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Preface

(or, Why Did He Write Yet Another Book?)

Another book? Here we go again…

Why, yes! For those of you who have followed

my eventful career, you already know that this is

actually my third book. Third book? Well, my sec-

ond book, Vector Game Math Processors (the first

to be published) was met in the marketplace with

enthusiasm.

Everyone who read it and contacted me seemed to like it. It was

more of a “niche” book, as it primarily taught how to vectorize

code to take advantage of the vector instruction sets of processors

only recently introduced into the office and home. These con-

tained functionality that was once confined only to the domain of

the “super computer.” This book discussed pseudo vector code

that actually emulated vector processors using generic optimized

C, as well as heavy utilization of the following instruction sets:

� X86 (MMX, SSE(2), 3D-Now! Professional)

� PowerPC and Altivec

� MIPS (MIPS-3D, MIPS V, etc.)

You may ask why I should write about three different processors

in one book instead of three separate books. By using the tutorials,

you should be able to cross program these and future processors

(especially those proprietary ones).

So if you have not already, go buy a copy!

Did I not mention that this was my third book? Well, the first

book has a long story, but you’ll have to buy the vector book and

read the preface in it to get the scoop on that one!

The problem with writing “yet another book” is that the first

one tends to have the best jokes or the author’s favorite stories.

ix



But I have so many from over the years, especially since I have

eight kids (with the same wife), that I have saved some for this

book (and possibly the next one).

While I was writing the chapter on programming shaders in my

vector book (they are vector processors too, are they not?), I real-

ized the need for a book such as this to learn how to program

them. I anxiously called my publisher, Wordware Publishing, to

pitch the idea. Unbeknownst to me, they were already in the pro-

cess of publishing a shader book, Direct3D ShaderX: Vertex and

Pixel Shader Tips and Tricks, edited by Wolfgang F. Engel. But

they immediately came back with, “How about a beginner shader

book with slightly fewer pages and a lower price tag, which can be

purchased by a larger audience?” I thought about it and agreed. I

was a glutton for more writing. Here I was, not even done writing

the vector book, signing a contract for this shader book.

Bored yet? Here is where things get exciting! I sort of became

greedy. Money had nothing to do with it. It was that name-in-print

thing. One book is a novelty. Most authors write one, find out how

much work it is, and discover that the monetary returns are

extremely low, unless they have that one-in-2.8 million best-seller.

(Just check out the sales rankings from Amazon or Barnes &

Noble to see what I am talking about!) Two or more books indi-

cate a serious author.

As I mention in an actual chapter within this book (just to make

sure that those who skip reading this preface will find out), there

are multiple manufacturers with their own shader instruction sets

doing their own thing. The point is that this is the Intel/AMD pro-

cessor wars all over again. The technology (as well as the

instruction sets) is forked but will probably eventually merge back

together again. Maybe it won’t take 10+ years this time! That, and

vertex shaders are so different from pixel shaders. This almost

calls for two books:

� An introduction to vertex shaders

� An introduction to pixel shaders

But alas, both my publisher and technical editor felt that one

would suffice.

Preface
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For several reasons, this book primarily focuses on the DirectX

9 (DX9) functionality and forsakes earlier versions. The problem

with this approach is that the video card you may be testing on

may not be fully DX9 compatible.

This book is definitely needed because Engel’s ShaderX books

(two others were released during the editing phase of this book)

are essentially a collection of technical white papers and therefore

over the heads of beginners or inexperienced game programmers.

But I continued on and finished, feeling confident that you would

not see this as a “me-too” book!

One last item to note is that this book was actually delayed. I

had originally planned to be done by December 2002 and have the

book in stores in time for the 2003 Game Developers Conference.

There were technical check delays on my vector book. (You would

not believe how hard it is to find someone proficient in vector

math processing who actually had some time in their schedule.)

Finally, a couple of people were found and utilized! The other

delay was the economy. I was actually unemployed for three

months in 2003 (for a month August/September and then again

November/January). It kind of forced us to have an extremely fru-

gal Christmas and holiday season! Some would see that as a lot of

free writing time, but regretfully no. Job hunting is a full-time

(and then some) occupation.

Okay, I am not going to bore you with my “writing is hard

work” speech, and if you really do not like my books, go write

your own. But please contact me with any comments or recom-

mendations (or bug fixes) by emailing me at books@leiter-

man.com.

� � �

I wish to thank those who have contributed information, hints,

testing time, etc., for this book: My friend Paul Stapley for some

technical recommendations; my old-time friend Jack Palevich

from my Atari days for his review of my book and insight into

vertex shaders; Wolfgang Engel for his technical check of this

book; Ken Mayfield for some 3D computer art donations and my

partner in a new line of game software in conjunction with my

company, Wild Goose Games; Matthias Wloka with nVidia for
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some technical vertex shader programming help; and others that I

have not mentioned here.

Most of all, I’d like to thank my wife, Tina, for not balking too

much when I bought that new laptop, G4 Macintosh, top-of-the-

line video card, and other computer peripherals during the devel-

opment of the vector book last year and for her muteness during

the development of this book. Although I should note that this

time, there was no rhetorical question, “That is the last one,

right?” every time she discovered a new piece of equipment,

because there were none visible to be discovered. I had purchased

all the different flavors of graphics cards that supported shaders

just to make sure that I had a complete and detailed book for you

here!

I should note, however, that the location of my home office was

changed by my wife from an entire wall in the master bedroom to

a large room with two really big doors. Okay, okay, so my new

computer lab is in the garage. Done laughing yet? Building full

height wall partitions using 4'x8'x1" insulating foam makes for a

pretty neat windowless office space that hides the majority of the

garage. But I have plans to resolve the scenery problem! How

many of you can say you have a 12'x18' private home office?

I finally wish to thank Jim Hill from Wordware Publishing, Inc.

for seeing the possibilities of this and my last book, and Wes

Beckwith for the two time extensions and not asking the question I

frequently hear from my children: “Is it done yet? Is it done yet?”

Finally, I’d like to thank Paula Price of Wordware Publishing for

making sure those checks arrived just when I needed them.

So get up from that floor or chair in the bookstore where you

are currently reading this book, as you know you will need this

book for work. Besides, I filled it with so much stuff you might as

well stop copying it into that little notebook. Grab a second copy

for use at home, walk over to that check stand, and buy them both.

Tell your friends how great the book is so they will buy a copy

too! Insist to your employer that the Technical Book Library needs

a few copies as well. This book is an instruction manual and a

math source library all rolled up into one.

My eight children and outnumbered domestic engineering wife

will be thankful that we can afford school clothes as well as

Preface
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Christmas presents this year! Unlike that old movie’s implication

that kids are Cheaper by the Dozen, they are not! They eat us out

of house and home!

(Déjà vu — sounds like a cut’n’paste from my last book!)

To check for any updates or code supplements to any of my

books, check out my web site: http://www.leiterman.com/books.

Send any questions or comments to books@leiterman.com.

� � �

My brother Ranger Robert Leiterman is the writer of mystery-

related nature books that cover diverse topics such as natural

resources and his BigFoot mystery series. Buy his books also!

Especially buy them if you are a game designer and interested in

cryptozoology or natural resources or just have kids. If it was not

for him having me proofread his manuscripts, I probably would

not have started writing my own books as well. (So, blame him!)

Watch out for books from Thomas Leiterman, yet another of my

brothers who has joined the Leiterman brothers book-writing club.

That leaves three remaining brothers yet to join!

(Now if we can only get our kids to read our books — some-

thing about needing more pictures . . .)
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C h a p t e r 1

Introduction

Hey, dudes and dudettes! You are now about to hang ten

on the crest of a new technology wave!

The next logical step in making 3D graphics and animation go

faster is to allow a programmer to add his own code directly into

the rendering pipeline. The way is now paved where a simple

C-style scripting language called Cg is implemented as well as an

assembly programming language with miscellaneous levels of

syntax for programming registers for the new programmable ver-

tex and pixel shader-based video cards. In my previous book,

Vector Game Math Processors, I discussed the internals of mathe-

matics using vector-based processors. You can think of it as a

foundational support for this book. You did read the preface in this

book, didn’t you? You did buy my other book, didn’t you? Great!

This book makes reference to it from time to time, so go buy a

copy for your research library if you have not already!

The problem with writing an introductory book (I do not indi-

cate beginner here, as it has certain connotations) is that one really

does not know how introductory to make it. Readers can be any-

where from high school students with a weak math foundation

trying to break into the game/graphics industry up to professional

3D programmers looking for new insight (or just wanting some-

thing to laugh at!). So I wrote this book with the assumption that

you have a basic background in linear algebra and trigonometry

(that is, sines, cosines, vectors, and matrices for those of you on

the weak end of the mathematical skills spectrum).

This book gives a quick refresher, but those of you in doubt,

please refer to another mathematics book, such as my vector book

mentioned earlier or 3D Math Primer for Graphics and Game

1



Development by Fletcher Dunn and Ian Parberry (Wordware

Publishing).

This book is laid out as a reference manual in terms of function-

ality and is organized into three primary sections:

� Vertex shaders

� Pixel shaders

� Reference information

It is not an alphabetical listing like some technical bible docu-

ments because I personally prefer types of functionality to be

adjacent to each other. Just because I wrote this does not mean that

I remember everything. I frequently revisit my other books as ref-

erence manuals whenever I’m working with subject matter that

they relate to (one of the reasons my home office has very large,

overflowing bookcases).

Since I’ve always felt that the building blocks of code are like

the circle of life (insert a lion standing on a rock here!), writing a

book to be read and understood should be organized in that same

way. Since about (I’m guessing here) 65 percent of you reading

this probably do not have a new top-of-the-line video card that

supports pixel shaders, then only the vertex shader section will be

of use to you, as you probably will not be able to test anything you

might learn. Of course, you could always borrow a card from

work or get a hand-me-down from a rich friend. I received my

first GeForce2 MX board that way and then started spending tons

of money on various boards before the price started dropping. But

I digress.

Part I, “Vertex Shaders,” (Chapters 3 through 9) and Part II,

“Pixel Shaders,” (Chapters 10 through 11) are organized, for the

most part, in a learning order. Instructions are learned early in a

section and used in later sections or chapters. They have also been

intermixed with some background information to help minimize

the need to have to switch back and forth between a math book

and this book. Throughout this book I attempt to annoy you to get

you to buy my other book (or at the very least buy one or more

books from Wordware Publishing).

As this is an introductory book, it is not really going to help you

fly (only get you ready to jump out of the nest and glide to the

2 Chapter 1: Introduction



bookstore to buy, or get into a position to understand, Engel’s

ShaderX books).

I have painstakingly tried to ensure that the same mistakes pres-

ent in the actual DirectX 9 documentation and in at least one of

the books that appears to have been rushed to market were not

repeated here. In fact, this book took a slow development path.

There is very little white space on the pages in keeping with my

last book, which crammed tons of information into a very little

space. If you have purchased and read my vector book, you might

find that this book is organized in a similar way. You might also

experience some déjà vu. Some of the material in that book was

needed in this book, and some cutting and pasting was imple-

mented. Unfortunately, I had to come up with new stories and new

jokes.

For each vertex and pixel section, a block diagram of the

registers is given and an explanation of each of the registers is

implemented, which is followed by information needed to assem-

ble that code type. This is followed by an array of all the

instruction-statement types, and by which version they are actually

supported. Each of these are individually explained with the ver-

sion numbers supported repeated next to the instruction to help

limit the need for flipping back and forth.

Throughout the chapters you will see sections such as the

following:

Pseudocode:

dx=ax+bx dy=ay+by dz=az+bz dw=aw+bw

Anybody who has read Knuth knows exactly what pseudocode is.

For the rest of you, however, pseudocode is not really a program-

ming language but coding data organized in terms of functionality.

It contains enough information to allow one to understand the

basic functionality of the code and code it in any programming

language.

Chapter 1: Introduction 3



Algebraic law:

Additive Inverse a – b = a + (–b)

By using source negation:

dx=ax+(–bx) dy=ay+(–by) dz=az+(–bz) dw=aw+(–bw)

Since this is partially a math book and contains linear algebra, it

might as well have the algebraic laws handy. I have personally

found that having them nearby helps me to understand solutions to

problems. That is something I did not do in high school because I

found them too wordy, but I heavily push it on my own kids not in

an attempt to be an evil father, but to make their life much easier.

Listing 1-1: Vertex shader

// Sets c0 with {1.0, 0.0, 2.0, 1.5}
vs.1.1 // Version 1.1
def c0, 1.0f, 0.0f, 2.0f, 1.5f // Set c0 register

A vertex shader code listing is just that — code that is written spe-

cifically for the vertex shader. There is no CD included with this

book, but the samples demonstrated within are available for down-

load from www.wordware.com/files/vshaders. Those samples are

labeled by chapter. Additional snippets within the book are actu-

ally modifications of existing samples with the DirectX SDK,

which can be downloaded directly from the Microsoft web site.

Errata can be found at http://www.leiterman.com/books.html.

Listing 1-2: Pixel shader

// Sets c0 with {1.0, 0.0, 2.0, 1.5}
ps.1.1 // Version 1.1
def c0, 1.0f, 0.0f, 2.0f, 1.5f // Set c0 register

A pixel shader code listing is just that — code that is written spe-

cifically for the pixel shader. The rest of the vertex shader

explanation applies here as well.

Listing 1-3: C++

D3DMATRIX mtxA, mtxB;

mtxA = mtxB;

4 Chapter 1: Introduction



Sample C code snippets are included (not everywhere, but wher-

ever I felt that it would make understanding a concept easier or if

there was some trick that I felt was important enough to be

learned). For example, did you know that you could just equate a

structure to a structure to copy it within Visual C? No need for the

wasteful overhead of a memcpy() function. In this particular case,

the matrix is 16x4, thus 64 bytes, and so the compiler actually

expands memory move instructions to copy the data.

Finally, whenever macro instructions were utilized, I did my

best to expand them to make their functionality easier to under-

stand. It also helps to make evident the reason why source

arguments cannot be destination arguments when raw macros are

utilized.

Are you still reading? Great, let’s get on with it!

Chapter 1: Introduction 5
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C h a p t e r 2

Getting
Started

Writing shaders can be a simple or complicated process, depend-

ing on the visual effect that you are trying to achieve. One thing to

remember is that the more complicated your shader, the longer it

takes to process a pixel. The nice thing about shaders, as with pro-

gramming Microsoft Windows, is that they both work with a

similar basic shell. In terms of Windows, there is a WinMain as

well as a WinProc and the same basic initialization code is used

from application to application. For shaders, the same basic shader

building blocks are in place. The neat thing about shaders is that

you can dig into your library of shaders, pull out the closest one in

functionality to the effect that you have in mind, and then modify

it to accommodate your needs. The one thing that you should keep

in mind as you go through this book is that you need to understand

what you can do with a shader and what shader assembly instruc-

tions are available for you to do so, depending on the shader.

In this book, the foundations of programming video cards with

shader capability are made evident to those of you with access to

one of them that supports the vertex and pixel shader chipsets,

such as nVidia’s GeForce series 3, 4, or higher, ATI’s Radeon

8500-9700 series, Matrox’s Parhelia-512, and 3Dlabs’ Wildcat

VP10. It should help those of you who are either new to the indus-

try or have been up until now absorbed by the 2D world and

looking for a leg up into the 3D world (especially in this world

where games have for the most part gone to 3D rendering). Unless

you are a 3D programmer, finding a job becomes more difficult as

more and more doors are closed and competition for the few

remaining jobs becomes more fierce!
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3D programmers working with the Open Graphics Library

(OpenGL) and DirectX 3D are spoiled by the luxury of calling

application programming interfaces (APIs) to do the core of their

3D work without having to know how to handle rendering, face

culling, or hidden line removal. This book jumps you past that into

a new realm, helping you get caught up with the industry.

If you really want to jump in feet first, check out Direct3D

ShaderX: Vertex and Pixel Shader Tips and Tricks, edited by

Wolfgang F. Engel. It is an excellent collection of white papers for

advanced usage of vertex and pixel shaders, but refer back to this

book for the fundamental vector functionality.

Do not get bogged down by the Direct3D aspects, as OpenGL

uses this technology and Macintosh computers have these graphics

chips available to them as well.

With this new technology, you now have a choice. One is to

visit one of the following web sites and scroll through their demo

aisles with your little shopping cart until you come to the product

functionality similar to what you are interested in. Drop the demo

into your download cart and check out!

� nVidia: http://www.nvidia.com

� ATI: http://www.ati.com

� Matrox: http://www.matrox.com

� 3Dlabs: http://www.3dlabs.com

� SiS: http://www.xabre.com

� DirectX SDK: http://www.microsoft.com

Then cut’n’paste their code samples into your product. But that

would be cheating, and you would not really learn anything.

Besides, where is the fun in that? So how about buying and read-

ing this book instead? Use what you have learned. Go ahead and

download those samples, but pick them apart and learn how they

function and more. It is all vector processing!, just from a higher

elevational point of view. This is where my vector book comes in

handy!

This is a grand, relatively new technology, as rendering calcula-

tions are moved from the processor CPU(s) to the video GPU

(graphics processor unit). This relieves the CPU of that time-con-

suming burden, thus freeing its time for more time-worthy game
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processing, such as AI (artificial intelligence), game physics,

event triggering, terrain following, etc. At the time of publication,

DirectX 9 was being released, and there were seven instruction set

versions available; those have been grouped in terms of function

enhancements.

� Vertex {1.1}, {2.0}, {3.0}

� Pixel {1.1, 1.2, 1.3}, {1.4}, {2.0}, {3.0}

Some of you may be ringing the fault buzzer at the moment. (“Ha!

Ha! You missed version 1.0.”)

Sorry, I did not. You see, by the nature of progress, Microsoft

tends to retire technology, and so version 1.0 is no longer sup-

ported. That is also the reason why I personally hang on to old

MSDN CDs, because information is dropped due to nonsupport

and you never know when you need access to that old “ancient”

technology.

Well, actually the hardware for vs.1.0 and ps.1.0 was never

released, as nVidia was the first to put out the 1.x for Xbox and

1.1 for the GeForce card, which started the wave of shader

programming.

Newer versions will probably become available when this book

makes it to the bookshelf of a book dealer near you, as the state of

the technology is always advancing. At the time of publication,

version 3.0 was only supported by software emulation, as support-

ing hardware was not out yet.

DirectX Version Checking

So before we get much further, you should obtain, download, or

(by some other means) get and install the latest and greatest

DirectX (in this book’s particular case, DirectX 9). Please note

that there are slightly different releases of this version, and your

Software Development Kit (SDK) must be an exact match with

your installed redistribution version. If not, they will be incompat-

ible and will thus not work together. In the old days of DirectX, as

long as you had any version of the product, such as DirectX 3 or

DirectX 6, it did not matter which specific minor version you had

installed; the code would still work for that major release. But
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these days, it has become a wee bit more stringent. In your initial-

ization code, there should be some code similar to the following to

verify compatibility:

Listing 2-1: \Chap02\SDKVersion\Bench.cpp

IDirect3D9 *m_pD3D;

// Create the Direct3D object
//
// NOTE: - DirectX SDK version 9 MUST be installed!

m_pD3D = Direct3DCreate9(D3D_SDK_VERSION);
if (NULL == m_pD3D)
{
Log("Couldn't initialize Direct 3D System!");
return false;

}

The keyword here is the definition D3D_SDK_VERSION. It is

defined within the SDK header file and returned by the function

Direct3DCreate9(). When it is passed to the function during the

DirectX initialization, it is compared to the DirectX 9 version, and

they must match exactly or the function will fail. This guarantees

that the SDK headers match the DirectX install of the target so

that the appropriate code can be built and the application code can

run properly. The defined value has no meaning! It is merely a

comparison value. The following definitions might give you an

idea of the importance of this statement:

DirectX SDK Version Header D3D_SDK_VERSION

8.0 � d3d8.h 220

9.0 d3d9.h 30

9.0 d3d9.h 31

Notice the multiple versions for the same 9.0 SDK that all use the

same d3d9.h header file. Your application should prompt the user

to upgrade his DirectX to match.

� NOTE: Install the entire SDK with all features, especially its
sample code. It does not require that much extra space, and
this book takes advantage of it!
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So install the entire SDK along with the sample code and debug

redistribution. It will run slower, but you can software toggle it to

release mode for faster throughput when you want to play games.

Having the debug option assists you in the development (and espe-

cially debugging) of your applications.

The typical install path for the SDK is the directory

C:\DXSDK, and so this book is based upon that root path,

although you may have installed your SDK in a different location

depending on space considerations. You should remember that

there are multiple downloads to obtain all the components, so try

to make sure that you have the space available.

Once it is installed (or even if it’s been installed for some time),

check out the following Tools option and make sure that the

DirectX include and lib folders are at the top of the list.

Under Visual C++ 6.0, click on the menu item Tools and then

Options. Then select the Directories tab on the Options property

page. The combo box “Show directories for:” (Include files)

should have C:\DXSDK\Include at the top of the list of include

folders. If not, select and then move up the list by clicking on the

up arrow.

Do the same for the Library files, which should be set to

C:\DXSDK\Lib as well. Then click OK.

If you had to change a selection, exit Visual C++ by clicking

File and Exit, as this will have Visual Studio save the options so

they will be available the next time you execute the tool.

One last item for you to do is unzip the files for this book

(available at www.wordware.com/files/vshaders) in the

LearnVPShader folder at a location of your choosing. Then copy

the Common folder (C:\DXSDK\Samples\C++\Common) and

place it into the root folder .\LearnVPShader\ along with the chap-

ter folders, such as Chap02.

So your folder should be similar to the following:

C:\LearnVPShader\Common

\incX86\

\Chap02\

etc.

� STOP: Is the Common folder missing? If so, stop here, and
reinstall the latest complete DirectX 9 SDK.
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Other folders, such as Common, Direct3D, DirectInput, etc.,

should be visible within the .\DXSDK\Samples\ folder. If the

folder is missing, then you did not do a complete install of the

SDK. Stop, reinstall the complete SDK, and then try these installa-

tion instructions again.

Data Alignment Issues

The one thing that really bothers me about the DirectX manuals is

the lack of insistence that a programmer take care to ensure that

his or her data is properly aligned! Admittedly, it does make their

library more forgiving. I have not detailed it here because I have

beaten the concept to death in my vector book. In short, however,

make all your code 16-byte aligned to optimize your processor

speed. Not enough said, but take it to heart!

�HINT: Align as much of your data as possible, regardless if it
is being written for DirectX.

Video Cards

Mirror, mirror, on the wall, who has the fairest video card of all?

Look deep into your shader soul and thou shall find that for each,

there is no coal or diamond to mine!

Before we get into it, we need a video card that supports vertex

and pixel shaders. (Please note that for some of you with laptops

or motherboards with an embedded video chip, you do not use a

video card, but the term “video card” still applies to you!) Which

video card do you get? Well, if you have around $200 to $400

U.S. lounging around burning a hole in your pocket, then by all

means, get the top of the line! But if you are on a budget (or

worse), you need to decide what functionality you can do without

or afford! Get a bottom-end or mid-priced video card and bump up

after you have mastered the entry level stuff. But be careful, labels

can sometimes be misleading. Examine the next table carefully!

Besides, no card supports all features, and therefore you need to
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decide what features you wish to utilize and thus choose your card

(or cards) accordingly.

Currently, there are five manufacturers putting out video chips

with shader support: nVidia, ATI, Matrox, SiS, and 3Dlabs. There

are many flavors of video cards out there with GPUs supporting

some combination of programmable vertex and pixel shaders, as

well as the cards having all sorts of bells and whistles, but the pri-

mary task is finding what instructions you want to support, how

fast you want it to be, and thus which chip the card needs to con-

tain. The following table shows the latest model chips and their

version support, as well as some interesting information such as

number of vertex pipes, number of rendering (pixel) pipes, num-

ber of textures handled per pixel pipe, and number of constant

registers available.

Table 2-1: Manufacturers with basic GPU and relative information.

MFG Chip VS
Version

PS
Version

VS
Pipe

PS
Pipe

Tex

��
Const

nVidia GeForce2

"

GeForce3–Ti

Xbox

GeForce4–MX (NV18)

GeForce4–Ti (NV28)

GeForceFX (NV30)

---

3.0sw

1.1

1.0

1.1

1.1

2.0+

---

3.0sw

1.3

1.0x

---

1.3

2.0+

0

0

1

2

0

2

?

4

16

4

4

2

4

?

�2

?

�2

?

�2

�2

?

0

8192

96

96

96

96

256

ATI

Radeon

8500/9100 (RV200)

9000 (RV250)

9200 (RV280)

9500/9700 (RV300)

9600 (RV350)

9800 (R350)

1.1

1.1

1.1

1.1, 2.0

2.0

2.0

1.4

1.0-1.4

1.0-1.4

1.4, 2.0

2.0

2.0

2

2

2

4

2

2

4

4

4

8

4

8

�2

�1

�1

�1

?

�1

192

192

192

256

?

256

Matrox Parhelia-512 1.1, 2.0

3.0sw

1.3

3.0sw

4

4

4

16

�4 256

8192

SiS Xabre 200

Xabre 400

Xabre 600

---

---

1.1sw

1.3

1.0-1.3

1.3

0

0

0

4

4

4

?

�2

�2

0

0

0

3Dlabs Wildcat VP 1.1 1.2 2 4 ? 16

(#.#sw indicates only software emulation.)
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I recommend that you follow up on each of the companies’ web

sites and get additional statistical information, such as fill rates,

operations per second, memory bandwidth, etc., in order to make

an informed decision. The information in Table 2-1 is only enough

to determine what instruction set your prospective card is capable

of supporting.

For DirectX 8 (aka vertex shaders {1.0, 1.1}, pixel shaders

{1.0 … 1.4}), you must have a high-end video card to support

programmable pixel shaders. Vertex shaders can otherwise be

hardware-based, thus programmable or nonexistent and emulated

in software. With the advent of DirectX 9, the shader support of

2.0 and 3.0 was made available, and support for 1.0 was dropped.

At the time of publication, you can see from Table 2-1 that 2.0 was

available from only the newer high-end cards, and 3.0, which I

labeled as 3.0sw, was only emulated! Poor Xbox. By that reason-

ing, it is now ancient technology!

When I personally buy new computer processors, I typically

buy for the instruction set and not so much for speed (but to each

his own). Also, do not make the mistake of buying the wrong

GeForce4! (Not unless you mean to buy the lower-cost MX.) Zero

vertex shaders means that it does not have any hardware support

and is thus not applicable to what this chapter is about! However,

it does have very fast software emulation due to its onboard hard-

ware assist. If you have little or no money, you can always use

software emulation of the vertex shaders. It is much slower, but at

least you can still test your vertex algorithms.

As I mentioned in the preface, I only have all of them for the

purposes of writing this book in an attempt to be as accurate as

possible. As they say in the movie Jurassic Park, “I spared no

expense!”
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Version(s) Determination: Vertex
and Pixel Shader

If you are writing vertex or pixel code specifically for your video

card, then you can use the version of shader assembly that is com-

patible with your video card. If you are writing code to work

across multiple video cards, then you have a problem. As already

explained, each card has its own compatibility and thus capability.

This section of the chapter discusses vertex and pixel shader com-

patibility; version information is evaluated at the same time. Pixel

shader version determination, however, is discussed in a bit more

detail in Chapter 10, “Pixel Shaders.”

To begin with, we must first review the source of the version

information. A video adapter contains an ordinal and a set of asso-

ciative properties with all of the video adapter capabilities. This is

referred to as a Direct3DDevice object, and is defined by the data

structure D3DCAPS9. An application steps through this list of

exposed properties and tests each against the features that it

requires for its execution. Upon finding a match, it is utilized. For

our purposes of examining version control, only a couple of the

individual data members need to be inspected.

UINT AdapterOrdinal; // Video card index

D3DDEVTYPE DeviceType; // HAL, REF, SW

DWORD VertexShaderVersion; // Vertex shader version

DWORD PixelShaderVersion; // Pixel shader version

DWORD DevCaps; // Behavioral bits

There are other data members, but they are not necessary for ver-

sion selection. Those data members that are useful are highlighted

here:

� AdapterOrdinal: The index used to index the video adapter

� DeviceType:

D3DDEVTYPE_HAL = 1 Hardware rasterization

D3DDEVTYPE_REF = 2 Reference rasterizer

D3DDEVTYPE_SW = 3 A software device plug-in
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� D3DDEVTYPE_HAL: (hardware abstraction layer) Shad-

ing is handled with hardware, software, or mixed, with

transform and lighting.

� D3DDEVTYPE_REF: Shading is handled only by opti-

mized software and {vector, SIMD, parallel} CPU instruc-

tions are utilized whenever possible.

� D3DDEVTYPE_SW: A software device plug-in that has

been registered with IDirect3D9:RegisterSoftwareDevice.

� VertexShaderVersion and PixelShaderVersion: The vertex

and pixel shader version numbers are a 32-bit value consisting

of major and minor version numbers. The following macros are

used to extract the major and minor version values for both

types of shaders:

Maj = D3DSHADER_VERSION_MAJOR(pCaps->VertexShaderVersion);
Min = D3DSHADER_VERSION_MINOR(pCaps->VertexShaderVersion);

Maj = D3DSHADER_VERSION_MAJOR(pCaps->PixelShaderVersion);
Min = D3DSHADER_VERSION_MINOR(pCaps->PixelShaderVersion);

To build a 32-bit version number for the vertex shader, the fol-

lowing macro is used to combine the major and minor version

numbers:

DWORD Version = D3DVS_VERSION(Maj, Min);

. . .and for a pixel shader:

DWORD Version = D3DPS_VERSION(Maj, Min);

So be careful not to mix’n’match, as each has its own masking

key!

In the Common folder of your DirectX SDK installation, which is

typically located at C:\DXSDK\Samples\C++\Common, examples

of the following can be found within the sample applications.

� DevCaps: These are the flags (bits) identifying the capabilities

of the device object. The following are the bits that we are con-

cerned with:

� D3DDEVCAPS_PUREDEVICE: If set, this device is the

D3DDEVTYPE_HAL. It supports rasterization, transform,

shading, and lighting using hardware.
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� D3DDEVCAPS_HWTRANSFORMANDLIGHT: If set,

this device can support transformation and lighting in

hardware.

Okay, here is where things get a little interesting. At the lower

level (directly using these bits), it can be determined whether

pure hardware, hardware, software, or mixed versions are sup-

ported. It helps remap these bits into the following behavioral

bit flags:

� D3DCREATE_SOFTWARE_VERTEXPROCESSING: For

video cards without hardware shader support, this first defi-

nition of _SOFTWARE_ would apply. This is mentioned

earlier, such as in the case of the nVidia GeForce4-MX

board, where shader support is emulated in software.

� D3DCREATE_HARDWARE_VERTEXPROCESSING:

Video cards that do have shader hardware support of a spe-

cific version. For example, a GeForce3-TI can support the

vertex shader specification of version 1.1 and thus

_HARDWARE_ would apply.

� D3DCREATE_MIXED_VERTEXPROCESSING: This

declaration is a bit trickier, as old cards needing to support

new instruction sets cannot fully support a pure vertex

shader at the hardware level, and thus a combination of

software and hardware can be utilized; so _MIXED_ would

apply!

We should discuss one more item before we continue. This book is

an introductory book about how to program shaders and not so

much about DirectX programming, but certain information is

needed to do so. The pre-existing samples from the SDK are relied

upon as well as the graphics framework that Microsoft has pre-

pared to make your learning experience go more smoothly. These

can be located in your SDK folder:

.\DXSDK\Samples\C++\Common\Src\

Of all the files found, there are some that will be of immediate

usefulness.

D3dapp.cpp contains the generic application interface and

D3dutil.cpp has 3D functions related to material, light, and

textures.
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There are others, but these will help us get running faster. To

use these common files used in the SDK samples and your own,

include the following at the top of your application code and

include the associated CPP files into your builds:

Listing 2-2: \Chap02\VertexVersion\VertexVersion.cpp

#include "KariType.h" // Master definitions

// Third-party libraries

#define STRICT

#include <windows.h>
#include <commctrl.h>
#include <stdio.h>
#include <math.h>
#include <d3dx9.h>

// Microsoft DirectX SDK helper functions

#include "DXUtil.h"
#include "D3DEnumeration.h"
#include "D3DSettings.h"
#include "D3DApp.h"
#include "D3DFile.h"
#include "D3DFont.h"
#include "D3DUtil.h"

Before building our own code, the first sample project that should

be investigated is the vertex shader program found on the SDK at

the following location:

.\DXSDK\Samples\C++\Direct3D\VertexShader\

This takes care of the burden of DirectX initialization, Direct 3D

initialization, enumerated device selection of our video card, enu-

merated level of access, etc. As I mentioned earlier, this is not a

DirectX programming book, but we need to get up to the level of

shader programming as quickly as possible! It also becomes a

good test to make sure that your development environment is set

up correctly and your video card supports shader technology, at

least at a rudimentary level.
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A simple compile and magically there exists an instant sample that

can be built upon! No spending a day or more trying to build one’s

own architecture. Besides, you can always do that later!

As I mentioned previously, we may not be running our applica-

tion on our own computer, and so we are probably not familiar as

to what video hardware is inside. Thus, it would be up to our

application program in conjunction with appropriate shader code

to work together accordingly.

Okay, before we get too far ahead of ourselves, we need to

learn how to detect what shader versions can be handled on our

development computer. So let’s investigate. First, for our version

dump experiment, our basic application should look similar to the

following:
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Listing 2-3: Chap02\VertexVersion\VertexVersion.cpp

int WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR, int)
{

CMyD3DApplication d3dApp;

// Initialize common code

if (FAILED(d3dApp.Create(hInst)))
{

return 0;
}

return 0;
}

HRESULT CMyD3DApplication::ConfirmDevice(
D3DCAPS9* pCaps, // Capabilities
DWORD dwBehavior, // Behavioral bits
D3DFORMAT adapterFmt, D3DFORMAT backBufferFmt)

{
if ((D3DCREATE_HARDWARE_VERTEXPROCESSING & dwBehavior)

| (D3DCREATE_MIXED_VERTEXPROCESSING & dwBehavior))
{ // Vertex Version 1.0

if (pCaps->VertexShaderVersion < D3DVS_VERSION(1,0))
{

return E_FAIL; // Reject (doesn't meet criteria!)
}

}
return S_OK; // Accept!

}

The second argument passed into the enumeration callback

ConfirmDevice() contains the individual behavioral bits related to

device creation.

DWORD dwBehavior;

D3DCREATE_SOFTWARE_VERTEXPROCESSING
D3DCREATE_HARDWARE_VERTEXPROCESSING
D3DCREATE_MIXED_VERTEXPROCESSING
D3DCREATE_PUREDEVICE
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The first argument passed into the enumeration callback Confirm-

Device() contains references to properties related to an individual

device feature of a shader capability.

D3DCAPS9* pCaps;

The following is a snippet of sample output from the Vertex-

Version sample using a video card that does not support shaders.

The _abbreviations_ are behavioral bits represented as follows:

Please note the versions 0.0 and 3.0, as well as the HAL and

REF.

#0 Vertex: 0.0 Pixel: 0.0 HAL _HARDWARE_
#0 Vertex: 0.0 Pixel: 0.0 HAL _SOFTWARE_
#0 Vertex: 3.0 Pixel: 3.0 REF _HARDWARE_ _PURE_
#0 Vertex: 3.0 Pixel: 3.0 REF _HARDWARE_

The hardware abstraction layer (HAL) is defined by

D3DDEVTYPE_HAL. This represents actual hardware support

but only for version 0.0, which is not usable, as shaders only sup-

port from version 1.0 or better. Thus, the version 0.0 is ignored.

That leaves version 3.0, but please note the (REF) defined by

D3DDEVTYPE_REF. This means that the vertex shaders are

emulated in software!

Using our sample VertexShader.exe, a video card that supports

hardware vertex and pixel shaders would have an output similar to

the following snippet(s) from a Matrox Parhelia and nVidia

GeForce4-Ti card with two monitors activated; note the #0 and #1

representing the adapter number.

#0 Vertex: 1.1 Pixel: 1.3 HAL _HARDWARE_ _PURE_
#0 Vertex: 1.1 Pixel: 1.3 HAL _HARDWARE_
#0 Vertex: 1.1 Pixel: 1.3 HAL _SOFTWARE_
#0 Vertex: 3.0 Pixel: 3.0 REF _HARDWARE_
#0 Vertex: 3.0 Pixel: 3.0 REF _SOFTWARE_
#1 Vertex: 1.1 Pixel: 1.3 HAL _HARDWARE_ _PURE_
#1 Vertex: 1.1 Pixel: 1.3 HAL _HARDWARE_
#1 Vertex: 1.1 Pixel: 1.3 HAL _SOFTWARE_

Also notice that vertex shaders 1.1 and pixel shaders 1.3 are sup-

ported by hardware by both displays! But software emulation is

used for 3.0 for both shaders. Another item of note is that there are

no pixel 1.0, 1.1, or 1.2 device object enumeration items. That is

because those are subsets of version 1.3, and in DirectX version
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8.1 (or 9.0 for that matter), all were supported, thus you as a pro-

grammer would specify the latest and greatest.

The dump below for the ATI 8500 has device objects that look

similar to the following:

#0 Vertex: 1.1 Pixel: 1.4 HAL _HARDWARE_ _PURE_
#0 Vertex: 1.1 Pixel: 1.4 HAL _HARDWARE_
#0 Vertex: 1.1 Pixel: 1.4 HAL _SOFTWARE_

But watch carefully! This contains a pixel shader of 1.4, which is a

result of the shader wars. This is explained later, but briefly, com-

peting companies have forked the technology (similar to that of

the X86 wars of the ’90s!). In this case, pixel shaders 1.0 is not

supported, but 1.1-1.4 are! Essentially, the versions up to the spec-

ified version are supported. If we examine the dump of a newer

card, such as the ATI 9700, it has enumerated device objects that

look similar to the following:

#0 Vertex: 2.0 Pixel: 2.0 HAL _HARDWARE_ _PURE_
#0 Vertex: 2.0 Pixel: 2.0 HAL _HARDWARE_
#0 Vertex: 2.0 Pixel: 2.0 HAL _SOFTWARE_

It does not contain a device object line listing of vertex 1.1 or

pixel 1.4, but those versions are supported. Remember what I said

about shader wars? The version 2.0 specification is inclusive and

exclusive of the 1.4 specification. This means that some features

are supported by both 1.4 and 2.0, some features are only sup-

ported by 1.4, and some features are only supported by 2.0.

Note that the function member ::ConfirmDevice() is in reality

written by you to detect and allow various formats of shader cards

to work with your code with its supporting shader code.

if (pCaps->VertexShaderVersion < D3DVS_VERSION(1,0))
{

return E_FAIL; // Reject (doesn't meet criteria!)
}

In the previous sample of this function, any card that supports the

vertex shader at or above the version of 1.0 was not rejected by the

return of an S_OK, indicating an acceptable enumerated device

object. If your code is more discriminating, then you would need

something similar to the following:
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if ((D3DVS_VERSION(1,4) == pCaps->PixelShaderVersion)
&& (D3DVS_VERSION(2,0) == pCaps->PixelShaderVersion))

{
return S_OK; // All ATI type cards okay!

}

And if you needed to reject a specific shader type:

if (D3DVS_VERSION(1,0) == pCaps->VertexShaderVersion)
{
return E_FAIL; // Do not support this OLD type!

}

The idea is that you need to trap for specific shaders that you do

handle and then work around those that you do not. You do not

want to reject video cards that you do not support, as fewer com-

puters will be able to run your software. You should keep in mind

that this rejection does not remove a target computer; it only

reduces the number of enumerated items that would be available

later as choices of mode selections. If you, however, reject all of

these shaders (even the software-emulated ones), you are in fact

stating that no shader will run on your code! So be careful here!

The sample VertexVersion does just this. Note the no shaders

available dialog that occurs.

All of this may seem twisted, but in reality it is not. I explain it in

more detail later.
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Plumbing: The Rendering Pipeline

Have you ever noticed those tubes (pipes) in some warehouse

stores that extend from a checkout register to the ceiling and

beyond? Little cylinder-shaped conveyances pushed by air travel

through the tubes and are routed through a pipe through several

switch boxes in their routes to their eventual destinations. You

hand the clerk a claim check that you picked up off a shelf, and

you pay for the item. She then sticks the piece of paper in a little

cylinder, inserts it into the tube, and presses a button. Then with a

whooshing blast of air, the cylinder is gone. Then you stand

around (alone) for 30 minutes or more waiting for someone to

bring a big oversized box out to you, leaving you to strong-arm it

into your car, which is typically too small to…

Okay, okay, my technical editor just pointed out to me that this

is ancient U.S. technology! But it is still being used. Visited your

drive-through bank lately? Or local home improvement store? It’s

a good representation of what occurs in the shader pipeline.

Sorry about that long story, but you can think of a 3D rendering

system as a similar type of pipeline. Each vertex of a polygon is

inserted into a train of these cylindrical conveyances and inserted

into the end of the pipe. The vertex shaders are handled early in

the pipeline and are used in the manipulation of vertices. The pixel

shaders are utilized late in the pipeline and are only designed to

process pixels. Together they can be used to create fabulous spe-

cial effect displays within a scene. Before beginning, however, the

rendering pipeline should be examined!

Note the two gray boxes in the path on the right side of Figure

2-3. They indicate the position within the flow of logic of the ver-

tex shader module and the pixel shader module. This rendering

pipeline is usually referred to as a pipeline, but in reality the whole

architecture is plumbing, which has some parallel rendering pipes.

Whether the logic uses an older fixed, semi-static flow, such as on

the left that was used by earlier versions of DirectX, or the more

robust dynamic flow on the right used by the latest versions such

as DirectX 9, it is all fluid! Please note the placements of the ver-

tex and pixel shader boxes, as their utilization is what this book is

all about!
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The Vector

In a vertex or pixel shader, the concept of computer memory does

not exist. Only the method of registers, which is used for access-

ing data values, exists. The registers in the vertex and pixel

shaders are primarily 128-bit vector based. This is known as a

quad vector. That is, they have a block of bits organized as four

elemental components {XYZW}, each a 32-bit single-precision

floating-point value.

You may have noticed the little-endian labeling. Since this book

is about programming shaders on an X86 processor, which is a

little-endian processor, emphasis is placed upon the little-endian

declaration.

If you are a Macintosh or MIPS programmer using this book as

a programming reference for your big-endian platform, then this

label should help keep you from getting confused over data order-

ing for your platform. That’s enough for the moment about endian

data orientation!

The three elements {XYZ} together is typically considered a

vector, and four elements {XYZW} is typically considered a quad

vector, where the {W} field is neutral, but for purposes of clarity

between this book and other source information related to pro-

grammable vertex and pixel shaders, the term “vector” will be

used to represent a four-element float represented by a 128-bit

register. Okay, I have said this twice. For those of you new to this

concept, please revisit it in my vector book!

The following is just a quick background for clarity. In the C

programming language, each elemental scalar is known as a float.

float val;
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Wrapped into a quad vector, it would appear like the following

using Microsoft C container:

typedef struct D3DXVECTOR4
{
float x;
float y;
float z;
float w;

} D3DXVECTOR4;

At this time, please notice the “4” in the term D3DXVECTOR4,

which is used to indicate four arguments. There are other vec-

tor-type definitions, such as:

D3DXVECTOR2

D3DXVECTOR3

D3DXVECTOR4

D3DXQUATERNION

.. .of which the quaternion declaration is nearly identical; it is

discussed later.

Chapter 2: Getting Started 27

Figure 2-5: The bit encoding of a single-precision floating-point value —
{1:8:23} one sign bit, eight bits of exponent, and 23 bits of significand
(mantissa)

Figure 2-6: Vector of four packed floats in little-endian ordering with their bit encodings
exposed



My vector book discusses the concept of vectors in detail but for

now, let’s just do a superficial overview.

A scalar data value would use a single float, such as in the

following addition:

1 0
2 1

3 1

.
.

.

�

A single instruction multiple data (SIMD), such as a vertex shader,

operates upon a group of data elements, such as the following vec-

tor, where a single instruction manipulates one or more data

values.

W Z Y X

3.2
+6.3

9.5

1.2
+5.9

7.1

2.5
+2.9

5.4

1.0
+2.1

3.1

This is discussed shortly, but for now just keep in mind that a

multiple data item is a group of four floats contained within a

128-bit vector, and each of those items is handled in parallel. Also

keep in mind that those four elements (components) can be

addressed by an {XYZW} or {RGBA} reference. Mostly, how-

ever, for a vertex shader, the {XYZW} reference typically makes

more sense since vertices are being accessed in the streaming reg-

isters. The {RGBA} makes more sense with the pixel shaders, but

keep in mind that there are always exceptions to the rule!

R G B A

3.2
+6.3

9.5

1.2
+5.9

7.1

2.5
+2.9

5.4

1.0
+2.1

3.1
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The concept of bits only superficially applies at this time for

programmable vertex shaders, as all data is represented by a

floating-point value, although it is shown in the figures in a little-

endian form. This book only covers the DirectX environment for

the X86-based processor, and so it will primarily only discuss lit-

tle-endian, but we should discuss little-endian versus big-endian

orientation of data. The data being imported into the game may be

in big-endian form, and it is very important to understand the dif-

ference so that manipulation of that data will be correct!

Another possibility is that you are a non-Microsoft Windows user

and are using this book as a shader programming guide, due to the

lack of this programming information for your platform, which

may be in a big-endian format.

In addition, for those of you who are more advanced program-

mers, you may find it interesting that the various shader assembly

tools export the data in little-endian orientations but in different

file formats. From the previous figure, you may have observed

that the first four bytes in memory, bytes {0…3}, are related to the

X element regardless of the endian orientation! You should also

note the byte reversal of the least significant byte and most signifi-

cant byte of the individual floats between the little-endian and

big-endian orientations as well. I hope that should be enough

endian for you big-endian-based developers!
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Graphics Processor Unit (GPU)
Swizzling Data

The programmable vertex and pixel shaders both utilize vector-

based registers for their source and destination of values in con-

junction with assembly language instructions, and so a method

was needed to allow an individual element used as a scalar or up

to a full set of four data elements to be written to a destination

vector-based register. The use of the following swizzle method is

used to shuffle the source elements {XYZW} around to make the

blending of source data more flexible.

In essence, any set of elements from the source can be selectively

used as a source for the computation whose results are stored into

the selected element(s) in the destination. It is important to

remember that the destination has to be sequenced in an {XYZW}

order, but the source elements can be randomly selected! A desti-

nation element can be omitted (skipped over). The only exception

is when no destination elements are specified and the full resulting

{XYZW} vector is copied or the resulting scalar is replicated.
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element can be optionally assigned a copy of any of the source elements.



In Figure 2-9, the upper eight diagrams use a mov (move) instruc-

tion, which takes two arguments. This instruction merely copies

the selected second (source) argument A to the first (destination)

argument D. The bottom two diagrams use the summation instruc-

tion add (addition), which sums the two selected source arguments

A and B and saves the result to argument D.

You may notice that in all these cases, when a destination ele-

ment of a register was not specified, the previous result was

retained!

You may also have noticed that two of the examples contained

a negative sign on the source! This effectively 2’s complement

(negates) that source input passed to the instruction.

2’s complement: The process of where all the binary bits are

inverted (effectively a not condition) and then the value is

incremented.
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Figure 2-9: Examples of data swizzling



For those of you who do not understand the operations of a data

swizzle thus far or are more advanced and wish to understand all

the details of the swizzle operation under the hood, please review

Appendix C, “Instruction Dissection.” The information supplied

there should be sufficient to make the concept of swizzling very

simple to understand or, contrarily, help the more advanced devel-

oper build his own assembler!

Tools

When assembling or compiling your shader code, you will most

likely be using one of the following tools:

� nvasm.exe: nVidia –V&P Macro Assembler

� psa.exe: Direct3D 8 Pixel Shader Assembler

� vsa.exe: Direct3D 8 Vertex Shader Assembler

� xsasm.exe: Xbox Shader Assembler

� cg.exe: Cg (C for graphics) compiler is limited in scope to the

hardware platform

� fxc.exe: HLSL compiler provided with DX9 SDK, which

optimizes code for all hardware platforms

� RenderMonkey.exe: RenderMonkey

One noteworthy item is that development of nvasm has stalled, so

it only supports ps.1.3 and thus has limited use.
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C h a p t e r 3

Vertex
Shaders

There is so much functionality with the vertex shader that explain-

ing it all takes four chapters, and that is before even getting to

quaternions. This chapter covers most of the general functionality

as well as scripting methodology. The following chapters cover

topics related to other vertex instructions, such as the logic of

branching, which is a new feature set introduced with DirectX 9.

A topic discussed in the next chapter is what I refer to as branch-

less code. This is typically logic that one relates to the conditional

setting of data.

d = (a < b) ? a : b; // d = min(a, b)

Other chapters detail the use of matrices and some trigonometric

math in relation to those matrices. So let’s begin with the basics!

Vertex Shader Registers

Vertex shaders are used to manipulate vertices, a burden once

handled by the CPU processor. Anything that requires vertex

movement, such as flapping flags, flowing clothes, bouncing hair,

particle fountains, water ripples, etc., can use this programming

mechanism instead.
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c0 … c95

c96 … c255

The standard 96 constant registers (192 on the

Radeon 8500 and the additional 160 on the Parhelia

for 256 total) are each read-only quad single-preci-

sion floating-point vectors. Depending on version,

software emulation, and hardware factors, the high-

est register index can range from {0…8191}. They

are set either with the use of the def instruction or

by calling an external function from an application.

Only one vector constant can be used per instruc-

tion, but the elements can be negated and/or

swizzled. These can only be read by the vertex

shader code or from the game application through

an API interface. Access is through c[#] or c[a0.x +

#]. For Direct3D, see SetVertexShaderConstantF()

under def later in this chapter.
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Figure 3-1: Vertex shader block diagram. Note that the grayed out constant registers bn,
cn, in, and vertex stream registers Vn, are all read only from the shader code.



i0 … i15 The standard 16 constant registers are each read-

only quad integer vectors. They are set either from

the use of the defi instruction or from calling an

external function from an application. These can

only be read by the vertex shader code by a version

2.0 or higher or from the game application through

a DX9 API interface. Access is through i[#]. For

Direct3D, see SetVertexShaderConstantI() under

defi later in this chapter.

b0 … b15 The standard 16 constant registers are each read-

only quad Booleans. They are set either from the

use of the defb instruction or from calling an exter-

nal function from an application. These can only be

read by the vertex shader code by version 2.0 or

higher or from the game application through a DX9

API interface. Access is through b[#]. For

Direct3D, see SetVertexShaderConstantB() under

defb later in this chapter.

r0 ... r11 The 12 single-precision floating-point temporary

registers are used as scratch registers to temporarily

save vertex data in various stages of processing.

v0 … v15 The 16 read-only vertex data registers each repre-

sent a stream of single-precision floating-point and

are used as the mechanism to route the data into the

Vertex ALU. Only one vertex can be used per

instruction, but the elements can be negated and/or

swizzled.

aL Loop count register, vs 2.0 and 3.0.

p0 Predicate, vs 2.0 and 3.0.

The output registers are primarily write-only vectors and scalars

used to route the processed data to the graphics pipeline for the

next pipeline processing stage.
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a0 The scalar write-only address register is used as an

index offset into the table of registers. It was intro-

duced with version 1.1. Only one use of a0 as a

variable index is allowed per instruction. c[a0.x + #]

It can be thought of as a base address plus offset.

Moving a register to a0 used to truncate, but in DX9

it now rounds to the closest integer.

oD0 The vertex diffuse color register is a write-only vec-

tor that is interpolated and written to the pixel

shader color input register v0.

oD1 The vertex specular color register is a write-only

vector that is interpolated and written to the pixel

shader color input register v1.

oFog The vertex fog factor is a write-only vector of which

only the scalar {X} element is interpolated and

routed to the fog table.

oPos The vertex position register is a write-only vector

that contains the position within homogeneous clip-

ping space.

oPts The vertex size register is a write-only vector of

which only the scalar {X} element containing the

point size is used.

oT0 … oT3

oT4 … oT7

Texture coordinates {0…7}. These write-only vec-

tors are used as the texture coordinates and routed

to the pixel shader. Use {XY} for a 2D texture map.

GeForce3 {0…3}, Radeon {0…7}.

Although the programmable vertex shaders only use vector regis-

ters for their input and output of values, the source vertex data

streams registers (which are talked about later) are preloaded with

the contents of the vertex stream data, which actually resides in

little-endian-oriented memory. These registers are labeled v0

through v15 for the vertex shader.

For register access, each instruction can negate or swizzle the

source elements, as discussed in the previous chapter.
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r0.xyzw, r1.zxwy

r0.x = r1.z

r0.y = r1.x

r0.z = r1.w

r0.w = r1.y

r0.wz, r1.xy

r0.w = r1.x

r0.z = r1.y

r0.xyzw, –r1.xywz

r0.x = –r1.x

r0.y = –r1.y

r0.z = –r1.w

r0.w = –r1.z

Instruction Modifiers

Now would probably be a good time to discuss an instruction

modifier. This is a filter that is applied to the result of the calcula-

tion before it is stored to the destination.

1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

_sat = Saturate (0.0 � n � 1.0) l l

The saturation filter is a value limiter. The results of a calculation

are filtered so that if the normalized range of 0.0 through 1.0 is

exceeded, the value is inclusively clipped to that limit. This is also

known as clamping of a value to the interval n � [0.0, 1.0].

if (n < 0.0)

n = 0.0

else if (n > 1.0)

n = 1.0

This is applied to the individual instructions. So for example,

instead of a normal addition such as:

add r1, r0, c0 // d = a + b

…an instruction modifier is used:

add_sat r1, r0, c0 // d = sat(a + b)

…so in essence:

r1x=sat(r0x+c0x) r1y=sat(r0y+c0y) r1z=sat(r0z+c0z)

r1w=sat(r0w+c0w)

Listing 3-1: Vertex shader

add_sat r1.w, r0.y, c0.x // r1w=sat(r0y+c0x)
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Vertex Input Streams

There are up to 16 vertex data streams, which works out to 16x4

(16 vectors times four floats each), thus 64 scalar inputs. At a very

minimum, a data structure such as {XYZ} would be used.

typedef struct _D3DVector
{
D3DVALUE x; // v0x
D3DVALUE y; // v0y
D3DVALUE z; // v0z

} D3DVECTOR;

This would be accessible only through the register v0 and the ele-

ments {XYZ}, thus occupying a single stream. A slightly more

complex stream mechanism would be as follows, which would

actually use multiple streams:

struct CUSTOMVERTEX
{
float x, y, z; // Vertex position
float nx, ny, nz; // Vertex normals
DWORD color1; // Diffuse color
float tu, tv; // Texture coordinates

};

With Direct 3D, each data type is mapped to a vertex stream regis-

ter, so when remapped as shown below, three streams are utilized:

{v0, v1, v2}.

DWORD dwDecl[] =
{
D3DVSD_STREAM(0);
D3DVSD_REG(0, D3DVSDT_FLOAT3), // v0xyz Position v0w ignored!
D3DVSD_REG(4, D3DVSDT_FLOAT3), // v1xyz Normals
D3DVSD_REG(7, D3DVSDT_D3DCOLOR), // v1w Diffuse color
D3DVSD_REG(8, D3DVSDT_FLOAT2), // v2xy Texture coordinates
D3DVSD_END() // v2zw Ignored!

};

This is discussed later, but what is being represented here is that

the data structure containing the stream data is mapped to a set of

specified vertex data stream registers.
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Vertex Shader Instructions

Before beginning, it should be noted that if you are working with

Direct3D version 8.0 or 8.1, then only vertex shader instructions

for 1.0 through 1.1 are supported. If working with Direct3D ver-

sion 9.0 or beyond, then instructions up to 2.0 or 3.0 are

supported. As version 9.0 is readily available, do not use previous

versions of 8.1 or older, as it has restrictions as to what it can do.

That, and this book was written specifically for version 9.0, and

thus samples may fail.

An item of note is that for each increasing vertex version type,

the number of instructions supported is increased!

Vertex shader version 1.1 2.0 2x 2sw 3.0 3sw

Maximum number of instructions 128 256 256 256 512+ 512+

Instruction counts for version 2x and above are actually higher, as

code looping is supported and the number of executed instructions

is effectively increased. For versions 3.0 and above, the minimum

limit is set to 512 instructions, but the maximum is specified by

the device object’s enumeration data member:

D3DCAPS9.MaxVertexShader30InstructionSlots

Note that there are macros intermixed with the instructions, and

they are indicated in italics. You should note the use of the white

smiley face� in the following tables, which represents a sup-

ported instruction/macro for the specified vertex shader and

Direct3D versions. Elsewhere in this book, a shaded smiley face

l represents pixel shader functionality, so keep this in mind as

you read on.
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Table 3-1: Programmable vertex instructions and their relationship with the version of
Direct3D and shader versions.

9.0

Direct3D 8.1

Instruction Version 1.1 2.0 2x 2sw 3.0 3sw

Assembly (Scripting) Commands

dcl_usage Usage declaration � � � � � �

def Definition of a FP vector const. � � � � � �

defb Definition of a Boolean const. � � � � �

defi Definition of an Int vector const. � � � � �

label A code address location � � � � �

vs Version (vertex shader) � � � � � �

Data Conversions

frc Fractional portion of float � � � � � �

mov Copy � � � � � �

mova Copy FP to integer � � � � �

Add/Sub/Mul/Div

add Addition � � � � � �

crs Cross product � � � � �

dp3 Dot product (Vec) � � � � � �

dp4 Dot product (QVec) � � � � � �

dst Distance vector � � � � � �

mad Multiply-Add � � � � � �

mul Multiply � � � � � �

rcp Reciprocal � � � � � �

rsq Reciprocal square root � � � � � �

sub Subtraction � � � � � �

Special Functions

exp Exponential 2x full precision � � � � � �

expp Exponential 2x � � � � � �

lit Lighting � � � � � �

log Log2(x) full precision � � � � � �

logp Log2(x) partial � � � � � �

lrp Linear interpolation � � � � �

nop No operation � � � � � �

pow 2x � � � � �
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sincos Sine and cosine � � � � �

texldl Texture load with adj. detail � �

Matrices

m3x2 Apply 3x2 matrix to vector � � � � � �

m3x3 Apply 3x3 matrix to vector � � � � � �

m3x4 Apply 3x4 matrix to vector � � � � � �

m4x3 Apply 4x3 matrix to vector � � � � � �

m4x4 Apply 4x4 matrix to vector � � � � � �

Flow Control (Branchless)

abs Absolute � � � � �

max Maximum � � � � � �

min Minimum � � � � � �

nrm Normalize � � � � �

setp Set predicate register � � � �

sge Set if (>=) � � � � � �

sgn Sign � � � � �

slt Set if (<) � � � � � �

Flow Control (Branching)

if If (Boolean) � � � � �

if_comp If (comparison) � � �

if_pred If (predicate) � � �

else If-else-endif code block � � � � �

endif if-else-endif code block � � � � �

break Break out of loop � � �

break_comp Conditional break out of loop � � �

break_pred Predicate break out of loop � � �

call Subroutine function call � � � � �

callnz Function call if � zero � � �

callnz_pred Subroutine call if predicate � 0 � � �

ret Return from subroutine � � � � �

loop Start of a loop-endloop block � � � � �

endloop End of a loop-endloop block � � � � �

rep Start of a rep-endrep block � � � � �

endrep End of a rep-endrep block � � � � �

The � indicates that the instruction is supported for that version! Note that the white
smiley face represents vertices. The #sw indicates that only software emulation is sup-
ported. The #x indicates extensions.
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Before we dive into the deep end of the pool, I should reiterate

that this chapter is not about special effects or any other vertex

manipulations but to show the fundamental processing functional-

ity of vectors within the programmable graphics processor unit

(GPU).

Assembly (Scripting) Commands

The following are assembly language definitions and not instruc-

tions. They are, in essence, scripting commands to the assembler

that do not generate code instructions but control the building of

that code. They also are used to generate constant data (that is,

read-only data).

� vs: Definition for the version of the code written for the vertex

shader

vs.MajVer.MinVer 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This is an assembly language definition and not an instruction. It

is for setting the version for which the code was written and must

be the first declaration in a code fragment. MajVer is the major

version number, and MinVer is the minor version number of the

vertex shader for which the code is targeted. The current range is

{1.0, 1.1, 2.0, 2_x, 2_sw, 3.0, 3_sw}. There can only be one ver-

sion definition per code block. Please note that the version

numbers used for this instruction and the version numbers used for

the pixel shader discussed in a later chapter have no correlation to

each other!

Versions without an appended “sw” are either hardware acceler-

ated or software emulated. Versions with the appended “sw” are

only software emulated.

Also note the universal usage of “.” and “_”.
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Listing 3-2: Vertex shader

vs.1.1 // Uses 1.1 vertex shader code
vs.2.0
vs.2.x
vs.3.0
vs.3.sw // Version 3sw software (emulated) vertex shader
vs_3_sw

� label: A code address location.

label l# 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This declaration is used to mark a location in code for purposes of

branching the program counter of the vertex processor of a partic-

ular pipe. A label may occur following a ret instruction to mark

the beginning of a new block of code.

For versions 2.0 and 2x, the label number (#) must be in a range

of {0…15}.

For versions 2sw and 3.0, it must be {0…2047}.

This instruction is discussed in more depth in Chapter 4, “Flow

Control.”

Listing 3-3: Vertex shader

vs.2.0 ; Main shader entry point

nop
call l1
call l5
ret

label l1 ; 1st function entry point
nop
ret

label l5 ; 2nd function entry point
nop
ret
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Style: The label numbers should be ordered but not necessar-

ily enumerated (that is, sequential). This is similar to old

BASIC programming, where that language did not support

auto-numbering. In this way, space can be maintained for the

easy insertion of new code without having labels shuffled in

appearance {1, 5, 9, 2, 7, 3, etc.}.

� def: Definition of a single-precision floating-point vector constant

def Dst, aSrc, bSrc, cSrc, dSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This declaration is used to set single-precision floating-point vec-

tor values within the constant registers (c#) ranging from

{0…8191} used by the vertex shader code before it is executed.

This instruction must occur after the version instruction but before

any instructions. This is not a programming instruction but a

definition, and so it does not use up any of the (128/256/512+)

instruction code space. The constant value can only be read by and

not written to by the shader code.

Listing 3-4: Vertex shader

// Sets c0 with {1.0, 0.0, 2.0, 1.5}
vs.1.1 // Version 1.1
def c0, 1.0f, 0.0f, 2.0f, 1.5f // Set c0 register

Those who understand the concept of a constant register can skip

this next code snippet. Those who do not, please continue!

To clear up any fuzziness as to the concept of constant data, the

following should help. It uses C++ code and a global variable to

make its point. Just follow the comments in the code!
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Listing 3-5: C++

typedef enum { // Different kinds of fruit
iFRUIT_UNDEFINED = 0,
iFRUIT_APPLE = 1,
iFRUIT_GRAPE = 2,

// Insert more fruit here!
iFRUIT_MAX

} iFRUIT;

iFRUIT Fruit = iFRUIT_GRAPE; // Preset global variable “Fruit”

// Define our procedure — similar to that of vertex code!
// Note that MyFruit is constant data and thus protected from change!
void PrintBasket(const iFRUIT &MyFruit)
{
cout << "Basket contains fruit: " << MyFruit << endl;

// The following line will NOT compile! A const cannot
// be altered!

MyFruit = iFRUIT_UNDEFINED;
}

// Somewhere in our main program call the procedure
PrintBasket(Fruit);

As you may have noticed, the global register Fruit was preset with

an enumerated value, and within the function PrintBasket() it was

printed but then an attempt was made to clear it. This write

attempt generates a compile error as it is not possible to alter a

constant. In terms of a vertex shader, writing to a constant is also

not possible for similar reasons.

� NOTE: Now remember, that was not meant to be conde-
scending to the more advanced programmer reading this
book. This book is written as an introduction to shaders, and so
it was needed to make certain that the concept was well
understood!

An alternative to this method is writing or reading the value

directly from a C/C++ application by using the DirectX API. Note

that the def declaration is considered an immediate definition and

will override any previously set value, such as that set by the fol-

lowing API constant access method. This allows the setting of one
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or more vectors simultaneously, as opposed to the one at a time

that the shader code allows.

IDirect3DDevice9::SetVertexShaderConstantF()

HRESULT SetVertexShaderConstantF(
UINT StartRegister, // Register c#
CONST float *pConstantData, // Pointer to array of float vectors
UINT Vector4fCount // # of four-float vectors

);

If the function succeeds, a return value of D3D_OK will result. If

there is an error, then D3DERR_INVALIDCALL will result.

This is similar to that of the following snippet.

Listing 3-6: C++

float catPos[] = {1.0f, 0.0f, 1.0f, 0.0f};
UINT nCnt = sizeof(catPos) / (sizeof(float) * 4); // =1

// Set the c0 floating-point register
rval = pDev->SetVertexShaderConstantF(0, catPos, nCnt);

// Alternate methods involve casting a data structure to a
// float pointer.

// Copy a vector (four floats) into c7
D3DXVECTOR4 vec;
pDev->SetVertexShaderConstantF(7, (float *)&vec, 1);

// Copy a matrix (four vectors — 16 floats) into c8...c11
D3DXMATRIXA16 mtx;
pDev->SetVertexShaderConstantF(8, (float *)&mtx, 4);

� defb: Definition of a Boolean constant

defb Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This declaration is used to set a single Boolean value {true : false}

within the specified constant register (b#) used by the vertex

shader code before it is executed. This must occur after the ver-

sion instruction but before any instructions. This is not a

programming instruction but a definition and so does not use up

any of the (128/256/512+) instruction code space. The constant

value can only be read by — not written to — the shader code.
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Note that this is only available for shader code versions 2.0 and

newer! It is not supported by cards running an older version of

shader code. Also of importance is that the definitions of true or

false must be lowercase, as this definition is case sensitive.

Note that the Boolean values are used in the conditional

branching.

Listing 3-7: Vertex shader

vs.2.0 // Version 2.0
defb b4, true // Set b4 register {true : false}
defb b2, false

An alternative to this is writing or reading the value directly from

a C/C++ application by using the provided API. Note that the defb

declaration is considered an immediate definition and will over-

ride any previously set value such as that set by the following

DirectX constant access method. This allows the setting of one or

more vectors simultaneously.

IDirect3DDevice9::SetVertexShaderConstantB()

HRESULT SetVertexShaderConstantB(
UINT StartRegister, // Register b#
CONST BOOL *pConstantData, // Pointer to array of Booleans
UINT BoolCount // # of Boolean values in an array

);

If the function succeeds, a return value of D3D_OK will result. If

there is an error, D3DERR_INVALIDCALL will result.

Listing 3-8: C++

BOOL bAry[] = {TRUE, FALSE, TRUE}; // b4...b6
UINT nAryCnt = sizeof(bAry) / sizeof(BOOL); // =3

// Set Boolean constants b4...b6
rval = pDev->SetVertexShaderConstantB(4, bAry, nAryCnt);
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� defi: Definition of an integer vector constant

defi Dst, aSrc, bSrc, cSrc, dSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This declaration is used to define vector integer values within the

constant registers (i#) by the code of the vertex shader code before

it is executed. This must occur after the version instruction but

before any arithmetic instruction. This is not a programming

instruction but a definition and so does not use up any of the

(128/256/512+) instruction code space. The constant value can

only be read by the shader code and not written.

Listing 3-9: Vertex shader

vs.2.0 // Version 2.0
defi i3, 1, 0, 1, 0 // Set i3 register {1,0,1,0}

An alternative to this is writing or reading the value directly from

a C/C++ application by using the provided API. Note that the defi

declaration is considered an immediate definition and will over-

ride any previously set value, such as that set by the following

DirectX constant access method. This allows the setting of one or

more vectors simultaneously.

IDirect3DDevice9::SetVertexShaderConstantI()

HRESULT SetVertexShaderConstantI(
UINT StartRegister, // Register i#
CONST int *pConstantData, // Pointer to array of integer vectors
UINT Vector4iCount // # of four-integer vectors

);

If the function succeeds, a return value of D3D_OK will result. If

there is an error, D3DERR_INVALIDCALL will result.

Listing 3-10: C++

integer dog[] = {1, 0, 1, 0, // i3
2, 5, 7, 9}; // i4

// Set i3 & i4 register
rval = pDev->SetVertexShaderConstantI(3, dog, 2);
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� dcl_?(usage)?: Source sampler declarations

dcl Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

� � � � � � � � �

Up to and including DirectX 8.1, the dcl usage was not imple-

mented, but with the release of DirectX 9, this statement is now

required by the vsa assembler for the declaration of input stream

data from register v(#). This register has to declare a vertex input

usage based upon the D3DDECLUSAGE enumeration type to

specify how the vertex input data is being used by the shader code.

typedef enum _D3DDECLUSAGE {
D3DDECLUSAGE_POSITION = 0, // dcl_position
D3DDECLUSAGE_BLENDWEIGHT = 1, // dcl_blendweight
D3DDECLUSAGE_BLENDINDICES = 2, // dcl_blendindices
D3DDECLUSAGE_NORMAL = 3, // dcl_normal
D3DDECLUSAGE_PSIZE = 4, // dcl_psize
D3DDECLUSAGE_TEXCOORD = 5, // dcl_texcoord
D3DDECLUSAGE_TANGENT = 6, // dcl_tangent
D3DDECLUSAGE_BINORMAL = 7, // dcl_binormal
D3DDECLUSAGE_TESSFACTOR = 8, // dcl_tessfactor
D3DDECLUSAGE_POSITIONT = 9, // dcl_positiont
D3DDECLUSAGE_COLOR = 10, // dcl_color
D3DDECLUSAGE_FOG = 11, // dcl_fog
D3DDECLUSAGE_DEPTH = 12, // dcl_depth
D3DDECLUSAGE_SAMPLE = 13 // dcl_sample

} D3DDECLUSAGE;

Please note that declarations prior to version 3.0 require the full

{xyzw} declaration for each stream type. Versions 3.0 and above

allow individual components to be masked. See dcl_?usage? (in

Chapter 10, “Pixel Shaders”) for additional information.

Pseudocode:

dcl_position v(m) — Position {xyz}

dcl_blendweight v(m)

dcl_normal v(m) — Normals {xyz}

dcl_texcoord0 v(m) — Texture coordinate {uv}

dcl_texcoord1 v(m)
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Listing 3-11: Vertex shader

dcl_position v0
dcl_blendweight v1
dcl_normal v2
dcl_texcoord0 v3
dcl_texcoord1 v4

Now that the dcl usage has been assigned to a stream input, it can

be used:

mov r0.xyz, v0.xyz // Get position information

Vertex Shader Assembly

Now let’s peek at the file architecture for this graphics processor

assembly language. A vertex shader script (VSH) can exist in a

*.vsh file. As such, it would be ordered similar to Listing 3-12.

We have not discussed any instructions as of yet, so ignore

them for the most part. For an example of dcl_usage:

Listing 3-12: Vertex shader

vs.1.1 // The vertex version number

dcl_position v0 // Position register {xyz}
dcl_texcoord v7 // Texture coordinate register {uv}

// Output position Dx=axbx+cx Dy=ayby+cy Dz=azbz+cz Dw=awbw+cw
mul r1, v0, c3
add oPos, r1, c4

mov oT0.xy, v7 // Copy texture coordinates. {xy} are the {uv}

But we are not done yet! The C/C++ needs to set up the founda-

tions for this shader code, so let’s take a look at that. The v(#)

registers are the stream inputs and thus must define the data as

such. So the position {xyz} and texture {uv} data needs to be

defined within a custom data structure. Notice that the ordering of

the declarations is the same between the shader code and the

C/C++ data structure.
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struct CUSTOMVERTEX_POS_TEX

{

float x, y, z; // v0.xyz - dcl_position {xyz}

float tu1, tv1; // v7.xy - dcl_texcoord {uv}

};

Our custom polygon data would look something like the

following:

CUSTOMVERTEX_POS_TEX vBoxAry[] =

{ // x y z tu1 tv1

{ -1.0f, -1.0f, 0.0f, 0.0f, 1.0f }, // #0 LL

{ 1.0f, -1.0f, 0.0f, 1.0f, 1.0f }, // #1 LR

{ 1.0f, 1.0f, 0.0f, 1.0f, 0.0f }, // #2 UR

{ -1.0f, 1.0f, 0.0f, 0.0f, 0.0f }, // #3 UL

};

Textures are actually discussed later in this book, but basically a

texture is a 2D bitmap that gets mapped onto each triangular face.

The coordinates of the texture are actually normalized {0.0 � n �
1.0}, so the {uv} upper-left corner is addressed as {0.0, 0.0} and

the lower-right corner is addressed as {1.0, 1.0}. Regardless of

what pixel resolution the texture is, it gets mapped onto the poly-

gon face very nicely.
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The point here is that all the custom data structure elements are

mapped to vertex streams and imported into the vertex shader as a

first stage and eventually mapped into the pixel shader as a second

stage.

Just for a quick idea of where this is all headed, take a look at

the following vertex shader code:

Listing 3-13: DX9SDK\samples\Media\fogshader.vsh

// Fog shader code sample from DirectX SDK 9.0
// v0=vector, c8,c9,c10,c11=matrix, c12=limit

// Note the Version (VS) at the top of the file!
vs.1.1 // Version 1.1

dcl_position v0

// Here we have the definition (DEF) that was discussed previously.
def c40, 0.0f,0.0f,0.0f,0.0f // c40={0,0,0,0}

m4x4 r0,v0,c8 // r = v0 [c8,c9,c10,c11] D=AB
// r0x = (v0x * c8x) + (v0y * c8y) + (v0z * c8z) + (v0w * c8w)
// r0y = (v0x * c9x) + (v0y * c9y) + (v0z * c9z) + (v0w * c9w)
// r0z = (v0x * c10x) + (v0y * c10y) + (v0z * c10z) + (v0w * c10w)
// r0w = (v0x * c11x) + (v0y * c11y) + (v0z * c11z) + (v0w * c11w)

// saturate low of 0.0
// r0z = (c40z > r0z) ? c40z : r0z

max r0.z,c40.z,r0.z // r0z = (0 > r0z) ? 0 : r0z
// clamp (w) to near clip plane

max r0.w,c12.x,r0.w // r0w = (c12x > r0w) ? c12x : r0w
mov oPos,r0 // oPosxyzw = r0xyzw

add r0.w,r0.w,–c12.x // r0w = r0w – c12x
// Load into diffuse

mul r0.w,r0.w,c12.y // r0w = r0w � c12y

// Set diffuse color register
mov oD0.xyzw,r0.w // oD0x = oD0y = oD0z = oD0w = r0w
mov oT0.x,r0.w ; oT0x = r0w Set 2D texture X
mov oT0.y,c12.x // oT0y = c12x Set 2D texture Y

Now, that didn’t scare you, did it?
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Style: Be consistent! Do not mix and match methods of com-

menting remarks. Use either the semicolon or the C++ //

method. Using both tends to make code look confusing,

which is demonstrated in the previous code snippet.

The point here is for you to note that either the assembly

language comment designator of ; or the C++ style of com-

ment // can be used for remarks. But for cosmetic reasons,

you should really not mix and match but be consistent. Use

one or the other but not both! It is just a matter of style.

Let’s now move forward!

Vertex Shader Instructions (Data
Conversions)

� mov: Copy register data to register d = a

mov Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction copies the referenced source register from aSrc to

the destination register Dst.

Pseudocode:

if (a0 <> Src) // If not the register index offset

dx=ax dy=ay dz=az dw=aw
else // Float to address, so round to integer

{

*(int*)&dx = int( floor( a0x ))

*(int*)&dy = int( floor( a0y ))

*(int*)&dz = int( floor( a0z ))

*(int*)&dw = int( floor( a0w ))

}
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Listing 3-14: Vertex shader

mov oD0, c0
mov oD0, r4
mov r1, c9
mov r0.xz, v0.xx ; r0x = v0x, r0z = v0x
mov oPos, r1

def c4, 0.0f, 1.0f, 2.0f, 3.0f
mov r0.yz, c4.yw ; r0y = 1.0, r0z = 3.0

� mova: Copy data from floating-point register to address register

mova Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This instruction rounds the source floating-point aSrc to the near-

est integer and stores the result in Dst. See mov for pseudo

conversion.

This instruction is the only method to load the a0 register with a

value for index referencing into the constant array. In versions

prior to DX9, the value being copied to the a0 (index) register is

truncated (floor). In version DX9 or later, it is rounded to the near-

est integer. A component {XYZW} can be selected instead of the

a0.x default.

Listing 3-15: Vertex shader

mova a0, c1
mova a0.x, r0.x

Note that Dst must be register a0 but can be swizzled and contain

one to three elements if vertex version 2.x or newer.

mova a0.yz, r1

� frc: Return fractional component of each source input

frc Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � � �
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This macro instruction removes the integer component from the

source aSrc, leaving the fractional component of the elements

d � [0.0, 1.0), which is stored in the destination Dst.

Note that for version 1.1, a destination mask of .y and .xy is

allowed but not .x, and versions 2.0 and above allow full swizzling

capability. The basic functionality is that the real number becomes,

in essence, truncated. That is, the whole number portion is

removed, leaving only the truncated portion in the range

{0.0 � x < 1.0}.

123.456

– 123.0

0.456

Pseudocode:

float f = 123.456;

int i = (int) f;

// Version 1.0 - The {ZW} elements are ignored

dx = ax – floor(ax)

dy = ay – floor(ay)

// Version 2.0 and above

dx = ax – floor(ax)

dy = ay – floor(ay)

dz = az – floor(az)

dw = aw – floor(aw)

Listing 3-16: Vertex shader

frc r0.xy, r0.x ; Fraction of {X} is stored in {XY}
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Vertex Shader Instructions
(Mathematics)

Vector to Vector Summation v + w

The summation of two same-sized vertices is simply the scalar of

each element of both vertices that are each summed and then

stored in the same element location of the destination vector.

� � � �

� �

v v v v v w w w w w

v w v w v w v w v w

� �

� � � � � �

1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

Equation 3-1: Vector to vector summation: v+w

� add: Addition d = a + b Subtraction d = a + (–b)

add Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction sums each of the specified elements of source

aSrc and source bSrc and stores the result in the destination Dst.

Pseudocode:

dx=ax+bx dy=ay+by dz=az+bz dw=aw+bw

Subtraction is handled by this summation instruction as well as by

utilizing the algebraic law of the additive inverse.

Algebraic law:

Additive inverse a – b = a + (–b)

By using source negation:

dx=ax+(–bx) dy=ay+(–by) dz=az+(–bz) dw=aw+(–bw)

Listing 3-17: Vertex shader

add r0, r0, -c24 // Subtraction
add r0, c23.x, r3 // Addition
add oD0, r0, r1
add r4.x, r4.x, c7.x
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� sub: Subtraction d = a – b

sub Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction subtracts each of the specified elements of the

source bSrc from the source aSrc and stores the result in the desti-

nation Dst. This instruction is retired as the add instruction, which

uses a negation of the source arguments using the algebraic law of

the additive inverse and results in the same needed solution!

Therefore this instruction is no longer needed! However, it can

still be utilized, as the assembler merely remaps it to an add

instruction with a negated source. A source that is already negated

is merely negated again, thus making it a positive source value.

See add.

3D Cartesian Coordinate System

The 3D Cartesian coordinate system is similar to what you learned

in geometry class for describing points and lines (vectors) in

three-dimensional space. Each of the three axes {XYZ} are per-

pendicular to each other. Three planes are constructed with various

combinations of the axis (X-Y, Y-Z, X-Z). Three coordinates, as in

the following example {10,7,10}, specify a point within 3D space.
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A line is specified by the difference between two points. In Figure

3-3, the two points are {10,7,10} and {0,0,0}, hence:

{10 - 0, 7 - 0, 10 - 0}. 	X=10 	Y=7 	Z=10

add r0.xyz, v0.xyz, -c0.xyz // Subtraction

� mul: Multiply d = ab

mul Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the product of each of the specified ele-

ments of the source aSrc and the source bSrc and stores the result

in the destination Dst.

Pseudocode:

dx=axbx dy=ayby dz=azbz dw=awbw ; mul r2,r0,r1

dx=axbx dy=ayby dz=azbz ; mul r0.xyz, r0.xyz, r11.xyz

Listing 3-18: Vertex shader

mul r2, r0, r1
mul r2, r2, r2
mul r5, r5, c15
mul r0.xyz, r0.xyz, r11.xyz
mul r0,-r7.zxyw,r8.yzxw ; dx=azby dy=axbz dz=aybx dw=awbw

The equation of squares is extremely simple here, as it is the prod-

uct of itself!

mul r0,r0,r0 ; {r0x2 r0y2 r0z2 r0w2}

Q&A: What is the difference between a cross product and a

dot product and what are their equations? Which is also

referred to as an outer product and which is an inner

product?
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Cross Product v × w

A cross product (also known as the outer product) of two vectors

is a third vector perpendicular to the plane of the two original vec-

tors. The two vectors define two sides of a polygon face, and their

cross product points away from that face. Since multiplication and

addition have been discussed, this should be a straightforward

implementation of that newly learned knowledge!

v = {v1, v2, v3} and w = {w1, w2, w3} are vectors of a plane

denoted by matrix R3. The cross product is represented by the fol-

lowing equation. The standard basic vectors are i=(1,0,0) j=(0,1,0)

k=(0,0,1).

v × w = (v2w3 – v3w2)i – (v1w3 – v3w1)j + (v1w2 – v2w1)k

det

i j k

v v v

w w w

1 2 3

1 2 3




�

�
�
�



�

�
�
�

thus

v w v w

v w v w

v w v w
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Pseudocode:

Not clear enough? The equation resolves to the following simpli-

fied form:

Dx = AyBz – AzBy Dx = Ay*Bz – Az*By;

Dy = AzBx – AxBz Dy = Az*Bx – Ax*Bz;

Dz = AxBy – AyBx Dz = Ax*By – Ay*Bx;
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Listing 3-19: Vertex shader

mul r1.xyz, v0.zxy, c0.yzx
mul r0.xyz, v0.yzx, c0.zxy
add r0.xyz, r0.xyz, -r1.xyz

So with this foundation in mind, let’s examine some methods of

implementation.

� mad: Multiply Add d = ab + c

mad Dst, aSrc, bSrc, cSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the product of each of the specified

elements of the source aSrc and the source bSrc, then sums the

elements of the source cSrc and stores the result in the destination

Dst.

Pseudocode:

dx=axbx+cx dy=ayby+cy dz=azbz+cz dw=awbw+cw

Listing 3-20: Vertex shader

mad oT0.xyz, r2, r0, r1
mad oT0, r1, c8, c3

Note that the elements can be negated as a whole and/or crossed:

mul r0, r7.zxyw, r8.yzxw
mad r5, r7.yzxw, -r8.zxyw, r0

…so the quad vector multiply: mul r0, r7.zxyw, r8.yzxw

r0x = r7zr8y

r0y = r7xr8z

r0z = r7yr8x

r0w =r7wr8w
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…followed by the multiply-add: mad r5, r7.yzxw, –r8.zxyw, r0

r5x = –r7yr8z + r0x

r5y = –r7zr8x + r0y

r5z = –r7xr8y + r0z

r5w = –r7wr8w + r0w

…should look very familiar to you! Well, I hope it does, as it is

the cross product that was just discussed!

Dx = AyBz – AzBy

Dy = AzBx – AxBz

Dz = AxBy – AyBx

Dw = 0.0

Dx = Ay*Bz – Az*By;

Dy = Az*Bx – Ax*Bz;

Dz = Ax*By – Ay*Bx;

Dw = 0.0;

But alas, we are not done just yet. An instruction was just made

available as part of the new version 2 enhancement, and thus it is

available to you in DirectX 9.

� crs: Cross product d = a × b

crs Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � �

This (two-slot) macro instruction results in the cross product

(outer product) of the source aSrc and the source bSrc and stores

the result in the destination Dst.

Listing 3-21: Vertex shader

mul r0, r7.zxyw, r8.yzxw
mad r5, r7.yzxw, -r8.zxyw, r0

This is done as a single macro. It still requires two instruction

slots. As one cannot play without rules, there are some restrictions

as to its use:

� Neither aSrc nor bSrc can also be the destination.

� Neither aSrc nor bSrc can be swizzled. Only the default .xyzw is

allowed.

� The destination must be a temporary (r#) register.
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� Only one of the following destination masks is allowed: .x .y .z

.xy .xz .yz .xyz

Listing 3-22: Vertex shader

crs r5.xyz, r7, r8

Dot Product

A dot product, also known as an inner product of two vectors, is

the summation of the results of the product for each of their

{XYZ} elements, thus resulting in a scalar. Not to oversimplify it,

but this scalar is equal to 0 if the angle made up by the two vectors

is perpendicular (=90°), is positive if the angle is acute (<90°), and

is negative if the angle is obtuse (>90°).

v = {v1, v2, v3} and w = {w1, w2, w3}

These are vectors that produce a scalar defined by v • w when

their products are combined. The dot product is represented by the

following equation:

v • w = v1w1 + v2w2 + v3w3

The equation resolves to the following simplified form:

D = AxBx + AyBy + AzBz D = Ax*Bx + Ay*By + Az*Bz;

This is one of my favorite equations because it does not slice, dice,

or chop, but it culls, illuminizes, simplifies; it cosineizes (not a

real word, but you know what I mean). It is the Sledge-O-Matic!

Well, it’s not quite comedian Gallagher’s watermelon disintegra-

tion kitchen utensil, but it does do many things, and so it is just as

useful.
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Note in Figure 3-5 that if the resulting scalar value is positive

(+), the vectors are pointing in the same general direction. If zero

(0), then they are perpendicular to each other. If negative (–), they

point in opposite directions.

Before explaining further, it should be pointed out that to keep

3D graphic algorithms as simple as possible, the three vertices for

each polygon should all be ordered in the same direction. For

example, by using the left-hand rule and keeping all the vertices of

a visible face in a clockwise direction, such as in the following

diagram, back face culling will result. If all visible face surfaces

use this same orientation, then if the vertices occur in a counter-

clockwise direction, they are back faced and thus pointing away

and need not be drawn, saving render time.

Contrarily, if polygons are arranged in a counterclockwise orienta-

tion, then the inverse occurs, where a positive value is drawn and a

negative value is culled. Keep in mind, however, that most soft-

ware algorithms keep things in a clockwise orientation.

By calculating the dot product of the normal vector of the poly-

gon with a vector between one of the polygon’s vertices and the

camera, it can be determined that if the polygon is back facing, it

needs to be culled. A resulting positive value indicates that the
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face is pointed away, hence back facing, and thus can be culled

and not rendered; a negative value is a face oriented toward the

camera and thus visible.

Another use for the dot product equation is that it is also the

cosine of the angle. A quick brief here is that the cosine is returned

by the reciprocal of the dot product by the product of the magni-

tudes of the two vectors. Note that v and w are vectors and |v| and

|w| are their magnitudes.

� � � �
Cos � �

� �

� � � �
�

�A B A B A B

A A A B B B

v w

v w

x x y y z z

x y z x y z

2 2 2 2 2 2 | | | |

Equation 3-2: Cosine of the angle

Using standard trigonometric formulas, such as:

1 = Cos2 + Sin2

…sine and other trigonometric results can be calculated.

But whoa! There are two problems here. One is that we are

beginning to get ahead of ourselves. Two, normally the application

will precalculate a transformation matrix with rotations, etc., built

in that will then be used by all the vertices in a stream. In that way,

we can be efficient. But when we start calculating this within a

shader and each shader has to perform the calculation, things do

not begin to slow down. They do slow down and the idea is to

keep the code as light and optimized as possible. So keep in mind

that you may want to take advantage of some of this stuff being

discussed, but on a limited basis. As you may remember, the con-

stant registers cannot be written to by a shader, and the temporary
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registers are garbage between each stream operation upon a ver-

tex, so there is no way to carry over the previous calculations from

shader code execution to shader code execution.

� dp3: Three-element {XYZ} dot product d = a • b

dp3 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the dot product of the source aSrc.xyz

and the source bSrc.xyz and stores the replicated scalar result in

each element of the destination. The default is Dst.xyzw. See

m3x2, m3x3, and m3x4 in Chapter 5 for use of this instruction in

3xN matrix operations.

Pseudocode:

dw=dz=dy=dx= axbx + ayby + azbz ; dp3 d, a, b

dx= axbx + ayby + azbz ; dp3 d.x, a, b

Listing 3-23: Vertex shader

dp3 r2,r0,r1
dp3 r11.x,r0,r0 ; r11x = r0xr0x + r0yr0y + r0zr0z

� dp4: Four-element {XYZW} dot product d = a • b

dp4 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the dot product of the source aSrc.xyzw

and the source bSrc.xyzw and stores the replicated scalar result in

{w}.

The elements {XYZ} of the destination are left intact. The

default is Dst.w, but swizzling can override this destination. See

m4x3 and m4x4 in Chapter 5 for the use of this instruction in 4xN

matrix operations.
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Pseudocode:

dw= axbx + ayby + azbz + awbw ; dp4 d, a, b

dy= axbx + ayby + azbz + awbw ; dp4 d.y, a, b

Listing 3-24: Vertex shader

dp4 r2, r0,r1
dp4 r5.y, v0, c3 ; r5y= v0xc3x + v0yc3y + v0zc3z + v0wc3w

Q&A: How does one handle the age-old problem of division

by zero?

Reciprocals

Divisor
Quotient

Dividend
Remainder�

A division is a play on an equation transformation: a multiplica-

tion of the dividend by the reciprocal of the divisor.

D A B
A

1

B

1

A

1

1

B

A

B
� � � � � � �

You learned back in grade school that to find the result of a divi-

sion, one merely takes the reciprocal of the dividend (divisor) and

finds the product of that dividend with the quotient. But care needs

to be taken when that dividend becomes zero.

D A
A

1

0

1

A

1

1

0

A

0
� � � � � � �0

You also learned that you never divide by zero because that would

be an undefined answer. Well, that is not quite true. If you were to

graph the results of a constant A and slowly reduce the dividend

B, the result would become larger and larger. This, in essence,

means that as B approaches zero, the result gets closer to � (infin-

ity). Normally, a divide by zero on a processor results in a math

exception error, but vector processors and shaders have gone one
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better. For purposes of efficiency, if the dividend is exactly 0.0,

the largest floating-point value is substituted, FLT_MAX.

Due to limited precision handling with single-precision

floating-point, fewer calculations are needed and the longer that

accuracy can be kept within reason. The two most precise values

within a floating-point value on a computer are the values 0.0 and

1.0. With this in mind, even performing a calculation with 1.0

causes a loss in accuracy. But there is a solution for that as a divi-

dend as well.

Value Hex Sign Exp Sig.

–1.0 0xBF800000 1 7F 000000

0.0 0x00000000 0 00 000000

1.0 0x3F800000 0 7F 000000

Note the 23 consecutive bits set to 0. For more in-depth informa-

tion related to floating-point precision, see Appendix D.

Algebraic law:

Additive identity n + 0 = 0 + n = n

Multiplicative identity n1 = 1n = n

If the dividend is 1, then the multiplicative identity shows that.

So:

N 1N
N

1

1

1
� � �

…therefore:

N 1 N� �

Since any number divided by 1 is that same number, the shader

code takes this to its advantage. So to maximize accuracy, when

the dividend is exactly 1.0, the quotient is returned. For all other

quotients, the product of the reciprocal is calculated.

{–� < x < 0.0 < x < 1.0 < x < +�}
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� rcp: Reciprocal of the source scalar d = 1/a

rcp Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the reciprocal of the source aSrc and

stores the replicated scalar result in each specified element of the

destination. Special case handling is utilized if a source is equal to

1.0 or 0.0. The default is Dst.xyzw, Src.x.

Pseudocode:

if (0.0 == ax) // 1/0 Divide by zero

r = +� // Positive infinity

else if (1.0 == ax) // 1/1 = 1

r = 1.0

else // 1/x

r = 1.0/ax

dw=dz=dy=dx= r

Note that unlike most reciprocal instructions, if the denominator is

0, there is no exception (SNaN or QNaN) and/or the data is not

marked as invalid! Instead, it is set as a positive infinity, keeping

the data valid for additional operations.

Listing 3-25: Vertex shader

rcp r2, r0 ; r2w=r2z=r2y=r2x= 1/r0x
rcp r0.z, r0.z
rcp r1.y, r1.x
rcp r2.yw, r2.y
rcp r7.w, r7.w

Division

d = a/b = a * 1/b

Listing 3-26: Vertex shader

rcp r0.x, r2.x // dx = 1/bx
mul r0.x, r1.x, r0.x // dx = ax/bx = ax * 1/bx
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Square Roots

The reciprocal and square root are two mathematical operations

that have special functionality with vector processors. The divi-

sion operation is typically performed by multiplying the reciprocal

of the denominator by the numerator. A square root is not always

just a square root. Sometimes it is a reciprocal square root. So first

let’s examine some simple forms of these.

y x
y

1

1

x

y

x

y

x
y x y x

1

1

1 1 1 –1� � � � � � � ��

So:

1 1

x
x� �

Equation 3-3: Reciprocal

x x
1

x
x so

x

x
x x x1 2 1 2 1 1 2 1 2� � � � �� �

Another way to remember this is:

x

x

x x

x

x x

x

x

1
x�

�
�

�
� �

Equation 3-4: Square root

The simplified form of this scalar instruction individually calcu-

lates the square root of the specified floating-point element and

returns the result in the destination.

So now I pose a little problem. Hopefully we all know that a

negative number should never be passed into a square root

because computers go BOOM, as they have no idea how to deal

with an identity (i).

� �x xi

With that in mind, what is wrong with a reciprocal square root?

Remember your calculus and limits?

x 0

1

x� �
�
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�HINT: x�0+ (as x approaches zero from the right)

Okay, how about this instead?

x 0

1

X� �
�

Do you see it now? You normally cannot divide by zero, as it

results in infinity and is mathematically problematic. So with a

normal CPU, special case handling has to occur. But with a

shader, this special case code is handled for you!

If x is passed as a negative number, it is passed through an abs()

function for you. If x is way too close to zero, such as specifically

being 0.0, then it is conditionally set as close to infinity as possible

(in essence, a really high positive value). If it is 1.0, then it is left

alone to keep precision loss from affecting it during a reciprocal

operation; otherwise, the square root is processed as a reciprocal.

ax = abs(ax)

if (0.0 == ax) // 1/0 Divide by zero

r = +� // Near positive infinity

else if (1.0 == ax) // 1 = 1/1 = 1/ 1

r = 1.0

else // 1/ 1

r = 1.0/ ax

It is not perfect, but it is a solution. The number is so close to

infinity that the result of its product upon another number is negli-

gible. So, in essence, the result is that other number, thus the

multiplicative identity comes to mind (1 * n = n).

So in the case of a reciprocal square root, the square root can be

easily achieved by merely multiplying the result by the original x

value, thus achieving the desired square root. Remember, the

square of a square root is the original value!

x x
1

x
x

1

x
x1 2 2 1 2� � �� �

x
x

1

1

x
x x1 1 2 1 2� � � ��
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� rsq: Reciprocal square root of the source scalar d = 1/ a

rsq Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the reciprocal square root of the source

aSrc specified by only one element {.x .y .z .w} and stores the rep-

licated scalar result in each element of the destination. Special

case handling is utilized if the source is equal to 1.0 or 0.0. The

default is Dst.xyzw, aSrc.x.

Pseudocode:

dw=dz=dy=dx = rsqrt(ax)

Listing 3-27: Vertex shader

rsq r1, c3 // r1w = r1z = r1y = r1x = 1/ c3x

rsq r1.y, c3.y // r1y = 1/ c3y

You should remember that multiplying a reciprocal square root by

the original number returns a square root! x x 1/ x� �

rsq r1.x, c3.x // 1/ bx

mul r1.x, r1.x, c3.x // ax/ bx

Vector Magnitude

This is also known as the 3D Pythagorean theorem. As you know,

the shortest distance between two points is typically a straight line.

The square of the hypotenuse of a right triangle is equal to the

square of each of its two sides, whether in 2D or 3D space. The

Pythagorean equation is essentially the distance between two

points, in essence the magnitude of their differences.

2D Distance
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x2+y2=r2

r = ( )x y2 2�

Code:

r = sqrt(x*x + y*y);

Equation 3-5: 2D distance

3D Distance

x2+y2+z2=r2

r = ( )A A Ax

2

y

2

z

2� �

Code:

r = sqrt(x*x + y*y + z*z);

Equation 3-6: 3D distance (magnitude)

Mathematical formula:

Pythagorean x2+y2=r2

r x y2 2� �( )

x2 + y2 + z2=r2

r x y z2 2 2� � �( )

2D Distance � � � � � �d P1, P2 x2 x1 y2 y1
2 2� � � �( )

3D Distance � � � � � � � �d P1, P2, P3 x2 x1 y2 y1
2 2� � � � � �( )z z2 1

2
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� dst: Distance vector

dst Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction calculates the distance between the source aSrc

and the source bSrc and stores the result in the destination Dst.

The aSrc is assumed to be the source vector {#,d2,d2,#} and

bSrc the vector {#,1/d,#,1/d}, and the result Dst is {1,d,d2,1/d}.

Note that # indicates an I do not care condition.

Pseudocode:

dx=1.0 dy=ayby dz=az dw=bw

Listing 3-28: Vertex shader

// Find the distance from v1 to the origin {0,0,0}
mov r1.xyz, v1.xyz // vec = {xyz#} Position
dp3 r1.yz, r1, r1 // d={##yz} = sum of squares
rsq r2.y, r1.y // {# # 1/ d #}
rcp r2.yw, r2.y // { d d # #} = 1/(1/ d)
dst r0,r1,r2 // = r1#yz# r2#yw#

Special Functions

We are now coming to the end, with the few remaining non-

branch and non-matrix instructions that have special functionality.

� pow: Power d = |a|b

pow Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This (three-slot) macro instruction occupies three slots and calcu-

lates the scalar value using the source aSrc as a base value and

bSrc as an exponent value and stores the replicated result in each

component of the destination Dst. This is a scalar instruction, thus

both the aSrc and bSrc source arguments require the swizzle of a

single replicated component {x, y, z, w}.
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The Dst register should be a temporary register (r#) and not the

same register as bSrc.

Pseudocode:

dx = dy = dz = dw = |a|b

Listing 3-29: Vertex shader

pow r3, r4.x, r4.y
pow r2, r0.z, c0.w

� expp: Exponential 2x — 10-bit precision

expp Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction calculates the exponential number using the

source aSrc and stores the result in the destination Dst.

Pseudocode:

uint32 m

w = floor(aw)

t = pow(2, aw)

dx = pow(2, w)

dy = aw – w

// Reduced precision exponent

m = *((uint32*)&t) & 0xffffff00

dz = *(float*)&m

dw = 1.0

Listing 3-30: Vertex shader

expp r1.x, c6.y
expp r5.yw, r5.xxxx
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� exp: Exponential 2x — 21-bit precision

exp Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

(vs 1.1 Macro) � � � � � �

This (n-slot — previously a macro) instruction calculates the

exponential number using the source aSrc and stores the result in

the destination Dst. See expp.

� NOTE: Version 1.1 is a ten-slot macro. Version 2.0 and
higher is an instruction that only uses one slot. So if you need to
use this instruction, by all means try to make sure that your code
is targeting at least version 2.0.

Pseudocode:

dx = dy = dz = dw = pow(2, aw)

Listing 3-31: Vertex shader

exp r1.x, c6.y

� lit: Lighting coefficients — reduced precision

lit Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction calculates the lighting coefficient for the source

aSrc using two dot products and an exponent and stores the result

in the destination Dst.

Pseudocode:

const float MAXPOWER = 127.9961

ax = Normal · LightVector

ay = Normal · HalfVector

az = 0.0

aw = exponent // Exponent of � [–128.0, 128.0]

// The following code fragment shows the operations
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// performed.

dx = dw = 1.0

dy = dz = 0.0

power = aw

if ((power < –MAXPOWER) || (MAXPOWER < power))

power = –MAXPOWER // 8.8 fixed point format

if (0.0 < ax) // positive

{

dy = a

// Allowed approx. is EXP(power * LOG(ay))

if (0.0 < ay) dz = pow(ay, power) // positive

}

Listing 3-32: Vertex shader

lit r1, r0

� logp: log2(x) — 10-bit precision

logp Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction calculates a partial log using the source aSrc and

stores the result in the destination Dst.

Pseudocode:

v = |aw|

if (0.0 <> v)

{

int i = (int)(*(DWORD*)&v >> 23) – 127

dx = (float)I // exponent

i = (*(uint*)&v & 0x7FFFFF) | 0x3f800000

dy = *(float*)&i // mantissa

v = log (v) / log (2.0)
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i = *(uint*)&v & 0xffffff00

dz = *(float*)&i;

dw = 1.0

}

else // aw is zero!

{

dx = dz = MINUS_MAX()

dy = dw = 1.0

}

Listing 3-33: Vertex shader

logp r0, r0.w

� log: log2(x) — full precision

log Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

(vs 1.1 Macro) � � � � � �

This (n-slot — previously a macro) instruction calculates a full

precision log using the source aSrc and stores the result in the des-

tination Dst. See logp.

� NOTE: Similar to the exp macro instruction, for shader ver-
sion 1.1 this was implemented as a (ten-slot) macro instruction.
For version 2.0 and later, this is a single-slot instruction. Of
course, the same recommendation of targeting at least version
2.0 applies. This will increase rendering speed per vertex.

Pseudocode:

v = |aSrc.w|

if (0.0 != v)

v = (log (v)/log (2))

else

v = MINUS_MAX()

Dst.x = Dst.y = Dst.z = Dst.w = v
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Listing 3-34: Vertex shader

log r0, r0.w

� lrp: Interpolate between registers

lrp Dst, aSrc, bSrc, cSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This (two-slot) macro instruction calculates a linear interpolation

between the product of the source aSrc and the differential of the

source arguments bSrc less cSrc, followed by the summation of

the third argument cSrc, and the result is stored in the destination

Dst.

Pseudocode:

dx = ax (bx – cx) + cx
dy = ay (by – cy) + cy
dz = az (bz – cz) + cz
dw = aw (bw – cw) + cw

Listing 3-35: Vertex shader

lrp r3, r0, r1, r2

� texldl: Texture load

texldl Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� �

This instruction combines the texture coordinates referenced by

the sampler stage, source aSrc, and the source sampler (s#) refer-

enced by bSrc.

The mipmap level of detail (LOD) being accessed for this load

must be the texture coordinate’s fourth element, aSrc.w. This is, in

essence, the index number of the mipmap with index #0 being the

largest mipmap! If the value is negative, then mipmap #0 (the

largest mipmap) is referenced.

The Dst must be a temporary register r#.
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bSrc must be register s#, be non-negative values, and have been

used by the dcl declaration! The swizzle functionality can be taken

advantage of.
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C h a p t e r 4

Flow Control

This chapter is related to procedural shaders — the branching and

thus controlling the flow of the shader process. It is discussed as

two methodologies. The first method is what I like to refer to as

branchless code. The second is branching code, with which those

of you familiar with the C programming language and especially

the Microsoft Macro Assembler and X86 assembly language pro-

gramming would be most familiar.

Branchless Coding

The instructions abs, min, max, slt, sge, sgn, setp, and nrm can be

considered branchless code, as they do a comparison test and sub-

stitution without actually branching. These instructions use simple

bit masking logic to achieve the desired result. The slt and sge

instructions go one step further, as they return a value of zero or

one, which can then be used in conjunction with additional param-

eters to generate masking logic of numerical expressions that other

code may require! Typically, branchless code has to do with opti-

mization (that is, to rework code to make it faster and more

efficient by removing branches and substituting alternative logic).

In this book’s case, the pseudocode functionality of what these

instructions do requires branching, although in reality the hard-

ware is doing no branching whatsoever.
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� abs: Absolute d = |a|

abs Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This instruction results in the 2’s complement (negation) of a

negative value in the source aSrc and stores the result in each

specified element of the destination. Please note that this instruc-

tion is only valid if your vertex version is set to 2.0 or higher! A

positive value remains unchanged.

Pseudocode:

float f;

if (f < 0.0) f = –f;

dx= |ax| dy=|ay| dz=|az| dw=|aw|

Listing 4-1: Vertex shader

abs r0, c0
abs r0.x, c2.z

� min: Minimum d = (a < b) ? a : b

min Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the selection of the lower value from

each scalar element of the source aSrc and bSrc and stores the

result in the destination Dst.

Pseudocode:

dx= (ax < bx) ? ax : bx
dy= (ay < by) ? ay : by
dz= (az < bz) ? az : bz
dw= (aw < bw) ? aw : bw
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Listing 4-2: Vertex shader

min r2, r0, r1
min r0, r0, c4.y

� max: Maximum d = (a > b) ? a : b

max Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in the selection of the higher value from

each scalar element of the source aSrc and bSrc and stores the

result in the destination Dst.

Pseudocode:

dx= (ax > bx) ? ax : bx
dy= (ay > by) ? ay : by
dz= (az > bz) ? az : bz
dw= (aw > bw) ? aw : bw

Listing 4-3: Vertex shader

max r2, r0, r1
max r0, r0, c4.y

� slt: Set if less than d = (a < b) ? 1.0 : 0.0

slt Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in a comparison of each selected element

of the source aSrc, bSrc and stores 1.0 if less than or 0.0 if not in

the destination Dst. This instruction is similar to the min instruc-

tion and is very much like the branchless code that I mentioned at

the beginning of this chapter. If this were an integer, one would

merely take the 0 or 1 resulting from the set instruction, subtract a

value of one resulting in –1 or 0, which then results in a new value

of either all ones or all zeros. This could then be used as a bit

mask. But in reality, this instruction is used to process
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floating-point values. If you recall your algebraic law of identity,

the resulting value calculated from the product of this instruction

results in that value or zero.

0N = 0 1N = N

So effectively, we have a branchless mask as well, and that is how

we use it.

Pseudocode:

dx= (ax < bx) ? 1.0 : 0.0

dy= (ay < by) ? 1.0 : 0.0

dz= (az < bz) ? 1.0 : 0.0

dw= (aw < bw) ? 1.0 : 0.0

Listing 4-4: Vertex shader

slt r2,c4,r0

� sge: Set if greater than or equal to d = (a >= b) ? 1.0 : 0.0

sge Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � � �

This instruction results in a comparison of each selected element

of the source aSrc and bSrc and stores 1.0 if greater than or equal

to (else 0.0) as the result in the destination Dst. This instruction is

very similar to the slt instruction, except it is the inverse condi-

tional of � instead of <.

Pseudocode:

dx= (ax >= bx) ? 1.0 : 0.0

dy= (ay >= by) ? 1.0 : 0.0

dz= (az >= bz) ? 1.0 : 0.0

dw= (aw >= bw) ? 1.0 : 0.0

Listing 4-5: Vertex shader

sge r2,c2,r3
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� sgn: Sign

sgn Dst, aSrc, bSrc, cSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � �

This (three-slot) macro instruction returns the sign of a value by

stripping a value from source aSrc of its weight and stores the

result in the destination Dst. A unit value indicates –1.0 if the

value was negative, 0.0 if the value was zero, and 1.0 if the value

was positive. This effectively generates a mask.

� WARNING: bSrc and cSrc are temporary scratch registers.
Their contents will be destroyed!

Pseudocode:

d = –1 if a < 0

d = 0 if a == 0

d = 1 if a > 0

Listing 4-6: Vertex shader

sgn r1, r0, r10, r11 // Note: r10, r11 scratch Regs

� nrm: 3D vector normalization

nrm Dst, aSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � �

This (three-slot) macro instruction calculates the normalization of

a 3D vector.

� WARNING: As this is a macro instruction, the destination
register must be a temporary register, and the source and desti-
nation registers cannot be the same register.

0 = 0 1/0 = � (infinity)

The same rules of division apply here, as discussed in Chapter 3.
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Pseudocode:

r = axax + ayay + azaz;

if (r == 0)

r = FLT_MAX;

else

r = 1 / r;

ay = ay * r;

az = az * r;

Please note that the instruction nrm, as previously explained, is

only available for vertex version 2.0 or higher. If an old shader

card is being utilized using hardware rendering, this instruction

must be emulated. In the last chapter, a reciprocal was shown as a

division:

rcp r0.x, r2.x // dx = 1/bx
mul r0.x, r1.x, r0.x // dx = ax/bx = ax * 1/bx

And a reciprocal square root was shown as a square root:

rsq r1.x, c3.x // 1/bx
mul r1.x, r1.x, c3.x // ax/bx

How to handle the divide by zero in both cases was not discussed.

This would normally present a problem because a divide by zero

has an invalid solution and quite often it must be trapped and con-

verted to a value of one, as divide by zero is in essence infinity,

and a denominator of zero has an infinitesimal effect on a value,

so in essence the value remains the same.

But for programmable vertex and pixel shaders, they are

trapped and a positive infinity is returned. The interesting thing

here is the product of zero and infinity is zero!

�HINT: The product of zero and any value (including infinity) is
zero!

if (0.0 == aw) // 1/0 Divide by zero
r = +� // Positive infinity

else if (1.0 == aw) // 1/1 = 1
r = 1.0

else // 1/x or 1/ x

r = 1.0/aw or r = 1.0/sqrt(aw)
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They both require a reciprocal (in essence, a division). But that

presents the old problem of a divide by zero, as in the case of an

element being too close to zero. When dealing with a normaliza-

tion, losing precision in the process of manipulating pixels is not a

problem.

dp3 r0.w, r1.xyz, r1.xyz // dw=ax2+ay2+az2

rsq r0.w, r0.w // dw = 1/ dw

mul r0.xyz, r1.xyz, r0.w // {az(1/dw) ay(1/dw) ax(1/dw)}

If the output of the normalization is being used for additional cal-

culations and precision is required, then use limits (remember your

calculus) to trap for the denominator as it approaches zero. To

resolve this problem, there is no branching or Boolean masking,

which is to the detriment of this assembly code. Hopefully, those

instructions will be added to a new version soon. Yet, a normaliza-

tion is needed, so what can be done?

A comparison in conjunction with a constant can be utilized.

Remember that the sum of squares is never a negative number, so

the value is d� [0.0, r].

� slt: Compare less than d = (a < b) ? 1.0 : 0.0

def c0, 0.0000001, 0.0000001, 0.0000001, 0.0000001

// ‘r1’ too close to zero?
slt r3, r1, c0 // s = (a < 0.0000001) ? 1.0 : 0.0
sge r4, r1, c0 // t = (a >= 0.0000001) ? 1.0 : 0.0

// Complement masks, d[]=1 if too close to zero, t[]=1 if Not!
// If too small, 1.0 = (0.00000001*0)+1.0
// If okay a = (a * 1) + 0

mad r0, r1, r4, r3 // d[] = (a[] * t[]) + s[]

� setp: Set predicate

setp_?? Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

setp_gt (a > b) � � � �

setp_ge (a � b) � � � �

setp_eq (a = b) � � � �

setp_ne (a <> b) (a � b) � � � �
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setp_le (a � b) � � � �

setp_lt (a < b) � � � �

This instruction results in a per-channel comparison between the

source register aSrc and the source register bSrc and stores the

Boolean result in the destination predicate Dst. Now remember

that when doing an exact equality comparison (a = b) or (a � b),

there is the risk of very close numbers not being exactly the same

and vice versa due to precision loss, especially when they are pro-

cessed by a calculation. Check out Appendix D, “Floating-Point

101,” for more information.

Pseudocode:

p0x = (ax ? bx) ? TRUE : FALSE

p0y = (ay ? by) ? TRUE : FALSE

p0z = (az ? bz) ? TRUE : FALSE

p0w = (aw ? bw) ? TRUE : FALSE

Listing 4-7: Vertex shader

setp_gt p0, r1, c1
setp_eq p0, r0, c4

That predicate can then be used in conjunction with the predicate

if, callnz, and break instructions.

�HINT: The predicate can be used as a pre-filter on an instruc-
tion whereas if an element of the predicate is true, then the
result of the correlating element is stored in the destination.

Pseudocode:

For example, a predicate addition would result in the following.

If p0? is true, then do the calculation for that element, else skip.

if (p0x) dx = ax + bx
if (p0y) dy = ay + by
if (p0z) dz = az + bz
if (p0w) dw = aw + bw
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The NOT symbol ! can be used to invert the logic.

if (!p0x) dx = ax + bx
if (!p0y) dy = ay + by
if (!p0z) dz = az + bz
if (!p0w) dw = aw + bw

Listing 4-8: Vertex shader

(p0) add r3, r2, c6
(!p0) add r3, r2, c6

Branching Code

These procedural instructions were introduced with vertex version

2.0, and there are a few simple rules to keep in mind. There are

two forms of loops: loop and repeat. Each type of loop has a start

marker {loop, rep} and an end marker {endloop, endrep}. The if

conditional branching also contains an end marker {endif}. There

are only two methods to escape from a loop. One is not really an

escape, as it is a {call or callnz} instruction, which has an end

marker {ret}. The break instruction is the method of escaping a

loop. Except for the break instruction, each of these can be

thought of as a sub-code block, of which one can be contained

within another but not cross connected.

There are limits, however, as the D3DCAPS9.VS20Caps.Static

FlowControlDepth indicates how deep function calls within loops

can nest.

The new integer and Boolean registers are used by these proce-

dural instructions. For purposes of familiarity, this starts with a

branch that you should be most familiar with: the if-then

conditional.

� if-endif: (Boolean)

if aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �
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The branching conditional if-endif is a Boolean conditional. In the

C programming language, your code may have looked similar to

the following:

Pseudocode:

if (16 > a)

{

// If a is less than 16.

}

But how it really works (behind the wrappers) is as follows:

Boolean bFlg = (16 > a) ? true : false;

if (true == bFlg)

{

// If a is less than 16.

}

The if shader statement is extremely similar, except it does not do

a value comparison. Instead it uses one of the Boolean constants

defined by defb (discussed in Chapter 3) as the Boolean test for

the if. The other difference here is that instead of braces, an endif

statement is used to indicate the end of an end block.

� if-endif

endif 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

Listing 4-9: Vertex shader

defb b1, TRUE

if b1
mul r0.xyz, v0, c2.x // Executed if b1 is true!

else
mad r2.xyz, v1, c2.y, r0

endif

So now let’s add another statement that you should be familiar

with, the else statement.
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� if-else-endif

else 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

Pseudocode:

if (true == bFlg)

{

// If a is less than 16.

}

else

{

// If a is greater or equal to 16.

}

Listing 4-10: Vertex shader

defb b1, TRUE

if b1
mul r0.xyz, v0, c2.x // Executed if b1 is true!
mad r2.xyz, v1, c2.y, r0

else
mul r0.xyz, v0, c3.x // Executed if b1 is false!
mad r2.xyz, v1, c3.y, r0

endif

� if_??-endif (compare)

if_?? aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

if_gt (a > b) � � � �

if_ge (a � b) � � � �

if_eq (a = b) � � � �

if_ne (a <> b) (a � b) � � � �

if_le (a � b) � � � �

if_lt (a < b) � � � �

This is a bit more similar to the C programming language. It actu-

ally performs a mathematical comparison between the scalar
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source values stored in aSrc and bSrc and branches based upon the

result.

This set of statements can be nested up to 24 levels deep. These

can exist outside or inside a loop-based code block but may not

cross a loop block boundary.

A component element is required to be selected from aSrc and

bSrc to compare the correct scalar.

When comparing floating-point numbers, care must be taken in

discerning which comparisons will behave as expected, especially

when trying to see if the two source values are the same (eq) or

not the same (ne).

Having reviewed this new if comparison, let’s revisit that origi-

nal comparison: if (16 > a).

Listing 4-11: Vertex shader

def c3, 16.0, 0.0, 0.0, 0.0

if_gt c3.x, r0.y
// Executed if (16 > r0.y)

else
// Executed if (16 = r0.y)

endif

Q&A: Why can’t two floating-point numbers be compared

for equality?

Do not expect the resulting values from different calculations to be

identical. For example, 2.0 x 9.0 is about 18.0, and 180.0/10.0 is

about 18.0. But the two 18.0 values are not guaranteed to be

identical.

For a bumpy but interesting ride on this topic, see Appendix D,

“Floating-Point 101.”

So the highest accuracy will occur when working with normal-

ized numbers {–1.0 � x � 1.0}. Normally, one would not compare

two floating-point values except to see if one is greater than the

other for purposes of clipping.
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So on with the last if statement — the if predicate!

� if: endif (predicate)

if_pred aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � �

This branch uses the predicate register as the conditional. The !

symbol indicates a NOT condition, and therefore 1’s complements

the value in the predicate register.

Listing 4-12: Vertex shader

if p0.x
if !p0.y

� rep-endrep (repeat)

rep aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

The source integer register aSrc only uses the constant integers

(i#).x, which contains the number of iterations (loops) that occur

between the rep and endrep instructions. The maximum number of

loops allowed is 255.

� rep-endrep (end repeat)

endrep 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

An endrep instruction must be used in conjunction with the rep

instruction and occur at the end of the looped code block.

The repeat loops are not allowed to be nested. When used in

conjunction with if statements, the repeat loop must either be a

container for the if code block or the repeat loop must reside

within the if block. The rep and endrep both occupy one instruc-

tion slot each.

This can be thought of as a while loop.
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Pseudocode:

nCount = aSrc.x

while (nCount--)

{

}

Listing 4-13: Vertex shader

defi i3, 5, 0, 0, 0

rep i3
// Insert your code here!

endrep

� loop-endloop

loop aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

The source register aSrc is the loop counter aL register. The source

register bSrc is an integer register, where the (i#).x component

contains the iteration count, the (i#).y component contains the ini-

tial value of the loop counter, and the (i#).z component contains

the incremental value.

� loop-endloop

endloop 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

The endloop statement indicates the bottom of a loop. The vertex

code between loop and endloop will cycle up to the value of the

loop counter.
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Pseudocode:

aL is used as an index into the constant integer array.

nCount = aSrc.x; // Same as rep, # of loops

aL = aSrc.y;

iStep = aSrc.z;

while (nCount--)

{

aL += iStep;

}

Listing 4-14: Vertex shader

defi i3, 5, 2, 1, 0 // 5 loops, i2...i6, +1

loop aL, i3
// Insert your code here using aL index!

endloop

� break (break out of loop)

break 1.1 2.0 2x 2sw 3.0 3sw

� � � �

This instruction is used to break out of repeat and loops and allow

the function to execute the instruction just below the endloop or

endrep looping block in which it resides. It has an identical func-

tionality to that of the break used in while loops in C.

Listing 4-15: Vertex shader

defi i3, 5, 2, 1, 0 // 5 loops, i2...i6, +1

loop aL, i3
// Insert your code here using aL index!

if_gt c3.x, v0.x
break

endloop
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� break_?? (compare break)

break_?? aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

break_gt if (a > b) break � � � �

break_ge if (a � b) break � � � �

break_eq if (a = b) break � � � �

break_ne if (a <> b) break
(a � b)

� � � �

break_le if (a � b) break � � � �

break_lt if (a < b) break � � � �

This is a combination of an if conditional and a break contained

within a single instruction. Just like the if conditional, an element

of both the source aSrc and bSrc needs to be selected for the indi-

vidual scalar compare.

Listing 4-16: Vertex shader

rep i1
nop
break_gt c3.x, r0.x
endrep

� break (predicate)

break_pred aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � �

This predicate conditional break uses the predicate register (p0) as

the conditional to break out of a loop. The ! symbol indicates a

NOT condition, and therefore 1’s complements the value in the

predicate register.

Listing 4-17: Vertex shader

break p0.x
break !p0.y
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� call-ret

call label 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This instruction is a function call to a code block with an entry

point marked by a label and an exit point marked by a ret instruc-

tion. Labels were discussed in Chapter 3. Similar to how general

purpose processors function, the effective address of the next exe-

cutable instruction is pushed on a stack and execution is branched

(jumped) to the address marked by a label. Execution continues

from that point forward until a return is encountered.

An indicator is needed to mark the end of called function code,

which is the ret instruction.

vs.2.0
// base shader code
call l2
ret

label 12
nop
ret

� call-ret

Ret 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This is the exit point of a code block accessed by a call instruc-

tion. The address pushed onto the stack by the call instruction is

popped off the stack, and then the execution is branched (jumped)

to.

Listing 4-18: Vertex shader

call l1
ret

label l1 // insert subroutine code here
ret
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In vertex version 2.0, nested subroutine calls are not allowed. In

vertex version 3.0, functions can be nested four levels deep!

Pseudocode:

call l1

call l2

call l3

call l4

ret

ret

ret

ret

� callnz-ret

callnz label, aSrc 1.1 2.0 2x 2sw 3.0 3sw

� � � � �

This is similar to a call instruction, except it is a conditional call.

That is, if the Boolean constant referenced by the source input

aSrc is NOT zero (thus True), then the function is called.

Listing 4-19: Vertex shader

callnz l1, b2

An alternative argument is to use a scalar element of the predicate

(p0).{XYZW} instead of a Boolean. Also similar to the if predi-

cate conditional, the NOT of the predicate scalar element can be

used as well.

Listing 4-20: Vertex shader

callnz - ret
callnz_pred - ret
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C h a p t e r 5

Matrix Math

Welcome to the Matrix. A place where time is warped by the mind

… wait, oh yeah! That was a movie!

This matrix is a wee bit different but can be just as entertaining!

Before delving into the vertex shader instructions that support

matrix operations, some basics of matrices need to be understood.

To keep this chapter from being too big, it is broken into two parts.

A mixture of linear algebra (matrices) and 3D rendering technol-

ogy are brought together in conjunction with vertex shader code in

this chapter. Then there is purely trigonometric support (sine-

cosine, that sort of thing!) in Chapter 6.

For rendering images, typically two primary orientations of a

coordinate system are utilized — the left-handed 3D Cartesian

coordinate system on the left or the right-handed on the right, as

shown in the following figure.
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This is a representation of Euler (pronounced oiler) angles. The

following has been done with all sorts of hand manipulations, etc.,

but I find the following the easiest non-thinking way to remember.

In a left-handed system, place your left arm along the x-axis and

the hand at the intersection of these axis; the horizontal hitchhik-

ing thumb easily points in the z+ direction. For a right-handed

system, do the same with the right hand, and the thumb again eas-

ily points in the direction of the z-axis (unless you are double

jointed).

The left-handed system has the z-axis increase in a positive

direction toward the horizon and is the system that video game

system graphic packages, such as Direct3D, typically use. The

right-handed system increases the value of the z-axis as it

approaches the viewer. This is more along the lines of a high-per-

formance graphics library and standard mathematical conventions.

There are variations of these where the z-axis is the height (eleva-

tion) information, but this is typically used within some art

rendering programs, such as 3D Studio Max.

For purposes of rotation, scaling, and translations of each object

within a scene, one of the following two methods is utilized. One

method is the use of the vertex, which has been discussed in some

detail in previous chapters, and the other method is the use of a

quaternion, which is discussed in Chapter 7. Both of these mecha-

nisms use their own implementation of vectors and matrices for

the actual multiple-axis transformations of images and their

{XYZ} coordinate information.

Vectors

A typical 3D coordinate is contained within an {XYZ} 1x3 col-

umn vector, but when extended to a fourth element for an

{XYZW} 1x4 column vector, a 1 is typically set for the {W} ele-

ment. As a note, you should remember that a product identity

vector contains an {XYZW} of {0,0,0,1}. When working with

translations, the fourth row contains translation (displacement)

information, and the {1} in the {W} element allows it to be pro-

cessed as part of the solution.
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A matrix is used to encapsulate simple to complicated mathe-

matical expressions, which can be applied to a scalar, vector, or

another matrix. The product, inverse calculations, and summation

expressions can all be combined into a single matrix to help mini-

mize the number of overall calculations needed for resolution.

These simple mathematical operations resolve to rotations, scal-

ing, and translations of vectors, just to name a few.

Vector to Vector Summation v + w

The summation of two same-sized vertices is simply the scalar of

each element of both vertices that are each summed and then

stored in the same element location of the destination vector.

� � � �

� �

v v v v v w w w w w

v w v w v w v w v w

� �

� � � � � �

1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

Equation 5-1: Vector to vector summation: v+w

The Matrix

Before one can use the shader’s matrix instructions one needs to

understand their basic functionality. A matrix is an array of scalars

that are used in mathematical operations. In the case of this book,

only two types of matrices are utilized — a 4x4 matrix denoted by

A as illustrated below on the left, and a 1x4 matrix v on the right,

which is used to represent a vector.

A

a a a a

a a a a

a a a a

a a a a

�

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

� �




�

�
�
�
�



�

�
�
�
�

�v v v v v
1 2 3 4

Equation 5-2: 4x4 matrix and 1x4 vector

The matrices here are discussed in more depth later in this book,

so it is very important that you understand the functionality of a

matrix.

Matrices are typically a black box to most game programmers,

as they typically cut’n’paste standard matrix algorithms into their
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code without really understanding how they work. There may be a

similarity between the words “matrix” and “magic,” but there are

no chants and spells here. It is just mathematics!

A

a a a a

a a a a

a a a a

a a a a

�

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44




�

�
�
�
�



�

�
�
�
�

Equation 5-3: Matrices are arranged into a row column
arrangement (Mrow col Arow col). For example, scalar a23 is
referenced by the second row, third column.

DirectX uses a basic 4x4 matrix of which one is based upon a

structure using 1-based indexing: A._23.

Listing 5-1: ...\dx9sdk\include\d3dtypes.h

D3DMATRIX mtxA;

typedef struct _D3DMATRIX {
float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;

} D3DMATRIX;

The other is a two-dimensional float array: A.m[1][2].

typedef struct _D3DMATRIX {
float m[4][4];

} D3DMATRIX;

These are actually embedded in the structure as a union but have

been individually exposed here for clarity.

Style: Since both matrix implementations are within a single

structure, a programmer might be tempted to access different

elements using different methods, but this would be a bad pro-

gramming (style) habit to adopt. Instead keep to one method

or another (not both, and especially not in the same function).

mtxA.m[3][2] = A._24;

A._24 = 231.0f;
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A matrix is arranged linearly in memory and sometimes needs to

be accessed as a 1x16 array of floats. There are multiple methods

of implementation of which the following are only some of them:

fpAry = (float*)&mtxA;
fpAry = &mtxA.m[0][0];
fpAry = &mtxA._11;

These are similar to the following array. Note that each element of

a D3DMATRIX occupies the space of a float.

float M[16];
D3DMATRIX A;

M[0] =A._11 M[1] =A._12 M[2] =A._13 M[3] =A._14
M[4] =A._21 M[5] =A._22 M[6] =A._23 M[7] =A._24
M[8] =A._31 M[9] =A._32 M[10]=A._33 M[11]=A._34
M[12]=A._41 M[13]=A._42 M[14]=A._43 M[15]=A._44

This structure is utilized as a base class and has been inherited by

another, which is much more versatile, and that is the

D3DXMATRIX. (Note the addition of the “X.”)

typedef struct D3DXMATRIX : public D3DMATRIX
{
public: // Misc. constructors

D3DXMATRIX() {};
D3DXMATRIX(CONST FLOAT *);
D3DXMATRIX(CONST D3DMATRIX&);
D3DXMATRIX(FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14,

FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24,
FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34,
FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44);

// access grants
FLOAT& operator () (UINT Row, UINT Col);
FLOAT operator () (UINT Row, UINT Col) const;

// casting operators
operator FLOAT* ();
operator CONST FLOAT* () const;

// assignment operators
D3DXMATRIX& operator *= (CONST D3DXMATRIX&);
D3DXMATRIX& operator += (CONST D3DXMATRIX&);
D3DXMATRIX& operator -= (CONST D3DXMATRIX&);
D3DXMATRIX& operator *= (FLOAT);
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D3DXMATRIX& operator /= (FLOAT);

// unary operators
D3DXMATRIX operator + () const;
D3DXMATRIX operator - () const;

// binary operators
D3DXMATRIX operator * (CONST D3DXMATRIX&) const;
D3DXMATRIX operator + (CONST D3DXMATRIX&) const;
D3DXMATRIX operator – (CONST D3DXMATRIX&) const;
D3DXMATRIX operator * (FLOAT) const;
D3DXMATRIX operator / (FLOAT) const;

friend D3DXMATRIX operator *(FLOAT, CONST D3DXMATRIX&);

BOOL operator == (CONST D3DXMATRIX&) const;
BOOL operator != (CONST D3DXMATRIX&) const;

} D3DXMATRIX, *LPD3DXMATRIX;

With the DirectX SDK, D3DXMATRIXA16 can be utilized instead

of D3DXMATRIX as it uses 16-byte alignment, provided that the

Visual C++ compiler is version 7.0 or later or version 6 with an

appropriate service pack and a processor pack upgrade.

#define D3DXMATRIXA16 _ALIGN_16 _D3DXMATRIXA16

The big plus is that the Direct3D functions have been optimized

for 3DNow! and SSE. Note that 3DNow! Professional uses the

MMX register set. There is a benefit and a drawback. The benefit

is that the DirectX code was written to handle unaligned memory.

The drawback is that the code was written to handle unaligned

memory. (Huh? Didn’t you just read that?) Keep this in mind

when you write your applications, as your matrices as well as your

vertex stream data will be more efficient when aligned properly.

All the constant registers, etc., are properly aligned already by the

API.
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Matrix Copy D = A

A matrix copy dij=aij copies each element of a matrix from an ij

cell of a source matrix to the equivalent ij cell of a destination

matrix. A function such as the following or a memcpy (although a

memcpy would be inefficient in this particular implementation) is

used to copy that matrix. Also, since data is merely copied, the

most efficient memory transfer mechanism available for a proces-

sor can be utilized, and it does not necessarily need to be

floating-point based, as it is merely tasked with the transfer from

memory to memory. Since the matrix is encapsulated as a struc-

ture, Visual C++ copies all 16 floats from one matrix to another.

[dij] = [aij]

For shaders, this is as simple as copying each of the four rows, as

within each vertex is an element from each of the four columns.

Listing 5-2: Vertex shader

mov r0, c0 // row a11...a14
mov r1, c1 // a21...a24
mov r2, c2 // a31...a34
mov r3, c3 // a41...a44

Listing 5-3: C++

D3DMATRIX mtxA, mtxB;

mtxA = mtxB;

Matrix Summation D = A + B

The summation of two same-sized matrices (cij=aij+bij) is

extremely easy, as the scalar of both matrices is summed and then

stored in the same indexed cell location of the same-sized destina-

tion matrix.

[aij]+[bij] = [aij+bij]
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b a b

a b a b a b a b

�
�

Equation 5-4: Matrix to matrix summation: A + B

Algebraic law

Commutative law of addition a + b = b + a

Commutative law of multiplication ab = ba

In relationship with the algebraic laws, it is both commutative

A+B=B+A and associative A+(B+C)=(A+B)+C, as each element

is isolated and no element affects an adjacent element.

The following should be easily recognized as four quad vector

summations in parallel.

Listing 5-4: Vertex shader

add r4, r0, c0
add r5, r1, c1
add r6, r2, c2
add r7, r3, c3

Listing 5-5: C++

void Func(D3DMATRIX &mtxD, D3DMATRIX &mtxA, D3DMATRIX &mtxB)
{
mtxD.m[0][0]=mtxA.m[0][0]+mtxB.m[0][0];
mtxD.m[0][1]=mtxA.m[0][1]+mtxB.m[0][1];

: : :
mtxD.m[3][2]=mtxA.m[3][2]+mtxB.m[3][2];

mtxD.m[3][3]=mtxA.m[3][3]+mtxB.m[3][3];
}
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DirectX C++ prototype:

D3DXMATRIX mtxD, mtxA, mtxB;

mtxD = mtxA + mtxB;

Scalar Matrix Product rA

r[aij]

In a scalar multiplication, a scalar is applied to each element of a

matrix, and the resulting product is stored in a same-size matrix.

rA

ra ra ra ra

ra ra ra ra

ra ra ra ra
�

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
ra ra ra ra




�

�
�
�
�



�

�
�
�
�

Equation 5-5: Scalar matrix multiplication: rA

In the following, the scalar is represented by c0.x, and either c0.x

or c0.xxxx can be used, as they both represent the same replication

of {X}!

Listing 5-6: Vertex shader

mul r4, r0, c0.x
mul r5, r1, c0.x
mul r6, r2, c0.x
mul r7, r3, c0.x

Listing 5-7: C++

void Func(D3DMATRIX &mtxD, D3DMATRIX &mtxA, float r)
{

mtxD.m[0][0]=mtxA.m[0][0]*r;
mtxD.m[0][1]=mtxA.m[0][1]*r;

: :
mtxD.m[3][2]=mtxA.m[3][2]*r;
mtxD.m[3][3]=mtxA.m[3][3]*r;

}
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DirectX C++ prototype:

D3DXMATRIX mtxD, mtxA;

float r;

mtxD = mtxA * r;

Apply Matrix to Vector (Multiplication) vA

A vector can be transformed into another vector by using a 4x4

matrix. When a vector is applied to a matrix, the product of each

scalar of the vector and each scalar of a column of the matrix is

summed, and the total is stored in the destination vector of the

same element of the source vector. The first expression uses the

highlighted scalars. Since a vector has four elements, there are

four expressions.

wi = v1a1i + v2a2i + v3a3i + v4a4i

w1 = v1a11 + v2a21 + v3a31 + v4a41

� �v v v v v A

a a a a

a a a a

a a a a

a

� �
1 2 3 4

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
a a a




�

�
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�
�



�

�
�
�
�

w1 = v1a11 + v2a21 + v3a31 + v4a41

w2 = v1a12 + v2a22 + v3a32 + v4a42

w3 = v1a13 + v2a23 + v3a33 + v4a43

w4 = v1a14 + v2a24 + v3a34 + v4a44

Equation 5-6: Apply matrix to vector (multiplication): v × A

� m4x4: Apply 4x4 matrix to vector d = aB

m4x4 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � � �

This macro applies a 4x4 matrix referenced by the four sequential

registers beginning with the source bSrc {+0, …, +3} to the

{XYZW} vector referenced by the source aSrc and stores the

result in the destination vector Dst.
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wi = v1a1i + v2a2i + v3a3i + v4a4i

In the following, a is the vector, b[0] is the first row, b[1] is the

second row, b[2] is the third row, and b[3] is the fourth row of the

matrix.

dx = (ax * b[0]x) + (ay * b[1]x) + (az * b[2]x) + (aw * b[3]x)

dy = (ax * b[0]y) + (ay * b[1]y) + (az * b[2]y) + (aw * b[3]y)

dz = (ax * b[0]z) + (ay * b[1]z) + (az * b[2]z) + (aw * b[3]z)

dw = (ax * b[0]w) + (ay * b[1]w) + (az * b[2]w) + (aw * b[3]w)

The vector is v0, and the matrix is c4…c7. Watch your column

and row access when calculating the products. Also note that the

source and destination are not one and the same. If they were, then

the source would become contaminated by each sequential

instruction.

Listing 5-8: Vertex shader

m4x4 r5,v0,c4

Macro equivalent:

dp4 r5.x, v0, c4 ; 1st row

dp4 r5.y, v0, c5 ; 2nd row

dp4 r5.z, v0, c6 ; 3rd row

dp4 r5.w, v0, c7 ; 4th row

Note that in the following code, just in case the source and desti-

nation vectors are the same, a temporary vector is used and the

finished product is copied to the destination!

Listing 5-9: C++

void QVecApplyMatrix(D3DXVECTOR4 &vD,
D3DXVECTOR4 &vA,
D3DMATRIX &mtxB)

{
D3DVECTOR4 vT;

vT.x = (mtxB.m[0][0] * vA.x) + (mtxB.m[1][0] * vA.y)
+ (mtxB.m[2][0] * vA.z) + (mtxB.m[3][0] * vA.w);

vT.y = (mtxB.m[0][1] * vA.x) + (mtxB.m[1][1] * vA.y)
+ (mtxB.m[2][1] * vA.z) + (mtxB.m[3][1] * vA.w);

vT.z = (mtxB.m[0][2] * vA.x) + (mtxB.m[1][2] * vA.y)
+ (mtxB.m[2][2] * vA.z) + (mtxB.m[3][2] * vA.w);

Chapter 5: Matrix Math 111



vD.w = (mtxB.m[0][3] * vA.x) + (mtxB.m[1][3] * vA.y)
+ (mtxB.m[2][3] * vA.z) + (mtxB.m[3][3] * vA.w);

vD.x = vT.x; // Now copy final product.
vD.y = vT.y;
vD.z = vT.z;
vD.w = vT.w;

}

Other product terms resulting from different sized matrices will

upon occasion need to be calculated. They have been included as

shader macro instructions and are discussed in this chapter as well.

� m4x3: Apply 4x3 matrix to vector d = aB

m4x3 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � � �

This macro applies a 4x3 matrix referenced by the three sequential

registers beginning with the source bSrc {+0, +1, +2} to the

{XYZW} vector referenced by the source aSrc and stores the

result in the destination vector Dst.

wi = v1a1i + v2a2i + v3a3i + v4a4i

In the following, a is the vector, b[0] is the first row, b[1] is the

second row, and b[2] is the third row of the matrix.

dx = (ax * b[0]x) + (ay * b[1]x) + (az * b[2]x) + (aw * b[3]x)

dy = (ax * b[0]y) + (ay * b[1]y) + (az * b[2]y) + (aw * b[3]y)

dz = (ax * b[0]z) + (ay * b[1]z) + (az * b[2]z) + (aw * b[3]z)

Listing 5-10: Vertex shader

m4x3 r5,v0,c3 ;c3 1st row, c4 2nd row, c5 3rd row

Macro equivalent:

dp4 r5.x, v0, c3 ; 1st row

dp4 r5.y, v0, c4 ; 2nd row

dp4 r5.z, v0, c5 ; 3rd row
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� m3x2: Apply 3x2 matrix to vector d = aB

m3x2 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � � �

This macro applies a 3x2 matrix of the two sequential registers

beginning with the source bSrc {+0, +1} to the {XYZ} vector ref-

erenced by the source aSrc and stores the result in the destination

vector Dst.

wi = v1a1i + v2a2i + v3a3i

In the following, a is the vector, b[0] is the first row, and b[1] is

the second row of the matrix.

dx = (ax * b[0]x) + (ay * b[1]x) + (az * b[2]x)

dy = (ax * b[0]y) + (ay * b[1]y) + (az * b[2]y)

Listing 5-11: Vertex shader

m3x2 r5,v0,c3 ;c3 1st row, c4 2nd row

Macro equivalent:

dp3 r5.x, v0, c3 ; 1st row

dp3 r5.y, v0, c4 ; 2nd row

� m3x3: Apply 3x3 matrix to vector d = aB

m3x3 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � � �

This macro applies a 3x3 matrix referenced by the three sequential

registers beginning with the source bSrc {+0, +1, +2} to the

{XYZ} vector referenced by the source aSrc and stores the result

in the destination vector Dst.

wi = v1a1i + v2a2i + v3a3i

In the following, a is the vector, b[0] is the first row, b[1] is the

second row, and b[2] is the third row of the matrix.
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dx = (ax * b[0]x) + (ay * b[1]x) + (az * b[2]x)

dy = (ax * b[0]y) + (ay * b[1]y) + (az * b[2]y)

dz = (ax * b[0]z) + (ay * b[1]z) + (az * b[2]z)

Listing 5-12: Vertex shader

m3x3 r5,v0,c3 ;c3 1st row, c4 2nd row, c5 3rd row

Macro equivalent:

dp3 r5.x, v0, c3 ; 1st row

dp3 r5.y, v0, c4 ; 2nd row

dp3 r5.z, v0, c5 ; 3rd row

� m3x4: Apply 3x4 matrix to vector d = aB

m3x4 Dst, aSrc, bSrc 1.1 2.0 2x 2sw 3.0 3sw

(Macro) � � � � � �

This macro applies a 3x4 matrix referenced by the four sequential

registers beginning with the source bSrc {+0, …, +3} to the

{XYZ} vector referenced by the source aSrc and stores the result

in the destination vector Dst.

v1a1i + v2a2i + v3a3i

In the following, a is the vector, b[0] is the first row, b[1] is the

second row, b[2] is the third row, and b[3] is the fourth row of the

matrix.

dx = (ax * b[0]x) + (ay * b[1]x) + (az * b[2]x)

dy = (ax * b[0]y) + (ay * b[1]y) + (az * b[2]y)

dz = (ax * b[0]z) + (ay * b[1]z) + (az * b[2]z)

dw = (ax * b[0]w) + (ay * b[1]w) + (az * b[2]w)

Listing 5-13: Vertex shader

m3x4 r5,v0,c3 ;c3 1st row, c4 2nd row, c5 3rd row, c6 4th row
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Macro equivalent:

dp3 r5.x, v0, c3 ; 1st row

dp3 r5.y, v0, c4 ; 2nd row

dp3 r5.z, v0, c5 ; 3rd row

dp3 r5.w, v0, c6 ; 4th row

Matrix Multiplication D = AB

Hopefully you will not try to implement the following within

shader code, as it becomes time consuming and (as explained in a

previous chapter) has to be recalculated for each individual vertex.

Therefore, it should be precalculated and stored into constants for

use by shaders. Because this is an introductory book and this

information is necessary to build shader code, it is included here.

The following demonstrates the calculation of a product of two

4x4 matrices (dik=aijbjk). The j indices represent the Einstein sum-

mation for all indices of i and k. The first expression uses the

highlighted scalars.

dij = ai1b1j + ai2b2j + ai3b3j + ai4b4j
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Equation 5-7: Matrix to matrix multiplication: AB

Each of the 16 resulting scalars is the product summation of each

scalar in a row of matrix A and a scalar from a column of matrix

B.

Pseudo vec:

d11 = a11b11 + a12b21 + a13b31 + a14b41

d12 = a11b12 + a12b22 + a13b32 + a14b42

d13 = a11b13 + a12b23 + a13b33 + a14b43

d14 = a11b14 + a12b24 + a13b34 + a14b44

d21 = a21b11 + a22b21 + a23b31 + a24b41

d22 = a21b12 + a22b22 + a23b32 + a24b42
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d23 = a21b13 + a22b23 + a23b33 + a24b43

d24 = a21b14 + a22b24 + a23b34 + a24b44

d31 = a31b11 + a32b21 + a33b31 + a34b41

d32 = a31b12 + a32b22 + a33b32 + a34b42

d33 = a31b13 + a32b23 + a33b33 + a34b43

d34 = a31b14 + a32b24 + a33b34 + a34b44

d41 = a41b11 + a42b21 + a43b31 + a44b41

d42 = a41b12 + a42b22 + a43b32 + a44b42

d43 = a41b13 + a42b23 + a43b33 + a44b43

d44 = a41b14 + a42b24 + a43b34 + a44b44

In relationship with the algebraic laws, it is not commutative but

associative. Use the representation most familiar to you (mathe-

maticians on the left and C programmers on the right).

AB <> BA AB != BA

That should make all of you happy!

Thus, the ordering of matrices A versus B needs to be consid-

ered when performing this operation.

The following C code is an example of where individual floats

are processed.

Loop {0...3}
Dx = AxB[0]x + AyB[1]x + AzB[2]x + AwB[3]x
Dy = AxB[0]y + AyB[1]y + AzB[2]y + AwB[3]y
Dz = AxB[0]z + AyB[1]z + AzB[2]z + AwB[3]z
Dw = AxB[0]w + AyB[1]w + AzB[2]w + AwB[3]w
D += 1; A += 1;

If the multiplication and sum have to be resolved separately, then

the four equations need to be resolved vertically.

Loop {0...3}
Dxyzw = Dxyzw + AxB[0]x AxB[0]y AxB[0]z AxB[0]w
Dxyzw = Dxyzw + AyB[1]x AyB[1]y AyB[1]z AyB[1]w
Dxyzw = Dxyzw + AzB[2]x AzB[2]y AzB[2]z AzB[2]w
Dxyzw = Dxyzw + AwB[3]x AwB[3]y AwB[3]z AwB[3]w
D++; A++;

The following code shows the code unrolled into a multiply-add

supported vector organization. This should look a little familiar to

you, as it was recently discussed! Remember applying a matrix to
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a vector in shader instruction m4x4. Keep in mind r0…r3 is one

source matrix, c4…c7 is another source matrix, and r4…r7 is a

destination matrix.

Listing 5-14: Vertex shader

m4x4 r4,r0,c4
m4x4 r5,r1,c4
m4x4 r6,r2,c4
m4x4 r7,r3,c4

That did not look too bad, did it? How about if we unpack those

macros!

Macro equivalent:

dp4 r4.x, r0, c4 ; 1st row

dp4 r4.y, r0, c5 ; 2nd row

dp4 r4.z, r0, c6 ; 3rd row

dp4 r4.w, r0, c7 ; 4th row

dp4 r5.x, r1, c4 ; 1st row

dp4 r5.y, r1, c5 ; 2nd row

dp4 r5.z, r1, c6 ; 3rd row

dp4 r5.w, r1, c7 ; 4th row

dp4 r6.x, r2, c4 ; 1st row

dp4 r6.y, r2, c5 ; 2nd row

dp4 r6.z, r2, c6 ; 3rd row

dp4 r6.w, r2, c7 ; 4th row

dp4 r7.x, r3, c4 ; 1st row

dp4 r7.y, r3, c5 ; 2nd row

dp4 r7.z, r3, c6 ; 3rd row

dp4 r7.w, r3, c7 ; 4th row

Now imagine every vertex having to be run through that bit of

shader code. This should sink the point home; for fast rendering,

precalculate as much as possible before executing that shader

code!
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Listing 5-15: C++

void Func(D3DMATRIX &mtxD, D3DMATRIX &mtxA, D3DMATRIX &mtxB)
{
D3DMATRIX mtxT;

for (uint u = 0; u < 4; u++)
{
for (uint v = 0; v < 4; v++)
{
mtxT.m[u][v] = mtxA.m[u][0] * mtxB.m[0][v]

+ mtxA.m[u][1] * mtxB.m[1][v]
+ mtxA.m[u][2] * mtxB.m[2][v]
+ mtxA.m[u][3] * mtxB.m[3][v];

}
}

mtxD = mtxT; // Copy matrix in case source = destination!
}

But why do it by hand when there are two perfectly good methods

available to you by DirectX.

DirectX C++ prototype:

D3DXMATRIX mtxD, mtxA, mtxB;

mtxD = mtxA * mtxB;

…or DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixMultiply(D3DXMATRIX *pmD,

CONST D3DXMATRIX *pmA, CONST D3DXMATRIX *pmB);

Matrix Set Identity

An identity matrix (sometimes referred to as I) is typically the

base foundation of other matrix types. As shown, all scalars are set

to 0, except that the scalars on the diagonal are set to 1’s.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




�

�
�
�
�



�

�
�
�
�

Equation 5-8: Identity matrix
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This is considered an initialized matrix, as when applied to (multi-

plied with) a vector, the original vector will result. Let’s examine

this more carefully where matrix A is applied to vector v:

Pseudo vec:

w1 = v1a11 + v2a21 + v3a31 + v4a41

w2 = v1a12 + v2a22 + v3a32 + v4a42

w3 = v1a13 + v2a23 + v3a33 + v4a43

w4 = v1a14 + v2a24 + v3a34 + v4a44

And when the identity matrix is substituted for the matrix:

w1 = v1 = v1(1) + v2(0) + v3(0) + v4(0)

w2 = v2 = v1(0) + v2(1) + v3(0) + v4(0)

w3 = v3 = v1(0) + v2(0) + v3(1) + v4(0)

w4 = v4 = v1(0) + v2(0) + v3(0) + v4(1)

Another way of looking at the identity of a matrix is that the

results of a product of a matrix and an identity of the same size is

a matrix equivalent to the original matrix. Also, do not fear

optimizational waste due to the two-dimensional array reference

because the const is converted to an offset during compilation.

Listing 5-16: C++

void MatrixSetIdentity(D3DMATRIX &mA)
{

mA._12 = mA._13 = mA._14 =
mA._21 = mA._23 = mA._24 =
mA._31 = mA._32 = mA._34 =
mA._41 = mA._42 = mA._43 = 0.0f;

mA._11 =
mA._22 =

mA._33 =
mA._44 = 1.0f;

}

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixIdentity(D3DXMATRIX *pM);

Merely pass in the address of a matrix, and it will be filled in with

the identity matrix. The returned value is the pointer to that same

matrix. Another handy little function is:
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BOOL D3DXMatrixIsIdentity(CONST D3DXMATRIX *pM);

This determines if the passed matrix is an identity.

Scaling Triangles

The similar-triangle theorem states that given similar triangles,

there is a constant k such that:

a' = ka b'=kb c' = kc

In essence, corresponding sides are proportional. Similar triangles

are ratios of each other, as the ratio of the differences of each edge

is the same ratio of all the edges! For example:

a

b

a

b

a

b

a

c

a

c

a

c

b

c

b

c

b

c

0

0

1

1

2

2

0

0

1

1

2

2

0

0

1

1

2

2
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Figure 5-2: If two intersecting lines defining an angle are both intersected
by two or more parallel lines, a series of similar overlapping triangles are
formed.



Therefore, using simple ratios:

a
a c

c
2

1 2

1

�

Equation 5-9: Ratios of similar triangles

Unknown edges can be easily calculated with simple algebraic

transformations.

Matrix Set Scale

The scaling factor is set by having all zeros in the application

matrix and the scale set for {XYZ} set on the diagonal. In a 3D

coordinate system, there are two primary methods of display: a

left-handed system and a right-handed system. Some matrices

such as for scaling, which are down the diagonal, are identical for

both. When a lower or upper diagonal is affected, then the proper-

ties of the matrix are dependent upon the hand orientation.

s

s

s

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1
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Equation 5-10: Scaling matrix

Note that a scale factor of 1 is identical to the identity matrix, and

thus no change in any of the elemental values will occur. A factor

of 2 doubles the elements in size, and a factor of 0.5 halves

(shrinks) them. Each {XYZ} coordinate has a separate scale fac-

tor, so an object can be scaled at different rates on each of the

axes, such that {0.5, 1, 2} would cause the X element to reduce by

half, the Y element to remain the same, and the Z element to dou-

ble in size. The point is that each vector coordinate is individually

scaled.
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Listing 5-17: C++

void Func(D3DXMATRIX &mA,
float fSx, float fSy, float fSz)

{
mA._12 = mA._13 = mA._14 =

mA._21 = mA._23 = mA._24 =
mA._31 = mA._32 = mA._34 =
mA._41 = mA._42 = mA._43 = 0.0f;

mA._11 = fSx;
mA._22 = fSy;

mA._33 = fSz;
mA._44 = 1.0f;

}

Now that you have seen the internal functionality, you might as

well use the DirectX equivalent!

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixScaling(D3DXMATRIX *pmD,

FLOAT fSx, FLOAT fSy, float fSz);

Matrix Set Translation

A translation matrix displaces a vector by translating its position

by the amount specified by t{xyz}.

1 0 0 0

0 1 0 0

0 0 1 0

1

1 0 0

0 1 0

0 0 1

0 0 0 1t t t

t

t

t

x y z

x

y

z
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Equation 5-11: Translation matrix left-handed row versus right-handed
column matrix

If there is no translation (adjustment of position), then t{xyz} are all

set to 0, and thus it performs just like an identity matrix. Now if

the translation actually has non-zero values, the vector is adjusted,

thus displaced, on the {XYZ} axis. Note that the vector really con-

sists of the three coordinates {XYZ} with a fourth tending to be a

placeholder. When this matrix is applied to the vector:
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Pseudo vec:

w1 = v1 + tx = v1(1) + v2(0) + v3(0) + v4(tx)

w2 = v2 + ty = v1(0) + v2(1) + v3(0) + v4(ty)

w3 = v3 + tz = v1(0) + v2(0) + v3(1) + v4(tz)

w4 = v4 = v1(0) + v2(0) + v3(0) + v4(1)

…the position is adjusted (displaced) accordingly.

Simplified equation:

dx = x + tx;

dy = y + ty;

dz = z + tz;

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixTranslation(D3DXMATRIX *pmD,

FLOAT x, FLOAT y, FLOAT z);

Again, this is similar to the matrix identity, so there is no real need

to replicate the code here with some minor modification.

Matrix Transpose

A transposed matrix A
T is indicated by the superset T, and it is

effectively the swap of all elements referenced by row-column

with column-row indexing, and vice versa. Effectively, as the row

and column are equivalent for the diagonal, those elements are

retained as indicated by the gray diagonal.

A

a a a a

a a a a

a a a a

a a a a

T �

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 12 13 14

21 22 23 24

31 32 33 3
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�
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�A

a a a a

a a a a

a a a a
4

41 42 43 44
a a a a




�

�
�
�
�



�

�
�
�
�

Equation 5-12: Transpose matrix

Interesting, is it not? Do you recognize it? The starting matrix

on the right is similar to that of AoS, or array of structures,

{XYZW}[4], and the resulting matrix on the left is that of an

SoA, or structure of arrays, {X[4], Y[4], Z[4], W[4]}.
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Note that a temporary array needs to be used to save floats just

in case the destination matrix to contain the results of the trans-

pose is the source matrix.

Listing 5-18: C++

void Func(D3DXMATRIX &mtxD, D3DXMATRIX &mtxA)
{
float f[6];

mtxD._11=mtxA._11; mtxD._22=mtxA._22;
mtxD._33=mtxA._33; mtxD._44=mtxA._44;

f[0]=mtxA._12; f[1]=mtxA._13; f[2]=mtxA._14;
f[3]=mtxA._23; f[4]=mtxA._24; f[5]=mtxA._34;

mtxD._12=mtxA._21; mtxD._21=f[0];
mtxD._13=mtxA._31; mtxD._31=f[1];
mtxD._14=mtxA._41; mtxD._41=f[2];
mtxD._23=mtxA._32; mtxD._32=f[3];
mtxD._24=mtxA._42; mtxD._42=f[4];
mtxD._34=mtxA._43; mtxD._43=f[5];

}

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixTranspose(D3DXMATRIX *pmD,

CONST D3DXMATRIX *pmA);

Matrix Inverse mD = mA–1

An inverse matrix A
–1 (also referred to as a reciprocal matrix) is

indicated by the superset –1. It is effectively the swap of all

row-column {XYZ} elements referenced by row-column with

column-row indexing, and vice versa. Effectively, as the row and

column are equivalent for the diagonal, those elements are

retained. The bottom row is set to 0, thus no translation, and the

fourth column contains the negative sums indicated by the follow-

ing expressions.

Pseudo vec:

i1 = – ((a14 a11) + (a24 a21) + (a34 a31))

i2 = – ((a14 a12) + (a24 a22) + (a34 a32))

i3 = – ((a14 a13) + (a24 a23) + (a34 a33))
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A sometimes useful expression is that the product of a matrix and

its inverse is an identity matrix.

AA–1 = I

By rewriting that equation into the form:

A
I

A

1� �

. . . it visualizes the reasoning why this is sometimes referred to as a

reciprocal matrix. It should be kept in mind that as this is a square

matrix A, then it has an inverse iff (if and only if) the determinant

of |A| � 0; thus it is considered nonsingular (invertible).

An equation to remember is that the inverse transposed matrix

is equal to a transposed inverse matrix.

(AT)–1 = (A–1)T

Listing 5-19: C++

bool Func(D3DXMATRIX &dMx, D3DXMATRIX &aMx)
{
D3DXMATRIX s;
D3DXVECTOR4 t0, t1, t2, *pv;
float fDet;
int j;
bool bRet;

D3DXMatrixTranspose(&s, &aMx);
// A^T A

t0.x = s._33 * s._44; // = A2z*A3w A2z*A3w
t0.y = s._34 * s._43; // = A2w*A3z A3z*A2w
t0.z = s._32 * s._44; // = A2y*A3w A1z*A3w
t0.w = s._33 * s._42; // = A2z*A3y A2z*A1w

t1.x = s._34 * s._42; // += A2w*A3y A3z*A1w
t1.y = s._31 * s._44; // += A2x*A3w A0z*A3w
t1.z = s._34 * s._41; // += A2w*A3x A3z*A0w
t1.w = s._31 * s._43; // += A2x*A3z A0z*Azw

t2.x = s._32 * s._43; // += A2y*A3z A1z*Azw
t2.y = s._33 * s._41; // += A2z*A3x A2z*A0w
t2.z = s._31 * s._42; // += A2x*A3y A0z*A1w
t2.w = s._32 * s._41; // += A2y*A3x A1z*A0w

dMx[0][0] = t0.x*s[1][1] + t1.x*s[1][2] + t2.x*s[1][3];
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dMx[0][0] -= t0.y*s[1][1] + t0.z*s[1][2] + t0.w*s[1][3];

dMx[0][1] = t0.y*s[1][0] + t1.y*s[1][2] + t2.y*s[1][3];
dMx[0][1] -= t0.x*s[1][0] + t1.z*s[1][2] + t1.w*s[1][3];

dMx[0][2] = t0.z*s[1][0] + t1.z*s[1][1] + t2.z*s[1][3];
dMx[0][2] -= t1.x*s[1][0] + t1.y*s[1][1] + t2.w*s[1][3];

dMx[0][3] = t0.w*s[1][0] + t1.w*s[1][1] + t2.w*s[1][2];
dMx[0][3] -= t2.x*s[1][0] + t2.y*s[1][1] + t2.z*s[1][2];

// calculate {X_ZW} for first two matrix rows

dMx[1][0] = t0.y*s[0][1] + t0.z*s[0][2] + t0.w*s[0][3];
dMx[1][0] -= t0.x*s[0][1] + t1.x*s[0][2] + t2.x*s[0][3];

dMx[1][1] = t0.x*s[0][0] + t1.z*s[0][2] + t1.w*s[0][3];
dMx[1][1] -= t0.y*s[0][0] + t1.y*s[0][2] + t2.y*s[0][3];

dMx[1][2] = t1.x*s[0][0] + t1.y*s[0][1] + t2.w*s[0][3];
dMx[1][2] -= t0.z*s[0][0] + t1.z*s[0][1] + t2.z*s[0][3];

dMx[1][3] = t2.x*s[0][0] + t2.y*s[0][1] + t2.z*s[0][2];
dMx[1][3] -= t0.w*s[0][0] + t1.w*s[0][1] + t2.w*s[0][2];

// calculate XY pairs for last two matrix rows

// A^T A
t0.x = s[0][2]*s[1][3]; // 0=2 7 A2x*A3y
t0.y = s[0][3]*s[1][2]; // 1=3 6 A2x*A2y
t0.z = s[0][1]*s[1][3]; // 2=1 7 A1x*A3y
t1.x = s[0][3]*s[1][1]; // 3=3 5 A3x*A1y
t2.x = s[0][1]*s[1][2]; // 4=1 6 A1x*A2y
t0.w = s[0][2]*s[1][1]; // 5=2 5 A2x*A1y
t1.y = s[0][0]*s[1][3]; // 6=0 7 A0x*A3y
t1.z = s[0][3]*s[1][0]; // 7=3 4 A3x*A0y
t1.w = s[0][0]*s[1][2]; // 8=0 6 A0x*A2y
t2.y = s[0][2]*s[1][0]; // 9=2 4 A2x*A0y
t2.z = s[0][0]*s[1][1]; //10=0 5 A0x*A1y
t2.w = s[0][1]*s[1][0]; //11=1 4 A1x*A0y

// calculate {XY_W} for last two matrix rows

dMx[2][0] = t0.x*s[3][1] + t1.x*s[3][2] + t2.x*s[3][3];
dMx[2][0] -= t0.y*s[3][1] + t0.z*s[3][2] + t0.w*s[3][3];

dMx[2][1] = t0.y*s[3][0] + t1.y*s[3][2] + t2.y*s[3][3];
dMx[2][1] -= t0.x*s[3][0] + t1.z*s[3][2] + t1.w*s[3][3];

126 Chapter 5: Matrix Math



dMx[2][2] = t0.z*s[3][0] + t1.z*s[3][1] + t2.z*s[3][3];
dMx[2][2] -= t1.x*s[3][0] + t1.y*s[3][1] + t2.w*s[3][3];

dMx[2][3] = t0.w*s[3][0] + t1.w*s[3][1] + t2.w*s[3][2];
dMx[2][3] -= t2.x*s[3][0] + t2.y*s[3][1] + t2.z*s[3][2];

// calculate {XY_W} for first two matrix rows

dMx[3][0] = t0.z*s[2][2] + t0.w*s[2][3] + t0.y*s[2][1];
dMx[3][0] -= t1.x*s[2][2] + t2.x*s[2][3] + t0.x*s[2][1];

dMx[3][1] = t1.w*s[2][3] + t0.x*s[2][0] + t1.z*s[2][2];
dMx[3][1] -= t2.y*s[2][3] + t0.y*s[2][0] + t1.y*s[2][2];

dMx[3][2] = t1.y*s[2][1] + t2.w*s[2][3] + t1.x*s[2][0];
dMx[3][2] -= t1.z*s[2][1] + t2.z*s[2][3] + t0.z*s[2][0];

dMx[3][3] = t2.z*s[2][2] + t2.x*s[2][0] + t2.y*s[2][1];
dMx[3][3] -= t2.w*s[2][2] + t0.w*s[2][0] + t1.w*s[2][1];

// calculate determinant

fDet = s[0][0]*dMx[0][0] + s[0][1]*dMx[0][1]
+ s[0][2]*dMx[0][2] + s[0][3]*dMx[0][3];

if (0.0f == fDet)
{
fDet = 1.0f;
bRet = false;

}
else
{
fDet = 1.0f / fDet;
bRet = true;

}

pv = (vmp3DQVector *)dMx;
j = 4;
do {
pv->x *= fDet;
pv->y *= fDet;
pv->z *= fDet;
pv->w *= fDet;
pv++;

} while (—j);

return bRet;
}
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Note that the DirectX version assigns the determinant to the

second passed pointer.

DirectX C++ prototype:

D3DXMatrixInverse(D3DXMATRIX *pmD,

float *pDeterminate, D3DXMATRIX *pmA);
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C h a p t e r 6

Matrix Deux:
A Wee Bit
o’ Trig

As mentioned in the last chapter, the information about matrices

was divided into two chapters to help reduce their sizes. From the

standpoint of vertex shaders, there is only one vertex instruction

that supports trigonometric operations, and that is the macro

instruction sincos.

� sincos: Sine – cosine calculation

sincos (Macro) 1.1 2.0 2x 2sw 3.0 3sw

sincos Dst, aSrc, bSrc, cSrc � � �

sincos Dst, aSrc � �

This (eight-slot) macro instruction calculates both the sine and

cosine of the source arguments in radians.

aSrc is the radian source scalar value in radians ranging from

{–�…0…�}.

Things get a little murky, as the vertex assembler version 3.0

and above only accepts a single source argument; therefore, I

must conclude that the two following constants are predefined:

bSrc is a constant defined as D3DSINCOSCONST1.

bSrc = (–1.0f/(7!*128), –1.0f/(6!*64), 1/(4!*16), 1/(5!*32))

#define D3DSINCOSCONST1 –1.5500992e–006f, –2.1701389e–005f,
0.0026041667f, 0.00026041668f
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cSrc is a constant defined as D3DSINCOSCONST2.

cSrc = (–1.0f/(3!*8), –1.0f/(2!*8), 1, 0.5f)

#define D3DSINCOSCONST2 –0.020833334f,
–0.12500000f, 1.0f, 0.50000000f

D3DXVECTOR4 vSinCos1(D3DSINCOSCONST1);
D3DXVECTOR4 vSinCos2(D3DSINCOSCONST2);

m_pd3dDevice->SetVertexShaderConstantF(12, (float*)&vSinCos1, 1);
m_pd3dDevice->SetVertexShaderConstantF(13, (float*)&vSinCos2, 1);

The resulting y=sin(�) is stored in Dst.y, and x=cos(�) is stored in

Dst.x.

Normally, an instruction can only read from a single constant

register regardless of how many registers it can use as a source.

This instruction, however, is the exception to the rule, as it can

actually read from two separate constant source registers

simultaneously.

The aSrc must be a single component {x, y, z, or w}.

The bSrc and cSrc must be a constant register.

The Dst must be a temporary register (r#) and specify one of

the following component masks {x, y, xy}. It cannot be the same

register as aSrc. The component Dst.z is corrupted.

For channel selection, the source bSrc needs to utilize a replica-

tion swizzle.

Listing 6-1: Vertex shader

sincos r1.xy, r0.x, c1, c2 // version 2.0, 2x, 2sw
sincos r1.xy, r0.x, c1.xyzw, c2.xyzw // version 2.0, 2x, 2sw
sincos r1.xy, c0.z, c1.xyzw, c2.xyzw // version 2.0, 2x, 2sw

sincos r1.xy, r0.x // version 3.0, 3sw

That was simple, was it not? Maybe too simple? For those of you

very familiar with the use of trigonometric operations in matrices,

you can just skip ahead to the next chapter.

But, if you need a refresher or background on how to do trig

operations within matrices, then continue reading!
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Again, I wish to state that if you need more information related to

this and other subjects related to math, I recommend my vector

book (Vector Game Math Processors) or 3D Math Primer for

Graphics and Game Development by Fletcher Dunn and Ian

Parberry (also from Wordware Publishing) or a visit to your local

university bookstore or one of the multitude of rich, or not-so-rich,

web sites.

Sine and Cosine Functions

sin
opposite side

hypotenuse
cos

adjacent side

hyp
� � ��

otenuse
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Figure 6-1: 2D geometric circle

Figure 6-2: Sine-cosine waves
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Equation 6-1: Sine and cosine

The standard “C” math library contains the following functions:

float cos(float r); double cos(double r);

float sin(float r); double sin(double r);

You should already be familiar with the fact that the angle in

degrees is not passed into those functions but instead the equiva-

lent value in radians. If you recall, � (pi) is equivalent to 180°, and

2� is equivalent to 360°. By using the following macro, an angle

in degrees can be converted to radians:

#define PI (3.141592f)
#define DEG2RAD(x) (((r) * PI) / 180.0F)

…and used in the calculations. It can then be converted from radi-

ans back to degrees:

#define RAD2DEG(x) (((r) * 180.0f) / PI)

…if needed for printing or other purposes.

For a simple 2D rotation, the use is merely one of:

x = cos(fRadian);
y = sin(fRadian);

There is one thing that has always bothered me about these two

functions. When a cosine is needed, a sine is needed as well, and
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that one is in reality 90 degrees out of phase of the other, which

means that they share similar math.

sin (90� – �) = cos �

Equation 6-2: Angular relationship sine to cosine

As a generic C/C++ sincos procedure, define your function similar

to the following:

Listing 6-2: C++

void FSinCos(float * pfSin, float * pfCos, float fRads)
{
*pfSin = sinf(fRads);
*pfCos = cosf(fRads);

}

Okay, okay, the following is a little off from the topics of this book

(see my vector book for more in-depth information), but for the

X86 processor, you can write a faster equivalent function in

assembly code!

vmp_SinCos (X86)

The fwait instruction is used to wait for the FPU (floating-point

unit) operation to complete. The fsincos instruction calculates the

sine and cosine simultaneously. This is slower than calling just

one of them but faster than calling them both consecutively.

Listing 6-3: X86 FPU assembly

fld fRads ; Load Radians from memory
OFLOW_FIXUP fRads ; Overflow fixup (optional)

fwait ; Wait for FPU to be idle
fsincos ; ST(0)=cos ST(1)=sin

mov eax,pfSin
mov ecx,pfCos

fwait ; Wait for FPU to be idle
; Pop from FPU stack

fstp (REAL4 PTR [ecx]) ; ST(0)=cos ST(1)=sin
fstp (REAL4 PTR [eax]) ; sin
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The vertex shader sincos instruction uses this same optimization

for speed efficiency.

Matrix Rotations

3D rotations are much more interesting and more difficult to

understand than 2D rotations. For example, to rotate the cube in

the following diagram, you do not actually rotate on the axis that

you wish to rotate. Do not worry. This is not nearly as complicated

as trying to solve a Rubik’s Cube! It just makes a cool prop and

another neat office toy! This is demonstrated later. Now let’s put

into practice the sine of the trigonometry.

Confusing? It can be! Find yourself a Rubik’s Cube. Keep each

side as individual colors (do not scramble it)! Attach pencils,

straws, or swizzle sticks to represent the x-, y-, and z-axis. (This

can be done with Legos or Tinker Toys, but the Rubik’s Cube is a

lot more visual.) Now try to rotate the x-axis by only rotating the

y and z-axis. Fun, huh? Have you ever tried to manually control

an object in a 3D test jig just by controlling the three axes

individually?

With matrices, the order of rotations is very important, and they

should always be in an {XYZ} rotation order. Matrix operations of
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Euler angles tend to be the primary use of matrices for x-rot, y-rot,

and z-rot, but it comes with a price. This is detailed in Chapter 7.

Matrix Set X Rotation

To rotate on an x-axis, one actually rotates the y and z coordinates,

leaving the x coordinate alone. Note the darkened text areas of the

following equation; cos and sin are the only difference from an

identity matrix. Also note the negative sign on opposite sides of

the diagonal depending on if the matrix is for a left-handed or

right-handed 3D coordinate system.

1 0 0 0

0 0

0 0

0 0 0 1

1 0 0 0

0cos sin

sin cos

cos� �

� �

�

�




�

�
�
�
�



�

�
�
�
�

�



�

�
�
�
�



�

�
�
�
�

sin

sin cos

�

� �

0

0 0

0 0 0 1

Equation 6-3: X-axis (left-handed row and right-handed column) rotation
matrix. Note that this is nearly identical to an identity matrix, except for
the (non-x axis) y and z rows and columns being set to the trigonometric
values.

Pseudo vec:

wx = w1 = v1 = v1(1) + v2(0) + v3(0) + v4(0)

wy = w2 = v2 cos � + v3 sin � = v1(0) + v2(cos �) + v3(sin �) + v4(0)

wz = w3 = –v2 sin � + v3 cos � = v1(0) + v2(–sin �) + v3(cos �) + v4(0)

ww = w4 = v4 = v1(0) + v2(0) + v3(0) + v4(1)

Simplified equation:

fCos = cos(ang);

fSin = sin(ang);

dx = x;

dy = y * fCos + z * fSin;

dz = –y * fSin + z * fCos;

Note that to save processing time, the standard C language trigo-

nometric functions sin() and cos() are only used once, and the

result of the sine function is merely negated for the inverse result.
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Listing 6-4: C++

void Func(D3DXMATRIX &mtxD, float fRads)
{

float fSin, fCos;

FSinCos(&fSin, &fCos, fRads);

D3DXMatrixIdentity(&mtxD);

mtxD._23 = fSin;
mtxD._33 = mtxD._22 = fCos;
mtxD._32 = –fSin;

}

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixRotationX(D3DXMATRIX *pmD,

FLOAT fRads);

Matrix Set Y Rotation

To rotate on a y-axis, one actually rotates the x and z coordinates,

leaving the y alone by not touching the elements of the row and

column of y.

cos sin

sin cos

cos sin� �

� �

� �0 0

0 1 0 0

0 0

0 0 0 1

0�


�

�
�
�
�



�

�
�
�
�

0

0 1 0 0

0 0

0 0 0 1

�




�

�
�
�
�



�

�
�
�
�

sin cos� �

Equation 6-4: Y-axis (left-handed row and right-handed column) rotation
matrix. Note that this is nearly identical to an identity matrix, except for
the (non-y axis) x and z rows and columns being set to the trigonometric
values.

Pseudo vec:

wx = w1 = v1 cos � + –v3 sin � = v1(cos �) + v2(0) + v3(–sin �) + v4(0)

wy = w2 = v2 = v1(0) + v2(1) + v3(0) + v4(0)

wz = w3 = v1 sin � + v3 cos � = v1(sin �) + v2(0) + v3(cos �) + v4(0)

ww = w4 = v4 = v1(0) + v2(0) + v3(0) + v4(1)
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Simplified equation:

fCos = cos(ang);

fSin = sin(ang);

dx = x * fCos + –z * fSin;

dy = y;

dz = x * fSin + z * fCos;

Listing 6-5: C++

void Func(D3DXMATRIX &mtxD, float fRads)
{
float fSin, fCos;

FSinCos(&fSin, &fCos, fRads);

D3DXMatrixIdentity(&mtxD);

mtxD._31 = fSin;
mtxD._33 = mtxD._11 = fCos;
mtxD._13 = –fSin;

}

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixRotationY(D3DXMATRIX *pmD,

FLOAT fRads);

Matrix Set Z Rotation

To rotate on a z-axis, one actually rotates the x and y coordinates,

leaving the z coordinate alone by not touching the elements of the

row and column of z.

cos sin

sin cos

cos sin� �

� �

� �0 0

0 0

0 0 1 0

0 0 0 1

�
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�
�
�
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�
�
�

� 0 0

0 0
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Equation 6-5: Z-axis (left-handed row and right-handed column) rotation
matrix. Note that this is nearly identical to an identity matrix, except for
the (non-z axis) x and y rows and columns being set to the trigonometric
values.
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Pseudo vec:

wx = w1 = v1 cos � + v2 sin � = v1(cos �) +v2(sin �)+v3(0)+v4(0)
wy = w2 = –v1 sin � + v2 cos � = v1(–sin �)+v2(cos �)+v3(0)+v4(0)
wz = w3 = v3 = v1(0) +v2(0) +v3(1)+v4(0)
ww = w4 = v4 = v1(0) +v2(0) +v3(0)+v4(1)

Simplified equation:

fCos = cos(ang);

fSin = sin(ang);

dx = x * fCos + y * fSin;

dy = –x * fSin + y * fCos;

dz = z;

Listing 6-6: C++

void Func(D3DXMATRIX &mtxD, float fRads)
{
float fSin, fCos;

FSinCos(&fSin, &fCos, fRads);

D3DXMatrixIdentity(&mtxD);

mtxD._12 = fSin;
mtxD._22 = mtxD._11 = fCos;
mtxD._21 = –fSin

}

DirectX C++ prototype:

D3DXMATRIX *D3DXMatrixRotationZ(D3DXMATRIX *pmD, FLOAT fRads);
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C h a p t e r 7

Quaternions

Before we discuss the ins and outs of a quaternion, maybe we

should revisit a standard 3D rotation using Euler angles. As you

should know, an object is oriented within 3D space by the speci-

fied rotation of its {XYZ} axis rotations. It, in essence, uses an

{XYZ} vector to indicate its position within world coordinate

space (translation) and is oriented (rotated) based upon a set of

{XYZ} rotations. Additional information, such as scaling, etc., is

utilized as well. Keep in mind that the x, y, and z rotations must

occur in a precise order every time. But there is a problem, and

that is gimbal lock!

This is easier to visualize if we first examine a gimbal.

Remember that Euler angles need to be rotated in a particular

order, such as {XYZ}. Rotating just one axis is not a problem, but

when two or three axes are rotated simultaneously, a problem is

presented. Keeping in mind that the starting positions of the

{XYZ} axis are 90 degrees from each other such as in a

left-handed orientation, then first rotate the x ring (axis) and there

is no problem. But by then rotating the y axis, such as the middle

ring, by 90 degrees, a gimbal lock occurs. The same occurs when

moving the z-axis. By rotating it 90 degrees as well, all three rings

will be locked into the same position. Just two matching rings is

an indicator of a gimbal lock!
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Now move one ring, any ring. What are the possible axis angles?

Do you see the problem?

If merely using matrices with Euler angles, then the movement

of a player needs to be limited. They can be moved (translated)

around the playfield with no problem. Rotating them on their

y-axis 360° is no problem either. The problem comes when it’s

time to tip the character over like a top along its x- or z-axis

(crawling, swimming, lying down, running down a steep hill, etc.).

The Euler rotation angles each have an associated {XYZ} coor-

dinate {x=pitch, y=yaw, z=roll}. By using a quaternion, this

problem is alleviated. Instead of a rotation being stored as separate

Euler rotations, it is stored as an {XYZ} vector with a rotation

factor.
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Figure 7-1: Three-axis gimbal (compliments
of Ken Mayfield)

Figure 7-2: Yaw, pitch, and roll Euler rotation angles
— Fokker Dr 1 triplane (Red Baron) (compliments of
Ken Mayfield)



A rotation, however, involves 360°, which presents a problem.

Rotational data is stored in radians and a full circle requires 2� to

be stored, but a cosine and/or sine only processes up to the equiva-

lent of � (180°), so half of the rotation information can be lost. A

quaternion resolves this by dividing the angle in radians by two

(radians * 0.5). When needed to convert back to a full angle,

merely multiply by two! This simple solution helps condense the

data into a form with no data loss.

But we are developing shader code, not rotating biplanes and

stuff. Why do we need it here?

We are drawing those biplanes with a moving camera, as well as

other 3D objects with XYZ rotations, and so their visual appear-

ance will become warped as a gimbal lock appears for portions of

its polygons. Therefore, quaternion math within shader code will

help rectify those situations.
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A quaternion uses the same storage type as a quad vector, but to

prevent accidental mixing of the two, it is better to define its own

data type.

DirectX uses a four-field representation that is different from

D3DXVECTOR4.

typedef struct D3DXQUATERNION
{
float x;
float y;
float z;
float w;

} D3DXQUATERNION;

A quaternion comes in two forms. The first is a true form, which

is the {XYZ} component, and the {W}, which is the rotation.

The second form is a unit vector, which is all four elements

with the inclusion of {W}. All are used in the magnitude in calcu-

lating a normalized value of 1!

An easy way to think of this is that a true quaternion is

{XYZ}W, while a unit quaternion is {XYZW}. A unit sphere has

a radius of 1.0, and a unit triangle has a hypotenuse of 1.0. A unit

typically means one!

q = w + xi + yj + zk

An imaginary is represented by the i= �1.

As such, an identity is defined as {0,0,0,1}. The same rule of

identities applies, whereas the product of a quaternion identity is

the quaternion.

A quaternion is made up of the imaginaries {i, j, k} such that

q=w+xi+yj+zk. Two other representations would be:

q = [x y z w] and q = [w, v]

Whereas w is a scalar and v is the {XYZ} vector.

In essence, a quaternion is made up of not one but three

imaginaries:

ii = –1 jj = –1 kk = –1

The product of imaginary pairs is similar to that of a cross product

of axes in 3D space.

i = jk = –kj j = ki = –ik k = ij = –ji
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I find that a simple method to remember this is the ordering of

imaginary numbers {i, j, k}. Think of it as a sequence of {i, j, k,

i,…} and that the third imaginary results with a positive sign if the

multiplicands were sequential and negative if in reverse order. So

ij=k, jk=i, ki=j, but kj=–i, ji=–k, and ik=–j. See, simple! Just

remember that the products of imaginaries are not commutative.

There are different implementations of a quaternion library

function depending on left-handed versus right-handed coordinate

systems, level of normalization, flavor of the quaternion

instantiation, and overall extra complexity needed if branchless

code is attempted.

Quaternion Operations

This section delves into a variety of operations that are possible

with quaternions.

Quaternion Copy

The quaternion copy is identical to a quad vector copy, as they

both consist of four packed single-precision floating-point values.

Listing 7-1: Vertex shader

mov r0, c0

Quaternion Addition

The summation of two quaternions would be as follows:

q1 + q2 = (w1 x1i y1j z1k) + (w2 x2i y2j z2k)

= w1+w2 + x1i + x2i + y1j + y2j + z1k + z2k

= (w1+w2) + (x1+x2)i + (y1+y2)j + (z1+z2)k

A simpler method of thinking about this would be as follows:

q1 + q2 = [w1 v1] + [w2 v2] = [w1+w2 v1+v2]

= [(w1+w2) (x1+x2 y1+y2 z1+z2)]

= [w1+w2 x1+x2 y1+y2 z1+z2]
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So in its simple elemental form:

Dx=Ax+Bx Dy=Ay+By Dz=Az+Bz Dw=Aw+Bw

Listing 7-2: Vertex shader

add r0, c23, r3 // Addition

You should hopefully have recognized it as the same as a quad

vector floating-point addition and the following as a subtraction.

Quaternion Subtraction

The difference of two quaternions is:

q1 – q2 = w1–w2 + (x1–x2)i + (y1–y2)j + (z1–z2)k

So in its simple elemental form:

Dx=Ax–Bx Dy=Ay–By Dz=Az–Bz Dw=Aw–Bw

Listing 7-3: Vertex shader

add r0, r0, –c24 // Subtraction

Quaternion Dot Product (Inner Product)

q = w + xi + yj + zk

q1 �q2 = w1w2 + (x1x2)i + (y1y2)j + (z1z2)k

D = AxBx + AyBy + AzBz + AwBw

This is very similar to a vector dot product, except it contains the

fourth product sum element of {W}.

Listing 7-4: Vertex shader

dp4 r2,r0,r1

DirectX C++ prototype:

FLOAT D3DXQuaternionDot(const D3DXQUATERNION *pqA,

const D3DXQUATERNION *pqB);
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Quaternion Magnitude (Length of Vector)

Just like a dot product, this function is similar to a vector magni-

tude, except it uses the squared sum of the {W} element before the

square root.

q = w + xi + yj + zk

� � � � � �� �q q
1 2

� � � �w w x x y y z z
1 2 1 2 1 2 1 2

i j k

� �q 2 � � � �w x y z2 2 2 2
i j k

� �D A A A A A A A Aw w z z y y x x� � � �

Listing 7-5: Vertex shader

dp4 r0.w, r1, r1 // r=ax2+ay2+az2+aw2

rsq r0.x, r0.w // dx = 1/ r
mul r0.x, r0.x, r0.w // dx=r*dx

DirectX C++ prototype:

FLOAT D3DXQuaternionLength(const D3DXQUATERNION *pqA);

Quaternion Normalization

Note that most of the quaternion functions are dependent on the

normalization of a number (that is, the dividing of each element by

the magnitude of the quaternion). There is only one little condition

to watch out for and handle — the divide by zero! But remember

your calculus where as x approaches zero the result goes infinite,

so the effect on the original value is negligible, and thus the solu-

tion is the original value.

The same principles of assembly code are applied here, so only

the C code is shown!

norm(q) = w + xi + yj + zk

� �r � � � �w x y z2 2 2 2
i j k
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norm(q) � � � �
w

r

x

r

y

r

z

r

i j k

norm(q)=q / r

Okay, here is where I tend to get a little confused! If you examine

quaternion code by others, they typically have:

� �r x y z w2 2 2 2� � � �

Dx=x/r Dy=y/r Dz=z/r Dw=w/r

But wait! What happens if the q={0,0,0,0}? Will not divide by

zero exist? That cannot possibly happen because a quaternion of

no length {0,0,0} will have a rotation of 1, such as the quaternion

identity {0,0,0,1}. Well, let’s assume that a normalized quaternion

is subtracted from itself; that would leave a quaternion of

{0,0,0,0}. Using those other algorithms would lead to a problem

of the divide by zero as well as it not being normalized. The solu-

tion is that if the value is too close to 0, then assigning a 1 to the

rotation would make no difference and resolve the normalization

issue. One other item is that if the value is very close to being

finite and negative, then the value would be off a bit. So by setting

the {W} element to 1 but with the same sign as the original {W},

then the value is properly normalized.

Listing 7-6: Vertex shader

dp4 r0.w, r1, r1 // dw=ax2+ay2+az2+aw2

rsq r0, r0.w // dw = 1/ dw or 1/+� = 1/ 0

mul r0, r1, r0 // {aw(1/dw) az(1/dw) ay(1/dw) ax(1/dw)}

DirectX C++ prototype:

D3DXQUATERNION * D3DXQuaternionNormalize(

D3DXQUATERNION *pqD,

const D3DXQUATERNION *pqA);
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Quaternion Conjugation D=A

A conjugate is merely the inverse of a vector. As such, the rotation

is unaffected. The inverse of a vector can result from negating the

sign of the rotation {W}, but it is preferred to keep the rotation in

a positive form, so instead only each axis of the vector is inverted.

It is assumed that the rotation is already positive.

q = w + xi + yj + zk

q � � � �w x y zi j k

D A D A D A D Aw w z z y y x x� � � � � � �

Listing 7-7: Vertex shader

mov r0, –r1 // {–aw –az –ay –ax}
mov r0.w, r1.w // { aw –az –ay –ax}

DirectX C++ prototype:

D3DXQUATERNION * D3DXQuaternionConjugate(

D3DXQUATERNION *pqD,

const D3DXQUATERNION *pqA);

Quaternion Inversion D=A–1

q = w + xi + yj + zk

q
q

norm(q)

– – –1� � �
� � �

w x y zi j k

w x y z2 2 2 2

Listing 7-8: Vertex shader

dp4 r0.w, r1, r1 // dw=ax2+ay2+az2+aw2

rcp r0, r0.w // dxyzw = 1/dw
mul r0, r1, –r0.w // {–awdw –azdw –aydw –axdw}
mov r0.w, –r0.w // { awdw –azdw –aydw –axdw}
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DirectX C++ prototype:

D3DXQUATERNION * D3DXQuaternionInverse(

D3DXQUATERNION *pqD,

const D3DXQUATERNION *pqA);

Quaternion Multiplication D=AB

Please note the algebraic laws of commutative do not apply here!

AB <> BA AB != BA

Pseudocode:

q1q2 = (w1 x1i y1j z1k) (w2 x2i y2j z2k)

= w1w2 + w1x2i + w1y2j + w1z2k

+ x1w2i + x1x2i
2 + x1y2ij + x1z2ik

+ y1w2j + y1x2ji + y1y2j
2 + y1z2jk

+ z1w2k + z1x2ki + z1y2kj + z1z2k
2

Remember that the square of an imaginary is –1, and the product

of two different imaginaries is a positive third imaginary if the two

products are sequential; otherwise they are negative: ij=k, ji=–k,

jk=i, kj=–i, ki=j, ik=–j

= w1w2 + w1x2i + w1y2j + w1z2k

+ x1w2i – x1x2 + x1y2k – x1z2j

+ y1w2j – y1x2k – y1y2 + y1z2i

+ z1w2k + z1x2j – z1y2i – z1z2

Regrouping into like complex terms:

= w1w2 – x1x2 – y1y2 – z1z2

+ w1x2i + x1w2i – z1y2i + y1z2i

+ w1y2j + y1w2j + z1x2j – x1z2j

+ w1z2k + z1w2k+ x1y2k – y1x2k

= w1w2 – x1x2 – y1y2 – z1z2

+ (w1x2 + x1w2 – z1y2 + y1z2)i

+ (w1y2 + y1w2 + z1x2 – x1z2)j

+ (w1z2 + z1w2 + x1y2 – y1x2)k
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Listing 7-9: Vertex shader

// dx = (ax * bw) + (ay * bz) – (az * by) + (aw * bx)
// dy = (ay * bw) – (ax * bz) + (aw * by) + (az * bx)
// dz = (az * bw) + (aw * bz) + (ax * by) – (ay * bx)
// dw = (aw * bw) – (az * bz) – (ay * by) – (ax * bx)

mul r3, r1.yxwz, r2.z

mul r4, r1.zyxy, r2.y

mul r5, r1.wzyx, r2.x

mov r3.yw, –r3.yw

mov r4.xw, –r4.xw

mov r5.zw, –r5.zw

mad r0, r1, r2.w, r3

add r0, r0, r4

add r0, r0, r5

DirectX C++ prototype:

D3DXQUATERNION * D3DXQuaternionMultiply(

D3DXQUATERNION *pqD,

const D3DXQUATERNION *pqA,

const D3DXQUATERNION *pqB);

� NOTE: DirectX D=BA It expects a B, A order!

Quaternion Division

A quaternion divides the result of the product of a quaternion, the

dividend, into an inverse of a quaternion.

� � � �q1 q
2

� �w x y z w x y z
1 1 1 1 2 2 2 2

i j k i j k

q

q
q q1

2

2

1

1
� �

� � �

� � �
� �� w x y z

w x y z
w x y2 2 2 2

2

2

2

2

2

2

2

2 1 1 1

i j k
i� �j k� z

1
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Please note that a few steps were skipped here to arrive at the fol-

lowing solution:
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There are plenty more quaternion functions supported by

DirectX9, but the ones discussed here should be enough to whet

your appetite!
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C h a p t e r 8

Vertex Play

In this chapter we play with some of those vertex instructions that

were discussed earlier.

D3DX9 Sample: VertexShader.cpp

The VertexShader sample project in the DX9 SDK is an elemen-

tary project that demonstrates the basic functionality of a vertex

shader. It dynamically builds a 32x32 vertex array and uses 5,766

indices. I have tweaked the code a bit for our purposes to make the

frame changes more apparent.
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Figure 8-1: The resulting (single-stepped) animation sequence
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Listing 8-1: VertexShader.cpp — Indice mapping

for(DWORD y=1; y<m_dwSize; y++)
{
for(DWORD x=1; x<m_dwSize; x++)
{ // Pattern
*pIndices++ = (WORD)( (y–1)*m_dwSize + (x–1) ); // 0
*pIndices++ = (WORD)( (y–0)*m_dwSize + (x–1) ); // 1
*pIndices++ = (WORD)( (y–1)*m_dwSize + (x–0) ); // 2
*pIndices++ = (WORD)( (y–1)*m_dwSize + (x–0) ); // 3
*pIndices++ = (WORD)( (y–0)*m_dwSize + (x–1) ); // 4
*pIndices++ = (WORD)( (y–0)*m_dwSize + (x–0) ); // 5

}
}

This builds a primitive list of indexed triangles:

D3DPT_TRIANGLELIST.

Now build a 32x32 array of vertices, or a mesh. Note that only a

set of 2D {X, Y} vertices are generated, ranging from x� [–�/2,

�/2 ] to y� [–�/2, �/2 ].

X
N

N 1
Y

N

N 1
�

�
��

�
�

 
!
" �

�
��

�
�

 
!
"05 05. .� �

� NOTE: This equation should be recognized as a cosine. Now
why would that range of numbers be used here for this exam-
ple? For simplicity. By using the range of �, it is much easier to
cause the ripple effect that this sample demonstrates.
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Listing 8-2: VertexShader.cpp — Vertex mapping

float f = (float)(m_dwSize–1);

for(uint y=0; y<m_dwSize; y++)
{

float dy = ((float)y / f – 0.5f) * D3DX_PI;

for(uint x=0; x<m_dwSize; x++)
{
*pVertices++ = D3DXVECTOR2(

((float)x / f – 0.5f) * D3DX_PI, dy);
}

}

To manipulate a mesh, one normally alters each vertex within the

mesh that is referenced by an index for each frame of the render to

display the illusion of movement. This typically involves using a

master list of vertices and transforming them and storing the result

into a new list of vertices. This new list is passed into the renderer.

With shaders, there is no need for this transformation and copy.

The vertex shader handles the transformation and pipelines the

result to the pixel shader for processing.

The constants needed by the vertex shader code are actually

two sets. One set is fixed:

Vertex Shader: Constant Declarations

// Taylor series coefficients for sin and cos
D3DXVECTOR4 vD( D3DX_PI, // � 180°

1.0f/(2.0f*D3DX_PI), // 1/2� 90°
2.0f*D3DX_PI, // 2� 360°
0.05f); // 1/20 �/60

D3DXVECTOR4 vSin( 1.0f, // 360°
–1.0f/6.0f, // 60°
1.0f/120.0f, // 3°
–1.0f/5040.0f); // (1/14)°

D3DXVECTOR4 vCos( 1.0f, // 360°
–1.0f/2.0f, // 180°
1.0f/24.0f, // 15°
–1.0f/ 720.0f); // (1/2)°

m_pd3dDevice->SetVertexShaderConstantF(7, (float*)&vD, 1);
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m_pd3dDevice->SetVertexShaderConstantF(10, (float*)&vSin, 1);
m_pd3dDevice->SetVertexShaderConstantF(11, (float*)&vCos, 1);

D3DXVECTOR4 vSinCos1(D3DSINCOSCONST1);
D3DXVECTOR4 vSinCos2(D3DSINCOSCONST2);

m_pd3dDevice->SetVertexShaderConstantF(12, (float*)&vSinCos1, 1);
m_pd3dDevice->SetVertexShaderConstantF(13, (float*)&vSinCos2, 1);

The other set changes from frame to frame. These are the

“dynamic” constants that actually make the mesh appear to

animate.

D3DXMATRIXA16 mat;
D3DXMatrixMultiply(&mat, &m_matView, &m_matProj);
D3DXMatrixTranspose(&mat, &mat);

D3DXVECTOR4 vA(sinf(m_fTime)*15.0f, // time
0.0f, 0.5f, 1.0f); // {0, ½, 1}

m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&mat, 4);
m_pd3dDevice->SetVertexShaderConstantF(4, (float*)&vA, 1);

The following sample code is slightly different from that found

with the DX9 SDK, as the code has been optimized and modified

slightly to make the effect of the sin-cosine operation more

pronounced!

Listing 8-3: Ripple.vsh — version 1.1

vs.1.1

; Constants:
; c0-c3 - View + Projection matrix
; c4 {time, 0.0, 0.5, 1.0}
; c7 {�, �/2, 2�, 0.05}
; c10 - first four Taylor coefficients for sin(x)
; c11 - first four Taylor coefficients for cos(x)

dcl_position v0

; Unpack {X,Z} into {X,Y,Z,W}
mov r0.xz, v0.xy ; {XZ}
mov r0.yw, c4.ww ; {X,1,Z,1}

; Compute theta from distance and time
mov r1.xz, r0 ; {X,Z,}
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mov r1.y, c4.y ; {X,0,Y,_} y = 0
dp3 r1.x, r1, r1 ; r=X2+02+Z2 d2
rsq r1.x, r1.x ; {1/d,_,_,_} 1/ r
rcp r1.x, r1.x ; {d,_,_,_}
mul r1.x, r1.x, c4.x ; {dt,_,_,_} scale by time

; Clamp theta to – � .. �
add r1.x, r1.x, c7.x ; {� +dt, 0t, Yt, _}
mul r1.x, r1.x, c7.y ; {(� +dt) 0.5�, 0t, Yt, _}
frc r1.xy, r1.x ; (–1,1)
mul r1.x, r1.x, c7.z ; 2N�
add r1.x, r1.x,–c7.x ; 2N� – �

; _________________________
; cos() & sin() calculation
; Compute first four values in r2 r1 sin and cos series
mov r2.x, c4.w ; d0 {1,_,_,_}
mul r2.y, r1.x, r1.x ; d2 {1,S2,,} {S,,,}
mul r1.y, r1.x, r2.y ; d3 {1,S2,,} {S,S3,,}
mul r2.z, r2.y, r2.y ; d4 {1,S2,S4,} {S,S3,,}
mul r1.z, r1.x, r2.z ; d5 {1,S2,S4,} {S,S3,S5,}
mul r2.w, r2.y, r2.z ; d6 {1,S2,S4,S6} {S,S3,S5,}
mul r1.w, r1.x, r2.w ; d7 {1,S2,S4,S6} {S,S3,S5,S7}

; cos sin
mul r1, r1, c10 ; sin
dp4 r1.y, r1, c4.w ; sy =1x+1y+1z+1w

mul r2, r2, c11 ; cos
dp4 r1.x, r2, c4.w ; sx =1x+1y+1z+1w

; Set color r1.x=cos r1.y=sin
add r1.x, –r1.x, c4.w ; cos() = –sx + 1.0
mul oD0, r1.x, c4.z ; rx = 0.5 cos()

; Scale height to make more pronounced
mul r0.y, r1.y, c4.z ; ry = 0.5 sin()

; Transform position .xyzw
dp4 oPos.x, r0, c0
dp4 oPos.y, r0, c1
dp4 oPos.z, r0, c2
dp4 oPos.w, r0, c3

With the release of vertex shader version 2.0 and higher, the sincos

instruction became available, and so our shader code actually

becomes lighter and thus faster. So the following code actually has
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the same functionality but runs more quickly on a hardware-based

shader!

Listing 8-4: Ripple2.vsh — version 2.0

vs.2.0

; Constants:
; c0-c3 - View + Projection matrix
; c4 {time, 0.0, 0.5, 1.0}
; c7 {�, �/2, 2�, 0.05}
; c12 - sincos1
; c13 - sincos2

dcl_position v0

; Decompress position

mov r0.xz, v0.xy ; {XZ}
mov r0.yw, c4.ww ; {X,1,Z,1}

; Compute theta from distance and time
mov r1.xz, r0 ; {X_Z_}

mov r1.y, c4.y ; {X,0,Y,_} y = 0
dp3 r1.x, r1, r1 ; r=X2+02+Z2 d2
rsq r1.x, r1.x ; {1/d,_,_,_} 1 / r
rcp r1.x, r1.x ; {d,_,_,_}
mul r1.x, r1.x, c4.x ; {dt,_,_,_} scale by time

; Clamp theta to – � .. �
add r1.x, r1.x, c7.x ; {� +dt, 0t, Yt, _}
mul r1.x, r1.x, c7.y ; {(� +dt) 0.5�, 0t, Yt, _}
frc r1.xy, r1.x ; (–1,1)
mul r1.x, r1.x, c7.z ; 2N�
add r1.x, r1.x,–c7.x ; 2N� – �

mov r2.x,r1.x
sincos r1.xy, r2.x, c12, c13

; Set color r1.x=cos(r) r1.y=sin(r)
add r1.x, –r1.x, c4.w ; `sx = –sx + 1.0
mul oD0, r1.x, c4.z ; rx = 0.5 `sx

; Scale height
mul r0.y, r1.y, c4.z ; ry = 0.5 sin()

; Transform position .xyzw
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dp4 oPos.x, r0, c0

dp4 oPos.y, r0, c1

dp4 oPos.z, r0, c2

dp4 oPos.w, r0, c3

A Wee Bit o’ Simple Particle Physics

You may recall hearing little equations in school such as:

E=MC2

Or:

Speed = distance/time

Or:

y = sin(t)

Well, we do not care about the speed of light for purposes of this

book, but we do care about distance over time. Displacement of

vertices is all about distance moved during a period of time. To

support motion, every frame adjusts the time before calling the

shader-based render. In its simplest form, a vehicle could move

across the screen based upon velocity. In a slightly more complex

version, taking advantage of the physics of gravity, a particle (of

snow, rain, etc.) can start from an off-screen altitude and fall to the

ground.
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Figure 8-3: The figure on the left is a plot of x=0, y=h–t. With x fixed at 0, a vertical line
plot is drawn where y is represented at time t=0, which would be the highest point at h,
and t=N would be the resting position at ground level. The plot on the right is slightly
more complicated, where a point is accelerating toward the ground using a simple
gravity falling algorithm.



You may notice that the points get farther apart as the value of t

increases. Applying a gentle breeze from east to west (left side of

the screen to the right side) causes the points to have increasing

displacement as t increases as well.

These same principles can be applied to other environmental

effects, such as water, lava, firework simulations, etc. So let’s take

a quick look into particle fountains.

� NOTE: A particle fountain tends to have a continuous motion
such as a waterfall, water fountain, or lava fountain.

First let’s look at basic particle paths. If you think in terms of sim-

ple geometry…
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Figure 8-4: This figure shows that same plot over time but with
the addition of a (+) displacement as t increases. For example,
x = t0.1 So as t increases, x is no longer fixed at 0 but gets
larger and thus farther away from 0. This would simulate an
environmental factor, such as wind.



…there is a position and placement of any time interval along the

plot, so if one starts at the beginning t0 and then progresses toward

the end time tend, the position changes along the path dictated by

an equation. So now visualize a speck, or particle (a simple trian-

gle or rectangle), starting, for example, at ground level and then

accelerating upward, decelerating near the top of the arc, and then

accelerating back down to the ground. Now imagine that

reoccuring so tend+1 = t0. A visually continuous motion of shooting

up and falling back down occurs. Now let’s imagine that t0 does

not necessarily have to be the starting position. So from mid-air,

the items head upward and repeat the same continuous motion.

Now instead of just one speck (poly), have a list of them, all start-

ing at different points.

Now set them in motion by changing t. Voilà, a simple fountain.

Other particle paths are determined by just a simple variation to a

formula. For example, Figure 8-6 shows the plot variation just by

scaling the �y result as well as scaling the �x result.
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Figure 8-5: The figure on the left plots the path of a simple 2D graph of the equation
y = h sin(6t/w). The figure on the right shows that same graph but with the random
placement of points along the path.



Well, we have been looking at this from a 2D perspective, so now

let’s look at it from a topographical perspective. As t increases, the

plot point moves farther away from the center point.

So let’s examine a simple physics equation:

dr

dt
� v

In this particular case, a velocity is a vector. Each vertex repre-

senting a face within a polgon is manipulated by the vector

representing the rate of change over time. As we are dealing with

a simple particle fountain with a single formula, only one velocity
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Figure 8-6: The figure on the left plots the path of a simple 2D graph of the equation
y = h sin(6t/w) but with the width varied by adjusting w to demonstrate the path a
particle would take if it landed closer to the base. The figure on the right scales the plot
in size by adjusting h, demonstrating squashing. These demonstrate various paths that a
particle might take.

Figure 8-7: The figures demonstrate the points starting at the center at t=0, and
radiating farther outward from the center as time increases, eventually coming to rest at
the maximum radius as t=N.



is required. If, for example, we were to bounce each polygon upon

striking the ground, a change of velocity is represented, thus a sec-

ond vector representing a new change in direction would be

needed. But to get back to our simple fountain, each time slice

(rendered frame) deals with a moment (a difference) in time. We

can represent this velocity with the formula in a different form:

	
	

r

t
� v

But we need to render particles in terms of {XYZ}, and so a form

similar to the following is used:

	 	 	 	 	 	x t v y t v z t vx y z� � � � � �

Not to put it too simply, but the result of a velocity and time calcu-

late a position in 2D and, in our particular case, 3D space.

Well, to some it may seem to be more complicated than need

be, but for purposes of smooth motion with characteristics of real-

ity, physics-type equations are needed. Since this book only lightly

touches upon some aspects of physics, either dust off your old

physics textbooks from college or visit your local university and

take a class (or at the very least visit their bookstore and buy one

along with the accompanying workbooks). Physics can be fun,

especially in conjunction with experimenting with antifriction

devices (like an air hockey game), but that is another story.
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Figure 8-8: A 3D view of a particle fountain



�HINT: By putting this all together into a 3D context and add-
ing a lot more polygons (particles), a nice full fountain is
formed!

Pretty cool looking, huh? (It looks much better animated
though.)

Of course, this can be made even more complicated with extra

coding logic and placement of other scene elements, such as light-

ing, friction, etc. The newer branching instructions can also be

utilized to switch between equations, for example, depending on

conditions. Quite often, one basic equation is not enough to cover

the complete path. Although a random function is not available

during the render of a frame, it can be introduced to add a per-

frame variability. Keep in mind that any position adjustment is not

remembered from frame to frame. So any implementation of this

kind of alteration vertex position will be lost after the render. Of

course, that does not mean that the original vertex couldn’t be

altered before beginnning any render or from frame to frame, but

this later operation tends to slow down frame rates.

� NOTE: All this discussion on particle effects brings back fond
memories of Yosemite when I was a child. The Yosemite Firefall
was a nightly event in Yosemite for 88 years between 1872 and
1968. Glowing embers of a large bonfire up on the high “gla-
cier point” in Yosemite would be pushed over the side and rain
down upon the ground below at Camp Curry. It was a cascade
of glowing embers similar to a waterfall.

Other natural effects, such as wind-blown bushes, etc., can use

vertex technology. Your exploration into vertex shaders does not

need to end here! There are other more advanced books on the

subject available as well as Internet downloads, etc.
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C h a p t e r 9

Texture 101

Normally, a texture is related to pixels, not vertices, but there are a

few uses of textures by vertex shaders. One of them is bump map-

ping, as the elevation of the pixel is actually an adjustment of the

vertex position, and so the topic of textures is discussed here and

then again in relation to the pixel shader instructions.
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Figure 9-1: Texture for a space freighter (compliments of Ken Mayfield)



Before continuing, the following questions must be asked!

What Is a Polygon?

Originally, 3D graphics involved building 3D representations

constructed with a series of polygon shapes using primitives. Our

attention within this book is focused on the three-sided polygon

(a face). Two of these triangles make up a quadrilateral. In this

medium, the properties of the polygon’s surfaces (skin) in con-

junction with color are the most important. In the early days of 3D

rendering, shade-generated images resulting from light sources in

conjunction with color had a plastic appearance — fortunate only

if you wanted a stained glass window.

What Is Shading?

Shading is the method of filling

each face of a polygon when it is

rendered. There are various levels

of shading of increasing complex-

ity. The following are the principal

methods of shading.

� Wireframe: The basic skeletal

structure that makes up the

shape

� Facet shading: This is also

referred to as flat shading. Each

face is colored by a single con-

stant color.

� Gouraud shading: This is also

referred to as color interpola-

tion shading or intensity inter-

polation shading. It shades

using two steps, the first of

which is a light intensity calcu-

lation for each vertex. The sec-

ond step is a bilinear
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interpolation calculation of the intensity of pixels between the

three corner vertices of the face.

� Phong shading: This method is more complex than Gouraud

shading, as it uses a high number of calculations to achieve a

realistic rendering, such as per-pixel lighting, which generates

nice specular highlights.

What Is Color Mixing?

Of course there is more to color than just shading. There are issues

of color mixing. When mixing colors, such as the blending (sum-

mation) of two colors, one needs to be careful of what happens

when the sum of the two color values exceeds that of a possible

limit.

+

We learned this using saturation to limit values and prevent

wrap-around of values. The following samples are based upon

RGB 8:8:8.

DRed = AR + BR DGreen = AG + BG DBlue = AB + BB
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� Color Clipping: Data

wrap-around. Any overflow

resulting from the summation

wraps from 255 through 0, so

effectively a mod 256 is per-

formed and then stored as the

resulting pixel.

D = (A + B) MOD 256

� Color Saturation: The result

of the summation is saturated at

the maximum intensity value of

255 and not allowed to wrap,

such as in “clipping.” You may

remember that the shader

instruction modifier _sat

engages the saturation

mechanism.

D = MIN(255, (A + B))

� Color Averaging: The result of

the averaging of the two pixels

D = (A + B + 1) ÷ 2

� Color and Light: When work-

ing with light, the surface color

is affected by the intensity and

color of the light. Effectively,

the product of the two normal-

ized values is used to calculate

the pixel color.

D = ((A÷255) (B÷255)) 255

An interesting artifact of this

algorithm is that the light can never add a color that is not in the
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original surface color. The algebraic law of dominance is 0N=0.

So, for example, if there is no blue surface color and even if a

white light source is provided, there will still be no blue pig-

ment in the resulting pixel. Something else that should be kept

in mind is the algebraic law of multiplicative identities 1N=N.

Thus, the light value never increases the surface color value; it

only reduces (darkens) it.

Ah, but we are not done with color yet. There is also vertex color

lighting. This is typically used in darkened areas, such as caves or

dark shadowy areas. Sometimes individual light sources do not

generate quite enough light to illuminate the area, and so adding

color to individual vertices helps.

What Is a Texture?

A texture is in essence a 2D pixel bitmap that gives an image the

appearance of having a degree of roughness. A texture can be

thought of as a material that wraps the surface of an object (so, in

essence, a substitution). Instead of using shading with colored

light, a pixel from the source image (the texture) bitmap (a texel)

is placed at the destination pixel location. For example, the skin of

an orange can be thought of as that orange’s texture. It contains

the color information that is wrapped around the edible portion,
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Figure 9-2: Metallic texture-rendered cube without vertex lighting (on the
left) and with vertex lighting (on the right). It also helps make
great-looking rust. (Compliments of Ken Mayfield)



and the dimpled effect on the surface gives it the appearance of

roughness. The texture is stretched to fit. A model of the Earth (a

globe) is designed in the same way. The colored atlas of the world

is wrapped around the sphere, thus painting the object into 3D

space.

Note the continuation of the texture on the edge of the cube and

how the edge pixels are stretched along the side of the cube. If you

really want to see textures for planet Earth instead of a high-tech

ball, check out the Bump Map Earth sample:

DX9SDK\Samples\C++\Direct3D\BumpMapping\BumpEarth

But since we are just discussing textures, let’s continue. An object

can be literally any shape, even a cube, but for our purposes of

rendering, it is made up of a collection of triangles of which each

triangle is formed around three positions in space, which are its

vertices. This, of course, was discussed in the chapters related to

vertex shading. In the case of the following spacecraft, the 2D art

is wrapped around a polygon model, creating the illusion of vol-

ume and depth.

In the following figure, notice the dramatic difference between

just having a wireframe image versus having a texture-mapped

image.
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Figure 9-3: Texture mapped onto a sphere and cube (compliments of Ken
Mayfield)



What Is Texture Filtering?

New filtering methods are being developed from time to time as

technological innovations come about. For our purposes, here are

some filtering techniques:

� Point Sampling: Closest pixel (texel) in the texture map

� Linear: An interpolation (average) of the four nearest texels

� Mipmapping: Closest texel within a single mipmap

� Linear Mip: A single texel from two different mipmaps are

averaged together.

� Linear Mip Nearest: The four closest texels are used with a

bilinear filter on one mipmap.

� Trilinear Mipmapping: Interpolates color using the two clos-

est mipmaps, each containing four texels

Texture Dimensional

Textures can come in many shapes and sizes, but for purposes of

compatibility across video cards and platforms, a texture should be

designed with a power of two, thus 2n pixels, and with a square

pixel resolution. Some of the pixel shader instructions require the

texture to be 2n pixels in order to work properly. This size should

be larger than 8x8 and smaller than 256x256 to be compatible with

most 3D hardware render cards. But with this book, we are not

dealing with most 3D hardware here. We are dealing with
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Figure 9-4: Wireframe and texture-based rendered space freighter (compliments of Ken
Mayfield)



top-of-the-line graphics cards that support pixel shaders, which do

not have square texture limitations and have a higher common

pixel resolution limit of 2048x2048. Even higher resolutions are

available, but this is a good common base. Another plus is that

these newer boards have large quantities of graphics memory —

64/128/256 meg — available for textures. Therefore, a lot of func-

tionality is available for a product designed only for graphics cards

with shader support. To get the best performance, higher resolu-

tion textures must be created. But to support older, less capable

cards, lower resolution bitmaps need to be created. (Unfortunately,

game consoles tend to fall into this category, where only the Xbox

has shader support at the time of publication.) This means a lot

more work for the artist, but game company managerial types typ-

ically lean toward one set of texture art for time and budgetary

cost savings. It can be said that the same kind of decisions might

be made for shaders, but fortunately (or unfortunately, depending

on your point of view) the different shaders are not compatible and

therefore different versions have to be made.

So first let’s see determine the largest size texture that is sup-

ported by your current graphics card. Remember the version

checking in Chapter 2 and how each Direct3DDevice object type

used an enumerated D3DCAPS9 data structure? We are now inter-

ested in these two data members:

� DWORD MaxTextureWidth; // maximum texture width

� DWORD MaxTextureHeight; // maximum texture height

These specify the maximum size texture that is supported by the

enumerated device object.

The data member TextureCaps has various flags of which the

following are of interest:

� D3DPTEXTURECAPS_POW2 (=0x00000002)

� D3DPTEXTURECAPS_SQUAREONLY (=0x00000020)

� D3DPTEXTURECAPS_MIPMAP (=0x00004000)

D3DPTEXTURECAPS_POW2 indicates that the texture sup-

ported by the device object must be 2n.
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The SQUAREONLY flag, if set, indicates that a texture must be

square. Textures come in many color depths, which are really

defined by the capabilities of the graphics cards. The following bit

combinations are represented by {Alpha:Red:Green:Blue}, where

the alpha is optional. If only three arguments are shown, then

alpha is zero bits. The typical depths are 15 {5:5:5}, 16 {5:6:5},

24 {8:8:8}, and 32 {8:8:8:8} bits per pixel using a fixed palette

and 8 bits using a 256-color palette lookup table. There are other

color depths, which may or may not contain alpha (translucency)

information, such as the following configurations: {2:10:10:10},

{1:5:5:5}, {4:4:4:4}, {3:3:2}, etc.

Each vertex within a polygon needs to be mapped to a coordi-

nate on the texture. Each texture is mapped with a normalized UV

number ranging from 0.0 to 1.0. This allows a texture to be folded

along the axis of a line on the plane of the texture. This texture is,

in essence, folded and stretched between the three vertices that

make up the three points of a face.

Textures also come in a form known as a mipmap. This is a

sequence of textures that allow an image to be progressively

scaled. When a single bitmap image used in rendering is scaling

from a large to a small size, sparkle effects and shimmer will

appear and disappear in the image during the image shrinking or

expansion. As a mipmap is progressively scaled, the bitmap 2n

(for example, 512x512 (29)) would appear when the rendered
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Figure 9-5: Original square locomotive texture mipmap (compliments of Ken Mayfield)



object is closest to the camera to maximize the amount of detail.

Each progressive image as the image moves farther away from the

camera is reduced in size by one half 2(n–1); thus the next farther

image would be 256x256 (28), then 128x128 (27), etc., down to the

minimum sized texture supported. Typically, this is a 1x1 bitmap

supported by most of the later hardware, but unfortunately not all

hardware render-supported video cards actually support that size.

Typically, the minimum supported size is an 8x8.

The MIPMAP flag, if set, indicates that a mipmap is supported

by the device.

The good news here, however, is that since this book is about

video cards with programmable shaders, and if we sort of ignore

software shader support, we are not quite as restricted by texture

dimensions or minimal texture sizes.

Although mipmaps do not have to be square, for best portability

between video cards, they should be kept square. Alternatively, if

two sets of art are designed, one that is square for best compatibil-

ity and one that is not, then a video card can be used to its best

advantage. The only drawback is that for each bitmap, a set of

bitmap pixel references (UV) needs to be maintained for each

vertex.

Bump Mapping

Bump mapping is a process of combining textures and adjusting

each u and v pixel texture coordinate with an elevation (contour)

displacement map to render an image with an illusion of depth.

Notice in the following two images that there is a correlation

between what appears to be hiking trails on the left and the dark

interconnecting veins on the right.
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Linear topography defined by

polygons and their vertices

(right).

You can just imagine a hiker

walking around the sagebrush

along the trails. The linear

topography shown on the left

side of Figure 9-6 is mapped by

the terrain texture. The image

has taken shape.

Those hiking trails turn out to

be ravines of various depths

resulting from terrain displaced

by the bump map, which gives

the illusion of realism. Pixels

with darkness as the intensity

approaches black displace the

elevation in a negative height,

and when the intensity

approaches white, elevation is

increased from the mean.
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Figure 9-6: Terrain texture map on the left and its accompanying bump
map on the right (compliments of Ken Mayfield)

Figure 9-7: Topographical mesh on
the top, terrain mapped with
texture map in the middle, and
rendered with bump map on the
bottom (compliments of Ken
Mayfield)



The bump map is an image containing a specialized pixel format

that includes (	u 	v), delta values for u and v, which range from

{–1.0…1.0}, and occasionally a luminance component, L, which

ranges from {0…255}. Remember that under DirectX, you need

to verify that bump maps are supported by your graphics card.

This support is determined if either one of the following flags is

set:

� D3DTOP_BUMPENVMAP

� D3DTOP_BUMPENVMAPLUMINANCE

These, in essence, indicate that per pixel bump mapping is sup-

ported. This is in conjunction with using an environment map in

the following texture stage but one supports luminance and the

other doesn’t. This is only supported for color operations.

The following function checks for bump map support on the

current device:

Listing 9-1: C++

bool IsBumpMapSupported(IDirect3DDevice9 *pDev)
{

D3DCAPS9 d3dCaps;

ASSERT_PTR(pDev);

pDev->GetDeviceCaps(&d3dCaps);

// Check to see if either bump map blending is supported.

if (0 == d3dCaps.TextureOpCaps
& (D3DTEXOPCAPS_BUMPENVMAP
| D3DTEXOPCAPS_BUMPENVMAPLUMINANCE))

{
return false;

}

// Are at least three blending stages supported?
return (3 <= d3dCaps.MaxTextureBlendStages);

}

As texture memory is typically a limited resource (depending on

the graphics card), topographical textures are typically designed to
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be seamless when tiled into a checkerboard type pattern, such as in

the following figure.

On the left of Figure 9-8, note that the the left edge of the middle

cell is designed to wrap seamlessly into its own right edge and the

top edge to wrap with the bottom so textures can be adjacently

placed, such as in a checkerboard grid.

The problem with tiled textures, however, is that you may

notice the appearance of a repeating pattern, such as the four diag-

onal slashes cut into the surface at the left of Figure 9-9. Notice,

however, that in the texture map on the right, the single bump map

is used to camouflage, thus helping to hide the reused texture and

allowing resources to be stretched.
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Figure 9-8: On the left, the topographical terrain is arranged as a 3x3 tiled
checkerboard with the seams exposed; the right is without the seams. Note that even
though a pattern can be detected, there are no seam lines!

Figure 9-9: Topographical terrain mapped upon the same vector grid, with a 2x2 tiled
texture map on the left and rendered with a 1x1 bump map on the right (compliments of
Ken Mayfield)



Normally in 3D art (as well as 2D isometric views), the tiling

effect is broken up by the insertion of other scene elements, hence

other textures.

The following vertex shader code combines a texture and a

bump map to produce a bump map.

Listing 9-2: C++

D3DVERTEXELEMENT9 decl[] =
{

{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 0},

{0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0},

{0, 32, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 1},

{0, 32, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_LOOKUP,
D3DDECLUSAGE_SAMPLE, 0},

D3DDECL_END()
};

D3DXMATRIX m;
D3DXMatrixMultiply(&m, &m_matWorld, &m_matView);
D3DXMatrixMultiplyTranspose(&m, &m, &m_matProj);
m_pd3dDevice->SetVertexShaderConstantF(4, (float*)&m, 4);

//c4

float c[4] = {0.15f, 0, 0, 0};
m_pd3dDevice->SetVertexShaderConstantF(4+4, c, 1); //c8

Listing 9-3: Vertex shader

vs.1.1

dcl_position0 v0
dcl_texcoord0 v1 // Texture
dcl_sample0 v2
dcl_normal0 v3
dcl_texcoord1 v4

mul r2.xyz, v3.xyz, c8.xxx // Scale the normal
mul r2.xyz, r2.xyz, v2.xxx // Multiply displacement
add r2.xyz, r2.xyz, v0.xyz // Add normal to pos.
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mov r2.w, v0.w // Copy input pos.
m4x4 oPos, r2, c4 // xform pos. to the projection
mov oT0, v4 // Copy input texture#1 coord
mov oT1, v4 // Copy input texture#1 coord
mov oT2, v1 // Copy input texture#0 coord

Note that where the environmental map is full intensity (white),

the destination render is bright white. Where the environmental

map had intensity off (black), the full bump mapped texture is ren-

dered. Anywhere a medium intensity environmental map exists,

some (washed) bump mapped texture is rendered.
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Figure 9-10: The image on the left is a spherical render using only the
terrain texture. The texture image in the middle is the environmental map.
The image on the right is a spherical render using only the texture terrain
and the environmental map.

Figure 9-11: These images are the result of a spherical render where the
image on the left was rendered using only the environmental map. The
middle image is a render using the environmental map and a bump map.
The image on the right is a render using the environmental map, bump
map, and terrain texture.
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C h a p t e r 1 0

Pixel Shaders

I had a problem writing this chapter. Other books covering this

subject had mistakes, a lot of white space, and a lot of duplicate

information. But why regurgitate the same information again here?

I could be evil and make you flip back and forth between the ver-

tex shader and pixel shader parts of this book. But then again,

replicating the information would make it seem as if this book was

cheating the reader by filling it with duplicate information. (Wow

— two book halves for the price of one! Ah, decisions, decisions.)

Okay, I decided to go with forcing you to flip back and forth. It

won’t be too bad, so don’t worry. If you read and understood the

vertex part, then this part should be just a reminder with the need

for page flipping kept to a minimum.

This part of the book about pixel shaders is divided into two

chapters. This first chapter covers every pixel shader instruction

not related to textures, and Chapter 11 covers only textures. The

subject of textures is large enough to warrant its own chapter and

also made for a nice dividing line for breaking up this subject mat-

ter. I should note, however, that occasionally a texture instruction

will be referenced as needed but not really discussed in this

chapter.
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Pixel Shader Version Checking

Let’s revisit the “Version(s) Determination” section from Chapter

2 for a moment. It discussed vertex shaders and how to detect and

enumerate them for selection as vertex shader types that could be

supported. Since we were only focusing on vertex shaders, the

pixel shader version detection was sort of glossed over.

Within each Direct3DDevice object type was a D3DCAPS9

data structure with two data members of which the first one,

VertexShaderVersion, was of primary interest.

DWORD VertexShaderVersion; // vertex shader version
DWORD PixelShaderVersion; // pixel shader version

The second one, PixelShaderVersion, is of interest to us now. The

same major/minor version checks are done:

Maj = D3DSHADER_VERSION_MAJOR(pCaps->PixelShaderVersion);
Min = D3DSHADER_VERSION_MINOR(pCaps->PixelShaderVersion);

DWORD Version = D3DPS_VERSION(Maj, Min);

The version number indicates the highest version level that the

pixel shader hardware can support; in essence, pixel versions less

than or equal to a specified version are compatible!

This is actually much simpler than vertex shader version

detection!

What is not so easy, though, is the programming of pixel

shaders for the various hardware shader supported cards that are

out there. Many special rules apply depending on what version of

card is supported and what version of code you are writing. One

thing to remember is that early version numbers are not software

emulated as they are for the vertex shader, and so care must be

taken as to which shader code is being accessed for which version

of hardware. This means that for your shipped application, you

could possibly generate different versions of shader code, where

those with newer, higher performance cards have more capabilities

of the hardware taken advantage of compared to those with older,

less capable cards.
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Pixel Shader Registers

From Chapter 3, “Vertex Shaders,” you should find a familiarity

between the basic functionality of vertex shaders and pixel

shaders. They are essentially the same. Therefore, for the most

part, the registers should be similar whenever the same functional-

ity exists. There is still a need for constant floats, integers, and

Booleans, as well as temporary storage registers and a predicate,

etc. There is, however, a difference, as the vertex-specific registers

do not apply to pixel shaders, and pixel-specific registers do not

apply to vertex shaders. So there are some differences. Please note

that the constant access from a C/C++ application is also slightly

different, since even though they both have constant registers and

they are the same type of registers, they are kept separate from

each other and thus need an alternate API method of access.
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Figure 10-1: Pixel shader block diagram



c0 … c7

c8 … c31

c32 … c223

The constant read-only registers are each read-only

quad single-precision floating-point vectors.

Depending on the version, software emulation, and

hardware factors, the highest register index can

range from {c0…c223}. [1.1 … 1.4]=c{0…7},

[2.0]=c{0…31}, [2.0x, 3.0]=c{0…223}. They are

set either with the use of the def instruction or by

calling an external function from an application.

Only one vector constant can be used per instruc-

tion, but the elements can be negated and/or

swizzled. These can only be read by the pixel

shader code or from the game application through

an API interface. Access is through c[#]. For

Direct3D, see SetPixelShaderConstantF() under def

later in this chapter.

b0 … b15 The standard 16 constant registers are each

read-only quad Booleans. They are set either with

the use of the defb instruction or by calling an

external function from an application. These can

only be read by the pixel shader code by a version

[2.0x, 3.0] or higher or from the game application

through a DX9 API interface. Access is through

b[#]. For Direct3D, see SetPixelShaderConstantB()

under defb later in this chapter.

i0 … i15 The standard 16 constant registers are each

read-only quad integer vectors. They are set either

with the use of the defi instruction or by calling an

external function from an application. These can

only be read by the pixel shader code by a version

[2.0x, 3.0] or higher or from the game application

through an DX9 API interface. Access is through

i[#]. For Direct3D, see SetPixelShaderConstantI()

under defi later in this chapter.

aL Loop count register, ps 3.0

p0 Predicate, ps 2.0x, 3.0
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v0 … v1

v2 … v9

The read-only color registers; v0 is the diffuse, and

v1 is the specular. [1.1 … 1.4, 2.0]=v{0…1}.,

[3.0]=v{0…9}.

vFace Face register, ps 3.0

vPos Position register, ps 3.0

s0 … s15 Read-only sampler registers, ps [2.0 … 3.0].

t0 … t3

t4 … t5

t6 … t7

Texture registers for pixel shaders

[1.1 … 1.3]=t{0…3},

[1.4]=t{0…5},

[2.0 … 2.0x]=t{0…7},

[3.0 … 3.0sw]= Not supported.

r0 … r1

r2 … r5

r6 … r11

r12…r31

The temporary registers {r0 … r31} are used as

scratch read/write registers to temporarily save ver-

tex data in various stages of processing; for version

[1.0 … 1.3]=r{0…1}, [1.4]=r{0…5}, [2.0]=

r{0…11}, [2.0x, 3.0]={r0…r31}. For version 1.4 or

earlier, r0 is used for color output.

oC0 … oC3 Write-only output color register, ps [2.0 … 3.0sw].

oDepth Write-only output depth register, ps [2.0 … 3.0sw].

Only a single register type may be used per instruction except in

the case of the temporary register (r#), where up to three can be

used for the same instruction and in most cases can be used as

source and destination.

Pixel Shader Instructions

As discussed in the chapters on vertex shader instructions, it

should be noted that only pixel shader instructions for 1.0 through

1.4 are supported for the older version of Direct3D version 8.0 or

8.1. In Direct3D version 9.0 and beyond, instructions up to 2.0 or

3.0 are supported. Again, as version 9.0 is readily available, do not

use previous versions of 8.1 or older, as it will have restrictions as

to what it can do. That, and this book was written specifically for

version 9.0 and thus samples may fail.
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� NOTE: For each new pixel version type, the number of
instructions supported is increased! The number of instructions
supported can be checked by examining the MaxPShader-
InstructionsExecuted data member of D3DCAPS9.

Pixel shader version 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

Maximum number of instructions 8 8 8 96 512

In the following table there is a difference between versions 1.0

through 1.3. This was originally supported by nVidia and

Microsoft, and the ATI chipset as well as others cover that same

range of versions. Textures, which are discussed in the next chap-

ter, have a variety of special handling requirements depending on

the version number.

There are similarities as well as multiple differences between

the vertex shader and pixel shader instruction sets. The same tech-

niques shown in the vertex shader part of this book can apply

directly to this part of the book related to pixel shaders. A large

subsection of the pixel instructions behave virtually identically to

what was discussed in the vertex shader chapters. Instructions in

these pixel shader chapters that also appeared in the vertex shader

chapters are programmable in virtually the same manner. Any new

differences are noted as they are presented. To prevent this from

being the kind of book where the second half is virtually a repeat

of the first half, the repetition of information has been minimized.

In fact, for DirectX 9, numerous new instructions were added to

make the pixel shader much more robust.

� NOTE: For versions up to 1.3, only eight instructions slots
were available! Other rules applied, such as for version 1.3:
Texture registers t0, t1, t2 must be used in order (t0 before t1 or
t2 but not t1 before t0, etc.).
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Table 10-1: Programmable pixel instructions and their relationship with the version of
Direct3D and versions.

Direct3D 8.0 8.1 9.0

Instruction Version 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

Assembly (Scripting) Commands

dcl Declaration l l

dcl_usage Declaration of usage l

def Floating-point definition l l l l l l l l l

defb Boolean definition l l l l

defi Integer definition l l

label Address length l l l l

ps Version (pix shader) l l l l l l l l l

Data Conversions

frc Fractional float comp. l l l l l

mov Copy l l l l l l l l l

Add/Sub/Mul/Div

add Addition l l l l l l l l l

crs Cross product l l l l l

dp2add 2D dot product (scaled) l l l

dp3 Dot product (XYZ) l l l l l l l l l

dp4 Dot product (XYZW) l l l l l l l l

mad Multiply-add l l l l l l l l l

mul Multiply l l l l l l l l l

rcp Reciprocal l l l

rsq Reciprocal square root l l l

sub Subtraction l l l l l l l l l

Special Functions

exp Exponential l l l

log Log2(x) l l l

lrp Linear interpolation l l l l l l l l l

nop No operation l l l l l l l

pow 2x l l l

sincos Sine and cosine l l l
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Flow Control (Branchless)

abs Absolute l l l l l

cmp Cmp. (# >= 0) l l l l l l l l

cnd Cmp. (r0.a > 0.5) ? b:c
Cmp. (a > 0.5) ? b:c

l l l l

l

l

l

max Maximum l l l l l

min Minimum l l l l l

nrm Normalize l l l l l

setp Set predicate register l l l l

Flow Control (Branching)

break Break out of loop l l l l

break_comp Conditional loop l l l l

break_pred Predicate break l l l l

call Function call l l l l

callnz Function call if � 0 l l l l

callnz_pred Predicate call if � 0 l l l l

dsx X rate of change l l l l

dsy Y rate of change l l l l

else If-else-endif l l l l

endif If-else-endif l l l l

endloop End of a loop l l

endrep End of a repeat l l l l

if If Boolean l l l l

if_comp If comparison l l l l

if_pred If predicate l l l l

loop Start of loop l l

rep Start of repeat l l l l

ret Return from function l l l l

Matrices

m3x2 Apply m3x2 matrix l l l l l

m3x3 Apply m3x3 matrix l l l l l

m3x4 Apply m3x4 matrix l l l l l

m4x3 Apply m4x3 matrix l l l l l

m4x4 Apply m4x4 matrix l l l l l

Texture

tex RGBA from tex. l l l

texcoord Intrp. UVW1 l l l
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texdp3 Tex. DP l l

texdp3tex Tex. DP for 1D tex tbl l l

texbem Fake bump xform l l l

texbeml Bump xform w/lum l l l

texcrd Copy UVW1 l

texdepth Calc. dept values l

texkill Cull pixel if UVW zero l l l l l l l l l

texreg2ar Intrp. alpha and red l l l

texreg2gb Intrp. green and blue l l l

texreg2rgb Intrp. red, green, blue l l

Texture Matrices

texm3x2depth Calc. depth l

texm3x2pad 1st row × of 2x2 l l l

texm3x2tex Last row × of 3x2 l l l

texm3x3pad 1st or 2nd row 3x3 l l l

texm3x3 3x3 ×. w/3x3 pad l l

texm3x3tex 3x3 ×. tex tbl l l l

texm3x3spec 3x3 ×. spec reflt l l l

texm3x3vspec 3x3 ×. vspec. reflt l l l

Texture Referencing

bem Bump environ. xform l l

phase Phase 1 to phase 2 l l

texld Load RGBA l l l

texldb Load RGBA (bias) l l l l l

texldd Load RGBA (user) l l l l

texldl Load RGBA (lod) l l

texldp Load RGBA (proj.) l l l l l

The l indicates the pixel instruction is supported for that version.

Interesting table, don’t you think? There are a lot of retired

instructions replaced with instructions very similar to the vertex

shader instructions — sort of the merging of the two technologies.

Also to support this, the number of instruction slots was largely

increased. Something to keep in mind, however, is that the more

slots used, the slower the render. But you will soon discover that!

So let’s start breaking these down. Those instructions described

in the vertex shader section that are similar in functionality will
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only be painted in broad strokes here and have a reference similar

to the following:

See the equivalent instructions in the vertex shader

chapters for additional information as to usage.

Assembly (Scripting) Commands

Similar to vertex programming, the following are assembly lan-

guage definitions and not instructions. They are, in essence,

scripting commands to the assembler that do not generate code

instructions but control the building of that code. They are also

used to generate constant data (that is, read-only data!).

� ps: Definition for the version of the code written for the pixel

shader

ps.MajVer.MinVer 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This is an assembly (scripting) definition and not an instruction for

setting the version for which the code was written. It must be the

first declaration in a code fragment. MajVer is the major version

number, and MinVer is the minor version number of the vertex

shader. Current range is {1.0, 1.1, 1.2, 1.3, 1.4, 2.0, 2_x, 2_sw, 3.0,

3_sw}. See vs (in Chapter 3) for additional information.

Watch out for version levels because some assemblers try to be

helpful, such as version 1.42 of nVidia’s nvasm.exe. If 1.4 is spec-

ified, it will print a warning about an unknown version and default

to 1.1, which can easily break 1.3 code. Also, the same rules of dot

versus underscore apply.

Listing 10-1: Pixel shader

ps.1.3 // Uses 1.3 pixel shader code
ps.1.4 // Uses 1.4 pixel shader code
ps.2.0
ps.3.0
ps.3.sw // Version 3sw software (emulated) pixel shader
ps_3_sw
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� label: A code address location

label l# 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This statement is used to mark a location in code for purposes of

branching the program counter of the vertex processor of a partic-

ular pipe. A label may occur following a ret instruction to mark

the beginning of a new block of code.

For version 2x, the label number (#) must be in a range of

{0…15} and for versions 2sw and 3.0 {0…2047}. See label (in

Chapter 3) for additional information.

Listing 10-2: Pixel shader

label l1

� def: Definition of a single-precision floating-point vector constant

def Dst, aSrc, bSrc, cSrc, dSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This statement is used to define values within the constant regis-

ters before the pixel shader code is executed. This instruction must

occur after the version instruction but before any arithmetic or tex-

ture instructions. This is not a programming instruction but a

definition, and so it does not use up any of the instruction pro-

gramming slots. The constant value read can only be read by the

shader code. Values that can be defined with this definition range

from {–1.0, …, 1.0}. See def (in Chapter 3) for additional

information.

Listing 10-3: Pixel shader

ps 1.3 // Version 1.3
def c0, 1.0f, 0.0f, 1.0f, 0.0f // Set c0 register {1,0,1,0}
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An alternative to this is writing or reading the value directly from

a C/C++ application by using the provided API for access from

the application.

IDirect3DDevice9::SetPixelShaderConstantF()

HRESULT SetPixelShaderConstantF(
UINT StartRegister, // Register c#
CONST float *pConstantData, // Pointer to array of float vectors
UINT Vector4fCount // # of four float vectors

);

If the function succeeds, a return value of D3D_OK will result. If

there is an error, then D3DERR_INVALIDCALL results.

� defb: Definition of a Boolean constant

defb Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This statement is used to set a single Boolean value {true : false}

within the specified constant register (b#) used by the pixel shader

code before it is executed. See defb (in Chapter 3) for additional

information.

Note that the Boolean values are used only for conditional

branching.

Listing 10-4: Pixel shader

ps.3.0 // Version 3.0
defb b3, true // Set b3 register {true : false}
defb b1, false

An alternative to this is writing or reading the value directly from

a C/C++ application by using the provided API for access from

the application.

IDirect3DDevice9::SetPixelShaderConstantB()

HRESULT SetPixelShaderConstantB(
UINT StartRegister, // Register b#
CONST BOOL *pConstantData, // Pointer to array of Booleans
UINT BoolCount // # of Boolean values in an array

);
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If the function succeeds, a return value of D3D_OK will result. If

there is an error, then D3DERR_INVALIDCALL results.

� defi: Definition of an integer vector constant

defi Dst, aSrc, bSrc, cSrc, dSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This statement is used to define vector integer values within the

constant registers (i#) by the code of the pixel shader code before

it is executed. See defi (in Chapter 3) for additional information.

Listing 10-5: Pixel shader

ps.3.0 // Version 2.0
defi i3, 2, 3, 1, 0 // Set i3 register {2,3,1,0}

An alternative to this is writing or reading the value directly from

a C/C++ application by using the provided API for access from

the application.

IDirect3DDevice9::SetPixelShaderConstantI()

HRESULT SetPixelShaderConstantI(
UINT StartRegister, // Register i#
CONST int *pConstantData, // Pointer to array of integer vectors
UINT Vector4iCount // # of four integer vectors

);

If the function succeeds, a return value of D3D_OK will result. If

there is an error, then D3DERR_INVALIDCALL results.

� dcl: Source input declaration

dcl Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

For version 2.0 and above, registers t(#) and v(#) have to declare

an association between the individual components of the vertex

shader outputs and the pixel shader inputs that will be accessed by

the shader code.
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Pseudocode:

dcl t(m)

dcl v(n)

So if, for example, the following is needed in the pixel shader

code:

mov r0, t0.x // replicate x
mov oC0, r0 // {xyza} = {xxxx}

. . . then the x component of t0 needs to be declared!

dcl t0.x

Listing 10-6: Pixel shader

dcl t0.x
dcl t0.xy
dcl t1.xy
dcl v0.rgba

� dcl_2d: Source sampler declarations

dcl Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

For versions 2.0 and above, register s(#) has to declare a sampler

input that will be accessed by the shader code.

Pseudocode:

dcl_2d s(m)

Listing 10-7: Pixel shader

dcl_2d s0
dcl_2d s1
dcl_2d s11

texld r0,r0,s0
mov oC0, r0
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� dcl_?(usage)?: Source sampler declarations

dcl Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

For versions 3.0 and above, register v(#) has to declare a vertex

input usage based upon the D3DDECLUSAGE enumeration type.

This specifies how the vertex input data is being used by the

shader code. This is virtually the same statement declaration that

you have been making in your vertex shader code since using the

vertex assember from DX9. See dcl_?usage? (in Chapter 3) for

additional information.

Pseudocode:

dcl_normal v(m)

dcl_blendweight v(m)

dcl_texcoord0 v(m)

dcl_texcoord1 v(m)

Listing 10-8: Pixel shader

dcl_normal v0.xyz
dcl_blendweight v0.w
dcl_texcoord0 v1.zw
dcl_texcoord1 v1.y

Pixel Shader Instructions
(Data Conversions)

� mov: Copy register data to register d = a

mov Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction copies the referenced source register from aSrc to

the destination register Dst. This instruction has the ability to write
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to any of the destination registers. See mov (in Chapter 3) for addi-

tional information.

Listing 10-9: Pixel shader

mov r0,r1
mov_x4 r1.a, r1.a

Pixel Shader Assembly

Well, congratulations! You have now learned enough for your first

pixel shader program.

For most of the pixel instructions in this chapter (but not for all

pixel instructions), the following register usage table applies. Most

registers can be used as source arguments, and the register r(#) is

the only destination register.

� NOTE: The shaded cells indicate something that’s impossi-
ble. The empty cells indicate “possible but illegal.”

on rn tn Dst cn rn sn tn vn Src

l l l l l 2.0 aSrc

l l l 3.0 aSrc

First, a vertex data structure needs to be declared. This was

learned in the earlier vertex shaders chapters. This example first

uses a simple custom vertex data structure that allows for each

vector to have its own diffuse color:

struct CUSTOMVERTEX
{

FLOAT x, y, z; // Standard {XYZ} vector
DWORD diffuseColor; // The vector’s diffuse color

}

Then, of course, an FVF macro is defined for that custom vertex.

#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ | D3DFVF_DIFFUSE)

Then the shader is passed a vertex data as a stream of two trian-

gles using a triangle fan draw primitive, thus rendering a

rectangle:
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CUSTOMVERTEX vBoxAry[] =
{ // x y z A R G B
{ -1.0f, -1.0f, 0.0f, 0xffff0000 }, // #0 red - LL
{ 1.0f, -1.0f, 0.0f, 0xff00ff00 }, // #1 green - LR
{ 1.0f, 1.0f, 0.0f, 0xff0000ff }, // #2 blue - UR
{ -1.0f, 1.0f, 0.0f, 0xffffffff }, // #3 white - UL

};

Indices for:

� Triangle #0: {0,1,2}

� Triangle #1: {1,2,3}

Then finally there is the pixel shader file simple.psh.

So let’s peek at the file architecture for this graphics processor

assembly language. A pixel shader script (PSH) exists as a *.psh

file. As such, it would be ordered similar to the following:

Listing 10-10: Pixel shader version 1.1 – 1.4

// Note the version (PS) at the top of the file!
ps.1.1 // Version 1.1
mov r0,v0 // Output the diffused vertex color rgba

The vertex and color diffuse information from the source register

v0 components {rgba} is moved to the output register r0, and the

render interpolates between the individual assigned diffuse colors

associated with each corner of the polygon. All four components

{rgba} are needed for output.

Did you note the version 1.1-1.4 part? The rules change from

pixel shader to pixel shader. For example, the output for pixel

shader version 2.0 is not register r0 anymore; it is oC0, as the fol-

lowing example demonstrates.

Listing 10-11: Pixel shader version 2.0

// Note the version (PS) at the top of the file!
ps.2.0 // Version 2.0

dcl v0.rgba // Declare — vertex and color diffuse data rgba
mov oC0,v0 // Output the diffused vertex color rgba

Did you also notice that v0 was declared? For versions 2.0 and

above, registers t(#) and v(#) have to be declared the source com-

ponents that will be accessed using the dcl statement.
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Listing 10-12: Pixel shader version 3.0

// Note the version (PS) at the top of the file!
ps.3.0 // Version 3.0

dcl_normal v0.rgba // Declare – vertex data rgb

mov oC0,v0 // Output the diffused vertex color rgba

� frc: Return fractional component of each source input

frc Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This macro removes the integer component from the source aSrc,

leaving the fractional component of the elements {0.0 � x < 1.0},

which is stored in the destination Dst. See frc (in Chapter 3) for

additional information.

Listing 10-13: Pixel shader

frc r0,v0

Instruction Modifiers

Now would probably be a good time to discuss instruction modifi-

ers. These are filters applied to the result of the calculation before

it is stored to the destination.

1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

_x2 = n << 1 = 2n l l l l

_x4 = n << 2 = 4n l l l l

_x8 = n << 3 = 8n l

_d8 = n >> 3 = n ÷ 8 l

_d4 = n >> 2 = n ÷ 4 l

_d2 = n >> 1 = n ÷ 2 l l l l

_sat = Saturate (0.0 = n =1.0) l l l l
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These are applied to the individual instructions.

Listing 10-15: Pixel shader

add_sat r0.a, r0.a, c0.x // (0.0 = n = 1.0)
add_x4 r1.a, t0, t1 // 4n
add_x4_sat r3, r2, r1 // (0.0 = 4n = 1.0)

Co-Issued Instruction

1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

+ l l l l

A co-issued instruction allows two functions to be simultaneously

executed for purposes of optimization. This involves the vector

pipeline and the scalar pipeline being executed in parallel.

The following is an example of this:

add r0.rgb, r0, v0
+ add r0.a, r0, v0

However, this is exactly the same functionality as:

add r0, r0, v0

An example instruction pairing that is more efficient would be

something similar to:

add r0.rgb, r0, v0
+ add r0.a, r1, c0

Pixel Shader Instructions
(Mathematics)

� add: Addition d = a + b

add Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l
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This instruction sums the source aSrc and the source bSrc and

stores the result in the destination Dst. See add (in Chapter 3) for

additional information.

Pseudocode:

da=aa+ba db=ab+bb dg=ag+bg dr=ar+br

Listing 10-14: Pixel shader

add r0,r0,t0

� sub: Subtraction d = a – b

sub Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction subtracts the source bSrc from the source aSrc and

stores the result in the destination Dst. See sub (in Chapter 3) for

additional information.

Pseudocode:

da=aa–ba db=ab–bb dg=ag–bg dr=ar–br

Listing 10-16: Pixel shader

sub r0,v0,t0

sub r1.rgb,t1,t0
+sub_x4 r1.a,t0,t1

� mul: Multiply d = ab

mul Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction results in the product of the source aSrc and the

source bSrc and stores the result in the destination Dst. See mul (in

Chapter 3) for additional information.
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Pseudocode:

da=aaba db=abbb dg=agbg dr=arbr

Listing 10-17: Pixel shader

mul r0,v0,t0
+ mul_sat r0.a, t0_bx2, t1_bx2

mul_x2 r0, r0, v0
mul r0.a, r0.r, r0.r

� mad: Multiply add d = ab + c

mad Dst, aSrc, bSrc, cSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction results in the product of the source aSrc and the

source bSrc, sums the source cSrc, and stores the result in the des-

tination Dst. See mad (in Chapter 3) for additional information.

Pseudocode:

da=aaba+ca db=abbb+cb dg=agbg+cg dr=arbr+cr

Listing 10-18: Pixel shader

mad r0,v0,t0,v0
mad_d4 r0.rgb, r1, r0.r, r2

� crs: Cross product (outer product) d = a × b

crs Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This two-slot macro instruction results in the cross product (outer

product) of the source aSrc and the source bSrc and stores the

result in the destination Dst. The destination cannot be the same as

the source register. The destination is only allowed to be one of

the following: {.x, .y, .z, .xy, .xz, .yz, .xyz, .xyza, or the rgba

equivalents}. See crs (in Chapter 3) for additional information.
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Listing 10-19: Pixel shader

crs r1.x, r0, c0

� dp3: Dot product d = a • b

dp3 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction results in the dot product of the source aSrc.xyz

and the source bSrc.xyz and stores the replicated scalar result in

each element of the destination Dst.xyzw. See dp3 (in Chapter 3)

for additional information.

Pseudocode:

da=db=dg=dr= arbr + agbg + abbb

Listing 10-20: Pixel shader

dp3 r0, v0, v0
dp3 r0.rgb, t0, v0
dp3_ sat r0, t0_bx2, v0_bx2
dp3 t0.rgba, r1, c4

� dp4: Dot product d = a • b

dp4 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l

This instruction results in the dot product of the source aSrc.rgba

and the source bSrc.rgba and stores the replicated scalar result in

each element of the destination Dst.rgba. See dp4 (in Chapter 3)

for additional information.

Pseudocode:

da=db=dg=dr= arbr + agbg + abbb + aaba

Listing 10-21: Pixel shader

dp4 r0,t0,v0
dp4 r5.y,v0,c3

204 Chapter 10: Pixel Shaders



� dp2add: 2D dot product d = a • b + scalar

dp2add Dst, aSrc, bSrc, cSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction occupies two slots and results in the 2D dot prod-

uct of the source aSrc.xy and the source bSrc.xy, sums the

specified swizzled scalar from cSrc, and stores the replicated sca-

lar result in each element specified by the mask of the destination

Dst in conjunction with an optional saturation specifier. Any of the

source arguments may be optionally negated.

The allowed masks for aSrc and bSrc are: {.rgba, .r, .g, .b, .a,

.gbra, .brga, .abgr}.

Pseudocode:

dm= arbr + agbg + c? m={replicated element}. ?={r,g,b,a}

Listing 10-22: Pixel shader

dp2add r1, r0.r, c0.b, r3.x

� rcp: Reciprocal of the source scalar d = 1/a

rcp Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction results in the reciprocal of the source aSrc and

stores the replicated scalar result in each specified element of the

destination. Special case handling is utilized if a source is equal to

1.0 or 0.0. The default is Dst.xyzw, Src.x. See rcp (in Chapter 3)

for additional information.

Listing 10-23: Pixel shader

rcp r0, c1.x
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� rsq: Reciprocal square root of the source scalar d = 1/�abs(a)

rsq Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction results in the reciprocal square root of the source

aSrc specified by only one element {.x .y .z .w} and stores the rep-

licated scalar result in each element of the destination. Special

case handling is utilized if the source is equal to 1.0 or 0.0. The

default is Dst.xyzw, aSrc.x. See rsq (in Chapter 3) for additional

information.

Listing 10-24: Pixel shader

rsq r0, v0.z

Special Functions

We are now nearing the end, with the few remaining non-branch

and matrix instructions that have special functionality.

� nop: No operation

nop 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction performs no operation. See nop (in Chapter 3) for

additional information.

Listing 10-25: Pixel shader

nop

� pow: Power d = |a|b

pow Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l
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This instruction occupies three slots. It calculates the scalar value

using the source aSrc as a base value and the source bSrc as an

exponent value and stores the replicated result in each component

of the destination Dst. This is a scalar instruction, thus both the

aSrc and bSrc source arguments require the swizzle of a single

replicated component {x, y, z, w}. See pow (in Chapter 3) for

additional information.

The Dst register should be a temporary register (r#) and not the

same register as bSrc.

Pseudocode:

dx = dy = dz = dw = |a|b

Listing 10-26: Pixel shader

pow r3, r4.x, r4.y
pow r2, r0.z, c0.w

� exp: Exponential 2x — 19-bit precision

exp Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction calculates the exponential number using the single

element of the source aSrc and stores the result in the destination

Dst. See exp (in Chapter 3) for additional information.

Pseudocode:

dx = dy = dz = dw = pow(2, aw)

Listing 10-27: Pixel shader

exp r0, r1.y

� lrp: Linearly interpolate by proportion

lrp Dst, aSrc, bSrc, cSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l
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This instruction occupies two slots. It results in the linear interpo-

lation of the product between source aSrc, source bSrc, and source

cSrc and stores the result in the destination Dst. See lrp (in Chap-

ter 3) for additional information.

Pseudocode:

d = a * b + (1 – a) * c

// which is the same as

d = c + a * (b – c)

Listing 10-28: Pixel shader

lrp r2.rgb, r3.a, r4, c0
lrp r3, r2.y, c2, v0
lrp_sat r0, r1.a, r1, r5

� sincos: Sine – cosine calculation

sincos (Macro) 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

sincos Dst, aSrc, bSrc, cSrc l l l

sincos Dst, aSrc l l

This (eight-slot) macro instruction calculates both the sine and

cosine of the source arguments in radians. See sincos (in Chapter

3) for additional information.

Listing 10-29: Pixel shader

sincos r1.xy, r0.x, c1, c2 // version 2.0, 2x, 2sw
sincos r1.xy, r0.x, c1.xyzw, c2.xyzw // version 2.0, 2x, 2sw
sincos r1.xy, c0.z, c1.xyzw, c2.xyzw // version 2.0, 2x, 2sw

sincos r1.xy, r0.x // version 3.0, 3sw
sincos r0.xy, v0.z // version 3.0, 3sw
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Branchless Code

� abs: Absolute d = |a|

abs Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction results in the positive conversion of a negative

value in the source aSrc and stores the result in each specified ele-

ment of the destination. Please note that this instruction is only

valid if your version is set to 2.0 or above. See abs (in Chapter 4)

for additional information.

Pseudocode:

dx=|ax| dy=|ay| dz=|az| dw=|aw|

Listing 10-30: Pixel shader

abs r0, r1

� min: Minimum d = (a < b) ? a : b

min Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction results in the selection of the lower value from

each element of the source aSrc and the source bSrc and stores the

result in the destination Dst. See min (in Chapter 4) for additional

information.

Pseudocode:

dx= (ax < bx) ? ax : bx
dy= (ay < by) ? ay : by
dz= (az < bz) ? az : bz
dw= (aw < bw) ? aw : bw
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Listing 10-31: Pixel shader

min r0, c0, r1
min r0, r1, c0

� max: Maximum d = (a > b) ? a : b

max Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction results in the selection of the higher value from

each element of the source aSrc and the source bSrc and stores the

result in the destination Dst. See max (in Chapter 4) for additional

information.

Pseudocode:

dx= (ax > bx) ? ax : bx
dy= (ay > by) ? ay : by
dz= (az > bz) ? az : bz
dw= (aw > bw) ? aw : bw

Listing 10-32: Pixel shader

min r1, c3, r2
min r0, r2, v0

� nrm: 3D vector normalization

nrm Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction occupies three slots and calculates the normaliza-

tion of a 3D vector. See nrm (in Chapter 4) for additional

information.

Pseudocode:

r = 1/�(axax + ayay + azaz)

dx = rax dy = ray dz = raz
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Listing 10-33: Pixel shader

nrm r0, c0

� dsx: Calculate the rate of change in the x direction

dsx Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction calculates the rate of change in the x direction

from the source aSrc and stores the result in the destination Dst.

Listing 10-34: Pixel shader

dsx r0, c0

� dsy: Calculate the rate of change in the y direction

dsy Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction calculates the rate of change in the y direction

from the source aSrc and stores the result in the destination Dst.

Listing 10-35: Pixel shader

dsy r1, c3

� setp: Set predicate

setp_?? aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

setp_gt (a > b) l l l l

setp_ge (a � b) l l l l

setp_eq (a = b) l l l l

setp_ne (a <>b) (a � b) l l l l

setp_le (a � b) l l l l

setp_lt (a < b) l l l l
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This instruction results in a per-channel comparison between the

source register aSrc and the source register bSrc and stores the

result in the destination Dst. See setp (in Chapter 4) for additional

information.

Listing 10-36: Pixel shader

setp_gt p0, r1,c1
(!p0) add r0, r3,r4

� cmp: Compare less than d = (a < 0) ? c : b

cmp Dst, aSrc, bSrc, cSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l l l l l

This instruction results in a comparison of each element of the

source aSrc to zero. If less than zero (negative), the source cSrc is

selected, or if greater than or equal to zero, the source bSrc is

selected. The result is returned in Dst.

Pseudocode:

dx= (ax < 0) ? cx : bx)

dy= (ay < 0) ? cy : by)

dz= (az < 0) ? cz : bz)

dw= (aw < 0) ? cw : bw)

Listing 10-37: Pixel shader

cmp r0, c0, c1, c2

� cnd: Compare greater than 0.5 d = (a > 0.5) ? b : c

cnd Dst, aSrc, bSrc, cSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction results in a comparison of each element of the

source aSrc to zero. If less than zero (negative), the source cSrc is

selected, and if greater than or equal to zero, the source bSrc is

selected. The result is returned in Dst.
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Pseudocode:

dx= (ax < 0) ? cx : bx)

dy= (ay < 0) ? cy : by)

dz= (az < 0) ? cz : bz)

dw= (aw < 0) ? cw : bw)

Listing 10-38: Pixel shader

cnd r0, r0, c1, c2

Branching Code

These were introduced with vertex version 2.0 and have exactly

the same functionality for the pixel shaders. The source argument

aSrc is a Boolean register (b#), and if set, the code following the if

instruction is executed. If not, the optional else code is executed.

In either case, the shader code resumes execution with the first

instruction after the endif. See if, else, and endif (in Chapter 4) for

additional information.

The if-else-endif conditional:

� if-else-endif (Boolean)

if aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

The if conditional occupies three instruction slots.

else 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

endif 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

The if compare conditional occupies three instruction slots, and

the if predicate conditional occupies three instruction slots.
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Listing 10-39: Pixel shader

defb b1, TRUE

if b1
mul r0.xyz, v0, c2.x // Executed if b1 is true!
mad r2.xyz, v1, c2.y, r0
else
mul r0.xyz, v0, c3.x // Executed if b1 is false!
mad r2.xyz, v1, c3.y, r0
endif

� rep-endrep: Repeat

rep aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

The rep instruction uses three instruction slots and is the beginning

marker of a block of repeating code. The source integer register

aSrc only uses the constant integers (i#), which contain the

non-swizzled number of iterations (loops) that occur between the

rep and endrep instructions. The maximum number of loops

allowed is 255. See rep and endrep (in Chapter 4) for additional

information.

� rep-endrep: End repeat

endrep 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

An endrep instruction occupies two instruction slots, must be used

in conjunction with the rep instruction, and occurs at the end of

the looped code block.

The repeat loops are not allowed to be nested. When used in

conjunction with if statements, the repeat loop must either be a

container for the if code block or reside within the if block. The

rep and endrep both occupy one instruction slot each. This can be

thought of as a while loop.
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Listing 10-40: Pixel shader

defi i3, 5, 5, 5, 5

rep i3
// Insert your code here!

endrep

rep i3.xyzw
// Insert your code here!

endrep

� loop-endloop

loop aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This is the beginning instruction of a looped section of code and

occupies three instruction slots. The source register aSrc is the

loop counter aL register. The source register bSrc is an integer reg-

ister i#, where the {x} component contains the iteration count, the

{y} component contains the initial value of the loop counter, and

the {z} component contains the incremental value. See loop and

endloop (in Chapter 4) for additional information.

� loop-endloop

endloop 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

The endloop statement indicates the bottom of a loop and occupies

two instruction slots. The pixel code between loop and endloop

will cycle up to the value of the loop counter.

Listing 10-41: Pixel shader

defi i3, 5, 2, 1, 0 // 5 loops, i2...i6, +1

loop aL, i3
// Insert your code here using aL index!

endloop
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� break: Break out of loop

break 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction is used to break out of repeats and loops and allow

the function to execute the instruction just below the endloop or

endrep looping block that it resides in. It has an identical function-

ality to that of the break used in while loops in C. See break (in

Chapter 4) for additional information.

Listing 10-42: Pixel shader

break
// Warning: This usage may not be correct for your
// version of psa.exe.

� break_?? (compare break)

break_?? aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

break_gt if (a > b) break l l l l

break_ge if (a � b) break l l l l

break_eq if (a = b) break l l l l

break_ne if (a <>b) break

(a � b)

l l l l

break_le if (a � b) break l l l l

break_lt if (a < b) break l l l l

This is a combination of an if conditional and a break contained

within a single instruction that occupies three instruction slots.

Just like the if conditional, an element of both the source aSrc and

bSrc needs to be selected for the individual scalar compare. See

break_?? (in Chapter 4) for additional information.

Listing 10-43: Pixel shader

rep i1
break_gt c3.x, r0.x
endrep
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� break (predicate)

break_pred aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This predicate conditional break occupies three instruction slots

and uses the predicate register p0 as the conditional to break out of

a loop. The ! symbol indicates a NOT condition and therefore 1’s

complements the value in the predicate register. See break_pred

(in Chapter 4) for additional information.

Listing 10-44: Pixel shader

break p0.x
break !p0.y

// Warning: This usage may not be correct for your
// version of psa.exe.

� call-ret: Call function and then return

call label 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction occupies two slots and is a function call to a code

block whose entry point is marked by a label and exit point is

marked by a ret instruction. Labels were discussed in Chapter 3.

Similar to how general-purpose processors function, the effective

address of the next executable instruction is pushed on a stack and

execution is branched (jumped) to the address marked by a label.

Execution continues from that point forward until a return is

encountered. See call and ret (in Chapter 4) for additional

information.

An indicator is needed to mark the end of the called function

code, which is the ret instruction.

Chapter 10: Pixel Shaders 217



� call-ret: Return from called function

ret 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This is the exit point of a code block accessed by a call instruc-

tion. The address pushed onto the stack by the call instruction is

popped off the stack, and then the execution is branched (jumped)

to.

Listing 10-45: Pixel shader

call l1

� callnz-ret

callnz label, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This is similar to a call instruction, except it is a conditional call

and occupies three instruction slots. That is, if the Boolean con-

stant referenced by the source input aSrc is not zero, thus True,

then the function is called. See callnz (in Chapter 4) for additional

information.

Listing 10-46: Pixel shader

callnz l1, b2

� callnz (predicate)

This instruction calls if the predicate is not zero; it occupies three

instruction slots.

Listing 10-47: Pixel shader

callnz l1, p0.r
callnz l2, !p0.g
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Matrices

These pixel shader matrix instructions are nearly identical to the

matrix instructions explained in Chapter 5, “Matrix Math.”

� m4x4: Apply a 4x4 matrix to a four-component vector d = aB

m4x4 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This macro instruction occupies four instruction slots. It applies a

4x4 matrix referenced by the four sequential registers beginning

with the source bSrc {+0, …, +3} to the {XYZW} vector refer-

enced by the source aSrc and stores the result in the destination

vector Dst. See m4x4 (in Chapter 5) for additional information.

Negation and swizzle are only allowed for the source vector

aSrc and not the four consecutive bSrc registers. The destination

must have the four components specified.

on rn tn Dst cn rn sn tn vn Src

l l l l l 2.0 aSrc

l l l 2.0 bSrc

l l l 3.0 aSrc, bSrc

Listing 10-48: Pixel shader

m4x4 r1.xyzw, r3, c4 ; Multiply r3 * C4...C7

� m4x3: Apply a 4x3 matrix to vector d = aB

m4x3 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This macro instruction occupies three instruction slots. It applies a

4x3 matrix referenced by the three sequential registers beginning

with the source bSrc {+0, +1, +2} to the {XYZW} vector refer-

enced by the source aSrc and stores the result in the destination

vector Dst. See m4x3 (in Chapter 5) for additional information.
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on rn tn Dst cn rn sn tn vn Src

l l l l l 2.0 aSrc

l l l 2.0 bSrc

l l l 3.0 aSrc, bSrc

Listing 10-49: Pixel shader

m4x3 r1.xyz, r3, c4 ; Multiply r3 * C4...C6

� m3x2: Apply a 3x2 matrix to vector d = aB

m3x2 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This macro instruction occupies two instruction slots. It applies a

3x2 matrix of the two sequential registers beginning with the

source bSrc {+0, +1} to the {XYZ} vector referenced by the

source aSrc and stores the result in the destination vector Dst. See

m3x2 (in Chapter 5) for additional information.

on rn tn Dst cn rn sn tn vn Src

l l l l l 2.0 aSrc

l l l 2.0 bSrc

l l l 3.0 aSrc, bSrc

Listing 10-50: Pixel shader

m3x2 r1.xy, r3, c4 ; Multiply r3 * C4...C5

� m3x3: Apply 3x3 matrix to vector d = aB

m3x3 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This macro instruction occupies three instruction slots. It applies a

3x3 matrix referenced by the three sequential registers beginning

with the source bSrc {+0, +1, +2} to the {XYZ} vector referenced

by the source aSrc and stores the result in the destination vector

Dst. See m3x3 (in Chapter 5) for additional information.
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on rn tn Dst cn rn sn tn vn Src

l l l l l 2.0 aSrc

l l l 2.0 bSrc

l l l 3.0 aSrc, bSrc

Listing 10-51: Pixel shader

m3x3 r1.xyz, r3, c4 ; Multiply r3 * C4...C6

� m3x4: Apply 3x4 matrix to vector d = aB

m3x4 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

(Macro) l l l l l

This macro instruction occupies two instruction slots. It applies a

3x4 matrix referenced by the four sequential registers beginning

with the source bSrc {+0, …, +3} to the {XYZ} vector referenced

by the source aSrc and stores the result in the destination vector

Dst. See m3x4 (in Chapter 5) for additional information.

on rn tn Dst cn rn sn tn vn Src

l l l l l 2.0 aSrc

l l l 2.0 bSrc

l l l 3.0 aSrc, bSrc

Listing 10-52: Pixel shader

m3x4 r1.xy, r3, c4 ; Multiply r3 * C4...C5

There is no software emulation for pixel shaders under Direct3D

(well, almost!).

This, to me, is sort of a joke and brings back a fond memory. I

was working on a 3D rendered children’s game project that was

supposed to be ported to the PS2, Nintendo 64, and PC using

Direct3D. Since children tend to inherit “hand-me-down” comput-

ers from their parents, they typically do not have hardware render

cards, and software emulation under Direct 3D is extremely slow.

This execution speed was so fast, that it ran at one frame per sec-

ond on a high-performance machine. This tremendous lack of
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speed required me to write my own software render that actually

jumped the frame rate almost 1000 percent before I started to con-

vert the C code to assembly.

The point here is that you can do software emulation by using

the REF (reference device) on a 3D graphics card, but unfortu-

nately, like the D3D software emulation mode, your shaders

become more like a slide show!

So now let’s move on to one of the most important portions of

pixel shaders — the texture!
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C h a p t e r 1 1

Textures

This chapter is the second half of the pixel shader instructions but

is specifically related to textures and their handling. In the

previous chapter we learned the instructions needed for manipula-

tion of pixel shader information, but in this chapter we discuss

how it relates to the texture itself.

Texture Registers

Recall from the last chapter that there are registers specifically

used for accessing texture data.

t0 … t3

t4 … t5

t6 … t7

Texture registers for pixel shaders

[1.1 … 1.3] = t{0…3}

[1.4] = t{0…5}

[2.0 … 2.0x] = t{0…7}

[3.0 … 3.0x]= Not supported

The fact that those texture registers are to be associated with tex-

ture data in a sequential (index) order was not mentioned. That is,

texture coordinates are moved into t0, and then t1 (if needed) is

calculated based upon t0 (then t2 using t0…t1, and so forth).

Based upon those registers, the maximum number of texture

samples that can be supported by that version of pixel shader hard-

ware is represented in the following table.

Pixel shader version 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

Maximum texture samples 4 4 4 6 16 16 16 16 16
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That ratio can also be calculated for fixed function pipelines using

the data members MaxTextureBlendStages and MaxSimultaneous-

Textures from the D3DCAPS9 data structure.

Samples = MaxTextureBlendStages/MaxSimultaneousTextures

The texture instructions can be the most confusing of all the

shader instructions due to the fact that certain instructions are only

supported by limited versions of the pixel shaders. In essence,

some instructions only work with some versions. Typically, when

designing your 3D graphical application for the consumer market,

you need to keep in mind that you will definitely need to write dif-

ferent versions to effectively generate similar effects, depending

on which pixel shader versions that a particular card supports.

This is especially true since in conjunction with hardware shaders,

only the newer cards support branching, and all shader cards sup-

port different texture methodologies.

Before getting into textures, we should highlight at least one

use of pixel shaders without textures. The following shader is

sometimes used to draw character shadows into a shadow texture.

Prior to this shader being called, the shadow texture is set up with

a color surface and a depth surface.

Listing 11-1: Character shadow pixel shader from Paul Stapley

// v0 = distance from light [0.0, 1.0] range: 0.0 = v0 = 1.0
// = when 1.0f = CV_CASTING_SHADOW_LIGHT.w distance

ps.1.1

def c0, 0.0f, 0.0f, 0.0f, 1.0f

mov r0, v0 ; Vertex color
mov r0.a, c0.a ; Set to 1.0

One should also keep in mind that certain texture instructions only

work with certain versions and care should be taken when devel-

oping shader code. There is also a special case of the texld

instruction, where the number of arguments changes depending on

the version of the shader.
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� tex: Load destination register with sampled RGBA

tex Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction loads the color data (RGBA) sampled from the

texture and stores the result in the destination Dst.rgba. Note that

the indexed texture register t(#) is actually the texture stage

number.

on rn tn Dst

l

Listing 11-2: Pixel shader

tex t0
tex t1
tex t2
tex t3

The following is a simple object pixel shader where the color data

from the corresponding pixel position in the texture is rendered.

Listing 11-3: Object pixel shader with lighting from Paul Stapley

ps.1.1

tex t0 ; Fetch texture base
mov r0, v0

In the following case, the texture color is blended with the vertex

color.

Listing 11-4: Object pixel shader with lighting from Paul Stapley

ps.1.1

tex t0 ; Fetch texture base
mul r0, t0, v0 ; Texture color × vertex color

This effect is similar to the following image:
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� texld: Loads RGBA using texture coords

texld 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

texld Dst, aSrc l

texld Dst, aSrc, bSrc l l l l l l

This instruction samples textures from source t(#) or r(#) depend-

ing on phase to destination r(#). When source is r(#), then the

elements {XYZ} must have been assigned in phase1.

on rn tn Dst cn rn sn tn vn Src

l l 1.4 phase 1, 2.0 aSrc

l l 1.4 phase 2, 2.0 aSrc

l 2.0, 3.0 bSrc

l l l 3.0 aSrc

Pseudocode:

texld r(d), t(a).xyz // Version 1.4

texld r(d), t(a)

texld r0, t0

texld r(d), t(a), s(b) // Version 2.0

If a cube-mapped texture is utilized, the instruction occupies 1+3

cube slots.
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Listing 11-5: Pixel shader

texld r0, t0.xyz // Version 1.4
texld r0, t0, s0 // Version 2.0, 3.0

Listing 11-6: ATI ShadowMap sample — showmap.psh

// Note that since this is version 2.0, not 1.4, the phase
// instruction is not needed!

ps.2.0

dcl t0.xy
dcl_2d s0

texld r0, t0, s0 // Get sample shadow map

mov r0, r0.x
mov oC0, r0 // Output shadow map

� texldb: Loads mipmap level of detail with bias

texldb Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction occupies six slots. It loads a projected texture

sample using the signed fourth element (.a or .w) as a bias for the

level of detail.

Positive bias source values result in smaller mipmaps being

selected, and negative values result in larger mipmaps being

selected.

Values outside the ranges ps 2.0: {–3.0 … +3.0}, ps 3.0: {–16.0

… 15.0} have an undetermined result. The source aSrc is unaf-

fected by the result.

on rn tn Dst cn rn sn tn vn Src

l l l 2.0 aSrc

l l l 3.0 aSrc

l bSrc
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Pseudocode:

texldb r(d), r(a), s(b)

texldb r(d), t(a), s(b)

Listing 11-7: Pixel shader

texldb r1, r0, s0

� texldd: Loads texture using texture coords, dsx, and dsy

texldd Dst, aS, bS, cS, dS 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This three-slot instruction loads a texture in which the texture

coordinates are supplied in source aSrc, the sampler register (s#)

in source bSrc, the x-gradient (dsx) from cSrc, and the y-gradient

(dsy) from dSrc and stores the result in Dst.

on rn tn Dst cn rn sn tn vn Src

l l l 2x 2sw aSrc

l l l l 2x 2sw cSrc, dSrc

l bSrc

l l l 3.0 aSrc, cSrc, dSrc

Listing 11-8: Pixel shader

texldd r1, r0, s0, r0, r0
texldd r2, r0, s0, c2, v0

� texldl: Loads mipmap level of detail

texldl Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This instruction loads a texture in which the texture coordinates

are supplied in source aSrc and the sampler register (s#) in source

bSrc.w and stores the result in Dst. If a cube-mapped texture is uti-

lized, the instruction occupies 2+3 cube slots.

The texture coordinates may not be scaled.
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Dst must be a temporary register (r#) and can use a swizzled

element.

If the source texture is unsigned, then the result will be {0.0 …

1.0}. If signed, then {–1.0 … 1.0} will result.

on rn tn Dst cn rn sn tn vn Src

l l l l aSrc

l bSrc

Listing 11-9: Pixel shader

texldl r2, c0, s0

� texldp: Loads mipmap level of detail

texldp Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l l

This instruction loads a texture in which the texture coordinates

are supplied in source aSrc, divides by the source bSrc.w (.a or

.w), and stores the result in Dst. If a cube-mapped texture is uti-

lized, the instruction occupies 3+1 cube slots.

on rn tn Dst cn rn sn tn vn
Src

l l l 2.0 aSrc

l bSrc

l l l 3.0 aSrc

Listing 11-10: Pixel shader

texldp r0, r0, s0

� texcoord: Interpret coordinate (UVW1) as color data (RGBA)

texcoord Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction interprets the texture coordinate (UVW1) refer-

enced by the destination register into color data (RGBA) and
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stores the result in the destination Dst.rgb. A 1.0 is stored in the

alpha element.

on rn tn Dst

l

Pseudocode:

texcoord t(d)

Listing 11-11: Pixel shader

texcoord t0

� texdp3: Texture dot product d = a • b

texdp3 Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This instruction results in the dot product of the source aSrc.xyz

and the source bSrc.xyz and stores the replicated scalar result in

each element of the destination Dst.xyz.

on rn tn Dst cn rn sn tn vn Src

l l

It cannot be used after a non-texture-based instruction. Texture

indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

texdp3 t(d), t(a) when d > a

Listing 11-12: Pixel shader

tex t0
texdp3 t1, t0
texdp3 t2, t0
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� texdp3tex: Texture dot product for 1D tex table d = a • b

texdp3tex Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This instruction results in the dot product of the source aSrc.xyz

and the source bSrc.xyz and stores the replicated scalar result in

each element of the destination Dst.xyzw.

on rn tn Dst cn rn sn tn vn Src

l l

It cannot be used after a non-texture-based instruction. Texture

indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

texdp3tex t(d), t(a) when d > a

Listing 11-13: Pixel shader

tex t0
texdp3tex t1, t0
texdp3tex t2, t0

� texbem: Apply a fake bump environment-map transform

texbem Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction transforms the red and green components of the

source aSrc using the 2D bump environmental-mapping matrix,

summing the result to the destination Dst.

on rn tn Dst cn rn sn tn vn Src

l l

It cannot be used after a non-texture-based instruction. Texture

indexing rules apply, whereas the index for Dst > aSrc.
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Pseudocode:

texbem t(d), t(a) when d > a

Listing 11-14: Pixel shader

tex t0
texbem t1, t0
texbem t2, t0

� texbeml: Apply a fake bump map xform with luminance

correction

texbeml Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction transforms the red and green components of the

source aSrc using the 2D bump environmental-mapping matrix,

sums the result to the destination Dst, applies a luminance correc-

tion, and stores the result in the destination Dst.

on rn tn Dst cn rn sn tn vn Src

l l

Texture indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

texbeml t(d), t(a) when d > a

Listing 11-15: Pixel shader

tex t0
texbeml t1, t0
texbeml t2, t0

� texcrd: Copy coordinate data from source as RGBA

texcrd Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l
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This instruction copies the source coordinate data from the source

aSrc, copies the referenced RGBA color data, and stores the result

in the destination Dst.

on rn tn Dst cn rn sn tn vn Src

l l phase 1

l l phase 2

Pseudocode:

texcrd r(d).rgb, t(a).xyz

texcrd r(d).rgb, t(a)

texcrd r(d).rg, t(a)_dw.xyw

Listing 11-16: Pixel shader

texcrd r2.rgb, t0.xyz
texcrd r3.rgb, t3
texcrd r5.rg, t5_dw.xyw

� texdepth: Calculate depth for pixel buffer comparison

texdepth Dst 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l

This instruction occupies two slots and is used in the depth buffer

comparison test of the texture specified by Dst.

on rn tn Dst

l phase 2 only

Pseudocode:

texdepth r(d)

Listing 11-17: Pixel shader

texdepth r5 // Output new depth
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� texkill: Kill rendered pixel

texkill Src 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l l

This instruction occupies two slots and cancels the render if any of

the first three elements {UVW} of the source Src of the texture

coordinates are negative.

cn rn sn tn vn Src

l 1.1, 1.2, 1.3

l l 1.4 phase 2 only

Results of this instruction must not be read!

Pseudocode:

If (Src.x < 0.0 | Src.y < 0.0 | Src.z < 0.0) ; ((u < 0) # (v < 0)

; # (w < 0))

Halt pixel render.

(Cull pixel by stopping this shader execution.)

texkill t(a) // 1.3 or 1.4

texkill r(a) // 1.4 only

Listing 11-18: Pixel shader

texkill t0

texkill r0

Listing 11-19: Pixel shader — diffuse

ps.1.1
texkill t0 // cull pixel if t0{xyzw} < 0

mov r0, v0 // Diffuse output
// r0.w is used as alpha-blending factor
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� texreg2ar: Interpret the alpha and red components with {UV}

texreg2ar Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction interprets the red and alpha elements of the source

register aSrc as (u,v) texture address data and stores the result in

Dst.

on rn tn Dst cn rn sn tn vn Src

l l

Texture indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texreg2ar t(d), t(a) when d > a

Listing 11-20: Pixel shader

tex t0
texreg2ar t1, t0

� texreg2gb: Interpret the green and blue components with {UV}

texreg2gb Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This instruction interprets the green and blue elements of the

source register aSrc as (u,v) texture address data and stores the

result in Dst.

on rn tn Dst cn rn sn tn vn Src

l l

Texture indexing rules apply, whereas the index for Dst > aSrc.
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Pseudocode:

tex t(a) // Assign the stage with the texture

texreg2gb t(d), t(a) when d > a

Listing 11-21: Pixel shader

tex t0
texreg2gb t1, t0

� texreg2rgb: Interpret the red, green, and blue components with

{UV}

texreg2rgb Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This instruction interprets the red, green, and blue elements of the

source register aSrc as (u,v) texture address data and stores the

result in Dst.

on rn tn Dst cn rn sn tn vn Src

l l

Texture indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texreg2rgb t(d), t(a) when d > a

Listing 11-22: Pixel shader

tex t0
texreg2rgb t1, t0

� phase: Phase1 to phase2 transition marker

phase 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l
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This instruction is a transition marker to indicate that phase1 has

completed, and it is now time to execute phase2.

Listing 11-23: Pixel shader

phase
texld r1, t0 // base map
texld r2, r2 // from calc. environment map

� bem: Apply a fake bump environmental map transform

bem Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l

This (two-slot) instruction occurs in phase 1 of the pixel shader

and can only be called once per shader. The destination red and

green component masks must be of the form {.rg or .xy}, keeping

in mind that they are the same elements {rgba vs. xyzw}. See

phase. This instruction cannot be co-issued (+).

on rn tn Dst cn rn sn tn vn Src

l 1.4 phase 1 .rg .xy l l 1.4 phase 1 (aSrc)

l 1.4 phase 1 (bSrc)

Pseudocode:

N == Dst(#)

Dstr = aSrcr + bSrcr · D3DTSS_BUMPENVMAT00(stage N)

+ bSrcg · D3DTSS_BUMPENVMAT10(stage N)

Dstg = aSrcg + bSrcr · D3DTSS_BUMPENVMAT01(stage N)

+ bSrcg · D3DTSS_BUMPENVMAT11(stage N)

Keep in mind that the 2x2 texture bump-mapping matrix stage

states are:

D3DTSS_BUMPENVMAT00 = 7, [0][0] in Bump Map Matrix
D3DTSS_BUMPENVMAT01 = 8, [0][1] “ “
D3DTSS_BUMPENVMAT10 = 9, [1][0] “ “
D3DTSS_BUMPENVMAT11 = 10, [1][1] “ “
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Listing 11-24: Pixel shader

ps.1.4

texld r1, t1 ; bump map
texcrd r2.rgb, t2
bem r2.rg, r2, r1 ; convert from tex coords...

; ...to environmental map.
phase

texld r0, t0 ; Color map
texld r2, r2 ; Environmental map
add r0, r0, r2

; Alternate
bem r3.xy, c0, r0

Pixel Shader Instructions
(Texture Matrices)

� texm3x2pad: First row multiply of two-row matrix multiply

texm3x2pad Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction applies the first row of the matrix specified by the

source aSrc:

on rn tn Dst cn rn sn tn vn Src

l l

Results of this instruction must not be read! Texture indexing rules

apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x2pad t(d), t(a) // d+0 > a Matrix first row

Followed by either a...

texm3x2depth, texm3x2tex

...with a t(d+1).

texm3x2??? t(d+1), t(a) // d+1 > a Matrix second row + FUNCTION
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Listing 11-25: Pixel shader

tex t0
texm3x2pad t1, t0

� texm3x2depth: Calculate the depth to test pixel

texm3x2depth Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l

This instruction is the second stage of a texture matrix instruction.

It accepts the texture source aSrc, which represents the second

row, and calculates and stores the result to destination Dst.

on rn tn Dst cn rn sn tn vn Src

l l

This instruction must be used in conjunction with a texm3x2pad

instruction, which calculates the product of the first matrix row.

Results of this instruction must not be read! Texture indexing rules

apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x2pad t(d), t(a) // d+0 > a Matrix first row

texm3x2depth t(d), t(a) // d+1 > a Matrix second row

Listing 11-26 Pixel shader

tex t0
texm3x2pad t1, t0
texm3x2depth t2, t0
mov r0, t2

� texm3x2tex: Last row multiply of 3x2 row matrix multiply

texm3x2tex Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l
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This instruction applies the last row of the matrix specified by the

source aSrc.

on rn tn Dst cn rn sn tn vn Src

l l

This instruction must be used in conjunction with a texm3x2pad

instruction, which calculates the product of the first matrix row.

Texture indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x2pad t(d), t(a) // d+0 > a Matrix first row

texm3x2tex t(d), t(a) // d+1 > a Matrix second row

Listing 11-27: Pixel shader

tex t0
texm3x2pad t1, t0
texm3x2tex t2, t0
mov r0, t2

� texm3x3pad: First or second row multiply of three-row matrix

multiply

texm3x3pad Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction applies the first row or second row of the matrix

specified by the source vector aSrc.

on rn tn Dst cn rn sn tn vn Src

l l

Results of this instruction must not be read! Texture indexing rules

apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x3pad t(d), t(a) // d+0 > a Matrix first row

240 Chapter 11: Textures



texm3x3pad t(d+1), t(a) // d+1 > a Matrix second row

Followed by either a...

texm3x3, texm3x3tex, texm3x3spec, texm3x3vspec

...with a t(d+2).

texm3x3??? t(d+2), t(a) // d+2 > a Matrix third row + FUNCTION

Listing 11-28: Pixel shader

tex t0
texm3x3pad t1, t0
texm3x3pad t2, t0
// Insert... texm3x3 ??? t3, t0 ...instruction here!

� texm3x3: 3x3 matrix multiply

texm3x3 Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l

This instruction multiplies a 3x3 matrix specified by the source

aSrc.

The instruction is similar to texm3x3tex but without the texture

lookup.

on rn tn Dst cn rn sn tn vn Src

l l

This instruction must be used in conjunction with two texm3x3pad

instructions, each calculating the product of a matrix row. Texture

indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x3pad t(d), t(a) // d+0 > a Matrix first row

texm3x3pad t(d+1), t(a) // d+1 > a Matrix second row

texm3x3 t(d+2), t(a) // d+2 > a Matrix third row
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Listing 11-29: Pixel shader

tex t0
texm3x3pad t1, t0
texm3x3pad t2, t0
texm3x3 t3, t0
mov r0, t3

� texm3x3tex: A 3x3 matrix multiply with texture lookup

texm3x3tex Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction is the third stage of a texture matrix multiply

instruction using a texture source aSrc, which represents the third

row, and calculates and stores the result to destination Dst.

on rn tn Dst cn rn sn tn vn Src

l l

This instruction must be used in conjunction with two texm3x3pad

instructions, each calculating the product of a matrix row. Texture

indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x3pad t(d), t(a) // d+0 > a Matrix first row

texm3x3pad t(d+1), t(a) // d+1 > a Matrix second row

texm3x3tex t(d+2), t(a) // d+2 > a Matrix third row

Listing 11-30: Pixel shader

tex t0
texm3x3pad t1, t0
texm3x3pad t2, t0
texm3x3tex t3, t0
mov r0, t3

242 Chapter 11: Textures



� texm3x3spec: A 3x3 matrix multiply with texture lookup for spec

map

texm3x3spec Dst, aSrc, bSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l

This instruction is the third stage of a texture matrix multiply

instruction using a texture specular map source aSrc, which repre-

sents the third row, and calculates and stores the result to

destination Dst.

on rn tn Dst cn rn sn tn vn Src

l l aSrc

l bSrc

This instruction must be used in conjunction with two texm3x3pad

instructions, each calculating the product of a matrix row. Texture

indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x3pad t(d), t(a) // d+0 > a Matrix first row

texm3x3pad t(d+1), t(a) // d+1 > a Matrix second row

texm3x3spec t(d+2), t(a), c(b) // d+2 > a Matrix third row

Listing 11-31: Pixel shader

tex t0
texm3x3pad t1, t0
texm3x3pad t2, t0
texm3x3spec t3, t0, c3
mov r0, t3

� texm3x3vspec: A 3x3 matrix multiply with texture lookup and

eye-ray vec

texm3x3vspec Dst, aSrc 1.1 1.2 1.3 1.4 2.0 2x 2sw 3.0 3sw

l l l
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This instruction is the last step of a 3x3 matrix multiply in which a

third row matrix multiply is performed and the resulting three-vec-

tor result is reflected by the eye-ray vector with the result used as

an address for a texture lookup.

on rn tn Dst cn rn sn tn vn Src

l l

This instruction must be used in conjunction with two texm3x3pad

instructions, each calculating the product of a matrix row. Texture

indexing rules apply, whereas the index for Dst > aSrc.

Pseudocode:

tex t(a) // Assign the stage with the texture

texm3x3pad t(d), t(a) // d+0 > a Matrix first row

texm3x3pad t(d+1), t(a) // d+1 > a Matrix second row

texm3x3vspec t(d+2), t(a) // d+2 > a Matrix third row

Listing 11-32: Pixel shader

ps.1.1
tex t0 // {xyz}
texm3x3pad t1, t0 // first row of matrix multiply
texm3x3pad t2, t0 // second row of matrix multiply
texm3x3vspec t3, t0 // third row of matrix multiply
mov r0, t3 // store the reflection calculation
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C h a p t e r 1 2

Rendering Up,
Up ’n Away

Pixel Shading for Fun and Profit

So are you ready to start your own game company or get a job at

an existing one? Or maybe you are a game tester and general cod-

ing programmer and looking to enhance your programming skills

to move on to bigger and better things. Within this book, you

should have found examples for almost every shader instruction

(something I have found lacking in the books that I have

reviewed). Within those examples, you should have found and

developed the foundations that you need for moving on to

advanced shader programming, such as understanding the

ShaderX books by Wolfgang Engel. With an understanding of the

principles of this book, you should now be able to move forward.

Do you have an old computer you are thinking about retiring?

Drop a shader-capable render card into it, and give it to the kids.

You will get a few more years of life out of it and will save money

in the long run.

All joking aside, there is more to cover!
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Where Do You Go From Here?

Macros, of course!

#include "..\ShaderDefs.h"

#include "..\ShaderMacros.h"

vs.1.1

Definitions and macros can both be contained within common

files to be used by different shader algorithms.

Listing 12-1: Portion of ShaderDefs.h from Paul Stapley

// Eye position in world space
#define CV_EYE_POS_WORLD 0

// Eye direction normal
#define CV_EYE_VECTOR 1

// Model to world matrix
#define CV_WORLD 2
#define CV_WORLD_0 CV_WORLD + 0
#define CV_WORLD_1 CV_WORLD + 1
#define CV_WORLD_2 CV_WORLD + 2
#define CV_WORLD_3 CV_WORLD + 3

// Transpose of model to world matrix
#define CV_WORLD_TRANSPOSE 6
#define CV_WORLD_TRANSPOSE_0 CV_WORLD_TRANSPOSE + 0
#define CV_WORLD_TRANSPOSE_1 CV_WORLD_TRANSPOSE + 1
#define CV_WORLD_TRANSPOSE_2 CV_WORLD_TRANSPOSE + 2
#define CV_WORLD_TRANSPOSE_3 CV_WORLD_TRANSPOSE + 3

#define CV_LOCAL_TO_WORLD_INVERSE 10

// Definitions can be used in place of registers as well!
#define VERT_POSITION v0 // Position
#define VERT_COLOR v1 // Color
#define VERT_NORMAL v2 // Normal
#define VERT_TEX1 v3 // Texture 1 Coordinates
#define VERT_TEX2 v4 // Texture 2 Coordinates
#define VERT_TEX3 v5 // Texture 3 Coordinates
#define VERT_TEX4 v6 // Texture 4 Coordinates

#define TEMP_REG r5
#define VERTEX_TO_LIGHT_ATT r6
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#define VERTEX_TO_LIGHT_COS r7
#define FINAL_COLOR r8
#define SPECULAR_COLOR r9
#define SPECULAR_INTENSITY r4.x

// Constant values (start at 100)
#define CV_CONSTANT_ZERO 95 // x, y, z, w = 0.0f
#define CV_CONSTANT_ONE 94 // x, y, z, w = 1.0f
#define CV_CONSTANT_TWO 93 // x, y, z, w = 2.0f
#define CV_CONSTANT_HALF 92 // x, y, z, w = 0.5f

Listing 12-2: Portion of ShaderMacros.h from Paul Stapley

// TransformVector3 transforms ArgVector by matrix
// starting in register ArgMatrix and places the results
// in ArgDest. ArgDest != ArgVector Only transforms
// the x, y, and z coordinates

macro TransformVector3 ArgDest, ArgMatrix, ArgVector
dp3 %ArgDest.x, %ArgMatrix, %ArgVector
dp3 %ArgDest.y, %inc(%ArgMatrix), %ArgVector
dp3 %ArgDest.z, %inc(%inc(%ArgMatrix)), %ArgVector
mov %ArgDest.w, c[ CV_CONSTANT_ONE ]

endm

// NormalizeVector normalizes the vector in ArgVector and
// places the results in ArgVector. ArgVector.w holds
// the length of the vector after this is called.

macro NormalizeVector ArgVector
dp3 %ArgVector.w, %ArgVector, %ArgVector

// d*d = (x2)+(y2)+(z2)
rsq %ArgVector.w, %ArgVector.w

// 1/dd = 1/v(d*d)
mul %ArgVector.xyz, %ArgVector.xyz, %ArgVector.www

endm // x/d, y/d, z/d

So, in a typical usage:

Listing 12-3: Portion of macro usage from Paul Stapley

#include "..\ShaderDefs.h"
#include "..\ShaderMacros.h"

vs.1.1

; Transform normal to {r0} world space normal
TransformVector3 r0, c[CV_WORLD_TRANSPOSE], VERT_NORMAL
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This expands into:

dp3 r0.x, c[CV_WORLD_TRANSPOSE+0], VERT_NORMAL
dp3 r0.y, c[CV_WORLD_TRANSPOSE+1], VERT_NORMAL
dp3 r0.z, c[CV_WORLD_TRANSPOSE+2], VERT_NORMAL
mov r0.w, c[ CV_CONSTANT_ONE ]

…and with definition remapping:

dp3 r0.x, c6, v2
dp3 r0.y, c7, v2
dp3 r0.z, c8, v2
mov r0.w, c92

This makes programming shader assembly code for large projects

much easier. Common definitions between shaders are defined in a

game-specific file, the way that ShaderDefs.h does. Macros with

reusable shader snippets can be shared between game applications,

the way that ShaderMacros.h does.

But it does not end here! This book was written so that the

beginner can build an understanding of how shaders work. But

there is something that this book does not discuss — the Cg shader

language. This is a compiler for graphics using a C-type program-

ming language and shaders. It has some pluses and some minuses,

but these are more of a personal preference. For example, for a

pixel shader, using versions 1.4 and below did not make much

sense (at least to me) due to the severe instruction count limitation

to which one is subjected. Now with version 2.0, pixel shaders

have a large number of instructions, and so this method of shader

construction actually makes a lot more sense!
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Epilogue

In this book we saw a brief overview of the

various shader-capable graphics cards, vertex

shaders, pixel shaders, and the instruction sets

needed to program them. This book practi-

cally ignored version 1.0, as it is no longer supported by DirectX

9. It was discovered that even when working with DirectX 9, it is

warranted to work in as low a shader version as possible. This

makes the code useable across more video cards, and higher ver-

sion functionality only works in hardware on the newer, more

expensive cards.

So where do you go from here? Is there more that can be done

with these instructions? Check out the document “Where Is That

Instruction? How to Implement ‘Missing’ Vertex Shader Instruc-

tions,” available for download from the nVidia web site.

Download all the SDKs and tools and experiment. Above all,

practice, practice, practice! Make this one of your specialties when

you go for job interviews. Or, then again, don’t! Forget everything

you have read so far in this book. Being a 3D programmer is noth-

ing more than downloading shaders and calling APIs that someone

else wrote anyway, right? You do not need to know shader pro-

gramming because someone else can always construct the

rendering sections of the game code. Good for you! (Thank you,

as that leaves the possibility of another job opportunity in the

future the next time I need to go job hunting!)

Are you still reading this chapter? Did you actually read the

entire book? Great (if not, for shame). Why are you still reading?

It is time to start doing. Get up out of that chair, get to your com-

puter and get to it! Oh, and for those of you money savers, buy a

copy of this book as a reference manual on the way out of the

bookstore. You just might find that it will come in handy!
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Well, I guess I can now install some of my top-of-the-line video

cards into my kids’ computers so they can play Toon Town and

other 3D games!

Happy shading!
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A p p e n d i x A

Shaders —
Opcode
Ordered

These are the opcodes associated with programmable vertex and

pixel shaders. Note that they both share the same opcodes, as they

both typically use the same assembler. In some cases, pixel shader

1.0 through 1.3 uses an opcode for one instruction, and 1.4 uses

the opcode for a different instruction. This is typically because the

number of operands changes between versions!

D3DSIO_INSTRUCTION_OPCODE_TYPE

D3DSIO_xxxxx (Defined within D3D9Types.h)

OpCode Operand V P W I Description

0x0000 nop � l 1 1 No operation

0x0001 mov � l 3 1 Move

0x0002 add � l 4 1 Addition

0x0003 sub � l 4 1 Subtraction

0x0004 mad � l 5 1 Multiplication-addition

0x0005 mul � l 4 1 Multiplication

0x0006 rcp � l 3 1 Reciprocal

0x0007 rsq � l 3 1 Reciprocal square root

0x0008 dp3 � l 4 1 Dot product (xyz)

0x0009 dp4 � l 4 1 Dot product (xyzw)

0x000a min � l 4 1 Minimum

0x000b max � l 4 1 Maximum

0x000c slt � 4 1 Set if <
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OpCode Operand V P W I Description

0x000d sge � 4 1 Set if �

0x000e exp � l 3 1,10 Exponential 2x full precision

0x000f log � l 3 1,10 Log2(x) full precision

0x0010 lit � 3 1,3 Calc. light coefficients

0x0011 dst � 4 1 Calc. distance vector

0x0012 lrp � l 5 1,2 Linear interpolation

0x0013 frc � l 3 1,3 Get fractional comp.

0x0014 m4x4 � l 4 4 Vec product matrix 4x4

0x0015 m4x3 � l 4 3 Vec product matrix 4x3

0x0016 m3x4 � l 4 4 Vec product matrix 3x4

0x0017 m3x3 � l 4 3 Vec product matrix 3x3

0x0018 m3x2 � l 4 2 Vec product matrix 3x2

0x0019 call � l 2 2 Function call

0x001a callnz
callnz pred

� l 3 3 Func. call if � 0

Func. call if � 0 with pred.

0x001b loop � l 3 3 Loop begin

0x001c ret � l 1 1 Return from subroutine

0x001d endloop � l 1 2 End of loop

0x001e label � l 2 0 Function label

0x001f dcl
dcl_2d
dcl_usage

�

�

l

l

l

3 0 Declaration
"
"

0x0020 pow � l 4 3 Power

0x0021 crs � l 4 2 Cross product

0x0022 sgn � 5 3 Set sign

0x0023 abs � l 3 1 Absolute

0x0024 nrm � l 3 3 Normalize

0x0025 sincos � l 5
3

8 2.0 sine/cosine
3.0 sine/cosine

0x0026 rep � l 2 3 Repeat begin

0x0027 endrep � l 1 2 End repeat loop

0x0028 if
if_pred

� l 2 3 If-else-endif
If-else-endif with pred.

0x0029 ifc � l 3 3 If-else-endif with comp.

0x002a else � l 1 1 If-else-endif

0x002b endif � l 1 1 If-else-endif

0x002c break � l 1 1 Break from loop/rep

0x002d breakc � l 3 3 Break from loop with comp.
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OpCode Operand V P W I Description

0x002e mova � 3 1 Move reg to aL

0x002f defb � l 2 0 Bool const. definition

0x0030 defi � l 6 0 Int const. definition

0x0040 texcoord l 2 1 (<=1.3) uvw1 to rgba

texcrd l 3 1 (1.4) Copy tex as color

0x0041 texkill l 2 1,1T,2T Cancel render of pixel

0x0042 tex l 2 1 (<=1.3) RGBA load

texld l 3 1,1+33 (1.4) RGBA load

texldb l 4 1T,6,6T

texldp l 4 1T,3+13

0x0043 texbem l 3 1 Fake bump map xform

0x0044 texbeml l 3 1+1T Fake bump map with lum.

0x0045 texreg2ar l 3 1 Alpha-red to tex. addr.

0x0046 texreg2gb l 3 1 Green-blue to tex. addr.

0x0047 texm3x2pad l 3 1 Mul. matrix 3x2 (first row)

0x0048 texm3x2tex l 3 1 Mul. matrix 3x2 (last row)

0x0049 texm3x3pad l 3 1 Mul. matrix 3x3 (first, second)

0x004a texm3x3tex l 3 1 Mul. matrix 3x3 tex. idx

0x004b texm3x3diff l

0x004c texm3x3spec l 4 1 Mul. matrix 3x3 spec

0x004d texm3x3vspec l 3 1 Mul. matrix with eye-ray

0x004e expp � 3 1 Exp. 2x partial precision

0x004f logp � 3 1 Log2(x) partial precision

0x0050 cnd l 5 1 Cond. upon 0.5 factor

0x0051 def � l 6 0 Vec const definition

0x0052 texreg2rgb l 3 1 Interp. RGB to tex. addr.

0x0053 texdp3tex l 3 1 Texture dot product (xyz)

0x0054 texm3x2depth l 3 Texture matrix 3x2 depth

0x0055 texdp3 l 3 1 Texture dot product (xyz)

0x0056 texm3x3 l 3 1 Mul. matrix 3x3

0x0057 texdepth l 2 1 Calc. depth values

0x0058 cmp l 5 1 Conditional choose

0x0059 bem l 4 2 Bump env. map xform

0x005a dp2add l 5 1,2 Dot product (xy)

0x005b dsx l 3 2 X rate of change

0x005c dsy l 3 2 Y rate of change

0x005d texldd l 6 3
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OpCode Operand V P W I Description

0x005e setp � l 4 1 Set predicate with cmp.

0x005f texldl � l 4 2+33

0x0060 breakp � l 3 Break from loop with predicate

0xfffd phase l 1 0 Phase one to phase two

0xfffe comment

0xffff end l 1 End of code

� NOTE: The table entries left empty are not mistakes. They
were left available so that those of you who are Xbox develop-
ers can fill them in yourselves with that proprietary information.

The operands are a combination of statements, non-programmable

statements, and instructions. The opcode is the opcode encoded

into the *.vso and *.pso files for the shader decoder to process.

The� and l indicate whether that operand is supported by the

vertex or pixel shader.

The W represents the number of 32-bit words that the operand

packs into at assembly time.

The I represents the number of instruction slots needed. Note

that if a dual set of numbers delineated by a comma is specified,

then the larger number is typically to represent a version 1.x when

it is a macro and the smaller number from version 2.0 or newer

when it is implemented as an instruction. A value of 0 indicates a

statement, not an instruction. Therefore, an instruction slot is not

consumed. A value such as 1+33 indicates one plus three if a cube

map is used.
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A p p e n d i x B

Shaders —
Mnemonic
Ordered

These are the opcodes associated with programmable vertex and

pixel shaders. Note that they both share the same opcodes, as they

both typically use the same assembler. In some cases, pixel shader

1.0 through 1.3 uses an opcode for one instruction and 1.4 uses the

opcode for a different instruction. This is typically because the

number of operands changes between versions!

D3DSIO_INSTRUCTION_OPCODE_TYPE

D3DSIO_xxxxx (Defined within D3D9Types.h)

Operand OpCode V P W I Description

abs 0x0023 � l 3 1 Absolute

add 0x0002 � l 4 1 Addition

bem 0x0059 l 4 2 Bump env. map xform

break 0x002c � l 1 1 Break from loop/rep

breakc 0x002d � l 3 3 Break from loop with comp.

breakp 0x0060 � l 3 Break from loop with predicate

call 0x0019 � l 2 2 Function call

callnz 0x001a � l 3 3 Func. call if � 0

callnz_pred 0x001a � l 3 3 Func. call if � 0 with pred.

cmp 0x0058 l 5 1 Conditional compare

cnd 0x0050 l 5 1 Cond. upon 0.5 factor

comment 0xfffe

crs 0x0021 � l 4 2 Cross product
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Operand OpCode V P W I Description

dcl 0x001f � l 3 0 Declaration

dcl_2d 0x001f l 3 0 "

dcl_usage 0x001f � l 3 0 "

def 0x0051 � l 6 0 Vec const. definition

defb 0x002f � l 2 0 Bool const. definition

defi 0x0030 � l 6 0 Int const. definition

dp2add 0x005a l 5 1,2 Dot product (xy)

dp3 0x0008 � l 4 1 Dot product (xyz)

dp4 0x0009 � l 4 1 Dot product (xyzw)

dst 0x0011 � 4 1 Calc. distance vector

dsx 0x005b l 3 2 X rate of change

dsy 0x005c l 3 2 Y rate of change

else 0x002a � l 1 1 If-else-endif

end 0xffff l 1 End of code

endif 0x002b � l 1 1 If-else-endif

endloop 0x001d � l 1 2 End of loop

endrep 0x0027 � l 1 2 End repeat loop

exp 0x000e � l 3 1,10 Exponential 2x full precision

expp 0x004e � 3 1 Exponent 2x partial precision

frc 0x0013 � l 3 1,3 Get fractional component

if 0x0028 � l 2 3 If-else-endif

ifc 0x0029 � l 3 3 If-else-endif w/comp.

if_pred 0x0028 � l 3 If-else-endif w/predicate

label 0x001e � l 2 0 Function label

lit 0x0010 � 3 1,3 Calc. lighting coefficients

log 0x000f � l 3 1,10 Log2(x) full precision

logp 0x004f � 3 1 Log2(x) partial precision

loop 0x001b � l 3 3 Loop begin

lrp 0x0012 � l 5 1,2 Linear interpolation

m3x2 0x0018 � l 4 2 Vec product matrix 3x2

m3x3 0x0017 � l 4 3 Vec product matrix 3x3

m3x4 0x0016 � l 4 4 Vec product matrix 3x4

m4x3 0x0015 � l 4 3 Vec product matrix 4x3

m4x4 0x0014 � l 4 4 Vec product matrix 4x4

mad 0x0004 � l 5 1 Multiplication-addition

max 0x000b � l 4 1 Maximum

min 0x000a � l 4 1 Minimum
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Operand OpCode V P W I Description

mov 0x0001 � l 3 1 Move

mova 0x002e � 3 1 Move reg to aL

mul 0x0005 � l 4 1 Multiplication

nop 0x0000 � l 1 1 No operation

nrm 0x0024 � l 3 3 Normalize

phase 0xfffd l 1 0 Phase one to phase two

pow 0x0020 � l 4 3 Power

ps l 1 0 Pixel version

rcp 0x0006 � l 3 1 Reciprocal

rep 0x0026 � l 2 3 Repeat begin

ret 0x001c � l 1 1 Return from call

rsq 0x0007 � l 3 1 Reciprocal square root

setp 0x005e � l 4 1 Set predicate with comp.

sge 0x000d � 4 1 Set if greater than or equal to

sgn 0x0022 � 5 3 Set sign

sincos 0x0025 � l 5
3

8 2.0 sine/cosine
3.0 sine/cosine

slt 0x000c � 4 1 Set if less than

sub 0x0003 � l 4 1 Subtraction

tex 0x0042 l 2 1 (<=1.3) RGBA load

texbem 0x0043 l 3 1 Fake bump map xform

texbeml 0x0044 l 3 1+1T Fake bump map with lum.

texcoord 0x0040 l 2 1 (<=1.3) UVW1 to RGBA

texcrd 0x0040 l 3 1 (1.4) Copy tex as color

texdepth 0x0057 l 2 1 Calc. depth values

texdp3 0x0055 l 3 1 Tex. dot product (3 xyz)

texdp3tex 0x0053 l 3 1 Tex. dot product (3 xyz)

texkill 0x0041 l 2 1,1T,2T Cancel render of pixel

texld 0x0042 l 3 1,1+33 (1.4) RGBA load

texldb 0x0042 l 4 1T,6,6T

texldd 0x005d l 6 3

texldl 0x005f � l 4 2+33

texldp 0x0042 l 4 1T,3+13

texm3x2depth 0x0054 l 3 Texture matrix 3x2 depth

texm3x2pad 0x0047 l 3 1 Mul. matrix 3x2 (first row)

texm3x2tex 0x0048 l 3 1 Mul. matrix 3x2 (last row)

texm3x3 0x0056 l 3 1 Mul. matrix 3x3
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Operand OpCode V P W I Description

texm3x3diff 0x004b l ?

texm3x3pad 0x0049 l 3 1 Mul. matrix 3x3 (first, second)

texm3x3spec 0x004c l 4 1 Mul. matrix 3x3 spec. reflect

texm3x3tex 0x004a l 3 1 Mul. matrix 3x3 tex. idx

texm3x3vspec 0x004d l 3 1 Mul. matrix with eye-ray

texreg2ar 0x0045 l 3 1 Alpha-red to tex. addr.

texreg2gb 0x0046 l 3 1 Green-blue to tex. addr.

texreg2rgb 0x0052 l 3 1 Interp. RGB to tex. addr.

vs � 1 0 Vertex version

� NOTE: The table entries left empty are not mistakes. They
were left available so that those of you who are Xbox develop-
ers can fill them in yourselves with that proprietary information.

The operands are a combination of statements, non-programmable

statements, and instructions. The opcode is the opcode encoded

into the *.vso and *.pso files for the shader decoder to process.

The� and l indicate whether that operand is supported by the

vertex or pixel shader.

The W represents the number of 32-bit words that the operand

packs into at assembly time.

The I represents the number of instruction slots needed. Note

that if a dual set of numbers delineated by a comma is specified,

then the larger number is typically to represent a version 1.x when

it is a macro and the smaller number from version 2.0 or newer

when it is implemented as an instruction. A value of 0 indicates a

statement, not an instruction. Therefore, an instruction slot is not

consumed. A value such as 1+33 indicates one plus three if a cube

map is used.
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A p p e n d i x C

Instruction
Dissection

Some of you may find this of great interest, while others couldn’t

care less (that is why it is buried way back here in Appendix C).

But I am one of those people who likes to see how things work

and always takes things apart! Those of you still confused about

data swizzling and source negation of {XYZW} elements have

probably skipped here from the front of this book to try to get a

better understanding. The material contained here should defi-

nitely fill that void.

� nvasm.exe: nVidia – V&P Macro Assembler (no longer

developed)

� psa.exe: Direct3D9 Pixel Shader Assembler

� vsa.exe: Direct3D9 Vertex Shader Assembler

� xsasm.exe: Xbox Shader Assembler

� cg.exe: Cg (C for graphics) Compiler

All assemblers and compilers compile various versions of shader

code but have different options and export different kinds of files

of different little-endian formats. But the most important thing to

understand is how the ASCII mnemonics get converted into

machine opcodes. With this understanding, the concept of swiz-

zled data, as well as the power and limitations it presents, should

become second nature to you!

The opcode ordered instructions are listed in Appendix A,

“Shaders — Opcode Ordered,” and Appendix B, “Shaders —

Mnemonic Ordered.”
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All instructions and their parameters are 32-bit double

word-based (dword-based) bit encoding. Note that the term dword

is used here to represent a 32-bit value, as that is the term used for

that size data on an X86-based processor. This book is written for

DirectX on a Win32-based machine, so it is important to keep

with its adopted terminology. On other processors, the term word

would be used to represent 32-bit values and dword for 64-bit val-

ues, as a half-word represents a 16-bit short, unlike the X86 word

instruction.

With that said, it means an instruction that takes no arguments,

such as a no operation (nop), would use one dword and that is to

contain the instruction opcode:

nop

A texture remove (texkill) takes a single argument, thus it would

use two dwords:

texkill t0

A move (mov) instruction would take two arguments, thus it

would use three dwords:

mov r3, c1

An addition (add) uses four dwords:

add r0, v0, c1

With that understood, we know that the first dword contains the

opcode signifying the instruction.

So what happens if you append more arguments than the

instruction requires? You encounter either an assembly error or

some very nasty code export!

opcode Arg1 Arg2 … ArgN

Any trailing parameters would be encoded into an equal number

of trailing dwords. Now we come to the really interesting part —

the bit encoding and thus the visualization part.
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We are getting a little ahead of ourselves, so let’s examine a

simple register-to-register copy known as the move instruction

(mov). We viewed some images earlier, but let’s examine the indi-

vidual bits using the following particular case:

mov r3.xy, -c1.zy

Please note that all of the following use a little-endian

representation.

The Opcode Dword

The first encoded dword contains the 16 opcode bits for the repre-

sented instruction.

(MSB) 31 15 0 (LSB)
xxxx xxxx xxxx xxxx ???? ???? ???? ????

�

The opcode occupies the lower 16 bits, thus a value between

0x0000 and 0xffff (65,535) is supported. Since the move instruc-

tion uses the opcode value of 2, the instruction bit encoding will

appear as the following:

mov r3.xy, -c1.zy

(MSB) 31 15 0 (LSB)
0000 0000 0000 0000 0000 0000 0000 0010 = 0x0002

�

The Parameter (Argument) Dword

Okay, I am getting a little ahead of myself, but there are basically

six kinds of registers used by the shaders and certain behavioral

rules for each as to their usage. Let’s ignore that for now, as it is

discussed in the appropriate shader chapters. Our only concern for

now is with their bit encoding.
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Register Identifier Code

With the current release of technology, these are the base registers

used by the shaders:

Table C-1: Shader register labels and the base codes.

Register: r# v#, s# c# oD# t# oT# o(utput)

Base: 0x80 0x90 0xa0 0xd0 0xe0 0xc0

Bits: 1000 1001 1010 1101 1110 1100

Note the # represents a numerical index value from 0 to n–1 (the range of
indices that the type of register supports).

(MSB) 31 24 7 0 (LSB)
1??? XXXS XXXX XXXX XXXX XXXX #### ####

Base � � Inverse � Index

The uppermost four bits represent these current values (8…F). The

bits (7…0) represent the numerical index of that register. For

example, for register c3, the upper four bits would be set to 1010,

and the lower eight bits would be set to 00000011.

There is an extra bit of functionality, and that is the inverse flag

on bit 24. If set, then the values in the selected source elements are

negated before being processed by the instruction. Each source

parameter to the instruction has the ability to set this flag. The

following table of scalar multiplication is used as a product (multi-

ply) for clarification. I hope you remember the following from

grade school:

xy = x × y –xy = x × –y –xy = –x × y xy = –x × –y

+ = (+) × (+) – = (+) × (–) – = (–) × (+) + = (–) × (–)

So again, we examine the source register components of our

instruction:

mov r3.xy, -c1.zy (Source)

(MSB) 31 24 7 0 (LSB)
1010 XXX1 XXXX XXXX XXXX XXXX 0000 0001

Base �(c) � (-) Inverse (1)� Index

Please remember that only a source register can be negated, as the

negation of the destination is an illegal operation and will result in

an error!
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mov r3.xy, -c1.zy (Destination)

(MSB) 31 24 7 0 (LSB)
1000 XXX0 XXXX XXXX XXXX XXXX 0000 0011

Base �(r) � (3)� Index

Destination {XYZW} Elements

As {XYZW} element ordering for the destination register is the

simplest to understand and most important, it is discussed first!

(MSB) 31 19 16 0 (LSB)
XXXX XXXX XXXX ???? XXXX XXXX XXXX XXXX

wzyx

It was mentioned earlier that the destination is sequenced in an

{XYZW} order. There are only four bits {16:x, 17:y, 18:z, 19:w}

to represent those elements, so if the bit is set to 1, then the corre-

sponding element is altered; if cleared to 0, it is left alone. The

source information is used to alter the destination in sequence.

mov r3.xy, -c1.zy (Destination)

(MSB) 31 19 16 0 (LSB)
XXXX XXXX XXXX 0011 XXXX XXXX XXXX XXXX

wzyx

There can be gaps in the ordering, such as the {Z} missing in the

following {XYW}, but no swizzling {YXW} can occur, such as

the reversal of the {X} and {Y} elements.

Source Swizzled {XYZW} Elements

The source elements can be individually swizzled so that they can

be arranged into any combination!

(MSB) 31 23 16 0 (LSB)
XXXX XXXX ???? ???? XXXX XXXX XXXX XXXX

� � � �

D3 D2 D1 D0 Source element

This concept is going to be a little tricky, as selected destination

elements Dxyzw (alias D0123) need to be set to store each individual

elemental result of the instruction. Each destination indexed ele-

ment to be altered needs to have a corresponding indexed source

element. In this previously shown bit encoding, D0 is the first
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element result in a sequence up to D3, where D3 would be the last

element result (provided that four elements were being processed).

D0: bits 17,16 D1: bits 19,18 D2: bits 21,20 D3: bits 23,22

Each of those two bits decodes to one of the following as to the

source element:

0 0 .x

0 1 .y

1 0 .z

1 1 .w

So using our same move instruction:

mov r3.xy, -c1.zy (Source)

(MSB) 31 23 16 0 (LSB)
XXXX XXXX 0101 0110 XXXX XXXX XXXX XXXX

�Y�Y �Y�Z
D3 D2 D1 D0 Source element

This is just a note for you, but this particular instruction fortu-

nately had two source elements and two destination elements. It

could have just as easily been two sources and three or four desti-

nation elements. But where would the source for the others have

come from? The solution is simple! If the source uses less than the

full four possible elements D0…D3, then the last specified element

is merely replicated into the remaining slots. In this way, the desti-

nation will have all available. So in our particular case, the {Y}

was replicated into the D2 and D3 slots and is denoted by the

underlined {Y}.

Here are a couple of samples:

mov D.xyzw, A.xyzw D3 D2 D1 D0 D0 = A.x D.x = D0

0123 w z y x D1 = A.y D.y = D1

D.xyzw A.0123 11 10 01 00 D2 = A.z D.z = D2

xyzw xyzw D3 = A.w D.w = D3

mov D.xyzw, A.x D3 D2 D1 D0 D0 = A.x D.x = D0

0 x�x�x�x D1 = A.x D.y = D1

D.xyzw A.0000 00 00 00 00 D2 = A.x D.z = D2

xyzw xxxx D3 = A.x D.w = D3
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Keep in mind that in the following, the second {X} of the source A

is redundant, as it is replicated for D2 and D3 to fill the remaining

source element slots!

mov D.xyw, A.zxx D3 D2 D1 D0 D0 = A.z D.x = D0

012 x�x x z D1 = A.x D.y = D1

D.xyw A.012 00 00 00 10 D2 = A.x

xyw zxx D3 = A.x D.w = D2

Some quick bit encodings:

{00 00 00 00} 00=.x {11 10 01 00} e4=.xyzw

{01 01 01 01} 55=.y {01 01 01 00} 54=.xy

{10 10 10 10} aa=.z {00 00 00 11} 03=.wx

{11 11 11 11} ff=.w {11 11 10 01} 01=.yzw

Some of you may at this point be thinking, “Ahem, excuse me.

Where’s the rest? I mean, what happened to the bit encodings for

all those other little features related to DirectX 9. This only covers

all the features of DirectX 8!”

The answer is simple: This particular knowledge isn’t needed to

build shader code. As you aren’t building an assembler or com-

piler, it really isn’t necessary to know. And as I mentioned at the

beginning of this appendix, only some of you would be interested

in this (as was I when the assemblers for DirectX version 8

weren’t as helpful during their operation as I would have liked and

was thus building my macro-based multi-manufacturer supported

version!). So I leave it to you (if you have the time and are inquisi-

tive enough) to reverse-engineer those instructions further for

yourself.

Besides, I have games to write. So there!
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A p p e n d i x D

Floating-Point
101

You may wonder, “What do details about floating-point have to do

with this book?” This book is about shaders, not floating-point

numbers, especially those that support single precision. Well, to

put it briefly, this is really about precision, and to understand pre-

cision one must have an understanding of the foundations of how

floating-point values are stored. Most programmers tend to have

an integer type mentality, and some have an idea that there is some

precision loss — but not how much, or why!

Remember, this is not rocket science, and so minor deviations

will occur in the formulas since, for example, a single-precision

float is only 32 bits in size, which is the data size that this book

predominately uses. For higher precision, 64-bit double-precision

or 80-bit double extended-precision floating-point should be used

instead. These floating-point numbers are based upon a similarity

to the IEEE 754 standards specification. Unfortunately, the 80-bit

version is only available in a scalar form on an X86’s FPU, and

the 64-bit packed double-precision is only available on the SSE2

processor.
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Most programmers only know a floating-point value from using a

declaration, such as a float, double, real4, or real8, etc. They know

that there is a sign bit that if set indicates the value is negative and

if clear means the value is positive. That is about it to them, as it is

pretty much a black box, and they have never had a need to dig

into it further.

I felt that there needed to be a deeper understanding within this

book, but it is off topic from shaders and thus is in the back of the

book in an appendix.

The sign bit is the MSB (most significant bit) just like the inte-

ger, but that is where the similarity stops.

To invert an integer y=–x (take the absolute value of), one only

needs a 2’s complement. That consists of a 1’s complement (a

NOT) followed by an increment (addition by one):

00000000000000001010010110100101b 00000a5a5h (42405)
NOT 11111111111111110101101001011010b 0ffff5a5ah (-42406)
INC 11111111111111110101101001011011b 0ffff5a5bh (-42405)

…and back:

11111111111111110101101001011011b 0ffff5a5bh (-42405)
NOT 00000000000000001010010110100100b 00000a5a4h (42404)
INC 00000000000000001010010110100101b 00000a5a5h (42405)

But for a floating-point number, regardless of the type of precision

{single, double, double-extended}, only the MSB needs to have a

1’s complement...

00111111100000000000000000000000b 03f800000h ( 1.0)
NOT 10111111100000000000000000000000b 0bf800000h (-1.0)

It’s a much easier operation, but that is where the simplicity stops.

The exponent is a base-2 power representation stored as a

binary integer. The significand (mantissa) really consists of two

components, a J-bit and a binary fraction.

For the single-precision value, there is a hidden “1.” leading the

23 bits of the mantissa, making it a 24-bit significand. The expo-

nent is 8 bits, thus it has a bias value of 127. The magnitude of the

supported range of numbers is 2×10–38 to 2×1038.

For double-precision values, there is a hidden “1.” leading the

52 bits of the mantissa, making it a 53-bit significand. The expo-

nent is 11 bits, thus it has a bias value of 1023. The magnitude of

the supported range of numbers is 2.23×10–308 to 1.8×10308.
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For the 80-bit version, the extra bits are primarily for protection

against precision loss from rounding and over/underflows. The

leading “1.” is the 64th bit of the significand. The exponent is 15

bits, thus it has a bias value of 32767. The magnitude of the sup-

ported range of numbers is 3.3×10–4932 to 1.21×104932.

The product of the exponent and significand result in the float-

ing-point value.

Table D-1: Single-precision floating-point to hex equivalent

Value Hex Sign Exp Sig.

–1.0 0xBF800000 1 7F 000000

0.0 0x00000000 0 00 000000

0.0000001 0x33D6BF95 0 67 56BF95

1.0 0x3F800000 0 7F 000000

2.0 0x40000000 0 80 000000

3.0 0x40400000 0 80 800000

4.0 0x40800000 0 81 000000

Programmers are also usually aware that floats cannot be divided

by zero or process a square root of negative one because an excep-

tion error would occur.

But as discussed in Chapter 3, “Vertex Shaders,” in regard to

the rcp (reciprocal) and rsq (reciprocal square root) instructions,

that is not the case with a shader. The calculation that normally

results in an exception error is adjusted so that since:

y = 1 / x y = � iff x = 0 (divide by zero)

…is in reality infinity, a valid floating-point value as close to

infinity as possible is substituted. For the reciprocal square root:

y = y' = 1 / �x y = 1 / �|x| iff x < 0 since y' = 1 / i� x = 1 / � –x

y = FLT_MAX iff x = 0 since y' = 8 = 1 / � 0

If x, it is negative. Then it is merely negated to a positive value by

always taking the square root of the absolute value. But if x is

zero, the same rule as for a reciprocal applies.

Now that floating-point values have been examined, we can

move on to comparisons of floating-point values.
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Floating-Point Comparison

Do not expect the resulting values from different calculations to be

identical. For example, 2.0 x 9.0 is about 18.0, and 180.0 / 10.0 is

about 18.0. But the two 18.0 values are not guaranteed to be

identical.

Let’s examine a range of values 10n and compare a displace-

ment of ±0.001 versus ±0.0000001.

Table D-2

Base Number –0.001 +0.0 +0.001

1.0 0x3F7FBE77 0x3F800000 0x3F8020C5

10.0 0x411FFBE7 0x41200000 0x41200419

100.0 0x42C7FF7D 0x42C80000 0x42C80083

1000.0 0x4479FFF0 0x447A0000 0x447A0010

10000.0 0x461C3FFF 0x461C4000 0x461C4001

100000.0 0x47C35000 0x47C35000 0x47C35000

1000000.0 0x49742400 0x49742400 0x49742400

10000000.0 0x4B189680 0x4B189680 0x4B189680

100000000.0 0x4CBEBC20 0x4CBEBC20 0x4CBEBC20

Note the single-precision loss between the ±0.001 displacement as the number of digits
goes up in the base number. As the base number gets larger, fewer decimal places of
precision can be supported. The hexadecimal numbers in bold are where the precision
was totally lost!

Table D-3

Base Number –0.0000001 +0.0 +0.0000001

1.0 0x3F7FFFFE 0x3F800000 0x3F800001

10.0 0x41200000 0x41200000 0x41200000

100.0 0x42C80000 0x42C80000 0x42C80000

1000.0 0x447A0000 0x447A0000 0x447A0000

10000.0 0x461C4000 0x461C4000 0x461C4000

100000.0 0x47C35000 0x47C35000 0x47C35000

1000000.0 0x49742400 0x49742400 0x49742400

10000000.0 0x4B189680 0x4B189680 0x4B189680

100000000.0 0x4CBEBC20 0x4CBEBC20 0x4CBEBC20

This is a similar single-precision table, except the displacement is between ±0.0000001.
Note the larger number of hexadecimal numbers in bold indicating a loss of precision.
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Okay, one more table for more clarity.

Table D-4

Base Number +0.001 +0.002 +0.003

1.0 0x3F8020C5 0x3F804189 0x3F80624E

10.0 0x41200419 0x41200831 0x41200C4A

100.0 0x42C80083 0x42C80106 0x42C80189

1000.0 0x447A0010 0x447A0021 0x447A0031

10000.0 0x461C4001 0x461C4002 0x461C4003

100000.0 0x47c35000 0x47c35000 0x47c35000

1000000.0 0x49742400 0x49742400 0x49742400

Note that the accuracy of the precision of the numbers diminishes as the number of digits
increases!

This means that smaller numbers, such as those that are normal-

ized x � [–1, 1] and have a numerical range from –1.0 to 1.0,

allow for higher precision values. But those with larger values are

inaccurate, thus, they are not very precise. For example, the dis-

tance between 1.001 and 1.002, 1.002 and 1.003, etc., is about

0x20c4 (8388). This means that about 8,387 numbers exist

between those two samples. A number with a higher digit count,

such as 1000.001 and 1000.002, supports about 0x11 (17), so only

about 16 numbers exist between those two numbers. A number

around 1000000 identifies 1000000.001 and 1000000.002 as the

same number. This makes comparisons of floating-point numbers

with nearly the same value very tricky. This is one of the reasons

why floating-point numbers are not used for currency, as they tend

to lose pennies. Binary Coded Decimal (BCD) and fixed-point

(integer) are used instead.

So when working with normalized numbers {–1.0 … 1.0} in

C/C++, a comparison algorithm with a precision slop factor (accu-

racy) of around 0.0000001 should be utilized. When working with

estimated results, a much smaller value should be used. Normally,

one would not compare two floating-point values except to see if

one is greater than the other for purposes of clipping. It is almost

never a comparison for equality.

With shaders, there is no slop factor adjustment, and so when-

ever possible, exact comparisons of (a = b) and (a � b) should be

avoided.
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Glossary

# — A number.

alpha channel — A field within an RGBW (red, green, blue, alpha)

color value representing the level of opacity and/or transparency.

ALU — Algorithmic logic unit.

AoS — Array of structures {XYZW}[4]

bump map — Textures representing bump maps are used to add sur-

face detail to an image to give it the illusion of depth. This is

done by displacing the lighting level of pixels based upon the

bump map texture.

compiler — A software tool that converts symbolic source code into

object code.

coprocessor — A secondary processor that adds enhanced function-

ality to a primary processor.

CPU — Central processing unit.

culling — A process of reducing the number of polygons needed to

be passed to the rendering engine.

delta frame — The compression information to alter the current

frame to be similar to the next frame in an animated sequence.

diffuse reflection — A component of reflected light that is diffused

in all directions.

floating-point — A number in which the decimal point is floating

and thus can be in any position. It is typically stored in sign,

exponent, and mantissa components.

fogging — The blending of color with an image to increasingly

obscure distant objects.

FPU — Floating-point unit.

GPU — Graphics processor unit.

GRDB — Game relational database.

IDE — Integrated development environment.
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little-endian — The byte ordering used by most modern computers.

For purposes of this book, that would include the X86 and MIPS

processor. Although a MIPS processor can be configured for

big-endian, for game consoles it is used in a little-endian

configuration.

0 1 2 3

0x1A2B3C4D 4D 3C 2B 1A

LOD — Level of detail.

LSB — Least significant bit. The related bit depends upon the endian

orientation.

mipmap — A set of indexed bitmaps of which each n+1 bitmap is

typically 2n–1 smaller width by height than the previous one.

MSB — Most significant bit. The related bit depends upon the endian

orientation.

normal vector — A vector that is perpendicular to a face and typi-

cally represents the visible side of a face.

Phong shading — A process by which the color of the vertex nor-

mals is interpolated across the face.

polygon — In the context of 3D rendering, a graphical primitive

within a closed plane consisting of a three-sided (triangle) or

four-sided (quadrilateral) shape representing a face typically cov-

ered by a texture.

RGB — Red-green-blue

scalar processor — A processor that can perform only one instruc-

tion on one data element at a time. See vector processor.

SIMD — Single instruction multiple data. A computer instruction

that performs the same instruction in parallel for a series of iso-

lated packed data blocks.

SoA — Structure of arrays {X[4], Y[4], Z[4], W[4]}.

specular reflection — A component of reflected light at a point on a

surface regulated by the direction of the incidental light source in

conjunction with the viewing angle in relation to the normal of

the surface.

texture — A 2D image that is mapped upon a 3D wireframe polygon

to represent its surface.
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vector — (1) A pointer to code or data typically used in a table (vec-

tor table). (2) A one-dimensional array. (3) A line defined by

starting and ending points.

vector processor — A processor that performs an instruction on an

entire array of data in a single step. See scalar processor.

vertex — The intersection of two vectors used to define a corner of a

polygon. Example: three corners of a triangle, eight corners of a

cube.

vertex normal — A direction vector perpendicular to the plane inter-

secting the three vertices of a triangle.

w-buffer — A rectangular representation of the image buffer used to

store the distance of each pixel of the image from the camera.

The range of possible z values is linearly distributed between the

camera and a point in 3D space depicted as infinity. The dis-

tances from the camera are finer in resolution than those closer to

infinity, allowing for a more refined depth of view.

z-buffer — A rectangular representation of the image buffer used to

store the distance of each pixel of the image from the camera.

The range of possible z values is uniformly distributed between

the camera and a point in 3D space depicted as infinity.

Some algebraic laws used in this book:

Additive identity n + 0 = 0 + n = n

Multiplicative identity n1 = 1n = n

Additive inverse a – b = a + (–b)

Commutative law of addition a + b = b + a

Commutative law of multiplication ab = ba

Distributive a(b+c) = ab+ac (b+c)/a = b/a + c/a
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Index

2’s complement, see negation

A

algebraic laws, 4
additive identity, 69
additive inverse, 58
commutative addition, 108
commutative multiplication, 108
multiplicative identity, 69

B

big-endian, 29
branching code, 91, 213
branchless code, 33, 83, 209
bump mapping, 174-179, 237

C

Cartesian coordinate system, 59
Cg, 1, 32
clamping, 39
co-issued instruction, 201
color,

averaging, 168
clipping, 168
diffuse, 198
light, 168
mixing, 167
saturation, 168

cos, 133
cosine of the angle, 66
CPU, 8
cross product, 60-62, 203
cull, 65
CUSTOMVERTEX, 40, 198

D

D3D_SDK_VERSION, 10
D3DCAPS9, 15, 21, 41
D3DCREATE_HARDWARE_VERTEX-

PROCESSING, 17, 20-22

D3DCREATE_MIXED_VERTEXPRO-
CESSING, 17, 20-22

D3DCREATE_PUREDEVICE, 20-22
D3DCREATE_SOFTWARE_VERTEX-

PROCESSING, 17, 20-22
D3DDECLUSAGE, 51

D3DDECLUSAGE_BINORMAL, 51
D3DDECLUSAGE_BLENDINDICES,

51
D3DDECLUSAGE_BLENDWEIGHT,

51
D3DDECLUSAGE_COLOR, 51
D3DDECLUSAGE_DEPTH, 51
D3DDECLUSAGE_FOG, 51
D3DDECLUSAGE_NORMAL, 51
D3DDECLUSAGE_POSITION, 51
D3DDECLUSAGE_POSITIONT, 51
D3DDECLUSAGE_PSIZE, 51
D3DDECLUSAGE_SAMPLE, 51
D3DDECLUSAGE_TANGENT, 51
D3DDECLUSAGE_TESSFACTOR, 51
D3DDECLUSAGE_TEXCOORD, 51

D3DDEVCAPS_HWTRANSFORM-
ANDLIGHT, 17

D3DDEVCAPS_PUREDEVICE, 16
D3DDEVTYPE_HAL, 15-16
D3DDEVTYPE_REF, 15-16
D3DDEVTYPE_SW, 15-16
D3DPS_VERSION, 16, 184
D3DPTEXTURECAPS_MIPMAP, 172-173
D3DPTEXTURECAPS_POW2, 172
D3DPTEXTURECAPS_SQUAREONLY,

172-173
D3DSHADER_VERSION_MAJOR, 16, 184
D3DSHADER_VERSION_MINOR, 16, 184
D3DTOP_BUMPENVMAP, 176
D3DTOP_BUMPENVMAPLUMINANCE,

176
D3DVS_VERSION, 16, 20
D3DVSD_END, 40
D3DVSD_REG, 40
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D3DVSD_STREAM, 40
D3DVSDT_D3DCOLOR, 40
D3DVSDT_FLOAT2, 40
D3DVSDT_FLOAT3, 40
D3DXMATRIX, 104, 109
D3DXMATRIXA16, 106
D3DXQUATERNION, 27, 142
D3DXQuaternionConjugate, 146
D3DXQuaternionDot, 144
D3DXQuaternionInverse, 148
D3DXQuaternionLength, 145
D3DXQuaternionMultiply, 149
D3DXQuaternionNormalize, 146
D3DXVECTOR2, 27
D3DXVECTOR3, 27
D3DXVECTOR4, 27, 154
data alignment, 12
dcl_blendweight, 51-52
dcl_normal, 51-52
dcl_position, 51-52
dcl_texcoord0, 51-52
dcl_texcoord1, 51-52
def, 36, 46, 186
defb, 37, 48, 186
defi, 37, 50, 186
DEG2RAD, 132
DevCaps, 16

D3DDEVCAPS_HWTRANSFORM-
ANDLIGHT, 17

D3DDEVCAPS_PUREDEVICE, 16
D3DDEVTYPE_HAL, 16

DeviceType, 15
D3DDEVTYPE_HAL, 15-16
D3DDEVTYPE_REF, 15-16
D3DDEVTYPE_SW, 15-16

Direct3DCreate9, 10
Direct3DDevice, 15
DirectX, 9
distance,

2D, 73
3D, 74

division by zero, 68
dot product, 60, 64-67, 144, 204
double extended-precision floating-point,

267
double-precision floating-point, 268

E

Euler angle, 102, 140

F

flow control, 83
FLT_MAX, 69
fxc, 32

G

gimbal lock, 139-140
GPU, see graphics processor unit
graphics processor unit, 8, 30

I

inner product, 60, 64-67, 144
instruction modifiers, 39, 200

saturate, 39

L

label, 45, 193
left-hand rule, 65
length of vector, see magnitude
little-endian, 26, 29
loop counter, 37, 186

M

macros, 246-248
magnitude, 73, 145
matrices, 101
matrix,

apply to vector, 110
copy, 107
inverse, 124-128
multiply, 115-118
rotations, 134-138
scalar product, 109
scaling, 121
set identity, 118-120
summation, 107
translation, 122
transpose, 123
vector, 103

N

negation, 31
normalization, 87-89, 145, 210, 271
normalized, 39
nvasm, 32
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O

OpenGL, 8
outer product, 60-62

P

particle physics, 158-163
pipeline, 24-25
pixel shader,

assembly (scripting) commands, 189, 192
block diagram, 185
co-issued instructions, 201
data conversion, 197
flow control,

branching, 213
branchless, 209

instructions,
abs, 190, 209, 252, 255
add, 189, 201, 251, 255
bem, 191, 237, 253, 255
break, 190, 216-217, 252, 255
break_comp, 190, 216, 252, 255
break_pred, 190, 217, 254, 255
call, 190, 217, 252, 255
callnz, 190, 218, 252, 255
callnz_pred, 190, 252, 255
cmp, 190, 212, 253, 255
cnd, 190, 212, 253, 255
crs, 189, 203, 252, 255
dcl, 189, 195, 252, 256
dcl_usage, 189, 196-197, 252, 256
def, 186, 189, 193, 253, 256
defb, 186, 189, 194, 253, 256
defi, 186, 189, 195, 253, 256
dp2add, 189, 205, 253, 256
dp3, 189, 204, 251, 256
dp4, 189, 204, 251, 256
dsx, 190, 211, 253, 256
dsy, 190, 211, 253, 256
else, 190, 213, 252, 256
endif, 190, 213, 252, 256
endloop, 190, 215, 252, 256
endrep, 190, 214, 252, 256
exp, 189, 207, 252, 256
frc, 189, 200, 252, 256
if, 190, 213, 252, 256
if_comp, 190, 252, 256
if_pred, 190, 252, 256
label, 189, 193, 252, 256

log, 189, 252, 256
loop, 190, 215, 252, 256
lrp, 189, 207, 252, 256
m3x2, 190, 220, 252, 256
m3x3, 190, 220, 252, 256
m3x4, 190, 221, 252, 256
m4x3, 190, 219, 252, 256
m4x4, 190, 219, 252, 256
mad, 189, 203, 251, 256
max, 190, 210, 251, 256
min, 190, 209, 251, 256
mov, 189, 197, 251, 257
mul, 189, 202, 251, 257
nop, 189, 206, 251, 257
nrm, 190, 210, 252, 257
phase, 191, 236, 254, 257
pow, 189, 206, 252, 257
ps, 189, 192, 257
rcp, 189, 205, 251, 257
rep, 190, 214, 252, 257
ret, 190, 218, 252, 257
rsq, 189, 206, 251, 257
setp, 190, 211, 254, 257
sincos, 189, 208, 252, 257
sub, 189, 202, 251, 257
tex, 190, 225, 253, 257
texbem, 191, 231, 253, 257
texbeml, 191, 232, 253, 257
texcoord, 190, 229, 253, 257
texcrd, 191, 232, 253, 257
texdepth, 191, 233, 253, 257
texdp3, 191, 230, 253, 257
texdp3tex, 191, 231, 253, 257
texkill, 191, 234, 253, 257
texld, 191, 226, 253, 257
texldb, 191, 227, 253, 257
texldd, 191, 228, 253, 257
texldl, 191, 228, 254, 257
texldp, 191, 229, 253, 257
texm3x2depth, 191, 239, 253, 257
texm3x2pad, 191, 238, 253, 257
texm3x2tex, 191, 239, 253, 257
texm3x3, 191, 241, 253, 257
texm3x3diff, 253, 258
texm3x3pad, 191, 240, 253, 258
texm3x3spec, 191, 243, 253, 258
texm3x3tex, 191, 242, 253, 258
texm3x3vspec, 191, 243, 253, 258
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texreg2ar, 191, 235, 253, 258
texreg2gb, 191, 235, 253, 258
texreg2rgb, 191, 236, 253, 258

listing, 4
math functions, 201
matrices, 219
modifiers, 200
registers, 186
special functions, 206
version checking, 184

PixelShaderVersion, 23
polygon, 166
precision loss, 270
predicate, 37, 186
psa, 32
pseudocode, 3
Pythagorean theorem, 74

Q

quaternion, 139
addition, 143
conjugate, 147
copy, 143
division, 149
dot product, 144
identity, 142
imaginary, 142
inner product, 144
inverse, 147
magnitude, 145
multiplication, 148
normalization, 145
subtraction, 144

R

RAD2DEG, 132
reciprocal square roots, 73, 269
reciprocals, 68, 269
red-green-blue-alpha, 28
register negation, 31
registers,

pixel, 185-187
texture, 223
vertex, 35-37

render, 65
rendering pipeline, 24-25
RenderMonkey, 32
replication, 30, 109
RGBA, see red-green-blue-alpha

S

saturate instruction modifier, 39
scalar, 28, 30, 65
SDK, see Software Development Kit
SetPixelShaderConstantB, 186
SetPixelShaderConstantF, 186
SetPixelShaderConstantI, 186
SetVertexShaderConstantB, 37, 49
SetVertexShaderConstantF, 36, 48, 130, 154
SetVertexShaderConstantI, 37, 50
shader,

pixel, 185
vertex, 36

shading,
facet, 166
flat, 166
Gouraud, 166
Phong, 166
wireframe, 166

SIMD, see Single Instruction Multiple Data
sin, 133
sine and cosine, 131-133
Single Instruction Multiple Data, 28
Single-Precision Floating-Point, 26-27, 69,

267-271
Software Development Kit, 9-11
SPFP, see Single-Precision Floating-Point
square roots, 71-72
swizzling, 30-32, 263

T

textures, 53, 165, 223
filtering, 171
registers, 223

tools, 32, 259
triangle, 120, 166

scaling, 120

V

vector, 26, 102
CUSTOMVERTEX, 40
D3DVECTOR, 40
D3DXQUATERNION, 27
D3DXVECTOR2, 27
D3DXVECTOR3, 27
D3DXVECTOR4, 27
magnitude, 73

2D distance, 73
3D distance, 74
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summation, 58, 103
version,

ps, 192
vs, 44

version checking
pixel, 23, 184
vertex, 9, 15-23

vertex shader,
assembly (scripting) commands, 42
block diagram, 36
data conversion, 42
flow control,

branching, 43, 91
branchless, 43, 83

input streams, 40, 54
instructions

abs, 43, 84, 252, 255
add, 31, 42, 58, 251, 255
add_sat, 39
break, 43, 97-98, 252, 255
break_comp, 43, 98, 252, 255
break_pred, 43, 98, 254, 255
call, 43, 45, 99, 252, 255
callnz, 43, 100, 252, 255
callnz_pred, 43, 100, 252, 255
crs, 42, 63-64, 252, 255
dcl_usage, 42, 51, 252, 256
def, 36, 42, 46, 253, 256
defb, 37, 42, 48, 253, 256
defi, 37, 42, 50, 253, 256
dp3, 42, 67, 251, 256
dp4, 42, 67, 251, 256
dst, 42, 75, 252, 256
else, 43, 93, 252, 256
endif, 43, 92, 252, 256
endloop, 43, 96, 252, 256
endrep, 43, 95, 252, 256
exp, 42, 77, 252, 256
expp, 42, 76, 253, 256
frc, 42, 56-57, 252, 256
if, 43, 91-95, 252, 256
if_comp, 43, 93, 252, 256
if_pred, 43, 95, 252, 256
label, 42, 45, 252, 256

lit, 42, 77, 252, 256
log, 42, 79, 252, 256
logp, 42, 78, 253, 256
loop, 43, 96, 252, 256
lrp, 42, 80, 252, 256
m3x2, 43, 113, 252, 256
m3x3, 43, 113, 252, 256
m3x4, 43, 114, 252, 256
m4x3, 43, 112, 252, 256
m4x4, 43, 54, 110-112, 252, 256
mad, 42, 62-63, 251, 256
max, 43, 54, 85, 251, 256
min, 43, 84, 251, 256
mov, 31, 42, 52, 55, 251, 257
mova, 42, 56, 253, 257
mul, 42, 52, 60, 251, 257
nop, 42, 45, 251, 257
nrm, 43, 87, 252, 257
pow, 42, 75, 252, 257
rcp, 42, 70, 251, 257
rep, 43, 95, 252, 257
ret, 43, 45, 99, 252, 257
rsq, 42, 73, 251, 257
setp, 43, 89-90, 254, 257
sge, 43, 86, 252, 257
sgn, 43, 87, 252, 257
sincos, 42, 129, 252, 257
slt, 43, 85, 89, 251, 257
sub, 42, 59, 251, 257
texldl, 43, 80-81, 254, 257
vs, 42, 44, 52

listing, 4
math functions, 42
matrices, 43
register, 37
special functions, 42

VertexShaderVersion 20-23
video cards, 7, 12-13
vsa, 32

X

xsasm, 32
XYZW, 26
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