerTerritoryBymonth, Line O
£ . NET Framework error occurred during execution of user defined routine or aggregate 'GetsalesPerTerritoryB:
System. applicationException: Mo data present for the input date range
System. applicationException:
at storedprocedures.GetsalesPerTerritoryByMonth(SglDateTime Startpate, SgloateTime Endbate)

Figure 5-14. Standard CLR exceptions aren’t formatted well for readability.

A better option, obviously, would be to use a native T-SQL error, invoked with the RATSERROR ()
function. A batch can be sent using Sq1Pipe.ExecuteAndSend(), as in the following code fragment:

if (yearsMonths.Length > 0)

{
//Remove the final comma in the list
yearsMonths.Remove(yearsMonths.Length - 2, 1);
}
else
{
command. CommandText =
"RAISERROR('No data present for the input date range.', 16, 1)";
SqlContext.Pipe.ExecuteAndSend(command);
return;
}

Alas, as shown in Figure 5-15, this produces an even worse output. The T-SQL exception bubbles
back into the CLR layer, where a second CLR exception is thrown as a result of the presence of the
T-SQL exception.

Msg 50000, Lewel 16, State 1, Line 1
Mo data present for the input date range
Msg 6522, Lewvel 16, State 1, Procedure GetSalesPerTerritoryByMonth, Line O
A LMET Framework error occurred during execution of user defined routine or aggregate 'GetSalesPerTerritoryd:
System. Data. Sglserver. sglException: Mo data present for the input date range.
System. Data. sglserver. sglException:
at System.Data.SglServer.Internal.StandardEventsSink. HandleErrors ()
at System.Data.SglServer.Internal.RegquestExecutor. HandleExecute(EventTranslator eventTranslator, Sglconne
at System.Data.SglServer.Internal.ReguestExecutor. ExecuteToRipe(sSglConnection conn, sglTransaction tran, «
at System.Data.SglServer.Sglpipe. Execute(sSglCommand command)
at storedprocedures.GetSalesperTerritoryByMonth(SglbateTime StartDate, SglbateTime EndDate)

Figure 5-15. RAISERROR alone doesn’t improve upon the quality of the exception.

CHAPTER 5 .NET INTEGRATION

The solution, as strange as it seems, is to raise the error using RAISERROR but catch it so that a
second error isn’t raised when control is returned to the CLR routine. The following code fragment
shows how to accomplish this:

if (yearsMonths.Length > 0)

//Remove the final comma in the list
yearsMonths.Remove(yearsMonths.Length - 2, 1);

}
else
{
command.CommandText =
"RAISERROR('No data present for the input date range.', 16, 1)";
try
{
SqlContext.Pipe.ExecuteAndSend(command);
}
catch
{
return;
}
}

After catching the exception, the method returns—if it were to continue, more exceptions would be
thrown by the PIVOT routine, as no pivot columns could be defined. Figure 5-16 shows the output
this produces when run with an invalid date range. It’s quite a bit easier to read than the previous
exceptions.

mMsg 50000, Level 16, sState 1, Line 1
Mo data present for the input date range.

Figure 5-16. Catching the exception in the CLR routine after firing a RAISERROR yields the most
readable exception message.

The complete code for the sales cross-tab stored procedure, including handling for invalid date
ranges, follows:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

public partial class StoredProcedures
{
[Microsoft.SqlServer.Server.SqlProcedure]
public static void GetSalesPerTerritoryByMonth(SqlDateTime StartDate,
SqlDateTime EndDate)
{
//Get a SqlCommand object
SqlCommand command = new SqlCommand();

155

156

CHAPTER 5 .NET INTEGRATION

//Use the context connection
command.Connection = new SqlConnection("Context connection=true");
command.Connection.Open();

//Define the T-SQL to execute
string sql =
"SELECT DISTINCT " +
"CONVERT(CHAR(7), h.OrderDate, 120) AS YYYY MM " +
"FROM Sales.SalesOrderHeader h " +
"WHERE h.OrderDate BETWEEN @StartDate AND @EndDate " +
"ORDER BY YYYY _MM";
command.CommandText = sql.ToString();

//Assign the StartDate and EndDate parameters
SqlParameter param =

command.Parameters.Add("@StartDate", SqlDbType.DateTime);
param.Value = StartDate;
param = command.Parameters.Add("@EndDate", SqlDbType.DateTime);
param.Value = EndDate;

//Get the data
SqlDataReader reader = command.ExecuteReader();

//Get a StringBuilder object
System.Text.StringBuilder yearsMonths = new System.Text.StringBuilder();

//Loop through each row in the reader, adding the value to the StringBuilder
while (reader.Read())

{
}

//Close the reader
reader.Close();

yearsMonths.Append("[" + (string)reader["YYYY MM"] + "], ");

if (yearsMonths.Length > 0)

{ //Remove the final comma in the list
yearsMonths.Remove(yearsMonths.Length - 2, 1);

}

else

{

command.CommandText =
"RAISERROR('No data present for the input date range.', 16, 1)";

try
{
SqlContext.Pipe.ExecuteAndSend(command);
}
catch
{
return;
}

CHAPTER 5 .NET INTEGRATION

//Define the cross-tab query
sql =
"SELECT Territoryld, " +
yearsMonths.ToString() +
"FROM " +
(" o+
"SELECT " +
"TerritoryId, " +
"CONVERT(CHAR(7), h.OrderDate, 120) AS YYYY MM, " +
"d.LineTotal " +
"FROM Sales.SalesOrderHeader h " +
"JOIN Sales.SalesOrderDetail d " +
"ON h.SalesOrderID = d.SalesOrderID " +
"WHERE h.OrderDate BETWEEN @StartDate AND @EndDate " +
"yp o+
"PIVOT " +
ll(n +
"SUM (LineTotal) " +
"FOR YYYY_MM IN " +

II(n +
yearsMonths.ToString() +
ll) n +
") AS pvt " +

"ORDER BY TerritoryId";

//Set the CommandText
command.CommandText = sql.ToString();

//Have the caller execute the cross-tab query
SqlContext.Pipe.ExecuteAndSend(command);

//Close the connection
command. Connection.Close();

};

Deploying CLR Routines

Once a routine is written, tested, and—if necessary—debugged, it can finally be rolled to production.
The process of doing this is quite simple: the release version of the DLL is copied to the server, and a
few T-SQL statements are executed.

In order to produce a release version, change the build option on the Standard toolbar from
Debug to Release, as shown in Figure 5-17. Once the configuration is set, click Build from the main
toolbar, and then click Build Solution. This will produce a release version of the DLL—a version with
no debug symbols—in the [Project Root]\bin\Release folder. So if the root folder for the project is
C:\Projects\SalesCrossTabs, the DLL will be in C:\Projects\SalesCrossTabs\bin\Release.

4

eese[BJao co

DebuE
Configuration Manager. ..

Figure 5-17. Configuring the project for a release build

157

158

CHAPTER 5 .NET INTEGRATION

The release version of the DLL can be copied from this location onto any production server in
order to deploy it. Only the DLL is required in order to deploy the CLR routines compiled within it.

The DLLis registered with SQL Server 2005 using the CREATE ASSEMBLY statement. The syntax for
this statement is

CREATE ASSEMBLY assembly name

[AUTHORIZATION owner name]

FROM { <client assembly specifier> | <assembly bits> [,...n] }

[WITH PERMISSION SET = { SAFE | EXTERNAL ACCESS | UNSAFE }]

(5]

The assembly name represents a user-defined name for the assembly—generally, it’s best to use the
name of the project. The AUTHORIZATION clause is optional, and allows the DBA to specify a particular
owner for the object. The important part of the FROM clause is the client_assembly specifier—this
is the physical path to the DLL file. The assembly bits option is used for situations in which the DLL
has been binary serialized, and won’t be covered in this book.

The most important clause of CREATE ASSEMBLY, however, is the optional WITH PERMISSION SET
clause. The DBA is in complete control when it comes to what CLR routines can do. Routines can be
assigned to one of three permission sets—SAFE, EXTERNAL_ACCESS, or UNSAFE. Each permission set is
progressively less restrictive. By controlling CLR routine permission, the DBA can keep a close watch
on what routines are doing—and make sure that none are violating system policies.

The default SAFE permission set restricts routines from accessing any external resources,
including files, web services, the registry, or networks. The EXTERNAL_ACCESS permission set opens up
access to these external resources. This can be useful for situations in which data from the database
needs to be merged with data from other sources. Finally, the UNSAFE permission set opens access to
all CLR libraries. It is recommended that this permission set not be used, as there is potential for
destabilization of the SQL Server process space if libraries are misused.

Assuming that the SalesCrossTabs DLL was copied to the C:\Assemblies folder on the SQL
Server, it could be registered using the following T-SQL:

CREATE ASSEMBLY SalesCrossTabs
FROM 'C:\Assemblies\SalesCrossTabs.DLL'

Since this assembly doesn’t use any external resources, the default permission set doesn’t need to be
overridden. Keep in mind that if the assembly has already been deployed using Visual Studio, this T-
SQL would fail; assembly names must be unique within a database. If there is already an assembly
called SalesCrossTabs from a Visual Studio deployment, it can be dropped using the DROP ASSEMBLY
statement.

Once CREATE ASSEMBLY has successfully registered the assembly, the physical file is no longer
accessed—the assembly is now part of the database it’s registered in.

The next step is to tell SQL Server how to use the procedures, functions, and types in the
assembly. This is done using slightly modified versions of the CREATE statements for each of these
objects. To register the GetSalesPerTerritoryByMonth stored procedure, the following T-SQL would
be used:

CREATE PROCEDURE GetSalesPerTerritoryByMonth
@StartDate DATETIME,
@EndDate DATETIME
AS
EXTERNAL NAME SalesCrossTabs.StoredProcedures.GetSalesPerTerritoryByMonth

CHAPTER 5 .NET INTEGRATION

The parameter list must match the parameters defined on the CLR method. The EXTERNAL NAME
clause requires three parameters, delimited by periods: the user-defined name of the assembly, the
name of the class defined in assembly (in this case, the default StoredProcedures class), and finally the
name of the method defined as the stored procedure in the assembly. This clause is case sensitive, so
be careful. Changing the case from that defined in the routine will result in an error.

Once the stored procedure is defined in this way, it can be called just like any native T-SQL
stored procedure.

Summary

CLR integration allows developers to extend the functionality of SQL Server 2005 using safe, well-
performing methods. Coding CLR stored procedures is an easy way to improve upon some of the
things that T-SQL doesn’t do especially well.

In the next chapter, we'll cover the other types of CLR objects available to developers: functions,
aggregates, user-defined types, and triggers. We’ll also present a more in-depth look into managing
routines from a DBA’s perspective.

159

CHAPTER 6

Programming Assemblies

In addition to the stored procedures covered in the last chapter, SQL Server 2005 can also host a
variety of other types of CLR routines. These include user-defined datatypes, functions (both scalar
and table-valued), aggregates, and triggers.

* User-defined types allow for special compound type cases, such as point or shape datatypes
that can’t be modeled naturally using intrinsic scalar types. We present two user-defined type
examples in this chapter: a phone number type and an array type.

* CLR user-defined functions allow developers to easily integrate any functionality provided by
.NET libraries, such as data compression or regular expressions. The example functions in
this chapter show how to expose the compression capabilities of the .NET 2.0 base class
library, and how to return the elements of the array user-defined type example as a rowset.

» User-defined aggregates are an especially exciting new feature. They allow developers to create
custom aggregation functions that can be used in queries with GROUP BY clauses—hacking
with cursors and (non-CLR) user-defined functions is no longer necessary for defining
custom aggregations that go beyond the built-in sum, average, minimum, maximum, count,
and standard deviation aggregates. In this chapter, we show a “trimmed mean” example that
calculates the average value of a column over a set of rows, disregarding the minimum and
maximum values of the column.

* CLR triggers behave much like T-SQL triggers, but they can leverage the power of the .NET
libraries for more flexible operations. The example in this chapter shows how to create a CLR
trigger to validate data on insert or update.

Like CLR stored procedures, each of these types of routines can be built in Visual Studio 2005
using C# or VB .NET. Also like CLR stored procedures, it’s important to consider using these routines
carefully, as CLR integration is not appropriate for all situations.

For the DBAs of the world, all of this new functionality represents a double-edged sword. On
one hand, these features provide incredible power to create functionality within the database that
could never before have been imagined. On the other hand, there is quite a bit of room for abuse and
misuse. This chapter will help you maneuver through the potential minefields and show how to use
the features—as well as how not to use them.

CLR User-Defined Types

Although user-defined types have been available in SQL Server for several years, they were not an
especially powerful tool for DBAs and data modelers. T-SQL user-defined types are essentially
synonyms for sized type declarations. For instance, you could define a type called ZipCode that maps
to a CHAR(5), to be used for representing U.S. 5-digit postal codes. Although this can be useful in

161

162

CHAPTER 6 PROGRAMMING ASSEMBLIES

some cases, it never really caught on as a widely accepted way of defining data. Most DBAs did not
bother to use the feature, and in SQL Server 2005 this functionality has been deprecated.

Slated to replace the not-so-powerful T-SQL user-defined types is a new breed of CLR types that
can represent virtually any data structure, as described in the sections that follow. These types are
not mere wrappers over the intrinsic SQL Server types, as are T-SQL user-defined types. Rather,
these types are full-featured class structures, complete with properties and methods. Implementa-
tion of these types can and should include such niceties as data verification and string formatting,
which were not possible with T-SQL user-defined types.

Applications for User-Defined Types

User-defined types are excellent candidates for representing complex data that SQL Server’s
intrinsic types don’t deal with well. For instance, a user might want to create a type to represent
postal codes, instead of using one of SQL Server’s character datatypes. A postal code user-defined
type could include logic for digesting and normalizing a variety of input string formats for various
countries. Even in the United States alone, postal codes can be represented using five digits, with the
format XXXXX, or nine digits, with the format XXXXX-YYYY. By defining logic within a postal code
type to parse and process any type of input postal code format, we create a single library to deal with
postal codes and thus eliminate repetition. To reduce repetition further, a series of properties or
methods could be defined on the type for retrieving the postal code in various string formats.

Another application of CLR user-defined types is to extend the flexibility afforded by T-SQL
from a software development perspective. For instance, many projects might benefit from an array
datatype within SQL Server. In some situations it’s required that small, ordered sets of data be passed
between stored procedures or user-defined functions. And although developers could use a variety
of hacks to achieve functionality similar to arrays in previous versions of SQL Server, in SQL Server
2005 developers can leverage the .NET Framework to create an actual array that operates safely and
efficiently within SQL Server.

Although the ability to create and use custom datatypes brings great power, developers should
avoid the temptation to use SQL Server as a serialized object store. This is conceptually possible—
business objects would simply need to be decorated with the correct attributes—but it would drive
no real value within the database. Member properties of serialized objects cannot be efficiently
queried, so any attempt to use the properties as predicates in queries would destroy server perfor-
mance. Data represented by user-defined types should be atomic from a query perspective; no
individual property of a type should be required in order to filter a row containing an instance of
the type.

Adding a User-Defined Type to a SQL Server Project

To start a project for user-defined types in Visual Studio 2005, choose Database, and then select the
SQL Server Project template, as shown in Figure 6-1. Set the reference to a development database
and click OK to launch the project.

CHAPTER 6 PROGRAMMING ASSEMBLIES

New Project

Project bypes: Templates: |§|

=) Wisual C# Yisual Studio installed templates
Windows
Database
Starter Kits
Distributed System Solutions My Templates
Other Project Types

|Search Online Templates. ..

A project for creating classes to use in SOL Server

Mame: | UserDefinedTypes |
Location: | Ci\Projects v| [Browse, .,]
Solution Mame: | UserDefinedTypes | Create directory for solution

Ok H Cancel]

Figure 6-1. Opening a new project in Visual Studio 2005

One the project has been created, right-click the project’s name in Solution Explorer, and then
select Add » User-Defined Type, as shown in Figure 6-2. The first example type for this chapter will
be called PhoneNumber.

R Solution 'UserDefinedTypes' (1 project)
= @ UserDefinedTvnes

[Re Build
= L
C,Q As:
Deploy
Clean
5] Mew Item... | Add 3
[5:] Existing Item... add Reference. ..
4 Mew Folder Add Web Reference...
] User-Defined Funckion. .. Add Test Script
] Stored Procedure... c?,; View Class Diagram
ﬁ Aggregate. ., Set as StartUp Project
] Trigger... Debug >
|ﬁ User-Defined Type... | # cut
g Class... i
L -

Figure 6-2. Adding a user-defined type to the project

163

164

CHAPTER 6 PROGRAMMING ASSEMBLIES

Parts of a User-Defined Type

Upon adding a type to a project, Visual Studio 2005 will populate a stubbed version of the type with
all of the pieces necessary to begin programming. The following code is the stubbed-out version of
the PhoneNumber type as generated by Visual Studio 2005:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native)]
public struct PhoneNumber : INullable

{ public override string ToString()
{ // Replace the following code with your code
return "";
}
public bool IsNull
{
get
{
// Put your code here
return m_Null;
}
}
public static PhoneNumber Null
{
get
{
PhoneNumber h = new PhoneNumber();
h.m_Null = true;
return h;
}
}

public static PhoneNumber Parse(SqlString s)
{
if (s.IsNull)
return Null;
PhoneNumber u = new PhoneNumber();
// Put your code here
return u;

CHAPTER 6 PROGRAMMING ASSEMBLIES

// This is a place-holder method
public string Method1()
{

//Insert method code here
return "Hello";

}

// This is a place-holder static method
public static SqlString Method2()

{

//Insert method code here
return new SqlString("Hello");
}

// This is a place-holder field member
public int vari;

// Private member

private bool m Null;

This code is not as complex as it initially looks, and it can be broken down into a few different
sections to make analysis easier.

SqlUserDefinedType Attribute

A class or structure will not be treated as a user-defined type unless it is decorated with the
SqlUserDefinedType attribute, as shown in the stubbed code. This attribute has a few parameters
that define the serialization behavior of the type:

e Format: This is the only required parameter, and it determines the method that will be used
for serializing the type (rendering the data as binary so that it can be sent across the network
or written to disk). The two choices for this parameter are Native and UserDefined. A value of
Native indicates that the CLR runtime should automatically handle the serialization, whereas
UserDefined indicates that the serialization is programmed by the developer implementing
the IBinarySerialize interface.

Native serialization will only work if the type is defined as a structure (as opposed to a class)
and all members are value types. As such, there are very few nontrivial uses for native serial-
ization of types. The vast majority of cases will be user defined. The complete list of .NET
types eligible for native serialization is as follows: bool, byte, sbyte, short, ushort, int, uint,
long, ulong, float, double, SqlByte, Sq1Int16, SqlInt32, SqlInt64, SqlDateTime, SqlSingle,
SqlDouble, SqlMoney, and SqlBoolean.

» IsByteOrdered: For a type to be a candidate for indexing or comparison operations (equal to,
less than, greater than, etc.), SQL Server must have a way of comparing one instance of the
type to another instance of the type. This is implemented using byte ordering. If a type is byte
ordered, SQL Server will assume that comparing the raw bytes of the serialized instance of the
type is equivalent to comparing the instances of the type. This is much faster than the alter-
native, which entails deserializing and using IComparable or a similar mechanism to compare
instances of the type. Possible values for this parameter are true and false, and for a type to
be considered for indexing or comparison, the value must be true. The default value is false.

» IsFixedLength: This parameter can be setto true or false. A value of true tells SQL Server that
every serialized instance of this type will always be exactly the same size. The default value
is false.

165

166

CHAPTER 6 PROGRAMMING ASSEMBLIES

* MaxByteSize: This parameter tells SQL Server the maximum size the type can reach. For a
fixed-length type, this parameter should indicate the length to which that the type will always
serialize. For other types, this size should reflect a realistic estimate on the part of the devel-
oper. The value for this parameter can be any integer between 1 and 8,000. Remember that
although a value of 8,000 can work for every non-fixed-length type, this can end up hurting
performance. The query optimizer can consider a type’s maximum length when determining
query plans. The default value is 8000.

Note that the stubbed type is also decorated with the Serializable attribute. This attribute is
also necessary; an instance of a type must be serialized any time it is written to disk or sent across
the network.

INullable Interface

A user-defined type must implement the INullable interface. This interface defines the Null and
IsNull properties.

The IsNull property returns true if the type is null, in the SQL Server sense of the term (as
opposed to the .NET sense of the term). null in C# (Nothing in VB .NET) is used to indicate that a
reference type does not reference an object. In SQL Server, NULL means something different; it is a
token used for unknown data, as well as uninitialized variables. Although the two are similar, it’s
important to remember the distinction when working between the two platforms.

The IsNull property is controlled internally in the stubbed type by the value of them Null
private member, but developers are free to implement this property in any way appropriate to the
type being developed.

The Null property returns a freshly instantiated instance of the type. This instance should be
initialized such that the IsNull property will return true. The Null property will be used by SQL
Server any time a new instance of the type is requested (e.g., when a variable is declared of that type).
SQL Server will not call new, or an equivalent of new, directly. This means that private member initial-
ization code can be put within the Null property instead of the constructor, if appropriate.

It’s important that user-defined types behave similarly to the intrinsic SQL Server datatypes.
Therefore, care should be taken to make sure that the Null and IsNull properties behave correctly.
Developers should make sure that these properties do not incorrectly identify null instances as non-
null or non-null instances as null—doing so could severely damage the type’s ability to interact
properly with the SQL Server engine. This is mainly controlled within the Parse method. A simple
way to handle the situation is to always return Null (thatis, the Null property of the type) if the string
passed in to Parse is NULL (which you can check using the IsNull property of the SqlString type).

ToString Method

Every user-defined type must override the ToString method (which is inherited from the object
class by every type defined in .NET). The rationale for this is flexible client interoperability. Although
some client libraries may be able to consume a serialized instance of the type, others will only be
able to make sense of the type represented as a string.

It is recommended that developers code the ToString method such that the string returned is
compatible with the Parse method, described next. If these two methods are compatible, the string
generated by the ToString method can be later passed back to SQL Server if necessary, in order to
reinstantiate the type.

CHAPTER 6 PROGRAMMING ASSEMBLIES

Parse Method

The Parse method is the exact opposite of the ToString method. Instead of producing a string repre-
sentation of an instance of the type, this method takes a string as input, returning an instance of the
type generated based on the string.

Parse is quite important in the world of user-defined types, as it will be called any time a type’s
value is set using the assignment operator (aka equals sign). Furthermore, public mutators (i.e.,
public members or public settable properties) cannot be set on null instances; any instance that is
null must first be instantiated using Parse.

These concepts are best illustrated using a code example. Assume the presence of a user-defined
type called PhoneNumber that has a public, settable property called Number. A user might attempt to
define an instance of the type and set Number to a value using the following code:

DECLARE @phone PhoneNumber
--Set the number to the Apress business phone line
SET @phone.Number = '5105495930"

This code will fail with the error message “Mutator 'Number' on '@phone' cannot be called on a null
value.” The following code would not result in an error, as it calls Parse internally:

DECLARE @phone PhoneNumber
--Set the number to the Apress business phone line
SET @phone = '5105495930"

Unfortunately, the developer may have actually wanted to set the phone number using the
property. That would require first calling Parse with a fake value to initialize the type, and then
calling the property directly:

DECLARE @phone PhoneNumber

--Start with a dummy value

SET @phone = '0000000000'

--Set the number to the Apress business phone line
SET @phone.Number = '5105495930"

In most cases, it’s probably a good idea to assign the value only using the assignment operator
(and, therefore, Parse), but in some cases it will be necessary to initialize the type to allow for more
straightforward SQL coding. The StringArray type shown later in this chapter provides a good
example to illustrate that kind of situation.

A Simple Example: The PhoneNumber Type

A common requirement in virtually every business application is storing contact information. This
information usually includes, among other things, names, mailing addresses, e-mail addresses, and
phone numbers. Unfortunately, problems can sometimes occur due to formatting irregularities.
Some people like to write U.S. phone numbers using parentheses and dashes, asin “(510) 549-5930”.
Some prefer to use only dashes, as in “510-549-5930". Others feel that periods look cool and will
input the number as “510.549.5930”.

It’s not difficult to handle these differences in format, but properly dealing with them requires
that every stored procedure in the system validate the input. There should be exactly ten numerals
in any valid U.S. phone number. And preferably, those phone numbers should be stored in the data-
base in exactly the same string format, such that they can be indexed and uniformly formatted for
output purposes.

167

168

CHAPTER 6 PROGRAMMING ASSEMBLIES

Instead of handling this validation and formatting in every stored procedure that deals with
external phone number data, a CLR type can be defined. If every stored procedure uses this type,
there will be no need for duplicate logic; all formatting will be handled by one central piece of code.
Likewise, it will be guaranteed that the data is stored on disk in a uniform format, and output can be
coded however necessary to meet business needs.

Modifying the Stubbed Code

Using the stubbed version generated by Visual Studio as a basis for defining the type, there is
surprisingly little work required to develop a complete prototype. The first step is to clean up a bit
and stub out the correct members for the project at hand. The following code shows the result of
initial modifications:

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.UserDefined,
IsByteOrdered=true,

IsFixedlLength=false,

MaxByteSize=11)]

public struct PhoneNumber : INullable

{
public override string ToString()
{
return this.number;
}
public bool IsNull
{
get
{
if (this.number == "")
return true;
else
return false;
}
}
public static PhoneNumber Null
{
get
{
PhoneNumber h = new PhoneNumber();
h.number = "";
return h;
}
}

public static PhoneNumber Parse(SqlString s)
{
if (s.IsNull)
return Null;
PhoneNumber u = new PhoneNumber();

CHAPTER 6 PROGRAMMING ASSEMBLIES

//Call the Number property for assigning the value
u.Number = s;
return u;

}

// Public mutator for the number
public SqlString Number

{
get

{

return new SqlString(this.number);

this.number = (string)value;

}

// The phone number
private string number;

The various placeholder members have been replaced with a single private member, number.
This variable is a string, and it will hold the validated phone number for a given instance of the type.
The public property Number has also been added. This property currently directly sets the private
member to the input value; some validation logic will have to be added in order to make it workable.
Parse also now internally calls the Number property—that way, any validation logic for setting numbers
will have to live in only one place.

The Null and IsNull properties have also been modified, to reflect the removal of the private
member m_Null. Since U.S. phone numbers must be exactly ten digits long, the validation logic will
ensure that any number persisted within the type consists of ten digits. Any other time, number will
be empty, and this will represent a null value.

ToString has been modified to simply return the value of number, the member variable that
contains the phone number data. Since the return type is System. String instead of SqlString, this
method cannot return a Sq1String.Null value if the type is null, which would be preferable to make
the type behave more similarly to the intrinsic SQL Server datatypes.

Finally, the properties of the SqlUserDefinedType attribute are changed to reflect the code. The
format will be UserDefined, since strings are not value types in .NET. The serialization will be byte
ordered, allowing indexing and comparison on the type (see the next section on IBinarySerialize).
The type will not be fixed length, since the empty string (null) case will occupy a single byte in seri-
alized form, whereas properly populated phone numbers will occupy 10 bytes (1 byte per character
in the phone number). Since user-defined types occupy 1 byte of overhead, the MaxByteSize param-
eter is set to 11. Ten bytes are allocated for the member data and 1 byte is allocated for the type.

IBinarySerialize

If you were to compile the code as listed in Visual Studio, it would compile cleanly. And if you were
to manually deploy it (using CREATE ASSEMBLY), the resultant assembly would successfully register
with SQL Server. However, CREATE TYPE (and, therefore, the Visual Studio deployment task) would
fail with the following error:

Type "UserDefinedTypes.PhoneNumber" is marked for user-defined serialization, but
does not implement the "System.Data.Microsoft.SqlServer.Server.IBinarySerialize"
interface.

169

170

CHAPTER 6 PROGRAMMING ASSEMBLIES

To implement the IBinarySerialize interface, add the name of the interface to the inheritance
list in the class or structure declaration:

public struct PhoneNumber : INullable, IBinarySerialize

Visual Studio 2005 has a convenient feature to assist with implementation of interfaces. Right-
click the name of the interface after adding it, and a context menu will appear with an Implement
Interface option. Click the suboption of the same name, as shown in Figure 6-3, to populate the type
with the stubbed methods to implement the routine. Note that either Implement Interface or Implement
Interface Explicitly will work. The latter explicitly prefixes methods and properties with the name
of the interface to assist with multiple interface situations; however, this is not an issue with the
PhoneNumber type.

ILEinarvicrialize
Implement Interface » || Implement Interface

Refactor 4 Implement Interface Explicitly

-.'=~1, Insert Snippet. ..
-.'=~1, Surround With. ..
48 Go To Definition

Find All References

Breakpoint 3
*= Run To Cursor
& Cut
=& Copy File:
it B Paste plement the
[CQutlining 3

Figure 6-3. Implementing an interface in the project

After the interface is implemented, the code for the type will contain a new region similar to the
following:

#iregion IBinarySerialize Members

public void Read(System.I0.BinaryReader r)

{

throw new Exception("The method or operation is not implemented.");
}
public void Write(System.IO.BinaryWriter w)
{

throw new Exception("The method or operation is not implemented.");
}
#endregion

The Read method is responsible for reconstituting an instance of the type from its binary serial-
ized state; the Write method handles the serialization. Although this sounds somewhat complex, the
methods of the BinaryReader and BinaryWriter classes are very simple to work with.

The BinaryReader class contains methods that can automatically handle many of the NET
datatypes. These include ReadString, ReadInt16, ReadInt32, and others. Since the PhoneNumber type
only deals with a single string (the private member number), the ReadString method alone is sufficient
to rebuild an instance of the type from serialized form. The following code is the full representation
of the Read method for the type:

CHAPTER 6 PROGRAMMING ASSEMBLIES

public void Read(System.IO.BinaryReader r)
{

}

this.number = r.ReadString();

The BinaryWriter class is even simpler than the BinaryReader class, with only a single method
that developers will have to concern themselves with in most cases: Write. Several overloads are
exposed for this method, such that what it offers is symmetrical to what is offered by the various read
methods of the BinaryReader. In the case of the PhoneNumber type, the overload that takes a string
can be used:

public void Write(System.IO.BinaryWriter w)
{

}

w.Write(number);

Again, this is all that’s necessary for implementing the method. And since the string will be seri-
alized as a simple binary stream, this implementation also produces the byte ordering necessary for
indexing and comparison.

Although many types will end up with more complex implementations than these, the basic
pattern to keep in mind is that each call to one of the BinaryReader methods should have a corre-
sponding call to Write, and vice versa. If you keep this rule in mind when working with the
IBinarySerialize interface, development can be simple and efficient.

Implementing the Validation Logic

The final step in defining the PhoneNumber type is to implement the logic to validate the input. For the
sake of this exercise, the logic can be quite simplistic: strip out all non-numeric characters from the
input string. If the resultant string of numerals is exactly ten characters long, it will be considered
valid. Otherwise, it will be rejected with an error.

The following code is the completed Number property for the type:

// Public mutator for the number
public SqlString Number
{

get

{

return new SqlString(this.number);

set

{
//If null, don't process any further
if (value == "")

{

this.number = "";
return;

}

//Match groups of 1 or more digits
Regex regex = new Regex("[0-9]*");
MatchCollection matches = regex.Matches((string)value);

17

172

CHAPTER 6 PROGRAMMING ASSEMBLIES

StringBuilder result = new StringBuilder();

foreach (Match match in matches)

{
}

if (result.lLength == 10)
this.number = result.ToString();
else
throw new ArgumentException("Phone numbers must be 10 digits.");

result.Append(match.value);

Note that the Regex, Match, and Matches classes are in the System.Text.RegularExpressions
namespace, and the StringBuilder class is in the System.Text namespace. Appropriate using decla-
rations need to be added before the classes to facilitate their use.

The complete code for the PhoneNumber type is as follows:

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;
using System.Text;

using System.Text.RegularExpressions;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.UserDefined,
IsByteOrdered = true,

IsFixedLength = false,

MaxByteSize = 11)]

public struct PhoneNumber : INullable, IBinarySerialize

{ public override string ToString()
{ return this.number;
}
public bool IsNull
{
get
{
if (this.number == "")
return true;
else
return false;
}

CHAPTER 6 PROGRAMMING ASSEMBLIES 173

public static PhoneNumber Null

{
get
{
PhoneNumber h = new PhoneNumber();
h.number = "";
return h;
}
}
public static PhoneNumber Parse(SqlString s)
{
if (s.IsNull)
return Null;
PhoneNumber u = new PhoneNumber();
//Call the Number property for assigning the value
u.Number = s;
return u;
}

// Public mutator for the number
public SqlString Number

{
get

return new SqlString(this.number);

//If null, don't process any further
if (value == "")
{

nmn

this.number = "";
return;

}

//Match groups of 1 or more digits
Regex regex = new Regex("[0-9]*");
MatchCollection matches = regex.Matches((string)value);

StringBuilder result = new StringBuilder();

foreach (Match match in matches)

{
}

if (result.Length == 10)
this.number = result.ToString();
else
throw new ArgumentException("Phone numbers must be 10 digits.");

result.Append(match.Value);

174 CHAPTER 6 PROGRAMMING ASSEMBLIES

// The phone number
private string number;

#region IBinarySerialize Members

public void Read(System.IO.BinaryReader r)

{
this.number = r.ReadString();
}
public void Write(System.IO.BinaryWriter w)
{
w.Write(number);
}
#endregion

Deploying and Testing the Type

Once the type is written, it is ready to deploy and test. The type can be deployed for debugging
purposes directly from Visual Studio 2005. Right-click the project name in Solution Explorer and
click Deploy, as shown in Figure 6-4.

2 & EES
[oh Solution ‘UserDefinedTypes' (1 project)
= _E UserDefinedTunec

o Rel 3 Buid

LITe pehuig

] Phy | Deploy |

Clean

Figure 6-4. Deploying the user-defined type

To try out the type, open SQL Server Management Studio and connect to the database that was
specified when the project was created. User-defined types, once created, are instantiated using the
DECLARE keyword, just like the built-in SQL Server datatypes. Recall the example from earlier in the
chapter when we discussed the Parse method:

DECLARE @phone PhoneNumber
--Set the number to the Apress business phone line
SET @phone = '510-549-5930"

This code creates a variable called @phone of type PhoneNumber. It then sets the value of the vari-
able to the number for the Apress business phone line. Remember that this code is actually calling
Parse on a null instance of the type.

To return the string representation of the type (i.e., the ten-digit phone number), the ToString
method must be called, as in the following code:

PRINT @phone.ToString()

Another important thing to remember is that methods and properties on user-defined types are
case sensitive, even if the server or database isn’t. Note that the capitalization of ToString in the
example is the same as the capitalization in the type’s definition.

CHAPTER 6 PROGRAMMING ASSEMBLIES

Selecting the type without using ToString will return the type in binary serialized form. This
form may be usable from a .NET application that has a reference to the assembly in which the type
is compiled, but generally speaking, ToString will be a more commonly used way of getting a type’s
data. Printing the type using the T-SQL PRINT statement is also possible and requires using either
ToString or the CONVERT function, to convert the type into NVARCHAR.

Another Example: The StringArray Type

While the PhoneNumber type adequately illustrates the various programming nuances of working with
user-defined types, it does not show off much of the power that can be gained from their use.

We'll present here a more interesting example to satisfy a common requirement in SQL Server
programming projects: representing data in an array format. This usually falls into the category of a
developer needing to pass more than one value into a stored procedure, but arrays can also be used
to make the T-SQL language more powerful from a programmatic standpoint. Unfortunately, while
many hacks are available for bringing array-like functionality into the world of SQL Sever 2000, they
are just that: hacks. CLR user-defined types dramatically change the landscape such that these hacks
are no longer necessary. In this example, the power of a .NET collection (the List class) will be
exposed via a CLR user-defined type, resulting in a fully functional array that can be invoked directly
from T-SQL.

Wrapping the Functionality of a Generic List

.NET 2.0 includes support for containers called generics, which are strongly typed versions of the
object-specific containers available in previous versions of the .NET Framework. Using the List<T>
type (which is a generic version of the ArraylList) as a basis, a CLR user-defined type can be built to
deal with collections of strings.

Generics are a new feature in .NET 2.0 that allows developers to easily implement type-safe
classes, such as collections. Most of the collection types in .NET 1.x were collections of objects.
Since every type in .NET is derived from the object type, this means that every type can be cast as an
object; therefore, every type could benefit from the collections. However, this also meant that a
collection could not enforce what kinds of objects it stored. A collection might be incorrectly popu-
lated with both integers and strings, for instance. This could lead to exceptions when code meant to
deal with integers suddenly encountered strings.

Generics solve this problem by allowing developers to specify a type to be used by a class (or
collection) at object creation time. This allows the CLR to enforce type safety, allowing the object to
use only the specified class. The syntax for this feature is a pair of angle brackets after the type name.
For example, the following code creates an instance of List that can only use integers:

List<int> mylist = new List<inty;

Note that when implementing generic classes, a using directive for the System.Collections.
Generic namespace should be included at the top of the source file for the class.

The actual string data will be held in a collection of type List<string>. This container will be
strongly typed such that it can hold only strings. The following code defines the member:

// The actual array
private List<string> arr;

Next, the important features that make an array usable should be exposed by properties or
methods such that they are accessible from T-SQL. These features include getting a count of strings
in the array, adding strings to the array, removing strings from the array, and getting a string at a
specific index of the array. The following block of code defines each of those features:

175

176

CHAPTER 6 PROGRAMMING ASSEMBLIES

public SqlInt32 Count

{
get
{
if (this.IsNull)
return SqlInt32.Null;
else
return (SqlInt32)(this.arr.Count);
}
}
public SqlString GetAt(int Index)
{
return (SqlString)(string)(this.arr[Index]);
}

public StringArray AddString(SqlString str)

{
if (this.IsNull)
this.arr = new List<string>(1);
this.arr.Add((string)str);

return (this);

}

public StringArray RemoveAt(int Index)
{

this.arr.RemoveAt(Index);
return this;

By simply wrapping the List<T>’s methods and properties, they are now accessible from T-SQL.

Implementing Parse and ToString

To instantiate an array, a developer will pass in a comma-delimited list of elements. The Parse method
will handle the input, splitting up the list in order to populate the array. The ToString method will do
the opposite, to return the contents of the array in a comma-delimited format.

The Parse method for the StringArray type uses the Split method of System. String. This method
outputs an array of strings by splitting a delimited list. Once the array is produced, the method trims
each element of preceding and trailing white space and puts any nonempty strings into the arr
member variable. The following code implements the Parse method:

public static StringArray Parse(SqlString s)

{
if (s.IsNull)

return Null;
StringArray u = new StringArray();

string[] strings = ((string)s).Split(',");

CHAPTER 6 PROGRAMMING ASSEMBLIES

for(int i = 0; 1 < strings.Length; i++)

{
}

strings[i] = strings[i].Trim();

u.arr = new List<string>(strings.Length);

foreach (string str in strings)

{
if (str 1= "")
u.arr.Add(str);
}
return u;

The ToString method does the reverse of Parse, using Join, which has the opposite behavior of
Split. An array of strings is input, and a comma-delimited list is output:

public override string ToString()

{
// Replace the following code with your code
if (this.IsNull)
return "";
else
return String.Join(",", (string[])this.arr.ToArray());
}

Defining the SqlUserDefinedType Attribute

Because the private member data for this type will reside in a reference type (List<T>), the format
will have to be user defined.

It doesn’t make a lot of sense to compare two arrays for the purpose of sorting. There is no clear
way to define how two arrays should sort. Should they sort based on number of elements? Based on
the elements themselves? As it is nearly impossible to define how arrays would be sorted—and probably
not useful for many development challenges—it also does not make sense to index a column of an
array type. Indexes are generally helpful for seeking ordered data, but it is unlikely that a developer
would want to perform a seek using an array as a key. For these reasons, there is no need to worry
about byte ordering, so IsByteOrdered should be set to false.

And since arrays can contain any number of elements, the type is clearly not of a fixed length,
nor does it have a maximum byte size, except for the 8,000-byte limit.

The fully populated SqlUserDefinedType attribute for this type is as follows:

[Microsoft.SqlServer.Server.SqlUserDefinedType(
Format.UserDefined,
IsByteOrdered = false,
IsFixedLength = false,
MaxByteSize = 8000)]

Implementing IBinarySerialize

Determining how to serialize the data for this type will not be quite as simple as doing so for the
PhoneNumber type. Instead of serializing a single piece of data, serialization for this type has to deal
with an array containing a variable number of elements.

177

178

CHAPTER 6 PROGRAMMING ASSEMBLIES

A simple way of dealing with this situation is to first serialize a count of elements in the array,
and then loop over and serialize each array element one by one. The only open issue with such a
scheme is serialization of null-valued types. This can be easily taken care of using the following code,
which serializes -1 as the count, should the type be null:

if (this.IsNull)
{

}

w.Write(-1);

Non-null types, on the other hand, can be written using the following code, which first serializes
the count of items and then each element in the array:

w.Write(this.arr.Count);

foreach (string str in this.arr)

{
}

w.Write(str);

Reading back the serialized data involves doing the exact opposite. First, the serialized count of
items is read back. If it is —1, there is nothing else to do; the type will already be null. If the count is
greater than -1, a loop will run to read each element from the serialized binary. Remember that 0 is
also a valid count. Empty arrays are not the same as null arrays.

The entire code for implementing IBinarySerialize for the StringArray type is as follows:

#firegion IBinarySerialize Members

public void Read(System.IO.BinaryReader 1)

{
int count = r.ReadInt32();
if (count > -1)
{
this.arr = new List<string>(count);
for (int i = 0; 1 < count; i++)
{
this.arr.Add(r.ReadString());
}
}
}
public void Write(System.IO.BinaryWriter w)
{
if (this.IsNull)
{
w.Write(-1);
}
else
{

w.Write(this.arr.Count);

CHAPTER 6 PROGRAMMING ASSEMBLIES

foreach (string str in this.arr)

{
w.Write(str);
}
}
}
#endregion

Defining the IsNull and Null Properties

Implementing the INullable interface for the StringArray type is necessary in order to complete
development of the type. In keeping with the theme of thinly wrapping the functionality of the NET
List<T> type, the IsNull method can be coded to determine whether the type is NULL based on
whether the private member array is null—that is, whether it has been instantiated yet. Due to the
fact that the array is not instantiated until data is passed into the Parse method, the Null method can
simply call the default constructor and return the instance of the type. The following code imple-
ments both of these properties:

public bool IsNull

{
get
{
return (this.arr == null);
}
}
public static StringArray Null
{
get
{
StringArray h = new StringArray();
return h;
}
}

Complete StringArray Class Sample
The complete code for the StringArray user-defined type is as follows:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;
using System.Collections.Generic;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(
Format.UserDefined,
IsByteOrdered = false,
IsFixedLength = false,
MaxByteSize = 8000)]

179

180 CHAPTER 6 PROGRAMMING ASSEMBLIES

public struct StringArray : INullable, IBinarySerialize

{
public override string ToString()
{
// Replace the following code with your code
if (this.IsNull)
return "";
else
return String.Join(",", (string[])this.arr.ToArray());
}
public bool IsNull
{
get
{
return (this.arr == null);
}
}
public static StringArray Null
{
get
{
StringArray h = new StringArray();
return h;
}
}

public static StringArray Parse(SqlString s)

{
if (s.IsNull)
return Null;

StringArray u = new StringArray();
string[] strings = ((string)s).Split(',");

for(int i = 0; i < strings.Length; i++)

{
}

strings[i] = strings[i].Trim();

u.arr = new List<string>(strings.Length);

foreach (string str in strings)

{
if (str 1= "")
u.arr.Add(str);
}
return u;

CHAPTER 6

public SqlInt32 Count

{
get
{
if (this.IsNull)
return SqlInt32.Null;
else
return (SqlInt32)(this.arr.Count);
}
}
public SqlString GetAt(int Index)
{
return (SqlString)(string)(this.arr[Index]);
}

public StringArray AddString(SqlString str)
{

if (this.IsNull)
this.arr = new List<string>(1);

this.arr.Add((string)str);

return (this);

}
public StringArray RemoveAt(int Index)
{
this.arr.RemoveAt(Index);
return this;
}

// The actual array
private List<string> arr;

#region IBinarySerialize Members

public void Read(System.IO.BinaryReader r)

{
int count = r.ReadInt32();
if (count > -1)

{
this.arr = new List<string>(count);
for (int i = 0; 1 < count; i++)
{
this.arr.Add(r.ReadString());
}
}

PROGRAMMING ASSEMBLIES

181

182

CHAPTER 6 PROGRAMMING ASSEMBLIES

public void Write(System.IO.BinaryWriter w)

{
if (this.IsNull)
{
w.Write(-1);
}
else
{
w.Write(this.arr.Count);
foreach (string str in this.arr)
{
w.Write(str);
}
}
}
#endregion
}
Using the StringArray

The StringArray type can be used to solve development problems that might require the full power
afforded by a CLR function or stored procedure, but are made easier using data structures that are
not built in to SQL Server. An instance of the StringArray can be initially populated from a comma-
delimited list, as in the following code:

DECLARE @array StringArray
SET @array = 'a,b,c'

As aresult of this code, the @array variable contains three elements, which can be retrieved or
deleted using the GetAt or RemoveAt methods. An extension to the type might be to add a SetAt method
to replace existing values in the array, but we’ll leave that as an exercise for interested readers.

Interestingly, the SQL CLR engine only blocks modification of null types via public mutators—
public methods that happen to perform modification are allowed. So using the AddString method is
an option at any time, whether or not the type is null. The following code will have the same end
result as the previous:

DECLARE @array StringArray

SET @array = @array.AddString('a’
SET @array = @array.AddString('b')
SET @array = @array.AddString('c')

Managing User-Defined Types

If an assembly has been loaded into the database using CREATE ASSEMBLY, types can be created or
dropped without using the Visual Studio 2005 deployment task, as assumed in most examples in this
chapter.

To manually create a type that is exposed in an assembly, without using the deployment task,
use the T-SQL CREATE TYPE statement and specify the name of the assembly and name of the struc-
ture or class that defines the type. The following code creates the StringArray type from an assembly
called StringArray:

CHAPTER 6 PROGRAMMING ASSEMBLIES

CREATE TYPE StringArray
EXTERNAL NAME StringArray.StringArray

To drop a type, use DROP TYPE. A type cannot be dropped if it is referenced by a table or function.
The following code drops the StringArray type:

DROP TYPE StringArray

The sys.types catalog view exposes information about both system and user-defined types. To
enumerate the data for CLR user-defined type in the database, use the is_assembly type column:

SELECT *
FROM sys.types
WHERE is assembly type = 1

CLR User-Defined Functions

SQL Server 2000 introduced T-SQL user-defined functions, a feature that has greatly improved the
programmability of SQL Server. Scalar user-defined functions allow developers to easily maximize
encapsulation and reuse of logic. They return a single, scalar value based on zero or more parameters.
These types of functions are useful for defining “black-box” methods; for instance, logic that needs
to be used in exactly the same way throughout many stored procedures can be embedded in a scalar
function. If the logic ever needs to change, only the function needs to be modified. Table-valued
user-defined functions, on the other hand, can be thought of as parameterized views. These func-
tions return a rowset of one or more columns and are useful for situations in which a view can return
too much data. Because these functions are parameterized, developers can force users to filter the
returned data.

Much like T-SQL user-defined functions, CLR functions come in both scalar and table-valued
varieties. Scalar functions must return a single value of an intrinsic SQL Server type (i.e., an integer
or string). Table-valued functions, on the other hand, must return a single, well-defined table. This is
in contrast to stored procedures, which can return both an integer value and one or more tables, at
the same time. Also unlike stored procedures, functions do not support output parameters.

CLR functions are also similar to T-SQL functions in that data manipulation from within a func-
tion is limited. When using the context connection (covered in Chapter 5), data cannot be modified.
Connecting via a noncontext connection does allow data modification, but this is not recommended
in most scenarios, due to the fact that a scalar function can be called once per row of a table and the
data modification could occur on each call, incurring a large performance hit compared to doing a
single modification using set-based techniques.

Much like CLR stored procedures, the key to deciding when to use a CLR user-defined function
instead of a T-SQL user-defined function is necessity of the power afforded by the .NET base class
library. If a T-SQL user-defined function can do the job in question, T-SQL is preferred—most of the
time it will deliver better performance and quicker development turnaround. However, for those
cases in which additional functionality is required—such as the compression example in this
chapter—CLR user-defined functions will prove invaluable.

In this section, we’ll look at scalar CLR user-defined functions that enable binary data compres-
sion in the database server and table-valued CLR user-defined functions that return rowsets from
various sources.

183

184

CHAPTER 6 PROGRAMMING ASSEMBLIES

Adding a User-Defined Function to a Visual Studio Project

To add a function to a preexisting SQL Server project in Visual Studio 2005, right-click the project
name in Solution Explorer and select Add » User-Defined Function as shown in Figure 6-5.

- 3
] Ref
[Tes
C"_:] Ass

Q Solution ‘ScalarFunctions' {1 project)

Rebuild
Deploy

Clean

o Mew Item...

-| Existing Item...

Mew Faolder

Add

User-Defined Function. .. |

Stored Procedure. ..

Add Reference. ..
Add Web Reference...
Add Test Script

‘f}, Wiew Class Diagram

Aggregate. ., Set as StartUp Project
Trigger... Debug 3
User-Defined Type. .. #ocu

Class...

Figure 6-5. Adding a user-defined function to a SQL Server project

The Visual Studio 2005 User-Defined Function Template

Adding a user-defined function called NewFunction to a Visual Studio 2005 SQL Server project will
produce a template similar to the following:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

public partial class UserDefinedFunctions

{
[Microsoft.SqlServer.Server.SqlFunction]
public static SqlString NewFunction()
{
// Put your code here
return new SqlString("Hello");
}
};

This template is quite a bit simpler than the user-defined type template shown previously in this
chapter. A user-defined function requires nothing more than a public static method decorated with
the SgqlFunction attribute. The function shown here is a scalar function that returns a Sq1String. A few
additions are necessary to create a table-valued function. Let’s first take a look at the SqlFunction
attribute.

The SqlFunction Attribute

The SqlFunction attribute has several parameters, none of which is required:

CHAPTER 6 PROGRAMMING ASSEMBLIES

e DataAccess: This parameter can be set to one of two values of the DataAccessKind enumerator.
The possible values are None and Read. A value of None indicates that the function performs no
data access, and this is enforced by the SQL Server engine. Attempts to perform data access
will be met with an exception. Read indicates that the function is allowed to read data from the
context connection (i.e., execute a T-SQL query against the database). User-defined functions
cannot modify data in the context connection. The default value for this parameter is None.

e FillRowMethodName: This parameter is used to define a method for outputting rows in a table-
valued user-defined function. See the section “Defining a Table-Valued User-Defined Function”
later in this chapter for information on building table-valued functions.

e IsDeterministic: This parameter indicates whether a scalar function should be treated by the
query optimizer as deterministic. This means that every call with the same exact input
parameters will yield the same exact output. For instance, a function that adds 1 to an input
integer is deterministic; the output will always be the input value plus 1. On the other hand,
the GETDATE function is non-deterministic; a call with the same set of input parameters (none;
it has no input parameters) can yield different output as time passes. Certain SQL Server
features, such as indexed views, depend on determinism, so treat this parameter carefully.
The default value is false.

» IsPrecise: This parameter allows the developer to specify whether the function internally
rounds or truncates, thereby eliminating precision of the result. Even a function which does
not use floating-point numbers as inputs or outputs may be imprecise if floating-point arith-
metic is used within the function. Knowing whether the results are precise can be help the
optimizer when calculating values for indexed views and other features. To be on the safe
side, always set this parameter’s value to false when working with floating-point computa-
tions. The default value for this parameter is false.

e Name: This parameter is used by Visual Studio 2005 (and possibly other third-party tools; see
the section, “A Note On Visual Studio 2005,” later in this chapter) to override the name that
will be used for the user-defined function when deployed. If this parameter is set, the name
specified in the parameter will be used. Otherwise, the name of the method decorated with
the SqlFunctionAttribute will be used.

e SystemDataAccess: This parameter determines whether the function has access to system
data from the context connection. Possible values for this parameter are the two values of the
SystemDataAccessKind enumerator: None and Read. If the value is set to None, the function will
not be able to access views in the sys schema. The default value is None.

e TableDefinition: This parameter is used to define the output table format for table-valued
user-defined functions. Its input is a string-literal column list, defined in terms of SQL Server
types and/or user-defined types. This parameter is covered in more detail in the section,
“Defining a Table-Valued User-Defined Function” later in this chapter.

Scalar User-Defined Functions

When most developers think of functions, they think of scalar functions, which return exactly one
value. The utility of such functions is quite obvious. They can be used to encapsulate complex logic
such that it doesn’t have to be repeated throughout many queries in the database. By using scalar
functions, developers can ensure that changes to logic can be made in a single centralized location,
which can be a boon for code maintainability.

A somewhat less obvious use for scalar functions, which is made much more desirable by CLR
integration, is to expose library functionality not available natively within SQL Server. Examples
include such common libraries as regular expressions, enhanced encryption (beyond what SQL

185

186

CHAPTER 6 PROGRAMMING ASSEMBLIES

Server 2005 offers), and data compression. The CLR exposes a variety of very useful libraries that are
now easy to consume for T-SQL programming projects.

Binary Data Compression Using a Scalar User-Defined Function

The .NET Framework 2.0 base class library exposes a namespace called System.I0.Compression,
which includes classes for compressing data streams using the GZip and Deflate algorithms. The
power of these algorithms can be harnessed for data applications by defining scalar functions to
compress and decompress binary data. These functions can be used in document repositories to
greatly reduce disk space, and moving compression into the data layer means that applications need
only be concerned with the data itself, not its on-disk storage format. However, there is a downside
to moving compression from the application into the data tier. Compression is expensive in terms of
processor and memory utilization. Before moving compression into production databases, ensure
that the servers can handle the additional load, lest performance suffer.

The first step in modifying the function template to handle compression is to add using directives
for the I0 and Compression namespaces:

using System.IO;
using System.IO.Compression;

The System. I0 namespace is necessary, as it contains the classes that define streams. A MemoryStream
will be used as a temporary holder for the bytes to be compressed and decompressed.

To facilitate the compression using the GZip algorithm, the function will have to create a memory
stream using binary data from the SQL Server caller and pass the stream to the specialized
GZipStream to get the compressed output. The BinaryCompress function is implemented in the
following code:

[Microsoft.SqlServer.Server.SglFunction]
public static SqlBytes BinaryCompress(SqlBytes inputStream)

{
using (MemoryStream ms = new MemoryStream())
{
using (GZipStream x =
new GZipStream(ms, CompressionMode.Compress, true))
{
byte[] inputBytes = (byte[])inputStream.Value;
x.Write(inputBytes, 0, inputBytes.lLength);
}
return (new SqlBytes(ms.ToArray()));
}
}

Note that this function uses the SqlBytes datatype for both input and output. The SqlTypes
namespace includes definitions of both the SqlBinary and SqlBytes datatypes, and according to the
.NET documentation, these are equivalent. However, the Visual Studio SQL Server Project deploy-
ment task treats them differently. Sq1Binary is mapped to SQL Server’s VARBINARY(8000) type, whereas
SqlBytes is mapped to VARBINARY (MAX), which can store 2GB of data per instance. Since this function
is intended for compression of large documents to be stored in a SQL Server database, VARBINARY (MAX)
makes a lot more sense. Limiting the document size to 8,000 bytes would be quite restrictive.

For developers working with character data instead of binary, please also note that this same
situation exists with the Sq1String and SqlChars types. The former maps to NVARCHAR (4000); the
latter maps to NVARCHAR (MAX). Also note that these are mappings as done by Visual Studio only. In the
case of manual deployments, these mappings do not apply—SqlString will behave identically to

CHAPTER 6 PROGRAMMING ASSEMBLIES

SqlChars for any size NVARCHAR, and SqlBinary will be interchangeable with SqlBytes for any size
VARBINARY.

You should also consider the use of the using statement within the function. This statement
defines a scope for the defined object, at the end of which the Dispose method is called on that
object, if the type implements IDisposable. It is generally considered a good practice in .NET devel-
opment to use the using statement when working with types that implement IDisposable, such that
acall to Dispose is guaranteed. This is doubly important when working in the SQL Server hosted CLR
environment, since both the database engine and the CLR will be contending for the same resources.
Calling Dispose helps the CLR to more quickly clean up the memory consumed by the streams,
which can be considerable if a large amount of binary data is passed in.

Decompression using the GZipStream is very similar to compression except that two memory
streams are used. The following function implements decompression:

[Microsoft.SglServer.Server.SqlFunction]
public static SqlBytes BinaryDecompress(SqlBytes inputBinary)

{
byte[] inputBytes = (byte[])inputBinary.Value;
using (MemoryStream memStreamIn = new MemoryStream(inputBytes))
using (GZipStream s =
new GZipStream(memStreamIn, CompressionMode.Decompress))
{
using (MemoryStream memStreamOut = new MemoryStream())
{
for (int num = s.ReadByte(); num != -1; num = s.ReadByte())
{
memStreamOut.WriteByte((byte)num);
}
return (new SqlBytes(memStreamOut.ToArray()));
}
}
}
}

Using the Gompression Routines

The code can now be compiled and deployed using either the Visual Studio 2005 deployment task or
manually with the T-SQL CREATE FUNCTION statement (see the upcoming section titled “Managing CLR
User-Defined Functions” for more information). To compress data, simply use the BinaryCompression
function the same way any T-SQL function would be used. For instance, to get the compressed
binary for all of the documents in the Production.Document table in the AdventureWorks database,
you could use the following T-SQL:

SELECT dbo.BinaryCompress(Document)
FROM Production.Document

And, of course, the output of the BinaryCompress function can be passed to BinaryDecompress to get
back the original binary.

You should take care to ensure that the data being compressed is data that can be compressed.
The nature of the GZip algorithm is such that uncompressable data will actually produce a larger
output—the opposite of the goal of compression. For instance, you could use the following query to
compare compressed and uncompressed data sizes for documents in the Production.Document table:

187

188

CHAPTER 6 PROGRAMMING ASSEMBLIES

SELECT
DATALENGTH(Document),
DATALENGTH(dbo.BinaryCompress(Document))
FROM Production.Document

The results of this query show that, on average, compression rates of around 50 percent are
seen. That’s not bad. But trying the experiment on the photographs in the Production.ProductPhoto
table has a slightly different outcome. The results of compressing that data show around a 50 percent
increase in data size! The following query can be used to test the photograph data:

SELECT
DATALENGTH(LargePhoto),
DATALENGTH(dbo.BinaryCompress(LargePhoto))
FROM Production.ProductPhoto

The lesson to be learned is to always test carefully. Compression can work very well in many
cases, but it can incur hidden costs if developers are not aware of its caveats.

Table-Valued User-Defined Functions

User-defined functions, as mentioned previously, come in two varieties: scalar and table-valued.
The former must return exactly one value, whereas the latter can return a table of values, with many
columns and rows. A table-valued user-defined function can be thought of as a parameterized view:
the query logic is encapsulated within the body of the function, and parameters can be passed in to
control the output. In addition, a table-valued function can be used anywhere in T-SQL queries that
aview can.

CLR user-defined functions are somewhat different from their T-SQL counterparts, in that they
have the capability to stream their data to the client (i.e., the calling SQL Server process) instead of
writing it to a temporary table as multistatement T-SQL user-defined functions do. This can mean,
in some cases, that CLR user-defined functions will be able to outperform their T-SQL counterparts.
Remember, however, that as with any performance boosting methodology, you should test both
methods in most cases to ensure that you make the best choice.

Defining a Table-Valued User-Defined Function

Creating a table-valued user-defined function involves defining a function that returns an instance
of a collection that implements the IEnumerable interface. This collection will be enumerated by the
query engine, and that enumeration will result in calling a second function for each member of the
collection, in order to map its attributes to a series of output parameters that map to the column list
for the table.

This processis better described using a concrete example. Assume that you wish to encapsulate
the following query in a user-defined function:

SELECT Name, GroupName FROM HumanResources.Department

This query can be evaluated and used to populate a DataTable. Since the DataTable class imple-
ments IEnumerable, it is a valid return type for a table-valued function. The following code defines a
method called GetDepartments that retrieves and returns the data using a context connection:

[Microsoft.SqlServer.Server.SqlFunction(
DataAccess=DataAccessKind.Read,
FillRowMethodName="GetNextDepartment",

TableDefinition="Name NVARCHAR(50), GroupName NVARCHAR(50)")]

CHAPTER 6 PROGRAMMING ASSEMBLIES

public static IEnumerable GetDepartments()
{
using (SqlConnection conn =
new SqlConnection("context connection=true;"))
{

string sql =
"SELECT Name, GroupName FROM HumanResources.Department";
conn.0Open();
SqlCommand comm = new SqlCommand(sql, conn);
SqlDataAdapter adapter = new SqlDataAdapter(comm);
DataSet dSet = new DataSet();
adapter.Fill(dSet);
return (dSet.Tables[0].Rows);

Aside from the fact that this method contains no exception handling logic—and will behave
very poorly if the Department table is empty—the important thing to note in this code listing is the
SqlFunction attribute. Since the function is reading data from the database using the context connection,
the DataAccess parameter is set to DataAccessKind.Read.

But more important, because this is a table-valued function, both the Fil1RowMethodName and
TableDefinition parameters are used. The FillRowMethodName parameter defines the name of the
method that will be used to map each member of the IEnumerable collection returned by the method
to a column. The column list that the method must support is defined by the TableDefinition
parameter.

In this case, the method is called GetNextDepartment. The method must have a single input
parameter of type object, followed by an output parameter for each column defined in the
TableDefinition parameter. The following code implements the GetNextDepartment method:

public static void GetNextDepartment(object row,
out string name,
out string groupName)

{
DataRow theRow = (DataRow)row;
name = (string)theRow["Name"];
groupName = (string)theRow["GroupName"];
}

When the user-defined function is called, it will return a reference to the DataTable, which
implements IEnumerable. The SQL Server engine will call MoveNext (one of the methods defined in
the IEnumerator interface, which is required by IEnumerable) on the DataTable for each row of
output. Each call to MoveNext will return an instance of a DataRow, which will then be passed to the
GetNextDepartment function. Finally, that function will map the data in the row to the proper output
parameters, which will become the columns in the output table.

This architecture is extremely flexible in terms of ability to define output columns. If a DataTable
or other collection that implements IEnumerable does not exist in the .NET class library to satisfy a
given requirement, it is simple to define a type that does. Keep in mind that the output types can be
either intrinsic SQL Server types or user-defined types. This added flexibility is a sign of the tight
integration provided by SQL Server 2005 for the hosted CLR environment.

The full code for the GetDepartments function follows:

189

190

CHAPTER 6 PROGRAMMING ASSEMBLIES

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;
using System.Collections;

public partial class UserDefinedFunctions

{

};

[Microsoft.SqlServer.Server.SqlFunction(
DataAccess=DataAccessKind.Read,
FillRowMethodName="GetNextDepartment",

TableDefinition="Name NVARCHAR(50), GroupName NVARCHAR(50)")]
public static IEnumerable GetDepartments()

{
using (SqlConnection conn =

new SqlConnection("context connection=true;"))
{
string sql =
"SELECT Name, GroupName FROM HumanResources.Department";
conn.0Open();
SqlCommand comm = new SqlCommand(sql, conn);
SqlDataAdapter adaptor = new SqlDataAdapter(comm);
DataSet dSet = new DataSet();
adaptor.Fill(dSet);
return (dSet.Tables[0].Rows);

}

public static void GetNextDepartment(object row,
out string name,
out string groupName)

{
DataRow theRow = (DataRow)row;
name = (string)theRow["Name"];
groupName = (string)theRow["GroupName"];
}

References in CLR Projects: Splitting the StringArray into a Table

An important feature to be aware of when working with SQL Server 2005’s CLR integration is that
assemblies loaded into SQL Server databases can reference one another. On top of that, not every
assembly loaded into the database need expose SQL Server routines or types. A developer can, there-
fore, reference third-party libraries within SQL CLR classes or reference other SQL CLR classes.

To reference a third-party assembly within another assembly to be loaded within a SQL Server

2005 database, the third-party assembly must first be loaded using CREATE ASSEMBLY. For instance,
assuming an assembly called MyThirdPartyAssembly was in the C:\Assemblies folder, the following
code would load it into a SQL Server 2005 database:

CREATE ASSEMBLY MyThirdPartyAssembly
FROM 'C:\Assemblies\MyThirdPartyAssembly.DLL'
WITH PERMISSION SET = EXTERNAL_ACCESS

CHAPTER 6 PROGRAMMING ASSEMBLIES

Note that the permission set as defined on the assembly will be enforced, even if the referencing
assembly is given more permission. Therefore, even if an assembly that references MyThirdPartyAssembly
has the UNSAFE permission, any operation that occurs within MyThirdPartyAssembly will be limited to
those allowed by EXTERNAL_ACCESS.

When working in Visual Studio 2005, a reference can be added to a SQL Server project only once
the assembly to be referenced has been loaded into the database using either CREATE ASSEMBLY or a
Visual Studio deployment task. To add a reference to an assembly that has already been loaded, right-
click References in Solution Explorer and select Add Reference. A dialog box like the one shown in
Figure 6-6 appears. Select the assembly to reference and click OK. Figure 6-6 shows adding a refer-
ence to the StringArray assembly defined earlier in this chapter.

Add References E] g|

Projects | SQL Server

Component name Version Permission level
CustomMarshalers 2.0.0.0
Microsoft, VisualBasic 5.0.0.0
Micrasoft, YisualC 5.0.0.0
mscarlib 2.0.0.0
i 1.0,1975.4... Unrestricted
Syskem 2.0.0.0
Syskem,Data 2.0.0.0
Syskem,Data, OracleClient 2.0.0.0
Syskem,Data, Sqlxml 2.0.0.0
Syskem, Security 2.0.0.0
Syskem, Transactions 2.0.0.0
Syskem.Web, Services 2.0.0.0
Syskem, Xml 2.0.0.0

[Ok H Cancel]

Figure 6-6. Adding a reference to the StringArray assembly

Once areference has been added, the referenced assembly can be treated like any other library.
A using directive can be used to alias namespaces, and any public classes, properties, and methods
are available.

The following code defines a table-valued user-defined function that takes an instance of the
StringArray type as input and outputs a table:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;

using Microsoft.SglServer.Server;
using System.Collections;

public partial class UserDefinedFunctions

{
[Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName = "GetNextString",

TableDefinition = "StringCol NVARCHAR(MAX)")]

191

192 CHAPTER 6 PROGRAMMING ASSEMBLIES

public static IEnumerable GetTableFromStringArray(StringArray strings)

{
string csv = strings.ToString();
string[] arr = csv.Split(',");
return arr;
}
public static void GetNextString(object row, out string theString)
{
theString = (string)row;
}

15

The GetTableFromStringArray method retrieves the comma-delimited list of values from the
StringArray using the ToString method. This is then split into an array using the String.Split
method. Since all arrays are derived from System.Array, and since that class implements IEnumerable,
this collection is valid for a return value without any further manipulation.

Each element of the array is nothing more than a string, so the GetNextString method merely
needs to cast the row as a string and set theString appropriately. The result is a table of strings that
can be joined to another table, inserted into a table, or returned to a client as a result set.

Note that in a real-world scenario, it might make more sense to define the GetTableFromStringArray
method to directly consume a comma-delimited list instead of the StringArray type. This would
extend the method beyond the 8,000-character limit imposed by CLR user-defined types and make
it slightly more flexible. The example listed here is mainly intended to convey the utility of assembly
references, and as such, it may not be the best possible solution in every case.

Managing CLR User-Defined Functions

If an assembly has been loaded into the database using CREATE ASSEMBLY, functions can be created
or dropped without using the Visual Studio 2005 deployment task.

To create a function that is exposed in an assembly, use CREATE FUNCTION and specify the name
of the assembly, the name of the class the function resides on, and the name of the method that
defines the function. The following code creates the BinaryCompress type, from an assembly called
CompressionRoutines, that contains a class called UserDefinedFunctions:

CREATE FUNCTION BinaryCompress(@Input VARBINARY(MAX))

RETURNS VARBINARY (MAX)

AS

EXTERNAL NAME CompressionRoutines.UserDefinedFunctions.BinaryCompress

To drop a function, use DROP FUNCTION. A function cannot be dropped if it is referenced by a
constraint or schema-bound view. The following code drops the BinaryCompress function:

DROP FUNCTION BinaryCompress

Functions can also be altered by using ALTER FUNCTION, which is generally used to modify the
input or output datatypes. For instance, you may wish to modify the BinaryCompress function,
limiting the input to 1,000 bytes:

CHAPTER 6 PROGRAMMING ASSEMBLIES

ALTER FUNCTION BinaryCompress(@Input VARBINARY(1000))

RETURNS VARBINARY (MAX)

AS

EXTERNAL NAME CompressionRoutines.UserDefinedFunctions.BinaryCompress

Although there is no dedicated view for user-defined functions, they can be enumerated using
the sys.objects catalog view. To do so, use the type column and filter on FT for table-valued CLR
functions or FS for scalar CLR functions. The following T-SQL will return data about both types:

SELECT *
FROM sys.objects
WHERE type in ('FS', 'FT")

CLR User-Defined Aggregates

When working with T-SQL, it’s often desirable to answer various questions at differentlevels of gran-
ularity. Although it’s interesting to know the price of each line item in an order, that information
might be more valuable in the form of a total for the entire order. And at the end of the quarter, the
sales team might want to know the total for all orders placed during the previous three months; or
the average total order price; or the total number of visitors to the website who made a purchase,
divided by the total number of visitors, to calculate the percentage of visitors who bought something.

Each of these questions can be easily answered using T-SQL aggregate functions such as SUM,
AVG, and COUNT. But there are many questions that are much more difficult to answer with the built-
in aggregates. For example, what is the median of the total order prices over the last 90 days? What is
the average order price, disregarding the least and most expensive orders? These are but two questions
that, while possible to answer with T-SQL aggregates, are quite a bit more difficult than they need be.
For instance, the standard algorithm for finding a median involves sorting and counting the set of
values, and then returning the value in the middle of the sorted set. Translated to SQL Server, this
would most likely mean using a cursor, walking over the result set to find the count, and then back-
tracking to get the correct value. And while that is a workable solution for a single group, it is not easy
to adapt to multiple groups in the same rowset. Imagine writing that cursor to find the median sales
amount for every salesperson, split up by month, for the last year. Not a pretty picture.

User-defined aggregates eliminate this problem by giving developers tools to create custom
aggregation functions in the .NET language of their choice. These aggregate functions are built to be
robust and extensible, with built-in consideration for parallelism and flags that control behavior
such that the query optimizer can better integrate the aggregations into query plans. User-defined
aggregates can provide powerful support for operations that were previously extremely difficult in
SQL Server.

In this section, we’ll examine a CLR user-defined aggregate that calculates a “trimmed” mean—
an average of a set of numbers minus the smallest and largest input values.

Adding a User-Defined Aggregate to a SQL Server Project

To add a user-defined aggregate to a pre-existing SQL Server project, right-click the project name in
Solution Explorer and select Add » Aggregate, as shown in Figure 6-7.

193

194 CHAPTER 6 PROGRAMMING ASSEMBLIES

Q Solution ‘Aggregates' {1 project)

ERYE] Aquregate prmpmm
g Referen () Bul
[Test Scri Rebuild
=8
;] Assembl Deploy
Clean
st Mew Ikem... | Add D
2| Existing Item... Add Reference. ..
[y Mew Folder Add Web Reference...
] User-Defined Funckion. .. Add Test Script
] Stored Procedure... 5'; View Class Diagram
|ré] Aggregate. .. | Set as StartUp Project
] Trigger... Debug >
] User-Defined Type... % ocut
g Class... Th
Y

Figure 6-7. Adding a user-defined aggregate to a SQL Server project

Once the aggregate has been added to the project, Visual Studio 2005 will add template code.
The following code is the result of adding an aggregate called TrimmedMean:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]
public struct TrimmedMean

{
public void Init()
{
// Put your code here
}
public void Accumulate(SqlString Value)
{
// Put your code here
}
public void Merge(TrimmedMean Group)
{
// Put your code here
}

public SqlString Terminate()
{

// Put your code here
return new SqlString("");
}

CHAPTER 6 PROGRAMMING ASSEMBLIES

// This is a place-holder member field
private int vari;

Parts of a User-Defined Aggregate

Programming a user-defined aggregate is in many ways similar to programming user-defined types.
Both aggregates and types are represented by classes or structures that are serializable. It is important to
understand when dealing with aggregates that the intermediate result will be serialized and deseri-
alized once per row of aggregated data. Therefore, it is imperative for performance that serialization
and deserialization be as efficient as possible.

SqlUserDefinedAggregate Attribute

The SqlUserDefinedAggregate attribute, much like the SqlUserDefinedType attribute, functions
primarily as a way for developers to control serialization behavior. However, the attribute also
exposes parameters that can allow the query optimizer to choose better query plans depending on
the data requirements of the aggregate. The parameters exposed by the attribute are as follows:

e Format: The Format of a user-defined aggregate indicates what method of serialization will be
used. The Native option means that the CLR will control serialization automatically, whereas
UserDefined indicates that the developer will control serialization by implementing the
IBinarySerialize interface. Native serialization is faster than user-defined serialization, but
much more limited: it can only serialize aggregates if all member variables are value types,
such as integers and bytes. Reference types such as arrays and strings require user-defined
serialization. Given the performance implications of serialization and deserialization on a
per-row basis, developers should try to avoid using reference types in aggregates whenever
possible.

e IsInvariantToDuplicates: The IsInvariantToDuplicates parameter indicates that the aggregate
is able to handle duplicate input values. Setting this parameter to true can help the optimizer
formulate better query plans when the aggregate is used. An example of an aggregate that is
invariant to duplicates is MIN; no matter how many duplicate values are passed in, only one is
the minimum. The default value for this parameter is false.

e IsInvariantToNulls: This parameter indicates to the query optimizer whether the aggregate
ignores null inputs. Certain query plans might result in extra nulls being passed into the
aggregate; if it ignores them, this will not modify the aggregation. An example of an aggregate
with this behavior is SQL Server’s SUM aggregate, which ignores nulls if at least one non-null
value is processed. The default for this parameter is false.

e IsInvariantToOrder: This parameter is currently unused and will be implemented in a future
release of SQL Server.

e IsNullIfEmpty: This parameter indicates whether the aggregate will return null for cases in
which no values have been accumulated. This can allow the query engine to take a shortcut
in certain cases. The default value for this parameter is true.

* MaxByteSize: This parameter, similar to the same parameter on the SqlUserDefinedType
attribute, controls how large, in bytes, the aggregate’s intermediate data can grow. The
maximum size and default value is 8000.

* Name: This parameter is optionally used by the Visual Studio 2005 deployment task to name
the aggregate within the target database differently than the name of the class or structure
that defines the aggregate.

195

196

CHAPTER 6 PROGRAMMING ASSEMBLIES

Init

The life of an instance of an aggregate begins with a call to Init. Within this method, any private
members should be initialized to the correct placeholder values for having processed no rows. There
is no guarantee that any data will ever be passed into the aggregate just because Init was called.
Care should be taken to ensure that this assumption is never coded into an aggregate. An instance of
an aggregate can be reused multiple times for different groups within the result set, so Init should
be coded to reset the entire state of the aggregate.

Accumulate

The Accumulate method takes a scalar value as input and appends that value, in the correct way, to
the running aggregation. That scalar value is an instance of whatever type is being aggregated. Since
these values are coming from the SQL Server engine, they are nullable, and since the method itself
has no control over what values are passed in, it must always be coded to properly deal with nulls.
Remember that even if the column for the input to the aggregation is defined as NOT NULL, a NULL can
result from an OUTER JOIN or a change in project requirements.

Merge

In some cases, query plans can go parallel. This means that two or more operations can occur simul-
taneously—including aggregation. There is a chance that some aggregation for a given aggregate of
a given column will take place in one thread, while the rest will take place in other threads. The Merge
method takes an instance of the aggregate as input and must append any intermediate data it
contains into its own instance’s member data.

Terminate

The final call in an aggregate’s life is Terminate. This method returns the end result of the aggregation.

Programming the TrimmedMean Aggregate

T-SQL has long included the AVG aggregate for calculating the mean value of a set of inputs. This is
generally quite useful, but for statistical purposes it’s often desirable to eliminate the greatest and
least values from a mean calculation. Unfortunately, doing this in pure T-SQL is quite difficult, espe-
cially if the query also includes other aggregates that should not exclude the rows with the greatest
and least amounts. This is a classic problem, and it’s the kind that CLR user-defined aggregates excel
at solving.

To calculate the mean value excluding the maximum and minimum values, the aggregate will
have to keep track of four values:

¢ A count of the number of values processed so far

* Arunning sum of all input values

¢ The minimum value seen so far

¢ The maximum value seen so far

The final output value can be calculated by subtracting the minimum and maximum values

from the running sum, and then dividing that number by the count, minus 2 (to account for the
subtracted values). The following private member variables will be used to keep track of these values:

CHAPTER 6 PROGRAMMING ASSEMBLIES

private int numValues;
private SqlMoney totalValue;
private SqlMoney minValue;
private SqlMoney maxValue;

The Init method will prepopulate each of these variables with the appropriate values. numValues
and totalValue will both be initialized to 0, starting the count. minValue will be initialized to
SglMoney.MaxValue, and maxValue to SqlMoney.MinValue. This will ease development of comparison
logic for the initial values entered into the aggregate. Note that the SqlMoney datatype is used for this
example to facilitate taking averages of order data in the AdventureWorks database. Other applications
of such an aggregate may require different datatypes. The following code is the implementation of Init
for this aggregate:

public void Init()

{
this.numvalues = 0;
this.totalValue = 0;
this.minValue = SqlMoney.MaxValue;
this.maxValue = SqlMoney.MinValue;
}

So that the aggregate behaves similarly to intrinsic SQL Server aggregates like AVG, it’s important
that it ignore nulls. Therefore, the Accumulate method should increment the numValues variable only
if the input is non-null. The following code implements Accumulate for this aggregate:

public void Accumulate(SqlMoney Value)

{
if (!value.IsNull)
{
this.numValues++;
this.totalvValue += Value;
if (Value < this.minValue)
this.minValue = Value;
if (Value > this.maxValue)
this.maxValue = Value;
}
}

Implementing Merge is very similar to implementing Accumulate, except that the value comes
from another instance of the aggregate instead of being passed in from the query engine:

public void Merge(TrimmedMean Group)

{

if (Group.numvValues > 0)

this.numValues += Group.numValues;
this.totalValue += Group.totalValue;
if (Group.minValue < this.minValue)
this.minValue = Group.minValue;
if (Group.maxValue > this.maxValue)
this.maxValue = Group.maxValue;

197

198

CHAPTER 6 PROGRAMMING ASSEMBLIES

The final step in coding the aggregate is to define the Terminate method. Since the lowest and
highest input values will be ignored, the output will be null if numValues is less than 3; it is impossible
to ignore values that don’t exist! Aside from that, the algorithm employed is as described previously:
divide the total value by the number of values after subtracting the minimum and maximum.

public SqlDecimal Terminate()

{
if (this.numvalues < 3)
return (SqlMoney.Null);
else
{
this.numValues -= 2;
this.totalValue -= this.minValue;
this.totalValue -= this.maxValue;
return (this.totalvalue / this.numValues);
}
}

Since the aggregate uses only value types as member variables, native serialization will suffice,
and the default SqlUserDefinedAggregate attribute will not have to be modified. The complete code
for the aggregate follows:

using System;

using System.Data;

using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]
public struct TrimmedMean

{
public void Init()
{
this.numValues = 0;
this.totalValue = 0;
this.minValue = SqlMoney.MaxValue;
this.maxValue = SqlMoney.MinValue;
}
public void Accumulate(SqlMoney Value)
{
if (!value.IsNull)
{
this.numValues++;
this.totalValue += Value;
if (Value < this.minValue)
this.minValue = Value;
if (Value > this.maxValue)
this.maxValue = Value;
}

CHAPTER 6 PROGRAMMING ASSEMBLIES

public void Merge(TrimmedMean Group)

{
if (Group.numvalues > 0)
{
this.numValues += Group.numValues;
this.totalvalue += Group.totalValue;
if (Group.minValue < this.minValue)
this.minValue = Group.minValue;
if (Group.maxValue > this.maxValue)
this.maxValue = Group.maxValue;
}
}
public SqlMoney Terminate()
{
if (this.numValues < 3)
return (SqlMoney.Null);
else
{
this.numvValues -= 2;
this.totalValue -= this.minValue;
this.totalValue -= this.maxValue;
return (this.totalValue / this.numValues);
}
}

private int numValues;
private SqlMoney totalValue;
private SqlMoney minValue;
private SqlMoney maxValue;

Using the TrimmedMean Aggregate

Once deployed to the database, user-defined aggregate functions can be used just like built-in
aggregates. For instance, to compare the results returned by the T-SQL AVG function to those
returned by TrimmedMean for the total order amounts in the AdventureWorks database, you can use
the following query:

SELECT
AVG(TotalDue) AS AverageTotal,
dbo.TrimmedMean(TotalDue) AS TrimmedAverageTotal
FROM Sales.SalesOrderHeader

The results of this query show a slightly lower average for the trimmed figure: $4,464.88 instead
of $4,471.28 for the normal average.

Managing User-Defined Aggregates

If an assembly has been loaded into the database using CREATE ASSEMBLY, aggregates can be created
or dropped without using the Visual Studio 2005 deployment task.

To create an aggregate that is exposed in an assembly, use CREATE AGGREGATE and specify the
name of the assembly and the name of the structure or class that defines the aggregate. The following
code creates the TrimmedMean aggregate from an assembly called Aggregates:

199

200

CHAPTER 6 PROGRAMMING ASSEMBLIES

CREATE AGGREGATE TrimmedMean
EXTERNAL NAME Aggregates.TrimmedMean

To drop an aggregate, use DROP AGGREGATE. The following code drops the TrimmedMean aggregate:

DROP AGGREGATE TrimmedMean

There is no catalog view dedicated to aggregates, but some data is exposed in the sys.objects
view. To get information about user-defined aggregates, filter the type column for the value AF:

SELECT *
FROM sys.objects
WHERE type = 'AF'

CLR User-Defined Triggers

Triggers are a very useful construct for T-SQL programmers. A routine can be defined that will auto-
matically fire upon attempted data manipulation, thereby putting the onus for the required logic on
the database itself, rather than every stored procedure that needs to manipulate it. An example of
this would be a trigger used for auditing. By using a trigger, the logic for copying some of the modified
data into another table is centralized. Without the trigger, every stored procedure that did anything
with the data would have to have its own copy of this logic, and a developer might forget to include
it in one stored procedure, thereby destroying continuity of the audit logs.

CLR triggers behave the same way as T-SQL triggers, bringing the same power to the table:
centralization and encapsulation of logic. However, CLR triggers can be written in a .NET language
and possibly take advantage of resources not easily accessible from T-SQL, such as regular expres-
sions for data validation. CLR triggers can be used to define both DML (e.g., UPDATE, INSERT, and
DELETE) and DDL triggers (e.g., CREATE TABLE).

Note See Chapter 4 for a discussion of DDL triggers.

It’s important to remember when working with triggers that speed is of the essence. A trigger
fires in the context of the transaction that manipulated the data. Any locks required for that data
manipulation are held for the duration of the trigger’s lifetime. This means that slow triggers can
create blocking problems that can lead to severe performance and scalability issues. This concern is
doubly important when working with the CLR. Triggers are not the place to contact web services,
send e-mails, work with the file system, or do other synchronous tasks. Developers who need this
functionality should investigate using technologies such as SQL Service Broker and SQL Server Noti-
fication Services, both of which are covered elsewhere in this book. If you're using CLR triggers, keep
them simple!

Adding a CLR User-Defined Trigger to a SQL Server Project

To add a CLR trigger to a pre-existing SQL Server project, right-click the project name in Solution
Explorer and select Add » Trigger, as shown in Figure 6-8.

PROGRAMMING ASSEMBLIES

Build

Rebuild

Deploy

Clean
2] Mew Item... Add 4
2| Existing Item... Add Reference. ..
[y Mew Folder Add Web Reference...
] User-Defined Funckion. .. Add Test Script
3] Stored Procedure... t?:; Wiew Class Diagram
ré] Aggregate. ., Set as StartUp Project
| o] Trigger... | Debug >
] User-Defined Type... % ocut
g Class... Th

% Remove

Figure 6-8. Adding a CLR trigger to a SQL Server project

Programming CLR Triggers

Once the trigger has been added to the project, Visual Studio 2005 will add template code. The
following code is the result of adding a trigger called ValidateYear:

using System;

using System.Data;

using System.Data.SqlClient;
using Microsoft.SglServer.Server;

public partial class Triggers

{

// Enter existing table or view for the target and uncomment the attribute line

// [Microsoft.SqlServer.Server.SqlTrigger (Name="ValidateYear",ws
Target="Table1", Event="FOR UPDATE")]

public static void ValidateYear()

{
}

// Put your code here

This template is quite simplistic; programming a CLR trigger is very similar to programming a
CLR stored procedure. The main differences between the two are the influence of the SqlTrigger
attribute and the lack of a return value for triggers—the method that defines the trigger must return
void. Aside from those differences, most programming paradigms hold true in both types of routines.
CLR triggers, like CLR stored procedures, can make use of SqLPipe to return as many rowsets or messages
to the client as the developer requires. See Chapter 5 for a complete discussion on programming
with SqlPipe.

202

CHAPTER 6 PROGRAMMING ASSEMBLIES

SqlTrigger Attribute

The SqlTrigger attribute’s primary function is to help Visual Studio 2005 or other third-party deploy-
ment tools determine which tables and events the trigger is written for. The following parameters are
available for the attribute:

¢ Name: This parameter indicates the name that should be used to define the trigger in the
CREATE TRIGGER statement executed when the trigger is deployed. If possible, it’s generally a
good idea to keep this in sync with the name of the method that defines the trigger.

* Target: This parameter can indicate a table name in the case of DML triggers, or a database
name or the ALL SERVER keyword in the case of DDL triggers. This indicates the object that,
when manipulated, will cause the trigger to fire.

¢ Event: This parameter indicates what event(s) to fire on and, in the case of DML triggers,
whether the trigger should fire AFTER or INSTEAD OF the event in question. Another option is
FOR, which is equivalent to AFTER and is included for symmetry with the T-SQL trigger options.
Note that multiple events can appear in the list, delimited by commas.

TriggerContext

The SqlContext object exposes information about the state of the trigger via the TriggerContext.
This object contains properties to assist with determining why the trigger fired. The most important
of these are the TriggerAction property, which maps to an enumerator by the same name that
contains every possible action that can cause a trigger to fire, and the EventData property, which
contains XML data useful in DDL triggers.

For example, the following code fragment would be used to execute code conditionally based
on whether the trigger had fired due to an update:

if (SqlContext.TriggerContext.TriggerAction == TriggerAction.Update)
{

}

// do something

Validating a Year Using a CLR Trigger

It should be stressed once again that CLR triggers must be kept simple and quick, just like T-SQL triggers.
There are few situations in which a pure CLR trigger is appropriate, given that CLR functions can be
called from T-SQL triggers. As such, the example here is shown only for the sake of illustrating how
to program a CLR trigger—this example is something that should be done in a T-SQL trigger in a
production environment.

An example in which a trigger (either CLR or T-SQL) can be helpful is enforcement of business
rules that don’t fit neatly into CHECK constraints. For instance, a DBA might want to define a rule that
any new rows inserted into the HumanResources.Department table must be inserted with a ModifiedDate
falling in 2005. A constraint checking the ModifiedDate column would preclude any pre-existing
rows from having a date falling in that year; a trigger can be set up to only operate on newly inserted
rows and is therefore a better way to enforce the rule.

The rules for this trigger will be simple: if any rows are inserted with a ModifiedDate not falling
in 2005, the transaction should be rolled back, and an error should be raised. Otherwise, nothing
should happen, and the transaction should be allowed to commit.

CHAPTER 6 PROGRAMMING ASSEMBLIES

Getting the number of rows with years other than 2005 will be accomplished the same way it
could be in a T-SQL trigger: The rows will be selected from the INSERTED virtual table. Both INSERTED
and DELETED are available from within CLR triggers, using the context connection, as follows:

SqlConnection conn =
new SqlConnection("context connection=true");

//Define the query
string sql =
"SELECT COUNT(*) " +
"FROM INSERTED " +
"WHERE YEAR(ModifiedDate) <> 2005";

SglCommand comm =
new SqlCommand(sql, conn);

//0Open the connection
conn.0Open();

//Get the number of bad rows
int numBadRows = (int)comm.ExecuteScalar();

If the number of “bad” rows is greater than zero, an error should be raised. Remember from the
last chapter that raising a clean error from the CLR can be tricky—it requires sending a RAISERROR,
but wrapping the send in a try/catch block to eliminate a second error bubbling up. Finally, the
transaction will be rolled back using the Transaction object. The code to do this follows:

if (numBadRows > 0)

{
//Get the SqlPipe

SqlPipe pipe = SqlContext.Pipe;

//Roll back and raise an error
comm.CommandText =
"RAISERROR('Modified Date must fall in 2005', 11, 1)";

//Send the error
try
{

pipe.ExecuteAndSend(comm);

catch

{
}

//do nothing

System.Transactions.Transaction.Current.Rollback();

Note that to use the System.Transactions namespace, a reference to the assembly must be
added. To add the reference, right-click References in Solution Explorer, click Add Reference, and
select System.Transactions in the Component Name column.

The complete code for the ValidateYear trigger follows:

203

204 CHAPTER 6 PROGRAMMING ASSEMBLIES

using System;

using System.Data;

using System.Data.SqlClient;
using Microsoft.SqlServer.Server;

public partial class Triggers
{
// Enter existing table or view for the target and uncomment the attribute line
[Microsoft.SqlServer.Server.SqlTrigger (
Name="ValidateYear",
Target="HumanResources.Department",
Event="FOR INSERT")]
public static void ValidateYear()
{
SglConnection conn =
new SqlConnection("context connection=true");

//Define the query
string sql =
"SELECT COUNT(*) " +
"FROM INSERTED " +
"WHERE YEAR(ModifiedDate) <> 2005";

SqlCommand comm =
new SqlCommand(sql, conn);

//0pen the connection
conn.Open();

//Get the number of bad rows
int numBadRows = (int)comm.ExecuteScalar();

if (numBadRows > 0)

{
//Get the SqlPipe

SqlPipe pipe = SglContext.Pipe;

//Roll back and raise an error
comm.CommandText =
"RAISERROR('Modified Date must fall in 2005', 11, 1)";

//Send the error
try
{

pipe.ExecuteAndSend(comm);

catch

{
}

//do nothing

CHAPTER 6 PROGRAMMING ASSEMBLIES

System.Transactions.Transaction.Current.Rollback();

}

//Close the connection
conn.Close();

Managing User-Defined Triggers

If an assembly has been loaded into the database using CREATE ASSEMBLY, triggers can be created or
dropped without using the Visual Studio 2005 deployment task.

To create a trigger that is exposed in an assembly, use CREATE TRIGGER and specify the name of
the assembly, the name of the class in which the trigger resides, and the name of the method that
defines the trigger. The following code creates the ValidateYear trigger, from an assembly called
UserDefinedTriggers, containing a class called Triggers:

CREATE TRIGGER ValidateYear

ON HumanResources.Department

FOR INSERT

As

EXTERNAL NAME UserDefinedTriggers.Triggers.ValidateYear

To drop a trigger, use DROP TRIGGER. The following code drops the ValidateYear trigger:
DROP TRIGGER ValidateYear

The sys.triggers catalog view contains information about both T-SQL and CLR triggers. To get
information about CLR triggers, filter the type column for the value TA:

SELECT *
FROM sys.triggers
WHERE type = 'TA'

Managing Assemblies

Several catalog views are available to assist with management and enumeration of assemblies
loaded into the database:

e sys.assemblies: This view contains one row for each assembly loaded into the database.

e sys.assembly files: This view contains information about the files associated with each
assembly. Generally, this will only be the file that makes up the assembly (i.e., the actual DLL).
However, the Visual Studio 2005 deployment task inserts all of the source files when deploying, so
this table can contain many other files per assembly.

* sys.assembly modules: This view contains one row per function, procedure, aggregate, or
trigger created from an assembly.

* sys.assembly types: This view contains one row per type created from an assembly.

e sys.assembly references: This view allows developers to determine dependencies among
assemblies. When an assembly references another assembly, this view shows the relationship.

205

206

CHAPTER 6 PROGRAMMING ASSEMBLIES

A Note Regarding Visual Studio 2005

All examples in this chapter relied upon Visual Studio 2005’s project templates and automated
deployment functionality. And while this really does assist with creating CLR objects, it is not neces-
sary. Keep in mind that the only things required to create these objects are a text editor and a copy
of the .NET Framework. Visual Studio 2005 is only a wrapper over these.

If you are using Visual Studio 2005, there is at least one third-party tool available to assist with
making the deployment task more flexible. Niels Berglund has created an add-in deployment step
that can assist with certain issues and posted it on his weblog: http://sqljunkies.com/WebLog/
nielsb/archive/2005/05/03/13379.aspx.

Summary

When used prudently, CLR routines make powerful additions to SQL Server’s toolset. Functions,
aggregates, triggers, and types can each be used in a variety of ways to expand SQL Server and make
it a better environment for application development. It’s important to remember that some caveats
exist and that careful testing is required. That said, SQL Server 2005’s CLR integration should prove
incredibly useful for most software shops.

CHAPTER 7

SQL Server and XML

XML is growing in usage everyday. Some relational purists will look at XML and shake their heads.
However, XML is complementary to relational technologies. In fact, a lot of XML is structured just
like relational data. Is that good? Probably not, since the two models are best at their intended data
formats: XML for semistructured data, and relational databases for relational data. Plus, the seman-
tics of storing, querying, and modifying XML is what confuses most relational people. As you'll see,
XQuery looks nothing like T-SQL. However, you can use the two technologies together to solve your
business problems. Before we dive into what’s new in SQL Server 2005 when it comes to XML, we
need to first understand what XML is and how SQL Server already leverages XML technologies.

In this chapter, we’ll start out with the basics such as what XML is and how the current SQL
Server version works with XML including FOR XML, shredding, and support in the .NET Framework
FOR XML. We’ll also introduce you to XPath and the XPath support in SQL Server. Finally, we’ll take a
look at SQLXML and how you can use this technology to extend the XML support in SQL Server. If
you haven’t heard of SQLXML, version 3.0 was a free download off the Web for SQL Server 2000.
Version 4.0 of SQLXML is included in SQL Server 2005. In the next chapter, you'll see how SQL Server
has evolved to include rich support FOR XML with the new XML datatype and the XQuery language.
We’ll also look at XML Web Services support in the next chapter, which replaces the ISAPI SQLXML
web services support.

What Is XML?

For those of you who have been living in a cave for the last 10 years and haven’t heard the hype
surrounding XML, it stands for eXtensible Markup Language. XML allows you to structure your data
using a standardized schema. The standardization is the most important part since that is the power
of XML. Any other system can read or write data that adheres to the standard, of course with the
usual caveats that different systems may interpret the data differently sometimes. XML also provides
the ability for retrieving certain values from the XML using the XPath standard and transforming
your XML using XSLT. You'll learn about both these standards later in the chapter.

One interesting discussion is deciding between XML and relational data. A lot of debate goes
back and forth between the value of storing your data in a purely relational model, a hybrid XML/
relational model, or a purely XML model. In our opinion, do whatever makes the most sense to the
problem you are solving. If your expertise is in relational technology and you are getting great
performance from your relational data, there is no need to switch to XML-based storage. You can
easily expose your relational data as XML to the outside world, using FOR XML, but you can continue
to store your data internally as relational data. Don’t fall prey to XML'’s siren song without good
reason to move to it. For example, XML is text based, so it is bigger than its binary equivalents. XML
is verbose since it isn’t normalized like relational data, so you may have repeating sections of the
same data in a single XML document. Finally, XML does have a different programming model than
what a relational programmer is used to.

207

208

CHAPTER 7 SQL SERVER AND XML

Let’s start with some basic XML terminology, and then we can start peeling back the layers of
the XML onion so you understand more and more about this technology. You'll hear many people
refer to documents, elements, and attributes. The easiest way to think about this is that an entire
XML structure is the document, the document contains elements, and elements can contain attributes.
The sample XML document here contains one document, three elements, and two attributes:

<?xml version="1.0"?>
<customer>
<name id="10">Tom Rizzo</name>
<state region="Northwest">WA</state>
</customer>

XML has schemas and namespaces. You are not required to put schemas on your XML, but
schemas and namespaces help to uniquely define what is valid or invalid structure or data in your
XML document. In the relational world, we have our table structures and constraints. You can map
some of your relational concepts to XML schemas since XML schemas have datatypes and rules that
control order, cardinality, and other aspects of the XML document. Schemas allow you to share your
XML data with others but still have the other people understand your XML. An XML namespace is a
collection of names, identified by a URI reference, that your element types and attribute names use
in an XML document. Namespaces allow you to use the same names from different sources and
avoid name collisions. For example, you can use the same element called customer from two different
sources if you add namespaces that identify the elements as belonging to different namespaces.
Schemas and namespaces will be important when we discuss the new XML datatype in SQL Server
2005 and storing your XML natively in the database.

What Are XPath and the XMLDOM?

Once you have a set of XML documents, you’ll obviously want to query them in order to retrieve rele-
vant information. XML Path Language (XPath) is a query language that enables you to define which
parts of an XML document you want to select. XPath has a parser that interprets the syntax, reaches
into the XML document, and pulls out the relevant parts. For example, you may want to return all
customers who live in NY from an XML document. To do this, you would write an XPath statement.

Since XML is hierarchical, you can use XPath to specify the path or paths to the XML that you
want to retrieve. Think of XML as a hierarchy of nodes. The root node is normally the XML document
entity. Then, a tree structure is created under the root node for all your XML. If we took the XML
sample earlier and mapped it to the XML path hierarchy, we would get the tree shown in Figure 7-1.

Not a very exciting tree, but a tree nonetheless. You can see that all elements, attributes, and
text have nodes in the tree. There are seven node types you can access in XPath including the root,
element, attribute, namespace, processing instruction, comment, and text nodes. You'll find your-
self working mostly with element, attribute, processing instruction, and text nodes in your XPath.

You can use XPath to navigate among these different nodes using XPath axes. XPath axes
describe how to navigate the structure by specifying the starting point and the direction of naviga-
tion. There are 13 axes in XPath, but you'll find that you use the child and attribute axes the most.
Table 7-1 lists the 13 axes.

CHAPTER 7 SQL SERVER AND XML

[Root Node]

[Customer Element]

Node

[Name Element Node] [State Element Node]

[ID Attribute Node

[Text Node

Region Attribute Node]

Text Node]

Figure 7-1. An example XML document tree

Table 7-1. XPath Axes

Name

Description

Ancestor

Ancestor-or-self

Attribute

Child
Descendant

Descendant-or-self

Following

Following-sibling

Namespace

Parent

Preceding

Preceding-sibling

Self

Contains the parent node of the context node and all subsequent
parent nodes of that node all the way to the root node.

Contains the nodes in the ancestor as well as the context node itself all
the way up to the root node.

Contains the attributes for the context node if the context node is an
element node.

Contains the child nodes of the context node.
Contains the child, grandchildren, etc., nodes of the context node.

Contains both the context node itself and all the children, grandchil-
dren, etc., of the context node.

Contains all the nodes in the same document as the context node that
are after the context node in document order, but doesn’t include any
descendent, namespace, or attribute nodes.

Same as the following axis but contains any nodes that have the same
parent node as the context node.

Contains the namespace nodes of the context node as long as the
context node is an element.

Contains the parent node of the context node. The root node has no
parent. This axis is the inverse of the child axis.

Same as the following axis but instead of nodes after the context node,
it will be nodes before the context node in document order.

Same as the preceding axis except this will contain all nodes with the
same parent as the context node.

Contains just the context node.

209

210

CHAPTER 7 SQL SERVER AND XML

XPath Syntax

XPath uses a set of expressions to select nodes to be processed. The most common expression that
you'll use is the location path expression, which returns back a set of nodes called a node set. You'll
find that the syntax of XPath can use both an unabbreviated and an abbreviated syntax. The unab-
breviated syntax for a location path is shown as follows:

/axisName: :nodeTest[predicate]/axisName: :nodeTest[predicate]

Looking at the sample, you see the forward slash, which refers to the root node as being the
context node. Then, the sample shows an axis followed by a nodeTest and an optional predicate. This
all can be followed by one or more similar structures to eventually get to the nodes we are interested
in retrieving. So, to retrieve all customers, we would use the following unabbreviated XPath syntax.
The default axis, if none is provided, is child.

/child: :root/child: :customer

Most times, however, you'll use abbreviated syntax. The abbreviated version of the preceding
XPath may be //customer. The double slash is the descendent-or-self axis. You'll also find that you'll
sometimes use wildcards in XPath. XPath supports three types of wildcards: *, node(), and @*. *
matches any element node regardless of type, except it doesn’t return attribute, text, comments, or
processing instruction nodes. If you want all nodes, use the node() syntax, which will return these
back to you. Finally, the @* matches all attribute nodes. Table 7-2 shows you the XPath expression
abbreviations that you'll run into.

Table 7-2. XPath Expression Abbreviations

Name Description

“default” If you provide no axis, the default one used is child.

@ Abbreviation for attributes.

// Shortcut for descendent-or-self.
Shortcut for self.
Shortcut for parent.

* Wildcard that allows for any matches of any element node regardless of type, except
it doesn’t return attribute, text, comments, or processing instruction nodes.

/ Used as a path separator. Also used for an absolute path from the root of the
document.

To return back all the child elements of our customer node earlier or if we wanted all the attributes
only, and finally if we wanted only customers with a region equal to Northwest, we would use the
following XPath syntax:

/customer/*
/customer/@*
/customer[@region = "Northwest"]

You'll also find yourself using compound location paths by combining a multitude of path
statements. In XPath, there is special syntax beyond the root node syntax of a single slash (/). For
example, you can specify all descendents using a double-slash (//). You can also select the parent

CHAPTER 7 SQL SERVER AND XML

node using a double period (. .). Finally, you can select the current element using a single period (.).
The following XPath sample selects all element nodes under the root node that have an ID of 10:

//[@id = "10"]

You may also want to access attributes. To select attributes, you use the @ syntax. For example,
to select the id attribute, you would use /customer/name/@id. Sometimes you’ll want to filter element
nodes based on the attributes they possess. For example, if we had some customers with no region
attribute on their state element, you could filter out those customers by using /customer/state[@name].

XPath Functions

XPath provides functions so that you can return values or manipulate your XML. XPath includes
string, node set, number, and Boolean functions. The most common functions you'll use are the
position(), count(), contains(), substring(), sum(), and round() functions.

e The position() function returns the position you specify in the document order. For example,
/customer[position() = 2] would return the customer element in position 2. You can abbre-
viate this function by leaving out the position() = portion. For example, /customer[2] is
equivalent to the previous example.

e The count() function returns the number of nodes in the node set. For example, if you wanted
to count the number of customers, you would use /count(customer). Or, if customers had
orders in the XML document, you could use /customer/orders/count(order).

e The contains() function takes two strings and returns true if the second string is contained
in the first string. For example, if you wanted to find out whether Tom is contained in a string,
you would use /customer/name[contains(., 'Tom")].

e The substring() function returns part of the string specified. The first parameter is the string.
The second is the start position, and the final parameter is the length such as /customer/
name[substring(.,1,3)].

e The sum() function, as its name suggests, sums numbers together. It takes a node set so if you
want to sum all the prices of a set of products, you can use this function to do this, for example,
sum(/products/product/price).

e Finally, the round() function will round to the nearest integer.

The XMLDOM-XML Document Object Model

The XMLDOM is a programming interface for XML documents. With the XMLDOM, a developer can
load, create, modify, or delete XML information. The easiest way to understand the XMLDOM is to
see itin action. For SQL Server folks, you can think of the XMLDOM like the dataset in terms of being
an in-memory representation of your parsed XML document.

When using the XMLDOM, the first thing you need to do is declare an object of XMLDocument
type. The XMLDocument type extends the XMLNode object, which represents a node of any type in an
XML document. After declaring your XMLDocument, you need to load or create your XML document.
To load the XML document, you can use the load or loadxml methods as shown here:

Imports System.Xml.XmlDocument
Dim oXMLDOM As New System.Xml.XmlDocument

OXMLDOM. Load("c:\myxml.xml1")
'Or if you already have it as a string
" OXMLDOM. LoadXm1 (strXML)

211

212

CHAPTER 7 SQL SERVER AND XML

Once you have the document loaded, you can traverse the nodes in the document by using an
XMLNode object and the ChildNodes property of the DocumentElement. The DocumentElement property
returns back the XML document, and the ChildNodes property returns back the collection of nodes
that makes up the document. The following code scrolls through an XML document and outputs the
nodes in the document:

Dim oXMLNode As System.Xml.XmlNode

Dim strResult As String =

For Each oXMLNode In oXMLDOM.DocumentElement.ChildNodes
strResult += oXMLNode.Name & ": " & _
0XMLNode.InnerText
Next

MsgBox(strResult)

As part of the XMLDOM, you can also get elements by tag name using the GetElementsbyTagName
function. For example, if you had an element called customer, you could retrieve its value using this code:

MsgBox (0XMLDOM. GetElementsByTagName("customer").Item(0).InnerText)

The GetElementsbyTagName returns back a node list that you can parse. The code just retrieves
the first node in the list, but if you wanted to, you could loop through all the nodes and print them
out. The XMLDOM has similar functions such as GetElementByID or GetElementsbyName.

Finally, we’ll consider the use of XPath in the XMLDOM. To return a node list that corresponds
to our XPath statement using the XMLDOM, we use the SelectNodes method. This method takes an
expression that can be an XML Stylesheet Language (XSL) command or an XPath expression. You
can also use the SelectSingleNode method to return back just a single node rather than a node list.
The code that follows runs a passed-in expression and traverses the returned nodes to print out
their value:

Dim oNodes As System.Xml.XmlNodelList = oXMLDOM.SelectNodes(txtXPath.Text)
Dim strReturnString as string = ""

Dim oNode As System.Xml.XmlNode

For Each oNode In oNodes
strReturnString = oNode.OuterXml

Next

Msgbox (strReturnString)

The XPathDocument, XPathNavigator, and
XPathExpression Classes

While using the XMLDOM for rapid development is OK, if you want a scalable .NET application that
uses XPath, you'll use the XPathDocument, XPathExpression, and XPathNavigator classes.

¢ The XPathDocument is a high-performance, read-only cache FOR XML documents with the
explicit purpose of parsing and executing XPath queries against that document.

e The XPathNavigator class is a class based on the XPath data model. This class allows you to
query over any data store. You can compile frequently used XPath expressions with the
XPathNavigator class.

CHAPTER 7 SQL SERVER AND XML

 Finally, the XPathExpression class is a compiled XPath expression that you can execute from
your XPathNavigator class.

The following code instantiates an XPathDocument object and loads some XML into it. Then, the
code creates an XPathNavigator using the CreateNavigator method. This method is also supported
in the XMLDocument class. To execute our XPath expression, the code calls the Select method and
passes in the expression. As you can see, the expression looks for customers with the name Tom Rizzo
and then returns the state for customers matching that value.

'Instantiate the XPathDocument class.
Dim oXPathDoc As New System.Xml.XPath.XPathDocument("c:\note.xml")

'Instantiate the XPathNavigator class.
Dim oXPathNav As System.Xml.XPath.XPathNavigator = oXPathDoc.CreateNavigator()

'Instantiate the XPathIterator class.
Dim oXPathNodesIt As System.Xml.XPath.XPathNodeIterator = & _
oXPathNav.Select("//customer/name[. = 'Tom Rizzo']/parent::node()/state")

'Instantiate a string to hold results.
Dim strResult as string = ""

'Use the XPathIterator class to navigate through the generated result set
"and then display the selected Parent Companies.
Do While oXPathNodesIt.MoveNext
strResult += oXPathNodesIt.Current.Value
Loop

Msgbox (strResult)

Getting XML into the Database

Now that you understand a little bit about XML and XPath, we can start talking about how you can
get XML into SQL Server. There are a couple of different ways to do this. First, you can just dump
your XML into a nvarchar column in the database using a simple INSERT statement. Using this tech-
nique is just like entering any text into a column. With SQL Server 2005, you can use the new XML
datatype rather than a text column.

Note We’ll cover the new XML datatype in the following chapter, where we’ll also look at how you can use SQL
Server Integration Services (SSIS) to get data into your XML datatype.

There are three other ways of getting XML into your database:

* Youmay want to shred your XML into multiple columns and rows in a single database call. To
do this, you can use the OPENXML rowset provider. OPENXML provides a rowset view over an XML
document and allows you to write T-SQL statements that parse XML.

* Another way is to use updategrams. Updategrams are data structures that you can use to
express changes to your data by representing a before-and-after image. SQLXML takes your
updategram and generates the necessary SQL commands to apply your changes.

» The final way is to leverage SQLXML’s XML BulkLoad provider. Using this provider, you can
take a large set of XML data and quickly load it into your SQL Server.

213

214

CHAPTER 7 SQL SERVER AND XML

So you may be wondering which technique is best. Well, they all have their strengths and weak-
nesses. If you are just looking for the fastest and highest-performance way to get XML data into your
SQL Server, you’'ll want to look at the BulkLoad provider. The BulkLoad provider doesn’t attempt to
load all your XML into memory, but instead reads your XML data as a stream, interprets it, and loads
it into your SQL Server. The BulkLoad provider is a separate component, so if you are looking for
something that you can use inside of a stored procedure or in your UDF, you cannot use the BulkLoad
provider. You could use it in an extended stored procedure (XP) by calling out to it, but that is an
uncommon scenario and has its own set of issues since XPs are complex, hard to debug, and can
open up your server to security issues if written incorrectly.

On the other hand, OPENXML can be used in stored procedures and UDFs, since it ships as part of
the native T-SQL language. You'll pay a performance penalty for this integration though. OPENXML
requires you to use a stored procedure sp_xml_preparedocument to parse the XML for consumption.
This SPROC loads a special version of the MSXML parser called MSXMLSQL to process the XML
document and, in turn, loads the entire XML document into memory. There is performance over-
head and some extra coding required to use OPENXML, as you'll learn later in this chapter in the
section “SQLXML: XML Views Using Annotated XML Schemas.”

Updategrams are very useful for applications where you want to modify your database and you
are OK with building an annotated schema, which you’ll learn about later in the chapter, and
applying those changes through this annotated schema. SQLXML takes the updategram and trans-
lates it to SQL DML statements. The main limitation of updategrams is if you need to apply business
logic to the SQL DML statements, then you'll be unable to use updategrams since you cannot access
the generated DML statements.

However, before we get going, we need to configure our SQL Server a little bit to learn how to
use these technologies.

What Is SQLXML?

SQLXML is an additional set of technologies that shipped separately from SQL Server 2000. These
technologies included things like updategram support, the SQLXML BulkLoad provider, client-side
FOR XML support, and SOAP support. For SQL Server 2000, the latest version of SQLXML is version 3.0.
With SQL Server 2005, SQLXML 4.0 ships with the product but can also be redistributed on its own.
Since the technologies in SQLXML don’t have to run on the server, the technology needed a name.
Don’t confuse, which some people do, SQLXML with the XML datatype in SQL Server 2005.

Also, don’t confuse SQLXML with the SQL/XML standard, also known as the SQLX standard.
SQLX is an ANSI/ISO standard that defines how to make XML data work in relational databases.
Microsoft is a member of the working committee for the SQLX standard. SQL Server currently doesn’t
support the SQLX standard but provides equivalent functionality for the activities covered in the
standard. For example, SQLX defines XML publishing, which SQL Server can do using the FOR XML
keyword. For the XML decomposition, you can use the XML datatype or OPENXML. Plus, there are
things that the standard doesn’t define that SQL Server implements such as combining XQuery into
relational queries.

Configuring SQL Server

With SQLXML 3.0, SQL Server 2000 required that you have an IIS server to listen for SQL commands
using either URL queries or SOAP calls. The ISAPI listener, described later, will parse out the SQL,
execute it, and return back a result. With SQL Server 2005, SQL Server can natively listen on a port for
HTTP calls, without requiring IIS. As a simple setup for this chapter, we’ll create an endpoint so we
can send our queries and updategrams to the server. However, for the full web services support
information, please refer to the next chapter. If you've used the IIS configuration utility from SQLXML
3.0, youno longer need to use that utility in SQL Server 2005 but can instead use server-side endpoint

CHAPTER 7 SQL SERVER AND XML

support. If you still want to keep an IIS server in the mid-tier though, you’ll have to continue to use
the SQLISAPI listener included with SQLXML 3.0 against your SQL Server 2000 or 2005 backend. You
can also call SQLXML from your applications since SQLXML supports a managed object model, as
you'll see later in this chapter in the section “Programming SQLXML from .NET and COM.”

To configure our server, we'll just issue a CREATE ENDPOINT command and allow our server to
listen for T-SQL batches. We’ll create a virtual directory called pubs, but remember that this virtual
directory will not show up in IIS’s virtual directories. Be careful about this, since you may have an
endpoint that tries to use the same port as an existing IIS endpoint. You cannot have both SQL and IIS
listen on the same ports. The code for this is shown here:

CREATE ENDPOINT pubs

STATE = STARTED

AS HTTP (
path="/pubs’,
AUTHENTICATION=(INTEGRATED),
PORTS = (CLEAR)

)

FOR SOAP(
WSDL = DEFAULT,
BATCHES=ENABLED

)
GO

OPENXML

Rather than having to parse XML yourselfinto rows by loading and parsing the XML and the iterating
through the XML and generating T-SQL commands, you can use the OPENXML function. The syntax
for OPENXML may look difficult at first, but once you try it, you'll see that it is very approachable:

OPENXML(idoc int [in],rowpattern nvarchar[in],[flags byte[in]])
[WITH (SchemaDeclaration | TableName)]

The first parameter is the integer handle to your XML document. A handle is just a unique integer
identifier for your document. You can retrieve this using the built-in sp_xml_preparedocument stored
procedure. When you pass in your XML document as a parameter, the sp_xml_preparedocument
procedure parses it and returns the integer you need to pass to the OPENXML function. The XML docu-
ment you pass can be text-based, or you can pass the new XML datatype in SQL Server 2005. You can
optionally pass the namespace Uniform Resource Identifier (URI) you want for your XPath expres-
sions. Your usage of this parameter will depend on your usage of namespaces in your XML. If you use
no namespaces, you won'’t use this parameter in most of your calls to the stored procedure.

Conversely, the sp_xml_removedocument built-in procedure takes the integer handle to your
XML document and removes the internal in-memory representation of your XML document that
you created with sp_xml_preparedocument. You should call this stored procedure after you are done
with your XML document. If you forget, SQL Server will destroy the in-memory representation once
the session that created it disconnects. However, it isn’t good practice to rely on this behavior.

The second parameter to OPENXML is the XPath expression that you want to use to parse out the
rows. This can be just a simple expression all the way up to a very complex expression.

The third parameter is optional and allows you to switch from attribute- to element-centric
mapping. By default, OPENXML uses attribute-centric mapping, which is a value of 0. You’ll want to
switch this to element-centric mapping if your XML is element centric by specifying a value of 2. By
passing a value of 1, you are telling SQL Server to use attribute-centric mappings by default, and for
any unprocessed columns, element-centric mapping is used. Finally, a value of 8 specifies to not
copy overflow text to the @mp:xmltext metaproperty, which you’ll learn about in a minute.

215

216

CHAPTER 7 SQL SERVER AND XML

Finally, we have the WITH clause. This clause allows you to specify a schema definition for your
newly created rowsets, or you can specify a table if you know your XML will map to the schemaina
table that already exists. The schema definition uses this format:

ColName ColType [ColPattern | MetaProperty][, ColName ColType
[ColPattern | MetaProperty]...]

The parts of this definition are as follows:

¢ The column name is the name of the column in the table.

¢ The column type is the SQL datatype you want for the column. If the XML type and the SQL
type differ, coercion occurs, which means that SQL Server will try to find the closest native
type that can store your data.

¢ The column pattern is an XPath expression that tells OPENXML how to map the XML value to
your SQL column. For example, you may want to explicitly tell OPENXML to use a particular
attribute or element of the parent node for a certain column value. If you don’t specify the
column pattern, the default mapping you specified, attribute or element, will be used.

e The MetaProperty value is the metaproperty attribute that you want to put into the column.
Metaproperty attributes in an XML document are attributes that describe the properties of an
XML item (element, attribute, or any other DOM node). These attributes don’t physically
exist in the XML document text; however, OPENXML provides these metaproperties for all the
XML items. These metaproperties allow you to extract information, such as local positioning
and namespace information of XML nodes, which provide more details than are visible in the
textual representation. You can map these metaproperties to the rowset columns in an
OPENXML statement using the ColPattern parameter.

Table 7-3 shows the different values for the Metaproperty attribute.

Table 7-3. Metaproperty Values

Name Description

@mp:id

@mp:localname

@mp:namespaceuri
@mp:prefix
@mp:prev
@mp:xmltext

@mp:parentid
@mp:parentlocalname
@mp:parentnamespaceuri

@mp:parentprefix

A unique identifier for the DOM node, which is valid as long as the
document isn’t reparsed.

The local part of the name of a node. You could put this into a
column if you need to get the node name at a later point.

Returns the namespace URI of the current element.
Returns the namespace prefix of the current element.
Returns the previous sibling’s node ID.

Returns a text version of the XML. This is useful for overflow
processing, or for handling unknown situations in your database
code. For example, if the XML changes, you don’t have to change
your database code to handle the change if you use this Metaproperty
as an overflow.

Returns back the ID of the parent node.
Returns back the local name of the parent node.
Returns back the namespace URI of the parent.

Returns back the parent prefix.

CHAPTER 7

SQL SERVER AND XML

Let’s now take a look at a couple of examples that use the OPENXML function. The XML document

that we will be using is quite simple:

<ROOT>

<authors>
<au_id>172-32-1176</au_id>
<au_lname>White</au_lname>
<au_fname>Johnson</au_fname>
<phone>408 496-7223</phone>
<address>10932 Bigge Rd.</address>
<city>Menlo Park</city>
<state>CA</state>
<z1ip>94025</zip>
<contract>1</contract>

</authors>

<authors>
<au_id»>213-46-8915</au_id>
<au_lname>Green</au_lname>
<au_fname>Marjorie</au_fname>
<phone>415 986-7020</phone>
<address>309 63rd St. #411</address>
<city>Oakland</city>
<state>CA</state>
<z1ip>94618</zip>
<contract>1</contract>

</authors>

</ROOT>. . .

Note You may notice our dirty little trick in the XML. No one likes to generate sample XML data so we just used
the FOR XML function, which we’ll discuss shortly, on the authors table in the pubs database. The only change
we made, since we’re more element than attribute people, was to have FOR XML spit out our data using element-

centric formatting.

In this example, we're just going to take our XML document and store it in a relational table. The
easiest thing since we’re using pubs already is to take the data and store it in a new authorsXML table
in pubs. We'll simply accept the defaults and not fill in any optional parameters for the OPENXML function.
The code will take our XML document using element-centric mapping, parse the document, and

place it into the authorsXML table.

CREATE TABLE [authorsXML] (
[title] [varchar] (20),
[au_id] [varchar] (11)
) ON [PRIMARY]
GO
DECLARE @idoc int
DECLARE @doc varchar(1000)
SET @doc ='
<ROOT>
<authors><au_1id>172-32-1176</au_id><au_lname>White</au_lname>
<au_fname>Johnson</au_fname><title>book1</title>
<phone>408 496-7223</phone><address>10932 Bigge Rd.</address>
<city>Menlo Park</city><state>CA</state><zip>94025</zip>
<contract>1</contract></authors>

217

218

CHAPTER 7 SQL SERVER AND XML

<authors><au_id>213-46-8915</au_id><au_lname>Green</au_lname>
<au_fname>Marjorie</au_fname><title>book2</title>
<phone>415 986-7020</phone><address>309 63rd St.
#411</address><city>0akland</city><state>CA</state>
<zip>94618</zip>
<contract>1</contract></authors>
</ROOT>"'
--Create an internal representation of the XML document.
EXEC sp_xml preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement that uses the OPENXML rowset provider.
INSERT AuthorsXML (title, au_id)
SELECT title, au_id
FROM OPENXML (@idoc, '/ROOT/authors',2)
WITH (au_id varchar(11),

au_lname varchar(40),

au_fname varchar(20),

title varchar(20),

phone char(12)

)

EXEC sp_xml_removedocument @idoc

If we tweaked the preceding statement and removed the INSERT and instead just did a SELECT on
our data such as SELECT *, SQL Server would return back our parsed XML as a rowset.
The results would look as follows:

au_id au_lname au_fname phone
172-32-1176 White Johnson 408 496-7223
213-46-8915 Green Marjorie 415 986-7020

Now, you may realize that we're leaving some XML unstored such as the address, city, state, zip,
and contract values. If we wanted to, we could capture the XML document by creating another
column and using the @mp:xmltext command in our schema definition such as

catchall nvarchar(1000) '@mp:xmltext’

The final OPENXML example shows how you can take OPENXML output and write it into a table. We
did this in the last example, except that this time, the sample also demonstrates how to navigate an
XML document using an XPath expression in OPENXML. Since OPENXML returns a relational rowset,
you could actually join the results with another table and then store this rowset in your table. After
calling OPENXML, your XML data can be treated just like any other relational data. Here, we’ll use the
returned XML rowsets to join data with the publishers table to return back only authors who have
the same city as a publisher.

DECLARE @idoc int

DECLARE @doc varchar(1000)

SET @doc ='

<ROOT>
<authors><au_1id>172-32-1176</au_id><au_lname>White</au_lname>

<au_fname>Johnson</au_fname>

<phone>408 496-7223</phone><address>10932 Bigge Rd.</address>

<city>Menlo Park</city><state>CA</state><zip>94025</zip>

<contract>1</contract>

CHAPTER 7 SQL SERVER AND XML

<books>
<title>My booki</title>
<title>My book2</title>
</books>
</authors>
<authors><au_1id>213-46-8915¢</au_id><au_lname>Green</au_lname>
<au_fname>Marjorie</au_fname>
<phone>415 986-7020</phone><address>309 63rd St. #411</address>
<city>Boston</city><state>MA</state>
<zip>94618</zip><contract>1</contract>
<books>
<title>My book3</title>
<title>My booka</title>
</books>
</authors>
</ROOT>"
--Create an internal representation of the XML document.
EXEC sp_xml preparedocument @idoc OUTPUT, @doc

SELECT a.title, a.au_lname, p.pub_name, p.city
FROM OPENXML (@idoc, '/ROOT/authors/books',2)
WITH (title varchar(20) './title’,
au_id varchar(11) '../au_id',
au_lname varchar(40) '../au_lname',

au_fname varchar(20) '../au_fname',
phone char(12) '../phone’,
city varchar(20) '../city’

) AS a

INNER JOIN publishers AS p
ON a.city = p.city
EXEC sp_xml removedocument @idoc

The results should look as follows:

title _au_lname pub_name city

My Book3 Green New Moon Books Boston

The best way to use OPENXML is to use it in a stored procedure, especially if you are taking your
XML from the mid-tier and putting it into the database. Rather than parsing in the mid-tier, you can
send your XML as text to the stored procedure and have the server parse and store it in a single oper-
ation. This provides a lot better performance and a lot less wire traffic than parsing the XML in the
mid-tier and sending T-SQL commands to the server to store the data.

If you are going to use your newly parsed XML over-and-over again, then, rather than calling
OPENXML multiple times, just store the results in a table variable. This will speed up the processing
and free up resources on the server for other work. The sample stored procedure that follows imple-
ments OPENXML. Notice the use of the new nvarchar(max) datatype. In SQL Server 2000, you would
have to use a text datatype. For all new development, use the nvarchar (max) datatype since the text
datatype may be removed in future versions.

219

220

CHAPTER 7 SQL SERVER AND XML

CREATE PROCEDURE update authors OPENXML (
@doc nvarchar(max))

AS

SET NOCOUNT ON

-- document handle:
DECLARE @idoc INT

--Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement that uses the OPENXML rowset provider.
INSERT AuthorsXML (title, au_id)
SELECT title, au_id
FROM OPENXML (@idoc, '/ROOT/authors/books',2)
WITH (title varchar(20) './title',
au_id varchar(11) '../au_id",
au_lname varchar(40) '../au_lname',
au_fname varchar(20) '../au_fname',
phone char(12) '../phone’

)

--Execute SPROC

EXEC update_authors OPENXML '
<ROOT>
<authors><au_id>172-32-1176</au_id><au_lname>White</au_lname>
<au_fname>Johnson</au_fname><phone>408 496-7223</phone>
<address»10932 Bigge Rd.</address><city>Menlo
Park</city><state>CA</state><zip>94025</zip><contract>1</contract>
<books>
<title>My booki</title>
<title>My book2</title>
</books>
</authors>
<authors><au_id>213-46-8915</au_id><au_lname>Green</au_lname>
<au_fname>Marjorie</au_fname><phone>415 986-7020</phone>
<address»>309 63rd St. #411</address><city>Oakland</city><state>CA</state>
<zip>94618</zip><contract>1</contract>
<books>
<title>My book3</title>
<title>My book4</title>
</books>
</authors>
</R0OOT>'

SQLXML: XML Views Using Annotated XML Schemas

XML schemas define the structure of an XML document, in the same way that a relational schema
defines the structure of a relational database. With schemas, you can define what makes an XML
document legal according to your specifications. For example, you can define the elements, attributes,
hierarchy of elements, order of elements, datatypes of your elements and attributes, and any default
values for your elements and attributes. Schemas are not required in your XML documents but are
recommended, especially if you'll be sharing your XML data with other applications that may not

CHAPTER 7 SQL SERVER AND XML

understand your XML data or how to correctly create that XML data without understanding your
schema.

The standard for schemas is XML Schema Definition (XSD). You may have heard of older
schema technologies from Microsoft called XML Data Reduced (XDR). This was a precursor to XSD
and shouldn’t be used anymore in your applications.

With SQL Server, you can create an XML schema that maps to your relational structure using
some special schema markup. This is useful when you want to create an XML view of your under-
lying relational data. This view not only allows you to query your relational data into XML, but you
can also persist changes using updategrams and SQLXML bulkload. It takes some work to create the
annotated schema, but if you are going to be working extensively with XML, the extra work is worth
the effort. Plus, you'll want to use annotated schemas with updategrams, which you’ll learn about in
the section “SQLXML Updategrams” later in this chapter.

Note This chapter will assume you have some knowledge of XML schemas. If you don’t, you should read the
W3C primer on XML schemas at http://www.w3.0rg/TR/xmlschema-0/.

Visual Studio includes a very capable XML schema editor so that you don’t have to generate
XML schemas by hand. Following is a typical XML schema for the authors XML that we were using
previously. As you can see, the XML schema is an XML document. The system knows it is a schema
document because we declare a namespace, xs, that uses the XSD namespace. This namespace is a
reference to the W3C XSD namespace, which is http://www.w3.0rg/2001/XMLSchema. This reference
is aliased to xs and then all elements use this alias as their prefix inside of the schema.

Also, notice how the schema declares an element called AuthorsXMLNew that contains the rest of
your XML data. Then, there is a complex type that declares a sequence of XML elements. These
elements include the ID, first name, last name, phone, etc., of the authors. Notice how the elements
also declare a type. Schemas can define datatypes for your elements and attributes so you can see
that we declare some strings, an unsigned int and an unsigned byte. You can declare other datatypes
beyond what this schema has such as dates, Booleans, binary, and other types.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="AuthorsXMLNew">
<xs:complexType>
<Xs:sequence>
<xs:element name="au_id" type="xs:string" />
<xs:element name="au_lname" type="xs:string" />
<xs:element name="au_fname" type="xs:string" />
<xs:element name="phone" type="xs:string" />
<xs:element name="address" type="xs:string" />
<xs:element name="city" type="xs:string" />
<xs:element name="state" type="xs:string" />
<xs:element name="zip" type="xs:unsignedInt" />
<xs:element name="contract" type="xs:unsignedByte" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

221

222

CHAPTER 7 SQL SERVER AND XML

Now that we have a base schema, if we want to make this annotated schema for use with
SQLXML, we need to make some changes. First, we need to add a reference to the XML schema
mapping. To do this, we need to modify our XML schema by first adding the namespace for SQL
Server’s schema mapping, which is urn:schemas-microsoft-com:mapping-schema. This schema
allows us to map our XML schema to our relational database schema. We’ll alias this namespace
with sql so that we can use the prefix sql: when we refer to it. Therefore, if we wanted to modify the
preceding schema to support SQL Server mapping, we would use this new schema:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchemal" targetNamespace="http://tempuri.org/XMLSchema1.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema1.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"”
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

You'll also see the use of the urn:schemas-microsoft-com:xml-sql namespace in documents.
This namespace provides access to SQLXML functionality that can be used in templates or XPath
queries.

Default Mapping

You may notice that the preceding schema just adds the namespace for the mapping. The schema
isn’t listed since SQL Server supports default mapping between your relational schema and your XML
schema. For example, the authors complex type would be automatically mapped to the authors table.
The au_id string would automatically map to the au_id column and so on.

Explicit Mapping

You can also explicitly map between your schema and your SQL datatypes. For very simple applica-
tions, you can use the default mapping. In most cases, you'll use explicit mapping since your XML
and relational schemas may be different or you’ll want more control over how the mapping is performed
or the datatypes used. You use the sql:relation markup, which is part of the SQLXML mapping
schema, to specify a mapping between an XML item and a SQL table. For columns, you use the
sql:field markup. We can also include a sql:datatype to explicitly map our XML datatype to a SQL
datatype so that implicit conversion doesn’t happen. Therefore, if we were to add these markups
rather than using the default mapping for our schema, our schema would change to look like the
following code:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema">
<xs:element name="AuthorsXMLNew" sqgl:relation="AuthorsXMLNew">
<xs:complexType>
<XS:sequence>
<xs:element name="au_id" type="xs:string" sql:field="au_id" />
<xs:element name="au_lname" type="xs:string" sql:field="au_lname" />
<xs:element name="au_fname" type="xs:string" sql:field="au_fname" />
<xs:element name="phone" type="xs:string" sql:field="phone" />
<xs:element name="address" type="xs:string" sql:field="address" />
<xs:element name="city" type="xs:string" sql:field="city" />

CHAPTER 7 SQL SERVER AND XML

<xs:element name="state" type="xs:string" sql:field="state" />
<xs:element name="zip" type="xs:unsignedInt" sql:field="zip" />
<xs:element name="contract" type="xs:unsignedByte"
sql:field="contract" sql:datatype="bit" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Relationships

Since in a relational database you can relate data by keys, we can use annotated schemas to describe
those relationships in our XML.

However, annotated schema will make those relationships hierarchical through the use of the
sql:relationship mapping. You can think of this as joining a table. The relationship mapping has a
parent element that specifies the parent relation or table. It also has a parent-key element, which
specifies the key to use, and this key can encompass multiple columns. Also, you have child and
child-key elements to perform the same functionality for the child as the other elements do for the
parent.

There is also inverse functionality, so you can flip this relationship. If for some reason your
mapping is different from the primary key/foreign key relationship in the underlying table, the
inverse attribute will flip this relationship. This is the case with updategrams, which you’ll learn
about in the section “SQLXML Updategrams” later in this chapter. You'll only use this attribute with
updategrams.

Imagine we had our authors and the authors were related to books in our relational schema
through the use of an author ID. We would change our schema mapping to understand that relation-
ship by using the following XML schema. Notice how the relationship mapping s in a special section
of our XSD schema.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="XMLSchema1" targetNamespace="http://tempuri.org/XMLSchemal.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema1.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
xmlns:sql="urn:schemas-microsoft-com:mapping-schema"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:element name="Root">
<xs:complexType>
<Xs:sequence>
<xs:element name="Authors" sgl:relation="Authors">
<xs:complexType>
<Xs:sequence>
<xsd:element name="Books" sql:relation="Books">
<xsd:annotation>
<xsd:appinfo>
<sql:relationship name="BookAuthors"
parent="Authors"
parent-key="au_id"
child="Books"
child-key="bk_id" />
</xsd:appinfo>
</xsd:annotation>

223

224

CHAPTER 7 SQL SERVER AND XML

<xsd:complexType>
<xsd:attribute name="bk_id" type="xsd:integer" />
<xsd:attribute name="au_id" type="xsd:string" />
</xsd:complexType>
</xsd:element>
<xs:element name="au_id" type="xs:string"
sql:field="au_id"></xs:element>
<xs:element name="au_lname" type="xs:string"
sql:field="au_lname"></xs:element>
<xs:element name="au_fname" type="xs:string"
sql:field="au_fname"></xs:element>
<xs:element name="contract" type="xs:boolean"
sql:field="contract"
sql:datatype="bit"></xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Key Column Mapping Using sql:key-fields

Now that you've seen how to build relationships, you also need to look at how to make SQL Server
nest your XML data correctly. For nesting to correctly occur, you’ll want to specify the key columns
used in your table that make the most sense when creating XML hierarchies. To give SQL hints on
the right ordering, use the sql:key-fields mapping, which tells SQL which columns contain key
values. The sample that follows lets SQL know that the au_id column is a key column:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="XMLSchema1" targetNamespace="http://tempuri.org/XMLSchemai.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchemal.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Root">
<xs:complexType>
<Xs:sequence>
<xs:element name="Authors" sql:relation="Authors"
sql:key-fields="au_id">

Excluding Data from the XML Result Using sql:mapped

Using the sql:mapped syntax, you can specify whether to map an element or attribute in your XSD
schema to a database object. If you don’t want to have the default mapping occur and you don’t
want to have the XML appear in your results, you should use the sql :mapped attribute. There may be
times when there is extraneous XML that you don’t want to appear in your table; for example, if you
don’t control the XML schema and want to omit the data from your table since a column for the data
doesn’t exist in the table. This attribute has a Boolean value with true meaning that mapping should
occur and false meaning that mapping shouldn’t occur.

CHAPTER 7 SQL SERVER AND XML

Creating a Constant Element

If you want an element to be constant in your XML document even if there is no mapping to the
underlying database, you should use the sql:is-constant mapping. This mapping is Boolean and a
value of true makes the element always appear in your XML document. This mapping is very useful
for creating a root element for your XML. An example of using this mapping is as follows:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchema1"
targetNamespace="http://tempuri.org/XMLSchemal.xsd" . . .>
<xs:element name="Root" sql:is-constant="true">

Limiting Values by Using a Filter

You may want to filter the results returned to your XML document by values from your database. The
sql:1imit-field and sql:1limit-value mappings let you do this by allowing you to specify a filter
column and the value to limit that column by. You don’t have to specify the limit value if you don’t
want to since SQL Server will default this to null. You can also have multiple limiting values for
multiple mappings. The shortened example that follows shows a schema that limits authors who live
in Boston:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema id="XMLSchema1"
targetNamespace="http://tempuri.org/XMLSchemal.xsd" . . .>
<xs:element name="Root" sql:is-constant="true">

<xs:element name="Authors"
sql:relation="Authors"
sql:1imit-field="city"
sql:1imit-value="Boston">

Other Features in Schema Mapping

The majority of your mapped schemas will use the preceding mappings. For the rest of the mapping
technologies, see Table 7-4, a short list that describes the features. To see annotated schemas in
action, take a look at the integrated sample at the end of this chapter.

Table 7-4. Other Schema Mapping Features

Name Description

sql:encode Specifies whether to return back a URL or binary data for a BLOB
datatype. Specifying the value URL returns a URL, and specifying the
value default returns back the data in a base-64 encoded format.

sql:identity Allows you to specify a SQL identity column mapping. You can
specify a value of ignore, which will allow SQL Server to generate the
identity value based on the settings in the relational schema, or you
can specify useValue, which will use a different value. Normally,
you'll set this to ignore unless you are using updategrams.

225

226

CHAPTER 7 SQL SERVER AND XML

Table 7-4. Other Schema Mapping Features (Continued)

Name Description

sql:max-depth Allows you to specify the depth of recursion to perform in a parent
and child relationship. You can specify a number between 1 and 50.
An example of using this would be generating an organizational
structure where employees work for employees, and you can to go
through and generate the hierarchy.

sql:overflow-field Allows you to specify the database column that will contain any over-
flow information. If you have XML data that you haven’t mapped into
your relational database, this data will go into the overflow column.
You specify the column name as the value for this mapping.

sql:use-cdata Allows you to specify whether the data returned by SQL Server should
be wrapped in a CDATA section, which will be treated by XML parsers
as plain text. Specify a 1 as the value to turn on this feature.

SQLXML Updategrams

So far, you've seen how to shred data using OPENXML and how to get data out of SQL Server using an
annotated schema. We needed to discuss annotated schemas before we talk about XML update-
grams, since updategrams build upon the annotated schema concept. Updategrams allow you to
change data in SQL Server using an XML format. Rather than writing T-SQL, you specify your changes
to your data using before-and-after images specified in an XML format. You can execute these
updategrams from ADO or ADO.NET as you'll see in the full sample at the end of this chapter.

The first step towards understanding XML updategrams is to understand the namespace they
use, namely urn:schemas-microsoft-com:xml-updategram. This namespace is usually abbreviated to
updg as part of your namespace declaration.

Every updategram must contain at least one sync element, which is an XML element that contains
the data you want to change in the form of before and after elements. You can have multiple sync
elements, and each element is considered a transaction, which means that everything in that sync
block is either completely committed or entirely rolled back. The before element contains the data
as it was before the change. You’ll want to specify a key so that SQL Server can find the data that you
want to change. You can only modify one row in your before element.

The after element is the changed data. You can imagine that an insertion will have an after but
no before. On the other hand, a delete will have a before but no after. Finally, an update will have
both a before and an after. The following is an updategram in its simplest form:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">
<updg:sync [mapping-schema= "AnnotatedSchemaFile.xml"] >
<updg:before>

</updg:before>
<updg:after>

</updg:after>
</updg:sync>
</ROOT>
You'll notice that you can optionally specify an annotated schema file that will map explicitly

the elements in your updategram to columns in your tables. If you don’t specify an annotated
schema file, SQL Server will use default mapping, as you saw in the annotated schema mapping

CHAPTER 7 SQL SERVER AND XML

section. It is also important to note that you can mix and match element- or attribute-based
mapping. However, for the sake of clarity, our recommendation is to select one style or the other.

To specify a null value with an updategram, you’ll use the sync element’s nullvalue attribute to
specify the placeholder for the null. For example, if you wanted the value of “nothing” to be null, you
would use the following updategram, which uses attribute-based syntax:

<?xml version="1.0"?>
<authorsupdate xmlns:updg=
"urn:schemas-microsoft-com:xml-updategram”>
<updg:sync updg:nullvalue="nothing">
<updg:before>
<Authors au_id="172-32-1176"/>
</updg:before>
<updg:after>
<Authors state="nothing" phone="nothing"/>
</updg:after>
</updg:sync>
</authorsupdate>

You can also use parameters with your updategrams by specifying $parametername. For example,
if you wanted to create a parameter for the selection of the author, you would use the following
updategram:

<?xml version="1.0"?>
<authorsupdate xmlns:updg=
"urn:schemas-microsoft-com:xml-updategram">
<updg:sync updg:nullvalue="nothing">
<updg:before>
<Authors au_id="$AuthorID"/>
</updg:before>
<updg:after>
<Authors state="nothing" phone="nothing"/>
</updg:after>
</updg:sync>
</authorsupdate>

If you want to use identity columns and you want to pass the identity values between tables, you
can use the at-identity attribute. This attribute is a placeholder that you can include, and SQL
Server will provide the right value for it when processed. If you want to pass the identity value back
to the client, you can use the returnid attribute. SQL Server will then return an XML document
containing the identity value after the updategram is applied successfully to the server.

An example will make this all clearer. If we wanted to insert a new author into our authors table,
delete an existing author and change the values for yet another author, we would use the following
updategram against our authors table. The next section shows how to program in .NET using the
SQLXML classes to execute this code.

<?xml version="1.0"?>

<authorsupdate xmlns:updg=
"urn:schemas-microsoft-com:xml-updategram">

<updg:sync updg:nullvalue="nothing">
<updg:before>
</updg:before>
<updg:after>
<Authors au_id="123-22-1232" au_fname="Tom" state="WA" phone="425-882-8080"/>

</updg:after>

227

228 CHAPTER 7 SQL SERVER AND XML

<updg:before>
<Authors au_id="267-41-2394"/>
</updg:before>
<updg:after>
</updg:after>
<updg:before>
<Authors au_id="238-95-7766"/>
</updg:before>
<updg:after>
<Authors city="0akland" phone="212-555-1212"/>
</updg:after>
</updg:sync>
</authorsupdate>

XML BulkLoad

If you want to load a large set of XML data into SQL Server, you'll want to use the XML BulkLoad capa-
bilities of SQLXML. Don’t—we repeat don’t—use updategrams or OPENXML. You'll find performance
lacking with these two components for loading large amounts of XML data. Of course, you may be
wondering what makes up alarge amount of XML data. Well, it depends on a number of factors such
as size and complexity of your XML. You could be loading hundreds of small XML files, or you could
be loading one big XML file. If you have fast processors, lots of memory, and fast disks on your server,
you could possibly get away with using OPENXML. Our recommendation is to run a test on your
systems to see which method performs acceptably to the data volume that you intend to run.

XML BulkLoad is an object that you call as part of the SQLXML object model that in turn calls the
bulkload capabilities of SQL Server to load your data from an XML source into SQL Server. Our
recommendation is to run a trace while you’re bulkloading your XML data, and you'll see the bulk-
load operations appear as part of that. This will give you insight into the commands that BulkLoad is
running on your behalf and will allow you to troubleshoot any errors that occur or misshapen data
that is imported.

XML BulkLoad leverages the mapping schema technology that we’ve been talking about in this
chapter. The mapping schema will tell the BulkLoad component where to place your XML data in the
database. The object model FOR XML BulkLoad is very straightforward. There is one method called
Execute and a lot of properties that allow you to configure how to handle the bulkload. The Execute
method takes two parameters. The first is the path to the schema mapping file. The second optional
parameter is a path or stream to the XML file you want to import.

Now that we’ve discussed how to execute the bulkload, first take a look at Table 7-5, which
presents the different properties, and then we’ll discuss some of the more interesting properties that
we recommend you should set.

Table 7-5. Bulkload Properties

Name Description

BulkLoad A Boolean that specifies whether the bulkload of the data should be
performed. If you only want to generate the schema in the database
and not load the data, set this property to false. The default value
is true.

CheckConstraints A Boolean that defaults to false and specifies whether to check
constraints such as primary key and foreign key constraints. If there
is a constraint violation, an error will occur.

CHAPTER 7 SQL SERVER AND XML

Table 7-5. Bulkload Properties

Name

Description

ConnectionCommand

ConnectionString

ErrorLogFile

FireTriggers

ForceTablelock

IgnoreDuplicateKeys

KeepIdentity

KeepNulls

SchemaGen

SGDropTables

SGUseID

TempFilePath

Transaction

XMLFragment

Allows you to specify a Command object rather than a ConnectionString
with the ConnectionString property. You must set the Transaction
property to true if you specify a Command object.

A string value that allows you to pass a connection string to your SQL
Server system.

A string value that allows you to specify a path to where you want to
store errors from the bulkload. There will be a record per error with
the most recent error at the beginning.

A Boolean that specifies whether to fire triggers on the target tables
when inserting data. The default value is false.

A Boolean that specifies whether to lock the entire table during the
bulkload operation. The default value is false.

A Boolean that specifies whether to ignore when duplicate keys are
being inserted into the table. The default value is false, which ignores
duplicate keys. If you set this property to true and there is a duplicate
key, the record will not be inserted into the table.

A Boolean property that specifies whether to keep the identity values
from your XML or have SQL Server autogenerate the identity values.
By default, this property is true, so BulkLoad keeps your identity
values from your XML.

A Boolean, with a default of true, that specifies whether to place null
values in columns where there is no value specified or whether you
don’t want to use the default value specified for the column.

A Boolean property, with a default of false, that specifies whether to
create the underlying relational tables before performing the bulkload
operations. You'll learn more about this property in the upcoming text.

A Boolean, with a default of false, that specifies whether to drop and
re-create tables or to retain existing tables. The property is used with
the SchemaGen property. A true value drops and re-creates the tables.

A Boolean, with a default of false, that specifies whether to use an ID
from the mapping schema to create the primary key in the relational
table. If you set this property to true, you need to set one of your
column’s datatypes in your mapping schema to be dt:type="1id".

A string that specifies the path to create temp files. If you leave this
property blank, temp files will be created wherever the TEMP environ-
ment variable points to. This property has no meaning unless you set
the next property, Transaction, to true.

A Boolean, false by default, that specifies whether a single transaction
should be used when bulkloading. If you set this property to true, all
your operations are cached in a temporary file before being loaded
into SQL Server. If there is an error, the entire bulkload doesn’t occur.
Please note that the Transaction property cannot be set to true if you
are loading binary data.

This Boolean property specifies whether the XML you are loading is a
fragment or not. A fragment is an XML document without a root node.
Set this to true if your XML is a fragment and leave it alone, since it
defaults to false if your XML isn’t a fragment.

229

230

CHAPTER 7 SQL SERVER AND XML

The first property that you should understand is the Transaction Boolean property. Normally,
you want to leave this property false to make the load nontransacted. This will increase your perfor-
mance at the cost of not being able to roll back if there is a failure.

The next property is the XMLFragment Boolean property. If you set this to true, BulkLoad allows
XML fragments, which are XML documents with no root element.

If you are working with constraints and you want those constraints enforced as part of your
BulkLoad, you’ll want to set the CheckConstraints property to true. By default, BulkLoad turns off
constraint checking, which improves performance. Regardless of whether you set this to true or
false, you'll want to place primary keys ahead of a table with a foreign key in your mapping schema.

If you want to ignore duplicate keys, you need to set the IgnoreDuplicateKeys Boolean property
to true. This is useful if you get data feeds where the person providing the data feed may not know
what data is in your database and you don’t want the BulkLoad to fail because of duplicate keys. BulkLoad
will not commit the row with the duplicate key, but instead just jump over that row in processing.

Many database designers use identity columns to guarantee uniqueness of keys in the table.
Sometimes the XML you are loading has an identity-like element that you may want to use rather
than having SQL Server generate a value using its own algorithm. To do this, set the KeepIdentity
property to true. This is the default value for this property. One thing to remember is that it is a
global value, so you cannot have SQL Server generate some identities and have BulkLoad pull from
the XML for others.

The KeepNulls property defaults to false with BulkLoad. BulkLoad will not automatically insert
null as the value for any column that is missing a corresponding attribute or element in the XML
document. If you set this property to true, you have to be careful here since BulkLoad will fail if you
don’t allow nulls in those columns. BulkLoad will not assign the default value for a column, if one is
specified in SQL Server, if the property is true.

One interesting BulkLoad property is ForceTableLock, which locks the table as BulkLoad loads its
data. This will speed performance of the load at the cost of locking other users out of the table. The
default value is false, so BulkLoad acquires a table lock each time it inserts a record into the table.

If your target tables don’t already exist, BulkLoad can create the tables for you. You need to set
the SchemaGen property to true to have BulkLoad perform this functionality. BulkLoad will take the
datatypes from your schema mapping and autogenerate the correct database schema based on
those datatypes. If a table or column already exists with the same name and you want to drop and
re-create them, set the SGDropTables property to true.

The next section shows using BulkLoad from a managed environment. BulkLoad supports both
COM and .NET so you can program from both environments with this technology.

Getting XML Out of the Database: FOR XML

FOR XML was added in SQL Server 2000 to allow you to get your relational data back in an XML format
without having to store that relational data as XML. Given that many developers and DBAs want to
keep their relational data as relational but transfer that relational data to other systems as XML due
to XML'’s flexibility and universal support, FOR XML is a very useful addition to SQL Server. In this
section, we’ll look at using FOR XML both from the server-side and the client-side to understand how
to transform your relational data to an XML format.

FOR XML (Server-Side)

You probably use FOR XML today, as it’s the easiest way to take data in a relational format from SQL
Server and put it into an XML format. A simplified form of the FOR XML query extension syntax is the
following:

CHAPTER 7 SQL SERVER AND XML

SELECT column list

FROM table list

WHERE filter criteria

FOR XML RAW | AUTO | EXPLICIT [, XMLDATA] [, ELEMENTS]
[, BINARY BASE64]

At the end of this section, we’ll focus on how FOR XML has changed in SQL Server 2005, but for

this chapter, we’ll just take a look at some of the common scenarios where you probably use FOR XML
today. The first scenario is using FOR XML in AUTO or RAW mode. Some people use the EXPLICIT mode,
but the majority uses the other two modes. The main reason people normally don’t use EXPLICIT mode
is that the other two meet their needs. The other reason, as you’ll see, is EXPLICIT mode is an explicit
pain to work with. If you can get away with using the other two modes, we recommend you do that,
since you'll find yourself pulling your hair out if you do any complex XML structures with EXPLICIT
mode.

RAW Mode

When working in RAW mode, the FOR XML query returns columns as attributes and rows as row elements.
An example of FOR XML RAW is shown here:

USE pubs
GO
SELECT * FROM Authors FOR XML RAW

Truncated Results

<row au_id="172-32-1176" au_lname="White" au_fname="Johnson"
phone="408 496-7223" address="10932 Bigge Rd." city="Menlo Park"
state="CA" zip="94025" contract="1"/>

<row au_id="213-46-8915" au_lname="Green" au_fname="Marjorie"
phone="415 986-7020" address="309 63rd St. #411" city="0Oakland"
state="CA" zip="94618" contract="1"/>

<row au_id="238-95-7766" au_lname="Carson" au_fname="Cheryl"
phone="415 548-7723" address="589 Darwin Ln." city="Berkeley"
state="CA" zip="94705" contract="1"/>

<row au_id="267-41-2394" au_lname="0O'Leary" au_fname="Michael"
phone="408 286-2428" address="22 Cleveland Av. #14" city="San Jose"
state="CA" zip="95128" contract="1"/>

As you can see, there is a row element for each row, and each nonnull column has an attribute
on the row element. If you are retrieving binary data, you need to specify BINARY BASE64. Also, if you
want to retrieve an XML-Data schema with the returned XML, you can specify XMLDATA.

AUTO Mode

When working in AUTO mode, the FOR XML query is the same as RAW mode in that it returns each row as
an element with column values as attributes, except the name of the element representing the row
is the table name. Therefore, if you run the command shown here, you’ll see the following results on
the authors table:

231

232

CHAPTER 7 SQL SERVER AND XML

USE pubs
GO
SELECT * FROM Authors FOR XML AUTO

Truncated Results

<Authors au_id="172-32-1176" au_lname="White" au_fname="Johnson"
phone="408 496-7223" address="10932 Bigge Rd." city="Menlo Park"
state="CA" zip="94025" contract="1"/>

<Authors au_id="213-46-8915" au_lname="Green" au_fname="Marjorie"
phone="415 986-7020" address="309 63rd St. #411" city="0Oakland"
state="CA" zip="94618" contract="1"/>

<Authors au_id="238-95-7766" au_lname="Carson" au_fname="Cheryl"
phone="415 548-7723" address="589 Darwin Ln." city="Berkeley"
state="CA" zip="94705" contract="1"/>

<Authors au_id="267-41-2394" au_lname="08'Leary" au_fname="Michael"
phone="408 286-2428" address="22 Cleveland Av. #14" city="San Jose"
state="CA" zip="95128" contract="1"/>

<Authors au_id="274-80-9391" au_lname="Straight" au_fname="Dean"
phone="415 834-2919" address="5420 College Av." city="0Oakland"
state="CA" zip="94609" contract="1"/>

<Authors au_id="341-22-1782" au_lname="Smith" au_fname="Meander"
phone="913 843-0462" address="10 Mississippi Dr." city="Lawrence"
state="KS" zip="66044" contract="0"/>

The table name is the element for each node with the column values as attributes on that
element. The nesting of elements depends on the order in your SELECT clause, so choose your order
carefully. Furthermore, you cannot use a GROUP BY, but you can use an ORDER BY in your SELECT state-
ments with FOR XML. The workaround for a GROUP BY is to use a nested SELECT statement to achieve the
results you want, but this will have some performance implications. When using joins, you'll find
that AUTO will nest the resultset, which is most likely what you want to happen. If you don’t want this
to happen, you'll have to use the EXPLICIT mode to shape your XML. For example, if we join publishers
and titles, and we want all titles nested under their publisher in our XML, we would run the
following code:

USE pubs

Go

SELECT Publishers.Pub_Name, Titles.Title, Titles.Price
FROM Titles, Publishers WHERE Publishers.Pub ID = Titles.Pub ID
FOR XML AUTO

Results Truncated

<Publishers Pub_Name="Algodata Infosystems">
<Titles Title="The Busy Executivedapos;s Database Guide" Price="19.9900"/>
<Titles Title="Cooking with Computers:
Surreptitious Balance Sheets"
Price="11.9500"/>
</Publishers>
<Publishers Pub_Name="New Moon Books">
<Titles Title="You Can Combat Computer Stress!" Price="2.9900"/>
</Publishers>
<Publishers Pub_Name="Algodata Infosystems">
<Titles Title="Straight Talk About Computers" Price="19.9900"/>
</Publishers>

CHAPTER 7 SQL SERVER AND XML

You can also use the ELEMENTS option with FOR XML AUTO. If you are more of an element than
attribute person, you can have AUTO return back element-centric syntax rather than attribute-centric
syntax. Personally, we find that element-centric syntax, while making the XML larger in text size
because of all the opening and closing tags, results in XML that is easier to read and understand.

Explicit Mode

The last mode is EXPLICIT mode. As the name implies, EXPLICIT mode allows you to completely
control the way that your XML is generated. You describe what you want your XML document to
look like, and SQL Server fills in that document with the right information. You use a universal table
to describe your XML document. This table consists of one table column for each value you want to
return as well as two additional tags, one that uniquely identifies the tags in your XML and another
thatidentifies your parent-child relationships. The other columns describe your data. An example of
a universal table appears in Table 7-6.

Table 7-6. A Universal Table

Tag Parent Column1’s Directive Column2’s Directive
1 Null Data value Data value
2 1 Data value Data value
3 2 Data value Data value

You use directives to describe how to display your data in the table. Directives are just special
commands that you use that SQL Server understands how to parse. The format for these directives
is as follows:

Element!Tag!Attribute!Directive

The different pieces of your directive are separated by an exclamation point. So, let’s build a
simple example table that uses the preceding formatting. Imagine we want to display authors, but
make the au_id an attribute on our XML and the rest of our data elements in our output. Well, we
can’t do that with FOR XML AUTO or RAW, since neither of them can be split between being attribute- or
element-centric. Let’s see what our query would look like to do this:

SELECT 1 as Tag, NULL as Parent,
au_id as [Authors!ilau_id], au_lname as [Authors!1]
FROM Authors FOR XML EXPLICIT

The first thing you’ll notice is that in our column list we have the Tag and Parent columns. We
need these columns to identify the tag of the current element, which is an integer from 1 to 255, and
also the parent of the current element. In this example, we’re not nesting our data, our parent is
always null, and our tag is always 1, since we always refer to the same parent. Then, you can see we
use the AS clause to rename our data to describe the XML formatting we want to do. The naming for
au_id tells SQL Server that we want to use the Authors element, a tag ID of 1, and the name of our
attribute. Since we want the other data to be elements, we just rename them to be the element and
tag name. At the end, we specify the FOR XML EXPLICIT, since we don’t want to get our universal table
back, which describes our XML structure, but our actual processed XML structure. The results of this
query are shown here:

233

234

CHAPTER 7 SQL SERVER AND XML

<Authors au_id="409-56-7008">Bennet</Authors>
<Authors au_id="648-92-1872">Blotchet-Halls</Authors>
<Authors au_id="238-95-7766">Carson</Authors>
<Authors au_id="722-51-5454">DeFrance</Authors>
<Authors au_id="712-45-1867">del Castillo</Authors>
<Authors au_id="427-17-2319">Dull</Authors>

You can see that we get the last name returned as element data for our Authors element. We
may want to make the last name an element itself nested under the Authors element. To do this, we
modify our query slightly to use the element directive as shown here:

SELECT 1 as Tag, NULL as Parent, au_id as [Authors!ilau_id],
au_lname as [Authors!ilau_lname!element]
FROM Authors FOR XML EXPLICIT

Table 7-7 lists all the directives you can use with a description for each.

Table 7-7. FOR XML EXPLICIT Directives

Name Description

cdata Wraps the data in a CDATA section.

element Specifies that you want the element entity encoded (for example, > becomes
>) and represented as a subelement.

elementxsinil If you want to generate elements generated for null values, you can specify
this directive. This will create an element with an attribute xsi:nil=TRUE.

D Allows you to specify an ID for your element. All ID directives require that
XMLDATA be requested in your FOR XML clause.

IDREF Allows attributes to specify ID type attributes to enable intradocument linking.

IDREFS Similar to IDREF in that it allows you to create intradocument linking, but
uses the IDREFS structure rather than IDREF.

hide Hides the result from the XML rendered.

xml Same as the element directive, but no encoding takes place.

xmltext Useful for OPENXML overflow columns in that it retrieves the column and

appends it to the document.

Let’s look at a more complex example. If we want to return all our authors with their titles and
author royalties, we would generate a UNION ALL query to combine together this data from disparate
tables, and we would need to nest the results so that our XML hierarchy appears correctly with authors,
royalties, and then titles. Before we look at the query and results, we want to give you a couple of tips
about troubleshooting FOR XML EXPLICIT queries. First, many people get the error that the parent tag
isn’t open yet. To troubleshoot your FOR XML EXPLICIT statements, the easiest way to fix problems is
to remove the FOR XML EXPLICIT statement and just render the results. This will return the universal
table, and you can track down errors. The easiest way we’ve found to solve the parent tag problem is
to make sure to include the tag column in your ORDER BY clause so that you know that no later tags
will be rendered before earlier tags, which is the cause of the problem.

CHAPTER 7 SQL SERVER AND XML

OK, let’s look at our query for generating the results we wanted earlier. You'll notice that we
define a number of parent-child relationships using the Tag and Parent columns. Next, you'll also
notice that we use the ORDER BY trick to make sure that the parent tags are in the XML before we
process the children tags.

SELECT 1 AS Tag, NULL AS Parent,
Authors.au_fname AS [Authors!ilau_fname!element],
Authors.au_lname AS [Authors!ilau_lname!element],
NULL AS [Titleauthor!2!Royaltyper],
NULL AS [Titles!3!Title!element]

FROM

Authors

UNION ALL

SELECT 2 AS Tag, 1 AS Parent,
au_fname,
au_lname,
royaltyper,
NULL
FROM Authors INNER JOIN Titleauthor ON
Authors.au_id = Titleauthor.au id

UNION ALL

SELECT 3 AS Tag, 2 AS Parent,

au_fname,

au_lname,

royaltyper,

title
FROM Authors INNER JOIN Titleauthor ON Authors.au id = Titleauthor.au id
INNER JOIN Titles ON Titles.title id = Titleauthor.title id
ORDER BY [Authors!ilau fname!element], [Authors!ilau lname!element],
[Titleauthor!2!royaltyper], Tag
FOR XML EXPLICIT

Truncated Universal Table

Tag Parent Authors!ilau fnamelelement Authors !1 !au lnameelement

1 NULL Abraham Bennet
2 1 Abraham Bennet
3 2 Abraham Bennet
1 NULL Akiko Yokomoto
2 1 Akiko Yokomoto
3 2 Akiko Yokomoto
1 NULL Albert Ringer
2 1 Albert Ringer
3 2 Albert Ringer
2 1 Albert Ringer
3 2 Albert Ringer

Truncated Results

235

236

CHAPTER 7 SQL SERVER AND XML

<Authors>
<au_fname>Abraham</au_fname>
<au_lname>Bennet</au_lname>
<Titleauthor Royaltyper="60">
<Titles>
<Title>The Busy Executive8apos;s Database Guide</Title>
</Titles>
</Titleauthor>
</Authors>
<Authors>
<au_fname>Akiko</au_fname>
<au_lname>Yokomoto</au_lname>
<Titleauthor Royaltyper="40">
<Titles>
<Title>Sushi, Anyone?</Title>
</Titles>
</Titleauthor>
</Authors>

As you've seen, FOR XML EXPLICIT is powerful, yet can be hard to master. If you can get away with
using FOR XML AUTO or RAW and can avoid FOR XML EXPLICIT mode, your coding will be much easier.
However, for those situations where FOR XML AUTO or RAW don’t meet your needs, you can always fall
back to EXPLICIT mode.

FOR XML (Client-Side)

Up until now, we have been writing our FOR XML code so that it is processed on the server. However,
using SQLXML, you can process your FOR XML code on the client-side. Rather than sending back the
formatted XML results from the server, SQL Server sends back the rowsets to SQLXML, and SQLXML
formats the results on the client-side. You'll see an example of this in the next section when we explore
the SQLXML classes.

Using Templates

You can use templates to execute queries against your SQL Server with SQLXML. Templates are just
encapsulation of the technologies we’ve already looked at in this chapter. These templates can use
SQL or XPath queries. You have to use the annotated schema that you create for your XML view with
your template. The schema can be inline or loaded via a file. To specify your template, you’ll create
afile that uses the urn:schemas-microsoft-com:xml-sql namespace. Then, once you set that namespace,
you can pass in your SQL or XPath queries in the template. SQLXML will cache your templates in
order to improve performance. The following template executes a SQL query:

nn

<Root><sql:query xmlns:sql=""urn:schemas-microsoft-com:xml-sql"">
SELECT * FROM Authors FOR XML AUTO</sql:query></Root>

To use an XPath query, we would change the sql:query syntax to sql:xpath-query. The sample
that follows queries for all authors:

<Root><sql:xpath-query xmlns:sql=
</sql:xpath-query></Root>

urn:schemas-microsoft-com:xml-sql"">/Authors

You'll see how to use templates from code in the section “Programming SQLXML from .NET
and COM” later in this chapter.

CHAPTER 7 SQL SERVER AND XML

Enhancements to FOR XML

To transform relational data into XML data, the FOR XML keyword is still supported in SQL Server 2005
with some enhancements. The major enhancements in FOR XML are support for the XML datatype,
enhancements to make writing FOR XML EXPLICIT statements much easier, and support for inline
XSD. If you've never worked with FOR XML EXPLICIT, count your blessings. The syntax of using this
capability was not for the faint of heart. If you needed to perform any marginally complex XML
formatting in SQL Server 2000, you would have to unfortunately resort to FOR XML EXPLICIT.

To support returning values using the XML datatype, FOR XML supports an extra directive called
TYPE. By passing this directive to your call, instead of generating the XML and returning it as text, SQL
returns back the result as an XML datatype. This means that you can then use XQuery on that returned
value to query for information inside of the resultset. Also, you can assign the results to a variable or
use it to insert into an XML datatype column. Finally, you can nest FOR XML statements to generate a
hierarchy rather than having to resort to using XML EXPLICIT. This capability allows you to quickly
convert your relational data or even your data that uses the XML datatype into an XML datatype
value. The following code shows how to use the new TYPE directive and then pass the result to an
XQuery, which you’ll learn about in the next chapter:

SELECT (SELECT * FROM authors FOR XML AUTO, ELEMENTS, TYPE).query(
"count(//author)")

The new PATH mode allows you to specify where a column’s value should appear in your XML
hierarchy by using XPath. By having this capability, you can move away from FOR XML EXPLICIT,
which is complex and burdensome, and instead generate complex XML using nested FOR XML state-
ments and the new PATH mode. An example of the new PATH mode is shown here. This sample renames
the root element to AuthorsNew and also makes a new complex type called Names that stores the first
name and the last name.

SELECT au_fname "Names/FirstName", au_lname "Names/LastName"
FROM authors FOR XML PATH('AuthorsNew')

The final enhancement is the support for inline XSD in RAW and AUTO modes. You can optionally
pass this directive, called XMLSCHEMA, in your code. The following code sample shows using the
XMLSCHEMA directive and the results returned from the server:

SELECT * FROM authors FOR XML RAW('Authors'), XMLSCHEMA('urn:example.com')

<xsd:schema targetNamespace="urn:example.com"
xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:sqltypes="http://schemas.microsoft.com/sglserver/2004/sqltypes"
elementFormDefault="qualified">
<xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/sqltypes”
schemalocation=
"http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd" />
<xsd:element name="Authors">
<xsd:complexType>

</xsd:complexType>
</xsd:element>
</xsd:schema>

<Authors xmlns="urn:example.com" au_id="172-32-1176"
au_lname="White" au_fname="Johnson" phone="408 496-7223"
address="10932 Bigge Rd." city="Menlo Park"
state="CA" zip="94025" contract="1" />

237

238

CHAPTER 7 SQL SERVER AND XML

Programming SQLXML from .NET and COM

SQLXML 4.0 provides an object model that allows you to program its capabilities from both managed
and unmanaged code. For unmanaged code such as ADO, you use the SQLXMLOLEDB driver. This
provider uses the new SQL Native Client. Since space is limited, programming SQLXML from unman-
aged code will not be covered. Instead, we’ll focus our efforts on managed code. For managed code,
you can add a reference to Microsoft.Data.SqlXml in Visual Studio as shown in Figure 7-2.

Add Reference 2=l
JMET |COM I Projects I Browse I Recent I
Component Mame « | ersion | Runkirme | Path ;I
Microsoft, Build, Utilities 2.0.0.0 w2,0,50110 CiwIr
Microsoft,Build, Visual 1Sharp 2.0.0.0 v2,.0,50110 Wk

14

§.0.0.0

¥2,0.50110 CHWIk
Y g

Wl CiiPros

9.0.242.0 vz,0.50110 C:'I,PronJ
Microsoft, JScript 8.0.0.0 v2,.0,50110 W
Microsoft.mshtml %{ 7.0.3300.0 +1.0.3705 ci\Prog
Microsoft, SqlServer, ActiveXScriptTask 2.0.242.0 +2.050110 C\Prov
Microsoft, SglServer ASTasks 2.0.242.0 +2.050110 C\Prov
Microsoft, SqlServer BulkInsert Task 2.0.242.0 +2.050110 C\Prov
Microsoft, SglServer . ConnectionInfo 2.0.242.0 +2.050110 C\Prov
Microsoft, SqlServer . DmQuery Task 2.0.242.0 +2.050110 C\Prov
Microsoft, SqlServer, Dts, Design 2.0.242.0 +2.050110 C\Prov
Microsoft, SqlServer . DT SPipelinetrap 2.0.242.0 +2.050110 C\Prov

Microsoft, SQLServer, DTSRuntimeNrap 9.0.242.0 vz2.0,50110 C:'l,Pr_UiLI
1| 3

[8]4 I Cancel |

Figure 7-2. Adding a reference to SQLXML

The SQLXML-managed assembly has four classes: Sq1XmlCommand, Sq1XmlParameter, SqlXmlAdapter,
and SqlXmlException. Using these classes, you can send commands to SQL Server and process the
results on the client-side such as rendering FOR XML statements or executing XML templates. The
following section will step through each object, its method and properties, and show you how to
program SQLXML.

SqIXmlCommand

SqlXmlCommand is one of the primary classes you'll interact with when using SQLXML functionality.
Table 7-8 lists all the methods and Table 7-9 lists all the properties for Sq1Xm1Command.

Table 7-8. SqiXmlCommand Methods

Name Description
ClearParameters Clears all parameters that were created for a particular command object.
CreateParameter Creates a SqLXmlParameter object from which you can set the name and

value for the parameter.

ExecuteNonQuery Executes the query but doesn’t return any value. This is useful if you
want to call an updategram that doesn’t return a value.

ExecuteToStream Executes the query and returns the results to an existing Stream object
that you pass to the method.

CHAPTER 7 SQL SERVER AND XML

Table 7-8. SqlXmlCommand Methods

Name Description
ExecuteStream Executes the query and returns the results back as a new Stream object.
ExecuteXMLReader Executes the query and returns back the results in an XMLReader object.

Table 7-9. SqIXmlCommand Properties

Name

Description

BasePath

ClientSideXML

CommandStream

CommandText

CommandType

Namespaces

OutputEncoding

RootTag

SchemaPath

XslPath

The base directory path, which is useful for setting paths to XSL, schema
mapping, or XSD schema files used in your applications.

When set to true, this Boolean property tells SQLXML to convert your
rowsets to XML on the client-side.

This property allows you to set your command by using a stream. This is
useful if you want to execute a command from a file.

Gets or sets the text of the command that you want to execute.

Allows you to get or set the command type using the following values:
SOLXMLCommandType.Diffgram, SOLXMLCommandType.Sql,
SOLXMLCommandType.Template, SOLXMLCommandType.TemplateFile,
SQLXMLCommandType.XPath, and SQLXMLCommandType.UpdateGram.

Allows you to specify namespaces for your XML in the format
xmlns:x="urn:myschema:Yournamespace'. When using XPath queries that are
namespace qualified, you must specify your namespaces using this property.

This property specifies the encoding for the results. By default, the
encoding is UTF-8, but you could specify ANSI, Unicode, or other valid
encoding values.

This property specifies the root tag for your XML document, if required.
This will normally be the string value root.

Specifies the directory path and filename for the schema file. If you are
using relative paths via the BasePath property, SQLXML will look in the
BasePath directory. You can also use absolute paths such as c:\myapp\
myschema.xml.

Same as the SchemaPath but specifies the path to the XSL transform file rather
than the schema file.

SqlXmlParameter

SqlXmlParameter provides the ability to pass parameters to your code. This class is very straightfor-
ward since it has only two properties: Name and Value. You specify the name of the parameter such as
customerid and the value to be the value for the parameter. You can create a SqlXmlParameter object
by calling the CreateParameter method on the SqlXmlCommand object.

239

240

CHAPTER 7 SQL SERVER AND XML

SqlXmlAdapter

The SqlXmlAdapter object allows interoperability between .NET datasets and SQLXML functionality.
The constructor for this object has three forms. The first form can take a Sq1XmlCommand that is popu-
lated with the necessary information to connect to your datasource. The second form is the command
text as a string, the command type as a SqLXmlCommand object, and finally the connection string as a
string. The final form is the same as the second one, except you pass in a Stream object rather than a
string for the command text.

Once you've created your adapter, there are only two methods on the object. The firstis the Fill
method, which you pass an ADO.NET dataset to. SQLXML will fill the ADO.NET dataset with what-
ever data your commands should return. Then, you can modify your dataset using standard dataset
functionality and call the second method, which is Update, with your dataset as a parameter to the
method. SQLXML uses an optimistic locking scheme when updating your data in your backend table.

SqlXmlException

This object inherits from the standard SystemException object and allows you to pass back SQLXML
exceptions as part of your code. There is an ExrrorStream property that you use to return back the
error. The following code uses this property to print out any errors caught in an exception:

Catch ex As Microsoft.Data.SqlXml.SqlXmlException
ex.ErrorStream.Position = 0
Dim oSR As New System.IO.StreamReader(ex.ErrorStream)
Dim strResult As String = oSR.ReadToEnd()
System.Console.WriteLine(strResult)

End Try

Code Samples

To show you how to use this functionality, let’s take a look at a sample application. The sample
application allows you to bulk load XML data into SQL and then try out the different functionality
discussed in this chapter such as FOR XML, dataset integration, running templates, using update-
grams, and also using client-side processing and XMLTextReaders. The user interface for the sample
is shown in Figure 7-3.

The sample already has a reference to SQLXML, so we don’t have to perform that step again. To
start working with our data, we need to load our XML data into our database and shred it into relational
columns. The code could have used an OPENXML statement, but instead it uses XML BulkLoad. To start
using BulkLoad, we first need to add a reference to the BulkLoad COM object in Visual Studio. The
component name is Microsoft SQLXML BulkLoad 4.0 Type Library. Next, we need to create a bulk-
load object in our application. The code that follows performs this task:

Dim oXMLBulkLoad As New SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class()

HML Schema File:

CHAPTER 7 SQL SERVER AND XML

SQLXML Sample Application 10l =|

c:vmapping schema.ksd
I — Bulkload <ML |
Ic::\AuthorsXMLNew.xml

HML File Path:
Test Queries
" FOR %ML " UseStreamPeadsr Use SOL<MLParameter % Template! © Use Updategram
" FOR %ML Clientside ¢ Use¥MLTextReadsr ¢ RunxPath Query " Use Datasst
SOL Querny: <Roaot> <zql:query xming: zql="urm: schemas-microsoft-com:xml-sql'>SELECT * FROM ;I
Authorg=bLMew FOR XML AUT0</2ql:quenys < /Roots
Results:

<Rootz <Authorg<MLMew au_id="172-32-1176" au_Iname=""w/hite"' au_fname='
phone="408 496-7223" addrezz="10932 Bigge Rd." city="Menlo Park" state=
zip="94025" contract="1"/> <Authorg<MLMew au_id="213-46-8915" au_Inam
au_fname="Marjorie" phone="415 986-7020" address="309 63rd S5t. #411" ci
state="" zip="94618" contract="1"/> <Authorg<MLMew au_id="238-95-776E"
au_lname="Carzon' au_fname="Chenl" phone="415 548-7723" address="083 D arwin Ln."
city="Berkeley" state="TA" zi 4705 contract="1"/> <Authorg<MLMew
au_id="267-41-2394" au_Iname="0%apozLean" au_fname="Michael" phone="408 286-2428"
addrezs="22 Cleveland Av. #14" city="5an Jose" state="CA" zip="95128"

contract="1"/> <Authors<MLMNew au_id="274-80-9391" au_lhame="Straight"

au_fname=" Dean"phone 415 834-2919" address="h420 Eollege A" city="0akland"
state="CA" zip="94609" contract="1"/»<Authors<MLMNew au_id="341-22-1782"
au_lname="5mith"" au_fname="teander" phone=""913 843-0462" addrezz="10 Missizzippi Dr."
city="Lawrence" state="K5" zip="66044" contract="0"/> cAuthors<h LM ew
au_id="403-56-7008" au_lhame="Bennat" au_fname="Abraham" phone="415 E58-39332"
addrezz="6223 Bateman St." city="Berkeley" state="CA" zip="34705"

contract="1"/> ¢Authors<MLMew au_id="427-17-2319" au_lhame="Dull" au_fname="ann"

phone="415 836-7128" addrezz="3410 Blonde St." citp="Palo Alta" state="Ca" zip="94301" _I

Figure 7-3. Sample application user interface

Next, we need to set some properties for our BulkLoad. Since we cannot assume that the table
that we are going to bulk load into already exists, the sample sets the SchemaGen property to true.
Also, if the tables do exist, we want to drop them, so the sample sets the SGDropTables to true as well.
The sample sets other properties such as where to put the error file, whether our XML is a fragment,
and whether to keep identities or not. The most important property is the ConnectionString prop-
erty, since it tells bulkload how to connect to the server. Once we have set all of our properties, the
sample calls the execute method of bulkload and passes in the schema mapping file and the XML to
bulk load. You'll find all of the schema mapping files and the sample XML files included with the

sample application. All this code is shown here:

oXMLBulkLoad.ErrorLogFile = "c:\myerrors.log"
oXMLBulkLoad.SchemaGen = True

oXMLBulkLoad.KeepIdentity = False

oXMLBulkLoad.BulkLoad = True

oXMLBulkLoad.SGDropTables = True
oXMLBulkLoad.XMLFragment = True
oXMLBulkLoad.ConnectionString = strConnectionString
0XMLBulkLoad.Execute(txtXMLSchema.Text, txtXMLFile.Text)

241

242

CHAPTER 7 SQL SERVER AND XML

FOR XML: Server-Side and Client-Side

Once we've successfully bulk loaded our data, we can start working with it. One thing we can do is
get our data back out as XML, now that it is shredded into the database. We can use the FOR XML
construct to do this. Remember that SQLXML allows you to render your XML on the server or on the
client. The sample allows us to select either one. The code uses a common method for executing all
queries in the sample. This method takes a number of different parameters such as whether the
query coming in is a SQL, template, or diffgram query. The first thing the common query method
does is creates a Sq1XmlCommand object as shown here. Please note the connection string is your stan-
dard connection string that you are probably used to, such as
"Provider=sqloledb;server=localhost;database=pubs;integrated security=SSPI".

Dim oSQLXMLCommand As New

Microsoft.Data.SqlXml.SqlXmlCommand(strConnectionString)

Next, it sets the command type to be the appropriate type based on the query coming in. For
standard SQL queries, the command type is set to SQL as shown here:

0SQLXMLCommand.CommandType = Microsoft.Data.SqlXml.SqlXmlCommandType.Sql

To send our FOR XML query to the server, we need to set the command text for our Sq1XmlCommand
object. Since we pass the query to the method, we use the strQuery variable for this purpose:

'Set our Query
0SOLXMLCommand.CommandText = strQuery

Since we can render our FOR XML on the server or client, we need to set the ClientSideXml prop-
erty of our command object to true or false, with true being to render the XML on the client-side.
Once we've set this property, we can execute our query and get back the results. The following code
uses a StreamReader to get back the results and put them in our results text box. We can also use an
XMLTextReader, which you'll see used later on in this section.

'See if we need to render client-side

If bUseClientSide = True Then
0SQLXMLCommand.ClientSideXml = True

End If

Dim oStream As System.IO.Stream
oStream = 0SQLXMLCommand.ExecuteStream()

oStream.Position = 0

Dim oStreamReader As New System.IO.StreamReader(oStream)
txtResults.Text = oStreamReader.ReadToEnd()
oStreamReader.Close()

As you can see from the code, using FOR XML in SQLXML is very straightforward. The hard part
is making sure that you get your FOR XML query correct and returning back the right results.

Using an XMLTextReader

There may be times when you don’t want to use a StreamReader to get your results back from your
SQLXML queries, but instead want to use an XMLTextReader. The XMLTextReader gives you fast access
to XML data and more flexibility in navigating your XML than a StreamReader does. The XMLTextReader
parses your XML and allows you to query that XML using XPath. To use an XMLTextReader, you just
need to change your ExecuteStream method call to an ExecuteXMLReader method call on your
SglXmlCommand object. Once you get back the reader, you can then use the methods and properties of

CHAPTER 7 SQL SERVER AND XML

the XML reader to navigate your XML. The following code executes the XML reader and displays the
results to the user in the sample:

'Use XMLTextReader

Dim oXMLTextReader As System.Xml.XmlTextReader
oXMLTextReader = oSQLXMLCommand.ExecuteXmlReader ()
Dim strXML As String = ""

While oXMLTextReader.Read()
'We're on an element
If oXMLTextReader.NodeType = XmlNodeType.Element Then
StrXML += "<" & oXMLTextReader.Name & ""
ElseIf oXMLTextReader.NodeType = XmlNodeType.EndElement Then
strXML += "</" & oXMLTextReader.Name & ">"
End If

"Look for attributes
If oXMLTextReader.HasAttributes() Then
Dim i As Integer = 0
Do While (oXMLTextReader.MoveToNextAttribute())
i+=1
StrXML += " " & oXMLTextReader.Name & "=" & oXMLTextReader.Value
If oXMLTextReader.AttributeCount = i Then
'Last attribute, end the tag
strXML += " />"
End If
Loop

End If
End While

txtResults.Text = strXML
0XMLTextReader.Close()

As you can see, the XML reader, for simple operations like just displaying the XML, is overkill
since you have to parse the XML to display it. But, if you wanted to figure out information about the
XML, such as the number of attributes or elements, or if you wanted to navigate in a richer way, the
XML reader is up for the task.

Using Parameters with SQLXML

To use parameters with SQLXML, we need to create a Sq1XmlParameter object. Our query must specify
that we are going to pass a parameter, and the SqlXmlParameter object must have its properties set
correctly. The following code snippets show you how to use a parameter with your SQLXML queries:

strQuery = "SELECT * FROM " & strTable & " WHERE city = ? FOR XML AUTO, ELEMENTS"

Dim oSQLXMLParameter As Microsoft.Data.SqlXml.SqlXmlParameter
0SQLXMLParameter = oSQLXMLCommand.CreateParameter()
oSQLXMLParameter.Name = "city"

0SQLXMLParameter.Value = "Oakland"

243

244

CHAPTER 7 SQL SERVER AND XML

Executing XPath or SQL Queries with Templates

With SQLXML, you can execute XPath or SQL queries. The sample application uses a template to
execute a SQL query and a straight XPath statement for the XPath query. The sample could have
used a template for the XPath query, but the sample demonstrates how to use the XPath command
type. The following code sets up the SQL template query:

"Load up our query
strQuery = "<Root><sql:query xmlns:sql=""urn:schemas-microsoft-com:xml-sql""> _
SELECT * FROM AuthorsXMLNew FOR XML AUTO</sql:query></Root>"

Next, the sample sets the command type to be a template in order to run the SQL template
query. The sample also specifies the root node and the path to the annotated XSD schema file.

0SQLXMLCommand.CommandType = Microsoft.Data.SqlXml.SqlXmlCommandType.Template
0SQLXMLCommand.SchemaPath = txtXMLSchema.Text
0SQLXMLCommand.RootTag = "ROOT"

Since the code uses a StreamReader to render the results, that code won’t be shown here, since
you've seen it already.
To perform the XPath query, again, we set up the query as shown here:

"Load up our query
strQuery = "/AuthorsXMLNew[city="0Oakland']"

Since we are using an XPath query directly, we need to set the command type to be XPath for
our SqlXmlCommand object. Just like we did for the SQL template query, we want to set our root node
and also the path to our annotated XSD schema. After that, we’ll again use the StreamReader to
render our results as we saw earlier.

0SQLXMLCommand.CommandType = Microsoft.Data.SqlXml.SqlXmlCommandType.XPath
0SQLXMLCommand.SchemaPath = txtXMLSchema.Text
0SQLXMLCommand.RootTag = "ROOT"

Interoperating with the ADO.NET Dataset

SQLXML interoperates with the ADO.NET dataset through the SqlXmlAdapter object. You can use
the SqlXmlAdapter to fill your dataset. Then, you can use the Dataset object as you normally would
in ADO.NET. The following code, taken from the sample application, creates a query, executes that
query using the SqlXmlAdapter object, and then fills a dataset with the information. To write out the
value returned back, the code uses some stream objects:

strQuery = "SELECT * FROM " & strTable & " WHERE city =
'oakland' FOR XML AUTO, ELEMENTS"

Dim oSQLXMLDataAdapter As New
Microsoft.Data.SqlXml.SqlXmlAdapter (0SQLXMLCommand)

Dim oDS As New System.Data.DataSet()

0SQLXMLDataAdapter.Fill(oDS)

CHAPTER 7 SQL SERVER AND XML

'Display the underlying XML

Dim oMemStream As New System.IO.MemoryStream()

Dim oStreamWriter As New System.IO.StreamWriter(oMemStream)
oDS.WriteXml(oMemStream, System.Data.XmlWriteMode.IgnoreSchema)
oMemStream.Position = 0

Dim oStreamReader As New System.IO.StreamReader(oMemStream)
txtResults.Text = oStreamReader.ReadToEnd()

oMemStream.Close()

Programming Updategrams

The final piece of the sample application we’ll look at uses updategrams. Updategrams allow you to
update your SQL Server using your existing XML documents. The code creates the updategram
using a StringBuilder object. Then, the code sets the command type to be UpdateGram. Finally, the
rest of the code is the same as the original code to execute the command and get the results, so that
section is left out.

Dim strUpdateGram As New System.Text.StringBuilder()
strUpdateGram.Append("<?xml version="1.0"'?><AuthorsXMLNewupdate ")
strUpdateGram.Append("xmlns:updg="urn:schemas-microsoft-com:xml-updategram'>")
strUpdateGram.Append("<updg:sync updg:nullvalue="nothing'>" & _
"<updg:before></updg:before>")
strUpdateGram.Append("<updg:after><AuthorsXMLNew au_id='123-22-1232"'")
strUpdateGram.Append(" au_fname='Tom' state='WA' phone='425-882-8080"'/>")
strUpdateGram.Append("</updg:after>")
strUpdateGram.Append("<updg:before><AuthorsXMLNew")
strUpdateGram.Append(" au_id="'267-41-2394"'/></updg:before>")
strUpdateGram.Append("<updg:after></updg:after>")
strUpdateGram.Append("<updg:before><AuthorsXMLNew")
strUpdateGram.Append(" au_id="238-95-7766"/></updg:before>")
strUpdateGram.Append("<updg:after><AuthorsXMLNew")
strUpdateGram.Append(" city="'0akland' phone='212-555-1212"'/>")
strUpdateGram.Append("</updg:after></updg:sync></AuthorsXMLNewupdate>")

strQuery = strUpdateGram.ToString()

0SQLXMLCommand.CommandType =
Microsoft.Data.SqlXml.SqlXmlCommandType.UpdateGram

Summary

As you've seen in this chapter, we’ve established your understanding of XML technologies that work
against both SQL Server 2000 and 2005. This includes the OPENXML and FOR XML query extensions,
XML BulkLoad, and also the SQLXML technologies. In the next chapter, you'll see some additional
new technologies that were added to SQL Server 2005 to support XML and how some of the technol-
ogies you've learned about in this chapter have changed.

245

CHAPTER 8

SQL Server 2005 XML
and XQuery Support

00nvergence is happening all around us. Cell phones are integrating in PDA functionality and
cameras. PDAs are becoming cell phones. Convergence is also happening in the world of data.
Customers do not want to have to deal with multiple systems to manage their unstructured, semi-
structured, and structured data. This is why for years customers have been looking to relational
databases to manage all their data, not just their relational data.

There are a number of reasons why a relational database is the best place to work with all your
data, rather than other technologies like the file system. First, relational databases have powerful
storage technologies that are more granular than what the file system offers. You can do piecemeal
backups, you can break apart your data into filegroups—and now even into partitions—and you
have a transacted storage mechanism underneath your data. Second, databases have powerful
indexing as well as query processors so you can ask complex questions to the system about your
data. Finally, databases already store some of your most critical data that you probably want to
query across to compare with your other nonrelational data. For example, you may want to show all
sales for a particular customer, where your sales data is stored relationally and your customer data
is XML. If you use the file system and a relational database, you have to query across those technol-
ogies, and if you want to transactionally update across the two for any data changes, you have to
write a lot of code. To support these new scenarios that require XML and relational data working
seamlessly together, Microsoft added native XML support to SQL Server 2005.

With SQL Server 2005, you work with your nonrelational data in the same way you work with
your relational data. The methods might be a little bit different, but the tools and environment are the
same. You saw some of this in the last chapter with XPath, OPENXML, and SQLXML support in SQL
Server. Beyond these technologies, SQL Server 2005 natively supports storage, querying, and modifica-
tion of XML data. In this chapter, we will look at the following enhancements in SQL Server 2005:

* New XML datatype: The XML datatype brings native XML storage to SQL Server. Rather than
shredding your XML data into relational columns, you can now store your XML using the
native XML datatype.

e XQuery: XML Query Language (XQuery) is a forthcoming standard from the World Wide Web
Consortium (W3C) that allows you to query XML data. XQuery is to XML data what the SQL
language is to relational data. You can use XQuery inside T-SQL code, as you will see later in
this chapter.

e XML indexes: Just as you can index relational columns in SQL Server, you can now index XML
columns to improve performance. SQL Server supports both primary and secondary indexes
on XML columns.

247

248 CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

* Full-text search: Since XML is text-centric, you may want to combine full-text indexing with
the XML datatype to find XML information faster.

e Dynamic management views for XML: You may want to understand the usage of XML in your
server, such as which XML columns are indexed and what XML schemas you have loaded into
your server. Dynamic management views provide this type of information for your XML data.

* XML web services support: To support new scenarios for data access, such as retrieving SQL
Server information from non-Windows platforms, SQL Server 2005 adds native support for
XML web services. Using this capability, you can get or set your data using web services as
well as call stored procedures or user-defined functions.

Using the XML Datatype

SQL Server 2005 introduces a new XML datatype you can use to natively store XML data in SQL
Server 2005 databases. In SQL Server 2000, you could store XML, but it would have to be in a string-
based column, or you would have to shred the data into relational columns using OPENXML or
XMLBulkLoad, as you saw in the previous chapter. By adding a native XML type, SQL can support
richer operations against your XML data, such as constraints, cross-domain queries that combine
relational data and XQuery, and XML indexes.

Another reason for a native XML type is that XML is inherently different from relational data in
its structure. XML data is in a hierarchical structure that can be recursive, and XML supports a
different query language than relational systems.

There are many scenarios where using relational modeling is a better choice than XML and vice
versa. For example, if you have data that is very interrelated, such as customers, their orders, the
products in the orders, and the stores that sell those products, you could try and implement a solution
using XML. However, you will find that trying to model a solution in XML quickly gets challenging. For
example, how do you structure your hierarchy? Do you want a customer to be a top-level node and
then have orders for each customer appear underneath? Plus, how do you write a query that returns
back all customers with at least five orders, where each order is greater than $1,000, and the name of
the store where the customers purchased the products? Plus, in this sort of data, you will repeat data
throughout the hierarchy, such as product names, product prices, and so on, because of the hierar-
chical nature of XML. Plus, if you want to delete a customer but not the products or orders under that
customer, you can’t do so, because the orders and products are children under the customer element.
Using a relational model rather than XML, you can very quickly model your data and query the
information.

You may be thinking that in the previous scenario, you should just shred your XML data into the
relational database, as you saw in the previous chapter. However, shredding has its own issues, in
that you do not always get back what you put in, since you are not guaranteed the same XML when
you reconstitute the shredded data. Shredding adds another layer of complexity in terms of code
creation and maintenance. Also, any reasonably complex XML document will have to be shredding
across many tables, which will require extensive JOIN operations across these tables to reconstitute the
XML and a very complex annotated schema to shred into the tables using all the foreign key relations.

Now, there are scenarios where modeling your data using XML is very useful. First, XML can be
more flexible than relational models. So, if you need a free-form structure to store data, XML can be a
good choice. Also, XML is self-describing and easily portable across applications or even platforms. Plus,
if your data has sparse entries or needs rich multivalue functionality, XML makes a good choice as your
data format. Finally, if you truly have document-centric data such as Microsoft Office documents, you

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

will want to store this information as XML since Microsoft Office documents lack rigid structures. XML
provides the flexibility to store and query the information in the documents in a rich way.

Even if you choose XML as the format for your data, you will need to decide between using the
XML datatype, shredding your XML into relational columns, and storing the XML using the new
(n)varchar[max] or varbinary[max] type. If you care about the order of elements, and you want the
ability to use XML programming paradigms such as XPath and XQuery, you will want to use the XML
datatype to store your XML data. If your XML data is best represented using a relational model, you
can shred your data into relational columns using annotated schemas, just like you can in SQL
Server 2000. Finally, if you need to preserve the XML data exactly as it was created, including white
space and attribute ordering, then you will want to store the XML in a (n)varchar[max] or
varbinary[max] column. Some scenarios (such as legal documents) may require this.

Finally, SQL Server 2005 can support a hybrid model, whereby you may use the XML datatype
but promote certain properties—for example, key document properties such as author, last modifi-
cation time, or last save time—into relational columns, or you may shred your XML into relational
columns but keep the original copy in a nvarchar column. SQL Server 2005 provides the flexibility to
meet the needs of your application when working with XML data.

We want to make one thing very clear, though, since this will cause you issues in the long term
if you do not remind yourself of it regularly: if your data is quite structured, in that your XML does
not look hierarchical and is normalized, you should use the relational model. Do not use XML. XML
is targeted at semistructured or unstructured data. If you need to dynamically add schemas or data
on the fly that you never expected, XML is your best choice. Do not make the mistake of thinking
everything is a nail to bang with the XML hammer in SQL Server 2005.

Understanding How XML Is Stored by SQL Server

Before we discuss how to create a column of type XML, let’s first look at how SQL Server stores XML.
You may be wondering how, under the covers, SQL Server translates XML into something that is
performant when running queries against the XML data. One thing we can guarantee is that XML is
not stored as text! When you create a column using the new XML datatype, SQL Server takes the XML
and converts it into a binary XML format. One reason for this is that it’s faster to index and search
binary data than plain text data. A second reason is that you can compress binary data much more
easily than plain text data. SQL Server will tokenize the XML and strip out portions of the markup. If
you look at many XML documents, they have redundant text throughout for element or attribute
markup. With the XML datatype, this redundancy can be removed and your data can be compressed.

The XML datatype is implemented using the new varbinary(max) datatype under the covers to
store the binary XML. If the converted binary XML is small enough to fit in the row, SQL Server stores
the binary XML in-row. If the XML is too large, a 24-byte pointer is left in the row that points to the
binary XML. With the built-in compression, you should expect an average of 20 percent compres-
sion of the XML when storing it in the XML datatype. Of course, this will be dependent on the number
of tags you have in the document and the redundancy of your text. As you will see, using typed XML
is preferable to untyped, since you can get better performance and compression of the XML datatype
because SQL Server does not have to do type conversions and can parse data faster when the types
are specified.

If you ever want to see how much compression is achieved between storing your XML using
nvarchar and using the XML datatype, you can use the DATALENGTH function. The following example
compares using nvarchar and the XML datatype with the XML we use as our sample XML in this chapter:

249

250

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

select DATALENGTH(N'<?xml version="1.0" standalone="yes"?>
<people>
<person>
<name>
<givenName>Martin</givenName>
<familyName>Smith</familyName>
</name>

') as NVARLEN,
DATALENGTH(CAST(N'<?xml version="1.0" standalone="yes"?>
<people>
<person>
<name>
<givenName>Martin</givenName>
<familyName>Smith</familyName>
</name>

" AS XML)) as XMLLEN

Results:
NVARLEN: 1154
XMLLEN: 324

Asyou can see, we save about 3.5 times the space using the XML datatype. The reason for this is
that many tags in my XML repeat, and the XML datatype can strip these tags when it stores the XML
data in SQL Server. Depending on the redundancy in your XML, you should find similar savings in size.

Creating XML Columns

The following code creates a new table that contains a standard relational primary key column as
well as an XML column. This example uses untyped XML:

CREATE TABLE xmltbl (pk INT IDENTITY PRIMARY KEY, xmlCol XML not null)

You can have multiple XML columns in a single table. One thing you will notice is that there is
no XML schema associated with the XML column. SQL Server 2005 supports both untyped and typed
XML columns. Untyped columns have no schema associated with them, while typed columns have
XML schemas to which the XML documents inserted into the column must conform. Whenever
possible, you will want to associate XML schemas with your XML columns, so that SQL Server will
validate your XML data, make better optimizations when querying or modifying your data, perform
better type checking, and optimize the storage of your XML data, so we’ll focus on defining typed
XML columns here. As you saw earlier, SQL Server stores XML data in a proprietary binary format for
speed and compression. With an index, the server can find the information quicker, but there is a bit
of a performance hit when you insert your data.

Note SQL Server 2005 does not support Document Type Definitions (DTDs). DTDs define the document structure of
your XML documents. You can use external tools to convert DTDs to an XML Schema Definition (XSD). SQL Server
2005 does support XSD.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Defining Typed XML Columns

To create a typed XML column, you need to load your schema into SQL Server and then associate it
with the column in question. Once you’ve done this, only documents that adhere to your schema
can be inserted into the table. You can have one or many schemas associated with an XML column.

The following code creates a new table that uses schema on an XML datatype, hence a typed
XML column:

-- Create a new database for the samples
USE master
DROP DATABASE xmldb

IF NOT EXISTS (SELECT * FROM sys.databases WHERE name = 'xmldb")
CREATE DATABASE xmldb

GO

--Declare the variable for the XML

declare @x XML

-- Open the XSD Schema

SELECT @x = s

FROM OPENROWSET (

BULK 'C:\Customer.xsd',

SINGLE_BLOB) AS TEMP(s)

select @x

-- Make sure the schema does not exist already

IF EXISTS(select * from sys.xml schema_collections where name='Customer"')
DROP XML SCHEMA COLLECTION Customer

-- Create the schema in the schema collection for the database

CREATE XML SCHEMA COLLECTION Customer AS @x

GO

-- Create a table that uses our schema on an XML datatype

CREATE TABLE xmltbl2 (pk INT IDENTITY PRIMARY KEY,

xmlColWithSchema XML (CONTENT Customer))

GO

First, you need to load your XML schema into SQL Server. You can see the use of the OPENROWSET
to open the XML schema file stored in the file system. The code assigns the schema to the variable x.
Next, the code drops the schema if it exists. Here you will see the use of the new dynamic manage-
ment views for XML, which we cover later in this chapter. SQL Server 2005 includes views for querying
the schema collections, schema namespaces, and XML indexes.

If the schema collection does not exist, the code creates the schema collection in SQL Server.
Schema collections are scoped to the database where they are created. Schema collections cannot
span databases or instances, so you may have to create the same schema in multiple locations if you
use the same schema for multiple, different XML datatypes in different databases. You can have
more than one XML schema in your database. In addition, you can assign more than one XML schema
to a column that uses the XML datatype. One caveat with schemas is that once you create a schema,
you cannot modify or drop it until all references to it are removed from the system. For example, if
an XML column in your table references a schema, you will not be able to modify that schema. SQL
Server 2005 will return a message stating that the schema is in use and including the name of the
components using the schema.

251

252 CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Your schema is loaded into SQL Server’s metadata and can be viewed using the sys.xml_
schema_collections metadata view. If you want to retrieve the schema after you load it into the system,
you will need to use the xml_schema_namespace function. This function takes two parameters: the first is
the relational schema in which your XML schema was created, and the second is the name of the
schema you want to retrieve. The following code retrieves the Customer schema created in the
previous example:

--Return the schema
USE xmldb

g0

SELECT xml_schema_namespace(N'dbo',N'Customer")
go
Here is the returned XML schema from this call:

<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlns:t="urn:example/customer" targetNamespace="urn:example/customer"
elementFormDefault="qualified">
<xsd:element name="NewDataSet">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="t:doc" />
</xsd:choice>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="doc">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:sequence>
<xsd:element name="customer" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="0" />
<xsd:element name="order" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:sequence />
<xsd:attribute name="id" type="xsd:string" />
<xsd:attribute name="year" type="xsd:string" />
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="notes" minOccurs="0"
maxOccurs="unbounded">

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:sequence>
<xsd:element name="buys" type="xsd:string"
minOccurs="0" />
<xsd:element name="saleslead" type="xsd:string"
minOccurs="0" />
<xsd:element name="competitor" type="xsd:string"
minOccurs="0" />
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" />
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" />
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>

If you compare the returned XML schema and the original file included with the sample code,
you will find that they are different. SQL Server does not guarantee that it will return the same exact
XML schema document as you submitted, since it translates your schema into the server metadata
catalog. For example, comments, annotations, and white space are removed, and implicit types are
made explicit. If you need to keep a copy of your exact schema document, you should store it in a
string column, an xml column, or in the file system.

SQL Server defines certain schemas by default; these are common schemas that you may want
to use in your XML schemas in addition to your custom schema definitions. The following are the
reserved XML schemas with their prefixes. Please note that you cannot create schemas with the
same name as the existing predefined schemas in SQL Server.

xml = http://www.w3.0rg/XML/1998/namespace

xs = http://www.w3.0rg/2001/XMLSchema

xsi = http://www.w3.0rg/2001/XMLSchema-instance

fn = http://www.w3.0rg/2004/07/xpath-functions

sqltypes = http://schemas.microsoft.com/sqlserver/2004/sqltypes
xdt = http://www.w3.0rg/2004/07/xpath-datatypes

(no prefix) = urn:schemas-microsoft-com:xml-sql

(no prefix) = http://schemas.microsoft.com/sqlserver/2004/SOAP

One of the interesting schemas just listed is sqltypes. This schema allows you to map your XML
data to SQL types such as varchar. You cannot modify these built-in schemas, nor can you serialize
these schemas. You can use the import namespace directive to import these schemas into your own
XML schema, however, and then use the schema in your own custom schema declarations.

253

254

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

One thing to note about schemas is that you cannot modify an existing schema. You can add
new schemas, but then you will have to go through and modify your XML instances to use the new
schema. You can drop your schemas and create new schemas, but that will untype your XML, which
could be a long operation depending on the number of XML instances contained in your table.

Defining XML Columns Using a GUI

You've seen how to create columns using the XML datatype through code. However, the new SQL
Server Management Studio allows you to work with XML in many ways. Figure 8-1 shows creating a
new column of type XML. In the Properties area, you can specify the schema you want to associate
with the column, if any. Beyond that, all dialog boxes that take types, such as the new stored procedure
header dialog box, will take XML as a type since it is a native type in SQL Server 2005.

% Table - dbo xmitbinew - Microsoft SQL Server Management Studio HE E
Fle Edt Mew Table Designer Tools Window Help

NewOuey~ |5 Hl @ | % Ba @9 - -[=2 =@ B Beostered Senves (3] 12 B2 F 21| G

2 @
=2 % [Table - dboxmitblnew| _SQLQueryl 5q-T..50L2K0master | s x 1x
UEEE R ColumnName | DataType | Allow Nulls | bi] dbo.xmitbinew -

= [Microsoft SQL Servers _®
[[») thomrizsglZk05

int [N
[

4=

E (Identy)
= r (Name) xmitblnew
Description
Schema dbo fuser)
= Table Designer
-1x Identity Column | pk
Connect~ | H! m @ 'j
|l tempdb =] Data Sp| PRIMARY
[Detabase Snapshots D Colur

| AdventureWorks Text/Image Fileg PRIMARY
| AdventureWorksDW
| ReportServer
[J ReportServerTempDB
2 [xmi2003
= 3 Tables
3 System Tables
3 dbo XMLdoc
= & dboxmitbinew
= [Columns
? bk (PK.int, not nuil)

Column Properties |

gy:euple faml, nully BEn |
=]
[Constraints El (General) -
L3 Triggers (Name) people
[Indexes Allow Nulls Yes
[Statistics Datatype o
3 Views Default Value or Binding
3 Synonyms XML schema namespace ;I
3 Programmability [l Tahle - -
3 Service Broker XML schema namespace =
3 Storage _| nlity)
3 Security
=11 ¥MINR hd
T I | _’|_I 5 Propetics | @) Dynamic Help

Ready

Figure 8-1. Working with the XML datatype in Management Studio

Setting Permissions for Schema Creation

The code you walked through earlier for schema creation assumed that you already had permissions
to create XML schemas in the server. However, that may not be the case. Since an XML schema is like
other objects in a SQL Server database, you can set permissions on schema collections. One thing to
note is that users need both permissions on the relational schema and explicit permissions for XML
schema creation, since XML schema creation modifies the relational schema as well. The different
types of permissions you can grant and their effects are discussed next.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

To create an XML schema, you need to be granted the CREATE XML SCHEMA COLLECTION permission.
You need to grant this permission at the database level.

When you set the ALTER permission, users can modify the contents of an existing XML schema
collection using the ALTER XML SCHEMA COLLECTION statement. Remember that users need permissions on
the relational schema as well for this to work.

The CONTROL permission allows users to perform any operation on the XML schema collection.
This means that users can create, delete, or edit the schema information. To transfer ownership of
XML schemas from one user to another, you would set the TAKE OWNERSHIP permission.

To use constraints or for typing your XML datatype columns, you would add the REFERENCE
permission to users. The REFERENCE permission is also required when one XML schema collection
refers to another.

The VIEW DEFINITION permission allows users to query the contents of an XML schema collec-
tion either through XML_SCHEMA_NAMESPACE or through the XML dynamic management views. Users
need to also have ALTER, CONTROL, or REFERENCES permission.

To perform validation against schemas, the EXECUTE permission is required. Users also need this
permission when querying the XML stored in columns and variables that are typed.

The following code shows how to grant permissions for a user to alter the relational and XML
schema inside of a database:

-- Grant permissions on the relational schema in the database

GRANT ALTER ON SCHEMA::dbo TO Useri

go

-- Grant permission to create xml schema collections in the database
GRANT CREATE XML SCHEMA COLLECTION

TO User1

g0

Constraining XML Columns

You can use relational constraints on XML columns. There may be times when you will keep your
XML data untyped and use constraints instead—for example, if the constraint you want to use is not
easily expressed using XML schemas, such as executing an XPath statement. One example of this
may be a constraint that makes sure that the order amount is not discounted by more than a certain
amount, which is calculated dynamically, depending on the total cost of the order. Bigger order amounts
may get larger discounts, but cannot exceed a certain sliding scale of percentages for discounts.

Another reason to use constraints is if you need to constrain the column based on other columns’
values. For example, you may want to make sure that another value in another column is filled in
before allowing users to insert data into your XML column.

There are limitations to using XML columns, though. For instance, XML columns cannot be
primary keys or foreign keys, nor can they have unique constraints, but they can be included in a
clustered index or explicitly added to a nonclustered index by using the INCLUDE keyword when the
nonclustered index is created.

The following example creates a table with an XML column that has a constraint. Please note
that this code will work with builds before the June 2005 CTP of SQL Server 2005. If you are using a
later version or the release version, use the following code, which wraps the constraint in a UDF:

--Create a constraint
CREATE TABLE xmltbl3 (pk INT IDENTITY PRIMARY KEY,
xmlColWithConstraint XML CHECK(xmlColWithConstraint.exist('declare namespace
cust="urn:example/customer";
/cust:doc/cust:customer/cust:name') = 1

))
Go

255

256

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

The constraint checks to see if the XML being inserted has a customer name. You could also
create constraints against other columns, different datatypes, or information contained in the XML
itself. Once you create your table with the constraint, you can then try to insert data into the table. If
you insert data that does not meet the constraint, you'll get the following error message:

Msg 547, Level 16, State 0, Line 1

INSERT statement conflicted with CHECK constraint 'CK_ xmltbl3 xmlColW 0BC6C43E".
The conflict occurred in database 'xmldb',

table 'xmltbl3', column 'xmlColWithConstraint'.

The statement has been terminated.

Please note that in the final release of SQL Server, you have to wrap your XQuery in a function
and then call that function from your constraint. Therefore, you could take the original constraint
and rewrite it as follows:

create function CheckCustomerName(@x xml)
returns bit
as
begin

return @x.exist('declare namespace
cust="urn:example/customer";
/cust:doc/cust:customer/cust:name")
end;
Go
--Create a constraint
CREATE TABLE xmltbl3 (pk INT IDENTITY PRIMARY KEY,
xmlColWithConstraint XML CHECK(dbo.CheckCustomerName(xmlColWithConstraint) = 1))
Go

Examining the XML Datatype Limitations

There are a number of limitations you should be aware of with the XML datatype. First, the XML
datatype is limited to 2GB in size and 128 levels of hierarchy. Furthermore, the XML datatype cannot
be compared, sorted, grouped by, part of a view, part of a clustered or nonclustered index, part of a
distributed partitioned view, or part of an indexed view. Some of these limitations are due to the fact
that XML is not relational data or that the XML datatype has its own way to create indexes or sort its
data. Even given these limitations, you should be able to store the majority of your XML data in SQL
Server. If you have data that exceeds these limitations, especially the 2GB size limit, we’d love to
learn more about that dataset!

SQL Server stores your XML data by default using UTF-16. If you need to use a different encoding,
you will cast the results or perform a conversion in your application. For example, you could convert
your XML result to a different SQL type such as nvarchar. However, you cannot convert the XML
datatype to text or ntext. Your XML data will use the collation settings on your server for the resultset.

XML data employs the same locking mechanism of SQL Server. This means the XML datatype
supports row-level locking. This is true as well whether you are using T-SQL or XQuery. Therefore, if
the row gets locked, all XML instances in that row are locked as well.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Inserting Data into XML Columns

Now that you know how to create XML columns, we will show you how you get your XML data into
those columns. In the last chapter, we saw how to perform this task using SQLXMLBulkLoad. Beyond
SQLXML, there are three common ways that you will get your data into your XML column: SQL
Server Integration Services (SSIS), bulkloading with OPENROWSET and BCP, and writing queries or
applications. We’ll discuss each method in the sections that follow.

Using SSIS with XML Data

With SSIS, you can now easily take XML data and move it into SQL Server. SSIS supports pulling XML
from file systems or other locations, transforming that XML, and then putting the XML into an XML
datatype column in SQL Server 2005 or shredding the XML into relational columns. Figure 8-2 shows
a package that pulls data from an XML source and puts the XML into SQL Server.

=" Data Transformation Project? - Microsoft Development Environment [_[2]x]
Fle Edt Vew Project Buid Debug Fomat DTS Tools Window Help
-iE-EE o 4 Bn L4 - 1.1 | b Development - Defaut ~ | % R N N RS
H po % || Package dtex Desionr | s x E —ax
a Fow ltems - E =
R Fonier | 3 control Flow |4 DataFlow | {%7| EventHandlers | 3 Package Explorer = || EE
B 7| [lgd Solution ‘Data Transformation Project?
»r DataReader Source Data Flow Task: [Data Flow Task =l 5 |1, Data Transformation Project?)
. it File Source " 23 Data Sources
=]
| OLE DB Source b g g?; EOUIZCE Views
e B ackages
“, Raw File Source Lﬂ. (R B

=+ XML Source

i Aggregate

G4, Charscter Map

a3 Conditional Spit

3 CopyMap

4% Data Conversion

2 Data Mining Mode! Trai
G Data Mining Guery

o 24 Miscelaneous

] XML Source
= Adapter

%] Derived Column
T [l | »
T4 File Extractor -
23 File Inserter kit X

B ouing Data Flow Task Task -

3 Fuzzy Lookup BED |
3] Logged Lineage a FarceExecutionf None -
* § Lookup OLEDB D XTRY
= e Destination S0 ocalell T
o i) — IsolationLevel | Serializable
R LocalelD English (United
FE Mubicast Logginghods UssParent Settit
L;i. OLE DB Command MaximumErrorC 1
* Percentage Sampling Name Data How Ts
oy RuninOptimized| True hd
5 Pivot _——
L Edit Break
EE Ry sy L), connections
#F RowCount .
st Comporet L] THOMRIZSQL 2¢05.XMLDB —
THOMRIZSQL2KOS. XMLDE1 .

1 Slowly Changing Dimen... g The DTS object name
I sot =l
Ready

Figure 8-2. SSIS package that works with XML

Figure 8-3 shows mapping the data from the XML source to the XML column created earlier.
SSIS is probably the easiest way to move XML data between different data sources.

257

258

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

M OLEDB Destination Editor [ol =]

Configure the properties that enable the insertion of data via an OLE DB provider.

Connection

Mappings
Ermor Output
Name - Name [
name pk
o — e
customer_|d
doc_ld x|

Input Column Destination Column
ok
name xmiCol\withCeonstraint

Figure 8-3. Mapping XML using SSIS

The XML data source adapter allows you to select any XML data source, such as XML from a file.
You can also specify the XSD for the XML or have SSIS infer the XSD from the XML file. You can also
select your output columns for your XML just in case you do not want all columns to be imported
into the SSIS pipeline. In addition, you can use the XML data source adapter to shred your XML into
relational columns.

One other interesting component of SSIS with XML is the XML task. The XML task is part of the
SSIS control flow and allows you to take multiple XML documents and combine them or transform
the documents using XSL Transformations (XSLT). You can then take the results and put them back
into afile or into a SSIS variable that you can use through the rest of your SSIS flow. Table 8-1 outlines the
tasks you can perform with the XML task.

Table 8-1. SSIS Predefined XML Task Methods

Operation Description

Diff Compares two XML documents. The source is the base document, and you specify the XML
document to compare the source to. The difference is saved into a DiffGram document.
The result is not a new XML document, but just the differences. To apply the DiffGram, use
the Patch operation.

Merge Merges two XML documents together.

Patch Applies a DiffGram to an XML document. A new document is created with the changes applied.

Validate Validates the XML against an XML schema or DTD.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Table 8-1. SSIS Predefined XML Task Methods

259

Operation Description
XPath Allows you to perform XPath queries against the XML document.
XSLT Allows you to apply an XSLT transform to your XML document.

You may notice that XQuery is not an option in the XML task. Instead, if you want to perform an
XQuery, you will have to use the Execute SQL task feature and use the XQuery methods on a stored
XML datatype in your SQL Server database.

Bulkloading XML

Beyond using SSIS, you can bulkload XML data into SQL Server 2005 using the OPENROWSET keyword.
The following example takes the data from the file system and inserts it into SQL Server:

INSERT INTO xmltbl2 (xmlColWithSchema)
SELECT *
FROM OPENROWSET (
BULK 'C:\Customer1.xml',
SINGLE BLOB) AS TEMP
GO

SQL Server 2005 enhances the OPENROWSET with a bulk provider. This provider is similar to the
BULK INSERT statement, but you do not have to send the output to a table with the BULK provider. You
can specify a format file as you can with bcp. exe. In addition, you can specify inline information
about the file properties using the following options: CODEPAGE, DATAFILETYPE, FIELDTERMINATOR,
FIRSTROW, LASTROW, and ROWTERMINATOR. You can also specify table hints using the new bulk provider.

Writing a Custom Query or Application

The final way to get your data into your XML columns is to write applications that insert the data. For
example, your application could be a simple T-SQL script you run in Management Studio or it could
be a full-blown application that inserts XML data into SQL Server using ADO.NET or ADO. No matter
which method you use, whether it’s using Management Studio directly or writing an application,
you will find yourself inserting XML using the INSERT INTO statement. The following code snippet
demonstrates inserting XML data inline using T-SQL:

--Insert XML directly using inline XML
INSERT INTO xmltb12(xmlColWithSchema) VALUES(
'<doc id="d1" xmlns="urn:example/customer">
<customer id="c7">
<name>Tom</name>
<order id="1" year="2002"></order>
<order id="2" year="2003"></order>
<notes>
<buys>gizmos</buys>
<saleslead>Bob</saleslead>
<competitor>Acme</competitor>
</notes>
</customer>
</doc>
")
Go

260 CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

As you can see, you can pass inline XML directly using an INSERT statement. In your applica-
tions, you will either use dynamic SQL to add rows with XML data or create stored procedures.

PRESERVING WHITE SPACE

There may be times when you want to preserve white space in your XML so that the XML data you put in is the same
as you get out, with all the white space included. SQL Server by default will discard insignificant white space, such
as spaces between tags for elements. If you want to preserve this white space, you can use the CONVERT function
and pass the optional style parameter to be 1.

Querying XML Data

Once you get your XML data into SQL Server, you may want to get it back out. The XML datatype
provides four methods for you to do this: query(), value(), exist(), and nodes(). The availability of
methods to use on the XML datatype is a new capability in SQL Server 2005.

Note There is one more method on the XML datatype called modify (), which we discuss later in the section
“Modifying XML Data.”

These methods are based on the use of the XQuery language, so we’ll start off with a quick
XQuery tutorial, and then we’ll investigate how to use these methods to query XML data.

XQuery 101

If you currently use XPath or XSLT, XQuery should not be entirely unfamiliar to you. You're used to
iterating over hierarchies of data and the semantics of the XPath language. However, if you do only
relational work with T-SQL, XQuery may look like a strange new beast. The reason for this is that
T-SQL works on rows and columns, not hierarchies of information. XML data is structured differ-
ently from relational data, and it will take a bit of time for relational developers to get used to XQuery
or even XPath syntax. That should not stop you from starting to learn these different languages,
though, since more and more information will be stored in XML over the coming years.

SQL Server 2000 supported XML shredding and XPath 1.0 expressions, and you saw some exam-
ples of these technologies in the previous chapter. However, XPath gets you only so far in working
with your XML data. It lacks the ability to perform more complex operations on your XML data, as it
does not support recursive XML schemas and projection and transformation syntax. XQuery is the
big brother of XPath, in that the simplest form of an XQuery is an XPath expression.

Before we dive into XQuery, though, let’s take a look at an XPath statement just in case you've
never used XPath before or didn’t read the previous chapter. We’ll work with the following sample
XML document. Please note that you can follow along with the samples in this chapter by opening
the file XMLSample.sql included with the sample downloads for this book, which you can find in the
Source Code area of the Apress website (http://www.apress.com).

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<people>
<person>
<name>
<givenName>Martin</givenName>
<familyName>Smith</familyName>
</name>
<age>33</age>
<height>short</height>
</person>
<person>
<name>
<givenName>Stacy</givenName>
<familyName>Eckstein</familyName>
</name>
<age>40</age>
<height>short</height>
</person>
<person>
<name>
<givenName>Tom</givenName>
<familyName>Rizzo</familyName>
</name>
<age>30</age>
<height>medium</height>
</person>
</people>

To retrieve all the names for all the people, you execute the following XPath statement:
/people//name

To move this XPath query to an XQuery, you put a curly brace around the query, which tells the
XQuery processor that the query is an XQuery expression and not a string literal.

Note It is beyond the scope of this book to provide an in-depth tutorial on XPath; please refer to the previous
chapter for an introduction to XPath. If you need more information, the book Beginning XSLT by Jeni Tennison
(Apress, 2004) provides a good introduction to XPath, or you could check out the articles on sites such as http://
www. xml.org.

FLWOR

While you can use XPath expressions in XQuery, the real power of XQuery is through FLWOR.
FLWOR stands for For-Let-Where-Order By-Return. FLWOR is similar to T-SQL’s SELECT, FROM, and
WHERE statements, in that you can conditionally return back information based on criteria that you
set. However, instead of returning relational data like T-SQL, XQuery returns XML data. Let’s look in
more detail at each of the parts of FLWOR.

261

262

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

The For expression lets you specify the XML that you want to iterate over. The way you specify
your XML is by using an XPath expression. Normally, you surround your entire XQuery statement
with any beginning or ending XML tags that you want. This will depend on which nodes you iterate
in your document and the desired structure of the returned XML document. You can think of this
expression as being similar to combining the SELECT and FROM T-SQL statements.

The Let expression is currently not supported in SQL Server 2005. This expression allows you to
set a variable to an expression, but does not iterate over the values.

The Where expression is similar to the T-SQL WHERE clause. This expression evaluates to a
Boolean, and any value that returns True passes through and any value that returns False is rejected.

The Order By expression is similar to the SQL ORDER BY clause. This expression allows you to sort
your resultsets using the sort order you specify.

The Return expression specifies the content that should be returned.

The following is a more complex example of an XQuery statement. The example iterates over
the XML contained in a table and returns only the given name of people that have an age element in the
XML document.

SELECT people.query(
'for $p in //people
where $p//age
return
<person>
<name>{$p//givenName}</name>
</person>

)
FROM xmltblnew

The following XQuery counts the number of person elements in an XML document. It also
shows how to use the query method of the XML datatype with XQuery.

SELECT people.query(
"count(//person)

)
FROM XMLtblnew
go

Beyond FLWOR, XQuery supports functions such as avg, min, max, ceiling, floor, and round.
The following example shows how to calculate the rounded average age of people from an XML
document:

SELECT people.query(
"round(avg(//age))
")
FROM XMLtblnew
go

Finally, XQuery has string functions such as substring, string-length, and contains, and
datetime functions such as dateTime-equal, dateTime-less-than, dateTime-greater-than, and indi-
vidual date and time functions. The example that follows shows some of these functions in use. First,
you get all the nodes in the XML document under the people node that have an age. Then, you return
the givenName element for each person. If you wanted to only return the data for this element, you
could use the data function. Instead, you want to return the full element for the givenName. Next, if
there is a match on a particular name, such as Martin, you want to return True; otherwise, you want
to return False. Finally, the code figures out the maximum age of all people by using the max function.

CHAPTER 8

SELECT people.query(
"for $c in (/people)
where $c//age
return
<customers>
<name>
{$c//givenName}
</name>
<match>{contains($c,"Martin")}</match>
<maxage>{max($c//age)}</maxage>
</customers>
")
FROM xmltblnew

SQL SERVER 2005 XML AND XQUERY SUPPORT

Go

Table 8-2 lists the functions you can use against the XML datatype when using XQuery.

Table 8-2. XML Datatype XQuery Functions

Category Function Description

Numeric ceiling Returns the smallest integer of the values passed to the
function that is greater than the value of the argument.

floor Returns the largest integer of the values passed to the
function that is not greater than the value of the argument.
round Rounds to the nearest integer the values passed to
the function.

String concat Concatenates the strings passed to the function, such as
concat($p//givenName[1]/text()[1],$p//FfamilyName[1]/
text()[1]).

contains Returns a true value if the first argument, the string to test,
contains the second argument, the string to search for.
Otherwise, it returns false.

substring Returns a portion of the first argument, the source string,
starting at the location specified in the second argument
and optionally for the length in the third argument, such
as substring($p//givenName[1]/text()[1], 1, 2).

string-length Returns back the length of string passed as an argument.

Boolean not Flips the value of the Boolean from true to false and false
to true.

Node number Returns a number for the value of the node passed as an
argument, such as number ($p//age[1]/text()[1]).

Context last Returns an integer that is the count of the last item in the
sequence.

position Returns an integer that is the current position in the
sequence. This is useful if you want to print the ordinal
value of your sequence for identification.

Sequences empty Returns true if the argument passed, which is a sequence,

is empty.

263

264 CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Table 8-2. XML Datatype XQuery Functions (Continued)

Category Function Description

distinct-values Removes duplicates from your sequence. You must pass a
sequence of atomic values to this function, such as
distinct-values(data(//people/person/age)).

Aggregate avg Returns the average of a sequence of numbers.
count Counts the number of items in the sequence and returns
an integer.
min Returns the minimum value from a sequence of numbers.
max Returns the maximum value from a sequence of numbers.
sum Returns the sum of a sequence of numbers.
Constructor various Allows you to create an XSD type from another type or

literal. Depending on the desired type, the constructor
function will be different. For example, to construct a
string, you would use xs:string("Tom") or a datetime
using xs:dateTime("2005-10-01T00:00:00Z").

Data access data Returns the typed value of the node. For example,
data(/people/person/name/familyName) returns the
family name. Data is implicit and does not need to be
specified, but doing so can help readability of your XQuery.

string Returns the value of the argument as a string. For example,
to return just a string of the document node, you would
specify string(/).

XQuery in More Depth

If you break apart the XQuery statements shown earlier, XQuery contains a prolog and a body. The

prolog contains declarations and definitions that set up the necessary environment to run the body.
This setup could include declaring namespaces in the prolog. The body consists of a series of XQuery
expressions that will get you your desired result.

To declare a namespace in the prolog, you have two choices. You can either put in an inline
declaration in the prolog or use the WITH XMLNAMESPACES keyword. To improve readability of your
queries, you will want to use the WITH XMLNAMESPACES approach, since declaring namespaces inline
can make a query very hard to understand and read. For example, take a look at the following two
queries. You can decide for yourself which one is easier to understand, but most likely you will agree
that the second one is the easier of the two.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

SELECT people.query(

'declare namespace peopleschema="urn:example/people";
round(avg(//peopleschema:age))

")
FROM XMLtblnew

g0

WITH XMLNAMESPACES('urn:example/people’ AS peopleschema)
SELECT people.query(

"round(avg(//peopleschema:age))

")
FROM XMLtblnew

go

As part of the prolog, you can also declare a default namespace. You can then omit element
namespace prefixes on all your elements in that namespace. This is useful if you only have
one namespace for all elements in your XML document. Either you would use the declare default
element namespace syntax if you declared your namespace in the prolog or you would use the WITH
XMLNAMESPACES (DEFAULT 'yournamespace') syntax if you declared outside the prolog.

One thing to note is that you can use the WITH XMLNAMESPACES syntax with other operations
besides just the XQuery operations. You can also use this syntax with FOR XML if you want to add a
namespace to your FOR XML rendered XML documents.

Once you start working with the body of your XQuery, you will start using the literals and oper-
ators we discussed previously, such as sum, min, max, for, order by, path expressions, sequence
expressions, and so on. One thing to always remember is that comparison operators are XML encoded,
which means less than (<) is 81t;, greater than (>) is >, and so forth. Another thing to note is that
you can use the built-in types such as xs:string and xs :date in your XQueries. Casting is supported
using the cast as operator for explicit casting, but XQuery also supports implicit casting for types it
can coerce to be other horizontal types. Numeric types are only supported when doing implicit casting.

XQuery Processing in SQL Server

Because of its modular architecture, SQL Server can leverage the existing query execution and opti-
mization technologies to process XQuery. Rather than building a separate query execution pipeline
or optimization infrastructure, SQL Server leverages the same infrastructure for XQuery that it does
for T-SQL. Because of this implementation, the level of integration between XQuery and T-SQL is
superior. This is what allows you to do rich cross-domain queries between the two languages. For
example, when SQL Server encounters an XQuery statement, the XQuery parser is called. The results
of the XQuery parser, which is a query tree, is grafted onto any existing query to generate the entire
query tree, which may contain both relational and XQuery queries. In effect, the T-SQL query and
the XQuery are combined into a single query. The entire query is then passed to the optimizer, and
a ShowPlan is created that includes the XQuery operations, as shown in Figure 8-4.

265

266 CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

& 5QLQuery1_sql-THOMRIZSQL2KD5 xmi 2003" - Microsoft SQL Server Management Studio ME &
Fle Edt View GQuery Toos Window Help

NewQuey~ | IS H @ |4 R2@R|9-6.|=2 @ | [Registered Servers [[P 3 3] @,
18 33 3 L1, | ni2003 -| 1 Beote v B 33 @ | 27 4y | B[N)

X SQLGuery 53T, SQL2KIE master) SQLQuery1.sql-. uLZKu5_mlzuu3'| s x %
UEERER select penple q.lery. —{| ModeEstimated =
=1 15 Microset SO Servers o 8=

B thomizsql205 B e
B Argument YQUERY DATA[E we|
o el Defned Values _[Esorl 016 EpriG15
! D
from XMLtblnew E
o
sax| © - =
Conrnect~ M m @ T 4 | _’l—l E:
1 tempdb =l Query 1: Query cost (relative tc the batch): 100% E
3@ Database Snapshots R . E:
; select people.query('for $p in (/people) where Sp/..
[l AdvertureWorks E
3] AdvertureWerksDW] =3 iz = T
|3l ReportServer - — Compute Soalar —— Sbream Aggregate —— Filver < [
|JJ ReportServerTempDB lexcent Cost: 0 pereent (Aggregate) Cost: 0 pereent Memory Fractio
B [amiz002 Caze: 0 percens Ouputlist [Expri018], [ExpriD2
E 3 Tables Fhy ali UDX
[System Tables
1 dbo.XMLdoc
= [dbomitblnew
2 Columns
§ pk (PK.int, not rul)
= people faml, null) uDx
[Keys] : .;f‘ DX,
[Constrairts Loops iS5 Compute Scalar ——— Clusered Iy) 3
[Tiiggers i Joim) Cost: 0 percent Come: 16 3 :"V,’“"‘;‘ Operation ﬂgi
£ Indexes f=====® Estimated Row Size 1KB
[Statistics E JO Cost 0
3 Views 7 Q E: CPU Cost 0.0000023
[Symoryms __j L8 E Number of &
[3 Programmability It - Operator Cost 0.0000207 (0%)
[3 Servios Broker Sem e fe==s fFE ubiree Cost 0.0133012
3 Storage EiE Nmior i Fimer 23040001 information
. ation bei
I;iiﬂ‘s:;unw || i Messages 35 Ececution plan Argument e
oLl XQUERY DATA[Expr1014], [Desc:5LInid]. [Desc:5]. 7 el

- b [[THOMRIZSALIKIS 082) [THOMRIZZK0S00M\Adm XEFY DEtaxeridlel eoc ML [Deae o= |) Dynamic Help

Ready (ivaiusbin], [ExpriDi], [sae 4l Ipkt). (spe-d] il

Figure 8-4. Execution ShowPlan with an XQuery

Basic XML Query Methods

Let’s now examine the four methods for querying XML datatypes:

¢ query(): Returns the XML that matches your query
¢ value(): Returns a scalar value from your XML
¢ exist(): Checks for the existence of the specified XML in your XML datatype

¢ nodes(): Returns a rowset representation of your XML

query()

The query () method takes an XQuery statement and returns the XML that matches the query. The
XML that is returned is untyped XML and can be further parsed if needed.

To see how this works, create a new table, xmltblnew, to store the XML. You'll use this table to
learn how to query and modify XML data.

-- Create a new table
CREATE TABLE xmltblnew (pk INT IDENTITY PRIMARY KEY, people XML)
GO

--Insert data into the new table
INSERT INTO xmltblnew (people)
SELECT *

FROM OPENROWSET (

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

BULK 'C:\peopleXML.xml',
SINGLE BLOB) AS TEMP
GO

The following example uses the query() method to look for all people who have an age, and
then returns XML that identifies each person by name:

SELECT people.query(
"for $p in //people
where $p//age
return
<person>
<name>{$p//givenName}</name>
</person>

)
FROM xmltblnew

Asyoulook at the preceding XQuery, you will notice that it maps somewhat to T-SQL in the
following ways:

e SELECT is equivalent to RETURN.

* FROMis equivalent to FOR.

* WHERE is equivalent to WHERE.

* ORDER BY is equivalent to ORDER BY.

The interesting part is that the semantics of the query are different. Rather than using relational
types of operations, you use hierarchical path operations. The XQuery—and for that matter, XPath
syntax—takes some getting used to. If you haven’t thought in a hierarchical, path-based way before,
you should start out with simple queries to learn the language. Once you progress from the simple
queries, you will see that XQuery can be almost as complex in terms of functionality as T-SQL.

value()

The value() method returns a scalar value back from the XML instance. This method takes two argu-
ments, with the first being the XQuery you want to use to get the value, and the second being the
T-SQL type that you want that value converted to. You cannot convert to a timestamp or the NTEXT,
TEXT, or IMAGE types. Also, you can’t convert to an XML or sql_variant datatype.

You will want to try and match types between XML and SQL. For example, a string value in XML
can be converted to any T-SQL string type. Numbers can be converted to numeric types. In addition,
string values that can be coerced into numbers can be converted into numeric or money types. Date,
time, or string values that can be valid datetime values can be converted into datetime types.

The following code snippet gets the age of the second person in the XML document and returns
it as an integer:

SELECT people.value('/people[1]/person[2]/age[1][text()]", 'integer')
as age FROM XMLtblnew
Go
As a quick aside, try running the following code and note the error you get:

SELECT people.value('/people[1]/person[2]/age[1][text()]", 'integer')
as age FROM XMLtblnew
Go

267

268

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

You will get an archaic error telling you that the value function requires a singleton or empty sequence
and not a operand of type xdt :untypedAtomic. You may be looking at this and thinking, “But I return
the text of the first age element, which is a singleton!” Well, when SQL Server goes through its evalu-
ation, it looks at the entire expression to see if any part can return more than a single node. In the
code that returns an error, the people path in the expression does not have a position predicate, so
it could possibly return more than a single node. The easiest way to fix this common error is to make
sure you use position predicates in your expressions.

exist()

The exist() method is used to check for the existence of an XML datatype. This method returns 1 if
the XQuery expression returns a non-null result. Otherwise, this method will return 0 if the condi-
tion is not met or if the resultset is null. The following example returns the columns in the SELECT
statement where the givenName of the person stored in the XML document is equal to Tom.

SELECT pk, people FROM xmltblnew
WHERE people.exist('/people/person/name/givenName[.="Tom"]"') = 1

nodes()

The nodes () method returns a rowset for each row that is selected by the query. You can then work
on that rowset using the built-in functionality of SQL Server. The following example returns the XML
inrelational form by breaking the XML into individual rows per person using CROSS APPLY. You could
also use OUTER APPLY if you like. The nodes () method is similar to OPENXML, except that OPENXML
requires you to prepare the document, and it uses the DOM to parse the document, which can slow
down performance. The XML datatype is already parsed, so you could see better performance using
nodes() than OPENXML.

SELECT T2.Person.query('.")
FROM xmltblnew
CROSS APPLY people.nodes('/people/person') as T2(Person)

Results:

Row 1: <person><name><givenName>Martin</givenName>
<familyName>Smith</familyName>
</name><age>33</age><height>short</height></person>

Row 2: <person><name><givenName>Stacy</givenName>
<familyName>Eckstein</familyName></name><age>40</age>
<height>short</height></person>

Row 3: <person><name><givenName>Tom</givenName>
<familyName>Rizzo</familyName></name>
<age>30</age><height>medium</height></person>

Cross-Domain Queries

There may be times when you want to combine your relational and XML data. You've already seen
some examples in the previous section of cross-domain queries, whereby you combine relational
queries with XML queries or vice versa.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

SQL Server provides functionality for you to use your relational data in your XQuery through the
sql:variable() and sgl:column() methods. The sql:variable() method allows you to apply a SQL
variable in your XQuery. The sql:column() method allows you to use a SQL column in your XQuery.

The following example uses the sql:column() method to retrieve values from relational columns in
the table and sql:variable to retrieve a T-SQL variable value, and it uses both of these to generate
a resultset.

USE xmldb
GO

CREATE TABLE xmlTable (id int IDENTITY PRIMARY KEY,
CustomerID char(5s),
Name varchar(50),
Address varchar(100),
xmlCustomer XML);
GO
INSERT INTO xmlTable
VALUES ('AP', 'Apress LP', 'Berkeley CA', '<Customer />');

GO

DECLARE @numemployees int;

SET @numemployees=500;

SELECT id, xmlCustomer.query("

declare namespace pd="urn:example/customer"”;

<Customer
CustomerID= "{ sql:column("T.CustomerID") }"
CustomerName= "{ sql:column("T.Name") }"
CustomerAddress= "{ sql:column("T.Address") }"
NumEmployees= "{ sql:variable("@numemployees") }">
</Customer>
') as Result FROM xmlTable T;

GO

Modifying XML Data

Since XQuery does not natively support modifying data yet, SQL Server 2005 includes an extension
method to XQuery, the modify() method. The modify() method allows you to modify parts of your
XML data. You can add or delete subtrees, replace values, or perform similar XML modifications.
The modify() method includes DML commands such as insert, delete, and replace value of.
SQL Server 2005 supports piecemeal XML modification. This means that when you modify your
XML document, such as adding elements, changing attributes, or deleting elements, SQL Server
performs just the necessary operations on the XML rather than replacing the entire XML document.
With the insert command, you can insert XML as the first or last element. You can also specify
whether to insert the XML before, after, or as a direct descendant of an existing XML element. You
can also insert attributes using this method. Without having to modify the entire document, you can
use insert to easily put XML into existing documents.
With the delete command, you can delete XML elements or attributes from your XML document.
The replace value of command allows you to replace a node with a new value that you specify.
The node you select must be a single node, not multiple nodes.

269

270

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

The following example inserts and changes the favoritecolor element for person number 3 in
the XML document:

--First insert a new value

UPDATE xmltblnew SET people.modify(

"insert <favoriteColory>Red</favoriteColor>
as last into (/people/person[3])[1]")

where pk=1

go

--Select the data to show the change
SELECT * FROM xmltblnew

go

--Modify the value

UPDATE xmltblnew SET people.modify(

'replace value of (/people/person[3]/favoriteColor[1]/text())[1]
with "Blue"")

where pk=1

go

--Select the data to show the change
SELECT * FROM xmltblnew

g0

--Now delete the value

UPDATE xmltblnew SET people.modify(
"delete /people/person[3]/favoriteColor")
where pk=1

go

--Select the data to show the change
SELECT * FROM xmltblnew
Go

Limitations of XML Modification

You have some limitations when you modify your XML. For example, for typed or untyped XML, you
cannot insert or modify the attributes xmlns, xmlns:*, and xml :base. For typed XML only, the attributes
are xsi:nil and xsi:type. For typed or untyped XML, you cannot insert the attribute xml:base. For
typed XML, deleting and modifying the xsi:nil attribute will fail, as will modifying the value of the
xs :type attribute. For untyped XML, you can modify or delete these attributes.

Indexing XML for Performance

There may be times when you want to increase query performance speed at the cost of data inser-
tion speed by creating an index on your XML columns. SQL Server supports both primary and
secondary indexes on XML columns. In addition, your XML column can be typed or untyped. SQL
Server 2005 supports indexes on both. SQL Server will index all the tags, values, and paths in reverse
order, as path expression searches are faster when the suffix is known.

SQL Server stores the XML datatype in a BLOB field. This field can be up to 2GB in size, and
parsing this field at runtime to perform queries without an index can be very time consuming. For

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

this reason, you may want to create an index to speed performance. One thing to note is that the
base table must have a clustered index to create an XML index on an XML column. You cannot
modify the primary key of the table until you drop all XML indexes on the table. Once you create the
XML index, a B+ tree structure is created on all tags, values, and paths on your XML data.

If you do a lot of queries but few inserts on your table with the XML column, you should
consider indexing the column with one or more indexes. Also, if your XML data is large but you're
often returning only a subset of the data, you will want to create an index. The index will be used
when doing XQuery methods, but if you retrieve the entire column using relational methods, such as
SELECT xmlCOL from Table, the index will not be used.

Creating the primary index is very straightforward. You can have only one primary XML index
per XML column. You can, however, have multiple secondary indexes on an XML column. The
following code creates a primary XML index on an XML column called people:

CREATE PRIMARY XML INDEX idx_xmlCol on xmltblnew(people)

Understanding How XML Indexing Works

Let’s take a look under the covers of SQL Server to understand how XML indexing works, since the
implementation will affect your system’s performance depending on what you do with the XML data
after it is indexed. Once you create a primary XML index, SQL Server creates a B+ tree that contains
a shredded version of your XML. The XML index does have some redundancy, so you may see your
XML index grow on average to about twice the size of the XML data, which means you should plan
your disk space usage accordingly.

SQL Server uses ORDPATH, which is a system for labeling nodes in an XML tree that keeps
structural fidelity. The easiest way to understand what the underlying index looks like is to consider
an example. If we take part of the people XML and look at the structure for the index, Table 8-3 repre-
sents the index table.

Table 8-3. Index Table for Sample XML

OrdPath Tag Node_Type Value Path_ID

1 1 (people) 1 (Element) Null #1

1.1 2 (person) 1 (Element) Null #2#1
1.1.1 3 (name) 1 (Element) Null #3#2#1
1.1.1.1 4 (givenName) 1 (Element) Tom HAH#IH2#]
1.1.1.5 5 (familyName) 1 (Element) Rizzo #5#3#2#1
1.1.3 6 (age) 1 (Element) 32 #6#3#2#1
1.1.5 7 (height) 1 (Element) medium #T#3#2#1

Of course, this XML is element based, so the index is not as interesting if you also have attributes
and free text in your XML. The most important thing to note is not the values of the index, but the
structure of the index. If you continued to draw the table out for the XML, you would find that the
path ID overlaps with all XML elements that use the same path, such as all the givenNames for people
use the path ID of #4#3#2#1, regardless of where they fall in the XML hierarchy in terms of document
order. Also, the node type shown in the table is for illustration. SQL Server will map the value to an
integer value and only use the integer value, not the string value shown in the table.

27

272

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

You will notice that only odd numbers are used for the ORDPATH. The reason for this is so that
in the future, when insertions happen, you do not have to re-create the numbering scheme, but
instead can use even numbers. This is not implemented in SQL Server 2005, but it is reserved for
future use.

When you have an XML index, the query optimizer decides what will give the best performance
when querying your XML. The optimizer can use a top-down approach, where it processes the base
table rows before the XML index. Otherwise, it can use a bottom-up approach, where the optimizer
does an XML index lookup and then back-joins with the base table. In the most common cases
where you are retrieving the entire XML document or using XPath expressions that retrieve most of
the data, the optimizer will just shred the XML BLOB at runtime rather than using the index.

One thing to realize is that if you insert or delete nodes that are earlier in the sibling order, you
will incur significant cost if you use an XML index, since new rows will have to be inserted or deleted
from the primary XML index. Remember that the index costs you time at inserts and deletes, but at
query time it can significantly improve performance depending on the types of queries.

Examining Secondary XML Indexes

Once you create the primary XML index, you may want to create a secondary XML index to speed up
your applications. There are three types of secondary XML indexes: PATH, PROPERTY, and VALUE. The

type of index you will select depends on the types of queries your application uses the most. If you

find that you are using one type of XQuery more often than another, and there is a secondary XML

index that covers your query type, consider using a secondary XML index. You will not normally gain
as much performance as creating a primary XML index on an unindexed table as you will adding a

secondary index to a table that already has a primary index. You can have multiple secondary XML
indexes on a single column.

If your queries are mostly path expressions to retrieve your data, you will want to use a PATH
index. The most common operators that take path expressions are the query() method or the
exist() method. Ifyou find yourself using the query() or exist() method regularly in your code, you
will want to definitely take a look at the PATH index. Plus, if your XML documents are large and you
use path expressions a lot, the primary XML index will walk sequentially through the XML, which will
provide slower performance than creating a PATH secondary index.

If you retrieve property values from your XML, you will want to use the PROPERTY index. For
example, if you retrieve values in your XML such as the age or name as shown in the last example,
you will want to use the PROPERTY index. Also, if you find that in your XQueries that you use the
value() method regularly, you will want to use the PROPERTY index.

Finally, if you have a jagged hierarchy or you have imprecise queries using the descendant-or-
self axis (//), you will want to use the VALUE index. This index will speed up value-based scans of your
data. For example, you may use a wildcard search that will look at every element with an attribute of
a certain value. A VALUE index will speed up this type of search.

Listings 8-1 through 8-3 show the creation of an index of each type and a query that will benefit
from creating the particular index type.

Listing 8-1. Creating a PATH Secondary Index

CREATE XML INDEX idx_xmlCol PATH on xmltblnew(people)
USING XML INDEX idx xmlCol FOR PATH
-- Query that would use this index
SELECT people FROM xmltblnew
WHERE (people.exist('/people/person/name/givenName[.="Tom"]"') = 1)

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Listing 8-2. Creating a PROPERTY Secondary Index

CREATE XML INDEX idx_xmlCol PROPERTY on xmltblnew(people)
USING XML INDEX idx_xmlCol FOR PROPERTY
-- Query that would use this index
SELECT people.value('(/people/person/age)[1]', 'int') FROM xmltblnew

Listing 8-3. Creating a VALUE Secondary Index

CREATE XML INDEX idx_xmlCol VALUE on xmltblnew(people)
USING XML INDEX idx_xmlCol FOR VALUE
-- Query that would use this index
SELECT people FROM xmltblnew WHERE people.exist('//age') = 1

Full-Text Search and the XML Datatype

Beyond indexing the XML column, you can also full-text index the XML column using the built-in
XML IFilter in SQL Server 2005. You can combine the XML column index with the full-text index.

There are a couple of things to understand first about full-text indexing of XML, though. Markup
is not indexed, only content. Therefore, the elements are the boundaries of the full-text indexing.
Furthermore, attributes are not indexed, since they are considered part of the markup. If you mostly
store your values in attributes, you will want to use an XML index, not full-text search. Full-text
search also returns back the full XML document, not just the section where the data occurred. If you
want to retrieve a particular element that contained the search phrase, you would have to further
query the returned XML document with XQuery. Finally, the XQuery contains method and full-text
search contains method are different. Full-text search uses token matching and stemming, while
XQuery is a substring match.

Other than these differences, the standard full-text restrictions are in effect, such as having a
unique key column on the table and executing the correct DDL to create the index. The DDL that
follows creates a full-text index on a table containing an XML column. A primary key index called
pkft is created in the following code:

CREATE FULLTEXT CATALOG ft AS DEFAULT
CREATE FULLTEXT INDEX on xmltblnew(people) KEY INDEX pkft

You can combine an XML column index, both primary and secondary, with a full-text index.
Whether you do this depends on what your data in the tables looks like, what your application work-
load does, and the overhead that you want to place on the server for creating and maintaining your
index. If you find that you are querying data in your XML column regularly, and a lot of the XML
information is not stored as attributes, then creating both a column and full-text index may speed up
your query response time. First, you will want to filter based on the full-text index, and then you can
use XQuery on the returned data to filter the XML data even more.

For example, the following code uses a full-text search with the CONTAINS keyword and an
XQuery that also uses the CONTAINS keyword. Remember that the full-text search CONTAINS keyword
is different from the XQuery one. The full-text search is a token match search that uses stemming,
whereas the XQuery one is a substring match. Therefore, if you search for “swim” using full-text
search, you will also find values for “swimming” and “swam.” However, with XQuery, you will find
only “swimming” and “swim,” since XQuery performs a substring match.

SELECT * FROM xmltblnew
WHERE ~ CONTAINS(people, 'Tom")
AND people.exist('//familyName/text()[contains(.,"Rizzo")]") =1

273

274

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Dynamic Management Views and XML

With SQL Server 2005, there are new views that you can use to peek into the server. These new views
are covered in detail in Chapter 2. The XML datatype is represented in these views. For example, you
can retrieve all the XML schemas registered in your database instance using the
sys.xml_schema_collections view. You can retrieve elements and attributes that are registered by
your schemas using the sys.xml_schema_elements and sys.xml _schema attributes views.

The following code sample uses the dynamic management views to look at all the namespaces
in a database instance, all the elements and attributes for a particular namespace, and also any
indices on XML columns:

SELECT * FROM sys.xml schema_collections
SELECT * FROM sys.xml_schema_elements
SELECT * FROM sys.xml schema attributes
SELECT * FROM sys.xml_schema_namespaces
SELECT * FROM sys.xml indexes

Interesting scenarios for using these views occur when you want to figure out what namespaces
exist in your server, what indexes you've created for your different XML types, and what the actual
XML looks like across your server using the elements and attributes views. The following example
uses the dynamic management views to enumerate all namespaces in your XML schema collections
on the server. The code joins together the schema collection and schema namespace views so that
you can see the name of your schema namespace. Without this join, if you query the sys.xml_
schema_collections view, you would see only the name of the namespace you defined, which may
be different from the name of the namespace in your schema.

SELECT *
FROM sys.xml schema collections xmlSchemaCollection

JOIN sys.xml schema_namespaces xmlSchemaName

ON (xmlSchemaName.xml collection id = xmlSchemaName.xml collection id)
WHERE xmlSchemaCollection.name = 'Customer'

g0

Applications and XML

If you use SQLXML or ADO.NET, programming using the XML datatype is simple and does not
require much explanation. However, if you use SNAC, you will want to initialize SNAC with the new
DataTypeCompatibility keyword in your connection string. You should set this string to be equal to
80, which specifies that you want to use the new SQL Server 2005 datatypes, such as XML. If you
continue to use MDAC, there are no required changes to use the XML datatype. Both SNAC and
MDAC will return XML as text. You could then load the text into an XML document object to parse
the XML. For the richest XML experience, you will want to use .NET with SQLXML. The following
code shows how to use ADO with data that uses the new XML datatype:

Imports ADODB
Const strDataServer = "localhost"
Const strDatabase = "xmldb"

'Create objects
Dim objConn As New Connection
Dim objRs As Recordset

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

'Create command text

Dim CommandText As String = "SELECT xmlColWithSchema" & _
" FROM xmltbl2" & _
" WHERE pk = 1"

'Create connection string

Dim ConnectionString As String = "Provider=SQLNCLI" & _
";Data Source=" & strDataServer & _
";Initial Catalog=" & strDatabase & _
";Integrated Security=SSPI;" & _
"DataTypeCompatibility=80"

'Connect to the data source
objConn.Open(ConnectionString)

'Execute the command
objRs = objConn.Execute(CommandText)

Dim irowcount As Integer = 0

'Go through recordset and display
Do While Not objRs.EOF
irowcount += 1
MessageBox.Show("Row " & irowcount & ":" & vbCrLf & vbCrLf & _
objRs(0).Value())
objRs.MoveNext()
Loop

'Clean up our objects
objRs.Close()
objConn.Close()

objRs = Nothing
objConn = Nothing

XML Web Services Support

The final set of enhancements in SQL Server 2005 that we will look at is the addition of server-side
XML web services support. With SQL Server 2000, you could expose your stored procedures as web
services using SQLXML. However, this technology required you to run IIS on a mid-tier server. With
SQL Server 2005, that requirement is done away with; SQL Server 2005 can expose XML web services
directly out of the server without IIS installed. Now, you may be wondering about security concerns,
but the web services functionality is explicitly off by default, and SQL Server requires you to create
the web service through some code before it turns on.

By supporting web services, SQL Server can support clients that do not have MDAC installed or
other platforms that may not even have Windows installed. Through the use of the documented web
services protocols and formats, you can even use development environments that may not have
native drivers for SQL Server.

The web services support allows you to send T-SQL statements with or without parameters to
the server, or you can call stored procedures, extended stored procedures, and scalar UDFs.

275

276

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

You create an endpoint to expose your web services functionality. The endpoint needs to have
aunique URL that SQL Server will listen on. When that URL receives a request, which is routed to the
kernel mode http.sys, http.sys passes this request to the correct SQL Server functionality that the
endpoint exposes. By using http. sys, SQL Server does not require IIS. There may be times, however,
when you will want to expose your web services through a mid-tier component. For example, if you
want to scale out your solution, you may find mid-tier components are easier and sometimes
cheaper to scale than your SQL Servers.

You can have multiple endpoints for a single function, or you can expose multiple endpoints for
multiple functions. It is up to your application architecture how you use this technology.

Before we look at the technology, we should state that there are times when using web services
does not make sense. For example, web services are more verbose than using the native Tabular
Data Stream (TDS) protocol, so if size and speed are concerns for you, web services may not make
sense. Also, if your application works a lot with BLOB data, you will want to avoid using web services.

Creating an Endpoint

Assume you have a stored procedure existing in your database, and you want to expose it as a web
service. The first thing you need to do is call some new DDL to create your endpoints. All endpoints
are stored in the master database, and you can use the sys.http_endpoints dynamic management
view to query for all the endpoints that exist. To find all the web methods you create, you can use the
sys.endpoint_webmethods dynamic management view.

The DDL that follows creates a new endpoint. Please note that endpoints work only on platforms
that support http.sys, which is the kernel mode http listener. Windows Server 2003 and Windows
XP with Service Pack 2 are the only platforms that support this capability. The CREATE ENDPOINT state-
ment for HTTP endpoints and web services uses the following format:

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS { HTTP | TCP } (
<protocol specific_arguments>
)
FOR { SOAP | TSQL | SERVICE BROKER | DATABASE MIRRORING } (
<language_specific_arguments>

<AS HTTP_protocol specific_arguments> ::=
AS HTTP (
PATH = 'url'
, AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED
| NTLM | KERBEROS } [,...n])
, PORTS = ({ CLEAR | SSL} [,... n 1)
[SITE = {"*" | "+' | "webSite' },]
[, CLEAR_PORT = clearPort]
[, SSL_PORT = SSLPort]
[, AUTH REALM = { 'realm' | NONE }]
[, DEFAULT LOGON DOMAIN = { ‘domain' | NONE }]
[, COMPRESSION = { ENABLED | DISABLED }]
)

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

<FOR SOAP_language specific_arguments> ::=
FOR SOAP(
[{ WEBMETHOD ['namespace' .] 'method alias'
(NAME = 'database.owner.name’
[, SCHEMA = { NONE | STANDARD | DEFAULT }]
[, FORMAT = { ALL RESULTS | ROWSETS ONLY }]

—

yeeen 1]
BATCHES = { ENABLED | DISABLED }]

, WSDL = { NONE | DEFAULT | 'sp_name' }]

, SESSIONS = { ENABLED | DISABLED }]

, LOGIN TYPE = { MIXED | WINDOWS }]
SESSION_TIMEOUT = timeoutInterval | NEVER]
, DATABASE = { 'database name' | DEFAULT }

, NAMESPACE = { 'namespace' | DEFAULT }]

, SCHEMA = { NONE | STANDARD }]

, CHARACTER SET = { SQL | XML }]

, HEADER LIMIT = int]

e R R o e N W W e RS
-

If we look at an implementation of CREATE ENDPOINT, we get the following:

CREATE ENDPOINT SQLWS endpoint
STATE = STARTED
AS HTTP(
PATH = '/sql/sample’,
AUTHENTICATION= (INTEGRATED),
PORTS = (CLEAR)
)
FOR SOAP (
WEBMETHOD
"http://tempuri.org/". " SQLWS'
(NAME = 'xmldb.dbo.usp SQLWS'),
BATCHES = ENABLED,
WSDL = DEFAULT

)

As you can see in the code, you need to pass the name of your endpoint and the type of web
authentication you want. You also pass the URL path for your web service, the ports used, the initial
state, and finally the method name and whether you want to allow T-SQL batch statements and
automatic Web Services Description Language (WSDL) generation.

There are a couple of things to note about creating endpoints. First, endpoints do not allow you
to pass credentials unsecured over the wire. Therefore, if you use Basic authentication, you will have
to use Secure Sockets Layer (SSL). To enable SSL, you will have to register a certificate on your server.
To do so, use the httpcfg. exe utility to register, query, and delete certificates. Also, for testing purposes,
you can make self-signed certificates using the makecert.exe utility.

Second, you can also use a subset of WS-Security to authenticate against the server. Specifically,
SQL Server web services supports the Username token headers. This is used for SQL Server-based
authentication.

277

278

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Next, you can specify whether you want a complex WSDL, which will use complex XSD types
(which some applications do not support), or a simple WSDL, which increases interoperability. To
get a simple WSDL, just use ?wsd1simple at the end of your URL rather than the standard ?wsdl.
Finally, you can even specify your own custom WSDL by passing in the name of a stored procedure
that returns the WSDL. This is useful if you know that the automatically generated WSDL does not
work with your applications, and you need to tweak the WSDL.

One other thing to note about creating endpoints is that you can specify the format of the
results to return. By default, SQL Server will return all the results, including the results, row count,
error messages, and warnings. This is the ALL_RESULTS option for the optional FORMAT property. If you
want only the data, set this option to ROWSETS_ONLY. This will return a dataset object rather than an
object array.

Endpoints are implicitly reserved with httpsys when you use CREATE ENDPOINT. If SQL Server is
running, httpsys will pass requests to SQL Server. However, if SQL Server is not running, other applica-
tions can be forwarded the requests rather than SQL Server. You can explicitly request a namespace from
httpsys by using the system stored procedure sp_reserve http namespace, which takes the namespace
you want to reserve. For example, if you want to reserve the sql namespace over port 80, you use
sp_reserve_http namespace N'http://MyServer:80/sql’.

Also, you can specify whether to have session support, which allows you to send multiple SOAP
messages as a single session with the server. The default is no session support.

The last property that you may want to set is DATABASE, which specifies the default database. If
you do not specify this property, SQL Serverwill default to the database specified for the login.

Once you create an endpoint, you can change it using the ALTER ENDPOINT statement. You can
also drop the endpoint using the DROP ENDPOINT statement.

Endpoints are considered applications by SQL Server, in that you must explicitly give your users
permissions to execute the endpoint. When you create an endpoint, only those with the sysadmin
role or the owner role can execute the endpoint. In addition, endpoints do not skirt SQL Server secu-
rity. You need permissions on the underlying SQL Server object in order to execute it. If you attempt
to call an endpoint that you have permissions on without having permissions on the underlying
stored procedure or UDF, you will receive an error.

In addition, endpoints have two levels of security. The first is at the HTTP transport layer, where
you can specify web-based authentications such as Integrated, Basic, or Anonymous, and then at
the SQL Server layer. The SQL Server layer requires that you are authenticated with SQL Server.
Therefore, you could have an anonymous connection at the HTTP layer, but you would not be able
to call any SQL Server functionality without passing explicit SQL Server logins and passwords.

To grant execution permissions for users on the endpoint, execute the following code:

use MASTER
GRANT CONNECT ON ENDPOINT::SQLWS_endpoint TO [DOMAIN\username]

Now that you've created your web service, let’s see how to use it from Visual Studio. You can
add a reference to the endpoint using the standard web reference dialog box in Visual Studio, as
shown in Figure 8-5.

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT 279

Add Web Reference E

Mavigate to a web service URL (asmx or wsdl) and click Add Reference to add all the available services found at that URL.
O Back | B [2] G

URL: Ihﬂp:,-",-"Ioc:alhost,-"sql,-"sample?wsdl j :} Go

;I Web services found at this URL:

"SQLWS_endpoint" Description

1 Service Found: ;I
Methods - sample
n sqlk h{BzichC gs As string, Py s AS |
ArrayOfSglParameter) As SglResultStream
m SQLWS{msg As) As SglResultStream
e

Web reference name:

WS

LI Help

Figure 8-5. Adding a web reference to a SQL Server web service

Also, you can just retrieve the WSDL of your endpoint by passing in ?wsd1, just like you do for
other web services. The code for getting the WSDL for the previous web service is shown here:

http://localhost/sql/sample?wsdl

Finally, you can call your web service from code using the standard functionality of Visual
Studio or any other development environment that supports web services. Since XML web services
use the DiffGram format for their return values, you can easily load the results into a .NET dataset.
The following code will call your web services and assume the web service reference is named ws:

//Add a reference to SQL WS
ws.SQLWS endpoint SQLWS = new ws.SQLWS endpoint();

//Set default credentials to the Windows one
SQLWS.Credentials = CredentialCache.DefaultCredentials;

//Call the sproc through the WS
System.Data.DataSet dsReturnValue =
(System.Data.DataSet)SQLWS.SQLWS("Calling stored proc").GetValue(0);

//Get the reader associated with our Dataset
System.Data.DataTableReader drSQL = dsReturnValue.GetDataReader();

280

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

//Get the result

string strResult = "";

while (drSQL.Read())
{

strResult = drSQL[0].ToString();
}

//Display the results
MessageBox.Show("Return value from SQL call: " + strResult);

ws.SqlParameter[] sglparams = new ws.SqlParameter[o0];
//Send a batch command to SQL

System.Data.DataSet dsReturnValuel =
(System.Data.DataSet)SQLWS.sqlbatch("SELECT * FROM
sys.http_endpoints”, ref sqlparams).GetValue(0);

//Get the reader associated with the Dataset
System.Data.DataTableReader drSQL1 = dsReturnValuel.GetDataReader();

//Get the result

string strResult1 = "";
while (drSQL1.Read())
{

strResult1l = drSQL1[0].ToString();
}

//Display the results
MessageBox.Show("Return value from SQL call: " + strResult1);

Asyou can see, you need to create a new instance of your web service. Then, you need to set the
default credentials for your web service calls. The code uses the default Windows credentials by
using the CredentialCache class’s DefaultCredentials property.

Once you set the credentials, you can make the call to your web service. Since you exposed a
stored procedure, the code calls that first. Without casting the result, an object type would be
returned by the server. Instead of just getting a generic object, the code casts the return value to a
Dataset object. From the Dataset object, the code gets a DataTableReader object and then gets the
results. The DataTableReader object provides a forward-only, read-only iterator over the data in your
resultsets.

In the second example in the code, since the endpoint allowed batch commands, the code can
send up T-SQL to the server to have it execute. Since the master database is the default database in
this code, the dynamic management view for endpoints is queried and returned.

The code uses the built-in web services technologies in Visual Studio, but you could call this
code from other environments and create the SOAP headers and body yourself. For example, you
could use the Web Services Toolkit from VB6 or the XMLHTTP or ServerXMLHTTP objects directly to
make raw HTTP calls to the server. This is the flexibility and power SQL Server gives you with the new
web services integration.

Using Advanced Web Services

Most times, you will find yourself using the built-in capabilities of Visual Studio and SQL Server web
services to do your web services programming. However, there may be times when you want to

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

leverage the advanced functionality of SQL Server web services. For example, you may want to
support sessions, transactions, SQL authentication, and other functionality.

To use the advanced functionality, you will need to dive into writing part of the SOAP envelope
that will be delivered to SQL Server. The reason for this is that SQL Server uses some special exten-
sion headers to implement its functionality. Before we talk about how to achieve this functionality,
let’s look at a piece of what a typical SOAP request looks like. (Please note that only a portion of the
SOAP request is shown for space reasons.)

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<soap:Body>
<MySP xmlns="http://tempUri.org/">
<Param1>1</Parami>
<OutputParam />
</MySP>
</soap:Body>
</soap:Envelope>

As you can see, SOAP messages are XML messages with an envelope and a body. The body
contains the payload, which is the stored procedure, UDF, or even T-SQL batch you want to send to
the server. SQL Server extends the envelope with some special headers to achieve more advanced
functionality. Table 8-4 shows the SQL Server optional header extensions. The table assumes that
you have declared the namespace for the header extensions as xmlns:sqloptions="http://
schemas.microsoft.com/sqlserver/2004/S0AP/Options. Assume sqloptions: appears before each
header name.

Table 8-4. SQL Server XML Web Services Header Extensions

Name Description

applicationName User-defined application name. You could use this to
limit applications that call your web service.

clientInterface User-defined client interface. For example, you could
limit applications to only certain interfaces, such as
ADO.NET 2.0.

clientNetworkID User-defined network ID.

clientPID User-defined process ID.

databaseMirroringPartner The name of the database mirroring partner for this

server. This is returned by SQL Server when you use the
environmentChangeNotification("partnerChange")
request.

environmentChangeNotifications Allows you to specify that you want to be notified of
environment changes. Valid environment changes
include language changes using languageChange,
database mirroring changes using partnerChange, data-
base changes using databaseChange, and transaction
usage changes using transactionChange.

hostName User-defined hostname.

281

282

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Table 8-4. SQL Server XML Web Services Header Extensions (Continued)

Name Description

initialDatabase Allows you to specify the initial database for your SOAP
request. You can also pass the database filename using
the filename attribute for this header. You must set this in
your initial session request to the server if using sessions.

initiallanguage Allows you to specify the language, similar to the SET
LANGUAGE T-SQL command. You must set this in your
initial session request to the server if using sessions.

notificationRequest Allows you to use query notifications. You must specify
the attributes notificationId and deliveryService,
which specify the unique notification ID for the query
notification already created and the delivery service that
will deliver the notifications.

prepExec Allows you to prepare and execute operations.

sqlSession Allows you to maintain a session across multiple SOAP
requests. This header has attributes, which are initiate,
terminate, sessionId, timeout, and transacationDescriptor.

While just looking at the header descriptions may be confusing at first, seeing some of them in
action will make the concepts clearer, as you'll see shortly. Before we do that, we need to look at non-
SQL extension headers. SQL Server supports some parts of the WS-Security standard, specifically the
ability to pass usernames and passwords using WS-Security. This is also the way that you specify
SQL authentication information if you want to use that rather than Windows-based authentication.
Remember that to use SQL authentication, you must set LOGIN_TYPE to mixed and PORTS must be set
to SSL in your CREATE ENDPOINT statement. SQL Server will not let you send usernames and pass-
words over unencrypted channels!

To use WS-Security for your web services, you need to pass WS-Security—specific information in
your headers. The following code shows how to perform a SQL-based authentication when calling a
SQL Server web service:

<SOAP-ENV:Header>
<wsse:Security xmlns:wsse=
"http://docs.oasis-open.org/wss/2004/01/
0as15-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username>thomriz</wsse:Username>
<wsse:Password Type=
"http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-username-token-profile-
1.0#PasswordText">Password!@11</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</SOAP-ENV:Header>

As you can see, you pass the username using the Username element and the password using the
Password element. You can even change passwords using WS-Security with SQL Server by adding the
oldpassword element as follows:

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

<wsse:UsernameToken>
<sql:0ldPassword Type="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-username-token-profile-1.0#PasswordText"
xmlns:sql="http://schemas.microsoft.com/sqlserver/2004/S0AP">pass
wordi</sql:01ldPassword>

Using Sessions and Transactions with Web Services

Since the Web is asynchronous and loosely coupled in nature, SQL Server web services are that way
as well by default. When you send a request via web services, each request is a new session and
transaction with the server. In fact, there is an implicit transaction created when you send your
requests. There may be times, though, when you want to keep a session alive across multiple requests,
or you may want to be able to do transactions across session boundaries. To support this, SQL Server
has the ability to initiate sessions and transactions as part of its web services support. To enable this,
you must use the SOAP extension headers discussed earlier.

Before you can start using sessions, the endpoint you create must have sessions enabled. You
can also specify session timeout and header limits. The following statement alters an endpoint to
enable session support:

ALTER ENDPOINT default endpoint clear

FOR SOAP (
SESSIONS = ENABLED,
SESSION_TIMEOUT = 1200,
HEADER LIMIT = 65536

)

go

The next step is to send a SOAP header on your first request to the server that tells the server to
enable session support, which you do by using the SOAP extension headers. The following is the
header you send to start a session with SQL Server:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sql="http://schemas.microsoft.com/sqlserver/2004/SOAP"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sqlparam="http://schemas.microsoft.com/sqlserver/2004/S0AP/types/SqlParameter"
xmlns:sqlsoaptypes="http://schemas.microsoft.com/sqlserver/2004/S0AP/types"
xmlns:sqloptions="http://schemas.microsoft.com/sqlserver/2004/SOAP/Options"
>
<SOAP-ENV:Header>
<sqloptions:sqlSession SOAP-ENV:mustUnderstand="1" initiate="true" />
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<sqgl:sqlbatch>
<sql:BatchCommands>use Northwind
</sgl:BatchCommands>
</sql:sqlbatch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The response from SQL Server will contain the GUID sessionId returned in the headers. You
need to retrieve that sessionId and pass it along in subsequent requests to make sure you continue
over the same session. The following is the response from the server:

283

284

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

<SOAP-ENV:Envelope xml:space="preserve" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sql="http://schemas.microsoft.com/sqlserver/2004/SOAP"
xmlns:sqlsoaptypes="http://schemas.microsoft.com/sqlserver/2004/SOAP/types"
xmlns:sqlrowcount=
"http://schemas.microsoft.com/sqlserver/2004/SOAP/types/SqlRowCount"
xmlns:sqlmessage=
"http://schemas.microsoft.com/sqlserver/2004/S0AP/types/SqlMessage"”
mlns:sqlresultstream=
"http://schemas.microsoft.com/sqlserver/2004/SOAP/types/SqlResultStream”
mlns:sqltransaction=
"http://schemas.microsoft.com/sqlserver/2004/S0AP/types/SqlTransaction"
xmlns:sqltypes="http://schemas.microsoft.com/sqlserver/2004/sqltypes">
<SOAP-ENV:Header xmlns:sqloptions=
"http://schemas.microsoft.com/sqlserver/2004/SOAP/Options">
<sqloptions:sqlSession sessionId="SESSIONIDGUID">
</sqloptions:sqlSession>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<sql:sqlbatchResponse>
<sql:sqlbatchResult>
</sql:sqlbatchResult>
</sql:sqlbatchResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Please note that you must pass the sessionIdto continue usinga session. You must also continue to
use the same endpoint and the same user context. If you change any of this, sessions will not work.

To terminate the session, send the terminate command and pass the sessionId to the server.
Instead of showing the full SOAP request here, we show the terminate SQL header:

<sqloptions:sqlSession terminate="true" sessionId="SESSIONIDGUID" />

To use transactions, you must use sessions. However, you will want to make sure that in your
headers, the transaction request comes before the session initiation. Please note that explicit trans-
actions are supported only with SQL batches and not when calling web methods. If you want to
support transactions with your web method calls, put the transaction into the functionality called by
the web method. For example, if you expose a stored procedure as a web method, put your transac-
tion context code in the stored procedure.

The following code is a snippet of the header you will want to pass to start transactions. You
have to set the transactionBoundary attribute of the environmentChangeNotifications header to true
to use transactions. Then you can use the BEGIN TRANSACTION statement in your T-SQL batch.

<sqloptions:environmentChangeNotifications transactionBoundary="true" />
<sqloptions:sqglSession initiate="true" timeout="60"/>

<sql:BatchCommands>
USE MyDB
BEGIN TRANSACTION
INSERT INTO MyTable (MyColumn) VALUES ('MyValue');
</sql:BatchCommands>

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

The server will let you know whether or not the transaction was successfully begun and will
send back a transactionDescriptor. This is similar to the sessionId in that you need to send this
transactionDescriptor with every request that wants to perform an action that uses that transaction
context. The following code is a snippet of the response from the server:

<SOAP-ENV:Body>
<sql:sqlbatchResponse>
<sql:sqlbatchResult>
<sqlresultstream:SqlTransaction xsi:type="sqltransaction:SqlTransaction">
<sqltransaction:Descriptor>BQCCCDMABCD=</sqltransaction:Descriptor>
<sqltransaction:Type>Begin</sqltransaction:Type>
</sqlresultstream:SqlTransaction>
</sql:sqlbatchResult>
</sql:sqlbatchResponse>
</SOAP-ENV:Body>

The following code snippet is the next request, with the sessionId and the
transactionDescriptor passed along with the request:

sqloptions:sqlSession sessionId="SessionGUID"
transactionDescriptor=" BQCCCDMABCD="/>

Over one session, you can have multiple transactions. Just make sure to keep track of the
different transactionDescriptor values that are sent back from SQL Server.

Adding SOAP Headers Using Visual Studio

The easiest way to add custom headers to your Visual Studio applications is to use the sample class
included with SQL Server Books Online. This class makes it easy for you to take an existing SOAP call
and add the headers to it. Since Books Online includes all the information you need to start using

this class, we refer you there to get the sample code and the instructions for using that sample code.

Monitoring Performance of XML Web Services

The XML web services in SQL Server have a number of performance counters that you can monitor
to understand how your web services are performing. The web services counters are under the SQL
Server: General Statistics object. Table 8-5 lists the performance counters included.

Table 8-5. XML Web Services Performance Counters

Name Description

HTTP Anonymous Requests Number of anonymous requests per second
HTTP Authenticated Requests Number of authenticated requests per second
SOAP Empty Requests Number of empty SOAP requests per second
SOAP Method Invocations Number of SOAP method invocations per second
SOAP Session Initiate Requests Number of SOAP session initiations per second
SOAP Session Terminate Requests Number of SOAP session terminations per second
SOAP SQL Requests Number of batch SQL requests per second

SOAP WSDL Requests Number of WSDL requests per second

285

286

CHAPTER 8 SQL SERVER 2005 XML AND XQUERY SUPPORT

Summary

In this chapter, you saw many examples of using XML in SQL Server 2005. With the addition of a new
native XML datatype, which allows you to store your XML data right alongside your relational data,
and support for the XQuery language and native XML web services, SQL Server 2005 should provide
the level of XML support you need for most applications.

CHAPTER 9

SQL Server 2005 Reporting Services

The runaway hit for SQL Server in 2004 was SQL Server 2000 Reporting Services. Reporting Services
represented Microsoft’s foray into the enterprise reporting market and introduced a very mature
product, even though it was just the first version to the market. With its tight integration with Visual
Studio and Microsoft Office, Reporting Services was a welcome addition to the SQL Server family,
especially for all the customers and partners who were, and possibly still are, waiting for SQL Server 2005
to be released.

The Reporting Services technology allows you to design rich reports that can pull from multiple
data sources; display the data from those data sources in a rich way using tables, matrixes, and charts;
and also export your reports to a number of formats such as Excel, PDF, XML, or HTML without your
writing any code. Reporting Services also provides an extensibility model that lets you extend the
designer, exporting formats and delivery mechanisms for your reports. Finally, Reporting Services
has an API that you can call using web services so you can automate almost any part of your reports
through your own scripts or programs.

This chapter will describe the major components of the 2000 version of Reporting Services, and
will then focus on the new features introduced in SQL Server 2005, such as the following:

 Tight integration with both the SQL Server Management Studio and also with Analysis
Services. From a single report, you can easily build both relational and OLAP queries to access
your data.

* New report design and execution capabilities such as an enhanced expression editor, multi-
valued parameters, and a calendar picker.

¢ Additional Visual Studio integration and ReportViewer controls that allow reporting to be
embedded directly within an application.

¢ End-user ad hoc (on-the-fly) query and reporting capabilities in Report Builder.

Reporting Services Components

Most companies store a vast array of data that can form the basis of many critical decisions affecting
the performance and direction of the business. However, up until now, the creation of reports based
on this data has involved the use of, often expensive, third-party tools that most frequently used
proprietary formats for the definition of a report.

One of the goals of SSRS was to provide a single, standard platform for the design, creation,
deployment, and management of all reports, and to promote interoperability between different
reporting environments by adopting a standard XML-based language to define the reports, namely
Report Definition Language (RDL).

287

288

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

The main architecture components of Reporting Services are as follows:

* Report Server: Aweb service API, responsible for every client request, either to render a report
or to perform a management request

e Metadata Catalog: Stores all of the information related to reports, such as report definitions,
data sources, report parameters, cached reports, security settings, scheduling and delivery
information, and report execution log information

* Report Designer: A graphical client, embedded in Visual Studio, that allows you to design and
deploy reports in a “drag-and-drop” environment

* Report Manager web application: A browser-based tool for viewing and rendering reports,
creating report subscriptions, modifying report properties, configuring security, as well as a
host of other tasks

You'll get a chance to take a look at each one in a bit more detail, but before you do, let’s see
Reporting Services laid out in an architectural diagram:

Report Server Architecture

Browser Report Builder Custom Appllcatlon
—) =

/ e |

URL / XML Web Service Interface Security Services

Data Sources (Windows,
(SQL, OLE DB, XML/A, s) Custom)
0DBC, Oracle, Custom) Report Server

(Report Processing)
O8 < Rl

[Data Processing] [Security]

=
- - =Il=
Output Formats <:> [Rendering][LI] <:> ll

(HTML, Excel, PDF, Custom)

\

SQL Server Catalog] Delivery Targets
(E-mail, File Share,
Custom)

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

As you can see in the illustration, Reporting Services is made up of a Report Server, which
contains the processing power of the server; a Metadata Catalog stored in SQL Server; a web services
interface for applications or clients to call; and then a number of built-in but extensibility services in
the Report Server. We'll take a look at the components of Reporting Services is more detail next and
also look at what was in SQL Server 2000 Reporting Services to ascertain its level set before we go into
what’s in SQL Server 2005 Reporting Services.

Report Server

The Report Server is the main component of Reporting Services. It is a web service that uses subcompo-
nents to retrieve data, combine that data with the report layout, and render the information into the
requested format.

All the other components interact with the Report Server. For example, to deploy reports, the
Report Designer calls the methods exposed by the Report Server’s web service. The Report Manager
web application instigates management operation via the web service. Client or server applications
could call the web service to automate Reporting Services.

The Report Server also supports URL addressability so that you can embed reports in your
application using a web browser. By passing different parameters along the URL, you can control
different aspects of your reports. For example, the following URL retrieves a report called employees,
the RDL file for which is stored in the HR subfolder of the reportserver virtual root directory (which
points to the web service) of a Report Server called SRS03, and instructs it to render the report (the
rs:Command parameter) in PDF format (via the rs:Format parameter):

http://SRS03/reportserver?/hr/employeesdrs:Command=Render&rs:Format=PDF

Metadata Catalog

Reporting Services requires that you have a SQL Server database to store metadata information. The
Metadata Catalog, created as part of the SSRS installation, stores information such as data sources,
report snapshots that contain the layout and data for a report at a specific point in time, and report
history and credential information for authentication, if you have Reporting Services store that
information. This Metadata Catalog can be on the same server as your Reporting Services server, but
most people deploy it on a separate server for performance reasons and for high availability using
clustering.

Report Designer

One place where you will spend a lot of your time when working with Reporting Services is inside of
Visual Studio .NET 2003, and the Report Designer. Reporting Services extends VS with a graphical
Report Designer that you can use to connect to your data, write your queries, and design and deploy
your reports, all in a drag-and-drop environment. Figure 9-1 shows a query being created in SQL
Server 2000 Report Designer.

289

290

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

@0 SampleReports - Microsoft Development Environment [design] - Employee Sales Summary.rdl [Design] [_[&1x]
Fle Edi Mew Project Buld Debug Fomat Hepot Iools Window Help
Bl b I | & 2R -~ -8-8|) Dobuw = o8 repot - G TR
Hle s o o |) e W B E 8 er] E | -l -l] 2 B
Fields 3 X | Object Browser | Start Page | Company Sales dl [Desin” Employee Sales Summary.rdl [Design] | 4 & % || Solution Explorer - SampleRe... @ X
SR | (ERTTl = Layout | B, Preview EE
= Solution ‘SampleRepotts” (1
Employes Dataset: EmpSalestearQveryear =l a3 HE Hism| O o2l 2l ﬁ’—>> o Solton SampieRepots’(1pro 4|
OrderYear TR aua=-i- o — A e s
OrderMorthNum [SalesOrderm = o o= | o 2l = &3 Shermd Data Sources
5 Orderhlarth [lcustomer f TertitarylD & Lff 0 o o AdventureWorks e
Sales [salesPersonin Thk= SalesQuota | B 53 Repots
[territoryd =l [Bonus =l Company Sales rdl
— — ! Employee Sales Su
= SalesOrderDetail | & Employee] ! Foodmart Sales.rdl
= (Al Columns) - = (Al Columns) 17y : Product Catalog rdl
SalesOrderID & =l Product Line Sales
|_|Uinetiumber [JFirs thame = Salss Order Detail
[|ProductiD [|addressiD Tenitory Sales Drile—
SpecialOfferD W = Solution f
[Ispecialoffer =l [shifo =l - Ell &3 Solution ffems B
4 »
o 5
Solut I... | 24 Class View
fias [Table [Cutput_[Sart Type [Sort Order [Group By [Criteria_ <] ohiion Erp = e
* |Employee W Group By :I Properties a %
DATEPART(Yeal OrderYear 4 Group By lﬁ
DATEPART(Mon | OrderMontt v Group By
DATENAME(Mor | OrderMontt v Group By 4
LineTotal Sales SalesOrderl v Sum |

SELECT Employee Firsthlame + ' +Employee.Lastilame AS Employes, DATEPART(Year, SalesOrderHesder. OrderDate) AS Ord a |
SalesOrderHeader. OrderDate) AS OrderMonthMum, DATEMAME(Month, SalesOrderHeader.OrderDate) AS OrdarMolJ
AS Sales

FROM SalesOrderHeader INNER JOIN

SalesOrderDetail ON SalesOrderHeader. SalesOrderID = SalesOrderDetail. SalesCrderID INNER JOIN

SalesPerson ON SalesCrderHeader SalesPersonlD = SalesPerson.SalesPersonID INMER JOIN
I Fmnloves ON SalesPerson. SalesPersonTn = Fmnlovees. FmnlovesTn I —'LI
4 »
[[[[[[iI
Egcer 8870 Fiel [[v[| 5 Propettes | @ Dynamic Help |
Task Lt
| Ready I I |

Figure 9-1. Designing a query in the SQL Server 2000 Report Designer

The Report Designer has a number of controls that you can use to add a user interface to your
form. The Report Designer supports controls such as text boxes, tables, matrices, images, lines,
charts, rectangles, and lists.

The Report Designer allows you to extend any of your reports using VB .NET expressions, or
even to call code in a custom .NET assembly that you have associated with the report. Figure 9-2
shows a sample report included with Reporting Services. It demonstrates the use of an expression to
set the background color for a cell in a table. Expressions are based on VB .NET and can be used in
many different properties in Reporting Services.

As noted previously, your reports can also use custom .NET code. You can write script code
using VB. NET and embed it directly in your report, or you can write a custom .NET assembly and
call it from your report.

Use of embedded script code is the simpler of the two techniques, and you get the highest level
of portability, since the custom .NET code is saved with the report definition file. To add your
custom VB .NET code, you simply open the Report Properties window of your report from within
Report Designer, and paste the code into the Custom Code window in the Code tab. Methods in
embedded code are available through a globally defined Code member that you can access in any
expression by referring to the Code member and method name (in other words, Code .methodname).

Use of a .NET assembly adds to the complexity of deployment: assemblies are deployed as a
separate file and must be on every server where the report runs. However, the payback is flexibility.
The assemblies can be written in any .NET language and, once installed, are available to all reports
that run on that server.

CHAPTER 9

2% SampleReports - Microsoft Development Environment [design] - Employee Sales

File Edit Mew Project Buid Debug Tools Window Help
G- EHE BB oo 8B Db o | g repon
Hle s S |ma | SEHEANE TR D 3 &8 e 5% (E.

Salid

o B B3 B3 -

-t B

Black

SQL SERVER 2005 REPORTING SERVICES

=lEl x|

- 7 A BE

Fields 3 || Object Browser | Start Page | Company Sales rdl [Desion)” Employee Sales Su__ary rdl [Design]* |

—_I’
EmpSalesYearOver' 7 || e gg Layout |

4 I x || Solution Explorer - SampleRe... 3 X

23 3R

Employee
rder'Year

rderMorthNum
B3 OderMorth
Sales

- . 540.00 Senes 3 Sales
: : $20.00

7

. $0.00

Q Solution "SampleReports” (1 pro/& |
= -E] SampleReports
3] Shared Data Sources

: « AdventursWorks rg

B a Reparts

- [Company Sales rd

-) |Employee Sales Su
[Foodmart Sales i
Product Catalog.rdl

. Product Line Sales
- = hN (u.amelerS'R h.Value) & " " & Paramelers'RepunYear Value & " : - [l Sales Order Detal
. Order Summarny” - (& Tenitory Sales Drill—!
8 =l E| Solution
- ™| Order Number Product Category Sales - | @r:‘: e emsJ s
15 4 b
= i ITI :
- 1= Fields!SalesOrd =Fields!ProdCat.Value Sum(Fields!Sale 1773 egption Bl ’_E Class View |
] P Edit Expression N
s 1 x
| Total Fields: Expression: —_[
N - M Reploce =+ =IIF{Sum(Fields! Sales Valug)<1000,"Red”,"Green") Textbox
. Globals e v I[e=]
- [#)- Parameters Insert o =
- . SENtE> ance
el | Fields (Emp Sales Detail) Cal] ~NIF(Semi
[+ Datasets .
[Output Appeno s koroundlimz
- erColor | Black
Build erStyle | None
Build complete —- 0 errors, 0 warning lerWidth | 1pt
Preview complete -- 0 errors, 0 wezni r Il Back
Normal, Arial, 10y
at c =
jroundColor
lor of the background,
4] [ok | Coneel | Help | pettics | @ Dynamic Help |
[Teskist | %
[Reaty I I \

Figure 9-2. A report that shows using controls and expressions in the Report Designer in SQL Server 2000

Note A full discussion of using custom assemblies with SSRS is beyond the scope of this chapter. The topic is
covered in full detail in Pro SQL Server Reporting Services by Rodney Landrum and Walter J. Voytek Il (Apress, 2004).

If you look at the source for your report, you will see that the report definition is an XML file.
This XML file uses a standard schema for reports that Microsoft created called the Report Definition
Language. You can find the complete schema at http://www.microsoft.com/sql/reporting/
techinfo/rdlspec.mspx. You could edit your report’s XML by hand, but the Report Designer is a
much better interface to create your reports! Since RDL is a published format, third-party tools can

create RDL, and Reporting Services will consume that RDL.

Report Manager Web Application

The Report Manager web application allows you to browse, manage, and view your reports. Inside
of the Report Manager interface, you can view the report hierarchy, select a single report to view, and
then export that report to the multitude of formats that Reporting Services supports such as HTML,
Excel, images such as TIFF, PDF, comma-delimited files (CSV), and XML. You can also manage your
reports by performing actions such as managing your data sources, report parameters, execution

properties, and subscriptions.

Three interesting pieces of functionality that Reporting Services provides and that you can manage
through Report Manager are caching, report snapshots, and subscriptions, which are covered as follows:

291

292 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

* Caching allows you to increase the performance of your reporting solution. With caching
enabled, a report can be added to the cache on its first execution and then retrieved from the
cache, rather than the SSRS database, for subsequent requests.

* Areport snapshotis a point-in-time representation of both the layout of a report and its data.
Therendering of alarge report (one that contains alot of data) can consume valuable resources,
and you may not want to perform this action every time a different user requests the report.
Instead, you can create a snapshot of the report and allow users to access that. You can also
use report snapshots to keep a history of your report and see how it changes over time.

* Finally, you can create subscriptions to reports. Subscriptions provide a means of delivering
reports to a specified location, whether an e-mail account, a fileshare, or a custom delivery
location you code, at a specified time (for example, to the e-mail account of a department
manager on the last Friday of every month). There are two types of subscriptions in Reporting
Services:

« Standard subscriptions, which are statically set up for one or more users and can be
created and managed by individual users

¢ Data-driven subscriptions, which are system-generated and where subscriber lists can be
dynamically generated from multiple data source locations

Data-driven subscriptions are great in scenarios where you have a very large list of subscribers
who may want personalized data and report formats, and where the subscriber list may change over
time. For example, you may want to deliver personalized reports for a thousand salespeople based
on their own sales data. Each salesperson may want his or her report delivered in a different format,
with some wanting HTML and others wanting PDF. Rather than creating and managing a thousand
individual subscriptions for these salespeople, you can create one data-driven subscription that
queries a database for the list of salespeople, their e-mail addresses, and the format in which they
wish to get the report.

As part of subscriptions, you can select the delivery mechanism. Reporting Services supports
delivering reports via e-mail or posting to fileshares. You can extend the delivery system in Reporting
Services to deliver reports to other locations via a set of extensions called delivery extensions.

Reporting Services Security

The final piece of Reporting Services that we will discuss, before diving into SQL Server 2005
enhancements, is security. Reporting Services supports role-based security. The default roles in
the server are as follows:

* Browser: Users assigned to the Browser role may only view reports, folders, and resources.
They may also manage their own subscriptions.

* Content Manager: Administrators are assigned to the Content Manager role by default. This
role allows a user to perform every task available for SRS objects such as folders, reports, and
data sources.

* My Reports: When the My Reports feature enabled, this is the role that is automatically
assigned to a user. It creates individual report folders specific to each Windows user, and
allows that user to create and manage his or her own reports.

* Publisher: Typically this role is used for report authors who work with Report Designer to
create and deploy reports. It provides the privileges required to publish reports and data
sources to the Report Server.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

» System User: Allows a user to view the schedule information in a shared schedule and view
other basic information about the Report Server.

e System Administrator: This role can enable features and set defaults. You can set site-wide
security and define role definitions. This role can also manage jobs on the server.

Additionally, you can create your own roles by combining individual permissions. For your
reports themselves, when you use either the Report Manager interface or the web services inter-
faces, Reporting Services supports standard web authentication methods such as Basic, Digest,
Integrated for authentication, and then you can encrypt the communication channel using SSL.

Building a Basic Report with SSRS 2000

Let’s build a basic report that lists all employees from Northwind so that you can see how SSRS
works in action. If you already are familiar with SSRS report design, you can skip this section and
continue on to learn how SSRS has changed in 2005. This section will show you the SSRS 2000 expe-
rience so you can compare and contrast it to the enhancements in SSRS 2005.

Launching the Designer

Your SSRS report design will begin with Visual Studio. Note, if you are using SSRS 2005, you can use
either Visual Studio or the new Business Intelligence Development Studio. For this walkthrough, we
will assume that you are using Visual Studio. After launching Visual Studio, you should create a new
project. In the project type list, you should see Business Intelligence projects. If they are not there,

you need to install the Report Designer for SSRS, which you can do by running SSRS setup. In the BI
project type, select Report Project on the right-hand side and type in Basic Report as the name. Click OK.

Working with Data Sources and Datasets

Now that you have your project up, you need to add a data source to your report. Without data, you
will not have very much to report on! To do this, right-click the Shared Data Sources node in the
Solution Explorer on the right-hand side and select Add New Data Source. For this example, use
Northwind as your data source, so in the dialog box that appears, type in your server name for your
SQL Server and select the Northwind database from the database drop-down list. Click OK, and you
now have a data source.

However, you can’t stop there because the data source defines what data you want to connect
to, but you really haven’t defined the data you want to report on. Now, you need to create a dataset
from your data source. To do this, you first need to add a new report to your project. Right-click the
Reports node in the Solution Explorer, select Add, select Add New Item, and finally in the dialog box
select Report and click Open. The Report Designer should launch in the main window, and you
should see a dataset drop-down list at the top. From the drop-down list, select <New Dataset...>. In
the dialog box for the dataset, just click OK.

The first thing you will notice is that a new user interface appears. This is the Query Designer
interface. SSRS drops you into the generic Query Designer by default, which is used for handwriting
your queries. Normally, you would use this for queries against nonrelational data sources such as
Exchange, Active Directory, or Analysis Services. Please note that you will see a graphical Query
Designer for SSAS later in this chapter that is new in SSRS 2005. Let’s switch the Query Designer into
the graphical one, since we’'re working against a relational data source. To do this, just click the
Generic Query Designer button on the dataset toolbar.

293

294

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

You should now see the graphical Query Designer with four distinct windows. Right-click in the
top window and select Add Table. From this dialog box, you can select the tables, views, or functions
you want to call from your data source. Select the Employees table, click Add, and then click Close.
Now you can select the columns from the Employees table that you want to include in your report.
You could also just write your T-SQL statement that you want to pass as well and paste it into the
SQL window in the middle of the page. To make it easier, that is exactly what you will do. You could
graphically build your SELECT statement, create GROUP BY clauses and other SQL functionality, but for
simplicity, paste the following SQL statement into the third window in the designer:

SELECT LastName, FirstName, Country
FROM Employees

To test your query, you can click the Run button on the toolbar, represented by the exclamation
point icon, to see what results you would get back. As you build more and more reports, you will
appreciate the graphical Query Designer and the ability to execute your queries to see what data is
returned. This report has a simple query, but you could write distributed queries across multiple
data sources that will work with SSRS.

Laying Out and Previewing the Report

The next step is to lay out your report. Click the Layout tab at the top, and a blank grid should appear.
This is your report body. Creating the layout is a matter of dragging Report Item controls such as
Table, Lists, Matrices, or other controls onto the grid. Make sure you have selected the Toolbox on
the left-hand side and can see the different layout controls. Drag and drop a Table control onto your
report. You will see that SSRS automatically sizes the table to the width of your report and the table
has a header, detail, and footer.

Next, select the Fields tab on the left-hand side. SSRS creates fields for the data that is returned
in your dataset. You can also create calculated fields, which do not exist in the dataset but instead are
created by writing VB .NET expressions. For example, you could have created a fullname field that
combines first and last name together. You need to drag and drop your fields onto your table. Drag
FirstName into the detail cell in the first column. Drag LastName into the middle detail cell. Finally,
drag Country in the last detail cell. Notice how SSRS creates automatic headers for you as you do
this.

Now that you have your simple report laid out, preview it. To do this, click the Preview tab at the
top of the designer. SSRS allows you to preview the report before you deploy it to your server. This is
useful so that you can find and fix any errors in your report.

Working with Expressions

The final piece of work on your report that you will do is add a little splash of color using VB .NET expres-
sions. Go back to your design by clicking the Layout tab. You may want your rows to alternate colors
so that they are easier to read. To do this, you need to make sure every even row is a different color
than an odd row. SSRS supports expressions on many different properties in your reports. One such
property that you'll create an expression on is the background color for your detail row in your
report. Select the entire detail row by clicking the rightmost icon for the row, which should be a three
bars icon. Next, in the Properties window, find the BackgroundColor property, click its drop-down
list, and select <Expression...>. In the Expression dialog box, paste in the following expression in the
right-hand side and click OK.

=1if(RowNumber(Nothing) Mod 2,"LightCreen","White")

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

This expression will check the row number in your report, RowNumber is a built-in function with
SSRS, and if it’s an odd row number, then the BackgroundColor will be LightGreen; otherwise the
color will be White. Click the Preview tab at the top of the form to see what you have. You should see
a lovely greenbar report like in the old greenbar printer days.

Deploying Your Report

You need to deploy your report to your server so that other users can use your report. To do this, you
need to set some properties on your project to define where to place the report. To set your proper-
ties, right-click the report solution in the Solution Explorer called Basic Report and select Properties.
In the dialog box, type in the TargetServerURL text box the path to your server. This path should be
something like http://servername/reportserver/. Click OK. To deploy your report, from the Build
menu, select Deploy Basic Report. You will see status information at the bottom of your screen on
how the deployment is going. Once deployed, your report is now ready to be used by all users to
whom you assign permissions for viewing the report.

Upgrading from SQL Server 2000
Reporting Services

The move from SQL Server 2000 Reporting Services to SQL Server 2005 Reporting Services is a very
seamless one. Since the product was released only in early 2004, the format for RDL files has basically
stayed the same. In fact, SSRS 2005 will support running SSRS 2000 reports. For example, the simple
report created in the previous example will easily upgrade to SSRS 2005 by just opening the report in
the new SSRS 2005 Report Designer. You need to modify your reports to take advantage of the new
enhancements in RDL that support some of the new 2005 functionality. However, once you do that,
your reports will not run on the 2000 version.

One of the interesting enhancements in setup for Reporting Services was the addition of default
values. Alot of DBA users of SSRS 2000 did not want to have to enter in all the values for their website,
e-mail address, or other information that the 2000 version consistently asked for. To remove this
annoyance, SSRS 2005 by default sets values for you, which you can modify in setup when installing
SSRS 2005. However, you cannot use the default values if you are not installing a local database
engine at the same time or you want to perform a more advanced configuration that does not use the
default values. Instead, you should select the Install but do not configure the server option, and then
you can use the Reporting Services Configuration Tool, which you will learn about later in this chapter,
to configure your server. Figure 9-3 shows the default values portion of SSRS 2005 setup.

The other things you will notice when setting up the 2005 version is that SSRS supports both
multi-instancing and 64-bit SQL Server, both x64 and Itanium-based 64-bit. In 2000, you could only
have a single instance of SSRS on a server, and the SSRS server did not fully support 64-bit. You could
have your SSRS database sit on a 64-bit SQL Server, but you could not have your web services and
SSRS runtime on a 64-bit machine. With this new support, you can break out your SSRS instances to
allow more granular control and administration rather than having to set up completely new servers.

295

296

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

i'é‘- Microsoft SOL Server 2005 CTP Setup []

Report Server Installation Options
Specify how to install a report server instance,

{+ Install the default configuration

" Install but do not corfigure the server

Setup will install the report server and configure it to use the default values, The
report server is usable as soon as Setup is finished,

A Secure Socket Laver (S5L) certificate is not installed on this computer, Microsoft
recommends that you use S5L in most Reporting Services installations,

Help | < Back | Mext = | Cancel

Figure 9-3. Default values in SSRS 2005 setup

Licensing Changes for Reporting Services

Some of the other changes you will see in Reporting Services are licensing related. Many will be
happy that Reporting Services, at least the server-side pieces, are in all editions of SQL Server, from
Express through Enterprise. You will find some restrictions such as Express and Workgroup only
being able to access the local SQL Server as a data source.

This change is important, especially for developers who build SSRS applications. Today, devel-
opers need to write two different applications for SQL Server depending on the edition that they are
targeting. The different editions will need to be SSRS enabled or not. The ReportViewer controls that
you will learn about later in this chapter allow you to generate reports on all editions of SQL Server,
but there is a problem with the controls from an application standpoint. The controls are designed
to work against user-supplied data sources, such as an ADO.NET dataset, and do not write RDL that
is compatible with the server RDL. Therefore, if you want to move from the ReportViewer controls to
a Report Server, you will need to migrate your report application, or support two different versions
of the application. With Reporting Services in all editions, you can write your report application once
and scale it from Express Edition to Enterprise Edition.

Custom authentication has been extended to the Workgroup Edition. Based on feedback from
customers, custom authentication is required to build ASP.NET forms-based authentication or
custom authentication against other directory services such as an LDAP source; but providing the
functionality only in Enterprise Edition was a major blocker due to the cost of Enterprise Edition.
With this change, Internet-based scenarios for Reporting Services will become easier to buy and
implement since many Internet scenarios use custom authentication instead of Windows-based
authentication.

Another major change is that Report Builder, the end-user ad hoc query and reporting tool you
will learn about later on, will be in Workgroup, Standard, and Enterprise Editions. Previously, you
could only get Report Builder in Enterprise Edition. This is great news, since any paid-for edition
now has this capability. For the lower editions such as Workgroup, Report Builder is limited in
connectivity to only the relational databases on the local Workgroup SQL Server instance.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

The main benefits you will get in the Enterprise Edition of Reporting Services are scale-out
support, data-driven subscriptions, and infinite click-through in Report Builder. You will learn
about infinite click-through later in this chapter when we look at the new Report Builder model.

SQL Server Management Studio Integration

In SSRS 2000, Report Manager was used to perform all management tasks, such as creating folders,
managing data sources and report parameters, managing security, deploying RDL files, and setting
up schedules for caching and snapshots.

SQL 2005 introduces a new integrated management tool called the SQL Server Management
Studio (which we introduced in Chapter 2). Management Studio can manage SQL Server, Analysis
Services, SQL Mobile Edition, and Reporting Services. All of the reporting management tasks just
listed can now be performed using SSMS.

Report Manager still exists in SQL Server 2005, and you'll continue to use it if you have only
browser access to your Report Server. However, you may find that the advantages inherent in using
a single, integrated management tool may push you to use SQL Server Management Studio.

Figure 9-4 shows browsing the objects in a Reporting Services installation from Management
Studio.

B Microsoft S0L Server Management Studio [_T5[x]
File Edit %ew MningModel Tools Window Help

2 mew cuery | 0y | 05 0 5 | |5 @ o | B (B B B 2 0

Summary - X

D@EE R = WENF-4 - @report -
El | Database Engine
[thomrizdb2

| AdventureWorks Sample Reports

THOMRIZDBEZ { THOMRIZDEZ\Administrator JiHomel AdventureWorks Sample Reports 7 Tkemis)

Mame |
ompany Sales

mploves Sales Summary

roduct Catalog

roduct Line Sales

Object Explorer
Connect ~ | d]

E | THOMRIZDEZ (SQL Server 9.0.1157 - THOMRIZDEZ | Administrator)
3 Databases
1 Security
[Server Objscts

[Replication

[Management

3 Notification Services

[5qL Server Agerk (Agent ¥Ps dissbled)

B 4 THOMRIZDEZ (THOMRIZDEZ) Administrator)

1 4 Home

ales Order Detail
ales Reason Comparisons
‘ertitory Sales Drilldown

Comparvy Sales
Employee Sales Summary
Product Catalog
Product Line Sales
Sales Order Detail
Sales Reason Comparisons
Territory Sales Drildown
[Data Sources
Models
Reportl
Report3
Urity
3 Roles
[System Rales
[shared Schedules
3 Jobs

1l I+

Ready

Figure 9-4. Browsing Reporting Services objects from SQL Management Studio

To get more intimate with managing a Reporting Services solution with Management Studio,
the following walkthrough will demonstrate how to add a RDL file to the Report Server and then

297

298

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

modify it, in the process highlighting some of the more common tasks that you'll need to perform in
your environment, such as configuring a data source, managing parameters, and so on.

Walkthrough: Management Studio and Reporting Services

Imagine you're a DBA, and you've just been given the requirement to take a report that a developer
has created and saved as an RDL, and add that report to your new SQL Server 2005 Report Server.
How would you do this?

Well, the first step is to fire up Management Studio and connect to your Report Server as shown
in Figure 9-5.

gﬁlﬂ_ S 142 Windows Server System
Community Technology Preview
Server type: IHeporting Services j
Server name: THOMRIZ j
Authentication: IWindows Authentication j
User name: ITHDMHIZDB2\Administrator j
Paszword: I
LConnect | Cancel | Help | Optiong »» |

Figure 9-5. Connecting to Reporting Services from Management Studio

Once you have the connection, you may want to create a new folder to hold your report. To do
this, right-click the folder underneath which you want to create the new folder. In this case, click the
Home folder as shown in Figure 9-6.

Next, you will want to create whatever data sources you need for the report. You can have
multiple data sources in a single report, but in this case, let’s assume you have a single data source.
By right-clicking your folder, you can add a new data source, and the New Data Source property
page appears. In this property page, you can name your data source and select the connection infor-
mation as shown in Figure 9-7.

CHAPTER 9

Object Explorer

Connect = | &2 w9

= [jj THOMRIZDEZ (SQL Server 9.0,1187 - THOMRIZDEZ Administrator)
[Databases
[Security
[Server Objects
[Replication
|1 Management

[Motification Services

l_:b S0L Server Agent {Agent ¥Ps disabled)

Bl [l THOMRIZDEZ (THOMRIZDBZ|Administrator)

=3

Ilorts

Mew Daka Source. .,
Import File. ..

Refresh
Properties

Sales Reason Comparisons
Territary Sales Drilldown

= [Security

1 Roles

[[System Roles
[Shared Schedules
3 Jobs

| |

Figure 9-6. Creating a new folder

iew Data Source

12 General

SQL SERVER 2005 REPORTING SERVICES

[_[5]x]

m #] Refresh Schedule ;S Script Help

2 Connsction

Data source type:

Connection string:

B
Microsoft SUL Server Analysis Services
Oracle
" The credentials supplid ODBC

Disslay the following 1ef i

Connect using:

|Enter a usel name and password to access the data source:

[F Use asWindows credentials when connecting to the data source

" Credentials stored securel on the report server

Login name: |

Fassward [

™| Wse as Windows ciedentials when connecting to the. data souze,

' Windows integrated security

" Credentisls are not requirsd.

Server:
THOMRIZDEZ

Connection:
THOMRIZDB2VAdministrator

3 View connection properties

Ready

™| Impesonate the authenticated user after & sonnection has been made to the, data souse,

Figure 9-7. Selecting a data source in Management Studio

1] C |
R

%

299

300

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Now that you have your data sources, you need to get your report imported into the server. If
you were the developer, you could just use Visual Studio to perform this operation through the
Reporting Services deployment services integrated with the developer tool, but in this case, you’ll
use Management Studio. By right-clicking your folder, you can import a file, just as you can in

Report Manager. Figure 9-8 shows importing an existing RDL file from the SQL Server 2005 samples
into Reporting Services.

ﬁlmport File to /Sales Reports HE B
)] Refresh @ Schedule ; Script - w Help
2 General
Mame:

IEompany Sales
File to upload:

IE:\Program Files\Microsoft SOL Servert3085 amplest\Feporting Services\Report

[~ Ovenwrite itern if it exists
File size: 17 KB
MIME type: Repart Definition File

Server
THOMRIZDEZ

Connection:
THOMRIZDE 2\Administratar

2 View connection properties

Feady

()8 Cancel |

4

Figure 9-8. Importing a report using Management Studio

You may want to modify parts of your report such as setting parameters, changing data sources,
or changing history or execution snapshot settings. If you are familiar with the Properties tab in
Report Manager for your reports, Figure 9-9 should look very familiar to you. Management Studio
mimics the existing Report Manager paradigm to make it easy to switch between the two tools.
Figure 9-9 shows setting the properties for a report in Management Studio. You will see General,

Execution, History, Permissions, and Linked Reports property pages. If you have used Report Manager,
these pages should be very familiar to you.

CHAPTER 9

SQL SERVER 2005 REPORTING SERVICES

E Report Properties - Company Sales !E[E
:] Refresh @ Schedule ; Script Lj Help
& General
44 Execution X :
A History ' Render this report with the most recent data
E"' Permizzions e Do not cache temporary copies of this report.
44 Linked Reports
- " Cache the report. Expire after [minutes): I‘]U 3:
& Cache the report. Expire bazed on the following schedule:
& Report-specific schedule Configure |
Ab 2:00 &M every day, starting B/12/2005
€ Shared schedule j
 Render thiz report from an execution snapshot
™| Create a shapshat orthe follawing schedule;
% Feportspeciic schedile Configure |
Ab 200 &M every day, starting B/12/2005
€ Shared schedule j
Server
THOMRIZDEZ
Connection: ™| Create a snapshat of the report wher this page is saved
THOMRIZDE 2\Administratar S
Fiepart Execution Timeout Defaults
2 View connection properties Use the default setting
" Do not timeout report execution
Ready * it report execution ko the following number of seconds: § I‘ISDD 3:
()8 I Cancel |
4

Figure 9-9. Managing execution parameters using Management Studio

Next, you may want to create a shared subscription schedule for your report. To create a shared
schedule, right-click the Shared Schedules folder and select New Schedule. Shared schedules, as
their name implies, can be shared among many reports just like shared data sources. Please note
that SSRS uses SQL Server Agent to run scheduled reports, so SQL Server Agent must be installed and
running on your server. Figure 9-10 shows the dialog box for creating the shared schedule. As you
can see in the dialog box, you can set recurrence patterns and start and stop dates.

301

302

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES
h New Shared Schedule M= 3
m_] Refresh @ Schedule ; Script - u Help
& General
Mame:
ISaIes Feport Schedule
Fange of Recurence
Begin running thiz schedule on: I EA12/2005 'l
[~ Stop this schedule on: I E/12/2005 'l
Recurence Pattern
Type: IWeek j
Start time: I 2:00:00 B j
Fiepeat after this number of weeks: |1 3:
On day(s]: [T Sun [Mon [Tue [‘wed
[~ Thu ¥ Fri [~ Sat
Server
THOMRIZDEZ
Connection:
THOMRIZDE 2\Administratar
2 View connection properties
Feady
4] | B
ITI Cancel |
4

Figure 9-10. Creating a shared schedule for report execution

Now that you have your shared schedule, you can create snapshots or subscriptions that follow
that schedule. Please note that in order to create subscriptions, you need to store the credentials
with your data source when you create it or use no credentials at all. To create your subscription, you
expand your report, and right-click the Subscriptions folder. Then, you can select the type of delivery
you want for your subscription. All installed delivery extensions are displayed in the delivery extension
drop-down list. You can write your own delivery extensions beyond the built-in ones, which include
fileshares and e-mail. Delivery extensions are .NET components that implement the IDeliveryExtension

interface. Figure 9-11 shows setting the properties for a subscription.

CHAPTER 9

SQL SERVER 2005 REPORTING SERVICES

n Report Subscription Properties !E[E
Selectapage] Refresh Schedule 5 Serpt - I3 Help
i Gienera
r-) :
&% Scheduling Motify by:
IHeport Server E-bail j
Subscriber email addreszes [zeparate multiple addreszes with a semicolon]:
To: |me@mycompany.com
(Ciez I
Be: I
Reply-Ta: |me@mycompany.com
Subject: I@HeportName waz executed at @ExecutionTime
V' Include Report Fender Format: IWeb archive j
IV Include Link
Connection Pricrity: I Mormal j
Server Lot ;I
Connection:
THOMRIZS ALDOM WA dminiztrator
27 View connection properties
Progress
Feady
oK I Cancel |
4

Figure 9-11. Creating a subscription for a report

The final step is to give your users permissions on the report. The standard roles that you found
in SQL 2000 Reporting Services are included with SQL 2005 such as Browser, Content Manager, My
Reports, Publisher, System Administrator, and System User. We will not be showing you how to
create a custom role, even though you could do that in Management Studio; instead you will be
adding users to your report through the user interface. To do this, you can right-click your report and
select Properties. Under the Permissions page, you can add, remove, or change users and permis-
sions on your report, as shown in Figure 9-12.

303

304

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

E Report Properties - Company Sales !E E
m_] Refresh ' Schedule ; Script - u Help
4 General
12 Execution
_'9"‘ Histany Inherit roles from the parent folder
r ..
- E:EZSL‘D;:D”S & Use these rales for each group or user account:
- Group or uger / I Browszer I Content Manager I My Repoits | F‘ublisherl Feport Builder |
BUILTIM Administrators Il I Il Il -
THOMRIZDB2\E veryane v I~ v T
Serven
THOMRIZDE2
Connection
THOMRIZDE 2Administrator
3 View connection properies
ngles
< |
Feady
Add Group or User... | Bemove |

Ok I Cancel |

4

Figure 9-12. Working with Reporting Services permissions in Management Studio

You can also delete any of the objects you've created in this walkthrough such as your reports,
data sources, or users. Management Studio combines your experience of managing your SQL Server
assets with the addition of the ability to view and modify Reporting Services.

Management Changes

Another change has been made to SSRS when it comes to managing your server, even beyond the
SSMS integration. There is a revised WMI provider for SSRS. This revised provider allows more gran-
ular control and querying of both SSRS and some parts of IIS that SSRS depends upon. You can use
these new capabilities to build your own administration tool or script the management of Reporting
Services. While the list of WMI classes and properties is too big to present here, let’s take a look at
performing some common operations using the WMI provider. From there, you will get the sense of
how to use the WMI provider and then can apply that knowledge across the rest of the WMI classes
for SSRS.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

WMI Provider

We will look at an example that retrieves information about a particular instance of Reporting
Services. The full sample is included in the samples for this chapter (downloadable from the Apress
site at http://www.apress.com) so we will look at snippets of code from the full sample. What we will
do is enumerate all the properties and methods for the instances of Reporting Services that you can
call via WMI. Then, we will call one of those methods to perform functionality. Following this paradigm,
you can call any of the other WMI methods provided.

The first thing to realize is that WMI is implemented in the System.Management namespace. The
easiest way to browse WMI namespaces, rather than writing code, is to use the Server Explorer in
Visual Studio. From the Server Explorer, you can see default WMI classes. Then, you can browse
and add new WMI classes to the Server Explorer. However, we will be writing code to browse WMI
namespaces.

The code snippet that follows sets some variables and then connects to WMI. As you can
see, the code uses the new My namespace in VB, which is a lifesaver. WMI is implemented using
namespaces, classes, and scopes.

Dim WmiNamespace As String = "\\" & My.Computer.Name & _
"\root\Microsoft\SqlServer\ReportServer\v9"

Dim WmiRSClass As String = "\\" & My.Computer.Name & _
"\ROOT\Microsoft\SqlServer\ReportServer\vo\Admin: " & _
"MSReportServer ConfigurationSetting"

Dim serverClass As ManagementClass

Dim scope As ManagementScope

Private Function ConnecttoWMI() As Boolean
scope = New ManagementScope (WmiNamespace)

"Connect to the Reporting Services namespace.
scope.Connect()

'Create the server class.

serverClass = New ManagementClass(WmiRSClass)
'Connect to the management object.
serverClass.Get()

If (serverClass Is Nothing) Then
ConnecttoWMI = False
Else
ConnecttoWMI = True
End If
End Function

After you connect to the WMI server class for Reporting Services, you then retrieve all instances
of that server class that represent instances of Reporting Services. Then, to enumerate properties
and methods, you just use the built-in properties and methods properties as you scroll through each
instance. If you already know the method or properties you want to call, you do not have to perform
all these steps, as you will see in the next example.

305

306 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

"Loop through the instances of the server class.

Dim instances As ManagementObjectCollection
Dim instance As ManagementObject
For Each instance In instances

Dim instProps As PropertyDataCollection
Dim prop As PropertyData
For Each prop In instProps

strItemtoAdd = ""

name = prop.Name

val = prop.Value

strItemtoAdd = name & ":
If Not (val Is Nothing) Then
strItemtoAdd += val.ToString()

Else
stritemtoAdd += "<null>"
End If
listResults.Items.Add(strItemtoAdd)
Next

Next

serverClass.GetInstances()

instance.Properties

Dim methods As MethodDataCollection = serverClass.Methods()

Dim method As MethodData
For Each method In methods
strItemtoAdd = method.Name
listMethods.Items.Add(strItemtoAdd)
Next

If you want to call a method, which is more difficult than calling a property, you just need to set
your in-parameters, which are the values you need to pass to the method. In the example that
follows, we’re going to show you how to back up your encryption key for your SSRS instances just in
case you ever have to restore it. To set your in-parameters, you need to first get those parameters
using the GetMethodParameters method and pass in the name of the method you are interested in.

Next, you can set individual in-parameters via name and pass

the values for the parameters. You

need to pass a password for encrypting the encryption key to this parameter. Then, you use the
InvokeMethod method to call the method with your parameters. You pass your object for out-parameters
as part of that call so you can retrieve whatever comes back. In this case, you get back the HRESULT
and the encrypted key, which eventually you display to the screen. You could easily store this key to

disk so that you could back it up to hardened storage.

'Back up the encryption key for each instanc
'BackupEncryptionKeyMethod

Dim instances As ManagementObjectCollection
Dim instance As ManagementObject

For Each instance In instances

e using the

serverClass.GetInstances()

Dim inParams As ManagementBaseObject = & _

instance.GetMethodParameters("BackupEncryptionKey")

inParams("Password") = "Tom15892!!"

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Dim outParams As ManagementBaseObject = & _
instance.InvokeMethod("BackupEncryptionKey", inParams, Nothing)

Dim strKeyFile As String =
Dim arrKeyfile As System.Array

arrKeyfile = outParams("KeyFile")

Dim i As Integer = 0

For i = 0 To arrKeyfile.Length - 1
strkKeyFile += Hex(arrKeyfile(i))

Next

MsgBox("HResult: " & outParams("HRESULT") & " Value: " & strKeyFile)
Next

Management and Execution Web Services

The other change is the addition of two new web services that break out the management and execu-
tion management for developers who want to programmatically perform fine-grained control of
both these functions. From the management web service, you can create folders, data sources, roles
and list subscriptions, reports, and histories. From the execution web service, you can process

and render reports. To access the report management web service, point to http://yourserver/
ReportServer/ReportService2005.asmx?wsdl. To access the report execution web service, point to
http://yourserverReportServer/ReportExecution2005.asmx?wsdl. Both have extensive object
models, so we will point you to the documentation for all the different properties and methods you
can use. Look for the section titled “Introducing the Report Server Web Service” in Books Online.

Reporting Services Configuration Tool

Previously, one of the hardest things for DBAs to understand was how to configure Reporting Services.
If you have used Reporting Services in the past, I bet you have run into issues with the master key on
your Report Server. This is one of the most common configuration errors that folks see with Reporting
Services. To help with the task of configuring your Report Server after setup, you can use the new
SSRS Configuration Tool. This tool allows you to work with SSRS virtual directories, service accounts,
report metadata databases, encryptions keys, e-mail settings, and scale-out settings. Many of the
things you would normally use the rsconfig command-line tool for are now included in the Config-
uration Tool. Figure 9-13 shows the main interface for the SSRS Configuration Tool.

You can also use the SQL Server Configuration Manager to manage some elements of your
Reporting Services deployment, such as the report service and the service account. Furthermore,
you may find that using the existing command-line tool actually continues to provide you with the
most flexibility, especially in scripting scenarios where GUIs will not meet your needs. Finally, there
are also web services that you can use to manage your SSRS environment. The reason for all these
different tools and techniques is to provide a multitude of capabilities depending on your environ-
ment. If you are mostly a GUI person, you will find yourself using SSMS and the SSRS Configuration
Tool most of the time.

307

308 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

B® Report Server Configuration Manager: THOMRIZDB2\MSSQLSERYER [=]
i [l . |
Configure Report Server — 1
| |- m =

WJconnect 7] Refresh
EEE =] Report Server Status

a Server Status Use the Reporting Services Configuration tool ko configure a report server deployment. Click an item in the navigation pane to open a configuration page.

Use this page ta start or stop the Report Server Windows service.
(@ Report Server Yirtual Directory
(@ Report Manager Wirtual Directory

Instance Properties
(@ Windows Service Identity

Instance Mame: MSSOLSERVER
() Web Service Identity Instance ID: MS50L.3

Initialized: Yes
(@ Database Setup Service Status: Running

Start Stap

@ Encryption Keys
.9 Initialization

@ Cconfiqured
D Emall settings @ Mot configured
[\ Execution Account @ optional configuration

4\ Recommended configuration

Help Apply

Figure 9-13. SSRS Configuration Tool

Report Design and Execution Improvements

Based on customer feedback on the top requested improvements, SSRS adds changes to both the
design-time and runtime execution environment. SSRS design work is now part of the Business
Intelligence Development Studio (BIDS). From BIDS, you can work with SSIS, SSAS, or SSRS. For
SSRS in particular, you can create a new report project, run the Report Project Wizard, or create a
new Report Builder model project, which we will discuss a little later on in the “Walkthrough: Report
Builder” section. Figure 9-14 shows the new project user interface in BIDS that supports SSRS.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

New Project ﬂ E
oo
Project bypes: Templates: BE
-Other Languages visual Studio installed templates
Business Inteligence Projects
Wisual Basic __gnnalysis Services Project '_‘_glmport Analysis Services 9.0 Datab..
Wisual C# ___.,]Integration Services Project jﬂReport Server Project Wizard
Wisual J# __ﬂReport Model Project
Visual C++
Distributed System Solutions My Templates

-Other Project Types

[Test Projects earch Online Templates. ..

Create an empty Report Server project,

Mame: I Report Project3
Location: I CiDocuments and SettingstAdministratoriMy Documentsiyisual Studio 20054 Projects j Browse, .. |
Solution: ICreate niew Solution j [V Create directary For solution

Solution Mame: I Report Project3 [~ add ko Source Control

[8]4 I Cancel |

Figure 9-14. Creating a report project in Business Intelligence Development Studio

Expression Editor

As part of the new BIDS design-time environment, you will find new capabilities in the designer. The
first one is that the designer now has an Expression Editor. Yes, you did read that correctly. You do
not have to use Notepad-like functionality anymore to edit your expressions. You now get color
coding, the ability to select functions from a list, syntax checking, intellisense for parameters, and
even statement completion. One common question with regard to expressions in SSRS 2000 was the
functions that SSRS supported. Figure 9-15 shows the new Expression Editor in SSRS 2005.

309

310 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

ﬁ Edit Expression B3
=IIF]| =

IIf (Expression as Boolean, TruePart as Object, FalsePart as Object) as Object
Expression:
Required, Boolean, The expression you wank to evaluate,

ll

4 |

Unda | Faste |

. Constants el Mo constants are available for
: -Globals this property.

-Parameters
-Fields {Datasetl)
-Datasets

+]- Operators
-- Common Functions

OF Cancel Help

Figure 9-15. The new Expression Editor

Multivalued Parameters

SSRS 2005 introduces the concept of multivalued parameters. In SSRS 2000, you had to create this
functionality either by passing delimited text that you would parse or by embedding SSRS into your
application and wrapping it with your own parameter UI. Multivalued parameters are very useful in
reporting applications. Imagine the scenario where you want to be able to select customers based on
the state in which they live. However, you may have sales reps who cover multiple states, so they
want to access their customers from multiple states at once. With multivalued parameters, you can
provide this capability.

To create a multivalued parameter, you create your parameters as you normally would except
you also check the multi-value check box option in the report parameters user interface as shown in
Figure 9-16.

Also notice the new Internal check box in this figure. This is to support parameters that cannot
be changed at runtime. They appear nowhere in the report or on the URL, unlike hidden parameters.
These parameters only appear in the report definition. Enough on this digression, though. Once you
have specified your parameter will be multivalued, the SSRS runtime takes care of displaying the
parameters as check box options in the user interface for users to select the different values. There
is even a Select All option that will select and deselect all parameter values. Figure 9-17 shows the
runtime interface for multivalued parameters.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES 311

ﬂ Report Parameters E

Parameters: r—Properties:
Category Ll Marne: [Categery
Ll Data bype: IString j
Prompt: ICategory
[~ Hidden [~ Internal ¥ Multi-value
I Allow null value ¥ Allove blank value

Available values:

Dataset:
" Mon-guetied
ICategories j
' From query Walue field:
ICategory_Name j
Label field:

L«

ICategory_Name

Default values:

" MNon-quetied

" From query

Add
& MNone
Remove |
OF Cancel Help
“3
Figure 9-16. Creating multivalued parameters
/SCML Products.rdl [Design] }/Start Page] - X

View Repaort |
[{5elect ally

3 1|l Accessaries y el ~ ||lgg% j !
[] Bikes
Clothing

[] Components

Figure 9-17. Runtime UI for multivalued parameters

312

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

When a user selects a multivalued parameter, SSRS returns back the selected values as a comma-
delimited list. If you want to use that list in an expression, you will need to parse that list into its
different values. You can also pass the value for your parameters along the URL to SSRS using a
comma-delimited list.

A few other things to note with multivalued parameters:

¢ They cannot accept null values.

¢ They are always returned as strings, so you need to make sure your stored procedures or logic
that uses the parameter can understand and parse the string.

¢ You cannot use them in filters since they are not deterministic.
* You cannot use them with stored procedures.

¢ Your query must use an IN clause to specify the parameter such as SELECT * FROM table WHERE
name IN (@NameMVParam).

¢ If you want to use multivalued parameters in expressions, you can use the JOIN and SPLIT
functions to join together or split apart the values for your multivalued parameter. With
multivalued parameters, you can use the Label, Value, and Count functions to return back the
names of the parameter values; the values function returns back the values for the selected
parameters that might be different from the label, and finally count returns back the count of
the values for the parameter. For example, the following expression returns back the values
for a multivalued parameter named Cities: =Join(Parameters!Cities.value, ", ")).

Finally, as with any parameters, make sure to not overdo the number of options you allow in
your parameter. Limit it to the list that is required for the user to make the right selections; otherwise
your performance will suffer.

DatePicker for Date Values

To support making it easier for end users to select date values when used in parameters, SSRS adds
a DatePicker runtime control. A couple of caveats, though. The parameter has to use a datetime type,
and it cannot be selected for a multivalued parameter. If you specify a multivalued parameter, you
will get a drop-down list for your parameter value selection and not a DatePicker control. Figure 9-18
shows selecting a parameter that uses the DatePicker control.

XML Products.rdl [Design]*}/start Page]

CHAPTER 9

SQL SERVER 2005 REPORTING SERVICES

-~ X

|24, Preview

&l Layout

Category IAccessories, Clathing j Date of Sale I

ol Lo | |

4 June. 2005

Sun Mon Tue Wed Thu Fri

fic|
[|

Sat

23 30
5 B

Lo BE

19 20
26 27
34

il
7
14
21
28
5

1
8

2
k|

3
10

15 16 17
22023 2

23 30

[

7

1
8

[IToday: 6/12/2005

4
ikl
18
25
2
9

View Repaort |

Find 1 Mext

Figure 9-18. Runtime UI for date parameters

Interactive Sorting

While SSRS 2000 had some good levels of interactivity using features such as visibility toggles, one
missing built-in feature was interactive sorting. If you have ever clicked a column heading in Outlook
and saw your e-mail re-sort according to that column heading in ascending or descending order,
you have used interactive sorting. Again, you could hack your way around this limitation using
parameters and data region sorting techniques, but that was for the SSRS expert, not the person who
wanted to just click a check box or fill out a simple form to get the functionality. With 2005, interac-
tive sorting is now a core feature of the product. Interactive sorting is done through text box properties in
SSRS 2005. This means that you do not select an entire column to view the interactive sort properties,
but instead click the text box that is the column heading in a table. Interactive sorting works with
tables, lists, and matrixes as well as grouped or nested data in those containers. In addition, you can
sort different multiple columns as well using this technology. Figure 9-19 shows the property page

for interactive sorting.

313

314 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

@Texthox Properties

General | visiilty | Navigation | Fnt | Format Interactive Sort | pata output |

¥ add an interactive sort action ko this textbox

Sork expression:

Fields!Product Ma alue j fe |

Data region or grouping ko sork:
' Current scope

" Chonse data region or grouping

=l
Evaluate sort expression in this scope:
(* Detail scope
" Chonse data region or grouping
=l
OF | Cancel | Help |

“

Figure 9-19. Setting interactive sort settings at design time

Asyou can see from the screenshot, you need to fill out the sort expression. For most scenarios,
this will just be the expression that evaluates to the column of data that you want to sort. For example,
if you are sorting on last names, you will put in an expression that will evaluate to the last name field
in your report. There may be times when your sort may be more complex. For example, you may
want to sort based on the relative value of another field.

You can also specify the data region or grouping to sort or where to evaluate the scope of the
sort expression. This is useful if you want independent sorting based on grouping or not. For example,
you could have a sales report grouped by country and then by city. You may not want to have changing
of sort order of countries to affect the sort order of the cities in those countries. If you use the default
settings, this is the default behavior. However, you could make re-sorting the countries affect the
sorting of the cities as well.

The user interface for the sort is an up arrow or a down arrow depending on the sort order.
When you do the sort inside of the user interface, a request is actually sent back to the server to redo
the sort. It is not a client-side sort only, so you have to be careful about performance implications of
users re-sorting on many columns in your report.

Analysis Services Integration

One of the pieces missing from SSRS 2000 was tight integration with Analysis Services. While you
could manually write MDX into the generic Query Designer and query your AS cubes, this experi-
ence was no better than typing code in Notepad. You had no integrated Query Designer, and getting
the query and report right on the first attempt was difficult, if not close to impossible. However, if
you were working against relational sources, you could use the integrated visual data tools included
with Visual Studio to add tables, create groupings, and preview the returned results.

With SSRS 2005, the deficit of AS integration is removed. By having SSRS integrate with BIDS,
you now have one place where you can create and manage your Analysis Services technologies, such
as cubes, key performance indicators (KPIs), and data mining settings. Plus, you can create your SSIS
packages in BIDS. Finally, you can create and deploy your reports from BIDS. Figure 9-20 shows the
interface for the Analysis Services in BIDS.

@0 Adventure Works - Microsolt Yisual Studio

Eile Edit Wiew

A-H P

Project Build Debug

Database

3

Cube Test Tools

CHAPTER 9

Window

Development = | S 25 [S0 Bl A - o

Community Help

SQL SERVER 2005 REPORTING SERVICES

[[=]]

Balleay sl iox

Adventure Warks.dsv [Design] - Adventure Works.cube [Design] | Start Page |

:_i Cube Struckure | 2] Dimension Usage ’3 Calculations ‘1;’ KPIs |L_"', Actions |?j Partitians ‘ Perspectives ’S Translations ’1 Erawser

2 EE

Measure Groups
Dimensions [=] |l mritermet sales [aal] Intermet Orders [aal] Custemer Counts] Sales Reasons
oo [| [owc I

r—

1 Date (Ship Date)

| Date

| [oo=

| [

1 Date (Delivery Date)

| Date

| [

| [

1 Customer

| Customer

| [omtomer

| [Gomtomer

1 Reseller

1 Geography

1 Employee

1l Promation

| Promotion

| [Fromoten

| [Framoten

4 Adventure Works DW= |
- [25 Data Sources

- 0:0 Adventure Works,d:
Bl [Z5 Data Sourcs Views

- . Adventure works.d:

3 Clustered Customer—
+[] Subcategory Basket
Bl [Cubes

- [Adventurs Works.ct

H (4 Mined Customers.cu
B [Dimensions

- 1 Pramation. dim

- 1/ Product.dim

+ 1 Customer dim

< »
] Solution Ex... 5% C\:lntents/

Date RegularMeasureGrouplime =

sl

16 Product

[Product

| [product

| [product

16 sales Territory

| Sales Territory Region

| | Sales Territory Region

| | Sales Tertitory Region

16 sales Reason

| Teo sales Reasons

| | 1o Sales Reasons

| | feo Sales Reasons

| [[5eles Reason

16 Internet Sales Order Det...

Toal Internet Sales Order

Taal Internet Sales Order

Tasl Internet Sales Order

| [xnternet Sales Order

15 Reseller Sales Order Details

16 Currency (Source Curren. .

[Crroer

= Misc
Cardinality Many
Source (none)

16 Grganization

Cardinality

< |

oLt
Ready

Figure 9-20. SSAS interface in BIDS

With Reporting Services, you can easily add your Analysis Services cubes to a report. Let’s walk
through the creation of a new report that uses OLAP technologies in SQL Server 2005 to give you a better
understanding how the Analysis Services integration works. The walkthrough assumes you already have
an existing Analysis Services cube. For the purposes of the walkthrough, the AdventureWorks sample
database and cubes included with SQL 2005 will be used.

Walkthrough: Building a Report in BIDS

First, fire up BIDS. From the File menu, you can create a new project. If you select the Report Project
Wizard, you will get the same wizard you have seen in SQL 2000. The only difference is that Analysis
Services is a top-level data source and has a built-in Query Designer that you can launch from the
wizard. Instead of using the wizard, use the generic Report Project type.

Once you select the report project and give it a name, you're dropped into the design environ-
ment, which is very similar to Visual Studio. Since BIDS builds on the Visual Studio shell, you will
want to become familiar with the layout and commands of Visual Studio. In the Solution Explorer,
you will add a new data source by right-clicking the Shared Datasources node and selecting Add
New Datasource, just like you do in SQL 2000. For the provider, you will use the .NET Framework
Provider for Microsoft Analysis Services, which is called SQL Server Analysis Services in the user inter-
face, and fill out the location of your data as shown in Figure 9-21. You can find the AdventureWorks
samples as part of your SQL Server 2005 installation, which you will use here.

315

316

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Connection Properties ﬂ E
D ata source:
I SOL Server Analysis Services [Adomd LChange... |
Server name:

IIocthost

r— Log on to the senver

Wzer name: I

Bazzword: I

™| Save my password

r~ Connect to a database
Select or enter a database name:

I =

L{Adventure Works D'w =

Adwanced... |
IestEonnectionl QK I Cancel |

4

Figure 9-21. Selecting the cube location when creating your data source

Tip The AdventureWorksDW sample database isn’t installed automatically unless you have selected to install the
SQL Server 2005 samples as part of your setup. To install it after the fact, you need to run the SqlServerSamples.MSI
installer file that can be found in the <Program Files>\Microsoft SQL Server\90\Tools\Samples\1033 folder. This
creates a folder called AdventureWorks Analysis Services Project in the same directory containing files that make
up a Bl Tools solution. Load the solution (Adventure Works DW.sInbi) into BIDS and check that the project’s data
source matches your setup. If it’s different, you’ll need to change both the adventure_works.ds data source and the
project settings (select Project » AdventureWorksAS Properties on the main menu and then change the target
server on the Deployment page of the Configuration Properties dialog box). Finally, deploy the database by right-
clicking the solution name in Solution Explorer and selecting Deploy Solution. This may take some time . . .

If you double-click your data source after you create it, you will see that Analysis Services
appears as a top-level data source, just like SQL Server, Oracle, OLEDB, and ODBC. The property
page for the data source is shown in Figure 9-22.

Change Data Source EHE

[rata zource:
Microsoft SOL Server
Microsoft SOL 5 erver &

Se

r— Description

Uze thiz data provider to connect to
Microzoft Analpsis Services.

[rata provider:
I.NET Framewark Data Provider for Mij
[~ Always use this selection 0k I Cancel |

4

Figure 9-22. Analysis Services as a top-level data source

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Next, you add a new report. Instead of using the Report Wizard, you just add a new item by
right-clicking Reports and selecting Add » Add New Item » Report, which creates a blank report.
Typein your report name, such as Reportl.rdl, and click Add. Once the report is created, you can add
a new dataset to the report by clicking the Dataset drop-down list and selecting <New Dataset...>.
This new dataset will be based off your Analysis Services data source. Once you select the AS data
source you created earlier and click OK, you are dropped into the AS Query Designer. This is a new
feature in SQL 2005. Instead of having to write MDX by hand, you can drag and drop measures in the
new Query Designer. The MDX is automatically generated for you based on your interaction with the
Query Designer. If you are a power MDX user, you can still go into the generic Query Designer and
write MDX by hand. The new Query Designer is shown in Figure 9-23.

Reportl.rdI[Design]] 5 X
1G] Data ‘§J Layout |_3 Preview
Dataset: |Datasett - FAa S| HEEARKAE! XD

’J Adventure Works _I Dimension I Hierarchy I Operatar I Filter Expression

<Select dimension

?6 Metadata |

,J Adventure Warks
[ol Measures
- KPIs 4 | |
---L Account

[Custormer

[Date

[Delivery Date

[Department

[Employee

[Internet Sales Order Details
[Organization

[Product

[Promotion
|
|
|
|
|
|
|
£}

Reseller

Reseller Geography
Reseller Sales Order Details
Sales Reason

Sales Territary Drag levels or measures here to add ko the query
Scenario

Ship Date
Source Currency

Calculated Members

Figure 9-23. The new AS Query Designer in Reporting Services

Since you want to create a quick report that shows your salespeople how much they have sold,
the total cost of the sales, and then the total profit each salesperson has brought into your company,
you need to create your queries. The first step is to drag and drop from your measures, KPIs, or AS
hierarchy over to your query window on the right-hand side. The first level in the hierarchy that
you’'ll add to the report is the Employees level. When you drag and drop, the Query Designer executes the
query to return a preview of your result set, as shown in Figure 9-24, once once you complete the
steps that follow.

317

318

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Reportl.rdl [Design]"‘] 5 X
L5 Data |4 Layout |_E Preview
Dakaset: IDataSetl j A - | 1= 4F XA N @WE
’J Adventure Works | Dimension I Hierarchy I Operator I Filter Expression
Employee s4 Employee Department | Equal { Sales +
?6 Metadata | POty i Employ P q
% Expense o Revenus Ratio 4 | _’I
Exte::led Amaunt Title Full Marne Revenue Per E... I Total Produck CI Sales Amount...
Freight Cost H
J y . European Sales... | amy E Alberts 27119652,1303 16216025,.0499 1687000
Gross Profit Margin - || |i-
ross Prafit Margin % Maorth Ametica... Stephen ¥ Jiang 272819724892 16368964.4176 (null)
Order Count Pacific Sales M... Syed E Abbas 26120868,5079 154016147433 (null}
Order Quantity Sales Represen... David R Campb.. 32748286.6008 20594982.4407 2287000
Ratio to Al Products
. Sales Represen... Garrett R Vargas 28855722,1904 17660199,0837 76000
Ratio to Parent Product:
Revenue Per Emplayee Sales Represen... Jae B Pak 32623137.1073 20610257.4539 (null)
Sales Amount Sales Represen... Jilian Carson 38163748.6838 25201434.2278 6745000
Standard Product Cost Sales Represen... José EdvaldoS.. 346193835702 22350663.2738 20500(
Tax Amount
Sales Represen... | Linda C Mitchell 38653551.3217 25495157.6131 FO09s00(
- Total Product Cost
~-ailf YOY Revenue Growth Sales Represen... Lynn M Tsoflias 26949995,4233 16110401.8686 (null)

[#-{_J Sales Targets Sales Represen... Michael G Blythe 37257860,2579 24471999,8586 Fan400(
L3 KPs Sales Represen.. Pamela O Ans.. 27845192.4007 16767956.4539 5557001
- Account
[]___% Customer Sales Represen... Rachel B Yaldez 28070209,374 170607104064 {null)

-1 Date LI Sales Represen... Ranijit R Varkey... 31457835.833 19802402,7995 {null)
Sales Represen... Shu K Ito 33934986.4589 21889575.0295 2753000
Calculated Members
Sales Represen... Tete A Mensa-... 28820780,3857 176731937949 {null
Sales Represen... Tswi Michael R... 34720687 4615 223602236903 10514000
Wice President... Brian 5 Welcker 26005821.4918 15300166,2995 12195000
Kl | o]

Figure 9-24. Previewing the result set in the Query Designer

First, drag and drop the dimension called Employee onto the grid on the right-hand side. You
can find this dimension under the AdventureWorks cube. This will create the Department Name,
Title, and Full Name columns. You can remove the Department Name column if you want since you
will filter on it later anyway. Next, you need to drag and drop some measures. The first one is the
Revenue Per Employee measure. You can find this under the Measures hierarchy, then under Sales
Summary. Drag and drop the Revenue Per Employee measure onto the grid. Then, drag and drop the
Total Product Cost measure from the same hierarchy. Finally, drag and drop the Sales Amount
measure from the same location onto the grid.

Since right now this returns all employees, not just the sales employees, you need to refine your
query a little bit. Rather than writing the MDX by hand, all you need to do is select the dimension on
which you wish to filter in the top filter dialog box, the hierarchy in that dimension that you want to
use, the operator, and finally the value. Here, you will select the Employee dimension, the Employee

Department hierarchy, and check to see whether the Employee Department name is equal to “Sales”.
Optionally, you can make the filter expression a parameter to the report by clicking the check box
called Parameters, which could be off the screen to the right in some cases. Since you do not want to
make this a parameter because you just want one value for this filter, you will leave the check box

CHAPTER 9

unchecked. This entire action is shown in Figure 9-25.

SQL SERVER 2005 REPORTING SERVICES

Reportl.rdl [Design]"‘]

L5 Data |4 Layout |_E Preview

Dataset:

Al
x

|Datasett

HeF2 5 BEEATXETC N[BT

,J Adventure Works

o

f:ﬁ Metadata |

[#-_1 Fi

...l

...l

...l

...l

...l

...l

...l

...l

...l

...l

...l

...l

...l

...l

- KPIs

[

[

[]---ﬁ Custio
G- 17 Date

--alfg

nance

= Sales Summary

] Expense to Revenue Ratio

Extended Amount
Freight Cost

Gross Profit Margin
Gross Profit Margin %
Order Count

Order Quantity

Ratio to Al Products
Ratio to Parent Product:
Revenue Per Employes
Sales Amount
Standard Product Cost
Tax Amount

Total Product Cost
YO Revenue Growth

[#-{_J Sales Targets

]E Account

mer

|

Calculated Members

Dimension

I Hierarchy

I Operator

I Filter Expression

Employee

<Select dimension ¥ |

]

Y Employee Department

Equal

{ Sales +

Comomer ' ad
Date — Mame Revenue Per E... I Total Produck CI Sales Amount...
Delivery Date alberts 27119652.1303 16216025.0499 1687000
Department -

Employes n 'Y Jiang 27281972.4892 163689644176 (null)

Internet Sales Order... » | Abbas 26120868,5079 154016147433 (null}

Sales Represen... David R Campb... 32748286.6008 20694952 4407 ZZE700(
Sales Represen... Garrett R Vargas 28855722,1904 17660199,0837 76000
Sales Represen... Jae B Pak 32623137.1073 20610257.4539 {null)

Sales Represen... Jilian Carson 38163748.6838 25201434.2278 6745000
Sales Represen... José Edvaldo 5. 34619383,5292 223596632738 205001
Sales Represen... | Linda C Mitchell 38653551.3217 25495157.6131 FO09s00(
Sales Represen... Lynn M Tsoflias 26949998,4233 16110401.8686 {nully

Sales Represen... Michael G Blythe 37257860,2579 24471999586 Fan400(
Sales Represen... Pamela © Ans... 27845192.4007 16767956,4539 57000
Sales Represen... Rachel B Yaldez 28070209,374 170607104064 {null)

Sales Represen... Ranijit R Varkey... 31457835.833 19802402,7995 {null)

Sales Represen... Shu K Ito 33934986.4589 21889575.0295 2753000
Sales Represen... Tete A Mensa-... 28820780,3857 176731937949

Sales Represen... TsviMichasl R | 347206674615 2236022360081 10514000
Wice President... Brian 5 Welcker 26005821.4918 15300166,2995 1219806‘[‘
Kl |

Figure 9-25. Creating filters in the Query Designer

Finally, you need to calculate the total profit from each employee. To do this, you need to create
a calculated member in the Query Designer. A calculated member is a member that you use an
expression to create, and the member does not exist in the underlying data sources but in the meta-
data model for Analysis Services. You can right-click in the calculated member section of the Query
Designer and select New Calculated Member. The Calculated Member Builder appears, as shown in

Figure 9-26.

319

320

CHAPTER 9

@ calculated Member Builder

SQL SERVER 2005 REPORTING SERVICES

I[=] E3

Mame ITotaI_ProFit

Parent Hierarchy

| MEASURES

Parent Member I

bl [

Expression
FtrToValue [[Measures] . [Revenus Per Employees]) -
[Measures] . [Total Product Cost]
=
Metadata Functions
,J Adventure Works o I R)]
+- ol Measures W Array
1 KPIs +-{_J Dimension
[Account [Hierarchy
[Customer - Level
[Date -3 Logical
[Delivery Date -3 Member
[Department ,__] Mumeric
[Employee ,__] COther
[Internet Sales Order Details - Set
[Organization ,__] Skring
[Product .__] Tuple
#-|c Pramation LI
[8]4 I Cancel
4

Figure 9-26. Creating a calculated member

As part of the dialog box, you can select the different functions that MDX provides for you. Since
you just want to subtract two numbers, total revenue and total cost, this is a pretty easy calculated
member to create. Name the calculated member Total_Profit. You can either type in the MDX from
the screenshot or follow the steps described next to create the calculated member. First, find Revenue
Per Employee in the Measures hierarchy under Sales Summary and drop it into the Expression window.
Put a minus sign after the Revenue Per Employee and drag and drop the Total Product Cost from the
same part of the hierarchy. You can optionally put the StrToValue function around the Revenue Per
Employee member. I did this just to show you how you can use different functions in the designer.
Click OK.

If you look at the MDX that the designer generates for you for the entire query, you can see that
you would not want to do this by hand!

WITH MEMBER [Measures].[Total Profit] AS

'StrToValue([Measures].[Revenue Per Employee]) -

[Measures].[Total Product Cost]' SELECT NON EMPTY {

[Measures].[Revenue Per Employee], [Measures].[Sales Amount Quota],
[Measures].[Total Product Cost], [Measures].[Total Profit] } ON COLUMNS,
NON EMPTY { ([Employee].[Employee Department].[Full Name].ALLMEMBERS) }
DIMENSION PROPERTIES MEMBER_CAPTION ON ROWS FROM (SELECT (

STRTOSET (@EmployeeEmployeeDepartment, CONSTRAINED), *) ON COLUMNS

FROM [Adventure Works]) CELL PROPERTIES VALUE

A
A

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Now that you have your dataset, switch to the design view of Reporting Services by clicking the
Layout tab. You will notice that the fields from your cube are available in the field list. You can drag
and drop your fields onto controls that you add to your report. You'll use the Table control and also
the Chart control to display your data.

By dragging on a Table control from the Toolbox tab, you can add your information to the
report. You could also use the Matrix control if you wanted to hide and show your information or
export it out to the Office Web Components for slicing and dicing. In the table, you'll just drop some
fields from the Dataset tab into the details, such as the Full Name, Revenue Per Employee and
Total Product_Cost columns. Next, right-click the table and select Insert Column to the Right. In the
header for this new column, type in Percentage Profit. In the detail cell for this new column, find the
Value property in the right-hand Properties window and click the drop-down list in the Value property.
Select <Expression...>and add an expression to show how much the cost of goods is percentage-wise to
total revenue for each employee, which would be the expression =(Fields!Total Profit.value /
Fields!Total Product_Cost.Value).Click OK. For example, if a salesperson sold $10 of goods, and it
cost $5 to make the goods, cost would be 50 percent of total revenue. In the Properties window for
the cell with your expression, find the Format property and put a P in for the value that specifies you
want the result formatted as a percentage. You could have entered P1 or P3 to tell SSRS to render one
or three places in your percentage if you wanted to. By default, SSRS will render out two places in a
percentage. Figure 9-27 shows the form design with just the table added.

= 4 Report Projectl - Microsoft Development Environment HEE
Eile Edit Wew Project Buld Debug Format Report Tools Mindow Help

SRR - | 29 - ~ &l -EL| b Debug ~ Default
Solid - 1pt eBack -@ei A 5B £ U | [z =1 A =
X 3% Report1.rdl [Design]*| £ B x
S - = = =
g ||DataSetl j 1A Data %] Layaut | [T Preview =5 EE
g R 7 [Salution 'Repart Project1’
JIu‘-‘l‘-‘\‘-‘I‘-‘Z‘-‘I‘-‘G‘-‘I‘--4-‘--‘-5-‘--‘-E-""'75:—'-Rgpnrtp"]ig(t1
by F- {4 Shared Data Soun
L 6 Adverire W
B Revenue. per_Employes ||| - -8 ﬁp:rts -
5 Total_Product_Cost - e eRerkLr
1
Full Name Rewenue Per Tatal Product Cost Percentage Prafit
2 . Employee
: ploy ; —
: ax
N : =Fields! =Fields! =Fields! =(FieldsITotal_Profit.value / Body .
. . Full_Name alue Revenue_Per Empl Total_Product_Cost Fields!
- oyee.Value “alue Total_Product_Cost.Valug) 4] ‘
3
. ppearance
Backgro [Tran: = |
_ Backgra
- . Border Black
B e BorderS Hone
4 Borders 1pt
- = Layout
Colurnne 1
- Columnz 0.5in
. Size 7.375in,4.1
5 BackgroundColor
. The colar of the:
7 _'I - al | _’I background.

Ready

Figure 9-27. A table layout with OLAP information

Next, you may want to chart the information to see how each employee is doing. The charting
technology is the same between SQL 2000 and SQL 2005. To add OLAP fields to a chart, it’s just a
drag-and-drop operation. Drag and drop a Chart control from the Toolbox tab onto your report.

321

322

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

From the Datasets tab, drag and drop the Full Name field onto the category fields drop target on the
chart. Drag and drop the Revenue Per Employee field onto the data field drop target on your chart
and do the same action for the Total Product Cost field. Figure 9-28 shows a chart that will show
total revenue and total product cost per employee.

* g Report Project1 - Microsoft Development Environment

Fle Edt View Project Buld Debug Format Report Tools Window Hslp

A~ g | %Al 9™ -5 | b Debug - Default - |
Solid v 1pt ~ Black L - lpt - B I U A & | = =l
iz -1 x Report1.rdl [Design]*|
g ||patssent = [5] bata [Layout |[Z Previ
g ¥ ot | [T Preview |
= L B e P
g Rz ution ‘Repart Projectl’ (1
[e e g e e 5 e B or 1 T - o || penork Projectl
. ||| =34 shared Data Source:
| Revenue Per Employee ” Total Product Cost Drop datafields here -] o Adventure Wor
B Revenue Per € || - a p;”ts o
& Total_Product_t |||~ 100 EN0EL,
- a0
1
. 60
N I Revenue Per Employ
- 40 I Total Product Cost
2
) 4 BT
el —ax
N chart1 Chart -
. 0 "
- A B c o E L]
2 B Appearance 2|
Full Mame Orop cateqory fields here I Backgro] x|
- [Backagro 1
Employee BordertC Black
BorderS None
B - EBordery 1pt
4 =Fields| =Fields! =Fields! | =(Fields/Tatal Proftvalue ¢ -0 | [F ﬁ o
. Full_Mame.alue Revenue_Per_Empl Total_Product_Cost. Fields! ot IHormal. &
- oyee Value Walue Total_Product_Cost.alue) e on ormal, At
. R Format
N LineHeic
.. .. . Do) A
S BackgroundColor
- © | The calor of the
T _’I Nay | L'_I background.

Ready

Figure 9-28. A chart with OLAP information

You can then preview or deploy your new report using the built-in previewing or deployment
support of the BIDS. In this walkthrough, you’ve seen how you can leverage your OLAP information
as easily as your relational information in SQL Server 2005.

Floating Headers

When working with the Matrix and Table controls, you may want to have a floating header so that as
users scroll through their data, the header for the grouping floats with the scrolling. This makes the
data easier to read for end users since they do not have to try and remember what each column
header is or scroll back up continuously if they forget. To create these headers, you just need to set a
property in the property page for your particular control under the group properties. Please note
that floating headers only work in interactive renderers, which are the web- and Windows-based
renderers. This means that if you export out to Excel, PDF, or other formats, your floating headers
will not work, and you’ll just get the standard nonfloating header. Figure 9-29 shows setting the
floating headers property.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES 323

@Tahle Properties

General | visibilty | Navigation | Sorting | Groups | Fiters | Data Output |
Marne:
Itablel

Tooltip:
[£

Dataset name:

|patasett |

Page breaks:

[~ Insett a page break before this kable
[~ Insett a page break after this kable
[Fit table on one page if possible

Header/footer:

¥ Repeat header rows on each page

[~ Repeat footer rows on each page

¥ Header should remain visible while scrolling

OF | Cancel | Help |
“3

Figure 9-29. Setting the properties for a floating header

Data Source Changes: Expressions, XML/Web Services, SSIS,
and SAP

Some data source changes in SSRS 2005 help you solve some issues when using multiple data sources
and also allow you to connect to new data sources. The first change is the support of expression-
based data sources. Imagine a scenario in which you want to deploy your report but change your
data source at runtime rather than at design time or deployment time. This could be because you
want to connect to your test environment with your report rather than a deployment environment.
Or you could want to connect to different servers based on locality of the end user running the
report. There may be a replicated data source that is closer than the default data source that you put
into the report. The second change is some new data sources that you can take advantage of.

Data Source Expressions

To use a data source expression, you should create your data source as you normally would using

a static connection string. Please note that expression-based connection strings only work with
nonshared data sources. Design your report since you can only use a static connection string to get
backyour fields and lay out the report the way you want. Next, add a parameter that will specify your
data source. You can either make this parameter use static values or pull from a data source to get its
values. Once you have set the parameter, you can go back to your data source definition and replace
the static value with a parameter. An example of a connection string using a data source expression
is shown here:

="data source=" & Parameters!Datasource.Value & ";initial catalog=AdventureWorks"

Figure 9-30 shows setting a data source using an expression. Again, please note that you must
use a report-specific data source and not a shared data source in order for expression-based data
sources to work.

324 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

+K:Data Source

General | Credentials

Mame:

IDataSourcel
Type:
IMicrosoFt SGL Server j

Connection string:

="data source=" & Parameters!Datasource. Yalue & ";jinitial
catalog=Adventureworks"

Edit... |

[~ Use shared data source reference
Reference:

| | Edt... |

[~ Use single transaction

OF | Cancel | Help |
“3

Figure 9-30. A data source that uses an expression

Data Sources for XML/Web Services, SSIS, and SAP

The other change is three new data sources: XML/web services, SSIS, and SAP. The XML/web services
data source lets you connect to SOAP data sources and report off them. The SSIS data source connects
to and runs an SSIS package and returns back the results so you can report off the results. The SAP
data source lets you report directly off of an SAP data source so that you can provide rich reporting
for SAP applications without having to extract the data into another intermediary data source.

XML/Web Services Data Source

The XML/web services data source, called XML in the Datasource type drop-down list (this may
change in the final release), allows you to connect to an XML document, web service, or web appli-
cation that returns back XML data. You simply specify the endpoint URL to which you wish to connect.
For example, if you wanted to connect to a web service, you would input the URL to the ASMX or
WSDL file for the web service. Some interesting web services that Reporting Services supports
connecting to are

* SQL web services using the new native web services technology in SQL Server 2005
¢ The Google, Amazon, and eBay web services

* Web services that you create using Visual Studio or other development environments

You can also connect to just pure XML data sources, so if you have a web application that
you can address via URL and that returns back an XML document, you can use that application to
retrieve information to your report. Please note that the XML data source does not work with file://
URLs; you must use http:// URLs.

To try this technology, you need to create a new data source and specify XML as the type. The
completed sample application is available with the samples in this chapter, so you will see a short-
ened step-through of using the XML data source in the text here. For full setup instructions, please
refer to the readme file included with the sample application. In the Connection string property,
enter the URL to your data source. In the example we’ll use here, we’ll create a web service using ASP
.NET that returns the product categories from the AdventureWorks database. So, we will put in the
URL to our web service. This is shown in Figure 9-31.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

+K:Shared Data Source

General | Credentials

Mame:

IDataSourceS
Type:
JxmL |

Connection string:

http: filocalhost fwebsitezservice, asmix

Edit... |

OF | Cancel | Help

Figure 9-31. Connecting to a web service in SSRS

Note Please note that you can only use integrated security or no credentials with the XML data source.

Now that you have your data source, you need to create your report. The dataset for your report
is where you can specify different options, such as the fields you want to retrieve for the XML data
source. You can only use the generic Query Designer with this provider. The query you write is itself
an XML document that is rooted by the <Query> element. If you leave out the query element, SSRS
will call your web service, expecting back an XML document from the default call. Even though we
are using a custom web service in this example, you could just use SSRS itself to test this feature.
Many times, we just use a sample report and just have it render out to XML. If you did the same, you
could then take the URL to the report, place it into connection string, and query the XML returned
back in your new report.

In the Query element, you can create the SoapAction element, which specifies the particular
SOAP method to call. In our example, we pass in the fully qualified method name using our XML
namespace. The query element for the sample is shown here:

<Query><SoapAction>http://AdventurelWorks.org/GetProducts</SoapAction></Query>

Besides using just the SoapAction element, we can also pass in an ElementPath element, which
allows us to specify the sequence of nodes to traverse within our XML document to retrieve the fields
of data. For example, if we only wanted to return back the category for each product in our sample,
we would use the following query:

<Query><SoapAction>http://AdventurelWorks.org/GetProducts</SoapAction>
<ElementPath IgnoreNamespaces="true">
GetProductsResponse/GetProductsResult/Category

</ElementPath></Query>

You will notice that we can pass an attribute, IgnoreNamespaces. This gets us out of providing
the XML namespace for the document we want to traverse. If you wanted to pass the namespace to
your query, you would specify it as an attribute on the query element.

325

326

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

There is also a Method element that you can use rather than the SoapAction element. To show you
using a different web service, the query that follows works with the web services of Reporting Services
itself. So, the connection string is http://localhost/reportserver/ReportService2005.asmx. The
method call that follows will call the ListChildren method on the SSRS web services:

<Query>
<Method Name="ListChildren">
</Method>

</Query>

You can also pass parameters to your data sources to customize what is returned back. For
example, you may want to allow end users to select a city or user as a parameter that you pass to your
web service. The easiest way to do this is to use the Parameters dialog box in the data source editor.
You can also embed your parameters as XML elements in your query string, but the first method is
easier and quicker for you to do.

So, let’s see a report that uses the web service data source that we created. One thing to note is
that after you have created your connection to the web service, try to run the query before starting to
design your report layout. Also, make sure to hit the Refresh Fields button so that the fields from
your data source are added to the field list, since SSRS will not automatically discover all the fields
from your data source until you do this. Figure 9-32 shows a simple report that we created that shows
the products grouped by category and then subcategory. Notice that we also use a multivalued
parameter that is fed by the elementpath we created earlier to allow us to select the category that we
are interested in rendering in our report.

Report2,rdl [Design] }/Start Page/VxML Products.rdl [Design]"‘] - X

&l Layout
Categary IAccessories, Eikes j Wiew Report |
Falli4 4 1z of15p M | 2 [(& H- [Jio0 =] LRSS

|24, Preview

| v

Accessories
Tires and Tubes

Product ID Product Name List Price
873 Patch Kit/d Patches 229
922 Road Tire Tube 3.89
923 Touring Tire Tube 499
921 tauntain Tire Tube 489
31 LL Road Tire 2145
32 WL Road Tire 24.99
928 LL Mountain Tire 24.99
934 Touring Tire 2899
929 WL Maountain Tire 29.99
933 HL Road Tire 326
930 HL Mountain Tire 35

Figure 9-32. Rendering XML data in a report

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

SSIS Data Source

SQL Server Integration Services (SSIS) provides a new integration server and design environment for
you to integrate all your different data together. With SSRS 2005, you can combine SSIS and SSRS to
build reports on the real-time data that your SSIS packages process. Essentially, you can trigger SSIS
to run on your server and have SSRS report off the results of the package. This provides real-time
reporting on data transformed or integrated together with SSIS. The SSIS data source is great for
volatile data sources that may not keep the same schema or may need to be cleansed in real time,
such as logs or other data that may change over time. One thing to realize is that report and package
processing happen sequentially when you use this feature. SSRS triggers the package to run, SSIS
performs its actions, and then passes the data to SSRS. SSIS cannot trigger a report to run, but instead
SSRS always triggers SSIS to execute. When you design your package, you must have the output be a
DataReader destination. This is the only output type that SSRS can pick up from SSIS. The following
are general steps to create a report with SSIS as the data source.

The first step is to create your new SSIS data source. Create a data source like you normally
would in SSRS, but select SSIS as the type. In the connection string, add an -f and then the path to
your package that you want to run. If there are spaces in the path, please enclose the path in double-
quotes. SSRS uses the DTExec utility to execute your package, which is why you need the -f before
the path to your package.

Then, you can create your report. Create a new dataset, which you’ve seen how to do previously
in the chapter. For the query in your dataset, type in the name of the output DataReader that you
created in your SSIS package. By default, the DataReader is called DataReaderDest. You can modify
this name in SSIS, but if you do this, you also must modify it in SSRS. Make sure to click the Refresh
Fields button to get a refreshed list of fields from your SSIS data source. Run your query to make sure
your data source is working, and then you can design your report using SSIS just like any other report
you have designed. Figure 9-33 shows querying SSIS from the Query Designer in SSRS. A full sample
that uses SSIS is included with the samples for this chapter.

327

328

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Stark Page/VReportZ.rdI [Design]"‘}/ ¥ML Products, rd| [Design]] - X
] Data | %] Lavouk | |2, Preview
Dataset: IDataSet4 j w3 F B | ¥ Commandtype: |Text j
DataReaderDest ;I
=
ame Categoryiame SubCategoryMame | ProductMurnber Color StandardCost ListPrice o
Hitch Rack - 4-Bike | Accessories Bike Racks RA&-HIZ3 <MULL= 44,55000000000. .. 120,0000000
All-Purpose Bike ... Accessories Bike Stands 5T-1401 <MULL = 59,46600000000,., 1590000000
‘Water Bottle - 3., Accessories Bottles and Cages WE-HD98 <MULL= 1.866300000000,,, 4,990000000
Road Bottle Cage Accessories Bottles and Cages BC-RZ05 <MULL = 3,362300000000,., &,990000000
Mountain Bottle ... Accessories Bottles and Cages BC-MO0S <MULL= 3.736300000000,,, 9,990000000
Bike Wash - Diss... Accessoties Cleaners CL-9009 <MULL= 2,973300000000... 7.950000000
Fender Set - Mo.., Accessoties Fenders FE-6654 <MULL= §.220500000000... 21.95000000
Sport-100 Helme, .. Accessories Helmets HL-US09-B Blue 13.08630000000,,, 34,99000000
Sport-100 Helme, .. Accessories Helmets HL-US09-R. Red 13.08630000000,,, 34,99000000
Sport-100 Helme, .. Accessories Helmets HL-US09 Black. 13.08630000000,., 34,99000000
Hydration Pack - ... Accessories Hydration Packs Hy-1023-70 Silver 20,56630000000,,, 54,99000000
Taillights - Batter.., Accessories Lights LT-T920 <MULL= 5.770900000000, . 13,99000000
Headlights - Dual... Accessories Lights LT-H202 <MULL = 14,43340000000,.. 34,99000000
Headlights - Wea... Accessories Lights LT-H903 <MULL = 18,55840000000, .. 44,99000000
Cable Lock Accessories Locks Lo-C100 <MULL= 10,31250000000,., 25,00000000
Touring-Panniers.,. Accessories Panniers PA-T100 arey 51.56250000000. . 125.DDDDDiDILI
| | »

Figure 9-33. Querying SSIS data from SSRS

SAP Data Source

The final new data source is SAP. SQL Server 2005 introduces a new SAP ADO.NET provider in the
Enterprise Edition. You need to download the provider from http://msdn.microsoft.com/downloads.
Once you have downloaded the provider, you can start executing queries against your SAP system
from any environment that uses ADO.NET, including SSRS. There are two query commands you can
send to this data source. The first executes RFCs/BAPI, which is the API for SAP. The second executes
SQL queries against SAP tables. We will point you to the documentation, in particular the Microsoft
.NET Data Provider for SAP topic, to learn more about this data source.

Custom Report Items

Custom report items are primarily targeted at partners who want to extend SSRS with custom
controls that get processed when the report gets processed, and then output an image onto the
report. These controls allow the enterprise developer to build, in any .NET language, and deploy
more sophisticated custom controls. For example, if you wanted to add a new chart type that SSRS
does not support, such as one that shows advanced financial or statistical analysis, you can write a
custom report item (sometimes called a custom ReportViewer control) that integrates with the design-
time and run-time SSRS experience. Do not confuse this with the ability to drop custom controls,
like .NET controls, onto a report. With the image you produce on the report, you can create an image
map so that you can provide interactivity with your control. Most likely you will not create custom
report items, but you will probably consume them in your reports from third-party providers.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Visual Studio Integration and
ReportViewer Controls

One of the big questions that customers and partners always ask is how they can embed reports in
their applications. Reporting Services 2000 provided customizability along the URL, such as sending
rendering formats or parameters and the ability to embed reports into applications by using a
browser control and URLSs to your reports. Unfortunately, SSRS 2000 did not have an embeddable
WinForm or WebForm control. Therefore, you have no way, without having a full Reporting Services
installation available when you run your report, to take your reports and embed them into existing
applications. This means that if you are running offline and you try to execute a report, you will get
a failure since your SSRS server is not available. Other products, such as Crystal Reports, have these
capabilities, and SQL 2005 Reporting Services has added embeddable and offline reporting technology
as part of the continuing improvement of the product.

SSRS 2005 includes both a WebForm and a WinForm rendering control that can be embedded
inside of custom web or Windows application. The controls take an RDL source and some data and
perform the processing on the local machine, rather than having to go back to the Report Server to
process the information. The controls support background processing and will start streaming the
report onto the screen as the report is processed. When users want to view reports offline using a
report snapshot, or a developer needs report rendering but can’t guarantee that the customer has
Reporting Services, the controls are very useful. However, when the workload of the application gets
too large for the controls to handle, moving the controls from local processing to using a Report Server
is very easy. In addition, the Report Server provides capabilities that the control does not have such
as the ability to have subscriptions, caching, execution history, and better manageability of reports.

The controls support both local execution as well as server-side execution against a Reporting
Services server. At times you may want to switch between the different execution modes. For example,
your application may need to work both online and offline. When online, you may want to leverage
the Reporting Services infrastructure, but when you're offline, you may want to render from a snap-
shot, since you may not have a connection to the SSRS server.

The main differences between using these controls and customizing SSRS using URLs are
as follows:

¢ The controls do not support exporting to all SSRS formats when working with client-side reports.
Only HTML and Excel are supported through client-side reports. With server-side reports, all
formats are supported.

* The controls do not prompt for parameters in local execution mode—you must pass parameters
programmatically to the controls.

* The controls do not support the advanced features of Reporting Services such as caching and
subscriptions.

Using WinForm Controls

If you've seen the preview pane in the Report Designer, WinForm control will look familiar. It’s
pretty much the same control, but has the ability to run outside the Visual Studio environment. Plus,
the control has an object model that you can program against. We're going to cover the WinForm
control here since the WinForm and WebForm controls have very similar object models.

Adding the control to your application is a drag-and-drop operation. In Visual Studio, just drag
and drop the ReportViewer control, which you can find under the Data group on the Toolbox tab for
your WinForm application. Figure 9-34 shows the WinForm control in an application.

329

330 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

@0 Report Control Sample - Microsoft Yisual Studio [_ =]
Eile Edit Wiew Project Buid Debug Data Format Tegt Tools MWindow Community Help
G- a A9 - -] b |Debug - | R G Bl
B & ST b | SElEH %R0 s HE RS =
Start Page | frmMain.vb *frmMain.vb [Design] | frmMain.Designer.vb | adventureWork.. et.Designer.vb | ReportL.rdic [Design] | - X
i Report Control Sample = % Report Control Sample
=d| My Project
| 1 of | | - [ro0z =l =l References

i bin
i obj
ﬂ AdventureorksDataset,x
i app.config
FrmMain.vb
|5 repartl.rdic

4| | »

o Solution Ex.... @45 Cuntants/

AccessibleDes

Accessibletlar

ArcessibleRoh Default

= Appearance
BackColor] Control
BackgroundIn [({none)

= | | _"LI EackgroundIm Tile
Cursor Default

) Font Microsoft Sans 5 Y
&3 pdventureworksDataSet %7 GetProductsBindingSource &) GetProductsTableAdapter Accessibility
2 Ervor sty
Item{s) Saved Ln176 cols chs

Figure 9-34. A WinForm application with the WinForm ReportViewer control

Once you have the control on the page, you need to set some properties, either through the user
interface or programmatically. Using the new smart tags in VS, you can select your report location.
The controls allow for either creating a new report or selecting a server report to render from. If you
select the Report Server, you need to pass the URL and report path to the control in order for the
rendering to work. If you select a new report, you will be creating a client-side report, denoted by an
rdlc extension to specity client-side, that will use a different data source mechanism than what
server reports use. If you want to move this report to the Report Server, you will have to perform
some work to do this since the data source and query mechanisms are different between the two.
The main benefits of using the local data source versus the server is that you can pass arbitrary
ADO.NET data tables to the ReportViewer controls and they do not require a Report Server to work,
which means that the ReportViewer controls can work offline.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

When using local, client-side processing, the control takes ADO.NET datatables or objects that
implement the IEnumerable interface as data sources to the report. The easiest way to get your data
for your reportis to use the Data Source dialog boxes and wizards inside of VS. From the wizards, you
can select your data source and the actual data that you want returned back to your report. Figure 9-35
shows using the data source wizard.

Data Source Configuration Wizard EHE

L Choose your database objects

‘which database objects do vou want in your dataset?

- [Tables j

&7 B awEuidversion

-1 [Databaselag

I~ B Errorlog

- Department {HumanResources)

|_ Employee {HumanResources)

|_ Employeedddress (HumanResources)

- EmployeeDepartmentHistory (HumanResources)
'm| EmployeePayHistory (HumanResources)

- JobCandidate {HumanResources)

T~ B shift {HumanResources)

T B address (Person)

-7] AddressType (Person) LI

R

DataSet name:
IAdventureWorksDataSetl

< Previous | [ext = | Einish | Cancel |

4

Figure 9-35. Using the Data Source Configuraion Wizard

As part of Visual Studio, you get the SSRS Report Designer so that you can design reports for the
controls. After you create your data source, you can use the Report Designer to drag and drop your
fields onto your report. The Report Designer is the same as you have already seen, so we won't
describe it again here. You will notice that the extension for your local report is rdlc, not rdl. This is
how it is differentiated from the server-side RDL code. Once you have created your data source,
designed your report, and dragged and dropped the ReportViewer control onto your application,
you are set to go. To try out your application, just run the application as you normally would from
VS. To make this easier for you, we’ve included a full working sample application with the samples
for this chapter. You may notice that in the load event for your form, SSRS adds some code to load
your data and render your report. We will explore how to programmatically perform the same steps
in the Ul in a moment. Figure 9-36 shows running a simple form with two ReportViewer controls,
which is demonstrated in the included sample application. One pulls from the server, the other
renders reports locally.

331

332 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Report Control 5ample

[[=]]

Server-side

| L of | 2l & oo [
Adventure Works ml
2002 - 2003

Sales

Components $3611,041 | $5,485,741
$488,820($1,024,474

26,664 534 | $35,198,346

Client-side

| 1 of1e b B | E =™ A [TiES =l

|»

Pricing Information

Hame Standard Cost

Hitch Rack - 4-Bike 44 8300

Figure 9-36. Combining local and remote processing using the WinForm ReportViewer control

Working with the ReportViewer Controls Programmatically

Rather than doing everything through the user interface, you may want to programmatically pass
your data and render the report from code inside of your application. The ReportViewer controls
support a rich API to allow you to do this. If you want to perform the same steps we did through the
Ul earlier, you would first pass your data through the Datasources collection of the control. Next, you
have to pass the RDL for the report that you want to render. This can come as an embedded resource
from the project itself by just passing the fully qualified project and then report name, with under-
scores replacing spaces, or it can be read from the file system. Then, you can set some of the properties
on the control such as whether to display the toolbar, document map, context menu, or parameters.
Finally, you need to render the report. One thing to note is if you already have a data source in the
report, make sure to name your data source programmatically the same name as your existing data

source. Otherwise, you will receive errors from the control. The following code shows how to program
the control:

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES 333

Private Function GetData() As System.Data.DataSet

con = New System.Data.SqlClient.SqlConnection(_
"server=localhost;Database=AdventureWorks; Integrated Security=SSPI")

Using con

con.0Open()

Dim sda As New System.Data.SqlClient.SqlDataAdapter(_
"EXEC dbo.GetProducts", con)

Dim ds As New System.Data.DataSet
sda.Fill(ds)
con.Close()
Return ds
End Using
End Function
Private Sub Buttoni Click(ByVal sender As System.Object, Byval e _
As System.EventArgs) Handles Buttoni.Click

Dim ds As System.Data.DataSet
ds = GetData()

Dim dt As System.Data.DataTable
dt = ds.Tables(0)

ReportViewer3.ProcessingMode =
Microsoft.Reporting.WinForms.ProcessingMode.Local

ReportViewer3.LocalReport.ReportEmbeddedResource =
"Report_Control Sample.Reporti.rdlc"
ReportViewer3.LocalReport.ReportPath = Nothing

ReportViewer3.ShowToolBar = True

ReportViewer3.ShowDocumentMap = True

ReportViewer3.ShowContextMenu = True

ReportViewer3.ShowParameterPrompts = True

ReportViewer3.Name = "My Report"

Dim rds As New Microsoft.Reporting.WinForms.ReportDataSource(_
"AdventureWorksDataSet GetProducts", dt)

ReportViewer3.LocalReport.DataSources.Add(xrds)

ReportViewer3.RefreshReport()

End Sub

Figure 9-37 shows the form running with the results.

334 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Server-side ;I
TR T Y D

Adventure Works ol

2002 - 2003

Sales

2002 2003

Components $3,611,041 §5,488,741
$489,820 | $1,024474
$26664,534 | §35,190,246

Clothing

Bikes

Client-side

| 1 afie b M| 2] [(2 b= [[ro0z =]

Pricing Information

Name Standard Cost
Hitch Rack - 4-Bike 44.8800
Programmatic: |
=l 1 of1e b M | ENEEYNES =]
=
—
Pricing Information
Nama Ctandard Cact - =l

Figure 9-37. Programming the WinForm ReportViewer control

Table 9-1 outlines the most common properties you will use with the ReportViewer control.

Table 9-1. Properties of the Winform ReportViewer Control

Name Type Description
CurrentPage Int32 Gets or sets the current page displayed in
the report.
LocalReport LocalReport Returns a LocalReport object from which you

can load report definitions, set data sources,
perform actions such as document map
navigation, and render reports.

ShowDocumentMap Boolean Gets or sets whether the document map
is visible.

ShowParameterPrompts Boolean Gets or sets whether the parameters area
is visible.

ShowCredentialPrompts Boolean Gets or sets whether the credentials area
is visible.

ShowToolbar Boolean Gets or sets whether the toolbar is visible.

ShowContextMenu Boolean Gets or sets whether the context menu

is visible.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Table 9-1. Properties of the Winform ReportViewer Control

Name

Type Description

ShowDocumentMapButton

ShowExportButton

ShowPageNavigationControls

ShowPrintButton

ShowProgress

ShowRefreshButton

ShowZoomButton

ServerReport

ZoomMode

ZoomPercent

Boolean Gets or sets whether the Document Map

button is visible.

Boolean Gets or sets whether the Export button
is visible to export to other formats.

Boolean Gets or sets whether the page navigation
controls are visible.

Boolean Gets or sets whether the Print button is visible.
Boolean Gets or sets whether the progress animation
is visible when rendering.

Boolean Gets or sets whether the Refresh button
is visible.

Boolean Gets or sets whether the zoom button is visible.

ServerReport Returns back a ServerReport object, which
allows you to perform similar tasks as the
LocalReport object except in the context of a
server report. For example, you cannot add
new data sources with the ServerReport, but
you can retrieve the list of data sources.

Enum Gets or sets the zoom factor such as
FullPage, PageWidth, or ZoomPercent.

Int32 The zoom percentage.

Table 9-2 shows the methods on the WinForm ReportViewer control.

Table 9-2. Methods for the WinForm ReportViewer Control

Name Description

Back Goes back if the report is a drill-through report

Clear Clears the report

Find Searches the report for the given text

FindNext Continues the search for the given text from the current search point
GetPrintDocument Returns back a print document for printing the report

PrintDialog Brings up the Print dialog box and then prints the report

Refresh Refreshes the report, which reprocesses the report with any new data
Render Processes and renders the report

RenderStream Returns a stream associated with the report

SaveSnapshot Saves a snapshot

Stop

Stops background processing of the report

335

336 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

LocalReport and ServerReport Objects

Beyond learning the ReportViewer control’s methods and properties, you should also look at both
the LocalReport and ServerReport objects. Due to space limitations, we will only discuss the common
LocalReport methods and properties, since the ServerReport is simpler in its design. Plus, the
ServerReport has less functionality because you are using the control just as a rendering engine and
not passing data sources to it. The tables that follow show you the most common properties and
methods for the LocalReport object only. Please note that you retrieve this object from the ReportViewer

control using the LocalReport property.
Table 9-3 shows the methods on the properties for the LocalReport object.

Table 9-3. Properties for the LocalReport Object

Name Type

Description

Datasources

ReportEmbeddedResource

ReportPath

ReportDatasourceCollection

String

String

Returns back the Datasource
collection so you can get and set
data sources for your report.

Name of the embedded report
within the application. This must
be a fully qualified name with the
project and report name. Replace
all spaces with underscores.

Fully qualified path to the report
definition in the file system.

Table 9-4 shows the methods on the LocalReport object.

Table 9-4. Methods on the LocalReport Object

Name Description

GetDocumentMap Returns a DocumentMapNode object so you can traverse your
document map in your report.

GetParameters This property returns a ReportParameterInfoCollection so
that you can then get information about parameters in your
report. Use this in conjunction with SetParameters.

GetTotalPages Gets the total number of pages in the report.

ListRenderingExtensions

LoadReportDefinition

LoadSubReportDefinition

PerformBookmarkNavigation

PerformDocumentMapNavigation

Lists the rendering extensions that are available.

Loads the specified RDL file, which you pass either as a
TextReader or a Stream object.

Loads the specified RDL file for subreports, which you pass
either as a TextReader or a Stream object.

Navigates to the specified bookmark that you pass the ID and
name for.

Navigates to the document map node that you specify the
ID for.

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Table 9-4. Methods on the LocalReport Object

Name Description

PerformDrillThrough Performs a drill-through to another report, which you specify
in the call to this method. You can also listen for drill-through
events in the control and perform the correct actions to drill to
another report.

Render Renders the report and returns back either a byte array or a
stream, which is the end result. You need to pass in the
format, device info, mime type, and encoding.

SetParameters Allows you to pass an array of ReportParameter objects, which
will set the parameters for your report. ReportParameter
objects are effectively just a named key/value pair.

Finally, the ReportViewer controls support events so your application can listen for events such
as page navigation, printing, drill-through, searching, zooming, and other activities in the control. In
this overview, you’ve seen how you can get started with the new ReportViewer controls in your own
applications and leverage the power of Reporting Services, even without the Report Server.

SharePoint Integration

Based on what was added in SP2 of Reporting Services 2000, SSRS 2005 continues to support SharePoint
integration. Since no new features for SharePoint integration are included in SSRS 2005, we will not
cover this integration that deeply. The main thing to note is that the SSRS web parts for SharePoint,
the report explorer and report viewer, are implemented as IFrames that wrap Report Manager. A
more interesting implementation may be using the new ReportViewer controls in SharePoint web
parts to display report information. However, if you are just looking for the ability to drag and drop
web parts from your SharePoint web part gallery onto your page, set some properties, and have
reports appear, the web parts that ship with SSRS 2005 should easily meet your needs.

End-User Ad Hoc Query and Reporting

The final piece of new technology that we will look at in Reporting Services is the new ActiveViews
technology. Microsoft acquired this technology in the spring of 2004. With this addition, Reporting
Services now has a client tool called Report Builder that end users can use to connect to their data,
create queries, create filters, view reports, and export to multiple formats. While Visual Studio or the
BIDS is a great place for a developer or DBA to create reports, no end user will understand those
environments. This is why the Report Builder client was created. From a technology standpoint,
Report Builder uses Reporting Services on the back end to create and show the reports. What is actu-
ally produced by Report Builder is RDL that is executed on the server. For this reason, Report Builder
only works when a user is online.

The way Report Builder works is that there is a metadata model, called the Semantic Model
Definition Language (SMDL), that sits between the end user and the data he or she accesses. Since
most end users do not understand relational databases or even sometimes OLAP structures, the
metadata model takes the complexity of the database and puts it in terms that the end user under-
stands such as entities, relationships, and aggregates. This means that the full power of the relational
database and your OLAP systems are used, but the complexity is lessened for end users to get the

337

338

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

data they need. Plus, end users do not have to depend on IT folks or developers to build reports for
them; they can now self-service their needs through the Report Builder client.

So, the different pieces of the Report Builder architecture are the Report Builder client, the
Semantic Data Model and its designer, and the server-side of Reporting Services. Let’s step through
in alittle more detail for each of these pieces before we walk through how to build a report using the
Report Builder client and its components.

The Report Builder Client

The Report Builder client is a Windows Form application built using .NET. You may be wondering
how you could deploy this application to all your different end users, since it is Windows based. Well,
the Report Builder client actually leverages some new deployment technology in .NET 2.0 called Click-
Once. ClickOnce gives you Windows-based interactivity and applications, but the deployment model
of web applications. When an end user clicks the Report Builder button in Report Manager, ClickOnce
checks his or her machine to make sure that the system has the .NET 2.0 Framework and also that
the latest version of the Report Builder client that is published on the server. If the system does not,
these components are download and installed—making for a very easy deployment experience. You
could also deploy the client via standard mechanisms, though, such as SMS, and when the end user
clicks, if the versions match, nothing will be downloaded.

Please note that you can have different versions of the client on the same machine. For example,
youmay have SP1 of Report Builder on one server and just the RTM version on another. Since Report
Builder data sources are server dependent and the client bits are installed from the server, one end-
user machine may have both versions of the client. This is OK and no cause for alarm. When the
other server is updated to SP1 and the end user clicks the Report Builder button, the new version will
be downloaded.

The client is a report designer that at the end creates RDL on the fly that gets passed to the
server. One thing you have to realize is that the Report Builder client is not Report Designer. It does
not have all the power and flexibility that Report Designer has. There is a good reason for this, since
that power and flexibility is a liability for an end-user tool that is supposed to be simple and easy to
use. Therefore, you may be frustrated by the supposed lack of flexibility in the tool, but end users will
find it easier to create reports because it is structured and works only in a certain way.

You can take areport that an end user creates into Report Designer, though. You will be working
against the Semantic Data Model and not the data source underneath, however, so do not be confused
by that. Also, any reports that you modify in Report Designer may not be able to go back to Report
Builder due to the differences in functionality. It is usually a one-way street between the two.

The Semantic Model Definition Language

SMDL is an XML-based grammar that describes your data sources in human-readable terms. Think
of it as a universal translator for your data sources from geek to end user. Building a SMDL uses the
other pieces of SQL Server 2005 that both SSIS and SSAS use, which are data sources and data source
views. Data sources are straightforward. The only caveat is that currently SMDL only supports SQL
Server data sources, in particular, the relational database and Analysis Services. The reason for this
is that the queries in SMDL must be translated to data-specific queries for the underlying source.
However, the query translator that is built into SSRS is pluggable so that in future versions, Microsoft
could add more data sources. Also, only one data source, in fact if you are working with databases
only one database, is supported per model. So, you cannot query relational and OLAP data sources
together, only OLAP or relational databases in a single model.

Data Source Views (DSVs) allow you to separate physical schema from virtual schema. Think of
it this way: you may have underlying schema in your relational database that you cannot modify, but
in order to make the schema better for end users, you need to add schema or modify schema. With

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

DSVs, you can perform these actions in the metadata for the DSV rather than in the underlying data
source. You can create calculated columns, virtual tables, and other schema changes in DSVs without
modifying the original data source.

SDML is made up on entities, folders, attributes, expressions, perspectives, and roles. Entities
correspond to a table or query view in the underlying data source. For example, you may have a
product entity that maps to the product table in your database. Folders are just containment vehi-
cles for entities. If you want to group entities together, put them in a folder. Attributes correspond to
columns or named calculations on an entity. For example, the price attribute on the product entity
could just be the price column in the products table, or it could be a calculated aggregate that only
exists in the DSV.

Expressions are what they sound like, calculated fields in your model. You can create expressions
that create aggregates, do string manipulation, perform conversions, as well as other functions. You
control the creation of expressions while the Report Model generator creates attributes for you
automatically.

Perspectives provide the ability to break a large model into smaller models. You can create
perspectives that contain a subset of an existing model. End users can then see the perspectives they
have permissions on from the client. You can think of perspectives like relational database views.
With views, you can hide your underlying tables and only display back information to users who
have permissions on the view.

Roles define relationships among your data. For example, an employee has an address or a
customer has orders. You can define roles to have a one-to-one, one-to-many, or many-to-many
relationship. Customers do not have one order but have many orders. The way roles are surfaced in
the client is through the navigation. Please note that these roles should not be confused with role-
level security in Reporting Services. Report Builder does support role-level security so that you can
lock down parts of the model based on user roles. This is useful to secure sensitive and confidential
data such as salaries, social security numbers, etc.

The reason for having this semantic data model, beyond the simplicity it presents to the end
user while still providing a powerful model for the DBA and developer, is the ability to provide rich
relationships and infinite drill-through. Say you enable infinite drill-through on your data model,
and you own the Enterprise Edition of SQL Server (since infinite drill-through is only supported
there); when areport is rendered, if there is a path through the model, users can click attributes that
send queries, which in turn generate drill-through reports. End users do not have to create each
individual report themselves, and DBAs do not have to manually link together reports since they can
just mark relationships in the model.

Walkthrough: Report Builder

The easiest way to understand the Report Builder technology is to do a walkthrough of a scenario
that uses it. The full sample for this section is included with the samples for this chapter. When
beginning to work with the Report Builder technology, the first tool that you will use is the same tool
you use to create reports: BIDS. This is the tool that allows you to create your metadata models, tweak
those models, and set the security on your model. The tool includes the ability to automatically scan
your relational databases and auto-generate the metadata model from the scan. You can then go in
and tweak the metadata based on your particular needs. Please note to create a model over an OLAP
data source, you need to use either the Report Manager tool or SQL Server Management Studio.
BIDS does not support connecting to OLAP data sources yet for Report Builder models.

Figure 9-38 shows the Report Model Wizard. To get to the wizard, you first need to create a
Report Model Project in BIDS. Then, you need to create a new data source, a Data Source View, and
then finally, you can right-click the Report Model node and select Add New Report Model. Through
the wizard you can tell Report Builder whether to ignore system tables, system views, or both. You
also decide how to deal with foreign key constraints.

339

340 CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

I Report Model Wizard H=] &3

Select report model generation rules
Select the rules that control how metadata will be generated from the data
source,

_I Marme | Description | o
AT N
[¥ Create entities For all kables Create an entity for each disco...
[T Create entities For non-empty tab... Create an entity For each disco...
¥ Create count aggregates Creates a Count aggregate for,.,
¥ Create attributes Create an attribute for each di...
[T Create attributes For non-empty ... | Create an attribute For each di...
[¥ Create attributes For auto-increm,., Create a hidden attribute For e...
¥ Create date variations Create variations for date attri...
¥ Create numeric aggregates Create Sum, Avag, Min, and Ma...
¥ Create date aggregates Create First, Last aggregates F...
¥ Create roles Create roles for each discovere. ., LI
Select model language:
IEninsh {United States) j
Help | < Back | Mext = | Eimishy =] Cancel |

4

Figure 9-38. The Report Model Wizard

Once the metadata model is generated using the default rules, you can view it through the
management tool. By browsing the auto-generated model, you can see what fields, aggregates, and
relations the wizard has created. Figure 9-39 shows the auto-generated metadata for the Northwind
database. You may wonder why we do not use AdventureWorks. Well, frankly, the AdventureWorks
auto-generated model is horrible. That is why Microsoft publishes a downloadable version of that
model for you that is modified from the auto-generated one. The wizard is not foolproof. Northwind
generates a much better model from the wizard because the schema for Northwind is easier. You will
want to test, tweak, and change the model the wizard generates, or you may get some strange results
when you go to design your reports.

Relations in the metadata model allow the model to hide the complexity of the underlying rela-
tional data for the end user. Through a role, you can create lookup values and infinite drill-throughs.
When a user clicks a role in a report, the relation links to the new metadata class that the role points
to. Figure 9-40 shows the properties for the Orders role that is related to Customers in Northwind.

Stark Page)anrthwind.smdl [Design]}

CHAPTER 9

SQL SERVER 2005 REPORTING SERVICES

-

2] Report Model

Model

&= alphabetical List OF Praduct
Cuskomer

Customer Customer Demo
Employes

Employes Territary

Order Detail

Order Details Extended
Order Subtotal

Orders Qry

Product

Region

Sales By Cabegory

Sales Totals By Amount
Shipper

Surmmaty OF Sales By Quarker
Summary OF Sales By Vear
Supplier

Tertitory

Figure 9-39. Northwind database auto-generated metadata

Northwind.smdl ModelRolesdapter

Marne | Typs Drescripkion
2] Alphabetical List ... Entity

=l Custormet Entity

= Customer Cusko,,, Enity

=l Employee Entity

=l Employes Territory Entity

[dLackup EntityFolder

CQrder Entity
=l Order Detail Entity
=l Order Details Ext... Entity

COrder Subtotal Entity
= orders Qry Entity
= Product Enkity

=l Region Entity
Sales By Category Entity
Sales Totals By A... Entity
Shipper Entity
= Summary O Sale... Entity
=l Summary OF Sale... Entity
= supplier Entity
=] Territory Entity

E GeneralCategory
]
({Mame)
Binding
Cardinality
Contextualiame
CustomProperties
Description
ExpandInline
Hidden
HiddenFields

Linguistics
Preferred
Promotelookup
RelatedEntity

Relatedrole

GhaSaae?1-a232-4610-8021-210796997 944
Order

Orders-Customers (Source)
OptionalMany

Default

{CustomProperties: D)

False
False
{HiddenFields: 0}

False
False
Order

{Name)

The string that indicates the name of the role,

Figure 9-40. The properties of a role in Northwind

34

342

CHAPTER 9 SQL SERVER 2005 REPORTING SERVICES

Now that you have a metadata model, you can create your report. If you go to the Reporting
Services Report Manager, you will notice a new button called Report Builder. Report Builder also
adds the ability to edit reports. Unfortunately, you can only edit reports that were created using the
Report Builder metadata model. This means that existing reports will have to be converted to use
the Report Builder metadata model before you can edit them. Figure 9-41 shows the additions to the

Report Manager interface.

S0L Server Reporting Services
L5 Home

.

Home | My Subscriptions | Site Settings | Help ﬂ

Search for: EI

4Mew Folder “#MNew Data Source 4] Upload File 13] Report Builder

i show Details

[3 adventureWorks Sample Reports

\J Beportl IHew
3 Data Sources

3 Models 'new

\J Beport3 IHew

Figure 9-41. The new Report Builder button with Report Manager

(3 Sales Reports Inew

Clicking the Report Builder button launches the Report Builder client. This client is a WinForm
application and makes it easy for end users to drag and drop fields, create groupings, and even set
criteria for their reports. Figure 9-42 shows the user interface for the Report Builder client.

CHAPTER 9

_% Microsoft Report Builder - Report3
File Edit View Format Report Help

HEN=2" I |§|§=;.‘,Run Report 7 Filter [{= Sort and Group ‘

1 vo2

Report Data - [

izl Order Details

RN, X

Total

Fields:

-} #orders
E Order Date @
[Required Date
1 shipped Date
