

Professional
SQL Server™ 2005 XML

Scott Klein

01_597922 ffirs.qxp 12/3/05 12:24 AM Page i

Professional
SQL Server™ 2005 XML

Scott Klein

01_597922 ffirs.qxp 12/3/05 12:24 AM Page i

Professional SQL Server™ 2005 XML
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-9792-3
ISBN-10: 0-7645-9792-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SR/RS/QV/IN

Library of Congress Cataloging-in-Publication Data:
Klein, Scott, 1966-
Professional SQL Server 2005 XML / Scott Klein.

p. cm.
Includes index.
ISBN-13: 978-0-7645-9792-3 (paper/website)
ISBN-10: 0-7645-9792-2 (paper/website)
1. SQL server. 2. Client/server computing. 3. XML (Document markup language) I. Title.
QA76.9.C55K545 2005
005.2’768--dc22

2005029721

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should
be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
(317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFES-
SIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PRO-
FESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO
IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT
MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_597922 ffirs.qxp 12/3/05 12:24 AM Page ii

www.wiley.com

About the Author
Scott Klein is a software developer and architect, and his passion for SQL Server, .NET, and all things
XML led him to Greenville, South Carolina, where he currently works as a SQL/.NET developer for CSI,
a software solutions company. He has written several articles for TopXML (www.TopXLM.com) and is a
frequent speaker at SQL Server and .NET user groups around Greenville and the surrounding areas.
When he is not sitting in front of a computer or spending time with his family, he can usually be found
aboard his Yamaha at the local motocross track.

Acknowledgments
Writing a book is a daunting task. Writing your first book is just downright intimidating. The better the
support people you have assisting and guiding you, the easier the task becomes. Therefore, it is only
appropriate to thank those individuals who made this project much easier than it could have been.

First and foremost, Clay Andres for sticking with the book idea when it seemed like the idea wasn’t
going anywhere.

A huge thanks to the folks at Wiley for making this book happen. Brian Herrmann, my awesome devel-
opment editor, was truly that. With my being a first time book author, Brian was a tremendous help and
a sheer delight to work with. Thanks, Brian.

Thanks also to Jim Minatel, for accepting the book idea and letting me write it, and to Derek Comingore,
for technically reviewing this book and providing priceless feedback and help. Thank you, Derek.

I would be remiss if I didn’t mention the following individuals for their assistance in providing informa-
tion. Primarily, I must thank Irwin Dolobowsky, my main contact at Microsoft. Irwin was my go-to guy,
a life saver on many occasions. If he didn’t know the answer, he knew who did or would find out who
did. Also included in the list of Microsoft people to thank are Michael Rys, Arpan Desai, Srik Raghavan,
Mark Fussell, Vineet Rao, and Beysim Sezgin. Thank you, to all of you.

Enough cannot be said about the love and support of my family. For my wife, Lynelle, who held the
house together for the 8+ months I spent upstairs. And to my children, who were patient with their
father knowing that they soon would get their dad back. I love you all.

I can only hope the next book is less daunting.

01_597922 ffirs.qxp 12/3/05 12:24 AM Page iii

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian Herrmann

Technical Editor
Derek Comingore

Production Editors
Jonathan Coppola
Tim Tate

Copy Editor
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Carrie A. Foster
Lauren Goddard
Denny Hager
Joyce Haughey
Jennifer Heleine
Alicia B. South

Quality Control Technicians
Laura Albert
John Greenough

Proofreading and Indexing
TECHBOOKS Production Services

01_597922 ffirs.qxp 12/3/05 12:24 AM Page iv

Contents

Introduction xv

Part I: Introduction to SQL Server 2005 XML 1

Chapter 1: What’s New in Version 2.0 of the .NET Framework for XML 3

System.xml Version 2.0 Enhancements and New Features 4
Performance 5

XMLTextWriter and XMLTextReader 5
XMLReader and XMLWriter 5
XSLT Processing 5
XML Schema Validation 6

Type Support 6
XPathDocument 8
XPathNavigator 9
XML Query Architecture 10
XmlReader, XmlReaderSettings, XmlWriter, and XmlWriterSettings 11
Summary 13

Chapter 2: What’s New in SQL Server 2005 XML 15

xml data type 16
xml data type Column 17
xml Variable 17
XML Parameter 18
Function Return 18

Indexes on the xml data type 19
Primary Index 19
Secondary Index 19

XQuery 21
XQuery Structure 21
Additional Concepts 22

XML Data Modification Language 26
Insert 27
Delete 28
Update 28

Transact-SQL Enhancements 29

02_597922 ftoc.qxp 12/3/05 12:23 AM Page v

vi

Contents

FOR XML 29
xml data type Integration 30
Nesting FOR XML Expressions 30
PATH Mode 31
Assigning FOR XML Results 32

HTTP SOAP Access 33
Summary 33

Chapter 3: Installing SQL Server 2005 35

Where to Get SQL Server 2005 Beta 2 Express Edition 35
Installing SQL Server 2005 36
Summary 50

Part II: Server-Side XML Processing in SQL Server 2005 51

Chapter 4: xml data type 53

untyped versus typed XML 54
untyped XML 54
typed XML 56

Making Changes to the xml data type Column 58
Converting from untyped to typed 59

xml data type Methods 59
query() 60
value() 61
exist() 64
nodes() 66
modify 68
Combining Methods 69
Using Operators with Methods 71

Defaults, Constraints, and Computed Columns 73
Defaults 73
Constraints 74
Computed Columns 76

Creating Views 79
XML Settings Options 80
xml data type Best Practices 81

Why and Where 81
typed versus untyped 81
Constraints 82
Limitations 82

Summary 82

02_597922 ftoc.qxp 12/3/05 12:23 AM Page vi

vii

Contents

Chapter 5: Querying and Modifying XML Data in SQL Server 2005 85

XQuery 85
XQuery Structure and Concepts Review 86
XQuery Prolog 89
XQuery Path Expressions 91
XQuery XML Construction 93
FLWOR Statement 95
XQuery Sorting 97

XML Data Modification Language 99
insert 99
delete 105
replace value of 106

Summary 110

Chapter 6: Indexing XML Data in SQL Server 2005 111

Primary XML Index 112
Secondary XML Index 114

PATH 115
VALUE 116
PROPERTY 117

Content Indexing 118
CONTAINS() 120

Altering XML Index 122
Setting Options for XML Indexing 124
Best Practices 124

Ten Commandments of XML Index Creation 125
Summary 125

Chapter 7: XML Schemas in SQL Server 2005 127

Managing XML Schema Collections 128
Creating XML Schema Collections 128
Dropping XML Schema Collections 135
Altering XML Schema Collections 136

Viewing XML Schema Collections 138
XML Schema Collection Permissions 140

Granting Permissions 140
Denying Permissions 142
Revoking Permissions 144

Guidelines and Limitations 146
Summary 146

02_597922 ftoc.qxp 12/3/05 12:23 AM Page vii

viii

Contents

Chapter 8: Transact-SQL Enhancements to FOR XML and OPENXML 147

FOR XML 148
The TYPE Directive 148
RAW Mode Enhancements 151
AUTO Mode Enhancements 153
EXPLICIT Mode Enhancements 155
PATH Mode 157
Nesting FOR XML 162
XSD Schema Generation 165
Things to Watch Out For 166

OPENXML 167
Summary 169

Chapter 9: CLR Support in SQL Server 2005 171

The Great Debate 172
Integration Overview 173

Limitations of T-SQL 174
Introduction to Managed Code 176
Advantages of CLR Integration 180
Choosing Between T-SQL and Managed Code 181
Security 182

Invocation 182
Table-Access 182
Gated 183
CLR Security Integration Goals 183

Summary 183

Part III: Client-Side XML Processing in SQL Server 2005 185

Chapter 10: Client-Side Support for the xml data type 187

SqlXml Class 187
Introducing the CreateReader Method 188
Using the SqlXml Class 188

Updating Data with the SqlXml Class 195
Inserting Data with the SqlXml Class 197

Summary 198

02_597922 ftoc.qxp 12/3/05 12:23 AM Page viii

ix

Contents

Chapter 11: Client-Side XML Processing with SQLXML 4.0 199

SQL Native Client 200
SQL Native Client and MDAC Differences 201
Deployment Considerations 201
xml Data Type Support 201
CreateReader() 202

SQLXML 4.0 Queries with ADO 202
Client-Side Formatting with FOR XML 206

SQLXML Architecture 207
Choosing Between Client-Side and Server-Side XML Formatting 207
FOR XML Modes 208

Summary 210

Chapter 12: Creating and Querying XML Views 211

XML Views and XSD Schemas 211
sql:field 212
sql:relation 213
sql:relationship 214
sql:key-fields 218

Querying XML Views 220
Best Practices 228
Summary 228

Chapter 13: Updating the XML View Using Updategrams 231

Overview and Structure 232
Mapping Schemas and Updategrams 233

Implicit Mapping 233
Explicit Mapping 233

Modifying Data 234
Inserting Data 235
Deleting Data 242
Updating Data 245

Passing Parameters 249
Updategram Concurrency 251

Low-Level Concurrency Protection 251
Medium-Level Concurrency Protection 252
High-Level Concurrency Protection 252

NULL Handling 253
Updategram Security 255
Guidelines and Limitations 255
Summary 255

02_597922 ftoc.qxp 12/3/05 12:23 AM Page ix

x

Contents

Chapter 14: Bulk Loading XML Data Through the XML View 257

Bulk Load Overview 257
XML Data Streaming 258
Bulk Load Operation Modes 258

Bulk Load Object Model 259
Execute Method 259
BulkLoad Property 260
CheckConstraint Property 260
ConnectionCommand Property 260
ConnectionString Property 261
ErrorLogFile Property 261
ForceTableLock Property 261
IgnoreDuplicateKeys Property 262
KeepIdentity Property 262
SchemaGen Property 262
SGDropTables Property 263
SGUseID Property 263
TempFilePath Property 263
Transaction Property 264
XMLFragment Property 264

Bulk Load in a .NET Environment 265
Security Issues 270
Guidelines and Limitations 270
Summary 271

Chapter 15: SQLXML Data Access Methods 273

SQL Native Client 274
SQL Native Client versus MDAC 274
SQLXMLOLEDB Provider 275

SQLXML Managed Classes 289
Web Services 292
Summary 293

Chapter 16: Using XSLT in SQL Server 2005 295

XSLT Overview 296
Nodes 299
Templates 300

XSLT Changes 301
XslCompiledTransform 301
XsltSettings 306

02_597922 ftoc.qxp 12/3/05 12:23 AM Page x

xi

Contents

Moving to the New 307
Guidelines 308
Summary 308

Part IV: SQL Server 2005, SqlXml, and SOAP 309

Chapter 17: Web Service (SOAP) Support in SQL Server 2005 311

SOAP Overview 311
SOAP in SQL Server 2005 312
How Native XML Works 312
Native XML Access Versus SQLXML 314
Native XML Access Benefits 314
Native XML Support Requirements 314

SOAP Configuration 315
Web Methods 315
Endpoints 316

Guidelines and Limitations 329
Best Practices 330

Performance 330
Security 333
Deployment Scenarios 334

Summary 335

Chapter 18: SOAP at the Client 337

Consuming and Using an Endpoint 337
Granting Permissions 339
Building the Client Application 341

Securing an Endpoint 351
Summary 352

Chapter 19: Web Service Description Language (WSDL) 355

WSDL File Overview 356
WSDL File Contents 356

The WSDL Namespace 357
The <types> Element 357
The <message> Element 358
portType 360
Binding 362
Services 363

02_597922 ftoc.qxp 12/3/05 12:23 AM Page xi

xii

Contents

Default WSDL File 364
Mapping SQL Server to XSD Types 364
Mapping SQL Server to CLR Types 365
xml data type 366

Simple WSDL File 366
Custom WSDL File 367
Summary 373

Part V: SQL Server 2005 and Visual Studio 2005 375

Chapter 20: SQL Server 2005 SQLXML Managed Classes 377

SQLXML Managed Classes Object Model 378
SqlXmlCommand Object 378
SqlXmlParameter Object 383
SQLXMLAdapter Object 384

Examples 385
Summary 395

Chapter 21: Working with Assemblies 397

Assemblies 397
Enabling CLR Integration 398
Managed Code 400

Assembly Security 414
SAFE 414
EXTERNAL_ACCESS 414
UNSAFE 414

Summary 415

Chapter 22: Creating .NET Routines 417

Overview 417
Data Access 418
Namespace Requirements 418
SqlContext Object 418
SqlPipe Class 419
SqlDataRecord Class 419

User-Defined Procedures 420
ByRef Output Parameter 420
Returning Results via SqlDataRecord 422

02_597922 ftoc.qxp 12/3/05 12:23 AM Page xii

xiii

Contents

User-Defined Triggers 423
SqlTriggerContext Class 424
INSERT 425
DELETE 428
UPDATE 430

Scalar-Valued UDFs 433
The Easy Way 435
Summary 438

Chapter 23: ADO.NET 441

xml data type 441
Asynchronous Operations 446
Multiple Active Result Sets 449
Query Notifications 451
Summary 453

Chapter 24: ADO.NET 2.0 Guidelines and Best Practices 455

xml data type 455
GetSqlXml 455
ExecuteXmlReader 457

MARS 457
Asynchronous Operations 458

Blocking 458
Error Handling 459
Canceling Commands 459

Query Notification 459
Summary 460

Chapter 25: Case Study — Putting It All Together 461

Existing Application and Infrastructure 462
Current Database Design 462
Current XML Use 463
Partnership Information 463
Current Web Service Use 464
Shortcomings 464

Selecting SQL Server 2005 Features 464

02_597922 ftoc.qxp 12/3/05 12:23 AM Page xiii

xiv

Contents

Integrating Selected Features 465
Utilizing the xml data type 465
Building the HTTP Endpoints 478
SqlXml Managed Classes 480
Building the .NET Routines 483

Summary 484

Appendix A: XQuery in SQL Server 2005 485

Advantages of XQuery 485
Introduction to XQuery 486

What Is XPath? 486
XPath Expressions 486
What Is XQuery? 487

XQuery Expressions 487
The FLWOR Statement 488
XQuery Operators 490
XQuery Functions 495

Using XQuery to Create XML 501
Relational Variables and Columns 503

sql:column() 503
sql:variable() 503

Summary 500

Index 507

02_597922 ftoc.qxp 12/3/05 12:23 AM Page xiv

Introduction

I have a new favorite word, courtesy of a 1961 Robert Heinlein novel titled Stranger in a Strange Land,
and emphasized by Rod Paddock in the March/April 2005 CoDe Magazine article titled “Grokking
.NET.” The word is Grok, and not only is the meaning profound, the word is just fun to say.

In the novel, the word Grok is Martian and means to “understand so thoroughly that the observer becomes
a part of the observed,” but it applies to this book as well because this book is intended to help you Grok
the new XML technologies in SQL Server 2005.

Microsoft is serious about XML and it could not be more evident than with the release of SQL Server
2005, supporting a full-blown new xml data type. This new data type can be used as a column or in vari-
ables and stored procedures. It also supports technologies such as XQuery and XML Data Manipulation
Language, which provides full query and data modification capabilities on the xml data type.

The same focus has been taken to support the new xml data type on the client, and significant changes
and enhancements have been made in version 2.0 of the .NET Framework as well as Visual Studio 2005.
Why put all the work into the backend when you can’t utilize it from the client? For this reason, this the
focus of the book’s energy is on those changes and improvements.

Microsoft also made some significant improvements to SQLXML, and SQL Server 2005 comes with
SQLXML 4.0. The majority of these changes were made to support the new xml data type, but some
improvements were also made in the security and performance areas to give you a better experience
when dealing with XML.

Whom This Book Is For
This book is for developers with a desire to learn about this new and exciting technology and how it can
be a benefit in their environment. While a previous knowledge of SQL Server 2000, T-SQL, and previous
versions of SQLXML will come in handy, it is certainly not a perquisite to reading this book.

A decent understanding about XML and related technologies (such as XQuery) will also be useful when
reading this book, but it isn’t necessary.

What This Book Covers
This focus of this book is in three primary areas. First and foremost is the new xml data type and server-
side XML processing with associated topics such as indexing and querying of the xml data type. The
book then turns its focus on the client-side processing of the xml data type with an emphasis on the new
and enhanced technologies found in SQLXML 4.0. Lastly, the book takes a look at the new enhancements
and changes to the .NET Framework and ADO.NET for the support of the new xml data type and CLR
integration in SQL Server 2005.

03_597922 flast.qxp 12/3/05 12:20 AM Page xv

xvi

Introduction

How This Book Is Structured
The book is organized into a number of parts and sections to help you better grasp the new technology
coming in SQL Server. The first couple of parts, focusing on SQL Server 2005, lay the foundation for
the rest of the book, which builds on that foundation by discussing how the new version of the .NET
Framework, Visual Studio 2005, and the integration of the CLR can add tremendous benefit to your
environment.

This book is structured as follows.

Part I—Introduction to SQL Server 2005 XML
❑ Chapter 1, “What’s New in Version 2.0 of the .NET Framework for XML,” takes a look at a few

of the new features included in the new version of the .NET Framework as it pertains to XML.

❑ Chapter 2, “What’s New in SQL Server 2005 XML,” provides an overview of the changes and
enhancements between SQL Server 2000 and SQL Server 2005.

❑ Chapter 3, “Installing SQL Server 2005,” provides a quick walkthrough and explanation to
installing SQL Server 2005.

Part II—Server-Side XML Processing in SQL Server 2005
❑ Chapter 4, “xml data type,” introduces the xml data type.

❑ Chapter 5, “Querying and Modifying XML Data in SQL Server 2005,” discusses how to query
and modify the xml data type.

❑ Chapter 6, “Indexing XML Data in SQL Server 2005,” discusses indexing on the xml data type.

❑ Chapter 7, “XML Schemas in SQL Server 2005,” discusses XML schemas and XML schema col-
lections.

❑ Chapter 8, “Transact-SQL Enhancements to FOR XML and OPENXML,” talks about the T-SQL
changes and enhancements in SQL Server 2005.

❑ Chapter 9, “CLR Support in SQL Server 2005,” provides an overview of the CLR integration in
SQL Server 2005.

Part III—Client-Side XML Processing in SQL Server 2005
❑ Chapter 10, “Client-Side Support for the xml data type,” discusses the support of the xml data

type from the client with topics such as SQLXML classes.

❑ Chapter 11, “Client-Side XML Processing with SQLXML 4.0,” talks about the changes and
enhancements to SQLXML 4.0 with a focus on the new SQL Native Client.

03_597922 flast.qxp 12/3/05 12:20 AM Page xvi

xvii

Introduction

❑ Chapter 12, “Creating and Querying XML Views,” talks about XML views and XSD schemas.

❑ Chapter 13, “Updating the XML View Using Updategrams,” digs into the changes and improve-
ments to updategrams.

❑ Chapter 14, “Bulk Loading XML Data Through the XML View,” talks about the XML Bulk Load
utility and discusses changes provided by SQLXML 4.0.

❑ Chapter 15, “SQLXML Data Access Methods,” discusses more about the SQL Native Client and
other data access methods such as ADO, OLE DB, and ODBC.

❑ Chapter 16, “Using XSLT in SQL Server 2005,” provides an overview and introduction of XSLT.

Part IV—SQL Server 2005, SqlXml, and SOAP
❑ Chapter 17, “Web Service (SOAP) Support in SQL Server 2005,” introduces and discusses SQL

Server 2005 endpoints (Web Services).

❑ Chapter 18, “SOAP at the Client,” builds on Chapter 18, discussing how to consume and use a
SQL Server 2005 endpoint.

❑ Chapter 19, “Web Service Description Language (WSDL),” introduces and discusses WSDL files,
using the built-in files and what to consider when you want to create your own WSDL file.

Part V—SQL Server 2005 and Visual Studio 2005
❑ Chapter 20, “SQL Server 2005 SQLXML Managed Classes,” introduces SQLXML managed

classes and how to use them from the client with Visual Studio 2005.

❑ Chapter 21, “Working with Assemblies,” introduces assemblies and discusses how to create and
use them in SQL Server 2005 and Visual Studio 2005.

❑ Chapter 22, “Creating .NET Routines,” introduces .NET routines and discusses how to create
and use them in SQL Server 2005 and Visual Studio 2005.

❑ Chapter 23, “ADO.NET,” discusses some of the changes and enhancements to ADO.NET 2.0,
such as asynchronous command operations, query notifications, and support of the xml data
type.

❑ Chapter 24, “ADO.NET 2.0 Guidelines and Best Practices,” provides some guidelines and best
practices for ADO.NET 2.0.

❑ Chapter 25, “Case Study — Putting It All Together,” provides a case in which most of the tech-
nologies discussed in this book are used.

❑ Appendix A, “XQuery in SQL Server 2005,” provides a brief introduction to the support, syntax,
and usage of XQuery in SQL Server 2005.

03_597922 flast.qxp 12/3/05 12:20 AM Page xvii

xviii

Introduction

What You Need to Use This Book
All of the examples in this book require the following:

❑ SQL Server 2005

❑ Visual Studio 2005

While it is possible to run the products on separate computers, the examples in this book were done with
both products running on the same computer.

Book Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We italicize new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray
background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book, the
ISBN is 0-7645-9792-2.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_597922 flast.qxp 12/3/05 12:20 AM Page xviii

xix

Introduction

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

03_597922 flast.qxp 12/3/05 12:20 AM Page xix

xx

Introduction

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions
about how the forum software works as well as many common questions specific to P2P and Wrox books.
To read the FAQs, click the FAQ link on any P2P page.

03_597922 flast.qxp 12/3/05 12:20 AM Page xx

Part I:
Introduction to SQL

Server 2005 XML

Chapter 1: What’s New in Version 2.0 of the .NET Framework for XML

Chapter 2: What’s New in SQL Server 2005 XML

Chapter 3: Installing SQL Server 2005

04_597922 pt01.qxp 12/3/05 12:20 AM Page 1

04_597922 pt01.qxp 12/3/05 12:20 AM Page 2

What’s New in Version 2.0 of
the .NET Framework for XML

You are probably saying to yourself, “Whoa, wait a minute, I thought this book was about XML
technology in SQL Server 2005.” Yes, that is true. So why start the book off with a chapter about
the XML technology found in version 2.0 of the .NET Framework?

Since the inception of the .NET Framework, Microsoft has taken a serious approach to supporting
XML, a fact proven by looking at the amount of functionality provided in the System.Xml names-
pace, a group of classes specifically designed for the reading, writing, and updating of XML. Even
in the first version of the .NET Framework, the support for XML was tremendous. The list of sup-
ported XML functionality included, but was not limited to, the following:

❑ Integration with ADO.NET

❑ Compliance with W3C standards

❑ Data source querying (XQuery)

❑ XML Schema support

❑ Ease of use

Microsoft set out to create a technology that dealt with data access using XML. Users of
System.Xml in version 1.x of the .NET Framework agree that, on the whole, the technology con-
tained a great number of useful classes that made dealing with XML and its related technologies a
delight.

Even with all of the great advantages with version 1.1, it was not without its shortcomings. First
and foremost, performance was an issue. Because of the way XML is processed, any obstacle or
holdup in processing had a performance effect on the rest of the application. Security was another
issue. For example, in the XML 1.0 specification, no precaution was taken to secure XML, which
led to Denial of Service attacks via DTDs. Not good. The XmlTextReader had its own problems in
that it could be subclassed and run in semitrusted code.

05_597922 ch01.qxp 12/3/05 12:26 AM Page 3

The inclusion of the CLR (Common Language Runtime) in SQL Server 2005 further strengthens the
importance of understanding the XML technology from both sides, server and client. While the primary
focus of this book is the support of XML in SQL Server 2005, a small handful of chapters focus on uncov-
ering and understanding XML support in version 2.0 of the .NET Framework, and more important, how
to utilize this technology in conjunction with SQL Server 2005 XML to get the most power and efficiency
out of your application.

The entire goal of XML in version 2.0 of the .NET Framework boils down to a handful of priorities, with
performance and W3C compliance at the top of the list. These are immediately followed by topics such
as ease of use, or pluggable, meaning that the components are based on classes in the .NET Framework
that can be easily substituted. Also included in the list is tighter integration with ADO.NET, which
allows for datasets to read and write XML using the XmlReader and XmlWriter classes.

This chapter outlines some of the major feature enhancements made to the System.xml namespace in
version 2.0 of the .NET Framework. If you look at all the changes made to the System.xml namespace,
that list could possibly take up a very large portion of a book. The goal of this chapter, however, is to
highlight the handful of significant changes that you will most likely use on a day-to-day basis to help
improve your XML experience.

System.xml Version 2.0 Enhancements and
New Features

The following list contains the System.xml enhancements that are covered in this chapter:

❑ Performance

❑ Type support

❑ XPathDocument

❑ XPathEditableNavigator

❑ XML query architecture

❑ XmlReader, XmlWriter, and XmlReaderSettings

Ideally, this list would include XQuery support. Unfortunately, in a January 2005 MSDN article,
Microsoft announced that it would be pulling client-side XQuery support in version 2.0 of the .NET
Framework. While the pains of realization set in, their reasons are justifiable. The main reason for
pulling XQuery support was for the simple reason of timing. XQuery has yet to become a W3C recom-
mendation and since it has not yet, this opens XQuery up for some changes. This put Microsoft in the
peculiar situation of trying to meet the requests of its customers while trying to keep with future com-
patibility. Microsoft did not want to support a technology that could possibly change. That is not to say,
however, that you won’t ever see support for client-side XQuery. Microsoft’s goal is to add it back in
once XQuery has reached recommendation — which I hope will happen quickly.

Time to dig right in. The following section deals with arguably the most important enhancement to ver-
sion 2.0 of the .NET Framework: performance.

4

Chapter 1

05_597922 ch01.qxp 12/3/05 12:26 AM Page 4

Performance
You have to admit that developers like it when things go fast, and the faster the better. Developers abso-
lutely hate waiting. XML performance is no different. This section, then, discusses the places where
Microsoft focused the majority of the performance improvements. There isn’t any code in this section to
try out, but feel free to run some performance tests using some of the concepts discussed in this section.

XMLTextWriter and XMLTextReader
To begin with, the XMLTextWriter and XMLTextReader have been significantly re-written to cut these
two call times nearly in half. Both of these classes have been completely rewritten to use a common
code path.

XMLReader and XMLWriter
The XmlReader and XMLWriter classes can now be created via the Create method. In fact, they outper-
form the XmlTextReader and XmlTextWriter and as is discussed a little bit later, the Create method
is now the preferred method of reading and writing XML documents.

XSLT Processing
XSLT processing performance has dramatically increased in version 2.0 of the .NET Framework. To
understand why, you need to understand the XslTransform class. The XslTransform class, found in
the System.Xml.Xsl namespace, is the brains behind XSLT. Its job is to transform the contents of one
XML document into another XML document that is different in structure. The XslTransform class is the
XSLT processor.

In version 1.1 of the .NET Framework, the XslTransform class was based on version 3.0 of the MSXML
XSLT processor. Since then, version 4.0 of the MSXML XSLT processor came out and included enhance-
ments that vastly improved the performance of the XSLT processor. So what’s up with version 2.0 of the
.NET Framework?

The idea with version 2.0 of the .NET Framework was to improve better yet the XSLT processing beyond
that of the MSXML 4.0 XSLT processor. In order to do this, Microsoft completely rebuilt the XSLT proces-
sor from the ground up. The new processor is now called the XslCompileTransform class and lives in
the System.Xml.Xsl namespace.

This new class has the same query runtime architecture as does the CLR, which means that it is com-
piled down to intermediate format at compile time. There is an upside and downside to this. The down-
side is that it will take longer to compile your XSLT style sheet. The upside is that the runtime execution
is much faster.

Because there is no XQuery support at this time, performance improvements in the XslCompileTransform
class are critical since XML filter and transformation still need to use XSLT and XPath. To help with this,
Microsoft added XSLT debugger support in Visual Studio 2005 to debug style sheets. This comes in
handy.

5

What’s New in Version 2.0 of the .NET Framework for XML

05_597922 ch01.qxp 12/3/05 12:26 AM Page 5

XML Schema Validation
There is one major reason why XML Schema validation performance has improved, and that is type sup-
port. Type support will be defined in more detail in the next section; however, for XML Schema valida-
tion, type support comes into play in a huge way when you try to load or transform an XML document.

When an XML document is loaded into a reader and a schema applied to it, CLR types are used to store
the XML. This is useful because xs:long is now stored as a CLR long. First, the XML stores better this
way. Second, there’s no more of this useless untyped string stuff.

Type support also applies when creating an XPathDocument by applying XSLT to an original
XPathDocument. In this scenario, the types are passed from one document to another without having to
copy to an untyped string and then reparse them back the original type. This in itself is a tremendous
performance boost, especially when linking multiple XML components.

Conversion between schema types and CLR types was possible in version 1.1 using the XmlConverter
helper class, but conversion support is now extended to any XmlReader, XmlWrite, and
XPathNavigator class, discussed in the next section.

Type Support
While XQuery support has been removed from version 2.0 of the .NET Framework, type support for
many of the XML classes now offers type conversions. Classes such as the XmlReader, XmlWrite,
and XPathNavigator are all now type-aware, and support conversion between CLR types and XML
schema types.

In version 1.0 of the .NET Framework, type conversion was done by using the xmlConvert method,
which enabled the conversion of a schema data type to a CLR (or .NET Framework) data type.

For example, the following code demonstrates how to convert an xml string value to a CLR Double data
type using the XmlConvert in version 1.0 of the .NET Framework:

Imports System.Xml

‘declare local variables
Dim xtr As XmlTextReader = New XmlTextReader(“c:\testxml.xml”)
Dim SupplierID As Integer

‘loop through the xml file
Do While xtr.Read()

If xtr.NodeType = XmlNodeType.Element Then
Select Case xtr.Name

Case “SupplierID”
SupplierID = XmlConvert.ToInt32(xtr.ReadInnerXml())

End Select
End If

Loop

6

Chapter 1

05_597922 ch01.qxp 12/3/05 12:26 AM Page 6

While converting an untyped value of an XML node to a .NET Framework data type is still supported
in version 2.0 of the .NET Framework, you can accomplish this same thing via a single method call
new to version 2.0 of the .NET Framework. Using the ReadValueAs method call provides improved
performance (because of the single method call) and is easier to use.

For example, you could rewrite the previous code as follows:

Imports System.Xml

‘declare local variables
Dim xtr As XmlTextReader = New XmlTextReader(“c:\testxml.xml”)

Dim SupplierID As Integer

‘loop through the file
Do While xtr.Read()

If xtr.NodeType = XmlNodeType.Element Then
Select Case xtr.Name

Case “SupplierID”
SupplierID = xtr.ReadElementContentAsInt()

End Select
End If

Loop

The same principle can be applied to attributes and collections as well. For example, element values (as
long as they are separated by spaces) can be read into an array of values such as the following:

Dim I as integer
Dim elementvalues() as integer = xtr.ReadValueAs(TypeOf(elementvalues())
For each I in elementvalues()
Console.WriteLine(i)
Next I

So far the discussion has revolved around untyped values, meaning that all the values have been read
from the XML document and stored as a Unicode string value that are then converted into a .NET
Framework data type.

An XML document associated with an XML schema through a namespace is said to be typed. Type con-
version applies to typed XML as well because the types can be stored in the native .NET Framework
data type. For example, xs:double types are stored as .NET Double types. No conversion is necessary;
again, improving performance.

All the examples thus far have used the XmlReader, and as much fairness should be given to the
XmlWriter for Type conversion, which it has. The new WriteValue method on the XmlWriter class
accomplishes the same as the ReadValueAs does for the XmlReader class.

In the following example, the WriteValue method is used to write CLR values to an XML document:

Imports System.Xml

Dim BikeSize As Integer = 250
Dim Manufacturer As String = “Yamaha”

7

What’s New in Version 2.0 of the .NET Framework for XML

05_597922 ch01.qxp 12/3/05 12:26 AM Page 7

Dim xws As XmlWriterSettings = New XmlWriterSettings
xws.Indent = True
Dim xw As XmlWriter = XmlWriter.Create(“c:\motocross.xml”, xws)
xw.WriteStartDocument()
xw.WriteStartElement(“Motocross”)
xw.WriteStartElement(“Team”)
xw.WriteStartAttribute(“Manufacturer”)
xw.WriteValue(Manufacturer)
xw.WriteEndAttribute()
xw.WriteStartElement(“Rider”)
xw.WriteStartAttribute(“Size”)
xw.WriteValue(BikeSize)
xw.WriteEndAttribute()
xw.WriteElementString(“RiderName”, “Tim Ferry”)
xw.WriteEndElement()
xw.WriteEndElement()
xw.WriteEndDocument()
xw.Close()

Running this code produces the following results in the c:\testmotocross.xml file:

<?xml version”1.0” encoding=”utf-8” ?>
<Motocross>
<Team Manufacturer=”Yamaha”>

<Rider Size=”250”>
<RiderName>Tim Ferry</RiderName>

<Rider>
</Team>
</Motocross>

Now that a lot of the XML classes are type-aware, they are able to raise the schema types with additional
conversion support between the schema types and their CLR type counterparts.

XPathDocument
The XPathDocument was included in version 1 of the .Net Framework as an alternative to the DOM for
XML Document storage. Built on the XPath data model, the primary goal of XPathDocument was to pro-
vide efficient XSLT queries.

If the purpose of the XPathDocument is for XML Document storage, then what happened to the DOM?
The DOM is still around and probably won’t be going away any time soon. However, there are reasons
why an alternative was necessary. First, the acceptance of XML is moving at an extremely fast rate, much
faster than the W3C can keep up with the DOM recommendations. Second, the DOM was never really
intended for use with XML as a data storage facility, specifically when trying to query the data. The DOM
was created at the time when XML was just being adopted and obtaining a foothold in the development
communities. Since then, XML acceptance has accelerated greatly and the DOM has not made the adjust-
ments necessary to keep up in improvements. For example, XML documents are reaching high levels of
capacity and the DOM API is having a hard time adapting to these types of enterprise applications.

8

Chapter 1

05_597922 ch01.qxp 12/3/05 12:26 AM Page 8

Basically, the DOM has three shortcomings. First, the DOM API is losing its hold on the XML neighbor-
hood with the introduction of XmlReader and XmlWriter as ways to read and write XML documents.
Most developers are ready to admit that the DOM is not the friendliest technology to grasp. The
System.Xml class provided an easy way to read and write XML documents. Second, the DOM data
model is based on XML syntax and query language syntax is not. This makes for inefficient XML docu-
ment querying. Lastly, application modifications are a must when trying to find better ways to store
XML in the application. This is primarily due to the fact that there is no way to store XML documents.
Version 2.0 of the .NET Framework has greatly improved the XPathDocument by building on better
query support and XPathNavigator API found in version 1.

The goal of the XPathDocument in version 2.0 was to build a much better XML store. To do that, a num-
ber of improvements were made, including the following:

❑ XmlWriter to write XML content

❑ Capability to load and save XML documents

❑ Capability to accept or reject XML document changes

❑ XML store type support

What you will find is that the XPathDocument has all of the capabilities of the XmlDocument class with
the added features of great querying functionality. On top of that, you can work in a disconnected state
and track the changes made to the XML document.

The next section includes a number of examples to demonstrate loading, editing, and saving XML
documents.

XPathNavigator
The XPathNavigator class provides a mechanism for the navigation and editing of XML content and
providing methods for the editing of nodes in the XML tree.

In version 1.1 of the .NET Framework, the XPathNavigator class was based purely on version 1.0 of
the XPath data model. In version 2.0 of the .NET Framework, the XPathNavigator class is based on
the XQuery 1.0 and XPath 2.0 data models.

As part of the System.Xml.XPath namespace, the XPathNavigator class allows for very easy XML
document navigation and editing. Using the XML document example created previously, the follow-
ing code loads that XML document and appends a new Rider element using the XmlWriter and
XPathNavigator classes:

Dim xpd as XPathDocument = New XPathDocument(“c:\motocross.xml”)
Dim xpn as XPathDocument = xpd.CreateNavigator

Xpen.MoveToFirstChild()
Xpen.MoveToNext()

Using xw As XmlWriter = xpn.AppendChild
xw.WriteStartElement(“Bike”)

9

What’s New in Version 2.0 of the .NET Framework for XML

05_597922 ch01.qxp 12/3/05 12:26 AM Page 9

xw.WriteAttributeString(“Size”, “250”)
xw.WriteElementString(“RiderName”, “Chad Reed”)
xw.WriteEndElement()
xpd.Save(“c:\motocross.xml”)
End Using

The move from version 1.0 of XPath to version 2.0 is important for several reasons. First, there are better
querying capabilities. For example, version 1.0 of XPath supported only four types, whereas version 2.0
supports 19 types. The second reason is better performance. XQuery 1.0 and XPath 2.0 nearly share the
same foundation; XPath 2.0 is a very explicit subset of the XQuery 1.0 language. Because of this close
relationship between the two, once you have learned one, you nearly understand the other.

XML Query Architecture
The XML query architecture provides the capability to query XML documents using different methods
such as XPath and XSLT (with XQuery to be provided later). The classes that provide this functionality
can be found in the System.Xml.Xsl namespace. Part of this functionality is the capability to transform
XML data using an XSLT style sheet.

In version 2.0 of the .NET Framework, transforming XML data is accomplished by calling the
XslCompileTransform class, which is the new XSLT processor. The XslCompileTransform class was
mentioned previously during the discussion of performance. That section covered the topic of how the
XslCompileTransform was created to improve XSLT performance. In this section, however, the focus
of discussion will be on using the new XSLT processor and its associated methods.

The XslCompileTransform class replaces the XslTransform class in version 1.0 of the .NET
Framework. Therefore, it is needless to say that the Load and Transform methods of the XslTransform
class are also obsolete. What replaces them? The XslCompileTransform is very similar in architecture
to the XslTransform class in that it also has two methods: the Compile method and the Execute
method.

The Transform method of the XslCompileTransform class does exactly what the Compile method of
the XsltCommand class did: it compiles the XSLT style sheet specified by the overload parameter. For
example, the following code compiles the style sheet specified by the XmlReader:

Dim ss as String = “c:\motocross.xsl”)
Dim xr as XmlReader = XmlReader.Create(ss)
Xr.ReadToDescendant(“xsl:stylesheet”)
Dim xct as XslCompiledTransform = new XslCompiledTransform
xct.Transform(xw)

In this example, you create the XmlReader, and then use its ReadToDescendant property to advance
the XmlReader to the next descendant element using the qualified name. The XslCompileTransform
is then created and the Transform method is called with the Reader.

The next step is to call the Execute method to execute the transform using the compiled style sheet.
Using the previous example, add the following code:

10

Chapter 1

05_597922 ch01.qxp 12/3/05 12:26 AM Page 10

Dim ss as String = “c:\motocross.xsl”)
Dim xr as XmlReader = XmlReader.Create(ss)
Xr.ReadToDescendant(“xsl:stylesheet”)
Dim xct as XslCompileTransform = new XslCompileTransform
xct.Transform(xw)
Dim xpd as XPathDocument = New XPathDocument(“c:\motocross2.xml”)
Dim xw as XmlWriter = XmlWriter.Create(Console.Out)
Xs.Execute(New XPathDocument(“c:\motocross2.xml”), xw)
Xw.close

The Execute method takes two input types for the source document: the IXPathNavigatable interface
or a string URI.

The IXPathNavigatable interface is implemented in the XmlNode or XPathDocument classes and rep-
resents an in-memory cache of the XML data. Both classes provide editing capabilities.

The other option is to use the source document URI as the XSLT input. If this is the case, you will need to
use an XmlResolver to resolve the URI (which is also passed to the Execute method).

Transformations can be applied to an entire document or a node fragment. However you’re transform-
ing a node fragment, you need to create an object containing the node fragment and pass that object to
the Execute method.

XmlReader, XmlReaderSettings, XmlWriter,
and XmlWriterSettings

Throughout this chapter you have seen a number of examples of how to use the XmlReader and
XmlWriter classes. This section highlights a number of new methods that complement the existing
methods of both of these classes.

The static Create method on both the XmlReader and XmlWriter classes is now the recommended way
to create XmlReader and XmlWriter objects. The Create method provides a mechanism in which fea-
tures can be specified that you want both of these classes to support.

As seen previously, when combined with the XmlReaderSettings class, you can enable and disable
features by using the properties of the XmlReaderSettings, which are then passed to the XmlReader
and XmlWriter classes.

By using the Create method together with the XmlReaderSettings class, you get the following benefits:

❑ You can specify the features you want the XmlReader and XmlWriter objects to support.

❑ You can add features to existing XmlReader and XmlWriter objects. For example, you can use
the Create method to accept another XmlReader or XmlWriter object and you don’t have to
create the original object via the Create method.

❑ You can create multiple XmlReaders and XmlWriters using the same settings with the same
functionality. The reverse of that is also true. You can also modify the XmlReaderSettings and
create new XmlReader and XmlWriter objects with completely different feature sets.

11

What’s New in Version 2.0 of the .NET Framework for XML

05_597922 ch01.qxp 12/3/05 12:26 AM Page 11

❑ You can take advantage of certain features only available on XmlReader and XmlWriter objects
when created by the Create method, such as better XML 1.0 recommendation compliance.

❑ The ConformanceLevel property of the XmlWriterSettings class configures the XmlWriter
to check and guarantee that the XML document being written complies with XML rules. Certain
rules can be set so that, depending on the level set, you can check the XML document to make
sure it is a well-formed XML document. There are three levels:

❑ Auto: This level should be used only when you are absolutely sure that the data you are
processing will always be well-formed.

❑ Document: This level ensures that the data stream being read or written meets XML 1.0
recommendation and can be consumed by any XML processor; otherwise an exception
will be thrown.

❑ Fragment: This level ensures that the XML data meets the rules for a well-formed XML
fragment (basically, a well-formed XML document that does not have a root element). It
also ensures that the XML document can be consumed by any XML processor.

Reading this list, you would think that it couldn’t get any better. To tell you the truth, there are addi-
tional benefits with some of the items. For example, in some cases when you use the ConformanceLevel
property, it automatically tries to fix an error instead of throwing an exception. If it finds a mismatched
open tag, it will close the tag.

It is time to finish this chapter off with an example that utilizes a lot of what you learned:

Dim BikeSize As Integer = 250
Dim Manufacturer As String = “Yamaha”
Dim xws As XmlWriterSettings = New XmlWriterSettings
xws.Indent = True
xws.ConformanceLevel = ConformanceLevel.Document
Dim xw As XmlWriter = XmlWriter.Create(“c:\motocross.xml”, xws)
xw.WriteStartDocument()
xw.WriteStartElement(“Motocross”)
xw.WriteStartElement(“Team”)
xw.WriteStartAttribute(“Manufacturer”)
xw.WriteValue(Manufacturer)
xw.WriteEndAttribute()
‘First Rider
xw.WriteStartElement(“Rider”)
xw.WriteStartAttribute(“Size”)
xw.WriteValue(BikeSize)
xw.WriteEndAttribute()
xw.WriteElementString(“RiderName”, “Tim Ferry”)
xw.WriteEndElement()
‘Second Rider
xw.WriteStartElement(“Rider”)
xw.WriteStartAttribute(“Size”)
xw.WriteValue(BikeSize)
xw.WriteEndAttribute()
xw.WriteElementString(“RiderName”, “Chad Reed”)
xw.WriteEndElement()
xw.WriteEndDocument()
xw.Close()

12

Chapter 1

05_597922 ch01.qxp 12/3/05 12:26 AM Page 12

The preceding example creates an XML document and writes it to a file. That file is then reloaded, and
using the XPathEditableNavigator and XPathNavigator, a new node is placed in the XML docu-
ment and resaved.

Summary
Now that you have an idea of the new XML features that appear in version 2.0 of the .NET Framework,
you should also understand why this chapter was included in the book. Microsoft is taking a serious
stance on XML technology and it is really starting to show with a lot of the features covered in this
chapter.

Performance in XML is imperative to overall application performance, so this was a great place to start.
As discussed, many improvements were made in this area so that XML performance was not the bottle-
neck in application performance. You also spent a little bit of time looking at where those performance
improvements were made, such as modifications to certain classes sharing the same code path and com-
plete class re-writes.

You read about the new type support added to the XmlReader, XmlWriter, and XmlNavigator classes,
which contributes to the overall performance of XML, but more important, makes it much easier to read
and write XML without the headaches of data type conversions.

You will probably agree that the XPathDocument and XPathEditableNavigation were fun to read
and put to test. This is some absolutely cool technology that will make working with XML much easier
and a lot more fun than in the past as compared to the DOM. The DOM isn’t going away, but these tech-
nologies are far better suited for XML storage.

The enhancements to the XmlWriter, XmlReader, XmlReaderSettings, and XmlWriterSettings are
a welcomed improvement, as you learned how easy it is to read, write, and modify XML documents.

Last, the topic of XML query architecture was discussed, along with the new XslCompiledTransform
class, which replaces the XslTransform class, as well as how to use the new methods on that class.

In the next chapter you discover what’s new in SQL Server 2005 XML (which is why you bought the
book, right?) and all the new XML support it provides.

13

What’s New in Version 2.0 of the .NET Framework for XML

05_597922 ch01.qxp 12/3/05 12:26 AM Page 13

05_597922 ch01.qxp 12/3/05 12:26 AM Page 14

What’s New in
SQL Server 2005 XML

SQL Server 2000 made great strides in supporting XML and related technologies. When it first
came out, it supported the following:

❑ Exposing relational data as XML

❑ Shredding XML documents into row sets

❑ Using XDR schemas to map XML schemas to database schemas

❑ Using XPath to query XML

❑ Using HTTP to query SQL Server data

Subsequent SQLXML web releases were blessed with additional features such as the following:

❑ updategrams

❑ Client-side FOR XML

❑ SQLXML managed classes

❑ Support for Web Services

❑ Support for XSD schemas

With the most recent release, SQLXML Service Pack 3, there were many additions such as building
a web service with SQL Server 2000, querying relational data with XPath, and the inclusion of
.NET managed classes, to name a few. This release was a welcome event to developers who were
looking to extend this functionality and take it to higher grounds.

06_597922 ch02.qxp 12/3/05 12:26 AM Page 15

While each service pack provided better XML support, some very nice and needed enhancements and
additions were made to SQL Server 2005 that let developers know that Microsoft is serious in supporting
XML and XML technologies.

This chapter examines the new XML features in SQL Server 2005 and some of the enhancements made to
SQL Server 2005 that existed in SQL Server 2000. All of these items are discussed in detail in later chap-
ters, but the focus of this chapter is to highlight the new and improved XML features of this release of
SQL Server.

With SQL Server 2005 there are six major improvements for XML support:

❑ New xml data type

❑ Indexes on xml type columns

❑ XQuery support

❑ XML DML (XML Data Modification Language)

❑ Transact-SQL enhancements (FOR XML and OPENXML)

❑ HTTP SOAP Access

Each topic is discussed in greater detail later in the book, so the goal of this chapter is to familiarize you
with these six topics. The first point of discussion is the new xml data type.

xml data type
One of the most important new features of SQL Server 2005 is the addition of an xml data type. This new
data type supports the storing of XML documents and XML fragments (discussed in Chapter 4) in a SQL
Server database, as well as storing XML in Transact-SQL variables.

Overall, there are four major uses for the xml data type:

❑ Column type

❑ Variable type

❑ Parameter type

❑ Function return type

Realistically, there is a fifth use — using the xml data type in a CAST or CONVERT function used to convert
an expression from one data type to another — which is covered in detail in Chapter 4.

The xml data type supports both typed and untyped XML. Simply put, when a collection of XML
schemas is associated with the xml data type column, parameter, or variable, it is said to be typed.
Otherwise is said to be untyped.

Nothing can really happen without the xml data type, so the following section introduces the xml data
type column.

16

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 16

xml data type Column
Selecting the xml data type is just like selecting the int or varchar data type when you add a column to
a table. It is a built-in data type just like all the other types. Simply select the xml data type from the
drop down list as shown in Figure 2-1.

Figure 2-1

If you are not a visual person and like to sling code, you can also add it by using the following code:

CREATE TABLE Employees (EmployeeID int, EmployeeInfo xml)

Alternatively, if the table is already created and you want to add an xml data type column, you can use
this code:

ALTER TABLE Employees ADD EmployeeInfo xml

You don’t have to do anything special when setting the properties of the xml data type. However, you
should be aware of one property: the XML schema namespace property. This property is a built-in
function that accepts the namespace of a target XML schema, an XML schema collection, or the name
of a relational schema. If this value is left empty, an XML instance is automatically mapped that has the
necessary XML schemas. It does not return the predefined XML schemas.

xml Variable
Use of the xml data type goes far beyond simply creating a table. You can also use it as a variable.

The following syntax demonstrates how to use it as a variable:

DECLARE @xmlVar xml

The declaration of an xml variable is easy, nothing really complex. The xml data type has numerous uses
as a variable. For example, Figure 2-2 shows how you can create a stored procedure that uses the xml
data type as a variable in that stored procedure:

CREATE PROCEDURE GetEmployeeInfo
@EmployeeID [int]

WITH EXECUTE AS CALLER
AS

DECLARE @EmployeeInfo xml

17

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 17

Looking briefly at this stored procedure, an xml type variable is declared, which is used to store an XML
document or fragment.

In addition to using the xml data type as a variable, you can also use it as a parameter, which is the sub-
ject of the next section.

XML Parameter
Using the same stored procedure as an example, modify it as follows:

CREATE PROCEDURE GetEmployeeInfo
@EmployeeID [int],
@EmployeeInfo [xml] OUTPUT

WITH EXECUTE AS CALLER
AS

This example uses the xml data type as an output parameter. The calling application, whether it is SQL
Server itself or a .NET application, calls this stored procedure and passes XML to it.

Function Return
Similar to the variable, the xml data type can also be used as a return value. The following example uses
the xml data type to return the results of a SELECT statement in this function. The return value is set as
the xml data type, which is then returned via the RETURN statement:

CREATE FUNCTION dbo.ReturnXML()
RETURNS xml
WITH EXECUTE AS CALLER
AS
BEGIN
DECLARE @EmployeeInfo xml
SET @EmployeeInfo = ‘
<Employee>
<FirstName>Scott</FirstName>
<LastName>Klein</LastName>
</Employee>’
RETURN(@EmployeeInfo)

END
GO

With the function created, it can now be executed as follows:

SELECT dbo.ReturnXML()

The results returned look like the following:

<Employee><FirstName>Scott</FirstName><LastName>Klein</LastName></Employee>

18

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 18

In this example, the return value was hard coded into the stored procedure, but the purpose was to illus-
trate the functionality of the xml data type. In Chapter 4, you learn how to query the xml data type,
which you can also build into a function such as the example here.

These examples have been quite easy, but in the real world the amount of data being queried is not so lit-
tle. That is why it is also possible to index the xml data type.

Indexes on the xml data type
The importance of indexes on the xml data type is crucial because xml data type columns are stored as
binary large objects, or BLOB’s. When you query xml data type columns, these BLOB’s are shredded at
runtime to evaluate the query if there are no indexes on the column. If there is a lot of data, this can be
extremely costly in terms of performance and processing.

For this reason, SQL Server 2005 has introduced indexes on the xml data type columns.

Primary Index
There are two types of indexes: primary XML and secondary XML indexes. Creating these indexes is not
rocket science as shown here:

CREATE PRIMARY XML INDEX PriI_Employee_EmployeeInfo
ON Employees(EmployeeInfo)

This example created a primary index on the Employee table on the EmployeeInfo column. A primary
XML index is a shredded version of what is in the xml column. When this index is created, it writes sev-
eral rows of data for each XML BLOB in the column.

A clustered index must already exist on the primary key of the table on which the XML index is being
created. This is explained in more detail in Chapter 6.

Secondary Index
You can further improve performance by creating a secondary XML index on the same column. It is not
required, but could really improve performance on large amounts of data.

A primary index must exist before a secondary index can be created for a specific
column.

Typically, when a table is dropped from a database, all the columns associated with
that table are dropped as well. Not so with an xml column. An xml column with an
associated index cannot be deleted or dropped from a table. The index must be
removed first before the table can be deleted.

19

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 19

This chapter shows only syntax, as Chapter 6 is dedicated to XML indexes and contains plenty of
hands-on examples.

There are three types of secondary XML indexes: PATH, VALUE, and PROPERTY.

PATH
Use this index when you want to index the paths and node values as the key fields. This can signifi-
cantly increase query performance. You create a PATH index using the following syntax:

CREATE XML INDEX SecI_Employee_EmployeeInfo_PATH
ON Employees (EmployeeInfo)
USING XML INDEX PriI_Employee_EmployeeInfo
FOR PATH

In a PATH secondary index, the path and node values are key columns that provide a more efficient
search for searching paths.

VALUE
There are two reasons why you would want to use the VALUE index. First, if your queries are based on
values, and second, if the path includes a wild card character or isn’t fully specified. As with the PATH
index, using the VALUE index in these situations increases query performance. The key columns for the
VALUE index are the node and path values of the primary XML index.

Creating a VALUE index is not that much different from creating a PATH index. You need to make some
simple changes to the previous code:

CREATE XML INDEX SecI_Employee_EmployeeInfo_VALUE
ON Employees (EmployeeInfo)USING XML INDEX PriI_Employee_EmployeeInfo
FOR VALUE

If your query is retrieving values from an XML document and you don’t know the element or attribute
names that contain the values, the VALUE index can come in very useful.

You’ll notice that in each of these syntax examples, the secondary index was created using the primary
index as the “primary” index. This means that these indexes are not individually acting indexes but that
they work in tandem to improve query performance.

PROPERTY
The PROPERTY index is built on the key columns of the primary XML index such as Primary Key, path,
or node values. The syntax is as follows:

CREATE XML INDEX SecI_Employee_EmployeeInfo_PROPERTY
ON Employees (EmployeeInfo)
USING XML INDEX PriI_Employee_EmployeeInfo
FOR PROPERTY

The PROPERTY index is beneficial when your query returns one or multiple values from a single XML
instance, such as when you use the value() method of the xml data type.

20

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 20

XQuery
For SQL Server 2005, Microsoft has added server-side support for XQuery. Based on the existing XPath
query language, XQuery is a language that can query structured, and even semi-structured, XML data.
Coupled with the xml data type, this allows for quick and efficient storage and retrieval of XML data.

Server-side support for XQuery means that you get all the added benefits of the XPath language plus
additional support for things like better iteration, sorting of results, and the ability to shape the results of
your queried XML (typically called construction). The XQuery data model is what drives the XQuery lan-
guage, which means, just like the xml data type, you can have typed or untyped results as well as XML
fragments.

XQuery Structure
In its simplistic form, an XQuery expression contains a query prolog (your namespace declaration) and
the actual query expression. What follows is a simple example of an XQuery expression:

SELECT Instructions.query(‘declare namespace MSAW=”http://schemas.microsoft.com/
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
/MSAW:root/MSAW:Location[LocationID=50]’)
AS Result
FROM Production.ProductModel
WHERE ProductModelID = 10

The first two lines are actually one line of code and should be entered as such. A hard return was used
here to separate them for line continuation and readability only. If you type this syntax in exactly as
shown (as two lines), you will receive an error.

Before getting deeper into the discussion of XQuery’s structure, run the following SQL statement against
the AdventureWorks database:

SELECT Instructions FROM Production.ProductModel WHERE ProductModelID = 10

Take the results of the above SQL query statement and save them to your hard drive as Production.xml
for future reference.

As of this writing, SQL Server 2005 Beta 2 comes with the XQuery language based
on the November 2003 Last Call working draft. What does that mean? Primarily, it
means that the XQuery found in SQL Server 2005 may be a bit different from the
specifications of the final recommendation from the W3C. Not to worry though;
the differences are covered later on in the book, as well as what you might find in
the final release of SQL Server 2005.

Also as of this writing, Microsoft has decided not to ship a client-side XQuery sup-
port in the .NET Framework 2.0. Again, what does this mean? It means you get to
continue to use all that XSLT and XPath knowledge and experience, at least for the
short term. And you thought it wouldn’t pay off.

21

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 21

There are basically two parts to this query. The first part contains the namespace declaration (declare
namespace ...) and the actual query (/MSAW:root/MSAW:Location[LocationID=50]).

The results of this query are shown in Figure 2-2.

Figure 2-2

What you see is a section (or fragment) of the XML stored in the Instruction column. By specifying the
query piece you were able to return just the section of the XML you were looking for. The namespace —
a group or collection of elements and attributes with a unique name — is equally important. Namespaces
provide the mechanism for mapping elements and attributes within an XML document to an associated
schema. Running this query without the namespace would result in an error, such as the following:

There is no element named ‘{http://}’

Additional Concepts
There are a few concepts that you need to understand in order to fully grasp how XQuery works. An
introduction to XQuery can be found in Chapter 5. Those concepts are the following:

❑ Sequence

❑ Atomization

❑ Quantification

❑ Type promotion

The first of these concepts, sequence, is discussed in the next section.

22

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 22

Sequence
A sequence is simply the result of an XQuery expression that contains a list of XML nodes and fragments
as well as XSD types. An item is an individual entry in the sequence and can be a node of one of the fol-
lowing types:

❑ Element

❑ Attribute

❑ Text

❑ Comment

❑ Document

❑ Processing instruction

The following example demonstrates how to construct a query that will return a single element
sequence:

SELECT Instructions.query(‘
<Test>This is a test </Test>’)
AS Result
FROM Production.ProductModel
WHERE ProductModelID = 10

The result of this query returns the following:

<Test>This is a test</Test>

Not very impressive, but it does demonstrate that you have the ability to retrieve specific information
from within your XML document. For example, the following query returns the first step (previously
shown in Figure 2-2) from your original query:

SELECT Instructions.query(‘declare namespace MSAW=”http://schemas.microsoft.com/_
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
FOR $Inst in /MSAW:root
Return
(
<step1> {string(($Inst/MSAW:Location[LocationID=50]/MSAW:step[1][1]} </step1>
)
‘) AS Result
FROM Production.ProductModel
WHERE ProductModelID = 10

You should see the following results:

<step1>Insert aluminum sheet MS-6061 into tool T-99 framing tool</step1>

This query is almost identical to your original query, but what you told it to do was retrieve a more spe-
cific value (or sequence) from the XML document.

23

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 23

Atomization
Atomization is the process of retrieving the typed value of an item, and many times it is implied. In cer-
tain scenarios, atomization allows you to return the value of an item without having to query for it
again. The following example queries the MachineHours attribute from the previous example and
returns multiple values. The first value is the original queried value. The second value uses the data()
function to extract the same value and increments it by 1 (adds 1 to it). The third value matches the sec-
ond value, but is returned automatically using atomization instead of using the data() function again.

SELECT Instructions.query (‘declare namespace MSAW=”http://schemas.microsoft.com/_
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
FOR $AW in / MSAW:root/ MSAW:Location[2]
Return
<AW OriginalMachineHours = “{$AW/@MachineHours}”
NewMachineHours = “{data{$AW/@MachineHours} +1}”
NewMachineHours1 = “{$AW/@MachineHours +1}></AW>”
‘)
FROM Production.ProductModel
WHERE ProductModelID = 10

This says, “Take a look at the second Location node and return the MachineHours attribute. Now add 1
to it and return that value.” Your results should look similar to the following:

<AW OriginalMachineHours=”1.75” NewMachineHours=”2.75” NewMachineHours1=”2.75/>

Quantification
There are two types of quantification, Existential and Universal, which specify semantics for Boolean
operators when applied to two sequences.

A quantified expression in XQuery uses the following syntax:

{ some | every } <variable> in <Expression> satisfies <Expression>

Existential
The Existential quantifier says that for any two sequences, if an item in the first sequence has a match in
the second sequence based on the comparison operator used, then the return value is true. In other
words, if a value in the first sequence matches a value in the second sequence based on a specific com-
parison operator, then the return value is true.

Look at the following example:

SELECT Instructions.query (‘declare namespace MSAW=”http://schemas.microsoft.com/_
sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
if (every $AW in // MSAW:Location

Satisfies $AW/@MachineHours)
then

<return>All Locations have Machine Hours</return>
else

<return>Not all Locations have Machine Hours</return>
‘)
FROM Production.ProductModel
WHERE ProductModelID = 10

24

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 24

When you run this, you get the following in return:

<return>Not all locations have Machine Hours</return>

If you still have your Production.xml file open, take a look at each <Location> element and notice that
not every <Location> element has a MachineHours attribute, so your results are correct.

Now make the following changes to the then and else clauses and run the query again:

SELECT Instructions.query (‘declare namespace MSAW=”http://schemas.microsoft.com/_
sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
if {every $AW in // MSAW:Location

satisfies $AW/@LocationID)
then

<return>All Locations have a LocationID</return>
else

<return>Not all Locations have a LocationID</return>
‘)
FROM Production.ProductModel
WHERE ProductModelID = 10

What results did you get? What you should get back is a little bit different message than the first exam-
ple, stating that all locations have a LocationID, as follows:

<return>All Locations have a LocationID</return>

The reason for this is because in this last example the existential quantifier returned a value of true,
meaning that for each location, a LocationID was found. That was not the case in the first example.

Universal
The Universal quantifier says that for any two sequences, if all items in the first sequence have a match
in the second sequence, then the return value is true.

The following example looks to see if any of the pictures in the Product table has an angle of front:

SELECT CatalogDescription.value (‘declare namespace
MSAW=”http://schemas.microsoft.com/_
sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
if {some $AW in //MSAW: ProductDescription/MSAW:Picture

satisfies $AW/@MSAW:Angle=”front”
then

“True”
else

“False”
‘, ‘varchar(5)’) as PictureAngleFront
FROM Production.ProductModel
WHERE ProductModelID = 35

Your results should look like the following:

PictureAngleFront
TRUE

25

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 25

There are two changes in this code you need to be aware of. First is the schema declaration. Second,
you are looking to see if any of pictures have an Angle of front, so your XQuery statement uses some
instead of every. If you had used every and not all of the Picture elements had an Angle of front then
your return value would be False.

Type Promotion
Type promotion allows for type casting for numeric expressions if one of the values is untyped or for
numeric types.

For example, you may want to compare numerical values and determine which value is higher or lower.
In these cases, you can implicitly cast the two numbers similar to the following:

Max(xs:long(“1.0”), xs:integer(“2.0”))

In the preceding example, both values were typed, but what if you needed to type cast an untyped value
with a typed value? The following example shows how to cast a typed value with an untyped value:

Max(xtd:untypedatomic(35), xs:integer(“2.0”))

This section barely touched these topics, but for good reason: Chapter 5 and Appendix A are dedicated
to XPath, XQuery, and the querying of the xml data type and how they are used in SQL Server 2005. This
chapter is just intended to whet your appetite.

XML Data Modification Language
XQuery is a very powerful language intended to allow for querying XML data, and while it is very
useful and powerful, it does have its limitations. The biggest limitation is the inability to modify XML
documents. To compensate for the shortcomings of XQuery, Microsoft has added on to the XQuery
implementation in SQL Server 2005 by giving developers the ability to insert, update, and delete XML
documents and fragments.

Microsoft did this by creating the XML Data Modification Language (or XML DML). The XML DML is
built on and around the XQuery language as defined by the W3C, but it enhances XQuery by allowing
full-on insert, update, and delete access anywhere the xml data type is used.

Using XML DML is as simple as adding one of the three following words to your XQuery statement:

❑ Insert

❑ Delete

❑ Update

The following sections show you some easy examples.

26

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 26

Insert
The basic syntax for inserting a node or nodes into an XML document looks like this:

INSERT
Expression1 (

{as first | as last } into | after | before
Expression2

)

Now take a look at an example that inserts an element into an XML document. Suppose you had the fol-
lowing XML document:

<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>

You want to insert some employee information into the XML document. The following example inserts a
firstname element into the XML document underneath the EmployeeInformation element:

INSERT <FirstName>Evel</FirstName>
Into (/ROOT/ProductDescription/EmployeeInformation)[1]

Your XML document now looks like the following:

<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Evel</FirstName>

</EmployeeInformation>
</Employee>
</Root>

To try this example, type the following code into Query Builder and execute it:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>’
SET @xmldoc.modify(‘
insert <FirstName>Evel</FirstName>
into (/ROOT/Employee/EmployeeInformation)[1]’)
GO

27

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 27

You didn’t need to specify first or last because it was the first child added. The as first and as last
keywords are saved for Chapter 5 when this is discussed in depth. In that chapter, added attributes are
discussed as well.

Delete
The syntax for deleting a node or nodes is really simple:

DELETE expression

Use the previous example and delete the element you just added. Here is the original code with the
delete code added (shown with a gray screen background):

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>’
SELECT @xmldoc
SET @xmldoc.modify(‘
insert <FirstName>Evel</FirstName>
into (/ROOT/Employee/EmployeeInformation)[1]’)
SELECT @xmldoc
SET @xmldoc.modify(‘
delete /Root/Employee/EmployeeInformation/FirstName’)
SELECT @xmldoc
GO

Execute this in Query Builder. Each SELECT @xmldoc returns a row that you can click and see the
results of the query. When you click on the first result you see the original query. Click the second result
and you see the same information but with the <FirstName> element added. Click the third result and
you see the <FirstName> element has been removed.

As with the Insert, you can delete attributes and much more.

Update
You can update the contents of an XML document with the modify method. The syntax looks like this:

Replace value of Expression1 with Expression2

Expression1 is the node whose value you want to update. Expression2 is the new value of the node.

It doesn’t make sense to update a node or element. Typically you just delete the offending node. The
replace value of syntax is used to update the value of a node.

28

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 28

Use your previous XML document to illustrate updating the value of a node in an XML document. Make
the appropriate changes to the XML as follows:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Scott</FirstName>

</EmployeeInformation>
</Employee>
</Root>’
SELECT @xmldoc
SET @xmldoc.modify(‘
replace value of (/Root/Employee/EmployeeInformation/FirstName/text())[1]
with “Calvin”
‘)
SELECT @xmldoc
GO

Execute this in Query Builder. When you click the first result, you see the original query with the value
of <FirstName> element of Scott. Click the second result and you see the same information but with
the value of the <FirstName> element updated to Calvin.

While you have barely scratched the surface of the XML DML topic, you should start to see the flexibility
and power it adds to XQuery. You’ll learn more about this in Chapter 5.

Transact-SQL Enhancements
For those of you who have used FOR XML and OPENXML before, you’ll whole-heartedly welcome the
Transact-SQL changes to both of these. SQL Server 2000 introduced FOR XML and OPENXML as a clause to
the SELECT statement. The FOR XML clause supported three modes —RAW, AUTO, and EXPLICIT. The
RAW mode created a single element per row returned. It did not allow nesting. The AUTO mode generated
nesting based on the SELECT statement. The EXPLICIT mode gave you greater control over the shape of
your XML.

The downside to using pre-SQL Server 2005 FOR XML clauses was that FOR XML could be used only on
the client side. And it wasn’t the easiest thing to figure out, especially if you were trying to generate
somewhat complex EXPLICIT structures.

Fortunately, there is SQL Server 2005. This section covers the changes and enhancements to FOR XML
and OPENXML in the new version of SQL Server.

FOR XML
In SQL Server 2005 many improvements and new features were added to make FOR XML more useful,
including the following:

29

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 29

❑ Integrating FOR XML with the xml data type

❑ Nesting FOR XML expressions

❑ The new PATH mode

❑ Assigning FOR XML results

This section covers these enhancements in the order in which they appear in the list, beginning with
integration of FOR XML with the xml data type.

xml data type Integration
The addition of the xml data type in SQL Server provides the capability to directly generate XML. You
can request that the query results of a FOR XML query be returned as an xml data type by specifying the
new TYPE directive. For example:

SELECT EmployeeID, FirstName, LastName
FROM Employees
Order By EmployeeID
FOR XML AUTO, TYPE

Your results look like this:

<Employees EmployeeID=”1” FirstName=”Sarah” LastName=”Adams” />
<Employees EmployeeID=”2” FirstName=”Joe” LastName=”Arnet” />
<Employees EmployeeID=”3” FirstName=”Dale” LastName=”Arbuckle” />

Nesting FOR XML Expressions
SQL Server 2000 supported the capability to specify the FOR XML clause at the top level of the SELECT
statement only. This meant that any results returned to you were in need of further manipulation. SQL
Server 2005 now provides the capability to generate FOR XML queries that return results in the xml data
type for server side processing. This means that you can write nested queries where the inner query
returns the results to the outer query as an xml data type.

For this example, drop and create the following two tables and associated data:

DROP TABLE Employees
GO

CREATE TABLE [dbo].[Employees](
[EmployeeID] [int] NOT NULL,
[FirstName] [varchar](25) NULL,
[LastName] [varchar](25) NULL
) ON [PRIMARY]

GO

CREATE TABLE [dbo].[EmployeePhone](
[EmployeePhoneID] [int] NOT NULL,
[EmployeeID] [int] NOT NULL

30

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 30

[CellPhoneNumber] [varchar](15) NULL,
[HomePhoneNumber] [varchar](15) NULL
) ON [PRIMARY]

GO

INSERT INTO Employees (EmployeeID, FirstName, LastName)
VALUES (1, ‘Fred’, ‘Flintstone’)
GO

INSERT INTO Employees (EmployeeID, FirstName, LastName)
VALUES (2, ‘Barney’, ‘Rubble’)
GO

INSERT INTO EmployeePhone (EmployeePhoneID, EmployeeID, CellPhoneNumber,
HomePhoneNumber)
VALUES (1, 1, ‘555-BED-ROCK’, ‘555-555-5555’)
GO

The following example illustrates a nested query using FOR XML:

SELECT EmployeeID, FirstName, LastName
(SELECT CellPhoneNumber, HomePhoneNumber
FROM EmployeePhone ep
WHERE ep.EmployeeID = e.EmployeeID
FOR XML AUTO, TYPE)
FROM Employees
WHERE EMPLOYEEID = 23
FOR XML AUTO, TYPE

In the preceding example, the inner SELECT statement queries the employee phone number and returns
it in XML format to the outer query by supplying the FOR XML expression. It is guaranteed to be well-
formed because the TYPE directive was supplied. The outer query then runs its query, combining its
results with those of the inner results to provide a well-formed XML document.

PATH Mode
The PATH mode is a new addition to FOR XML in SQL Server 2005. Do you remember how difficult it was
to find your way around the EXPICIT mode? Wouldn’t it be nice to provide the same flexibility and
functionality without the complications of the EXPLICIT mode? Fortunately, that is what the PATH mode
does. It provides the flexibility of the EXPLICIT mode in a much easier fashion.

The PATH mode treats column names and column aliases as XPath expressions, indicating how the values
are mapped to XML. The following example, while quite simple, illustrates the syntax of the PATH mode.

SELECT ContactID, FirstName, LastName
FROM Person.Contact
WHERE ContactID = 218
FOR XML PATH

31

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 31

The PATH mode generates element-centric results by default, so the results from this query look like the
following:

<row>
<ContactID>218</ContactID>
<FirstName>Scott</FirstName>
<LastName>Colvin</LastName>

</row>

Namespaces are not supported when generating XML using the PATH mode.

The PATH mode and the rest of the FOR XML enhancements are discussed in much more detail in
Chapter 8.

Assigning FOR XML Results
FOR XML queries can now return assigned values that allow you to assign the results of a FOR XML query
to a variable, as well as insert them into an xml data type column.

For example, you could assign the following FOR XML query result to a variable as follows:

CREATE TABLE [dbo].[Vendor](
[VendorID] [int] NOT NULL,
[VendorName] [varchar](25) NULL,
[VendorAddress] [varchar](25) NULL,
[VendorContact] [varchar](25) NULL
) ON [PRIMARY]

GO

DECLARE @xmlvar xml
SET @xmlvar = SELECT VendorID, VendorName, VendorAddress, VendorContact FROM Vendor
FOR XML AUTO, TYPE

Just as easily, you can insert the results of a FOR XML query directly into a table as follows:

CREATE TABLE [dbo].[VendorInfo](
[VendorInfoID] [int] IDENTITY(1, 1) NOT NULL,
[VendorInfo] xml NULL,
) ON [PRIMARY]

GO

INSERT INTO Products (VendorInfo) (SELECT VendorName, VendorAddress, VendorContact
FROM Vendors FOR XML AUTO, TYPE)
GO

In the preceding example, the VendorInfo column is an xml data type column.

In addition to these enhancements, additional enhancements have been made to the RAW and EXPLICIT
modes. These FOR XML enhancements allow you to do the following:

32

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 32

❑ Specify a row element name

❑ Retrieve element-centric XML

❑ Specify the root element

The OPENXML enhancements include the following:

❑ CDATA directive with an element name

❑ elementxsinil column mode

All of these enhancements are discussed in detail in Chapter 8, so stay tuned.

HTTP SOAP Access
SQL Server 2005 provides the capability to send HTTP SOAP requests directly to SQL Server without
going through an IIS server. This includes the capability to execute Transact-SQL statements and stored
procedures (including extended stored procedures) as well as user-defined functions.

This functionality works only if SQL Server 2005 is running on Windows Server 2003.

Just as important, SQL Server has the capability to function as its own Web Service, which provides the
capability to allow any Web Service application to access SQL Server, reduce the need for a firewall with
its built-in security, and utilize the Web Service infrastructure by applying predefined schemas to query
results in native XML format.

No examples are given in this chapter, but Chapters 17 and 18 are dedicated specifically to HTTP SOAP
access.

Summary
The main purpose of this chapter was to give you brief look into the new features and enhancements in
SQL Server 2005. A large portion of the chapter examined the new xml data type as it applies to columns,
variables, and parameters, and the impact it has on the rest of the XML topics.

You spent some time looking at how you can index the xml data type to gain performance using pri-
mary and secondary indexes. You also learned how SQL Server 2005 stores xml instances and what that
means when querying these columns, especially when dealing with large amounts of data.

Additionally, this chapter included enough coverage of XQuery to give you a basic understanding of its
functionality. However, because XQuery is such an integral part of SQL Server 2005 that you’ll spend a
good portion of Chapter 5 on it.

XQuery can’t be introduced without also introducing the XML Data Modification Language. As you dis-
covered in this chapter, XML DML makes up for some of the things lacking in XQuery and how you can
put the functionality of the data modification language to good use. Like XQuery, though, a couple of
pages do not do XML DML justice, so it is also covered in more depth in Chapter 5.

33

What’s New in SQL Server 2005 XML

06_597922 ch02.qxp 12/3/05 12:26 AM Page 33

After discussing the xml data type, XQuery, and XML DML, you learned about the Transact-SQL
enhancements to FOR XML. As you have probably figured out by now, these improvements could not
have come at a better time. FOR XML’s integration with the xml data type was a great blessing, and
together with the PATH directive and other enhancements, your FOR XML life just got a lot easier. This
chapter barely scratched the surface, though, and FOR XML is covered in detail in Chapter 8.

Last, you learned a little bit about the HTTP SOAP capabilities in SQL Server 2005. Chapters 17 and 18 are
dedicated to this topic, so this chapter simply introduced you to some of the highlights and features that
SQL Server 2005 supports in this area.

In the next chapter, you’ll learn how to install and configure SQL Server 2005.

34

Chapter 2

06_597922 ch02.qxp 12/3/05 12:26 AM Page 34

Installing SQL Server 2005

The first two chapters of the book highlighted some of the features that are new to SQL Server
2005 and XML, as well as what you can look forward to in the .NET Framework 2.0. Both of those
topics will come in very handy later on in the book, so keep all of that newfound information in
the back of your mind when reading later chapters.

This chapter walks you through the installation of SQL Server 2005 step by step so that you can
put it to good use throughout the rest of the book. Fortunately, you will find that the installation is
not significantly different from previous versions of SQL Server. If you have already installed it or
don’t want to try it out on your own, you can skip to Chapter 4. However, there are a few major
differences pertaining to the installation of SQL Server 2005, so you might want to read this chap-
ter to become familiar with those differences.

The version used throughout this book is SQL Server 2005 Developers Edition Beta 2, build 3790.
Installation requirements aren’t covered in this book, but you can find information regarding hard-
ware and software requirements on Microsoft’s website at www.microsoft.com/sql/ or on the
SQL Server installation CD.

Where to Get SQL Server 2005 Beta 2
Express Edition

Unless you have an MSDN subscription (Universal, Enterprise, or Professional) the only thing
to work with is the SQL Server 2005 Beta 2 Express Edition, available at www.microsoft.com/
downloads/details.aspx?FamilyID=62B348BB-0458-4203-BB03-8BE49E16E6CD&
displaylang=en.

The SQL Server Express Edition is the next version of MSDE. The Beta 2 version is an evaluation
version and is good up to 18 months from the date of installation. After the evaluation period is
over, no SQL Server services will start.

07_597922 ch03.qxp 12/3/05 12:24 AM Page 35

Like its bigger brothers (SQL Server 2005 Enterprise Edition and SQL Server 2005 Developer Edition),
the Express Edition also needs the .NET Framework 2.0. But unlike its bigger brothers, the Express
Edition does not install it. You have to do that yourself — at least in Beta 2.

You can get the .NET Framework 2.0 from www.microsoft.com/downloads/details.aspx?
familyid=B7ADC595-717C-4EF7-817B-BDEFD6947019&displaylang=en.

Installing SQL Server 2005
Begin the installation by running the Setup.exe in the root of the CD/DVD or if Autorun does not
automatically begin the installation.

The first screen to appear is the Welcome/Start screen. Here you have several options. This is a good
place to review the requirements for running SQL Server 2005 by selecting the Review hardware and
software requirements link.

To begin the actual installation, click the Run the SQL Server Installation Wizard link shown in
Figure 3-1.

Figure 3-1

The first part of the installation installs software that is necessary prior to installing SQL Server 2005.
Three components are required before the installation of SQL Server 2005 can begin: the .NET
Framework 2.0, Microsoft SQL Native Client, and Microsoft SQL Server 2005 Beta 2 Setup Support Files,
as shown in Figure 3-2.

36

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 36

Figure 3-2

The first prerequisite component is the .NET Framework 2.0. As discussed in Chapter 1, SQL Server 2005
uses version 2.0 of the .NET Framework. Luckily, SQL Server 2005 installs version 2.0 for you.

Once all the perquisite components have been installed, click Finish. At this point the SQL Server instal-
lation begins, as shown in Figure 3-3.

Figure 3-3

37

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 37

Click Next to begin the installation of SQL Server 2005.

Figure 3-4 shows an important step in the installation process: the System Configuration Check, or SCC.
It verifies a total of twelve items of your system to make sure that your system on which to install SQL
Server is configured correctly.

Figure 3-4

We’re lucky this process does not take long and it actually makes multiple checks at one time. The SCC
is quite thorough and does not allow the installation to continue if certain requirements are not met. For
example, it generates a warning if the computer that SQL Server 2005 is being installed on is less than
600 MHz, but it will not stop the installation.

As another example, if the system on which SQL Server 2005 is being installed on has less than 128MB of
RAM, it does not allow the installation to continue. It also generates a warning if the amount of memory
is between 128MB and 256MB of RAM.

For a complete list of SCC checks, see the online help under the topic system configuration checker.

The Continue button is available only if all check results are successful, or if failed checks are non-fatal.
For any failed check items, resolution to blocking issues is included with results in the report.

If everything passes and you are given the green light, click Continue.

38

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 38

The next screen, shown in Figure 3-5, allows you to choose which components you want to install.
Obviously you want to choose the first option, SQL Server, as that is the minimum required component
to run SQL Server 2005. You may also want to select the Workstation components, Books Online and
development tools option, which installs some of the components and tools with which to administer
SQL Server 2005. Selecting one of these components selects the minimum features necessary to run SQL
Server 2005. It is similar to selecting a Typical installation.

Figure 3-5

One of the new features in the installation is the capability to install SQL Server 2005 as a virtual server.
Virtual server enables you to run multiple instances of an OS on a single computer. Think of it as run-
ning multiple computers on a single computer. You can select the Install as virtual server option if you
want SQL Server to support it.

Also included in the installation is Reporting Services, which was a separate installation for SQL
Server 2000.

For a more detailed installation, click the Advanced button, which displays a detailed list of items,
shown in Figure 3-6. This option allows you to select which features you want based on the components
you selected in the previous step, as well as allowing you to select more detailed features as opposed to
a generic component on the previous screen. For example, selecting the SQL Server component on the
previous screen basically tells the installer that you want to install SQL Server 2005. This screen lets you
select detailed installation options for the SQL Server component such as Replication and Full-Text
Search.

If you overlooked a component you wanted to install on the previous installation step, you can either
select it here or click the Back button to select the desired component. Selecting the components on the
Feature Selection screen is preferable over going back because you can select the features for that compo-
nent and not have to go back.

39

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 39

Figure 3-6

Any feature preceded by a red X means that component will not be installed. Any feature preceded by a
white box means that feature will be installed. Any feature preceded by a gray box typically means that
you can expand that node and select subfeatures. Most likely, some of those subfeatures have not been
selected for installation. You should expand that tree node and preview those subfeatures, as there might
be some that you want to install.

If you have already installed SQL Server 2005 and are running the installation again, this screen is used
to add and remove features.

Click the Next button once you are satisfied with your feature selection.

The next screen in the installation process, shown in Figure 3-7, allows you to select the instance in
which you would like to install SQL Server 2005. Just like SQL Server 2000, you can run multiple
instances of SQL Server 2005 on a computer.

Be sure that you install the sample databases, primarily the AdventureWorks
database, because you will be working with them throughout the book. They can be
installed by expanding the Documentation and Samples node and selecting the
Databases node.

40

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 40

Figure 3-7

The Default instance is the default selection. If you install SQL Server 2005 a second time and select the
Default instance, the installation will ask you if you want to upgrade your existing Default instance. The
same goes for a Named instance. If you type in a Named instance that already exists, the installer will
ask you if you would like to upgrade that instance.

Each instance of SQL Server runs in its own specific space. In other words, it has its own set of services
with its own settings, such as collation and other options.

Except for the first installation, you should select a Named instance for each subsequent installation and
give that installation a unique instance name, unless you plan on upgrading the desired instance to add
or remove features.

Once you have selected the instance in which to install SQL Server, click Next.

The next step in the installation process is the Service Account setup. This screen (see Figure 3-8) lets you
define which services run under which account. You can customize each service to start under a specific
account or you can use the built-in System account. This screen also lets you determine which services
are automatically started when the SQL Server 2005 computer is started.

Once you have configured the services, click Next.

The next step in the installation process is the selection of the Authentication Mode, as shown in
Figure 3-9. This step defines the credentials with which you will be connecting (authenticating) to SQL
Server 2005.

41

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 41

Figure 3-8

Figure 3-9

42

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 42

Just as in the previous version of SQL Server, SQL Server 2005 gives you two options for authentication:
Windows Authentication Mode or Mixed Mode authentication.

Windows Authentication connects the user to SQL Server through a Windows user account. SQL Server
validates the account credentials (user name and password) via the Windows operating system.

Mixed Mode authentication allows the user to connect either via Windows authentication or SQL Server
authentication.

If you select Mixed Mode authentication, be aware that there are some changes in SQL Server 2005. New
for this release is Strong Password enforcement. No longer will SQL Server allow you to get away with
blank passwords or using “password” as the password.

For example, if you type in “password” for the sa password, you receive the message shown in
Figure 3-10.

Figure 3-10

In fact, SQL Server 2005 does not allow the following as passwords for the sa account:

❑ Blank passwords

❑ The word “Password” or “password”

❑ The word “Admin” or “admin”

❑ The word “Administrator” or “administrator”

❑ The word “sysadmin” or “Sysadmin”

❑ The acronym “sa”

All passwords used must meet a certain set of requirements before SQL Server lets you use them. Any
password must meet three of the following four requirements:

❑ Must contain uppercase letters

❑ Must contain lowercase letters

❑ Must contain numbers

❑ Must contain non-alphanumeric characters, such as #, $, &, or @

As the error message suggests, see Authentication Mode in the Books Online for more information on
strong passwords. The read is well worth your time.

Once you have set your authentication mode, click Next.

43

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 43

The final step in the installation process is setting the collation. Figure 3-11 shows the options available
for setting collation and sort order for SQL Server 2005. Collation specifies the SQL Server sorting behav-
ior, meaning how character strings are sorted and compared.

If you don’t have any specific sorting or case-sensitivity needs, the default sort order works for most
installations.

Figure 3-11

Use the top part of this screen when the installation of SQL Server must match the collation settings of
another instance of SQL Server or if it must match the Windows local settings of another computer run-
ning SQL Server.

Use the SQL collation section for backward compatibility with earlier versions of SQL Server. You should
select this option if you want to match compatible settings with SQL Server 8.0 (SQL Server 2000), 7.0, or
earlier.

SQL collation cannot be used with Analysis Services. If you select to install SQL
Server Analysis Services, SQL Server tries to match the best Windows collation for
Analysis Services, based on the SQL collation you select. If the SQL Server collation
and Analysis Services collation do not match, your results may not be consistent.
Your best bet is to use Windows collation for both.

44

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 44

To select separate collation settings for SQL Server and Analysis Services, select the Customize for each
service account check box. This enables the drop-down list of services from which to select the desired
service. Select the service, and then select your collation and sort order.

After you select the appropriate sort order, click Next.

The next screen in the installation is the Report Server setup. If you did not select to install the Reporting
Services on the Feature Selection screen, you will not see the screen. If you did select Reporting Services,
this step allows you specify how a Report Service instance is installed.

You can install the default configuration, which installs and configures Report Server for you, or you can
install the Report Server, and after the installation is complete you can configure Reporting Services via
the Reporting Services Configuration Tool.

If you select the option to install the default configuration, clicking the Details button displays a screen
with information for the default configuration (see Figure 3-12).

Figure 3-12

After you configure this screen, click Next.

The next screen in the wizard is the Error and Usage Report Settings (see Figure 3-13), which allows you
to automatically send feedback to Microsoft for any errors generated or features used.

45

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 45

Microsoft uses these error reports to improve SQL Server functionality. All information is treated as
confidential.

Figure 3-13

If you select to send Feature Usage data (the second checkbox in Figure 3-13), SQL Server is configured
to occasionally send a report to Microsoft containing information about how you are using SQL Server
2005. This information is also treaded confidentially.

After you make your selections on this screen, click Next.

The next screen in the setup wizard is the overview of the options you selected during the configuration
of the setup (see Figure 3-14). You can look over the items you selected, and by clicking the Back button
you can change any items.

46

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 46

Figure 3-14

If you are satisfied with the selections you made, click Install. At this point the installation begins and
you should see a screen that displays the installation progress, similar to Figure 3-15.

At the end of the installation, you may be required to reboot. At this point, SQL Server 2005 is installed
and you are almost ready to go. Why almost? You need to set a couple of configuration items before you
use some of the examples in this book. As well, if you are using SQL Server 2005 and Visual Studio on
separate machines, you need to tell SQL Server about it.

By default, SQL Server 2005 does not accept remote connections. So if you plan to run SQL Server 2005
and Visual Studio 2005 on separate computers, you need to tell SQL Server that connections will be com-
ing in from a remote computer.

You can find this configuration, along with most other SQL Server 2005 configuration items, by opening
the Surface Area Configuration form, shown in Figure 3-16.

47

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 47

Figure 3-15

Figure 3-16

48

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 48

First, to tell SQL Server to accept remote connections, select the top option, Surface Area Configuration
for Services and Connections. This opens the corresponding form, shown in Figure 3-17.

Figure 3-17

To enable remote connections, select the Remote Connections option on the left side of the form. You will
notice that by default, SQL Server accepts only local connections. To enable remote connections, click
the Local and Remote Connections radio button. This will allow you to select three connection options.
Typically, using TCP/IP only will suffice, but if your environment requires a different selection, make
the selection and click OK.

The next step is to enable the CLR, which is turned off by default. Back on the main screen (shown previ-
ously in Figure 3-16), select the bottom option, Surface Area Configuration for Features to open the form
displayed in Figure 3-18.

To enable the CLR, select the CLR Integration option on the left and then click the Enable CLR Integration
check box on the right. Click OK to save the changes.

Now you are ready to go!

49

Installing SQL Server 2005

07_597922 ch03.qxp 12/3/05 12:24 AM Page 49

Figure 3-18

Summary
This chapter walked you through basic steps of installing SQL Server 2005 and highlighted some areas
of detail, as well as pointed out some differences between SQL Server 2005 and previous versions of SQL
Server. With SQL Server installed, you can now easily work with the examples throughout the book.

By now you should have good grasp of what’s new in SQL Server 2005 and an idea of what’s coming up
in later chapters. The next few chapters deal with topics that, while not directly specific to SQL Server,
will be of great benefit to you in the last half of this book. In particular, the next chapter covers the new
xml data type.

50

Chapter 3

07_597922 ch03.qxp 12/3/05 12:24 AM Page 50

Part II:
Server-Side XML

Processing in SQL
Server 2005

Chapter 4: xml data type

Chapter 5: Querying and Modifying XML Data in SQL Server 2005

Chapter 6: Indexing XML Data in SQL Server 2005

Chapter 7: XML Schemas in SQL Server 2005

Chapter 8: Transact-SQL Enhancements to FOR XML and OPENXML

Chapter 9: CLR Support in SQL Server 2005

08_597922 pt02.qxp 12/3/05 12:25 AM Page 51

08_597922 pt02.qxp 12/3/05 12:25 AM Page 52

xml data type

In Chapter 2, you learned about the xml data type and some of the functionality that it exposed,
such as some of the xml data type methods and untyped versus typed XML. This chapter, how-
ever, discusses aspects of the xml data type not covered in Chapter 2, as well as elaborates on most
of the topics introduced in that chapter.

The addition of the xml data type provides tremendous support for XML data processing includ-
ing native support for XML. This means that XML documents, fragments, and values can be stored
natively in SQL Server using the xml data type. The xml data type also simplifies modifying
XML Data.

The goals of this chapter are to examine the xml data type in depth and to expose much more of
the functionality that it provides. This chapter covers the following topics:

❑ Typed versus untyped XML

❑ Altering the xml data type column

❑ xml data type methods

❑ Defaults, constraints, and computed columns on xml data type columns

❑ Creating views

❑ XML settings options

❑ Best practices

A lot of the examples throughout this book use the AdventureWorks database that
comes with SQL Server 2005. However, some of the examples require the creation of
new tables and other objects and refer to a database called Wrox. If you prefer not to
use the AdventureWorks database for these examples, feel free to create a new
database called Wrox.

09_597922 ch04.qxp 12/3/05 12:23 AM Page 53

untyped versus typed XML
XML comes in two flavors, untyped and typed, and the xml data type in SQL Server 2005 supports them
both. This section highlights the differences between untyped and typed XML, as well as some scenarios
when you would want to use one over the other.

untyped XML
In simple terms, untyped XML means that no schema is associated with an XML document. In reality
though, you may have a schema that is perfectly valid for an XML document but have chosen for one
reason or another not to associate the schema with the XML document. There are number of reasons you
would not want to associate a schema with an XML document, and in a lot of cases it makes sense not to
make the association. For example:

❑ Client-side XML validation

❑ Unsupported server schema components

❑ Not well-formed or invalid XML

It is also perfectly suitable to use untyped XML when there is no schema present at all. In any of these
cases, the XML document is checked to see if it is well-formed prior to mapping to the xml data type.

Be aware that there will be performance issues when using untyped XML because of the node conver-
sions at runtime. Node values are stored as strings internally and a conversion needs to be made before
it is added to the xml data type.

In Chapter 2, you saw some examples that showed you how to create untyped XML such as columns,
variables, and parameters. The xml data type column that was created in the Employee table had no
schema or schema collection associated with it, so it is an untyped XML data type column.

As explained previously, creating an xml column in a table is fairly straightforward, as shown here:

CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] NOT NULL

) ON [PRIMARY]
GO

Inserting into an untyped XML data type column is not rocket science either, as shown in the following
example:

DECLARE @xmlvar varchar(200)
SET @xmlvar =
‘<Employee><FirstName>Horatio</FirstName><LastName>Hornblower</LastName><HireDate>0
5/01/1850</HireDate></Employee>’

INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES (1, @xmlvar)
GO

54

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 54

If you were to then query the new Employee table, the results shown in Figure 4-1 would be returned.

Figure 4-1

Chapter 2 also discussed using the xml data type as variables and parameters, and Figure 4-1 demon-
strates how to use the xml data type in a variable, as well as inserting the untyped XML into an xml data
type column.

Also in Chapter 2, you saw a portion of a stored procedure that accepts an xml data type parameter.
Using that code, combined with the preceding code example, the following example demonstrates using
the xml data type as a parameter.

Using the following code, create a stored procedure called AddEmployee:

CREATE PROCEDURE AddEmployee
@xmlvar [xml]
WITH EXECUTE AS OWNER

AS

INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES (2, @xmlvar)

Then in a query window execute the following code:

DECLARE @xmlvar varchar(200)
SET @xmlvar =
‘<Employee><FirstName>Hortense</FirstName><LastName>Powdermaker</LastName><HireDate
>03/01/1932</HireDate></Employee>’

EXEC AddEmployee @xmlvar
GO

Again, if you were to query the Employee table you would see the results shown in Figure 4-2.

Figure 4-2

While untyped XML may have its place, there are a number of good reasons why you should consider
typed XML storage.

55

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 55

typed XML
When a schema collection that describes XML data is associated with an XML document, the XML docu-
ment is said to be typed. In reality, this is the best scenario because it allows for the association of a collec-
tion of XML schemas with an XML column, which automatically validates the XML.

There are several advantages to using an XML schema. First, XML validation is automatic. Regardless if
you are assigning XML to a variable or inserting XML into an XML column, SQL Server automatically
applies the schema to the XML for validation. The result of this is better performance because node val-
ues are not converted at runtime.

Second, XML storage is minimized because the information about the types of elements and attributes is
provided in the schema itself, thus providing better conversion interpretation about the values stored.

Using typed XML is not all that different from using an untyped xml data type other than the fact that a
schema collection is required to have a typed xml data type. This applies to the XML column, parameter,
and variable.

The untyped examples used previously can be modified to be typed very easily. For example, given the
following XML document and schema, creating a table that has a schema collection associated to the xml
data type column is quite easy.

Suppose you wanted to store the following XML in the xml data type column in your Employee table:

<Employee EmployeeID = “1”>
<FirstName></FirstName>
<LastName></LastName>
<Address></Address>
<City></City>
<State></State>
<Zip></Zip>

</Employee>

The first step is to create the necessary schema used to create an XML schema collection. The schema col-
lection you create is then used when you create the table. Based on the above XML document, create the
following schema:

<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”NewDataSet”>
<xs:element name=”Employee”>
<xs:complexType>
<xs:sequence>
<xs:element name=”FirstName” type=”xs:string” minOccurs=”0” msdata:Ordinal=”0”/>
<xs:element name=”LastName” type=”xs:string” minOccurs=”0” msdata:Ordinal=”1”/>
<xs:element name=”Address” type=”xs:string” minOccurs=”0” msdata:Ordinal=”2”/>
<xs:element name=”City” type=”xs:string” minOccurs=”0” msdata:Ordinal=”3”/>
<xs:element name=”State” type=”xs:string” minOccurs=”0” msdata:Ordinal=”4”/>
<xs:element name=”Zip” type=”xs:string” minOccurs=”0” msdata:Ordinal=”5”/>
</xs:sequence>
<xs:attribute name=”EmployeeID” type=”xs:string”/>
</xs:complexType>
</xs:element>

56

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 56

<xs:element name=”NewDataSet” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”Employee”/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

You then use the CREATE XML SCHEMA COLLECTION statement to create the schema collection, named
EmployeeSchemaCollection. The XML schema must exist prior to associating it with an xml data type
column, parameter, or variable. XML schema collections are discussed in detail in Chapter 7.

After you’ve created the XML schema collection, you can then use it in the creation of your new table, as
illustrated in the following code. The process of associating the schema collection to the xml data type
column now makes the column a typed column:

CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] (EmployeeSchemaCollection) NOT NULL
) ON [PRIMARY]
GO

The other method of associating a schema or schema collection to an xml data type column is via the
SQL Server Management Studio when creating the table or adding a column, as shown in Figure 4-3.

Figure 4-3

The default selection is to have no schema collection, which makes the column untyped. This is perfectly
acceptable and the pros and cons of doing so were explained earlier in the chapter. The preferred option
is to select a schema collection to associate to the column.

Any schema collections created prior to creating the table (or adding the column to the table) appear in
the drop-down list available for selection.

57

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 57

The sys.sys schema collection is the default schema collection if one is not specified and helps deter-
mine how well-formed an XML instance is.

Schema collections are discussed in Chapter 7. In this chapter, it is only necessary to discuss associating
a schema collection to an xml data type.

Making Changes to the xml data type
Column

Altering the xml data type column is completely allowable, with support provided by the ALTER TABLE
statement. An xml data type column can be changed from untyped to typed and vice versa, as well as
changed from a character string type column to an xml data type column (typed or untyped).

The following example illustrates how to alter a column from a string type to an xml type:

/* create the original table */
CREATE TABLE Customer (

[CustomerID] [int] PRIMARY KEY,
[CustomerName] [varchar] (100)
)

GO

/* Insert data into the table */
INSERT INTO Customer (CustomerID, CustomerName)
VALUES (1, ‘<Data><Team Manufacturer=”KTM”></Team></Data>’)
GO

/* Change the CustomerName column type to XML type */
ALTER TABLE Customer
ALTER COLUMN CustomerName xml
GO

This change is allowed because the value inserted into the CustomerName column prior to changing the
data type is well-formed XML and is accepted by the xml data type. The following is also allowed:

/* create the original table */
CREATE TABLE Customer (

[CustomerID] [int] PRIMARY KEY,
[CustomerName] [varchar] (100)
)

GO

/* Insert data into the table */
INSERT INTO Customer (CustomerID, CustomerName)
VALUES (2, ‘Fast Freddys Five Finger Discount’)
GO

/* Change the CustomerName column type to XML type */
ALTER TABLE Customer
ALTER COLUMN CustomerName xml
GO

58

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 58

Querying the Customer table returns results similar to Figure 4-4.

Figure 4-4

The statements executed without error, but why did they work? The reason this example works is
because no schema was specified when the column was altered to an xml data type column, thus mak-
ing it untyped.

Converting from untyped to typed
An xml data type column can be changed from one type to another (untyped to typed and vice versa).
The following example illustrates changing an xml data type column from untyped to typed:

‘First, create the table untyped (no XML schema associated with the xml column)
CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] NOT NULL
) ON [PRIMARY]
GO

‘Now, make it a typed column - THE SCHEMA COLLECTION MUST EXIST FIRST!
ALTER TABLE Employee
ALTER COLUMN EmployeeInfo xml (EmployeeSchemaCollection)
GO

As the comments in the code state and as explained in the previous section, the XML schema collection
must exist prior to associating it with an xml data type column, parameter, or variable.

When this statement is executed, all XML data in the CustomerName column is validated against the
schemas in the specified schema collection. There are two things to keep in mind when converting to a
typed XML column. First, if any invalid XML documents are found during the validation, the conversion
from untyped to typed halts and the conversion does not take place. Second, when altering an xml column
from a string or untyped type, the conversion could take awhile on tables with large amounts of data.

It should be obvious that the preferred choice is to create the column as typed to begin with, but it is per-
fectly acceptable to create untyped columns as needs dictate.

xml data type Methods
The xml data type comes with five methods that support the querying and modification of XML
instances. These xml data type methods are extremely useful when they are used together. Very rarely
will you use these methods by themselves, and as the examples demonstrate, the real power and flexibil-
ity behind the xml data type is when these methods are used together.

59

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 59

This section examines these five methods:

❑ query()

❑ value()

❑ exist()

❑ nodes()

❑ modify()

The following section discusses each of these methods in detail, beginning with the query() method.

query()
If your goal is to return parts or sections of an XML instance, then the query() method is the method of
choice. The query() method executes a query by evaluating an XQuery expression against the elements
and attributes in an XML instance. Results are returned as untyped XML.

The syntax for the query() method is as follows:

query(‘XQueryExpression’)

The query() method can be run against any XML instance, such as an xml data type variable or col-
umn. For example, the following example uses the query() method to return a portion of an XML
instance from a xml data type variable:

DECLARE @xmlvar xml
SET @xmlvar =
‘<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider Size=”250”>

<RiderName>Tim Ferry</RiderName>
</Rider>
<Rider Size=”250”>

<RiderName>Chad Reed</RiderName>
</Rider>

</Team>
</Motocross>’

SELECT @xmlvar.query(‘/Motocross/Team/Rider’)

In the preceding example, an xml data type variable is declared and an XML instance is assigned to that
variable. The last line of code uses the query() method to specify an XQuery expression against the xml
data type variable and select a portion of the XML instance.

The XQuery expression in the example is asking for everything under the Team node; thus the query
returns all of the Rider information. The results are shown in Figure 4-5.

Figure 4-5

60

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 60

The query() method can also be used when querying an xml data type column. The following example
uses the query() method to return a section of an XML instance from an xml data type column:

SELECT Instructions.query(‘declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
<Location>{ /MSAW:root/MSAW:Location[1] }</Location>
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID=7

A portion of the results looks like the following:

<Location>
<MSAW:Location

xmlns:MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions” LaborHours=”2.5” LotSize=”100” MachineHours=”3”
SetupHours=”0.5” LocationID=”10”>Work Center - 10 Frame FormingThe following
instructions pertain to Work Center 10.
...
</Location>

Like the other query() method examples, this example uses an XPath expression to query the first (as
denoted by the [1] predicate) location node from the Instructions column in the
Production.ProductModel table.

A predicate is somewhat similar to a WHERE clause. It provides further filtering on a node-set. In the pre-
vious example, the predicate said, “where the location is the first Location.”

The query() method is very valuable and flexible when querying the xml data type and the goal is to
return a portion of an XML document.

value()
The value() method is useful when you want to extract node values from an XML instance, particu-
larly an xml data type column, variable, or parameter. It returns the value that the XQuery expression
evaluates to. The syntax for this method is as follows:

value(XQueryExpression, SQLType)

The first parameter is the XQuery expression that looks for the node value within the XML instance. The
second parameter is the string literal value converted to the SQL type specified by this parameter.

The following example uses the value() method to extract an attribute from an XML instance:

DECLARE @xmlvar xml
DECLARE @Team varchar(50)
SET @xmlvar =
‘<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider Size=”250”>

<RiderName>Tim Ferry</RiderName>

61

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 61

</Rider>
<Rider Size=”250”>

<RiderName>Chad Reed</RiderName>
</Rider>

</Team>
</Motocross>’

SET @Team = @xmlvar.value(‘(/Motocross/Team/@Manufacturer)[1]’, ‘varchar(50)’)
SELECT @Team

The result returned from this is the word Yamaha. The XQuery expression in this example specifies the
first attribute in the /Motocross/Team path and returns the attribute for that node.

The next example uses the value() method to return a node value from the XML instance:

DECLARE @xmlvar xml
DECLARE @Team varchar(50)
SET @xmlvar =
‘<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider Size=”250”>

<RiderName>Tim Ferry</RiderName>
</Rider>
<Rider Size=”250”>

<RiderName>Chad Reed</RiderName>
</Rider>

</Team>
</Motocross>’

SET @Team = @xmlvar.value(‘(/Motocross/Team/Rider/RiderName)[1]’, ‘varchar(50)’)
SELECT @Team

The result returned from this statement is the name of the first rider, Tim Ferry. Just like the previous
example, the XQuery expression in the value() method specifies the first RiderName node, signified by
the [1] predicate, from which to obtain the results.

In the SET @Team statement, change the code to look like the following:

SET @Team = @xmlvar.value(‘(/Motocross/Team/Rider/RiderName)[2]’, ‘varchar(50)’)

Now rerun the entire code. The results should now be the second rider, Chad Reed. This is called static
typing, which determines an expression’s return type, and is covered in Chapter 5.

Both of the preceding examples used the value() method to query an xml data type variable. More
common scenarios require the querying of data in an xml data type column. So, the following example
uses the value() method to query an xml data type column:

SELECT Instructions.value(‘declare namespace msaw
=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

(//msaw:Location/@LocationID)[1]’, ‘int’) as Result
FROM Production.ProductModel
WHERE Instructions IS NOT NULL

62

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 62

The results from this query list all LocationIDs from the Instruction column.

Type Conversion
The value() method uses, when necessary, the CONVERT function of T-SQL to implicitly convert XQuery
expression results from the XSD type to its corresponding SQL type.

In the following table, the XSD data type to SQL Server 2005 data type mappings are shown to help
make the necessary conversion in your program.

XSD SQL Server

boolean bit

decimal numeric

double float

float real

string nvarchar(4000), nvarchar(max)

NOTATION nvarchar

Qname nvarchar

Duration varbinary

Datetime Varbinary

Time Varbinary

Date Varbinary

gYearMonth Varbinary

gYear Varbinary

gMonthDay Varbinary

gDay Varbinary

gMonth Varbinary

hexBinary Varbinary

Base64Binary Varbinary

anyURI Varbinary

The value() method is a very versatile component of the xml data type and when combined with other
xml data type methods, it proves to be even more valuable.

63

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 63

exist()
The exist() method allows you to check for the existence of a specific XML fragment in an XML
instance. The return result is 1 if it exists, and 0 if it does not.

The syntax for the exist() method is as follows:

exist(‘XQeuryExpression’)

Consider the following example:

DECLARE @xmlvar xml
DECLARE @bitvar bit
SET @xmlvar = ‘
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider Size=”250”>

<RiderName>Tim Ferry</RiderName>
</Rider>
<Rider Size=”250”>

<RiderName>Chad Reed</RiderName>
</Rider>

</Team>
</Motocross>’
SET @bitvar = @xmlvar.exist(‘/Motocross/Team[@Manufacturer eq
xs:string(“Yamaha”)]’)
SELECT @bitvar

In the execution of this code, the exist() method returns a 1 because it finds the value of Yamaha in
the XML instance. Change the manufacturer to Suzuki and run the code again. The exist() method
returns a 0 because it does not find a value of Suzuki in the XML instance.

Using that same example, the exist() method can look for node values as well, as illustrated by the fol-
lowing code:

DECLARE @xmlvar xml
DECLARE @bitvar bit
SET @xmlvar = ‘
<Motocross>

<Team Manufacturer=”Honda”>
<Rider Size=”250”>

<RiderName>Kevin Windham</RiderName>
</Rider>
<Rider Size=”250”>

<RiderName>Mike LaRocco</RiderName>
</Rider>
<Rider Size=”250”>

<RiderName>Jeremy McGrath</RiderName>
</Rider>

</Team>
</Motocross>’
SET @bitvar = @xmlvar.exist(‘/Motocross/Team/Rider/RiderName[text()[1] eq
xs:string(“Kevin Windham”)]’)
SELECT @bitvar

64

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 64

As with the first example, the exist() method in this example returns a 1 because it finds Kevin
Windham in the XML instance.

The following two examples use the exist() method with a typed XML instance (the previous exam-
ples used untyped XML instances). The first uses the exist() method against an XML variable:

DECLARE @intvar int
DECLARE @xmlvar xml (Production.ManuInstructionsSchemaCollection)

SELECT @xmlvar = Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7

SET @intvar = @xmlvar.exist(‘ declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

/MSAW:root/MSAW:Location[@LocationID=30]
‘)

SELECT @intvar

As with the previous examples, the exist() method returns a 1. By changing the @LocationID vari-
able to a value, such as 80, then rerunning the code, the exist() method returns a 0 because it cannot
find a Location node with an attribute of LocationID with a value of 80, but it did find one with a
value of 30.

The second example modifies the previous example, still using the exist() method, but against an xml
data type column:

SELECT Instructions.exist(‘ declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
/MSAW:root/MSAW:Location[@LocationID=50]

‘)
FROM Production.ProductModel
WHERE ProductModelID = 10

The results of this query also return a value of 1 because the XPath expression inside the exist()
method finds a LocationID with a value of 50.

The exist() method can also be used in the WHERE clause, as follows:

SELECT ProductModelID, Name
FROM Production.ProductModel
WHERE Instructions.exist(‘ declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

/MSAW:root/MSAW:Location[@LocationID=60]
‘) = 1

65

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 65

In this example the SELECT statement selects non-XML columns with the WHERE clause supplying the
XQuery expression in the exist() method. The query says to return the ProductModelID and Name
columns where a LocationID value of 60 exists within the XML in the Instructions column.

The results return two rows:

ProductModelID Name
7 HL Touring Frame
10 LL Touring Frame

The exist() method is preferred over the value() method when comparing predicates, expressions
that evaluate to TRUE or FALSE. UNKOWN is even considered to be a predicate, and in these cases where
the expression is returning one of these three, it is good practice to use the exist() method rather than
the value() method.

For example, if you know for certain that the query expression is returning a value (non-TRUE/FALSE)
then the value() method is the way to go. On the other hand, if you are checking to see if a certain
node, attribute, or value exists, use the exist() method.

The xml data type methods so far have dealt with specific values within an XML instance, but what
about the times you need to return the results as relational data? This is where the nodes() method
comes in.

nodes()
The term shredding in XML terms means converting an xml data type instance into relational data. The
nodes() method puts this term to very good use. The purpose of the nodes() method is to specify
which nodes are mapped to a new dataset row.

The general syntax of the nodes() method looks like the following:

Nodes (XQuery) as Table(Column)

The XQuery parameter specifies the XQuery expression. If the expression returns nodes, then the nodes
are included in the result set. Likewise, if the result of the expression is empty, then the result set is also
empty. The Table(column) parameter is the name and column of the final result set.

This first example uses an xml data type variable:

DECLARE @xmlvar xml
SET @xmlvar=’
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider>Tim Ferry</Rider>
<Rider>Chad Reed</Rider>
<Rider>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>

<Rider>Kevin Windham</Rider>
<Rider>Mike LaRacco</Rider>

66

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 66

<Rider>Jeremy McGrath</Rider>
</Team>
<Team Manufacturer=”Suzuki”>

<Rider>Ricky Carmichael</Rider>
<Rider>Broc Hepler</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>

<Rider>James Stewart</Rider>
<Rider>Michael Byrne</Rider>

</Team>
</Motocross>’
SELECT Motocross.Team.query(‘.’)
AS RESULT
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)

The results are returned as a single result set with four rows, as shown in Figure 4-6.

Figure 4-6

In this example, the nodes() method identifies the nodes in the results of the XQuery expression,
returning them as a rowset, with each team being a row. The nodes() method basically said, “Break out
each Team into a row,” thus making a result set. Each row in the rowset is a logical copy of the original
XML instance. The node in each row, in this case the Team node, matches one of the nodes specified in
the XQuery expression.

The query() method in this example is used together with the nodes() method to return the appropri-
ate results. The query() method is the method used to query the XML document, and the nodes()
method defines how the results are sent back.

The query() method can also take an absolute path expression, which means that the query starts on
the root node. In the following example, an absolute path expression is used:

DECLARE @xmlvar xml
SET @xmlvar=’
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider>Tim Ferry</Rider>
<Rider>Chad Reed</Rider>
<Rider>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>

<Rider>Kevin Windham</Rider>
<Rider>Mike LaRacco</Rider>
<Rider>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>

<Rider>Ricky Carmichael</Rider>

67

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 67

<Rider>Broc Hepler</Rider>
</Team>
<Team Manufacturer=”Kawasaki”>

<Rider>James Stewart</Rider>
<Rider>Michael Byrne</Rider>

</Team>
</Motocross>’
SELECT Motocross.Team.query(‘/Motocross/Team’)
AS RESULT
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)

The results are quite a bit different now. The result set from the first query had each Team in its own row.
The results from the absolute path query return four rows with all four Teams in each row (basically four
rows for every context node, as shown in Figure 4-7).

Figure 4-7

You should be starting to see the real power behind these methods. When they are used individually
they are extremely powerful. When used together, the functionality they provide is nearly endless.

modify
All the other methods focus on getting data out of an XML instance. The modify() method’s function
in life, on the other hand, is to modify xml type variables or columns. This method takes a XML Data
Modification Language statement as a parameter to perform the necessary operation (insert, update, or
delete). XML DML was introduced in Chapter 2 and is covered in greater detail in Chapter 5.

The syntax of the modify() method looks like this:

Modify(XML DML)

The modify() method of the xml data type allows you to insert, update (replace value of), and delete
content within an XML instance. The modify() method uses the XML DML to provide those actions on
the XML instance.

The following example shows you how to use the modify() method:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>

<Employee EmployeeID=”1”>
<EmployeeInformation>
</EmployeeInformation>

</Employee>

68

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 68

</Root>’
SET @xmldoc.modify(‘
insert <LastName>Knievel</LastName>
into (/Root/Employee/EmployeeInformation)[1]’)
SELECT @xmldoc
GO

In this example, an xml data type variable is defined and an XML document is assigned to that variable.
The modify() method is then executed against that xml data type variable to insert a new node and
value. The results of the modify() method on the XML document are as follows:

<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<LastName>Knievel</LastName>

</EmployeeInformation>
<Employee>

</Root>

If you recall from Chapter 2, a number of examples used the modify() method with XML
DMLModification to modify the XML content, so this should not be new. While the previous example
is fairly simple, don’t worry, because an entire section is dedicated to this method and XML DML in
Chapter 5. Now that you’re somewhat familiar with all the xml data type methods, the next section
shows you how to combine some of the methods within a single statement.

Combining Methods
The following example combines the value(), query(), and nodes() methods in a single statement
against an xml data type variable. The value() method gets the Manufacturer, the query() method
gets the riders for the specific Team, and the nodes() method tells the query to return the results as a
rowset:

DECLARE @xmlvar xml
SET @xmlvar=’
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider>Tim Ferry</Rider>
<Rider>Chad Reed</Rider>
<Rider>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>

<Rider>Kevin Windham</Rider>
<Rider>Mike LaRacco</Rider>
<Rider>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>

<Rider>Ricky Carmichael</Rider>
<Rider>Broc Hepler</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>

<Rider>James Stewart</Rider>
<Rider>Michael Byrne</Rider>

</Team>

69

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 69

</Motocross>’
--SELECT Motocross.Team.query(‘.’)
SELECT Motocross.Team.value(‘@Manufacturer’, ‘varchar (50)’) as Manufacturer,

Motocross.Team.query(‘Rider’) as Team
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)

The results of the statement are shown in Figure 4-8.

Figure 4-8

In this example, the query(), value(), and nodes() methods were used to return the results shown.
The query() method is the method used to query the entire XML instance, the value() method is used
to return the individual Manufacturer values, and the nodes() method is used to format the results as
rowsets.

Look at one more example using a combination of some of the xml data type methods. The following
example uses the exist() method to check to see if any of the Teams have any riders, and if they do
not, they aren’t included in the results:

DECLARE @xmlvar xml
SET @xmlvar=’
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider>Tim Ferry</Rider>
<Rider>Chad Reed</Rider>
<Rider>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>

<Rider>Kevin Windham</Rider>
<Rider>Mike LaRacco</Rider>
<Rider>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>

<Rider>Ricky Carmichael</Rider>
<Rider>Broc Hepler</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>
</Team>

</Motocross>’
--SELECT Motocross.Team.query(‘.’)
SELECT Motocross.Team.value(‘@Manufacturer’, ‘varchar (50)’) as Manufacturer
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)
WHERE Motocross.Team.exist(‘Rider’) = 1

The results of the statement appear in Figure 4-9.

70

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 70

Figure 4-9

In this example, the same query(), value(), and exist() methods are used to determine if any of
the manufacturers have riders. The query() method queries the XML instance, the value() method
returns the manufacturer value for all manufacturers who have riders, provided by the exist()
method. If the result of the exist() method is true for each manufacturer then the value() method
returns the name of the manufacturer.

Using Operators with Methods
Operators allow you to use a table-valued function against each row returned by a query expression
from an outer table. In simple terms, the APPLY operator creates a second table-column pair with which
to compare to the original table-column pair. Each row from each table-column pair is evaluated against
each row in the second table-column pair. The final table-column list is the combination of the second
table-column pair being added to the original table-column pair.

There are two different APPLY operators: OUTER APPLY and CROSS APPLY.

Considering the previous example, you can obtain the same results by using the APPLY operator. The OUTER
APPLY operator applies the nodes() method to each row, but the caveat is that it includes rows that have
NULL values. To compensate for this, you need to add an additional clause on the WHERE clause, as follows:

DECLARE @xmlvar xml
SET @xmlvar=’
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider>Tim Ferry</Rider>
<Rider>Chad Reed</Rider>
<Rider>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>

<Rider>Kevin Windham</Rider>
<Rider>Mike LaRacco</Rider>
<Rider>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>

<Rider>Ricky Carmichael</Rider>
<Rider>Broc Hepler</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>
</Team>

</Motocross>’

SELECT DISTINCT Motocross.Team.value(‘@Manufacturer’, ‘varchar (50)’) as
Manufacturer
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)
OUTER APPLY Motocross.Team.nodes(‘./Rider’) AS Motocross2(Team2)
WHERE Motocross2.Team2 IS NOT NULL

71

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 71

By adding the OUTER APPLY operator and modifying the WHERE clause, the returned results will look
exactly like what was shown in Figure 4-9.

The other APPLY operator, CROSS APPLY, does away with modifying the WHERE clause and applies the
nodes() method to each row in the result set, but returns only those rows generated from the nodes()
method (much like the exist() method) from the first table-column pair. For example:

SELECT Motocross.Team.value(‘@Manufacturer’, ‘varchar (50)’) as Manufacturer
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)
CROSS APPLY Motocross.Team.rows.nodes(‘./Rider) AS Motocross2(Team2)

Any column that the nodes() method returns cannot be used directly. Meaning, the following is not
allowable:

SELECT Motocross.Team
FROM @xmlvar.nodes(‘/Motocross/Team’) Motocross(Team)

So far all the examples have dealt with xml data type variables. The following example uses an xml data
type column with the nodes() method. In this example, the value() and query() methods are used to
return values from the nodes in the result set. For each given location the SELECT clause returns the
LocationID and any tools at the given location:

SELECT Instruct.value(‘@LocationID’,’int’) as LocationID,
Instruct.query(‘declare namespace

MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

MSAW:step/ MSAW:tool’) as Tool
FROM Production.ProductModel
CROSS APPLY Instructions.nodes(‘
declare namespace MSAW2 =”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
/MSAW2:root/MSAW2:Location’) as PPM(Instruct)
WHERE ProductModelID=53

The results are shown in Figure 4-10.

Figure 4-10

In this example, the CROSS APPLY is used to return only the rows from the outer table, in this case the
Instructions.nodes() query, which produces the result “small wrench.” The results are returned
through a result set from the table-value function. In this example, the table-value function is the right
input and the outer table expression is the left input of the expression.

For every row in the left input, the right input is examined and the resulting rows are joined for the final
results.

Time to move on to defaults, constraints, and computed columns as they relate to xml data type
columns.

72

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 72

Defaults, Constraints, and Computed
Columns

As with any other data type column in a table, an xml data type column can have defaults and con-
straints applied to it, as well as being used as a computed column.

Defaults
There are two ways to apply defaults to an xml data type column. The first is to implicitly cast the data to
an XML type as follows:

CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] NOT NULL DEFAULT N’<Employee></Employee>’

) ON [PRIMARY]
GO

The second method is to explicitly convert the XML using the CAST function as follows:

CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] NOT NULL DEFAULT CAST(N’< Employee></Employee >’ As xml)

) ON [PRIMARY]
GO

Seems easy enough, but what purpose would adding a default to an xml data type column serve? The
answer lies in looking at other data type columns that have defaults, but with much more functionality.

Suppose that in your Employee table you had the columns for the employee first name, last name, hire
date, and so on. There really is no downside to this approach, but suppose that instead of all those
columns, you had an xml data type column called EmployeeInfo and on that column you applied a
default that contained a shell of an XML instance such as the following:

<root><Employee></Employee></root>

In this scenario, instead of inserting data into different columns, you could just as easily open the XML
instance using XmlReader and insert into the XML document the appropriate nodes, such as the first
name and last name nodes using the update method of XML DML.

Even better, why not have the entire XML instance stored in the column and use the update method of
XML DML and just update the appropriate nodes with the data? The XML instance might look like this:

<root>
<employee>

<FirstName></FirstName>
<LastName></LastName>
<Address></Address>

73

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 73

<HireDate></HireDate>
.
.
.

</employee>
</root>

Instead of updating many columns, you are updating only a single column. The result is a performance
gain and an easier method of updating an XML document.

Constraints
Constraints allow you to define how you want SQL Server to enforce database integrity. In other words,
constraints allow you to specify the type of allowable data to be inserted into the columns in your
database.

In SQL Server 2005, you can add constraints to xml data type columns, thereby limiting the XML values
being added to the column. You can define these constraints by specifying row-level constraints and
table-level constraints. These constraints apply to both typed and untyped XML.

Column-Level Constraints
Column-level constraints are applied to the specific column to which you want to limit the data, and can
be applied only to a single column. For an xml data type column, adding a constraint entails using the
check() object and specifying the query expression for which to check. For example, the following code
demonstrates how to apply a constraint on an xml column:

CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] check(EmployeeInfo.exist(‘/Employee/@EmployeeID’)=1)

) ON [PRIMARY]
GO

This constraint states that any XML instance added to this column must have an Employee element with
an EmployeeID attribute. The XML instance must have both of these in order for the insert to be success-
ful. For example, the following INSERT succeeds because of the EmployeeID attribute on the Employee
element:

INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES (1, ‘<Employee EmployeeID=”1”><FirstName>Damon</FirstName></Employee>’)
GO

The following example, however, does not allow the INSERT because the EmployeeID attribute is
missing:

INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES (1, ‘<Employee><FirstName>Damon</FirstName></Employee>’)
GO

74

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 74

The error message returned from the execution of this statement says that the INSERT statement con-
flicted with the check() constraint and therefore the INSERT fails because no EmployeeID attribute was
supplied.

Column-level constraints are also useful when validating node values within the XML document. For
example, the following constraint could check to ensure that duplicate values within the given XML doc-
ument are not found in the Employee element:

<Employee EmployeeID=”1”>
<FirstName>Williams</FirstName>
<LastName>Williams</LastName>

</Employee>

The constraint for this looks like the following:

CONSTRAINT NameCheck CHECK ((‘/Employee[FirstName=LastName]’)=0)

This constraint says to look at the FirstName and LastName elements underneath the Employee ele-
ment and make sure their values are not equal.

Table-Level Constraints
A table-level constraint means that more than one column is included in the constraint. These types of
constraints are good for further enforcing the integrity of the data in your tables. For example, you could
use the value() method of the xml data type to check the value of an element or attribute of an XML
document to see if it contains specific information before inserting or updating a table.

One of the limitations of check constraints, however, is that they do not support any of the xml data type
methods. As mentioned in Chapter 2, the workaround for this is to create a user-defined function that
wraps the xml data type method and then use the UDF for the creation of the table.

The following example creates a simple UDF to be used on the Employee table that will be used later:

CREATE FUNCTION xmludf(@xmlvar xml)
returns bit
AS
BEGIN
RETURN @xmlvar.value(‘EmployeeInfo/@EmployeeID)[1]’, ‘int’) = EmployeeID)
END
GO

Once the UDF is created, it can then be applied as a constraint to a table. The following creates an
Employee table with a constraint that uses the UDF created earlier:

CREATE TABLE Employee (
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml]
CONSTRAINT EmployeeInfoValidate check (dbo.xmludf(EmployeeInfo))

) ON [PRIMARY]
GO

75

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 75

The constraint applied to the Employee table specifies that any XML instance stored in the EmployeeInfo
column will compare the EmployeeID attribute to the corresponding rows value in the EmployeeID
column. For example, the following code sample inserts a row into the Employee table with an
EmployeeID of 1 and an EmployeeID attribute of 21, which will fail:

INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES (1, ‘<Employee EmployeeID=”21”><FirstName>Damon</FirstName></Employee>’)
GO

The insert in the previous example fails because the EmployeeID column value does not match the
EmployeeID attribute of the Employee element in the XML document.

However, the following constraint succeeds:

INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES (1, ‘<Employee EmployeeID=”1”><FirstName>Damon</FirstName></Employee>’)
GO

This example succeeds because the EmployeeID column value matches the EmployeeID attribute of the
Employee element in the XML document.

Constraints are valuable because they are a great way to enforce the validity of data. Constraints on xml
data type columns, however, are much more useful because it is possible to enforce XML integrity not
only of the existing column, but of your entire table as well.

Computed Columns
Never let it be said that the xml data type is not flexible. Not only is it possible to apply defaults and
constraints to an xml data type column, but the XML contained in the column can be used in creating
computed columns as well.

Computed columns are virtual columns, or existing columns, that are computed from an expression or
equation using one or more columns in the same table. For example, it is possible to convert the value
from a string column to an xml column as follows:

CREATE TABLE Table1 (
Column1 varchar(200),
Column2 as CAST(column1 as xml)

)
GO

The preceding example reads the value from column1 and is used to compute the values for column2.
The catch in this example is that in order for this to work, the data in column1 must be well-formed XML.

It is also possible to go the other way as well, meaning you can convert xml to a string, as follows:

CREATE TABLE Table2 (
Column1 xml,
Column2 as CAST(column1 varchar(500))

)
GO

76

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 76

The CAST function was used in both of these examples to explicitly convert one data type to another
data type.

Although this is nice, the real power comes from the capability to read XML instance node values and
use those values to create computed columns.

xml data type methods cannot be used to create computed columns directly, so you must utilize other
methods in the creation of computed columns, such as using UDFs to wrap the xml data type method.

Since xml data type methods can’t be used to create computed columns, the simple solution is to create
a user-defined function that queries the value from the XML instance and then uses the function in the
CREATE TABLE statement. The first step is to create the user-defined function as follows:

CREATE FUNCTION GetNodeValue(@xmlvar xml) RETURNS int
AS BEGIN
RETURN @xmlvar.value(‘(/Employee/@EmployeeID)[1]’, ‘int’)
END
GO

The second step is to create the table:

CREATE TABLE Employee (
EmployeeInfo xml,
EmployeeID as dbo.GetNodeValue(EmployeeInfo)

)
GO

You must specify the dbo account when specifying the user-defined function during the table creation
statement because if it is left off, SQL Server does not recognize it as a built-in function and generates
an error.

The next step is to insert the XML data into the table (the EmployeeInfo column):

INSERT INTO Employee (EmployeeInfo)
VALUES (‘<Employee EmployeeID=”10”><FirstName>Robin</FirstName></Employee>’)
GO

Now query the Employee table and review the results. The results should look like Figure 4-11.

Figure 4-11

In the previous example, the user-defined function was created and used in the CREATE TABLE state-
ment as the computed column for the second column (EmployeeID). The user-defined function uses the
value() method to query the XML instance for a specific value, in this case the EmployeeID attribute of
the Employee node. When a record is inserted into the table, the user-defined function pulls the value
from the XML instance and is used as the value for the EmployeeID column.

77

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 77

This functionality also makes it possible (and quite simple) to use the query() method to query entire
XML fragments to be used for computed columns.

Modify the user-defined function as follows:

DROP FUNCTION GetElementInfo
GO

CREATE FUNCTION GetElementInfo(@xmlvar xml) RETURNS xml
AS BEGIN
RETURN @xmlvar.query(‘root/Employee’)
END
GO

The table also needs to change a bit:

DROP TABLE Employee
GO

CREATE TABLE Employee (
EmployeeInfo xml,
EmployeeID as dbo.GetElementInfo(EmployeeInfo)

)
GO

The last step is to insert a row into the table with a somewhat sizable XML instance:

INSERT INTO Employee (EmployeeInfo)
VALUES (‘<root><Employee><FirstName>Robin</FirstName></Employee></root>’)
GO

Query the Employee table again to view the results, as shown in Figure 4-12.

Figure 4-12

In this example, the UDF is applied to the EmployeeID column with the data type being set as the
user-defined function. The UDF queries and returns the entire XML document, returning the XML
document such that when the UDF is applied to the EmployeeID column and data is inserted into the
EmployeeInfo table, the UDF executes and sets the value of EmployeeID column equal to what was
inserted into the EmployeeInfo column. The Employee column is therefore used as a computed column
using the xml data type.

By now you should start to have a grasp on computed columns using the xml data type column, and
you can move on to other matters, such as views, which are covered in the next section.

78

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 78

Creating Views
Views can be created using an xml data type column. Since the contents of a view are based on a query,
this makes it very enticing to use with the xml data type because the view has access to all the xml data
type functionality, such as the value() and query() methods.

The following example illustrates building a view that queries an xml data type column and uses the
value() method to return values.

First, a little clean-up:

DROP TABLE Motocross
GO

CREATE TABLE Motocross (
[MotocrossID] [int] NOT NULL,
[MotocrossInfo] [xml] NOT NULL
) ON [PRIMARY]
GO

Now insert some data:

INSERT INTO Motocross (MotocrossID, MotocrossInfo)
VALUES (1, ‘
<Motocross>

<Team Manufacturer=”Yamaha”>
<Rider BikeSize=”250”>Tim Ferry</Rider>
<Rider BikeSize=”250”>Chad Reed</Rider>
<Rider BikeSize=”250”>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>

<Rider BikeSize=”450”>Kevin Windham</Rider>
<Rider BikeSize=”250”>Mike LaRacco</Rider>
<Rider BikeSize=”250”>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>

<Rider BikeSize=”250”>Ricky Carmichael</Rider>
<Rider BikeSize=”125”>Broc Hepler</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>

<Rider BikeSize=”250”>James Stewart</Rider>
<Rider BikeSize=”125”>Michael Byrne</Rider>

</Team>
</Motocross>
‘)
GO

After inserting the data, the next step is to create the view:

CREATE VIEW GetTeamInfo AS
SELECT MotocrossInfo.value(‘(/Motocross/Team/@Manufacturer)[1]’, ‘varchar(40)’) as
Team,
MotocrossInfo.value(‘(/Motocross/Team)[1]’, ‘varchar(40)’) as Riders
FROM Motocross

79

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 79

Now that the view is created, you can query it:

SELECT * FROM GetTeamInfo

The results should look like this:

Team Riders
------ -----------------------------------
Yamaha Tim Ferry Chad Reed David Vuillemin

Views are a great way to filter the data coming from the xml data type column, and other than not
being able to use views in a distributed partitioned view (see the “xml data type Best Practices” and
“Limitations” sections), there are no limitations when using the xml data type in a view.

A distributed partitioned view is a view that includes a UNION ALL operator, where the tables defined
by the UNION ALL are structured equally. However, the tables are stored as multiple tables within the
same instance of SQL Server or a group of independent instances.

XML Settings Options
Certain settings affect how XML will behave in SQL Server. This behavior applies to xml data type vari-
ables and columns. The following table lists the settings that must be configured and the appropriate
value for each setting. If these settings are not configured as shown in the table, all queries and modifica-
tions on xml data type will fail.

SET Options Required Values

NUMERIC_ROUNDABOUT OFF

ANSI_PADDING ON

ANSI_WARNING ON

ANSI_NULLS ON

ARITHABORT ON

CONCAT_NULL_YIELDS_NULL ON

QUOTED_IDENTIFIER ON

These options can be set by running the appropriate T-SQL. For example:

SET ANSI_PADDING ON
GO

80

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 80

xml data type Best Practices
As with everything else in technology there are some things to consider when using anything new. XML
support in SQL Server 2005 is no different, and while it is a fantastic addition, it is always a good idea to
know what some of the best practices and limitations are.

The following sections detail some of things to take into consideration as you plan to move forward with
SQL Server 2005.

Why and Where
The intent of this book is not to persuade anyone to use SQL Server 2005 XML technology over relational
storage at all. Chances are, however, that if you are reading this you have either started down the path of
using XML in your databases or are already doing so.

If you are in the first group, those that are considering using SQL Sever 2005 XML, the purpose of this
section is to highlight the reasons and benefits of string XML in SQL Server 2005. Consider using the
XML data model if any of the following conditions are met:

❑ You are “platform independent.” XML does not care what platform or operating system you are
using.

❑ There is a lack of consistency in the structure of your data. If your data structure changes fre-
quently, you should strongly consider the XML data model.

❑ Your data is in hierarchical format, a collection of strictly nested sets or nodes.

❑ The order of you data is important.

typed versus untyped
This chapter spent quite a bit of time covering the differences between typed and untyped XML, but
didn’t really discuss which to use in a particular scenario. Thus, the purpose of this section is to give
you some guidance as to when you should use one over the other.

Regardless of whether you use typed or untyped, SQL Server is going to check for well-formed XML
anyway. At times, however, one method is a better solution over the other.

You should use the untyped XML data type if the following criteria are met:

❑ There are no schemas associated with the XML data.

❑ You want data validation to happen on the client rather than on the server.

You should use typed XML under the following conditions:

❑ You want XML data validation to take place on the server rather than on the client.

❑ You want to utilize the query optimizations.

❑ You want to utilize the storage optimizations.

❑ You want to utilize the compilation of type information.

81

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 81

Constraints
As stated previously, constraints are a great way to limit the type of data that is permitted in an XML
instance. For example, consider using a constraint under either of the following conditions:

❑ Any time business rule logic cannot be included (or is not allowed) in an XML schema. In these
circumstances the logic can be moved to a constraint using xml data type methods.

❑ Any time columns other than xml data type columns are included in the constraint.

There is a downside to using constraints, and that is that you cannot use any of the xml data type meth-
ods when you specify a constraint. If you do need to specify a constraint, the solution is to create a UDF
around the xml data type method. When you create the constraint, you can specify the function in the
constraint.

Limitations
As much as XML fans would like to say that the xml data type is perfect, there are a few limitations,
which are displayed in the following list:

❑ xml data type instance cannot exceed 2GB.

❑ xml data type cannot be used in a distributed partitioned view.

❑ xml data type cannot be used as a PRIMARY KEY or FOREIGN KEY constraint.

❑ xml data type cannot be used as a UNIQUE constraint.

❑ xml data type cannot use the CAST or CONVERT functions on a text or ntext data type.

❑ Since XML has its own encoding, COLLATE is not supported.

❑ xml data type cannot be used in a GROUP BY statement.

❑ xml data type cannot be part of a clustered or non-clustered index.

❑ xml data type can only cast string data type to xml data type.

❑ xml data type does not preserve namespace prefixes.

Summary
This chapter took an in-depth look at the xml data type and its implementation in SQL Server 2005, as
this is the foundation for the rest of the book.

You delved into typed and untyped XML and learned the importance of determining how XML
instances are stored in SQL Server, as well as some of the considerations to keep in mind when making
that decision.

Likewise, you learned how to alter the xml data type column. This can be very beneficial if you are con-
sidering moving toward XML storage or are currently storing XML in your database and would like to
migrate to the xml data type column.

82

Chapter 4

09_597922 ch04.qxp 12/3/05 12:23 AM Page 82

From there, you focused on the xml data type methods and how to use them to query XML instances.
Understanding these methods prepares you for the upcoming chapters on querying and modifying XML
data using XQuery and XML DML.

Building on the xml data type column theme, the chapter’s focus shifted to using defaults, constraints,
and computed columns to further enhance the xml data type column for greater usability, especially
when applied to using the xml data type methods.

Equally important is understanding the best way to put this new knowledge to use in a given situation,
so the last part of the chapter focused on providing some insight on when to use the xml data type and
outlined some of its limitations.

Building on all of this new knowledge, the next chapter discusses querying and modifying XML data.

83

xml data type

09_597922 ch04.qxp 12/3/05 12:23 AM Page 83

09_597922 ch04.qxp 12/3/05 12:23 AM Page 84

Querying and Modifying XML
Data in SQL Server 2005

A sizable section of Chapter 4 dealt with the xml data type methods, which are used to extract
data from an XML document. The syntax of those methods, each one of them, except for the
modify() method, takes an XQuery expression as a parameter. The XQuery expression of those
methods is what really determines what data is returned from the XML document.

This chapter focuses on querying the xml data type and modifying data in XML instances, both in
variables or the xml data type column. Both of these topics were introduced briefly in Chapter 2,
but it is necessary to spend much more time on each one in order to fully grasp the implementa-
tion of XQuery in SQL Server 2005.

The first part of this chapter focuses primarily on the built-in XQuery support in SQL Server 2005,
while the second half delves into the modification of XML documents using XML DML.

The intent of this chapter is to give you a good understanding of XQuery implementation in SQL
Server 2005. It does not go into every aspect of XQuery, which could fill a book by itself.

XQuery
The XQuery language provides the capability to query well-formed XML documents. Combined
with the added benefit of SQL Server 2005 providing native XML storage via the xml data type, XML
documents can be queried natively in SQL Server. As of SQL Server 2005 Beta 2, the support for
XQuery is based on the Last Call working draft of the W3C XQuery Language of November 2003.

10_597922 ch05.qxp 12/3/05 12:22 AM Page 85

Chapter 2 spent a few pages reviewing the structure of an XQuery expression, as well as some of the
expressions and terms used in the XQuery language. This section briefly reviews what was introduced
in Chapter 2; provides some new information on XQuery Prolog, XQuery Path expressions, and XQuery
XML construction; and then introduces topics and examples of other XQuery features, namely the
FLOWR statement and XQuery sorting.

XQuery Structure and Concepts Review
The XQuery language is a case-sensitive language defined by the W3C and is built on XPath expressions
that allow for the querying of XML documents. This section briefly introduces XQuery and its syntax,
and the components that make up an XQuery query.

Here are a few of the syntax rules:

❑ XQuery is case-sensitive.

❑ XQuery elements, attributes, and variables must be valid XML names.

❑ XQuery string values can be within double (" ") or single (' ') quotes.

❑ XQuery variables are defined by the $ symbol.

As explained in Chapter 2, there are two main parts to an XQuery query. The first part is the XQuery
Prolog (discussed in more detail in the “XQuery Prolog” section), which is simply a namespace declara-
tion, such as the following:

declare namespace MSAW=”http://schemas.microsoft.com/_
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”);

The second part of the XQuery query is the body of the query, the query expression, as follows:

/MSAW:root/MSAW:Location[LocationID=50]

When put together, the entire XQuery expression looks like the following:

SELECT Instructions.Query(‘declare namespace MSAW=”http://schemas.microsoft.com/_
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
/MSAW:root/MSAW:Location[@LocationID=50]’)
AS Location
FROM Production.ProductModel
WHERE ProductModelID = 47

All of these parts are necessary to have a true XQuery expression, including one of the xml data type
methods, such as the query() method shown in the example. The power behind an XQuery expression
is its ability to query deep into an XML document and retrieve any piece of information, whether it’s
from an XML variable or from data stored in an xml data type column.

Chapter 2 also touched briefly on some of the concepts and terms of XQuery such as Sequence,
Atomization, Quantification, and Type promotion, which are reviewed in subsequent sections.

86

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 86

Sequence
As defined in Chapter 2, a sequence is the result returned from an XQuery expression made up of nodes
and fragments called items. For example, consider the following query:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $Inst in /MSAW:root
return

(
<FirstStep> {string(($Inst/MSAW:Location[@LocationID = 50]/MSAW:step[1])[1]) }

</FirstStep>,
<SecondStep> {string(($Inst/MSAW:Location[@LocationID = 50]/MSAW:step[2])[1])

} </SecondStep>
)

‘) AS Steps
FROM Production.ProductModel
WHERE ProductModelID=47

The results are shown in Figure 5-1.

Figure 5-1

Taking a look at the XQuery expression, this example is querying the first two <step> elements, which
are wrapped in parentheses. What would happen if the parentheses are removed? Go ahead and try it.
What happened? It returned an error because of the return keyword bound to the first element.

The solution to this is to either put the parentheses back, or to remove the second element. The parenthe-
ses are important because the parentheses have a higher order of precedence than that of the comma
separating the elements.

This is a fairly simple example. However, suppose you were to execute the following query:

SELECT Instructions
FROM Production.ProductModel
WHERE ProductModelID = 47

A small portion of the results are shown here:

<Location LaborHours=”3.5” LotSize=”1” LocationID=”50”>Work Center - 50 Frame
FormingThe following instructions pertain to Work Center 10. (Setup hours = .0,
Labor Hours = 3.5, Machine Hours = 0, Lot Sizing = 1)
<step>Slide the

<material>stem</material> onto the
<material>handlebar</material> centering it over the knurled section.

</step>
<step>Take care not to scratch the handlebar.</step>

87

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 87

Notice that this query returned a lot of information that is difficult to decipher. It’s one big XML docu-
ment from a single column. The preceding results are only a small portion of the entire results returned.
Wouldn’t it be great if there were a way to query specific data out all of that information?

Well, there is: XQuery. If the schema in the Prolog supported it, the XQuery expression could have
queried a level deeper into the XML document and pulled out the material node information.

Atomization
Returning the typed value of an item is called atomization. A common scenario of atomization occurs
when you use the data() function to return a typed value of a specific node.

Going back to the example in Chapter 2, the query expression used atomization to automatically return
the value of a node that had already been retrieved via the data() function:

SELECT Instructions.query (‘declare namespace MSAW=”http://schemas.microsoft.com/_
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;
FOR $AW in / MSAW:root/ MSAW:Location[2]
Return
<AW OriginalMachineHours = “{$AW/@MachineHours}”
NewMachineHours = “{data{$AW/@MachineHours} +1}”
NewMachineHours1 = “{$AW/@MachineHours +1}”></AW>
‘)
FROM Proction.ProductModel
WHERE ProductModelID = 47

In this example, the first value is the attribute MachineHours. The second value is the same value
returned using the data() function, and the third value is automatically returned using atomization.
Therefore, the data() function is not needed.

The use of the data() function is completely optional in XQuery, although it does improve the readabil-
ity of an XQuery expression.

Quantification
Quantification comes in two flavors: Existential and Universal. Existential simply means that for any two
sequences, a value of TRUE will always be returned when any item in the first sequence matches any
item in the second sequence. Universal means that for any two sequences a return value of TRUE will
always be returned if every item in the first sequence has a match in the second sequence.

In the following example, a Universal quantified expression uses the xml data type value() method
instead of the query() method to compare two sequences, checking to see if every Location (sequence 1)
has a MachineHours attribute (sequence 2):

SELECT Instructions.value (‘declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
(if (every $loc in //MSAW:root/MSAW:Location

satisfies $loc /@MachineHours)
then
“YEP!”

else

88

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 88

“NOPE!”
[1])’,’varchar(5)’) AS ReturnValue
FROM Production.ProductModel
WHERE ProductModelID = 47

The results from this query return NOPE! because not every Location has a MachineHours attribute.
Change the XQuery quantified expression from every to some (an Existential quantification) and rerun
the query. What are your results?

Type Promotion
Type promotion allows the implicit casting of numeric values, or an untyped value to a typed value.
Casting can be Explicit or Implicit; however, there are certain rules that you need to follow when type
casting regardless if you are explicitly or implicitly casting values.

Explicit Casting
There are a number of rules you need to follow when explicitly casting. These castings are not supported:

❑ Casting to or from list types. For example, you cannot cast to or from xs:ENTITIES.

❑ Casting to or from xs:QNAME and xs:NOTATION.

❑ Casting to or from duration subtypes xdt:yearMonthDuration and xdt:dayTimeDuration.

What type of casting is allowed? A built-in type can be cast to another built-in type.

Implicit Casting
The following rules apply when you are implicitly casting values:

❑ You can cast decimals to a float.

❑ You can cast a float to a double.

❑ You can cast numerical types (built-in) to their base type.

❑ You cannot implicitly cast string types.

❑ You cannot implicitly cast numeric types to string.

XQuery Prolog
As stated earlier, an XQuery expression contains two parts: the Prolog and the body. The Prolog is a com-
bination of namespace and schema declarations that define the query processing environment. The body
of an XQuery expression is what contains the actual expression that specifies which values you want
returned from the XML document.

The following example, taken from earlier in this chapter, is used to define the XQuery expression:

SELECT Instructions.query(‘declare namespace MSAW=”http://schemas.microsoft.com/
_sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;

89

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 89

/MSAW:root/MSAW:Location/[LocationID=50]’)
AS Location
FROM Production.ProductModel
WHERE ProductModelID = 47

The first step in setting a Prolog is declaring a namespace prefix. You do this by using the declare key-
word followed by the name of your namespace prefix. The name is then used in the body of the expres-
sion. The following example demonstrates declaring a namespace:

declare namespace MSAW

The Prolog in the code example is the following:

MSAW=”http://schemas.microsoft.com/_
sqlserver/2004/07/adventure-works/ProductModelManuInstructions”;

The Prolog is followed by the body of the expression:

/MSAW:root/MSAW:Location/[LocationID=50]

The purpose of declaring a namespace is first to define a prefix to use in the body of the query, and sec-
ond, to associate the prefix with a namespace URI (Uniform Resource Identifier), which in this case
points to the corresponding XSD schema. Using the default namespace declaration binds a default
namespace for all element names.

In the event that you have been attacked by a severe case of writer’s block and for whatever reason you
cannot think of a namespace prefix, don’t worry; you can always use the DECLARE DEFAULT ELEMENT
namespace. This is a default namespace that will bind a default namespace for all element names.

The following example illustrates how to use this default namespace:

SELECT CatalogDescription.query(‘
declare default element namespace

“http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”;
/ProductDescription/Features

‘) as Result
FROM Production.ProductModel
WHERE ProductModelID=28

When you run this query, all elements in the results are now prefixed with the default namespace
defined in the Prolog. Here’s a portion of these results:

<Features xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelDescription”>These are the product highlights.
<p1:Warranty xmlns:p1=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelWarrAndMain”>
<p1:WarrantyPeriod>1 year</p1:WarrantyPeriod><p1:Description>parts and
labor</p1:Description></p1:Warranty>

<p2:Maintenance xmlns:p2=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelWarrAndMain”>

90

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 90

<p2:NoOfYears>5 years</p2:NoOfYears>
<p2:Description>maintenance contact available through dealer</p2:Description>
</p2:Maintenance>

By declaring a default namespace, you can bind each element name to the default namespace without
the need to specify a prefix. This lets you write your expression without the need to specify the prefix at
every turn, such as the case in the first example in this section where a namespace prefix was declared
and used throughout the query.

XQuery Path Expressions
Path expressions in XQuery provide a node location in an XML document. The nodes, regardless of
whether they are elements, attributes, and other node types are always returned by the path expression
ordered in the same order as in the XML document, without duplicates nodes listed.

When specifying a path expression, the expression can be either relative or absolute. A relative path
expression contains at least one or more steps separated by slash marks, typically one (/) or two (//).
Using the CatalogDescription column in the Production.ProductModel table in the Adventure Works
database for this example, a relative expression would look like the following:

child::Manufacturer

In this example expression, child refers to the current node being searched, which in this example is the
<ProductDescription> node. It returns the <Manufacturer> node of the <ProductDescription> node.

Absolute path expressions begin with slashes (one or two) and can be followed by a relative path (the
absolute path is optional). For example, using the same table and column, the following is an absolute
path expression:

/child::ProductDescription/child::Manufacturer

Since the expression begins with a slash, which tells the expression to start at the root node, and is then
followed by a relative path expression. The expression queries starting at the root node and returns all
<Manufacturer> nodes of the <ProductDescription> nodes of the root node.

Absolute paths that start with a single slash (/) may not necessarily be followed by a relative path
expression. For example, if the expression contains a single slash only, the entire XML document is
returned.

Path expressions consist of one or more steps. A step is a level in the XML hierarchy. For example, the
following expression contains a single step:

/MSAW:Location

The following expression has two steps:

/MSAW:Location/MSAW:Step

91

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 91

The first example returns all <Location> nodes underneath the root node element. The second example
returns all <Step> child elements for each <Location> element.

Steps in path expressions can of two different types: Axis step or General step. In SQL Server 2005,
General steps in path expressions are not supported, so they are not covered in this book.

Axis Step
There are two parts to an Axis step: the axis and the node test. The axis specifies the direction in which to
search, and the node test defines the names of the nodes to be selected.

There are six types of axes:

❑ Child: Returns children of the context node.

❑ Descendant: Returns all descendants of the context node.

❑ Parent: Returns the parent of the context node.

❑ Attribute: Returns the attribute of the context node.

❑ Self: Returns its own node.

❑ Descendant-or-self: Returns itself and its children.

The following example illustrates using a child axis to query child nodes of the parent node:

SELECT CatalogDescription.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”;
/child::MSAW:ProductDescription/child::MSAW:Manufacturer’)

FROM Production.ProductModel
WHERE ProductModelID=35

The results are shown in Figure 5-2.

Figure 5-2

In this example, there are two steps in the expression. The first step, <ProductDescription>, is a child
of the root node. The second step, <Manufacturer>, is a child of the <ProductDescription> node.
The query then returns all children nodes of the <Manufacturer> node.

Node Test
The node test is a test condition in which all the nodes selected in a step must meet the query criteria.
For example, the following step example returns only the child elements of the <ProductDescription>
node whose element name is Manufacturer:

/child::ProductDescription/child::Manufacturer

92

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 92

Node test conditions can be specified by either the node name or by node type. For example, the follow-
ing query expression returns the <name> element by specifying the node name to query:

SELECT CatalogDescription.query(‘
declare namespace PD=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”;

/child::PD:ProductDescription/child::PD:Manufacturer/child::PD:Name
‘)
FROM Production.ProductModel
WHERE ProductModelID=35

In this example, the Name node value is returned because the Name element is specified in the path
expression. The path expression contains node tests.

The results of this query are as follows:

<PD:Name xmlns:PD=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”>AdventureWorks</PD:Name>

A node test can be a node name (illustrated by the example) or a node type. A node test where the con-
dition is of a node type returns only those nodes where the type is specified in the query, such as the
following:

/child::PD:ProductDescription/child::PD:Manufacturer/child::comment()

This query returns all comment types found within the Manufacturer node.

Node tests can be useful when you are not sure exactly what nodes are in your XML document and you
want to query and test for specific nodes.

XQuery XML Construction
XQuery construction is permitted using XQuery constructors inside of an XQuery expression. The con-
structors are accessible to all elements and attributes as well as other components of an XML document.
Constructors allow you to build XML-type syntax, defining the construct of your XML.

The concept of dynamically retrieving data from your database is where XML construction comes in
handy. For example, the following queries all the manufacturing steps at the second <Location> ele-
ment and builds or constructs a <Location> element with the returned data:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<Location>
{ / MSAW:root/ MSAW:Location[2]/ MSAW:step }

</Location>
‘) as Location
FROM Production.ProductModel
WHERE ProductModelID=47

93

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 93

The results are shown in Figure 5-3.

Figure 5-3

Click the link to better view the results (see Figure 5-4). The namespaces have been removed for
readability:

Figure 5-4

The results of the query, which are all of the steps for the second location, were returned inside of the
constructed <Location> element.

Constructors also provide the ability to construct attributes. Building on the previous example, modify
the expression as follows:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<Location
LocationID=”{ (/MSAW:root/MSAW:Location[2]/@LocationID)[1] }”
MachineHours = “{ (/MSAW:root/MSAW:Location[2]/@MachineHours)[1] }” >
{ /MSAW:root/MSAW:Location[2]/MSAW:step }

</Location>
‘) as Location
FROM Production.ProductModel
WHERE ProductModelID=47

The results look the same, except there are two attributes added to the <Location> element, as illus-
trated in Figure 5-5.

Figure 5-5

Make one more modification to get rid of the namespace and return only the string value of the manu-
facturing step:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<Location

94

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 94

LocationID=”{ (/MSAW:root/MSAW:Location[2]/@LocationID)[1] }”
MachineHours = “{ (/MSAW:root/MSAW:Location[2]/@MachineHours)[1] }” >
{
for $var in /MSAW:root/MSAW:Location[2]/MSAW:step
return string($var)
}

</Location>
‘) as Location
FROM Production.ProductModel
WHERE ProductModelID=47

The results are shown in Figure 5-6, and have been formatted for better readability.

Figure 5-6

Computed element and attribute names are not fully supported in this release, but will be supported at
product release time. Until then, you can use string literals to define the names.

FLWOR Statement
The FLWOR (pronounced flower) statement is the syntax in which you can define XQuery expression itera-
tion within the XML document. FLWOR is an acronym that stands for FOR, LET, WHERE, ORDER BY, and
RETURN.

LET is not supported in the current beta release of SQL Server 2005.

A FLWOR statement is made up of the following components:

❑ An input sequence (constructed XML nodes are not accepted as input)

❑ A FLWOR variable (for example, FOR $var)

❑ An optional WHERE clause

❑ An optional ORDER BY clause

❑ A RETURN expression

Using the code sample from the previous section, the following example queries all the step elements for
the second <Location> node:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in //MSAW:root/MSAW:Location[2]/MSAW:step

return
string($var)

95

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 95

‘) as Steps
FROM Production.ProductModel
WHERE ProductModelID=47

The results from the query are shown in Figure 5-7.

Figure 5-7

Looking at the query syntax, it follows the FLWOR syntax because it uses a number of the necessary com-
ponents required for a FLWOR statement. It has the FLWOR statement FOR and the RETURN expression, and
it includes the input sequence specified by the XPath expression.

The preceding example uses a single variable bound to a single input sequence. The following example
uses the same code sample from earlier, but uses multiple variables, each bound to an input sequence:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in //MSAW:root/MSAW:Location[2]/MSAW:step,
$mat in $var/MSAW:material

Return
<Material>
{ $mat }

</Material>

‘) as Material
FROM Production.ProductModel
WHERE ProductModelID=47

The results are as follows:

<Material>
<MSAW:material

xmlns:MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”>handlebar components</MSAW:material>
</Material>

The difference between the previous two examples is that the latter defines two variables in the for
clause. The first expression returns all of the steps for the second location. The second path expression,
assigned to the $mat variable, returns all results for all the material elements within the $var variable.
In this example, there is only a single occurrence of the material element.

The WHERE clause in the FLWOR statement is not the where clause following the FROM clause in the pre-
ceding example. The where clause is included within the query expression and provides the capability
to limit or filter the results returned. For example, the following queries all Locations where the number
of step nodes is greater than two:

96

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 96

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in /MSAW:root/MSAW:Location
where count($var/MSAW:step) > 2
return

<Location>
{ $var/@LocationID }

</Location>
‘) as Location
FROM Production.ProductModel
WHERE ProductModelID=47

The results of this query, shown in Figure 5-8, include only those LocationIDs where the number of
manufacturing steps is greater than 2.

Figure 5-8

This filtering for this query is provided by the where clause in the following expression query:

where count($var/MSAW:step) > 2

XQuery Sorting
Sorting in XQuery is provided by the GROUP BY clause of the FLWOR statement. In fact, the GROUP BY
clause can only be used in a FLWOR statement. If the GROUP BY clause is not specified, the results are
returned in ascending order by default, but you can specify the optional keywords ascending or
descending as well.

The capability to sort using GROUP BY is not limited to sorting by types. For example, a query expression
can sort on an element value, attribute value, or element name.

Using the Adventure Works database again, the following example shows how to retrieve all the alter-
nate phone numbers for a specific person and then sort them from the Person.Contact table:

SELECT AdditionalContactInfo.query(‘
declare namespace ct=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ContactTypes”;
declare namespace ci=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ContactInfo”;

for $var in /ci:AdditionalContactInfo//ct:telephoneNumber
order by $var/ct:number[1]
return $var

‘) As Result
FROM Person.Contact
WHERE ContactID=1

The results are shown in Figure 5-9.

97

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 97

Figure 5-9

In the preceding example, the optional sort (ascending or descending) was left off, which automatically
sorted the phone numbers in ascending order.

In the next example, instead of sorting by a node value, the results are sorted by the MachineHours
attribute:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions”;
for $MH in /MSAW:root/MSAW:Location
order by $MH/@MachineHours descending

return
<Location>
{ $MH/@LocationID }
{ $MH/@MachineHours }

</Location>
‘) as Location
FROM Production.ProductModel
WHERE ProductModelID = 47

The results (see Figure 5-10) show the Locations, the LocationID attribute, and the MachineHours
attribute sorted in descending order by MachineHours.

Figure 5-10

This final example shows how to sort by element name. The query expression queries the first manufac-
turing step of the first location to retrieve all child elements in ascending order:

SELECT Instructions.query(‘
declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuInstructions”;

for $var in /MSAW:root/MSAW:Location[1]/MSAW:step[1]/*
order by local-name($var)
return $var

‘) as Result
FROM Production.ProductModel
where ProductModelID=47

98

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 98

The results show the element names sorted in ascending order:

<MSAW:material>aluminum sheet MS-2259</MSAW:material>
<MSAW:tool>T-50 Tube Forming tool</MSAW:tool>

While not nearly a complete discourse on XQuery technology, I hope this section gave you enough infor-
mation about the XQuery implementation in SQL Server 2005 to be able to readily retrieve data from
your XML documents.

XML Data Modification Language
The XML Data Modification Language (XML DML) was introduced in Chapter 2 with some examples to
highlight some of its features. The purpose of this section is to discuss the topics that were not covered in
Chapter 2, provide more examples, and list any limitations of XML DML.

As listed in Chapter 2, there are three keywords added that need to be added to an XQuery expression to
enable XML DML functionality. The keywords are case-sensitive. They are as follows:

❑ insert

❑ delete

❑ replace value of

insert
The insert keyword allows for the insertion of one or more nodes into an existing XML document. The
placement of the new nodes is determined by the syntax used in the expression. The basic syntax for the
insert keyword is as follows:

INSERT
Expression1
(

(as first | Last) into | after | before
Expression2
)

Expression1 is the node or nodes to be inserted into the XML document. This expression can be an
XML instance or an XQuery expression. When specifying multiple nodes, you must wrap the nodes in
parentheses and separate them by a comma. If Expression1 contains one or more values, those values
are inserted as a single text node.

The into keyword signifies that the nodes in Expression1 are inserted into the identified node in
Expression2 as child nodes. If Expression2 already has child nodes, then you must include the as
first or as last keyword to specify where in Expression2 to insert the new nodes. When inserting
attributes, the as first and as last keywords are ignored.

The before and after keywords determine where in Expression2 to insert Expression1. The
before keyword inserts the nodes in Expression1 into Expression2 before any existing nodes in
Expression2. The after keyword inserts the nodes in Expression1 into Expression2 after any exist-
ing nodes in Expression2.

99

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 99

Expression2 is the relative node in the XML document into which the nodes in Expression1 are
inserted. As with Expression1, Expression2 can also be an XML instance or an XQuery expression.

In all of the following examples, Expression1 is the node that is to be inserted. Here’s the first example:

<FirstName>Evel</FirstName>

Expression2 is the location where the nodes in Expression1 are added, which is the following:

(/Root/Employee/EmployeeInformation)[1]’)

The XML document used in Chapter 2 to demonstrate the insert keyword is used again here:

<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>

The first example simply inserts a new node into the listed XML. The following code inserts a new
lastname node into the XML instance:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>’
SET @xmldoc.modify(‘
insert <LastName>Knievel</LastName>
into (/Root/Employee/EmployeeInformation)[1]’)
SELECT @xmldoc
GO

The results of the SELECT @xmldoc statement looks like the following:

<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<LastName>Knievel</LastName>

</EmployeeInformation>
<Employee>

</Root>

Using the as first keyword, modify the original code to look like the following:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>

100

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 100

<Employee EmployeeID=”1”>
<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>’
--SELECT @xmldoc
SET @xmldoc.modify(‘
insert <LastName>Knievel</LastName>
into (/Root/Employee/EmployeeInformation)[1]’)
SET @xmldoc.modify(‘
insert <FirstName>Evel</FirstName>
as first
into (/Root/Employee/EmployeeInformation)[1]
‘)
SELECT @xmldoc
GO

Running this query returns the results shown in Figure 5-11.

Figure 5-11

The as first keyword added the FirstName element as the first element in the parent
EmployeeInformation element.

To finish off this example, make the following changes to the code and rerun the query:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>’
SET @xmldoc.modify(‘
insert <LastName>Knievel</LastName>
into (/Root/Employee/EmployeeInformation)[1]’)
SET @xmldoc.modify(‘
insert <FirstName>Evel</FirstName>
as first
into (/Root/Employee/EmployeeInformation)[1]
‘)

101

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 101

SET @xmldoc.modify(‘
insert <JobTitle>Daredevil</JobTitle>
as last
into (/Root/Employee/EmployeeInformation)[1]
‘)
SELECT @xmldoc
GO

Figure 5-12 displays the results.

Figure 5-12

Using the as last keyword the JobTitle element was inserted into the XML instance as the last ele-
ment in Expression2.

Inserting multiple elements is nearly identical in operation to inserting single elements. The following
example takes the original XML instance (Expression2) and inserts the FirstName, LastName, and
JobTitle elements (Expresssion1) into the XML instance:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>
<EmployeeInformation>
</EmployeeInformation>

</Employee>
</Root>’
SET @xmldoc.modify(‘
insert (

<FirstName>Evel</FirstName>,
<LastName>Knievel</LastName>,
<JobTitle>Daredevil</JobTitle>
)

into (/Root/Employee/EmployeeInformation)[1]’)
SELECT @xmldoc
GO

The results of this query are exactly the same as the results shown in Figure 5-12. The difference is that it
took only a single insert to add the elements into the XML instance.

Adding attributes in not much different from adding elements. The following example inserts an attribute
into the XML instance of the previous results:

102

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 102

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Evel</FirstName>
<LastName>Knievel</LastName>
<JobTitle>Daredevil</JobTitle>

</EmployeeInformation>
</Employee>
</Root>’
SET @xmldoc.modify(‘
insert attribute BusesJumped {“14” }
into (/Root/Employee[@EmployeeID=1])[1] ‘)
DECLARE @Status varchar(10)
SET @Status =’Success’
SET @xmldoc.modify(‘
insert attribute JumpStatus {sql:variable(“@Status”) }
into (/Root/Employee[@EmployeeID=1])[1] ‘)
SELECT @xmldoc
GO

In this example, two different attributes are added to the XML instance. The first one is added by speci-
fying the literal string value BusesJumped. The second attribute is added by assigning the value to a
variable and using the sql:variable function to pass the variable to the modify method.

The attributes are successfully added, as shown in Figure 5-13.

Figure 5-13

The next example adds a new element into an untyped XML column. The following example uses the
Motocross table created earlier to insert an element into the XML instance stored in the xml data type
column.

The XML instance in the MotocrossInfo column in the Motocross table looks like Figure 5-14 (which
shows only the important piece of the XML instance):

103

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 103

Figure 5-14

The following code inserts a new Rider element under the Team Suzuki node. The new node is the last
node using the as last keyword, as follows:

UPDATE Motocross
SET MotocrossInfo.modify(‘insert <Rider BikeSize=”250”>Sebastien Tortelli</Rider>
as last
into (/Motocross/Team)[3]

‘)
GO

When you re-query the Motocross table, the results now look like Figure 5-15.

Figure 5-15

Elements and attributes can also be added using conditional statements, such as the following:

SET @xmldoc.modify (‘
insert
If (/Root/Employee/[@EmployeeID=1])
Then attribute BusesJumped {“14”}
Else ()

As first
into (/Root/Employee[@EmployeeID=1])[1]’)

This example is very similar to a previous example where you added the BusesJumped attribute. The dif-
ference here is that in this example, the addition of the attribute was wrapped around a conditional state-
ment. If the EmployeeID attribute has a value of 1, then add the new attribute; otherwise, don’t add it.

Deleting elements and attributes is as easy as adding them, as shown in the next section.

104

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 104

delete
You can delete nodes from an XML instance by using the delete keyword. As explained in Chapter 2,
the syntax is straightforward. Here it is again for your review:

Delete Expression

The following example deletes a node from an xml data type variable:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Evel</FirstName>
<LastName>Knievel</LastName>
<JobTitle>Daredevil</JobTitle>

</EmployeeInformation>
</Employee>
</Root>’
SET @xmldoc.modify(‘
delete /Root/Employee/EmployeeInformation/JobTitle

‘)
SELECT @xmldoc

Running this query removes the JobTitle node from the XML instance.

The following example uses the same expression to delete the EmployeeID attribute from the XML
instance:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Evel</FirstName>
<LastName>Knievel</LastName>
<JobTitle>Daredevil</JobTitle>

</EmployeeInformation>
</Employee>
</Root>’
SET @xmldoc.modify(‘
delete /Root/Employee/EmployeeInformation/JobTitle

‘)
SET @xmldoc.modify(‘
delete /Root/Employee/@EmployeeID
‘)

SELECT @xmldoc

Compare the results in Figure 5-16 with those shown previously in Figure 5-13, and you’ll notice that
both the EmployeeID attribute and JobTitle node have been removed from the XML instance.

105

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 105

Figure 5-16

The last example of this section illustrates deleting a node from an xml data type column:

UPDATE Motocross
SET Motocross.modify(‘ delete /Root/Team[3]/Rider’)

When you query the Motocross table, the results show that the Rider node with a value of Sebastien
Tortelli has been deleted.

replace value of
The update keyword in conjunction with the replace value of keyword allows for the in-place
update of a node value in an XML instance. Chapter 2 covered the syntax of the replace value of
keyword, but it is shown again here for review and additional information:

replace value of
expression1

with
expression2

Expression1 is the node whose value is being updated. Only a single node can be expressed; if multi-
ple nodes are expressed, an error is generated.

Expression2 is the new value of the node.

The following example updates a node in an XML instance with a new value. Using the previous
Employee example, the JobTitle value is updated with a new value as follows:

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Evel</FirstName>
<LastName>Knievel</LastName>
<JobTitle>Daredevil</JobTitle>

</EmployeeInformation>
</Employee>
</Root>’
-- update text in the first manufacturing step
SET @xmldoc.modify(‘

106

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 106

replace value of (/Root/Employee/EmployeeInformation/JobTitle[1]/text())[1]
with “Retired”

‘)
SELECT @xmldoc

The results of the SELECT statement (see Figure 5-17) show that the JobTitle value has been changed
from Daredevil to Retired:

Figure 5-17

Attributes can also be updated as shown in the following example (also note the change in information
in the XML instance):

DECLARE @xmldoc xml
SET @xmldoc =
‘<Root>
<Employee EmployeeID=”1”>

<EmployeeInformation>
<FirstName>Robby</FirstName>
<LastName>Knievel</LastName>
<JobTitle>Son</JobTitle>

</EmployeeInformation>
</Employee>
</Root>’
-- update text in the first manufacturing step
SET @xmldoc.modify(‘
replace value of (/Root/Employee/EmployeeInformation/JobTitle[1]/text())[1]
with “Daredevil”

‘)
SET @xmldoc.modify(‘
replace value of (/Root/Employee/@EmployeeID)[1]
with “2”

‘)
SELECT @xmldoc

This example updates both the EmployeeID attribute as well as the JobTitle value, as shown in
Figure 5-18.

In the previous examples, a [1] is added to the end of the target value being updated. Since only a sin-
gle node can be updated, the [1] value specifies which node to update. In these examples, the [1] is not
really necessary because there is only one <JobTitle> node.

107

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 107

Figure 5-18

However, in the case of multiple nodes with the same name, such as the case with the Motocross exam-
ples where there are multiple <Rider> nodes, the [1] is necessary. A value of [1] updates the first
<Rider> node, while a [2] updates the second <Rider> node.

For example, the following code updates the second rider <Rider> node of the third Team node of the
Motocross table (the column is untyped):

UPDATE Motocross
SET MotocrossInfo.modify (‘
replace value of (/Motocross/Team/Rider/text())[2]
with “Davi Millsaps” ‘)

This example demonstrates the replace value of statement, which updates the name of the second
rider for team Suzuki from Broc Hepler to Davi Millsaps. The modified results are shown here:

<Rider BikeSize=”250”>Jeremy McGrath</Rider>
</Team>
<Team Manufacturer=”Suzuki”>
<Rider BikeSize=”250”>Ricky Carmichael</Rider>
<Rider BikeSize=”125”>Davi Millsaps</Rider>
<Rider BikeSize=”250”>Sebastien Tortelli</Rider>
</Team>
<Team Manufacturer=”Kawasaki”>
<Rider BikeSize=”250”>James Stewart</Rider>
<Rider BikeSize=”125”>Michael Byrne</Rider>

The first expression identifies the node whose value is to be replaced and must be a single node. An
error is generated if multiple nodes are found in the results of the query. Equally, if the results of the first
expression are empty, no replacement is made.

The second expression specifies the new value of the node — either a single value or a list of values. In
the case where it is a list of values, the old value is replaced with the list.

The last example in this section uses conditional statements to determine the new value. In the following
example, the expression queries the number of riders for the first team, and depending on the number of
riders found, sets the attribute of the Team element to a different value:

DECLARE @xmldoc xml
SET @xmldoc = ‘<Motocross>
<Team Manufacturer=”Yamaha”>

108

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 108

<Rider BikeSize=”250”>Tim Ferry</Rider>
<Rider BikeSize=”250”>Chad Reed</Rider>
<Rider BikeSize=”250”>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>
<Rider BikeSize=”450”>Kevin Windham</Rider>
<Rider BikeSize=”250”>Mike LaRacco</Rider>
<Rider BikeSize=”250”>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>
<Rider BikeSize=”250”>Ricky Carmichael</Rider>
<Rider BikeSize=”125”>Broc Hepler</Rider>
<Rider>Sebastien Tortelli</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>
<Rider BikeSize=”250”>James Stewart</Rider>
<Rider BikeSize=”125”>Michael Byrne</Rider>

</Team>
</Motocross>’
SET @xmldoc.modify(‘
replace value of (/Motocross/Team[1]/@Manufacturer)[1]
with (

if (count(/Motocross/Team[1]/Rider) = 3) then
“Team Yamaha”

else
“Yamaha”

)
‘)
SELECT @xmldoc

The results shown in Figure 5-19 illustrate that the attribute on the Team element for the Yamaha manu-
facturer has changed for the Yamaha Team.

Figure 5-19

109

Querying and Modifying XML Data in SQL Server 2005

10_597922 ch05.qxp 12/3/05 12:22 AM Page 109

This example used the count() function to count the number of child nodes. While this example is
fairly simplistic, conditional expressions used in XQuery expressions have to use every XQuery function
available at its disposal.

For example, an expression could check the value of a node and the conditional expression could base its
decision on the return of that value.

Summary
The entire purpose of this chapter was to build on the related topics that were discussed in Chapter 2.
The implementation of XQuery support in SQL Server 2005, with the addition of the XML DML, makes
the querying and modification of the xml data type quite easy.

The XQuery language is quickly becoming a very popular and common XML querying language, and it
would be wise to start learning it. This chapter got you started with that endeavor by explaining the syn-
tax and structure of XQuery and some discussions of the concepts and terms used with XQuery, such as
sequences and atomization.

That was followed by an in-depth discussion on the XML DML (Data Modification Language), which is
an extension of the XQuery language and used to modify the data within an XML instance. You learned
about the three case-sensitive keywords (insert, delete, and replace value of), which allow you
to modify XML document content.

From here it is time to learn and understand how to improve performance when querying XML docu-
ments by learning about indexing the xml data type.

110

Chapter 5

10_597922 ch05.qxp 12/3/05 12:22 AM Page 110

Indexing XML Data in
SQL Server 2005

Indexing is not new to SQL Server; it has been a feature since the early versions. Indexing is the
concept of storing a structure associated with a table that allows for quick retrieval of data. This
b-tree structure contains keys built from one or multiple columns in a table. With the introduction
of the xml data type and the associated column in SQL Server 2005, the need to index the xml data
type column is just as important, if not more important, than an index on any other data type col-
umn in a table.

In SQL Server 2005, XML instances are stored as BLOBs (binary large objects) in the xml data type
column, and the maximum storage size of this column can be up to 2GB. That is a lot of XML data.
Querying these XML instances can be a serious undertaking, and without an index on the column,
the XML instance is converted to relational data when querying. This is called shredding and is not
the best way to query data from a table.

An XML index does not use a b-tree index. Instead, an XML index is a shredded depiction of the
XML instance contained in the xml column.

Indexing the xml data type was first mentioned in Chapter 2 as an introduction to this topic. This
chapter assumes that you have at least a basic understanding of how to create indexes and how they
work, so no time is spent covering that, as it is outside the scope of this book. However, this chapter
focuses entirely on indexing the xml data type in SQL Server 2005 by covering the following:

❑ Creating primary and secondary XML indexes

❑ Indexing XML content

❑ Modifying and deleting XML indexes

❑ Option settings for XML indexes

❑ Best practices for XML indexes

11_597922 ch06.qxp 12/3/05 12:21 AM Page 111

Primary XML Index
In most of the examples thus far, the queries retrieved data from the Instructions column in the
Production.ProductModel table in the AdventureWorks sample database. Looking in SQL Server
Management Studio, you can see that there is indeed an index on the Instructions column (see Figure 6-1).

Figure 6-1

Figure 6-2 shows the properties of that index.

Figure 6-2

Looking at Figure 6-2, you can see that it is an index on the Instructions column in the ProductModel
table, but the most important piece of information to gather from the figure is that it is a primary XML
index. This section discusses creating primary XML indexes.

Take a look at the following query against the Instructions column:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in /MSAW:Location[@LocationID=50]

112

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 112

return
$var

‘) as Location
FROM Production.ProductModel
WHERE Instructions.exist (‘declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
//MSAW:Location[@LocationID=50]’) = 1

Now imagine what would happen if this index did not exist. This example employs the exist()
method to look at the Instructions column for a LocationID with a value of 50, as expressed in the path
expression. Without an index on the Instructions column, the exist() method must interrogate every
row in the table looking for that value. That is a very time consuming process. Creating indexes on an
xml data type column greatly improves query performance.

The basic syntax for creating a primary XML index is as follows:

CREATE [PRIMARY] XML INDEX Indexname
ON Tablename (xml_Columnname)

Indexname is the new name of the primary XML index to be created. Tablename is the table on which to
create the new primary XML index. Finally, xml_columnname is the column on which to create the new
primary XML index.

In a query window, run the following SQL, which drops the Employee table if it exists, recreates it, and
then adds a primary XML index on the xml data type column EmployeeInfo:

if exists (select * from dbo.sysobjects where id = object_id(N’[dbo].[Employee]’)
and OBJECTPROPERTY(id, N’IsUserTable’) = 1)
DROP TABLE [dbo].[Employee]
GO

CREATE TABLE [dbo].[Employee](
[EmployeeID] [int] NOT NULL,
[EmployeeInfo] [xml] NOT NULL,
) ON [PRIMARY]
GO
CREATE PRIMARY XML INDEX PriI_Employee_EmployeeInfo
ON Employee(EmployeeInfo)
GO

Didn’t work did it? What’s missing? Modify the SQL to add the following highlighted section, and then
rerun the query:

if exists (select * from dbo.sysobjects where id = object_id(N’[dbo].[Employee]’)
and OBJECTPROPERTY(id, N’IsUserTable’) = 1)
DROP TABLE [dbo].[Employee]
GO

CREATE TABLE [dbo].[Employee](
[EmployeeID] [int] NOT NULL,

113

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 113

[EmployeeInfo] [xml] NOT NULL,
CONSTRAINT [PK_Employee] PRIMARY KEY CLUSTERED
(
[EmployeeID] ASC
) ON [PRIMARY]
) ON [PRIMARY]
GO
CREATE PRIMARY XML INDEX PriI_Employee_EmployeeInfo
ON Employee(EmployeeInfo)
GO

This time it worked successfully because before a primary XML index can be created, a clustered index
must exist on a primary key column (see commandment 4 in the “10 Commandments of XML Index
Creation” section later in this chapter). This is for insurance reasons. If the base table is partitioned, the
XML index also gets partitioned along with the table.

Figure 6-3 shows the results of the table and index creation.

Figure 6-3

As you can see from Figure 6-3, the code created a Non-Clustered index on the EmployeeInfo column.
It is not necessary to specify in the CREATE statement whether to create a Clustered or Non-Clustered
index because by specifying PRIMARY, the CREATE INDEX statement knew that there was already a
Clustered index on the primary key, and to create the PRIMARY XML index as Non-Clustered.

Once the index is created you can go into its properties and try to change it to a Clustered index, only to
have SQL Server balk at you for trying to drop the existing Clustered index, thus breaking the rule stated
previously about needing a clustered primary key to create the index.

Trying to drop the primary index with secondary indexes associated to it also generates an error.

Secondary XML Index
Secondary XML indexes can be added to xml data type columns to provide additional query perfor-
mance. Having a primary index on an xml data type column without any secondary XML indexes may
not prove to be beneficial, especially for columns with large XML documents. Querying a large XML
instance based on path values can be very time consuming, and a single primary index may not provide
the best performance. In these cases, adding secondary XML indexes specifically designed for certain
query expressions can prove to be very beneficial.

114

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 114

There are three different types of secondary XML indexes depending on what you are querying, but
regardless of the secondary XML index type, a primary XML index must exist prior to creating any sec-
ondary XML index.

The three types of secondary XML indexes are:

❑ PATH

❑ VALUE

❑ PROPERTY

As shown in Chapter 2, the basic syntax of a secondary XML index looks like the following:

CREATE XML INDEX SecondaryXMLIndexName
ON TableName (xml_ColumName)
USING XML INDEX PrimaryXMLIndexName
FOR [PATH | VALUE | PROPERTY]

SecondaryXMLIndexName is the new name of the secondary XML index to be created. TableName is the
table on which to create the new secondary XML index. ColumName is the column on which to create the
new secondary XML index. PrimaryXMLIndexName is the primary XML index on which to base the sec-
ondary XML index.

PATH
You use the PATH secondary XML index when using path expressions in your query. You can determine
that you need a PATH secondary XML index by looking at the WHERE clause of your SQL statement. If
there is an exist() method on the xml column, you are using a PATH expression and could most likely
benefit from this type of index.

For example, the Instructions column in the Production.ProductModel table already has a primary XML
index on it, and the following code adds a secondary PATH XML index:

CREATE XML INDEX SecI_PM_I_PATH ON Production.ProductModel(Instructions)
USING XML INDEX PXML_ProductModel_Instructions
FOR PATH
GO

Figure 6-4 shows that the new PATH secondary XML index has been created.

Figure 6-4

115

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 115

The PATH secondary XML index created is based on the primary XML index called PXML_ProductModel_
Instructions and improves any path expression queries made on this column. For example, the follow-
ing query (used previously) uses the exist() method to check for the existence of a location with a
LocationID attribute with a value of 50:

SELECT Instructions.query(‘
declare namespace MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in /MSAW:Location[@LocationID=”50”]
return

$var
‘) as Location
FROM Production.ProductModel
WHERE Instructions.exist (‘declare namespace
MSAW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuInstructions”;
/MSAW:Location[@LocationID=”50”]’) = 1

Since there is now a secondary XML index on the Instructions column, the XML instance does not need
to be shredded, making querying the XML instance faster.

VALUE
When querying for specific values in an XML instance, you should use the VALUE index, especially when
the name of the node or element isn’t exactly known or the path includes a wild card character.

Add a VALUE index onto the Instructions column by running the following SQL statement:

CREATE XML INDEX SecI_PM_I_VALUE ON Production.ProductModel(CatalogDescription)
USING XML INDEX PXML_ProductModel_CatalogDescription
FOR VALUE
GO

Figure 6-5 shows that the new VALUE secondary XML index was created.

Figure 6-5

116

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 116

Just like the PATH index, the VALUE index was created based on the primary XML index and improves
any value expression queries made on this column. For example, the following query executes a value()
expression query to return the ProductID and Name columns from the Production.Product table if the
picture size “small” is found:

WITH XMLNAMESPACES (
‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription’ AS p1)
SELECT ProductModelID, Name
FROM Production.ProductModel
WHERE CatalogDescription.exist(‘//p1:Picture/Size[.=”small”]’) = 1

In the following partial results, there are a number of ProductID and Name columns containing the
value “small”:

ProductID Name
19 Mountain-100
23 Mountain-500
25 Road-150

There will be times when you are looking for a specific piece of data and want to query off that key piece
of information. The VALUE index helps improve query performance when those times arise.

PROPERTY
The intent of the VALUE index is to speed up searches for single values within an XML instance, but if
you are searching for multiple values, such as “find all manufacturing steps for a specific Location” or
“find the steps and material for a specific Location,” the VALUE index for this type of search is not ade-
quate. But the PROPERTY index is made exactly for this type of search.

For this example you need to add a PROPERTY index onto the Instructions column by running the fol-
lowing SQL statement:

CREATE XML INDEX SecI_PM_I_PROPERTY ON Production.ProductModel(Instructions)
USING XML INDEX PXML_ProductModel_Instructions
FOR PROPERTY
GO

Figure 6-6 shows that the new PROPERTY secondary XML index was created.

Figure 6-6
117

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 117

Consider the following query:

WITH XMLNAMESPACES (‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions’ AS “PD”)
SELECT ProductModelID,
Instructions.value(‘(/PD:root/PD:Location/@LocationID)[1]’, ‘int’) AS LocationID,
Instructions.value(‘(/PD:root/PD:Location/@MachineHours)[1]’, ‘int’) AS MachineHrs
FROM Production.ProductModel
WHERE ProductModelID = 7

The results of this query produce three columns, as shown in the following results. The value of the first
column is the ProductID, which is returned from the ProductID column in the table. The values of the
second and third columns, however, are returned from the XQuery, which retrieved the LocationID
and MachineHours attributes from the first location:

ProductID LocationID MachineHrs
7 10 3

Because multiple values were returned, the PROPERTY index was utilized in the query. The PROPERTY
index kicks into play with the value() method of the xml data type. It is also beneficial to know the pri-
mary key, in this case the ProductID column.

Secondary indexes are a great way to improve query performance, especially when the size of the XML
instance is large. Because multiple secondary indexes can be applied to a column, it is a good idea to
apply the different types as needed.

The secondary indexes are applied to the xml data type to help speed up your queries and return your
results to you faster. In addition, indexes can also be applied to content, which is discussed in the next
section.

Content Indexing
In addition to creating primary and secondary XML indexes on the xml data type column, you can cre-
ate and use full-text indexes on the column. While the primary and secondary XML indexes index the
values and nodes, a full-text index indexes the entire XML instance, ignoring the values, nodes, and
other XML syntax.

However, unlike primary and secondary XML indexes, only one full-text index per table is allowed. Not
per column, but per table. A full-text index is applied to a column, not a table.

Because both types of indexes (primary/secondary and full-text) can be applied to both a table and a
column, they both can be used together to query an XML instance. In the case of a full-text index, the
index is applied first, and then an XQuery expression is applied to sift deeper.

The requirements for creating a full-text index are very similar to that of the primary index in that a
unique primary key column must already be defined on the table for which the full-text index is created.

118

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 118

The basic syntax for a full-text index is as follows:

CREATE FULLTEXT INDEX
ON TableName (xml_ColumnName)
KEY INDEX IndexName

TableName refers to the table in which the full-text index is being created. ColumnName is the name of
the column on which the full-text index will be applied. IndexName is the name of the unique primary
key index.

Before a full-text index can be created, a full-text catalog must exist in the database, as all full-text indexes
are stored in the catalog. A database can contain one or more catalogs.

The following example first creates a full-text catalog in which to store the full-text index, and then cre-
ates a full-text index on the Instructions column of the Production.ProductModel table:

CREATE FULLTEXT CATALOG FTC AS DEFAULT
GO
CREATE FULLTEXT INDEX
ON Production.ProductModel(Instructions)
KEY INDEX PK_ProductModel_ProductModelID
ON FTC
GO

Figure 6-7 displays the results of the CREATE FULLTEXT CATALOG statement. The full-text catalog FTC
has been created in the AdventureWorks database.

Figure 6-7

Double-click on the FTC full text catalog, or right-click and select Properties to display the FTC
Properties page. On the left side of the Properties page, select Tables/Views. This page (see Figure 6-8)
shows that a full-text index was created on the Production.ProductModel table using the unique index
PK_ProductModel_ProductModelID on the Instructions column. Any table that has a full-text index
on it is automatically displayed in the list on the right, as it shows only those tables that have a full-
text index.

119

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 119

Figure 6-8

In the following section, you put the full-text index to use.

CONTAINS()
You use the CONTAINS() keyword to search character strings looking for word or phrase matches. It also
conducts what is called a proximity search, looking for a word that is near another word.

For example, the following statement uses the CONTAINS() keyword to search the Instructions column
of the Production.ProductModel table looking for the phrase “Inspection Specification”:

SELECT ProductModelID, Instructions
FROM production.productmodel
WHERE CONTAINS(Instructions, ‘“Inspection Specification”’)

The results of the query are shown in Figure 6-9.

Figure 6-9

To get the best performance out of full-text searches, in certain scenarios it is possi-
ble to combine a full-text search with an XML index. The first step is to filter the
XML values using the SQL full-text search, and then query the filtered values.

120

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 120

In this example, the results returned four rows because the query found four instances of the phrase
“Inspection Specification” within the Instructions column. The CONTAINS predicate in this exam-
ple searched each row of the Instructions column looking inside each XML document, and returned only
those rows that contain the “Inspection Specification” phrase.

The results of the query can be defined even further with an additional AND clause, such as the follow-
ing, which would return a single row:

SELECT ProductModelID, Instructions
FROM production.productmodel
WHERE CONTAINS(Instructions, ‘“Inspection Specification”’)
AND ProductModelID = 47

In the following example, the CONTAINS predicate looks for multiple phrases by including an additional
OR condition:

SELECT ProductModelID, Instructions
FROM production.productmodel
WHERE CONTAINS(Instructions, ‘“Inspection Specification” OR “Securely tighten the
spindle”’)

The query returns results where the CONTAINS predicate finds instructions containing the phrase
“Inspection Specification” or “Securely tighten the spindle”, this time returning the same
four rows as previously shown in Figure 6-9 plus an additional row, ProductModelID53.

The next example uses the NEAR keyword looking for the word Inspect near the word Specification.
The NEAR operator is used to indicate that a word or phrase on the left side of the NEAR operator is in
close proximity to the word or phrase on the right side of the operator:

SELECT ProductModelID, Instructions
FROM production.productmodel
WHERE CONTAINS(Instructions, ‘Inspect NEAR Specification’)

The results from this query return seven rows, as shown in Figure 6-10, indicating that the query found
seven instances of the word Inspect near the word Specification.

Figure 6-10

As stated earlier, further filtering can be accomplished by combining the full-text index (using the
CONTAINS() keyword) with an XQuery expression to filter the results even more. The following exam-
ple again queries the Instructions column of the Production.ProductModel table to look for a specific
value returned from the CONTAINS() keyword:

121

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 121

SELECT ProductModelID, CatalogDescription.query(‘
declare namespace pd=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription”;
<Prod>

{ /pd:ProductDescription/@ProductModelID }
{ /pd:ProductDescription/pd:Summary }

</Prod>
‘) as Result
FROM Production.ProductModel
WHERE CatalogDescription.value(‘declare namespace
pd=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”;
contains((/pd:ProductDescription/pd:Summary//*/text())[1],

“smooth-shifting”)’,’bit’) = 1

The results of this query are shown in Figure 6-11.

Figure 6-11

In this example, a full-text index is combined with an XQuery expression to find and filter the results. The
SELECT part of the query returns the ProductModelID and the entire Summary node based on the results
of the WHERE clause. The WHERE clause is where the filtering takes place using the CONTAINS predicate.
The CONTAINS predicate uses an XQuery to look through the Summary node in the CatalogDescription
column looking for the text “smooth-shifting”. If the query finds what it is looking for, it returns the
information requested by the SELECT portion of the query.

As you create and use the indexes, you will also find that there will probably be a need to modify those
indexes to better fit your application. The topic of modifying indexes is discussed next.

Altering XML Index
Once created, an XML index can be altered. Typically, once an index is in place, it is not necessary to alter
it, but if the occasion arises, altering an index is supported with very few exceptions.

The syntax for altering an XML index is as follows:

ALTER INDEX IndexName
On TableName
SET (option)

IndexName is the name of the index to alter. TableName is the table in which the index that is being
altered is applied. Option is the option that is being altered on the index.

The following is a list of available XML index options:

122

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 122

❑ PAD_INDEX

❑ FILLFACTOR

❑ SORT_IN_TEMPDB

❑ STATISTICS_NORECOMPUTE

❑ DROP_EXISTING

❑ ALLOW_ROW_LOCKS

❑ ALLOW_PAGE_LOCKS

❑ MAXDOP

❑ ONLINE

All but FILLFACTOR and MAXDOP are an ON/OFF value. For example:

PAD_INDEX = ON

The FILLFACTOR option, an integer value between 0 and 100, defines the percentage that dictates to the
SQL Server engine the percentage of free space for each index page when the index is created. For exam-
ple, the following tells SQL Server to reserve 75 percent of free space:

FILLFACTOR = 75

The FILLFACTOR option can be used only when the index is first created or rebuilt.

The MAXDOP option, an integer value between 0 and 64, overrides the max degree of parallelism option,
which limits the number of actual processors used in an execution plan (parallel running). For example,
the following sets the MAXDOP option to a value of 1, which executes the plan serially:

MAXDOP = 1

The following example alters the primary index on the Employee table and sets the SORT_IN_TEMPDB
option to ON:

ALTER INDEX PriI_Employee_EmployeeInfo
ON Employee
REBUILD WITH (SORT_IN_TEMPDB = ON)
GO

Rebuilding an index drops and recreates the index. This is not a bad thing, as it removes fragmentation
and reorders the indexes. If you don’t want to completely rebuild the indexes, you can simply use the
following syntax:

ALTER INDEX PriI_Employee_EmployeeInfo
ON Employee
SET (SORT_IN_TEMPDB = ON)
GO

123

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 123

Several options can be set at one time. For example:

ALTER INDEX PriI_Employee_EmployeeInfo
ON Employee
SET (SORT_IN_TEMPDB = ON, ALLOW_PAGE_LOCKS = ON, IGNORE_DUP_KEY = ON)
GO

Each of the options can have an impact on your index and resulting performance, so it would be wise
to experiment with some of these options to determine which options will benefit your application and
environment best.

Setting Options for XML Indexing
In Chapter 4, you saw a list of settings for the xml data type, but they are listed again in the following
table because they also apply to indexes on the xml data type column.

SET Options Required Values

NUMERIC_ROUNDABOUT OFF

ANSI_PADDING ON

ANSI_WARNING ON

ANSI_NULLS ON

ARITHABORT ON

CONCAT_NULL_YIELDS_NULL ON

QUOTED_IDENTIFIER ON

These options must be set as shown when creating an XML index; otherwise, indexes will fail to be cre-
ated or modified, and no data will be able to be inserted or modified in xml data type columns.

Best Practices
There are two main reasons why you would want to index your xml data type columns:

❑ You plan to execute queries against the xml data type column.

❑ The amount of data in the xml data type column is large.

Storing XML instances in an xml data type column does not automatically necessitate putting an index
on that column. If you don’t plan to execute queries on that column, then putting an index on the col-
umn does not make sense.

However, if the needs of your organization match both of the items listed here, there are a few things to
remember when creating an XML index.

124

Chapter 6

11_597922 ch06.qxp 12/3/05 12:21 AM Page 124

Ten Commandments of XML Index Creation
You must adhere to the following when creating an XML index:

❑ You can only create a primary XML index on one xml data type column. For example, column
ColA can have its own primary XML index, and column ColB can have its own primary index.
However, ColA and ColB cannot share the same primary XML index.

❑ You cannot modify primary keys of a table if a primary XML index exists on the same table. To
modify the primary key, you must drop the XML index prior to modifying the primary key.

❑ A table cannot have an XML primary index and non-XML index with the same name.

❑ Any table in which you are creating an XML primary index must already have a Clustered
index on the primary key.

❑ You must drop an XML index prior to changing the xml data type column from typed to
untyped (or untyped to typed).

❑ You cannot create XML indexes on xml type variables or views with an xml type column.

❑ The same restrictions as the previous bullet apply to XML index names as view names.

❑ The ARITHABORT option cannot have the value of OFF when you create an XML index. All
queries to an xml data type fail if this value equals OFF.

❑ You can only use the DROP_EXISTING option to drop and recreate a new primary or secondary
index, meaning that you cannot use DROP_EXISTING to drop a primary and create a secondary,
nor to drop a secondary and create a primary. For example, DROP_EXISTING can drop a primary
index and create a primary index, or drop a secondary index and create a secondary index.

❑ You must create an XML index on the same file-group or partition as the table.

Summary
In this chapter, you learned the different types of XML indexes and how they can be applied and used
on an xml data type column. You also learned in what situations it is beneficial to apply the different
types of indexes, as well as how to alter the indexes and the options available when altering an index.

This chapter also talked about the best practices of applying an XML index and the settings options that
are needed for creating an XML index. In the next chapter, you learn about XML schema collections.

125

Indexing XML Data in SQL Server 2005

11_597922 ch06.qxp 12/3/05 12:21 AM Page 125

11_597922 ch06.qxp 12/3/05 12:21 AM Page 126

XML Schemas in SQL
Server 2005

With the introduction of the xml data type in SQL Server 2005, the capability to natively validate
XML documents and instances stored internally in SQL Server provides developers with many
more XML validation options than they have had in the past. This flexibility helps developers
determine how and where XML validation takes place. By having the ability to move XML valida-
tion into SQL Server, developers now have more control over how XML is handled, both from the
client and the server.

In SQL Server 2005, the concept of XML schema collections is introduced to validate instances of
XML in the xml data type column or xml data type variable. The XML schema collection is just
that, a collection of XML schemas that validate XML instances and performs type checking when
XML data is stored in the database.

The focus of this chapter is the creation and management of XML schema collections, the XML
schema preprocessor tool, and best practices when using XML schema collections. Specifically, this
chapter covers the following topics:

❑ Managing XML schema collections (creating, dropping, and altering)

❑ Viewing XML schema collections

❑ Permissions on XML schema collections (grant, deny, and revoke)

❑ Guidelines and limitations

12_597922 ch07.qxp 12/3/05 12:26 AM Page 127

Managing XML Schema Collections
The management of XML schema collections is provided through enhancements to the DDL (Data
Definition Language). Using the DDL, you can create, drop, and alter XML schemas. Likewise, you can
manage permissions to the XML schema collections.

The XML schemas are stored internally, associated with xml data type columns and variables, and used
to validate XML instances, and they ensure that the XML data is typed correctly when stored in the
database. When an XML instance is stored in the database, SQL Server uses the schema collection for
validation. Depending on the results of the validation, the instance is either accepted and stored, or
rejected and not allowed database storage.

Think of an XML schema collection in the same terms as a table or any other object in SQL Server. It can
be created and dropped, even altered just like other objects. When creating an XML schema collection,
the schemas are automatically imported into the collection. Other schemas can be added to an existing
collection; schemas can be removed from a collection as well. All schema collections are stored in SQL
Server system tables.

The following section examines the creation, deletion, and modification of XML schema collections.

Creating XML Schema Collections
You create XML schema collections by using the following DDL syntax:

CREATE XML SCHMEA COLLECTION RelationalSchema.SqlIdentifier AS Expression

In the syntax, RelationalSchema is the name of the schema being imported. This is optional, but if a
relational schema is not specified, a default is relational schema is supplied. SqlIdentifier is the name
of the schema collection. Expression is the string constant or variable schema syntax of (n)varchar,
(n)varbinary, or xml type.

Don’t confuse a relational schema with an XML schema. In this case, a relational schema contains
database objects such as tables, views, and stored procedures. Relational schemas have database owners,
and the owner can be a database user or database role. For example, there is a dbo relational schema.
The following is an example using a relational schema when creating an XML schema collection:

CREATE XML SCHEMA COLLECTION dbo.MotocrossCollectionTest AS...

For more information on relational schemas, consult the SQL Server documentation.

Before jumping in to some examples, I should make a few comments regarding the components created
when a schema is imported into the database.

When an XML schema collection is created, several components related to the schema are imported
into the database. The components are stored in a number of SQL Server system tables and include the
following:

❑ Attributes

❑ Elements

❑ Type definitions

128

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 128

What is important to remember is that when a schema is imported into the database, the schema is not
stored, but rather the components themselves are stored. Each component falls into one of the following
categories:

❑ ATTRIBUTE

❑ ELEMENT

❑ TYPE

❑ ATTRIBUTE GROUP

❑ MODELGROUP

These categories define how a schema is stored in the database. When a schema is added or imported
in the database, the schema is parsed and each component is stored by its type. The schema itself as a
whole is not stored. For example, an <element> tag is not stored, but its components — such as values
or attributes — are stored by the appropriate type.

The last tidbit of information is that a schema can be imported into the collection with or without a
namespace.

For example, the following code creates an XML schema collection and imports a schema that does not
contain a namespace:

CREATE XML SCHEMA COLLECTION MotocrossCollection AS ‘
<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”Motocross”>
<xs:element name=”Motocross” msdata:IsDataSet=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Team”>
<xs:complexType>
<xs:sequence>

<xs:element name=”Rider” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string” minOccurs=”0”msdata:

Ordinal=”0”/>
</xs:sequence>
<xs:attribute name=”NationalNumber” type=”xs:string”/>
<xs:attribute name=”Class” type=”xs:string”/>
<xs:attribute name=”Type” type=”xs:string”/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name=”Manufacturer” type=”xs:string”/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>’
GO

129

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 129

The CREATE XML SCHEMA COLLECTION statement allows you to specify which database to create the
schema collection in, so make sure you are in the correct database when creating the schema collection.

Figure 7-1 shows the newly created schema collection in the appropriate database.

Figure 7-1

In the example, the Manufacturer, NationalNumber, Type, and Class attributes belong to the
ATTRIBUTE category, and the Team, Rider, and Name elements belong to the ELEMENT category.

Now that the schema is created, you can use it for XML instance validation. For example, it can be
applied to an xml data type column, as shown in Figure 7-2.

Figure 7-2

130

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 130

Now any time an XML instance is inserted into this column it is validated against the schema collection.
If an XML instance passes the validation, it is inserted into the database. For example, the following
XML instance passes the validation and is inserted into the table because it contains the appropriate ele-
ments and attributes as defined by the XML schema:

INSERT INTO Motocross (MotocrossID, MotocrossInfo)
VALUES (1,
‘<Motocross>
<Team Manufacturer=”Yamaha”>
<Rider NationalNumber=”22” Class=”250”>
<Name>Chad Reed</Name>

</Rider>
<Rider NationalNumber=”12” Class=”250”>
<Name>David Vuillemin</Name>

</Rider>
<Rider NationalNumber=”15” Class=”250”>
<Name>Tim Ferry</Name>

</Rider>
<Rider NationalNumber=”123” Class=”125” Type=”Support”>
<Name>Kelly Smith</Name>

</Rider>
<Rider NationalNumber=”18” Class=”125” Type=”Support”>
<Name>Brock Sellards</Name>

</Rider>
<Rider NationalNumber=”256” Class=”125” Type=”Support”>
<Name>Brett Metcalf</Name>

</Rider>
<Rider NationalNumber=”31” Class=”125” Type=”Support”>
<Name>Danny Smith</Name>

</Rider>
</Team>
<Team Manufacturer=”Kawasaki”>
<Rider NationalNumber=”259” Class=”250”>
<Name>James Stewart</Name>

</Rider>
<Rider NationalNumber=”26” Class=”250”>
<Name>Michael Byrne</Name>

</Rider>
</Team>
<Team Manufacturer=”Suzuki”>
<Rider NationalNumber=”4” Class=”250”>
<Name>Ricky Carmichael</Name>

</Rider>
<Rider NationalNumber=”188” Class=”125”>
<Name>Davi Millsaps</Name>

</Rider>
<Rider NationalNumber=”60” Class=”125”>
<Name>Broc Hepler</Name>

</Rider>
<Rider NationalNumber=”103” Class=”250”>
<Name>Sebastien Tortelli</Name>

</Rider>
</Team>
<Team Manufacturer=”Honda”>
<Rider NationalNumber=”2” Class=”250”>

131

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 131

<Name>Jeremy McGrath</Name>
</Rider>
<Rider NationalNumber=”24” Class=”250”>
<Name>Ernesto Fonseca</Name>

</Rider>
<Rider NationalNumber=”70” Class=”250”>
<Name>Travis Preston</Name>

</Rider>
<Rider NationalNumber=”51” Class=”125”>
<Name>Andrew Short</Name>

</Rider>
<Rider NationalNumber=”5” Class=”250” Type=”Support”>
<Name>Mike LaRocco</Name>

</Rider>
<Rider NationalNumber=”14” Class=”250” Type=”Support”>
<Name>Kevin Windham</Name>

</Rider>
</Team>

</Motocross>
‘)
GO

However, the following XML instance does not pass validation, nor is it inserted into the table because
each rider has a BikeSize attribute, which is not defined by the schema:

INSERT INTO Motocross (MotocrossID, MotocrossInfo)
VALUES (2,
‘<Motocross>
<Team Manufacturer=”Yamaha”>
<Rider BikeSize=”250”>Tim Ferry</Rider>
<Rider BikeSize=”250”>Chad Reed</Rider>
<Rider BikeSize=”250”>David Vuillemin</Rider>

</Team>
<Team Manufacturer=”Honda”>
<Rider BikeSize=”450”>Kevin Windham</Rider>
<Rider BikeSize=”250”>Mike LaRacco</Rider>
<Rider BikeSize=”250”>Jeremy McGrath</Rider>

</Team>
<Team Manufacturer=”Suzuki”>
<Rider BikeSize=”250”>Ricky Carmichael</Rider>
<Rider BikeSize=”125”>Broc Hepler</Rider>
<Rider>Sebastien Tortelli</Rider>

</Team>
<Team Manufacturer=”Kawasaki”>
<Rider BikeSize=”250”>James Stewart</Rider>
<Rider BikeSize=”125”>Michael Byrne</Rider>

</Team>
</Motocross>
‘)
GO

If you try to insert this XML document, the following error is generated:

XML Validation: Undefined or prohibited attribute specified: ‘BikeSize’

132

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 132

Another way to create the schema collection is to assign the schema to a variable and use that variable in
the CREATE XML SCHEMA statement. The following example creates an xml data type variable, sets the
schema syntax to the variable, and then uses the variable in the CREATE XML SCHEMA statement (to save
space and for better readability, most of the schema syntax has been left out):

DECLARE @xmlvar xml
SET @xmlvar = ‘<xs:schema ...</xs:schema>’
CREATE XML SCHEMA COLLECTION MotocrossCollection AS @xmlvar

Before moving on to the next example, look at the results of the CREATE XML SCHEMA COLLECTION
statement from a system table perspective. Open a query window and run the following query:

SELECT sys.xml_schema_collections.name
FROM sys.xml_schema_collections

The results return a single column with two rows containing the default sys schema collection, and the
MotocrossCollection schema just added. It should look like the following:

Name

Sys
MotocrossCollection

Now modify the query to look like the following:

SELECT sys.xml_schema_collections.name
FROM sys.sys.xml_schema_collections
JOIN sys.xml_schema_namespaces
ON (sys.xml_schema_collections.xml_collection_id =

sys.xml_schema_namespaces. xml_collection_id)
WHERE sys.xml_schema_collection.name = N’’

The results of running this query return a single column with a single row, containing the name of the
collection you added, as follows:

Name

MotocrossCollection

When the MotocrossCollection schema collection was added, no namespace was provided and there-
fore no system table namespace record exists for the MotocrossCollection schema collection.

This next example imports multiple schemas into the collection, both of which contain namespaces:

CREATE XML SCHEMA COLLECTION ProductModelSchemaCollection AS
‘<xsd:schema
targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuInstructions”
xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuInstructions”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

133

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 133

<xsd:complexType name=”StepType” mixed=”true”>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”tool” type=”xsd:string” />
<xsd:element name=”material” type=”xsd:string” />
<xsd:element name=”blueprint” type=”xsd:string” />
<xsd:element name=”specs” type=”xsd:string” />
<xsd:element name=”diag” type=”xsd:string” />

</xsd:choice>
</xsd:complexType>
<xsd:element name=”root”>
<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element name=”Location” minOccurs=”1” maxOccurs=”unbounded”>

<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element name=”step” type=”StepType” minOccurs=”1” maxOccurs=”unbounded” />

</xsd:sequence>
<xsd:attribute name=”LocationID” type=”xsd:integer” use=”required” />
<xsd:attribute name=”SetupHours” type=”xsd:decimal” use=”optional” />
<xsd:attribute name=”MachineHours” type=”xsd:decimal” use=”optional” />
<xsd:attribute name=”LaborHours” type=”xsd:decimal” use=”optional” />
<xsd:attribute name=”LotSize” type=”xsd:decimal” use=”optional” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

<xs:schema
targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelDescription”
xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelDescription”
elementFormDefault=”qualified”
xmlns:mstns=”http://tempuri.org/XMLSchema.xsd”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:import namespace=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions” />
<xs:element name=”ProductDescription” type=”ProductDescription” />
<xs:complexType name=”ProductDescription”>
<xs:sequence>
<xs:element name=”Summary” type=”Summary” minOccurs=”0” />

</xs:sequence>
<xs:attribute name=”ProductModelID” type=”xs:string” />
<xs:attribute name=”ProductModelName” type=”xs:string” />

</xs:complexType>
<xs:complexType name=”Summary” mixed=”true” >
<xs:sequence>
<xs:any processContents=”skip” namespace=”http://www.w3.org/1999/xhtml”

minOccurs=”0” maxOccurs=”unbounded” />
</xs:sequence>

</xs:complexType>
</xs:schema>’

GO

134

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 134

The second schema imports the first schema, as illustrated by the following code. This import reference
is necessary if some of the components you want to add to your collection already exist in the collection.
Equally necessary, this import statement is required when your components need to reference compo-
nents in the same target space:

<xs:import namespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions” />

Now run the following query:

SELECT * FROM sys.xml_schema_namespaces

The results (see Figure 7-3) show the addition of the namespaces from the two schemas in the system
tables.

Figure 7-3

XML schema collections provide instant XML schema validation and data type information. This takes
the validation away from the client and in turn provides a performance increase and optimized storage.
Are they required? No, not at all, but adding the schema validation wouldn’t hurt if the case calls for it.

Dropping XML Schema Collections
Dropping a schema collection is as easy as dropping any other object. The syntax for dropping a schema
collection is as follows:

DROP XML SCHEMA COLLECTION RelationalSchema.SqlIdentifier

RelationalSchema is the name of the relational schema. This is optional. SqlIdentifier is the name
of the schema collection being dropped.

The following example drops the ProductModelSchemaCollection that was created in the previous
section:

DROP XML SCHEMA COLLECTION ProductModelSchemaCollection

It doesn’t get much easier than that. However, there are a few noteworthy items:

❑ Any schema collection in use cannot be dropped. For example, if a schema collection is associ-
ated to an xml data type column, its schema collection cannot be dropped.

❑ Any schema collection used in a table constraint cannot be dropped. Drop the constraint first,
and then drop the schema collection.

❑ Any schema collection used in a stored procedure or schema bound function cannot be
dropped.

135

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 135

Dropping an XML schema collection removes the entire collection, which might not be what you want.
A better alternative would be to modify the collection to make specific changes. Modifying XML schema
collections is discussed in the next section.

Altering XML Schema Collections
Once XML schema collections are created, you can make modifications to them at many levels. For
example, an entire schema can be added to the collection, and individual components can be added to
existing schemas in the collection.

This first example creates a schema collection with a single schema entry, and then alters the collection
by adding a new complete schema.

The first step in this example is to add back part of the ProductModelSchemaCollection schema col-
lection that was dropped in the previous section. Open a query window and run the following CREATE
XML SCHEMA COLLECTION statement:

CREATE XML SCHEMA COLLECTION ProductModelSchemaCollection AS
‘<xsd:schema
targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”
xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:complexType name=”StepType” mixed=”true”>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”tool” type=”xsd:string” />
<xsd:element name=”material” type=”xsd:string” />
<xsd:element name=”blueprint” type=”xsd:string” />
<xsd:element name=”specs” type=”xsd:string” />
<xsd:element name=”diag” type=”xsd:string” />

</xsd:choice>
</xsd:complexType>
<xsd:element name=”root”>
<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element name=”Location” minOccurs=”1” maxOccurs=”unbounded”>

<xsd:complexType mixed=”true”>
<xsd:sequence>
<xsd:element name=”step” type=”StepType” minOccurs=”1” maxOccurs=”unbounded” />

</xsd:sequence>
<xsd:attribute name=”LocationID” type=”xsd:integer” use=”required” />
<xsd:attribute name=”SetupHours” type=”xsd:decimal” use=”optional” />
<xsd:attribute name=”MachineHours” type=”xsd:decimal” use=”optional” />
<xsd:attribute name=”LaborHours” type=”xsd:decimal” use=”optional” />
<xsd:attribute name=”LotSize” type=”xsd:decimal” use=”optional” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

136

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 136

</xsd:element>
</xsd:schema>
‘

This statement adds the components from the first schema to the schema collection. The next step is to alter
the schema collection. The following example alters the newly created ProductModelSchemaCollection
schema collection by adding components from another schema.

In the query window, run the following ALTER statement:

ALTER XML SCHEMA COLLECTION ProductModelSchemaCollection ADD ‘<xs:schema
targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”
xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription”
elementFormDefault=”qualified”
xmlns:mstns=”http://tempuri.org/XMLSchema.xsd”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:wm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelWarrAndMain” >
<xs:import namespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelWarrAndMain” />
<xs:element name=”ProductDescription” type=”ProductDescription” />
<xs:complexType name=”ProductDescription”>
<xs:sequence>
<xs:element name=”Summary” type=”Summary” minOccurs=”0” />

</xs:sequence>
<xs:attribute name=”ProductModelID” type=”xs:string” />
<xs:attribute name=”ProductModelName” type=”xs:string” />

</xs:complexType>
<xs:complexType name=”Summary” mixed=”true” >
<xs:sequence>
<xs:any processContents=”skip” namespace=”http://www.w3.org/1999/xhtml”

minOccurs=”0” maxOccurs=”unbounded” />
</xs:sequence>

</xs:complexType>
</xs:schema>’

GO

This example uses the ALTER XML SCHEMA COLLECTION statement to modify the existing XML schema
collection, adding a second schema to the collection. This is done by using the ADD keyword with the
ALTER statement and providing the schema to be added.

The final example alters the ProductModelSchemaCollection schema collection, adding both an
attribute and element to the schema with the target namespace “http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/ProductModelManuDescription”:

ALTER XML SCHEMA COLLECTION ProductModelSchemaCollection ADD ‘
<schema xmlns=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuDescription”

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuDescription”>

137

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 137

<element name=”PartCount” type=”string”/>
</schema>’
GO

ALTER XML SCHEMA COLLECTION ProductModelSchemaCollection ADD ‘
<schema xmlns=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelDescription”>
<attribute name=”EmployeeCount” type=”string”/>
</schema>’
GO

Had this schema been associated with an XML data type column when the ALTER statement was exe-
cuted, any existing data in that column would be re-validated against the new schema.

Once the schema collection is associated with an xml data type column or variable, all XML must now
meet the new requirements, that is, contain a new “PartCount” element and “EmployeeCount”
attribute.

Here are a couple of noteworthy items. First, any existing XML instances in an xml data type column
are revalidated when a schema collection is altered. Therefore, when altering a schema collection that is
associated to an xml data type column, if the XML instances within the column do not meet the schema
validation process, the schema collection alteration is not applied or saved.

Second, the entire schema in its entirety is not stored in the database, only the components. If you need
the schema stored it its entirety for whatever reason, you have two options: store the schema on the local
file system or store it in a column in the database.

Viewing XML Schema Collections
In the previous section, you queried the sys.xml_schema_namespaces system tables in order to view
the schema collection creation results. All it really showed was that, yes, it indeed inserted some data
into the system tables. It is informative, but not too useful when you want to view detailed information
about the schema collection or to view the schema itself.

The xml_schema_namespace function provides a detailed look inside a schema collection. As stated
previously, the schema itself is not stored in the collection, but rather it is stored in the schema compo-
nents. The xml_schema_namespace function reconstructs the schema, which returns an xml data type
instance.

The syntax for the xml_schema_namespace function is as follows:

Xml_schema_namespace(RelationalSchema, XML_Schema_Collection_Name, [Namespace])

The RelationalSchema is the relational schema name. The XML_Schema_Collection_Name is the
name of the XML schema collection to reconstruct. The optional Namespace parameter is the namespace
URI of the XML schema to be reconstructed.

138

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 138

For example, the following example uses the xml_schema_namespace function to reconstruct the
MotocrossCollection schema collection. Make sure this statement is run against the appropriate
database (the first parameter is the name of the RelationalSchema when the schema collection was
created, if one was supplied; the second parameter is the name of the schema collection):

SELECT xml_schema_namespace(‘’, ‘MotocrossCollection’)
GO

Figure 7-4 shows partial results of the call to xml_schema_namespace.

Figure 7-4

In this example, all the schemas in the collection will be reconstructed and returned. Using some of the
XQuery information covered in Chapter 5, you can extract information about a specific schema. For
example, the following code uses the query() method to find a specific schema in the collection:

SELECT XML_SCHEMA_NAMESPACE(
‘’,’ProductModelSchemaCollection’).query(‘
/xs:schema[@targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/07/adventu
re-works/ProductModelManuInstructions”]
‘)
GO

The other way to do this is to specify the target namespace as the third parameter (it is an optional
parameter), as follows:

SELECT XML_SCHEMA_NAMESPACE(
‘’,’ProductModelSchemaCollection’,
‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions’)

GO

Both ways work and return the same results; it is just a matter of personal preference.

Viewing your schemas is an excellent way to view any changes you have made if you have altered them.
One thing to remember is that SQL Server does not store the entire document, just the necessary compo-
nents. Items such as white space and annotations are lost. This means that when the schema is rebuilt for
display, it may not look the same.

Now that you know how to create, modify, and view XML schema collections, the next logical step is to
apply permissions.

139

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 139

XML Schema Collection Permissions
This section introduces the topic of permissions on XML schema collections. A user must have the neces-
sary rights and privileges to create and load a schema collection as well as alter, execute and use a schema
collection. These permissions are applied using the GRANT, DENY, and REVOKE statements.

Just as important, a user must also have the necessary rights and privileges to use a schema collection in
a table, variable, or parameter. The following sections cover the aspects of granting, denying, and revok-
ing permissions on an XML schema collection.

Granting Permissions
There are two parts to granting permissions on an XML schema collection. The first part involves grant-
ing permission on the XML schema collection itself, and the second part involves granting permission on
the XML schema collection object. The first step is to understand the granting of permission on the XML
schema collection itself.

Permissions on the XML Schema Collection
The GRANT syntax for granting permissions is as follows:

GRANT { XML_schema_collection_permission }
ON XML SCHEMA COLLECTION::XML_schema_collection_name
TO DatabasePrinciple
WITH GRANT OPTION
AS {Windows Group | Database Role | Application Role }

XML_schema_collection_permission is the permission that can be granted on an XML schema, and
is one of the following options:

❑ ALTER: Permission to make changes to the XML schema collection.

❑ EXECUTE: Permission to query the xml data type column or variables, and validate values
inserted or updated against the xml data type.

❑ TAKE OWNERSHIP: Permission to take ownership, or transfer ownership, of the XML schema
collection.

❑ REFERENCES: Permission to use the XML schema collection.

❑ VIEW DEFINITION: Permission to view the XML schema collection definitions via XML_SCHEMA_
NAMESPACE or via catalog views.

❑ CONTROL: Principle can perform any operation on the XML schema collection.

XML_schema_collection_name is the name of the XML schema collection in which the permissions are
being granted. DatabasePrinciple is the user to which the permission is being granted. A principle
can be one or more individuals or a group. A principle can also be a process that can ask for SQL Server
resources.

The GRANT OPTION indicates that the principle also has the necessary rights to grant permissions to
other principles. The AS clause specifies the Windows group, database role, or application role in which
the principle who is executing the DENY statement obtains the rights to grant the permission.

140

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 140

For further clarification, the REFERENCES option gives permission to use the XML schema collection, for
example, when creating a typed xml data type column or using it in an xml data type variable.

Creating an XML schema collection requires two permissions. First, at the database level the principle
needs CREATE XML SCHEMA COLLECTION permission. Second, the principle needs ALTER permissions.
The second permission is needed because the schema collections are scoped at the relational schema
level.

Any of the following permissions satisfy the database level permissions and allow a user to create an
XML schema collection:

❑ CONTROL permissions on the server or in the database

❑ ALTER permissions on the database

❑ ALTER ANY DATABASE permission on the server

❑ ALTER ANY SCHEMA and CREATE XML SCHEMA COLLECTION permission in the database

Granting Permission on the XML Schema Collection Object
Granting permissions on the XML schema collection object is defined as the permissions necessary to
modify the contents of an XML schema collection. Here are some guidelines:

❑ ALTER permissions are necessary in order to alter any schema collection.

❑ To validate values, whether inserted or updated, the EXECUTE permissions are necessary.

❑ CONTROL permissions are required when performing any operation on a schema collection, such
as granting permission on an XML schema collection.

❑ To transfer ownership of the schema collection from one principle to another, TAKE OWNERSHIP
permissions are necessary.

❑ To view the contents of a schema collection, the VIEW DEFINITION permissions are needed.

❑ To use the schema collection in an xml data type column, variable, or constraint, the REFERENCE
permissions are required.

The following example creates a user called xmluser in the Wrox database, and then assigns that user
the necessary permissions to create an XML schema collection. It does this by first granting ALTER ON
SCHEMA permissions, which grant the user permissions to ALTER that particular schema collection, and
then grants CREATE XML SCHEMA COLLECTION permissions to the xmluser:

USE master
GO
CREATE LOGIN xmluser WITH password=’xmlrocks’
GO
USE Wrox
go
CREATE USER [xmluser] FOR LOGIN [xmluser]

Figure 7-5 shows the new xmluser created in the Wrox database.

141

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 141

Figure 7-5

Now the user xmluser can successfully create XML schema collections. However, the user does not have
permission to use any schema collections, even the collections he or she creates. The following example
gives xmluser the necessary permissions to assign a schema collection to a column, insert data, and
alter data:

GRANT REFERENCES ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
GRANT EXECUTE ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
GRANT INSERT TO xmluser
GO
GRANT SELECT TO xmluser
GO
GRANT ALTER ON XML SCHEMA COLLECTION::MotocrossCollection TO xmluser
GO

In this example, the first GRANT statement gives xmluser permission to use the schema collection with an
xml data type column (creating a typed XML column). The second GRANT statement gives xlmuser the
rights to insert data into an xml data type column with an associated schema collection. The third GRANT
statement gives ownership to xmluser for permissions to insert into the table. The fourth GRANT state-
ment gives xmluser the rights to query the xml data type column. The final GRANT statement gives
xmluser the necessary privileges to alter components inside the schema collection.

Denying Permissions
As with granting permissions, denying permissions has two parts: denying permissions on the schema
collection and denying permissions on the schema collection objects.

142

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 142

The syntax for denying permission is as follows:

DENY { XML_schema_collection_permission }
ON XML SCHEMA COLLECTION::XML_schema_collection_name
TO DatabasePrinciple
CASCADE
AS {Windows Group | Database Role | Application Role }

XML_schema_collection_permission is the permission that can be denied on an XML schema, and is
one of the following:

❑ ALTER

❑ EXECUTE

❑ TAKE OWNERSHIP

❑ REFERENCES

❑ VIEW DEFINITION

❑ CONTROL

XML_schema_collection_name is the name of the XML schema collection in which the permissions are
being denied. DatabasePrinciple is the user to which the permission is being denied. The CASCADE
option specifies that all permissions being denied to the principle are also being denied to the other prin-
ciples which were previously granted to by the principle.

The AS clause specifies the Windows group, database role, or application role in which the principle who
is executing the REVOKE statement obtains the rights to revoke the permission.

To deny permissions on the schema collection, you can deny ALTER ANY SCHEMA on the database, deny
ALTER permissions on the relational schema, and deny CONTROL permissions, which denies permissions
on all the objects within the relational schema and the schema itself.

Denying permissions to the schema collection objects is the reverse of granting permissions. Instead of
granting ALTER, EXECUTE, CONTROL, OWNERSHIP, VIEW OWNERSHIP, and REFERENCE permissions, sim-
ply deny the same permissions.

This first example denies the user xmluser the ability to alter or execute the XML schema collection
ProductionModelSchemaCollection:

DENY ALTER ON XML SCHEMA COLLECTION::ProductionModelSchemaCollection
TO xmluser
GO
DENY EXECUTE ON XML SCHEMA COLLECTION::ProductionModelSchemaCollection
TO xmluser
GO

143

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 143

However, xmluser still has the ability to insert, reference, and alter existing collections. The following
code takes those rights away:

DENY REFERENCES ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
DENY EXECUTE ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
DENY INSERT TO xmluser
GO
DENY SELECT TO xmluser
GO
DENY ALTER ON XML SCHEMA COLLECTION::MotocrossCollection
GO

Now the xmluser permissions are back where they started.

Revoking Permissions
Revoking permissions takes away rights to permissions previously granted. Like GRANT and DENY, the
underlying principle is the same regarding the parts to revoke permissions.

The syntax for revoking permission is as follows:

REVOKE [GRANT OPTION FOR]
{ XML_schema_collection_permission }
ON XML SCHEMA COLLECTION::XML_schema_collection_name
{ TO | FROM } DatabasePrinciple
CASCADE
AS {Windows Group | Database Role | Application Role }

XML_schema_collection_permission is the permission that can be revoked on an XML schema, and
is one of the following options:

❑ ALTER

❑ EXECUTE

❑ TAKE OWNERSHIP

❑ REFERENCES

❑ VIEW DEFINITION

❑ CONTROL

XML_schema_collection_name is the name of the XML schema collection in which the permissions are
being revoked. DatabasePrinciple is the user to which the permission is being revoked. The CASCADE
option specifies that all permissions being revoked to the principle are also being revoked to the other
principles which were previously granted to by the principle.

144

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 144

The AS clause specifies the Windows group, database role, or application role in which the principle who
is executing the GRANT statement obtains the rights to grant the permission.

The following example grants rights to xmluser to create XML schema collections, and then promptly
revokes those rights:

GRANT ALTER ON SCHEMA::dbo
TO xmluser
GO
GRANT CREATE XML SCHEMA COLLECTION
TO xmluser
GO
REVOKE ALTER ON SCHEMA::dbo FROM xmluser
GO
REVOKE CREATE XML SCHEMA COLLECTION
TO xmluser
GO

The final example gives xmluser all the permissions necessary to create, alter, reference, and use XML
schema collections and their components, and then, again, promptly revokes them:

--GRANT Permissions
GRANT ALTER ON SCHEMA::dbo TO xmluser
GO
GRANT CREATE XML SCHEMA COLLECTION
TO xmluser
GO

GRANT REFERENCES ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
GRANT EXECUTE ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
GRANT INSERT TO xmluser
GO
GRANT SELECT TO xmluser
GO

--Found out permissions were given to the wrong user. Take these away
REVOKE ALTER ON SCHEMA::dbo FROM xmluser
GO
REVOKE CREATE XML SCHEMA COLLECTION
TO xmluser
GO
REVOKE REFERENCES ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
REVOKE EXECUTE ON XML SCHEMA COLLECTION::MotocrossCollection
TO xmluser
GO
REVOKE INSERT TO xmluser
GO
REVOKE SELECT TO xmluser
GO

145

XML Schemas in SQL Server 2005

12_597922 ch07.qxp 12/3/05 12:26 AM Page 145

Guidelines and Limitations
The purpose of this section is to highlight some areas of importance when preparing XSD schemas for
import into an XML schema collection. They are as follows:

❑ The <xsd:include> element is not supported in the version of SQL Server. Any schema that
contains this element will be rejected.

❑ The <xsd:key>, <xsd:keyref>, and <xsd:unique> constraints are not supported. The
<xsd:unique> constraint enforces uniqueness; the <xsd:key> and <xsd:keyref> constraints
enforce keys and key references. Any schema imported into SQL Server that contains these con-
straints receives an error message and the schema is rejected.

❑ The element <xsd:redefine> is not supported. This element provides support for schema
component redefinition.

❑ NOTATION Type is not supported. Schemas that contain the NOTATION Type are rejected.

❑ Uniqueness of IDs is enforced in SQL Server on the <xsd:attribute> declaration and not on
the <xsd:element> declaration.

❑ Empty strings used as a value for a namespace are rejected.

❑ “NaN” values used in <xsd:simpleType> declarations are rejected.

❑ minOccurs and maxOccurs attribute values must be in 4-byte integers, otherwise they are
rejected.

❑ date, time, and datetime simpleTypes are stored as Greenwich Mean Time (GMT).

❑ length, minLength, and maxLength values are stored as long types.

❑ Empty string values used as the enumeration for xs:string are rejected by SQL Server.

❑ Types derived from xs:QName are not supported.

Summary
The introduction of XML schema collections in SQL Server 2005 provides the capability to natively vali-
date XML documents. The purpose of this chapter was to provide a thorough and deep introduction to
the creation, modification, and deletion of XML schema collections.

Creating and maintaining XML schema collections, as you learned in this chapter, is not a difficult task
and provides great usefulness, not only to tables (xml data type columns), but to variables and parame-
ters as well.

Likewise, this chapter covered granting, revoking, and denying permissions to XML schema collections.
There is great flexibility in applying permissions to schema collections and this will come in handy when
planning how and where validation occurs.

The last part of the chapter talked about some of the limitations of the XML schema collections. The list
of limitations, while quite long, still does not and should not take away from the power and importance
of native schema validation.

146

Chapter 7

12_597922 ch07.qxp 12/3/05 12:26 AM Page 146

Transact-SQL Enhancements
to FOR XML and OPENXML

When SQL Server 2000 hit the streets, it included some XML functionality that was aimed at helping
developers get their hands around easily converting relational data to XML. It was a serious step
into continuing the support of XML and is used by a large portion of the developer community.

Subsequent SQLXML service pack releases added some functionality and fixes to further build
upon that success. That focus has continued with the release of SQL Server 2005.

This chapter concentrates on the Transact-SQL enhancements and new features added to both the
FOR XML and OPENXML statements in SQL Server 2005.

Specifically, this chapter covers the following topics:

❑ FOR XML

❑ The new TYPE directive

❑ Enhancements to RAW, AUTO, and EXPLICIT modes

❑ PATH mode

❑ Nested FOR XML queries

❑ XSD schema generation

❑ OPENXML

❑ sp_xml_preparedocument enhancements

❑ WITH clause enhancements

13_597922 ch08.qxp 12/3/05 12:25 AM Page 147

FOR XML
The FOR XML statement was added to SQL Server 2000 to provide the capability to turn relational data
into usable XML. The FOR XML clause is an add-on to the end of a SELECT statement that returns normal
relational data in the form of a rowset.

When FOR XML first hit the big-time, it supported three modes in which a user could specify in what
XML format to return the relational data. Those three modes —RAW, AUTO, and EXPLICIT— enabled the
user to dictate how the relational data should be transformed into XML. Each mode provides a different
result, and the modes range in complexity.

The RAW mode is the easiest to learn, returning results in single <row> elements for each row returned.
The AUTO mode allows the user to base the shape of the results of the XML on a query, returning the
results as nested elements. The EXPLICIT mode gives the best flexibility in defining how the results are
returned, but takes nothing short of a rocket scientist to figure it out.

The purpose of this section is to introduce the new features and enhancements to the FOR XML state-
ment, beginning with the TYPE directive.

The TYPE Directive
With the addition of the xml data type in SQL Server 2005, it only makes sense to make that data type
available everywhere XML is concerned. Why should FOR XML be any different? To this end, SQL Server
2005 provides the capability to specify that the results of a FOR XML statement be returned as an xml
data type. This is accomplished by adding the TYPE directive to the FOR XML statement at the end of the
SELECT statement.

If FOR XML is specified in a SELECT statement without the TYPE directive, the results are returned as
an XML instance in a nvarchar(max) data type.

The general syntax of the FOR XML statement using the TYPE directive is as follows:

SELECT Columnname(s)
FROM Tablename
FOR XML, TYPE

The easiest way to demonstrate this is with examples. The first example selects a couple of columns from
the Person.Contact table and returns them as an xml data type using the TYPE directive:

SELECT HRE.EmployeeID, PC.FirstName, PC.LastName, HRE.Title
FROM Person.Contact PC, HumanResources.Employee HRE
WHERE PC.ContactID = HRE.ContactID
ORDER BY HRE.EmployeeID
FOR XML RAW, TYPE

The results of this query are shown in Figure 8-1.

148

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 148

Figure 8-1

Take off the TYPE directive and rerun the query. Notice that the results look exactly the same. The only
difference is that by specifying the TYPE directive, the results were returned as an xml data type whereas
by taking off the TYPE directive the results were returned as a nvarchar(max) data type.

This example used the RAW mode, which returned the results as single <row> elements.

Applying some of the knowledge learned from previous chapters in the book, this next example uses the
query() method of the xml data type to query the results returned by the FOR XML query:

SELECT (SELECT FirstName, LastName, EmailAddress, AdditionalContactInfo.query(‘
declare namespace pc=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ContactTypes”;
//pc:eMail/pc:eMailAddress
‘) as EmailAddress
FROM Person.Contact
FOR XML AUTO, TYPE).query(‘/Person.Contact’)

The results are shown in Figure 8-2.

Figure 8-2

In the results, notice that the FirstName, LastName, and EmailAddress values are returned as
attributes. Had the ELEMENTS directive been specified on the FOR XML clause, these values would have
been returned as elements and the results would look quite different.

149

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 149

The query method of the xml data type is used to return a fourth value, the alternative e-mail address,
which as you notice is returned as a separate element because of the As EmailAddress. The addition of
the TYPE directive returns these results as an xml data type.

This next example shows the FOR XML statement and TYPE directive being used with the xml data type
query() method, but all the xml data type methods are eligible for use with FOR XML.

FOR XML can also be applied to variables as shown in the following example. This example queries the
Contacts table using FOR XML, and the results are placed in an xml data type variable:

DECLARE @xmlvar xml
SET @xmlvar = (SELECT HRE.ContactID,

PC.FirstName,
PC.LastName,
PC.AdditionalContactInfo.query

(‘
declare namespace ct=”http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ContactTypes”;
//ct:eMail/ct:eMailAddress
‘)
as AdditionaleMail
FROM Person.Contact PC, HumanResources.Employee HRE
WHERE PC.ContactID = HRE.ContactID
ORDER BY HRE.ContactID
FOR XML AUTO, TYPE)
SELECT @xmlvar
GO

The results are shown in Figure 8-3.

Figure 8-3

This example is very similar to the previous example. The FirstName and LastName values are still
returned as attributes, as in the previous example. The difference here is that the results are returned as
an xml data variable.

As a final note on this topic, FOR XML can also be combined with XML DML statements to provide
UPDATE, DELETE, or INSERT functionality. For example, the following code first creates the Employee
table with two xml data type columns, inserts an XML document into the first xml data type column,

150

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 150

and then updates the second xml data type column using a FOR XML SELECT statement and the
query() method of the xml data type:

DROP TABLE Employee
GO
CREATE TABLE Employee (EmployeeID int, EmployeeInfo xml, EmployeeInfo2 xml NULL)
GO
INSERT INTO Employee (EmployeeID, EmployeeInfo)
VALUES(1, ‘<root><EmployeeInfo><Employee
EmployeeID=”1”></Employee></EmployeeInfo></root>’)
GO
SELECT * FROM Employee
UPDATE Employee SET EmployeeInfo2 = (SELECT EmployeeInfo.query(‘/root’) FROM
Employee row FOR XML AUTO, TYPE)
GO
SELECT * FROM Employee

The results from the query are shown in Figure 8-4.

Figure 8-4

In this example, the query method of the xml data type is used to query all the contents of the root
node (which in this example is the entire XML document). Those results are then inserted into the
EmployeeInfo2 column.

Take a look at the FROM clause for a moment, and also look at the EmployeeInfo2 column of the second
set of results. Notice that the query specified its own root node called row. This means that the root
node in the EmployeeInfo column is not the root node in the EmployeeInto2 column; the row node is.

RAW Mode Enhancements
The RAW mode is the simplest FOR XML mode to use, yet a number of enhancements have been made to
make it even more functional. The enhancements made to the RAW mode are as follows:

❑ Capability to specify the root element in the XML result

❑ Capability to specify the <row> element name (instead of the default <row>)

❑ Capability to return element-centric XML

Specifying the <row> Element Name
This first example illustrates renaming the <row> element. The code is a modification of the first exam-
ple in this chapter, as shown in the highlighted line:

151

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 151

SELECT Top 10 HRE.EmployeeID, PC.FirstName, PC.LastName, HRE.Title
FROM Person.Contact PC, HumanResources.Employee HRE
WHERE PC.ContactID = HRE.ContactID
ORDER BY HRE.EmployeeID
FOR XML RAW (‘Employee’), TYPE, ELEMENTS

Figure 8-5 shows the results of the query.

Figure 8-5

You should take note of a couple of things in the previous example. First, the <row> element has been
renamed to <Employee>. This was accomplished by specifying the name of the element in the FOR XML
statement, such as FOR XML (‘Employee’). The second point is that the results are returned in a nice,
neat nested structure. The ELEMENTS keyword provided this structure and makes the XML much easier
to read. Had the ELEMENTS keyword been left off, the results would have looked like the following:

<Employee EmployeeID=”1” FirstName=”Guy” LastName=”Gilbert” Title=””>
<Employee EmployeeID=”2” FirstName=”Kevin LastName=”Brown” Title=””>
<Employee EmployeeID=”3” FirstName=”Roberto” LastName=”Tamburello” Title=””>

Specifying the Root Element
Using the ROOT directive in a FOR XML statement allows you to specify a top-level element for the
results. When specifying the ROOT directive, you must specify an argument containing the name of the
top-level element.

Consider the following example query:

SELECT top 2 ContactID, FirstName, LastName
FROM Person.Contact
FOR XML RAW, ROOT(‘Contact’), TYPE, ELEMENTS
GO

Figure 8-6 shows the results of this query.

152

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 152

Figure 8-6

The results in this example contain a top-level root element named <Contact>. This example, as with
the previous example, specified the TYPE directive, which returned the results as an xml data type, as
well as the ELEMENTS directive to format the XML a bit better. Had the ELEMENTS directive not been
specified, the top-level root element would still be returned, but the nesting would have been lost and
each row would be returned in a single <row> element.

AUTO Mode Enhancements
The AUTO mode provides a bit more flexibility in shaping the results of the XML over the RAW mode, but
it is still limited as to the control. It uses a query as the basis for how the XML is shaped, determining
how elements are nested when returned by comparing the value of the current row against the values of
the rows around it.

When multiple tables are specified in the FROM clause, each table is specified as an XML element as long
as one column from each table is used in the SELECT statement. Following this same logic, the order of
the tables specified determines the XML hierarchy.

In SQL Server 2000, all but the image, text, and ntext columns were available for value comparison. In
SQL Server 2005, this list also includes the xml data type, so specifying the TYPE directive will have no
effect. However, the varchar(max), nvarchar(max), and varbinary(max) are compared.

This section shows a few examples of how to use the AUTO mode.

The first example uses the AUTO mode in a simple query to return four columns, two from the
Person.Contact table and two from the HumanResources.Employee table, joined together on the
ContactID column:

SELECT Top 5 HRE.EmployeeID, PC.FirstName, PC.LastName, HRE.Title
FROM Person.Contact PC, HumanResources.Employee HRE
WHERE PC.ContactID = HRE.ContactID
ORDER BY HRE.EmployeeID
FOR XML AUTO

Figure 8-7 shows the results returned. Each column specified in the query is the element name in which
each value applied has an attribute.

153

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 153

Figure 8-7

While these results are valid, returning the column values as attributes is not the best solution for this
query and they could be formatted better for easier reading. Modify the query, as follows, by adding the
ELEMENTS directive, which will change how the results of the query are formatted:

SELECT Top 5 HRE.EmployeeID, PC.FirstName, PC.LastName, HRE.Title
FROM Person.Contact PC, HumanResources.Employee HRE
WHERE PC.ContactID = HRE.ContactID
ORDER BY HRE.EmployeeID
FOR XML AUTO, ELEMENTS

This changes the results as shown in Figure 8-8. By adding the ELEMENTS directive, the column values
are no longer returned as attributes, but rather are returned as elements in the hierarchical format.

Figure 8-8

As demonstrated in this section, the XML results returned are based on the query, allowing you to shape
the results somewhat. While the shaping is limited, AUTO mode does give more flexibility over the RAW
mode. By adding the TYPE directive to the query as follows you can specify to have the results returned
as xml data type:

FOR XML AUTO, TYPE, ELEMENTS

154

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 154

EXPLICIT Mode Enhancements
The following two enhancements have been made to the EXPLICIT mode:

❑ CDATA directive with an element name.

❑ elementxsinil column mode.

Since an entire chapter, and a large one at that, could be spent on explaining the EXPLICIT mode, this
section assumes that this mode is not new to you or that you have at least a minimal understanding
of the EXPLICIT mode. To that end, the examples in this section highlight the enhancements of the
EXPLICIT mode and try to demonstrate a few more of its features while doing so.

With that, time to jump into some examples.

CDATA
This first example queries the Person.Contact table and builds an XML document with a CDATA section
wrapped in an <element> tag:

SELECT
1 AS Tag,
0 AS Parent,
ContactID as [Contact!1!ContactID],
FirstName as [Contact!1!FirstName],
LastName as [Contact!1!LastName],
‘<ContactInformation>Contact information</ContactInformation>’
as [Contact!1!!cdata]

FROM Person.Contact
WHERE ContactID=218
FOR XML EXPLICIT

Figure 8-9 shows the results.

Figure 8-9

In this example, ContactID, FirstName, and LastName are added as attributes to the Contact element,
and the CDATA section is within the <ContactInformation> element.

Modify the previous example as follows and rerun the query:

SELECT
1 AS Tag,
0 AS Parent,
ContactID as [Contact!1!ContactID],
FirstName as [Contact!1!FirstName!ELEMENT],
LastName as [Contact!1!LastName!ELEMENT],
‘<ContactInformation>Contact information</ContactInformation>’

155

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 155

as [Contact!1!!cdata]
FROM Person.Contact
WHERE ContactID=218
FOR XML EXPLICIT

What is the shape of the results now? Adding the ELEMENTS directive to the FOR XML EXPLICIT state-
ment is not allowed; therefore if you want FirstName and LastName returned as elements, you need to
add the ELEMENTS directive to the SELECT statement as shown in the example. The results should look
like those shown in Figure 8-10.

Figure 8-10

The CDATA directive is used to wrap returned data in a CDATA section. This directive is useful when you
want to include text that typically would not be recognized as markup characters. In the example, the
CDATA directive was used to add information in its own element.

elementxsinil
The elementxsinil directive is used to generate elements for null values, meaning that if the query
returns a null value, the elementxsinil directive still builds an element for that value with an attribute
of xsi:nil=”true”.

Modify the example from the previous section to include the following:

SELECT
1 AS Tag,
0 AS Parent,
ContactID as [Contact!1!ContactID],
FirstName as [Contact!1!FirstName!ELEMENT],
MiddleName as [Contact!1!MiddleName!ELEMENTXSINIL],
LastName as [Contact!1!LastName!ELEMENT],
‘<ContactInformation>Contact information</ContactInformation>’
as [Contact!1!!cdata]

FROM Person.Contact
WHERE ContactID=483
FOR XML EXPLICIT

This example queries the Person.Contact table for a Contact. The MiddleName column uses the
elementxsinil directive, telling the query that if the MiddleName value for the specified ContactID
is NULL, include an element for it anyway. The results for this query are shown in Figure 8-11.

Figure 8-11

156

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 156

Sure enough, the MiddleName for ContactID 483 is NULL, but an element for the MiddleName was
included anyway. What happens if the elementxisnil directive is used and a MiddleName is not
NULL? Modify the query, changing the WHERE statement to query for ContactID of 218 and rerun the
query.

In the case where the elementxisnil directive is specified but the value returned is not NULL, the
elementxisnil directive is basically ignored and the value is included in the MiddleName element, as
shown in Figure 8-12.

Figure 8-12

In both examples, using the elementxisnil directive, notice that the root Contact element includes a
namespace.

Specifying the TYPE directive is allowed, which lets you return these results as xml data type.

PATH Mode
It is no secret, as you found out in the last section or probably already know: dealing with the EXPLICIT
mode is exquisitely painful. The upside to this mode is that it provides the greatest flexibility when
shaping XML results. The downside is that the learning curve is steep.

The moans and groans from all over the world were heard loud and clear at Microsoft headquarters in
Redmond, Washington; thus the PATH mode is introduced in SQL Server 2005 to ease the EXPLICIT
mode pains.

The goal of the PATH mode is to provide an easier way to generate XML documents with much easier
queries. The PATH mode provides a painless way to mix attributes and elements and can be used to
return results as the xml data type using the TYPE directive. And as you will learn about in the next
section, it also can be used with nesting FOR XML queries.

The PATH mode takes all columns returned from a SELECT query and maps them to attributes and ele-
ments using an XPath-like syntax.

The PATH mode is specified by adding the PATH directive to the FOR XML clause, as follows:

FOR XML PATH

Jumping right in to examples, the following example queries four columns from the Person.Contact
table; the fourth column does not specify a column name, but the PATH mode inserts an XML instance
with the returned data in the query:

SELECT
ContactID,
FirstName,

157

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 157

LastName,
AdditionalContactInfo.query(‘
declare namespace PC=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactTypes”;
/PC:telephoneNumber/PC:number
‘)

FROM Person.Contact
WHERE ContactID = 10
FOR XML PATH
GO

Any column that does not specify a name is included in-line, meaning properly nested within the XML
instance, as shown in Figure 8-13.

Figure 8-13

Column names returned in the rowset are mapped case-sensitive to the results in the XML instance. For
example, the following code simply queries the Person.Contact table creating an alias column called
@PCID:

SELECT ContactID as “@PCID”,
FirstName,
LastName
FROM Person.Contact
WHERE ContactID = 218

The results look like this:

@PCID FirstName LastName
----- --------- --------
218 Scott Colvin

Adding the FOR XML PATH statement to the query, as in the following example, the column name from
the first query begins with an at symbol (@), and therefore is mapped to an attribute of the <row> col-
umn with the value associated to it:

SELECT ContactID as “@PCID”,
FirstName,
LastName
FROM Person.Contact
WHERE ContactID = 218
FOR XML PATH
GO

Figure 8-14 shows the resulting XML instance.

158

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 158

Figure 8-14

When generating this kind of query, the attribute needs to come before the other columns or else an error
is generated. For example, the following will fail:

SELECT FirstName,
ContactID as “@PCID”
FROM Person.Contact
WHERE ContactID = 218
FOR XML PATH
GO

The basic rule of thumb to remember is that if the column name in the rowset does not begin with @, but
begins with a forward slash (/), then XML hierarchy is applied. In the preceding example, the column
name began with @; therefore the PATH mode mapped it as an attribute.

In the following example, four columns are returned. The first column begins with @, so it is mapped to
an attribute. The other three columns contain a /, so the XML hierarchy is applied:

SELECT EmployeeID “@EmpID”,
FirstName “EmpName/First”,
MiddleName “EmpName/Middle”,
LastName “EmpName/Last”

FROM HumanResources.Employee E, Person.Contact C
WHERE E.EmployeeID = C.ContactID
AND E.EmployeeID=218
FOR XML PATH

Figure 8-15 shows the resulting XML instance.

Figure 8-15

The XML instance can be further shaped by making the following changes to the query:

SELECT EmployeeID “@EmpID”,
FirstName “EmpName/First”,
MiddleName “EmpName/MiddleName/Middle”,
LastName “EmpName/Last”

FROM HumanResources.Employee E, Person.Contact C
WHERE E.EmployeeID = C.ContactID
AND E.EmployeeID=218
FOR XML PATH

159

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 159

The results now look like Figure 8-16.

Figure 8-16

In this example, the query was modified to have the <Middle> node show up a level deeper, a child of
the <MiddleName> node. This was accomplished by telling the results to add another layer for this node.

As you learned earlier, if the query returns a NULL value, the element is not mapped. To generate ele-
ments for a NULL value, specify the ELEMENTS XSINIL directive. The ELEMENTS XSINIL directive is
very similar to the NULL example given earlier in the chapter except for the placement and slight differ-
ence in syntax. The functionality is the same, but in this case the placement of the directive is after the
FOR XML clause and it is two words, not one. Note also the change in the ContactID for this example:

SELECT EmployeeID “@EmpID”,
FirstName “EmpName/First”,
MiddleName “EmpName/MiddleName/Middle”,
LastName “EmpName/Last”

FROM HumanResources.Employee E, Person.Contact C
WHERE E.EmployeeID = C.ContactID
AND E.EmployeeID=236
FOR XML PATH, ELEMENTS XSINIL

This next example specifies multiple paths and maps the columns accordingly:

SELECT EmployeeID “@EmpID”,
FirstName “Contact/First”,
MiddleName “Contact/Middle”,
LastName “Contact/Last”,
Birthdate “Employee/Birthdate”,
HireDate “Employee/HireDate”

FROM HumanResources.Employee E, Person.Contact C
WHERE E.ContactID = C.ContactID
AND E.EmployeeID=218
FOR XML PATH

The results are shown in Figure 8-17.

160

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 160

Figure 8-17

In the previous example the columns were nice and orderly. What happens if that order is tossed around
like this:

SELECT EmployeeID “@EmpID”,
FirstName “Contact/First”,
Birthdate “Employee/Birthdate”,
MiddleName “Contact/Middle”,
HireDate “Employee/HireDate”,
LastName “Contact/Last”

FROM HumanResources.Employee E, Person.Contact C
WHERE E.ContactID = C.ContactID
AND E.EmployeeID=1
FOR XML PATH

The columns are returned as shown in Figure 8-18. The PATH directive nests the elements as they appear
in the SELECT statement, and cannot order them as shown previously in Figure 8-17.

Figure 8-18

The results in Figure 8-18 look different than they do in Figure 8-17 because the PATH directive nests the
elements as they appear in the SQL statement. In the case of Figure 8-18, because the order was mixed,
the query returned the results with each value in its own node instead of grouping them like Figure 8-17.

161

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 161

One more example for this section:

SELECT EmployeeID “@EmployeeID”,
‘Employee Information’ as “text()”,
‘MiddleName is optional’ as “EmpName/text()”,
FirstName as “EmpName/First”,
MiddleName as “EmpName/Middle”,
LastName as “EmpName/Last”,
Birthdate as “Employee/Birthdate”,
HireDate as “Employee/HireDate”

FROM HumanResources.Employee E, Person.Contact C
WHERE E.EmployeeID = C.ContactID
AND E.EmployeeID=218
FOR XML PATH

In this query, an XPath node test of text() is used in two places. First, it is used to add a string after
the root node <row>, and the second use adds a text string after the <EmpName> element. The results in
Figure 8-19 show the text().

Figure 8-19

The PATH mode, as you should be able to tell by now, is a much welcomed addition to SQL Server 2005
and a much simpler method of mixing elements and attributes over the cumbersome EXPLICIT mode.

Speaking of new enhancements to SQL Server 2005, it’s time to talk about another one.

Nesting FOR XML
The FOR XML clause in SQL Server 2000 could only be used on the outer, or top-level, SELECT state-
ments, and nesting of FOR XML was not supported. The other limitation in SQL Server 2000 was that any
further processing of these queries took place on the client, meaning that once the FOR XML query was
executed, the results were sent to the client for processing.

In SQL Server 2005, however, you have the capability to nest FOR XML statements, thus processing the
queries internally on the server, returning the results as xml data type. The addition of this functionality
in SQL Server 2005 provides better shaping of the XML returned by the FOR XML queries. Because FOR
XML queries can be nested, the inner FOR XML query can return the results as xml data type for further
processing by the outer FOR XML query, which can then also return the results as an xml data type.

In the first example, the inner SELECT query, which queries the employee’s title and birth date from the
Title and Birthdate columns of the HumanResources.Employee table, are returned as xml data type as

162

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 162

elements as determined by the ELEMENTS directive. Those results are then passed to the outer SELECT
query for further processing, which selects the corresponding ContactID, FirstName, and LastName
columns from the Person.Contact table as xml data type and combines them:

SELECT ContactID, FirstName, LastName,
(SELECT HumanResources.Employee.Title, HumanResources.Employee.Birthdate
FROM HumanResources.Employee
WHERE Employee.ContactID = Contact.ContactID
FOR XML AUTO, TYPE, ELEMENTS
)

FROM Person.Contact
WHERE ContactID > 1000
ORDER BY ContactID
FOR XML AUTO, TYPE

Figure 8-20 displays the results of the query.

Figure 8-20

In this example, the ContactID, FirstName, and LastName values are returned as attributes because
the query did not specify to return them as elements. The inner query returned the Title and Birthdate
columns as elements because the ELEMENTS directive was specified on the FOR XML clause.

The following example also uses a nested FOR XML statement, but it also uses the XQuery data function
to retrieve all the associated SalesOrders for each Contact in the inner SELECT. Those results do not need
to be returned as an xml data type, so the TYPE directive is left off. The results are passed to the outer
SELECT, which queries the ContactID and FirstName columns of the associated SalesOrders table:

SELECT ContactID as “@ContactID”,
FirstName as “@ContactName”,
(SELECT SalesOrderID as “data()”
FROM Sales.SalesOrderHeader
WHERE SalesOrderHeader.ContactID = Contact.ContactID
FOR XML PATH (‘’)) as “@SalesOrderIDs”

FROM Person.Contact
FOR XML PATH(‘SalesOrders’)

163

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 163

Partial results from this query are shown in Figure 8-21.

Figure 8-21

This query returns everyone from the Person.Contact table, so you can specify an optional WHERE clause
to further filter the results if necessary.

The final example is a bit more complicated, in that it nests a few FOR XML queries within the inner
SELECT statement:

SELECT TOP 5 SalesOrderID, SalesPersonID, CustomerID,
(SELECT TOP 2 SalesOrderDetail.SalesOrderID, ProductID, OrderQty, UnitPrice
FROM Sales.SalesOrderDetail, Sales.SalesOrderHeader
WHERE SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID
FOR XML AUTO, TYPE),
(SELECT *
FROM (SELECT Employee.EmployeeID As SalesPersonID, Contact.FirstName,

Contact.LastName
FROM Person.Contact, HumanResources.Employee
WHERE Contact.ContactID = Employee.EmployeeID) As SalesPerson

WHERE SalesPerson.SalesPersonID = SalesOrderHeader.SalesPersonID
FOR XML AUTO, TYPE, ELEMENTS)

FROM Sales.SalesOrderHeader
FOR XML AUTO, TYPE

A portion of the results are shown in Figure 8-22.

Figure 8-22

164

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 164

XSD Schema Generation
Just when you think that the new FOR XML features can’t get any better, the capability to generate an
inline schema associated to your FOR XML query comes along.

How easy is it, you ask? Simply by adding the XMLSCHEMA keyword to the end of the FOR XML statement
you can quickly and easily generate a nice XSD schema. The syntax looks like this:

FOR XML AUTO, XMLSCHEMA

However, you need to follow a couple of rules when using the XMLSCHEMA keyword:

❑ You can use the XMLSCHEMA keyword only in the RAW and AUTO modes.

❑ When nesting FOR XML statements, you can use the XMLSCHEMA keyword only on the outer, or
top-level, query.

When you specify the XMLSCHEMA keyword, both the schema and the XML data results are returned
with the schema preceding the XML data.

The following example returns both an XML instance and the corresponding XSD schema:

SELECT ContactID, FirstName, LastName
FROM Person.Contact
WHERE ContactID = 218
FOR XML AUTO, XMLSCHEMA

In the following results, the schema precedes the XML data, which is listed at the end of the results:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”>
<xsd:simpleType name=”int”>
<xsd:restriction base=”xsd:int” />

</xsd:simpleType>
<xsd:simpleType name=”nvarchar”>
<xsd:restriction base=”xsd:string” />

</xsd:simpleType>
</xsd:schema>
<xsd:schema targetNamespace=”urn:schemas-microsoft-com:sql:SqlRowSet1”
xmlns:schema=”urn:schemas-microsoft-com:sql:SqlRowSet1”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sqltypes=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”
elementFormDefault=”qualified”>
<xsd:import namespace=”http://schemas.microsoft.com/sqlserver/2004/sqltypes” />
<xsd:element name=”Person.Contact”>
<xsd:complexType>
<xsd:attribute name=”ContactID” type=”sqltypes:int” use=”required” />
<xsd:attribute name=”FirstName” use=”required”>
<xsd:simpleType sqltypes:sqlTypeAlias=”[AdventureWorks].[dbo].[Name]”>
<xsd:restriction base=”sqltypes:nvarchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType IgnoreWidth”
sqltypes:sqlSortId=”52”>

<xsd:maxLength value=”50” />
</xsd:restriction>

165

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 165

</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name=”LastName” use=”required”>
<xsd:simpleType sqltypes:sqlTypeAlias=”[AdventureWorks].[dbo].[Name]”>
<xsd:restriction base=”sqltypes:nvarchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType IgnoreWidth”
sqltypes:sqlSortId=”52”>

<xsd:maxLength value=”50” />
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:complexType>
</xsd:element>

</xsd:schema>

<Person.Contact xmlns=”urn:schemas-microsoft-com:sql:SqlRowSet1” ContactID=”218”
FirstName=”Scott” LastName=”Colvin” />

Things to Watch Out For
In dealing with XML, it is possible to have attributes and elements with the same name. For example,
the following is perfectly acceptable in XML:

<Employee>
<FirstName>Howard</FirstName>
<LastName>Hughes</LastName>
<Supervisor>
<FirstName>Daffy</FirstName>
<LastName>Duck</LastName>

</Supervisor>
</Employee>

To test this, run the following query:

DECLARE @test xml
SET @test = ‘<Employee>
<FirstName>Howard</FirstName>
<LastName>Hughes</LastName>
<Supervisor>
<FirstName>Daffy</FirstName>
<LastName>Duck</LastName>
</Supervisor>

</Employee>’
SELECT @test

When you run this query, you get the XML shown at the beginning of this section. However, the follow-
ing query generates an error trying to deal with the same-name columns:

SELECT Contact.ContactID,
SalesOrderHeader.SalesOrderID,
SalesOrderHeader.ContactID,
Contact.FirstName

166

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 166

FROM Sales.SalesOrderHeader, Person.Contact
WHERE SalesOrderHeader.ContactID = Contact.ContactID
AND Contact.ContactID = 218
FOR XML RAW, XMLSCHEMA

The solution to this is to simply add the ELEMENTS directive to the FOR XML statement, like so:

SELECT Contact.ContactID,
SalesOrderHeader.SalesOrderID,
SalesOrderHeader.ContactID,
Contact.FirstName

FROM Sales.SalesOrderHeader, Person.Contact
WHERE SalesOrderHeader.ContactID = Contact.ContactID
AND Contact.ContactID = 218
FOR XML RAW, XMLSCHEMA, ELEMENTS

It is important to remember that using the XSINIL directive is permitted when generating schemas. If
a column returns a NULL value it is not included in the schema if the directive is not included. Adding
the XSINIL directive ensures that both columns are returned in the results, as well as included in the
schema. The following example illustrates this:

SELECT Contact.ContactID,
SalesOrderHeader.SalesOrderID,
SalesOrderHeader.ContactID,
Contact.FirstName
Contact.MiddleName

FROM Sales.SalesOrderHeader, Person.Contact
WHERE SalesOrderHeader.ContactID = Contact.ContactID
AND Contact.ContactID = 226
FOR XML RAW, XMLSCHEMA, ELEMENTS XSINIL

The example specifies that if any values returned from the query are found, to still include an element
for that value. In this example, the MiddleName column does not have a value, but the column is still
included with the following value:

<MiddleName xsi:nil=”true” />

That covers the FOR XML changes. Microsoft made a number of OPENXML changes as well, so on to that.

OPENXML
Two improvements were made to the OPENXML clause in SQL Server 2005. The first is the capability to
pass an xml data type to the sp_xml_preparedocument stored procedure. The second enhancement is
the capability to use the new data types in the WITH clause.

In the following example, the @xmlvar variable is declared as an xml data type and filled with an XML
document, which is then passed to the sp_xml_preparedocument stored procedure. The OPENXML
statement is then used to query the XML document to retrieve the Employee attribute of all three
employees:

167

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 167

DECLARE @xmldocDoc int
DECLARE @xmlvar xml
SET @xmlvar = N’<ROOT>
<Employee EmployeeID=”1” ManagerID=”2” NationalIDNumber=”10708100”>

<Tenor Position=”AltoTenor” Solo=”Io Conosco un Giardino”>
<FirstName>José</FirstName>
<LastName>Carreras</LastName>

</Tenor>
</Employee>
<Employee EmployeeID=”2” ManagerID=”3” NationalIDNumber=”112432117”>

<Tenor Position=”BaritoneTenor” Solo=”Memories de Danton”>
<FirstName>Plácido</FirstName>
<LastName>Domingo</LastName>

</Tenor>
</Employee>
<Employee EmployeeID=”3” ManagerID=”3” NationalIDNumber=”112432117”>

<Tenor Position=”Tenor” Solo=”Granada”>
<FirstName>Luciano</FirstName>
<LastName>Pavarotti</LastName>

</Tenor>
</Employee>
</ROOT>’
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @xmldocDoc OUTPUT, @xmlvar
-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@xmldocDoc, ‘/ROOT/Employee’,1)

WITH (EmployeeID int,
ManagerID int,
NationalIDNumber varchar(15))

EXEC sp_xml_removedocument @xmldocDoc

The results of the SELECT statement are shown in Figure 8-23.

Figure 8-23

The example demonstrates both enhancements to the OPENXML statement by passing an xml data type
variable to the sp_xml_preparedocument stored procedure, and by using the new data types in the
WITH clause.

Finally, make the following modifications to the example code:

DECLARE @xmldocDoc int
DECLARE @xmlvar xml
SET @xmlvar = N’<ROOT>
<Employee EmployeeID=”1” ManagerID=”2” NationalIDNumber=”10708100”>

<Tenor Position=”AltoTenor” Solo=”Io Conosco un Giardino”>
<FirstName>José</FirstName>

168

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 168

<LastName>Carreras</LastName>
</Tenor>

</Employee>
<Employee EmployeeID=”2” ManagerID=”3” NationalIDNumber=”112432117”>

<Tenor Position=”BaritoneTenor” Solo=”Memories de Danton”>
<FirstName>Plácido</FirstName>
<LastName>Domingo</LastName>

</Tenor>
</Employee>
<Employee EmployeeID=”3” ManagerID=”3” NationalIDNumber=”112432117”>

<Tenor Position=”Tenor” Solo=”Granada”>
<FirstName>Luciano</FirstName>
<LastName>Pavarotti</LastName>

</Tenor>
</Employee>
</ROOT>’
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @xmldocDoc OUTPUT, @xmlvar
-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@xmldocDoc, ‘/ROOT/Employee/Tenor’,1)

WITH (Position varchar(15),
Solo varchar(15))

EXEC sp_xml_removedocument @xmldocDoc

Now rerun the query. You should see results similar to those shown in Figure 8-24.

Figure 8-24

Using the OPENXML clause to go deeper into the XML document, the Position and Solo attributes were
queried and returned, as displayed in the figure.

Summary
In this chapter, you learned about the new improvements to the FOR XML and OPENXML statements. The
FOR XML statement comes packed with a lot of new functionality that makes shaping your data and cre-
ating XML instances much easier.

The PATH mode, as you learned, is much easier to learn than the EXPLICIT mode, and the results are
just as pleasing with a lot shorter learning curve. The TYPE directive is a very nice addition as well, giv-
ing you the option of returning the query results as an xml data type, with very little restriction. The
enhancements to the RAW and AUTO modes, specifically the capability to specify the root element, return
element-centric XML, and specify the row element name come in very useful when you want to deter-
mine the shape of your XML results.

169

Transact-SQL Enhancements to FOR XML and OPENXML

13_597922 ch08.qxp 12/3/05 12:25 AM Page 169

Of all the excellent features in this chapter, the two most important are the capability to automatically
generate schemas and nesting FOR XML queries. These two alone should make any developer’s life
infinitely easier, and probably should put the EXPLICIT mode out of business.

Not as many enhancements were made to OPENXML, but the few that were made were very nice, such as
the addition of a capability to pass xml data type to the sp_xml_preparedocument stored procedure.

The next chapter discusses CLR enhancements in SQL Server 2005 and how those enhancements benefit
you when dealing with XML in SQL Server.

170

Chapter 8

13_597922 ch08.qxp 12/3/05 12:25 AM Page 170

CLR Support in
SQL Server 2005

If you really look at some of the biggest improvements made to SQL Server 2005, the top two
would have to be the addition of native support for the xml data type and the integration of the
Common Language Runtime (CLR). It’s up to you to decide which improvement is most impor-
tant, but regardless of the order, you have to admit that these are the top two from the developer’s
perspective.

What is the CLR? Good question. The CLR is the heart and soul of the Microsoft .NET Framework.
It provides the environment for the execution of all the .NET Framework code. The CLR is also the
foundation for many of the built-in services that are required for your programs to run, such as
exception handling, thread and memory management, and JIT (just-in-time compilation — code is
compiled when it is needed).

A term that you need to remember is managed code. What is managed code? Any code that runs
within the CLR is called managed code. When it is compiled, managed code compiles down to
native code, which means better performance. Why is this important? By integrating the CLR into
SQL Server, developers can now write stored procedures and other objects, compile them into
managed code, and use them right from SQL Server.

This does not mean that Microsoft has set out to put every DBA out of job, so before all you DBAs
out there panic, continue reading, especially the section “The Great Debate.” However, neither this
chapter nor this book discusses the CLR in any great detail. There are already books out there that
do that.

Up until this chapter, the focus of the book has been on the native xml data type support. However,
this chapter changes direction and focuses on the integration of the CLR in SQL Server 2005.

14_597922 ch09.qxp 12/3/05 12:21 AM Page 171

When your boss comes to you and says that he or she heard that SQL Server 2005 comes with CLR inte-
gration and asks you what you think about using it in some of your application development, how will
you answer?

You can’t really expect to learn everything there is about the integration of the CLR in a single chapter.
That is why this chapter is merely an overview, or introduction, to the integration of the CLR in SQL
Server 2005. Integration of the CLR is introduced here as a preface to later chapters in the book, which
go into more detail about the topics introduced here, and to simply whet your appetite.

The topics discussed in this chapter are the following:

❑ Overview of Common Language Runtime integration

❑ T-SQL language limitations

❑ Introduction to managed code

❑ Advantages of CLR integration

❑ Choosing between T-SQL and managed code

❑ Security

The Great Debate
The integration of the CLR in SQL Server 2005 has caused a great stir in the development community,
both from database administrators and developers as well as the developers writing the front-end appli-
cation. There have been great debates from those who are for the integration as well as from those who
are against the integration, from database administrators and developers alike.

Many rumblings have come from those who say that the integration of the CLR into SQL Server signifies
the demise of T-SQL, while the other side of the camp wonders if the integration was even necessary (and
possibly dangerous). This book does not jump onto either bandwagon, but rather presents the material in
such a way that you will be able to make your own decision, one that is best for your applications.

The purpose of this chapter (and other chapters later in the book) is not to persuade you one way or the
other, but rather to give you the information you need to make an intelligent decision of when and how
to use the CLR over T-SQL and vice versa. Follow-up chapters later in the book dig into the detail on
how to use the CLR in SQL Server 2005.

Nearly every developer, whether they are a SQL or front-end object-oriented developer, agrees that
T-SQL is great at data access and the manipulation of that data at the database. SQL Server is awesome —
most developers can agree with that. But these same developers should also admit that it is not as com-
plete of a programming language as C# or Visual Basic .NET. The SQL programming language is built
around data access and data manipulation at the database level. It does a tremendous job of that, but it
has its limitations. This is where an object-oriented programming language can step in and complement
T-SQL. Not replace, complement.

172

Chapter 9

14_597922 ch09.qxp 12/3/05 12:21 AM Page 172

Integration Overview
The integration of CLR provides database programmers with the capability to include and use business-
oriented languages such as C# and Visual Basic .NET within SQL Server 2005. Using this new integra-
tion, database developers can now create database objects such as stored procedures, triggers, and
user-defined functions using these common business oriented languages as an alternative to T-SQL.

This integration provides functionality not found before in SQL Server, such as preemptive threading and
memory garbage collection (returning unused memory back to the operating system). While SQL Server
and the CLR differ in the way they handle issues such as threads and memory, understanding their inte-
gration can be an advantage to you as a developer when trying to get the most of your application.

The goals of integrating the CLR in SQL Server 2005 come down to a handful of items. Listed in no par-
ticular order, they are as follows:

❑ Scalability

❑ Reliability

❑ Performance

❑ Security

❑ Memory management services (such as garbage collection)

Scalability
As mentioned previously, SQL Server and the CLR both have different mechanisms for handling mem-
ory and other processes. When running user code inside SQL Server, the last thing you want to do is
degrade performance by causing a conflict between two competing processes. For example, SQL Server
uses a non-preemptive threading (threads occasionally yield execution) model whereas the CLR uses a
preemptive threading model. Another example, the CLR cannot tell the difference between physical and
virtual memory, but SQL Server can, because physical memory limits can be set and memory is therefore
managed by SQL Server.

Careful thought must be given when writing user code that operates inside SQL Server. Any user code
dealing with things like memory and threading will conflict with the same functionality in SQL Server
and cause serious scalability issues.

Reliability
Also known as safety, reliability states that any code running in the CLR should not compromise the
integrity of the SQL Server database engine in which the process is running. An example of this is a pro-
cess that changes the structure of a database.

Performance
What good does it do to run .NET code in SQL Server that runs worse than its T-SQL equivalent? Any
managed code running in SQL Server must perform as well as, or better than the native T-SQL code.

By taking advantage of the CLR in SQL Server, you can take advantage of the fact that both the data and
the code are brought closer together. By doing this, you are taking advantage of the processing power of
the server and in many cases you will see an increase in performance.

173

CLR Support in SQL Server 2005

14_597922 ch09.qxp 12/3/05 12:21 AM Page 173

Security
Any user code running in SQL Server needs a way to access machine resources that are outside of the
database engine. One of the main security reasons for utilizing the CLR in SQL Server is that much less
data needs to leave the server, lessening the risk of exposing your data.

Managed code running in the database needs to adhere to the same authentication and authorization
rules as access database objects such as tables or stored procedures. This ensures that no unwanted pro-
cesses can gain access to the database engine and database components without going through the cor-
rect channels.

Later on in the book, Chapter 21 to be exact, you will learn about Assemblies in SQL Server 2005. As a
quick introduction, an assembly is a SQL Server hosted DLL or EXE that when created in SQL Server has
one of three levels of security in which context the assembly can run. As you will learn later, each level of
security either strengthens or lessens the security context in which the assembly is run. This will have a
definite impact on how you utilize the CLR security in your environment, so don’t skip that chapter.

Limitations of T-SQL
Most diehard T-SQL developers will tell you that whatever you can do in .NET can be done in T-SQL,
and they might go as far as to say that they can do it better. While the validity of that statement will be
argued until the end of time, the reality is that other programming languages, such as C# and Visual
Basic, are more complete.

That is not to say that T-SQL is inferior by any means. Previously this chapter mentioned what T-SQL did
well, and that was data access and set-based operations within a database. In fact, in SQL Server 2005, you
have the ability to do recursive queries, which is the capability of a common table expression to reference
itself. SQL Server 2005 also comes with new analytical functions (such as RANK and ROW_NUMBER) and rela-
tional operators (such as APPLY, PIVOT, and UNPIVOT), which are used to manipulate table-valued expres-
sions into another table.

All of these new features in SQL Server 2005 prove that T-SQL continues to grow and is taken seriously.
ANSI SQL is based on open standards that are not owned by a single company, making it easy to be
used with any RDBMS that complies with the ANSI standards.

That said, though, SQL Server does have its limitations. For example, the following cannot be done in
T-SQL but can easily be done in .NET:

❑ Arrays

❑ Collections

❑ FOR EACH loops

❑ Classes

While this list is by no means complete, it gives you an idea of the major differences between T-SQL and
other matured programming languages.

174

Chapter 9

14_597922 ch09.qxp 12/3/05 12:21 AM Page 174

For example, to loop through a list of Product records using T-SQL, a CURSOR is required, as shown in
the following example:

Use AdventureWorks
GO
DECLARE Product_Cursor CURSOR FOR
SELECT ProductID, Name
FROM Production.Product
WHERE Color IS NOT NULL
ORDER BY Name

OPEN Product_Cursor

FETCH NEXT FROM Product_Cursor
WHILE @@FETCH_STATUS = 0
BEGIN
--DO SOMETHING WITH THE DATA
FETCH NEXT FROM Product_Cursor

END

CLOSE Product_Cursor
DEALLOCATE Product_Cursor

To accomplish this same thing in .NET requires the following:

Module Module1
Sub Main()
Dim tsql As String = “SELECT ProductID, Name FROM Production.Product WHERE Color

IS NOT NULL ORDER BY Name”

Dim connstr As String =
“Provider=SQLOLEDB;Server=(local);Database=AdventureWorks;UID=sa;PWD=hackthis”

Dim conn As New OleDb.OleDbConnection(connstr)
Dim cmd As New OleDb.OleDbCommand(tsql, conn)

Try
conn.Open()

Dim rdr As OleDb.OleDbDataReader = cmd.ExecuteReader()

For Each rdr.Item In rdr.c
rdr.Read()
Console.WriteLine(rdr.Item(0) + “, “ & rdr.Item(1))

Next

rdr.Close()
Catch ex As Exception
Console.WriteLine(ex.Message.ToString())

Finally
conn.Close()

End Try
End Sub
End Module

175

CLR Support in SQL Server 2005

14_597922 ch09.qxp 12/3/05 12:21 AM Page 175

The purpose of this section was certainly not to paint the T-SQL language as an inferior language.
Actually, it was the opposite: T-SQL is a strong and powerful language for data access and manipulation.
The new features in SQL Server 2005 discussed here can attest to that. The integration of the CLR is there
as a complement to the already strong SQL language, making it that much stronger. So breathe a sigh of
relief DBAs; you’re not out of a job.

Introduction to Managed Code
Managed code is simply code that runs within the CLR. Prior to SQL Server 2005, it was not possible to
mix database engine processes with the CLR with any amount of success, but SQL Server 2005 has inte-
grated the CLR and provides the capability to run safe user code within the confines of a database
engine process.

Every CLR-compliant language compiles its code down to what is called MSIL, or Microsoft Intermediate
Language. The CLR can run this compiled source code because implementation differences are gone,
regardless of how it is used or presented in the specific language. For example, a system.string in
one language is a system.string in another language when it is compiled.

COM (Component Object Model) was the first great step in not having to write everything from the
ground up. COM supplied the foundation for the higher-level software and services. It allowed you to
build your application by using components written by others. For example, you could buy a third-party
grid or calendar control so you didn’t have to create one from scratch. It sped up application develop-
ment and provided functionality you would have had to otherwise spend the time to develop yourself.

As cool as it is, COM has its limitations. Have you ever tried to pass a string value from a VB application
to a C++ application? Typically the work had to be done on the C++ side because VB hates working out-
side the box.

These limitations don’t exist with the CLR and managed code. Even better, running managed code
within the CLR has been extended to SQL Server 2005. If you have done any work with the .NET
Framework and the CLR, you know how easy it is to work with.

With the CLR integrated into SQL Server 2005, this same flexibility is accessible from right inside the
database engine, providing the capability to write stored procedures, triggers, and user-defined func-
tions in managed code. And don’t forget user-defined types and aggregates. For example, you can use
.NET to create your own type and use it in SQL Server (you’ll see an example of this in Chapter 22).

Take the following code, for example:

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlServer
Imports System.Data.SqlTypes

Public Class SampleTestClass
<SqlProcedure>

176

Chapter 9

14_597922 ch09.qxp 12/3/05 12:21 AM Page 176

Public Shared Sub TestMessage()

Microsoft.SqlServer.Server.SqlContext.Pipe().Send(“This Stuff ROCKS!”)
End Sub

End Class

You can compile this simple class into a CLR stored procedure and, using an assembly, execute it via a
standard T-SQL stored procedure.

This simple example walks you through how to do just that. Open Visual Studio 2005 and select Create
New Project. The New Project screen, depicted in Figure 9-1, is displayed. Under Project Types on the
left side of the screen, select Database. Then in the Templates section on the right, select SQL Server
Project. Give the project a name (such as TestAssembly), browse to where you want to save the project,
and then click OK.

Figure 9-1

After clicking OK, you might get a new dialog window named New Database Reference. This dialog is
used to inform your project which SQL Server you want to deploy your project to. The only information
required is the server name where SQL Server 2005 is running, the username and password you want to
use to connect, and the database in which to deploy your project. After you fill in that information, click
OK. The project is then created in Visual Studio.

After the project is created, right-click the solution name in the Solution Explorer window, select Add,
and then select New Item from the menu. This opens the Add New Item dialog shown in Figure 9-2.

177

CLR Support in SQL Server 2005

14_597922 ch09.qxp 12/3/05 12:21 AM Page 177

Figure 9-2

In the Add New Item dialog, select Stored Procedure and then give the stored procedure a name. In this
example, the stored procedure is called TestProc. After you name the stored procedure, click Add.

When you click Add, Visual Studio automatically opens and displays your stored procedure with a lot
of the necessary code already filled in. Figure 9-3 shows what the template looks like when it is first
opened and displayed.

Figure 9-3

The two lines of code to pay attention to in the figure are the following:

<Microsoft.SqlServer.Server.SqlProcedure()>
Public Shared Sub TestProc ()

The first line tells this assembly that when compiled, it will be compiled into a stored procedure. The
second line is the name of the stored procedure when compiled, TestProc.

178

Chapter 9

14_597922 ch09.qxp 12/3/05 12:21 AM Page 178

Add the line of code shown in Figure 9-4. Notice that the code in the figure looks similar to the sample
code presented at the beginning of this section.

Figure 9-4

The next step is to build the solution, which compiles this code into a DLL (referred to as the assembly)
behind the scenes. From the Build menu, select Build Solution, as shown in Figure 9-5.

Figure 9-5

The final step in this process is to deploy the assembly. Deploying the assembly automatically creates the
assembly reference and the stored procedure in SQL Server 2005. From the Build menu, select Deploy
Solution, as shown in Figure 9-6.

Figure 9-6

179

CLR Support in SQL Server 2005

14_597922 ch09.qxp 12/3/05 12:21 AM Page 179

Open Microsoft SQL Server Management Studio and open a new query window. Be sure to select
the database in which the assembly was deployed. In the query window, execute the following T-SQL
statement:

EXEC TestProc

Figure 9-7 shows the T-SQL statement and the results of the execution of the stored procedure.

Figure 9-7

While this example was quick and easy, it does a very good job of showing the capabilities of developing
SQL Server objects using the .NET Framework.

Advantages of CLR Integration
At the beginning of the chapter, you were introduced to some of the limitations of T-SQL and how those
limitations are better served by taking advantage of what the CLR provides. You saw a small list of the
shortcomings of T-SQL, including such things as a lack of support for arrays, collections, and other
things that are more than supported in the CLR.

This section briefly discusses some of the advantages of using managed code over T-SQL. What you
need to understand is that, while there are some definite advantages of using CLR over T-SQL, it is not
a “fix all” for every situation or scenario.

T-SQL is specifically designed for quick data access, manipulation, and data management. It is excep-
tionally good at that. It was not designed, however, to provide support for collections, arrays, or classes,
for example. As stated previously, this type of functionality can be imitated using T-SQL, but there are
typically performance issues associated with that.

Managed code offers what T-SQL does not: much better support for string manipulation and complex
logic, thus bridging the gap between what SQL doesn’t do well and what .NET does well, and offering
real object-oriented functionality within SQL Server via the integration of the CLR into SQL Server 2005.
All of the functionality in the .NET Framework can now be accessed via managed code within SQL
Server. Stored procedures and triggers have full access to any class in the .NET Framework, which was
not accessible before.

180

Chapter 9

14_597922 ch09.qxp 12/3/05 12:21 AM Page 180

The CLR interrogates all user code before it is executed to verify that it is safe, meaning that it won’t
break anything when it executes, something that SQL Server does not do. For example, the CLR checks
to make sure that any user code being executed does not read into memory that has already been read
and written to.

The integration of the CLR also provides some object-oriented capabilities that are not provided in SQL
Server 2005. Encapsulation, inheritance, and polymorphism are three object-oriented features that cur-
rently do not exist in SQL Server. Each of these is defined in the following list:

❑ Encapsulation: The capability to contain and control a group of related items. For example, a
class can contain a number of related methods and properties, controlled by the class. All the
methods, properties, and events are treated as a single object.

❑ Inheritance: The capability for one class to inherit from another class. In other words, inheri-
tance is the ability to create a new class based on an already existing class. For example, if class
B inherits from class A, class B gains access to all the methods and properties of class A, plus
any others that it has defined itself.

❑ Polymorphism: The capability to have multiple classes, each with its own methods and
properties, which are used in distinct ways even though the names of the methods or prop-
erties are the same. A base class may have a method called GetEmployeeInfo, for example.
Polymorphism lets you create one or more classes from the base class with each new class
implementing its own version of the GetEmployeeInfo method, with each class being used
interchangeably.

Even though these three features do not exist in SQL Server 2005, the CLR extends this function to SQL
Server through the CLR integration and provides an extra benefit to the already excellent features of
SQL Server.

With all of this information in mind, you must wonder how to choose between T-SQL and the CLR. Well,
read on.

Choosing Between T-SQL and Managed Code
With the integration of the CLR in SQL Server 2005, the line that separates what is commonly known as
the Business Logic Tier and the Data Tier just got a little fuzzier. That certainly is not meant to be taken
negatively; it just means that you will need to do a little more homework when choosing where to do
what, and your homework just got a little more complicated.

Choosing where to put middle tier logic and database access logic was fairly easy. It is not so obvious
now with the CLR being integrated into SQL Server, but with that comes added functionality and flexi-
bility that can certainly enhance your applications.

Choosing between T-SQL and managed code is not a cut and dried decision. As explained previously,
T-SQL does some things phenomenally well, and managed code does other things well. That doesn’t
mean you should throw all data retrieval functionality into a T-SQL stored procedure.

181

CLR Support in SQL Server 2005

14_597922 ch09.qxp 12/3/05 12:21 AM Page 181

When doing data retrieval, T-SQL is the way to go. Leave the data manipulation to the managed code
side of things — those tasks that SQL doesn’t do well — especially if there is complex logic being pro-
cessed on the returned data. Many developers make decisions like this based on the amount of data
being handled. For example, if you know that a certain call to the database always returns a single
record, why put that in a stored procedure? Obviously there are other things to consider, such as com-
piled execution plans that SQL Server provides, but every situation is different and more research is
required to find the best-laid plan.

The other thing to take into consideration is where the code is executed. Is the client the best place for
certain logic, or does that same logic perform better on the server? With SQL Server 2005, both T-SQL
and managed code can be run on the server, bringing the added benefit of server processing power, as
well as shortening the gap between data and code. Is your application web-based or Windows-based?
This also has an effect on where the logic is placed.

Don’t discount the client, as workstation computers are very well powered and can handle a lot of the
application processing without bringing the workstation to its knees. This means that a lot of the appli-
cation processing can be offloaded to the client, freeing up the server for other tasks.

Keep in mind that managed code can run on either the client or the server, but T-SQL can only run on
the server.

Security
There are now two security models inside SQL Server 2005. The first is the SQL Server security model,
which is built around user-authentication. This is not new — it has been in place since way back. The sec-
ond security model is the CLR security model, which is a code-access security model. Both of these are
combined to support all the features of both SQL Server and the CLR inside SQL Server 2005.

The combination of the two security models secures access between both CLR and non-CLR objects
operating in SQL Server. When a call is made between objects running on the server, both models may
step in to manage the security of the objects. The calls between these objects are called links. There are
three types of links:

❑ Invocation

❑ Table-access

❑ Gated

Invocation
Invocation links refer to the invocation of code. This could be from, for example, a CLR stored procedure
being executed, or a user calling a T-SQL stored procedure. EXECUTE permissions are checked when
these types of links are executed.

Table-Access
Table-access links refer to the retrieval or modification of data in a table, view, or value-function. These
types of links require INSERT, SELECT, DELETE, or UPDATE permissions.

182

Chapter 9

14_597922 ch09.qxp 12/3/05 12:21 AM Page 182

Gated
In gated links, permissions are not checked once relationships have been verified. When a link is made
between two objects, permissions on the second object are checked only at the creation of the first object.

In SQL Server 2000, gated links are used for computed columns and fulltext-indexed columns. In SQL
Server 2005, gated links are used in the CLR to define a T-SQL entry point into assemblies. This simply
means that in order to execute a T-SQL entry point in a CLR-defined assembly, only appropriate permis-
sions are checked on the T-SQL entry point and not the assembly.

CLR Security Integration Goals
Integrating the CLR into SQL Server 2005 was a large process, and the following security goals were at
the top of the list:

❑ Any managed code running in SQL Server should not compromise the integrity and stability of
SQL Server.

❑ Any managed code running in SQL Server should not have unauthorized access to data or other
code in the database.

❑ There should be a method for restricting user code from accessing resources outside of the
server.

❑ Any user code running in SQL Server should not have unauthorized access to system resources
simply by running in a SQL Server engine process.

Summary
The same question posed to you at the beginning of the chapter is now asked of you again. If your boss
comes to you and says that he heard that SQL Server 2005 comes with CLR integration and asks you
what you think about using it in some of your application development, how will you answer now?

Let’s hope your answer will be a simple, “It depends,” as you then explain to him or her that simply uti-
lizing this technology may not be the best solution for you application and that you need to perform
careful research before jumping in.

Using the CLR in SQL Server 2005 can be a great benefit to your application if used wisely and appropri-
ately in certain situations. Finding that “certain situation” takes time, but it can add great benefits when
you find it. This chapter marks the end of the section on server-side XML processing.

The next several chapters deal with client-side XML processing. Chapter 10 specifically covers client-side
support for the xml data type.

183

CLR Support in SQL Server 2005

14_597922 ch09.qxp 12/3/05 12:21 AM Page 183

14_597922 ch09.qxp 12/3/05 12:21 AM Page 184

Part III:
Client-Side XML

Processing in SQL
Server 2005

Chapter 10: Client-Side Support for the xml data type

Chapter 11: Client-Side XML Processing with SQLXML 4.0

Chapter 12: Creating and Querying XML Views

Chapter 13: Updating the XML View Using Updategrams

Chapter 14: Bulk Loading XML Data Through the XML View

Chapter 15: SQLXML Data Access Methods

Chapter 16: Using XSLT in SQL Server 2005

15_597922 pt03.qxp 12/3/05 12:25 AM Page 185

15_597922 pt03.qxp 12/3/05 12:25 AM Page 186

Client-Side Support for the
xml data type

The last nine chapters have focused primarily on the xml data type within SQL Server 2005, from
the xml data type itself to indexing and querying the xml data type. By now you should have a
good grasp of the xml data type from the perspective of SQL Server. It is now time to change focus
and look at it from the other side, the client side.

This part of the book deals strictly with XML from the client side, starting with this chapter, which
discusses client-side support for the xml data type and introduces the SqlXml class. The SqlXml
class is the means by which the client can interface with the xml data type.

In this chapter, the following topics will be discussed:

❑ The SqlXml class and the CreateReader method

❑ Updating and inserting data with the SqlXml class

SqlXml Class
The SqlXml class is a new class in the System.Data.SqlTypes namespace. This class represents
XML data retrieved from, or stored in, SQL Server.

One of the benefits of the SqlXml class is that it contains an instance of the XmlReader-derived
type, providing fast, forward-only access to XML data. The SqlXml class implements the
INullable interface, allowing SqlTypes to contain null values.

The general syntax for using the SqlXml class is as follows:

Dim xml As SqlXml = SqlDataReader.GetSqlXml([column/index])

16_597922 ch10.qxp 12/3/05 12:25 AM Page 187

The SqlXml class, a method of the SqlDataReader class, returns the value of a specified column as
an XML value. It takes a zero-based column ordinal that specifies the column whose data you want to
return.

There are various methods available to the SqlXml class, but the most important method when dealing
with XML is the CreateReader method, which is outlined in the following section.

Introducing the CreateReader Method
The CreateReader method is a public method on the SqlXml class. It is what gets or returns the value of
the XML, always in the form of an XmlReader. It supports XML documents as well as XML fragments.

The general syntax for using the CreateReader method is as follows:

Dim sdr As SqlDataReader
Dim xml As SqlXml = sdr.GetSqlXml(0)
Dim xmlrdr As XmlReader = xml.CreateReader

The first line creates an instance of the SqlDataReader. The second line creates an instance of the SqlXml
class. The third line uses the CreateReader method of the SqlXml class to create an XmlReader. The
XmlReader can then be used to read and parse through XML documents and fragments.

Using the SqlXml Class
Before the example begins, the table and data need to be created and populated.

Open a query window in SQL Server Management Studio and execute the following T-SQL statements:

DROP TABLE Motocross
GO
CREATE TABLE Motocross (
[TeamID] [int] IDENTITY(1,1) NOT NULL,
[TeamInfo] [xml] NULL,

CONSTRAINT [PK_Motocross] PRIMARY KEY CLUSTERED
(
[TeamID] ASC

) ON [PRIMARY]
) ON [PRIMARY]
GO

INSERT INTO MOTOCROSS (TeamInfo)
VALUES (‘
<Motocross>
<Team Manufacturer=”Yamaha”>
<Rider>
<Name Class=”250”>Chad Reed</Name>
<Number>22</Number>

188

Chapter 10

16_597922 ch10.qxp 12/3/05 12:25 AM Page 188

</Rider>
<Rider>
<Name Class=”250”>David Vuillemin</Name>
<Number>12</Number>

</Rider>
<Rider>
<Name Class=”250”>Tim Ferry</Name>
<Number>15</Number>

</Rider>
<Rider>
<Name Class=”125”>Kelly Smith</Name>
<Number>123</Number>

</Rider>
<Rider>
<Name Class=”125”>Brock Sellards</Name>
<Number>18</Number>

</Rider>
<Rider>
<Name Class=”125”>Brett Metcalf</Name>
<Number>256</Number>

</Rider>
<Rider>
<Name Class=”125”>Danny Smith</Name>
<Number>31</Number>

</Rider>
</Team>

</Motocross> ‘)
GO

INSERT INTO MOTOCROSS (TeamInfo)
VALUES (‘
<Motocross>
<Team Manufacturer=”Kawasaki”>
<Rider>
<Name Class=”250”>James Stewart</Name>
<Number>259</Number>

</Rider>
<Rider>
<Name Class=”250”>Michael Byrne</Name>
<Number>26</Number>

</Rider>
</Team>

</Motocross> ‘)
GO

INSERT INTO MOTOCROSS (TeamInfo)
VALUES (‘
<Motocross>
<Team Manufacturer=”Suzuki”>
<Rider>
<Name Class=”250”>Ricky Carmichael</Name>
<Number>4</Number>

</Rider>
<Rider>
<Name Class=”125”>Davi Millsaps</Name>

189

Client-Side Support for the xml data type

16_597922 ch10.qxp 12/3/05 12:25 AM Page 189

<Number>188</Number>
</Rider>
<Rider>
<Name Class=”125”>Broc Hepler</Name>
<Number>60</Number>

</Rider>
<Rider>
<Name Class=”250”>Sebastien Tortelli</Name>
<Number>103</Number>

</Rider>
</Team>

</Motocross> ‘)
GO

INSERT INTO MOTOCROSS (TeamInfo)
VALUES (‘
<Motocross>
<Team Manufacturer=”Honda”>
<Rider>
<Name Class=”250”>Jeremy McGrath</Name>
<Number>2</Number>

</Rider>
<Rider>
<Name Class=”250”>Ernesto Fonseca</Name>
<Number>24</Number>

</Rider>
<Rider>
<Name Class=”250”>Travis Preston</Name>
<Number>70</Number>

</Rider>
<Rider>
<Name Class=”250”>Andrew Short</Name>
<Number>51</Number>

</Rider>
</Team>

</Motocross> ‘)
GO

Now that the data is in place, you are ready to write some code. Open the Visual Studio test application
you have been using and open the main form in Design View. Add a new button and text box to the
form. Set the following properties for the button:

Property Value

Text SqlXml Class

Name cmdSqlXml

Location 12, 12

Next, set the properties for the text box as follows:

190

Chapter 10

16_597922 ch10.qxp 12/3/05 12:25 AM Page 190

Property Value

Name txtResults

Multiline True

ScrollBars Vertical

Location 12, 62

Size 446, 196

With the properties set on the controls, double-click on the button to view the code behind it.

To begin the example, first make sure that the following Imports statements are declared in your form
in the declaration section:

Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports System.Xml

Next, add the following code in the click event of the button:

Dim Connection As SqlConnection
Dim Command As SqlCommand

Connection = New SqlConnection
Command = New SqlCommand

Try
‘ENTER YOUR OWN USER NAME AND PASSWORD
Connection.ConnectionString = “Server=localhost;Database=Wrox;UID=;PWD=”

Connection.Open()

Command.Connection = Connection
Command.CommandText = “SELECT TeamInfo FROM Motocross”

Dim r As SqlDataReader = Command.ExecuteReader
r.Read()

Dim xml As SqlXml = r.GetSqlXml(0)
Dim xmlrdr As XmlReader = xml.CreateReader
xmlrdr.Read()
Me.txtResults.Text = xmlrdr.ReadOuterXml()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Command.Dispose()
Connection.Close()

191

Client-Side Support for the xml data type

16_597922 ch10.qxp 12/3/05 12:25 AM Page 191

Run the project by pressing F5 or by selecting Start Debugging from the Debug menu. When the form
comes up, click the SqlXml Class button. Figure 10-1 shows the results of the query.

Figure 10-1

In this example, the SqlDataReader reads the selected rows from the Motocross table, and then the
GetSqlXml method is called to retrieve the value from the first column (specified by the value 0). The
CreateReader method is then created from the SqlXml class to retrieve the XML content of the SqlXml
as an XmlReader, which allows for the reading of the access and reading of the XML document content.
The retrieved XML content is then displayed in the text box as shown in the previous figure.

In the example, the results displayed only the first record retrieved from the table, but in actuality all
four records were returned by the query. The four records can be displayed by simply looping through
the result set and displaying the XML by modifying the code from the example.

The SqlDataReader, XmlReader, and SqlXml class are still necessary to return the data as before, but
this time it is necessary loop through the result set.

Modify the Click event code for the SqlXml button as follows:

Dim Connection As SqlConnection
Dim Command As SqlCommand

Connection = New SqlConnection
Command = New SqlCommand

Try

‘ENTER YOUR OWN USER NAME AND PASSWORD
Connection.ConnectionString = “Server=vssql2005;Database=Wrox;UID=;PWD=”

Connection.Open()

Command.Connection = Connection
Command.CommandText = “SELECT TeamInfo FROM Motocross”

Dim r As SqlDataReader = Command.ExecuteReader
Dim xml As SqlXml
Dim xmlrdr As XmlReader
Dim StrVal As String = “”

192

Chapter 10

16_597922 ch10.qxp 12/3/05 12:25 AM Page 192

Do While r.Read()
xml = r.GetSqlXml(0)
xmlrdr = xml.CreateReader
xmlrdr.Read()
StrVal += xmlrdr.ReadOuterXml() + Chr(13) + “-----------------------” + Chr(13)

Loop
Me.txtResults.Text = StrVal

Catch ex As Exception
MessageBox.Show(ex.Message)
End Try

Command.Dispose()
Connection.Close()

The changes made to the Click event now allow for the display of all the records. A SqlDataReader is
still created, but the difference in the code is that a Do-While loop is used to loop through all the records
returned. With each loop of the Do-While loop, a Read() is executed to read and retrieve the next record
from the SqlDataReader. Then the same code used in the previous example, the GetSqlXml and
CreateReader methods, are used to read the XML from the first column.

Figure 10-2 shows the results of the TeamInfo column returned from all the rows.

Figure 10-2

Returning the entire XML document of one or all of the records is great functionality if that is the
requirement, but what if the requirement is to return a particular value or set of values from the XML
document? This can be accomplished just as easily with only a little modification.

In this next example, each rider and their associated bike class is returned for the first row in the table.

Modify the Click event code behind the button as follows:

Dim Connection As SqlConnection
Dim Command As SqlCommand

Connection = New SqlConnection

193

Client-Side Support for the xml data type

16_597922 ch10.qxp 12/3/05 12:25 AM Page 193

Command = New SqlCommand

Try

‘ENTER YOUR OWN USER NAME AND PASSWORD
Connection.ConnectionString = “Server=localhost;Database=Wrox;UID=;PWD=”

Connection.Open()

Command.Connection = Connection
Command.CommandText = “SELECT TeamInfo FROM Motocross”

Dim r As SqlDataReader = Command.ExecuteReader
r.Read()

Dim xml As SqlXml = r.GetSqlXml(0)
Dim xmlrdr As XmlReader = xml.CreateReader
Do While xmlrdr.Read()

Dim i As Integer
For i = 0 To xmlrdr.AttributeCount - 1
xmlrdr.MoveToAttribute(i)

Me.txtResults.Text += xmlrdr.Name + “=” + xmlrdr.Value + vbCrLf
Next i
xmlrdr.MoveToContent()
If xmlrdr.Name = “Name” Then

Me.txtResults.Text += xmlrdr.Name + “=” + xmlrdr.ReadElementString + vbCrLf
End If

‘Move to the next element element.
xmlrdr.MoveToElement()

Loop

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Command.Dispose()
Connection.Close()

Figure 10-3 shows each rider with his associated bike class. This example uses the same method as the
previous examples. A SqlDataReader is used to retrieve the data from the xml data type column
TeamInfo. The GetSqlXml method is then used to access the xml data field in the rowset of the
SqlDataReader.

194

Chapter 10

16_597922 ch10.qxp 12/3/05 12:25 AM Page 194

Figure 10-3

The CreateReader method is used to retrieve the value of the XML content of the SqlXml class as an
XmlReader, which is then used to read and display the results in the text box as shown in Figure 10-3.

The XML document is read, looping through the document, reading each element and attribute looking
for a specific element name. Every time the specified element is found, the value of that element is read,
as is the corresponding Class attribute, and those values are written to the output window.

Updating and inserting data using the SqlXml class is not that much different from the previous exam-
ples, and actually is quite easy. The following examples demonstrate updating existing records and
inserting new records using the SqlXml class.

Updating Data with the SqlXml Class
The first example in this section updates an existing xml data type column. First, execute the following
SQL statement that inserts a new row into the Motocross table with a NULL value for the xml data type
column. Open a SQL query window in SQL Server Management Studio and execute the following
INSERT statement:

INSERT INTO Motocross SELECT NULL
GO

To verify the data in the table, run a query to select all the data from the table. Figure 10-4 shows the
table with five rows, including the row with a NULL value for the TeamInfo column you just inserted.

Figure 10-4

195

Client-Side Support for the xml data type

16_597922 ch10.qxp 12/3/05 12:25 AM Page 195

The NULL value in the record just created is updated and replaced with a valid XML document in the fol-
lowing example.

For this next example, add a new button to the form, setting the following properties:

Property Value

Text SqlXml Class 2

Name cmdSqlXml2

Location 118, 12

Double-click the newly added button to view the code behind it, and add the following code:

Dim Connection As SqlConnection
Dim Command As SqlCommand

Dim XmlStr As String

Connection = New SqlConnection
Command = New SqlCommand

XmlStr = “<Motocross><Team Manufacturer=’Kawasaki’ Sponsor=’Pro Circuit’>” & _
“<Rider><Name Class=’125’>Grant Langston</Name><Number>8</Number>” & _
“</Rider></Team></Motocross>”

Try

‘ENTER YOUR OWN USER NAME AND PASSWORD
Connection.ConnectionString = “Server=localhost;Database=Wrox;UID=;PWD=”

Connection.Open()

Command.Connection = Connection
Command.CommandText = “UPDATE Motocross SET TeamInfo = @xmlvar WHERE TeamID = 5”

Dim sqlparam As SqlParameter = Command.Parameters.Add(“@xmlvar”,
Data.SqlDbType.Xml)
sqlparam.Value = New SqlXml(New XmlTextReader(XmlStr, XmlNodeType.Document,

Nothing))
Command.ExecuteNonQuery()

Me.txtResults.Text = “SUCCESS!”

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Command.Dispose()
Connection.Close()

196

Chapter 10

16_597922 ch10.qxp 12/3/05 12:25 AM Page 196

Save the project and run the program. Click the new button you just added. The word “SUCCESS!” will
display in the text box to let you know the code has finished running and that the update was successful.

To validate that the insert was successful, open a SQL query window in SQL Server Management Studio
and execute a query to return all the rows in the Motocross table. Figure 10-5 shows the results of the
update.

Figure 10-5

In this example, you used the SqlXml class together with the UPDATE statement to update the NULL col-
umn for the record recently created. You used the SqlCommand class to execute an UPDATE statement,
which included a variable to hold the place of a SqlParameter. You used the Parameter property to
add a parameter to the UPDATE statement, which is set in the @xmlvar variable. Notice that you specified
the parameter type as an xml type by using the Data.SqlDbType.Xml property. The update resulted in
the replacement of the NULL value with the XML document contained in the XmlStr variable.

You use the SqlXml class to set the parameter value with the XmlTextReader class to provide the XML
document, held in the XmlStr variable, to the SqlCommand parameter collection.

When the UPDATE statement executes, the @XmlVar variable is passed to the UPDATE statement to be
used, and the value is inserted into the TeamInfo column.

Inserting Data with the SqlXml Class
This next example uses the same technique to insert a new record into the Motocross table. Modify the
code behind the SqlXml Class 2 button used in the previous example as follows:

Dim Connection As SqlConnection
Dim Command As SqlCommand

Dim XmlStr As String

Connection = New SqlConnection
Command = New SqlCommand

XmlStr = “<Motocross><Team Manufacturer=’Kawasaki’ Sponsor=’Factory Connection’>”&_
“<Rider><Name Class=’250’>Mike LoRocco</Name><Number>5</Number></Rider>” & _
“<Rider><Name Class=’250’>Kevin Windham</Name><Number>14</Number></Rider>” & _
“</Team></Motocross>”

Try

‘ENTER YOUR OWN USER NAME AND PASSWORD

197

Client-Side Support for the xml data type

16_597922 ch10.qxp 12/3/05 12:25 AM Page 197

Connection.ConnectionString = “Server=localhost;Database=Wrox;UID=;PWD=”

Connection.Open()

Command.Connection = Connection
Command.CommandText = “INSERT INTO Motocross (TeamInfo) VALUES (@xmlvar)”

Dim sqlparam As SqlParameter = Command.Parameters.Add(“@xmlvar”,
Data.SqlDbType.Xml)
sqlparam.Value = New SqlXml(New XmlTextReader(XmlStr, XmlNodeType.Document,

Nothing))
Command.ExecuteNonQuery()
Me.txtResults.Text = “SUCCESS!”

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Command.Dispose()
Connection.Close()

Run the program and click the button. As in the previous example, the text box displays “SUCCESS!”
when the code executes.

In a query window in SQL Server Management Studio, execute a query to select all the rows from the
Motocross table. Figure 10-6 shows the newly added record.

Figure 10-6

This example was really no different from the previous example. Instead of issuing an UPDATE state-
ment, you issued an INSERT statement instead. The method of creating and passing the parameters
remains the same using the SqlXml class and XmlTextReader.

Summary
The purpose of this chapter was to introduce you to the SqlXml class of the System.Data.SqlTypes
namespace, and to show you how you can interface with the xml data type on the client side. The chap-
ter provided an overview of the SqlXml class, introduced the CreateReader method, and gave the gen-
eral syntax, to help provide an idea of how both SqlXml and CreateReader are used to query and read
XML documents on the client. The remainder of the chapter was dedicated to a number of examples
using the SqlXml class and CreateReader method.

In the next chapter, you’ll learn about client-side processing with SQLXML 4.0.

198

Chapter 10

16_597922 ch10.qxp 12/3/05 12:25 AM Page 198

Client-Side XML Processing
with SQLXML 4.0

The previous chapter focused on client-side support for the xml data type and briefly introduced
the technologies contained in SQLXML. Realistically, the xml data type in SQL Server is no good if
you can’t do anything with it from the client side.

The next few chapters focus on SQLXML and XML processing. When SQLXML 3.0 was released,
it provided many welcome capabilities, such as Web Service support, as well as enhancements to
existing features like XML bulk load, updategrams, and annotated XSD schemas.

SQLXML 4.0, which comes with SQL Server 2005, adds features such as client-side support for the
xml data type and the new SQL Native Client provider, and builds on existing features such as
client-side formatting with FOR XML.

The next five chapters focus entirely on client-side processing with SQLXML 4.0, with the focus
of this chapter being the enhancements made to SQLXML and an introduction to the new SQL
Native Client. The SQL Native Client is discussed in more detail in Chapter 20 when the topic of
SQLXML data access methods is highlighted.

The topics of discussion for this chapter are as follows:

❑ Introduction to SQL Native Client

❑ ADO and SQLXML 4.0 classes

❑ Client-side formatting with FOR XML

17_597922 ch11.qxp 12/3/05 12:22 AM Page 199

SQL Native Client
SQL Server 2005 introduces a new technology that combines the earlier data access technologies, such as
the ODBC driver and OLE DB provider, and replaces them with the SQL Native Client. This new data
access client is an API that combines both the ODBC driver and OLE DB provider into single interface.
Besides combining these components, this DLL, called sqlncli.dll, also includes additional features
such as support for the xml data type and UDTs (user-defined types).

In earlier versions of SQLXML, query execution over HTTP was accomplished using SQLXML virtual
directories and the SQLXML ISAPI filter. During the installation of previous versions of SQLXML, a util-
ity called the IIS Virtual Directory Management for SQLXML, shown in Figure 11-1, was installed, which
gave users the ability to configure IIS virtual directories and run templates via HTTP.

Figure 11-1

Both of these components were removed from SQLXML 4.0 and replaced with two options. The first
option is the native SQL Server 2005 Web Service functionality, discussed in detail in Chapter 17. The sec-
ond option is to utilize the SQL Native Client and the ADO (ActiveX Data Object) extensions built into
SQLXML 4.0, which is discussed in this chapter. Both of these technologies accomplish the same task, but
give the developer more XML formatting options. Likewise, it does not take a complete application
rewrite to accommodate either of these options.

The design goal of the SQL Native Client is to make an easy way to access data from SQL Server, regardless
if you are using OLE DB or ODBC. Since the SQL Native Client combines both of those into a single
interface, a developer can easily adapt to this new client without completely rewriting the application or
changing any of the data access components.

The SQL Native Client uses many of the components of MDAC (Microsoft Data Access Components)
and will work with version 2.6 or higher, or any version that is installed with Windows 2000 SP3 or later.
As you will see in the next section, the SQL Native Client also works with ADO (ActiveX Data Objects),
providing access to all SQL Native Client functionality via ADO.

The following list details the benefits and features of using the SQL Native Client:

❑ xml data type: Provides support for the xml data type on the client side.

❑ User-defined types: Provides support for UDTs on the client side.

❑ Execution of multiple result sets: Provides the capability to execute and return multiple result
sets via a single connection.

200

Chapter 11

17_597922 ch11.qxp 12/3/05 12:22 AM Page 200

❑ Asynchronous operation: Methods are now returned immediately, eliminating calling thread
blocking issues.

❑ Password expiration: Users can now change their expired passwords without administrator
intervention.

SQL Native Client and MDAC Differences
Both the SQL Native Client and MDAC provide access to SQL Server, but you need to understand the
numerous differences between them. The SQL Native Client incorporates many of the MDAC components,
but it is specifically designed to work with the new features and enhancements made to SQL Server 2005.
For example, MDAC by itself does not support the SQL Server 2005 xml data type, but the SQL Native
Client does.

Following is a list that highlights some of the areas where the SQL Native Client and MDAC differ:

❑ SQL Native Client does not support connection pooling, memory management, and other
MDAC-accessible features.

❑ SQL Native Client does not support SQLXML integration.

❑ SQL Native Client supports only SQL Server version 7.0 and higher.

❑ SQL Native Client supports only the OLE DB and ODBC interfaces.

❑ To make distribution easier, all the necessary data access functionality in the SQL Native Client
has been included in a single DLL interface.

This list is not exhaustive, as it is intended to highlight the bigger differences between the two technologies.
The intent of the SQL Native Client is to simplify data access to SQL Server. The client tools for SQL Server
are available for those who need a broader range of data access.

Deployment Considerations
The SQL Native Client is installed by default when you install SQL Server 2005 and you can also install
it as a separate component for client installations. The installation file, SQLNCLI.msi, is on the SQL
Server 2005 installation CD; you use it to install the SQL Native Client on client computers.

By separating this component into its own install component, SQL Native Client can be more easily
distributed, and even included in an application’s installation routine. For now, the SQL Native Client
install runs in silent mode only.

xml Data Type Support
When you query an xml data type column using the SQL Native Client, the results are returned either as
a text stream or an ISequentialStream.

The ISequentialStream interface is the preferred method for reading and writing BLOBs (Binary Large
Objects). If you recall Chapter 4’s discussion of the xml data type, XML documents and XML instances
are stored in the xml data type column and BLOBs, and therefore can either be returned on the client
side as strings, or by using the ISequentialStream interface.

201

Client-Side XML Processing with SQLXML 4.0

17_597922 ch11.qxp 12/3/05 12:22 AM Page 201

CreateReader()
The SQLXML class also contains a method called CreateReader(), which returns the results of a query
as an XMLReader instance, ready to read the XML. This access is available via ADO.NET 2.0 of the .NET
Framework and is discussed in greater detail in Chapter 23.

SQLXML 4.0 Queries with ADO
One of the biggest design goals of SQLXML 4.0 was to make data access easier without having to rewrite
an entire application. As stated previously, one of the options for data access is to utilize the ADO exten-
sions built into SQLXML 4.0. These extensions were first introduced in early versions of the Microsoft
Data Access Components (MDAC) library, so they are available as long as MDAC 2.6 or later is present.

This section demonstrates a couple of examples using SQLXML with ADO to query data and format the
returned information into XML using client-side XML formatting.

Open a query window in SQL Server Management Studio, type in the following T-SQL statement, and
execute it against the AdventureWorks database. This code creates a stored procedure called
GetProducts, which returns the ProductID and ProductName columns:

CREATE PROCEDURE GetProducts
AS

SELECT ProductID, Name, ProductNumber
FROM Production.Product

GO

In Visual Studio 2005, create a new Visual Basic Windows project. Name the project SqlCliTestApp and
click OK. The project creates a new form called Form1. Open this form in design view, and from the tool-
box on the left side of the designer, drop a text box and button onto the form.

For the text box, set the following properties to the corresponding values:

Property Value

multiline True

ScrollBars Vertical

Width 391

Height 109

Name txtResults

For the button, set the following properties to the corresponding values:

202

Chapter 11

17_597922 ch11.qxp 12/3/05 12:22 AM Page 202

Property Value

Name cmdADOExample

Text ADO Example

Prior to entering any code, you need to add the appropriate references. From the Project menu, select
Add Reference. In the Add Reference dialog, select the COM tab and scroll down and select Microsoft
ActiveX Data Objects 2.8 Library (see Figure 11-2). Click OK.

Figure 11-2

Now that you have appropriate references set, double-click the button on Form1 to display the code
window. In the Click event for the cmdADOExample button, enter the following code:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String
Dim dbGuid As String
Dim Userid As String
Dim Password As String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

dbGuid = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”

strconn = “Provider=SQLXMLOLEDB;Data Provider=SQLNCLI;Server=localhost;” & _

203

Client-Side XML Processing with SQLXML 4.0

17_597922 ch11.qxp 12/3/05 12:22 AM Page 203

“Database=AdventureWorks”

Userid = “Type your username here”
Password = “Type your password here”

Me.Cursor = Cursors.WaitCursor

Try
conn.Open(strconn, Userid, Password)
cmd.ActiveConnection = conn

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:query client-side-xml=””1””>EXEC GetProducts FOR XML NESTED” & _
“</sql:query></ROOT>”

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Me.Cursor = Cursors.Default

To run this example, press F5 or select Start from the Debug menu. When Form1 opens, click the ADO
Example button. When you press the button, a connection is made to the specified SQL Server 2005
instance and database. The template query is then passed to the command object and executed.

The first line to notice is the SQLXMLOLEDB provider command object, which can only execute to a
Stream; thus the few lines of code set the OutputStream property value to a Stream and execute it to
a Stream.

Focus on the template query for a moment. There are two pieces that should stand out. The first is the
client-side-xml=1 attribute in the <sql:query> element. This tells the SQL Server that the XML format-
ting will be done on the client side. When the stored procedure is executed the results are returned to the
middle tier for XML formatting.

The second item to take note of is the FOR XML NESTED clause after the stored procedure name. Even
though the FOR XML clause is passed to SQL Server, it is ignored because the client-side-xml
attribute is set to 1. When the results are retuned from SQL Server, the FOR XML clause is then applied
to the results.

The remaining section of code sets the Stream position and Stream Character set, and then displays
those results in the text box.

204

Chapter 11

17_597922 ch11.qxp 12/3/05 12:22 AM Page 204

Figure 11-3 shows the results of the query.

Figure 11-3

The previous example used a SQL Server stored procedure to query and return data from a table, and
then passed the results back to the client for formatting. The same can be accomplished by passing in a
T-SQL statement directly, as shown in the following example:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String
Dim dbGuid As String
Dim Userid as String
Dim Password as String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

dbGuid = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”

strconn = “Provider=SQLXMLOLEDB;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Userid = “Type your SQL Server Login here”
Password = “Type your SQL Server Password HERE”

Me.Cursor = Cursors.WaitCursor

Try
conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:query client-side-xml=””1””>” & _
“SELECT ProductID, Name, ProductNumber” & _
“FROM Production.Product FOR XML NESTED” & _
“</sql:query></ROOT>”

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream

205

Client-Side XML Processing with SQLXML 4.0

17_597922 ch11.qxp 12/3/05 12:22 AM Page 205

cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Me.Cursor = Cursors.Default

Run the project by pressing F5. The results are the same; the only difference is that the first executed a
stored procedure while the second passed in the T-SQL statement. The main thing to notice between the
two is the similarity in the FOR XML clause at the end of each. In the first example, the FOR XML clause
was appended to the end of the stored procedure, telling SQL Server that the XML formatting will be
done at the client. The same principle applies to the second example. The FOR XML clause was appended
to the T-SQL statement, telling SQL Server to return the results to the client and let the client do the XML
formatting. In either case, the results of the XML formatting are the same.

This example is really no different from the first example. The entire T-SQL statement, including the
FOR XML clause, is passed to SQL Server for execution, but the FOR XML clause is ignored because the
client-side-xml attribute is set to a value of 1. Just like the first example, the query is executed on
the server and the results are passed back to the middle for formatting, which is then passed to the client.
Both of these examples utilize the SQL Native Client as the data provider, which is specified in the con-
nection string.

This section provided a quick introduction to SqlXml 4.0 and ADO and how they can be used to return
and format XML on the client. Now that you have the foundation, it is time to dig deeper into client-side
formatting with FOR XML.

Client-Side Formatting with FOR XML
Formatting XML on the client side is not new. The FOR XML clause has been around for quite a while and
has provided great benefits when it comes to client-side XML formatting. There are two main reasons
why you would want to consider client-side XML formatting.

First, client-side formatting provides a more balanced workload on the server. By letting the client provide
the formatting, the server is freed up for other processes.

Second, existing stored procedures do not have to be modified for client-side XML formatting. As long as
the stored procedure returns a single result set, client-side XML formatting can be applied to the results
returned from the stored procedure. The first example in the previous section used a stored procedure to
query data from the Production.Product table using the following syntax:

EXEC GetProducts FOR XML NESTED

206

Chapter 11

17_597922 ch11.qxp 12/3/05 12:22 AM Page 206

The syntax of the GetProducts stored procedure, as seen a few pages ago, contains no XML formatting
because the XML formatting happens on the client side. Thus, the GetProducts stored procedure did
not have to be modified.

This section focuses entirely on the client-side enhancements to FOR XML and walks through some examples
to help you become familiar with the client-side FOR XML clause. The next section begins by discussing the
SqlXml architecture and moves on to discussing a deeper discussion of client-side formatting with some
examples.

SQLXML Architecture
XML documents can be formatted on either the client side or the server side. In server-side formatting,
which was covered in depth in Chapter 8, the command is sent from the client to the server. The server
processes the command and formats the results in XML and sends it back to the client.

There are two options when using server-side formatting. The first is to use the SQLXMLOLEDB provider,
which uses the new SqlXmo4.dll that is installed when you install SQLXML 4.0. This new DLL is
similar to the previous version of the DLL, sqlxmlx.dll. It provides all the necessary XML formatting
capabilities and extensions to format your query results into XML. The second option is to use the
SQLOLEDB provider, which comes with MDAC (Microsoft Data Access Components) 2.6 or later. The
SQLOLEDB provider includes the same SQLXML functionality as the previous version of the SqlXml.dll,
Sqlxml.dll (notice this did not say Sqlxml4.dll). In both of these scenarios, SQL Server 2005 is
required. If you want to use SQLOLEDB and still get the Sqlxml4 flexibility, the SQLXML version needs
to be set in the SQLOLEDB connection object. Regardless of what provider you use, the XML is formatted
on the server and returned to the client.

For client-side XML formatting, SQLXML 4.0 uses the SQLXMLOLEDB provider, which passes the command
from the client to the server for execution. The SQL Server 2005 server generates a rowset with the
results, and hands it back to the client for formatting, performed against the returned rowset.

Choosing Between Client-Side and Server-Side XML
Formatting

There is a handful of formatting differences in SQLXML when deciding between client-side and server-
side XML formatting.

First and foremost, the use of queries that generate multiple result sets is not supported. This was true of
SQLXML 3.0 and still applies in SQLXML 4.0. For example, the following query generates an error:

<Root nsxml:sql=”urn:schemas-microsoft-com:xml-sql”
<sql:query>
SELECT Name, ProductNumber FROM FROM Production.Product FOR XML NESTED;
SELECT Description FROM Production.ProductDescription FOR XML NESTED

</sql:query>
</Root>

SQLXML cannot format multiple result sets, so it throws an error. The way to get around this is to exe-
cute each query individually.

207

Client-Side XML Processing with SQLXML 4.0

17_597922 ch11.qxp 12/3/05 12:22 AM Page 207

With variants, variant types are converted to strings (Unicode) when formatting is done on the client
side. Because of this, variant subtypes are also not used.

When XML is formatted on the client, the NESTED mode is very similar to the server-side AUTO mode
except when you query views. When you query views on the server using the AUTO mode, the view
name is returned as the element name when the XML results come back. When you specify client-side
using the NESTED mode, the base table names that the view is based on are used as the element name.

FOR XML Modes
The syntax for client-side XML formatting with FOR XML is nearly the same as server-side XML format-
ting. All the modes are supported, plus an additional mode specific to the client side for XML formatting.
This section explains what is new in FOR XML in SQLXML 4.0.

The basic syntax for the FOR XML clause is as follows:

FOR XML [mode]

The following modes can be used with client-side XML formatting:

❑ RAW

❑ EXPLICIT

❑ NESTED

The RAW and EXPLICT modes were discussed in detail in Chapter 8, so only the NESTED mode is dis-
cussed here. You can also specify AUTO mode; however, the difference with AUTO mode on the client side
is that the entire query is sent and executed on the server. This is by design as a convenience.

The NESTED and AUTO modes are very similar, with very few differences between the two.

First, when you use NESTED mode on the client side, the table names are returned as element names in the
XML that is returned. More important, when you specify a table alias, the alias name is ignored. For exam-
ple, the following template query returns the ProductID and Name from the Production.Product table:

<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml- sql’>
<sql:query client-side-xml=”1”>
SELECT ProductID, Name FROM Production.Product P FOR XML NESTED

</sql:query>
</ROOT>

When you execute this query, the results returned use the table name as element names and the alias is
ignored, as follows:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<Production.Product ProductID=”1” Name=”Adjustable Race” />
<Production.Product ProductID=”2” Name=”Bearing Ball” />

</ROOT>

208

Chapter 11

17_597922 ch11.qxp 12/3/05 12:22 AM Page 208

Take the same template query, but change it as follows:

<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml- sql’>
<sql:query client-side-xml=”0”>
SELECT ProductID, Name FROM Production.Product P FOR XML AUTO

</sql:query>
</ROOT>

When this template query is executed, the table alias name is used as the element name when FOR XML
AUTO is used and server-side XML formatting is specified:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<P ProductID=”1” Name=”Adjustable Race” />
<P ProductID=”2” Name=”Bearing Ball” />

</ROOT>

Second, querying a view using AUTO mode and NESTED mode has different results. Open a query window
and create a view using the following T-SQL statement:

CREATE VIEW vw_ProductInfo AS (
SELECT ProductID, Name, ProductNumber
FROM Production.Product)

Next, modify the original template query, making the following changes:

<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>
<sql:query client-side-xml=”1”>
SELECT * FROM vw_ProductInfo FOR XML NESTED

</sql:query>
</ROOT>

When you execute this template query, the results will have the table name as the element name, just as
in the first example.

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<Production.Product ProductID=”1” Name=”Adjustable Race” />
<Production.Product ProductID=”2” Name=”Bearing Ball” />

</ROOT>

Next, modify the template query making the following changes:

<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>
<sql:query client-side-xml=”0”>
SELECT * FROM vw_ProductInfo FOR XML AUTO

</sql:query>
</ROOT>

This time when the query is executed, the view name is used as the element names, as follows:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<vw_ProductInfo ProductID=”1” Name=”Adjustable Race” />
<vw_ProductInfo ProductID=”2” Name=”Bearing Ball” />

</ROOT>

209

Client-Side XML Processing with SQLXML 4.0

17_597922 ch11.qxp 12/3/05 12:22 AM Page 209

Summary
The intent of this chapter was to introduce you to three important topics that are discussed in more
detail later on in the book. The first is the SQL Native Client. This new data access client will surely earn
its keep, if only by simplifying data access to SQL Server.

The second topic was using ADO with SQLXML 4.0, and the functionality it replaced over previous ver-
sions of SQLXML, plus the new features and enhancements such as the SQL Native Client and support
for the xml data type. Many of you have experience with the SQLXML IIS configuration tool, which
enabled you to configure IIS websites to work with template queries. Again, Microsoft is going after sim-
plicity while reducing the redundancy in the technology. By combining ADO with SQLXML, developers
have a single method of data access when they want to use ADO.

There were some changes and improvements made to FOR XML on the client side, and the goal for this
chapter was simply to point out what is new and help you understand the new architecture and how
SQLXML now deals with the new xml data type.

In the next chapter, you learn how to create XML views and use them to query relational tables within
SQL Server.

210

Chapter 11

17_597922 ch11.qxp 12/3/05 12:22 AM Page 210

Creating and Querying
XML Views

Some new technology you learned about in the last chapter will be fundamental throughout the
next few chapters. The first topic covered in the last chapter dealt with the new SQL Native Client
that provides improved data access functionality. The second topic dealt with using ADO to
execute SQLXML queries in SQLXML 4.0, which allows for easier query capabilities when you
want to format XML results. The information gathered from these two sections will be useful
throughout the next few chapters.

This chapter (as well as the next two chapters) focuses on the topic of XML views. This chapter
introduces the topic of XML views with the majority focusing on how to create views, how to
query views, and how to map views back to the relational data.

Specifically, this chapter covers the following topics:

❑ Introduction to XML views, annotation, and XSD schemas

❑ Querying XML views

❑ Best practices

The first section covers all the information you need to understand and work with XML views,
followed by a section full of examples putting all the new knowledge to work learning how to
query the views.

XML Views and XSD Schemas
A brief history first. When FOR XML was introduced in SQL Server 2000, the only option available
for shaping the XML on the client side was the FOR XML clause with the RAW, AUTO, and EXPLICIT
modes. Each mode provided a different level of shaping and was more complex than the other to
work with. As you learned in Chapter 8, using the EXPLICIT mode was a major undertaking, but
provided the greatest flexibility when shaping XML.

18_597922 ch12.qxp 12/3/05 12:20 AM Page 211

XML views were created with the purpose in mind of giving developers another option to reshape their
XML with more complexity, more so than the RAW and AUTO modes, but on the level of the EXPLICIT
mode, without having to struggle to understand the EXPLICIT mode.

If you are already dealing with XML, then moving to XML views is not overly complicated. In fact, it is
quite easy; simply a matter of modifying the schema associated to your XML document, and voila, an
XML view.

XML views are also known as annotated schemas or mapping schemas and are created by adding specific
annotations to any XSD schema. These annotations provide the mapping to the database, specifically the
table and columns, on which the schema is based. Or, in other words, the annotations provide a view to
the relational table.

With these annotations in place, other SQLXML technologies such as XPath can use this XML view to
query and update the relational tables on which the XML view is based.

A typical minimal XSD schema looks like this:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
Xmlns:sql=”urn:schemas-microsoft-com”>
...

</xsd:schema>

When you create a mapping schema, the minimum mapping schema declaration is needed in the XSD
schema as follows:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
Xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
...

</xsd:schema>

The only difference is the addition of the mapping-schema part of the namespace, which signifies that
this schema will map back to the database and table. With the introduction out of the way, the following
several sections detail the various annotations available when creating XML views.

sql:field
In its simplest terms, the sql:field annotation maps an XML element or attribute to a column in a
database table. For example, take the following schema:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”Product” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”ProdName”
type=”xsd:string” />

<xsd:element name=”ProdNum”
type=”xsd:string” />

</xsd:sequence>
<xsd:attribute name=”ProdID” type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

212

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 212

Adding annotations to the schema provides mapping back to the table and columns on which the table is
based, thus turning this schema into an XML view. The following example modifies the schema above,
adding the sql:field and sql:relation annotations to specify the table and column names that the ele-
ments and attributes map to (the sql:relation annotation is covered in more detail in the next section):

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
<xsd:element name=”Product” sql:relation=”Production.Product” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”ProdName”
sql:field=”Name”
type=”xsd:string” />

<xsd:element name=”ProdNum”
sql:field=”ProductNumber”
type=”xsd:string” />

</xsd:sequence>
<xsd:attribute name=”ProdID”

sql:field=”ProductID”
type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

Adding annotations in an XSD schema, like the one here, specifies the XML to relational mapping. In the
example, the sql:relation annotation specifies the table in which this schema retrieves its informa-
tion. The sql:field annotations specify from which columns in the table the schema retrieves its infor-
mation for the specified elements or attributes.

sql:field cannot specify an empty element.

Now that you’ve added the annotations, you can query this XML view using XPath returning an XML
document. Querying XML views is covered later in this chapter.

sql:relation
You use the sql:relation annotation to map a node in the XSD schema to a database table, specifically
the table on which the XML document and schema is based. The value of the annotation holds the name
of the table.

sql:relation annotations, when specified on an element node, apply the annotation to all other ele-
ments and attributes within the complex type definition under which the sql:annotation is specified.

The syntax for specifying a sql:relation annotation is as follows:

sql:relation = “tablename”

In this example, the sql:relation annotation maps the XSD schema to the Production.Product table in
the AdventureWorks database by specifying the table name for the value of the annotation as follows:

sql:relation=”Production.Product”

213

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 213

In this example, the sql:relation annotation was used to map the Production.Product table to the
XML node in the XSD schema:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
<xsd:element name=”Product” sql:relation=”Production.Product”>
<xsd:complexType>
...
</xsd:complexType>

</xsd:element>
</xsd:schema>

There are times when a table name and column name are valid in SQL Server but not in XML. For exam-
ple, a valid column name such as Product Name is valid in SQL Server, but invalid in XML. In these
cases, the sql:relation annotation comes in handy, as the sql:relation annotation can be used to
specify the mapping to the table:

<xsd:element name=”Name”
sql:relation=”[Product Name]”
type=”xsd:string” />

There is really not much to the sql:relation annotation, but you can do a lot more with the XML view.
For example, you can relate elements within an XML document to each other with the sql:relationship
annotation, which is the subject of the next section.

sql:relationship
The sql:relationship annotation provides the capability to relate elements within an XML document
and nest elements hierarchically. In an XSD schema, this annotation nests the elements by the primary
and foreign key relationships of the tables on which the schema is based, or in other words, on which the
elements map.

The syntax for using the sql:relationship annotation is as follows:

<sql:relationship name=”relationshipname”
parent=”parenttablename”
parent-key=”parentprimarykey”
child=”childtablename”
child-key=”parentkey”/>

When you specify the sql:relationship annotation in an XSD schema, the following must be present:

❑ A parent table and a child table

❑ A join condition

For example, a product can have multiple product reviews; therefore, a <product> element can have
<productreview> subelements. Continuing the example, the <product> element maps to the Production
.Product table and the <productreview> element maps to the Production.ProductReview table, linked
together via the ProductID, thus satisfying the join condition. The relationship between the elements is
handled by the sql:relationship annotation.

214

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 214

The following list contains the attributes available with the sql:relationship annotation, which
provide the relationship mapping between the tables. These attributes can be used only with the
sql:relationship annotation:

❑ Name: The name of the relationship; must be unique.

❑ Parent: The name of the parent table.

❑ Child: The name of the child table.

❑ Parent-key: The parent key (or primary key) of the parent table.

❑ Child-key: The child key (or foreign key) of the child table.

The Parent attribute is optional, and when it is not included, the name of the parent table is retrieved
from the XML document based on the child hierarchy.

It is possible for the Parent-key attribute to contain more than one column, and in these cases the names
are included, separated by a space. Position matters here, as the order of the values that are specified
correspond, or map, to the corresponding child key.

It is also possible for the Child-key attribute to contain more than one column, and just like the
Parent-key attribute, the names are separated by a space. Again, position matters, as the order of the
values map to the corresponding parent key.

The following annotated schema, using a named relationship, illustrates the relationship mapping
between the Product and ProductReview tables using the ProductID column as the key linking the two
tables, as identified in the <xsd:appinfo> element. As stated previously, a product can have multiple
product reviews, so in this example the sql:relationship annotation is on the <ProductReview>
subelement:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdRvw”

parent=”Production.Product”
parent-key=”ProductID”
child=”Production.ProductReview”
child-key=”ProductID” />

</xsd:appinfo >
</xsd:annotation>

<xsd:element name=”Product” sql:relation=”Production.Product” type=”ProductLine”
/>

<xsd:complexType name=”ProductLine” >
<xsd:sequence>

<xsd:element name=”ProductReview”
sql:relation=”Production.ProductReview”
sql:relationship=”ProdRvw” >

<xsd:complexType>
<xsd:attribute name=”ProductReviewID” type=”xsd:integer” />
<xsd:attribute name=”ProductID” type=”xsd:integer” />

</xsd:complexType>

215

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 215

</xsd:element>
</xsd:sequence>

<xsd:attribute name=”ProductID” type=”xsd:integer” />
</xsd:complexType>

</xsd:schema>

As stated earlier, the example uses a named relationship for the mapping, but the same results could be
obtained using an unnamed relationship as follows:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Product” sql:relation=”Production.Product” type=”ProductType”
/>

<xsd:complexType name=”ProductType” >
<xsd:sequence>

<xsd:element name=”ProductReview”
sql:relation=”Production.ProductReview”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship
parent=”Production.Product”
parent-key=”ProductID”
child=”Production.ProductReview”
child-key=”ProductID” />

</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>

<xsd:attribute name=”ProductReviewID” type=”xsd:integer” />
<xsd:attribute name=”ProductID” type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”ProductID” type=”xsd:integer” />

</xsd:complexType>

</xsd:schema>

In this example, the elements are unnamed, but the results are the same. A portion of the results is
shown here:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<Product ProductID=”1”/>
<Product ProductID=”2”/>
<Product ProductID=”3”/>
<Product ProductID=”4”/>
<Product ProductID=”316”/>
<Product ProductID=”317”/>
<Product ProductID=”318”/>
<Product ProductID=”319”/>
<Product ProductID=”320”/>
...

</ROOT>

216

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 216

In this example, the sql:relationship annotation is used to specify the relationship between the
Production.Product table and the Production.ProductRreview table. In that annotation, the parent and
child attributes specify the parent and child tables along with the keys on which the two tables are
joined.

Don’t worry about how to run these examples just yet; they’re for explanation purposes and you’ll get
your hands on some examples shortly.

The next example joins three tables, chaining together the three tables with the sql:relationship
annotation to create two relationships:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdCat”

parent=”Production.ProductCategory”
parent-key=”ProductCategoryID”
child=”Production.ProductSubCategory”
child-key=”ProductCategoryID” />

<sql:relationship name=”ProdSubCat”
parent=”Production.ProductSubCategory”
parent-key=”ProductSubCategoryID”
child=”Production.Product”
child-key=”ProductSubCategoryID” />

</xsd:appinfo>
</xsd:annotation>

<xsd:element name=”ProductCategory” sql:relation=”Production.ProductCategory”
sql:key-fields=”ProductCategoryID” type=”ProductLine” />

<xsd:complexType name=”ProductLine” >
<xsd:sequence>

<xsd:element name=”Product” sql:relation=”Production.Product”
sql:key-fields=”ProductSubCategoryID”
sql:relationship=”ProdCat ProdSubCat”>

<xsd:complexType>
<xsd:attribute name=”Name” type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”ProductCategoryID” type=”xsd:integer” />

</xsd:complexType>
</xsd:schema>

In this example, the sql:key-fields annotation (more on that in the next section) is used to identify
the CategoryID and SubCategoryID columns that uniquely identify each row in the relationship. A
portion of the results is shown here:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<ProductCategory ProductCategoryID=”1”>
<Product Name=”Mountain-100 Silver, 38”/>
<Product Name=”Mountain-100 Silver, 42”/>

217

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 217

<Product Name=”Mountain-100 Silver, 48”/>
...

</ProductCategory>
<ProductCategory ProductCategoryID=”2”>
<Product Name=”LL Mountain Handlebars”/>
<Product Name=”ML Mountain Handlebars”/>
<Product Name=”HL Mountain Handlebars”/>
...

</ProductCategory>
<ProductCategory ProductCategoryID=”3”>
<Product Name=”Men's Bib-Shorts, S”/>
<Product Name=”Men's Bib-Shorts, M”/>
<Product Name=”Men's Bib-Shorts, L”/>
...

</ProductCategory>
<ProductCategory ProductCategoryID=”4”>
<Product Name=”Hitch Rack - 4-Bike”/>
<Product Name=”All-Purpose Bike Stand”/>
<Product Name=”Water Bottle - 30 oz.”/>
...

</ProductCategory>
</ROOT>

Pay close attention to the sql:relationship annotation on the <product> element. The annotation
specifies two values, which are the name values of the two relationships. As stated previously, the order
of these two values is important.

The ProdCat relationship defines the parent-child relationship between the Production.ProductCategory
and Production.ProductSubCategory tables. The ProdSubCat relationship defines the parent-child
relationship between the Production.ProductSubCategory and Production.Product tables.

You should have a good grasp now of how the sql:relation and sql:relationship annotations
work, so it’s time to look at the sql:key-fields annotation.

sql:key-fields
There are two reasons why you would use the sql:key-fields annotation in a schema. First, it is a
great way to ensure that the appropriate nesting hierarchy is created, and in these cases it is best to use
the annotation on elements that map to tables.

Second, you use the sql:key-fields annotation when an element contains a sql:relationship
annotation that defines an element and its corresponding child element, but no primary key is specified
in the parent element. In these cases the sql:key-fields annotation is required to ensure the proper
nesting.

The sql:key-fields annotation syntax is as follows:

sql:key-fields=”uniquekeycolumns”

The value for this annotation is the column, or columns, that uniquely identify each row in the relationship.
If a single column is used it could be the primary key for the primary table. For example, the syntax would
look like the following for a single-column value:

218

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 218

sql:key-fields=”EmployeeID”

In a multiple-column value, each key column is separated by a space, as follows:

sql:key-fields=”EmployeeID FirstName”

The following example uses the sql:key-fields annotation to produce proper nesting in the results, as
there is no hierarchy specified by the sql:relationship annotation. The sql:key-fields annotation
is necessary to identify products in the Production.Product table distinctively:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”HumanResources.Employee” sql:key-fields=”EmployeeID” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Title”>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base=”xsd:string”>

<xsd:attribute name=”EmployeeID” type=”xsd:integer” />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

The next example uses the sql:key-fields to specify the key fields in both the Production
.ProductModel and Production.Product tables to ensure that the two tables have the correct hierarchy
and the proper node nesting in the resulting XML:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdMod”

parent=”Production.ProductModel”
parent-key=”ProductModelID”
child=”Production.Product”
child-key=”ProductModelID” />

</xsd:appinfo>
</xsd:annotation>
<xsd:element name=”ProductModel” sql:relation=”Production.ProductModel”

sql:key-fields=”ProductModelID”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”Product” sql:relation=”Production.Product”

sql:relationship=”ProdMod”>
<xsd:complexType>
<xsd:attribute name=”ProdID” sql:field=”ProductID” />

</xsd:complexType>

219

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 219

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”ProductModelID” type=”xsd:integer” />
</xsd:complexType>

</xsd:element>
</xsd:schema>

In this example, the sql:key-field annotation is used to properly establish the hierarchy between the
two tables and obtain the appropriate nesting for the results. A portion of the results show the ProductIDs
for the corresponding ProductModelIDs:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<ProductModel ProductModelID=”1”>
<Product ProdID=”864”/>
<Product ProdID=”865”/>
<Product ProdID=”866”/>

</ProductModel>
<ProductModel ProductModelID=”2”>
<Product ProdID=”712”/>

</ProductModel>
<ProductModel ProductModelID=”3”>
<Product ProdID=”861”/>
<Product ProdID=”862”/>
<Product ProdID=”863”/>

</ProductModel><ProductModel ProductModelID=”4”>
<Product ProdID=”858”/>
<Product ProdID=”859”/>
<Product ProdID=”860”/>

</ProductModel>
...

</ROOT>

Now that you have a good understanding of how relationships can be used in XML schemas, you’re
ready to get started with some coding examples.

Querying XML Views
Querying XML views is really no different than the querying you have done in previous chapters. Up
until now, you have executed queries primarily using T-SQL statements either via a stored procedure or
in-line T-SQL. The queries in the following examples use XML views just like the ones you have learned
so far in the chapter.

In a text editor such as Notepad, enter the following and save the file as SqlField.xml in the C:\Wrox\
directory:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
<xsd:element name=”Product” sql:relation=”Production.Product” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”ProdName”

220

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 220

sql:field=”Name”
type=”xsd:string” />

<xsd:element name=”ProdNum”
sql:field=”ProductNumber”
type=”xsd:string” />

</xsd:sequence>
<xsd:attribute name=”ProdID”

sql:field=”ProductID”
type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

In Visual Studio 2005, open the SqlCliTestApp project that you created for the examples in Chapter 11.
Open Form1 in Design mode, add a button to the form, and set the caption property to XML View.

Double-click the button you just added to display the code window. In the click event, enter the following
code (similar to the code entered in Chapter 11). Make sure the path to the XML document is specified
correctly:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String
Dim dbGuid As String
Dim Userid as String
Dim Password as String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

dbGuid = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”

strconn = “Provider=SQLXMLOLEDB;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Userid = “Type your SQL Server Login HERE”
Password = “Type your SQL Server Password HERE”

Me.Cursor = Cursors.WaitCursor

Try
conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:xpath-query mapping-schema=’c:\wrox\sqlfield.xml’>/Product” & _
“</sql:xpath-query></ROOT>”

InStream.Open()

cmd.Dialect = dbGuid

221

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 221

cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

Figure 12-1 shows the results from the query.

Figure 12-1

As specified in the schema, the ProductID, mapped to the ProductID column, is an attribute to the
Product element. Both the ProductName and ProductNumber elements are mapped to the Name and
ProductNumber columns using the sql:field annotation, while the sql:relation annotation is used
to map the Product element to the Production.Product table.

This next example uses the sql:relationship annotation to hierarchically nest the schema elements in
the result based on the primary and foreign key relationships. Taking from the first sql:relationship
example preceding, type the following code into your text editor and save it as sqlrelationship.xml
in the C:\Wrox directory:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdRvw”

parent=”Production.Product”
parent-key=”ProductID”
child=”Production.ProductReview”
child-key=”ProductID” />

</xsd:appinfo >

222

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 222

</xsd:annotation>

<xsd:element name=”Product” sql:relation=”Production.Product” type=”ProductLine”
/>

<xsd:complexType name=”ProductLine” >
<xsd:sequence>

<xsd:element name=”ProductReview”
sql:relation=”Production.ProductReview”
sql:relationship=”ProdRvw” >

<xsd:complexType>
<xsd:attribute name=”ProductReviewID” type=”xsd:integer” />
<xsd:attribute name=”ProductID” type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”ProductID” type=”xsd:integer” />

</xsd:complexType>

</xsd:schema>

Next, modify the click event code for the XML View button in the SqlCliTestApp project as follows:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String
Dim dbGuid As String

Dim Userid as String
Dim Password as String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

dbGuid = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”

strconn = “Provider=SQLXMLOLEDB;Data Provider=SQLNCLI;Server=vssql2005;” & _
“Database=AdventureWorks”

Userid = “Type your SQL Server Login HERE”
Password = “Type your SQL Server Password HERE”

Me.Cursor = Cursors.WaitCursor

Try
conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:xpath-query mapping-schema=’c:\wrox\sqlrelationship.xml’>” & _
“/Product[@ProductID=937]” & _

223

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 223

“</sql:xpath-query></ROOT>”

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

Clicking the XML View button should display the results shown in Figure 12-2.

Figure 12-2

The values returned show the relationship between the two tables. The Product element comes from the
Production.Product table, returning the individual ProductID as an attribute. The sql:relationship
annotation is used to define the relationship between the Product and ProductReview tables, with the
associated ProductReview table and columns being mapped accordingly to the elements and attributes.

This next example builds on the previous example, mapping relationships among three tables, as shown
in the second sql:relationship annotation example. Open your text editor and type the following
schema and save it as sqlrelationship2.xmlin the C:\Wrox directory:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdCat”

parent=”Production.ProductCategory”

224

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 224

parent-key=”ProductCategoryID”
child=”Production.ProductSubCategory”
child-key=”ProductCategoryID” />

<sql:relationship name=”ProdSubCat”
parent=”Production.ProductSubCategory”
parent-key=”ProductSubCategoryID”
child=”Production.Product”
child-key=”ProductSubCategoryID” />

</xsd:appinfo>
</xsd:annotation>

<xsd:element name=”ProductCategory” sql:relation=”Production.ProductCategory”
sql:key-fields=”ProductCategoryID” type=”ProductLine” />

<xsd:complexType name=”ProductLine” >
<xsd:sequence>

<xsd:element name=”Product” sql:relation=”Production.Product”
sql:key-fields=”ProductSubCategoryID”
sql:relationship=”ProdCat ProdSubCat”>

<xsd:complexType>
<xsd:attribute name=”Name” type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”ProductCategoryID” type=”xsd:integer” />

</xsd:complexType>
</xsd:schema>

Modify the click event code for the XML View button and then run the program:

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:xpath-query mapping-schema=’c:\wrox\sqlrelationship2.xml’>” & _
“/ProductCategory” & _
“</sql:xpath-query></ROOT>”

Clicking the XML View button should display the results shown in Figure 12-3.

Figure 12-3

225

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 225

In this example, the sql:relationship annotation was used to map the relationship among the
ProductCategory, ProductSubCategory, and Product tables. For each ProductCategory, the associated
product names are returned.

The next two examples use the sql:key-fields annotation. The first example uses the annotation to
ensure proper nesting. In this example, no sql:relationship annotation is specified; thus no hierarchy
is defined. To fulfill the requirement of having a distinctly identified key (in this case, the ProductID), it is
necessary to specify the sql:key-fields annotation. Open your text editor and type the following,
saving it as sqlkeyfield.xml in the C:\Wrox directory:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Production.Product” sql:key-fields=”ProductID” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Name”>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base=”xsd:string”>

<xsd:attribute name=”ProductID” type=”xsd:integer” />
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

In the code behind the XML View button, change the following code and then run the program:

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:xpath-query mapping-schema=’c:\wrox\sqlkeyfield.xml’>” & _
“/Production.Product” & _
“</sql:xpath-query></ROOT>”

Clicking the XML View button should display the results shown in Figure 12-4.

Figure 12-4

226

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 226

In this example, the sql:key-fields annotation provides the proper nesting and forming of the results
because no sql:relationship annotation is specified.

The next example continues with the sql:key-fields annotation, but uses it to ensure the proper hier-
archy. In this example, you use the sql:key-fields annotation to help uniquely identify the proper
hierarchy because the sql:relationship annotation information does not provide the primary key of
the parent table in the parent element.

Open your text editor and type in the following, saving it as sqlkeyfield2.xml in the C:\Wrox directory:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdModel”

parent=”Production.ProductModel”
parent-key=”ProductModelID”
child=”Production.Product”
child-key=”ProductModelID” />

</xsd:appinfo>
</xsd:annotation>
<xsd:element name=”ProductModel” sql:relation=”Production.ProductModel”

sql:key-fields=”ProductModelID”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”Product” sql:relation=”Production.Product”

sql:relationship=”ProdModel”>
<xsd:complexType>
<xsd:attribute name=”ProdID” sql:field=”ProductID” />

</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name=”ProductModelID” type=”xsd:integer” />
</xsd:complexType>

</xsd:element>
</xsd:schema>

Now modify the code behind the XML View button and make the following changes:

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:xpath-query mapping-schema=’c:\wrox\sqlkeyfield2.xml’>” & _
“/ProductModel” & _
“</sql:xpath-query></ROOT>”

Run the SqlCliTestApp program and click the XML View button. The displayed results should look like
Figure 12-5.

227

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 227

Figure 12-5

The results can be filtered by modifying the XPath statement in a similar way as the following:

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’>” & _
“<sql:xpath-query mapping-schema=’c:\wrox\sqlkeyfield2.xml’>” & _
“/ProductCategory[@ProductModelID=20” & _
“</sql:xpath-query></ROOT>”

This example used an XPath query against the XSD schema to return specific information, in this case
key information such as the ProductID. Since a sql:relationship annotation was also specified, the
sql:key-fields annotation is used to ensure the correct hierarchy and nesting of the elements.

By now you should have a good grasp on how XML schema views work and how to use the annotations
to produce the appropriate relationships and relational mappings. You can now move on to learn how
best to use your new knowledge.

Best Practices
Security can be a big factor when using annotated schemas, so there are a few items to consider.

Using default mapping and explicit mapping exposes such database information as the table and column
names. Default mapping is an issue because the element and attribute names map to table and column
names, respectively, and you must consider the ramifications of making the schemas publicly available if
there is such a need.

The alternative is to give non-meaningful names to the elements and attributes in the schema to explic-
itly map them back to the corresponding tables and attributes.

Summary
The purpose of this chapter was to create the basic foundation and building blocks to understanding
XML views and how to query them. You have seen the basic makeup of an XML view, and the require-
ments necessary to map the elements and attributes back to the corresponding table and columns. You

228

Chapter 12

18_597922 ch12.qxp 12/3/05 12:20 AM Page 228

have seen how to define relationships and when two or more tables are included in the schema, and
even how to set the appropriate hierarchy when the relationship information is not enough to appropri-
ately define the relationship.

You have also seen how to apply the technology you learned in Chapter 11, using ADO to execute
SQLXML queries, query these views, and return the necessary information.

Chapter 13 builds on what you learned in this chapter and discusses using the updategram to update
the XML View.

229

Creating and Querying XML Views

18_597922 ch12.qxp 12/3/05 12:20 AM Page 229

18_597922 ch12.qxp 12/3/05 12:20 AM Page 230

Updating the XML View
Using Updategrams

This chapter focuses on updating a database directly using updategrams and the XML view. The
information in this chapter builds on the previous two chapters in which you learned about using
ADO and OLEDB to query a database via the SQL Native Client.

Updategrams, introduced in SQL Server 2000, are another option you can use to update, delete,
and insert data into your database. Before updategrams, the first option was to use the OPENXML
feature of SQLXML. Both updategrams and OPENXML provide the same results, that is, inserting,
deleting, and updating of data. The difference between the two is that updategrams use XML
views and the mapping schema, which you learned about in Chapter 12, to provide the functional-
ity. The schema contains the mapping of elements and attributes back to the tables and columns in
the database.

In particular, this chapter covers the following topics:

❑ Overview and structure of updategrams

❑ Mapping schemas and updategrams

❑ Using updategrams to modify data

❑ Passing parameters

❑ updategram concurrency

❑ NULL handling

❑ updategram security

❑ Guidelines and limitations

19_597922 ch13.qxp 12/3/05 12:29 AM Page 231

Overview and Structure
updategrams offer the capability through XML to modify a database directly without shredding the
XML document, as does OPENXML. Although OPENXML is great for dealing with rowset providers by
generating operational statements to modify data, updategrams don’t do any XML document shredding.
updategrams work directly against XML views (which you learned about in Chapter 12) and their asso-
ciated mapping schemas (which you learned about in Chapter 7). The mapping schemas contain the
information that is required to bind, or map, the elements and attributes back to the associated tables
and columns for quick and efficient processing.

The structure of an updategram is simply a template with a predefined set of tags that merely give a
before and after picture of the data when the updategram is executed.

The basic syntax of an updategram looks like this:

<ROOT xmlns:updgrm-”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync [mapping-schema=”annotatedschema.xml”]>
<updg:before>
...

</updg:before>
<updg:after>
...

</updg:after>
</updg:sync>

</ROOT>

The following list defines each piece of the updategram and explains what the syntax means.

❑ <sync> Block: The <sync> block encompasses the <before> and <after> blocks, and can con-
tain multiple <before> and <after> blocks. If multiple <before> and <after> blocks are
within the <sync> block, then each <before> and <after> needs to be designated as a pair.

An updategram can contain multiple <sync> blocks, each containing a transactional unit. In
other words, everything in the <sync> block executes, or nothing executes. The failure of one
<sync> block to execute does not affect the execution of other <sync> blocks.

❑ <before>: Defines the state of the data as it currently is, prior to execution. This is commonly
known as the before state.

❑ <after>: Defines the state of the data after the execution occurs. This is commonly known as
the after state.

❑ Namespace: The <sync>, <before>, and <after> keywords used in an updategram are pro-
vided by the urn:schemas-microsoft-com:xml-updategram namespace. The namespace
prefix is not predetermined, and can be determined by you. In the previous structure example,
the prefix is defined as updgrm.

232

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 232

Mapping Schemas and Updategrams
As you learned in Chapter 12, the schema can have either implicit or explicit mapping. Implicit mapping
simply means that a mapping schema has not been specified, so the updategram takes on implicit
mapping. Explicit mapping means that the elements and attributes in the updategram have been explic-
itly mapped to the elements and attributes in the mapping schema.

The default mapping is implicit mapping (covered in the following section), meaning that proper nesting
of elements and subelements is essential. Each element in the <before> and <after> blocks maps to a
table, and the subelements and attributes map to a column.

Implicit Mapping
The following example illustrates implicit mapping. The <Production.ProductModel> element implicitly
maps to the Production.Product table and the Name attribute implicitly maps to the Name column in the
Production.Product table:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductModel Name=”Widget” />

</updgrm:after>
</updgrm:sync>

</ROOT>

This next example uses implicit mapping to update the same record:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
<Production.ProductModel ProductModelID=”129” />

</updgrm:before>
<updgrm:after>
<Production.ProductModel Name=”ExtremeWidget” />

</updgrm:after>
</updgrm:sync>

</ROOT>

In this example, no mapping schema is associated to the updategram, so it takes on implicit mapping.
When you use implicit mapping, the <Production.ProductModel> element maps to the Production
.ProductModel table and the Name attribute maps to the corresponding columns in the Production
.ProductModel table.

Explicit Mapping
Explicit mapping, as mentioned previously, simply means associating a mapping schema to the update-
gram. The following example is a mapping schema that is then mapped to an updategram. For the sake
of this example, this mapping schema is called exampleupdgrmschema.xml:

233

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 233

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Product” sql:relation=”Production.Product” >
<xsd:complexType>

<xsd:attribute name=”ProductID”
sql:field=”ProductID”
type=”xsd:string” />

<xsd:attribute name=”ModelID”
sql:field=”ProductModelID”
type=”xsd:string” />

<xsd:attribute name=”Name”
Sql:field=”Name”
Type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

The next step is to map the schema to an updategram that explicitly maps the elements and attributes
to the table and columns. The updategram, referencing the mapping schema in the second line, looks
like the following:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync mapping-schema=”exampleupdgrmschema.xml”>
<updgrm:before>
<Product ProductID=”535” ModelID=”” Name=”Tension Pulley” />

</updgrm:before>
<updgrm:after>
<Product ProductID=”535” ModelID=”103” Name=”Tension Pulley” />

</updgrm:after>
</updgrm:sync>

</ROOT>

With the mapping in place, the updategram updates the ModelID column in the Product table with the
value specified in the ModelID attribute in the <updgrm:after> block.

Modifying Data
As with all the examples so far in this book, the examples in this section are executed using the new
functionality you learned in Chapter 12, using ADO and SQLXML to execute updategrams.

In order to execute these examples, the SqlCliTestApp application needs to be modified (just so the previous
code and examples aren’t messed with).

Open the SqlCliTestApp application, and then open the form in design view. Add a button on the form.
Set the Text property to “updategram” and set the Name property to cmdupdategram.

Double-click the button you just added to display the code window. In the click event for the updategram
button, enter the following code:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command

234

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 234

Dim strconn As String
Dim dbGuid As String
Dim Userid as String
Dim Password as String
Dim cmdText as String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

dbGuid = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”

strconn = “Provider=SQLXMLOLEDB;Data Provide=SQLNCLI;Server=localhost; “ & _
“Database=AdventureWorks”

Userid = “Type your SQL Server Login here”
Password = “Type your SQL Server Password HERE”

Me.Cursor = Cursors.WaitCursor

Try
conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmdText = “” ‘This will be filled in later!

cmd.CommandText = cmdText

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

conn.Close()

MessageBox.Show(“Record Inserted”)

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

Now you are ready for some examples. Most of the examples in this section use implicit mapping, but a
few use explicit mapping.

Inserting Data
There are three ways to specify the data you want to insert. They are as follows:

❑ Attribute-centric

❑ Element-centric

❑ Mixed mode 235

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 235

Attribute-Centric
Attribute-centric mapping specifies all the columns in which to insert data as attributes to the table
element. For example, the following code uses attribute-centric mapping to add a row to the Production
ProductCategory table:

<ROOT xmlns:updgrm=”urn:schema-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory
Name=”Go-Karts” />

<updgrm:after>
</updgrm:sync>

</ROOT>

In this example, only the Name column needs to be specified because the ProductCategoryID column
is an identity column, so the value is automatically generated. The value of the rowguid column is also
automatically generated, and the ModifiedDate column in the table has a default set on it so that when a
record is inserted into the table, the current date is automatically applied to the column.

A multi-column insert would look like the following:

<ROOT xmlns:updgrm=”urn:schema-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Sales.SalesPerson
SalesQuota=”10000000.00”
Bonus=”25000.00”
CommissionPct=”10.0”
SalesYTD=”750000.00”
SalesLastYear=”900000.00” />

<updgrm:after>
</updgrm:sync>

</ROOT>

In both of these examples, the column values are listed as attributes to the table element.

Element-Centric
Element-centric mapping simply means that the column values are listed as subelements of the table
element, as follows:

<ROOT xmlns:updgrm=”urn:schema-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory>
<Name>Go-Karts</Name>

</Production.ProductCategory>

236

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 236

<updgrm:after>
</updgrm:sync>

</ROOT>

Another example of element-centric mapping would appear like the following:

<ROOT xmlns:updgrm=”urn:schema-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Sales.SalesPerson>
<SalesQuota>10000000.00</SalesQuota>
<Bonus>5000.00</Bonus>
<CommissionPct>10.0</CommissionPct>
<SalesYTD>750000.00</SalesYTD>
<SalesLastYear>900000.00</SalesLastYear>

</Sales.SalesPerson>
<updgrm:after>

</updgrm:sync>
</ROOT>

Mixed Mode
Mixed mode means that both attribute-centric and element-centric mapping can exist in the same
updategram, as shown below:

<ROOT xmlns:updgrm=”urn:schema-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Sales.SalesPerson
SalesQuota=”10000000.00”
Bonus=”25000.00”
CommissionPct=”10.0”
<SalesYTD>750000.00</SalesYTD>
<SalesLastYear>900000.00</SalesLastYear>

</Sales.SalesPerson>
<updgrm:after>

</updgrm:sync>
</ROOT> will

Before getting into the examples of mixed mode, you need to insert a record into the Production.Product
table. Open a query window in SQL Server Management Studio and run the following query against the
AdventureWorks database:

INSERT INTO Production.ProductCategory ([NAME]) VALUES (‘Burritos’)
GO

In this case, when you insert data with an updategram, the <before> block is left empty, signifying that a
new row is being added. The first example inserts a row into the Product.ProductModel table. Modify the
code behind the updategram button, changing the cmd.CommandText syntax to look like the following:

237

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 237

cmdText = “<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>” & _
“<updgrm:sync>” & _
“<updgrm:before>” & _
“</updgrm:before>” & _
“<updgrm:after>” & _
“<Production.ProductCategory Name=’Go-Karts’ />” & _
“</updgrm:after>” & _
“</updgrm:sync>” & _
“</ROOT>”

Run the application and click the updategram button. When the code is executed and the record is inserted,
you get a message box showing the record was created successfully. To verify this, open a query window
in SQL Server Management Studio and query the Production.ProductCategory table. You will see that the
new record has been added, as shown in Figure 13-1.

Figure 13-1

updategrams can be used to insert multiple records at a time, and there are multiple ways to do it. This
example uses a single <sync> block to insert three records into the Production.ProductCategory table:

<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Hang Gliders’ />

</updgrm:after>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Dirt Bikes’ />

</updgrm:after>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Guitars’ />

</updgrm:after>
</updgrm:sync>

</ROOT>

A second way to insert multiple records is to wrap each insert in a separate <sync> block, as follows:

<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>
<updgrm:sync>
<updgrm:before>
</updgrm:before>

238

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 238

<updgrm:after>
<Production.ProductCategory Name=’Hang Gliders’ />

</updgrm:after>
</updgrm:sync>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Dirt Bikes’ />

</updgrm:after>
<updgrm:sync>
</updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Guitars’ />

</updgrm:after>
</updgrm:sync>

</ROOT>

As stated earlier in the chapter, one <sync> block is not dependent on the other, so if one fails, the others
still execute.

ReturnID and at-identity Attributes
When inserting into a table that has an identity column, it is possible to retrieve the newly generated
value. The at-identity attribute is used to obtain the new value and stores it in a placeholder value.
The following example inserts into the Production.ProductCategory table, which has an identity column
and returns the newly generated identity value. This example also uses explicit mapping.

First, generate the mapping schema, as follows:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Production.ProductCategory” >
<xsd:complexType>

<xsd:attribute name=”Name” type=”xsd:string” />
</xsd:complexType>

</xsd:element>
</xsd:schema>

Save this mapping schema as C:\Wrox\identitymapschema.xml. Now you’re ready to create the
updategram. You place the at-identity attribute as an attribute on the table element, which retrieves
the newly generated identity value and stores it in a placeholder variable of x. You place the ReturnID
attribute on the <after> block, which simply returns the new generated identity value (retrieving it
from the placeholder variable) when the updategram is executed, and returns it as output.

The updategram for this example looks like the following:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync mapping-schema=”identitymapschema.xml”>
<updgrm:before>
</updgrm:before>
<updgrm:after updgrm:returnid=”x”>

239

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 239

<Production.ProductCategory
updgrm:at-identity=”x” Name=”Dirt Bikes” />

</updgrm:after>
</updgrm:sync>

</ROOT>

In the SqlCliTestApp application, replace the code within the Try block of the updategram click event
with the following:

conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmdText = “<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>” & _
“<updgrm:sync mapping-schema=’c:\Wrox\identitymapschema.xml’>” & _
“<updgrm:before>” & _
“</updgrm:before>” & _
“<updgrm:after updgrm:returnid=’x’>” & _
“<Production.ProductCategory updgrm:at-identity=’x’ Name=’Dirt Bikes’ />” & _
“</updgrm:after>” & _
“</updgrm:sync>” & _
“</ROOT>”

cmd.CommandText = cmdText

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = Instream.ReadText()

conn.Close()

MessageBox.Show(“Record Inserted”)

Press F5 to start the program. When the form opens, click the updategram button. Figure 13-2 shows
the results that come back from the execution of the updategram. As you can see, the new record was
inserted and the identity value of the new row was returned via the updgrm:returned attribute.

Figure 13-2240

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 240

To verify the results, open a query window in SQL Server Management Studio and run a query to select
all the records from the Production.ProductCategory table, as follows:

SELECT * FROM Production.ProductCategory

The results look like Figure 13-3.

Figure 13-3

Last, what’s the use of having an xml data type column if you can’t use an updategram to insert data
into it? The final example inserts into an xml data type column of the Employee table using implicit
mapping.

First, you need to create the employee table:

Use AdventureWorks
GO

CREATE TABLE Employee (
[EmployeeID] [int] IDENTITY(1,1) NOT NULL,
[EmployeeInfo] [xml] NULL

) ON [PRIMARY]

The second step is to create the schema. In your favorite text editor, type the following:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
<xsd:element name=”Emp” sql:relation=”Employee” >

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Info” sql:field=”EmployeeInfo” sql:datatype=”xml”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”Employee”>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”EmployeeID” sql:field=”EmployeeID”/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

241

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 241

Save this schema as C:\Wrox\xmlinsertschema.xml. Next, replace the cmdText assignment statement
in the updategram button’s click event, as follows:

cmdText = “<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync mapping-schema=”c:\wrox\xmlinsertschema.xml” >
<updg:before>
</updg:before>
<updg:after>
</updg:after>
<Employee @EmployeeID=”1”>
<FirstName>Scott</FirstName>
<MiddleName>L</MiddleName>
<LastName>Klein</LastName>
<Email>ScottKlein@TopXML.com</Email>
<Phone>555-555-5555</Phone>
<Title>geek</Title>

</Employee>
</updg:sync>

</ROOT>”

Run the application and click the updategram button. When the execution is finished, open a query win-
dow and execute the following query against the AdventureWorks database:

SELECT * FROM Employee

Figure 13-4 shows the results of the updategram just executed.

Figure 13-4

In this updategram example, no <before> value is specified, so the updategram knows that this is an
insert operation. When the updategram is executed, the XML document contained in the <after> block
is inserted into the Employee table. It knows to insert into the EmployeeInfo column of the Employee
table by the mapping schema reference in the updategram. The mapping schema contains the mapping
information back to the database for the corresponding table and column.

With data now in the tables, it would be nice to be able to delete data also, if the need arises. That’s the
next topic.

Deleting Data
Deleting data using an updategram is just as easy as inserting, if not easier. In fact, it is nearly the opposite
of an insert updategram. In a delete updategram, the <before> block contains data, and the <after>
block is empty.

The same updategram syntax is used when deleting records; the only difference is that the <before>
block contains the information about the data you want to delete, and the <after> block is empty.

242

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 242

For example, the following updategram illustrates using an updategram to delete the row from the
Production.ProductCategory table where the value in the Name column is Burritos, using implicit
mapping:

<ROOT xmlns:updgrm=”urn:schema-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
<Production.ProductCategory Name=”Burritos” />

</updgrm:before>
<updgrm:after>
<updgrm:after>

</updgrm:sync>
</ROOT>

To run this example, modify the updategram button’s click event within the Try block, as follows:

conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmdText = “<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>” & _
“<updgrm:sync>” & _
“<updgrm:before>” & _
“<Production.ProductCategory Name=’Burritos’ />” & _
“</updgrm:before>” & _
“<updgrm:after>” & _
“</updgrm:after>” & _
“</updgrm:sync>” & _
“</ROOT>”

cmd.CommandText = cmdText

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = Instream.ReadText()

conn.Close()

MessageBox.Show(“Record Deleted”)

Clicking the updategram button executes the updategram, deleting the record specified in the updategram
from the table. SQL Server determined that because there was information in the <before> block and no
instructions in the <after> block that it needed to delete the row from the table. Figure 13-5 shows the
results of the execution on the form.

243

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 243

Figure 13-5

Realistically, the code behind the button didn’t need to return results, but the code to return results was
left in to show what is brought back from the execution of the updategram.

For verification, query the Production.Product table, which displays the results shown in Figure 13-6.

Figure 13-6

Notice that the Burritos record has been deleted.

A mapping schema can also be applied to a delete updategram, as follows:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Product” sql:relation=”Production.ProductCategory” >
<xsd:complexType>

<xsd:attribute name=”ProdCatID”
sql:field=”ProductCategoryID”
type=”xsd:integer” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

Save this schema as C:\Wrox\sampdelschema.xml, and then in the commandtext assignment state-
ment in the updategram button’s click event, reference the schema in the updategram, as follows:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync mapping-schema=”C:\Wrox\sampdelschema.xml”>
<updgrm:before>
<Product ProdCatID=”9” />

244

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 244

</updgrm:before>
<updgrm:after>
</updgrm:after>

</updgrm:sync>
</ROOT>

When the updategram is executed, the record in the Production.ProductCategory table with a
ProductCategoryID of 9 is deleted.

Updating Data
When you use an updategram to update existing data, both the <before> and <after> blocks within a
<sync> block must contain information. The <before> block describes the current state of the data and
identifies the data that is going to be changed, and the <after> block describes the data after the execution
of the updategram.

The requirements for update updategrams are identical to insert and delete updategrams, such as
attaching mapping schemas. Let’s forgo all that and just jump right in to the examples.

The first example combines both an insert and an update transaction in a single updategram. Each
<before> and <after> block pair is wrapped in its own <sync> block. The first <before> and
<after> block inserts a record into the Production.ProductCategory table with a category name of
Burritos. The second <before> and <after> block pair updates the category name from the newly
inserted record from Burritos to Manly Power Tools.

<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>
<updgrm:sync>
<updgrm:before>
</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Burritos’ />

</updgrm:after>
</updgrm:sync>
<updgrm:sync>
<updgrm:before>
<Production.ProductCategory Name=’Burritos’ />

</updgrm:before>
<updgrm:after>
<Production.ProductCategory Name=’Manly Power Tools’ />

</updgrm:after>
</updgrm:sync>

</ROOT>

In the updategram button’s click event, modify the code within the Try block, as follows:

conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmdText = “<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>” & _
“<updgrm:sync>” & _
“<updgrm:before>” & _
“</updgrm:before>” & _

245

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 245

“<updgrm:after>” & _
“<Production.ProductCategory Name=’Burritos’ />” & _
“</updgrm:after>” & _
“</updgrm:sync>” & _
“<updgrm:sync>” & _
“<updgrm:before>” & _
“<Production.ProductCategory Name=’Burritos’ />” & _
“</updgrm:before>” & _
“<updgrm:after>” & _
“<Production.ProductCategory Name=’Manly Power Tools’ />” & _
“</updgrm:after>” & _
“</updgrm:sync>” & _
“</ROOT>”

cmd.CommandText = cmdText

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = Instream.ReadText()

conn.Close()

MessageBox.Show(“Record Updated”)

Run the program and execute this updategram by clicking the updategram button. If you left the code in
that writes to the text box, you receive a message similar to what was previously shown in Figure 13-4.
To view the results, query the Production.ProductCategory table, which displays the newly inserted and
updated records, as shown in Figure 13-7.

Figure 13-7

Although this example used two <sync> blocks, you can obtain the same results by using a single
<sync> block.

The next example uses a mapping schema to update a record in the Production.ProductCategory table.
Before you begin this example, run the following T-SQL statement against the AdventureWorks database
in a query window in SQL Server management studio:

246

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 246

SELECT * FROM Production.ProductReview

The results from this query should return four records. Take a look at the last record, where the
ProductReviewID is 4. This is the record the next example will update, specifically the Rating column.
Currently the value for that column is 5. The example will update and change that value.

First, create the following mapping schema in your favorite text editor and save it as C:\Wrox\
updatemapschema.xml:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”ProdRvw”

parent=”Production.Product”
parent-key=”ProductID”
child=”Production.ProductReview”
child-key=”ProductID” />

</xsd:appinfo >
</xsd:annotation>

<xsd:element name=”Product” sql:relation=”Production.Product” type=”ProductLine”
/>

<xsd:complexType name=”ProductLine” >
<xsd:sequence>

<xsd:element name=”ProductReview”
sql:relation=”Production.ProductReview”
sql:relationship=”ProdRvw” >

<xsd:complexType>
<xsd:attribute name=”ProductReviewID” type=”xsd:integer” />
<xsd:attribute name=”ProductID” type=”xsd:integer” />

<xsd:attribute name=”Rating” type=”xsd:integer” />
</xsd:complexType>

</xsd:element>
</xsd:sequence>

<xsd:attribute name=”ProductID” type=”xsd:integer” />
</xsd:complexType>

</xsd:schema>

Next, in the updategram button’s click event, modify the code in the Try block as follows:

conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmdText = “<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>” & _
“<updgrm:sync mapping-schema=’c:\Wrox\updatemapschema.xml’>” & _
“<updgrm:before>” & _
“<ProductReview ProductID = ‘798’ />” & _

“</updgrm:before>” & _
“<updgrm:after>” & _

“<ProductReview ProductID = ‘798’ Rating =’4’/>” & _
“</updgrm:after>” & _

247

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 247

“</updgrm:sync>” & _
“</ROOT>”

cmd.CommandText = cmdText

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = Instream.ReadText()

conn.Close()

MessageBox.Show(“Record Updated”)

Run the program and click the updategram button to execute the updategram. When the execution is
complete, query the Production.ProductReview table to view that indeed the Rating for ProductID 798
has been changed from a value of 5 to a value of 4, as shown in Figure 13-8.

Figure 13-8

As you have seen, updating data is quite simple yet very versatile. Before moving on to passing parameters
in updategrams, there is one more quick topic to cover.

When using update updategrams, there is an attribute called updg:id that links records in the <before>
and <after> blocks. The purpose of this attribute is to help associate a record in the <before> block with
its <after> block partner.

You use the updg:id attribute to mark and link rows in the <before> and <after> blocks. When the
updategram is processed, the processor uses this attribute to link a row in the <before> block with a
row in the <after> block.

To use the updg:id attribute, simply specify a value for the attribute, as follows:

updg:id=”linkvalue”

In this syntax, linkvalue is the value that links the <before> and <after> rows.

For example, the following code creates a link between the elements in the <before> and <after>
blocks using the updg:id attribute, specified by the value of a, and then inserts a new record into the
same table:

248

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 248

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >
<updg:before>

<Production.ProductCategory updg:id=”a” Name=”Manly Power Tools” />
</updg:before>
<updg:after>
<Production.ProductCategory updg:id=”a” Name=”Very Manly Power Tools” />
<Production.ProductCategory updg:id=”b” Name=”Sissy Tools” />

</updg:after>
</updg:sync>

</ROOT>

The updg:id attribute is not necessary if the elements in the mapping schema are defined with the
sql:key-fields attribute, and if there is a unique value provided to the key fields in the updategram.

You should have a good grasp of updategrams by now, so it is time to complicate things a bit and dis-
cuss the topic of passing parameters to updategrams.

Passing Parameters
As you have probably deduced by now, updategrams look exactly like templates because that is what
they are. Because they are templates, updategrams inherit the functionalities that are given to templates,
especially the capability to pass parameters to them.

This is not new functionality, not even to updategrams. Passing parameters to templates has been
around in SQL Server and SQLXML for quite a while. However, in SQLXML 4.0, passing a parameter is
a bit different than in previous versions.

The first step to passing parameters is to create the updategram that accepts parameters. You do this by
using the updg:param element and passing value to the name attribute. The syntax is as follows:

<updg:param name=”parametername”/>

parametername is the name of the parameter used in the updategram <before> and <after> blocks.

The following example takes two parameters with which to update the Production.ProductReview table.
The first parameter is the ProductReviewID, used to identify the row to be updated. The second parameter
is the value of the Rating to update. Inside the updategram, the values are held in two variables,
ProdCatID and ProdName. Those variables are then used in the <before> and <after> blocks when
the updategram is executed:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:header>
<updg:param name=”ProdCatID”/>
<updg:param name=”ProdName” />

</updg:header>
<updg:sync >
<updg:before>

<Production.ProductCategory ProductCategoryID=”$ProdCatID” />
</updg:before>

249

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 249

<updg:after>
<Production.ProductCategory Name=”$ProdName” />

</updg:after>
</updg:sync>

</ROOT>

This example is used to set the Rating value set a few examples ago back to the original value of 5. If
you remember, you used an updategram to change the value of the Rating from 5 to a value of 4 for
ProductReviewID 4 in the Production.ProductReview table.

In the updategram button’s click event, modify the code in the Try block as follows:

conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmdText = “<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>” & _
“<updg:header>” & _
“<updg:param name=”ProdRevID”/>” & _
“<updg:param name=”Rating” />” & _
“</updg:header>” & _
“<updg:sync >” & _
“<updg:before>” & _
“<Production.ProductReview ProductReviewID=”$ProdRevID” />” & _
“</updg:before>” & _
“<updg:after>” & _
“<Production.ProductReview ProductReviewID=”$ProdRevID” Rating=”$Rating” />” & _
“</updg:after>” & _
“</updg:sync>” & _
“</ROOT>”

cmd.CommandText = cmdText

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.NamedParameters = True

cmd.Parameters.Append(cmd.CreateParameter(“@ProdRevID”,_
ADODB.DataTypeEnum.adInteger, ADODB.ParameterDirectionEnum.adParamInput, 4))

cmd.Parameters.Append(cmd.CreateParameter(“@Rating”, ADODB.DataTypeEnum.adInteger,_
ADODB.ParameterDirectionEnum.adParamInput, 5))

cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

conn.Close()

MessageBox.Show(“Record Updated”)

250

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 250

Run the program and click the updategram button to execute the updategram. When the execution is
complete, query the Production.ProductReview table to view that indeed the Rating for ProductID 798
has been changed back to a value of 5 from a value of 4.

To verify the results, run the following T-SQL in a query window:

SELECT * FROM Production.ProductReview

The Rating value for ProductReviewID 4 is back to a value of 5.

Passing parameters is quite simple and provides you with a great amount of flexibility when dealing
with updategrams. However, even with all of the flexibility that updategrams provide, there still remains
an issue of concurrency, that is, multiple people updating or modifying the same record at the same
time, no matter what the technology you use to update data. That topic is discussed next.

Updategram Concurrency
Concurrency is the process of dealing with the issue of multiple people updating the same record in a
multi-user environment. This applies to anything in SQL Server that updates data, even updategrams.

SQL Server uses what is called Optimistic Concurrency Control, a method of data integrity that ensures
that the data you request has not changed between the time you requested the data and the time you
issue the update.

In updategrams, concurrency control is done by including the original values in the <before> block.
When it comes time to update the database with the value of the <after> block, the updategram checks
the values of the <before> block with the values in the database.

There are three levels of control offered by the Optimistic Concurrency Control, and you can determine
which level you use by the type of updategram. The three levels are outlined in the following sections.

Low-Level Concurrency Protection
Low-level concurrency protection is a simple update, commonly called a blind update. This type of
update does not check the value of the database against the value in the <before> block, regardless of
any updates made to the data between the time you requested the data and the time you issue the
update.

In a low-level update, only primary key columns are specified in the <before> block, which simply
identifies the record to be updated.

The following example illustrates a low-level updategram:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
<Production.ProductModel ProductModelID=”20” />

251

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 251

</updgrm:before>
<updgrm:after>
<Production.ProductModel ProductModelID=”20” Name=”ExtremeWidget” />

</updgrm:after>
</updgrm:sync>

</ROOT>

This updategram updates the Name column regardless of any updates made to it prior to this update
being applied, and regardless of any other updates made to the records specified since the record was
first read. Therefore it is low-level concurrency.

Medium-Level Concurrency Protection
Medium-level protection compares the current database column values with the <before> block values
in the updategram, checking to see if the values in the database have been updated by another process
prior to being read by your transaction.

To ensure this level of protection, the <before> block needs to specify not only the key column or
columns, but the value or values of the columns you are updating as well.

The following illustrates a medium- (or intermediate-) level protection updategram:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
<Production.ProductModel ProductModelID=”20” Name=”ExtremeWidget”/>

</updgrm:before>
<updgrm:after>
<Production.ProductModel ProductModelID=”20” Name=”Power Packs” />

</updgrm:after>
</updgrm:sync>

</ROOT>

In this example, if the value of Name has been changed since the request of your transaction, the update
fails. In the <before> block, the value of the Name column is specified so that when the updategram is
executed, that value is compared against the value in the database to make sure it has not changed.
Therefore, it is a medium- or intermediate-level of concurrency.

High-Level Concurrency Protection
The best level of concurrency protection is the highest level of protection, which guarantees that the
record has not changed since your transaction has read the record. Realistically, this does not prevent
other users from changing the data, as that would spark a mutiny aboard ship from your users. What it
does do is stop your update from taking place because your data in the updategram and the data in the
database no longer match.

There are two things you can do to obtain this level of protection. The first is to include multiple
columns in the <before> block. When the updategram is executed, it compares all the values in the
<before> block with the values in the database. If any of the column values have changed, the update
does not occur. It’s as simple as that. The more columns you specify in the <before> block, the higher
the level of protection.

252

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 252

Second, you can compare datetime or timestamp values. This requires that the table you are operating
against has a datetime or timestamp data type column. In this case, you simply include the primary
key column and the datetime or timestamp column in the <before> block (instead of all the other
columns as discussed in the first option). When the updategram is executed, it compares the value in the
<before> block with the value in the database. If they match, the update takes place. If they differ, the
update does not happen.

The following illustrates an updategram using the timestamp option:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync>
<updgrm:before>
<Production.ProductModel ProductModelID=”34” ModifiedDate=”2002-11-20

09:56:38.273”/>
</updgrm:before>
<updgrm:after>
<Production.ProductModel Name=”Power Packs” />

</updgrm:after>
</updgrm:sync>

</ROOT>

In this example, the updategram compares the ModifiedDate value in the <update> block against the
value in the ModifiedDate column in the database for ProductModelID 34. If they match, the update
occurs. If they do not match, the record has been modified, and the update does not take place.

NULL Handling
SQLXML allows you specify NULL for an element or attribute in an updategram. This is accomplished by
using the updg:nullvalue attribute.

Specifying a NULL value for an attribute or element is done via the updg:nullvalue attribute. The syntax
for this attribute is as follows:

Updg:nullvalue=”nullvalue”

nullvalue specifies the NULL value for an element or attribute.

The following example uses the updg:nullvalue attribute to set the value of Name column in the
Production.ProductModel table to NULL where the value of ProductModelID is 34:

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync updg:nullvalue=”ISNULL”>
<updgrm:before>
<Production.ProductReview ProductReviewID=”4” Rating=”4”/>

</updgrm:before>
<updgrm:after>
<Production.ProductReview Rating=”ISNULL” />

</updgrm:after>
</updgrm:sync>

</ROOT>

253

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 253

To test NULL values, replace the cmdText assignment statement in the updategram button’s click event
in the Try block with the following code:

cmdText = “<ROOT xmlns:updgrm=’urn:schemas-microsoft-com:xml-updategram’>” & _
“<updgrm:sync updg:nullvalue=’ISNULL’>” & _
“<updgrm:before>” & _
“<Production.ProductReview ProductReviewID=’4’ Rating=’4’/>” & _
“</updgrm:before>” & _
“<updgrm:after>” & _
“<Production.ProductReview Rating=’ISNULL’ />” & _
“</updgrm:after>” & _
“</updgrm:sync>” & _
“</ROOT>”

cmd.CommandText = cmdText

When you run the application and click the updategram button, you receive an error stating that the
column does not allow NULLs. You receive this error on any column you are trying to update that does
not allow NULLs. To remedy this situation, run the following T-SQL statement in a query window:

ALTER TABLE Production.ProductReview
ALTER COLUMN Rating int NULL

GO

This time when you run the application and click the updategram button, you get a message box stating
that the update succeeded. To verify the results, query the Production.ProductReview table as follows:

SELECT * FROM Production.ProductReview WHERE ProductReviewID = 4

Take a look at the Rating column for ProductReviewID 4. There should be no value in that column for
ProductReviewID 4, so the update succeeded.

The updg:nullvalue attribute works both ways. In the previous example, it sets a column to NULL, but
it can also be used to set a column to a value where the original value is NULL.

<ROOT xmlns:updgrm=”urn:schemas-microsoft-com:xml-updategram”>
<updgrm:sync updg:nullvalue=”ISNULL”>
<updgrm:before>
<Production.ProductReview ProductReviewID=”4” Rating=”ISNULL”/>

</updgrm:before>
<updgrm:after>
<Production.ProductModel Rating=”4” />

</updgrm:after>
</updgrm:sync>

</ROOT>

This updategram looks for a NULL value in the Rating column for ProductReviewID 4 and updates it
back to its original value.

As a last comment, NULL can also be passed as a parameter by using this same attribute, updg:nullvalue,
in the <updg:header> element block.

254

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 254

Updategram Security
You should keep two issues of security in mind when using updategrams.

First, avoid using default mapping if at all possible. As explained at the beginning of this chapter, default
mapping means an element name maps to a database table name, and attributes map to columns. This
poses a potential security risk. Using explicit mapping solves this issue, as the mapping schemas are nor-
mally stored out of harm’s way, and you can use arbitrary table and column names in the updategram.

Second, store the updategrams as templates on the server rather than creating them dynamically. This
makes it unnecessary for users to have to create and execute their own updategrams, which could
potentially expose the database.

Guidelines and Limitations
As with other functionalities in SQL Server 2005, the use of updategrams comes with its own guidelines
and limitations, outlined in the following list:

❑ Unlike earlier versions of SQLXML, SQLXML 4.0 requires that updategrams have all the column
values mapped explicitly in the referenced schema, generating the XML view for the updategram
child elements.

❑ Any values that contain spaces and other special characters being used with the sql:relation
and sql:field annotations must be enclosed in brackets. For example, “Sales Person” should
be written as “[Sales Person]”.

❑ Passing image data types as parameters is not permitted during update operations.

❑ You can exclude the <before> block in an updategram for insert transactions if you specify a
single <after> block. If you use multiple <before> and <after> blocks, all blocks must be
included. Similarly, you can omit the <after> block when using a single <before> delete
updategram transaction.

❑ Relationship chaining is not supported in updategrams. Commonly referred to as a cross-reference
table, if table X is related to table Z via table Y in an updategram, the updategram fails.

❑ When modifying a binary column, you must use a mapping schema that includes the server
data type (text, ntext, and image) and xml data type (dt:type=”binhex” or you must specify
dt:type=”binbase(64)). Similarly, the data for the column must be included in the updategram.

Summary
The purpose of this chapter was three-fold. First, the chapter gave an introduction to updategrams to
those who are new to the technology. An updategram is another option of updating SQL Server data.

Second, as mentioned at the start of the chapter, updategrams have been around a while, so this chapter
also intended to explain the new features of updategrams in SQLXML 4.0. updategrams have been
updated to handle the introduction of the xml data type in SQL Server 2005. The other features and
enhancements to updategrams in SQLXML 4.0 include XSD schema mapping behavior when dealing
with child elements and relationships.

255

Updating the XML View Using Updategrams

19_597922 ch13.qxp 12/3/05 12:29 AM Page 255

Third, this chapter showed you how to use the new SQL Native Client to execute updategrams to insert,
update, and delete data. Executing these types of operational statements prior to the SQL Native Client
meant dealing with IIS and configuring the SQLXML Virtual Directory Manager. What this means now,
however, is that you no longer need IIS and can do updategrams via SQLXML and .NET.

Overall, updategrams provide a very efficient way of modifying data without the learning curve and
performance hits (shredding can potentially be costly when dealing with large XML documents) of
OPENXML.

In the next chapter, you learn about bulk loading XML data through the XML view.

256

Chapter 13

19_597922 ch13.qxp 12/3/05 12:29 AM Page 256

Bulk Loading XML Data
Through the XML View

There are many ways to get data into a database, from the simple INSERT statement that inserts a
single record, the BULK INSERT statement that inserts multiple records, or the BCP utility that has
been around almost since the dawn of time and is used by DBAs to load large amounts of data. All
of these tools accomplish the same task, but each has its idiosyncrasies.

XML has quickly become accepted as standard data storage and transfer mechanism, and the need
to move large amounts of XML-formatted data in and out of a database becomes greater with each
passing year. SQLXML provides the functionality of loading XML-formatted data into SQL Server
2005 through the SQLXML Bulk Load utility.

This chapter will cover SQLXML Bulk Load using XML views to load data into SQL Server 2005.
The topics covered in this chapter are as follows:

❑ Bulk Load overview

❑ Bulk Load object model

❑ Using Bulk Load in a .NET environment

❑ Security issues

❑ Guidelines and limitations

Bulk Load Overview
The SQLXML Bulk Load is a separate utility that enables the import of well-formed XML-formatted
documents or XML instances into Microsoft SQL Server. The SQLXML Bulk Load uses an annotated
XSD schema, which maps the XML elements and attributes to the database tables and columns to
manage the importing of the data and ensure the integrity of data load.

20_597922 ch14.qxp 12/3/05 12:30 AM Page 257

Prior to the bulk load operation, the Bulk Load utility checks to see if the XML document is well-formed. If
it is not well-formed, the bulk load operation is cancelled and errors are generated. XML fragments do not
fit within this criterion as long as the XMLFragment property is set to TRUE (the XMLFragment property is
covered in greater detail later in the chapter).

The SQLXML Bulk Load utility has the added benefit of being able to load into more than one table at
a time, unlike the limitation of the BCP utility or the BULK INSERT statement. The often-used INSERT
statement, in conjunction with the OPENXML function, provides the same functionality as the SQLXML
Bulk Load utility, but the SQLXML Bulk Load utility provides better performance when importing large
amounts of data.

The SQLXML Bulk Load utility is provided by the SQLXML BulkLoad 4.0 Type Library, a COM object
contained in the xblkld4.dll file.

This chapter first discusses some basics of the SQLXML Bulk Load utility, and then toward the end of the
chapter is a complete section with examples covering all the topics previously discussed.

XML Data Streaming
The SQLXML Bulk Load utility works by streaming the data from the XML document instead of reading
the entire document at once. As the XML document is streamed, the Bulk Load utility reads and inter-
prets the document, determining which tables it needs to deal with, and then generates the records for
insertion.

Streaming works well in all bulk load situations, especially when dealing with large XML documents.
Imagine trying to load a very large XML document into memory and then trying to process it. This is
why the Bulk Load utility streams the XML documents — they are more efficient and better performing.

The downside to streaming is the potential that the XML document does not need to be well-formed. For
example, the Bulk Load utility will load an XML document missing a root node.

Bulk Load Operation Modes
The SQLXML Bulk Load utility can be executed in two separate modes: Transacted and Non-transacted.
These modes define at a transactional level how the records are imported into SQL Server.

Transacted
The Transacted mode basically states that the entire bulk load process is a single transaction. The bulk load
will either succeed or fail. If the transaction succeeds, the bulk load import is committed and saved. If
any part of the data import fails, the transactions are rolled back.

As the Bulk Load utility reads the XML document for the tables it needs to handle, the Transacted mode
tells the Bulk Load utility to create a temporary file for each of the tables it finds. The Bulk Load utility
then stores the data in the temporary file for each corresponding table then initiates a BULK INSERT
statement for each temporary file. You specify the location for these temporary files by using the
TempFilePath property.

258

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 258

The Transacted mode reads the data twice: once to read and write the data to the temporary files and a
second time reading from the temporary files to insert into the database. From a performance perspec-
tive, this is not the most efficient method. However, if your goal is simply to get the data in and you’re
not worried about partially loaded data, this is your best option.

To use Transacted mode, you must set the Transaction property of the SQLXML Bulk Load object
to TRUE.

Non-Transacted
The Non-transacted mode is the default mode, and the most performance is gained with this mode. The
Non-transacted mode does not create temporary files, as the data is imported directly into the tables
from the XML documents.

The SQL Native Client in the OLEDB provider implements the IRowsetFastLoad interface. This interface
carries support for bulk load operations, which provides faster importing of data into a SQL Server table.

Since this mode does not operate with transactions, a rollback of the data is not guaranteed if an error in
the import occurs. In this mode, the Bulk Load utility uses a default internal transaction that is committed
upon completion of the data insertion. If the Transaction property is set to TRUE, this default internal
transaction is not used.

Unless your target tables are empty when beginning the bulk load operation, this mode is not recom-
mended since it cannot guarantee the integrity of the data when the operation is complete.

Bulk Load Object Model
The SQLXML Bulk Load functionality comes from the SQLXMLBulkLoad object. This object contains a
number of methods and properties supporting the bulk loading of XML-formatted data into an SQL
Server table. The following sections detail the methods and properties contained in the SQLXML Bulk
Load object.

Execute Method
The Execute method loads the schema file and associated data file, which are passed as parameters. The
syntax for using the Execute method is as follows:

Dim objBulkLoad As SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class = New_
SQLXMLBULKLOADLib.SQLXMLBulkLoad4Class

objBulkLoad.Execute(“C:\Wrox\MotocrossBulkLoadSchema.xml”,
“C:\Wrox\MotocrossBulkLoad.xml”)

The first parameter is the XML schema file (XML view) that contains the mapping schema. The Bulk
Load utility examines the schema with its annotations, and maps the elements and attributes to the
appropriate tables and columns in the database.

The second parameter is the XML document or fragment. This can be either a file name or an input
stream.

259

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 259

BulkLoad Property
The Boolean BulkLoad property tells the Bulk Load utility whether or not to import the data. If this
property is set to FALSE, the associated database schemas (tables and columns) are created (if they do
not exist), but the Bulk Load operation is not executed (the data is not imported). If it the property is set
to TRUE, the Bulk Load operation executes.

The syntax for the BulkLoad property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.BulkLoad = True

The default value for the BulkLoad property is TRUE.

CheckConstraint Property
The Boolean CheckConstraint property specifies whether the Bulk Load utility should recognize or
ignore column constraints in the database. If this property is set to FALSE, all constraints are ignored during
an insert. If you set this property to TRUE, each column constraint is checked for each value inserted. When
you set this property to TRUE and a value is inserted into a column that violates a constraint, an error is
generated. Depending on the transaction mode (transacted or non-transacted) the bulk load either rolls
back or continues (resulting in invalid data).

The syntax for the CheckConstraint property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.CheckConstraints = False

The default value for this property is FALSE.

ConnectionCommand Property
The ConnectionCommand property identifies the connection that the Bulk Load utility should use for
its load operations. You can specify this property or the ConnectionString property (covered in the
next section). It is not necessary to specify both. If both are specified, the Bulk Load utility uses the last
property specified.

The syntax for the ConnectionCommand property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

Dim cmd as New ADODB.Command

objBulkLoad.ConnectionCommand = cmd

260

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 260

When you use the ConnectionCommand property, you must set the Transaction property to TRUE.

The default value for the ConnectionCommand property is NULL.

ConnectionString Property
As an alternative to the ConnectionCommand property, the ConnectionString property defines
the OLE DB connection information required to make a connection to SQL Server. As with the
ConnectionCommand property, if both are specified, the Bulk Load utility uses the last property
specified.

The syntax for the ConnectionString property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.ConnectionString = “Provider=SQLOLE DB;data
source=localhost;database=wrox”

The default value for this property is NULL.

ErrorLogFile Property
The ErrorLogFile property specifies the path and file name to which all bulk load errors and messages
are written. If no value is specified, no logging is performed.

The syntax for the ErrorLogFile property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.ErrorLogFile = “C:\Wrox\ErrorLog.txt”

ForceTableLock Property
This Boolean property specifies whether the Bulk Load utility locks the table into which it is currently
importing data. If you set the ForceTableLock property to TRUE, the Bulk Load utility locks the table
from the time it starts the import until the time it finishes, or commits, the import. If you set this value to
FALSE, the table is locked per record insert.

The syntax for the ForceTableLock property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.ForceTableLock = True

The default value for the ForceTableLock property is FALSE.

261

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 261

IgnoreDuplicateKeys Property
The Boolean IgnoreDuplicateKeys property tells the Bulk Load utility what to do when a duplicate
key value is inserted into a key column. When you set this property to FALSE, the bulk load fails if
attempting to insert a duplicate key. If you set it to TRUE, only the record being inserted fails but the bulk
load continues with the next record.

The syntax for the IgnoreDuplicateKeys property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.IgnoreDuplicateKeys = True

This property has performance ramifications if set to TRUE. For each insert an internal COMMIT is per-
formed, drastically reducing performance. You can set the IgnoreDuplicateKeys property to TRUE
only when the Transaction property is set to FALSE. Otherwise, a transaction conflict would occur.

The default value for the IgnoreDuplicateKeys property is FALSE.

KeepIdentity Property
The KeepIdentity property dictates how the Bulk Load utility handles key, or identity, columns. A Boolean
property, when you set it to FALSE, ignores identity column values specified in the XML document, allowing
SQL Server to generate the value. If you set the Bulk Load Utility to TRUE, it uses the values in the XML
document for the identity column.

The syntax for the KeepIdentity property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.KeepIdentity = True

The default for the KeepIdentity property is TRUE.

SchemaGen Property
The SchemaGen property dictates whether the target tables are created prior to performing the bulk load
operation. When you set this property to TRUE, the Bulk Load utility retrieves the list of tables and col-
umn names from the mapping schema and creates them prior to the bulk load operation.

The syntax for the SchemaGen property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.SchemaGen = True

262

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 262

This property does not create the PRIMARY KEY constraints when the tables are created, but it does cre-
ate the FOREIGN KEY constraints for any sql:relationship and sql:field matches it finds in the
mapping schema.

The default value for the SchemaGen property is FALSE.

SGDropTables Property
The SGDropTables property is used together with the SchemaGen property and dictates whether the
target tables should be dropped prior to the bulk load operation. When you set this property to FALSE,
the target tables are not dropped. If you set it to TRUE, the target tables are dropped and recreated.

The syntax for the SGDropTables property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.SGDropTables = True

The default value for this property is FALSE.

SGUseID Property
When you set the SGUseID property to TRUE, it investigates the mapping schema to establish the fields
that make up the primary key fields of the target table being created, thus, the SchemaGen property
must also be set to TRUE. Any attributes in the mapping schema with a dt:type=”id” type are used by
the SchemaGen property to add the PRIMARY KEY.

The syntax for the SGUseID property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.SGUseID = True

The default value for this property is FALSE.

TempFilePath Property
The TempFilePath property identifies the path where the temporary files are created during a
Transacted Bulk Load operation. If you set the Transaction property to TRUE and do not specify a
TempFilePath property value, the TEMP environment value is used.

The syntax for the TempFilePath property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.TempFilePath = “C:\Wrox\”

263

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 263

If you do not specify a path in this property, the XML Bulk Load utility stores files in the location speci-
fied in the TEMP environment variable. If the path specified for this property is not on the local server,
the path must be a valid UNC path. For example:

objBulkLoad.TempFilePath = “\\MyServer\MyPath”

Transaction Property
The Transaction property indicates the Bulk Load operation mode. A value of TRUE indicates that the
Bulk Load operation will be transactional, whereas a value of FALSE will not. The default is FALSE.

The syntax for the Transaction property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.Transaction = True

If you set this property to TRUE and the ConnectionString property sets or defines the connection
string, XML Bulk Load manages the transaction operations such as starting and committing the transac-
tion, or rolling back the transaction if needed.

If you set this property to FALSE, the XML Bulk Load utility uses the OLE DB interface
IRowsetFastLoad to load the data.

The SQL Native Client OLE DB provider provides the IRowSetInterface. The IRowSetInterface
supports the memory-based bulk copying and provides the COMMIT method (discussed previously in the
“IgnoreDuplicateKeys Property” section).

If you set this property to FALSE, you cannot use the ConnectionObject. The default value for the
Transaction property is FALSE.

XMLFragment Property
The Boolean value XMLFragment property, when set to FALSE, basically tells the Bulk Load utility that
the incoming XML document is well-formed.

The syntax for the XMLFragment property is as follows:

Dim objBulkLoad As SqlXmlBulkLoad.SQLXMLBulkLoad4Class = New _
SqlXmlBulkLoad.SQLXMLBulkLoad4Class

objBulkLoad.XMLFragment = True

The default value for this property is FALSE.

264

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 264

Bulk Load in a .NET Environment
This section shows you how to use SQLXML Bulk Load in the .NET Framework. As explained earlier,
the SQLXML Bulk Load utility is a separate component of SqlXml 4.0.

The first step is to reference the SQLXML Bulk Load COM object. Open the SqlCliTestApp application and
from the Project menu, select Add Reference. On the Add Reference dialog, select the COM tab. Scroll
down the list of components, looking for SqlXmlBulkLoad. Click the component to highlight it and then
click OK, as shown in Figure 14-1.

Figure 14-1

Figure 14-2 shows the added reference in Visual Studio 2005.

Figure 14-2
265

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 265

Next, you need to create the target database tables. In SQL Server Management Studio, open a query
window and execute the following T-SQL:

USE [Wrox]
GO

CREATE TABLE [dbo].[Team](
[TeamID] [int] IDENTITY(1,1) NOT NULL,
[TeamName] [varchar](15) ,
PRIMARY KEY CLUSTERED
(
[TeamID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Rider](
[RiderID] [int] NOT NULL,
[TeamID] [int] NOT NULL,
[RiderName] [varchar](25) ,
[Class] [varchar] (3) NOT NULL,
[NationalNumber] [int] NULL,
CONSTRAINT [PK_Rider] PRIMARY KEY CLUSTERED
(
[RiderID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

GO

Next, open your favorite text editor and create the following XML document, saving it as C:\Wrox\
MotocrossBulkLoad.xml:

<ROOT>
<Team TeamID=”1” TeamName=”Yamaha”>
<Rider RiderID=”1” RiderName=”Chad Reed” Class=”250” NationalNumber=”22” />
<Rider RiderID=”2” RiderName=”David Vuillemin” Class=”250” NationalNumber=”12”

/>
<Rider RiderID=”3” RiderName=”Tim Ferry” Class=”250” NationalNumber=”15” />

</Team>
<Team TeamID=”2” TeamName=”Kawasaki”>
<Rider RiderID=”4” RiderName=”James Stewart” Class=”250” NationalNumber=”259”

/>
<Rider RiderID=”5” RiderName=”Michael Byrne” Class=”250” NationalNumber=”26” />

</Team>
<Team TeamID=”3” TeamName=”Suzuki”>
<Rider RiderID=”6” RiderName=”Ricky Carmichael” Class=”250” NationalNumber=”4”

/>
<Rider RiderID=”7” RiderName=”Davi Millsaps” Class=”125” NationalNumber=”188”

/>
<Rider RiderID=”8” RiderName=”Broc Hepler” Class=”125” NationalNumber=”60” />
<Rider RiderID=”9” RiderName=”Sebastien Tortelli” Class=”250”

NationalNumber=”103” />
</Team>

266

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 266

<Team TeamID=”4” TeamName=”Suzuki”>
<Rider RiderID=”10” RiderName=”Jeremy McGrath” Class=”250” NationalNumber=”2”

/>
<Rider RiderID=”11” RiderName=”Ernesto Fonseca” Class=”125” NationalNumber=”24”

/>
<Rider RiderID=”12” RiderName=”Travis Preston” Class=”125” NationalNumber=”70”

/>
<Rider RiderID=”13” RiderName=”Andrew Short” Class=”250” NationalNumber=”51” />
<Rider RiderID=”14” RiderName=”Mike LaRocco” Class=”125” NationalNumber=”5” />
<Rider RiderID=”15” RiderName=”Kevin Windham” Class=”250” NationalNumber=”14”

/>
</Team>

</ROOT>

Now you need to create the mapping schema. In your text editor, create the following schema, saving it
as C:\Wrox\MotocrossBulkLoadSchema.xml:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=”TeamInfo”

parent=”Team”
parent-key=”TeamID”
child=”Rider”
child-key=”TeamID” />

</xsd:appinfo>
</xsd:annotation>

<xsd:element name=”Team” sql:relation=”Team”
sql:key-fields=”TeamID” >

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Rider” sql:relation=”Rider”
sql:key-fields=”RiderID”
sql:relationship=”TeamInfo”>

<xsd:complexType>
<xsd:attribute name=”RiderID” type=”xsd:int” />
<xsd:attribute name=”RiderName” type=”xsd:string” />

<xsd:attribute name=”Class” type=”xsd:string” />
<xsd:attribute name=”NationalNumber” type=”xsd:int” />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”TeamID” type=”xsd:integer” />
<xsd:attribute name=”TeamName” type=”xsd:string” />

</xsd:complexType>
</xsd:element>

</xsd:schema>

Next, modify the Visual Studio test application. Add a new button on the form with the following
properties:

267

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 267

Property Value

Text “Bulk Load”

Name cmdBulkLoad

Last, double-click the Bulk Load button and add the following code in the click event (be sure to put
the correct username and password in the connection string):

Try
Dim objBulkLoad As SQLXMLBULKLOAD.SQLXMLBulkLoad4Class = New_

SQLXMLBULKLOAD.SQLXMLBulkLoad4Class
objBulkLoad.ConnectionString = “Provider=SQLOLE DB;Data Provider=SQLNCLI;

Server=localhost;Database=Wrox;UID=sa;PWD=putpasswordhere”
objBulkLoad.ErrorLogFile = “C:\Wrox\ImportError.xml”
objBulkLoad.KeepIdentity = True
objBulkLoad.Execute(“C:\Wrox\MotocrossBulkLoadSchema.xml”,

“C:\Wrox\MotocrossBulkLoad.xml”)

SET objBulkLoad = Nothing

Me.txtResults.Text = “ImportSuccessful! “

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Run the program and click the Bulk Load button. The Bulk Load runs, and if it is successful an “Import
Successful!” message is displayed in the output window, as shown in Figure 14-3.

Figure 14-3

To verify the results, open a query window in SQL Server Management Studio and run the following query:

SELECT * FROM Team
GO
SELECT * FROM Rider
GO

268

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 268

Figure 14-4 shows the results of the Bulk Load import. The mapping schema provided the mapping
between the tables and columns in the XSD annotated schema to the elements and attributes in the XML
data document. When the bulk load operation began it determined which tables it needed to deal with
by examining the mapping schema. Once the Bulk Load utility determined that it knew which tables
and columns it needed, it brought in the data.

Figure 14-4

In this example, the database schema already existed and all the Bulk Load utility had to do was import
the data.

Go into SQL Server Management Studio and delete the Team and Rider tables using the following T-SQL:

DROP TABLE Team
GO

DROP TABLE Rider
GO

Next, modify the click event code behind the Bulk Load button as follows:

objBulkLoad.ErrorLogFile = “C:\Wrox\ImportError.xml”
objBulkLoad.KeepIdentity = True
objBulkLoad.SchemaGen = True

Rerun the application and click the Bulk Load button. When the application finishes execution, go back
to your query window in SQL Server Management Studio and execute the following code:

269

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 269

SELECT * FROM Team
GO

SELECT * FROM Rider
GO

Because the SchemaGen property is now set to True, you can see that the tables were implicitly created.

The next topic discusses security as it pertains to the Bulk Load utility and some ideas that you should
consider when using the Bulk Load utility.

Security Issues
The following is a list of security issues related to the Bulk Load utility:

❑ The error log file is overwritten each time the Bulk Load utility is run. Any data from a previous
bulk load process is deleted and replaced.

❑ The Bulk Load utility can and may create temporary tables in the database as needed. Any
temporary tables created are created with the same permissions that are being used to connect
to the database.

❑ Bulk Load, when used in Transacted mode, may create and delete temporary files. The permis-
sions used for the creation and deletion are the same permissions that the bulk load process is
operating in.

❑ There is no preset time limit or setting to designate the amount of time for the Bulk Load utility
to complete the import process. It runs until the process is complete and a COMMIT is issued or
until an error occurs.

❑ The Bulk Load utility does not care about the amount of data being inserted.

❑ Data may be left in an incomplete state if the Bulk Load utility is run in Non-transacted mode.

❑ No permission settings are set within the Bulk Load utility itself. Permissions are passed to Bulk
Load, which are then used for database access.

❑ Bulk load errors returned to the user may contain database information such as table and col-
umn names. It is good practice to catch these errors and return messages without database
information.

Guidelines and Limitations
The following list contains some guidelines and limitations related to the Bulk Load utility:

❑ When setting the Transaction property to TRUE and specifying a path using the TempFilePath
property, make sure the SQL Server account used to do the bulk load has access to the path speci-
fied in the TempFilePath property.

❑ For best performance when you are bulk loading into a table, disable all indexes on the target
table.

270

Chapter 14

20_597922 ch14.qxp 12/3/05 12:30 AM Page 270

❑ In the mapping schema, primary key tables must be defined before the tables that contain the
corresponding foreign key. If they aren’t, the Bulk Load utility will fail.

❑ Do not use SQL Server reserved words for element and attribute names in the mapping schema.
If you set the SchemaGen property to TRUE, the Bulk Load utility uses these values to create the
corresponding table and column names.

❑ Inline schemas, such as xmlns=”x:schema”, are ignored by the XML Bulk Load utility.

❑ XML documents are not validated against any DTD or schema specified in the XML file.

❑ If you do not specify a sql:overflow-field annotation in the schema, any data in the XML
document not specified in the schema is ignored.

❑ All information before and after the <ROOT> and </ROOT> elements is ignored.

❑ Any default attribute values specified in the mapping schema are used if the XML source does
not provide a value for the corresponding attribute.

❑ sql:url-encode annotations are not supported.

❑ The SchemaGen property provides basic schema generation (tables and columns) when you use
annotated XSD schemas.

❑ If multiple relationships exist between two tables, SchemaGen attempts to generate a single rela-
tionship using the keys from the multiple relationships. This could lead to T-SQL generated
errors.

Summary
The purpose of this chapter was to provide information on how to use the SQXML Bulk Load utility in
SQLXML 4.0. Understanding the SQLXML Bulk Load object model and its different methods and prop-
erties is essential to get the best performance and usage out of this utility.

Likewise, a good portion of this chapter was dedicated to showing you how to use the SQLXML Bulk
Load utility in a .NET environment. With the improvements in the SQL Native Client, the Bulk Load
utility is very fast and efficient and much easier to use.

Last, you learned about some security issues that will come in very useful when implementing the Bulk
Load utility, as well as some guidelines and limitations of the Bulk Load utility.

The next chapter deals with the data access methods that you can use when executing SQLXML.

271

Bulk Loading XML Data Through the XML View

20_597922 ch14.qxp 12/3/05 12:30 AM Page 271

20_597922 ch14.qxp 12/3/05 12:30 AM Page 272

SQLXML Data Access
Methods

When SQL Server 2000 first came on the scene, it was limited as to the amount of XML support it
provided, especially from the client side. Since then there have a number of updates to SQLXML
that provide additional functionality. The most prominent release was SQLXML 3.0, the Web
release that provided more client-side functionality, as well as XSD schemas, the XML Bulk Load,
updategrams, and Web Service (SOAP) support.

SQLXML 4.0, introduced in SQL Server 2005, provides even more of that same rich functionality,
the most important being the support of the native xml data type and the capability to execute
SQLXML queries via ADO.NET.

Also introduced with SQL Server 2005 is the SQL Native Client, a data access technology that com-
bines both the SQL OLE DB provider and the SQL ODBC driver into a single API. This new client
provides a new set of functionality that is completely separate from the already existing Microsoft
Data Access Components (MDAC). The SQL Native Client is what allows applications to take
advantage of the new SQL Server 2005 features, such as the xml data type, UDTs (user-defined
types), and MARS (Multiple Active Result Sets).

This chapter focuses distinctly on data access methods using SQLXML 4.0 technology. You may
already be familiar with some of this technology, such as SQLXML Managed Classes and Web
Services, since they are not new to SQL Server 2005. What is discussed here are the new features
added to these technologies in SQLXML 4.0.

The main topics discussed in this chapter are as follows:

❑ SQL Native Client

❑ SQLXML Managed Classes

❑ Web Services

21_597922 ch15.qxp 12/3/05 12:33 AM Page 273

SQL Native Client
Back in Chapter 11, you learned a little bit about the SQL Native Client and some of its capabilities. This
section reviews the information in Chapter 11, but builds on it and delves deeper into the SQL Native
Client.

SQL Server 2005 introduces a new technology that combines the earlier data access technologies, such as
the ODBC driver and OLE DB provider, and replaces them with the SQL Native Client. This new data
access client is an API that combines both the ODBC driver and OLE DB provider into a single interface.
Besides combining these components, this DLL, called sqlncli.dll, also adds features such as support for
the xml data type, UDTs (user defined types), and MARS (Multiple Active Result Sets).

SQL Native Client versus MDAC
Both the SQL Native Client and MDAC provide access to SQL Server, but there are a number of differences
between them that you need to understand. The SQL Native Client incorporates many of the MDAC
components, but it is specifically designed to work with the new features and enhancements made to SQL
Server 2005.

For example, MDAC by itself does not support the SQL Server 2005 xml data type, but the SQL Native
Client does.

The following is a list that highlights some of the areas where the SQL Native Client and MDAC differ:

❑ SQL Native Client does not support features such as connection pooling, memory management,
and other MDAC-accessible features.

❑ SQL Native Client does not support SQLXML integration.

❑ SQL Native Client supports only SQL Server version 7.0 and higher.

❑ SQL Native Client supports only the OLEDB and ODBC interfaces.

❑ To make distribution easier, all the necessary data-access functionality in the SQL Native Client
is included in a single DLL interface.

This is not quite a complete list — it merely highlights the bigger differences between the two technologies.
The intent of the SQL Native Client is to simplify data access to SQL Server. The client tools for SQL Server
are available for those who need a broader range of data access.

SQL Native Client Benefits
The design goal of the SQL Native Client is to make an easy way to access data from SQL Server, regardless
of whether you are using OLEDB or ODBC. Because it combines both of these into a single interface, a
developer can easily adapt to this new client without completely rewriting the application or changing any
of the data access components.

The SQL Native Client uses many of the components of MDAC and works with version 2.6 or higher, or
any version that is installed with Windows 2000 SP3 or later. The SQL Native Client also works with
ADO (ActiveX Data Objects), providing access to all SQL Native Client functionality via ADO.

274

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 274

The following list explains the benefits and features of using the SQL Native Client:

❑ xml data type: Provides support for the xml data type on the client side.

❑ User-Defined Types: Provides support for UDTs on the client side.

❑ Execution of multiple result sets: Provides the capability to execute and return multiple result
sets via a single connection.

❑ Asynchronous operation: Methods are now returned immediately, eliminating calling thread
blocking issues.

❑ Password expiration: Users can now change their expired passwords without administrator
intervention.

Deployment Considerations
The SQL Native Client is installed by default when you install SQL Server 2005 and can also be installed
as a separate component for client installations. The installation file, SQLNCLI.msi, is found on the SQL
Server 2005 installation CD and is used to install the SQL Native Client on client computers.

Separating this component into its own install component means it can be more easily distributed and
even included in an application’s installation routine. For now, the SQL Native Client install runs only in
silent mode.

xml Data Type Support
When you query an xml data type column using the SQL Native Client, the results are returned either as
a text stream or an ISequentialStream.

The ISequentialStream interface is the preferred method for reading and writing BLOBs (Binary Large
Objects). As mentioned in the discussion of the xml data type in Chapter 4, XML documents and XML
instances are stored in the xml data type column as BLOBs, and therefore can either be returned on the
client side as strings or by using the ISequentialStream interface.

SQLXMLOLEDB Provider
The SQL Native Client cannot be used by itself when the goal is to work with XML from the client side. The
purpose of the SQL Native Client is to provide access to SQL Server, not to provide SQLXML functionality.
The SQLXMLOLEDB provider is an OLEDB provider that exposes the SQLXML functionality via ActiveX
Data objects (ADO).

In addition, the provider is not a rowset provider; therefore, it can only execute commands via the
Output Stream mode.

In Chapter 11, you saw an example that executed the GetProducts stored procedure. Here it is again:

dbGuid = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”

strconn = “Provider=SQLXMLOLEDB.4.0;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Userid = “Type your SQL Server Login here”

275

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 275

Password = “Type your SQL Server Password HERE”

Me.Cursor = Cursors.WaitCursor

Try
conn.Open(strconn, Userid, password)
cmd.ActiveConnection = conn

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml- sql’>” & _
“<sql:query client-side-xml=””1””>EXEC GetProducts FOR XML NESTED” & _
“</sql:query></ROOT>”

InStream.Open()

cmd.Dialect = dbGuid
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

In this example, the Provider specified is the SQLXMLOLEDB provider with the SQL Native Client being
used as the Data Provider. In Chapter 11, you learned that when this example is run, the ProductID,
Name, and ProductNumber are returned and formatted properly by the FOR XML clause.

However, what happens when you modify the connection string and remove the SQLXMLOLEDB provider
and execute the code? Modify the connection string as follows:

strconn = “Provider=SQLNCLI;Server=localhost;Database=AdventureWorks”

When you run the program and click the button, a message box similar to the one shown in Figure 15-1
is displayed.

Figure 15-1

276

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 276

If you step through the code, you will notice a connection is indeed made to the database, but the error
is generated when you attempt to execute the query. What you have essentially done is remove the part
that provides the SQLXML functionality.

There are two parts to the connection string: Provider and Data Provider.

The correct connection string from the original example contains both a Provider and Data Provider,
as follows:

Dim strconn As String

strconn = “Provider=SQLXMLOLEDB;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

The Provider is what provides the SQLXML functionality and exposes the provider-specific connection
property. Without this provider, any SqlXml statements are rejected when executed.

The Data Provider, the SQL Native Client, is what executes the command. It provides the ProgID of
the Provider that is contained within the SQL Native Client.

In the example, the SQLXMLOLEDB provider is what provides the SQLXML functionality. Removing this
provider is what caused the error in Figure 15-1 to be generated because the SQL Native Client is for SQL
Server access. It does not understand SQLXML commands, which are provided by the SQLXMLOLEDB
provider.

Requirements
The requirements for using the SQLXMLOLEDB provider are straightforward. They are the following:

❑ Microsoft ActiveX Data Objects 2.6 and higher library

❑ SQLXML 4.0 SQL Native Client

SQLXMLOLEDB Provider Properties
There are eight properties exposed by the SQLXMLOLEDB provider, one of which you have already seen in
Chapter 11 and again earlier in this chapter: the ClientSideXML property.

For example, the following code sets the ClientSideXML property to True, telling the provider that the
formatting of XML will take place on the client:

Dim conn As New ADODB.Connection
Dim cmd As New ADODB.Command

Conn.Open(“Provider=SQLXMLOLEDB;Data
Provider=SQLNCLI;Server=localhost;Database=AdventureWorksUID=Wrox;PWD=Wrox”)

cmd.ActiveConnection = conn
cmd.Properties(“ClientSideXML”).Value = True

In the example, an ADO command object is created, and then the ClientSideXML property is set on the
command object.

277

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 277

The following section explains each property of the SQLXMLOLEDB provider and provides examples for
each property. While these properties are properties of the provider, they are exposed via the provider as
provider-specific command properties.

Base Path
The Base Path property specifies the location of the XSLT style sheet or mapping schema files. The syn-
tax for setting this property is as follows:

cmd.Properties(“Base Path”).Value = “C:\Wrox\Chapter15\”

In this example, the “Base Path” property is used to set the root, or base, location of any mapping
schemas or XSL style sheets.

ClientSideXML
You have seen the ClientSideXML property in previous examples. It specifies whether you want the
data from a result set converted at the client instead of the server. The syntax for setting this property is
as follows:

cmd.Properties(“ClientSideXML”).Value = False

The default for this property is False.

Mapping Schema
The Mapping Schema property specifies the name and location of the mapping schema when executing
an XPath query. The syntax for setting this property is as follows:

cmd.Properties(“Mapping Schema”).Value = “C:\Wrox\Chapter15\Motocross.xml”

Both relative and absolute paths are allowed. If no path is specified, the relative path is that of the cur-
rent directory. URLs are also allowed, but WinHTTP must be configured to access HTTP and HTTPS
through a proxy server.

The default for this property is NULL.

namespaces
The namespaces property provides the capability to execute XPath queries that use namespaces. The
syntax for setting this property is as follows:

cmd.Properties(“namespaces”).Value = “xmlns:sql=’urn:schema:products’”

When schema elements are qualified with a namespace, the XPath queries that are executed against the
schema must specify that namespace. This becomes a problem when specifying a wildcard character
(signified by an asterisk [*]), because SQLXML 4.0 does not support wildcard characters. The solution for
this is to use the namespaces property to specify the namespace and appropriate binding.

xml root
The xml root property defines a root tag for the resulting XML document. The syntax for setting this
property is as follows:

278

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 278

cmd.Properties(“xml root”).Value = “rootvalue”

rootvalue defines the root tag for the resulting XML. This property can be used to add a root tag when
your resulting XML document does not contain a single root element.

xsl
You use the xsl property to specify the file name of the XSLT style sheet when executing a transforma-
tion on an XML document. The syntax for setting this property is as follows:

cmd.Properties(“xsl”).Value = “C:\Wrox\Chapter15\Intro.xsl”

Both relative and absolute paths are allowed. If you do not specify a path, the relative path is that of the
current directory.

Executing SQL Queries
Executing queries using the SQLXMLOLEDB provider also requires the use of the SQL Native Client. The
following example queries the Production.Product table for the ProductID, Name, and ProductNumber
columns from the AdventureWorks database.

Open the Visual Studio project and form you have been using and add a button to the form. Set the Text
property of the button to “SQLXMLOLEDB”. In the code behind the button, enter the following code:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

strconn = “Provider=SQLXMLOLEDB.4.0;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Me.Cursor = Cursors.WaitCursor

Try
‘Be sure to enter your login name and password
Dim LoginName As String = “”
Dim Password As String = “”

conn.Open(strconn, LoginName, Password)
cmd.ActiveConnection = conn

cmd.Properties(“ClientSideXML”).Value = True
cmd.CommandText = “SELECT ProductID, Name, ProductNumber FROM Production.Product

FOR XML AUTO”

InStream.Open()

cmd.Properties(“Output Stream”).Value = InStream

279

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 279

cmd.Properties(“xml root”).Value = “Root”
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

In the example, notice the use of the ClientSideXML property. Even though the SQL statement contains
the FOR XML clause, the ClientSideXML property tells SQL Server that the formatting of XML will
happen on the client and not the server.

Run the program and click the button you just added. In Figure 15-2, you can see the root node “Root”
in the results returned from the query. Supplying a value to the “xml root” property provides the root
node, as shown in the previous example.

Figure 15-2

The SQLXMLOLEDB provider returns results via output streams; results are not returned as rowsets.

XPath Queries
You can also use the SQLXMLOLEDB provider to execute XPath queries against XSD schemas. In the fol-
lowing example, you use the “Base Path” and “Mapping Schema” properties to specify the location
and name of the mapping schema.

First, open your favorite text editor and enter the following code, saving it as C:\Wrox\Chapter15\
Products.xml:

<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:sql=’urn:schemas-microsoft-com:mapping-schema’>

<xsd:element name= ‘Root’ sql:is-constant=’1’>

280

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 280

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = ‘Products’/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=’Products’ sql:relation=’Production.Product’>

<xsd:complexType>
<xsd:attribute name=’ProductID’ type=’xsd:integer’ />
<xsd:attribute name=’Name’ type=’xsd:string’/>
<xsd:attribute name=’ProductNumber’ type=’xsd:string’ />

<xsd:attribute name=’Color’ type=’xsd:string’ />
</xsd:complexType>

</xsd:element>
</xsd:schema>

Next, modify the click event code behind the SQLXMLOLEDB button as follows:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

strconn = “Provider=SQLXMLOLEDB.4.0;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Me.Cursor = Cursors.WaitCursor

Try
‘Be sure to enter your login name and password
Dim LoginName As String = “”
Dim Password As String = “”

conn.Open(strconn, LoginName, Password)
cmd.ActiveConnection = conn

cmd.Properties(“ClientSideXML”).Value = True

cmd.CommandText = “Root”

InStream.Open()

cmd.Dialect = “{ec2a4293-e898-11d2-b1b7-00c04f680c56}”
cmd.Properties(“Output Stream”).Value = InStream
cmd.Properties(“Base Path”).Value = “c:\Wrox\Chapter15\”
cmd.Properties(“Mapping Schema”).Value = “Products.xml”
cmd.Properties(“Output Encoding”).Value = “utf-8”
cmd.Execute(, , 1024)

InStream.Position = 0

281

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 281

InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

In the code, notice the reference to the XPath dialect. Since an XPath query is being specified directly, the
specific XPath dialect is required. As before, you specify the ClientSideXML property to let SQL Server
know that any XML formatting will take place on the client.

Figure 15-3 shows the results of the query.

Figure 15-3

In this example, a number of the SQLXMLOLEDB provider properties were used. First, the ClientSideXML
property was used to tell the provider that any necessary XML formatting would happen on the client.
Second, the Base Path property was used to specify location of the Products.xml schema. Last, the
mapping schema property was used to specify the name of the mapping schema against which the XQuery
was executed.

Because the query was an XPath query, the dialect property is accordingly for XPath.

XSL Transform Using the SQLXMLOLEDB Provider
In the following example, the data is returned from SQL Server and formatted to XML using the
ClientSideXML property. The “xsl” property is specified in the following example, which specifies
the name of the XSLT style sheet to be applied to the resulting XML formatting. The same “Base Path”
property is used to set the location of the style sheet. When you execute the query, the transformation
takes place using the value specified in the “xsl” property.

In your text editor, type the following code and save this as C:\Wrox\Products.xsl:

<?xml version=’1.0’ encoding=’UTF-8’?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

282

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 282

<xsl:template match = ‘Production.Product’>
<TR>
<TD><xsl:value-of select = ‘@ProductID’ /></TD>
<TD><xsl:value-of select = ‘@Name’ /></TD>
<TD><xsl:value-of select = ‘@ProductNumber’ /></TD>

</TR>
</xsl:template>
<xsl:template match = ‘/’>
<HTML>
<HEAD>
<STYLE>th { background-color: #0066ff }</STYLE>

</HEAD>
<BODY>
<TABLE border=’0’ style=’width:300;’>
<TR><TH colspan=’3’>Products</TH></TR>
<TR><TH >Product ID</TH>
<TH >Product Name</TH>
<TH>Product Number</TH>

</TR>
<xsl:apply-templates select = ‘ROOT’ />

</TABLE>
</BODY>

</HTML>
</xsl:template>
</xsl:stylesheet>

Modify the code behind the button again, this time making the following changes:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

strconn = “Provider=SQLXMLOLEDB.4.0;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Me.Cursor = Cursors.WaitCursor

Try
‘Be sure to enter your login name and password
Dim LoginName As String = “”
Dim Password As String = “”

conn.Open(strconn, LoginName, Password)
cmd.ActiveConnection = conn

cmd.Properties(“ClientSideXML”).Value = True

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’ >” & _
“<sql:query> “ & _
“SELECT ProductID, Name, ProductNumber FROM Production.Product FOR XML AUTO “ & _

283

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 283

“</sql:query> “ & _
“ </ROOT> “

InStream.Open()

cmd.Dialect = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”
cmd.Properties(“Output Stream”).Value = InStream
cmd.Properties(“Base Path”).Value = “c:\Wrox\Chapter15\”
cmd.Properties(“xsl”).Value = “Products.xsl”
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

Notice the change in the command dialect. This change is required because the SQL query is specified in
a template; therefore, a different command dialect is required notifying SQL Server that a template query
is being executed.

Figure 15-4 shows the results of the query.

Figure 15-4

Select all the results in the text box and copy them to the clipboard. In Windows Explorer, create a new
text file named Products.html and edit the file. Paste the contents of the clipboard into the file and save
the file. Double-click the file to open it up in your default browser. Figure 15-5 shows what the results of
the transformation look like in Windows Internet Explorer.

284

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 284

Figure 15-5

Different browsers may display the results differently. The results in Figure 15-5 are displayed using
Microsoft Internet Explorer 6.0.

This example uses the xsl property to apply an XSL style sheet to the results. The template query was
specified directly in the commandtext property, and the base path and xsl attributes values specified
the location and name of the style sheet.

The next section goes into further detail about executing template queries.

Executing Template Queries
SQLXMLOLEDB supports the capability to execute a template query, which is an XML template that contains
a SQL query executed on the server. Template queries were discussed in Chapter 11, but the difference here
is that the results are returned in a Stream and the XML formatting is applied on the client.

This first example contains an XML template with a standard SQL statement inside it. Even though
the FOR XML clause is specified in the query, the XML formatting is applied at the client because the
ClientSideXML property is set to True. Modify the code behind the button again, with the following
changes:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String

InStream = New ADODB.Stream
conn = New ADODB.Connection

285

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 285

cmd = New ADODB.Command

strconn = “Provider=SQLXMLOLEDB.4.0;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Me.Cursor = Cursors.WaitCursor

Try
‘Be sure to enter your login name and password
Dim LoginName As String = “”
Dim Password As String = “”

conn.Open(strconn, LoginName, Password)
cmd.ActiveConnection = conn

cmd.Properties(“ClientSideXML”).Value = True

cmd.CommandText = “<ROOT xmlns:sql=’urn:schemas-microsoft-com:xml-sql’ >” & _
“<sql:query> “ & _
“SELECT ProductID, Name, ProductNumber FROM Production.Product FOR XML AUTO “ & _
“</sql:query> “ & _
“ </ROOT> “

InStream.Open()

cmd.Dialect = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”
cmd.Properties(“Output Stream”).Value = InStream
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

As with the previous example, the command dialect did not change because this example also uses a
template query. The results of the query are shown in Figure 15-6.

286

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 286

Figure 15-6

Taking a couple of pieces from each of the previous examples to demonstrate template queries and
returning results, this example includes the ClientSideXML property, which despite the FOR XML clause
being included in the SELECT statement, is sent to the server. The server, however, executes the query
and returns the results back to the client where the client then applies the FOR XML formatting to the
result set.

The SELECT statement is wrapped in a template query specifying a root element. Since a root element is
already specified, the xml root property is not needed.

The next example also uses a template query, but it differs in that the template query contains an XPath
query that points to an XSD mapping schema. The mapping schema provides the mapping to the table
and columns in the database in which the query is executed. The schema is the same as the one that was
used a few examples earlier.

The “Base Path” and “Mapping Schema” properties supply the location and file name of the mapping
schema. Again, modify the code behind the button with the following changes:

Dim InStream As ADODB.Stream
Dim conn As ADODB.Connection
Dim cmd As ADODB.Command
Dim strconn As String

InStream = New ADODB.Stream
conn = New ADODB.Connection
cmd = New ADODB.Command

strconn = “Provider=SQLXMLOLEDB.4.0;Data Provider=SQLNCLI;Server=localhost;” & _
“Database=AdventureWorks”

Me.Cursor = Cursors.WaitCursor

Try
‘Be sure to enter your login name and password
Dim LoginName As String = “”
Dim Password As String = “”

conn.Open(strconn, LoginName, Password)

287

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 287

cmd.ActiveConnection = conn

cmd.Properties(“ClientSideXML”).Value = True

“<sql:xpath-query mapping-schema=’c:\Wrox\Chapter15\Products.xml’ > “ & _
“ Root “ & _
“ </sql:xpath-query> “ & _
“ </ROOT> “

InStream.Open()

cmd.Dialect = “{5d531cb2-e6ed-11d2-b252-00c04f681b71}”
cmd.Properties(“Output Stream”).Value = InStream
cmd.Properties(“Base Path”).Value = “c:\Wrox\Chapter15\”
cmd.Properties(“Mapping Schema”).Value = “c:\wrox\chapter15\Products.xsl”
cmd.Properties(“Output Encoding”).Value = “utf-8”
cmd.Execute(, , 1024)

InStream.Position = 0
InStream.Charset = “utf-8”

Me.txtResults.Text = InStream.ReadText()

conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Me.Cursor = Cursors.Default

The XPath query specified in the template simply contains an XPath query “Root”, which as you can see
in Figure 15-7, becomes the root node.

Figure 15-7

As you can see, the SQLXMLOLEDB provider is extremely robust and the performance is exceptional.
The examples in this section did not filter any records, as they returned all the rows from the
Production.Product table.

288

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 288

SQLXML Managed Classes
If you’ve been using SQLXML 3.0 at all, you are familiar with the SQLXML Managed Classes. They are
not new to SQLXML 4.0, but they are enhanced to work with SQL Server 2005 and the .NET Framework
version 2.0. This section provides a few examples to help demonstrate SQLXML connectivity using
Managed Classes. SQL Managed Classes are discussed in depth in Chapter 20.

SQLXML Managed Classes expose the functionality of SQLXML 4.0 inside the .NET Framework. With
this exposed functionality, the ability to access XML data from within SQL Server and bring it into
the .NET Framework is completely possible. Once the data is passed from SQL Server to the .NET
Framework, it can be updated or changed and sent back to SQL Server.

This first example creates a SQLXML Managed Class, passing a simple SQL statement to SQL Server,
and returns the data to the client. The XML formatting takes place on the server in this example.

Open your text editor, enter the following code, and save it as C:\Wrox\Chapter15\Products.vb

Imports System
Imports System.IO
Imports Microsoft.Data.SqlXml

Public Class Products

Public Shared Function Main() As Integer

Dim InStream As Stream

‘Be sure to use the correct username and password
Dim cmd As SqlXmlCommand = New

SqlXmlCommand(“Provider=SQLOLEDB;Server=localhost;Database=AdventureWorks;UID=Wrox;
PWD=Wrox”)

cmd.CommandText = “SELECT ProductID, Name, ProductNumber FROM” & _
“Production.Product FOR XML AUTO”

Try
InStream = cmd.ExecuteStream
InStream.Position = 0
Dim sr As StreamReader = New StreamReader(InStream)
Console.WriteLine(sr.ReadToend)

Catch ex As SqlXmlException
Dim Results As String
ex.ErrorStream.Position = 0
Results = New StreamReader(ex.ErrorStream).ReadToEnd
System.Console.WriteLine(Results)

End Try

End Function

End Class

289

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 289

Next, open a command prompt and browse to the .NET Framework 2.0 directory. At the time of this
writing, the latest release is 2.0.50215. The .NET Framework directory is located in the C:\WINDOWS\
Microsoft.NET\Framework directory.

After you navigate to the correct directory, execute the vbc command. This command creates an exe-
cutable using the vb class you will pass it. The syntax is as follows:

Vbc /reference:Microsoft.Data.SqlXml.dll PathToProducts.vb

For example, Figure 15-8 illustrates how to use the vbc command to create an executable passing it the
path of the location of the Products.vb file created previously. The syntax is as follows:

Vbc /reference:Microsoft.Data.SqlXml.dll c:\Wrox\chapter15\products.vb

Figure 15-8 also shows the results when the execution is finished. In this example, a file called
Products.exe is created in the c:\Wrox\chapter15 directory.

Figure 15-8

After you create the executable, navigate to the c:\Wrox\chapter15 directory in the command prompt.
Once there, execute the executable by typing the following command at the command prompt:

Products

Figure 15-9 shows the results of executing the Managed Class.

Figure 15-9

290

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 290

The SQL statement executed, the data was formatted into XML at the server and sent back to the .NET
Framework environment, and the results were output to the console window.

This next example provides the same functionality but accomplishes the task with two differences. First,
instead of sending a SQL statement to SQL Server, the code executes a stored procedure. Second, the
ClientSideXML property is set so that the results are returned to the client for XML formatting.

The GetProducts stored procedure that was created in Chapter 11 should still exist in the
AdventureWorks database. If it does not, open a query window in SQL Server Management Studio and
execute the following SQL query:

CREATE PROCEDURE GetProducts
AS

SELECT ProductID, Name, ProductNumber
FROM Production.Product

GO

Next, open the Products.vb file and modify it as follows, saving the changes as Products2.vb:

Imports System
Imports System.IO
Imports Microsoft.Data.SqlXml

Public Class Products1

PUblic Shared Function Main() As Integer

Dim InStream As Stream

Dim cmd As SqlXmlCommand = New
SqlXmlCommand(“Provider=SQLOLEDB;Server=localhost;Database=AdventureWorks;UID=sa;PW
D=hackthis”)
cmd.ClientSideXML = True

cmd.CommandText = “EXEC GetProducts FOR XML NESTED”

Try
InStream = cmd.ExecuteStream

InStream.Position = 0
Dim sr As Streamreader = New StreamReader(InStream)
Console.WriteLine(sr.ReadToend)

Catch ex As SqlXmlException
Dim Results As String
ex.ErrorStream.Position = 0
Results = New StreamReader(ex.ErrorStream).ReadToEnd
System.Console.WriteLine(Results)

End Try

End Function

End Class

291

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 291

Just like the previous example, open a command prompt and compile Products2.vb into an executable
using the syntax shown earlier.

After you create the executable, navigate to the directory where it was created and run the executable.
Figure 15-10 shows the results of running the executable.

Figure 15-10

In this example, the Managed Class executed the GetProducts stored procedure and returned the data
to the client for XML formatting. The results were then displayed to the console window.

While these examples are fairly simple, they should give you an introductory idea of how Managed
Classes work. The purpose with these examples was to show you how Managed Classes can be used on
the client side to access SQL Server.

Web Services
This section briefly introduces Web Services in SQL Server 2005, and Chapter 17 is dedicated to this
topic. Through its database engine, SQL Server 2005 provides native XML Web Services with support for
the open standard protocols. Those protocols are as follows:

❑ HTTP

❑ SOAP

❑ WSDL

With the introduction of native Web Service support in SQL Server 2005, a number of benefits come into
play that improve functionality and performance. The primary benefit is that now any application utiliz-
ing Web Services can access SQL server. Any application that supports XML and HTTP can access SQL
Server.

A second benefit is improved security. The built-in support for HTTP and SOAP offers a new level of
Web access. Anonymous user access is prohibited, and administrative privileges are now needed to cre-
ate endpoints.

292

Chapter 15

21_597922 ch15.qxp 12/3/05 12:33 AM Page 292

Third, the inclusion of Web Services results in much better support for wireless clients. This follows
what has been called “Anytime, Anywhere” access, being able to connect and process requests at any
given time.

Additional benefits are discussed in Chapter 17, but you should start to see some of the great benefits of
SQL Server 2005’s support of Web Services.

Summary
With the release of SQL Server 2005, more options became available for accessing data using SQLXML.
With the introduction of the SQL Native Client, you can take advantage of the new native xml data type,
which MDAC and other access technologies cannot. SQLXML provides a very robust access technology
that includes support for the SQL Native Client, and support for the xml data type and other data types
new to SQL Server 2005.

This chapter outlined several differences between MDAC and the SQL Native Client, and from those dif-
ferences, you should be able to determine the course of action to take when deciding which technology
to use. Of course, MDAC does not support the xml data type and related functionality, so if you want to
take advantage of those features, you need to go with the SQL Native Client.

The SQLXMLOLEDB provider is a new addition to SQLXML 4.0, whose sole purpose is to provide
SQLXML functionality via ADO. When combined with the SQL Native Client, it is the perfect match for
building high-performing applications that need SQLXML functionality.

From there, you learned about SQLXML Managed Classes, which provide a whole new level of data
access for SQLXML, exposing the functionality of SQLXML 4.0 inside of the .NET Framework. While
this chapter did not go into a whole lot of detail about SQL Managed Classes, I hope provided a good
foundation so you are better prepared for Chapter 20.

Last, you were introduced to native Web Service support in SQL Server 2005 and the many benefits it
provides. Just like Managed Classes, an entire chapter is dedicated to this topic later on, but it was
included here to provide an insight as to the many benefits Web Services provide for client access.

293

SQLXML Data Access Methods

21_597922 ch15.qxp 12/3/05 12:33 AM Page 293

21_597922 ch15.qxp 12/3/05 12:33 AM Page 294

Using XSLT in SQL
Server 2005

This part of the book on client-side XML processing would not be complete without including a
chapter on the changes and new features that support XSLT in version 2.0 of the .NET Framework.
Until now, the focus of each chapter in this part was querying and retrieving XML from the client.
Now that the client has the data in XML format, it would be really nice to be able to format it so
that it can be nicely displayed instead of showing the raw XML. What user wants to see that, let
alone would be able to read it and understand it?

This chapter briefly introduces XSLT style sheets, but spends the majority of the time discussing
the changes made to the System.Xml.Xsl class. There have been some significant changes and
enhancements to this class, some of which require you to migrate some of your existing code if
you are using existing XSLT client-side processing code in current versions of the .NET
Framework.

This chapter provides a brief overview of XSLT, and then moves on to discuss what is new for
XSLT in version 2.0 of the .NET Framework.

Specifically, this chapter discusses the following topics:

❑ Overview of XSLT

❑ Changes and enhancements to XSLT

❑ Moving to version 2.0 of System.Xml.Xsl

❑ Guidelines

22_597922 ch16.qxp 12/3/05 12:28 AM Page 295

XSLT Overview
Before digging in, a quick example is in order. Open up your favorite text editor and type the following:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xsl” href=”C:\Wrox\Intro.xsl”?>
<xsltsample>
<scroll>Is XSLT cool, or what?</scroll>
<message>Welcome to XSLT</message>
<message2>4 out of 5 dentists recommend XSLT over CSS</message2>

</xsltsample>

Save this as C:\Wrox\Intro.xml. Next, you need to create the style sheet. Open a new document and
type the following:

<?xml version=”1.0”?>
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”>

<xsl:template match=”/xsltsample”>
<HTML>
<HEAD>
<TITLE>An XSLT Example</TITLE>

</HEAD>
<BODY>
<H1><Center><xsl:value-of select=”message”/></Center></H1>
<xsl:apply-templates select=”scroll”/>
<xsl:apply-templates select=”message2”/>

</BODY>
</HTML>

</xsl:template>
<xsl:template match=”scroll”>

<Marquee><I><xsl:value-of select=”.”/></I></Marquee>
</xsl:template>
<xsl:template match=”message2”>

<H3><I><xsl:value-of select=”.”/></I></H3>
</xsl:template>

</xsl:stylesheet>

Save this as C:\Wrox\Intro.xsl. In Windows Explorer, navigate to the C:\Wrox directory and double-
click the Intro.xml file. Your results should look like Figure 16-1.

296

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 296

Figure 16-1

In this simple example, the XML document Intro.xml holds the instructions that link it to the XSLT style
sheet, Intro.xsl. It is the XSLT file that contains the information on how to transform the XML document
into an HTML document.

When the Intro.xml file is opened, the browser processes the XML and finds a reference to the Intro.Xsl
file. The style sheet is then applied to the XML and the results rendered in the Web browser. The render-
ing is applied because of the instructions in the XSL style sheet. For example, the style sheet contains a
node called <xsl:template> with an attribute called match. The value of the name attribute, “scroll”,
points to an element name in the XML file of the same value. This is called a Match Template and is
explained in more detail later in the chapter. When the match between the style sheet and XML document
is made, the browser reads the XML file and processes the instructions of the XML, which say to scroll the
value of the <scroll> element. The same process happens with the <xsl:template> nodes in the XSL
document.

This section briefly discusses the components that make up an XSLT style sheet and how to create XSLT
style sheets. It does not go into any deep discussions on XSLT, as that is outside the scope of this book.
There are complete books dedicated to this topic, and some really good ones are Beginning XSLT and
XSLT 2.0 Programmer’s Reference, 3rd Edition, both from Wrox.

XSLT is a language that enables the manipulation and display of an XML document. It provides the
capability to create a new document based on the original document without changing or modifying the
original document.

For example, the Intro.xml file contains the information that provides the location of the XSLT transfor-
mation, which is in the following line:

<?xml-stylesheet type=”text/xsl” href=”Intro.xsl”?>

297

Using XSLT in SQL Server 2005

22_597922 ch16.qxp 12/3/05 12:28 AM Page 297

If this line were removed from the XML document, the results would look like Figure 16-2 when dis-
played in your browser.

Figure 16-2

In its simplest terms, an XSLT document, or transform, is an XML document that contains instructions
how to display the XML document. This transform is made up of a set of templates that hold the display
instructions. When the document is opened, the parser attempts to map a given template pattern to the top
node of the XML document. XPath expressions are then used to select sub-items in the XSLT document,
which are then mapped to the corresponding parts of the XML document. This is not a one-time process;
it occurs until no matches can be found within the document.

An XSLT document is made up of several required components. The first is the document declaration,
which informs the processor that it is an XML file:

<?xml version=”1.0”?>

The second requirement is the root element. In its simplest form, it looks like this:

<xsl:stylesheet>

In the example earlier in this section, the root element has a number of attributes:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”>

The version attribute defines the version of the XSLT specification, and the xmlns:xsl attribute
defines the namespace used throughout the XSLT document.

The final requirement is the template element and template rules declared within the template element:

<xsl:template match=”/xsltsample”>
<HTML>
<HEAD>
<TITLE>An XSLT Example</TITLE>

</HEAD>

298

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 298

<BODY>
<H1><Center><xsl:value-of select=”message”/></Center></H1>
<xsl:apply-templates select=”scroll”/>
<xsl:apply-templates select=”message2”/>

</BODY>
</HTML>

</xsl:template>
<xsl:template match=”scroll”>

<Marquee><I><xsl:value-of select=”.”/></I></Marquee>
</xsl:template>
<xsl:template match=”message2”>

<H3><I><xsl:value-of select=”.”/></I></H3>
</xsl:template>

</xsl:stylesheet>

Templates are described in detail shortly, but first an understanding of nodes is in order.

Nodes
A node in basic terms is a single element item within an XML document tree that contains data. For example,
in the following XML document, the element <Name> contains the value “Chad Reed”. Moving up the
document tree, the <Rider> node contains attributes and sub-elements:

<?xml version=”1.0” encoding=”UTF-8”?>
<Motocross >
<Team Manufacturer=”Yamaha”>
<Rider NationalNumber=”22” Class=”250”>
<Name>Chad Reed</Name>

</Rider>
...

Current Node
The current node is the node that is currently being processed as you navigate through the document
tree. For example, if you are processing the information and data of the <Rider> node, the <Rider>
node is the current node.

This terminology also applies when you are matching templates and XML documents. When a node in
an XML document matches an XSLT template, that node becomes the current node. This is to help keep
track of the processing of nodes.

Context Node
A context node is a node that is part of an expression, in which that expression is operating on a
specific node.

In the following example, the context node is the <Name> node when the path expression is requesting
the rider’s name:

<xsl:value-of select=”Team/Rider/Name”>

299

Using XSLT in SQL Server 2005

22_597922 ch16.qxp 12/3/05 12:28 AM Page 299

Templates
In an XSLT style sheet, templates hold the formatting instructions that will be executed when the tem-
plate is called, or when it is matched to a node in the XML document. If templates didn’t exist, you
would have to write a lot of code to accomplish what templates do. Imagine the amount of code you
would have to write to do what the XSLT processor accomplishes, such as node matching. The benefit of
using templates eliminates the need for you to write all of this yourself, and makes it very easy to reuse
templates, as well as matching complex node expressions. The basic format of a template is as follows:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”>
<xsl:template match=””>
<xsl:value-of select=”.”>
</xsl:template>

</xsl:stylesheet>

The xsl:stylesheet element is the root node or element of a style sheet. The xsl:template element
defines a unit of processing that produces an output template. The output template can be called either
by name or by matching pattern. This element is a top-level element and can only be used as a child as
the xsl:stylesheet element. The xsl:value-of element inserts a value of an expression into the out-
put. It can appear anywhere in the body of the template.

You can call templates in either of two ways. As mentioned earlier, you can call them when the template
finds a matching node in the XML document. This type of template is called a Match Template. You
perform the match by specifying an XPath expression in the match attribute, as follows (taken from the
chapter’s first example):

<xsl:template match=”scroll”>

A more elaborate expression can be used to return a rider’s name from the Motocross.xml file. For example,
the following match attribute value returns the rider’s name:

<xsl:template match=”Team/Rider/Name”>

When a template executes, the elements inside the template are executed in the order in which they
appear in the template.

You can also execute a template explicitly. Called Named Templates, you can call these types from another
template instead of matching them to a node. In order to call this type of template, you must name it
uniquely within the style sheet. To accomplish this, you add a name attribute to the Named Template
and call it by adding xsl:call-template element.

In the following example, the top template contains the xsl:call-template element, referencing the
second template that contains the name attribute, distinguishing it as the Named Template. The value of
the xsl:call-template element must match the value of the name attribute in the Named Template:

<xsl:template match=”Team”>
<xsl:call-template name=”Rider”>

</xsl:template>

300

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 300

<xsl:template name=”Rider”>
<xsl:value-of select=”Team/Rider/Name”>

</xsl:template>

When you call a Named Template from a Match Template, the context node does not change. This is
not the case when you navigate through an XML document and apply templates using xsl:apply-
template. The context node changes the very instant an xsl:apply-template is issued.

XSLT Changes
Okay, enough of the background, it’s time to move into what’s new. Version 2.0 of the .NET Framework
provides a number of changes to the System.Xml.Xsl namespace. These changes focus on performance
and usability, and include new classes (XslCompiledTransform and XsltSettings) and enhance-
ments to existing classes.

XslCompiledTransform
The XslCompiledTransform class is a new class that offers performance gains over its predecessor, the
XslTransform class. This new XSLT processor supports the XSLT 1.0 syntax, and even the structure of
the XslCompiledTransform class is very similar to the now obsolete XslTransform class.

The performance gains are achieved by compiling the XSLT style sheet down to a common interface for-
mat, allowing it to be cached and reused. This process is similar to what the CLR (Common Language
Runtime) does for other programming languages.

Out of the box, support for the document() method is disabled by default, but you can enable it by creat-
ing an XslSettings object and passing it the Load method. XSLT scripting is also disabled for security
reasons. For more information, see the “Guidelines” section later in this chapter.

Just like its predecessor, the Load method takes an XSLT style sheet and compiles it. The Transform
method then executes the transform, taking an XML document as input resulting in an HTML document.

The following example takes the same files used in the first example in this chapter. The Load method
loads and compiles the Intro.xsl style sheet. The Transform method then executes the transform on the
Intro.xml document resulting in a new file, Intro.html.

Open up the Visual Studio test application you’ve been using and add a new button to the form, setting
the text property of the button to “Xslt”.

In the Solution Explorer of your Visual Studio 2005 application, expand the References node and make
sure you have a reference to the System.Xml namespace, as shown in Figure 16-3.

301

Using XSLT in SQL Server 2005

22_597922 ch16.qxp 12/3/05 12:28 AM Page 301

Figure 16-3

If you do not have the System.Xml reference, right-click the references node and select Add Reference.
The Add Reference dialog box is displayed. Make sure the .NET tab is selected and scroll down until
you see System.Xml, as shown in Figure 16-4.

Figure 16-4

Select the System.Xml namespace and click OK to add a reference to this namespace.

Next, double-click the Xslt button you just added to the form, and in the click event of that button, add
the following code:

302

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 302

Dim xslt As New XslCompiledTransform()

Try

xslt.Load(“c:\Wrox\Intro.xsl”)

xslt.Transform(“c:\Wrox\Intro.xml”, “c:\Wrox\Intro.html”)

Me.txtResults.Text = “SUCCESS!”

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

Last, scroll up to the declaration section of the form and add the following lines to the declaration section:

Imports System.Xml.Xsl
Imports System.Xml
Imports System.Xml.XPath
Imports System.IO

Run the project and click the button you just added. When the code has run successfully, the text box on
the form displays the Success! message.

In Windows Explorer, you should see the new Intro.html file (see Figure 16-5) created as the result of the
transform.

Figure 16-5

Right-click Intro.html and select Edit. Figure 16-6 shows the code for the Intro.html document generated
by the Transform method.

303

Using XSLT in SQL Server 2005

22_597922 ch16.qxp 12/3/05 12:28 AM Page 303

Figure 16-6

Double-clicking the Intro.html file opens it in your default browser, displaying the same results as you
saw in Figure 16-1.

Transform Method Input
The Transform method can take three input types as the source for the source document. The first
is an object that supports the IXPathNavigatable interface. In version 1.1 of the .NET Framework, the
XPathNavigator class was based on the XPath 1.0 data model, while version 2.0 of the .NET Framework
XPathNavigator class is based on the XQuery 1.0 and XPath 2.0 data model.

The XPathDocument class is an in-memory cache representation of the XML data. It is read-only and is
the recommended method for XSLT processing, as it provides the fastest performance over the XmlNode
class, which is not read-only, allowing editing of the data.

This example loads a style sheet that is held in an XPathDocument object, and then uses the XmlWriter
object to write the output to the console:

Dim xct As New XslCompiledTransform()
Try
xct.Load(“c:\Wrox\Intro.xsl”)

Dim xmldoc As New XPathDocument(“C:\Wrox\Intro.xml”)

Dim xw As XmlWriter = XmlWriter.Create(“C:\Wrox\Console.Out”)

xct.Transform(xmldoc, xw)
xw.close

The second input parameter on the Transform method is of type XmlWriter, which allows for the
results of the transform to be written to the specified file.

When you pass in an XmlReader object, the position of the XmlReader is on the next node after the end
of the context document once the Transform method has completed execution, as follows:

Dim xr As XmlReader = XmlReader.Create(“Intro.xsl”)
Xr.ReadToDescendant(“xsl:stylesheet”)

Dim xct As New XslCompiledTransform()
xct.Load(xr)

304

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 304

The third input type is a string URI. This type of input takes an XmlUrlResolver to resolve the URI,
which can then be passed to the Transform method. The XmlUrlResolver class in this example uses
the Credentials property to authenticate Web requests. The credentials it uses comes from the
CredentialCache class, which is used to store users’ credentials. This class comes from the
System.Net namespace, as follows:

Dim Transform as XslCompiledTransform = New XslCompiledTransform ()
Dim Resolver as XmlUrlResolver = New XmlUrlResolver()
Resolver.Credentials = System.Net.CredentialCache.DefaultCredentials
Transform.Load(“Intro.xsl”, XsltSettings.Default, Resolver)

All of these input methods accomplish the same task depending on your requirements and the source of
your XML document.

Transform Method Output
The Transform method can output four available types. The first type is an XmlWriter:

Dim xct As New XslCompiledTransform()
xct.Load(“c:\Wrox\Intro.xsl”)

Dim xw As XmlWriter = XmlWriter.Create(“C:\Wrox\Results.xml”, xct.OutputSettings)

xct.Transform(“c:\Wrox\Intro.xml”, xw)
xw.close

In this example, an instance of the XmlWriter class is created, passing it the name of the file to be cre-
ated when the transform is executed. The results of the transform are sent to the XmlWriter, which
writes the results of the transform to the Results.xml file.

The second output type is a string that contains the URI of the output file. In the example used earlier in
this section, the Transform method passed a string URI as the output of the transform, as follows:

xslt.Transform(“c:\Wrox\Intro.xml”, “cWrox\Intro.html”)

The third type is a Stream type. The following example outputs the results of the XSLT transformation
to a FileStream:

Dim xct As New XslCompiledTransform()
Xct.Load(“c:\Wrox\Intro.xsl”)
Dim FileStrm As New FileStream(“c:\Wrox\NewFile.xml”, FileMode.Create)
Xct.Transform(New XPathDocument(“c:\Wrox\.xml”), Nothing, FileStrm)

The fourth type is a TextWriter type. The following example sends the XSLT transformation output to
a string:

Dim xct As New XslCompiledTransform()
Xct.Load(“c:\Wrox\Intro.xsl”)
Dim StrOutput as String
Dim StrWrtr As New StringWriter()
Xct.Transform(“c:\examplesWrox\Intro.xml”, Nothing, StrWrtr)
StrOutput = StrWrtr.ToString()

305

Using XSLT in SQL Server 2005

22_597922 ch16.qxp 12/3/05 12:28 AM Page 305

You can execute all of these examples in your test application. You can send the Stream and TextWriter
outputs to the text box by sending the results to the txtResult text box. For example, the following code dis-
plays the results of StrOutput to the text box on the form:

Dim xct As New XslCompiledTransform()
Xct.Load(“c:\Wrox\Intro.xsl”)
Dim StrOutput as String
Dim StrWrtr As New StringWriter()
Xct.Transform(“c:\Wrox\Intro.xml”, Nothing, StrWrtr)
StrOutput = StrWrtr.ToString()
Me.txtResult.Text = StrOutput

Figure 16-7 shows the results of StrOutput.

Figure 16-7

In this example, you use the StringWriter class to capture the results of the transform. The style sheet
is loaded, an instance of the StringWriter is created, and then the transform is executed, sending the
results of the transform to the StringWriter. The contents of the StringWriter are then written to the
text box.

XsltSettings
Also new in version 2.0 of the .NET Framework is the XsltSettings class. When you compile and exe-
cute an XSLT style sheet, the responsibility of the XsltSettings class is to specify which features are
supported for that execution.

By default, embedded script blocks and the XSLT document() function are disabled and the
XsltSettings class is used to enable or disable these features. At execution time, the XsltSettings
object is then passed to the Load method of the XslCompiledTransform class.

The XsltSettings class takes two parameters, both Boolean. The first parameter specifies whether or not
the XSLT document() function is enabled, and the second parameter specifies whether script blocks are
enabled. For example, the following disables both the XSLT document function and embedded script blocks:

Dim xslSettings As New XsltSettings(False, False)

306

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 306

You then pass the XsltSettings object to the Load method as follows:

Dim xslSettings As New XsltSettings(False, False)
Dim Resolver As XmlUrlResolver = New XmlResolver()
Resolver.Credentials = System.Net.CredentialCache.DefaultCredentials
Dim xct As New XslCompiledTransform()
Xct.Load(“Intro.xsl”, xslSettings,Resolver)

There have been a number of new additions and enhancements to the System.Xml.Xsl namespace,
which the following section discusses.

Moving to the New
As discussed previously, the new XslCompiledTransform class is very similar to the XslTransform
class. The changes made were to improve performance and security. This section outlines the differences
between the two classes and the necessary changes you need to make to migrate your existing code from
the XslTransform class to the XslCompiledTransform class.

You use the Transform method of the XslTransform class as follows:

Dim Transform as XslTransform = New XslTransform
Transform.Load(“c:\Wrox\Intro.xsl”)
Transform.Transform(“c:\Wrox\Intro.xml”, “Intro.html”)

The new XslCompiledTransform class looks like this:

Dim xct As New XslCompiledTransform()
xct.Load(“c:\Wrox\Intro.xsl”)
xct.Transform(“c:\Wrox\Intro.xml”, “c:\Wrox\Intro.html”)

As you can see, it is not a whole lot different. In version 2.0 of the .NET Framework, the new
XslCompiledTransform class replaces the now obsolete XslTransform class. However, the functional-
ity is the same, so there’s nothing new to learn. Instead of using the XslTransform class to transform
the XML data, you now use the XslCompiledTransform class to accomplish the same thing. They both
contain the Load method, which compiles the style sheet, and they both contain a Transform method,
which executes the transform. The difference is that the XslCompiledTransform class has been com-
pletely rewritten to include performance gains over the old XslTransform class. As noted previously,
XSLT scripting is disabled by default.

In this next example, both the XslTransform class and the new XslCompiledTransform class are used
to enable scripting.

This example illustrates how scripting was accomplished using the XslTransform class:

Dim Transform as XslTransform = New XslTransform
Transform.Load(“c:\Wrox\Intro.xsl”)
Transform.Transform(“c:\Wrox\Intro.xml”, “Intro.html”)

Using the XslCompiledTransform class, XSLT, you enable scripting as follows:

307

Using XSLT in SQL Server 2005

22_597922 ch16.qxp 12/3/05 12:28 AM Page 307

Dim Settings As XsltSetting = New XsltSettings(False, True)
Dim xct As XslCompiledTransform = New XslCompiledTransform
xct.Load(“c:\Wrox\Intro.xsl”, Settings, New XmlUrlResolver)
xct.Transform(“c:\Wrox\Intro.xml”, “c:\Wrox\Intro.html”)

Guidelines
The following lists a few guidelines to consider when deploying XSLT:

❑ Scripting comes disabled by default. Enable scripting only when you know that the style sheet
comes from a source you trust. If the source cannot be trusted, use a value of NULL for XSLT set-
tings arguments.

❑ The document() function is disabled by default. Enable this function only when the style sheet
comes from a trusted source.

❑ Specify a value of NULL for the XmlResolver argument to ensure that no external resources are
accessed.

❑ You can customize the XmlResolver class to implement your own behavior for accessing
resources.

Summary
The purpose of this chapter was to give a brief overview of XSLT and the components that make up an
XSLT style sheet. Granted, there is so much more that could have been covered, but the purpose of this
chapter was to give a basic foundation to style sheets so that you have a clear understanding of how
they are compiled and mapped.

Two new classes were introduced in version 2.0 of the .NET Framework, and you learned how to use
these new classes as well as how to migrate your existing code to be able utilize the new functionality
provided in these new classes. The first class, XslCompiledTransform, is the replacement for the
XslTransform class. The XslCompiledTransform class offers better security and, more important, a
big performance improvement. The second class, XsltSettings, lets you specify which features are
supported for a given transformation: specifically, the enabling and disabling of the embedded script
blocks and the XSLT document() function.

A few guidelines were mentioned that should provide you with some insight as to the security issues
when using the XslCompiledTransform class.

The part of this book on client-side XML processing ends with this chapter. In the next part, you’ll learn
about SQLXML and SOAP support in SQL Server 2005 and the new technologies in that area. In particu-
lar, the next chapter deals with Web Service (SOAP) support in SQL Server 2005.

308

Chapter 16

22_597922 ch16.qxp 12/3/05 12:28 AM Page 308

Part IV:
SQL Server 2005,
SqlXml, and SOAP

Chapter 17: Web Service (SOAP) Support in SQL Server 2005

Chapter 18: SOAP at the Client

Chapter 19: Web Service Description Language (WSDL)

23_597922 pt04.qxp 12/3/05 12:30 AM Page 309

23_597922 pt04.qxp 12/3/05 12:30 AM Page 310

Web Service (SOAP)
Support in SQL Server 2005

When SQLXML Web release 3.0 for SQL Server 2000 was released in 2001, it came with a number of
great new client-side features such as updategrams, XML Bulk Load, and XSD schemas. Not to be
left out is one of the most important additions to SQLXML 3.0: support for Web Services and SOAP.

Subsequent service packs have been released since then, the latest being Service Pack 3 released in
October 2004. This service pack included additional Web Service SOAP functionality with the ability
to build Web Services with SQL Server 2000.

SQL Server 2005 introduces the native XML Web Service that supports many new features and
enhancements, including support of the xml data type and related functionality. This chapter covers
Web Service (SOAP) support in SQL Server 2005.

The topics discussed in this chapter are as follows:

❑ An overview of SOAP

❑ Configuring SOAP

❑ Best practices

SOAP Overview
According to the SOAP specification at www.w3c.com, the purpose of SOAP is to exchange infor-
mation in a distributed environment using XML technologies. It is designed as a lightweight pro-
tocol that defines an extensible messaging framework that allows different programs, written in
different languages, and running on different platforms, to talk to one another regardless of the
protocol.

24_597922 ch17.qxp 12/3/05 12:27 AM Page 311

At times, understanding SOAP can be overwhelming and intimidating. In simple terms, SOAP is the
specification that defines the format of XML messages that are exchanged between different environ-
ments. A SOAP message is simply a well-formed XML document wrapped in a few SOAP elements.
Granted, there is much more needed for applications to be able to communicate with each other, but the
underlying premise is that if your application talks XML, you have won half the battle.

There are two primary goals of SOAP. The first is to make it simple to use (thus, the first letter in the
acronym). To accomplish this, a lot of duplicate functionality has been removed that was also found in
the distributed systems, such as security, reliability, and routing. In addition, SOAP defines a framework
that specifies how to move XML messages from one location to another.

The second goal is to make it extensible. The capability to use SOAP over any transport protocol is key
to providing pure extensibility, and the SOAP specification lays out the requirements for a framework
for such a task.

At its incarnation, SOAP stood for Simple Object Access Protocol. The goal of SOAP was to quickly
and easily access objects on distributed systems and environments. However, since then the purpose of
SOAP has grown to support much more than that; its acronym just doesn’t do it justice anymore. Rather
than confusing people, the acronym stays for now, but no more spelling it out.

SOAP in SQL Server 2005
New to SQL Server 2005 is the support for native XML Web Services provided by the SQL database
engine. With this new support comes a support for a variety of standard protocols, which allows a wide
array of clients to communicate with SQL Server.

SOAP is one of these standards that define the use of XML and HTTP when you access data and objects
within SQL Server. Through the use of native XML, you can send SOAP requests to SQL Server over
HTTP to execute stored procedures, user-defined functions, and T-SQL batch statements.

Native support for the HTTP listener is provided only on Windows Server 2003 and Windows XP with
Service Pack 2.

How Native XML Works
Native XML mode in SQL Server 2005 allows HTTP-based clients to query the server through a gateway
created on the server. This gateway is an HTTP endpoint on the server that allows stored procedures and
user-defined functions to be accessed, as well as allowing other stored procedures and user-defined
functions to be created.

Web Methods are the enabling of these stored procedures and functions. The process of enabling makes
them available for clients. A group of Web Methods designed to be used together is called a Web Service.

When a client accesses a Web Service, SQL Server generates and returns information about the Web
Service in the form of a WSDL file. These WSDL files can be automatically generated by SQL Server or
custom-generated to fit your specific client requirements. You can also configure the endpoint to not
answer any WSDL requests.

312

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 312

WSDL
WSDL (Web Service Definition Language) files are dynamically generated XML documents that define
the Web interface for any functions defined on the HTTP endpoint. If any SQL batch functionality exists
for that endpoint, the WSDL file describes those as well.

The WSDL file is requested by the client, which in turn generates requests from the server using the
created and configured gateways, or endpoints. When the initial connection is made via the HTTP end-
point, the WSDL file is returned to the server by the client that made the connection request.

WSDL files come in two flavors: default and customized. The default WSDL file supports two WSDL file
types, the first being the extended format, the second being the simplified format. The extended WSDL
format adds features such as an XSD schema, which provides a better description of the information
exposed by the endpoint. The simplified format uses a very scaled-down XSD schema and has support
for older clients.

If neither of these types of files (extended or simplified format) meets your requirements, SQL Server
provides the capability to create a customized version of a WSDL file with which you can update the
server. Both default and customized WSDL files are supported by SQL Server 2005.

At the point and time the endpoint is created and defined, the WSDL argument is used to specify
whether a WSDL file is generated on the server. It also defines if the file is returned so that the endpoint
can inform the client of its interface. The basic WSDL argument syntax is as follows:

WSDL = {NONE | DEFAULT | ‘sp_name’}

A WSDL file is not generated or returned if you specify a value of NONE for this argument. If you specify
DEFAULT, a default WSDL file is generated and returned to the client that submitted the query to the end-
point. Optionally, if you are creating a custom WSDL file, you can supply a name of a stored procedure
that can generate the custom WSDL. As mentioned previously, if you specify DEFAULT, you specify one of
two types to determine the format of the WSDL file returned.

Default
The default WSDL is the full extended version of the WSDL file and is returned to the client when you
specify the following URL: http://server/endpointpath?wsdl.

The full version of the WSDL file contains XSD-derived types to provide proper mapping to the SQL
Server types.

Simple
The simple WSDL file is a scaled-down version of the default WSDL file, mapping all native XSD types
to SQL Server types. It is returned to the client when you specify the following URL: http://
server/endpointpath?wsdlsimple.

You can also specify custom WSDL files when neither the default nor simple WSDL files fulfill the client
requirements.

313

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 313

Native XML Access Versus SQLXML
Prior to the introduction of SOAP, if clients wanted to connect to SQL Server, they needed to install
MDAC. SQLXML 3.0 eased that a little bit by providing a middle-tier layer that gave the clients a Web-
based method of accessing SQL Server. The downside to that was the need to deploy IIS. For clients run-
ning Microsoft Windows, they required a proprietary protocol called TDS (Tabular Data Stream) as well
as MDAC. TDS is an application-level protocol specific to SQL Server and is built by the Microsoft OLE
DB Provider.

Through SQL Server 2005 and native XML access, users can access SQL Server through an HTTP/SOAP
combination. This method gives a much wider range of clients wanting to access SQL Server a better
alternative. In addition, it requires nothing to be installed on the client such as MDAC or SQLXML.

Native XML Access Benefits
Chapter 15 listed a few benefits of native XML access. This section revisits those and lists a few more.
Running XML Web Services natively in SQL Server has several benefits, including:

❑ Any application utilizing Web Services can access SQL Server: Of all the benefits of using
native XML access, this is one of the biggest. Now any device that can submit HTTP requests,
receive HTTP responses, and parse XML has capability to access SQL Server. This is especially
useful in diverse environments.

❑ Better support for mobile clients: Now mobile clients can access SQL Server from anywhere,
making mobile application development easier. Clients are also capable of connecting any time,
enabling connection-monitoring once a connection has been established.

❑ Built-in level of security: HTTP endpoints prohibit anonymous user access, which is provided
by a level of security built in to SQL Server. To accomplish this, administrative privileges are
required to create endpoints and then only those methods you make available publicly are
exposed by the endpoint.

❑ Better Microsoft and third-party web development toolset integration: With query results
being returned in XML format from SQL Server 2005 Native XML Web Services, third-party
developers make the most of the built-in schemas and the Native XML Web Services by using
development environments such as Visual Studio 2005 to build applications that don’t depend
on a specific language or environment.

Native XML Support Requirements
In order for the native XML to be supported, the HTTP listener must be installed in your environment.
This listener comes in the form of a file called Http.sys and only gets installed with Windows 2003 and
Windows XP Service Pack 2. Http.sys provides the HTTP support needed by the Native XML Web
Services.

SOAP, discussed in the next section, defines how XML and HTTP work together to access the informa-
tion and services you need, no matter what the environment is.

314

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 314

SOAP Configuration
Configuring SOAP in SQL Server 2005 requires the creation of endpoints that can listen and receive
requests from clients, allowing clients to send requests directly to SQL Server.

When SQL Server receives a SOAP request, it is received by the endpoint, which then looks at the URL
to determine the registered endpoint and forwards the request to the SQL Server. IIS is never in the
picture, thus eliminating the extra step and improving performance.

The following section details the configuration and creation of native XML Web Services in SQL
Server 2005.

Web Methods
Web Methods are existing stored procedures or user-defined functions (UDFs) that can be selected to be
exposed to the endpoint. Alluded to in this section’s introduction, they are exposed using the CREATE
ENDPONT statement specifying the name of the stored procedure or user-defined function as the method.

In this section, you create a couple of stored procedures and user-defined functions for use later in the
chapter when you create the endpoint.

Stored Procedures
You will be using the AdventureWorks database for the examples in this section. In SQL Server Management
Studio, expand the databases node in the Object Explorer window. Select the AdventureWorks data-
base, expand that node by clicking on the plus (+) next to the database name, and then expand the
Programmability node. Expand the Stored Procedures node as well, as shown in Figure 17-1. If a stored pro-
cedure does not exist with the name GetProducts, you need to create one for the examples in this chapter.

Figure 17-1

315

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 315

Open a query window and enter the following T-SQL code:

DROP PROCEDURE GetProducts
GO
CREATE Procedure GetProducts
AS
SELECT ProductID, Name, ProductNumber
FROM Production.Product
ORDER BY Name

You use the name of the stored procedure when creating the endpoint as the WEBMETHOD argument. You
learn how this is used later in this chapter.

Next, create a second stored procedure called GetProductsByID. In the query window, enter the following
T-SQL statement:

CREATE Procedure GetProductByID
@ProductID int
AS
SELECT Name, ProductNumber
FROM Production.Product
WHERE ProductID = @ProductID

This stored procedure will be used when the endpoint is altered to add a Web Method.

User Defined Functions
You can also utilize user-defined functions when creating endpoints:

CREATE FUNCTION GetProductCount (@ProductModelID int)
RETURNS int
AS
BEGIN
DECLARE @RowCount int
SET @RowCount = (SELECT COUNT(*) FROM Production.Product WHERE ProductModelID =
@ProductModelID);

RETURN @RowCount;
END;

User-defined functions are routines written in any Microsoft.NET programming language. The routines
can take a parameter and return a result, as well as perform any action available to the .NET programming
language. As you will read about in Chapter 22, there are two flavors of .NET routines: scalar routines,
which return a single value, and table-valued routines, which return one or multiple rows.

Endpoints
In order for SQL Server to be able to listen for SOAP requests, you must set up SQL Server as a Web
Service, which means creating and defining HTTP endpoints and their related properties and methods
that the endpoint exposes.

316

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 316

DDL Revisited
You use T-SQL DDL (Data Definition Language) statements to create and manage endpoints. There are
three T-SQL DDL statements used for creating and managing endpoints: CREATE ENDPOINT, ALTER
ENDPOINT, and DROP ENDPOINT. Each of these statements is discussed in subsequent sections.

Creating Endpoints
You create endpoints via the CREATE ENDPOINT statement. This statement creates and defines the endpoint
and all the methods that the endpoint exposes, which the client can send SOAP requests to. It also defines
the authentication for the endpoint.

The general syntax for creating an endpoint is as follows:

CREATE ENDPOINT endpointname [AUTHORIZATION login]
STATE = {STARTED | STOPPED | DISABLED }
AS {TCP | HTTP}
(
<protocol specific items>

)
FOR {SOAP | TSQL | SERVICE_BROKER | DATABASE_MIRRORING}
(
<language specific items>

)

The endpointname argument is the name of the endpoint to be created.

The AUTHORIZATION argument determines the owner of the endpoint that is being created. If you do not
supply this argument, by default the owner of the endpoint is the login in which the endpoint is created.
To change ownership of the endpoint, use the ALTER ENDPOINT statement discussed a bit later.

The STATE argument determines the state of the endpoint when it is created. A value of STARTED means
that the endpoint is started and listening for connections. A value of DISABLED means that the server is
not listening to the endpoint port and will not respond to any requests received by the endpoint. A value
of STOPPED means that the server will listen to requests but will respond with an error back to the client.
The value of STOPPED is the default value supplied if you do not specify one during the creation of the
endpoint. To change the STATE value, use the ALTER ENDPOINT statement discussed a few sections hence.

The easiest way to understand endpoints is to break the syntax into two separate parts: the AS part and
the FOR part.

AS
The AS part of the CREATE ENDPOINT syntax defines transport protocol-specific information using either
TCP or HTTP and the port on which the endpoint listens. In this part, the authentication for the endpoint
is also defined, and a list of restricted IP addresses can be listed here as well.

317

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 317

HTTP protocol-specific items include the following:

❑ AUTHENTICATION: The authentication type used when authenticating users logging into SQL
Server. The available values are BASIC, DIGEST, and INTEGRATED:

❑ You should use the BASIC authentication only as a last resort because content can be
easily decoded. It contains a BASE64-encoded username and password, which are
separated by a colon.

❑ DIGEST authentication contains a one-way hashed username and password, which is
then sent to the server. In this scenario, the server can either read the raw password or
compare the hashed password sent by the client to the stored MD5 hash value created
when the password was created.

❑ Endpoints created using the INTEGRATED authentication support both NTLM and
Kerberos authentication types. The server attempts to authenticate the client using
whichever type the client has requested. This is the preferred method of authentication,
as the Kerberos method is the Internet standard of authentication, and NTLM is
supported by Windows 9x, Windows NT, and Windows 2000 or later.

❑ PATH: This is the URL path that specifies the endpoint location on the host computer. If you specify
a SITE argument value (discussed later in this chapter), the host computer is specified as the PATH.

❑ PORTS: The port or ports listening on the endpoint. Ports can be clear ports, SSL ports, or a mix
of both. Since there can be a mix, the incoming requests must match the type of ports specified.
For example, clear ports listen for incoming requests using HTTP, while SSL ports listen to
requests from HTTPS.

❑ AUTH_REALM (optional): If you specify the value of DIGEST as the authentication type, this is the
hint returned to the client that sent the request. The default value is NONE.

❑ CLEAR_PORT (optional): The clear port number. Port 80 is the default port if you do not specify a
port number.

❑ COMPRESSION (optional): If you set the value of this argument to ENABLED, SQL Server accepts
the gzip encoding and returns compressed responses to the client. The default value is DISABLED.

❑ DEFAULT_LOGON_DOMAIN (optional): If you specify the value of BASIC as the authentication
type, this is the default login domain. The default value is NONE.

❑ SITE (optional): There are three available values for this argument. The first value is the actual
name of the HOST computer. The second value is the plus sign (+), which means that a listening
operation applies to all possible host names for the computer in which the XML Web Service is
running. An asterisk (*) signifies that the HTTP endpoint is listening on all host names, including
those not explicitly reserved, for the computer in which the XML Web Service is running. The
asterisk value is the default if you do not specify a value for the SITE argument.

❑ SSL_PORT (optional): The SSL port number. Port 443 is the default port if you do not specify a
port number.

TCP-specific items include the following:

❑ LISTENER_PORT: This is the port number that the TCP/IP protocol that Service Broker listens to
for connections. If you do not specify a value, the default is 4022.

❑ LISTENER_IP: This is the IP address on which the endpoint listens. This parameter has a default
value of ALL, meaning that all IP addresses are valid and can submit requests.

318

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 318

The following items apply to both TCP and HTTP protocol:

❑ RESTRICT_IP (optional): Specifies which IP addresses are allowed to send SOAP requests to the
endpoint. Either of the following values is permitted: NONE followed by a list of IP addresses
that are not allowed to the endpoint (except for those specified in the EXCEPT_IP parameter),
or ALL followed by a list of IP addresses that can submit SOAP requests to the endpoint.

❑ EXCEPT_IP (optional): Specifies the list of IP addresses that can or cannot send SOAP requests
to the endpoint as specified in the RESTRICT_IP parameter.

FOR
The FOR part of the CREATE ENDPOINT syntax specifies the type of content that is supported by the end-
point. The available content type values are SOAP, T-SQL, Service Broker, and Database Mirroring. This
part also specifies information specific to the language used in the endpoint, such as SOAP — which, as
you’ll find out shortly, allows you to specify a stored procedure to expose on your endpoint — or TSQL,
which allows you to specify T-SQL statements on your endpoint.

The following sections outline the available arguments for the specific FOR values.

SOAP

The SOAP value takes the following arguments:

❑ WEBMETHOD (optional): The name in which the client sends HTTP SOAP requests to the endpoint for
the corresponding method. For multiple Web Methods being exposed, you can supply multiple
WEBMETHOD arguments. The reason this argument is optional is because you can create an endpoint
with no methods, but add methods at a later point using the ALTER ENDPOINT statement.

❑ NAME: The name of the stored procedure or user-defined function that corresponds to the value
indicated in the WEBMETHOD argument. The format of the value of this argument must follow the
three-part name format, database.owner.name.

❑ SCHEMA (optional): For the corresponding WebMethod clause, this specifies whether an XSD
schema is returned to the client for the called Web Method in the SOAP response. The values for
this argument are DEFAULT, NONE, and STANDARD.

❑ FORMAT (optional): This argument specifies the additional information returned along with the
result set. The values for this argument are as follows:

❑ NONE: Returns no SOAP-specific markup from the server.

❑ ALL_RESULTS: Returns row count, error messages, and warnings along with the result
set in the SOAP message. This is the default value if you do not specify a value.

❑ ROWSETS_ONLY: Returns only the result set.

❑ LOGIN_TYPE: Specifies the authentication mode for SQL Server on the endpoint. Available values
are as follows:

❑ WINDOWS: Uses only Windows authentication to authenticate to the endpoint.

❑ MIXED: Uses either Windows or SQL authentication to authenticate to the endpoint. If
you specify this value but SQL is installed using Windows mode, an error is generated.

319

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 319

❑ BATCHES: Specifies whether ad-hoc queries are supported by the endpoint. The values for this
argument are ENABLED and DISABLED.

❑ WSDL: Specifies whether WSDL document-generation is supported by the endpoint.

❑ SESSIONS (optional): Specifies whether multiple SOAP requests can be sent in as a single session.
The values for this argument are ENABLED and DISABLED.

❑ SESSION_TIMEOUT (optional): The amount of time in seconds before a SOAP session expires.
The timer begins once the server has completed sending the response to the client. If no more
requests are received before the timer expires, the session is terminated.

❑ DATABASE (optional): The name of the database against which the SOAP request is executed. If
omitted, the default database associated to the login is used.

❑ NAMESPACE (optional): The endpoint namespace. If a namespace is not supplied, the value of
http://tempura.org is used.

❑ SCHEMA (optional): For the endpoint, this specifies the XSD schema returned by the endpoint
with the SOAP results. The values for this argument are STANDARD and NONE.

❑ CHARACTER_SET (optional): Specifies the behavior when results are returned with invalid XML
characters. The values for this argument are SQL and XML. Specifying XML returns an error if
characters in the result are not valid XML characters. Specifying SQL encodes the offending
characters and returns them in the results.

Service Broker

There are a number of arguments that the SERVICE_BROKER and DATABASE_MIRRORING options share.
Those arguments are listed under “Shared Arguments.” The following arguments pertain solely to the
SERVICE_BROKER option:

❑ MESSAGE_FORWARDING: For any messages received by the endpoint, this argument specifies that
the endpoint forwards messages that are meant for services located elsewhere. This argument
has two options:

❑ ENABLED: Messages received by this endpoint are forwarded.

❑ DISABLED: Messages received by this endpoint are not forwarded.

❑ MESSAGE_FORWARD_SIZE: This option specifies the maximum storage size, in MB (megabytes),
allotted for storing messages that are to be forwarded.

Database Mirroring

The single argument that pertains solely to the DATABASE_MIRRORING option is ROLE. It identifies and
sets the role used by the endpoint when participating in a mirrored SQL Server database. (For more infor-
mation regarding the different types of roles, see the SQL Server Books Online help file.) The available
values are as follows:

❑ WITNESS: This value specifies that the endpoint acts in the role of witness when database-mirroring.

❑ PARTNER: This value specifies that the endpoint acts in the role of partner when database-mirroring.

❑ ALL: This value specifies that the endpoint acts in both roles, as witness and partner when
database-mirroring.

320

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 320

Shared Arguments

The following arguments are shared by both the SERVICE_BROKER and DATABASE_MIRRORING options,
and they share the same general syntax.

The SERVICE_BROKER arguments are as follows (those arguments already discussed are highlighted):

FOR SERVICE_BROKER (
[AUTHENTICATION = {
WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
| CERTIFICATE certificate_name
| WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name
| CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]

}]
[, ENCRYPTION = { DISABLED | SUPPORTED | REQUIRED }
[ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }]
]
[, MESSAGE_FORWARDING = { ENABLED | DISABLED* }]
[, MESSAGE_FORWARD_SIZE = forward_size]

)

The DATABASE_MIRRORING syntax is as follows (those arguments already discussed are highlighted):

FOR DATABASE_MIRRORING (
[AUTHENTICATION = {
WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
| CERTIFICATE certificate_name

}]
[[,] ENCRYPTION = { DISABLED |SUPPORTED | REQUIRED }
[ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }]
]
[,] ROLE = { WITNESS | PARTNER | ALL }
)

This section discusses the arguments shared by the options. They are as follows:

❑ AUTHENTICATION: This argument specifies the authentication requirements when authenticating
to an endpoint. The default value for this argument is WINDOWS, which tells the endpoint that
connections made to it will be using Windows authentication to authenticate. There are also three
authorization methods that can be specified for this argument: NTLM, KERBEROS, and NEGOTIATE.
NEGOTIATE is the default value if an authorization method is not specified. The following example
illustrates the syntax for specifying an authentication method for the SERVICE_BROKER argument:

FOR SERVICE_BROKER (
AUTHENTICATION = WINDOWS KERBEROS)

❑ CERTIFICATE: When connections are made to an endpoint, this argument specifies the name of
the certificate, in the certificate_name value, which the endpoint uses to authenticate the
connection.

321

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 321

❑ ENCRYPTION: Specifies the type of encryption used. There are three options:

❑ DISABLED: Any data sent over the connection is not encrypted.

❑ SUPPORTED: Data encryption is supported. If you are using database mirroring, the
opposite endpoint has encryption set to use either REQUIRED or SUPPORTED.

❑ REQUIRED: Any data sent over the connection is required to be encrypted. This is the
default value if one is not specified.

❑ ALGORITHM: This argument is used to optionally manage the use of algorithms by each endpoint.
The available values are as follows:

❑ RC4: The endpoint must use the RC4 algorithm. If you do not specify a no value for the
ALGORITHM argument, this value is defaulted.

❑ AES: The endpoint must use the AES algorithm.

❑ AES RC4: When you specify this option, the two endpoints negotiate for an encryption
algorithm. The endpoint in which this value is being set uses the AES algorithm
preference.

❑ RC4 AES: When you specify this option, the two endpoints negotiate for an encryption
algorithm. The endpoint in which this value is being set uses the RC4 algorithm preference.

With all of this newfound knowledge under your belt, it is time to create an endpoint. Open a query
window in SQL Server Management Studio and enter the following DDL statement:

CREATE ENDPOINT wrox_endpoint
STATE = STARTED
AS HTTP(

PATH = ‘/wrox’,
AUTHENTICATION = (DIGEST),
PORTS = (CLEAR),
SITE = ‘vssql2005’
)

FOR SOAP (
WEBMETHOD ‘GetProducts’

(name=’AdventureWorks.dbo.GetProducts’,
SCHEMA=STANDARD),

WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = ‘AdventureWorks’
)

GO

If you are running this on Windows XP, you might receive the following error:

An error occurred while attempting to register the endpoint ‘wrox_endpoint’. One
or more of the ports specified in the CREATE ENDPOINT statement may be bound to
another process. Attempt the statement again with a different port of use netstat
to find the application currently using the port and resolve the conflict.

If you receive this message, it is because both IIS and SQL Server are fighting over port 80. For more
information and a workaround, see the “Guidelines and Limitations” section at the end of this chapter.

322

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 322

If you didn’t receive the error, you see the following message:

Command(s) completed successfully.

This next example creates an endpoint with multiple Web Methods, one being a stored procedure and
the other a function:

CREATE ENDPOINT wrox_endpoint
STATE = STARTED
AS HTTP(

PATH = ‘/wrox’,
AUTHENTICATION = (DIGEST),
PORTS = (CLEAR),
SITE = ‘vssql2005’
)

FOR SOAP (
WEBMETHOD ‘GetProducts’

(name=’AdventureWorks.dbo.GetProducts’,
SCHEMA=STANDARD),

WEBMETHOD ‘GetProductCount’
(name=’AdventureWorks.dbo.GetProductCount’),

WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = ‘AdventureWorks’
)

GO

One more endpoint needs to be created for purposes of this chapter. This endpoint is nearly an exact
duplicate of the previous one, but some examples later in the chapter use this endpoint. Run the following
CREATE ENDPOINT statement to create the wrox_endpoint2 endpoint.

CREATE ENDPOINT wrox_endpoint2
STATE = STARTED
AS HTTP(

PATH = ‘/wrox2’,
AUTHENTICATION = (DIGEST),
PORTS = (CLEAR),
CLEAR_PORT = 81,
SITE = ‘vssql2005’
)

FOR SOAP (
WEBMETHOD ‘GetProducts’

(name=’AdventureWorks.dbo.GetProducts’,
SCHEMA=STANDARD),

WEBMETHOD ‘GetProductCount’
(name=’AdventureWorks.dbo.GetProductCount’),

WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = ‘AdventureWorks’
)

GO

323

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 323

The next section discusses altering endpoints to add Web Methods and other arguments to the endpoint.

There are a number of system tables that can be queried, which provide some excellent information
about created endpoints. For example:

❑ The sys.endpoints system table contains detailed information about HTTP endpoints such as
the SITE and URL information.

❑ The sys.soap.endpoint system table contains SOAP-specific information about endpoints.

❑ The sys.endpoint_webmethod system table contains information regarding the SOAP methods
defined on the endpoint.

The following T-SQL shows the syntax for querying the sys.endpoints system table:

SELECT *
FROM sys.endpoints

Figure 17-2 shows the results of querying the sys.endpoints table once the CREATE ENDPOINT state-
ments are executed.

Figure 17-2

Altering Endpoints
Altering endpoints allows you to change permission information, add new methods to an existing endpoint,
modify or delete an existing method from an endpoint, and change properties of an existing endpoint.

The syntax for altering endpoints is very similar to that of creating endpoints, so a thorough examination
of the arguments is not required here.

The general syntax for altering an endpoint is as follows:

ALTER ENDPOINT endpointname
[AFFINITY = {NONE | ADMIN | <64bit_integer>}]
STATE = {STARTED | STOPPED | DISABLED }
AS {TCP | HTTP}
(
<protocol specific items>

)
FOR {SOAP | TSQL | SERVICE_BROKER | DATABASE_MIRRORING}
(
<language specific items>

)

324

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 324

The following arguments are available when altering an endpoint:

❑ ADD EXCEPT_IP: Contains a list of IP addresses that can or cannot send SOAP requests to the end-
point, depending on the values specified in the RESTRICT_IP list, that are added to the endpoint.

❑ DROP EXCEPT_IP: Contains a list of IP addresses that can or cannot send SOAP requests to the
endpoint, depending on the values specified in the RESTRICT_IP list, that are removed from the
endpoint.

❑ ADD WEBMETHOD: Adds a new method endpoint.

❑ ALTER WEBMETHOD: Changes the definition of an existing method endpoint.

❑ DROP WEBMETHOD: Removes an existing method endpoint.

Altering endpoints does not change current values that were previously set unless specified in the
ALTER ENDPOINT statement.

The following example adds a method to the endpoint created earlier in this section. It specifies a Web
Method name and the name of the actual stored procedure or user-defined function:

ALTER ENDPOINT wrox_endpoint
FOR SOAP
(
ADD WEBMETHOD ‘GetProductsByID’ (name=’AdventureWorks.dbo.GetProductByID’,

FORMAT=NONE)
)

This next example removes a Web Method from an endpoint:

ALTER ENDPOINT wrox_endpoint
FOR SOAP
(
DROP WEBMETHOD ‘GetProductCount’)

)

Deleting Endpoints
Deleting endpoints is pretty simple. The thing to remember is that proper permissions are necessary to
remove endpoints.

The syntax for removing endpoints is as follows:

DROP ENDPOINT EndPointName

For example, the following code deletes the second endpoint created in this section’s first example:

DROP ENDPOINT Wrox_EndPoint2

As previously stated, the correct permissions are required in order to remove an endpoint. The owner of
the endpoint may delete the endpoint, as well as members of the Sysadmin role and any users who have
been given CONTROL permissions on the endpoint.

325

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 325

Endpoint Permissions
Endpoint permissions are set by using DDL statements, which allow for the creation, altering, connecting,
and transfer of ownership of endpoints. You must execute any of these permission statements against the
master database.

In SQL Server Management Studio, expand the Security node in the Object Explorer window. Right-click
Logins and select New Login from the context menu, shown in Figure 17-3.

Figure 17-3

This brings up the Login - New dialog, shown in Figure 17-4. Select the SQL Server authentication
option, and for the login name enter WroxSQLLogin. Enter PassWord1 for the password.

Figure 17-4
326

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 326

Repeat the process to create a user called TempSQLLogin. Both of these logins will be used to discuss
endpoint permissions throughout the rest of this chapter.

CREATE
CREATE permissions can be given or taken away using CREATE ENDPOINT TO statement. The general
syntax is as follows:

{ GRANT | DENY | REVOKE } CREATE ENDPOINT TO login

The following example grants CREATE ENDPOINT permissions to the WroxSQLLogin that you created.
Open a query window and enter the following statement:

GRANT CREATE ENDPOINT TO WroxSQLLogin

Once CREATE permissions have been given, they can be taken away using REVOKE. The following example
takes away the CREATE permissions just given to the WroxSQLLogin user:

REVOKE CREATE ENDPOINT TO WroxSQLLogin

CREATE permissions can be denied for a specific user. The following example denies CREATE permissions
for the WroxSQLLogin user:

DENY CREATE ENDPOINT TO WroxSQLLogin

Endpoints are securable at a server level, so denying permission to an endpoint removes all implied
endpoint and server permission on a specific endpoint.

ALTER
Giving ALTER permissions to a user allows that user to alter an endpoint. You can give ALTER permissions
without giving CREATE permissions. This section outlines the different ALTER permissions that can
be given.

ALTER ANY ENDPOINT gives the user the ability to modify any endpoint on the selected server. The general
ALTER ANY ENDPOINT syntax is as follows:

{ GRANT | DENY | REVOKE } ALTER ANY ENDPOINT TO login

The following example gives the WroxSQLLogin users the ability to alter any endpoint on the local
server:

GRANT ALTER ANY ENDPOINT TO WroxSQLLogin

You can revoke or deny the permissions to alter any endpoint by using the following statements:

REVOKE ALTER ANY ENDPOINT TO WroxSQLLogin

DENY ALTER ANY ENDPOINT TO WroxSQLLogin

327

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 327

ALTER ON ENDPOINT gives the user the ability to modify a specific endpoint on the local server. The
general syntax for ALTER ON ENDPOINT is as follows:

{ GRANT | DENY | REVOKE } ALTER ON ENDPOINT::endpointname TO login

For example, the following statement grants the WroxSQLLogin user the ability to alter the
Wrox_EndPoint:

GRANT ALTER ON ENDPOINT::Wrox_EndPoint TO WroxSQLLogin

Likewise, the following statement revokes and denies the user WroxSQLLogin the ability to alter the
Wrox_EndPoint.

REVOKE ALTER ON ENDPOINT::Wrox_EndPoint TO WroxSQLLogin

DENY ALTER ON ENDPOINT::Wrox_EndPoint TO WroxSQLLogin

CONTROL ON ENDPOINT controls whether a user can alter or delete an endpoint, as well as transfer owner-
ship of the endpoint. The general syntax for CONTROL ON ENDPOINT is as follows:

{ GRANT | DENY | REVOKE } CONTROL ON ENDPOINT::endpointname TO login

The following example grants CONTROL permission of the Wrox_EndPoint to the WroxSQLLogin user:

GRANT CONTROL ON ENDPOINT::Wrox_EndPoint TO WroxSQLLogin

As with the other ALTER statements, you can revoke or deny the CONTROL permission, as follows:

REVOKE CONTROL ON ENDPOINT::Wrox_EndPoint TO WroxSQLLogin

DENY CONTROL ON ENDPOINT::Wrox_EndPoint TO WroxSQLLogin

CONNECT
The CONNECT argument specifies whether a login can or cannot execute requests against a specific end-
point. The syntax for the CONNECT argument is as follows:

{ GRANT | DENY | REVOKE } CONNECT ON ENDPOINT::endpointname TO login

The following example grants CONNECT permissions on the Wrox_EndPoint to the user WroxSQLLogin:

GRANT CONNECT ON ENDPOINT:: Wrox_EndPoint TO WroxSQLLogin

TAKE OWNERSHIP
The TAKE OWNERSHIP argument gives permissions to a user who then takes over ownership of the speci-
fied endpoint. This works in conjunction with the AUTHORIZATION clause. When ownership is transferred
between users, the user to which the permissions are being transferred must accept ownership by execut-
ing ALTER ENDPOINT and specifying the AUTHORIZATION statement. Meaning, the TAKE OWNERSHIP
argument determines if a login can be specified in the AUTHORIZATION clause of the endpoint.

328

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 328

The general syntax is as follows:

{ GRANT | DENY | REVOKE } TAKE OWNERSHIP ON ENDPOINT::endpointname TO login

The following example script transfers ownership of the endpoint from the WroxSQLLogin user to the
TempSQLLogin user. This script assumes that the correct ALTER permissions have been given to the
TempSQLLogin user:

SETUSER
GO

SETUSER ‘WroxSQLLogin’
GO

GRANT TAKE OWNERSHIP ON ENDPOINT::Wrox_EndPoint TO TempSQLLogin
GO

SETUSER
GO

SETUSER ‘TempSQLLogin’
GO

ALTER AUTHORIZATION ON ENDPOINT::Wrox_EndPoint TO TempSQLLogin
GO

In this example, the owner of the Wrox_EndPoint, WroxSQLLogin, grants ownership of the endpoint to the
TempSQLLogin user by issuing the GRANT TAKE OWNERSHIP permission. The TempSQLLogin then changes
the ownership of the endpoint to himself using the ALTER AUTHORIZATION statement. The TempSQLLogin
user now has ownership of the Wrox_Endpoint endpoint and can manage the endpoint accordingly.

Guidelines and Limitations
The following lists several guidelines and limitations that apply to native XML Web Services and HTTP
SOAP requests:

❑ When attempting to create an endpoint on Windows XP running SQL Server 2005, you might
receive the following error:

An error occurred while attempting to register the endpoint ‘wrox_endpoint’. One or
more of the ports specified in the CREATE ENDPOINT statement may be bound to
another process. Attempt the statement again with a different port of use netstat
to find the application currently using the port and resolve the conflict.

This is due to a conflict between SQL Server and IIS because IIS listens on port 80. As a
workaround to this problem, try executing the CREATE ENDPOINT statement again, this time
specifying a specific port number as illustrated by this CREATE ENDPOINT statement fragment:

AS HTTP (
CLEAR_PORT = 81
)

329

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 329

❑ Native XML Web Services only function on SQL Server 2005 that is running on versions of
Windows that support the HTTP API, which are currently Windows 2003 and Windows XP with
Service Pack 2. This API is in the Http.sys file. Any attempts to create native XML Web Services
on operating systems that do not support this API result in failed DDL statement execution.
Http.sys is in the C:\Windows\System32\Drivers directory.

❑ Table valued user-defined functions are not supported. This is a function that returns a table
rather than a scalar value (such as an integer).

❑ You can configure endpoints can be configured to use multiple ports, but you cannot configure
endpoints to use two ports of the same type. For example, one clear port and one SSL port is
acceptable. Two clear ports or two SSL ports are not.

❑ When you specify a namespace during the creation of an endpoint, make sure it does not match
any namespaces used in endpoint xml data type schemas. This allows for better interoperability
with Visual Studio 2005.

❑ There is a difference between the SOAP specification and SQL Server in the way that XML
processing is handled. The SOAP specification allows for the handling of XML processing
instructions found in a request or response. This is not enforced by SQL Server and if found in
SOAP request, any processing instructions are ignored by the server, due in part to the fact that
some client applications may not be able to understand the xml data type.

Best Practices
This section outlines some best practices when considering native XML Web Services in SQL Server 2005.

Performance
From a performance perspective, there are a number of things to keep in mind:

❑ Not every scenario requires a native XML Web Service. If you already have Web Services
deployed via IIS, native XML Web Services are not meant to be an end-all replacement solution.
Consider native XML Web Services if:

❑ Your application currently reads and writes XML.

❑ You are looking for better performance and are currently using SQLXML as a mid-tier
solution.

❑ Your current application uses stored procedures.

❑ You have SOAP in mind. In this scenario, a combination of your current Web Services
solutions and SQL Server Web Services provides optimal performance and connection
alternatives, especially in a heterogeneous environment.

❑ SOAP uses additional server resources and thus has more overhead than the normal TDS protocol.
Therefore, you should consider additional server hardware resources.

❑ Consider the correct WSDL option for your organization prior to deploying native XML Web
Services. The Simple WSDL file is recommended in environments where there are non-Windows
clients, whereas the Default WSDL file is recommended for environments where strictly Windows
clients are found. However, do not rule out Customized WSDL if the requirements call for it.

330

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 330

Performance Counters
SQL Server 2005 adds several performance counters that can be monitored to help determine the current
state and performance of your SQL Server 2005 environment.

To add the performance counters, open the Performance Monitor application, shown in Figure 17-5, by
selecting the Performance program from the Administrative Tools menu; or by selecting Start ➪ Run,
typing Perfmon in the dialog box, and then clicking OK.

Figure 17-5

Add the counters by right-clicking in the monitor pane and selecting Add Counters, or by clicking the
Add button (the plus sign), as shown in Figure 17-6.

Figure 17-6

This opens up the Add Counters dialog. To add the SOAP counters, select SQLServer:General Statistics
from the Performance Object drop-down menu, as shown in Figure 17-7.

331

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 331

Figure 17-7

To add the individual counters, select the desired counter and click the Add button.

The following table details the SQL Server SOAP counters available for monitoring. Each of these counters
resets every second.

Name Description

HTTP Authenticated Request Number of authenticated HTTP requests per second
using Integrated, Digest, or Basic. Requests received
during a challenge are not counted.

SOAP Batch SQL Requests Number of ad hoc SOAP batch requests per second.
Requests received during a challenge are not counted.

SOAP Method Invocations Number of individual SOAP method calls started per
second. Requests received during a challenge are not
counted.

SOAP WSDL Requests Number of SOAP WSDL requests per second. Requests
received during a challenge are not counted.

SOAP Requests Executing Number of SOAP requests being processed by the
server per second. When a request begins, the number
is incremented. When a process finishes, the number is
decremented.

SOAP Requests Failed Number of failed SOAP request (SOAP faults) per
second.

SOAP Requests Succeeded Number of successfully executed SOAP requests per
second.

332

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 332

Security
From a security point of view, consider the following.

Use a Firewall
Native XML Web Services should only, and always, be used behind a firewall. Any port specified in the
endpoint setup should also be protected by the firewall.

SSL
The purpose of SSL is to provide the encryption and decryption of data between the client and server.
You must secure any data via the SSL protocol. To enable SSL and encryption, you need to configure a
certificate first. Once the certificate is configured, you can configure the endpoint to provide SSL encryption.

Keep in mind that any certificate you use for SSL might also be used for other applications. This means
that there is the possibility that the same certificate could be securing traffic on your IIS server over the
same port, which could lead to some security implications.

Disable the Windows Guest Account
As a matter of habit, always make sure that the Windows Guest account is disabled on the server on
which SQL Server is installed and running. On Windows NT and Windows 2000, this account is enabled
by default. On Windows 2003, it is disabled by default.

Kerberos Authentication
Previously, this chapter detailed the different authentication types to be used when creating an endpoint.
When you create an endpoint, the recommended authentication method is either KERBEROS or INTEGRATED
as follows:

AUTHENTICATION = KERBEROS
AUTHENTICATION = INTEGRATED

KERBEROS authentication supports only Kerberos as the mode of authentication, meaning that SQL
Server must associate a Server Principle Name (SPN) with the account that it is running on, such as a
local system account or a domain user account.

The syntax for registering Kerberos SPN’s is as follows:

SetSpn [-A SPN | -D SPN | -L SPN] serviceaccount

The -A adds the specified SPN account, -D deletes the specified SPN account, and -L lists all the SPNs
registered to the specified account.

The following example sets the appropriate SPM to the local system account on the local box named
SQLBox2005 in the Avalon domain:

SetSpn -A http/SQLBox2005 Avalon\local_system_account

INTEGRATED authentication lets the endpoint support both NTLM (NT Lan Manager, the authentication
method supported by Windows 95, 98, and NT 4.0) and KERBEROS authentication. The Kerberos protocol
has better security, identifying both server and client at the authentication.

333

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 333

Endpoint Connect Permissions
This chapter also discussed setting permissions on endpoints. From a security perspective, a focus on
Connect permissions is essential and must be constantly monitored and maintained. The best method of
doing this is to grant the necessary permissions to a specific group or to specific users. For maintainability,
managing a group is easier than managing individual users.

It should go without saying that granting access to the Public role is not recommended.

Endpoint State
Managing the endpoint state is critical to the security of your SQL Server. A newly created endpoint has
a STATE of stopped unless it is specifically set to started in the CREATE ENDPOINT statement. If an
endpoint is no longer needed, set its state to stopped or disabled to prevent security risks. It might
also be wise to drop unused Web Methods.

Secure Endpoint Defaults
As explained earlier in this chapter, most of the options for creating an endpoint have defaults if a value
is not specified. The majority of these defaults provide the most efficient security, so it is best to leave the
defaults unless there is a reason for changing the default.

Two of the options should not be changed unless you have a very specific reason. The first option is the
following:

BATCHES = DISABLED

The second option is as follows:

LOGIN_TYPE = WINDOWS

For endpoint users, only Windows Authentication allows for the LOGIN_TYPE options.

Deployment Scenarios
This chapter also briefly discussed the concept of using native XML Web Services and some reasons as to
why they would be beneficial in your environment. This section builds on that and outlines some sce-
narios as to when and why your application environment would benefit from using native XML Web
Services, as well as reasons why it would not make sense to deploy them.

Here are some reasons for deploying:

❑ Your application uses stored procedures heavily. This should almost be self-explanatory. SQL
Server 2005 now makes it very easy to expose your business logic via stored procedures using
HTTP endpoints regardless of the client. You also should determine how much of your business
logic is currently in stored procedures.

❑ You are looking for a better performance over the SQLXML solution. The SQLXML provides a
mid-tier solution that in previous versions of SQL Server required IIS setup and configuration.
The SQL Server 2005 endpoint solution provides this same functionality on a single server,
allowing for better performance.

334

Chapter 17

24_597922 ch17.qxp 12/3/05 12:27 AM Page 334

❑ Your application reads and writes XML data. This is a given. Any application that consumes or
returns XML data is a great candidate for a Web Service. Moving that functionality into a native
XML Web Service provides even more robustness on all levels.

❑ As an alternative to SQL Server Reporting Services (SSRS). Native XML Web Services can
provide the information and data necessary to produce a report for your application. SSRS adds
resource overhead to SQL Server. Native XML Web Services can provide the same information
without the additional overhead.

❑ Service Oriented Architecture (SOA). This allows you to combine and integrate your current Web
Service architecture with a SQL Server Web Service architecture, enabling the two environments to
work together.

The following are two reasons against deployment:

❑ Your application currently reads and writes BLOB data.

❑ You require real-time transaction processing. If your application is used for OLTP (Online
Transaction Processing) then you ought to reconsider the use of Native XML Web Services.

Summary
SOAP is such a deep topic. Whole books have been written specifically on SOAP and Web Services.
However, the intent of this chapter was to briefly introduce SOAP to give you a background on the tech-
nology so that the rest of the chapter made sense.

I hope you are starting to feel the excitement in the air over this topic. As explained previously, SOAP
is not an end-all solution. You are not being asked to rip out your existing Web Services infrastructure.
However, this is a great technology that will complement your existing solutions very well by providing
access to data for a wide variety of clients.

The vast majority of this chapter focused on native XML Web Services in SQL Server 2005, introducing
and digging into endpoints and Web Methods, as well as the important discussion of permissions for
these objects.

As with most topics, the chapter closed with a couple of sections discussing some guidelines and limitations
for native XML Web Services, along with some best practices to keep in mind when you are considering
implementing this great technology.

In the next chapter, you learn how to access these native XML Web Services from the client.

335

Web Service (SOAP) Support in SQL Server 2005

24_597922 ch17.qxp 12/3/05 12:27 AM Page 335

24_597922 ch17.qxp 12/3/05 12:27 AM Page 336

SOAP at the Client

In Chapter 17, you learned about endpoints and native XML Web Services in SQL Server 2005, as
well as how to create, modify, and manage them in your environment. You also learned a little bit
about some of the reasons you might want to consider deploying endpoints alongside your existing
Web Services infrastructure, and adding native XML Web Services as a complement to what you
already have.

This chapter builds on the last chapter, focusing on what you can do with those newly created
endpoints by providing a lot of examples, giving you an idea of how endpoints are used from the
client side.

This chapter walks you through creating a Visual Studio 2005 application to consume the endpoint
and then make changes to the endpoint to add functionality to the application. A few pages are
dedicated to showing you how to secure an endpoint with SSL for secure communication of data
between the client and SQL Server.

Two main topics are discussed in this chapter:

❑ How to consume and use an endpoint

❑ How to secure an endpoint

Consuming and Using an Endpoint
A review is necessary to look at the functionality that will be provided by the endpoint. Initially,
the endpoint is going to expose an ordered list of all the product models as well as a count of the
products associated with each product model. To supply the list of product models, you need to
create the following stored procedure. If you have not yet created this stored procedure, open a
query window in SQL Server Management Studio and run the following T-SQL:

25_597922 ch18.qxp 12/3/05 12:28 AM Page 337

USE AdventureWorks
GO
CREATE PROCEDURE GetProductModels
AS
SELECT ProductModelID, Name
FROM Production.ProductModel
ORDER BY Name

GO

As you can see, the stored procedure queries the Production.Product table for the ProductModelID and
Name columns, sorted alphabetically by the Name column. The endpoint also needs to expose a way to
return the product count for a given ProductModelID. For this, use a user-defined function. Run the
following T-SQL to create the necessary UDF:

USE AdventureWorks
GO
CREATE FUNCTION ProductByProductModelID(@ProductModelID int)
RETURNS int
AS
BEGIN
RETURN
(
SELECT COUNT(*)
FROM Production.product
WHERE productmodelid = @ProductModelID

)
END

Looking at the code, you can see that it returns a count of the number of products for a given
ProductModelID. To test this UDF, run the following T-SQL in a query window.

SELECT AdventureWorks.dbo.ProductByProductModelID(8)

Figure 18-1 shows that for the given ProductModelID of 8, there are 10 associated product records for
that ProductModelID.

Figure 18-1

Both the stored procedure and the user-defined function are used in the initial creation of the endpoint.

The following SQL creates the endpoint needed to get the application started. In a query window, exe-
cute the following SQL statement:

USE AdventureWorks
GO
CREATE ENDPOINT Wrox_EndPoint

338

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 338

STATE = STARTED
AS HTTP
(
SITE = ‘localhost’,
PATH = ‘/Wrox’,
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR)
)
FOR SOAP
(
WebMethod ‘GetProductCountByProductModelID’
(

NAME = ‘adventureworks.dbo.ProductByProductModelID’,
SCHEMA = STANDARD

),
WebMethod ‘GetProductModels’
(

NAME = ‘adventureworks.dbo.GetProductModels’,
SCHEMA = STANDARD

),
WSDL = DEFAULT,
BATCHES = ENABLED,
DATABASE = ‘AdventureWorks’
)

Notice that both the stored procedure and UDF are exposed by this endpoint as Web Methods. A Web
Method in this context, as explained in the previous chapter, is similar to a Web Method you would
normally create in Visual Basic or C# except for the fact that these Web Methods are stored procedures
or User-Defined Functions (UDFs).

As explained in the previous chapter, the name of the Web Method does not necessarily have to match
the name of the stored procedure or UDF. As you will see later in the chapter, what actually shows up in
the sys.endpoint_webmethods system table is not the actual name of the SQL Server object (in this
example, the function ProductsByProductModelID) but it is the Web Method name.

Granting Permissions
Now that you’ve created the endpoint, the next step is to give permissions to the appropriate users to
access the endpoint. It does no good to create an endpoint if it can’t be used or consumed. To grant
permissions, expand the SQL Server Object Explorer Security node in the Management Studio. Underneath
the Security node, expand the Logins node. Right-click the Logins node, and select New Login from the
context menu.

In the Login - New dialog there are several options that allow you to create different types of SQL Server
logins. For the purposes of this chapter, keep all of the defaults and create a Windows authentication login.
When you select Windows Authentication, the New Login dialog does not create the Windows login. It
merely points to a previously created Windows user account. In this example, the user account Scott had
already been created as a local user on the machine in which SQL Server 2005 is running by using the
Computer Management dialog, as shown in Figure 18-2.

339

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 339

Figure 18-2

On the New Login - New form (shown in Figure 18-3), you can either type in the name of user or group,
or you can click the Search button look for a specific user or group.

Figure 18-3

The format of the Login Name or username must follow one of these two options: either Domain\
username or Domain\GroupName.

If the format is incorrect, SQL Server generates an error stating that the information entered is not a valid
Windows NT name.

340

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 340

You can leave all the other information alone and accept the defaults. Once you have selected the user
or group you wish to grant access to the endpoint, click OK. This essentially creates a mapping between
SQL Server and Windows for user authentication. When the user tries to access the endpoint, SQL Server
passes the user’s credentials to Windows for authentication.

Figure 18-4 shows the user added to the Logins group in SQL Server.

Figure 18-4

Can user Scott now access the endpoint? No, he cannot. There is still one more step to take.

The final step in this process is to tell SQL Server that user Scott has access to the endpoint Wrox_EndPoint.
To do this, execute the following SQL Statement in a query window:

USE MASTER
GO
GRANT CONNECT ON ENDPOINT::Wrox_EndPoint TO [AVALONSERVER\Scott]
GO

As explained in Chapter 17, the CONNECT permission controls which logins have the ability to execute
requests against an endpoint. Once this statement executes successfully, user Scott should have access
to the Wrox_EndPoint created earlier and be able to execute any WebMethods associated with the
Wrox_EndPoint endpoint.

Building the Client Application
It is now time to build the client application that will consume this Web Service and execute the Web
Methods associated with the endpoint. Open Visual Studio 2005 and create a new Visual Basic (or C#)
Windows project. The first step is to consume the SQL Server 2005 Web Service.

341

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 341

Consuming the SQL Server 2005 Web Service
Consuming a SQL Server 2005 Web Service is really no different than consuming a normal Web Service
in an application. Once you’ve created the project, right-click the project name and select Add Web
Reference from the context menu. This opens the Add Web Reference dialog shown in Figure 18-5.

Figure 18-5

In the URL box, type http://localhost/wrox?wsdl and click the Go button. The URL needs to be manually
typed in because the Web Service has not been set up to be published via any discovery methods such
as UDDI. Also, look at the end of the URL. Unlike typical Web Services that are already aware of their
interface, the WSDL for endpoints must be specified so that it can describe the endpoint interface to the
client. In this example, the Default WSDL is used, which returns a full version of the WSDL file. You’ll
learn more about this later in the chapter.

The big thing to point out on the Add Web Reference dialog is the three methods listed. When the endpoint
was created, two Web Methods were specified, so why are there three listed? If you remember when the
endpoint was created, one of the arguments specified was BATCHES = ENABLED. By including this
argument and setting it to ENABLED, SQL Server automatically adds a third method called sqlbatch. This
method allows ad-hoc SQL queries to be sent to this endpoint for execution.

For the Web Reference Name, type WroxEndPoint and then click the Add Reference button. This adds
the Web Service reference to the Visual Studio project as shown in Figure 18-6.

342

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 342

Figure 18-6

Now that the endpoint has been consumed by the application, all the exposed WebMethods are available.
It will be beneficial to look at one more thing before beginning to write code.

In the Solution Explorer, click the Show All Files button — the second button from the left. This displays
all the files in the solution, including all the files associated with the new Web Service you just added.
There should be a plus (+) next to the WroxEndPoint Web Service. Click the plus to expand group, and
you should see the wrox.wsdl file associated with this endpoint, as shown in Figure 18-7.

Figure 18-7

The next step is to design the form and add some code to it. The project was created with a default
Form1 and that is what is used for these examples. Double-click Form1 to open it in Design Mode.

Once the form is open, place a button, two list boxes, and two text boxes on the form. Set the Name
properties of the list boxes lstProductModels and lstProducts, and then set the Name properties of
the text boxes txtProductCount and txtProductNumber. As a matter of UI, set the Text property
of the button to GetProducts.

343

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 343

Next, right-click the form and select View Code from the context menu. Add the following three high-
lighted lines of code to the form:

Imports System.Data
Public Class Form1
Dim ws As New WroxEndPoint.Wrox_EndPoint
Dim ds As Dataset

The second highlighted line of code declares a new instance of the WroxEndPoint Web Service, which
is used throughout the application. Also, a dataset is declared to which all data returned by the Web
Service are sent.

Go back to Design View of the form and double-click the button to view the code behind the button.
Add the following code to the button:

ws.Credentials = System.Net.CredentialCache.DefaultCredentials

Try

Dim oa As Object

oa = ws.GetProductModels

If oa(0).ToString = “System.Data.DataSet” Then
ds = DirectCast(oa(0), DataSet)

Me.lstProducts.DataSource = ds.Tables(0)
Me.lstProducts.DisplayMember = “Name”
Me.lstProducts.ValueMember = “ProductModelID”

End If

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Run the project by pressing F5. When the application has compiled and the form comes up, click the
GetProducts button. Figure 18-8 shows the results as returned by the GetProductModels Web Method.

Figure 18-8

344

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 344

Clicking the Product Model list box does nothing right now but it will shortly.

The first line of code behind the button gets the system credentials for the current context in which the
application is running. Typically, this is the username, password, and domain of the user running the
application. Those are then passed to the Web Service reference and set using the Credentials property
of the earlier declared Web Service:

ws.Credentials = System.Net.CredentialCache.DefaultCredentials

The next two lines of code call the GetProductModels Web Method on the endpoint and return the data:

Dim oa As Object

oa = ws.GetProductModels

In this example, an object array is declared and the results of the Web Service call are returned as a SQL
dataset into the object array:

If oa(0).ToString = “System.Data.DataSet” Then
ds = DirectCast(oa(0), DataSet)

By returning the results this way, the items in the object array can be examined. Here, the first item in the
array is examined to see if it contains a dataset. If it does, the object has no idea what it is, so it needs to
be converted to a dataset. Once that is done, the next few lines of code set the appropriate properties on
the list box so the items in the result set can be displayed in the list box:

Me.lstProducts.DataSource = ds.Tables(0)
Me.lstProducts.DisplayMember = “Name”
Me.lstProducts.ValueMember = “ProductModelID”

It is time to add code to the click event of the Product Model list box. Close the form, stopping the
application, and open the form in Design View. Double-click the lstProductModels list box and add
the following code:

ws.Credentials = System.Net.CredentialCache.DefaultCredentials

Try

Dim id As Integer = CInt(Me.lstProductModels.SelectedValue)

Me.txtProductCount.Text = ws.GetProductCountByProductModelID(id).Value.ToString()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Run the application again and click the GetProducts button. Select a product model from the list box
by clicking its name. The Product Count text box should then display the count of associated products
related to the selected product model as illustrated in Figure 18-9.

345

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 345

Figure 18-9

Looking at the code behind the list box shows the same Credentials statement, which is always
needed when you execute a Web Method:

ws.Credentials = System.Net.CredentialCache.DefaultCredentials

Realistically, this same line of code could have been put in the Form_Load event so that it would only be
run once.

The next two lines of code get the ProductModelID from the list box for the associated product model
selected, and then pass that value to the GetProductCountByProductModelID Web Method:

Dim id As Integer = CInt(Me.lstProductModels.SelectedValue)

Me.txtProductCount.Text = ws.GetProductCountByProductModelID(id).Value.ToString()

That Web Method, if you remember, is a UDF that takes that ID value and queries the ProductionProduct
table for all products that contain the passed-in ProductModelID. In this example, the function returned a
count of 10.

Not good enough, you say? Okay, time to beef it up a bit. Open a query window and create the follow-
ing stored procedure:

Use AdventureWorks
GO
CREATE PROCEDURE GetProductsByProductModelID
@ProductModelID int
AS
SELECT ProductID, Name
FROM Production.Product
WHERE ProductModelID = @ProductModelID
ORDER BY Name
GO

346

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 346

This stored procedure takes the same ProductModelID and query as the associated ProductID and
Name. It also needs to be added to the endpoint, so in the same query window, execute the following
SQL to add it to the endpoint:

Use AdventureWorks
GO
ALTER ENDPOINT Wrox_EndPoint
FOR SOAP
(
ADD WEBMETHOD ‘GetProductsByProductModelID’
(

NAME=’AdventureWorks.dbo.GetProductsByProductModelID’,
SCHEMA = STANDARD

)
)

In your Visual Studio project, right-click the WroxEndPoint Web Service and select Update Web
Reference from the menu. This refreshes the Web Service reference in your project.

Next, add the following code (shown with the gray background) behind the ProductModel list box:

ws.Credentials = System.Net.CredentialCache.DefaultCredentials

Try

Dim id As Integer = CInt(Me.lstProducts.SelectedValue)

Me.txtProductCount.Text = ws.GetProductCountByProductModelID(id).Value.ToString()

Dim oa As Object

oa = ws.GetProductsByProductModelID

If oa(0).ToString = “System.Data.DataSet” Then
ds = DirectCast(oa(0), DataSet)

Me.lstProducts.DataSource = ds.Tables(0)
Me.lstProducts.DisplayMember = “Name”
Me.lstProducts.ValueMember = “ProductModelID”

End If

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

This code should look very similar to the code that is behind the button. The only difference is that a dif-
ferent Web Method is being called, but the results are being returned the same way.

Now when you run the application and you click on an item in the list box, the associated ProductModelID
is sent to the GetProductsByProductModelID WebMethod, returning the results and populating the
lstProducts list box, as shown in Figure 18-10.

347

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 347

Figure 18-10

Still not good enough, you say? One more modification, then. In a query window, execute the following
SQL Statement:

Use AdventureWorks
GO
CREATE FUNCTION ProductInfoByProductID

(@ProductID int)
RETURNS nvarchar(25)
AS
Begin
RETURN (

SELECT ProductNumber
FROM Production.Product
WHERE ProductID = @ProductID
)

End

This UDF is similar to the first UDF created near the beginning of the chapter, except that it returns a
string instead of an integer.

Add the Web Method to the endpoint by running the following SQL:

Use AdventureWorks
GO
ALTER ENDPOINT Wrox_EndPoint
FOR SOAP
(
ADD WEBMETHOD ‘GetProductInfoByProductID’
(

NAME=’AdventureWorks.dbo.ProductInfoByProductID’,
SCHEMA = STANDARD

)
)

In your Visual Studio project, right-click the WroxEndPoint Web Service and select Update Web
Reference from the menu. This refreshes the Web Service reference in your project.

348

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 348

If the application is still running, stop the application and double-click the lstProducts list box to view
the code. Add the following code to the list box:

ws.Credentials = System.Net.CredentialCache.DefaultCredentials

Try

Dim id As Integer = CInt(Me.lstProducts.SelectedValue)

Me.txtProductNumber.Text = ws.GetProductInfoByProductID(id).Value.ToString()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Run the application and select a product model. When the Product list box is populated, the associated
ProductNumber is displayed in the ProductNumber text box as shown in Figure 18-11.

Figure 18-11

The code behind the Product list box is similar to the code behind the Product Model list box, which
calls the GetProductInfoByProductID Web Method.

Comparing WSDL
At the beginning of the chapter, an endpoint was consumed using the default WSDL file. Figures 18-6
and 18-7 showed the result of specifying the default WSDL file when consuming a Web Service. The
results are a bit different when specifying the Simple WSDL file. For example, create an endpoint using
the following SQL:

CREATE ENDPOINT Test_EndPoint
STATE = STARTED
AS HTTP
(
SITE = ‘localhost’,
PATH = ‘/Test’,
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR)
)
FOR SOAPz

349

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 349

(
WebMethod ‘GetProductCountByProductModelID’
(

NAME = ‘adventureworks.dbo.ProductByProductModelID’,
SCHEMA = STANDARD

),
WebMethod ‘GetProductModels’
(

NAME = ‘adventureworks.dbo.GetProductModels’,
SCHEMA = STANDARD

),
WSDL = DEFAULT,
BATCHES = ENABLED,
DATABASE = ‘AdventureWorks’
)

Add a reference to the Web Service to your Visual Studio application, but for this example, specify a
Simple WSDL by specifying http://localhost/Test?wsdlsimple on the end of the URL as shown in
Figure 18-12.

Figure 18-12

Now flip back a few pages to Figure 18-5 and look at the differences between the methods. The two that
stand out are the GetProducts and sqlbatch Web Methods. The Default WSDL sets a response type to
SqlResultStream, as shown in Figure 18-5, while a Simple WSDL does not, as shown in Figure 18-12.

This also applies to the sqlbatch WebMethod, but notice that the Parameters As
ArrayOfSqlParameter that exists in Figure 18-5 no longer exists in the Simple WSDL in Figure 18-12.

350

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 350

Figure 18-13 shows the differences when viewed in Visual Studio. Notice that the Test reference localhost
Web Service reference includes an extra reference map. The Reference.map and associated files map the
endpoint URLs and contain the contract and binding information for the endpoint.

Figure 18-13

There is much more to discuss regarding WSDL files, but that is saved for the next chapter. For now, you
should have a good, albeit brief, introduction to WSDL files and what they do. Also, you should have a
good grasp of consuming and using endpoints. The next topic discusses securing your endpoints.

Securing an Endpoint
In SQL Server 2005, anonymous access is not allowed. Due to this amount of security, all connections are
authenticated at the HTTP transport level. However, one of the supported authentication methods is
BASIC authentication, which allows for the passing of clear text for credentials over the wire. Thus,
when you create an endpoint using BASIC authentication, SSL is required.

For example, the following creates a valid endpoint:

CREATE ENDPOINT Wrox_EndPoint2
STATE = STARTED
AS HTTP
(
SITE = ‘localhost’,
PATH = ‘/Wrox’,
AUTHENTICATION = (BASIC),
PORTS = (SSL)
)
FOR SOAP
(
WebMethod ‘GetProductCountByProductModelID’

351

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 351

(
NAME = ‘adventureworks.dbo.ProductByProductModelID’,
SCHEMA = STANDARD

),
WebMethod ‘GetProductModels’
(

NAME = ‘adventureworks.dbo.GetProductModels’,
SCHEMA = STANDARD

),
WSDL = DEFAULT,
BATCHES = ENABLED,
DATABASE = ‘AdventureWorks’
)

However, this alone is not enough to secure the endpoint. SSL must be configured on the endpoint. This
is accomplished using the httpcfg tool. This tool allows you to configure the HTTP API by wrapping
the HTTP config APIs for SSL certificates (among other things). The httpcfg tool ships with Windows
Server 2003.

The syntax for the httpcfg tool is as follows:

Httpcfg set ssl /I IP:Port /h Hash /g Guid

You can find the hash value by looking at the Thumbprint value of other SSL certificates used in your
environment.

For the GUID, there are a number of tools that generate GUIDs. It is best that you use a single GUID for
each instance of SQL Server.

For example, to enable SSL on an endpoint, you could execute the following command in a command
window:

Httpcfg set sll /I 192.168.100.102:443 /h 2948458a2958767f810990 /g “{3cc61e0d-
8g7b-5e7g-984e-6bff8gc98701}”

What this does is point your endpoint to an existing SSL certificate within your organization that the
endpoint can utilize for encryption.

There are a number of places to get certificates, including Microsoft Certificate Services, an installation
option of Windows 2003, which installs a certificate authority (CA) to allow you to issue certificates for
use with any number of public key security programs.

Summary
For any of you who have done any sort of Web Service development in Visual Studio, the technology in
this chapter should be exciting. This chapter, as well as Chapter 17, was very fun to write because the
technology is so interesting to explore.

352

Chapter 18

25_597922 ch18.qxp 12/3/05 12:28 AM Page 352

Chapter 17 gave you the foundation for building and managing endpoints. The purpose of this chapter
was to build on that foundation and show you how to use those endpoints, as well as how to secure
endpoints should the need and requirements call for it. This chapter focused on two major topics:

❑ Consuming and using a Native SQL Server 2005 Web Service and associated Web Methods.
Using Visual Studio 2005, you were able to consume a Web Service and use that Web Service to
build an application that queries and returns data via a Web Method and populate a form. This
functionality will provide a great benefit to non-Windows environments. Native XML Web
Services also lends itself to better usability when working with the wide range of development
environments and toolsets.

❑ Securing your Web Service. This chapter mentioned several key pieces of information that focused
on securing your endpoints, including using SSL to exchange data, disabling the Guest account,
and limiting access to endpoints to specific users and groups. These and the other security tools
mentioned will help ensure a secure Web Service environment.

A few pages touched briefly on WSDL files and why they are used. If you don’t understand them or still
have questions about them, don’t fret. The next chapter is dedicated completely to the topic of WSDL.

353

SOAP at the Client

25_597922 ch18.qxp 12/3/05 12:28 AM Page 353

25_597922 ch18.qxp 12/3/05 12:28 AM Page 354

Web Service Description
Language (WSDL)

Chapter 18 briefly discussed Web Service Description Language (WSDL) files as part of the SOAP
topic. WSDL files are dynamically generated XML documents whose sole purpose is to define and
describe the interface for RPC (Remote Procedure Call) method’s SQL batch functionality exposed
by HTTP endpoints. WSDL files are not handed out by default; the client must request them from
the SQL Server. They are then used to generate RPC and SQL batch requests against SQL Server
endpoints.

At the time of this writing, the W3C had just released the first complete draft of the WSDL Primer for
WSDL version 2.0 and the First Public Working Draft of the SOAP 1.1 Binding. Although SQL Server
2005 uses the WSDL 1.1 specification, it would be worthwhile reading up on the 2.0 specification.

This chapter takes a deeper look at WSDL support in SQL Server 2005, starting with the contents
of a WSDL file and moving on to the different types of WSDL files, including creating your own
custom WSDL file.

The following topics are covered in this chapter:

❑ An overview of a WSDL file

❑ The contents of a WSDL file

❑ Default WSDL file

❑ Simple WSDL file

❑ How to create custom WSDL files

26_597922 ch19.qxp 12/3/05 12:30 AM Page 355

WSDL File Overview
When you configure endpoints to support WSDL files, you can specify one of two configurations. If you
remember back to Chapter 17’s discussion of endpoints, one of the arguments that you can use is the
WSDL argument, which specifies whether WSDL document generation is supported by the endpoint, as
well as the two types that are supported (default and customized).

Both of those types are discussed in further detail later in this chapter, but this section discusses how
they are supported by SQL Server 2005.

When you create and define an endpoint, the WSDL argument tells the server if a WSDL file needs to be
generated and returned to the client so that the endpoint can describe its features. The WSDL files are
generated and returned to the client when the connection is first made to an HTTP endpoint. Three values
can be specified for this argument: NONE, DEFAULT, and a stored procedure. If you specify a value of
NONE, the endpoint does not return a WSDL file.

If you specify a value of DEFAULT, the type of WSDL file returned depends on the URL string used to
connect to the endpoint. The client application can request the WSDL file using one of two URL formats
specified by the URL string: Default and Simple. Both of these are discussed in more detail later in the
chapter.

WSDL File Contents
A WSDL file is simply an XML document that contains a root element that specifies the WSDL namespace
and a set of defined Web Services within a collection of endpoints. The root element, <definitions>,
defines the WSDL namespace as http://schemas.xmlsoap.org/wsdl.

A simple and typical WSDL file looks like the following:

<definitions>
<types>
...

</types>
<message>
...

</message>
<portType>
...

</PortType>
<binding>
...

</binding>
<service>
...

</service>
</definitions>

356

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 356

The elements within a WSDL file are summarized as follows:

❑ <types>: Contains data type definitions for exchanged messages.

❑ <message>: Defines the message data being sent.

❑ <portType>: A set of operations supported by the endpoint.

❑ <binding>: The protocol and data format for a defined port type.

❑ <service>: A collection of related endpoints.

The WSDL Namespace
The namespace of a WSDL file is very similar to a schema namespace in that it associates any names in
the WSDL document to the target namespace. The ability to specify a namespace is critical for WSDL 2.0
because of the capability to import or inherit interfaces.

At the root of a WSDL file is the <definitions> element followed by a set of definitions inside. The
definitions element contains a namespace, which, like a schema, is used to dictate the namespace of the
elements being defined. A WSDL file with a specified namespace might look like the following:

<definitions name=”Motocross”
targetNamespace=”http://dirtbikes.com/motocross.wsdl”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap”
xmlns = “http://schemas.xmlsoap.org/wsdl”>

</definitions>

The <types> Element
The <types> element contains the data type definitions that pertain to the messages exchanged between
the client and the endpoint. For best results, it is recommended that you use XSD within the WSDL, as
follows:

<definitions>
<types>
<xsd:schema>

</types>
</definitions>

Using XSD ensures that any types defined in the message can be used even if the ending format is not
XML. The following code fragment illustrates what a <types> element instruction would look like
when requesting a WSDL file from the wrox_endpoint created in Chapter 17. This example has been
simplified a bit for better readability, but it should illustrate how the element is used:

<types>
<xmlns:schema elementFormDefault=”qualified”
targetNamespace=”http://”>
<xmlns:element name=”GetProductInfo”>
<xmlns:complexType>
<xmlns:sequence>
<xmlns:element minOccurs=”1” maxOccurs=”1” name=”ProductID”

357

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 357

type=”xmlns:int” />
</xmlns:sequence>

</xmlns:complexType>
</xmlns:element>
<xmlns:element name=”GetProductInfoResponse”>
<xmlns:complexType>
<xmlns:sequence>
<xmlns:element minOccurs=”1” maxOccurs=”1” name=”GetProductInfoResult”

type=”xmlns:int” />
</xmlns:sequence>

</xmlns:complexType>
</xmlns:element>

</xmlns:schema>
</types>

The <message> Element
A message is a definition of the data being sent between two points, and is defined by the <message>
element. A message can contain one or more parts, each part being associated to a type using a
message-typing attribute. The message-typing attributes defined in WSDL are used in conjunction
with XSD and are defined as the element and type attributes.

The general syntax for the <message> element is as follows:

<message name=”messagename”>
<part name=”partname” element=”qname” type=”qname” />

</message>

The messagename attribute provides a unique name between all the messages defined and enclosed in
the WSDL document, while the partname attribute provides a unique name between all of the parts
within the message. For example, the following code fragment shows the format of a WSDL message:

<message name=”GetProductInfoSoapIn”>
<part name=”parameters” element=”xmlns0:GetProductInfo” />

</message>
<message name=”GetProductInfoSoapOut”>
<part name=”parameters” element=”xmlns0:GetProductInfoResult” />

</message>

The element attribute refers to an XSD element using a qualified name, or QName. The type element
refers to an XSD schema type, whether simple or complex, also using a QName. In the example code,
the element attribute for the SoapIn message is referring to the XSD element name GetProductInfo,
taken from the XSD schema shown in the previous section:

<xmlns:element name=”GetProductInfo”>

It is normal to allow and define other message-typing attributes as long as a different namespace is
used from the original WSDL.

In the code examples, the <message> element includes the <part> element, which provides a way of
describing the detail of a message. Each message has the capability to contain one or more <part>
subelements if the message has more than one logical component. For example, the following contains a
GetProductInfo part and a GetCustomerInfo part:

358

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 358

<types>
<xmlns:schema elementFormDefault=”qualified”
targetNamespace=”http://”>
<xmlns:element name=”GetProductInfo”>
<xmlns:complexType>
<xmlns:sequence>
<xmlns:element minOccurs=”1” maxOccurs=”1” name=”ProductID”
type=”xmlns:int” />

</xmlns:sequence>
</xmlns:complexType>

</xmlns:element>
<xmlns:element name=”GetProductInfoResponse”>
<xmlns:complexType>
<xmlns:sequence>
<xmlns:element minOccurs=”1” maxOccurs=”1” name=”GetProductInfoResult”

type=”xmlns:int” />
</xmlns:sequence>

</xmlns:complexType>
</xmlns:element>

</xmlns:schema>
<xmlns:schema elementFormDefault=”qualified”
targetNamespace=”http://”>
<xmlns:element name=”GetCustomerInfo”>
<xmlns:complexType>
<xmlns:sequence>
<xmlns:element minOccurs=”1” maxOccurs=”1” name=”CustomerID”
type=”xmlns:int” />

</xmlns:sequence>
</xmlns:complexType>

</xmlns:element>
<xmlns:element name=”GetCustomerInfoResponse”>
<xmlns:complexType>
<xmlns:sequence>
<xmlns:element minOccurs=”1” maxOccurs=”1” name=”GetCustomerInfoResult”

type=”xmlns:int” />
</xmlns:sequence>

</xmlns:complexType>
</xmlns:element>

</xmlns:schema>
</types>

<message name=”customer”>
<part name=”GetProductInfo” element=”xmlns:GetProductInfo” />
<part name=”GetCustomerInfo” element=” xmlns:GetCustomerInfo” />

</message>

Alternatively, you can specify the parts like this:

<message name=”product”>
<part name=”GetProductInfo” element=”xmlns:GetProductInfo” />

</message>
<message name=”customer”>
<part name=”GetCustomerInfo” element=” xmlns:GetCustomerInfo” />

</message>

359

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 359

Additionally, an input/output message can be created using the same logic, as follows:

<message name=”productInput”>
<part name=”GetProductInfo” element=”xmlns:GetProductInfo” />

</message>
<message name=”ProductOutput”>
<part name=”GetCustomerInfo” element=” xmlns:GetCustomerInfo” />

</message>

portType
PortTypes are a named set of operations, or interfaces, and the messages involved for a given operation.
The general syntax for the <portType> is as follows:

<definitions>
<portType name=”porttypename”>
<operation name=”operationname”/>

</portType>
</definitions>

For example, the following defines a <portType> named DataInterface that contains two operations,
Read and Write:

<definitions>
<portType name=”DataInterface”>
<operation name=”Read”/>
<operation name=”Write”/>

</portType>
</definitions>

The portType name provides a unique name against all the other portTypes defined in the WSDL
document. Equally, the operation name is supplied via the name attribute. These operations in WSDL
refer to the four transmission operations that an endpoint can support. They are as follows:

❑ One-way: In a one-way operation, the endpoint receives the message. The syntax for a one-way
operation is as follows:

<definitions>
<portType name=”porttypename”>
<operation name=”operationname”>
<input name=”inputname” message=”messagename” />

</operation>
</portType>

</definitions>

In the following example, the DataInterface operation is used to define a one-way operation:

<definitions>
<portType name=”DataInterface”>
<operation name=”Read”>
<input name=”adm:GetData” />

</operation>
</portType>

</definitions>

360

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 360

In the one-way operation, the <input> element specifies the message format for this type of
operation. The operationname value must be a qualified name.

❑ Request-response: In a Request-response operation, the endpoint receives a message, and then
sends a corresponding message. The syntax for a Request-response operation is as follows:

<definitions>
<portType name=”porttypename”>
<operation name=”operationname” parameterOrder=””>
<input name=”inputname” message=”messagename” />
<Output name=”outputname” message=”messagename” />
<fault name=”faultname” message=”messagename” />

</operation>
</portType>

</definitions>

In a Request-response operation, the <input> and <output> elements are required, but the
<fault> element is not. In this operation, the <fault> element specifies the format for error
messages returned as the result of the operation. The <input> and <output> elements specify
the message format for the request and response. The messagename value must be a qualified
name. The following example illustrates a Response-request operation using the
GetProductInfo stored procedure:

<portType name=”ProductInfoPortType”>
<operation name=”GetProductInfo”>
<input message=”adm:productInput”/>
<output message=”adm:ProductOutput”/>

</operation>
</portType>

❑ Solicit-response: For the Solicit-response operation, the endpoint sends a message, and then
receives a corresponding message. The syntax for a Solicit-response operation is as follows:

<definitions>
<portType name=”porttypename”>
<operation name=”operationname” parameterOrder=””>
<Output name=”outputname” message=”messagename” />
<Input name=”inputname” message=”messagename” />
<fault name=”faultname” message=”messagename” />

</operation>
</portType>

</definitions>

In the following example, the endpoint sends a ProductOutput message and then receives a
ProductInput message in response:

<portType name=”ProductInfoPortType”>
<operation name=”GetProductInfo”>
<output message=”adm:ProductOutput”/>
<input message=”adm:productInput”/>

</operation>
</portType>

361

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 361

Similar to the Request-response operation, the <input> and <output> elements for the Solicit-
response operation are required, but the <fault> element is not. In this operation, the <fault>
element specifies the format for error messages returned as the result of the operation. The
<input> and <output> elements specify the message format for the request and response.
The messagename value must be a qualified name.

❑ Notification: In a Notification operation, the endpoint sends a message. No message is received
in response. The syntax for a Notification operation is as follows:

<definitions>
<portType name=”porttypename”>
<operation name=”operationname”>
<Output name=”outputname” message=”messagename” />

</operation>
</portType>

</definitions>

In the following example, an Output message is sent from the endpoint via the SaveData message.

<definitions>
<portType name=”DataInterface”>
<operation name=”Read”>
<Output name=”adm:SaveData” />

</operation>
</portType>

</definitions>

While a Notification operation could be considered one-way since there is no response to the
Output, this operation is considered a Notification operation because the endpoint is initiating
the communication but not expecting a response.

Binding
Binding specifies the message format and protocol for the operations and messages for a specific
portType. Each portType may have more than one binding element; thus the binding element is
defined as follows:

<definitions>
<binding name=”uniquename” type=”QName”>

<operation name=”uniquename”>
<input name=”uniquename” >
</input>
<output name=”uniquename” >
</output>
<fault name=”uniquename”>
</fault>

</operation>
</binding>

</definitions>

The name attribute on the binding element specifies a unique binding name against all other binding
elementss in the WSDL document. The type attribute references the portType to which it is bound.
QName refers to an XML qualified name.

362

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 362

Binding provides the ability to apply specific information regarding the method of transport (such as
HTTP) and the type of protocol (such as SOAP) for the Web Service. A Web Service can support multiple
transport methods and protocol types, and in cases such as these, you must provide a binding for each
protocol type/transport method combination.

In the following code sample, HTTP is specified as the transport method and SOAP is specified as the pro-
tocol. The transport is specified by the value of the transport attribute, in this case “http://schemas/
xmlsoap.org/soap/http”. The SOAP protocol is specified on the <soap:binding> element:

<binding name=”ProductInfoSoap” type=”adm:ProductInfoPortType”>
<soap:binding style=”document” transport=”http://schemas/xmlsoap.org/soap/http”/>
<operation name=”GetProductInfo”>
<input message=”productInput “>
<soap:body parts=”body” use=”literal”/>
<soap:header message=”” part=”subscribeheader” use=”literal”/>

</input>
</operation>

</binding>

Bindings can specify only a single protocol and cannot specify address information.

Services
A service is a group of related ports or endpoints. It is defined as follows:

<definitions>
<service name=””>
<port.../>

</service>
</definitions>

A port is what defines each individual endpoint specified by a single binding address. Ports cannot specify
more than one address and cannot specify any binding information other than the specific address
information. For example, the following defines a port on a single binding address:

<definitions>
<service name=”servicename”>
<port name=”portname” binding=”bindingname”>
</port>

</service>
</definitions>

The service name attribute provides a unique service name against all other services defined in the
WSDL document. The same goes for the port name:

<service name=”GetProductInfoService”>
<port name=”ProductInfoPort” binding=”adm:ProductInfoSoap”>
<soap:address location=”http://mysite.com/getproducts”/>

</port>
</service>

363

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 363

Default WSDL File
The default WSDL file is returned when you specify the “wsdl” argument at the end of the HTTP argument
string to the HTTP SOAP endpoint. Use the endpoint you created in Chapter 17 with the following T-SQL:

CREATE ENDPOINT wrox_endpoint
STATE = STARTED
AS HTTP(

PATH = ‘/wrox’,
AUTHENTICATION = (DIGEST),
PORTS = (CLEAR),
SITE = ‘vssql2005’
)

FOR SOAP (
WEBMETHOD ‘GetProducts’

(name=’AdventureWorks.dbo.GetProducts’,
SCHEMA=STANDARD),

WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = ‘AdventureWorks’
)

GO

The URL http://servername/wrox_endpoint/wrox?wsdl is needed to access the Default WSDL.

Default WSDL files, which are generated by an endpoint, specify parameter types by either referencing the
defined types or by referencing subtypes of the defined types, as discussed in the subsequent sections.

Mapping SQL Server to XSD Types
When Default WSDL files are returned, any parameter elements contain a type mapping, which maps
the WSDL sqltype to the equivalent SQL Server type. The following table shows the related mappings.

SQL Server Type XSD Type

BigInt long

Binary base64binary

Bit boolean

Char string

DateTime datetime

Decimal decimal

Float double

GUID string

Image base64Binary

Int int

364

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 364

SQL Server Type XSD Type

Money decimal

NChar string

NText string

Numeric decimal

NVarchar string

Real float

SmallInt short

SmallDateTime datetime

SmallMoney decimal

Sql_Variant anyType

Text string

TimeStamp base64Binary

TinyInt unsignedByte

UDT (CLR) base64Binary

UDT (SQL) Original base type

VarBinary base64Binary

Varchar string

XML any

XML typed any

Mapping SQL Server to CLR Types
The following table lists the WSDL mapping between a SQL type and its equivalent CLR type when a
WSDL file is generated.

WSDL Type CLR Type

sqltypes:char System.Data.SqlTypes.SqlString

sqltypes:nchar System.Data.SqlTypes.SqlString

sqltypes:varchar System.Data.SqlTypes.SqlString

sqltypes:nvarchar System.Data.SqlTypes.SqlString

sqltypes:text System.Data.SqlTypes.SqlString

sqltypes:ntext System.Data.SqlTypes.SqlString

Table continued on following page

365

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 365

WSDL Type CLR Type

sqltypes:varbinary System.Data.SqlTypes.SqlBinary

sqltypes:binary System.Data.SqlTypes.SqlBinary

sqltypes:image System.Data.SqlTypes.SqlBinary

sqltypes:timestamp System.Byte

sqltypes:timestampnumeric System.Int64

sqltypes:decimal System.Data.SqlTypes.SqlDecimal

sqltypes:numeric System.Data.SqlTypes.SqlDecimal

sqltypes:bigint System.Data.SqlTypes.SqlInt64

sqltypes:int System.Data.SqlTypes.SqlInt32

sqltypes:smallint System.Data.SqlTypes.SqlInt16

sqltypes:tinyint System.Data.SqlTypes.SqlByte

sqltypes:bit System.Data.SqlTypes.SqlBoolean

sqltypes:float System.Data.SqlTypes.SqlDouble

sqltypes:real System.Data.SqlTypes.SqlSingle

sqltypes:datetime System.Data.SqlTypes.SqlDateTime

sqltypes:smalldatetime System.Data.SqlTypes.SqlDateTime

sqltypes:money System.Data.SqlTypes.SqlMoney

sqltypes:smallmoney System.Data.SqlTypes.SqlMoney

sqltypes:uniqueidentifier System.Data.SqlTypes.SqlQuid

sqltypes:xml System.Xml.XmlNode

sqltypes:Sql_Variant System.Object

sqltypes:Udt System.Xml.XmlElement

xml data type
xml data type parameters that are defined in the Default WSDL file are subsequently mapped to the
equivalent sqltypes:xml WSDL type listed previously. The benefit of this mapping is that all well-formed
XML can be specified without any more schema validation, resulting in better performance.

Simple WSDL File
The Simple WSDL file is a scaled-down version of the Default WSDL file. In the Simple WSDL file, all
primitive XSD data types are automatically substituted for SQL types that are more richly described in the

366

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 366

Default WSDL file. In doing so, however, some of the flexibility is lost when dealing with SQL data types,
yet it makes up this loss in simplicity when it comes to providing WSDL documents to the different types
of clients.

The Simple WSDL file provides backward-compatibility for those clients that cannot understand the
complexities of the Default WSDL file. An example of this would be those clients that have been built
using the SOAP toolkit, which does not provide the capability to process Default WSDL files generated
by SQL Server. The reason for this is due to the limitation to understand and interrogate some of the SQL
native types.

An example of this can be seen in the following two WSDL files. The first is a Default WSDL file that
shows a more complex type:

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:decimal”>
<xsd:totalDigits value=”19”>
</xsd:totalDigits>
<xsd:fractionDigits value=”4”>
</xsd:fractionDigits>
<xsd:maxInclusive value=”922337203685477.5807”>
</xsd:maxInclusive>
<xsd:minInclusive value=”-922337203685477.5808”>

</xsd:minInclusive>
</xsd:restriction>

</xsd:simpleType>

This example illustrates a Simple WSDL file and a much simpler type:

<xsd:simpleType name=”int”>
<xsd:restriction base=”xsd:int”>
</xsd:restriction>

</xsd:simpleType>

Custom WSDL File
Creating a Custom WSDL file requires multiple steps, outlined here. First, you need to create the code
for your Custom WSDL file. Next, you have to create and register an assembly containing the Custom
WSDL file. Finally, you must create the necessary stored procedures and endpoints. Since you created
an endpoint and corresponding stored procedures in Chapter 17, those are used for the examples in this
section. For the purposes of this example, however, the T-SQL code drops and re-creates the necessary
objects. Follow these steps:

1. Create a directory named Wrox on the root of your C: drive if you have not already done so.
Underneath the Wrox directory, create a subdirectory called Chapter19.

2. Open your favorite text editor and type the following code:

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

367

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 367

Imports Microsoft.SqlServer.Server
Imports Microsoft.SqlServer

Partial Public Class WroxWSDL
<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub GenerateWSDL(ByVal iEndPointID As SqlInt32, ByVal bIsSSL As

SqlBoolean, ByVal strHost As SqlString, ByVal strQueryString As SqlString)
Dim spPipe As SqlPipe = SqlContext.Pipe
Dim strWSDL As String = RetrieveWSDL(iEndPointID, bIsSSL, strHost,

strQueryString, spPipe)
If Nothing = strWSDL Then

spPipe.Send(“Error retrieving original WSDL.”)
Return

End If
strWSDL = UpdateWSDL(strWSDL, strQueryString.Value)
If Nothing = strWSDL Then

spPipe.Send(“Error customizing WSDL.”)
Return

End If
ReturnWSDL(strWSDL, spPipe)

End Sub

Private Shared Function RetrieveWSDL(ByVal iEndPointID As SqlInt32, ByVal
bIsSSL As SqlBoolean, ByVal strHost As SqlString, ByVal strQueryString As
SqlString, ByVal spPipe As SqlPipe) As String

Dim strReturnValue As String = Nothing
Dim conn As SqlConnection = New SqlConnection(“context connection=true”)
Dim myCommand As New SqlCommand(“sys.sp_http_generate_wsdl_

defaultsimpleorcomplex”, conn)
If myCommand Is Nothing Then

spPipe.Send(“Error creating SqlCommand object.”)
GoTo ret

End If
myCommand.CommandText = “sys.sp_http_generate_wsdl_defaultsimpleorcomplex”
myCommand.CommandType = CommandType.StoredProcedure
If Not strQueryString.Value.StartsWith(“wsdl”, True, System.Globalization

.CultureInfo.InvariantCulture) Then
spPipe.Send(“Error: Not a WSDL request.”)
GoTo ret

End If
myCommand.Parameters.Add(“@EndpointID”, SqlDbType.Int)
myCommand.Parameters(0).Value = iEndPointID
myCommand.Parameters.Add(“@IsSSL”, SqlDbType.Bit)
myCommand.Parameters(1).Value = bIsSSL
myCommand.Parameters.Add(“@Host”, SqlDbType.NVarChar, strHost.Value.Length)
myCommand.Parameters(2).Value = strHost
If strQueryString.Value.ToLower(System.Globalization.CultureInfo

.InvariantCulture).IndexOf(“extended”) > 0 Then
myCommand.Parameters.Add(“@QueryString”, SqlDbType.NVarChar, 11)
myCommand.Parameters(3).Value = “wsdlcomplex”

Else
myCommand.Parameters.Add(“@QueryString”, SqlDbType.NVarChar, 4)
myCommand.Parameters(3).Value = “wsdl”

End If

368

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 368

Dim oReader As SqlDataReader = myCommand.ExecuteReader
If oReader Is Nothing Then

spPipe.Send(“Error occurred during execution of SqlCommand.”)
GoTo ret

End If
If oReader.HasRows Then

If oReader.Read Then
strReturnValue = oReader.GetSqlValue(0).ToString

End If
End If

ret:
Return strReturnValue

End Function

Private Shared Function UpdateWSDL(ByVal strWsdlOrg As String, ByVal strQuery
As String) As String

Dim strLCQuery As String = strQuery.ToLower
If strLCQuery.IndexOf(“wrox”) > -1 Then

Return UpdateWsdlForVS2005(strWsdlOrg)
End If
Return strWsdlOrg

End Function

Private Shared Sub ReturnWSDL(ByVal strWSDL As String, ByVal spPipe As SqlPipe)
Dim iMaxLength As Integer = 4000
Dim oMetaData(1) As SqlMetaData
oMetaData(0) = New SqlMetaData(“XML_F52E2B61-18A1-11d1-B105-00805F49916B”,

SqlDbType.NVarChar, iMaxLength, 1033, SqlCompareOptions.None)
If oMetaData(0) Is Nothing Then

spPipe.Send(“Error creating the required SqlMetaData object for
response.”)

GoTo ret
End If
If strWSDL.Length < iMaxLength Then

iMaxLength = strWSDL.Length
End If
Dim aoResponse(1) As Object
aoResponse(0) = New Object
If aoResponse(0) Is Nothing Then

spPipe.Send(“Error creating the object to hold the SqlDataRecord
value.”)

GoTo ret
End If
aoResponse(0) = strWSDL.Substring(0, iMaxLength)
Dim oRecord As SqlDataRecord = New SqlDataRecord(oMetaData)

If oRecord Is Nothing Then
spPipe.Send(“Error creating SqlDataRecord.”)
GoTo ret

End If
spPipe.SendResultsStart(oRecord)
Dim iccLeft As Integer = strWSDL.Length - iMaxLength
Dim iLength As Integer = strWSDL.Length
While iccLeft > 0

If iccLeft > iMaxLength Then

369

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 369

oRecord.SetString(0, strWSDL.Substring(iLength - iccLeft,
iMaxLength))

spPipe.SendResultsRow(oRecord)
iccLeft = iccLeft - iMaxLength

Else
oRecord.SetString(0, strWSDL.Substring(iLength - iccLeft, iccLeft))
spPipe.SendResultsRow(oRecord)
iccLeft = 0

End If
End While
spPipe.SendResultsEnd()

ret:
Return

End Sub

Private Shared Function UpdateWsdlForVS2005(ByVal strWsdlOrg As String) As
String

Const strMaxOccurs As String = “maxOccurs=””unbounded”””
Dim strReturn As String = strWsdlOrg
If Nothing = strReturn Then

GoTo ret
End If
Dim strTemp As String = “<xsd:any namespace=””http://www.w3.org/2001/

XMLSchema”” minOccurs=””0”” processContents=””lax”” />”
Dim iIndex As Integer = strReturn.IndexOf(“complexType name=””SqlRowSet”””)
If iIndex <= 0 Then

strReturn = Nothing
GoTo ret

End If
iIndex = strReturn.IndexOf(strTemp, iIndex)
If iIndex <= 0 Then

strReturn = Nothing
GoTo ret

End If
strReturn = strReturn.Remove(iIndex, strTemp.Length)
strTemp = “namespace=””urn:schemas-microsoft-com:xml-diffgram-v1”””
iIndex = strReturn.IndexOf(strTemp, iIndex)
If iIndex <= 0 Then

strReturn = Nothing
GoTo ret

End If
strReturn = strReturn.Remove(iIndex, strTemp.Length)
strReturn = strReturn.Insert(iIndex, strMaxOccurs)

ret:
Return strReturn

End Function
End Class

3. Save this as WroxWSDL.vb in the Chapter19 directory.

4. Open a command prompt and navigate to your C:\Wrox\Chapter19 directory. At the command
prompt, type the following, making sure to replace the xxxxx value in the framework version
with the version of the .NET Framework you are currently using, such as v2.0.50215:

370

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 370

C:\windows\Microsoft.Net\Framework\v2.0.xxxxx\vbc.exe /t:library /r:sqlaccess.dll
/r:system.dll /r:system.data.dll /r:system.xml.dll wroxwsdl.vb

If you receive an error stating that sqlaccess.dll cannot be found, copy the sqlaccess.dll from the
SQL Server directory to the Chapter19 directory. The sqlaccess.dll file is located in \Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Binn.

5. Rerun the command at the command prompt. When this finishes executing, you should see
wroxwsdl.dll in your Chapter21 directory.

6. Next, open a new query window in SQL Server Management Studio and execute the following
T-SQL:

USE AdventureWorks
GO

DROP ASSEMBLY WroxCustomWSDL
GO

CREATE ASSEMBLY WroxCustomWSDL FROM ‘C:\Wrox\Chapter19\WroxCustomWSDL.dll’
GO

This step registers the custom WSDL assembly created in the previous section with SQL Server
so that it is aware that it exists and available for use.

7. Open a new query window and execute the following T-SQL to create the necessary stored
procedures:

USE AdventureWorks
GO

DROP PROCEDURE WroxCustomWSDL
GO

CREATE PROCEDURE WroxCustomWSDL
(
@endpointID as int,
@isSSL as bit,
@host as nvarchar(255),
@querystring as nvarchar(255)

)
AS EXTERNAL NAME WroxCustomWSDL. WroxWSDL.GenerateWSDL
GO

GRANT EXEC on WroxCustomWSDL to [PUBLIC]
GO

DROP PROCEDURE GetProducts1
GO

CREATE PROCEDURE GetProducts1
@ProductID int,
@ProductName nvarchar(25) output

AS

371

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 371

SELECT @ProductName = [Name] FROM Production.Product WHERE ProductID = @ProductID

GO

GRANT EXEC ON GetProducts1 TO [public]
GO

The first stored procedure maps directly to the CLR method and previously created assembly.
Notice that the information for the external name in the procedure WroxCustomWSDL maps
directly to the class name created first. This is how the mapping is applied.

The second stored procedure is the normal procedure, which queries and returns the product
information from the Production.Product table.

8. Create the necessary endpoint by executing the following T-SQL in a query window:

DROP ENDPOINT wrox_endpoint2
GO

CREATE ENDPOINT wrox_endpoint2
STATE = STARTED
AS HTTP(

PATH = ‘/wrox2’,
AUTHENTICATION = (DIGEST, INTEGRATED),
PORTS = (CLEAR),
SITE = ‘localhost’
)

FOR SOAP (
WEBMETHOD ‘GetProducts1’

(name=’AdventureWorks.dbo.GetProducts1’),
WSDL = ‘AdventureWorks.dbo.WroxCustomWSDL’,
SCHEMA = STANDARD,
DATABASE = ‘AdventureWorks’
)

GO

Use Master
GO

GRANT CONNECT ON ENDPOINT::wrox_endpoint2 to [PUBLIC]

You have just created your own custom WSDL. Now, based on what you have learned so far, your
homework assignment is to return the custom WSDL. How do you do this?

Hint: You don’t need Visual Studio, just your Web browser. Plus, you’ll need to use the word “wrox” in
the URL somewhere (look at the code for the custom WSDL file).

What you should get back, displayed in the browser, is the custom WSDL file.

372

Chapter 19

26_597922 ch19.qxp 12/3/05 12:30 AM Page 372

Summary
The entire purpose of this chapter was to give you a better understanding of WSDL and its inner workings
so that you can get a better feel for how they interact with SQL Server endpoints. Granted, WSDL is a very
deep and rich topic, and a whole lot more probably could have been covered, but that is not the intent of
this chapter. Overall, you should now have some level of understanding of how endpoints utilize WSDL
and what you can do with them.

To these ends, this chapter first gave a brief overview of what WSDL is and how it pertains to SQL Server
2005. From there, you learned what exactly is contained in a WSDL file that makes it so useful and robust.
Starting with the namespace and moving on to each element that makes up a WSDL file, this section
should have given you a better understanding of the makeup of a WSDL file so that if the occasion arises,
you can generate your own.

From there, the different types of WSDL files were discussed, as well as the differences between them
and why you would want to use one over the other. You learned about the Default and Simple WSDL
file types, and if neither of those fit your fancy, you learned how to create your own.

The next chapter moves on to discuss SQLXML Managed Classes.

373

Web Service Description Language (WSDL)

26_597922 ch19.qxp 12/3/05 12:30 AM Page 373

26_597922 ch19.qxp 12/3/05 12:30 AM Page 374

Part V:
SQL Server 2005 and
Visual Studio 2005

Chapter 20: SQL Server 2005 SQLXML Managed Classes

Chapter 21: Working with Assemblies

Chapter 22: Creating .NET Routines

Chapter 23: ADO.NET

Chapter 24: ADO.NET 2.0 Guidelines and Best Practices

Chapter 25: Case Study — Putting It All Together

27_597922 pt05.qxp 12/3/05 12:31 AM Page 375

27_597922 pt05.qxp 12/3/05 12:31 AM Page 376

SQL Server 2005 SQLXML
Managed Classes

Way back toward the beginning of the book, a number of chapters focused on SQLXML 4.0 that
comes with SQL Server 2005 and the new support for the xml data type. Those chapters focused
strictly on dealing with XML on the client side and using certain technologies to deal with XML data.

Recall from those chapters that SQLXML contains three separate data provider options that allow
you to gain access to XML data from SQL Server 2005. The first option, the SQLXMLOEDB
provider, lets you gain access to the SQLXML 4.0 functionality via ADO (ActiveX Data Objects).
This option is good but it comes with its limitations, such as that it can only provide output via a
stream.

The second option, the SQL Native Client, provides access to SQLXML functionality through a
new data access technology that combines both the SQLOLEDB and SQLODBC drivers into single
API. It provides additional functionality beyond what you would find in MDAC by exposing the
new SQL Server 2005 XML features.

The third option is SQLXML Managed Classes, which provide SQLXML 4.0 functionality inside
the .NET Framework.

This chapter focuses on the SQLXML 4.0 Managed Classes and the functionality they provide
within .NET Framework. The following topics are covered in this chapter:

❑ Overview of the SQLXML Managed Classes object model

❑ Examples using the SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 377

SQLXML Managed Classes Object Model
SQLXML Managed Classes are wrappers around the native SQLXML classes, exposing the SQLXML 4.0
functionality inside the .NET Framework. These Managed Classes make it easier for developers to move
their current SQLXML native code to .NET.

The SQLXML Managed Classes object model exposes three objects that provide all of the SQLXML
functionality needed to gain access to XML data from SQL Server from within your .NET application.
The three objects are as follows:

❑ SqlXmlCommand

❑ SqlXmlParameter

❑ SqlXmlAdapter

SqlXmlCommand Object
The SqlXmlCommand object is the class that provides the avenue for executing T-SQL commands, stored
procedures, and queries to the database via technologies such as XSD schemas and templates, and have
the results returned back to the client as XML.

This class also provides the capability to send queries to the database and retrieve the results as a stream or
even append the results to an existing stream. This class lets you parameterize queries via the associated
SqlXmlParameter class by specifying values for each parameter.

The execution of ad hoc queries such as native T-SQL, schemas, and stored procedures is available, as
well as Template and XPath queries. No matter the type of query, you have the ability to specify whether
you want the results converted to XML either on the client or on the server via a property of this class.

The basic syntax of the SqlXmlCommand class is as follows:

Imports Microsoft.Data.SqlXml
Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectionStrting)

The connection string specifies an OLEDB or ADO connection using the SQLOLEDB provider. The data
provider should not be included in the provider string. For example, the following connection string
connects to the AdventureWorks database on the local server using the SQLOLEDB provider:

Provider=SQLOLEDB; Server=(local); database=AdventureWorks; UID=userid;PWD=password

Methods and Properties
The SqlXmlCommand object contains a number of methods and properties that support the querying and
XML formatting of data returned from SQL Server 2005.

Methods
The following sections contain a detailed explanation of the methods supported by the
SqlXmlCommand class.

378

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 378

ClearParameters()

The ClearParameters() method, new to version 2.0 of the .NET Framework, clears any parameters
previously created for a given command object. This method allows you to execute multiple queries on
the same command object without the hassle of deleting the parameters. The syntax of this method is as
follows:

cmd.ClearParameters()

CreateParameter()

The CreateParameter() method is used in conjunction with the SqlXmlParameter object. This
method allows you to specify and set a Name/Value pair that you want to pass to a command.

The following code snippet illustrates the syntax for using the CreateParameter() method:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT Name FROM Production.Product WHERE ProductID = ?”
Dim Param As SqlXmlParameter
Param = cmd.CreateParameter()
Param.Value = “Scott”

A more detailed example is shown later in this chapter.

ExecuteNonQuery()

The ExecuteNonQuery() method executes a T-SQL command but does not return any results, such as
an INSERT or UPDATE statement.

The following code snippet illustrates the syntax for using the ExecuteNonQuery() method:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “UPDATE Production.Product SET Name = ‘Blade’ WHERE
ProductID=316”
cmd.ExecuteNonQuery()

Since this is the chapter on SQLXML Managed Classes, a better example would be to use this method
with an updategram or Diffgram to update data, which is what one of the examples later in the chapter
demonstrates.

ExecuteStream()

The ExecuteStream() method comes in handy when you want query results returned to you as a
stream. Since the ExecuteStream() method is part of the SQLXML Managed Classes, this allows you
to return results to the client formatted as XML using the FOR XML clause.

For example, the following code snippet demonstrates executing a SQL query to a stream:

Dim MyStrm as Stream
Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT ProductID, Name FROM Production.Product WHERE ProductID =
1 FOR XML AUTO”
MyStrm = cmd.ExecuteStream()

379

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 379

ExecuteToStream()

The ExecuteToStream() method lets you return query results to an existing stream. Unlike the
ExecuteStream() method, which returns the query results to a new stream, the ExecuteToStream()
method lets you append query results to an existing stream.

The following code fragment returns the results of a query to an existing stream, appending the results:

Dim MyStrm as Stream
Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT ProductID, Name FROM Production.Product WHERE ProductID =
1 FOR XML AUTO”
cmd.ExecuteToStream(MyStrm)

Other Methods

There are a few other methods, such as GetType()and ToString(). For example, you could output the
ToString() method to a message box or the immediate window as follows:

MessageBox.Show(cmd.ToString())

As a result, the following would be displayed in the message box:

“Microsoft.Data.SqlXml.SqlXmlCommand”

The GetType() method is useful if you want to look at the SqlXmlCommand system type information.
For example, the following returns the SqlXmlCommand type information in a MessageBox:

MessageBox.Show(cmd.GetType())

A portion of the results are shown here:

System.RuntimeType: “Microsoft.Data.SqlXml.SqlXmlCommand”
Assembly: {System.Reflection.Assembly}
AssemblyQualifiedName: “Microsoft.Data.SqlXml.SqlXmlCommand, Microsoft.Data.SqlXml,
Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91”
Attributes: 1048577
BaseType: “Microsoft.Data.SqlXml.SqlXmlCommand”
ContainsGenericParameters: False
DeclaringMethod: Exception of type: ‘{System.InvalidOperationException}’ occurred.
DeclaringType: Nothing
DefaultBinder: {System.DefaultBinder}
Delimiter: “.”c

There are also several properties supported by the SqlXmlCommand object, which are discussed next.

Properties
The SqlXmlCommand object supports the properties detailed in the following sections.

380

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 380

BasePath

The BasePath property is a directory path used in resolving the relative path when you specify an XSL
file, a schema file, or an XML template. For example, when you specify an XSL file using the XslPath
property, you can enter the value in one of two ways. The following method uses both the XslPath
property and the BasePath property:

cmd.XslPath = “Motocross.xsl”
cmd.BasePath = “c:\temp\”

The second method is to specify both the directory and the XSL file in the XslPath property, as follows:

cmd.XslPath = “c:\temp\Motocross.xsl”

If the path specified in the XslPath property is relative, then the value specified in the BasePath property
is used to correct the relative path.

ClientSideXml

The ClientSideXml property specifies whether or not the returned results are converted on the client
instead of the server. When you set this property to True, the conversion happens on the client. If you
set it to False, the XML formatting happens on the server.

For example, look at the following T-SQL statement:

SELECT FirstName, LastName, Title, EmailAddress, Phone
FROM Person.Contact
FOR XML AUTO

When you set the ClientSideXml property to True, the entire T-SQL statement is sent to the server,
including the FOR XML clause, but the server ignores the FOR XML clause and sends the results of the
query back as a result set for XML formatting on the client.

When you set the ClientSideXml property to False, the XML formatting is handled at the server.

The syntax is as follows:

cmd.ClientSideXml = True

CommandStream

The CommandStream property sets the stream for the Command object. It allows you to execute a command
from an external source such as a file or an XML template.

The syntax for the CommandStream property is as follows:

cmd.CommandStream = InputStream

InputStream contains the query information, such as an XML template.

381

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 381

The following example executes a template file query to a CommandStream:

Dim MyStrm as MemoryStream = New MemoryStream
Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandStream = FileStream(“Motocross.xml”, FileMode.Open)
cmd.BasePath = “c:\temp\”

When you use the CommandStream property, the only appropriate values for the CommandType property
are Template, UpdateGram, and Diffgram.

CommandText

The CommandText property specifies the text of the command to be executed. The text of this property is
of the CRUD (Create, Read, Update, Delete) type, allowing you to execute T-SQL queries. A simple
example is as follows:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT ProductID, Name FROM Production.Product WHERE ProductID =
1 FOR XML AUTO”

CommandType

The CommandType property specifies the type of command to be executed. The available types are used
to determine the type of command. They are:

❑ DiffGram: Specifies that a Diffgram will be executed.

❑ Sql: Executes a T-SQL command.

❑ Template: Executes an XML template command.

❑ TemplateFile: Executes a template file at a specified path.

❑ UpdateGram: Specifies that an updategram will be executed.

❑ XPath: Executes an XPath command.

NameSpace

The NameSpace property enables the execution of XPath queries that contain namespaces. In SQLXML
4.0, the wildcard character (*) is not supported, but a namespace prefix is still required in the XPath
query. To overcome this issue, the Namespaces property is available to provide namespace binding, as
follows:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.Namespaces = “xmlns:x=’urn:schema:Products’”

OutputEncoding

When the results of a query are being returned to a stream, the OutputEncoding property specifies the
encoding for that stream. The default and most common encoding is UTF-8, but ANSI and Unicode are
also very common. The OutputEncoding property lets you specify a different encoding.

382

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 382

The syntax for setting this property is as follows:

cmd.OutputEncoding = “UTF-8”

RootTag

The RootTag property lets you specify a root element for any XML generated via the results of a query
returning XML. For example, if the query returns an XML fragment, it does not contain a root element,
making it an invalid XML document. The RootTag property lets you specify the name of the root
element to ensure a valid XML document.

The following example uses the RootTag property to add a root element to the results of a query:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT ProductID, Name FROM Production.Product WHERE ProductID =
1 FOR XML AUTO”
cmd.RootTag = “Root”

SchemaPath

The SchemaPath property provides the name and location of the mapping schema for XPath queries.
This path can be absolute or relative (if relative, this property is used in conjunction with the BasePath
property). For example:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandType = SqlXmlCommandType.XPath
cmd.SchemaPath = “Motocross.xml”

XslPath

The XslPath property contains name of the XSL file and corresponding directory. It is not necessary to
specify a directory for the XSL file, but one can be included. (See the comments on the BasePath property
for more information on specifying paths for these properties.)

The syntax for using the XslPath property is as follows:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.XslPath = “Motocross.Xsl”

SqlXmlParameter Object
The SqlXmlParameter object allows you to dynamically parameterize your query filter criteria and
specify values for the query parameters at run time. You may know that you want to query the Person
.Contact table based on specific criteria, but you won’t know what those criteria are until run time.

For example, you may want to return the Title, EmailAddress, and Phone fields from the Person.Contact
table, but you won’t know for which person until run time, when a specific person is selected.

Properties
The following sections outline the properties that are supported by the SqlXmlParameter object.

383

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 383

Name
The Name property specifies the name of the parameter:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT Name FROM Production.Product WHERE ProductID = ? FOR XML
AUTO”
Dim Param As SqlXmlParameter
Param = cmd.CreateParameter()
Param.Name = “ProductID”
Param.Value = “320”

In most cases this property is not necessary. A few examples in the “Examples” section of this chapter
demonstrate how to use this property.

Value
The Value property specifies the value of the parameter being passed to the Command object, as follows:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT Name FROM Production.Product WHERE ProductID = ? FOR XML
AUTO”
Dim Param As SqlXmlParameter
Param = cmd.CreateParameter()
Param.Value = “Scott”

SQLXMLAdapter Object
The SqlXmlAdapter object provides the functionality that allows the dataset object of the .NET
Framework to work together with this and the other objects of the SQLXML Managed Classes.

Methods
The following sections explain the methods that are supported by the SqlXmlAdapter object.

Fill()
The Fill() method fills a .NET Framework dataset with the XML query results returned from SQL
Server. The following example queries the Production.Product table for a specific ProductID and fills a
dataset using the Fill() method:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT Name FROM Production.Product WHERE ProductID = 1 FOR XML
AUTO”
...
Dim ds As Dataset = New Dataset
Dim Adapt Ad SqlXmlDataAdapter
Adapt = new SqlXmlDataAdapter(cmd)
Adapt.Fill(ds)

384

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 384

Update()
The Update() method is used to update SQL Server data from data in the existing dataset. For example,
the following code queries the Name column from the Production.Product table for a specific ProductID,
uses the Fill() method to fill a dataset with the results, and then uses the Update() method to update
the data in the dataset and update the database with the updated value:

Dim cmd AS SqlXmlCommand = New SqlXmlCommand(ConnectionString)
cmd.CommandText = “SELECT Name FROM Production.Product WHERE ProductID = 1 FOR XML
AUTO”
...
Dim ds As Dataset = New Dataset
Dim Adapt Ad SqlXmlDataAdapter
Adapt = new SqlXmlDataAdapter(cmd)
Adapt.Fill(ds)
Dim rw As DataRow
rw = ds.Tables(0).Rows(0)
rw(“Name”) = “Ball Bearing”
Adapt.Update(ds)

Examples
Now that you have an understanding of SQLXML Managed Classes and their methods and properties,
it’s time to build some examples and put this great technology to work. Open Visual Studio 2005 and
create a new Visual Basic Windows application project. Name the project ManagedClasses.

Place a Button and a TextBox on the form. Set the properties of the controls to the following:

Control Property Value

Form Text Managed Classes Example

StartPosition CenterScreen

Size 448, 288

Button Text Get Results

Size 98, 28

Location 12, 39

Name “cmdGetResults”

TextBox Multiline True

Size 416, 113

Location 12, 73

Name “txtResults”

ScrollBars Vertical

385

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 385

Now it’s time to add code. Double-click the Button to display the click event code behind it and add the
following code:

Dim MyStrm As Stream
Dim ConnectString As String

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)

cmd.CommandText = “SELECT ProductID, Name FROM Production.Product “ & _
“WHERE ProductID = 320 For XML Auto”

Try
MyStrm = cmd.ExecuteStream
MyStrm.Position = 0

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Me.TextBox1.Text = StrRdr.ReadToEnd()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

The first two lines declare the Stream object and set the connection string. The next line creates the
SqlXmlCommand object, which is then used to set the CommandText property, which is the T-SQL statement
to be executed. Once that is done, the Command is executed with the results returned in a Stream.

Run the project by pressing F5 or by selecting the Start Debugging option from the Debug menu.
When the form opens, click the Get Results button to run the code. The results should be returned and
displayed in the text box, as shown in Figure 20-1. In this example, the ProductID and Name columns
are returned for ProductID 320.

Figure 20-1

The previous example specified the ProductID in the T-SQL statement. The next example modifies
the previous example a little bit by specifying the ProductID to query using a parameter and the
SqlXmlParameter class.

386

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 386

Modify the code behind the button as follows:

Dim MyStrm As Stream
Dim ConnectString As String
Dim Param As SqlXmlParameter

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)

cmd.CommandText = “SELECT Name FROM Production.Product “ & _
“ WHERE ProductID = ? For XML Auto”

Param = cmd.CreateParameter
Param.Value = 320

Try
MyStrm = cmd.ExecuteStream
MyStrm.Position = 0

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Me.TextBox1.Text = StrRdr.ReadToEnd()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

In this example, the SqlXmlParameter class is created and then used to create a parameter on the
Command object in which to pass the desired ProductID.

Run the project again and click the Get Results button. The results from this query, specifically the Name
column, are returned and displayed in the text box, as shown in Figure 20-2.

Figure 20-2

Both of the previous examples used inline T-SQL statements to query the data. The next example, however,
takes it to the next step and queries the database using a template.

387

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 387

Open Notepad or your favorite text editor and type the following code, saving the file as Products.xml
in the C:\wrox\chapter20 directory:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:query>
SELECT ProductID, Name
FROM Production.Product
FOR XML AUTO

</sql:query>
</ROOT>

Next, modify the click event code behind the Get Results button as follows:

Dim MyStrm As Stream
Dim ConnectString As String
Dim ms As MemoryStream = New MemoryStream
Dim sw As StreamWriter = New StreamWriter(ms)

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)

cmd.CommandStream = New FileStream(“c:\wrox\chapter21\Products.xml”, FileMode.Open)
cmd.CommandType = SqlXmlCommandType.Template

Try
MyStrm = cmd.ExecuteStream
MyStrm.Position = 0

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Me.TextBox1.Text = StrRdr.ReadToEnd()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

In this example, a template (Products.xml) is provided, which contains the T-SQL that will be executed by
the SqlXmlCommand object and the CommandStream property. The file mode is set to Open, which tells the
operating system to open an existing file. The CommandType property is set to SqlXmlCommandType
.Template, which tells the Command that a template is being executed, and then the template is executed
with the results being returned to a stream.

Run the project again and click the Get Results button to run the code. Your results should look like
Figure 20-3.

388

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 388

Figure 20-3

Building on the previous examples, this next example uses a parameter as well, but also uses the template
technology found in the second example. To do that, modify the Products.xml file and add the following:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:header>
<sql:param name= ‘ProductID’>320</sql:param>

</sql:header>
<sql:query>
SELECT ProductID, Name
FROM Production.Product
WHERE ProductID = @ProductID
FOR XML AUTO

</sql:query>
</ROOT>

Next, modify the click event code behind the Get Results button as follows:

Dim MyStrm As Stream
Dim ConnectString As String
Dim Param As SqlXmlParameter

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)
cmd.CommandType = SqlXmlCommandType.TemplateFile
cmd.CommandText = “c:\Wrox\Chapter21\Products.xml”

Param = cmd.CreateParameter
Param.Name = “@ProductID”
Param.Value = 320

Try
MyStrm = cmd.ExecuteStream
MyStrm.Position = 0

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Me.TextBox1.Text = StrRdr.ReadToEnd()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try 389

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 389

Run the project again and click the Get Results button to run the code. Your results should look like
Figure 20-4.

Figure 20-4

In this example, a parameter is passed to the template that is then used in the execution of the T-SQL
statement. Parameters being passed to a template must begin with an at sign (@). In this example, the
Name property of the SqlXmlParameter is set with the name @productID and then the Value property
is set with the actual value that will be passed to the template.

The next example uses the stored procedure called GetProductsByProductModelID that was created
in Chapter 19’s discussion of endpoints. If the stored procedure exists, open a query window in SQL
Server Management Studio and execute the following T-SQL, making sure the AdventureWorks
database is selected:

Create Procedure GetProductsByProductModelID
@ProductModelID int
As

SELECT ProductID, Name
FROM Production.Product
WHRE ProductModelID = @ProductModelID
GO

Modify the click event code behind the Get Results button as follows:

Dim MyStrm As Stream
Dim ConnectString As String
Dim Param As SqlXmlParameter

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)
cmd.ClientSideXml = True
cmd.CommandText = “EXEC GetProductsByProductModelID ? FOR XML NESTED”

Param = cmd.CreateParameter
Param.Value = 5

Try

390

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 390

MyStrm = cmd.ExecuteStream
MyStrm.Position = 0

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Me.TextBox1.Text = StrRdr.ReadToEnd()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Run the project again and click the Get Results button to run the code. Your results should look like
Figure 20-5.

Figure 20-5

Here, the CommandText property is set to the name of the stored procedure, but in the place of the parameter
value being passed to the stored procedure is a question mark (?). That is because the parameter is being
passed using the SqlXmlParameter object. The placement of the parameter’s value with the stored
procedure is handled by the SqlXmlCommand object and is executed correctly.

Notice that the formatting of XML occurs on the server using the FOR XML clause at the end of the
CommandText statement.

The next example uses the SqlXmlAdapter class to update data in a table. To begin with, query the
Production.Product table, shown in Figure 20-6, and look at the first five rows, specifically row 5 where
the ProductID is 316. The value of the Name column for ProductID 5 is Blade. This example uses the
SqlXmlAdapter class to change that value.

Figure 20-6

391

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 391

Open Notepad or your favorite text editor, type the following template schema, and save it as
ProdSchema.xml in the C:\wrox\chapter20 directory:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>

<xsd:element name=”Prod” sql:relation=”Production.Product” >
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”ProdName”
sql:field=”Name”
type=”xsd:string” />

<xsd:element name=”ProdNum”
sql:field=”ProductNumber”
type=”xsd:string” />

</xsd:sequence>
<xsd:attribute name=”ProductID” type=”xsd:integer” />
<xsd:attribute name=”ProductModelID” type=”xsd:integer” />
</xsd:complexType>

</xsd:element>
</xsd:schema>

Next, modify the click event code behind the Get Results button as follows:

Dim ConnectString As String
Dim rw as DataRow
Dim ad As SqlXmlAdapter

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)
Dim myms as MemoryStream = New MemoryStream

Try
cmd.RootTag = “Root”
cmd.CommandText “Prod”
cmd.CommandType = SqlXmlCommandType.XPath
cmd.SchemaPath = “c:\wrox\chapter21\ProdSchema.xml”

Dim ds as DataSet = New DataSet
ad = New SqlXmlAdapater(cmd)
ad.Fill(ds)
rw = ds.Tables(“Prod”).Row(4)
rw(“ProdName”) = “Blades”

For this example, make sure you have a reference to the System.Data and
System.Xml namespaces, and an Imports statement for the same in your Visual
Studio application.

392

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 392

ad.Update(ds)

‘Let ‘em know the process is done
Me.TextBox1.Text = “Done”

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Run the project again and click the Get Results button to run the code. Notice in Figure 20-7 that for
ProductID 316, the value in the Name column has been changed from Blade to Blades.

Figure 20-7

In this example, an XPath query is executed against the schema, which returns an XML document
containing the Product Name and ProductNumber columns. The returned XML data is then loaded into
a dataset, and then the value of the Name column is changed. Finally, a DiffGram is internally generated
and the changes are applied back to the database.

For this example, the same template schema is used but the results are returned via a StreamReader.
Modify the click event code behind the Get Results button as follows:

Dim ConnectString As String
Dim MyStrm As Stream

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)

Try
cmd.RootTag = “Root”
cmd.CommandText “Prod”
cmd.CommandType = SqlXmlCommandType.XPath
cmd.SchemaPath = “c:\wrox\chapter21\ProdSchema.xml”

MyStrm = cmd.ExecuteStream

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Me.txtResults.Text = StrRdr.ReadToEnd

Catch ex As Exception

393

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 393

MessageBox.Show(ex.Message.ToString)
End Try

Run the project again and click the Get Results button to run the code. Your results should look like
Figure 20-8.

Figure 20-8

This example returns the results into a stream. The stream is then passed to a StreamReader, which
reads the length of the stream and writes that to the text box.

Finally, one last example. This time, the steps are laid out, but the results are not shown. Your homework
assignment is to figure out how to get the results and what the results will be.

The first step is to modify the Products.xml file to create an UpdateGram. (UpdateGrams were covered
in Chapter 13 if you need to go back and refresh your memory.)

The next step is to modify the code behind the button to execute the template. The results aren’t returned,
but you can find out when the execution of code is finished by displaying a message in the text box.

Here is a hint:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql” xmlaw:updg=”urn:schemas-
microsoft-com:xml-updategram”>
WHAT GOES HERE?

</ROOT>

And another one:

Dim MyStrm As Stream
Dim ConnectString As String
Dim Param As SqlXmlParameter

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = _
“Provider=SQLOLEDB;Server=(local);database=AdventureWorks;UID=?;PWD=?”

WHAT GOES HERE?

Try

394

Chapter 20

28_597922 ch20.qxp 12/3/05 12:32 AM Page 394

WHAT GOES HERE?

Me.TextBox1.Text = “Done!”

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Summary
By the end of this chapter, you should have a pretty good handle on the different methods available to
query XML data from SQL Server 2005. As discussed at the beginning of the chapter, there are three
different avenues you can choose from. The first avenue mentioned was the SQLXMLOEDB provider,
which provides SQLXML functionality via ADO. The second avenue mentioned was the new SQL
Native Client, which gives access to SQLXML via a new DLL that wraps OLE DB and ODBC functionality
into a single data access technology. The third avenue, discussed in this chapter, was SQLXML Managed
Classes.

This chapter began by giving an overview of the SQLXML Managed Classes and the object model, then
detailing the methods and properties of the SqlXmlCommand, SqlXmlParameter, and SqlXmlAdapter
objects provided by the SQLXML Managed Classes.

The last half of the chapter provided a number of examples using the SQLXML Managed Classes, using
a lot of the methods and properties discussed in the first half of the chapter.

It should be fairly apparent that all three options for accessing XML data are equally rich in functionality,
but determining which one is right for you depends on your needs and your environment. The SQLXML
Managed Classes allow you to migrate to the .NET Framework without having to do a ton of application
rewrite, and without losing any functionality.

395

SQL Server 2005 SQLXML Managed Classes

28_597922 ch20.qxp 12/3/05 12:32 AM Page 395

28_597922 ch20.qxp 12/3/05 12:32 AM Page 396

Working with Assemblies

With the integration of the Common Language Runtime (CLR) in SQL Server 2005, a means of
providing access to the rich programming model of the .NET Framework functionality from within
a SQL Server instance was necessary. To accomplish this, the concept of assemblies is introduced in
SQL Server 2005.

Assemblies are .NET-compiled and -hosted DLL files used by SQL Server to deploy objects such as
stored procedures, user-defined types, triggers, and user-defined functions that are typically written
in T-SQL, but that can now be created and written using a number of managed code languages such
as Visual Basic .NET or C#.

This new addition to SQL Server 2005 also provides the capability to access the very improved
programming model of the .NET Framework from within database objects such as stored procedures,
functions, and types. There have been many enhancements to version 2.0 of the .NET Framework and
many of these new improvements are now made available via the integration of the CLR.

This chapter discusses the topic of assemblies as they pertain to SQL Server 2005, covering the fol-
lowing topics:

❑ Enabling CLR integration and using managed code in assemblies

❑ Securing your assemblies

Assemblies
Prior to SQL Server 2005, an assembly was known as, and really still is, a unit of code compiled
into a .dll or .exe, also known as managed code. This terminology and functionality still exists
with the .NET Framework. However, with SQL Server 2005, the term of assembly just got a little
fuzzier.

29_597922 ch21.qxp 12/3/05 12:29 AM Page 397

In the realm of SQL Server, an assembly is an object that references a physical assembly .dll file. The
managed code is a DLL file that is created using the .NET Framework CLR and accessible to other managed
code, and more specifically, from within SQL Server. Each piece of managed code contains a couple of
pieces of important information. The first is the metadata that describes the assembly, such as the methods
and properties of the assembly, and the version number of the assembly. The second piece of information
is the actual managed code, the methods and properties that make up the assembly.

The managed code within an assembly runs the functionality of SQL Server objects such as stored proce-
dures, UDTs, CLR functions, and CLR triggers. More important, an assembly itself controls the permission
level at which the managed code can access internal and external resources.

When an assembly is created in SQL Server via the CREATE ASSEMBLY statement, the .dll file is physically
loaded into SQL Server so that it can be referenced and used by the SQL Server engine. Two tables exist
in SQL Server 2005 that show the created assemblies. Those tables are called sys.assemblies and
sys.assembly_files. At any time during the examples in this chapter, feel free to query those two tables
to look at the information stored.

Enabling CLR Integration
Before you can start utilizing assemblies in SQL Server 2005, you need to tell SQL Server that it is okay
to start talking the CLR/.NET jive. By default, CLR integration is turned off and needs to be enabled so
that any of the .NET objects can be accessed from within SQL Server.

To enable CLR integration, run the following code in a query window in SQL Server Management
Studio:

EXEC sp_configure ‘show advanced options’, 1
GO
RECONFIGURE
GO
sp_configure ‘clr enabled’, 1
GO
RECONFIGURE
GO

To enable CLR integration, you must have ALTER SETTINGS server level permissions. These permissions
are implicitly held by members of the sysadmin and serveradmin server roles.

The other method of enabling CLR integration is to turn it on via the SQL Server Surface Area
Configuration tool. To get to this tool, select the SQL Server Surface Area Configuration menu, shown in
Figure 21-1, from the Microsoft SQL Server 2005 ➪ Configuration Tools menu.

Figure 21-1

398

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 398

Selecting this menu opens the SQL Server 2005 Surface Area Configuration dialog, shown in Figure 21-2.
To configure CLR integration, click the Surface Area Configuration for Features option at the bottom of
the dialog. This opens the Surface Area Configuration for Features form, shown in Figure 21-3.

Figure 21-2

Figure 21-3

399

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 399

To configure CLR integration, select CLR Integration on the left under Database Engine, and then check
the Enable CLR Integration box on the right. Click OK to enable the option and close the form. You are
now ready to go.

Managed Code
The definition of managed code is usually given as code written in one of several high-level program-
ming languages such as C# or Visual Basic .NET, which share class libraries and are compiled into an
Intermediate Language (IL).

You have seen managed code used throughout the book, especially the last couple of chapters when
the topics of the SqlXml Managed Classes were discussed. Assemblies are no different, except unlike
Chapter 20 where you dealt with existing managed code, this chapter lets you create the managed code.

This section introduces you to assemblies and walks you through the creation and use of them through
SQL Server 2005 and Visual Studio .NET 2005.

Stored Procedures
This first example is an easy one to help you get your feet wet in understanding how assemblies work
with SQL Server 2005. To begin, create a directory called Chapter21 in the C:\Wrox directory.

Open your favorite text editor, enter the following code, and save it as HelloScott.vb:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes

Public Class HelloScottProc
Public Shared Sub HelloScott()
SqlContext.Pipe.Send(“Hello Scott!”)

End Sub
End Class

The next step is where you create the managed code. To accomplish this you need to invoke the command
line compiler, which compiles the file into the desired managed code. The compiler is located in the folder
for the specific .NET version underneath the Windows directory. For example, these examples use version
2.0.50215 of the .NET Framework, so the compiler is located in C:\Windows\Microsoft.Net\Framework\
v2.0.50215.

Open a command prompt and browse to the folder specific to the version of the .NET Framework you are
running. In that directory, you should find a file called vbc.exe (for Visual Basic .NET) or csc.exe (for C#).

At the command prompt, type and execute the following:

vbc /target:library c:\wrox\chapter21\helloscott.vb

The results are shown in Figure 21-4.

400

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 400

Figure 21-4

A new file called HelloScott.dll is now in the C:\wrox\Chapter21 directory where the HelloScott.vb file
is located (see Figure 21-5). The HelloScott.dll file is the managed code.

Figure 21-5

The next step is to create the assembly and reference in SQL Server. Open a query window in the SQL
Server Management Studio, making sure the AdventureWorks database is selected, and execute the
following T-SQL statement:

CREATE ASSEMBLY helloscott
FROM ‘c:\wrox\chapter21\helloscott.dll’
WITH PERMISSION_SET = SAFE

The CREATE ASSEMBLY statement loads the compiled .dll into SQL Server that can now be referenced
from within SQL Server. Multiple copies, or versions, of the assembly can be stored in SQL Server with
the same file name as long as each .dll has a different file version number.

The code in this example creates an assembly called helloscott using the helloscott.dll and sets the
permission to SAFE. PERMISSION_SET is discussed in detail later in this chapter.

With the assembly created, the next step is to create a simple stored procedure that will use the assembly.
The following DDL statement creates the entry point for the assembly:

CREATE PROCEDURE HelloMe
AS
EXTERNAL NAME helloscott.HelloScottProc.HelloScott

To test this example, run the stored procedure by executing the following statement:

EXEC helloMe

401

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 401

Figure 21-6 shows all the code used in the example and the results from running the EXEC statement.

Figure 21-6

While this example is quite simple, it does show the basic steps for creating and deploying assemblies. The
next examples build on this code and demonstrate more complex functionality to access SQL Server data.

You must be thinking, “There must be an easier way to build and deploy these assemblies.” Well, actually,
there is. However, the reason these exercises have you building and deploying these assemblies manually
is so that you understand what is happening behind the scenes when these assemblies are created. Don’t
worry, though, because at the end of Chapter 22, you’ll see “the easy way.”

In this next example, the assembly is used to access some data from a SQL Server instance. Open your
text editor again and enter the following code, saving the file in the C:\Wrox\Chapter21 directory as
GetProducts.vb:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductsProc
Public Shared Sub GetProducts()
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)
conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT Name FROM Production.Product” &_

“WHERE ProductID = 1”, conn)

402

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 402

SqlContext.Pipe.ExecuteAndSend(cmd)
End Sub

End Class

This code in this assembly creates a connection to the database and executes a T-SQL statement, returning
the value of a column for a specified row.

In your command prompt, modify the command line as follows and run it:

vbc /target:library c:\wrox\chapter21\GetProducts.vb

You should now see a new DLL called GetProducts.dll in the Chapter22 directory. Again, this is the
managed code piece of the assembly.

Now you need to create the assembly reference in SQL Server. In your query window, run the
following T-SQL:

CREATE ASSEMBLY GetAWProducts
FROM ‘c:\wrox\chapter21\GetProducts.dll’
WITH PERMISSION_SET = SAFE

One thing to notice about this CREATE ASSEMBLY statement is the WITH PERMISSION_SET clause at
the end. This clause specifies the access permissions that are given to the assembly when it is used and
accessed by SQL Server. The available values for this clause are SAFE, EXTERNAL_ACCESS, and UNSAFE.
Each of these is explained in detail at the end of this chapter.

Now that the assembly reference is created, the next step is to create a SQL Server object that can use the
assembly, again using a stored procedure. Run the following T-SQL in your query window to create the
stored procedure:

CREATE PROCEDURE GetProducts
AS
EXTERNAL NAME GetAWProducts.GetProductsProc.GetProducts

Before you execute the stored procedure, take a look at the EXTERNAL NAME syntax of the CREATE
PROCEDURE statement. This specifies the method of the .NET assembly. The format of the syntax is as
follows:

Assembly_name.class_name.method_name

Using the previous example, the assembly name comes from the CREATE ASSEMBLY statement, which
in this case is GetAWProducts. The second part is the class name, which comes from the code in the
GetProducts.vb file in the statement Public Class GetProductsProc. The third part is the method
name, which also comes from the GetProducts.vb, which in this example is GetProducts from the
Public Shared Sub GetProducts declaration.

Putting these pieces of information together in the EXTERNAL NAME clause tells the stored procedure
what to execute when the stored procedure is executed.

403

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 403

At this point you are ready to test the assembly and get data back. In your query window, execute the
following T-SQL:

EXEC GetProducts

Figure 21-7 shows the results you should see.

Figure 21-7

A downside to using assemblies is that if you modify the managed code piece, the DLL, you need to
drop the assembly reference in SQL Server. The problem is that you can’t just delete the assembly
because it is being referenced by the GetProducts stored procedure. So, to delete the assembly, you
must first delete all objects that reference that assembly, which in this case, thankfully, is only the
GetProducts stored procedure.

So, run the following code to first delete the stored procedure and then the reference to the assembly.
You’re doing this because some of the subsequent examples use the GetProducts assembly again with
some modifications.

First, drop the stored procedure and assembly, as follows:

DROP PROCEDURE GetProducts
GO
DROP ASSEMBLY GetAWProducts
GO

Now modify the assembly code as follows:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductsProc
Public Shared Sub GetProducts()
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)

You are probably asking yourself, “Why isn’t it possible to just modify and rebuild
the assembly?” That would be nice, but if you remember some of the information
from the discussion of assemblies at the start of this chapter, when you are creating
an assembly and a reference to it, a lot of information about the assembly (the meta-
data) is stored with the assembly reference in SQL Server. It contains class metadata
within the instance of SQL Server and therefore just recompiling the DLL does no
good because SQL Server still has the metadata for the previous assembly.

404

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 404

conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT Name, ProductNumber FROM “ & _

“Production.Product ORDER BY ProductID”, conn)
SqlContext.Pipe.ExecuteAndSend(cmd)

End Sub
End Class

You have probably noticed in the previous examples that the results are being returned through a couple of
objects called SqlContext and SqlPipe. Chapter 22 goes into much greater detail about these objects, but
for now suffice it to say that any CLR objects running in a SQL Server instance return their results through
a connect pipe. This pipe is a property of the SqlContext object. The SqlPipe object is very similar to the
Response object in ASP.NET.

Realistically, this example is not much different from the first one except that instead of specifying a
ProductID to return a specific record, the query is returning the Name and ProductNumber columns for
all the rows. The rest of the code remains the same.

Don’t forget to recompile the assembly, using the same syntax as in the previous examples.

The CREATE ASSEMBLY and CREATE PROCEDURE statements remain the same, so go ahead and
execute those:

CREATE ASSEMBLY GetAWProducts
FROM ‘c:\wrox\chapter21\GetProducts.dll’
WITH PERMISSION_SET = SAFE
GO
CREATE PROCEDURE GetProducts
AS
EXTERNAL NAME GetAWProducts.GetProductsProc.GetProducts
GO

Now, as before, execute the stored procedure:

EXEC GetProducts

Your results should show the Name and ProductNumber columns for all the records from the
Production.Product table, as shown in Figure 21-8.

Figure 21-8

405

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 405

In this example, the Name and ProductNumber columns are returned for all the rows because the query
does not specify a specific ProductID to return a single row. Thus, all the rows are returned.

However, there will be times where you will want to filter the query by specifying a filter criterion (such
as specifying a ProductID as in the previous example), but you won’t know that value until runtime. In
cases like this, being able to specify a parameter to the assembly comes in handy.

This next example builds on the previous example, passing a parameter to the assembly. The same
GetAWProducts assembly is used, so drop the stored procedure and assembly first:

DROP PROCEDURE GetProducts
GO
DROP ASSEMBLY GetAWProducts
GO

Modify the assembly as follows, adding a parameter and modifying the SELECT statement:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductsProc
Public Shared Sub GetProducts(ByVal ProductID As Integer)
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)
conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT Name, ProductNumber FROM “ & _

“Production.Product WHERE ProductID = “ & ProductID, conn)
SqlContext.Pipe.ExecuteAndSend(cmd)

End Sub
End Class

Recompile the assembly in the command window; the syntax hasn’t changed for that yet. Additionally,
create the assembly reference:

CREATE ASSEMBLY GetAWProducts
FROM ‘c:\wrox\chapter21\GetProducts.dll’
WITH PERMISSION_SET = SAFE
GO

In this case, since a parameter is being passed to the assembly, the syntax for the CREATE PROCEDURE
statement also needs to change. Modify the code for creating the procedure as follows:

CREATE PROCEDURE GetProducts
@ProductID int
AS
EXTERNAL NAME GetAWProducts.GetProductsProc.GetProducts
GO

Execute the stored procedure, but this time, pass a valid ProductID value (this example uses a ProductID
of 1, but you could pass any valid ProductID to test the assembly):

EXEC GetProducts 1

406

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 406

The results of passing a ProductID of 1 are shown in Figure 21-9.

Figure 21-9

The results returned from this procedure, the Name and ProductNumber columns, were returned for a
single specific row, specified by the ProductID that was passed in via a parameter. The query was then
executed using that parameter as filter criteria, with the results being returned via the ExecuteAndSend
method.

Building on the last example, this next example also takes a parameter to query information from SQL
Server and then write the results to a file.

Modify the assembly as follows:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductsProc
Public Shared Sub GetProducts(ByVal ProductModelID As Integer)
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)
conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT ProductID, Name, “ & _
“ ProductNumber FROM Production.Product WHERE ProductModelID = “ & _
ProductModelID, conn)

Dim rdr As SqlDataReader = cmd.ExecuteReader

Dim sw As StreamWriter = New StreamWriter(“c:\wrox\chapter21\output.txt”)
If rdr.HasRows = True Then
Do While rdr.Read
sw.WriteLine(CType(rdr.Item(0), String) + “ “ + rdr.Item(1) + “ “ +

rdr.Item(2))
Loop

Else
sw.WriteLine(“No Rows”)

End If

rdr.Close()
conn.Close()
sw.Close()

End Sub
End Class

407

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 407

For this example, the CREATE ASSEMBLY and CREATE PROCEDURE code have not changed, so execute
that code:

DROP PROCEDURE GetProducts
GO
DROP ASSEMBLY GetAWProducts
GO
CREATE ASSEMBLY GetAWProducts
FROM ‘c:\wrox\chapter21\GetProducts.dll’
WITH PERMISSION_SET = SAFE
GO
CREATE PROCEDURE GetProducts
@ProductID int
AS
EXTERNAL NAME GetAWProducts.GetProductsProc.GetProducts
GO

Now execute the stored procedure to view the results. You should receive the message shown in
Figure 21-10.

Figure 21-10

Do you know why it didn’t work? The answer has to do with security. What PERMISSION_SET was used
when creating the assembly?

As explained earlier, there are different PERMISSION_SET levels, and you will learn shortly what
each of those means. In simple terms for now, SAFE mode is the stingiest with its access to external
resources (such as file access), as demonstrated in this example. To gain access to external resources,
the PERMISSION_SET needs to be changed to EXTERNAL_ACCESS.

This means that the permissions on the assembly need to change. In order to do that the assembly needs
to be dropped and recreated (which means that the stored procedure needs to be dropped as well):

DROP PROCEDURE GetProducts
GO
DROP ASSEMBLY GetAWProducts
GO

408

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 408

Recreate the assembly with the following changes, using the EXTERNAL_ACCESS permission set, and
then create the stored procedure:

CREATE ASSEMBLY helloscott
FROM ‘c:\wrox\chapter21\GetProducts.dll’
WITH PERMISSION_SET = EXTERNAL_ACCESS
GO
CREATE PROCEDURE GetProducts
@ProductID int
AS
EXTERNAL NAME GetAWProducts.GetProductsProc.GetProducts
GO

Now execute the stored procedure again.

EXEC GetProducts 6

Once this has finished executing, you should be able to see a new file called output.txt in the
C:\Wrox\Chapter21 directory, as shown in Figure 21-11.

Figure 21-11

Open the output.txt file. As you can see, all the data returned from the execution of the assembly — the
ProductID, Name, and ProductNumber for the given ProductModelID — was passed in to the assembly
as a parameter. The text file should look like Figure 21-12.

Figure 21-12

409

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 409

Something interesting to note here. This example returns the results to a text file and not the query
window. You could do both, however, by leaving the line SqlContext.Pipe.ExecuteAndSend(cmd)
in as follows:

Dim cmd As SqlCommand = New SqlCommand(“SELECT ProductID, Name, “ & _
“ ProductNumber FROM Production.Product WHERE ProductModelID = “ & _
ProductModelID, conn)

SqlContext.Pipe.ExecuteAndSend(cmd)

Dim rdr As SqlDataReader = cmd.ExecuteReader

By including this line, you get the output.txt file and the results are sent to the query window as well.

User-Defined Functions
All of the examples thus far have used a stored procedure to execute the assembly, so it’s time to shift
directions a bit and employ user-defined functions to demonstrate how to use other SQL Server objects
to execute an assembly.

These examples use a new assembly, so open your text editor and enter the following code, saving it as
GetProductCount.vb in the C:\Wrox\Chapter21 directory. This assembly returns a single integer value,
the number of rows in the Production.Product table:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductCountProc
Public Shared Function GetProductCount() As Integer

Dim conn As SqlConnection = New SqlConnection(“context connection=true”)
conn.open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT Count(*) AS ProductCount

FROM Production.Product”, conn)
Return CInt(cmd.ExecuteScalar())

End Function
End Class

Change the command line compiler command so that it looks like this:

vbc /target:library c:\wrox\chapter21\GetProductCount.vb

Upon executing this command, a new DLL is created in the directory, so now you can create the assem-
bly reference. Execute the following CREATE ASSEMBLY statement in a query window. The assembly is
not going to access any external resources so the PERMISSION_SET can be set back to SAFE:

CREATE ASSEMBLY GetProductCount
from ‘c:\wrox\chapter21\getproductcount.dll’
WITH PERMISSION_SET = SAFE
GO

410

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 410

Using a UDF (user-defined function) is not too different from using a stored procedure. The EXTERNAL
NAME clause is the same and works the same. The only difference is that there are different kinds of
functions: scalar-valued and table-valued.

Scalar-valued functions return a single value, such as an integer or string. A table-valued function returns a
set of columns or a table.

This first example builds a scalar-valued function to return a single integer value, the count of rows in
the Production.Product table.

Create the function by executing the following T-SQL in a query window:

CREATE FUNCTION GetProductCountUDF()
RETURNS INT
AS
EXTERNAL NAME GetProductCount.GetProductCountProc.GetProductCount
GO

Unlike stored procedures that use the EXEC command to run them, a function is executed by simply
selecting from the function, as shown in the following code:

SELECT dbo.GetProductCountUDF()

Figure 21-13 shows the results of the execution of the function.

Figure 21-13

In this example, the assembly passes the results back to the function by using the ExecuteScalar
method with the Return keyword as follows:

Return CInt(cmd.ExecuteScalar())

The ExecuteScalar method used in this example executes the query as defined in the SqlCommand, but
returns only the first column of the first row of the result set. All other columns or rows are discarded.
The Return statement returns the results of the query, in this case the value 504, via the function.

Building on the previous example, instead of returning the number of rows for the entire table, the next
example passes a parameter into the assembly to return only the number of rows for a given
ProductModelID.

As you might expect, the assembly and function need to be dropped first since you’re using the same
assembly:

DROP FUNCTION GetProductCountUDF
GO
DROP ASSEMBLY GetProductInfo
GO

411

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 411

Modify the assembly as follows, adding a parameter to the function and adding a WHERE clause to the
SELECT statement:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductCountProc
Public Shared Function GetProductCount(ByVal ProductModelID As Integer) As _
Integer

Dim conn As SqlConnection = New SqlConnection(“context connection=true”)
conn.open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT Count(*) AS ProductCount “ & _
“FROM Production.Product WHERE ProductModelID = “ & ProductModelID, conn)
Return CInt(cmd.ExecuteScalar())

End Function
End Class

Don’t forget to compile the assembly. Once that is done you can recreate the assembly reference:

CREATE ASSEMBLY GetProductCount
from ‘c:\wrox\chapter21\getproductcount.dll’
WITH PERMISSION_SET = SAFE
GO

The syntax for the CREATE FUNCTION statement needs to change to pass a parameter. The syntax is a bit
different, as shown here:

CREATE FUNCTION GetProductCount (@ProductModelID int)
RETURNS INT
AS
EXTERNAL NAME GetProductCount.GetProductCountProc.GetProductCount
GO

This time, when you select from the function, be sure to pass a parameter value, as follows (this example
uses the value of 6, but you can use any valid number from the ProductModelID column):

SELECT dbo.GetProductCount (6)

This example returns a value of 11, as shown in Figure 21-14.

Figure 21-14
412

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 412

The results for this example are returned the exact same way as in the previous example, using the
ExecuteScalar method, which allows the passing of a single return value to the calling function.

None of the examples have yet to return the data formatted as XML, so it is time to do that. This example
uses the GetProducts assembly, so in order to use it you must first delete it:

DROP PROCEDURE GetProducts
GO
DROP ASSEMBLY GetAWProducts
GO

Next, modify the GetProducts.vb assembly as follows:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductsProc
Public Shared Sub GetProducts(ByVal ProductModelID As Integer)
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)
conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT ProductID, Name, “ & _
“ ProductNumber FROM Production.Product WHERE ProductModelID = “ & _
ProductModelID & “ FOR XML AUTO, ELEMENTS”, conn)

SqlContext.Pipe.ExecuteAndSend(cmd)

conn.Close()

As with the previous examples, create the assembly reference:

CREATE ASSEMBLY GetAWProducts
FROM ‘c:\wrox\chapter21\GetProducts.dll’
WITH PERMISSION_SET = SAFE
GO

Use the GetProducts stored procedure for this example:

CREATE PROCEDURE GetProducts
@ProductID int
AS
EXTERNAL NAME GetAWProducts.GetProductsProc.GetProducts
GO

Execute the stored procedure to return the results and be sure to pass a value for the parameter that the
assembly expects:

EXEC GetProducts 6

413

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 413

The XML is formatted on the server as specified by FOR XML AUTO in the SELECT statement, and the
results returned are shown in Figure 21-15.

Figure 21-15

In this example, the query included a FOR XML clause. When the procedure was executed, the query was
sent to the server informing it to format the results as XML and return them to the client.

When you create the assembly, you need to establish a specific permission set on the assembly, which
tells the assembly what level of permissions it has to operate within SQL Server. Those permission levels
are discussed next.

Assembly Security
The CLR in the .NET Framework contains a security model for managed code named CAS (Code Access
Security). This security model manages the security between the different types of CLR and non-CLR
objects that are running within a SQL Server instance.

For assemblies, the following access permissions have been defined and implemented.

SAFE
The most restrictive permission, SAFE permissions allow access to internal and local data. No access to
external resources such as files or directories, network resources, and the registry is permitted.

EXTERNAL_ACCESS
EXTERNAL_ACCESS permissions contain the same permissions as SAFE, but add the capability to access
external resources such as files or directories, network resources, and the registry. Environment variables
are also available with this level of permissions.

EXTERNAL_ACCESS assemblies are executed by the service account by default.

UNSAFE
The least restrictive, and not recommended, UNSAFE permissions allow access to all resources internally
as well as externally, and can call unmanaged code as well.

414

Chapter 21

29_597922 ch21.qxp 12/3/05 12:29 AM Page 414

Summary
Assemblies provide tremendous value to the CLR integration with SQL Server 2005, and this chapter
showed you various ways you can implement them in your environment and applications. These
examples provided you with an understanding on how assemblies are implemented in SQL Server 2005.
All of the examples were used for data access, but in reality, assemblies can play a much more important
role. SQL Server is extremely good at data access. Why call out to an assembly only to have that
assembly query back to SQL Server for data?

Where the CLR and assemblies show their strength are in things that SQL is not strong at, such as string
manipulation and complex numerical computations. You saw how it is possible to pass in parameters to
an assembly and return results. This is where assemblies should be used: to complement SQL Server.

Additionally, this chapter discussed the concept of managed code to give an overview of how assemblies
work and what they contain. From there, you saw a number of examples using different SQL Server
objects to gain access to the assemblies, such as user-defined functions and CLR procedures. Through
this functionality you are able to take advantage of the CLR right within SQL Server to enhance SQL
Server’s already powerful functionality.

While the examples in this chapter demonstrated simple T-SQL statements, assemblies are extremely
useful when your application requires high processor-intensive tasks, not simple T-SQL statements.
Assemblies are very robust, but you must take care when developing and utilizing them to determine
what permissions they need and what resources they might need access to.

Finally, you also saw an example that illustrated how to return XML formatted data. This is important
because it might come in handy when you need to deal with XML formatted data.

The next chapter continues the discussion of managed code with a focus on .NET routines.

415

Working with Assemblies

29_597922 ch21.qxp 12/3/05 12:29 AM Page 415

29_597922 ch21.qxp 12/3/05 12:29 AM Page 416

Creating .NET Routines

In Chapter 21, the discussion revolved around the topics of managed code and assemblies and
how they work within an instance of SQL Server 2005. Really, this is just the tip of the iceberg in
the whole managed code area that floats below the surface.

Chapter 21 defined the concept of managed code, and that same concept and terminology applies
to this chapter. You learned that you could build database objects using the SQL Server integration
with the .NET Framework CLR, basically called managed code. In these terms, managed code that
runs within an instance of SQL Server is called a CLR routine.

This chapter focuses on a number of very common CLR routines that can add tremendous benefit
to your application. The following topics are covered in this chapter:

❑ .NET routine overview

❑ User-defined procedures and triggers

❑ Scalar-value and table-value user-defined functions

Overview
A portion of Chapter 21 dealt with the concept of managed code. Chapter 21 defined managed
code as code that is executed by the CLR rather than the operating system. Any managed code
that runs within an instance of SQL Server is a CLR routine. CLR routines contain what is called a
T-SQL declaration, which is equivalent to a normal T-SQL statement, and just like an assembly,
CLR routines are mapped to publicly shared class method.

A routine is compiled into an assembly (which you learned about in the last chapter). In its simplest
terms, assemblies contain classes, which contain methods. In other words, an assembly is made up
of a class with each class containing one or more methods. The following example illustrates the
basic construct of a CLR routine:

30_597922 ch22.qxp 12/3/05 12:29 AM Page 417

Public Class classname
<Microsoft.SqlServer.Server.SqlFunction(DataAccess:=DataAccessKind.Read)>
Public Shared Function FunctionName(arguments) As Integer

End Function
End Class

Data Access
Data access in a routine is accomplished by using the SqlClient of ADO.NET, sometimes referred to as
the Data Access Provider for SQL Server. Routines can access data from either the instance of SQL Server
for which it is running, and they can also access data from other instances of SQL Server, depending on
the user context.

New to SQL Server 2005 is a connection string keyword called context connection. You have seen
this connection string used throughout a good number of examples in Chapter 21 and will see it more
in this chapter. This connection string cannot be used with other connection strings. It takes the value
true or false, and signifies that an in-process connection is or is not made to the database. The default
is false.

Namespace Requirements
The following namespaces are required when building and compiling CLR routines. You also saw these
in Chapter 21’s discussion of assemblies, but they are listed here as a review:

❑ Microsoft.SqlServer.Server: This namespace is new to the .NET Framework 2.0.

❑ System.Data: Contains all of the classes the make up the ADO.NET architecture and is primar-
ily responsible for the data access within managed applications.

❑ System.Data.Sql: This namespace is new to the .NET Framework 2.0.

❑ System.Data.SqlTypes: Provides the classes that support the native data types with SQL
Server 2005.

❑ System.Data.SqlClient: The data provider for SQL Server. It allows applications to be able
to access SQL Server 2005 databases, as well as SQL Server 7.0 and SQL Server 2000.

Before the examples begin, you need to understand the topic of data access as it pertains to CLR
database objects. The following sections discuss the main in-process extensions of ADO.NET.

SqlContext Object
The SqlContext object is a new class in 2.0 of the .NET Framework and is part of the Microsoft
.SqlServer.Server namespace. The SqlContext object provides the environment in which the
assembly code is activated and running. The managed code is executed from the server thus running as
part of the user connection, or within the user context. At this point the SqlPipe object is accessible.

418

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 418

SqlPipe Class
The SqlPipe class is a new addition to version 2.0 of the .NET Framework as part of the SqlContext
object. In SQL Server, results from a query execution are sent back to the client via the caller’s pipe. This
is really no different for CLR database objects in that results are sent back to the client via the methods
associated with the SqlPipe object.

The SqlPipe class has two methods associated with it: the Send method and the ExecuteAndSend
method.

Send
The Send method sends data directly to the client. It can send a string type to the client, a single record
back to the client using SqlDataRecord, or multiple records using the SqlDataReader.

For example, you use the Send method of the SqlPiple class to send query results from a
SqlDataReader back to client:

Dim cmd As SqlCommand = New SqlCommand(“SELECT Name, FROM Production.Product” & _
“ProductID = “ & Convert.ToString(ProductID), conn)
Dim rdr As SqlDataReader = cmd.ExecuteReader
SqlContext.Pipe.Send(rdr)

ExecuteAndSend
The ExecuteAndSend method is used to execute a command from the SqlCommand object with the
results being sent straight back to the caller.

In the following example, you return the results by using the ExecuteAndSend method of the SqlPipe
class, which passes the SqlCommand object as a parameter. The SqlCommand object contains the query,
which is sent to the server for execution by the ExecuteAndSend method:

Dim sqlComm As SqlCommand = conn.CreateCommand()
Dim sqlP As SqlPipe = SqlContext.Pipe
sqlComm.CommandText = “SELECT Name, FROM Production.Product”
sqlP.ExecuteAndSend(sqlComm)

SqlDataRecord Class
The SqlDataRecord object, as briefly described previously, allows a single row of data to be sent back
to the caller.

The following code snippet shows the general syntax of the SqlDataRecord class:

Dim rec As SqlDataRecord

Examples later in this chapter illustrate how the SqlDataRecord class is used.

419

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 419

User-Defined Procedures
You saw quite a few examples using CLR stored procedures in the previous chapter, so only a couple of
examples are shown here. In Chapter 21 the results were typically returned via the SqlPipe object, but
in the following examples, the results are returned differently. Output parameters typically should be
returned as an output parameter, using a by-reference variable, or using the SqlDataRecord object.

The SqlDataRecord, as explained previously, allows the return of a single row of data. While that may
seem a bit limited, this method provides the capability to manipulate the data and the way the results
are returned to the client prior to returning the data to the client.

For the examples in this chapter, create a directory called Chapter22 as a subdirectory to the C:\Wrox
directory as you have done with previous chapters.

ByRef Output Parameter
You can pass arguments into procedures in Visual Basic by value (ByVal) or by reference (ByRef). By refer-
ence means that that the value of the argument passed in to the procedure can be changed within the
procedure and returned to the process that called the procedure. The process does not change for CLR
routines.

For this example, the results are returned via an output parameter on the stored procedure call via a
ByRef variable in the assembly method. Open a text editor, type in the following code, and save it as
C:\Wrox\Chapter22\GetProductInfoParam.vb:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class GetProductsProc
Public Shared Sub GetProducts(ByVal ProductID As Integer, ByRef ProdName As

String)
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)
conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT Name, FROM “ & _

“Production.Product WHERE ProductID = “ & Convert.ToString(ProductID), conn)
Dim rdr As SqlDataReader = cmd.ExecuteReader
SqlContext.Pipe.Send(rdr)

If rdr.HasRows = True Then
rdr.Read()
ProdName = rdr.Item(0)

End If

rdr.Close()
conn.Close

End Sub
End Class

420

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 420

This code should look very similar to the code from the last chapter. The difference this time is that there
are two arguments being passed to the sub. One is ByVal, which is the value of the ProductID; and the
other is ByRef, the variable that will be filled with the data being returned.

Next, compile the assembly. Open a command prompt, navigate to the appropriate .NET version directory,
and enter the following:

Vbc /target:library c:\wrox\chapter22\GetProductInfoParam.vb

Once the assembly is built, open a query window in SQL Server Management Studio and execute the
following (making sure that the AdventureWorks database is selected), which creates the reference in
SQL Server to the physical assembly:

CREATE ASSEMBLY GetProductOutParam
FROM ‘c:\wrox\chapter22\GetProductInfoParam.dll’
WITH PERMISSION_SET = SAFE
GO

The next step is to create the stored procedure. This should seem very familiar since this is a lot like the
examples in the last chapter. The difference is that, as illustrated in the following code, the creation of the
stored procedure now takes an output variable into which the return value is passed:

CREATE PROCEDURE GetProductInfoOutput
@ProductID int,
@ProductName nvarchar(50) OUTPUT
AS
EXTERNAL NAME GetProductOutParam.GetProductsProc.GetProducts
GO

To be able to view the returned value, you declare a variable, as shown in the following code, which
is passed to the stored procedure and filled with the returned data from the assembly. The PRINT
statement then prints the returned value to the query window:

DECLARE @ProductName nvarchar(50)
EXEC GetProductInfoOutput 942, @ProductName
PRINT @ProductName
GO

After executing the code, you should see results similar to those shown in Figure 22-1.

Figure 22-1

This example returned a single value via the ByRef parameter, but if needed to you could return results
using multiple ByRef values. This works if you’re returning a small handful of values. The more appro-
priate method, especially if you need to return a large number of columns, is the SqlDataRecord object,
described in the next section.

421

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 421

Returning Results via SqlDataRecord
The SqlDataRecord object is very handy when your goal is to customize the way the results are
returned to the client. This object, together with the SqlMetaData object, returns a tabular, single row of
data in the order you specify. The SqlMetaData object is basically an array of the columns that are then
added to the SqlDataRecord object. The following example uses the SqlMetaData object to build the
array of columns with the associated data, which is then passed to the SqlDataRecord object for the
building of the single row.

For this example, create a new document and type in the following code, saving it as
GetProductInfoSDR.vb:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient
Imports System.IO

Public Class GetProductsProc
Public Shared Sub GetProducts(ByVal ProductID As Integer)
Dim conn As SqlConnection = New SqlConnection(“context connection=true”)
conn.open()
Dim cmd As SqlCommand = New SqlCommand(“Select Name, ProductNumber, Color,

Class FROM Production.Product WHERE ProductID = “ & ProductID, conn)
Dim rdr As SqlDataReader = cmd.ExecuteReader
SqlContext.Pipe.Send(rdr)

If rdr.HasRows = True Then
rdr.Read()
Dim md As SqlMetaData = New SqlMetaData(“Name”, SqlDbType.NVarChar, 50)
md = New SqlMetaData(“ProductNumber”, SqlDbType.NVarChar, 25)
md = New SqlMetaData(“Color”, SqlDbType.NVarChar, 15)
md = New SqlMetaData(“Class”, SqlDbType.NVarChar, 2)

Dim rec As SqlDataRecord = New SqlDataRecord(md)

rec.SetSqlString(0, rdr.Item(0))
rec.SetSqlString(1, rdr.Item(1))
rec.SetSqlString(2, rdr.Item(2))
rec.SetSqlString(3, rdr.Item(3))

‘send it
SqlContext.Pipe.Send(rec)

End If

rdr.Close()
conn.Close()

End Sub
End Class

422

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 422

Using the SqlDataRecord requires a few steps as shown in the code. First, like all the other examples,
the data is returned via the SqlDataReader. However, what follows after that is somewhat tricky. First,
you create the SqlMetaData object so that the desired number of columns can be created, passing the
name of the desired column and corresponding data type.

Next, you create the SqlDataRecord, passing the array of columns in the SqlMetaData object. This
tells the SqlDataRecord how many columns the single row needs to contain. The final step is to fill
the columns with the desired data. In this example, all of the columns were of String type, so the
SetSqlString property was used to set the values for each of the NVarChar columns.

Once the row is populated, it can be returned to the client via the Pipe object.

In order to test this example, compile the assembly prior to creating the assembly reference in SQL
Server. The following code creates the assembly reference for the recently created assembly:

CREATE ASSEMBLY GetProductSDR
FROM ‘c:\wrox\chapter22\GetProductInfoSDR.dll’
WITH PERMISSION_SET = SAFE
GO

Next create the procedure:

CREATE PROCEDURE GetProductInfoSDR
@ProductID int
AS
EXTERNAL NAME GetProductSDR.GetProductsProc.GetProducts
GO

Finally, call the stored procedure. You can pick any ProductID to try it out. This example uses ProductID 942:

EXEC GetProductInfoSDR 942
GO

Figure 22-2 shows the results returned from the stored procedure call.

Figure 22-2

Once you have done this a few times, you begin to grasp the potential that this functionality provides,
and really, this is just scratching the surface.

User-Defined Triggers
A trigger is a type of stored procedure that automatically fires when certain events happen, such as
inserting, updating, or deleting data in a table. T-SQL triggers have the unique capability to determine
the specific column from a table or view that fired the trigger. In addition, triggers have access to SQL

423

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 423

Server tables (specifically the INSERTED and DELETED tables) not accessible to other SQL Server objects
such as normal stored procedures.

CLR triggers are in many ways similar to T-SQL triggers with a few differences. A CLR trigger can refer-
ence the data in the INSERTED and DELETED tables just like normal T-SQL triggers, but their method of
determining which column fired the trigger is done as the result of an UPDATE operation. CLR triggers
also have the capability to obtain information about database objects that were immediately affected by
the result of a DDL statement.

The following illustrates the syntax for creating the trigger in SQL Server 2005:

CREATE TRIGGER trigger_name
ON table_name
FOR operation
AS
EXTERNAL NAME external_name

trigger_name is the name of the trigger. table_name is the name of table or view that the trigger is
executed against. operation specifies the type of data modification statement that will fire the trigger.
The available values for this are INSERT, UPDATE, and DELETE. external_name is the name of the
assembly, and associated method, that will be bound to the trigger. The method cannot accept arguments
and it cannot return a void.

How does the trigger know what type of action to perform? These are inherent capabilities provided by
the SQlTriggerContext class, which is discussed next.

SqlTriggerContext Class
The SqlTriggerContext class, also new to version 2.0 of the .NET Framework, provides information
about the corresponding trigger such as the type of trigger action that was fired (insert, update, or
delete) and what modifications or changes were made to the corresponding table.

This class is not publicly available and can only be accessed from within the firing CLR trigger. It also can
only be accessed from calling SqlContext.TriggerContext once inside the body of the CLR trigger.

In the previous trigger example, the type of trigger action was obtained from the SqlContext by calling
the TriggerContext method, as follows:

Dim triggContext As SqlTriggerContext = SqlContext.TriggerContext
Select Case triggContext.TriggerAction
Case TriggerAction.Insert

End Select

Once you have the SqlTriggerContext you can easily determine the action type that resulted in the
firing of the trigger. The TriggerAction property of the SqlTriggerContext provides this information.

The following sections demonstrate how to insert, update, and delete data using the SqlTriggerContext
class, beginning with INSERT.

424

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 424

INSERT
The example in this section demonstrates using a CLR trigger on an INSERT operation.

All of the trigger examples use three new tables that you will create shortly. The background behind
these examples utilizes the motorcycle industry and the sport of motocross. The first table is the
Manufacturer table, which holds all of the major motorcycle manufacturers that participate in the sport
of motocross. The second table is the Riders table, which holds the names of the riders for the team or
manufacturer for which they race. The third table is the WinBonus table. Each team pays the riders a
base salary, as well as a bonus for each win. The WinBonus table holds the bonus amount for each win,
per rider.

The following T-SQL creates the necessary tables and populates the Manufacturers table with the appro-
priate manufacturers:

CREATE TABLE [dbo].[Manufacturer](
[ManufacturerID] [int] IDENTITY(1,1) NOT NULL,
[ManufacturerName] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[ModifyDateTime] [datetime] NOT NULL CONSTRAINT [DF_Manufacturer_ModifyDateTime]

DEFAULT (getdate()),
CONSTRAINT [PK_Manufacturer] PRIMARY KEY CLUSTERED
(
[ManufacturerID] ASC

) ON [PRIMARY]
) ON [PRIMARY]

INSERT INTO Manufacturer (ManufacturerName) VALUES (‘Yamaha’)
GO
INSERT INTO Manufacturer (ManufacturerName) VALUES (‘Honda’)
GO
INSERT INTO Manufacturer (ManufacturerName) VALUES (‘Suzuki’)
GO
INSERT INTO Manufacturer (ManufacturerName) VALUES (‘Kawasaki’)
GO

CREATE TABLE [dbo].[Rider](
[RiderID] [int] IDENTITY(1,1) NOT NULL,
[ManufacturerID] INT NOT NULL,
[RiderName] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[ModifyDateTime] [datetime] NOT NULL CONSTRAINT [DF_Rider_ModifyDateTime]

DEFAULT (getdate()),
CONSTRAINT [PK_Rider] PRIMARY KEY CLUSTERED
(
[RiderID] ASC

) ON [PRIMARY]
) ON [PRIMARY]

ALTER TABLE [dbo].[Rider] WITH CHECK ADD CONSTRAINT
[FK_Manufacturer_Rider_ManufacturerID] FOREIGN KEY([ManufacturerID])
REFERENCES [dbo].[Manufacturer] ([ManufacturerID])
GO

CREATE TABLE [dbo].[WinBonus](
[WinBonusID] [int] IDENTITY(1,1) NOT NULL,

425

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 425

[ManufacturerID] INT NOT NULL,
[RiderID] INT NOT NULL,
[Amount] INT NOT NULL,
[ModifyDateTime] [datetime] NOT NULL CONSTRAINT [DF_WinBonus_ModifyDateTime]

DEFAULT (getdate()),
CONSTRAINT [PK_WinBonus] PRIMARY KEY CLUSTERED
(
[WinBonusID] ASC

) ON [PRIMARY]
) ON [PRIMARY]

Now that the infrastructure is in place, the first example inserts a record into the Riders table. When you
insert a record, the requirements state that you must also insert a corresponding record into the
WinBonus table for the given manufacturer and rider, along with the appropriate bonus amount.

The first step is to create the CLR trigger assembly. In a new document, enter the following code, saving
it as UpdateRiderInfo.vb:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient
Imports System.IO

Public Class UpdateRiderTrig
Public Shared Sub UpdateRider()

Dim triggContext As SqlTriggerContext = SqlContext.TriggerContext
Dim conn As SqlConnection = New SqlConnection(“context connection = true”)
conn.Open()
Dim ManufacturerID As Integer
Dim RiderID As Integer
Dim RiderName As String
Dim sqlComm As SqlCommand = conn.CreateCommand()
Dim sqlP As SqlPipe = SqlContext.Pipe
Dim rdr As SqlDataReader

Select Case triggContext.TriggerAction
Case TriggerAction.Insert
sqlComm.CommandText = “SELECT * from inserted”
rdr = sqlComm.ExecuteReader()
If rdr.HasRows = True Then
rdr.Read()
RiderID = rdr.Item(0)
ManufacturerID = rdr.Item(1)
RiderName = rdr.Item(2)
rdr.close()
Select Case ManufacturerID
Case 1 ‘Yamaha
sqlComm.CommandText = “INSERT INTO WinBonus (ManufacturerID, RiderID,

Amount) “ & VALUES (“ & ManufacturerID & “, “ & RiderID & “, 5000)”
Case 2 ‘Honda
sqlComm.CommandText = “INSERT INTO WinBonus (ManufacturerID, RiderID,

Amount) “ & “VALUES (“ & ManufacturerID & “, “ & RiderID & “, 4000)”

426

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 426

Case 3 ‘Suzuki
sqlComm.CommandText = “INSERT INTO WinBonus (ManufacturerID, RiderID,

Amount) “ & “VALUES (“ & ManufacturerID & “, “ & RiderID & “, 2000)”
Case 4 ‘Kawasaki

sqlComm.CommandText = “INSERT INTO WinBonus (ManufacturerID, RiderID,
Amount) “ & “VALUES (“ & ManufacturerID & “, “ & RiderID & “, 3000)”

End Select
sqlP.Send(sqlComm.CommandText)
sqlP.ExecuteAndSend(sqlComm)
sqlP.Send(“You inserted: “ & RiderName)

End If

Case TriggerAction.Update
‘We’ll get to this next...

Case TriggerAction.Delete
‘We’ll get to this next...

End Select

End Sub

End Class

Take a minute and look at the code. The first line in the routine creates the SqlTriggerContext class.
This is important because it tells the routine what type of operation was just performed. A connection is
then made, followed by a SELECT CASE statement, which identifies the value of SqlTriggerContext.
Once inside the appropriate action (in this case, an INSERT) the INSERTED table is then queried. The
INSERTED table holds the information about the new record just inserted into the Riders table. Based
on that information, the corresponding RiderName, RiderID, and ManufacturerID are obtained. The
ManufacturerID is then used to determine, in a SELECT CASE statement, the appropriate WinBonus
amount. Once that information is gathered, a new record is inserted into the WinBonus table.

You should also take note of two lines of code that return messages back to the client. This is for display
purposes only. The first returns the T-SQL INSERT statement, and the second returns a generic message
letting you know the operation was successful.

As usual, compile the assembly, and then create a SQL reference to it using the following code:

CREATE ASSEMBLY UpdateRiderInfoTrigg
FROM ‘c:\wrox\chapter22\UpdateRiderInfo.dll’
WITH PERMISSION_SET = SAFE
GO

Just like a normal T-SQL trigger, three types of triggers can be created based on the assembly. In this
example, an INSERT trigger is created on the Rider table using the following T-SQL code. The difference
is that an extra clause is added at the end, which references the CLR trigger assembly:

CREATE TRIGGER I_RiderInfo
ON Rider
FOR INSERT
AS
EXTERNAL NAME UpdateRiderInfoTrigg.UpdateRiderTrig.UpdateRider
GO

427

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 427

The final step is to add a record to the Rider table. In a query window, execute the following INSERT
statement on the Rider table:

INSERT INTO Rider (ManufacturerID, RiderName) VALUES (1, ‘Chad Reed’)
GO

When the statement executes successfully, you should see results in the result window that indicate
one row was successfully inserted into the Rider table and one row was successfully inserted into the
WinBonus table (see Figure 22-3). The extra comments, as explained earlier, are for display purposes.

Figure 22-3

For verification, Figure 22-4 shows the results of querying the Rider and WinBonus tables.

Figure 22-4

One of the things you might run into is the fact that a CLR trigger cannot stop an INSERT operation. For
example, the code inside the INSERT portion of the preceding code cannot prevent the INSERT into the
Rider table from taking place.

DELETE
The next example builds on the previous example, and takes into account a DELETE operation. When a
rider is deleted, the corresponding WinBonus data also needs to be removed. This example illustrates
how that is accomplished.

For the sake of extra data, add a second row:

INSERT INTO Rider (ManufacturerID, RiderName) VALUES (3, ‘Ricky Carmichael’)
GO

Since the same assembly is being used, the current trigger, assembly, and reference need to be deleted:

DROP TRIGGER I_RiderInfo
GO
DROP ASSEMBLY UpdateRiderInfoTrigg
GO

428

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 428

Modify the assembly code as follows, adding the DELETE portion of the routine:

Case TriggerAction.Update
‘We’ll get to this next...

Case TriggerAction.Delete
sqlComm.CommandText = “SELECT * from deleted”
rdr = sqlComm.ExecuteReader()
If rdr.HasRows = True Then
rdr.Read()
RiderID = rdr.Item(0)
ManufacturerID = rdr.Item(1)
RiderName = rdr.Item(2)
rdr.close()
sqlComm.CommandText = “DELETE FROM WinBonus WHERE RiderID = “ & RiderID
sqlP.Send(sqlComm.CommandText)
sqlP.ExecuteAndSend(sqlComm)
sqlP.Send(“The following Rider has been deleted: “ & RiderName)

Else
sqlP.Send(“There is no rider by that name.”)

End If
End Select

End Sub

End Class

Recompile the assembly, and run the following code to add back the reference and the INSERT trigger:

CREATE ASSEMBLY UpdateRiderInfoTrigg
FROM ‘c:\wrox\chapter22\UpdateRiderInfo.dll’
WITH PERMISSION_SET = SAFE
GO

CREATE TRIGGER I_RiderInfo
ON Rider
FOR INSERT
AS
EXTERNAL NAME UpdateRiderInfoTrigg.UpdateRiderTrig.UpdateRider
GO

Next, you need to add the DELETE trigger. Just like the INSERT trigger, the syntax is the same except for
the addition of the EXTERNAL NAME clause at the end, which references the external assembly:

CREATE TRIGGER D_RiderInfo
ON Rider
FOR DELETE
AS
EXTERNAL NAME UpdateRiderInfoTrigg.UpdateRiderTrig.UpdateRider
GO

If you query the Rider table, you should see two records. The WinBonus table should also have two
records. Run the following T-SQL to delete the first row, which should delete Chad Reed:

DELETE Rider WHERE RiderID = 1

429

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 429

Figure 22-5 shows what the results look like when the execution is finished. The first results indicate that
the row in the Rider table has been deleted, and the second results indicate that the WinBonus row has
been deleted.

Figure 22-5

A quick query of both Rider and WinBonus tables again shows that the desired rider and corresponding
WinBonus record have been deleted (see Figure 22-6).

Figure 22-6

Realistically you would have some foreign keys that exist among all three tables to prevent someone
deleting a Rider without first deleting the appropriate WinBonus rows.

UPDATE
The UPATE operation works the same way as INSERT and DELETE. In the next example, when a Rider
record is updated the corresponding WinBonus record needs to be updated as well. For example, if a rider
changes teams, the WinBonus for the new team most likely will not be the same as the previous team.

This example assumes that four riders exist in the Rider table. For simplicity’s sake, start with a clean
Rider table and insert four new records:

DELETE FROM RIDER
GO
INSERT INTO Rider (ManufacturerID, RiderName) VALUES (1, ‘Chad Reed’)
GO
INSERT INTO Rider (ManufacturerID, RiderName) VALUES (2, ‘Kevin Windham’)
GO
INSERT INTO Rider (ManufacturerID, RiderName) VALUES (3, ‘Ricky Carmichael’)
GO
INSERT INTO Rider (ManufacturerID, RiderName) VALUES (3, ‘James Stewart’)
GO

430

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 430

Now, for any of you that follow the sport of motocross, you know that James Stewart does not ride for
Suzuki. However, for this example, he does. Don’t worry, though; by the end of this example he will be
on the correct team.

The first step is to modify the assembly routine to add the UPDATE logic. Add the following code:

sqlP.Send(“You inserted: “ & RiderName)
End If

Case TriggerAction.Update
sqlComm.CommandText = “SELECT * from inserted”
rdr = sqlComm.ExecuteReader()
If rdr.HasRows = True Then
rdr.Read()
RiderID = rdr.Item(0)
ManufacturerID = rdr.Item(1)
RiderName = rdr.Item(2)
rdr.close()
Select Case ManufacturerID
Case 1 ‘Yamaha
sqlComm.CommandText = “UPDATE WinBonus SET ManufacturerID = “ &

ManufacturerID & “, Amount = 5000 WHERE RiderID = “ & RiderID
Case 2 ‘Honda
sqlComm.CommandText = “UPDATE WinBonus SET ManufacturerID = “ &

ManufacturerID & “, Amount = 4000 WHERE RiderID = “ & RiderID
Case 3 ‘Suzuki
sqlComm.CommandText = “UPDATE WinBonus SET ManufacturerID = “ &

ManufacturerID & “, Amount = 2000 WHERE RiderID = “ & RiderID
Case 4 ‘Kawasaki
sqlComm.CommandText = “UPDATE WinBonus SET ManufacturerID = “ &

ManufacturerID & “, Amount = 3000 WHERE RiderID = “ & RiderID
End Select
sqlP.Send(sqlComm.CommandText)
sqlP.ExecuteAndSend(sqlComm)
sqlP.Send(“Rider and Win Bonus Information has been updated for : “ &

RiderName)
End If

Case TriggerAction.Delete
sqlComm.CommandText = “SELECT * from deleted”

Upon examination, this code looks very similar to the INSERT code except that instead of inserting
records into the WinBonus table, the code is updating the necessary record based on the ManufacturerID
and RiderID.

Since the same assembly is being used, you need to delete the current trigger, assembly, and reference:

DROP TRIGGER I_RiderInfo
GO
DROP TRIGGER D_RiderInfo
GO
DROP ASSEMBLY UpdateRiderInfoTrigg
GO

431

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 431

Now put everything back. Again, be sure to recompile the assembly first:

CREATE ASSEMBLY UpdateRiderInfoTrigg
FROM ‘c:\wrox\chapter22\UpdateRiderInfo.dll’
WITH PERMISSION_SET = SAFE
GO
CREATE TRIGGER I_RiderInfo
ON Rider
FOR INSERT
AS
EXTERNAL NAME UpdateRiderInfoTrigg.UpdateRiderTrig.UpdateRider
GO
CREATE TRIGGER D_RiderInfo
ON Rider
FOR DELETE
AS
EXTERNAL NAME UpdateRiderInfoTrigg.UpdateRiderTrig.UpdateRider
GO

Next, create the UPDATE trigger:

CREATE TRIGGER U_RiderInfo
ON Rider
FOR UPDATE
AS
EXTERNAL NAME UpdateRiderInfoTrigg.UpdateRiderTrig.UpdateRider
GO

Before you test the UPDATE trigger, query the Rider and WinBonus tables to verify that the data is indeed
incorrect. James Stewart should have a ManufacturerID of 3 (Team Suzuki) and the goal is to change that
to his correct team, Team Kawasaki (ManufacturerID 4) so that the correct WinBonus is paid.

Figure 22-7 shows the “before” image.

Figure 22-7

Before executing the following T-SQL, make sure that the RiderID for James Stewart is correct — in this
example it is 5, but in your table it possibly could be 4:

UPDATE Rider SET ManufacturerID = 4 WHERE RiderID = 5
GO

432

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 432

Figure 22-8 shows the results of the UPDATE statement. As before, the first results illustrate that the
update to the Rider table was successful, and the second results show that the UPDATE to the WinBonus
table was successful.

Figure 22-8

For verification, re-query the Rider and WinBonus tables. Figure 22-9 shows the correct data after the
UPDATE statement execution.

Figure 22-9

In these examples, all the code for the INSERT, UPDATE, and DELETE operations were combined into a
single assembly and routine. There is nothing preventing you from separating out the logic into differ-
ent assemblies, or even separate routines in the same assembly. The purpose of these examples was to
illustrate the possibilities and capabilities that the integration of .NET Framework CLR provides in SQL
Server 2005 and CLR triggers.

That wasn’t so hard was it? Actually, think about it. In reality you wouldn’t use this to send a message
back saying, “Hey, you just updated this record,” but you would use it to perform tasks that the CLR is
good at. For example, since you have access to the INSERTED and UDPATED records, you could use a CLR
trigger to do data validation or data comparison work.

For ambitious readers, your homework assignment for this chapter is to modify the INSERT portion of
the CLR trigger to prevent multiple inserts of a Rider into the WinBonus table.

Scalar-Valued UDFs
Scalar-valued UDF’s were covered in Chapter 21, so you’ll only see a brief discussion and example here.
The purpose of scalar-valued functions is to return a single value such as an integer or Boolean (bit)
value. It can even return a single string value.

433

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 433

This example queries the Rider table for the rider name and returns it using a scalar-valued UDF.
First, enter the following code in a new text document and save it as C:\Wrox\Chapter22\
GetRiderBonusInfo.vb:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient
Imports System.IO

Public Class GetRiderFunc
<Microsoft.SqlServer.Server.SqlFunction(DataAccess:=DataAccessKind.Read)>
Public Shared Function GetRider(ByVal ManufacturerID As Integer) As Integer

Dim conn As SqlConnection = New SqlConnection(“context connection=True”)
conn.open()

Dim cmd As sqlcommand = New sqlcommand(“SELECT SUM(Amount) FROM Winbonus where
ManufacturerID = “ & Convert.ToString(ManufacturerID), conn)

Return CInt(cmd.ExecuteScalar())

Conn.close()

End Function

End Class

This code should look no different from that of Chapter 21. Because they can return only a single value,
UDFs are useful when needing to do computations such as a sum or count. This example sums the win
bonuses for a particular manufacturer, so a UDF is perfect for this type of computation.

As with the previous examples, create and compile the assembly reference:

CREATE ASSEMBLY RiderBonus
FROM ‘c:\wrox\chapter22\GetRiderBonusInfo.dll’
WITH PERMISSION_SET = SAFE
GO

The next step is to create the SQL Server function. This assembly takes a parameter and returns a value,
so the function needs to reflect that when it is created, as shown in the following code:

CREATE FUNCTION GetRiderBonus(@ManufacturerID int)
RETURNS INT
AS EXTERNAL NAME RiderBonus.GetRiderFunc.GetRider
GO

Execute the function to return the results and be sure to pass a value for the parameter that the assembly
expects. This example passes the value of ManufacturerID of 1:

SELECT dbo.GetRiderBonus(1)

Figure 22-10 shows the results of the function.

434

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 434

Figure 22-10

If you’re interested in seeing an example of a table-valued user-defined function, head to
www.wrox.com and find this book’s dedicated page.

The Easy Way
As promised, this section will show you how to create the CLR triggers and UDFs used in this chapter
and Chapter 21.

Start Visual Studio 2005 and create a new project. In the New Project dialog, expand either the Visual
Basic or Visual C# project type. Under each language node is a Database option. Click the Database
option for your preferred language. On the right side, under Templates, is displayed a list of database
project templates. Select SQL Server Project, give the project a name (as shown in Figure 22-11), and click
OK. After that, follow these steps:

Figure 22-11

1. Visual Studio needs to know which database you will be working with, so it opens a Database
Reference dialog for you to either pick an existing database reference or to create a new one. If you
have already created one, select it from the list. Otherwise, click the Add New Reference button,
which opens a dialog for you to enter the database connection information (see Figure 22-12).

435

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 435

Figure 22-12

2. After you have selected your database reference, an empty database project is created. At this
point you can select which type of CLR object you need to create. In the Solution Explorer for
your project, right-click the project name and select Add from the context menu. Underneath the
Add menu, select New Item. This opens the Add New Item dialog shown in Figure 22-13.

In this dialog you have the option of selecting which type of CLR object you wish to create, and
they are all here. As you can see in the figure, you can create a CLR Stored Procedure, CLR
User-Defined Function, CLR Trigger, and other CLR templates.

Figure 22-13

436

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 436

3. Select User-Defined Function and click OK. Visual Studio creates the User-Defined Function
with all of the necessary code, as shown in Figure 22-14. All that is left is to put your specific
code in where it says “Add your code here.”

Figure 22-14

4. Figure 22-15 shows what a Visual Studio–generated CLR Trigger looks like. You need to un-
remark the line directly above Public Shared Sub line and fill in the appropriate information.
For example, in the figure, the Target: attribute points to Table1. Unless you have a table
named Table1, this won’t work, so you need to replace that with the appropriate table, as well as
the appropriate event in the Event attribute and the Name attribute.

Figure 22-15

5. Remember all of that DOS prompt command code and T-SQL assembly code you had to do?
Well, you don’t need to do that here. Once you have saved and compiled the project successfully,
the only thing you need to do is select Deploy from the Build menu in Visual Studio, as shown in
Figure 22-16. This process creates the assembly DLL and creates the assembly in SQL Server. The
only thing you need to do is to issue the CREATE PROCEDURE or CREATE TRIGGER statement
depending on which type of CLR object you created.

437

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 437

Figure 22-16

Pretty simple and efficient. After you have used the database templates you will have a hard time going
back to the command prompt method.

Summary
This chapter focused on building different database objects using Common Language Runtime (CLR).
These objects compile into managed code, which is then used from within an instance of SQL Server.
CLR routines are managed code that runs from within an instance of Microsoft SQL Server.

There are a few different types of CLR routines such as user-defined procedures, user-defined triggers,
and user-defined functions (both scalar-valued and table-valued). CLR routines provide a powerful and
robust programming model that enables improved security and in some cases improved performance
over its T-SQL equivalent.

This chapter focused on the different types of CLR routines and table-valued versus scalar-valued
user-defined functions. This chapter also spent quite a bit of time discussing the different types of
user-defined triggers such as INSERT, UPDATE, and DELETE, and showed you how to implement them.

From a security perspective, CLR routines are no different than the examples you created in Chapter 21.
That is because when you create the assembly, just like you did in the last chapter, you have to specify
the permission set, which specifies the level of security and permissions given to the assembly.

438

Chapter 22

30_597922 ch22.qxp 12/3/05 12:29 AM Page 438

What about performance? Flip back to the summary section of Chapter 21 and re-read what is says
about using CLR assemblies in SQL Server. The same concept applies here. You would not create a CLR
trigger to do data reading and writing. But you could use it to add value to the existing T-SQL trigger
functionality.

The next chapter discusses ADO.NET 2.0 and some of the new features that have been added that make
working with data much more pleasant.

439

Creating .NET Routines

30_597922 ch22.qxp 12/3/05 12:29 AM Page 439

30_597922 ch22.qxp 12/3/05 12:29 AM Page 440

ADO.NET

If you were to count all the new features and enhancement made to ADO.NET 2.0, you would
need all your fingers and toes, and even with that you would run out of digits. There are a lot. So
many, in fact, that there are whole books dedicated to the topic.

A lot of the new ADO.NET 2.0 features require SQL Server 2005 to be able to take advantage of the
new SQL Server 2005 features and enhancements. An example of this is support for the new SQL
Server 2005 xml data type, which is provided by the new classes in the System.Data.SqlTypes
namespace. Another example is the ability to have multiple result sets active on a single connection,
known as MARS.

This chapter highlights and explains these and other new features and enhancements added to
ADO.NET 2.0 and provides some examples of how they are used and what benefit they can provide
to your application and environment. Specifically, this chapter covers the following topics:

❑ Dealing with the xml data type at the client

❑ Introduction to asynchronous operations

❑ Introduction to Multiple Active Result Sets (MARS)

❑ Using query notifications within your application

xml data type
The vast majority of this book has been dedicated to the new SQL Server 2005 xml data type and
its related technologies. This new data type is not an afterthought or second-rate data type either;
it is a first-rate data type that allows the storage, querying, and modification of XML documents
and fragments. With its related methods, the xml data type integrates cleanly and efficiently into
the realm of SQL Server.

31_597922 ch23.qxp 12/3/05 12:30 AM Page 441

This section discusses the new and enhanced functionality of ADO.NET 2.0 for the xml data type. For
the examples in this chapter, you’ll use a new Visual Studio 2005 project. Open Visual Studio 2005 and
create a new Windows Application. You can give the project name any name that is meaningful to you.

Once the project is created, add a button and two text boxes onto Form1. Set the properties of each control
as follows:

Control Property Value

Form1 FormBorderStyle FixedSingle

Size 513, 241

StartPosition CenterScreen

Text Chapter23

Button1 Location 12, 12

Size 75, 34

Text XML DT

TextBox1 Name txtResults

Location 12, 52

Multiline True

ScrollBars Vertical

Size 287, 77

TextBox2 Name txtResults2

Location 12, 135

Multiline True

ScrollBars Vertical

Size 287, 77

Now add code behind the form. First, add the following Imports statements to the declarations section:

Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports System.Data.Sql
Imports Microsoft.SqlServer.Server

Next, double-click the button on the form design to bring up the code for the button. Add the following
code in the Click event of the button:

Dim ConnectString As String

ConnectString = “Persist Security Info=False;Server=(local);” & _

442

Chapter 23

31_597922 ch23.qxp 12/3/05 12:30 AM Page 442

“database=AdventureWorks;Integrated Security=SSPI “

Dim conn As SqlConnection = New SqlConnection(ConnectString)
Dim cmd As SqlCommand = New SqlCommand

Try
conn.Open()

cmd.Connection = conn
cmd.CommandType = CommandType.Text
cmd.CommandText = “SELECT Name, Instructions FROM Production.ProductModel “ & _
“WHERE ProductModelID = 7”

Dim rdr As SqlDataReader = cmd.ExecuteReader

rdr.Read()
Me.txtResults.Text = rdr.GetDataTypeName(1) & “ - “ & rdr(1)

rdr.Close()
conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Before you run the application, take a look at what the code is doing. Like most of the examples, a
connection to the database is established and then a command is executed against the database, in this
case, selecting the Name and Instructions columns from the Production.ProductModel table. The Name
column is an nvarchar data type, but the Instructions column is the new xml data type.

This example returns a specific row in which there is an XML document in the Instructions column. When
you use the SqlDataReader class, the XML is returned as a string even though the GetDataTypeName
property of the SqlDataReader says that it is an xml data type.

Figure 23-1 shows the results of the execution of the code. The first part before the dash (-) is the column
data type.

Figure 23-1

443

ADO.NET

31_597922 ch23.qxp 12/3/05 12:30 AM Page 443

To return the value of a specified column as XML, you need to use the GetSqlXml method of the
SqlDataReader. This method is new to version 2.0 of the .NET Framework and resides in the System
.Data.SqlClient namespace (System.data.dll). The trick is that no conversions are performed, so
the returned data must already be an XML value.

To return the data as XML, modify the code behind the button as follows:

Dim ConnectString As String

ConnectString = “Persist Security Info=False;Server=(local);” & _
“database=AdventureWorks;Integrated Security=SSPI “

Dim conn As SqlConnection = New SqlConnection(ConnectString)
Dim cmd As SqlCommand = New SqlCommand

Try
conn.Open()

cmd.Connection = conn
cmd.CommandType = CommandType.Text
cmd.CommandText = “SELECT Name, Instructions FROM Production.ProductModel “ & _
“WHERE ProductModelID = 7”

Dim rdr As SqlDataReader = cmd.ExecuteReader

rdr.Read()
Me.txtResults.Text = rdr.GetDataTypeName(1) & “ - “ & rdr(1)

Dim sqlx As SqlXml = rdr.GetSqlXml(1)
Dim xr As XmlReader = sqlx.CreateReader
xr.Read()
Me.txtResults2.Text = xr.ReadOuterXml

rdr.Close()
conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

In your declarations section of the form, add the following reference:

IMPORTS System.Xml

The example still returns the column as a string using the SqlDataReader and populates the first text
box as it did before. It then uses the GetSqlXml method of the SqlDataReader to get the value as XML,
which is then handed over to the SqlXml class for storage. The SqlXml class at this point contains the
XML data retrieved from the server, and an XmlReader is created to read the XML data.

From there, the XML is read from the SqlXml class using the ReadOuterXML method of the XmlReader
class. The results of that read are shown in Figure 23-2.

444

Chapter 23

31_597922 ch23.qxp 12/3/05 12:30 AM Page 444

Figure 23-2

The other option is to use the ExecuteXmlReader method of the SqlCommand object. The caveat to
using this method is that it can only be used to return a single row, single column XML result set. If your
query returns multiple rows or columns, only the value of the first row is read, the rest is ignored, or
basically thrown away. The upside, though, is that it is a quick way to return XML.

The following example illustrates the use of the ExecuteXmlReader method. Modify the code behind
the button as follows:

Dim ConnectString As String

ConnectString = “Persist Security Info=False;Server=(local);” & _
“database=AdventureWorks;Integrated Security=SSPI “

Dim conn As SqlConnection = New SqlConnection(ConnectString)
Dim cmd As SqlCommand = New SqlCommand

Try
conn.Open()

cmd.Connection = conn
cmd.CommandType = CommandType.Text
cmd.CommandText = “SELECT Instructions FROM Production.ProductModel “ & _
“WHERE ProductModelID = 7”

Dim xmlr As XmlReader = cmd.ExecuteXmlReader

xmlr.Read()
Me.txtResults.Text = xmlr.ReadOuterXml

xmlr.Close()
conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

This code should be fairly straightforward. The ExecuteXmlReader method of the SqlCommand object is
used to build and return an XmlReader object. The ReadOuterXml method is then used to read the con-
tents of the XML, including the nodes and all of the children. Figure 23-3 shows the results of the query.

445

ADO.NET

31_597922 ch23.qxp 12/3/05 12:30 AM Page 445

Figure 23-3

Version 2.0 of the .NET Framework has gone a long way to support the xml data type and it shows with
all of the new classes that are included, such as the SqlXml class, which contains an instance of an
XmlReader and contains XML data retrieved from SQL Server.

The next section introduces you to asynchronous operations.

Asynchronous Operations
Prior to ADO.NET 2.0, when a command was executed the application could not continue until the
return of the command was complete. ADO.NET 2.0 solves that by allowing asynchronous execution,
meaning that a command can be executed and yet the application can still continue processing other
code. The key to this is the Async=True keywords in the connection string, which tell the connection to
allow asynchronous command executions.

For this example, in the project you created earlier in the chapter, set the Visible properties of the two
text boxes to False and then add a second button and two list boxes to the form with the following
properties.

Control Property Value

Button2 Location 93, 12

Size 75, 34

Text Async Conns

ListBox2 Location 12, 52

Size 130, 160

ListBox3 Location 149, 52

Size 130, 160

446

Chapter 23

31_597922 ch23.qxp 12/3/05 12:30 AM Page 446

Next, add the following code behind Button2:

Dim ConnectString As String

ConnectString = “Persist Security Info=False;Server=(local); “ & _
“database=AdventureWorks;Integrated Security=SSPI;async=true”

Dim conn1 As SqlConnection = New SqlConnection(ConnectString)
Dim conn2 As SqlConnection = New SqlConnection(ConnectString)

Try
conn1.Open()

Dim cmd1 As SqlCommand = New SqlCommand(“SELECT Name, ProductNumber “ & _
“FROM Production.Product”, conn1)
cmd1.CommandType = CommandType.Text
Dim Async1 As IAsyncResult = cmd1.BeginExecuteReader

conn2.Open()

Dim cmd2 As SqlCommand = New SqlCommand(“SELECT ProductDescriptionID, “ & _
“ Description FROM Production.ProductDescription”, conn2)
cmd2.CommandType = CommandType.Text
Dim Async2 As IAsyncResult = cmd2.BeginExecuteReader()

Dim rdr1 As SqlDataReader = cmd1.EndExecuteReader(Async1)
Dim rdr2 As SqlDataReader = cmd2.EndExecuteReader(Async2)

Do While rdr1.Read()
Me.ListBox2.Items.Add(rdr1.Item(0) & “ “ & rdr1.Item(1))

Loop

Do While rdr2.Read()
Me.ListBox3.Items.Add(rdr2.Item(0) & “ “ & rdr2.Item(1))

Loop

rdr1.Close()
rdr2.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

Finally
conn1.Close()
conn1.Dispose()
conn2.Close()
conn2.Dispose()

End Try

In this example, two connections are made to the database using the same connection. However, two
separate commands are created, each querying different tables and returning different data. The Begin
method returns an IAsyncResult reference, which tracks the state of the operation. This is also done for
the second command. You must call the EndExecuteReader method to complete the execution of the
operation. The results are then returned to the corresponding SqlDataReader.

447

ADO.NET

31_597922 ch23.qxp 12/3/05 12:30 AM Page 447

Figure 23-4 shows the results of the query. The Production.Product query (the ListBox on the left) returns
504 rows and the Production.ProductDescription query (the ListBox on the right) returns 762 rows.
When the query is run, both list boxes populate simultaneously.

Figure 23-4

To further test this, replace the second command with the execution of a stored procedure instead of in-line
T-SQL, as follows:

Dim cmd2 As SqlCommand = New SqlCommand(“GetProductDescription”, conn2)
Cmd2.CommandType = CommandType.StoredProcedure

Obviously, you need to create the stored procedure, but that is easy enough. Create a new stored proce-
dure in the AdventureWorks database with the same T-SQL in the previous example.

There are corresponding methods that help with returning XML data: BeginExecuteXmlReader and
EndExecuteXmlReader. The BeginExecuteXMLReader object initiates the asynchronous execution of a
T-SQL or stored procedure, which returns the results as an XmlReader object. The EndExecuteXmlReader
method finishes the execution and returns the requested XML.

The following code illustrates a simple example of how this is done:

Dim cmd1 As SqlCommand = New SqlCommand(“SELECT Name, Instructions “ & _
“FROM Production.ProductModel FOR XML AUTO, XMLData”, conn1)
cmd1.CommandType = CommandType.Text
Dim Async1 As IAsyncResult = cmd1.BeginExecuteXmlReader

Dim xr As XmlReader = cmd1.EndExecuteXmlReader(Async1)

In this example, the BeginExecuteXmlReader method of the SqlCommand class initiates the asyn-
chronous execution of the T-SQL statement. Those results are returned as an XmlReader object. The
EncExecuteXmlReader method is then called to finish the asynchronous execution and return the
results as XML.

Your homework assignment for this chapter is to modify the first example in this section to go against
two separate databases.

448

Chapter 23

31_597922 ch23.qxp 12/3/05 12:30 AM Page 448

Multiple Active Result Sets
Users of current and versions of ADO.NET and SQL Server are very familiar with this limitation and the
“existing DataReader” message shown in Figure 23-5.

Figure 23-5

The workaround for this problem was to create a whole new connection to the database. It wasn’t the
best solution, but it worked, and every programmer has either done it or knows someone who has.

New to SQL Server 2005 and ADO.NET 2.0 is the concept of Multiple Active Result Sets (MARS): the
ability to have multiple result sets active on the same connection. MARS allow each connection to return
results to individual corresponding SqlDataReader objects. Those SqlDataReader objects can work
independently of the other SqlDataReaders or work together with the other SqlDataReaders. The
magic word to active MARS in your application is to add MultipleActiveResultSets=true to your
connection string. The following example illustrates how to implement MARS with SQL Server 2005 and
Visual Studio 2005.

To begin, add one more button (Button4) to the form. Set its Location property to 305, 12. Set its Size
property to 75, 34. Finally, set its Text property to MARS.

Next, add the following code behind Button4:

Dim ConnectString As String

ConnectString = “Data Source=(local);Initial Catalog=AdventureWorks;Integrated
Security=SSPI;MultipleActiveResultSets=true;”

Dim conn As SqlConnection = New SqlConnection(ConnectString)
Dim cmd As SqlCommand = New SqlCommand
Dim cmd2 As SqlCommand = New SqlCommand

Dim ProductModelID As Integer

Try
conn.Open()

cmd.Connection = conn
cmd.CommandType = CommandType.Text
cmd.CommandText = “SELECT ProductModelID, Name FROM Production.ProductModel” & _
“ ORDER BY ProductModelID”
Dim rdr As SqlDataReader = cmd.ExecuteReader

cmd2.Connection = conn

449

ADO.NET

31_597922 ch23.qxp 12/3/05 12:30 AM Page 449

cmd2.CommandType = CommandType.Text

Do While rdr.Read
ProductModelID = rdr.Item(0)
Me.ListBox1.Items.Add(rdr.Item(1))
cmd2.CommandText = “select Name, ProductNumber from production.product” & _
“ WHERE ProductModelID = “ & ProductModelID
Dim rdr2 As SqlDataReader = cmd2.ExecuteReader
Do While rdr2.Read
Me.ListBox1.Items.Add(“ “ & rdr2.Item(0))

Loop
rdr2.Close()

Loop

rdr.Close()
conn.Close()

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

As mentioned earlier the key is to add MultipleActiveResultSets=true to your connection string. As
in many chapters, the example uses a normal connection string, but to activate MARS in the application
the MultipleActiveResultSets keyword is used with a value of True passed to it.

A connection is then made to the database and two SqlCommand objects are created using the same
connection to the database. The first SqlCommand queries the Production.ProductModel table and then
loops through the results. For each record found in the Production.ProductModel table, the second
SqlCommand queries the Production.Product table for the given ProductModelID. All of this from the
same connection on two different SqlCommands and SqlDataReaders.

Figure 23-6 shows the results as they are written to the list box.

Figure 23-6

In the previous example, you used two T-SQL statements to demonstrate this functionality, but in fact
you are not limited to just in-line T-SQL. The first command can use in-line T-SQL while the second
command can use a stored procedure. The point is that regardless of the type of execution, multiple
results can be returned via the same connection. It is even possible for each command to have more than
one statement associated with it, returning multiple result sets per command.

450

Chapter 23

31_597922 ch23.qxp 12/3/05 12:30 AM Page 450

Query Notifications
The concept of query notification, in its simplest terms, means that you can query a table and then be
notified of any changes to that table. For example, you might have a table that is frequently updated and
you would like other users of the application to see these changes without having to manually re-query
to see if there are any changes to the underlying table. With query notifications, this is now possible.

Query notifications work in conjunction with the Service Broker to store and route the messages. Working
with Service Broker, messages are stored and then sent to the caller informing them of any changes.

This example requires another button, called Button5. Yes, that’s a lot of buttons but this way you won’t
have to modify your code from earlier examples and can use them for future reference. Set Button5’s
Location property to 420, 12; set its Size property to 75, 34; and set its Text property to
Not. Service.

The first step is to create a queue for the service to use. The purpose of the queue is to store messages
sent by the Service Broker. The Service Broker places the messages in the queue for the appropriate
service. Open a query window in SQL Server Management Studio and execute the following T-SQL
(which also creates a queue for this example):

CREATE QUEUE ProductNotQue
GO

The next step is to create a Service Broker service. While this chapter does not go into the fine details of
the Service Broker service, in simple terms the Service Broker service uses the name of the service to
deliver messages to the appropriate queue in the database. The following example creates a service
based on the queue you just created:

CREATE SERVICE ProductNotService
ON QUEUE ProductNotQue
([http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification])
GO

The URL portion of the CREATE SERVICE statement specifies the contract. A contract specifies the mes-
sage types used by an application to complete a specific task. It also defines an agreement between two
services regarding the type of message used to complete a specific task. In the example, the contract
used states that all messages of the QueryNotification be sent by the initiator of the conversation
between the two services.

The next step is to create a ROUTE, which determines the routing of the message:

CREATE ROUTE ProductRoute
WITH SERVICE_NAME = ‘ProductNotService’,
ADDRESS = ‘local’
GO

Now that the framework is in place, type the following code in the click event of Button5:

Dim ConnectString As String

ConnectString = “Persist Security Info=False;Server=(local);” & _

451

ADO.NET

31_597922 ch23.qxp 12/3/05 12:30 AM Page 451

“Database=AdventureWorks;Integrated Security=SSPI;”

Dim conn As SqlConnection = New SqlConnection(ConnectString)

Try
conn.Open()

Dim cmd As SqlCommand = New SqlCommand(“SELECT Name ProductNumber, Color,” & _
“ Class, Style FROM Production.Product WHERE ProductModelID = 15”, conn)
Dim sqlnot As SqlNotificationRequest = New SqlNotificationRequest
sqlnot.UserData = Guid.NewGuid.ToString

sqlnot.Options =
“http://localhost/sql/MSSQLSERVER/AdventureWorks/ProductNotService”
sqlnot.Timeout = 0

cmd.Notification = sqlnot

Dim rdr As SqlDataReader = cmd.ExecuteReader

‘Do something with the results
Me.txtResults.Text = “SUCCESS!”

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

Finally
conn.Close()

End Try

As in all the other examples, this block of code starts by establishing a connection and using the
SqlCommand object to execute some T-SQL. However, the difference here is that before the command is
executed and returned to a SqlDataReader, a SqlNotificationRequest object is created with some
properties set. The Notification method is then set on the command, which binds the
SqlNotificationRequest object to the command.

All of this tells the command when it is executed that there could be changes made to the underlying
data source and to be listening for those changes.

Just as a note, the other way to bind the SqlNotificationRequest object to the command is as follows:

Dim NotService As String = “ProductNotService”
cmd.Notification = New SqlNotificationRequest(Guild.NewGuid.ToString(),NotService,
0)

Once the query is made, the final step is to query the queue looking for messages that have been sent to
the queue by the service. If it finds any changes, appropriate action can be taken to accommodate the
changes. The following is a simple example that queries the queue looking for changes:

Dim cmd As SqlCommand = New SqlCommand(“WAITFOR (RECEIVE message_body FROM
ProductNotQue)”, conn)

cmd.CommandTimeout = 60000

452

Chapter 23

31_597922 ch23.qxp 12/3/05 12:30 AM Page 452

Dim rdr As SqlDataReader = cmd.ExecuteReader

‘Are there changes? Take care of them here...

Now that you have a process listening for changes you are free to go off and do other tasks.

Summary
This short chapter may not seem adequate to discuss all the new ADO.NET 2.0 technologies, and in real-
ity it isn’t compared to what is out there on this subject. However, neither this chapter nor this book is
focused on everything that is ADO.NET 2.0. This chapter introduced you to some of the new features
and enhancements made to ADO.NET, how they interact with SQL Server 2005 to accomplish things
people have been asking for, and to get excited about what is coming in the near future.

The chapter began by discussing some new features to ADO.NET 2.0 that support the xml data type,
such as the SqlXml class.

Asynchronous operations offer a several options that allow developers to take full advantage of back-
ground threads. This functionality is provided via the SqlCommand class and this chapter provided some
examples of how to utilize this functionality.

If you’re tired of receiving the extremely irritating “existing DataReader for existing connection” error
message, then reading the section on MARS was probably a welcome reprieve. Just the thought of being
able to open multiple DataReaders on a single connection should be exciting. This chapter covered
several ways to implement that technology.

Finally, query notifications can be an extremely beneficial addition to your application, but as you’ll find
out in the next chapter, there are several words of caution using this new technology. If you use them
correctly, query notifications can add tremendous value to your application. If you do not use them cor-
rectly, your users will not be happy. Chapter 24 discusses some of the best practices when implementing
much of the technology discussed in this chapter.

453

ADO.NET

31_597922 ch23.qxp 12/3/05 12:30 AM Page 453

31_597922 ch23.qxp 12/3/05 12:30 AM Page 454

ADO.NET 2.0 Guidelines
and Best Practices

Acting as a bookend to this part, this chapter discusses various ADO.NET guidelines and best
practices you should follow when using some of the ADO.NET 2.0 functionality discussed in the
Chapter 23.

The focus of this chapter deals specifically with some of the best practices for the following topics:

❑ xml data type

❑ Asynchronous operations

❑ MARS (Multiple Active Result Sets)

❑ Query Notification

xml data type
This section discusses a couple of items pertaining to dealing with the xml data type from the
client using ADO.NET 2.0. Both of these topics were discussed in the Chapter 23, but the following
sections highlight a couple of things that you should consider from a best practices perspective.

GetSqlXml
In the last chapter, you used the GetSqlXml method to return the value of an xml data type column
as an XML value. The following code, for example, uses the GetSqlXml method to return the XML
in the Instructions column from the Production.ProductModel table as an XML value:

Dim conn As New SqlConnection(“Data Source=localhost;Initial _
Catalog=AdventureWorks;Integrated Security=SSPI”)
Dim cmd As New SqlCommand()

32_597922 ch24.qxp 12/3/05 12:31 AM Page 455

cmd.Connection = conn
cmd.CommandType = CommandType.Text
cmd.CommandText = “SELECT Name, Instructions FROM Production.ProductModel” & _
“WHERE ProductModelID = 7”
Dim rdr As SqlDataReader = cmd.ExecuteReader

Dim dt As DataTable = rdr.GetSchemaTable

Do While rdr.Read()
Dim sqlx As SqlXml = rdr.GetSqlXml(1)
Dim xr As XmlReader = sqlx.CreateReader
xr.Read()

Loop

This code uses the GetSqlXml method of the SqlDataReader to read the XML data out of the Instructions
column, and then uses the XmlReader to read the content of the XML. There are a couple of things to
consider when you use ADO.NET with XML, and the following section discusses each of those items.

Non-XML Values
The first thing you need to know is that when you call the GetSqlXml method, there is no conversion to
XML when XML data is retrieved. The previous code example queries the Name and Instructions
columns and uses the numeric ordinal of 1 to specify which column to return to the GetSqlXml method.
The code executes successfully. However, if you were to change the column number to zero (0) as shown
in the following code sample, the GetSqlXml method cannot correctly convert the value of column 0 to
XML and returns the error shown in Figure 24-1:

Do While rdr.Read()
Dim sqlx As SqlXml = rdr.GetSqlXml(0)

Figure 24-1

If you want to return the value as a string, the solution is to use the process described in the Chapter 23
and return the value directly from the SqlDataReader class.

Using IsDBNull
You may not always know if there is a value to be returned to the GetSqlXml method, and if you try to
read the value without any sort of check first, you receive the error shown in Figure 24-2. The reason
you receive the error is that, like the previous example, no conversions are performed and therefore the
GetSqlXml method does not know how to deal with a null value. There must be a value and it must be
an XML value.

456

Chapter 24

32_597922 ch24.qxp 12/3/05 12:31 AM Page 456

Figure 24-2

If you are unsure if there is even a value to return, the solution is fairly simple. Use the IsDBNull
method to check for a missing or non-existent value. Modify the example code as follows in order to
solve this problem:

Do While rdr.Read()
If IsDBNull(rdr.GetSqlXml(1)) = True Then
MessageBox.Show(“empty xml value”)

Else
Dim sqlx As SqlXml = rdr.GetSqlXml(1)
Dim xr As XmlReader = sqlx.CreateReader
xr.Read()

End If
Loop

This call returns True if the column value is null and False if it is not null.

ExecuteXmlReader
The purpose of the ExecuteXmlReader method is to tell the connection which type of command will
be executed via the CommandText property, and then build an XmlReader object. The CommandText
property can either be an in-line T-SQL statement or a stored procedure.

The ExecuteXmlReader method has been around for a while, but with ADO.NET 2.0 and SQL Server
2005, it gets even better. With SQL Server 2005, you now have the ability to retrieve an XML result set
that contains a single row and single column.

So what happens if you your result set contains more than one row? The ExecuteXmlReader method
associates the XmlReader to the first row, returns its value, and then dumps the rest of the results. A
solution to this is to use MARS, which allows multiple commands using the same connection.

Pre-SQL Server 2005 versions do not have this capability, meaning that a connection that is actively
performing actions for an existing XmlReader object cannot service any other XmlReader objects until
the current XmlReader is closed. Again, MARS solves this problem, and is the subject of the next section.

MARS
Multiple Active Result Sets (MARS) allow you to run multiple commands simultaneously over the same
database connection. This can have a positive performance impact on your application, but it can also
have a negative performance impact if you are not careful.

457

ADO.NET 2.0 Guidelines and Best Practices

32_597922 ch24.qxp 12/3/05 12:31 AM Page 457

Typically, default result sets are better performing over server-side cursors (whether it is a T-SQL cursor
or an API cursor). Server-side cursors operate on complete sets of rows returned by the SELECT statement
and provide a way for applications to work with one row or a set of rows at a time.

The syntax for creating server-side cursors is as follows:

DECLARE cursorname CURSOR
FOR SELECT * FROM Production.Product
OPEN cursorname
FETCH NEXT FROM cursorname

The difference between default result sets and server-side cursors is that default result sets send only the
statement to be executed to the server one time. For server-side cursors, each time a FETCH statement is
executed the statement is sent to the server and then parsed and compiled. Not good for performance.

In a normal scenario, default result sets can be used when the data you are returning is relatively small.
The results can be then cached to memory and performance is improved.

The caveat here is that there are times when using MARS where a server-side cursor can be beneficial.
Server-side cursors can be beneficial when your result set might take some time to execute or is returning
a larger set of data and will take some time being read. You might also want to stick with a server-side
cursor if you need cursor scrolling or locking. Cursor scrolling means that you can scroll back and forth
between records, for example, move to the next record, or move to the previous record. Locking refers to
the ability to lock a record when it is being accessed.

Another benefit of using server-side cursors is that there are no orphaned results on the connection
between cursor operations. The upside to this is that you can then have multiple cursors running at the
same time.

Asynchronous Operations
The following sections outline things to consider when coding asynchronous operations.

Blocking
Blocking occurs when one process blocks access to an object from another process. For example, a
SqlDataReader could block the process of another SqlDataReader if they are trying to access the
same table.

In asynchronous operations, there are some areas or situations that you should to be aware of that could
cause blocking in certain scenarios. To begin with, there might be situations where the server just cannot
keep up with the number of reads() sent by the client. The server can’t send the results to the client
fast enough, yet the client keeps issuing reads(). This situation could cause a read block to occur and
prevent other processes from reading.

Second, a SQL statement that could take a bit of time to execute could cause some blocking problems,
whether it is a read or write process.

458

Chapter 24

32_597922 ch24.qxp 12/3/05 12:31 AM Page 458

Last, be careful how you use the Close() and Dispose() methods of the SqlDataReader class. If these
methods are called during an execution process, it could leave pending rows out there that haven’t been
sent to the client yet. This could potentially cause a blocking problem for other processes coming in to
access the same information.

Error Handling
There are two main places to be aware of where errors can occur during the execution of a command.
Before asynchronous operations, most errors occurred at the execution of the command typically from
an invalid connection or similar reason. The begin() method acts the same way and errors need to be
handled similarly here.

However, with asynchronous operations, an error can be generated anywhere between the begin() and
end() methods, and you won’t know until the end method is called. When the error occurs, it is trapped
and held on to but there is no way to return it to the calling client until the end method is called. For this
reason, it is equally important to perform error handling on both methods, begin() and end().

Canceling Commands
You should use the cancel() method of the command object to cancel any commands that have already
been executed. This makes for an efficient cleanup and frees up processing. Simply disposing of the
command without first canceling the command could have a negative effect on performance.

Query Notification
You have to admit that query notifications are cool. However, their coolness also allows them to be
abused to the point of application degradation. There are right and wrong times to implement query
notifications.

Query notifications are not meant as a catch-all for a high transaction, instant notification application. If
you’re thinking of using query notification with a high-level, on-demand application, think again. A
network is a touchy thing. Too much network traffic is definitely not good and you know you want your
application to perform at its best. However, slamming the network with a bunch of query notifications
is asking for disaster and definitely won’t make your users very happy. Each change initiates a query
notification and request for query refresh.

This scenario multiplies exponentially if you have multiple users tracking the same data. Imagine the
network traffic as each query notification triggers the users to re-query for the same data.

The ideal places for query notifications are lookup tables and areas where there are not a lot of continuous
transactions. A high-transaction table would not be the place for a query notification. But a lookup table
that gets updated infrequently would be perfect.

459

ADO.NET 2.0 Guidelines and Best Practices

32_597922 ch24.qxp 12/3/05 12:31 AM Page 459

Summary
This technology is so new that there are many areas that have not been explored that can be added to the
best practices. However, the pieces covered here are vital to the success of your application if you choose
to implement these technologies.

While you many not immediately have any plans to implement the xml data type, this chapter covered a
couple of things that should be considered when you do decide to start using the xml data type.

One of the best new features to ADO.NET 2.0 is the ability to run multiple commands simultaneously
over the same database connection, know as MARS, and this chapter discussed some of the things to
watch for when using MARS in your application.

Asynchronous operations were also discussed, pointing out some items to watch out for when utilizing
these types of operations, such as blocking, error handling, and appropriately using the cancel()
method.

Last, some thoughts on the query notifications were discussed. Query notifications can be a very useful
addition to your applications, but as discussed in this chapter, they can also be a detriment if not correctly
implemented.

The next, and final, chapter walks you through a case study implementing what you’ve learned in this book.

460

Chapter 24

32_597922 ch24.qxp 12/3/05 12:31 AM Page 460

Case Study — Putting
It All Together

With the release of SQL Server 2005, many companies will be asking the same question: “How
can we implement this great new technology within our existing infrastructure?” This case study
focuses on exactly that question, taking a look at those environments that are already using SQL
Server 2000 and SqlXml in some fashion but would like to migrate to SQL Server 2005 and utilize
the new technology found in it, specifically, the xml data type and the related technology.

The purpose of this case study is to give some examples of how a lot of the topics covered in this
book can be implemented within an existing SQL Server 2000/XML environment. It utilizes much
of the information from this book and all of the examples are done using the April 2005 TCP
release of VB.NET 2005 and the June CTP release of SQL Server 2005.

This case study examines the current design and architecture of an application built and sold by the
fictitious company 4FD, Fast Freddy’s Five Finger Discount, a US-based company that has designed
and developed its own procurement software package and is looking at further enhancements to
the application supplied by SQL Server 2005 and Visual Studio 2005/ADO.NET 2.0.

This case study discusses the following topics:

❑ 4FD’s existing applications and infrastructure

❑ Features of SQL Server 2005 that are utilized

❑ Integrating features of SQL Server 2005

33_597922 ch25.qxp 12/3/05 12:31 AM Page 461

Existing Application and Infrastructure
4FD has built a large scale purchasing application that they then sell to SMBs (Small to Medium
Businesses). The application currently uses SQL Server 2000 as its database backend and Visual
Basic.NET 2003 for the user interface.

4FD has also partnered with a second company, GPS (Guido’s Pawn Shop), which provides document
management services. This partnership has allowed for the integration of the two applications via a Web
Service, which is described in more detail later.

Current Database Design
While this case study won’t look at 4FD’s entire database structure, it does look at the tables that are
important to this case study. Those tables are shown in Figure 25-1.

Figure 25-1

The three areas of focus for 4FD from a database aspect are the application user configuration information,
reporting information, and account and vendor information.

Application User Configuration
In the current version of the application, certain user-specific application information is tracked and
stored as XML documents. An example of the information tracked is form size and location, and grid
column width so that when a user sizes a grid column on a particular form, the form remembers that
information and when the form is opened again, the columns are sized and positioned as they were
when the user last used the form.

The problem is that the XML document is stored on the user’s local hard drive. This works, but the
developers would like to remove any file system dependencies and move this information to the
database. With the new xml data type and querying technologies, the users should see a performance
increase when opening the forms.

462

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 462

Reporting Information
Similar to the application user configuration issue, certain details of the reporting aspect of the applica-
tion need re-examination. Currently, the data for the reports are pulled from datasets, but the reporting
requirements state that users must have the ability to save generated report data. This provides the users
the ability to generate their own custom reports and if necessary, view the data outside of the base reports.
When the user wants to print or print preview a specific report, they also have the ability to save the
report data generated for that particular report. Currently, the data is saved as XML on the user’s local
hard drive.

Just like the application user configuration issue, the developers would like to remove any file system
dependencies from the application as possible, and so the current thought process is to store this data as
XML inside the database. This will provide a performance increase when pulling the saved data.

Account and Vendor Information
The current account and vendor information piece of the application really isn’t a problem, but the team
would like to implement some of the SqlXml 4.0 technology and SqlXml managed classes in a test
environment on a small number of forms such as the Account and Vendor forms, and monitor the
application over a period of time to see if there are performance ramifications. They currently use datasets
to retrieve data and usher changes back to the database.

Current XML Use
Over the last couple of years, 4FD has been slowly integrating XML into their application, and has
found that in certain scenarios it is quite useful. They currently use XML in the Web Service that pro-
vides the integration between the 4FD and GPS applications. This entails utilizing XmlTextReader and
XmlTextWriter to read and generate XML documents, which are passed back and forth between the
4FD and GPS applications via the Web Service.

While this scenario works, it relies heavily on IIS, and with each customer purchase IIS must be configured
and the Web Service installed. Because IIS is involved, security is a major factor. Equally, each environment
is different with some having very tight IIS security and others having very loose IIS security, so dropping
in a Web Service is not such a simple task since ICS has no control over the environment.

The other area where the application uses XML is to save the report data. As mentioned previously,
when the users select the option to save the report data, the data is saved as an XML document to the
user’s local hard drive.

Partnership Information
The partnership between 4FD and GPS has been a success for both companies. This partnership allows
for the modification of employee information in the 4FD application via the GPS Web interface even
though the employee may not be a user of the 4FD application.

For example, Sally works for the ACME Company which has purchased both the 4FD and GPS applications.
Sally has no need to use the 4FD application but on occasion has the need to submit purchase orders, or to
change her benefit or demographic information.

463

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 463

A number of new online forms are in the process of being created, and in discussion with GPS, it was
decided that this would be a great opportunity to implement a number of the new XML technologies
that SQL Server 2005 provides, such as HTTP endpoints and the xml data type for data storage.

In the meetings between the two companies, it was decided that they would pick a number of the ESS
(Employee Self Service) forms such as benefit change information, demographic change information,
and employee deduction information forms to test the new SQL Server 2005 XML technologies.

Current Web Service Use
To facilitate the communication of data between the two applications, a .NET Web Service was created
to handle the transportation of data. The data is formatted into XML documents by both applications as
data is passed back and forth, and then the data is extracted using the XmlTextReader class by the
receiving application.

The current design of the Web Service has all the Web methods contained into a single Web Service
solely for the purpose of ease of installation and maintenance.

Shortcomings
There are several shortcomings with the current design that could benefit from a number of the new
XML technologies in SQL Server 2005:

❑ New users need to be entered into both the 4FD and GPS applications manually, leaving room
for input error. Customers would like to enter a new user into one of the applications and have
it pushed to the other automatically, eliminating the need for double entry.

❑ Each time a new customer that requires ICS and GPS integration is acquired, the Web Service
must be installed, making sure they have the latest incarnation of the Web Service. Even more
critical is the issue of the different environments that the Web Service goes into, and the
troubleshooting and support issues with the Web Service and IIS in each environment.

❑ Storing the report data on the user’s local hard drive has severe security implications. It exposes
the data to hacking, not to mention users who open the XML file and make changes not
knowing XML.

❑ User application configuration has the same issue as the report data, but it’s not as critical
because the location of this file can be hidden fairly well. However, if the user were to know
about the application configuration file and find it, they could cause some mischief.

❑ For many of 4FD’s customers, the IIS server serves both internal and external users without the
use of a firewall, which poses a huge security risk with sensitive data traveling over the wire.

Selecting SQL Server 2005 Features
After several meetings, management decided that the following features would be utilized in the
revamp of the current 4FD application and database:

❑ The xml data type will be used in enhancing the current application in two major areas. The first
area will be reporting. Current reporting functionality, while functional, could be improved both
from a performance and security perspective. The second area is the application user configuration
to improve application performance.464

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 464

❑ HTTP endpoints will be utilized to add on to, and in some places replace, current Web Services
for the integration between 4FD and GPS, eliminating the need for IIS. The first place this will
be used is the automatic update of user information, eliminating double entry. When a new user
is created in the GPS application, a call to a SQL Server 2005 Web Service (HTTP endpoint) will
be made to update the 4FD application with the new user information. The second place HTTP
endpoints will be used is in the new ESS forms created by GPS to pull information out of the
4FD application.

❑ SqlXml technology will be used in a few places: primarily on the Account and Vendor forms in
the test environment to save the data back to the database. There are a couple of options 4FD
could choose from, either updategrams or Diffgrams. 4FD decided to use Diffgrams initially
and monitor the performance and functionality.

❑ SqlXml managed classes will be utilized to extend T-SQL functionality found in the current SQL
Server 2000 database. As mentioned previously, 4FD currently uses datasets to retrieve this
information, but they would like to modify these two areas to retrieve account and vendor
information via SqlXml managed classes.

❑ .NET routines will be utilized to extend the functionality of SQL Server. Several stored procedures
that perform some fairly intense calculations currently exist in the SQL Server 2000 version of
the application. While T-SQL does a decent job, 4FD would like to try to move some of these
calculations over to a .NET routine in an effort to boost performance, surmising that .NET might
lend itself to performing these calculations better than the T-SQL counterparts.

Integrating Selected Features
This case study does not discuss the process of moving a SQL Server 2000 database to SQL Server 2005,
so the rest of this case study assumes that the database has already been migrated and the additional
features and changes are ready to be made.

Utilizing the xml data type
With the database moved over to SQL Server 2005 and the front-end application tested to make sure
all the existing functionality is correct, the next step is to add the xml data type functionality to the
database.

In the meetings to discuss what functionality of SQL Server 2005 would be useful in enhancing the current
application, it was quite obvious that the xml data type would definitely be an asset to a few areas within
the database. While many areas were discussed, two areas within the application were selected as an initial
test to implement the xml data type, monitor the performance, and finish off the new functionality.

The first area is in reporting. In the current application, data for reports is generated and the user has the
option of saving the data as XML format on the user’s local file system. Users can then create their own
custom reports based off that data, or re-run base reports off that data without the need to re-query the
database. The downside to reading data off the file system is threefold. First is security. Storing sensitive
data where it can be easily accessed is a no-no. The second is the possibility of XML document corruption,
either the data or the validity of the XML document. Third is performance. Better application performance
can be gained using the processing of SQL Server rather than reading off a file system.

465

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 465

The second area where 4FD decided to use the xml data type was in user configuration settings. The cur-
rent application’s requirements are that when a user changes a configuration item within the application,
such as changing a column width of a grid on a form, that information needs to be saved so that when the
user reopens that form, the grid column width is set to the width that the user set it to. Currently this infor-
mation is being saved as XML to the local file system as well, and this has several problems: performance is
the first problem, and the other problem, while less critical and highly unlikely, is having the user finding
and modifying this file. The developers know that the second issue is akin to lightning striking the same
place twice, but they would rather not take any chances. Moving this information to an xml data type
column will eliminate these issues.

Setting Up the xml data type for Reporting
The first area of focus for the team is reporting. They have broken down the tasks to three main steps:

1. Creating the XML schema collection

2. Creating the necessary table

3. Modifying the application

Creating the XML Schema Collections
First, the team needs to create the schema collection that will be used for the selected reports. The
developers have decided that they want the XML formatted specifically for each report, so they want the
schemas created accordingly. Before creating the schemas, they decide what the XML for each report
should look like.

The XML for the account transactions is to be formatted like the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<AccountTrans AccountTransID=”1”>
<Account>439-1277-66-29485-000</Account>
<AccountDesc>Supplies</AccountDesc>
<Amount>100.00</Amount>
<TransDate>07-31-2005</TransDate>
<User>14</User>

</AccountTrans>

Similarly, they want the XML for the Vendor information to be formatted as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<Vendor VendorID=”1” VendorTypeID=”1”>
<VendorName>Fast Freddy’s Five Finger Discount</VendorName>
<Address1></Address1>
<City></City>
<State></State>
<Zip></Zip>
<Phone></Phone>

</Vendor>

Given that information, they create the following schemas. First, the Account Transaction schema:

466

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 466

<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”AcctTransDS”>
<xs:element name=”AccountTrans”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Account” type=”xs:string” minOccurs=”0” msdata:Ordinal=”0”/>
<xs:element name=”AccountDesc” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”1”/>
<xs:element name=”Amount” type=”xs:string” minOccurs=”0” msdata:Ordinal=”2”/>
<xs:element name=”TransDate” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”3”/>
<xs:element name=”AcctType” type=”xs:string” minOccurs=”0” msdata:Ordinal=”4/>
<xs:element name=”AcctStat” type=”xs:string” minOccurs=”0” msdata:Ordinal=”5/>
<xs:element name=”User” type=”xs:string” minOccurs=”0” msdata:Ordinal=”6/>
</xs:sequence>
<xs:attribute name=”AccountTransID” type=”xs:string”/>
</xs:complexType>
</xs:element>
<xs:element name=”AcctTransDS” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”AccountTrans”/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>

This schema validates any account transaction XML documents inserted into the ReportData column
of the Reports table. When a user runs a report and selects the option to save the report data, an XML
document in the form of the account transaction XML is generated and inserted into the Reports table.
When the insert takes place, this schema validates the accuracy of the XML document.

Each element in the account transaction XML is validated against the corresponding element in the
account transaction schema above. For example, the schema ensures that the XML contains a
<TransDate> element, and that it is the third subelement of the <AccountTrans> element.

For the developers, this ensures the accuracy of the XML format by not letting any invalid XML documents
for the Account Transaction report be saved.

Next, the vendor schema:

<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”VendorDS”>
<xs:element name=”Vendor”>
<xs:complexType>
<xs:sequence>
<xs:element name=”VendorName” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”0”/>
<xs:element name=”Address1” type=”xs:string” minOccurs=”0” msdata:Ordinal=”1”/>
<xs:element name=”City” type=”xs:string” minOccurs=”0” msdata:Ordinal=”2”/>
<xs:element name=”State” type=”xs:string” minOccurs=”0” msdata:Ordinal=”3”/>
<xs:element name=”Zip” type=”xs:string” minOccurs=”0” msdata:Ordinal=”4”/>
<xs:element name=”Phone” type=”xs:string” minOccurs=”0” msdata:Ordinal=”5”/>

467

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 467

</xs:sequence>
<xs:attribute name=”VendorID” type=”xs:string”/>
<xs:attribute name=”VendorTypeID” type=”xs:string”/>
</xs:complexType>
</xs:element>
<xs:element name=”VendorDS” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”Vendor”/>
</xs:choice>
</xs:complexType>
</xs:element>

</xs:schema>

Just like the account transaction schema, this vendor schema accomplishes the same goals, by not letting
any vendor report XML documents be saved incorrectly. The same validation process that happens with
the account transaction report happens with the vendor report.

Now that they have the schemas, the developers can create the XML schema collection. In SQL Server
Management Studio, they run the following query to create the schema collection. From reading about
schema collections, they know that they can use one statement with two schemas:

CREATE XML SCHEMA COLLECTION ReportSchemaCollection AS
‘<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”AcctTransDS”>
<xs:element name=”AccountTrans”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Account” type=”xs:string” minOccurs=”0” msdata:Ordinal=”0”/>
<xs:element name=”AccountDesc” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”1”/>
<xs:element name=”Amount” type=”xs:string” minOccurs=”0” msdata:Ordinal=”2”/>
<xs:element name=”TransDate” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”3”/>
<xs:element name=”AcctType” type=”xs:string” minOccurs=”0” msdata:Ordinal=”4”/>
<xs:element name=”AcctStat” type=”xs:string” minOccurs=”0” msdata:Ordinal=”5”/>
<xs:element name=”Users” type=”xs:string” minOccurs=”0” msdata:Ordinal=”6”/>
</xs:sequence>
<xs:attribute name=”AccountTransID” type=”xs:string”/>
</xs:complexType>
</xs:element>
<xs:element name=”AcctTransDS” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”AccountTrans”/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>
<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”VendorDS”>
<xs:element name=”Vendor”>

468

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 468

<xs:complexType>
<xs:sequence>
<xs:element name=”VendorName” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”0”/>
<xs:element name=”Address1” type=”xs:string” minOccurs=”0” msdata:Ordinal=”1”/>
<xs:element name=”City” type=”xs:string” minOccurs=”0” msdata:Ordinal=”2”/>
<xs:element name=”State” type=”xs:string” minOccurs=”0” msdata:Ordinal=”3”/>
<xs:element name=”Zip” type=”xs:string” minOccurs=”0” msdata:Ordinal=”4”/>
<xs:element name=”Phone” type=”xs:string” minOccurs=”0” msdata:Ordinal=”5”/>
</xs:sequence>
<xs:attribute name=”VendorID” type=”xs:string”/>
<xs:attribute name=”VendorTypeID” type=”xs:string”/>
</xs:complexType>
</xs:element>
<xs:element name=”VendorDS” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”Vendor”/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>’

Now that the schema collection is created, the table can be created to hold the report information. As you
recall from Chapter 7, the CREATE XML SCHEMA COLLECTION statement imports the schemas into the
database for use with an xml data type columns or variables.

Creating the Table
The next step is to create the table that holds the report information and data. The goal of this table is to
report information and data based on the specific report run (ReportNumber column) and the user who
ran the report (UserID column). Since each user can run the same report but with different report filter
criteria, the data is different and so the need to specify who ran the report is important.

The table will be called Reports, and besides the aforementioned ReportNumber and UserID columns, the
table will also contain a report description column as well as the column that will hold the XML document
containing the data. The developers create the table as follows:

CREATE TABLE [dbo].[Reports](
[ReportID] [int] IDENTITY(1,1) NOT NULL,
[UserID] [int] NOT NULL,
[ReportNumber] [int] NOT NULL,
[ReportDescription] [varchar](30) ,
[ReportData] [xml](CONTENT [dbo].[ReportSchemaCollection]) NOT NULL,
CONSTRAINT [PK_Reports] PRIMARY KEY CLUSTERED
(
[ReportID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

The developers run this query in SQL Server Management Studio to create the table and associate the
XML schema collection to the ReportData column. Figure 25-2 shows what the table looks like in SQL
Server Management Studio with the associated XML schema collection for the ReportData column.

469

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 469

Figure 25-2

With the table created and some test data in the necessary tables (Account, AccountType, and
AccountTransactions), the developers run a couple of tests to verify that the XML schema collection is
working. The first test they run, shown here, should succeed:

INSERT INTO Reports (UserID, ReportNumber, ReportDescription, ReportData)VALUES (1,
1, ‘this is a test’,
‘<AccountTrans AccountTransID=”1”>
<Account>111-1111-11-11111-000</Account>
<AccountDesc>Donuts</AccountDesc>
<Amount>100.00</Amount>
<TransDate>07-31-2005</TransDate>
<AcctType>3</AcctType>
<AcctStat>2</AcctStat>
<Users>1</Users>

</AccountTrans>’)

The second test they run, shown here, should fail because the schema is looking for an element called
<Account>, not <Accounts>:

INSERT INTO Reports (UserID, ReportNumber, ReportDescription, ReportData)
VALUES (1, 1, ‘this is a test’,
‘<AccountTrans AccountTransID=”1”>
<Accounts>111-1111-11-11111-000</Accounts>
<AccountDesc>Donuts</AccountDesc>
<Amount>100.00</Amount>
<TransDate>07-31-2005</TransDate>
<AcctType>3</AcctType>
<AcctStat>2</AcctStat>
<Users>1</Users>

</AccountTrans>’)

470

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 470

When the INSERT is executed, the schema validates the XML, finds that there is no element named
<Account>, and rejects the INSERT.

With part two complete, the last step is to modify the application to write the data to the database
instead of the local hard drive.

Modifying the Application
Modifying the application is the last step in this process, and after some discussion, 4FD decided to use a
stored procedure to query the data and use the results to populate the Reports table.

The stored procedure they created (shown here) queries the AccountTransaction table for all transactions
between a specific period of time and formats the results using the FOR XML clause:

CREATE PROCEDURE GetAccountTransactions
@StartTranDate datetime,
@EndTranDate datetime

AS
SELECT Account.AccountNumber as Account,

Account.AccountDescription As AccountDesc,
AccountTransaction.Amount,
AccountTransaction.TransactionDate As TransDate,
AccountType.AccountType As AcctType,
AccountStatus.AccountStatus As AcctStat,
Users.LoginName As Users

FROM AccountTransaction
INNER JOIN Account ON AccountTransaction.AccountID = Account.AccountID
INNER JOIN Users ON AccountTransaction.UserID = Users.UserID
INNER JOIN AccountType ON Account.AccountTypeID = AccountType.AccountTypeID
INNER JOIN AccountStatus ON Account.AccountStatusID =
AccountStatus.AccountStatusID
WHERE AccountTransaction.TransactionDate BETWEEN @StartTranDate AND
@EndTranDate
FOR XML RAW, ROOT(‘AccountTrans’), ELEMENTS

GO

This stored procedure is simple in its filtering. It only filters by transaction date, but it could easily be
modified to filter further by account type and account status, and even by user if needed. The intent here
is to show how to return the desired data properly formatted in XML.

The developers test the stored procedure using some test data by executing the stored procedure
through a query window in SQL Server Management Studio, as follows:

EXEC GetAccountTransactions ‘07/01/2005’, ‘08/15/2005’

The results they get are as follows:

<AccountTrans>
<row>
<Account>1324</Account>
<AccountDesc>Office Supplies</AccountDesc>

471

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 471

<Amount>50.0000</Amount>
<TransDate>2005-07-31T00:00:00</TransDate>
<AcctType>1</AcctType>
<AcctStat>1</AcctStat>
<Users>scooter</Users>

</row>
<row>
<Account>2345</Account>
<AccountDesc>Book</AccountDesc>
<Amount>29.9900</Amount>
<TransDate>2005-08-01T00:00:00</TransDate>
<AcctType>2</AcctType>
<AcctStat>2</AcctStat>
<Users>scooter</Users>

</row>
</AccountTrans>

With the stored procedure working, the developers turn their attention to the application to modify the
process of saving the data. Typically, the user can print or print preview the report, but they also have
the option — regardless if they select to print or print preview the report — to save the data via a check
box on the application report form.

The developers modify the code to verify if the check box has been checked. If it has, they take the
results of the stored procedure and insert those results into the Report table, as follows:

INSERT INTO Reports ((UserID, ReportNumber, ReportDescription, ReportData)
VALUES (1, 1, ‘Account Transaction Report’,
‘<AccountTrans>
<row>
<Account>1324</Account>
<AccountDesc>Office Supplies</AccountDesc>
<Amount>50.0000</Amount>
<TransDate>2005-07-31T00:00:00</TransDate>
<AcctType>1</AcctType>
<AcctStat>1</AcctStat>
<Users>scooter</Users>

</row>
<row>
<Account>2345</Account>
<AccountDesc>Book</AccountDesc>
<Amount>29.9900</Amount>
<TransDate>2005-08-01T00:00:00</TransDate>
<AcctType>2</AcctType>
<AcctStat>2</AcctStat>
<Users>scooter</Users>

</row>
</AccountTrans>’)

This case study won’t go into sending the results to the report. That is beyond the scope of this case study.

The developers could have also written the stored procedure to return the results via an xml data type
variable output parameter as follows:

472

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 472

CREATE PROCEDURE GetAccountTransactions
@StartTranDate datetime,
@EndTranDate datetime,
@x XML OUTPUT

AS
Set @x = (
SELECT Account.AccountNumber as Account,

Account.AccountDescription As AccountDesc,
AccountTransaction.Amount,
AccountTransaction.TransactionDate As TransDate,
AccountType.AccountType As AcctType,
AccountStatus.AccountStatus As AcctStat,
Users.LoginName As Users

FROM AccountTransaction
INNER JOIN Account ON AccountTransaction.AccountID = Account.AccountID
INNER JOIN Users ON AccountTransaction.UserID = Users.UserID
INNER JOIN AccountType ON Account.AccountTypeID = AccountType.AccountTypeID
INNER JOIN AccountStatus ON Account.AccountStatusID =
AccountStatus.AccountStatusID
WHERE AccountTransaction.TransactionDate BETWEEN @StartTranDate AND
@EndTranDate
FOR XML RAW, ROOT(‘AccountTrans’), ELEMENTS)

GO

Both stored procedures accomplish the same thing, but the important thing here is that the data is now
stored in a much more secure location.

With this task under their belt, the developers then move on to the task of addressing the application
user configuration issue.

Setting Up the xml data type for User Information
The current Users table (shown in Figure 25-3) contains, among other data, information specific to users
of the 4FD application, such as name and address information, as well as application logon information.
This has worked well for the application, except for one area: The application tracks user-specific
application settings information. For example, a lot of forms contain a number of sizable sections with
one of those sections containing a data grid typically with two columns.

Figure 25-3

473

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 473

When a user sizes the data grid columns or changes the size of the form sections, that information is
stored on the local hard drive in XML format. The XML format works, but storing it on the hard drive
is not the best option. 4FD decided to store each user’s settings along with their user information in the
database. To accomplish this, a new xml data type column will be added to the Users table, which will
store the application configuration information that can be easily read and saved by the application.

As before, this process is broken into three steps:

1. Creating the schema collection

2. Modifying the Users table to add the necessary column

3. Modifying the application to read from the Users table instead of the file system

Creating the XML Schema Collection
The first step again is to create the schema collection. For now, the team decided to make it pretty simple,
so the XML document that they will use looks like the following:

<?xml version=”1.0” encoding=”UTF-8”?>
<FormConfigInfo FormID=”1”>
<FormSection1Height>300</FormSection1Height>
<FormSection2Height>400</FormSection2Height>
<FormSection3Height>600</FormSection3Height>
<FormWidth>800</FormWidth>
<Column1Width>150</Column1Width>
<Column2Width>250</Column2Width>

</FormConfigInfo>

The following code creates the XML schema collection used for this table:

CREATE XML SCHEMA COLLECTION UserConfigSchemaCollection AS
‘<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” id=”FormConfig”>
<xs:element name=”FormConfigInfo”>
<xs:complexType>
<xs:sequence>
<xs:element name=”FormSection1Height” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”0”/>
<xs:element name=”FormSection2Height” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”1”/>
<xs:element name=”FormSection3Height” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”2”/>
<xs:element name=”FormWidth” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”3”/>
<xs:element name=”Column1Width” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”4/>
<xs:element name=”Column2Width” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”5/>
</xs:sequence>
<xs:attribute name=”FormID” type=”xs:string”/>
</xs:complexType>
</xs:element>

474

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 474

<xs:element name=”FormConfig” msdata:IsDataSet=”true”
msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”Users”/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:schema>’

Now that the schema is defined, it is time to modify the Users table and add the appropriate column and
schema.

Modifying the Users Table
The next step is to alter the table to add the xml data type column and associated schema defined in the
previous section. The following query does just that:

ALTER TABLE Users
ADD UserAppConfig [xml](CONTENT [dbo].[UserConfigSchemaCollection])
GO

Once the column is added and the schema collection is associated to the new column, the table should
look like Figure 25-4.

Figure 25-4

With the infrastructure in place, the application needs to be modified to now read and write to the new
xml data type column.

Modifying the Application
The final step is to tell the application to retrieve information from the Users table instead of the file system.
There are two areas of this piece. First, when the form loads, the developers want to retrieve the data for
the specific form and set the properties accordingly. Second, when the form closes, the settings need to be
written back to the database for the next time the user opens the form.

475

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 475

Form Load

After some discussion, the team decides the best method to achieve its goals is to use the query()
method of the xml data type and return the XML document, which the developers can then parse
through and pull out the information they need.

The developers created the following query to give them the XML document they need:

DECLARE @xmlvar xml
SET @xmlvar =
SELECT UserAppConfig.query (‘
For $var in FormConfigInfo
where FormConfigInfo/@FormID=”1”
return($var)

‘) As Results
FROM Users
WHERE UserID = 1

The results are returned to the @xmlvar variable, which will be used shortly to extract the pertinent
information to save back to the database.

When the results are returned, the developers have several options to parse through the XML document
to pull out the information they need. After several discussions, the team decides that they will utilize
the new features introduced in version 2.0 of the .NET Framework and use the XmlReader class to read
in the results of the query and pull out the necessary information, as follows:

Dim ms As MemoryStream
Dim xtr As XmlTextReader
Dim FormSection1Height As String
Dim FormSection2Height As String
Dim FormSection3Height As String
Dim FormWidth As String
Dim Column1Width As String
Dim Column2Width As String
ms = New MemoryStream(@xmlvar)
xtr = New XmlTextReader(ms)
Do While xtr.Read
If xtr.NodeType = XmlNodeType.Element Then
Select Case xtr.Name
Case “FormSection1Height”
xtr.Read()
FormSection1Height = Trim(xtr.Value)

Case “FormSection2Height”
xtr.Read()
FormSection1Height = Trim(xtr.Value)

Case “FormSection3Height”
xtr.Read()
FormSection3Height = Trim(Trim(xtr.Value))

Case “FormWidth”
xtr.Read()
FormWidth = Trim(Trim(xtr.Value))

Case “Column1Width”
xtr.Read()
Column1Width = Trim(Trim(xtr.Value))

Case “Column2Width”

476

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 476

xtr.Read()
Column2Width = Trim(Trim(xtr.Value))

End Select
End If

Loop
xtr.Close()

The @xmlvar variable contains the information from the database for the specific user and form. A memory
stream is created with the variable and that memory stream is then passed to the XmlTextReader for
parsing. The XmlTextReader then parses the XML document stored inside the memory stream, looking
for specific nodes. When it finds the nodes it is looking for, it saves the value of the node to a variable. That
variable is used to set the specific form information when the form loads.

Once the information is extracted, the developers can use the data to set the appropriate properties on
the form and datagrid. In their test environment, they do this on the Form_Load event for the forms they
want to test.

Form Close

When the user closes the form, the developers utilize the modify() method of the xml data type to write
the form information back to the database:

Update Users
Set UserAppConfig.modify (‘
replace value of (//FormConfigInfo/FormSection1Height)[1]
with “100”
‘)
FROM Users
WHERE UserID = 2

Update Users
Set UserAppConfig.modify (‘
replace value of (//FormConfigInfo/FormSection2Height)[1]
with “200”
‘)
FROM Users
WHERE UserID = 2

Update Users
Set UserAppConfig.modify (‘
replace value of (//FormConfigInfo/FormSection3Height)[1]
with “300”
‘)
FROM Users
WHERE UserID = 2

Update Users
Set UserAppConfig.modify (‘
replace value of (//FormConfigInfo/FormWidth)[1]
with “400”
‘)
FROM Users

477

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 477

WHERE UserID = 2

Update Users
Set UserAppConfig.modify (‘
replace value of (//FormConfigInfo/Column1Width)[1]
with “500”
‘)
FROM Users
WHERE UserID = 2

Update Users
Set UserAppConfig.modify (‘
replace value of (//FormConfigInfo/Column2Width)[1]
with “600”
‘)
FROM Users
WHERE UserID = 2

With these changes being written back to the database, the developers can now focus on their next task
of integrating Native XML Web Services into their environment.

Building the HTTP Endpoints
The current integration between 4FD and GPS is done via a .NET Web Service. When a Web form is
opened in the GPS application, it makes a call to the 4FD Web Service, which makes a connection to the
current 4FD SQL Server 2000 database and retrieves the necessary data, formatted in XML using the
XMLTextWriter property, and returns it to the GPS application.

One of the new forms that are in the process of being created is an Account Fund Transfer form. This
form allows a dollar amount to be transferred from one account to another.

Again, there are three steps for this process:

1. Creating the stored procedure

2. Creating the HTTP endpoint

3. Modifying the application

Creating the Stored Procedure
The first step to this task is to create the following stored procedure that the endpoint will use to retrieve
the data for the form:

CREATE PROCEDURE [dbo].[TransferAccountFunds]

@FromAccount varchar(30),
@ToAccount varchar(30),
@Amount money
AS
BEGIN

DECLARE @FromValue money,

478

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 478

@ToValue money

SET @FromValue = (SELECT Budget FROM Account WHERE AccountNumber = @FromAccount)
SET @ToValue = (SELECT Budget FROM Account WHERE AccountNumber = @ToAccount)

IF @Amount <= @FromValue
BEGIN
BEGIN TRANSACTION AccountTransfer

UPDATE Account SET Budget = @FromValue - @Amount WHERE AccountNumber =
@FromAccount

UPDATE Account SET Budget = @ToValue + @Amount WHERE AccountNumber = @ToAccount

COMMIT TRANSACTION AccountTransfer
END

END

GO

After running a few tests and verifying that it works according to spec, the developers then turn their
attention to creating the HTTP endpoint in SQL Server 2005.

Creating the Endpoint
The second part to this task is to create the HTTP endpoint, or native XML Web Service. The developers
open a query window inside SQL Server Management Studio and type in the following T-SQL:

CREATE ENDPOINT 4FD_EndPoint
STATE = STARTED
AS HTTP
(
SITE = ‘localhost’,
PATH = ‘/4FD’,
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR)
)
FOR SOAP
(
WebMethod ‘TransferAccountFunds’
(
NAME = ‘4FD.dbo.TransferAccountFunds’,
SCHEMA = STANDARD

),
WSDL = DEFAULT,
BATCHES = ENABLED,
DATABASE = ‘4FD’

)

They execute the preceding statement to create the endpoint. The query succeeds and the endpoint is
created. The developers are not done, however, because even though the endpoint and Web Method are
created, no one has permission to access it.

In this scenario, a small group will be using this application in a test environment at first, so the team
creates a domain group called Test to which they add the small handful of users that will be testing the
application.

479

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 479

With the group added and users added to the group, the development team then executes the following
statement to grant everyone in the group permission to access and execute the Web Method:

USE MASTER
GO
GRANT CONNECT ON ENDPOINT::4FD_EndPoint TO [4FDSERVER\George]
GO

The third and final step is to consume the Web Service or endpoint. Since the consuming application
will be a third-party application, there is nothing to do on the 4FD side except provide the necessary
information GPS needs to consume the Web Method.

SqlXml Managed Classes
Several requirements have come in regarding some of the current vendor forms in the application, so
4FD needs to make some changes in this area of the application. The team decided this would be a good
time to implement some of the new technology and roll it out in a small test environment and monitor it
for a brief period of time and run some comparison tests.

The team has had its eye on SqlXml managed classes since the team members read about them a couple
of years ago when they showed up in SqlXml 3.0. However, they just couldn’t buy into them until they
read about SQL Server 2005 and all the XML capabilities it provides.

Currently, when the form loads, the list of Vendors populates a list box or grid. When users click on a
vendor in the list, they query the database for the specific vendor information for the selected vendor.

They are currently using ADO.NET and datasets to retrieve the information and save it back to the
database if any changes are made.

What they would like to do is implement SqlXml managed classes in this scenario. When they select a
vendor from the list, they want to retrieve the specific vendor information via SqlXml-managed classes,
then if a changed is made to the vendor information on the form, they want to use an DiffGram to save
the information back to the database.

Once the data is retrieved to populate the form, they decide to use the new and improved
XmlTextReader and its new ADO.NET 2.0 improvements to that class.

Retrieving the Data
The team first modifies the Vendor form to use the SqlXmlCommand class to retrieve the data to populate
the form. A portion of the code is shown here:

Imports System.Xml.SqlXml
Imports System.Xml
Imports System.IO

The developers first add these three lines to the declaration section of their application. They then modify
the appropriate section of code in the application that needs to retrieve the data. A portion of the code is
shown here:

480

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 480

Dim MyStrm As Stream
Dim ConnectString As String
Dim Param As SqlXmlParameter

‘Be sure to put in the correct Username and Password in the connect string!
ConnectString = “Provider=SQLOLEDB;Server=(local);database=4FD;UID=?;PWD=?”

Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnectString)

cmd.CommandText = “SELECT VendorName, Address1, Address2, City, State, Zip, Phone
FROM Vendor WHERE VendorID = ? For XML Auto”

Param = cmd.CreateParameter
‘ Grab the VendorID from the form...
Param.Value = Me.txtVendorID.Text

Try
MyStrm = cmd.ExecuteStream
MyStrm.Position = 0

Dim StrRdr As StreamReader = New StreamReader(MyStrm)

Dim xtr As XmlTextReader = New XmlTextReader(StrRdr)

xtr.Read()

‘Now populate the form with the info
Me.txtVendorName.Text = xtr.Item(0)

...

Catch ex As Exception
MessageBox.Show(ex.Message.ToString)

End Try

Now that the data is returned and the form populated, the developers turn their attention to saving the
data back to the database if changes are made.

Building the Diffgram
The first step to saving the data is to build the mapping schema that the Diffgram will use to map to the
appropriate table and columns in the database.

The team creates the following schema and saves it with the name VendorSchema.xml:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”>
<xsd:element name=”Ven” sql:relation=”Vendor” >
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”Name”

sql:field=”VendorName”
type=”xsd:string” />

<xsd:element name=”Addr1”

481

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 481

sql:field=”Address1”
type=”xsd:string” />

<xsd:element name=”Addr2”
sql:field=”Address2”
type=”xsd:string” />

<xsd:element name=”City”
sql:field=”City”
type=”xsd:string” />

<xsd:element name=”State”
sql:field=”State”
type=”xsd:string” />

<xsd:element name=”Zip”
sql:field=”Zip”
type=”xsd:string” />

<xsd:element name=”Phone”
sql:field=”Phone”
type=”xsd:string” />

</xsd:sequence>
<xsd:attribute name=”VendorID” type=”xsd:integer” />
</xsd:complexType>
</xsd:element>
</xsd:schema>

The next step is to modify the save routine to update the database based on the mapping schema and
Diffgram. A portion of the code is shown here:

Dim ConnString As String =
“Provider=SQLOLEDB;Server=servername;database=4FD;Integrated Security=SSPI;”
Dim row As DataRow
Dim ad As SqlXmlAdapter
Dim ms As MemoryStream = New MemoryStream()
Dim cmd As SqlXmlCommand = New SqlXmlCommand(ConnString)

cmd.RootTag = “ROOT”
cmd.CommandText = “Ven”
cmd.CommandType = SqlXmlCommandType.XPath
cmd.SchemaPath = “C:\apppath\VendorSchema.xml”

Dim ds As DataSet = New DataSet()

Try
ad = New SqlXmlAdapter(cmd)
ad.Fill(ds)
row = ds.Tables(“Ven”).Rows(0)
row(“Addr2”) = “Suite 200”
ad.Update(ds)

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

This example uses the SqlxmlCommand class and a few of the associated properties to execute the Diffgram.
The CommandText property maps the schema to the corresponding table in the database. The CommandText
property contains the type of command, in this case an XPath command. Last, the SchemaPath property
contains the location of the mapping schema created here.

482

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 482

The Diffgram, when executed, updates the Address2 field in the Users table.

Building the .NET Routines
The last remaining item of focus for the team is to move some of the processing logic from within T-SQL
to .NET routines. The purpose of this task is to see if a gain in performance can be obtained by moving
some of the processing into .NET. The developers know that this process is going to take some experi-
menting to find the right balance of T-SQL and .NET, so they thought they would start pretty simple and
build from there.

They decide to start with moving some of the account transaction processing into .NET routines. Some
of the logic calls for account transaction records to be summed up given a date range, and then based on
those results, further processing takes place.

The first task at hand is to build the .NET routine and compile it into a DLL. The .NET code they write,
shown here, takes two input parameters that contain the begin and end date in which to filter the
account transaction records, and the last parameter returns the sum of the query:

Imports System
Imports System.Data
Imports Microsoft.SqlServer.Server
Imports System.Data.SqlTypes
Imports System.Data.SqlClient

Public Class SumAcctTransByDate
Public Shared Sub SumTrans(ByVal BeginDate As Date, ByVal EndDate As Date, ByRef

Total As Decimal)
Dim conn as SqlConnection = New SqlConnection(“context connection = True”)
conn.Open()
Dim cmd As SqlCommand = New SqlCommand(“SELECT SUM(Amount) FROM “ & _

“AccountTransaction WHERE TransactionDate BETWEEN = ‘“ & BeginDate & “‘ AND ‘“ &
EndDate & “‘“, conn)

Dim rdr As SqlDataReader = cmd.ExecuteReader
SqlContext.Pipe.Send(rdr)

If rdr.HasRows = True Then
Rdr.Read()
Total = rdr.Item(0)

End If

rdr.Close()
conn.Close

End Sub
End Class

The developers then compile the routine into an assembly using the following syntax:

Vbc /target:library c:\wrox\chapter23\SumAccountTransactions.vb

The next step is to create the assembly reference. The following creates the reference in SQL Server to the
physical assembly:

483

Case Study — Putting It All Together

33_597922 ch25.qxp 12/3/05 12:31 AM Page 483

CREATE ASSEMBLY SumAccountTransDateRange
FROM ‘c:\apppath\SumAccountTransactions.dll’
WITH PERMISSION_SET = SAFE
GO

The next step is to create the stored procedure. This stored procedure takes two input parameters, the
beginning sum date and the ending sum date, and one output parameter, which is the total of the sum:

CREATE PROCEDURE SumTransactionsByDate
@BeginDate date,
@EndDate date,
@TotalAmount Money OUTPUT
AS
EXTERNAL NAME SumAccountTransDateRange.SumAcctTransByDate.SumTrans
GO

As good developers, the team then tests this stored procedure by running a couple of tests against some
test data to verify that the stored procedure is indeed working the way they expect. One of the tests they
run is as follows:

DECLARE @Total Mopney
EXEC SumTransactionsByDate ‘07/01/2005’, ‘07/31/2005’, @Total
PRINT @Total
GO

The next step is to integrate this stored procedure into the application. There are several ways the team
can do this and it experiments with a couple of options. The first option they play with is to call this
stored procedure from within the application. The other option is to call it from within another stored
procedure so SQL Server can continue any processing it needs to do.

Both of these options have their advantages and disadvantages, so the developers experiment with both,
and tests are still ongoing. They have determined that they need to experiment a bit more to find the
right combination and mix of SQL and .NET/CLR.

Summary
This case study gave you some food for thought. The examples given don’t provide the entire solution, but
they do give a good foundation to how the xml data type can be implemented into an existing environment.

This case study focused on existing companies that already have a SQL Server/XML environment in
place and want to utilize a number of the XML technologies found in SQL Server 2005.

You will find that it takes some investigation to decide how the xml data type can best benefit your current
applications. The last thing you want to do is to force the technology into your environment. If it doesn’t
make sense, don’t do it. If you are currently using XML in some fashion, then there is a good possibility
that you can benefit from the xml data type and its related technologies.

For example, if you are storing XML as BLOBs, the xml data type may be right up your alley. But forcing
XML into your application could have a negative impact in many areas, and that is not what you want.

484

Chapter 25

33_597922 ch25.qxp 12/3/05 12:31 AM Page 484

XQuery in SQL Server 2005

It is no secret that XML is gaining popularity, a fact that becomes even more evident with the intro-
duction of the xml data type in SQL Server 2005. As XML gains more popularity and becomes
more of a mainstream technology in the workplace, there is an even bigger need to extract the data
and information from XML.

Prior to SQL Server 2005, developers would resort to sticking XML documents into tables as
BLOBs, using SqlXml, and at times tough query technology to extract and format the data that
really did not provide a full XML data model support.

To solve this problem, Microsoft introduced not only the xml data type, but also support for
XQuery, the language used for querying XML data.

This appendix discusses XQuery as it is used in SQL Server 2005, and covers the following topics:

❑ Introduction to and advantages of using XQuery

❑ XQuery expressions, including FLWOR, operators, and functions

❑ Creating XML using XQuery

❑ Relational variables and columns in XQuery

Advantages of XQuery
Before delving into the depths of XQuery, it is beneficial to answer a few questions as to the
advantages of XQuery and why to use it over other technologies such as XSLT. XQuery provides
a number of benefits:

34_597922 appa.qxp 12/3/05 12:32 AM Page 485

❑ The amount of code it takes to write XQuery is much less than XSLT queries, making it easier
and cheaper to maintain.

❑ XQuery is a strongly typed language, which improves query performance because implicit type
casting doesn’t need to take place, providing what is called type assurance.

❑ XQuery is a W3C recommendation and will thus see major support from most major database
vendors.

❑ XQuery has the capability to be used as a weakly typed language for use with untyped XML data.

Now that SQL Server 2005 supports XQuery, what’s better than being able to use XQuery at the server?
This also provides a number of advantages over client-side XML processing. Some the advantages of
using XQuery at the server include:

❑ Reduced network traffic: With the processing happening at the server, only the results are sent
back to the client, resulting in less network traffic.

❑ Better security: Since only the data that is necessary is sent to the client, the risk of exposing
unnecessary information and data is greatly lessened.

❑ Improved performance: Since the processing takes place at the server, the queries can take
advantage of the query optimizations provided by the SQL Server engine. This process also
allows for the query to take advantage of any indexes on the xml data type column.

Introduction to XQuery
To understand XQuery you must first understand a bit about XPath. The following sections introduce
XPath and delve a bit into XPath expressions.

What Is XPath?
XPath (XML Path language) is a language that allows for locating specific parts of an XML document. It
is able to accomplish this by using a path-based syntax, which identifies specified nodes within an XML
document. The first version of XPath, 1.0, contained a set of functions to handle strings, Booleans, and
numbers, as well as the ability to specify filter criteria.

XPath 2.0 builds on XPath 1.0 by adding more functionality such as a more detailed type system. XQuery
1.0 is built around XPath 2.0, adding functionality such as ordering, validation for filtering, construction,
and reshaping capabilities.

XPath Expressions
XPath expressions are navigational directions in an XML document. They allow for the location of nodes
and the navigation from one location to another within an XML document. This is accomplished via a
sequence of steps, each step separated by a forward slash (/). Steps within an expression are evaluated
from left to right, with each step setting the context (selected node) for the next step. Each step contains
an axis, node test, and step qualifiers.

486

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 486

An axis specifies the direction of movement in relation to the context node. In SQL Server 2005, support
axes are self, child, parent, descendant, attribute, and descendant-or-self.

A node test is the condition that all selected nodes by a step must satisfy, with the condition of the node
based on a node name or node type.

A step qualifier is defined by either a predicate — an expression specified within square brackets that acts
as a filter on a node — or a dereference, which maps the elements and attributes in a sequence to the nodes
that they reference.

What Is XQuery?
XQuery is a fairly new language for querying XML data. It was designed from the ground up by the
XML Query Working Group of the W3C with the sole purpose of querying data stored in XML format. It
is essentially a superset of XPath 2.0 that gives it all the features of XPath 2.0 plus a long list of additional
features. The list of features supported by SQL Server 2005 includes the following:

❑ Allows for the creation of new nodes

❑ Adds an order by clause to the FLWOR clause to provide the ability to sort

The great thing about XQuery is that it was built to work with all XML documents, whether they are
untyped, typed, or a combination of both. In all cases, its job is to query data stored in XML format. It
does this by using the XPath navigational functionality.

XQuery Expressions
Chapter 5 discussed XQuery expressions and their structure briefly, but they will be reviewed here in
further detail to give you a better idea of how XQuery expressions work.

An XQuery expression has two parts, a prolog and a body. The first part is the XQuery Prolog, which is
simply a namespace declaration, such as the following:

delcare namespace AW=”http://schemas.microsoft.com/_
Sqlserver/2004/07/adventure-works/ProductModelManuInstructions”);

The prolog can contain a namespace declaration, which is used to define the mapping between the pre-
fix and namespace URI. The purpose of this is to let you use the prefix throughout the query instead of
the entire namespace URI.

The body of the expression holds the query expression that defines the result of the query. For example:

/AW:root/AW:Employee[EmployeeID=32]

The body can be a FLWOR expression, an XPath expression, or any other XQuery expression. Putting the
prolog and body together results in something like the following:

487

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 487

SELECT Instructions.query(‘
declare namespace AW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in //AW:root/AW:Location[2]/AW:step

return
string($var)

‘) as Steps
FROM Production.ProductModel
WHERE ProductModelID=47

Using this query, the FLWOR statement is explained in the next section.

The FLWOR Statement
Similar to the T-SQL SELECT statement, XQuery FLWOR statements are the foundation for querying,
filtering, and sorting results from an XML document. FLWOR stands for FOR, LET, WHERE, ORDER BY, and
RETURN. As mentioned in Chapter 5, SQL Server 2005 supports all of these except LET.

The LET clause is used for binding a variable to the results of an expression. As this is not supported in
SQL Server 2005, the workaround is to use an in-line expression.

FOR
The FOR clause lets users define and bind a variable to a sequence that is iterated through. While many
developers new to XQuery and XPath assume that this is akin to a For - Next loop, that assumption
is completely incorrect. A more correct comparison would be to the T-SQL SELECT statement, such as
SELECT fieldname FROM. This is due to the input sequence being specified using XPath expressions,
atomic values, or constructor functions.

The following example uses the FOR clause to return all the steps from the second location in the
Instructions column. It does this by applying an XPath expression to the FOR clause, as follows:

SELECT Instructions.query(‘
declare namespace AW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in //AW:root/AW:Location[2]/AW:step

return
string($var)

‘) as Steps
FROM Production.ProductModel

As shown in a previous example, this query could be filtered even further by appending a WHERE clause
and specifying a specific ProductModelID.

WHERE
The WHERE clause, like a standard T-SQL WHERE clause, lets you filter the results of the query. Consider
the following example:

SELECT Instructions.query(‘
declare namespace AW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

488

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 488

for $var in //AW:root/AW:Location[2]/AW:step
return

string($var)
‘) as Steps
FROM Production.ProductModel
WHERE ProductModelID=47

This is nothing new. If you have been programming in T-SQL, you have been using the WHERE clause for
quite a while.

order by
The order by clause for FLWOR expressions works similarly to the ORDER BY clause in T-SQL. Sorting is
done by passing a sorting expression to the order by clause of the FLWOR expression. It allows you to
sort the returned values from the query, as follows:

SELECT Instructions.query(‘
declare namespace AW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in //AW:root/AW:Location[2]/AW:step
order by $var/AW:Location[2]

return
string($var)

‘) as Steps

FROM Production.ProductModel

In this case, the order by clause sorts the results returned by the FLWOR expression.

return
The return clause lets you define the results of the query. Think of it in a similar way as you think
about the SELECT statement. What you put in the return clause determines the results you get back.
In the return clause, you can specify any valid XQuery expression as well as build well-formed XML
structures by specifying constructors for elements and attributes:

SELECT Instructions.query(‘
declare namespace AW=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;
for $var in //AW:root/AW:Location[2]/AW:step

return
string($var)

‘) as Steps
FROM Production.ProductModel
WHERE ProductModelID=47

Later in this appendix, you’ll delve deeper into how to build XML structures in the return clause.

489

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 489

XQuery Operators
SQL Server 2005 supports a number of XQuery operators, which fall into the following groups:

❑ Comparison operators

❑ Arithmetic operators

❑ Logical operators

The following sections discuss these operators in detail.

Comparison Operators
Comparison operators compare values, sequences, or a combination of both and are defined as follows:

❑ Equal (=): Compares the values of the left sequence to see if they match the values of the right
sequence.

❑ Not Equal (!=): Compares the values of the left sequence to see if they do not match the values
of the right sequence.

❑ Less than (<): Compares the values of the left sequence to see if they are less than the values of
the right sequence.

❑ Greater than (>): Compares the values of the left sequence to see if they are greater than the
values of the right sequence.

❑ Less than or equal to (<=): Compares the values of the left sequence to see if they are less than
or equal to the values of the right sequence.

❑ Greater than or equal to (>=): Compares the values of the left sequence to see if they are greater
than or equal to the values of the right sequence.

SQL Server 2005 has added support for all of these comparison operators. The following example uses
the equal operator (=) to compare the value returned by the XPath statement with a literal string:

WITH XMLNAMESPACES (‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription’ AS PMD)
SELECT CatalogDescription.query(‘

for $P in / PMD:ProductDescription/PMD:Manufacturer[PMD:Name =
“AdventureWorks”]

return $P’) as Result
FROM Production.ProductModel
WHERE ProductModelID=35

The results of this query are shown in Figure A-1.

Figure A-1

490

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 490

In this example, the equal (=) operator is used to evaluate the value returned from the query expression
with the value of “AdventureWorks”. If the comparison expression returns True, the query returns all
the records where the match is found.

The next example uses a comparison operator for more than one record. First, query the ProductModel
table as follows:

SELECT ProductModelID, CatalogDescription
FROM Production.ProductModel

Take a look primarily at ProductModelIDs 19, 23, and 25, shown in Figure A-2. If you look at the
details of each catalogdescription for those three rows, you will notice that each has a different
ProductPhotoID value.

Figure A-2

In SQL Server Management Studio, execute the following query, which queries only those records whose
ProductPhotoID value is greater than 115. The XQuery query is not filtered by a WHERE clause so as to
look at all the records. The XPath expression tells the query to look at all ProductPhotoID elements and
return those records whose value for that element is greater than 115:

WITH XMLNAMESPACES (‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelDescription’ AS PMD)
SELECT CatalogDescription.query(‘

for $P in / PMD:ProductDescription/ PMD:Picture[PMD:ProductPhotoID > 115]
return $P’) as Result

FROM Production.ProductModel

When you run the query, you will notice that only records 19 and 25 returned a result, as shown in Figure
A-3. That is because the value of ProductPhotoID for ProductModelID 23 has a value less than 115.

Figure A-3

491

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 491

Run the query again for values greater than 100 and look at the results. What you should get back is a
value for row 28.

Value Comparison Operators
Value comparison operators are operators that compare atomic values. In SQL Server 2005, these operators
are listed as follows:

❑ Equal (eq)

❑ Not equal (ne)

❑ Less than (lt)

❑ Greater than (gt)

❑ Less than or equal to (le)

❑ Greater than or equal to (ge)

The definitions of the value comparison operators are the same as those of the general comparison oper-
ators listed in the previous section. The difference between comparison operators and value comparison
operators has to do with the handling of untyped atomic types. Consider this comparison:

for $P in / PMD:ProductDescription/ PMD:Picture[PMD:ProductPhotoID > 100]

In reality, it works the same as the following:

for $P in / PMD:ProductDescription/ PMD:Picture[PMD:ProductPhotoID gt 100]

The operators in these two examples are equivalent because of the way the XQuery/XPath language
interprets the operators.

XQuery promotes the untyped type to the type of the other operand to ensure consistency.

Arithmetic Operators
Arithmetic, or numeric, operators are defined in SQL Server 2005 as follows:

❑ Add (+): Adds two or more numbers.

❑ Subtract (-): Subtracts two or more numbers.

❑ Multiply (*): Multiplies two or more numbers together.

❑ Divide (div): Divides two numbers.

❑ Mod (mod): Divides two numbers and returns the remainder.

For example, the following query uses the div operator to divide the returned value by 12.

SELECT demographics.query (‘
declare namespace ss=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/StoreSurvey”;
for $sa in /ss:StoreSurvey
return

492

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 492

<StoreDetails
AvgSalesPerMonth = “{$sa/ss:AnnualSales div 12}”>

</StoreDetails>
‘) as result
FROM sales.store
WHERE customerid = 1

Figure A-4 shows the results of the executed query. The value of AnnualSales is 30,000, but when the
query is run, it divides that number by 12 and returns the results to the client.

Figure A-4

All the other arithmetic operators listed previously behave in the same manner as div, and are fully
supported by SQL Server 2005.

Logical Operators
Logical operators compare Boolean expressions, and the results of the query are returned as a Boolean.
XQuery logical operators supported by SQL Server 2005 are the and and or operators.

The and operator compares two Boolean expressions. If both evaluate to True, then a True value is
returned.

The or operator compares two Boolean expressions and if either expression evaluates to True then a
True value is returned. If neither expression returns a True value, then a False value is returned.

And Or
This example uses the logical and operator to return a set of results based on two sets of criteria. First,
query the Demographics column of the Sales.Individual table to get an idea of the data you will be
working with. Run the following T-SQL in a query window:

SELECT Demographics FROM Sales.Individual

This query returns the Demographics column for all the rows in the table, as shown in Figure A-5.
Clicking one of the rows displays the detail XML for that specific column and row.

Figure A-5

493

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 493

The next example filters the results, returning only those rows where the marital status is “M” and the
occupation is “Professional,” using the logical and operator. Type and execute the following XQuery in a
query window:

SELECT demographics.query(‘
declare namespace

IS=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/IndividualSurvey”;

for $F in /IS:IndividualSurvey[IS:MaritalStatus=”M”
and IS:Occupation=”Professional”]
return

$F
‘) as Result

FROM sales.individual

The results show that there are at lease three records that meet the specified criteria (see Figure A-6). The
empty rows signify that those records did not meet the specified criteria.

Figure A-6

Specifying or also works, but the results are different. Modify the query as shown follows:

for $F in /IS:IndividualSurvey[IS:MaritalStatus=”M”
or IS:Occupation=”Professional”]

Running this query returns a larger set of results since either the left expression or the right expression
returns True.

If-Then-Else
The if-then-else construct of XQuery operates like that of other languages. It allows for the operations
to be performed based on the condition of an expression. The following example uses the if-then-else
construct to display the machine hours from the Instructions column if it exists for a location:

SELECT Instructions.query(‘declare namespace
PM=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

for $WC in // PM:root/ PM:Location
return
if ($WC[not(@MachineHours)])
then
<WorkCenterLocation>

494

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 494

{ $WC/@LocationID }
</WorkCenterLocation>
else
()

‘) as Result
FROM Production.ProductModel

Figure A-7 shows the results of the query. If the query finds a MachineHours attribute, it displays the
corresponding LocationID.

Figure A-7

A few more examples further on in this appendix demonstrate the if-then-else construct a bit more.
Now, however, the discussion shifts toward the various XQuery functions supported by SQL Server 2005.

XQuery Functions
SQL Server 2005 supports a large number of built-in XQuery functions. These functions include a wide
array of functionality, including aggregate functions, data accessor functions, numerical functions, con-
text functions, and others. The following sections discuss the built-in XQuery functions.

data()
You can use the data() accessor to return values from nodes as typed values. For example, the follow-
ing query uses the data() function to extract the catalog description information for any photos with a
productphotoid less than 100. The data() function in this example returns the typed values:

SELECT CatalogDescription.query (‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription”;
for $man in /pm:ProductDescription/pm:Picture
where xs:integer (data($man/pm:ProductPhotoID)) lt 100
return
element Picture
{
element Size {data($man/pm:Size) },
element angle {data($man/pm:Angle) },
element PhoneID {data($man/pm:ProductPhotoID) }

}
‘) as Result
FROM production.productmodel

495

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 495

The results shown in Figure A-8 indicate that a couple of records match the specified criteria in the query.

Figure A-8

string()
The string() function returns the string value of the item being returned. In the following example,
three values are being returned, all of which are being returned as a string using the string() function,
even the copyright value:

SELECT CatalogDescription.query (‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription”;
for $man in /pm:ProductDescription/pm:Manufacturer
return
element Manufacturer
{

attribute Copyright {string($man/pm:Copyright) },
element Manufacturer {string($man/pm:Name) },
element ProductURL {string($man/pm:ProductURL) }

}
‘) as Result
FROM production.productmodel
where productmodelid = 19

Figure A-9 shows the results of the query.

Figure A-9

Aggregate Functions
Aggregate functions act on a complete sequence of specified items and return the results of the aggrega-
tion. Those aggregate functions supported in SQL Server 2005 include count(), min(), max(), avg(),
and sum().

496

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 496

count()
The count() function returns the total number of items counted in a given sequence. For example, the
following query counts the number of material elements for a given ProductModelID:

SELECT Instructions.query(‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions”;
<Material>Total element count for material is { count(/pm:root/pm:Location)

}</Material>
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID = 7

Figure A-10 show the results of the query. This query counted six material elements.

Figure A-10

min()
The min() function returns a single item from a sequence whose value is less than the other items in the
sequence. The following example queries the Instructions column of the ProductModel table looking at
all the MachineHours attributes of the Location element and returns the LocationID and MachineHours
with the least (minimum) MachineHours value:

select Instructions.query(‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions”;
for $Loc in /pm:root/pm:Location
where $Loc/@MachineHours = min(/pm:root/pm:Location/@MachineHours)

return
<Location LocationID=”{ $Loc/@LocationID }”

MachineHours= “{ $Loc/@MachineHours }” />
‘) as Result

FROM Production.ProductModel
WHERE ProductModelID=10

Figure A-11 shows the results of the query.

Figure A-11

497

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 497

max()
The max() function is the opposite of the min() function. It returns a single item from a sequence
whose value is the most or greater than the others in the sequence. The following example returns the
LocationID and MachineHours from the Location element with the greatest number of machine hours:

select Instructions.query(‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions”;
for $Loc in /pm:root/pm:Location
where $Loc/@MachineHours = max(/pm:root/pm:Location/@MachineHours)

return
<Location LocationID=”{ $Loc/@LocationID }”

MachineHours= “{ $Loc/@MachineHours }” />
‘) as Result

FROM Production.ProductModel
WHERE ProductModelID=10

Figure A-12 shows the results of the query.

Figure A-12

avg()
The avg() function returns the average of a given sequence. For example, the following query returns
the average of the MachineHours for all the locations:

select Instructions.query(‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions”;
<AverageMachineHours>
{ avg(//pm:Location/@MachineHours) }

</AverageMachineHours>
‘) as Result

FROM Production.ProductModel
WHERE ProductModelID=10

Figure A-13 shows the results of the query.

Figure A-13

498

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 498

sum()
The sum() function returns the sum of numbers for a given sequence. Keeping with the theme of machine
hours, the following example sums the machine hours for all the locations for a given product model:

select Instructions.query(‘
declare namespace pm=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions”;
<TotalMachineHours>
{ sum(//pm:Location/@MachineHours) }

</TotalMachineHours>
‘) as Result

FROM Production.ProductModel
WHERE ProductModelID=10

Figure A-14 shows the results of the query.

Figure A-14

Context Functions
Context functions are used to get relative properties for a given context item. The context functions
supported by SQL Server 2005 are last() and position().

last()
The last() function returns the position index of the last item in a sequence. For example, the following
query returns the last instruction step for a given location. The location is specified by the value within
the brackets ([]):

SELECT Instructions.query(‘
declare namespace pmi=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<LastStep>
{ (/pmi:root/pmi:Location)[1]/pmi:step[last()]/text() }

</LastStep>
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID=10

Figure A-15 shows the results of the query.

Figure A-15

499

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 499

You can even use the last() function to iterate backwards through the sequence. The following example
uses the last() function to get the next-to-last step:

SELECT Instructions.query(‘
declare namespace pmi=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<SecondToLastStep>
{ (/pmi:root/pmi:Location)[1]/pmi:step[last()-1]/text() }

</SecondToLastStep>
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID=10

In this example, a value of one is subtracted from the last() function (last() - 1) to tell the last
function to go to the next-to-last step.

As you have seen before, you can also change the location and go through the steps:

SELECT Instructions.query(‘
declare namespace pmi=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<SecondToLastStep>
{ (/pmi:root/pmi:Location)[2]/pmi:step[last()-1]/text() }

</SecondToLastStep>
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID=10

This example uses the same last() function, also subtracting one to go to the next-to-the step, but this
time the second location was specified.

position()
The position() function specifies the position of an item within a sequence. The position is specified
via an integer value. For example, the following query returns the first three steps for each location for a
given product model:

SELECT Instructions.query(‘
declare namespace

pd=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<Instructions>
{
for $f in /pd:root/pd:Location/*[position()<=3]
return
$f

}
</Instructions>

‘) as Result
FROM Production.ProductModel
WHERE ProductModelID = 10

500

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 500

Remember earlier where it was mentioned that the if-then-else constructor would be used again? Well,
here it is. While iterating through the sequence, the query returns the first three steps for each location. The
if-then-else constructor can be added to say that if there are more than three steps, then also return a
value indicating that there are more. The following example shows how this is accomplished:

SELECT Instructions.query(‘
declare namespace

pd=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions”;

<Instructions>
{
for $f in /pd:root/pd:Location/*[position()<=3]
return
$f

}
{
if (count(/pd:root/pd:Location/*) > 3)
then <DUDE-Theres-more/>
else ()

}
</Instructions>

‘) as Result
FROM Production.ProductModel
WHERE ProductModelID = 10

Context functions are very useful to help you pinpoint a specific spot within the sequence. The last()
function allows you to move to the last item in the sequence and from there, as you have seen, to navigate
backwards through the sequence. The position() function allows you to move to a specific point within
the sequence.

Using XQuery to Create XML
Through the power and flexibility of XQuery, you can build XML structures within a query. Thus is the
nature of XQuery and its constructors. The constructors allow you to define the results of the query and
can be used with elements, variables, comments, and text nodes.

A few of the examples in this appendix so far have built the XML manually, meaning the XML elements
have been manually specified. For example, the following query returns the manufacturer information,
building the XML with the results returned from the query:

SELECT CatalogDescription.query (‘
declare namespace pmi=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription”;
for $man in /pmi:ProductDescription/pmi:Manufacturer
return
<ProductManufacturer Manufacturer = “{$man/pmi:Name}” >
{$man/pmi:Copyright}
{$man/pmi:ProductURL}

</ProductManufacturer>
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID = 19

501

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 501

The results from this query are shown in Figure A-16.

Figure A-16

That’s informative, but ugly. You can pretty this up by using some of the information you learned earlier
in the appendix. Modify the query as follows:

SELECT CatalogDescription.query (‘
declare namespace pmi=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription”;
for $man in /pmi:ProductDescription/pmi:Manufacturer
return
element Manufacturer

{
element ManufacturerName {string($man/pmi:Name)},
element Copyright {string($man/pmi:Copyright)},
element ProductURL {string($man/pmi:ProductURL)}

}
‘) as Result
FROM Production.ProductModel
WHERE ProductModelID = 19

Now, rerun the query. You should see what appears in Figure A-17.

Figure A-17

That’s better: same information, but much cleaner. Yet both Figure A-16 and Figure A-17 illustrate the
ability of XQuery to return XML-formatted results.

In these examples, you have seen how to construct XML using XQuery. But the real question here is
what does XQuery XML construction provide over XML shaping using FOR XML, and when would you
use one over the other? The answer is, “It depends.” First and foremost, XQuery cannot aggregate XML
from multiple columns and multiple rows; FOR XML can. However, you can use both to format a single
XML instance, and XQuery will probably be faster since FOR XML will need to hit the xml data type
methods more than once for the XML instance. Likewise, XQuery is faster than its XML DML statement
counterparts when constructing an XML instance.

Last, FOR XML has been enhanced and provides more functionality in SQL Server 2005 when it comes to
building an instance of XML. The TYPE directive, new to SQL Server 2005, allows for better construction
of XML results.

502

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 502

The real answer to the question lies with what you are attempting to do. You may need to experiment,
but given some of this information, you may already have your answer.

Relational Variables and Columns
Nine times out of ten, you want to return additional information in your query that does not come from
XML, but rather comes from standard relational columns. SQL Server 2005 fully supports this via the
implementation of the sql:column() and sql:variable() functions.

sql:column()
The sql:column() function is used to return data from relational, non-XML columns. For example, the
following query returns five relational columns from the Person.Contact table and constructs an XML
instance with the results:

SELECT AdditionalContactInfo.query(‘
declare namespace pc=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactInfo”;
element Person
{
element ContactID { sql:column(“ContactID”)},
element FirstName { sql:column(“FirstName”)},
element LastName { sql:column(“LastName”)},
element Title { sql:column(“Title”)},
element Email { sql:column(“EmailAddress”)}

}
‘) AS Result
FROM Person.Contact
WHERE ContactID = 1

Figure A-18 shows the results of the query.

Figure A-18

In this example, the sql:column is used to return five relational columns. The five columns returned are
enclosed in a <Person> element as specified by the query, as well as giving each column returned a
name for the element from which the value for the column is returned.

sql:variable()
The sql:variable() function provides the ability to use a variable containing a value within an
instance of an xml data type instance. The following code snippet example uses a variable to compare
LocationID values:

/pi:root/pi:Location = sql:variable(“@LocationID”)

503

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 503

For example, you can create a stored procedure that takes an input parameter, and then use that parameter
variable in the stored procedure within the XQuery query.

Before the stored procedure is created, the T-SQL to be used in the stored procedure needs to be tested
outside of a stored procedure first. Using the previous example, open a query window and modify the
previous example as follows:

DECLARE @EmailAddr varchar(15), @ContactID int
SET @EmailAddr = ‘gustavo007@adventure-works.com’
SET @ContactID = 1
DECLARE @xml xml

SET @xml = (SELECT AdditionalContactInfo.query(‘
declare namespace pc=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactInfo”;
element Person
{
element ContactID { sql:column(“ContactID”)},
element FirstName { sql:column(“FirstName”)},
element LastName { sql:column(“LastName”)},
element Title { sql:column(“Title”)},
element Email { sql:variable(“@EmailAddr”)}

}
‘) AS Result
FROM Person.Contact
WHERE ContactID = @ContactID)

SELECT @xml

When you execute this query, you should get exactly the same results as you did in the previous example.
First, a couple of variables are declared (@EmailAddr and @ContactID) and then some values are set to
those variables, namely the e-mail address of Gustav and his ContactID number of 1. An xml data type
variable is declared and then the SELECT statement used previously is set to that variable.

The thing to note is the highlighted line in the middle. Notice that, unlike the previous example, the
sql:variable function is used here and the value of the @EmailAddr variable is used in the place of
the actual value returned from the EmailAddress column.

Now you need to move this to a stored procedure. Create a new stored procedure in the
AdventureWorks database and enter the following:

CREATE PROCEDURE SqlVariableSample
@EmailAddr varchar(30),
@ContactID int
AS
BEGIN

-- Insert statements for procedure here
SELECT AdditionalContactInfo.query(‘
declare namespace pc=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactInfo”;

504

Appendix A

34_597922 appa.qxp 12/3/05 12:32 AM Page 504

element Person
{
element ContactID { sql:column(“ContactID”)},
element FirstName { sql:column(“FirstName”)},
element LastName { sql:column(“LastName”)},
element Title { sql:column(“Title”)},
element Email { sql:variable(“@EmailAddr”)}

}
‘) AS Result
FROM Person.Contact
WHERE ContactID = @ContactID

END

In a query window, execute the following T-SQL:

EXEC SqlVariableSample ‘gustavo007@adventure-works.com’, 1

What results did you get? You should see the same results as in the last two examples.

The sql:column() and sql:variable() functions are not available via CLR UDF’s and cannot be
used with datetime and XML columns.

Summary
This appendix, a primer of sorts, introduced you to the XQuery support in SQL Server 2005. Throughout
this book, you encountered XQuery infrequently, so this appendix built on that information to give you
a nice starting foundation for your XQuery journeys.

The more important things to take away from this appendix are the flexibility XQuery provides in
querying the xml data type and some of the advantages XQuery has over related technologies such as
XSLT. XQuery is much easier to learn and even at its initial 1.0 release has quite a bit of functionality.

The FLWOR statement alone gives XQuery much of its richness and provides much of the querying and fil-
ter capabilities. Not to take away from the other great functionality, but you have to admit that the FLWOR
statement makes using XQuery very pleasant. Combine that with all the comparison operators and many
functions available to XQuery and you have a full, powerful language that is a great complement to the
xml data type.

505

XQuery in SQL Server 2005

34_597922 appa.qxp 12/3/05 12:32 AM Page 505

34_597922 appa.qxp 12/3/05 12:32 AM Page 506

In
de

x

Index

Symbols & Numerics
@ (at) symbol, 158–159, 390
4FD (Fast Freddy’s Five Finger Discount)

case study
existing application and infrastructure

database design, 462–463
overview of, 462
partnership information, 463–464
shortcomings of, 464
Web Service use, 464
XML use, 463

integrating features
HTTP endpoints, 478–480
routines, 483–484
SQLXML Managed Classes, 480–483
xml data type, 465–478

purpose of, 461
selecting features, 464–465
table for, 469–471, 475

<message> element of WSDL file, 358–360
<portType> of WSDL file, 360–362
<row> element name, specifying, 151–152
/ (slash)

column name and, 159
path expression and, 91, 486

<types> element of WSDL file, 357–358

A
absolute path expression, 91
access to SQL Server, 314
account and vendor information for case

study, 463
ActiveX Data Object (ADO) extensions

overview of, 200
SQLXML 4.0 queries with, 202–206

Add Counters dialog box, 331
Add Database Reference dialog box, 436
Add New Item dialog box, 177–178, 436
Add Reference dialog box, 203, 265, 302
Add Web Reference dialog box, 342, 350
ADO (ActiveX Data Object) extensions

overview of, 200
SQLXML 4.0 queries with, 202–206

ADO.NET 2.0
asynchronous operations, 446–448,

458–459
features of, 441
Multiple Active Result Sets, 449–450,

457–458
query notification, 451–453, 459
xml data type, support for, 441–446,

455–457
AdventureWords database, 40, 53
after keyword, 99
aggregate functions (XQuery), 496–499
ALGORITHM argument, 322
ALTER ENDPOINT statement, 317, 324–325
ALTER permissions for endpoints, 327–328
ALTER TABLE statement and xml data type

column, 58–59
altering

case study application, 471–473, 475
contents of schema collection, 141–142
data with updategram

deleting, 242–245
inserting, 235–242
overview of, 234–235
updating, 245–249

endpoints, 324–325
schema collection, 136–138
table for case study, 475
untyped XML to typed XML, 56
XML index, 122–124

35_597922 bindex.qxp 12/3/05 12:28 AM Page 507

Analysis Services and collation, 44–45
analytical functions, 174
And Or operator, 493–494
annotated schema (views)

best practices for using, 228
creating on xml data type column, 79–80
overview of, 211–212
querying, 220–228
sql:field annotation, 212–213
sql:key-fields annotation, 218–220
sql:relation annotation, 213–214
sql:relationship annotation, 214–218

ANSI SQL, 174
application settings, 473
application user configuration for case

study, 462
APPLY operator, 71–72
argument, passing into procedure, 420–421
ARITHABORT option, 125
arithmetic operators (XQuery), 492–493
as first keyword, 99, 100–101
as last keyword, 99, 102
AS part of CREATE ENDPOINT statement,

317–319
assembly

building and deploying, 402–410
creating, 401
deploying, 179
description of, 174, 397–398
PERMISSION_SET levels, 408–409
routine and, 417
security and, 414
stored procedure and, 400–410
user-defined function and, 410–414

assigning
FOR XML results, 32–33
schema to variable, 133

associating schema or schema collection to
xml data type column, 56–57

asynchronous operations, 446–448, 458–459
Async=True keyword, 446
at (@) symbol, 158–159, 390
at-identity attribute, 239–241
atomization and XQuery, 24, 88

attribute
at-identity, 239–241
inserting into XML instance, 102–104
mapping column as, 159
name of, 166–167
ReturnID, 239–241
sql:relationship annotation and, 215
updating, 107–110
updg:id, 248–249
updg:nullvalue, 253–254
value of, sorting by, 98

Attribute axis, 92
attribute-centric mapping, 236
AUTHENTICATION argument, 321
authentication type, 318
AUTO mode of FOR XML statement

client-side formatting and, 208, 209
overview of, 148, 153–154

avg() function (XQuery), 498
axis, 487
Axis step, 92–93

B
Base Path property of SQLXMLOLEDB

provider, 278, 282–285, 287–288
BasePath property of SqlXmlCommand

object, 381
BASIC authentication, 318, 351–352
before keyword, 99
BeginExecuteXmlReader method of

SqlCommand class, 448
binary large object (BLOB)

reading and writing, 201
xml data type and, 19
XML instances and, 111

binding, 362–363
blind update, 251
blocking, 458–459
body of XQuery expression, 89, 487–488
b-tree structure, 111
Build menu, 179
building client application

comparing WSDL, 349–351
consuming Web Service, 341–349

BULK INSERT statement, 257

508

Analysis Services and collation

35_597922 bindex.qxp 12/3/05 12:28 AM Page 508

Bulk Load utility
guidelines and limitations of, 270–271
.NET Framework and, 265–270
object model
BulkLoad property, 260
CheckConstraint property, 260
ConnectionCommand property, 260–261
ConnectionString property, 261
ErrorLogFile property, 261
Execute method, 259
ForceTableLock property, 261
IgnoreDuplicateKeys property, 262
KeepIdentity property, 262
SchemaGen property, 262–263
SGDropTables property, 263
SGUseID property, 263
TempFilePath property, 263–264
Transaction property, 264
XMLFragment property, 264

operation modes, 258–259
overview of, 257–258
security issues and, 270
XML data streaming and, 258

BulkLoad property of Bulk Load utility, 260

C
canceling command, 459
CAS (Code Access Security), 414
case study (Fast Freddy’s Five Finger

Discount)
existing application and infrastructure

database design, 462–463
overview of, 462
partnership information, 463–464
shortcomings of, 464
Web Service use, 464
XML use, 463

integrating features
HTTP endpoints, 478–480
routines, 483–484
SQLXML Managed Classes, 480–483
xml data type, 465–478

purpose of, 461
selecting features, 464–465
table for, 469–471, 475

CAST function, 73, 77
casting numeric values, 73, 89
CDATA directive of FOR XML statement,

155–156
CERTIFICATE argument, 321
certificate authority, 352
check constraint, 74–75
CheckConstraint property of Bulk Load

utility, 260
Child axis, 92
classes

access to, 180
compiling into CLR stored procedure, 177–180
managed classes in SQLXML, 288–292
SqlCommand
BeginExecuteXmlReader method, 448
ExecuteXMLReader method, 445, 457

SqlDataReader
Close() and Dispose() methods, 459
GetSqlXml method, 443–444, 455–457

SqlDataRecord, 419, 422–423
SqlPipe, 405, 419
SqlTriggerContext, 424
SqlXml
CreateReader method, 188
inserting data with, 197–198
overview of, 187–188
updating data with, 195–197
using, 188–195

StringWriter, 306
XmlReader, 5, 11, 444–445
XmlReaderSettings, 11–12
XmlResolver, 308
XmlTextReader, 5
XmlTextWriter, 5
XmlUrlResolver, 305
XmlWriter, 5, 11, 304, 305
XmlWriterSettings, 11–12
XPathDocument, 8–9, 304
XPathNavigator, 9–10, 304
XslCompiledTransform, 301–304,

307–308
XslCompileTransform, 10–11
XslTransform, 307
XsltSettings, 306–307

509

classes

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 509

ClearParameters() method of
SqlXmlCommand object, 379

Click event code
for SqlXml button, 192–193
for SQLXMLOLEDB button, 281–282
for XML View button, 223–224

client-side formatting with FOR XML
statement, 206–209

client-side processing with SQLXML, 199
client-side support for xml data type

overview of, 187
SqlXml class
CreateReader method, 188
inserting data with, 197–198
overview of, 187–188
updating data with, 195–197
using, 188–195

ClientSideXml property
SqlXmlCommand object, 381
SQLXMLOLEDB provider, 277, 278, 280

Close() method of SqlDataReader
class, 459

CLR (Common Language Runtime). See also
CLR routine

description of, 171
enabling, 49, 398–400
integration of

advantages, 180–181
overview, 172–174

managed code and, 176–180
mapping SQL Server types to, 365–366
security model, 182–183

CLR routine
building, 483–484
data access and, 418
description of, 417–418
namespace requirements, 418
scalar-valued UDF, 433–435
SqlContext object and, 418
SqlDataRecord class and, 419
SqlPipe class and, 419
trigger and

creating, 435–438
DELETE operation, using on, 428–430
INSERT operation, using on, 425–428
overview of, 423–424

SqlTriggerContext class, 424
UPDATE operation, using on, 430–433

user-defined functions and
ByRef output parameter, 420–421
overview of, 420
SqlDataRecord object, 422–423

clustered index, 19, 114
Code Access Security (CAS), 414
Collation Settings, 44–45
column

full-text index and, 118
mapping as attribute, 159
mapping to, 212–213
relational, 503–505
xml data type

associating schema or schema collection to,
56–57

computed columns, 76–78
constraints, 74–76
converting from untyped to typed, 59
defaults, 73–74
inserting data into using updategram,

241–242
making changes to, 58–59
views, creating on, 79–80

column-level constraints, 74–75
COM (Component Object Model), 176
command, canceling, 459
command dialect, 284
CommandStream property of SqlXmlCommand

object, 381–382
CommandText property of SqlXmlCommand

object, 382
CommandType property of SqlXmlCommand

object, 382
Common Language Runtime (CLR). See also

CLR routine
description of, 171
enabling, 49, 398–400
integration of

advantages, 180–181
overview, 172–174

managed code and, 176–180
mapping SQL Server types to, 365–366
security model, 182–183

510

ClearParameters() method of SqlXmlCommand object

35_597922 bindex.qxp 12/3/05 12:28 AM Page 510

comparison operators (XQuery), 490–492
compiling class into CLR stored procedure,

177–180
Component Object Model (COM), 176
components required, 36–37
computed column, 76–78
Computer Management dialog box, 339–340
concurrency

high-level protection, 252–253
low-level protection, 251–252
medium-level protection, 252
overview of, 251

conditional statements
inserting element or attribute using, 104
updating node value and, 108–110

configuring SOAP
endpoints

altering, 324–325
deleting, 325
DLL and, 317–324
overview of, 316
permissions and, 326–329

Web Methods
stored procedures, 315–316
user-defined functions, 316

CONNECT permissions for endpoints, 328, 334
connect pipe, 405
connection string, 418
ConnectionCommand property of Bulk Load

utility, 260–261
ConnectionString property of Bulk Load

utility, 261
constraints

adding to xml data type column, 74–76
uses of, 82

construction, 21
constructors (XQuery), 93–95, 501–503
consuming Web Service, 342–349
CONTAINS() keyword, 120–122
content indexing
CONTAINS() keyword and, 120–122
overview of, 118–120

context connection keyword, 418
context functions (XQuery), 499–501
context node, 299
CONVERT function, 63

count() function (XQuery), 497
CREATE ASSEMBLY statement, 398, 401, 403
CREATE ENDPOINT statement

AS part of, 317–319
FOR part of, 319–324
overview of, 317

CREATE FULLTEXT CATALOG statement,
119–120

CREATE FUNCTION statement, 412
CREATE permissions for endpoints, 327
CREATE PROCEDURE statement, 403
CREATE QUEUE statement, 451
CREATE ROUTE statement, 451
CREATE SERVICE statement, 451
CREATE TABLE statement, 77
CREATE TRIGGER statement, 424
CreateParameter() method of

SqlXmlCommand object, 379
CreateReader() method of SqlXml class,

188, 193, 195, 202
creating

assembly, 401
CLR trigger and UDF, 435–438
Custom WSDL file, 367–372
document and writing to file, 12–13
endpoints, 317–324, 329, 479–480
index, 125
managed code, 400–401
schema collections, 128–135, 466–469,

474–475
stored procedure, 478–479
table

for case study, 469–471
overview of, 54

view on xml data type column, 79–80
CROSS APPLY operator, 71, 72
current node, 299
cursor scrolling, 458
cursor, server-side, 458
Custom WSDL file, 313, 330, 367–372

D
data

explicitly casting to XML type, 73, 89
implicitly casting to XML type, 73, 89

511

data

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 511

data (continued)
inserting

with SqlXml class, 197–198
with updategram, 235–242

modifying with updategram
deleting, 242–245
overview of, 234–235
updating, 245–249

retrieving
dynamically, 93–95
to populate form, 480–481
T-SQL and, 182

streaming, 258
updating

with SqlXml class, 195–197
in table, 391–394
with updategram, 245–249

data access in routine, 418
Data Definition Language (DDL) and schema

collections, 128
data() function (XQuery), 495–496
data manipulation and managed code, 182
data streaming, 258
database design for case study, 462–463
datetime value, 253
DDL (Data Definition Language) and schema

collections, 128
Default instance, 41
default mapping, 233, 255
default namespace, declaring, 90–91
default result set, 458
default WSDL file

endpoints and, 349–351, 364–366
native XML and, 313

defaults
applying to xml data type column, 73
endpoints, creating, and, 334

delete keyword, 105–106
DELETE operation, using CLR trigger on,

428–430
deleting

data with updategram, 242–245
endpoints, 325
item from XML document, 28, 105–106
schema collections, 135–136

denying permissions on schema collection,
142–144

deploying
assembly, 179
native XML Web Services, 334–335

dereference, 487
Descendant axis, 92
Descendant-or-self axis, 92
Diffgram, building, 481–483
DIGEST authentication, 318
disabling Windows Guest account, 333
Dispose() method of SqlDataReader

class, 459
distributed partitioned view, 80
.dll file, 398
document, 12–13. See also XML document
document() function (XSLT), 306, 308
document() method of XslCompiled-

Transform class, 301
DOM

alternative to, 8
shortcomings of, 9

DROP_EXISTING option, 125
dropping. See deleting
dynamically retrieving data, 93–95

E
element

inserting into XML instance, 99–102
mapping to table, 218–220
name of

duplicate, 166–167
sorting by, 98–99

nesting hierarchically, 214–218
value of, sorting by, 97–98

element-centric mapping, 236–237
ELEMENTS directive of FOR XML statement,

154
ELEMENTS XSINIL directive of FOR XML

statement, 160
elementxsinil directive of FOR XML

statement, 156–157
enabling

CLR, 49
CLR integration, 398–400
remote connection, 47–49

512

data (continued)

35_597922 bindex.qxp 12/3/05 12:28 AM Page 512

encapsulation, 181
ENCRYPTION argument, 322
endpoints

altering, 324–325
building client application

comparing WSDL, 349–351
consuming Web Service, 341–349
securing, 351–352

consuming and using, 337–339
creating, 317–324, 329, 479–480
defaults, 334
deleting, 325
granting permissions, 339–341
overview of, 316
permissions, 326–329, 334
state, managing, 334
stored procedure, creating, 478–479
WSDL argument and, 356

Error and Usage Report Settings, 45–46
error handling, 459
error log file, 270
ErrorLogFile property of Bulk Load

utility, 261
Execute method of Bulk Load utility, 259
ExecuteAndSend method of SqlPipe

class, 419
ExecuteNonQuery() method of

SqlXmlCommand object, 379
ExecuteScalar() method, 411, 413
ExecuteStream() method of

SqlXmlCommand object, 379
ExecuteToStream() method of

SqlXmlCommand object, 380
ExecuteXMLReader method of SqlCommand

object, 445, 457
executing queries using SQLXMLOLEDB

provider, 279–280
exist() method of xml data type

index and, 113
overview of, 64–66

Existential quantification, 24–25, 88–89
explicit mapping, 233–234
EXPLICIT mode of FOR XML statement

client-side formatting and, 208
overview of, 148, 155–157

explicitly casting data to XML type, 73, 89
EXTERNAL_ACCESS permissions, 414

F
F5 (run project), 192
Fast Freddy’s Five Finger Discount (4FD) case

study
existing application and infrastructure

database design, 462–463
overview of, 462
partnership information, 463–464
shortcomings of, 464
Web Service use, 464
XML use, 463

integrating features
HTTP endpoints, 478–480
routines, 483–484
SQLXML Managed Classes, 480–483
xml data type, 465–478

purpose of, 461
selecting features, 464–465
table for, 469–471, 475

Fill() method of SqlXmlAdapter
object, 384

FILLFACTOR option, 123
filtering

full-text index and, 121–122
query, 406

firewall, 333
FLWOR statement
FOR clause of, 488
GROUP BY clause of, 97–99
order by clause of, 489
overview of, 95–97, 488
return clause of, 489
WHERE clause of, 488–489

FOR clause of FLWOR statement, 488
FOR part of CREATE ENDPOINT statement

DATABASE_MIRRORING option, 320–324
overview of, 319
SERVICE_BROKER option, 320, 321–324
shared arguments, 321–324
SOAP value, 319

513

FOR part of CREATE ENDPOINT statement

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 513

FOR XML clause
assigning results, 32–33
AUTO mode of, 153–154, 208, 209
cautions with, 166–167
client-side formatting with, 206–209
EXPLICIT mode of, 155–157, 208
history of, 211–212
nesting expressions, 30–31, 162–164
overview of, 29–30, 148
PATH mode of, 31–32, 157–162
RAW mode of

client-side formatting and, 208
overview of, 148
specifying root element, 152–153
specifying <row> element name, 151–152

TYPE directive, 148
xml data type integration, 30
XSD schema generation, 164–166

ForceTableLock property of Bulk Load
utility, 261

formatting XML on client side, 206–209
4FD (Fast Freddy’s Five Finger Discount) case

study
existing application and infrastructure

database design, 462–463
overview of, 462
partnership information, 463–464
shortcomings of, 464
Web Service use, 464
XML use, 463

integrating features
HTTP endpoints, 478–480
routines, 483–484
SQLXML Managed Classes, 480–483
xml data type, 465–478

purpose of, 461
selecting features, 464–465
table for, 469–471, 475

full-text index
CONTAINS() keyword and, 120–122
overview of, 118–120

functions
analytical, 174
scalar-valued compared to table-valued, 411
sql:column() function, 503

sql:variable() function, 503–505
user-defined (UDF)

applying as constraint to table, 75–76
assembly and, 410–414
ByRef output parameter, 420–421
creating, 435–438
endpoints and, 316
scalar-valued, 433–435
SqlDataRecord object, 422–423

XQuery
aggregate, 496–499
context, 499–501
data() function, 495–496
string() function, 496

G
gated link, 183
gateway, 312
GetProducts stored procedure,

275–276, 291
GetSqlXml method
SqlDataReader class, 444, 455–457
SqlXml class, 192, 193, 194

GetType() method of SqlXmlCommand
object, 380

granting permissions
on endpoints, 339–341
on schema collection, 140–141
on schema collection object, 141–142

GROUP BY clause of FLWOR statement, 97–99

H
high-level concurrency protection, 252–253
HTTP endpoint, building, 478–480
HTTP listener, 314
HTTP SOAP access, 33
HTTP, support for, 292–293
httpcfg tool, 352

I
If-Then-Else operator, 494–495
IgnoreDuplicateKeys property of Bulk

Load utility, 262

514

FOR XML clause

35_597922 bindex.qxp 12/3/05 12:28 AM Page 514

implicit mapping, 233
implicitly casting data to XML type, 73, 89
importing schema

into collection, 146
multiple, with namespaces, 133–135
without namespace, 129–130

indexes on xml data type
altering, 122–124
best practices for, 124
full-text
CONTAINS() keyword, 120–122
overview of, 118–120

overview of, 19–20, 111
primary, 112–114
secondary

overview of, 114–115
PATH, 115–116
PROPERTY, 117–118
VALUE, 116–117

setting options for, 124
ten commandments for creating, 125

inheritance, 181
insert keyword, 99–104
INSERT operation, using CLR trigger on,

425–428
inserting

data
with SqlXml class, 197–198
with updategram, 235–242

item into XML document, 27–28
nodes into existing document, 99–104
into untyped XML data type column, 54

installing
Advanced button, 39–40
Authentication Mode, 41, 42–43
Collation Settings, 44–45
components, choosing, 39–40
components required, 36–37
configuration settings, 47–50
Error and Usage Report Settings, 45–46
instance, selecting, 40–41
progress of, 47, 48
Ready to Install screen, 46–47
Report Server setup, 45

Service Account setup, 41–42
SQL Native Client, 201, 275
SQL Server Installation Wizard, 36, 37
System Configuration Check, 38
Welcome/Start screen, 36

INTEGRATED authentication, 318
integrating features for case study

HTTP endpoints, 478–480
overview of, 465–466
reporting and, 466–473
routines, 483–484
SQLXML Managed Classes, 480–483
user information and, 473–478

integration of Common Language Runtime
(CLR), 172–174, 180–181, 398–400

into keyword, 99
invocation link, 182
IRowsetFastLoad interface, 259
IsDBNull method, 456–457
ISequentialStream interface, 201
item, 23

K
KeepIdentity property of Bulk Load

utility, 262
Kerberos authentication, 333
keywords
after, 99
as first, 99, 100–101
as last, 99, 102
Async=True, 446
before, 99
CONTAINS(), 120–122
context connection, 418
delete, 105–106
insert, 99–104
into, 99
NEAR, 121
replace value of, 106–110
update, 106–110
XMLSCHEMA, 165

515

keywords

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 515

L
last() function (XQuery), 499–500
link, 182
Load method of XslCompiledTransform

class, 301
locking, 458
logical operators (XQuery), 493–495
Login-New dialog box, 326, 340
low-level concurrency protection, 251–252

M
Managed Classes in SQLXML

Diffgram, building, 481–483
examples, 385–395
object model
SqlXmlAdapter object, 384–385
SqlXmlCommand object, 378–383
SqlXmlParameter object, 383–384

overview of, 288–292, 480
retrieving data, 480–481

managed code. See also routine
advantages of, over T-SQL, 180–181
assembly and, 397–398
choosing between T-SQL and, 181–182
creating, 400–401
examples of, 400
overview of, 171, 176–180, 417

managing
endpoint state, 334
schema collections

altering, 136–138
creating, 128–135
dropping, 135–136
overview of, 128

mapping
attribute-centric, 236
to column in table, 212–213
default, 233, 255
element to table, 218–220
element-centric, 236–237
mixed mode, 237–239
node to table, 213–214
relationships among three tables, 224–226
SQL Server to CLR types, 365–366
SQL Server to XSD types, 63, 364–365

mapping schema. See also views
applying to delete updategram, 244
description of, 232
updategrams and, 233–234

Mapping Schema property of SQLXMLOLEDB
provider, 278, 287–288

Match Template, 300
max() function (XQuery), 498
MAXDOP option, 123
MDAC (Microsoft Data Access Components)

and SQL Native Client, 200, 201, 274–275
medium-level concurrency protection, 252
memory garbage collection, 173
<message> element of WSDL file, 358–360
methods
BeginExecuteXmlReader method of

SqlCommand class, 448
CreateReader() method of SqlXml class,

188, 193, 195, 202
Execute method of Bulk Load utility, 259
ExecuteScalar(), 411, 413
ExecuteXMLReader method of

SqlCommand object, 445, 457
exist()

index and, 113
overview of, 64–66

GetSqlXml
of SqlDataReader, 444, 455–457
of SqlXml class, 192, 193, 194

IsDBNull, 456–457
for returning XML data, 448
SqlPipe class, 419
SqlXmlAdapter object, 384–385
SqlXmlCommand object, 378–380
Transform method of XslCompiled-

Transform class, 301, 304–306
xml data type

combining, 69–71
exist(), 64–66
modify(), 68–69, 477–478
nodes(), 66–68
overview of, 59–60
query(), 60–61, 476–477
using operators with, 71–72
value(), 61–63
XQuery expression and, 85

XslCompiledTransform class, 301

516

last() function (XQuery)

35_597922 bindex.qxp 12/3/05 12:28 AM Page 516

Microsoft Certificate Services, 352
Microsoft Data Access Components (MDAC)

and SQL Native Client, 200, 201, 274–275
Microsoft Intermediate Language (MSIL), 176
Microsoft SQL Server 2005 Beta 2 Setup

Support Files as required component,
36–37

Microsoft SQL Server 2005→Configuration
Tools, 398

min() function (XQuery), 497
Mixed Mode authentication, 43
mixed mode mapping, 237–239
modify() method of xml data type, 68–69,

477–478
modifying

case study application, 471–473, 475
contents of schema collection, 141–142
data with updategram

deleting, 242–245
inserting, 235–242
overview of, 234–235
updating, 245–249

endpoints, 324–325
schema collection, 136–138
table for case study, 475
untyped XML to typed XML, 56
XML index, 122–124

MSIL (Microsoft Intermediate Language), 176
Multiple Active Result Sets, 449–450, 457–458

N
Name property of SqlXmlParameter

object, 384
Named instance, 41
Named Template, 300
namespace

default, declaring, 90–91
description of, 22
importing

multiple schemas with, 133–135
schema without, 129–130

routine and, 418
specifying when creating endpoint, 330
System.Data.SqlTypes namespace, 187

System.xml namespace
enhancement to, 4
functionality in, 3
performance, 5–6
type support, 6–8
XML query architecture, 10–11
XmlReader and XmlWriter classes,

11–13
XPathDocument, 8–9
XPathNavigator, 9–10

System.Xml.Xsl namespace, 301
WSDL file, 357

namespace prefix, declaring, 90
NameSpace property of SqlXmlCommand

object, 382
namespaces property of SQLXMLOLEDB

provider, 278
native XML

access benefits, 314
operation of, 312–313
performance and, 330–332
security and, 333–334
SOAP and, 312
support requirements, 314

NEAR keyword, 121
NESTED mode of FOR XML statement and

client-side formatting, 208–209
nesting

elements hierarchically, 214–218
FOR XML statements, 30–31, 162–163

.NET Framework 2.0. See also CLR (Common
Language Runtime)

Bulk Load utility and, 265–270
developing objects using, 177–180
downloading, 36
managed code and, 397
as required component, 36–37
T-SQL compared to, 174–175

.NET Framework for XML, 3–4

.NET routine, building, 483–484
New Project screen, 177, 435
node

deleting
from xml data type column, 106
from xml data type variable, 105

517

node

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 517

node (continued)
inserting into existing document, 99–104
mapping to table, 213–214
XML document and, 299

node test, 92–93, 487
nodes() method of xml data type, 66–68
non-preemptive threading, 173
Non-Transacted mode of Bulk Load utility,

259, 270
Notification operation, 362
NULL handling and updategram, 253–254

O
object, developing using .NET Framework,

177–180
Object Explorer window, 326, 341
object-oriented capabilities of CLR, 181
ODBC driver, 200
OLE DB provider, 200
One-way operation, 360–361
OPENXML clause

enhancements to, 167–169
overview of, 29, 33

OPENXML feature of SQLXML 4.0, 231, 232
operators

relational, 174
UNION ALL, 80
using with xml data type methods, 71–72
XQuery

arithmetic, 492–493
comparison, 490–492
logical, 493–495
value comparison, 492

Optimistic Concurrency Control, 251
order by clause of FLWOR statement, 489
OUTER APPLY operator, 71–72
OutputEncoding property of

SqlXmlCommand object, 382–383

P
Parent axis, 92
partnership information for case study,

463–464
passing argument into procedure, 420–421

passing parameters
Managed Classes and, 390
querying and, 406–410
updategrams and, 249–251

password, choosing, 43
path expressions

Axis step, 92–93
overview of, 85, 91–92, 487–488

PATH index, 20, 115–116
PATH mode of FOR XML clause, 31–32,

157–162
performance

enhancements to .NET Framework, 5–6
integrating CLR and, 173
native XML Web Services and, 330–332, 334
SQLXMLOLEDB provider and, 288
untyped XML and, 54

performance counters, 331–332
Performance Monitor application, 331
permissions

assemblies and, 408–409, 414
Bulk Load utility and, 270
CLR security model and, 182–183
on endpoints

granting, 339–341
types of, 326–329, 334

on schema collections
denying, 142–144
granting, 140–142
revoking, 144–145

polymorphism, 181
<portType> of WSDL file, 360–362
position() function (XQuery), 500–501
predicate, 61, 66, 487
preemptive threading, 173
primary (parent) key, 215
primary XML index, 19, 112–114
Prolog of XQuery expression, 89–91, 487
properties

Bulk Load utility, 260–264
SqlXmlCommand object, 380–383
SQLXMLOLEDB provider, 277–279
SqlXmlParameter object, 383–384

PROPERTY index, 20, 117–118
proximity search, 120

518

node (continued)

35_597922 bindex.qxp 12/3/05 12:28 AM Page 518

Q
quantification and XQuery

Existential, 24–25
overview of, 88–89
Universal, 25–26

query() method of xml data type, 60–61,
476–477

query notification, 451–453, 459
querying

filtering and, 406
with inline T-SQL statements, 385–387
parameters and, 406–410
SQLXML 4.0 and ADO, 202–206
SQLXMLOLEDB provider, using, 279–280
with stored procedure, 390–391
with template, 387–390
template queries, executing, 285–288
xml data type with XQuery language

atomization and, 88
FLWOR statement, 95–97
overview of, 85–86
path expressions, 91–93
Prolog, 89–91
quantification and, 88–89
sequence, 87–88
sorting, 97–99
structure of, 86
type promotion and, 89
XML construction, 93–95

XML views, 220–228
XPath query
SQLXMLOLEDB provider and, 280–282
XSD schema and, 227–228

R
RAW mode of FOR XML statement

client-side formatting and, 208
overview of, 148
specifying root element, 152–153
specifying <row> element name, 151–152

ReadOuterXML method of XmlReader class,
444–445

ReadValueAs method of XmlReader class, 7
real-time transaction processing, 335

rebuilding index, 123
records, inserting multiple at one time,

238–239
recursive query, 174
relational operators, 174
relational schema, 128
relational variable and column, 503–505
relative path expression, 91
reliability and integrating CLR, 173
remote connections, enabling, 47–49
replace value of keyword, 106–110
Report Server setup, 45
reporting information for case study, 463
Request-response operation, 361
retrieving data

dynamically, 93–95
to populate form, 480–481
T-SQL and, 182

return clause of FLWOR statement, 489
return value, xml data type as, 18–19
ReturnID attribute, 239–241
returning

entire XML document, 188–193
value from XML document, 193–195

revoking permissions on schema collection,
144–145

ROOT directive of FOR XML statement,
152–153

RootTag property of SqlXmlCommand
object, 383

routine
building, 483–484
data access and, 418
description of, 417–418
namespace requirements, 418
scalar-valued UDF, 433–435
SqlContext object and, 418
SqlDataRecord class and, 419
SqlPipe class and, 419
trigger and

creating, 435–438
DELETE operation, using on, 428–430
INSERT operation, using on, 425–428
overview of, 423–424
SqlTriggerContext class, 424
UPDATE operation, using on, 430–433

519

routine

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 519

routine (continued)
user-defined functions and

ByRef output parameter, 420–421
overview of, 420
SqlDataRecord object, 422–423

<row> element name, specifying, 151–152

S
SAFE permissions, 414
scalability and integrating CLR, 173
scalar-valued function, 411, 433–435
schema. See also schema collections; views

finding specific, in collection, 139
generating, and FOR XML clause, 164–166
preparing for import into collection, 146
storing, 138, 139
typed XML and, 56–58
untyped XML and, 54–55

schema collections
altering, 136–138
components of, 128–129
creating, 128–135, 466–469, 474–475
dropping, 135–136
guidelines and limitations, 146
managing, 128
overview of, 127
permissions

denying, 142–144
granting, 140–142
revoking, 144–145

validation and, 130–132, 135
viewing, 138–139

SchemaGen property of Bulk Load utility,
262–263

SchemaPath property of SqlXmlCommand
object, 383

secondary XML index
overview of, 19–20, 114–115
PATH, 115–116
PROPERTY, 117–118
VALUE, 116–117

securing endpoint, 351–352
security

annotated schemas and, 228
assembly and, 414

Bulk Load utility and, 270
integrating CLR and, 174
native XML Web Services and, 333–334
updategram and, 255

security models, 182–183
SELECT CASE statement, 427
SELECT statement and FOR XML statement,

148, 162
selecting

features for case study, 464–465
xml data type, 17

Self axis, 92
Send method of SqlPipe class, 419
sequence and XQuery, 23, 87–88
server-side cursor, 458
server-side formatting, 207–208
service, 363
Service Account setup, 41–42
Service Broker, 451
Service Oriented Architecture, 335
Service Pack 3, 311
SGDropTables property of Bulk Load

utility, 263
SGUseID property of Bulk Load utility, 263
shredding, 66, 111
Simple WSDL file

endpoints and, 349–351, 366–367
native XML and, 313
Web Services and, 330

slash (/)
column name and, 159
path expression and, 91, 486

SOAP
configuring

endpoints, 316–329
overview of, 314
Web methods, 314–316

deployment scenarios, 334–335
endpoints

building client application, 341–351
consuming and using, 337–339
granting permissions, 339–341
securing, 351–352

guidelines and limitations of, 329–330
native XML and, 312–314
overview of, 311–312

520

routine (continued)

35_597922 bindex.qxp 12/3/05 12:28 AM Page 520

performance and, 330–332
security and, 333–334
support for, 292–293

Solicit-response operation, 361–362
Solution Explorer (Visual Studio 2005), 265,

343, 351
sorting behavior, 44
sorting in XQuery, 97–99
SQL Native Client. See also SQLXMLOLEDB

provider
deployment of, 201, 275
MDAC differences and, 201, 274–275
overview of, 200–201, 273, 274
as required component, 36–37
xml data type support, 201, 275

SQL Server Installation Wizard, 36, 37
SQL Server Management Studio, 57
SQL Server Reporting Services, 335
SQL Server 2005

downloading, 35
improvements for XML support, 16
version of, 35

sql:column() function, 503
SqlCommand class
BeginExecuteXmlReader method, 448
ExecuteXMLReader method, 445, 457

SqlContext object, 405, 418
SqlDataReader class
Close() and Dispose() methods, 459
GetSqlXml method, 443–444, 455–457

SqlDataRecord class, 419, 422–423
sql:field annotation, 212–213
sql:key-fields annotation, 218–220
SqlMetaData object, 422–423
SQLOLEDB provider, 207
SqlPipe class, 405, 419
sql:relation annotation, 213–214
sql:relationship annotation, 214–218
SqlTriggerContext class, 424
sql:variable() function, 503–505
SQLXML 4.0

Bulk Load utility
BulkLoad property, 260
CheckConstraint property, 260
ConnectionCommand property, 260–261

ConnectionString property, 261
ErrorLogFile property, 261
Execute method, 259
ForceTableLock property, 261
guidelines and limitations of, 270–271
IgnoreDuplicateKeys property, 262
KeepIdentity property, 262
.NET Framework and, 265–270
operation modes, 258–259
overview of, 257–258
SchemaGen property, 262–263
security issues and, 270
SGDropTables property, 263
SGUseID property, 263
TempFilePath property, 263–264
Transaction property, 264
XML data streaming and, 258
XMLFragment property, 264

client-side formatting and, 206–209
data provider options, 376
history of, 273
Managed Classes

Diffgram, building, 481–483
examples, 385–395
overview of, 288–292, 480
retrieving data, 480–481
SqlXmlAdapter object, 384–385
SqlXmlCommand object, 378–383
SqlXmlParameter object, 383–384

OPENXML feature of, 231, 232
overview of, 199
queries with ADO, 202–206
SQL Native Client and, 200–202
Web Services, 292–293

SqlXml class
CreateReader method, 188
inserting data with, 197–198
overview of, 187–188
updating data with, 195–197
using, 188–195

SqlXmlAdapter object, 384–385
SqlXmlCommand object

methods, 378–380
overview of, 378
properties, 380–383

521

SqlXmlCommand object

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 521

SQLXMLOLEDB provider
executing queries using, 279–280
overview of, 207, 275–277
properties of, 277–279
requirements for, 277
template queries, executing, 285–288
XPath queries and, 280–282
XSL transform and, 282–285

SqlXmlParameter object, 383–384
SSL, 333, 351–352
static typing, 62
step in path expression, 91–92
step qualifier, 487
stored procedure

access to class by, 180
assembly and, 400–410
compiling class into CLR, 177–180
creating, 478–479
endpoints and, 315–316
GetProducts stored procedure,

275–276, 291
native XML Web Services and, 334
querying with, 390–391

storing schema, 138, 139
streaming data, 258
string() function (XQuery), 496
StringWriter class, 306
Strong Password enforcement, 43
style sheet (XSLT)

compiling, 301
description of, 297

sum() function (XQuery), 499
Surface Area Configuration dialog box, 399
Surface Area Configuration for Features

form, 399
Surface Area Configuration form, 47, 48–50
Surface Area Configuration tool, 398
sys.endpoints system table, 324
sys.endpoint_webmethod system

table, 324
sys.soap.endpoint system table, 324
sys.sys schema collection, 58
System Configuration Check, 38
System.Data.SqlTypes namespace, 187

System.xml namespace
enhancement to

overview of, 4
performance, 5–6
type support, 6–8
XML query architecture, 10–11
XmlReader and XmlWriter classes,

11–13
XPathDocument, 8–9
XPathNavigator, 9–10

functionality in, 3
System.Xml.Xsl namespace, 301

T
table

for case study
creating, 469–471
modifying, 475

data in, updating, 391–394
full-text index and, 118
mapping

to column in, 212–213
element to, 218–220
to node in, 213–214

xml column, creating, 54
table-access link, 182
table-level constraints, 75–76
table-valued function, 411
Tabular Data Stream (TDS), 314
TAKE OWNERSHIP permissions for endpoints,

328–329
TempFilePath property of Bulk Load utility,

263–264
template

querying with, 387–390
updategram as, 249
XSLT style sheet and, 300

template queries, executing using
SQLXMLOLEDB provider, 285–288

timestamp value, 253
ToString() method of SqlXmlCommand

object, 380
Transacted mode of Bulk Load utility,

258–259, 270

522

SQLXMLOLEDB provider

35_597922 bindex.qxp 12/3/05 12:28 AM Page 522

Transaction property of Bulk Load
utility, 264

Transact-SQL (T-SQL)
benefits of, 172
choosing between managed code and,

181–182
CONVERT function, 63
DDL (Data Definition Language) statements

ALTER ENDPOINT, 324–325
CREATE ENDPOINT, 317–324
DROP ENDPOINT, 325
overview of, 317

enhancements to, 29–33, 147
FOR XML clause

assigning results, 32–33
AUTO mode of, 153–154, 208, 209
cautions with, 166–167
client-side formatting with, 206–209
EXPLICIT mode of, 155–157, 208
history of, 211–212
nesting expressions, 30–31, 162–164
overview of, 29–30, 148
PATH mode of, 31–32, 157–162
RAW mode of, 148, 151–153, 208
TYPE directive, 148
xml data type integration, 30
XSD schema generation, 164–166

limitations of, 174–176
managed code compared to, 180–181
OPENXML clause

enhancements to, 167–169
overview of, 29, 33

querying data with inline statements,
385–387

transform, 298
Transform method of XslCompiled-

Transform class, 301, 304–306
transformation, applying, 11
trigger

access to class by, 180
CLR compared to T-SQL, 424
creating, 435–438
DELETE operation, using on, 428–430
INSERT operation, using on, 425–428
overview of, 423–424

SqlTriggerContext class, 424
UPDATE operation, using on, 430–433
Visual Studio-generated, 437

T-SQL. See Transact-SQL
T-SQL declaration, 417
TYPE directive of FOR XML clause, 148–151
type promotion and XQuery, 26, 89
type support, enhancements to, 6–8
typed XML, 16, 56–58, 81
<types> element of WSDL file, 357–358

U
UDF (user-defined function)

applying as constraint to table, 75–76
assembly and, 410–414
ByRef output parameter, 420–421
creating, 435–438
endpoints and, 316
scalar-valued, 433–435
SqlDataRecord object, 422–423

UNION ALL operator, 80
Universal quantification, 25–26, 88–89
UNSAFE permissions, 414
untyped XML, 16, 54–55, 81
update keyword, 106–110
Update() method of SqlXmlAdapter

object, 385
UPDATE operation, using CLR trigger on,

430–433
updategram

concurrency and, 251–253
description of, 231
guidelines and limitations for, 255
mapping schema and, 233–234
modifying data with

deleting, 242–245
inserting, 235–242
overview of, 234–235
updating, 245–249

NULL handling and, 253–254
passing parameters and, 249–251
security issues and, 255
structure of, 232

523

updategram

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 523

updating
data

with SqlXml class, 197–198
in table, 391–394
with updategram, 245–249

node value in XML instance, 106–110
XML document, 28–29

updg:id attribute, 248–249
updg:nullvalue attribute, 253–254
user code, interrogation of, 181
user information, setting up xml data type for,

473–478
user-authentication, 182
user-defined function (UDF)

applying as constraint to table, 75–76
assembly and, 410–414
ByRef output parameter, 420–421
creating, 435–438
endpoints and, 316
scalar-valued, 433–435
SqlDataRecord object, 422–423

user-defined trigger. See trigger

V
validation

schema collections and, 127, 130–132, 135
of successful insert, 197

value comparison operators (XQuery), 492
VALUE index, 20, 116–117
value() method of xml data type, 61–63
Value property of SqlXmlParameter

object, 384
variable, relational, 503–505
vbc command, 290
viewing schema collections, 138–139
views. See also updategram

best practices for using, 228
creating on xml data type column, 79–80
overview of, 211–212
querying, 220–228
sql:field annotation, 212–213
sql:key-fields annotation, 218–220
sql:relation annotation, 213–214
sql:relationship annotation, 214–218

virtual server, installing SQL Server 2005
as, 39

Visual Studio
CLR trigger and UDF, creating, 435–438
remote connections and, 47
Solution Explorer, 265, 343, 351

W
Web Methods

description of, 312, 339
stored procedures and, 315–316
user-defined functions and, 316

Web Service
for case study, 464
consuming, 342–349

Web Service Definition Language. See WSDL
Web Services, 292–293, 312
websites

book, dedicated page for, 435
Microsoft SQL Server 2005, 35
.NET Framework 2.0, 36
SOAP specification, 311

Welcome/Start screen, 36
WHERE clause of FLWOR statement, 488–489
Windows Authentication Mode, 43
Windows Guest account, disabling, 333
WriteValue method of XmlWriter

class, 7–8
Wrox database, 53
WSDL (Web Service Definition Language)

file
binding, 362–363
contents of, 356–357
Custom, 313, 330, 367–372
default, 364–366
description of, 355–356
endpoint and, 349–351
<message> element, 358–360
namespace, 357
native XML and, 312–313
<portType> of, 360–362
services, 363
Simple, 313, 330, 349–351, 366–367

524

updating

35_597922 bindex.qxp 12/3/05 12:28 AM Page 524

<types> element, 357–358
Web Services and, 330

support for, 292

X
XML. See also native XML

typed, 16, 56–58, 81
untyped, 16, 54–55, 81

XML Data Modification Language (DML)
DELETE, 28, 105–106
FOR XML clause and, 150–151
INSERT, 27–28, 99–104
modify method, 28–29
overview of, 26
replace value of keyword, 106–110

xml data type. See also client-side support for
xml data type; indexes on xml data type;
querying, xml data type with XQuery
language; xml data type column

ADO.NET support for, 441–446, 455–457
best practices, 81–82
for case study

overview of, 465–466
reporting and, 466–473
user information and, 473–478

Column type, 17
Default WSDL file and, 366
FOR XML clause and, 30
Function return type, 18–19
indexes on, 19–20
limitations of, 82
methods

combining, 69–71
exist(), 64–66
modify(), 68–69, 477–478
nodes(), 66–68
overview of, 59–60
query(), 60–61, 476–477
using operators with, 71–72
value(), 61–63
XQuery expression and, 85

overview of, 16–17, 53
Parameter type, 18
settings options, 80

SQL Native Client support for, 201, 275
typed XML and, 56–58
untyped XML and, 54–55
Variable type, 17–18

xml data type column
associating schema or schema collection to,

56–57
computed columns, 76–78
constraints, 74–76
converting from untyped to typed, 59
defaults, 73–74
inserting data into using updategram,

241–242
making changes to, 58–59
views, creating on, 79–80

XML document. See also querying, xml data
type with XQuery language; xml data
type; XSLT

deleting item from, 28, 105–106
inserting

item into, 27–28
node into, 99–104

returning
entire, 188–193
value from, 193–195

typed, 56–58
untyped, 54–55
updating, 28–29
XQuery and, 26

XML query architecture, enhancements to,
10–11

xml root property of SQLXMLOLEDB provider,
278–279

XML schema namespace property, 17
XML Schema validation performance, 6
XML support in SQL Server, 15–16
XML use in case study, 463
XML views. See views
XmlConvert method of XmlReader class, 6
XMLFragment property of Bulk Load utility,

258, 264
XmlReader class

enhancements to, 5
new methods for, 11
ReadOuterXML method, 444–445

525

XmlReader class

In
de

x

35_597922 bindex.qxp 12/3/05 12:28 AM Page 525

XmlReaderSettings class, 11–12
XmlResolver class, 308
XMLSCHEMA keyword, 165
xml_schema_namespace function, 138–139
XMLTextReader, enhancements to, 5
XMLTextWriter, enhancements to, 5
XmlUrlResolver class, 305
XmlWriter class

enhancements to, 5
new methods for, 11
Transform method and, 304, 305

XmlWriterSettings class, 11–12
XPath

expression, 486–487
overview of, 486
query
SQLXMLOLEDB provider and, 280–282
XSD schema and, 227–228

XPathDocument class, 8–9, 304
XPathNavigator class, 9–10, 304
XQuery language

advantages of, 485–486
atomization and, 24, 88
constructors, 501–503
creating XML using, 501–503
description of, 21, 487
FLWOR statement, 95–97, 488–489
functions

aggregate, 496–499
context, 499–501
data() function, 495–496
string() function, 496

operators
arithmetic, 492–493
comparison, 490–492
logical, 493–495
value comparison, 492

overview of, 85–86
path expressions

Axis step, 92–93
overview of, 85, 91–92, 487–488

Prolog, 89–91, 487
quantification and, 24–26, 88–89
relational variables and columns, 502–505
sequence and, 23, 87–88

sorting, 97–99
structure of, 21–22, 86
support for, 4, 85
type promotion and, 26, 89
XML construction, 93–95
XML Data Modification Language and, 26
XPath and, 486–487

XSD data type to SQL Server 2005 data type
mappings, 63, 364–365

XSD schema
executing XPath query against, 280–282
generating, and FOR XML clause, 164–166
preparing for import into collection, 146
XML views and, 212

XSD, using within WSDL file, 357
XSINIL directive of FOR XML statement, 167
xsl property of SQLXMLOLEDB provider, 279,

282–285
XslCompiledTransform class, 301–304,

307–308
XslCompileTransform class, 10–11
XslPath property of SqlXmlCommand object,

383
XSLT

document, components of, 298–299
enhancements to, 295
guidelines for, 308
nodes, 299
overview of, 296–299
templates, 300–301
Transform method of XslCompiled-

Transform class, 304–306
XslCompiledTransform class, 301–304,

307–308
XsltSettings class, 306–307

XSLT processing performance, 5
XslTransform class, 307
XsltSettings class, 306–307

526

XmlReaderSettings class

35_597922 bindex.qxp 12/3/05 12:28 AM Page 526

36_597922 bob.qxp 12/3/05 12:33 AM Page 532

	Binder2.pdf
	cover.pdf
	page_c2.pdf
	page_r1.pdf
	page_r2.pdf
	page_r3.pdf
	page_r4.pdf
	page_r5.pdf
	page_r6.pdf
	page_r7.pdf
	page_r8.pdf
	page_r9.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf

	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf
	page_299.pdf
	page_300.pdf
	page_301.pdf
	page_302.pdf
	page_303.pdf
	page_304.pdf
	page_305.pdf
	page_306.pdf
	page_307.pdf
	page_308.pdf
	page_309.pdf
	page_310.pdf
	page_311.pdf
	page_312.pdf
	page_313.pdf
	page_314.pdf
	page_315.pdf
	page_316.pdf
	page_317.pdf
	page_318.pdf
	page_319.pdf
	page_320.pdf
	page_321.pdf
	page_322.pdf
	page_323.pdf
	page_324.pdf
	page_325.pdf
	page_326.pdf
	page_327.pdf
	page_328.pdf
	page_329.pdf
	page_330.pdf
	page_331.pdf
	page_332.pdf
	page_333.pdf
	page_334.pdf
	page_335.pdf
	page_336.pdf
	page_337.pdf
	page_338.pdf
	page_339.pdf
	page_340.pdf
	page_341.pdf
	page_342.pdf
	page_343.pdf
	page_344.pdf
	page_345.pdf
	page_346.pdf
	page_347.pdf
	page_348.pdf
	page_349.pdf
	page_350.pdf
	page_351.pdf
	page_352.pdf
	page_353.pdf
	page_354.pdf
	page_355.pdf
	page_356.pdf
	page_357.pdf
	page_358.pdf
	page_359.pdf
	page_360.pdf
	page_361.pdf
	page_362.pdf
	page_363.pdf
	page_364.pdf
	page_365.pdf
	page_366.pdf
	page_367.pdf
	page_368.pdf
	page_369.pdf
	page_370.pdf
	page_371.pdf
	page_372.pdf
	page_373.pdf
	page_374.pdf
	page_375.pdf
	page_376.pdf
	page_377.pdf
	page_378.pdf
	page_379.pdf
	page_380.pdf
	page_381.pdf
	page_382.pdf
	page_383.pdf
	page_384.pdf
	page_385.pdf
	page_386.pdf
	page_387.pdf
	page_388.pdf
	page_389.pdf
	page_390.pdf
	page_391.pdf
	page_392.pdf
	page_393.pdf
	page_394.pdf
	page_395.pdf
	page_396.pdf
	page_397.pdf
	page_398.pdf
	page_399.pdf
	page_400.pdf
	page_401.pdf
	page_402.pdf
	page_403.pdf
	page_404.pdf
	page_405.pdf
	page_406.pdf
	page_407.pdf
	page_408.pdf
	page_409.pdf
	page_410.pdf
	page_411.pdf
	page_412.pdf
	page_413.pdf
	page_414.pdf
	page_415.pdf
	page_416.pdf
	page_417.pdf
	page_418.pdf
	page_419.pdf
	page_420.pdf
	page_421.pdf
	page_422.pdf
	page_423.pdf
	page_424.pdf
	page_425.pdf
	page_426.pdf
	page_427.pdf
	page_428.pdf
	page_429.pdf
	page_430.pdf
	page_431.pdf
	page_432.pdf
	page_433.pdf
	page_434.pdf
	page_435.pdf
	page_436.pdf
	page_437.pdf
	page_438.pdf
	page_439.pdf
	page_440.pdf
	page_441.pdf
	page_442.pdf
	page_443.pdf
	page_444.pdf
	page_445.pdf
	page_446.pdf
	page_447.pdf
	page_448.pdf
	page_449.pdf
	page_450.pdf
	page_451.pdf
	page_452.pdf
	page_453.pdf
	page_454.pdf
	page_455.pdf
	page_456.pdf
	page_457.pdf
	page_458.pdf
	page_459.pdf
	page_460.pdf
	page_461.pdf
	page_462.pdf
	page_463.pdf
	page_464.pdf
	page_465.pdf
	page_466.pdf
	page_467.pdf
	page_468.pdf
	page_469.pdf
	page_470.pdf
	page_471.pdf
	page_472.pdf
	page_473.pdf
	page_474.pdf
	page_475.pdf
	page_476.pdf
	page_477.pdf
	page_478.pdf
	page_479.pdf
	page_480.pdf
	page_481.pdf
	page_482.pdf
	page_483.pdf
	page_484.pdf
	page_485.pdf
	page_486.pdf
	page_487.pdf
	page_488.pdf
	page_489.pdf
	page_490.pdf
	page_491.pdf
	page_492.pdf
	page_493.pdf
	page_494.pdf
	page_495.pdf
	page_496.pdf
	page_497.pdf
	page_498.pdf
	page_499.pdf
	page_500.pdf
	page_501.pdf
	page_502.pdf
	page_503.pdf
	page_504.pdf
	page_505.pdf
	page_506.pdf
	page_507.pdf
	page_508.pdf
	page_509.pdf
	page_510.pdf
	page_511.pdf
	page_512.pdf
	page_513.pdf
	page_514.pdf
	page_515.pdf
	page_516.pdf
	page_517.pdf
	page_518.pdf
	page_519.pdf
	page_520.pdf
	page_521.pdf
	page_522.pdf
	page_523.pdf
	page_524.pdf
	page_525.pdf
	page_526.pdf
	page_527.pdf

