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This book is written for people who want to refresh or improve their mathemat-
ical skills, especially in fields applicable to science and engineering. The course
can be used for self-teaching without the aid of an instructor, but it can also be
useful as a supplement in a classroom, tutored, or home-schooling environment.
If you are changing careers, and your new work will involve more mathematics
than you’ve been used to doing, this book should help you prepare.

If you want to get the most out of this book, you should have completed
high-school algebra, high-school geometry and trigonometry, and a first-year
course in calculus. You should be familiar with the concepts of rational, real, and
complex numbers, linear equations, quadratic equations, the trigonometric func-
tions, coordinate systems, and the differentiation and integration of functions in
a single variable.

This book contains plenty of examples and practice problems. Each chapter
ends with a multiple-choice quiz. There is a multiple-choice final exam at the
end of the course. The questions in the quizzes and the exam are similar in for-
mat to the questions in standardized tests.

The chapter-ending quizzes are open-book. You may refer to the chapter texts
when taking them. When you think you’re ready, take the quiz, write down your
answers, and then give your list of answers to a friend. Have the friend tell you
your score, but not which questions you got wrong.  The answers are listed in
the back of the book. Stick with a chapter until you get most, and preferably all,
of the quiz answers correct.

The final exam contains questions drawn uniformly from all the chapters. It
is a closed-book test. Don’t look back at the text when taking it. A satisfactory
score is at least three-quarters of the answers correct (I suggest you shoot for
90 percent). With the final exam, as with the quizzes, have a friend tell you your
score without letting you know which questions you missed. That way, you will

xiii
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not subconsciously memorize the answers. You can check to see where your
knowledge is strong and where it is weak.

I recommend that you complete one chapter a week. An hour or two daily
ought to be enough time for this. When you’re done with the course, you can use
this book as a permanent reference.

Suggestions for future editions are welcome.

STAN GIBILISCO
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I extend thanks to my nephew Tony Boutelle, a student at Macalester College in
St. Paul. He spent many hours helping me proofread the manuscript, and he
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1
CHAPTER

1

Numbering Systems

This chapter covers the basic properties of sets and numbers. Familiarity with
these concepts is important in order to gain a solid working knowledge of
applied mathematics. For reference, and to help you navigate the notation you’ll
find in this book, Table 1-1 lists and defines the symbols commonly used in tech-
nical mathematics.

Sets
A set is a collection or group of definable elements or members. A set element
can be anything—even another set. Some examples of set elements in applied
mathematics and engineering are:

• Points on a line
• Instants in time

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



CHAPTER 1 Numbering Systems2

Symbol Description

( ) Quantification; read “ the quantity”

[ ] Quantification; used outside ( )

{ } Quantification; used outside [ ]

{ } Braces; objects between them are elements of 
a set

⇒ Logical implication or “ if/then” operation; read
“implies”

⇔ Logical equivalence; read “if and only if”

∀ Universal quantifier; read “For all” or “For
every”

∃ Existential quantifier; read “For some”

: Logical expression; read “such that”

 Logical expression; read “such that”

& Logical conjunction; read “and”

∨ Logical disjunction; read “or”

¬ Logical negation; read “not”

N The set of natural numbers

Z The set of integers

Q The set of rational numbers

R The set of real numbers

ℵ Transfinite (or infinite) cardinal number

∅ The set with no elements; read “the empty set”
or “ the null set”

∩ Set intersection; read “intersect”

∪ Set union; read “union”

⊂ Proper subset; read “is a proper subset of”

Symbol Description

⊆ Subset; read “is a subset of”

∈ Element; read “is an element of” or “ is a mem-
ber of”

∉ Nonelement; read “ is not an element of” or “ is
not a member of”

= Equality; read “equals” or “ is equal to”

≠ Not-equality; read “does not equal” or “ is not
equal to”

≈ Approximate equality; read “is approximately
equal to”

< Inequality; read “ is less than”

≤ Equality or inequality; read “ is less than or
equal to”

> Inequality; read “ is greater than”

≥ Equality or inequality; read “ is greater than or
equal to”

+ Addition; read “plus”

− Subtraction, read “minus”

× Multiplication; read “ times” or “multiplied by”

∗ Multiplication; read “ times” or “multiplied by”

· Multiplication; read “ times” or “multiplied by”

÷ Quotient; read “over” or “divided by”

/ Quotient; read “over” or “divided by”

! Product of all natural numbers from 1 up to a 
certain value; read “ factorial”

× Cross (vector) product of vectors; read “cross”

• Dot (scalar) product of vectors; read “dot”

Table 1-1. Symbols commonly used in mathematics.



• Coordinates in a plane.
• Coordinates in space.
• Points, lines, or curves on a graph.
• Digital logic states.
• Data bits, bytes, or characters.
• Subscribers to a network.
• Wind-velocity vectors at points in the eyewall of a hurricane.
• Force vectors at points along the length of a bridge.

If an element a is contained in a set A, then the fact is written like this:

a ∈ A

SET INTERSECTION

The intersection of two sets A and B, written A ∩ B, is the set C consisting of
the elements in both sets A and B. The following statement is valid for every
element x:

x ∈ C if and only if x ∈ A and x ∈ B

SET UNION

The union of two sets A and B, written A ∪ B, is the set C consisting of the
elements in set A or set B (or both). The following statement is valid for every
element x:

x ∈ C if and only if x ∈ A or x ∈ B

COINCIDENT SETS

Two nonempty sets A and B are coincident if and only if they are identical. That
means that for all elements x, the following statements are both true:

If x ∈ A, then x ∈ B

If x ∈ B, then x ∈ A

CHAPTER 1 Numbering Systems 3



DISJOINT SETS
Two sets A and B are disjoint if and only if both sets contain at least one element,
but there is no element that is in both sets. All three of the following conditions
must be met:

A ≠ ∅
B ≠ ∅

A ∩ B = ∅

where ∅ denotes the empty set, also called the null set.

VENN DIAGRAMS
The intersection and union of nonempty sets can be conveniently illustrated by
Venn diagrams. Figure 1-1 is a Venn diagram that shows the intersection of two
sets that are nondisjoint (they overlap) and noncoincident (they are not identi-
cal). Set A ∩ B is the cross-hatched area, common to both sets A and B. Figure
1-2 shows the union of the same two sets. Set A ∪ B is the shaded area, repre-
senting elements that are in set A or in set B, or both.

SUBSETS
A set A is a subset of a set B, written A ⊆ B, if and only if any element x in set
A is also in set B. The following logical statement holds true for all elements x:

If x ∈ A, then x ∈ B

CHAPTER 1 Numbering Systems4
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PROPER SUBSETS
A set A is a proper subset of a set B, written A ⊂ B, if and only if any element x
in set A is in set B, but the two sets are not coincident. The following logical
statements both hold true for all elements x:

If x ∈ A, then x ∈ B

A ≠ B

CARDINALITY
The cardinality of a set is the number of elements in the set. The null set has zero
cardinality. The set of data bits in a digital image, stars in a galaxy, or atoms in
a chemical sample has finite cardinality. Some number sets have denumerably
infinite cardinality. Such a set can be fully defined by a listing scheme. An
example is the set of all counting numbers {1, 2, 3, . . .}. Not all infinite sets are
denumerable. There are some sets with non-denumerably infinite cardinality.
This kind of set cannot be fully defined in terms of any listing scheme. An
example is the set of all real numbers, which are those values that represent mea-
surable physical quantities (and their negatives).

PROBLEM 1-1
Find the union and the intersection of the following two sets:

S = {2, 3, 4, 5, 6}

T = {4, 5, 6, 7, 8}

CHAPTER 1 Numbering Systems 5
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SOLUTION 1-1
The union of the two sets is the set S ∪ T consisting of all the elements
in one or both of the sets S and T. It is only necessary to list an element 
once if it happens to be in both sets. Thus:

S ∪ T = {2, 3, 4, 5, 6, 7, 8}

The intersection of the two sets is the set S ∩ T consisting of all the ele-
ments that are in both of the sets S and T:

S ∩ T = {4, 5, 6}

PROBLEM 1-2
In Problem 1-1, four sets are defined: S, T, S ∪ T, and S ∩ T. Are there
any cases in which one of these sets is a proper subset of one or more 
of the others? If so, show any or all examples, and express these exam-
ples in mathematical symbology.

SOLUTION 1-2
Set S is a proper subset of S ∪ T. Set T is also a proper subset of S ∪ T.
We can write these statements formally as follows:

S ⊂ (S ∪ T)

T ⊂ (S ∪ T)

It also turns out, in the situation of Problem 1-1, that the set S ∩ T is a
proper subset of S, and the set S ∩ T is a proper subset of T. In formal
symbology, these statements are:

(S ∩ T) ⊂ S

(S ∩ T) ⊂ T

The parentheses are included  in these symbolized statements in
order to prevent confusion as to how they are supposed to be read. A
mathematical purist might point out that, in these examples, parenthe-
ses are not necessary, because the meanings of the statements are evi-
dent from their context alone.

Denumerable Number Sets
The set of familiar natural numbers, the set of integers (natural numbers and
their negatives, including 0), and the set of rational numbers are examples of
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sets with denumerable cardinality. This means that they can each be arranged in
the form of an infinite (open-ended) list in which each element can be assigned
a counting number that defines its position in the list.

NATURAL NUMBERS
The natural numbers, also known as whole numbers, are built up from a starting
point of 0. The set of natural numbers is denoted N, and is commonly expressed
like this:

N = {0, 1, 2, 3, . . . , n, . . .}

In some texts, zero is not included, so the set of natural numbers is defined as
follows:

N = {1, 2, 3, 4, . . . , n, . . .}

This second set, starting with 1 rather than 0, is sometimes called the set of
counting numbers.

The natural numbers can be expressed as points along a horizontal half-line
or ray, where quantity is directly proportional to displacement (Fig. 1-3). In the
illustration, natural numbers correspond to points where hash marks cross the ray.
Increasing numerical values correspond to increasing displacement toward the
right. Sometimes the ray is oriented vertically, and increasing values correspond
to displacement upward.

INTEGERS
The set of natural numbers can be duplicated and inverted to form an identical,
mirror-image set:

−N = {0, −1, −2, −3, . . . , −n, . . .}

CHAPTER 1 Numbering Systems 7
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The union of this set with the set of natural numbers produces the set of inte-
gers, commonly denoted Z:

Z = N ∪ −N = {. . . , −n, . . . , −2, −1, 0, 1, 2, . . . , n, . . .}

Integers can be expressed as points along a horizontal line, where positive
quantity is directly proportional to displacement toward the right, and negative
quantity is directly proportional to displacement toward the left (Fig. 1-4). In the
illustration, integers correspond to points where hash marks cross the line.
Sometimes a vertical line is used. In most such cases, positive values correspond
to upward displacement, and negative values correspond to downward displace-
ment. The set of natural numbers is a proper subset of the set of integers. Stated
symbolically:

N ⊂ Z

RATIONAL NUMBERS
A rational number (the term derives from the word ratio) is a number that can
be expressed as, or reduced to, the quotient of two integers, a and b, where b is
positive. The standard form for a rational number r is:

r = a/b

The set of all possible quotients of this form composes the entire set of
rational numbers, denoted Q. Thus, we can write:

Q = {x | x = a/b, where a ∈ Z, b ∈ Z, and b > 0}

CHAPTER 1 Numbering Systems8
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The set of integers is a proper subset of the set of rational numbers. The natural
numbers, the integers, and the rational numbers have the following relationship:

N ⊂ Z ⊂ Q

DECIMAL EXPANSIONS
Rational numbers can be denoted in decimal form as an integer followed by 
a period (radix point, also called a decimal point), and then followed by a
sequence of digits. The digits to the right of the radix point always exist in either
of two forms:

• A finite string of digits beyond which all digits are zero.
• An infinite string of digits that repeat in cycles.

Here are two examples of the first form, known as terminating decimal 
numbers:

3/4 = 0.750000. . .

−9/8 = −1.1250000. . .

Here are two examples of the second form, known as nonterminating, repeat-
ing decimal numbers:

1/3 = 0.33333. . .

−123/999 = −0.123123123. . .

PROBLEM 1-3
Of what use are negative numbers? How can you have a quantity
smaller than zero? Isn’t that like having less than none of something?

SOLUTION 1-3
Negative numbers are surprisingly common. Most people have experi-
enced temperature readings that are “below zero,” especially if the Celsius
scale is used. Sometimes, driving in reverse instead of in forward gear
is considered to be “negative velocity.” Some people carry a “negative
bank balance” for a short time. The government always seems to have
a “deficit,” and corporations often operate “in the red.”

CHAPTER 1 Numbering Systems 9



PROBLEM 1-4
Express the number 2457/9999 as a nonterminating, repeating decimal.

SOLUTION 1-4
If you have a calculator that displays plenty of digits (the scientific-
mode calculator in Windows XP is excellent), you can find this easily:

2457/9999 = 0.245724572457. . . .

The sequence of digits 2457 keeps repeating “forever.” Note that this
number is rational because it is the quotient of two integers, even though
it is not a terminating decimal. That is, it can’t be written out fully in deci-
mal form using only a finite number of digits to the right of the radix point.

Bases 10, 2, 8, and 16
The numbering system used by people (as opposed to computers and calcu-
lators) in everyday life is the decimal number system, based on powers of 10.
Machines, in contrast, generally perform calculations using numbering systems
based on powers of 2.

DECIMAL NUMBERS
The decimal number system is also called modulo 10, base 10, or radix 10.
Digits are elements of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The digit immediately
to the left of the radix (decimal) point is multiplied by 100, or 1. The next digit
to the left is multiplied by 101, or 10. The power of 10 increases as you move
further to the left. The first digit to the right of the radix point is multiplied by a
factor of 10−1, or 1/10. The next digit to the right is multiplied by 10−2, or 1/100.
This continues as you go further to the right. Once the process of multiplying
each digit is completed, the resulting values are added. This is what is repre-
sented when you write a decimal number. For example:

2704.53816 = (2 × 103) + (7 × 102) + (0 × 101) + (4 × 100)

+ (5 × 10−1) + (3 × 10−2) + (8 × 10−3) + (1 × 10−4) + (6 × 10−5)

The parentheses are added for clarity.
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BINARY NUMBERS
The binary number system is a method of expressing numbers using only the
digits 0 and 1. It is sometimes called modulo 2, base 2, or radix 2. The digit
immediately to the left of the radix point is the “ones” digit. The next digit to the
left is a “twos” digit; after that comes the “fours” digit. Moving further to the left,
the digits represent 8, 16, 32, 64, and so on, doubling every time. To the right 
of the radix point, the value of each digit is cut in half again and again, that is,
1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and so on.

Consider an example using the decimal number 94:

94 = (4 × 100) + (9 × 101)

In the binary number system the breakdown is:

1011110 = (0 × 20) + (1 × 21) + (1 × 22)
+ (1 × 23) + (1 × 24) + (0 × 25) + (1 × 26)

When you work with a computer or calculator, you give it a decimal number
that is converted into binary form. The computer or calculator does its operations
with zeros and ones, which are represented by different voltages or signals in
electronic circuits. When the process is complete, the machine converts the
result back into decimal form for display.

OCTAL NUMBERS
Another numbering scheme, called the octal number system, has eight symbols,
or 2 cubed (23). It is also called modulo 8, base 8, or radix 8. Every digit is an
element of the set {0, 1, 2, 3, 4, 5, 6, 7}. Counting thus proceeds from 7 directly
to 10, from 77 directly to 100, from 777 directly to 1000, and so on. There are
no numerals 8 or 9. In octal notation, decimal 8 is expressed as 10, and decimal
9 is expressed as 11.

HEXADECIMAL NUMBERS
Yet another scheme, commonly used in computer practice, is the hexadecimal
number system, so named because it has 16 symbols, or 2 to the fourth power
(24). These digits are the usual 0 through 9 plus six more, represented by A
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through F, the first six letters of the alphabet. The digit set is {0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, E, F}. In this number system, A is the equivalent of decimal
10, B is the equivalent of decimal 11, C is the equivalent of decimal 12, D is
the equivalent of decimal 13, E is the equivalent of decimal 14, and F is the
equivalent of decimal 15. This system is also called modulo 16, base 16, or
radix 16.

COMPARISON OF VALUES
In Table 1-2, numerical values are compared in modulo 10 (decimal), 2 (binary),
8 (octal), and 16 (hexadecimal), for the decimal numbers 0 through 64. In gen-
eral, as the modulus (or number base) increases, the numeral representing a
given value becomes “smaller.”

PROBLEM 1-5
Express the binary number 10011011 in decimal form.

SOLUTION 1-5
Working from right to left, the digits add up as follows:

10011011 = (1 × 20) + (1 × 21) + (0 × 22) + (1 × 23)

+ (1 × 24) + (0 × 25) + (0 × 26) + (1 × 27)

= (1 × 1) + (1 × 2) + (0 × 4) + (1 × 8)

+ (1 × 16) + (0 × 32) + (0 × 64) + (1 × 128)

= 1 + 2 + 0 + 8 + 16 + 0 + 0 + 128

= 155

PROBLEM 1-6
Express the decimal number 1,000,000 in hexadecimal form.

SOLUTION 1-6
Solving a problem like this is straightforward, but the steps are tricky,
tedious, and repetitive. Some calculators will perform conversions like
this directly, but if you don’t have access to one, you can proceed in the
following manner.
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Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal

0 0 0 0 33 100001 40 21

1 1 1 1 34 100010 42 22

2 10 2 2 35 100011 43 23

3 11 3 3 36 100100 44 24

4 100 4 4 37 100101 45 25

5 101 5 5 38 100110 46 26

6 110 6 6 39 100111 47 27

7 111 7 7 40 101000 50 28

8 1000 10 8 41 101001 51 29

9 1001 11 9 42 101010 52 2A

10 1010 12 A 43 101011 53 2B

11 1011 13 B 44 101100 54 2C

12 1100 14 C 45 101101 55 2D

13 1101 15 D 46 101110 56 2E

14 1110 16 E 47 101111 57 2F

15 1111 17 F 48 110000 60 30

16 10000 20 10 49 110001 61 31

17 10001 21 11 50 110010 62 32

18 10010 22 12 51 110011 63 33

19 10011 23 13 52 110100 64 34

20 10100 24 14 53 110101 65 35

21 10101 25 15 54 110110 66 36

22 10110 26 16 55 110111 67 37

23 10111 27 17 56 111000 70 38

24 11000 30 18 57 111001 71 39

25 11001 31 19 58 111010 72 3A

26 11010 32 1A 59 111011 73 3B

27 11011 33 1B 60 111100 74 3C

28 11100 34 1C 61 111101 75 3D

29 11101 35 1D 62 111110 76 3E

30 11110 36 1E 63 111111 77 3F

31 11111 37 1F 64 1000000 100 40

32 100000 40 20

Table 1-2. Comparison of numerical values for decimal numbers 0 through 64.



The values of the digits in a whole (that is, nonfractional) hexadecimal num-
ber, proceeding from right to left, are natural-number powers of 16. That means
a whole hexadecimal number n16 has this form:

n16 =. . . + (f × 165) + (e × 164) + (d × 163)

+ (c × 162) + (b × 161) + (a × 160)

where a, b, c, d, e, f, . . .are single-digit hexadecimal numbers from the set {0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}. 

In order to find the hexadecimal value of decimal 1,000,000, first find the
largest power of 16 that is less than or equal to 1,000,000. This is 164 = 65,536.
Then, divide 1,000,000 by 65,536. This equals 15 and a remainder. The decimal
15 is represented by the hexadecimal F. We now know that the decimal number
1,000,000 looks like this in hexadecimal form:

(F × 164) + (d × 163) + (c × 162) + (b × 161) + a = Fdcba

In order to find the value of d, note that 15 × 164 = 983,040. This is 16,960
smaller than 1,000,000. That means we must find the hexadecimal equivalent of
decimal 16,960 and add it to hexadecimal F0000. The largest power of 16 that
is less than or equal to 16,960 is 163, or 4096. Divide 16,960 by 4096. This
equals 4 and a remainder. We now know that d = 4 in the above expression, so
decimal 1,000,000 is equivalent to the following in hexadecimal form:

(F × 164) + (4 × 163) + (c × 162) + (b × 161) + a = F4cba

In order to find the value of c, note that (F × 164) + (4 × 163) = 983,040 +
16,384 = 999,424. This is 576 smaller than 1,000,000. That means we must
find the hexadecimal equivalent of decimal 576 and add it to hexadecimal
F4000. The largest power of 16 that is less than or equal to 576 is 162, or 256.
Divide 576 by 256. This equals 2 and a remainder. We now know that c = 2
in the above expression, so decimal 1,000,000 is equivalent to the following in
hexadecimal form:

(F × 164) + (4 × 163) + (2 × 162) + (b × 161) + a = F42ba

In order to find the value of b, note that (F × 164) + (4 × 163) + (2 × 162) =
983,040 + 16,384 + 512 = 999,936. This is 64 smaller than 1,000,000. That
means we must find the hexadecimal equivalent of decimal 64 and add it to
hexadecimal F4200. The largest power of 16 that is less than or equal to 64 is
161, or 16. Divide 64 by 16. This equals 4 without any remainder. We now
know that b = 4 in the above expression, so decimal 1,000,000 is equivalent to
hexadecimal:

(F × 164) + (4 × 163) + (2 × 162) + (4 × 161) + a = F424a
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There was no remainder when we found b. Thus, all the digits to the right of
b (in this case, that means only the digit a) are equal to 0. Decimal 1,000,000 is
therefore equivalent to hexadecimal F4240.

Checking, note that the hexadecimal F4240 breaks down as follows when
converted to decimal form, proceeding from right to left:

F4240 = (0 × 160) + (4 × 161) + (2 × 162) + (4 × 163) + (15 × 164)

= 64 + 512 + 16,384 + 983,040

= 1,000,000

Nondenumerable Number Sets

A number set is nondenumerable if and only if there is no way that its elements
can be arranged as a list, where each element is assigned a counting number
defining its position in the list. Examples of nondenumerable number sets
include the set of irrational numbers, the set of real numbers, the set of imagi-
nary numbers, and the set of complex numbers. These types of numbers are used
to express theoretical values in science and engineering.

IRRATIONAL NUMBERS
An irrational number cannot be expressed as the ratio of two integers. Examples
of irrational numbers include:

• the length of the diagonal of a square that is 1 unit long on each edge (the
square root of 2, roughly equal to 1.41421)

• the circumference-to-diameter ratio of a circle in a plane (commonly
known as pi and symbolized π, roughly equal to 3.14159)

Irrational numbers are inexpressible in decimal-expansion form. When an
attempt is made to express such a number in this form, the result is a decimal
expression that is nonterminating and nonrepeating. No matter how many digits
are specified to the right of the radix point, the expression is always an approx-
imation, never the exact value.

The set of irrational numbers can be denoted S. This set is entirely disjoint
from the set of rational numbers:

S ∩ Q = ∅
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This means that no rational number is irrational, and no irrational number is
rational.

REAL NUMBERS
The set of real numbers, denoted R, is the union of the sets of rational and irra-
tional numbers:

R = Q ∪ S

For practical purposes, R can be denoted as the set of points on a continuous
geometric line, as shown in Fig. 1-5. (In theoretical mathematics, the assertion
that the points on a geometric line correspond one-to-one with the real numbers
is known as the Continuum Hypothesis.) The real numbers are related to the
rational numbers, the integers, and the natural numbers as follows:

N ⊂ Z ⊂ Q ⊂ R

The operations of addition, subtraction, multiplication, division, and expo-
nentiation can be defined over the set of real numbers. If # represents any one of
these operations and x and y are elements of R, then:

x # y ∈ R

The only exception to this is that for division, y must not be equal to 0.
Division by 0 is not defined within the set of real numbers.

TRANSFINITE CARDINAL NUMBERS
The cardinal numbers for infinite sets are denoted using the uppercase aleph
(ℵ), the first letter in the Hebrew alphabet. The cardinality of the sets of natural
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numbers, integers, and rational numbers is called ℵ0 (aleph null, aleph nought,
or aleph 0). The cardinality of the sets of irrational and real numbers is called
ℵ1 (aleph one or aleph 1). These two quantities, ℵ0 and ℵ1, are known as trans-
finite cardinal numbers. They are expressions of “infinity.”

Around the year 1900, the German mathematician Georg Cantor proved that
ℵ0 and ℵ1 are not the same. This reflects the fact that the elements of the set 
of natural numbers can be paired off one-to-one with the elements of the sets of
integers or rational numbers, but not with the elements of the sets of irrational
numbers or real numbers. Any attempt to pair off the elements of N with the ele-
ments of S, or the elements of N and the elements of R, results in some elements
of S or R being “left over” without corresponding elements in N. A simplistic,
but interesting, way of saying this is that there are at least two “infinities,” and
they are not equal to each other!

IMAGINARY NUMBERS
The set of real numbers, and the operations defined above for the integers, give
rise to some expressions that do not behave as real numbers. The best known
example is the quantity j such that j × j = −1. Thus, j is equal to the positive
square root of −1. No real number has this property. This quantity j is known as
the unit imaginary number or the j operator. Sometimes, in theoretical mathe-
matics, j is denoted i.

The j operator can be multiplied by any real number x, called a real-number
coefficient, and the result is an imaginary number. The coefficient x is written
after j if x is positive or 0, and after −j if x is negative. Examples are j3, −j5, and
−j2.787. Numbers like this originally got the nickname “imaginary” because
some people found it incredible that the square root of a negative real number
could exist! But in pure mathematics, imaginary numbers are no more or less
“imaginary” than real numbers.

The set J of all possible real-number multiples of j composes the entire set of
imaginary numbers:

J = {k | k = jx, where x ∈ R}

For practical purposes, the set J can be depicted along a number line corre-
sponding one-to-one with the real number line. By convention, the imaginary
number line is oriented vertically, rather than horizontally (Fig. 1-6).

The sets of imaginary and real numbers have one element in common. That ele-
ment is zero. When either j or −j is multiplied by 0, the result is equal to the real
number 0. Therefore, the intersection of the sets of imaginary and real numbers
contains one element, namely 0. Formally we can write these statements like this:
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j0 = −j0 = 0

J ∩ R = {0}

COMPLEX NUMBERS
A complex number consists of the sum of two separate components, a real num-
ber and an imaginary number. The general form for a complex number c is:

c = a + jb

where a and b are real numbers. The set C of all complex numbers is thus
defined as follows:

C = {c | c = a + jb, where a ∈ R and b ∈ R}

If the real-number coefficient happens to be negative, then its absolute value
(the value with the minus sign removed) is written following j, and a minus sign
is used instead of a plus sign in the composite expression. So:

a + j(−b) = a − jb
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Individual complex numbers can be depicted as points on a coordinate plane
as shown in Fig. 1-7. The intersection point between the real and imaginary
number lines corresponds to the value 0 on the real-number line and the value
j0 on the imaginary-number line. (The real and imaginary zeroes are identical;
that is, 0 = j0. Therefore, they can both be represented by a single point.)
Extrapolating the Continuum Hypothesis, the points on the so-called complex-
number plane exist in a one-to-one correspondence with the elements of C.

The set of imaginary numbers is a proper subset of the set of complex num-
bers. The set of real numbers is also a proper subset of the set of complex numbers.
Formally, we can write these statements as follows:

J ⊂ C

R ⊂ C

The sets of natural numbers (N), integers (Z), rational numbers (Q), real
numbers (R), and complex numbers (C) can be related in a hierarchy of proper
subsets:

N ⊂ Z ⊂ Q ⊂ R ⊂ C
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PROBLEM 1-7
Earlier the statement was made that division by 0 was not defined over
the set of real numbers. Yet, some texts treat expressions such as 1/0  
as being equal to “infinity.” This seems to make sense. The expression
1/x, where x is a variable, gets larger and larger without limit as x
approaches 0. Is 1/0 equal to “infinity?”

SOLUTION 1-7
The fact that the expression 1/x grows without limit as x approaches 0
does not logically imply that 1/x becomes “infinity” when x actually
reaches 0. For us to be certain about that, we’d have to formally prove
it. Even if we did that, we’d have to be sure what we meant by “infin-
ity.” Would we be talking about aleph 0 or aleph 1, or about some other
sort of “infinity”?

PROBLEM 1-8
We have been told that j × j = −1. This fact suggests that the square root
of −1 is equal to j. What about the square root of some other negative
real number, such as −4 or −100?

SOLUTION 1-8
The positive square root of any negative real number is equal to j times
the positive square root of that real number. (There are negative square
roots, too, but let’s not worry about them right now.) If we let the pos-
itive square root of a real number be denoted as the 1/2 power of that
real number, then:

(−4)1/2 = j × 41/2 = j2

(−100)1/2 = j × 1001/2 = j10

Special Properties of Complex Numbers
Complex numbers have properties that are, in certain ways, similar to the
properties of real numbers. But there are some big differences. Perhaps most
significant, the set of complex numbers is two-dimensional (2D), while the set
of real numbers is one-dimensional (1D). Complex numbers have two indepen-
dent components, while real numbers consist of only one component.
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EQUALITY OF COMPLEX NUMBERS
Let x1 and x2 be complex numbers such that:

x1 = a1 + jb1

x2 = a2 + jb2

These two complex numbers are equal if and only if their real components are
equal and their imaginary components are equal:

x1 = x2 if and only if a1 = a2 and b1 = b2

OPERATIONS WITH COMPLEX NUMBERS
The operations of addition, subtraction, multiplication, division, and exponenti-
ation are defined for the set of complex numbers as follows.

Complex addition: The real and imaginary parts are added independently. The
general formula for the sum of two complex numbers is:

(a + jb) + (c + jd) = (a + c) + j(b + d)

Complex subtraction: The second complex number is multiplied by −1, and
then the resulting two numbers are added. The general formula for the difference
of two complex numbers is:

(a + jb) − (c + jd) = (a + jb) + [−1(c + jd)] = (a − c) + j(b − d)

Complex multiplication: The general formula for the product of two complex
numbers is:

(a + jb)(c + jd) = ac + jad + jbc + j2bd = (ac − bd) + j(ad + bc)

Complex division or ratio: The general formula for the quotient, or ratio, of
two complex numbers is:

(a + jb) / (c + jd) = [(ac + bd) / (c2 + d2)] + j [(bc − ad) / (c2 + d2)]

The square brackets, while technically superfluous, are included to clarify
the real and imaginary parts of the quotient. For the above formula to work, the
denominator must not be equal to 0 + j0. That means that c and d cannot both be
equal to 0:

c + jd ≠ 0 + j0

Complex exponentiation to a positive-integer power: This is symbolized by a
superscript numeral. If a + jb is an integer and c is a positive integer, then (a + jb)c

is the result of multiplying (a + jb) by itself c times.
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COMPLEX CONJUGATES
Let x1 and x2 be complex numbers such that:

x1 = a + jb

x2 = a − jb

Then x1 and x2 are said to be complex conjugates, and they have the follow-
ing two properties:

x1 + x2 = 2a

x1x2 = a2 + b2

Conjugates are encountered when complex numbers are used in certain
engineering applications. In particular, they appear in electronics when working
with impedance in wireless communications systems. Impedance is a complex-
number quantification of the opposition that a circuit offers to a high-frequency
alternating current (AC).

MAGNITUDE AND DIRECTION

Complex numbers can be represented as vectors. A vector is a quantity having
two independent properties: magnitude and direction. Any given complex num-
ber has a unique magnitude and a unique direction in a 2D coordinate system.
The magnitude is the distance of the point a + jb from the origin 0 + j0. The
direction is the angle that the vector subtends, expressed in a counterclockwise
sense from the positive real-number axis. This principle is shown in Fig. 1-8.

The absolute value of a complex number a + jb, written | a + jb |, is the length
of its vector in the complex plane, measured from the origin (0,0) to the point
(a,b). In the case of a pure real number a + j0:

| a + j0 | = a if a ≥ 0

| a + j0 | = −a if a < 0

In the case of a pure imaginary number 0 + jb:

| 0 + jb | = b if b ≥ 0

| 0 + jb | = −b if b < 0

If a complex number is neither pure real nor pure imaginary, the absolute
value is the length of the vector as shown in Fig. 1-9. This is derived from the
Theorem of Pythagoras in basic plane geometry. The vector forms the hypo-
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tenuse (longest side) of the right triangle. In the example of Fig. 1-9, this side is
shown with length equal to c. The other two sides have lengths a and b. The for-
mula for the absolute value of a + jb in this case is:

| a + jb | = (a2 + b2)1/2
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PROBLEM 1-9
Find the absolute value of the complex number 18 − j24.

SOLUTION 1-9
Here, let a = 18 and b = −24. Using the above formula for the length of
the vector, do the calculations as follows:

| a + jb | = (a2 + b2)1/2

= [182 + (−24)2]1/2

= (324 + 576)1/2

= 9001/2

= 30

PROBLEM 1-10
How many complex numbers can exist with an absolute value of 6?

SOLUTION 1-10
There are infinitely many such complex numbers. The set of them all,
shown as points in the complex-number plane, is as a circle of radius
6, centered at the origin 0 + j0. There are infinitely many vectors cor-
responding to these complex numbers. All the vectors have lengths
equal to 6, and point outward from the origin in all possible “compass
directions” within the plane. Figure 1-10 shows a few such vectors, and
the circle formed by the points corresponding to all complex numbers
with absolute value equal to 6.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Find {−3, −2, −1, 0, 1, 2, 3} ∪ {0, 1, 2, 3, 4, 5, . . .}.

2. Find {−3, −2, −1, 0, 1, 2, 3} ∩ {0, 1, 2, 3, 4, 5, . . .}.
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3. Draw a Venn diagram showing two non-empty sets A and B, such that A
is a proper subset of B.

4. Draw a Venn diagram showing two non-empty sets A and B, such that A
and B are disjoint.

5. Convert the octal number 77 to decimal form.

SOLUTIONS

1. The union of two sets is the set of all elements belonging to either or both
of the sets. Therefore:

{−3, −2, −1, 0, 1, 2, 3} ∪ {0, 1, 2, 3, 4, 5, . . .} 
= {−3, −2, −1, 0, 1, 2, 3, 4, 5, . . .}

2. The intersection of two sets is the set of all elements belonging to both
sets. Therefore:

{−3, −2, −1, 0, 1, 2, 3} ∩ {0, 1, 2, 3, 4, 5, . . .} = {0, 1, 2, 3}

CHAPTER 1 Numbering Systems 25

j 8

j 4

j 2

−j 2

−j 4

−j 8

2 4 8
x

jySet of all points
corresponding to
| x + jy | = 6

−8 −4 −2

Fig. 1-10. Illustration for Problem 1-10.



3. An example of two such sets is shown in Fig. 1-11.
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4. An example of two such sets is shown in Fig. 1-12.
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Fig. 1-11. Illustration for Quick
Practice Problem and Solution 3.

5. Working from right to left, octal 77 converts to decimal
form as follows:

77 = (7 × 80) + (7 × 81)
= (7 × 1) + (7 × 8)
= 7 + 56
= 63



Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. What is the decimal equivalent of the largest possible 3-digit hexa-
decimal number?

(a) 2457
(b) 4095
(c) 8191
(d) It is impossible to calculate this without more information.

2. Is 457 / (−999) a rational number? If so, why? If not, why not?

(a) Yes, because it is fully expressible in decimal form with a finite num-
ber of digits to the right of the radix point.

(b) Yes, because it is the quotient of two integers.
(c) No, because the denominator is a negative number.
(d) No, because it is not expressible in decimal form at all, even with an

infinite number of digits to the right of the radix point.

3. What is the value of −j multiplied by itself?

(a) 1
(b) −1
(c) j
(d) −j

4. Let X and Y be sets. Suppose X is a proper subset of Y. Which of the fol-
lowing is impossible?

(a) X has a finite number of elements, and Y has an infinite number of
elements.

(b) X and Y both have infinite numbers of elements.
(c) X and Y both have finite numbers of elements.
(d) X has an infinite number of elements, and Y has a finite number of

elements.

5. Let X represent the set of all even integers (integers divisible by 2 with-
out a remainder). Let Y represent the set of all integers. Which of the
following statements is false?
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(a) Sets X and Y are disjoint.
(b) X ⊆ Y
(c) X ⊂ Y
(d) X ∩ Y = X

6. Working entirely in the octal number system, how would you write down
the numeral representing the value of 1000 − 1?

(a) 999
(b) 777
(c) 333
(d) 111

7. Suppose you have a binary number consisting of 3 digits. Then you place
the digit 1 to the left of these, making a new, 4-digit binary number. The
decimal equivalent of the new binary number is

(a) 8 times as large as the decimal equivalent of the original.
(b) 16 times as large as the decimal equivalent of the original.
(c) 8 larger than the decimal equivalent of the original.
(d) 16 larger than the decimal equivalent of the original.

8. Working entirely in the hexadecimal number system, how would you
write down the numeral representing the value of 1000 − 3?

(a) F97
(b) 99D
(c) F9D
(d) FFD

9. In the binary number system, what is 111 + 10?

(a) 1001
(b) 1011
(c) 1100
(d) 1110

10. What is the product (5 + j3) × (−3 − j5), expressed in full as a complex
number?

(a) −15−j15
(b) 15 + j15
(c) 0 − j34
(d) 0 + j0
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CHAPTER

29

Principles of 
Calculation

Let’s examine the properties of operations between and among numbers. You’ve
likely seen most or all of this material before, but this chapter can serve as a
refresher, especially if it has been a long time since you last worked with them.

Basic Principles
Several general principles, also called laws, are recognized for the operations of
addition, subtraction, multiplication, and division for all real and complex numbers.
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ADDITIVE IDENTITY

When 0 is added to any real number a, the sum is always equal to a. When 
0 + j0 is added to any complex number a + jb, the sum is always equal to a + jb.
The numbers 0 and 0 + j0 (identical in practice, but semantically distinct) are
known as the real and complex additive identity elements. The following two
equations hold:

a + 0 = a

(a + jb) + (0 + j0) = a + jb

MULTIPLICATIVE IDENTITY

When any real number a is multiplied by 1, the product is always equal to a.
When any complex number a + jb is multiplied by 1 + j0, the product is always
equal to a + jb. The numbers 1 and 1 + j0 (identical in practice, but semantically
distinct) are known as the real and complex multiplicative identity elements. The
following two equations hold:

a × 1 = a

(a + jb) × (1 + j0) = a + jb

ADDITIVE INVERSES

For every real number a, there exists a unique real number −a such that the sum
of the two is equal to 0. For every complex number a + jb, there exists a unique
complex number −a − jb such that the sum of the two is equal to 0 + j0. These
pairs of numbers are known as the real and complex additive inverses. The fol-
lowing two equations hold:

a + (−a) = 0

(a + jb) + (−a − jb) = 0 + j0

MULTIPLICATIVE INVERSES

For every nonzero real number a, there exists a unique real number 1/a such
that the product of the two is equal to 1. For every complex number a + jb except
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0 + j0, there exists a unique complex number a/(a2 + b2) − jb/(a2 + b2) such that
the product of the two is equal to 1 + j0. These pairs of numbers are known as
the real and complex multiplicative inverses. The following two equations hold:

a × (1/a) = 1

(a + jb) × [a/(a2 + b2) − jb / (a2 + b2)] = 1 + j0

COMMUTATIVE LAW OF ADDITION

When two real or complex numbers are added, it does not matter in which order
the sum is performed. This is called the commutative law of addition. For all real
numbers a and b, and for all complex numbers a + jb and c + jd, the following
two equations hold:

a + b = b + a

(a + jb) + (c + jd) = (c + jd) + (a + jb)

COMMUTATIVE LAW OF MULTIPLICATION

When two real or complex numbers are multiplied, it does not matter in which
order the product is performed. This is called the commutative law of multipli-
cation. For all real numbers a and b, and for all complex numbers a + jb and
c + jd, the following two equations hold:

ab = ba

(a + jb)(c + jd) = (c + jd)(a + jb)

ASSOCIATIVE LAW OF ADDITION

When three real or complex numbers are added, it does not matter how the
addends are grouped. This is called the associative law of addition. For all real
numbers a1, a2, and a3, and for all complex numbers a1 + jb1, a2 + jb2, and a3 + jb3,
the following two equations hold:

(a1 + a2) + a3 = a1 + (a2 + a3)

[(a1 + jb1) + (a2 + jb2)] + (a3 + jb3) = (a1 + jb1) + [(a2 + jb2) + (a3 + jb3)]
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ASSOCIATIVE LAW OF MULTIPLICATION
When three real or complex numbers are multiplied, it does not matter how the
factors are grouped. This is called the associative law of multiplication. For all
real numbers a1, a2, and a3, and for all complex numbers a1 + jb1, a2 + jb2, and
a3 + jb3, the following two equations hold:

(a1a2)a3 = a1(a2a3)

[(a1 + jb1)(a2 + jb2)](a3 + jb3) = (a1 + jb1)[(a2 + jb2)(a3 + jb3)]

DISTRIBUTIVE LAW OF MULTIPLICATION 
OVER ADDITION
For all real numbers a1, a2, and a3, and for all complex numbers a1 + jb1, a2 + jb2,
and a3 + jb3, the following two equations hold. These equations express the dis-
tributive law of multiplication over addition:

a1(a2 + a3) = a1a2 + a1a3

(a1 + jb1)[(a2 + jb2) + (a3 + jb3)] = (a1 + jb1)(a2 + jb2) + (a1 + jb1)(a3 + jb3)

PROBLEM 2-1
Demonstrate the validity of the commutative law of addition using
three specific complex numbers.

SOLUTION 2-1
Consider a = 2 + j3 and b = 4 − j5. First, find the sum a + b:

a + b = (2 + j3) + (4 − j5)

= (2 + 4) + j(3 − 5)

= 6 + j(−2)

= 6 − j2

Then find the sum b + a:

b + a = (4 − j5) + (2 + j3)

= (4 + 2) + j(−5 + 3)

= 6 + j(−2)

= 6 − j2
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These two sums are the same, which demonstrates the principle for
these two particular numbers.

PROBLEM 2-2
What is the value of 4 × (3 + 7)? Compare this with the value of (4 × 3)
+ 7.

SOLUTION 2-2
The value of the first expression is calculated using the distributive law
of multiplication over addition:

4 × (3 + 7) = (4 × 3) + (4 × 7)

= 12 + 28

= 40

The value of the second expression is calculated by first multiplying 4
by 3, and then adding 7 to the result:

(4 × 3) + 7 = 12 + 7

= 19

Miscellaneous Principles
Here are some rules and definitions that apply to arithmetic operations for real
and complex numbers, with the constraint that no denominator be equal to zero,
and no denominator contain any variable that can attain a value that renders the
denominator equal to zero.

ZERO NUMERATOR
If 0 is divided by any nonzero real number, the result is always equal to 0. If 0 + j0
is divided by any complex number, the result is always equal to 0 + j0. For all
real numbers a such that a ≠ 0, and for all complex numbers a + jb such that 
a + jb ≠ 0 + j0, the following two equations hold:

0/a = 0

0/(a + jb) = 0 + j0
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ZERO DENOMINATOR
If any expression contains a denominator that is equal to 0, then that expres-
sion is undefined over the set of real and complex numbers. That is, for all real
numbers a and all complex numbers a + jb, the following expressions are all
undefined:

a/0

a /(0 + j0)

(a + jb)/0

(a + jb)/(0 + j0)

MULTIPLICATION BY ZERO
When any real number is multiplied by 0, the result is equal to 0. When any
complex number is multiplied by 0 + j0, the result is equal to 0 + j0. For all real
numbers a and all complex numbers a + jb, the following equations hold:

a × 0 = 0

(a + jb) × 0 = 0 + j0

ZEROTH POWER
The zeroth power of any nonzero real number is equal to 1. The zeroth power
of any complex number is equal to 1 + j0. For all real numbers a, where a ≠ 0,
and for all complex numbers a + jb, where a + jb ≠ 0 + j0, the following two
equations hold:

a0 = 1

(a + jb)0 = 1 + j0

The quantities 00 and (0 + j0)0 are undefined.

POSITIVE INTEGER ROOTS
If x is a real or complex number and x is multiplied by itself n times to obtain
another real or complex number y, then x is defined as the nth root of y. The fol-
lowing equations apply for all positive integers n:
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xn = y

x = y(1/n)

FACTORIAL

If n is a positive integer, the value of n! (n factorial) is the product of all positive
integers less than or equal to n. The following equation applies for all positive inte-
gers n:

n! = 1 × 2 × 3 × 4 × . . .× n

In some texts, the value of 0! is defined as equal to 1 by default. The factori-
als of negative integers are not defined.

ARITHMETIC MEAN

Let a1, a2, a3, . . . , and an be real numbers. The arithmetic mean (also known as
the average) of a1, a2, a3, . . . , and an is given by the following formula:

mA = (a1 + a2 + a3 +. . .+ an)/n

The arithmetic mean arises in such fields as meteorology, economics, statis-
tics, and medicine. For example, the mean temperature can be defined for a
particular period of time in a particular location, or the mean age of first-heart-
attack victims in the United States can be used in a medical research paper.

GEOMETRIC MEAN

Let a1, a2, a3, . . . , and an be real numbers. The geometric mean of a1, a2, a3, . . . ,
and an is given by the following formula:

mG = (a1a2a3. . .an)1/n

The geometric mean arises in the fields of physics and electronics. For exam-
ple, the ideal characteristic impedance of a quarter-wave matching cable for a
radio-frequency (RF) antenna system is equal to the geometric mean of the input
impedance and the load impedance, assuming both of these impedances are
purely resistive.
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PRODUCT OF SIGNS
When numbers with plus (+) and minus (−) signs are multiplied, the following
rules apply:

(+)(+) = (+)

(+)(−) = (−)

(−)(+) = (−)

(−)(−) = (+)

QUOTIENT OF SIGNS
When numbers with plus and minus signs are divided, the following rules apply:

(+) / (+) = (+)

(+) / (−) = (−)

(−) / (+) = (−)

(−) / (−) = (+)

POWER OF SIGNS
When numbers with signs are raised to a positive integer power n, the following
rules apply:

(+)n = (+)

(−)n = (−) if n is odd

(−)n = (+) if n is even

THE RECIPROCAL DEFINED
The reciprocal of a real number is equal to 1 divided by that number. The recip-
rocal of a complex number is equal to 1 + j0 divided by that number.

RECIPROCAL OF RECIPROCAL
For all real numbers a such that a ≠ 0, and for all complex numbers a + jb such
that a + jb ≠ 0 + j0, the reciprocal of the reciprocal is always equal to the origi-
nal number. The following two equations hold:
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1/(1/a) = a

(1 + j0)/[(1 + j0)/(a + jb)] = a + jb

PROBLEM 2-3
What is the 1/5 power of 32?

SOLUTION 2-3
Using the formula above for positive integer roots, note that 32(1/5)

is the same thing as the 5th root of 32. This is equal to 2, because
25 = 2 × 2 × 2 × 2 × 2 = 32.

PROBLEM 2-4
Find the arithmetic mean of 10 and 40. Compare the arithmetic mean
with the geometric mean of these same two numbers.

SOLUTION 2-4
Using the above formula for arithmetic mean, we obtain:

mA = (10 + 40)/2

= 50/2

= 25

The geometric mean is different:

mG = (10 × 40)1/2

= 4001/2

= 20

Advanced Principles
Here are some properties of arithmetic operations that you don’t see as often as
the previous ones. Nevertheless, they can be useful when manipulating equations.

PRODUCT OF SUMS
For all real or complex numbers w, x, y, and z, this formula can be used to find
the product of (w + x) and (y + z):
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(w + x)(y + z) = wy + wz + xy + xz

This formula can also be used to multiply factors containing differences. The
difference between two quantities is considered to be equal to the first quantity
plus the negative of the second quantity. Therefore:

(w − x)(y + z) = [w + (−x)] (y + z)

(w + x)(y − z) = (w + x) [y + (−z)]

(w − x)(y − z) = [w + (−x)] [y + (−z)]

DISTRIBUTIVE PROPERTY OF DIVISION 
OVER ADDITION

For all real numbers x, y, and z where x ≠ 0, and for all complex numbers x, y,
and z where x ≠ 0 + j0, the following formula holds true:

(y + z) /x = y /x + z /x

CROSS-MULTIPLICATION

When two quotients are equal, their numerators and denominators can be
cross-multiplied and the resulting products are equal. For all real numbers w, x,
y, and z where x ≠ 0 and z ≠ 0, and for all complex numbers w, x, y, and z where
x ≠ 0 + j0 and z ≠ 0 + j0, the following formulas hold true:

If w /x = y /z, then wz = xy

If wz = xy, then w /x = y /z

RECIPROCAL OF PRODUCT

The reciprocal of a product is equal to the product of the reciprocals. For all real
numbers x and y where x ≠ 0 and y ≠ 0, and for all complex numbers x and y
where x ≠ 0 + j0 and y ≠ 0 + j0, you can use these formulas:

1/(xy) = (1/x)(1/y)

(1 + j0)/(xy) = [(1 + j0)/x][(1 + j0)/y]
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RECIPROCAL OF QUOTIENT

The reciprocal of a quotient is equal to the quotient expressed “upside-down.”
For all real numbers x and y where x ≠ 0 and y ≠ 0, and for all complex numbers
x and y where x ≠ 0 + j0 and y ≠ 0 + j0, the following formulas apply:

1/(x /y) = y / x

(1 + j0)/(x /y) = y /x

PRODUCT OF QUOTIENTS

The product of two quotients is equal to the product of the numerators, divided
by the product of the denominators. For all real numbers w, x, y, and z where
x ≠ 0 and z ≠ 0, and for all complex numbers w, x, y, and z where x ≠ 0 + j0 and
z ≠ 0 + j0, the following formula holds true:

(w /x)(y /z) = (wy) / (xz)

QUOTIENT OF PRODUCTS

For all real numbers w, x, y, and z where y ≠ 0 and z ≠ 0, and for all complex
numbers w, x, y, and z where y ≠ 0 + j0 and z ≠ 0 + j0, either of these formulas
can be used:

(wx) / (yz) = (w /y)(x /z)

(wx) / (yz) = (w /z)(x /y)

QUOTIENT OF QUOTIENTS

For all real numbers w, x, y, and z where x ≠ 0, y ≠ 0, and z ≠ 0, and for all com-
plex numbers w, x, y, and z where x ≠ 0 + j0, y ≠ 0 + j0, and z ≠ 0 + j0, any of
these formulas can be used:

(w /x) / (y /z) = (w /x)(z /y)

(w /x) / (y /z) = (w /y)(z /x)

(w /x) / (y /z) = (wz) / (xy)

CHAPTER 2 Principles of Calculation 39



SUM OF QUOTIENTS 
(COMMON DENOMINATOR)
When two quotients have the same denominator, the sum of the quotients is
equal to the sum of the numerators, divided by the common denominator. For all
real numbers x, y, and z where z ≠ 0, and for all complex numbers x, y, and z
where z ≠ 0 + j0, the following formula holds true:

x /z + y /z = (x + y) /z

SUM OF QUOTIENTS (GENERAL)
For all real numbers w, x, y, and z where x ≠ 0 and z ≠ 0, and for all complex
numbers w, x, y, and z where x ≠ 0 + j0 and z ≠ 0 + j0, you can use this formula:

w /x + y /z = (wz + xy) / (xz)

RATIONAL-NUMBER EXPONENTS
Let x be a real or complex number. Let y be a rational number such that y = a/b,
where a and b are integers and b ≠ 0. The following formula can be used to find
x to the yth power:

xy = xa/b = (xa)(1/b) = [x(1/b)]a

NEGATIVE EXPONENTS
Let x be a nonzero real or complex number. Let y be a rational number. The follow-
ing formula can be used to find x to the −yth power:

x(−y) = (1/x)y = 1/xy

SUM OF EXPONENTS
Let x be a complex number. Let y and z be rational numbers. The following for-
mula can be used to find x to the (y + z)th power:

x(y+z) = xyxz
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DIFFERENCE OF EXPONENTS
Let x be a real or complex number, with the constraint that x ≠ 0. Let y and z be
rational numbers. The following formula can be used to find x to the (y − z)th power:

x(y-z) = xy/xz

PRODUCT OF EXPONENTS
Let x be a real or complex number. Let y and z be rational numbers. The fol-
lowing formula can be used to find x to the (yz)th power:

xyz = (xy)z = (xz)y

QUOTIENT OF EXPONENTS
Let x be a real or complex number. Let y and z be rational numbers, where z ≠
0. The following formula can be used to find x to the (y/z)th power:

xy/z = (xy)(1/z) = [x(1/z)]y

POWERS OF SUM
Let x and y be real or complex numbers. The following formulas can be used to
find the square, cube, and fourth power of the sum (x + y):

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

POWERS OF DIFFERENCE
Let x and y be real or complex numbers. Then the following formulas can be
used to find the square, cube, and fourth power of the difference (x − y):

(x − y)2 = x2 − 2xy + y2

(x − y)3 = x3 − 3x2y + 3xy2 − y3

(x − y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4
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PROBLEM 2-5
What is the value of 4(−3)? Compare this with the value of 4(−1/3).
Express the answers in decimal form to several figures.

SOLUTION 2-5
Using the above formula for negative powers to find the −3rd power of 4:

4(−3) = 1/(43) = 1/(4 × 4 × 4)

= 1/64

= 0.015625

The quantity 4(−1/3) is calculated using the formula for negative powers
first, and then the formula for positive integer roots:

4(−1/3) = 1/[4(1/3)]

= 1/(1.5874)

= 0.62996

PROBLEM 2-6
Find the value of (2 + n)2, and compare it with the value of (2 − n)2,
where n is a variable.

SOLUTION 2-6
Use the previous formula for the power of a sum to find the first value.
Substitute 2 for x and n for y:

(2 + n)2 = 22 + (2 × 2 × n) + n2

= 4 + 4n + n2

Use the previous formula for the power of a difference to find the sec-
ond value. Again, substitute 2 for x and n for y:

(2 − n)2 = 22 − (2 × 2 × n) + n2

= 4 − 4n + n2

Approximation and Precedence
Numbers in the real world are not always exact. This is especially true in obser-
vational science and in engineering. Often, we must approximate. There are two
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ways of doing this: truncation (straightforward but less accurate) and rounding
(a little trickier, but more accurate).

TRUNCATION
The process of truncation involves the deletion of all the numerals to the right of
a certain point in the decimal part of an expression. Some electronic calculators
use truncation to fit numbers within their displays. For example, the number
3.830175692803 can be shortened as follows, depending on the number of dig-
its desired in the outcome:

3.830175692803
≈ 3.83017569280
≈ 3.8301756928
≈ 3.830175692
≈ 3.83017569
≈ 3.8301756
≈ 3.830175
≈ 3.83017
≈ 3.8301
≈ 3.830
≈ 3.83
≈ 3.8
≈ 3

The wavy equality symbol (≈) means “is approximately equal to.”

ROUNDING
Rounding is the preferred method of rendering numbers in shortened form. In
this process, when a given digit (call it r) is deleted at the right-hand extreme of
an expression, the digit q to its left (which becomes the new r after the old r is
deleted) is not changed if 0 ≤ r ≤ 4. If 5 ≤ r ≤ 9, then q increases by 1 (round it
up). Most electronic calculators use rounding. If rounding is used, the number
3.830175692803 can be shortened as follows, depending on the number of dig-
its desired in the outcome:

3.830175692803
≈ 3.83017569280
≈ 3.8301756928
≈ 3.830175693
≈ 3.83017569
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≈ 3.8301757
≈ 3.830176
≈ 3.83018
≈ 3.8302
≈ 3.830
≈ 3.83
≈ 3.8
≈ 4

PRECEDENCE
Mathematicians agree on a certain order in which operations should be per-
formed when they appear together in an expression. This prevents confusion and
ambiguity. When diverse operations appear in an expression, and if you need to
simplify that expression, perform the operations in the following sequence:

• Simplify all expressions within parentheses, brackets, and braces from the
inside out.

• Perform all exponential operations.
• Perform all products.
• Perform all quotients.
• For all quantities x and y, consider a difference x − y as a sum x + (−y).
• Perform all sums, proceeding from left to right.

Here are two examples of the above rules of precedence. Note that the order
of the numerals and operations is the same in each case, but the groupings differ.

[(2 + 3)(−3 − 1)2]2 = [5 × (−4)2]2

= (5 × 16)2

= 802

= 6400

[(2 + 3 × (−3) − 1)2]2 = [(2 + (−9) − 1)2]2

= (−82)2

= 642

= 4096

Suppose you’re given a complicated expression and there are no parentheses,
brackets, or braces in it. This is not ambiguous if the above mentioned rules are
followed. Consider this example:
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z = −3x3 + 4x2y − 12xy2 − 5y3

If this is written with parentheses, brackets, and braces to emphasize the rules of
precedence, it looks like this:

z = [−3(x3)] + {4[(x2)y]} – {12[x(y2)]} – [5(y3)]

Because we have agreed on the rules of precedence, we can do without the
parentheses, brackets, and braces. Nevertheless, if there is any doubt about a
crucial equation, you should use a couple of unnecessary parentheses rather than
risk making a calculation error.

PROBLEM 2-7
Truncate the value of the constant pi (π), which represents the ratio of
the circumference of a circle to its diameter in plane geometry, in steps 
from 10 digits down to six digits. Then round it off in steps from 10
digits down to six digits.

SOLUTION 2-7
First, find a reference that shows π to at least 10 digits. Most scientific
calculators, including the program in the computer operating system 
Windows XP, have a “pi” key. This key gives the following sequence
for the first 10 digits of π:

π = 3.141592653

Truncating in steps down to six digits, we get this sequence of values:

3.141592653
≈ 3.14159265
≈ 3.1415926
≈ 3.141592
≈ 3.14159

Rounding in steps down to six digits produces the same end result,
although a couple of the intermediate numbers are different:

3.141592653
≈ 3.14159265
≈ 3.1415927
≈ 3.141593
≈ 3.14159
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PROBLEM 2-8
What is the value of 2 + 3 × 4 + 5?

SOLUTION 2-8
First, perform the multiplication operation, obtaining the expression 2 +
12 + 5. Then add the numbers, obtaining the final value 19. Therefore:

2 + 3 × 4 + 5 = 19

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Find the arithmetic mean of 3, 4, and 20.

2. Find the geometric mean of 0, 6, and 71.

3. Find the value of 8 factorial.

4. Find the value of 6 to the 0th power (60).

5. Round off e = 2.718281828459. . . in steps down to four digits.

SOLUTIONS

1. To find the arithmetic mean, calculate as follows:

(3 + 4 + 20)/3 = 27/3
= 9

2. To find the geometric mean, calculate as follows:

(0 × 6 × 71)(1/3) = 0(1/3)

= 0
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3. To find 8 factorial, calculate as follows:

8! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8
= 40,320

4. The 0th power of any nonzero number is equal to 1. Therefore, 60 = 1.

5. Here is the value of e as it is repeatedly rounded off: 

2.718281828459
≈ 2.71828182846
≈ 2.7182818285
≈ 2.718281829
≈ 2.71828183
≈ 2.7182818
≈ 2.718282
≈ 2.71828
≈ 2.7183
≈ 2.718

Quiz

This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Using the product-of-sums rule, what is another expression for (x + 2)(y − 2)?

(a) xy + 2x + 2y + 4
(b) xy − 2x + 2y + 4
(c) xy − 2x + 2y − 4
(d) xy − 2x − 2y − 4

2. Using the product-of-sums rule “in reverse,” what is another expression
of the equation x2 + 8x + 16?

(a) (x + 4)(x − 4)
(b) (x2 + 4)(x2 − 4)
(c) (x + 4)2

(d) (x − 4)2
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3. The geometric and arithmetic means of x and y are the same if and only if

(a) (x + y) / 2 = (xy)1/2

(b) (x + y)2 = 1
(c) x2 + 2xy + y2 = 1
(d) Forget it! This can never happen.

4. The product (j + 1)(j − 1) is equal to

(a) 2
(b) 1
(c) −1
(d) −2

5. The product (1 + j)(1 − j) is equal to

(a) 2
(b) 1
(c) −1
(d) −2

6. When you want to find the arithmetic or geometric mean of two num-
bers, it doesn’t matter which number is expressed “first” and which num-
ber is expressed “second.” This arises from the fact that addition and
multiplication are both

(a) associative.
(b) commutative.
(c) distributive.
(d) complex.

7. Which of the following expressions is not defined for any real or com-
plex value of x?

(a) (3x + 3) / 2
(b) x2 + 10x + 100
(c) x2/ (x − 3)
(d) x2/ [3(x − x)]

8. In which of the following expressions must we place a constraint on the
value of x, in order to make sure that the expression is defined?

(a) In the expression (3x + 3) /2. Here, the value of x must not be equal
to 0.

(b) In the expression x2 + 10x + 100. Here, the value of x must not be
equal to −10.
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(c) In the expression x2/(x − 3). Here, the value of x must not be equal to 3.
(d) In the expression x2/ [3(x − x)]. Here, the value of x must be negative.

9. The expression papb can be rewritten as

(a) p(ab)

(b) p(a+b)

(c) p(a−b)

(d) p(a/b)

10. Suppose you are confronted with the following expression that does not
contain any parentheses or brackets to tell you the order in which opera-
tions should be done:

26 × 6 × 52 + 7 × 8 × 2 − 3/4 − 8/7

Which operation should you do first, in order to follow the rules of
precedence?

(a) Multiply 26 by 6.
(b) Divide 8 by 7.
(c) Square 5.
(d) It doesn’t make any difference what you do first.
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CHAPTER

51

Scientific Notation

In engineering and the physical sciences, huge or tiny quantities can be unwieldy
when written out as ordinary decimal numerals. Scientific notation provides a
“shortcut” method of expressing such quantities, usually as approximations.

Powers of 10
The most common way to denote extreme quantities is a scheme in which they
are portrayed as real-number multiples of integer powers of 10.

STANDARD FORM
A numeral in standard scientific notation (also called the American form) is
written as follows:

m.n1n2n3 . . .np × 10z
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where the dot (.) is a period, written on the base line (not a raised dot indicating
multiplication), and is called the radix point or decimal point. The numeral m (to
the left of the radix point) is a single digit from the set {1, −1, 2, −2, 3, −3, 4, −4,
5, −5, 6, −6, 7, −7, 8, −8, 9, −9}. Each of the numerals n1, n2, n3, and so on up
to np (to the right of the radix point) is a single digit from the set {0, 1, 2, 3, 4,
5, 6, 7, 8, 9}. The decimal expression to the left of the multiplication symbol is
called the coefficient. The value z, which is the power of 10, can be any integer:
positive, negative, or zero. Here are some examples of numbers written in stan-
dard scientific notation:

7.63 × 108

−4.10015 × 10−15

4.000 × 100

ALTERNATIVE FORM
In certain countries, and in some scientific and technical papers and books, a
variation on the above theme is used: alternative scientific notation (sometimes
called the European form). This system requires that m = 0. When the above
quantities are expressed this way, they appear as decimal fractions larger than
0 but less than 1, and the value of the exponent is increased by 1 compared with
the value of the exponent for the same number in standard scientific notation.
In alternative scientific notation, the above three quantities would be expressed
like this:

0.763 × 109

−0.410015 × 10−14

0.4000 × 101

Note that when a negative exponent is “increased by 1,” it becomes “1 less
negatively.” For example, when −15 is increased by 1, it becomes −14, not −16.

THE “TIMES SIGN”
The multiplication sign in scientific notation can be denoted in various ways.
Most scientists in America use the cross symbol (×), as in the examples shown
above. But a small dot raised above the base line (⋅) is sometimes used to repre-
sent multiplication in scientific notation. When written that way, the above num-
bers look like this in the standard power-of-10 form:
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7.63 ⋅ 108

−4.10015 ⋅ 10−15

4.000 ⋅ 100

This small dot should not be confused with a radix point.
A small dot symbol is preferred when multiplication is required to express the

dimensions of a physical unit. An example is the kilogram-meter per second
squared, which is symbolized kg ⋅ m/s2 or kg ⋅ m ⋅ s−2.

Another alternative multiplication symbol in scientific notation is the asterisk
(*). You will occasionally see numbers written like this in standard scientific
notation:

7.63 * 108

−4.10015 * 10−15

4.000 * 100

PLAIN-TEXT EXPONENTS
Once in awhile, you will have to express numbers in scientific notation using
plain, unformatted text. This is the case when transmitting information within
the body of an e-mail message (rather than as an attachment). Some calculators
and computers use this system in their displays. An uppercase letter E indicates
that the quantity immediately before it is to be multiplied by a power of 10, and
that power is written immediately after the E. In this format, the above quanti-
ties are written:

7.63E8

−4.10015E−15

4.000E0

In an alternative format, the exponent is always written with two numerals,
and always includes a plus sign or a or minus sign, so the above expressions
appear as:

7.63E+08

−4.10015E−15

4.000E+00

Still another alternative is the use of an asterisk to indicate multiplication, and
the symbol ^ to indicate a superscript, so the expressions look like this:
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7.63 * 10^8

−4.10015 * 10^−15

4.000 * 10^0

In all of these examples, the numerical values represented are identical.
Respectively, if written out in full, they are:

763,000,000

−0.00000000000000410015

4.000

ORDERS OF MAGNITUDE
Consider the following two extreme numbers:

2.55 × 1045,589

−9.8988 × 10−7,654,321

Imagine the task of writing either of these numbers out in ordinary decimal
form! In the first case, you would have to write the numerals 2, 5, and 5 in 
that order, and then follow them with a string of 45,587 zeroes. In the second
case, you’d have to write a minus sign, then the numeral 0, then a radix point,
then a string of 7,654,320 zeroes, and finally the numerals 9, 8, 9, 8, and 8, in
that order.

Now consider these two numbers:

2.55 × 1045,592

−9.8988 × 10−7,654,318

Both of these numbers are 1000 times larger than the original two, because
both exponents are larger by 3. The exponent 45,592 is 3 larger than the expo-
nent 45,589, and the exponent −7,654,318 is 3 larger than the exponent −7,654,321.
(Again, remember that numbers grow larger in the mathematical sense as they
become more positive or less negative.) The second pair of numbers is therefore
3 orders of magnitude larger than the first pair of numbers.

The order-of-magnitude concept makes it possible to construct number lines,
charts, and graphs with scales that cover large ranges or spans. Three examples
are shown in Fig. 3-1. Drawing A shows a logarithmic-scale number line span-
ning 3 orders of magnitude, from 100 (1) to 103 (1000). Illustration B shows 
a logarithmic-scale number line spanning 10 orders of magnitude, from 10−3

(0.001) to 107 (10,000,000). Illustration C shows a coordinate system with a
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logarithmic-scale horizontal axis spanning 10 orders of magnitude (from 10−3 to
107), and with a linear-scale vertical axis spanning values from 0 to 10.

WHEN TO USE SCIENTIFIC NOTATION
In formal technical documents, scientific notation is used only when the power
of 10 is large or small. If the exponent is between −2 and 2 inclusive, numbers
are written out in plain decimal form as a rule. If the exponent is −3 or 3, num-
bers are sometimes written out in plain decimal form, and are sometimes writ-
ten in scientific notation. If the exponent is −4 or smaller, or if it is 4 or larger,
values are expressed in scientific notation as a rule. (In number lines and graphs,
exceptions are sometimes made for consistency, as is the case in Fig. 3-1.)
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Fig. 3-1. At A, a number line spanning 3 orders of magnitude. 
At B, a number line spanning 10 orders of magnitude. At C, a
coordinate system whose horizontal scale spans 10 orders of mag-
nitude, and whose vertical scale extends linearly from 0 to 10.



Some calculators, when set for scientific notation, display all numbers that way,
even when it is not strictly necessary. This can be confusing, especially when the
power of 10 is zero and the calculator is set to display many digits. Most people
understand the expression 8.407 more easily than 8.407000000E+00, for exam-
ple, even though they represent the same number.

PREFIX MULTIPLIERS
Special verbal prefixes, known as prefix multipliers, are used in the physical sci-
ences and in engineering to express orders of magnitude. Table 3-1 shows the
prefix multipliers, and their symbols, for factors ranging form 10−24 to 1024.

PROBLEM 3-1
By how many orders of magnitude does a gigahertz differ from a kilo-
hertz? (The hertz is a unit of frequency, equivalent to a cycle per second.)

SOLUTION 3-1
Refer to Table 3-1. A gigahertz represents 109 hertz, and a kilohertz
represents 103 hertz. The exponents differ by 6. Therefore, a gigahertz 
differs from a kilohertz by 6 orders of magnitude.
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Designator Symbol Multiplier Designator Symbol Multiplier

yocto- y 10−24 deka- da or D 101

zepto- z 10−21 hecto- h 102

atto- a 10−18 kilo- K or k 103

femto- f 10−15 mega- M 106

pico- p 10−12 giga- G 109

nano- n 10−9 tera- T 1012

micro- µ or mm 10−6 peta- P 1015

milli- m 10−3 exa- E 1018

centi- c 10−2 zetta- Z 1021

deci- d 10−1 yotta- Y 1024

(none) — 100

Table 3-1. Power-of-10 prefix multipliers and their symbols.



PROBLEM 3-2
What, if anything, is wrong with the number 971.82 × 105 as an expres-
sion in standard scientific notation?

SOLUTION 3-2
This is a legitimate number, but it is not written in the correct format
for scientific notation. The number to the left of the multiplication
symbol should be at least 1, but smaller than 10. To convert the number
to the proper format, first divide the portion to the left of the multipli-
cation symbol by 100, so it becomes 9.7182. Then multiply the portion
to the right of the multiplication symbol by 100, increasing the expo-
nent by 2 so it becomes 107. This produces the same numerical value
but in the correct format for standard scientific notation: 9.7182 × 107.

Calculations in Scientific Notation

Let’s see how scientific notation works when performing simple calculations
involving common arithmetic operations.

MULTIPLICATION

When numbers are multiplied in scientific notation, the coefficients are multi-
plied by each other. Then the exponents are added. Finally, the product is
reduced to standard form. Here are three examples:

(3.045 × 105) × (6.853 × 106) = (3.045 × 6.853) × (105 × 106)

= 20.867385 × 105+6

= 20.867385 × 1011

= 2.0867385 × 1012

(3.045 × 10−4) × (−6.853 × 10−7) = [3.045 × (−6.853)] × (10−4 × 10−7)

= −20.867385 × 10−4+(−7)

= −20.867385 × 10−11

= −2.0867385 × 10−10
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(−3.045 × 105) × (−6.853 × 10−7) = [(−3.045) × (−6.853)] × (105 × 10−7)

= 20.867385 × 105−7

= 20.867385 × 10−2

= 2.0867385 × 10−1

= 0.20867385

This last number is written out in plain decimal form because the expo-
nent is between −2 and 2 inclusive.

DIVISION
When numbers are divided in scientific notation, the coefficients are divided by
each other. Then the exponents are subtracted. Finally, the quotient is reduced to
standard form. Here are three examples of how division is done in scientific
notation:

(3.045 × 105) / (6.853 × 106) = (3.045/6.853) × (105/106)

≈ 0.444331 × 105−6

= 0.444331 × 10−1

= 0.0444331

(3.045 × 10−4) / (−6.853 × 10−7) = [3.045/(−6.853)] × (10−4/10−7)

≈ −0.444331 × 10−4−(−7)

= −0.444331 × 103

= −4.44331 × 102

= −444.331

(−3.045 × 105) / (−6.853 × 10−7) = [(−3.045)/(−6.853)] × (105/10−7)

≈ 0.444331 × 105−(−7)

= 0.444331 × 1012

= 4.44331 × 1011

The numbers here do not divide out neatly, so the decimal-format portions are
approximated. The “wavy” or “squiggly” equals signs in the second lines of the
preceding three calculation sequences mean “is approximately equal to.”
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EXPONENTIATION
When a number is raised to a power in scientific notation, both the coefficient
and the power of 10 itself must be raised to that power, and the result multiplied.
Consider this example:

(4.33 × 105)3 = (4.33)3 × (105)3 = 81.182737 × 105×3

= 81.182737 × 1015

= 8.1182727 × 1016

Consider another example, in which the power of 10 is negative:

(5.27 × 10−4)2 = (5.27)2 × (10−4)2 = 27.7729 × 10−4×2

= 27.7729 × 10−8

= 2.77729 × 10−7

TAKING ROOTS
To find the root of a number in scientific notation, think of the root as a frac-
tional exponent. The square root is equivalent to the 1/2 power. The cube root 
is the same thing as the 1/3 power. In general, the nth root of a number (where n is
a positive integer) is the same thing as the 1/n power. When roots are regarded
this way, it is easy to multiply things out in exactly the same way as is done with
whole-number exponents. Here is an example:

(5.27 × 10−4)1/2 = (5.27)1/2 × (10−4)1/2 ≈ 2.2956 × 10−4×(1/2)

≈ 2.2956 × 10−2

= 0.02956

ADDITION
Scientific notation is awkward when adding up sums, unless all of the addends
are expressed to the same power of 10. Here are three examples:

(3.045 × 105) + (6.853 × 106) = 304,500 + 6,853,000 = 7,157,500

= 7.1575 × 106

(3.045 × 10-4) + (6.853 × 10−7) = 0.0003045 + 0.0000006853

= 0.0003051853

= 3.051853 × 10−4
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(3.045 × 105) + (6.853 × 10−7) = 304,500 + 0.0000006853

= 304,500.0000006853

= 3.045000000006853 × 105

SUBTRACTION
Subtraction follows the same basic rules as addition. It helps to convert the num-
bers to ordinary decimal format before subtracting:

(3.045 × 105) − (6.853 × 106) = 304,500 − 6,853,000

= −6,548,500

= −6.548500 × 106

(3.045 × 10−4) − (6.853 × 10−7) = 0.0003045 − 0.0000006853

= 0.0003038147

= 3.038147 × 10−4

(3.045 × 105) − (6.853 × 10−7) = 304,500 − 0.0000006853

= 304,499.9999993147

= 3.044999999993147 × 105

PROBLEM 3-3
State the generalized rule for multiplication in scientific notation, using
the variables u and v to represent the coefficients and the variables m
and n to represent the exponents.

SOLUTION 3-3
Let u and v be real numbers greater than or equal to 1 but less than 10,
and let m and n be integers. Then:

(u × 10m)(v × 10n) = uv × 10m+n

PROBLEM 3-4
State the generalized rule for division in scientific notation, using the
variables u and v to represent the coefficients and the variables m and
n to represent the exponents.
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SOLUTION 3-4
Let u and v be real numbers greater than or equal to 1 but less than 10,
and let m and n be integers. Then:

(u × 10m) / (v × 10n) = u /v × 10m−n

PROBLEM 3-5
State the generalized rule for exponentiation in scientific notation,
using the variable u to represent the coefficient, and the variables m and
n to represent the exponents.

SOLUTION 3-5
Let u be a real number greater than or equal to 1 but less than 10, and
let m and n be integers. Then:

(u × 10m)n = un × 10mn

Significant Figures
The number of significant figures, also called significant digits, in an expression
indicates the degree of accuracy to which we know a numerical value, or to
which we have measured, or can measure, a quantity.

MULTIPLICATION, DIVISION, AND EXPONENTIATION
When multiplication, division, or exponentiation is done using scientific nota-
tion, the number of significant figures in the final calculation result cannot legit-
imately be greater than the number of significant figures in the least exact
expression.

Consider the two numbers x = 2.453 × 104 and y = 7.2 × 107. The following
is a perfectly valid statement if the numerical values are exact:

xy = 2.453 × 104 × 7.2 × 107 = 2.453 × 7.2 × 1011

= 17.6616 × 1011

= 1.76616 × 1012

But if x and y represent measured quantities, as is nearly always the case in
experimental science and engineering, the above statement needs qualification.
We must pay close attention to how much accuracy we claim.
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HOW ACCURATE ARE WE?

When you see a product or quotient containing quantities expressed in scientific
notation, count the number of single digits in the coefficients of each number.
Then take the smallest number of digits. This is the number of significant fig-
ures you can claim in the final answer or solution.

In the previous example, there are four single digits in the coefficient of x, and
two single digits in the coefficient of y. So you must round off the answer, which
appears to contain six significant figures, to two significant figures. It is impor-
tant to use rounding, and not truncation, as follows:

xy = 2.453 × 104 × 7.2 × 107

= 1.8 × 1012

In situations of this sort, if you insist on being rigorous, you can use approximate-
equality symbols (the wavy ones) throughout, because you are always dealing
with approximate values. But most folks are content to use ordinary equality
symbols. It is universally understood that physical measurements are inherently
inexact.

Suppose you want to find the quotient x/y instead of the product xy? Proceed
as follows:

x /y = (2.453 × 104) / (7.2 × 107)

= (2.453/7.2) × 10−3

= 0.3406944444. . . × 10−3

= 3.406944444. . . × 10−4

= 3.4 × 10−4

WHAT ABOUT 0?
Sometimes, when you make a calculation, you will get an answer that lands on
a neat, seemingly whole-number value. Consider x = 1.41421 and y = 1.41422.
Both of these have six significant figures. The product, taking significant figures
into account, is:

xy = 1.41421 × 1.41422

= 2.0000040662

= 2.00000
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This appears to be exactly equal to 2. But in the real world (the measurement of a
physical quantity, for example), the presence of five zeros after the radix point
indicates an uncertainty of up to plus-or-minus 0.000005 (written ±0.000005).
When we claim a certain number of significant figures, 0 is as important as any
other digit.

WHAT ABOUT EXACT VALUES?
In some cases, values in physical formulas are given as exact. An example of this
is the equation for the area of a triangle, A, in terms of its base length b and its
height h:

A = bh /2

In this formula, 2 is a constant, and its value is exact. It can therefore have as
many significant figures as we want, depending on the number of significant fig-
ures we are given in the initial values. We can call it 2.0000000. . . , in effect
claiming an infinite number of significant figures, all of which, except for the
initial digit, are 0.

Sometimes there are constants in equations whose values can be taken as
exact, but which we must nevertheless round off when we want to assign it a cer-
tain number of significant figures. A common example of this is π (pi), which is
the ratio of the circumference of a circle to its straight-line diameter. This has a
theoretically exact value in nature, but it is a nonterminating, nonrepeating dec-
imal, and can never be exactly written down in that form.

Rounded off to 10 significant figures, and then progressively on down to nine,
eight, seven, six, five, four, and three significant figures, π turns out to have val-
ues as follows:

3.141592654

3.14159265

3.1415927

3.141593

3.14159

3.1416

3.142

3.14

We can use as many significant figures we need when we encounter a constant of
this type in a formula. (Another example is e, the natural logarithm base.)
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ADDITION AND SUBTRACTION
When measured quantities are added or subtracted, determining the number of
significant figures can involve subjective judgment. One way to resolve this is
to expand all the values out to their plain decimal form (if possible), make the
calculation, and then, at the end of the process, decide how many significant fig-
ures you can reasonably claim.

In some cases, the outcome of determining significant figures in a sum or dif-
ference is similar to what happens with multiplication or division. Take, for
example, the sum x + y, where x = 3.778800 × 10−6 and y = 9.22 × 10−7. This
calculation proceeds as follows:

x = 0.000003778800

y = 0.000000922

x + y = 0.0000047008

= 4.7008 × 10−6

= 4.70 × 10−6

In other instances, one of the values in a sum or difference is insignificant
with respect to the other. Suppose that x = 3.778800 × 104, while y = 9.22 × 10−7.
The process of finding the sum goes like this:

x = 37,788

y = 0.000000922

x + y = 37,788.000000922

= 3.7788000000922 × 104

In this case, y is so much smaller than x that it does not significantly affect the
value of the sum. We can conclude that the sum here is the same as the larger
number:

x + y = 3.7788 × 104

PROBLEM 3-6
What is the product of 1.001 × 105 and 9.9 × 10−6, taking significant
figures into account?
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SOLUTION 3-6
Multiply the coefficients and the powers of 10 separately:

(1.001 × 105)(9.9 × 10−6) = (1.001 × 9.9) × (105 × 10−6)

= 9.9099 × 10−1

= 0.99099

We must round this to two significant figures, because that is the most
we can legitimately claim. This particular expression does not have to
be written out in power-of-10 form, because the exponent is within the
range ±2 inclusive. Therefore:

(1.001 × 105)(9.9 × 10−6) = 0.99

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow problems.

PROBLEMS

1. Write down the number 238,200,000,000,000 in scientific notation.

2. Write down the number 0.00000000678 in scientific notation.

3. Draw a number line that spans 4 orders of magnitude, from 1 to 104.

4. Draw a coordinate system with a horizontal scale that spans 2 orders
of magnitude, from 1 to 100, and a vertical scale that spans 4 orders of
magnitude, from 0.01 to 100.

5. What does 3.5562E+99 represent? How does it differ from 3.5562E−99?

SOLUTIONS

1. This is the equivalent of 2.382 multiplied by 100,000,000,000,000 (or
1014), so in scientific notation, it is written as 2.382 × 1014.
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2. This is the equivalent of 6.78 multiplied by 0.000000001 (or 10-9), so in
scientific notation, it is written as 6.78 × 10−9.

3. See Fig. 3-2.
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Fig. 3-2. Illustration for Quick Practice Problem and Solution 3.

4. See Fig. 3-3.
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Fig. 3-3. Illustration for Quick Practice Problem and Solution 4.

5. The first expression represents 3.5562 × 1099, which is a huge positive inte-
ger. The letter E means “times 10 to the power of.” The digits that fol-
low the E compose the exponent. The second expression represents
3.5562 × 10−99. This is an extremely small positive rational number.
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Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Consider two numbers p and q, such that p = q + 10,000. By how many
orders of magnitude do p and q differ?
(a) 10,000.
(b) 100.
(c) 4.
(d) More information is necessary to answer this.

2. How many significant figures does the numeric expression 3,700.00 have?
(a) 6.
(b) 4.
(c) 3.
(d) 2.

3. In the coordinate system shown by Fig. 3-4, the horizontal scale
(a) is linear.
(b) spans 1 order of magnitude.
(c) spans 10 orders of magnitude.
(d) spans 100 orders of magnitude.

4. In the coordinate system shown in Fig. 3-4, the largest value that can be
plotted on the y axis, as it is drawn, differs from the smallest value that can
be plotted on that same axis, as it is drawn, by a factor

(a) that can’t be determined without more information.
(b) of 102.
(c) of 103.
(d) of 104.

5. Suppose you have a positive real number. Call it x. First, you square x.
Then, you square the result of that. Next, you cube the result of that.
Finally, you take the fourth power of the result of that. What is the final
value in terms of x?

(a) 1
(b) x10

(c) x48

(d) There is no way to tell without knowing the exact value of x.



6. Suppose you have a positive real number. Call it y. First, you square y.
Then, you square the result of that. Next, you cube the result of that.
Finally, you take the 1⁄3 power of the result of that. What is the final value
in terms of y?

(a) 1
(b) y2

(c) y4

(d) There is no way to tell without knowing the exact value of y.

7. Consider two numbers p and q, such that p = q/100. By how many orders
of magnitude do p and q differ?

(a) 100
(b) 10
(c) 2
(d) None of the above

8. Suppose you have a positive real number, expressed to 4 significant fig-
ures. Call it z. First, you take the fourth power of z. Then, you divide the
result by the square root of z. Finally, you square the result of that. When
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you get the final answer, how many significant figures can you legiti-
mately claim?

(a) 8.
(b) 6.
(c) 4.
(d) The value is theoretically exact, so you can claim as many signifi-

cant figures as you want.

9. Suppose you have a positive real number, expressed to 4 significant
figures. Call it w. First, you take the fourth power of w. Then, you divide
the result by the square root of w. Finally, you take the zeroth power of
that. When you get the final answer, how many significant figures can
you legitimately claim?

(a) 8.
(b) 6.
(c) 4.
(d) The value is theoretically exact, so you can claim as many signifi-

cant figures as you want.

10. Imagine a variable x that starts out as a large number negatively (for
example, x = −1000), and increases in value, passing through x = −100,
then x = −10, then x = −1, then x = −0.1, then x = −0.01, and so on, closer
and closer to 0. Suppose that the value of x approaches 0, and gets
arbitrarily close without limit, yet never reaches 0 or becomes positive. If x
is expressed in scientific notation, how does the power of 10 change as 
x varies in this way?

(a) It gets larger and larger, and is always positive.
(b) It gets smaller and smaller, and is always negative.
(c) It starts out positive, gets smaller and smaller, passes through 0, and

then becomes larger and larger negatively.
(d) It starts out negative, gets larger and larger (that is, smaller and

smaller negatively), passes through 0, and then becomes larger 
and larger positively. 
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4
CHAPTER

71

Coordinates in 
Two Dimensions

This chapter deals with coordinate systems and graphs in two dimensions (2D).
You will often see these in scientific and engineering papers, and they are the
sorts of graphs you’ll encounter in technical math courses. They’re also common
in subjects such as economics, meteorology, geology, physics, electronics, and
chemistry.

Cartesian Coordinates
The Cartesian plane, also called the rectangular coordinate plane or a system
of rectangular coordinates, is defined by two number lines. Figure 4-1 illustrates
the simplest possible set of rectangular coordinates. The number lines intersect
at their zero points, and are perpendicular to each other. The “horizontal”
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(right/left) number line is called the x axis, and the “vertical” (up/down) number
line is called the y axis.

ORDERED PAIRS AS POINTS
Figure 4-2 shows two specific points P and Q, plotted on the Cartesian plane.
The coordinates of P are (–5, –4), and the coordinates of Q are (3,5). Any given

CHAPTER 4 Coordinates in Two Dimensions 72

2 4 6

2

4

6

−2−4−6
−2

−4

−6

x

y
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Fig. 4-2. Two points P and Q, plotted in rectangular coordinates, and
a third point R, useful in calculating the distance d between P and Q.



point on the plane can be denoted as an ordered pair in the form (x,y), deter-
mined by the numerical values at which perpendiculars from the point intersect
the x and y axes. In Fig. 4-2, the perpendiculars are shown as “vertical” and “hor-
izontal” dashed lines. (Note that in the denotation of an ordered pair using paren-
theses and a comma, there is no space after the comma.)

ABSCISSA, ORDINATE, AND ORIGIN

In any graphing scheme, there is at least one independent variable and at least
one dependent variable. The independent-variable coordinate (usually x) of a
point on the Cartesian plane is known as the abscissa of the point, and the
dependent-variable coordinate (usually y) is known as the ordinate of the point.
The point (0,0) is called the origin of the coordinate plane. In Fig. 4-2, point P
has an abscissa of –5 and an ordinate of –4, and point Q has an abscissa of 3 and
an ordinate of 5.

DISTANCE BETWEEN POINTS

Consider two different points P = (x0,y0) and Q = (x1,y1) on the Cartesian plane.
The distance d between these two points can be found by determining the length
of the hypotenuse, or longest side, of a right triangle PQR, where point R is the
intersection of a “horizontal” line through P and a “vertical” line through Q. (In
this case, “horizontal” means “parallel to the x axis,” and “vertical” means “par-
allel to the y axis.”) An example is shown in Fig. 4-2. Alternatively, we can use
a “horizontal” line through Q and a “vertical” line through P, and consider their
mutual intersection point.

The Theorem of Pythagoras (also known as the Pythagorean theorem) from
plane geometry states that the square of the length of the hypotenuse of a right
triangle is equal to the sum of the squares of the other two sides. In this case, that
means:

d2 = (x1 – x0)2 + (y1 – y0)2

and therefore:

d = [(x1 – x0)2 + (y1 – y0)2]1/2

where the 1/2 power is the positive square root. In the situation shown in Fig. 4-2,
the distance d between points P = (x0,y0) = (–5,–4) and Q = (x1,y1) = (3,5) is:
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d = {[3 – (–5)]2 + [5 – (–4)]2}1/2

= [(3 + 5)2 + (5 + 4)2]1/2

= (82 + 92)1/2

= (64 + 81)1/2

= 1451/2

= 12.04

This is accurate to four significant figures, as determined using a standard digi-
tal calculator that can find square roots.

PROBLEM 4-1
What is the distance between the two points (0,5) and (–3,–3) in Car-
tesian coordinates? Express the answer to four significant figures.

SOLUTION 4-1
Use the distance formula. Let (x0,y0) = (0,5) and (x1,y1) = (–3,–3). Then:

d = [(x1 – x0)2 + (y1 – y0)2]1/2

= [(–3 – 0)2 + (–3 – 5)2]1/2

= [(–3)2 + (–8)2]1/2

= (9 + 64)1/2

= 731/2

= 8.544

Simple Cartesian Graphs
Straight lines on the Cartesian plane are represented by linear equations. There are
several forms in which a linear equation can be written. All linear equations can
be reduced to a form where neither x nor y is raised to any power other than 0 or 1.

STANDARD FORM OF LINEAR EQUATION
The standard form of a linear equation in variables x and y consists of constant
multiples of the two variables, plus another constant, all summed up to equal zero:
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ax + by + c = 0

In this equation, the constants are a, b, and c. If a constant happens to be equal
to 0, then it is not written down, nor is its multiple (by either x or y) written
down. Here are some examples of linear equations in standard form:

2x + 5y – 3 = 0

5y – 3 = 0

2x – 3 = 0

2x = 0

5y = 0

The last two of these equations can be simplified to x = 0 and y = 0, by dividing
each side by 2 and 5, respectively.

SLOPE OF A LINE
The slope of a straight line (often symbolized m) in the Cartesian xy-plane is
defined as the ratio of the change in y (symbolized ∆y) to the change in x (sym-
bolized ∆x) between any two distinct points on the line:

m = ∆y /∆x

“Horizontal” lines (those parallel to the x axis) have slopes equal to 0. Lines
that “ramp upward to the right” have positive slope. Lines that “ramp downward
to the right” have negative slope. “Vertical” lines (those parallel to the y axis) have
undefined slope.

SLOPE-INTERCEPT FORM OF LINEAR EQUATION
A linear equation in variables x and y can be manipulated so it is in a form that
is easy to plot on the Cartesian plane. Here is how a linear equation in standard
form can be converted to slope-intercept form:

ax + by + c = 0
ax + by = –c

by = –ax – c

y = (–a/b)x – c/b

y = (–a/b)x + (–c/b)
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where a, b, and c are real-number constants, and b ≠ 0. The quantity –a/b is
the slope of the line, an indicator of how steeply and in what sense the line
slants. The quantity –c/b represents the ordinate (or y-value) of the point at which
the line crosses the y axis, where x = 0. This point is called the y-intercept. Let
dx represent some change in the value of x on such a graph. Let dy represent
the change in the value of y that results from this change in x. The ratio dy/dx
is the slope of the line, and is symbolized m. Let k represent the y-intercept.
Then m and k can be derived from the coefficients a, b, and c as follows, pro-
vided b ≠ 0:

m = –a /b

k = –c /b

The linear equation can be rewritten in slope-intercept form as:

y = mx + k

When you want to plot the graph of a linear equation that appears in slope-
intercept form in Cartesian coordinates, proceed as follows:

• Plot the point on the y axis where y = k.
• Move horizontally to the right by some whole number of units (call this

number n).
• If the slope m is positive, move vertically upward by mn units.
• If the slope m is negative, move vertically downward by |mn| units, where

|mn| represents the absolute value of the product mn.
• If m = 0, don’t move up or down at all.
• Plot the resulting point on the plane where x = n and y = mn + k.
• Connect the two points with a straight line.

Figures 4-3A and 4-3B illustrate the following linear equations as graphed in
slope-intercept form:

y = 5x – 3

y = –x + 2

A positive slope indicates that the line ramps upward as you move from left
to right, and a negative slope indicates that the line ramps downward as you
move from left to right. A slope of 0 indicates a horizontal line. The slope of a
vertical line is undefined because, in the form shown here, it requires that m be
defined as a quotient in which the denominator is equal to 0.
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POINT-SLOPE FORM OF LINEAR EQUATION
It is difficult to plot a graph of a line based on the y-intercept (the point at which
the line intersects the y axis) when the part of the graph of interest is far from the
y axis. In this sort of situation, the point-slope form of a linear equation can be
used. This form is based on the slope m of the line and the coordinates of a
known point (x0,y0):

y – y0 = m(x – x0)

To plot a graph of a linear equation that appears in point-slope form, follow
these steps in order:

• Plot the known point (x0,y0).
• Move horizontally to the right by some whole number of units (call this

number n).
• If the slope m is positive, move vertically upward mn units.
• If the slope m is negative, move vertically downward |mn| units, where |mn|

represents the absolute value of mn.
• If m = 0, don’t move up or down at all.
• Plot the resulting point (x1,y1).
• Connect the points (x0,y0) and (x1,y1) with a straight line.

Figure 4-4A illustrates the following linear equation as graphed in point-slope
form:

y – 104 = 3(x – 72)
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Figure 4-4B is another graph of a linear equation in point-slope form:

y + 55 = –2(x + 85)

FINDING LINEAR EQUATION BASED 
ON GRAPH

Suppose we know the exact coordinates of two points P and Q in the Cartesian
plane. These two points define a unique straight line L. Give the coordinates of
the points these names:

P = (xp,yp)

Q = (xq,yq)

The slope m of line L can be found using either of the following formulas:

m = (yq – yp) / (xq – xp)

m = (yp – yq) / (xp – xq)

provided xp is not equal to xq. The point-slope equation of L can be determined
based on the known coordinates of either point P or point Q. Therefore, either
of the following formulas represent the line L:

y – yp = m(x – xp)

y – yq = m(x – xq)

CHAPTER 4 Coordinates in Two Dimensions 79

x

y

−80−85−90
−50

−55

−60

x y00,( ) = (−85,−55)

11x y,( ) = (−85+2,−55−4)

Fig. 4-4B. Graph of the linear equation y + 55 =
−2(x + 85).



PROBLEM 4-2
Consider the two points P = (4,8) and Q = (–1,2) on the Cartesian
plane. What is the slope m of a line connecting these two points? What 
is the equation of that line, expressed in point-slope form? Remember
that in an ordered pair for Cartesian coordinates, the first value is the x
value, and the second value is the y value.

SOLUTION 4-2
To calculate m, we can use either of two formulas for the slope as given
above. Let’s use the first one. The calculation proceeds as follows, based
on the input numbers xp = 4, yp = 8, xq = –1, and yq = 2:

m = (yq – yp) / (xq – xp)

= (2 – 8) / (–1 – 4)

= (–6)/(–5)

= 6/5

To determine the point-slope form of the equation for the line con-
necting the points, we can, again, use either of two general formulas
given above. Let’s use the first one, which is based on point P:

y – yp = m(x – xp)

y – 8 = (6/5)(x – 4)

Polar Coordinates
Two versions of the polar coordinate plane are shown in Figs. 4-5A and 4-5B.
These systems are sometimes called mathematician’s polar coordinates. One
variable is plotted as an angle q relative to a reference axis pointing to the right
(or “east”), and the other variable is plotted as a distance (called the radius) r
from the center. A coordinate point is thus denoted in the form of an ordered pair
(q,r). Some texts reverse the ordered pair, so coordinates are denoted in the form
(r,q ). The (q,r) notation is used in this book, because it is intuitively easier for
most people to consider the angle as an independent variable (customarily listed
first in ordered pairs) rather than as a dependent variable (customarily listed sec-
ond). The point (q,r) = (0,0) is called the origin.

RADIUS
In any polar plane, the radius coordinates are illustrated as concentric circles. The
larger the circle, the greater the value of r. In Figs. 4-5A and 4-5B, the circles are

CHAPTER 4 Coordinates in Two Dimensions 80



CHAPTER 4 Coordinates in Two Dimensions 81

0°180°

90°

270°

θ

r

Fig. 4-5A. The polar coordinate plane. The angle q is in degrees,
and the radius r is in uniform increments.

0π

π/2

π/23

θ

r

Fig. 4-5B. Another form of the polar coordinate plane. The angle q
is in radians, and the radius r is in uniform increments.



not labeled in units. You can do that. Imagine each concentric circle, working
outward, as increasing by any number of units you want. For example, each
radial division might represent one unit, or five units, or 10, or 100.

DIRECTION
Direction can be expressed in angular degrees (º) or radians (rad) counterclock-
wise from a reference axis pointing to the right or “east.” A radian is the equiva-
lent of (180/π)º, or approximately 57.3º. In Fig. 4-5A, the direction q is in degrees.
Figure 4-5B shows the same polar plane, using radians to express the direction.
Regardless of whether degrees or radians are used, the angular scale is linear.
The physical angle on the graph is directly proportional to the value of q.

PROBLEM 4-3
Can the radius r in a polar-coordinate ordered pair be negative?

SOLUTION 4-3
Yes. In polar coordinates, it is all right to have a negative radius. If
some point is specified with r < 0, we multiply r by –1 so it becomes 
positive, and then add or subtract 180º (π rad) to or from the direction
angle. That is like saying “Drive 10 kilometers east” instead of “Drive
negative 10 kilometers west.” Negative radii must be allowed in order
to graph certain equations in their entirety.

PROBLEM 4-4
Can the direction angle q in a polar-coordinate ordered pair be less than
0º or more than 360º?

SOLUTION 4-4
Yes. Nonstandard direction angles are sometimes used in polar coordi-
nates. If the value of q is 360º (2π rad) or more, it represents more than 
one complete counterclockwise revolution from the 0º (0 rad) reference
axis. If the direction angle is less than 0º (0 rad), it represents clock-
wise revolution instead of counterclockwise revolution. Nonstandard
direction angles must be allowed in order to graph certain equations in
their entirety.
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Simple Polar Graphs

The graphs of some equations can be expressed more simply in polar coordi-
nates than in Cartesian coordinates when the direction q is expressed in radians.
In the examples that follow, the “rad” abbreviation is eliminated, because it is
understood that all angles are in radians.

CIRCLE CENTERED AT ORIGIN
The equation of a circle centered at the origin in the polar plane is given by the
following formula:

r = a

where a is a real-number constant not equal to 0. The graph of this equation is
illustrated in Fig. 4-6.
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CIRCLE PASSING THROUGH ORIGIN
The general form for the equation of a circle passing through the origin and cen-
tered at the point (q0,r0) in the polar plane is as follows:

r = 2r0 cos (q – q0)

where q0 and r0 are real-number constants, and r0 is not equal to 0. The abbre-
viation “cos” stands for the trigonometric cosine function, which can be deter-
mined for any known quantity using a scientific calculator. A generalized graph
of the above equation is shown in Fig. 4-7.

ELLIPSE CENTERED AT ORIGIN
The equation of an ellipse centered at the origin in the polar plane is given by
the following formula:

r = ab / (a2 sin2 q + b2 cos2 q )1/2
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where a and b are real-number constants, neither of which is equal to 0. The
abbreviations “sin” and “cos” stand for the trigonometric sine and cosine func-
tions, which can be determined for any known quantities using a scientific cal-
culator. A generalized graph of the above equation is shown in Fig. 4-8. In the
figure, a represents the distance from the origin to the curve as defined along
the “horizontal” radial axis, and b represents the distance from the origin to the
curve as defined along the “vertical” radial axis. The values a and b represent
the lengths of the semi-axes of the ellipse. The greater value is the length of the
major semi-axis, and the lesser value is the length of the minor semi-axis.

SPIRAL
The general form of the equation of a spiral centered at the origin in the polar
plane is given by the following formula:

r = aq

where a is a real-number constant not equal to 0. This constant determines the
pitch (tightness) of the spiral. An example of this type of spiral, called the spiral
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of Archimedes because of the uniform manner in which its radius increases as
the angle increases, is illustrated in Fig. 4-9.

PROBLEM 4-5
What is the value of the constant, a, in the spiral shown in Fig. 4-9?
What is the equation of this spiral? Assume that each radial division repre-
sents 1 unit.

SOLUTION 4-5
Note that if q = π, then r = 2. Therefore, we can solve for a by substi-
tuting this number pair in the general equation for the spiral. We know 
that (q,r) = (π,2), and that is all we need. Proceed like this:

r = aq
2 = aπ

2/π = a

Therefore, a = 2/π , and the equation of the spiral is r = (2/π)q or, in a some-
what simpler form without parentheses, r = 2q /π .
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Navigator’s Coordinates
Navigators and military people use a form of polar coordinate plane similar to
that used by mathematicians and scientists. The radius is called the range, and
real-world units are commonly specified, such as meters (m) or kilometers (km).
The angle, or direction, is called the azimuth, heading, or bearing, and is meas-
ured in degrees clockwise from north. The basic scheme is shown in Fig. 4-10.
The azimuth is symbolized a (the lowercase Greek alpha), and the range is sym-
bolized r.

WHAT IS NORTH?
There are two ways of defining “north,” or 0º. The more accurate, and thus the
preferred and generally accepted, standard uses geographic north. This is the direc-
tion you would travel if you wanted to take the shortest possible route over the
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earth’s surface to the north geographic pole. In the northern hemisphere, geo-
graphic north corresponds almost exactly to a point on the horizon directly
below Polaris (also called the North Star). The other standard uses magnetic
north. This is the direction indicated by the needle in a magnetic compass.

For most locations on the earth’s surface, there is a difference between geo-
graphic north and magnetic north. This difference, measured in degrees, is called
the declination. Navigators in olden times had to know the declination for their
location, when they couldn’t use the stars to determine geographic north. Now-
adays, there are electronic navigation systems such as the Global Positioning
System (GPS) that make the magnetic compass irrelevant, provided the equip-
ment is in working order.

STRICT RESTRICTIONS
In navigator’s polar coordinates, the range can never be negative. Navigators
will not talk about traveling –20 km on a heading of 270º, for example, when
they really mean they are traveling 20 km on a heading of 90º. When working
out certain problems, it’s possible that the result will contain a negative range. If
this happens, the value of r should be multiplied by –1, and the value of a should
be increased or decreased by 180º so the result is at least 0º but less than 360º.

The azimuth, bearing, or heading must likewise conform to certain values.
The smallest possible value of a is 0º (representing geographic north). As you
turn clockwise as seen from above, the values of a increase through 90º (east),
180º (south), 270º (west), and ultimately approach 360º (north again).

We therefore have these restrictions on the ordered pair (a,r) in navigator’s
polar coordinates:

0 ≤ a < 360

r ≥ 0

PROBLEM 4-6
Suppose you observe a radar screen and see a target (blip) directly
southwest of your location, at a range of 10 km. What are the coordinates
of this target? Express these coordinates as an ordered pair of the form (a,r).

SOLUTION 4-6
Given “real-world” units of kilometers for the range, we know that r = 10.
Geographic southwest lies at a bearing of 225º. Therefore, a = 225.
The coordinates are:
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(a,r) = (225º,10)

Note that in navigator’s polar coordinates, the angles are normally spe-
cified in degrees, not in radians.

Coordinate Conversions
In science and engineering, it is sometimes necessary to convert from one type
of coordinate system to another. This can be done handily using computer pro-
grams designed for the purpose. Nevertheless, it is worthwhile to know the mathe-
matical principles by which these programs work.

CARTESIAN TO MATHEMATICIAN’S POLAR
Figure 4-11 shows a point P = (x0,y0) = (q0,r0) graphed on superimposed Cartesian
and mathematician’s polar coordinate systems. If we know the Cartesian coor-
dinates, we can convert to mathematician’s polar coordinates using these formulas:
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q0 = arctan (y0/x0) if x0 > 0

q0 = 90º if x0 = 0 and y0 > 0 (for q0 in degrees)

q0 = 270º if x0 = 0 and y0 < 0 (for q0 in degrees)

q0 = π/2 if x0 = 0 and y0 > 0 (for q0 in radians)

q0 = 3π/2 if x0 = 0 and y0 < 0 (for q0 in radians)

q0 = 180º + arctan (y0/x0) if x0 < 0 (for q0 in degrees)

q0 = π + arctan (y0/x0) if x0 < 0 (for q0 in radians)

r0 = (x0
2 + y0

2)1/2

If q0 turns out negative as determined according to any of the above formu-
las, add 360º or 2π rad to get the legitimate value, which should always be
greater than or equal to 0º (0 rad) and less than 360º (2π rad).

MATHEMATICIAN’S POLAR TO CARTESIAN

Mathematician’s polar coordinates can be converted to Cartesian coordinates
using the following formulas:

x0 = r0 cos q0

y0 = r0 sin q0

CARTESIAN TO NAVIGATOR’S POLAR

In order to convert the coordinates of a point (x0,y0) in Cartesian coordinates to
a point (a0,r0) in navigator’s polar coordinates, use these formulas:

a0 = arctan (x0/y0) if y0 > 0

a0 = 90º if y0 = 0 and x0 > 0

a0 = 270º if y0 = 0 and x0 < 0

a0 = 180º + arctan (x0/y0) if y0 < 0

r0 = (x0
2 + y0

2)1/2

If a0 turns out negative according to any of the above formulas, add 360º to get
the legitimate value, which should always be greater than or equal to 0º but less
than 360º.
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NAVIGATOR’S POLAR TO CARTESIAN
Here are the conversion formulas for translating a point (a0,r0) in navigator’s
polar coordinates to a point (x0,y0) in the Cartesian plane:

x0 = r0 sin a0

y0 = r0 cos a0

These are similar to the formulas you use to convert mathematician’s polar
coordinates to Cartesian coordinates, except the roles of the sine and cosine
function are reversed.

MATHEMATICIAN’S POLAR TO NAVIGATOR’S POLAR
Sometimes you must convert from mathematician’s polar coordinates to navi-
gator’s polar coordinates, or vice-versa. The radius or range of a particular point,
r0, is always the same in both systems, but the angles usually differ. If you 
know the direction angle q0 of a point in mathematician’s polar coordinates and
you want to find the equivalent azimuth a0 in navigator’s polar coordinates, first 
be sure q0 is expressed in degrees. Then use one of the following formulas, as
applicable:

a0 = 90º – q0 if 0º ≤ q0 ≤ 90º

a0 = 450º – q0 if 90º < q0 < 360º

NAVIGATOR’S POLAR TO MATHEMATICIAN’S POLAR
If you know the azimuth a0 in degrees of a distant point or target in navigator’s
polar coordinates, and you want to find the equivalent direction angle q0 in
mathematician’s polar coordinates, then you can use either of the following
conversion formulas, depending on the value of a0:

q0 = 90º – a0 if 0º ≤ a0 ≤ 90º

q0 = 450º – a0 if 90º < a0 < 360º

PROBLEM 4-7
Consider the point (q0,r0) = (3π/4,2) in mathematician’s polar coordi-
nates. What is the (x0,y0) representation of this point in Cartesian coor-
dinates? Express the answer to four significant figures.
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SOLUTION 4-7
Use the conversion formulas above:

x0 = r0 cos q0

y0 = r0 sin q0

Plugging in the numbers gives us these values, accurate to four signif-
icant figures:

x0 = 2 cos (3π/4) = 2 × (–0.7071) = –1.414

y0 = 2 sin (3π/4) = 2 × 0.7071 = 1.414

Thus, (x0,y0) = (–1.414,1.414).

PROBLEM 4-8
Suppose a radar set displaying navigator’s polar coordinates indicates
the presence of a hovering object at a bearing of 300º and a range of 
40 km. If we say that a kilometer is the same as a “unit,” what are the
coordinates (q0,r0) of this object in mathematician’s polar coordinates?
Express q0 in both degrees and radians.

SOLUTION 4-8
We are given coordinates (a0,r0) = (300º,40). The value of r0, the
radius, is the same as the range, in this case 40 units. As for the angle
q0, remember the conversion formulas given above. In this case, a0 is
greater than 90º and less than 360º. Therefore:

q0 = 450º – a0

q0 = 450º – 300º = 150º

This gives us the result (q0,r0) = (150º,40). To express q0 in radians,
note that there are 2π radians in a full 360º circle, or π radians in a 180º
angle. Also, note that 150º is exactly 5/6 of 180º. Therefore, q0 = 5π/6
rad, and we can say that (q0,r0) = (150º,40) = (5π/6,40).

Other Coordinate Systems
Here are a few other two-dimensional coordinate systems that are used in scien-
tific and engineering applications.
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LATITUDE AND LONGITUDE
Latitude and longitude coordinates uniquely define the positions of points on the
surface of a sphere or in the sky. Even though a sphere is a three-dimensional
(3D) object, its surface can be considered a 2D object that is curved or “warped.”
The same holds for apparent directions in the sky.

Figure 4-12A illustrates the latitude/longitude system commonly used to
define locations on the earth’s surface. Latitude “lines” are circles on the surface
that run east and west, and that lie in planes parallel to the plane containing the
equator. Longitude “lines” are circles on the surface that run north and south,
each one intersecting the equator at a 90º angle, and all of them converging on
the geographic poles. The polar axis connects to points at specifically chosen
antipodes (opposite points) on the globe. These points are assigned latitudes 
q = +90º (north geographic pole) and q = –90º (south geographic pole). A longi-
tude reference axis runs outward from the center of the sphere at a right angle
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to the polar axis, passing through the equator, and it is assigned longitude f = 0º.
Latitude angles q are defined positively (north) and negatively (south) relative
to the geometric plane containing the equator. Longitude angles f are defined
positively (east) and negatively (west) relative to the longitude reference axis.
The angles are restricted as follows:

–90º ≤ q ≤ +90º

–180º < f ≤ +180º

On the earth’s surface, the half-circle connecting the 0º longitude line with the
poles passes through Greenwich, England. It is known as the Greenwich merid-
ian or the prime meridian. Longitude angles are defined with respect to this
meridian. Negative angles are west of the prime meridian, and positive angles
are east of the prime meridian.

CELESTIAL COORDINATES
Celestial latitude and celestial longitude are extensions of the earth’s latitude
and longitude into the heavens. Figure 4-12A, the same set of coordinates used
for geographic latitude and longitude, applies to this system. An object whose
celestial latitude and longitude coordinates are (q,f) appears at the zenith
(directly overhead) in the sky from the point on the earth’s surface whose lati-
tude and longitude coordinates are (q,f).

Declination and right ascension define the positions of objects in the sky rel-
ative to the stars. (The term declination in celestial coordinates means something
entirely different than the term declination that refers to the difference between
geomagnetic north and geographic north. Don’t confuse them!) Figure 4-12B
illustrates the basics of this system. In celestial coordinates, the declination (q )
is identical to the celestial latitude. Right ascension (f) is measured eastward
from the vernal equinox, which is the position of the sun in the heavens at the
moment spring begins in the northern hemisphere (on, or within a couple of days
of, March 21). The angles are restricted as follows:

–90º ≤ q ≤ +90º

0º ≤ f < 360º

HOURS, MINUTES, AND SECONDS
Astronomers use a peculiar scheme for expressing the angle of right ascension
(RA). Instead of expressing it in degrees or radians, astronomers use hours,
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minutes, and seconds based on 24 hours (h) in a complete circle (correspon-
ding to the 24 hours in a day). That means each hour of right ascension is equi-
valent to 15º. When RA angles are expressed as hours rather than as degrees,
the following restriction applies for right ascension coordinates, also shown in
Fig. 4-12B:

0 h ≤ RA < 24 h

Minutes and seconds of right ascension, defined in this manner, turn out to be
different from the fractional degree units by the same names. One minute of
right ascension is 1/60 of an hour or 1/4 of an angular degree, and one second 
of right ascension is 1/60 of a minute or 1/240 of an angular degree. This com-
pares with the pure angular definitions, where one minute of arc is 1/60 of a
degree, and one second of arc is 1/60 of a minute or 1/3600 of a degree.
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SEMILOG (x-LINEAR) COORDINATES
Figure 4-13 shows semilogarithmic (semilog) coordinates for defining points 
in a portion of the xy-plane. The independent-variable axis is linear, and the
dependent-variable axis is logarithmic. The numerical values that can be depic-
ted on the y axis are restricted to one sign or the other (positive or negative).
Here, the graphable ranges of the variables are: 

–1 ≤ x ≤ 1

0.1 ≤ y ≤ 10

The y axis in Fig. 4-13 spans two orders of magnitude (powers of 10). The
span could be larger or smaller than this, but in any case the y values cannot
extend to zero. Because the x axis covers a range all the way down to 0, it is
meaningless to talk about the number of orders of magnitude it portrays. It’s
tempting to suggest that the x axis as shown in Fig. 4-13 covers an “infinite”
number of orders of magnitude, but this might lead some people to imagine that
the axis is infinitely long, which it clearly is not.
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SEMILOG (y-LINEAR) COORDINATES
Figure 4-14 shows semilog coordinates for defining points in a different portion
of the xy-plane. In this case, the independent-variable axis is logarithmic, and the
dependent-variable axis is linear. The numerical values that can be depicted on
the x axis are restricted to one sign or the other (positive or negative). In this
case, the graphable ranges of the variables are: 

0.1 ≤ x ≤ 10

–1 ≤ y ≤ 1

The x axis in Fig. 4-14 spans two orders of magnitude (powers of 10). The
span could be larger or smaller, but in any case the x values cannot extend to
zero. The number of orders of magnitude covered by the y axis is undefined
here, for the same reason the number of orders of magnitude for the x axis in 
Fig. 4-13 is undefined.
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LOG-LOG COORDINATES
Figure 4-15 shows log-log coordinates for defining points in a portion of the xy-
plane.  Both axes are logarithmic. The numerical values that can be depicted on
either axis are restricted to one sign or the other (positive or negative).  In this
example, the graphable ranges of the variables are: 

0.1 ≤ x ≤ 10

0.1 ≤ y ≤ 10

Both of the axes in Fig. 4-15 span two orders of magnitude (powers of 10).
The span of either axis could be larger or smaller, but in any case the values can-
not extend to zero.

PROBLEM 4-9
How do the celestial latitude and longitude of a star in the sky, such as
Sirius (the “Dog Star”), change over the course of a 24-hour period?

SOLUTION 4-9
The celestial latitude of a star does not change over the course of a 24-
hour period. The celestial longitude progresses from east to west, making
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a complete circle every 24 hours. For example, if Sirius is at celestial
longitude f = 0º at 1:00 A.M. Eastern Standard Time (EST), then f =
–90º at 7:00 A.M. EST, f = +180º at 1:00 P.M. EST, and f = + 90º at 7:00
P.M. EST. In the case of a star that is exactly at the north celestial pole
or the south celestial pole, the celestial longitude is not defined. Polaris
(the “North Star”) is almost exactly at the north celestial pole.

PROBLEM 4-10
How do the declination and right ascension of a star in the sky, such as
Sirius (the “Dog Star”), change over the course of a 24-hour period?

SOLUTION 4-10
Neither of these coordinates changes over the course of a 24-hour
period, because declination and right ascension are defined with 
respect to the stars, not with respect to the surface of the earth. This is
why astronomers prefer to specify declination and right ascension,
rather than celestial latitude and longitude, for locating stars, nebulae,
galaxies, and other distant objects in the heavens.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS
1. Find the distance between the points (2,4) and (–3,12) on the Cartesian

plane. Assume these coordinates are exact, and round the answer off to
three significant figures.

2. Find the distance between the points (0,0) and (100,110) on the Cartesian
plane. Assume these coordinates are exact, and round the answer off to
five significant figures. Use scientific notation for all numerical values of
10,000 (104) or greater.

3. Suppose a line has a slope of 3 and passes through the point (0,–8) on the
Cartesian plane. What is the equation of this line in slope-intercept form?
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4. Suppose a line is parallel to the y axis, and runs through the point (2,0)
on the Cartesian plane. What is the equation of this line? What is the
slope of this line?

5. Suppose a line runs through the point (–4,7) and has a slope of –2 on the
Cartesian plane. What is the equation of this line in slope-intercept form?
In standard form?

SOLUTIONS

1. Let (x0,y0) = (2,4), and let (x1,y1) = (–3,12). The distance d between the
points is:

d = [(x1 – x0)2 + (y1 – y0)2]1/2

= [(–3 – 2)2 + (12 – 4)2)]1/2

= [(–5)2 + 82]1/2

= (25 + 64)1/2

= 891/2 = 9.433981. . .

This rounds off to 9.43.

2. Let (x0,y0) = (0,0), and let (x1,y1) = (100,110). The distance d between the
points is:

d = [(x1 – x0)2 + (y1 – y0)2]1/2

= [(100 – 0)2 + (110 – 0)2]1/2

= (1002 + 1102)1/2

= (1.0000 × 104 + 1.2100 × 104)1/2

= (2.2100 × 104)1/2

= 148.660687. . .

This rounds off to 148.66.

3. The slope-intercept form for a line is y = mx + k, where m is the slope and
k is the y-intercept. We are given m = 3. The point (0,–8) is on the y axis
because x = 0, so the y-intercept is –8. The equation is found by plugging
in these numbers, as follows:

y = 3x + (–8)
y = 3x – 8
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4. The equation of the line is simply x = 2. The slope is undefined, because
the line is “vertical” (parallel to the y axis).

5. The point-slope form for a line is y – y0 = m(x – x0), where m is the slope
and (x0,y0) is a point on the line. We are given (x0,y0) = (–4,7) and m =
–2. The equation in slope-intercept form is found by “plugging numbers
in” and then simplifying, as follows:

y – y0 = m(x – x0)

y – 7 = –2[x – (–4)]

y – 7 = –2(x + 4)

y – 7 = –2x – 8

y = –2x – 1

This can be converted to standard form by adding the quantity (2x + 1)
to both sides, simplifying, and rearranging:

y + 2x + 1 = –2x – 1 + 2x + 1

2x + y + 1 = 0

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. You may
draw diagrams if that will help you visualize things. A good score is 8 correct.
Answers are in the back of the book.

1. Consider the following equation:

r = 6 cos (q – π/4)

What does the graph of this equation look like in polar coordinates?

(a) It is a straight line passing through the origin.
(b) It is a straight line that does not pass through the origin.
(c) It is a circle centered at the origin.
(d) It is a circle that is not centered at the origin.

2. Consider the following equation:

y – 3 = 7(x + 2)
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Which of the following points lies on the graph of this equation in
Cartesian coordinates?

(a) (2,3)
(b) (–2,3)
(c) (2,–3)
(d) (–2, –3)

3. In the graph of the equation 3x + y + 5 = 0, what is the slope?

(a) 3
(b) –3
(c) 5
(d) –5

4. In the graph of the equation y – 7 = 0, what is the slope?

(a) 7
(b) –7
(c) 0
(d) It is undefined.

5. Consider two points P and Q on the Cartesian plane. Suppose that point
P is located at the origin, and the coordinates of point Q are (xq, yq). Now
consider a third point R with coordinates (xr, yr), such that xr = 2xq and
yr = 2yq. How does the distance dpq between points P and Q compare
with the distance dpr between points P and R?

(a) There is no way to tell without more information.
(b) dpr = (dpq

2 + dpr
2)1/2

(c) dpr = 4dpq

(d) dpr = 2dpq

6. What is the distance d in mathematician’s polar coordinates between the
origin and the point q = π/2?

(a) d = π/2
(b) d = π
(c) d = (π/2) = π2/4
(d) This is a meaningless question, because in polar coordinates, q = π/2

does not represent a point.

7. What is the distance d in mathematician’s polar coordinates between the
origin and the point (q0,r0) = (–π /4,3)?
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(a) d = 3
(b) d = π/4
(c) d = 5
(d) This is a meaningless question, because in polar coordinates, (q0,r0)

= (–π/4,3) does not represent a point.

8. Consider a town located halfway between the equator and the north geo-
graphic pole. What is the longitude of this town?

(a) +45º
(b) –45º
(c) π/2
(d) There is no way to tell without more information.

9. Suppose a radar set displaying navigator’s polar coordinates indicates the
presence of a hovering object directly northeast of us, and a range of 7
nautical miles. If we say that a nautical mile is the same as a “unit,” what
are the coordinates (q0,r0) of this object in mathematician’s (not naviga-
tors) polar coordinates, with q0 expressed in radians? 

(a) (π/4,7)
(b) (π/2,7)
(c) (3π/4,7)
(d) (π,7)

10. Imagine a distant star that appears to pass, as the earth rotates, directly
through the zenith point in the sky over a town located halfway between
the equator and the north geographic pole. At a certain time (which varies
over the course of a year) each day, the star appears at the zenith as
observed from that town. What is the declination of this distant star?

(a) +90º
(b) –90º
(c) +45º
(d) There is no way to tell without more information.
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5
CHAPTER

105

Coordinates in 
Three Dimensions

This chapter deals with three-dimensional (3D) coordinate systems and graphs.
You will sometimes see these in scientific and engineering papers, and once in
a while you’ll encounter them in math courses, particularly in multivariable
algebra, analysis, calculus, geometry, and topology.

Cartesian 3-Space
Figure 5-1 illustrates the simplest form of Cartesian 3-space, also called rec-
tangular 3D coordinates. All three number lines have equal increments. (This is
a perspective illustration, so the increments on the z axis appear distorted. A true
3D rendition would have the positive z axis perpendicular to the page.) The num-
ber lines intersect at a single point, corresponding to the zero points of each axis.
Each of the axes is perpendicular to the other two.
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In most renditions of rectangular 3D coordinates, the positive x axis runs from
the origin toward the viewer’s right, and the negative x axis runs toward the left.
The positive y axis runs upward, and the negative y axis runs downward. The
positive z axis comes “out of the page,” and the negative z axis extends “back
behind the page.” Sometimes the perspective is different (see the discussions of
cylindrical coordinates below, for example), but the relative orientations of the
positive and negative x, y, and z axes are standard.

ORDERED TRIPLES AS POINTS
Figure 5-2 shows two specific points, called P and Q, plotted in Cartesian 
3-space. The coordinates of point P are (–5,–4,3), and the coordinates of point
Q are (3,5,–2). Points are denoted as ordered triples in the form (x,y,z), where
the first number represents the value on the x axis, the second number repre-
sents the value on the y axis, and the third number represents the value on 
the z axis. (When an ordered triple is written down, there are no spaces after
the commas.)
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VARIABLES AND ORIGIN
In Cartesian 3-space, there are usually two independent-variable axes and one
dependent-variable axis. The x and y axes represent independent variables; the z axis
represents a dependent variable, the value of which depends on the x and y values.

In some scenarios, only one of the variables is independent, and two are
dependent. In such cases, the independent variable is usually x. Rarely, you’ll come
across a situation in which none of the variables is dependent. This is the case, for
example, when a correlation, but not a true mathematical relation, exists among
the values of the variables. Plots of this sort typically appear as “swarms of
points,” representing the results of physical observations.

DISTANCE BETWEEN POINTS
Suppose there are two different points P = (x0,y0,z0) and Q = (x1,y1,z1) in
Cartesian 3-space. The distance d between these two points can be found using
this formula:
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d = [(x1 – x0)2 + (y1 – y0)2 + (z1 – z0)2]1/2

PROBLEM 5-1
What is the distance between the points P = (–5,–4,3) and Q = (3,5,–2)
illustrated in Fig. 5-2? Consider the coordinate values of P to be mathe-
matically exact. Express the answer to five significant figures.

SOLUTION 5-1
Plug the coordinate values into the distance equation, where: x0 = –5,
x1 = 3, y0 = –4, y1 = 5, z0 = 3, and z1 = –2. Then:

d = {[3 – (–5)]2 + [5 – (–4)]2 + (–2 – 3)2}1/2

= [82 + 92 + (–5)2]1/2

= (64 + 81 + 25)1/2

= 1701/2

= 13.038

PROBLEM 5-2
What is the distance between the origin and the point R = (1,1,1) in
Cartesian 3-space? Round the answer off to six significant figures,
assuming the values of R are mathematically exact.

SOLUTION 5-2
Here, let (x0,y0,z0) = (0,0,0) and let R = (x1,y1,z1) = (1,1,1). Then,
according to the distance formula, we obtain the following:

d = [(1 – 0)2 + (1 – 0)2 + (1 – 0)2]1/2

= (12 + 12 + 12)1/2

= (1 + 1 + 1)1/2

= 31/2

= 1.73205

Other 3D Coordinate Systems
Here are some alternative coordinate systems that are used in mathematics and
science when working in 3D space.
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CYLINDRICAL COORDINATES
Figures 5-3 and 5-4 show two systems of cylindrical coordinates for specifying
the positions of points in space.

In the system shown in Fig. 5-3, we start with Cartesian 3-space. Then an
angle q is defined in the xy-plane, measured in degrees or radians (usually radi-
ans) counterclockwise from the positive x axis, which is called the reference
axis. Given a point P in space, consider its projection point, P′, on the xy-plane.
The term projection in this context means that P′ is directly “below” P, such that
the line connecting these two points is parallel to the z axis. The position of P is
defined by the ordered triple (q,r,h). In this ordered triple, q represents the angle
in radians (from 0 to 2π) counterclockwise between P′ and the positive x axis in
the xy-plane, r represents the radius from P′ to the origin, and h represents the
altitude or height of P above the xy-plane. If h is negative, then P is below the xy-
plane. This scheme for cylindrical coordinates is preferred by mathematicians,
and also by some engineers and scientists.

In the system shown in Fig. 5-4, we again start with Cartesian 3-space. The
xy-plane corresponds to the average surface of the earth (a horizontal plane) in
the vicinity of the origin, and the z axis runs straight up (positive z values) and
down (negative z values). The angle q is defined in the xy-plane in degrees (from
0º to 360º) clockwise from the positive y axis, which corresponds to geographic
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north. Given a point P in space, consider its projection P′ onto the xy-plane. The
position of P is defined by the ordered triple (q,r,h), where q represents the angle
in degrees clockwise between P′ and geographic north, r represents the radius
from P′ to the origin, and h represents the altitude of P above the xy-plane. If h
is negative, then P is below the xy-plane (that will usually put P underground or
underwater). This scheme is preferred by navigators and aviators.

SPHERICAL COORDINATES
Figures 5-5, 5-6, and 5-7 show three systems of spherical coordinates for defin-
ing points in space. The first two are used by astronomers and aerospace scien-
tists, while the third one is of use to navigators and surveyors.

In the scheme shown in Fig. 5-5, the location of a point P is defined by the
ordered triple (q,f,r) such that q represents the declination of P, f represents the
right ascension of P, and r represents the distance or radius from P to the origin.
In this example, angles are specified in degrees (except in the case of the
astronomer’s version of right ascension, which is expressed in hours, minutes,
and seconds as defined in Chapter 4). Alternatively, the angles can be expressed
in radians. This system is fixed relative to the stars.
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Instead of declination and right ascension, the variables q and f can repre-
sent celestial latitude and celestial longitude respectively, as shown in Fig.
5-6. This system is fixed relative to the earth, so it constantly rotates relative to
the stars.

There’s a third alternative: q can represent the elevation (the angle above the
horizon) and f can represent the azimuth (the bearing or heading clockwise from
geographic north). In this case, the reference plane corresponds to the horizon,
not the equator, and the elevation can range between, and including, –90º (the
nadir, or the point directly underfoot) and +90º (the zenith, or the point directly
overhead). This is shown in Fig. 5-7.

PROBLEM 5-3
What are the celestial latitude and longitude of the sun on the first day
of spring, when the sun lies in the plane of the earth’s equator? What is
the radius of the sun at this time? Write these coordinates as an ordered
triple (q,f,r), where the angles are in degrees and the radius is in kilo-
meters (km), for high noon in Greenwich, England.

SOLUTION 5-3
The celestial latitude (q) of the sun on the first day of spring (March
21, the vernal equinox) is 0º, which is the same as the latitude of the
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earth’s equator. The celestial longitude (f) of the sun depends on the
time of day. It is 0º at high noon in Greenwich, England. From there,
the celestial longitude of the sun proceeds west at the rate of 15º per
hour (360º per 24 hours). The radius (r) of the sun is approximately
150,000,000 (1.5 × 108) km at all times. Thus, on the first day of spring
at high noon in Greenwich:

(q,f,r) = [0º,0º,(150,000,000)]

= [0º,0º,(1.5 × 108)]

PROBLEM 5-4
Suppose you stand in a huge, perfectly flat field and fly a kite on a
string. The wind blows directly from the east. The point on the ground
directly below the kite is 300 m away from you, and the kite is 400 m
above the ground. If your body represents the origin and the units of a
coordinate system are 1 m in size, what is the position of the kite in the
cylindrical coordinate scheme preferred by navigators and aviators?

SOLUTION 5-4
The position of the kite is defined by the ordered triple (q,r,h), where
q represents the angle measured clockwise from geographic north to a
point directly under the kite, r represents the radius from a point on the
ground directly under the kite to the origin, and h represents the alti-
tude of the kite above the ground. Because the wind blows from the
east, you know that the kite is directly west of the origin (represented
by your body), so q = 270º. The value of r is the distance from your
body to the point on the ground directly under the kite, which is given
as 300 m, so r = 300. The kite is 400 m above the ground, so h = 400.
Therefore, (q,r,h) = (270º,300,400) in the system of cylindrical coordi-
nates preferred by navigators and aviators.

Hyperspace
The Cartesian plane is defined by two number lines that intersect perpendicularly
at their zero points. Cartesian 3-space is defined by three number lines that inter-
sect at a single point, corresponding to the zero point of each line, and such that
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each line is perpendicular to the other two. Now let’s see how Cartesian coordinates
can work in hyperspace—any form of space having more than 3 dimensions.

IMAGINE THAT!
A system of rectangular coordinates in four dimensions, called Cartesian 4-space,
is defined by four number lines that intersect at a single point, corresponding to
the zero point of each line, and such that each of the lines is perpendicular to the
other three. The lines form axes, representing variables such as w, x, y, and z.
Alternatively, the axes can be labeled x1, x2, x3, and x4. Points are identified by
ordered quadruples of the form (w,x,y,z) or (x1,x2,x3,x4). The origin is defined 
by (0,0,0,0). As with the variables or numbers in ordered pairs and triples, there
are no spaces after the commas when ordered quadruples are written down.

It can be tempting to draw an illustration such as Fig. 5-8 in an attempt to
illustrate Cartesian 4-space. But when we start trying to plot points in this
system, there is a problem. We can’t define points in this rendition of 4D space
without ambiguity. There are too many possible values of the ordered quadruple
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(w,x,y,z), and not enough points in 3D space to accommodate them all. In 3D
space as we know it, four number lines such as those shown in Fig. 5-8 cannot
be oriented so they intersect at a single point with all four lines perpendicular to
the other three.

Mathematically, we can work with Cartesian 4-space, even though it cannot
be directly visualized. This makes 4D geometry a powerful mathematical tool.
As it turns out, the universe we live in requires four or more dimensions in order
to be fully described. Albert Einstein was one of the first scientists to put forth
the idea that a fourth dimension really exists.

TIME-SPACE
You’ve seen time lines in history books. You’ve seen them in graphs of various
quantities, such as temperature, barometric pressure, or the price of a stock as a
function of time. Isaac Newton, who developed classical physics, imagined time
as flowing smoothly and unalterably. Time, according to classical or Newtonian
physics, does not depend on space, nor space on time. Albert Einstein later
showed that Newtonian physics is an oversimplification. But on a small scale, at
moderate speeds, and over reasonable periods of time, Newtonian physics is an
almost perfect system.

Wherever you are, however fast or slow you travel, and no matter what else
you do, the cosmic clock, according to Newtonian physics, keeps ticking at the
same absolute rate. In most practical scenarios, this model works quite well; its
imperfections are not evident. Mathematically, we can envision a time line pass-
ing through 3D space, perpendicular to all three spatial axes such as the inter-
sections between two walls and the floor of a room. The time axis passes through
three-space at some chosen origin point.

In four-dimensional (4D) Cartesian time-space (or simply time-space), each
point follows its own time line or curve. Assuming none of the points is in
motion with respect to the origin, all the points follow straight time lines, and
they are all perpendicular to 3D space. This sort of situation can be portrayed 
as shown in Fig. 5-9, with one spatial dimension removed, rendering 3D space as
a flat geometric plane. Points that move at constant, but nonzero velocity (that
is, at constant speed in an unchanging direction) with respect to the origin travel
in straight lines; however these lines are not perpendicular to the 3D space. The
greater the speed of a point relative to the origin, the sharper the angle of the path
that it follows with respect to 3D space. Points that accelerate (move with chang-
ing speed or direction) follow curved paths through time-space.
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POSITION VERSUS MOTION
Suppose we choose the center of the sun as the origin point for a Cartesian 3-
space coordinate system. Imagine that the x and y axes lie in the plane of the
earth’s orbit around the sun. Suppose the positive x axis runs from the sun
through the earth’s position in space on March 21, and thence onward into deep
space (roughly towards the constellation Virgo). The negative x axis runs from
the sun through the earth’s position on September 21 (roughly through the con-
stellation Pisces). Suppose the positive y axis runs from the sun through the
earth’s position on June 21 (roughly toward the constellation Sagittarius), and
the negative y axis runs from the sun through the earth’s position on December
21 (roughly toward Gemini). Then the positive z axis runs from the sun toward
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Fig. 5-9. Time-space can be shown in dimensionally reduced form by
rendering 3D space as a plane, and adding a time axis perpendicular to that
plane. Point-sized objects appear as straight or curved lines in this system.
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Fig. 5-10. A Cartesian coordinate system for the position of the earth in
3D space.

the north celestial pole (in the direction of Polaris, the North Star), and the neg-
ative z axis runs from the sun toward the south celestial pole. Let each division
on the coordinate axes represent one-quarter of an astronomical unit (AU),
where 1 AU is defined as the mean distance of the earth from the sun (about
150,000,000 km or 93,000,000 mi). Figure 5-10 shows this coordinate system,
with the earth on the positive x axis, at a distance of 1 AU. The coordinates of the
earth at this time are (1,0,0) in the xyz-space we have defined. Each division on
the axes in Fig. 5-10 represents 1/4 AU (37,500,000 km or about 23,300,000 mi).

Of course, the earth doesn’t remain fixed; it orbits the sun. Let’s take away
the z axis in Fig. 5-10 and replace it with a time axis called t. The earth’s path
through this dimensionally-reduced time-space is not a straight line, but instead
is a helix as shown in Fig. 5-11. The distance of the earth from the t axis remains
nearly constant, although it varies a little because the earth’s orbit around the sun
is not a perfect circle. Every quarter of a year, the earth advances 90º around the
helix. Theoretically, the earth accelerates as it travels around the sun, because its
velocity (speed and direction) does not remain the same. The speed is nearly
constant, but the direction changes. This is why the path of the earth through
time-space is not a straight line.



CARTESIAN n-SPACE
A system of rectangular coordinates in five dimensions defines Cartesian 5-space.
There are five number lines, all of which intersect at a point corresponding to 
the zero point of each line, and such that each of the lines is perpendicular to the
other four. The resulting axes can be called v, w, x, y, and z. Alternatively they
can be called x1, x2, x3, x4, and x5. Points are identified by ordered quintuples
such as (v,w,x,y,z) or (x1,x2,x3,x4,x5). The origin is defined by (0,0,0,0,0).

A system of rectangular coordinates in Cartesian n-space (where n is any
positive integer) consists of n number lines, all of which intersect at their zero
points, such that each of the lines is perpendicular to all the others. The axes can
be named x1, x2, x3, . . . , and so on up to xn. Points in Cartesian n-space can be
uniquely defined by ordered n-tuples of the form (x1,x2,x3, . . . , xn).

There is nothing to stop us from dreaming up a Cartesian 25-space in which
the coordinates of the points are ordered 25-tuples (x1,x2,x3, . . . , x25), none of
which are time. Alternatively, such a hyperspace might have 24 spatial dimen-
sions and one time dimension. Then the coordinates of a point would be defined
by the ordered 25-tuple (x1,x2,x3, . . . , x24,t). In fact, there is no particular reason
we can’t have a Cartesian space with an infinite number of dimensions.
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DISTANCE FORMULAS

In n-dimensional Cartesian space, the shortest distance between any two points
can be found by means of a formula similar to the distance formulas for 2D and
3D space. The distance thus calculated represents the length of a straight line
segment connecting the two points.

Suppose there are two points in Cartesian n-space, defined as follows:

P = (x1,x2,x3, . . . , xn)

Q = (y1,y2,y3, . . . ,yn)

The length of the shortest possible path between points P and Q, written |PQ|,
is equal to either of the following:

|PQ| = [(y1 – x1)2 + (y2 – x2)2 + (y3 – x3)2 +. . . + (yn – xn )2]1/2

|PQ| = [(x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2 +. . . + (xn – yn)2]1/2

PROBLEM 5-5
Find the distance |PQ| between the points P = (4,–6,–3,0) and Q =
(–3,5,0,8) in Cartesian 4-space. Assume the coordinate values to be 
exact; express the answer to four significant figures. 

SOLUTION 5-5
Assign the numbers in these ordered quadruples the following values:
x1 = 4, x2 = –6, x3 = –3, x4 = 0, y1 = –3, y2 = 5, y3 = 0, and y4 = 8. Then 
plug these values into either of the above two distance formulas. Let’s
use the first formula:

|PQ| = {(–3 – 4)2 + [5 – (–6)]2 + [0 – (–3)]2 + (8 – 0)2}1/2

= [(–7)2 + 112 + 32 + 82]1/2

= (49 + 121 + 9 + 64)1/2

= 2431/2

= 15.59

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.
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PROBLEMS

1. What is the distance between the point (x,y,z) = (6,7,8) and the origin in
Cartesian 3-space? Assume these coordinates are exact, and round the
answer off to three significant figures.

2. What is the distance between the points (x0,y0,z0) = (–4,–2,5) and
(x1,y1,z1) = (1,4,–3) in Cartesian 3-space? Assume these coordinates are
exact, and round the answer off to four significant figures.

3. Plot the point (q,r,h) = (3π/4,6,8) in the cylindrical coordinate system
commonly used by mathematicians.

4. What is the distance of the point (q,r,h) = (3π/4,6,8) from the origin in 
the cylindrical coordinate system commonly used by mathematicians?
Assume these coordinates are exact, and round the answer off to three
significant figures.

5. Plot the point (q,r,h) = (135º,3,4) in the cylindrical coordinate system
commonly used by navigators and aviators. Assume these coordinates
are exact.

SOLUTIONS

1. The origin is the point (0,0,0). Using the distance formula for 3D space
to find the distance d between the points (0,0,0) and (6,7,8), we calculate
as follows:

d = [(6 – 0)2 + (7 – 0)2 + (8 – 0)2]1/2

= (62 + 72 + 82)1/2

= (36 + 49 + 64)1/2

= 1491/2

= 12.2

2. Using the formula for 3D space to find the distance d between the points
(–4,–2,5) and (1,4,–3), we calculate as follows:

d = {[1 – (–4)]2 + [4 – (–2)]2 + (–3 – 5)2}1/2

= [52 + 62 + (–8)2]1/2

= (25 + 36 + 64)1/2

= 1251/2

= 11.18

3. Refer to Fig. 5-12.
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4. This can be calculated by finding the length of the diagonal of a rectan-
gle with sides of lengths r and h. This rectangle lies in a plane, so the 2D
distance formula can be used, substituting r for x and h for y. We thus
find the distance d between the points (0,0) and (6,8) in a Cartesian sys-
tem, as follows:

d = [(6 – 0)2 + (8 – 0)2]1/2

= (62 + 82)1/2

= (36 + 64)1/2

= 1001/2

= 10

This is exact, but it can be expressed as 10.0.

5. Refer to Fig. 5-13.
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Quiz
This is an “open book” quiz. You may refer to the text in this chapter. You may
draw diagrams if that will help you visualize things. A good score is 8 correct.
Answers are in the back of the book.

1. In a spherical 3D coordinate system, a point is uniquely defined according to

(a) three distance coordinates.
(b) two distance coordinates and one angle coordinate.
(c) one distance coordinate and two angle coordinates.
(d) three angle coordinates.

2. Consider a point P in Cartesian 3D space. Suppose the x, y, and z coor-
dinates of P are each doubled. What will happen to the distance of P from
the origin?

(a) It will increase by a factor of 2.
(b) It will increase by a factor of 22, or 4.
(c) It will increase by a factor of 23, or 8.
(d) It is impossible to answer this without more information.

3. Consider a point P in Cartesian 3D space. Suppose the x coordinate of P
is doubled, but the y and z coordinates remain the same. What will hap-
pen to the distance of P from the origin?

(a) It will increase by a factor of 2.
(b) It will increase by a factor of 22, or 4.
(c) It will increase by a factor of 23, or 8.
(d) It is impossible to answer this without more information.

4. Imagine a Cartesian 3D coordinate system in which the axes are labeled
according to variables x, y, and z. Suppose there are two independent
variables and one dependent variable. The independent variables are usu-
ally denoted by

(a) the x and y axes.
(b) the x and z axes.
(c) the y and z axes.
(d) none of the above answers (a), (b), or (c), because there can never be

more than one independent variable.

5. What would the graph of the equation r = 5 look like in a spherical coor-
dinate system?

CHAPTER 5 Coordinates in Three Dimensions122



(a) A straight line.
(b) A circle.
(c) A sphere.
(d) It depends on whether the coordinate system is the one preferred by

astronomers and aerospace scientists, or the one preferred by navi-
gators and surveyors.

6. Consider two distant stars, called P and Q, whose positions in space
are defined by an earth-centered spherical coordinate system where q
denotes the celestial latitude, f denotes the celestial longitude, and r de-
notes the radius in light years. (A light year is the distance that a ray of
visible light travels in one earth year—approximately 1013 km or 6 ×1012

mi.) Suppose that at a given moment in time, the coordinates of the two
stars P and Q are:

P = (qp,fp,rp) = (+30º,–20º,48)

Q = (qq,fq,rq) = (+15º,–10º,96)

How do the distances of these two stars, as measured from the earth,
compare?

(a) They are the same distance from the earth.
(b) Star P is half as far from the earth as star Q.
(c) Star P is twice as far from the earth as star Q.
(d) There is no way to compare the distances without more information.

7. Consider again the two distant stars, P and Q, described in Question 6.
How do the values of the coordinates qp and qq change with the passage
of time?

(a) The values of both coordinates cycle from 0º through –90º, 180º,
+90º, and finally back to 0º again, once per day. 

(b) The value of qp increases, while the value of qq decreases.
(c) The value of qp decreases, while the value of qq increases.
(d) They both remain constant with the passage of time.

8. In a cylindrical 3D coordinate system, a point is uniquely defined accord-
ing to

(a) three distance coordinates.
(b) two distance coordinates and one angle coordinate.
(c) one distance coordinate and two angle coordinates.
(d) three angle coordinates.
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9. Imagine Cartesian 4D time-space, consisting of conventional 3D space
with time added as an extra dimension. Suppose the variable x represents
kilometers (km) east and west from a defined origin point P, the variable
y represents kilometers north and south from P, and the variable z repre-
sents kilometers above and below P. Suppose the time variable, t, is de-
fined in seconds (s). Now imagine that you drive a car at a constant speed
of 20 m/s along a straight highway running due north. The path along which
you travel through Cartesian time-space can be represented by

(a) a sphere.
(b) a circle.
(c) a straight line.
(d) a curved line.

10. Imagine the same scenario as that of Question 9, except that in this case,
rather than traveling at a constant speed along the highway running due
north, you start from a dead stop and floor the gas pedal, thereby accel-
erating. The path along which you travel through Cartesian time-space can
be represented by

(a) a sphere.
(b) a circle.
(c) a straight line.
(d) a curved line.
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CHAPTER

125

Equations in 
One Variable

The objective of solving a single-variable equation is to get it into a form where
the expression on the left-hand side of the equals sign is simply the variable
sought (such as x), and the expression on the right-hand side of the equals sign
does not contain that variable.

Operational Rules
There are several ways in which an equation in one variable can be manipulated
to obtain a solution, assuming a solution exists. Any and all of the principles of
calculation outlined in Chapter 2 can be applied toward this result. In addition,
the following rules can be applied in any order, and any number of times.
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ADDITION TO EACH SIDE
Any defined constant, variable, or expression can be added to either side of an
equation, and the result is equivalent to the original equation.

SUBTRACTION FROM EACH SIDE
Any defined constant, variable, or expression can be subtracted from either side
of an equation, and the result is equivalent to the original equation.

MULTIPLICATION OF EACH SIDE
Both sides of an equation can be multiplied by a defined, nonzero constant, vari-
able, or expression, and the result is equivalent to the original equation.

DIVISION OF EACH SIDE
Both sides of an equation can be divided by a nonzero constant, by a variable
that cannot attain a value of zero, or by an expression that cannot attain a value
of zero over the range of its variable(s), and the result is equivalent to the origi-
nal equation.

BEWARE!
When both sides of an equation are divided by a variable, it is important 
to ensure that the variable cannot attain a value of zero. It is also not generally
admissible to take both sides of an equation to a power (for example, to square
both sides).

PROBLEM 6-1
Solve the equation x + 45 = 33 for x using one of the above principles.

SOLUTION 6-1
In this case, the equation can be solved by subtracting 45 from each
side. This changes the expression on the left-hand side of the equality
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symbol to x, and the expression on the right-hand side to −12. This is
a direct statement of the solution: x = −12. Here is the process, broken
down into every single step:

x + 45 = 33

(x + 45) − 45 = 33 − 45

x + (45 − 45) = −12

x + 0 = −12

x = −12

PROBLEM 6-2
Give an example of why it is not possible, in general, to take each side
of an equation to a power and be certain of a valid result.

SOLUTION 6-2
Consider the equation x2 = 4. In this case, x is a number such that, when
squared, the result is equal to 4. Suppose we take the 1/2 power of each
side of this equation in an attempt to solve it. The 1/2 power of a quan-
tity is defined as the positive square root of that quantity. We get the
following sequence of steps:

x2 = 4

(x2)1/2 = 41/2

x(2 × 1/2) = 2

x1 = 2

x = 2

Each of these steps seems valid, but the solution thereby derived is
incomplete. It overlooks the fact that x can also be equal to −2.

Linear Equations
A linear equation in one variable is an equation in which there is a single
unknown, and that unknown is not raised to a power (other than the first power).
Such an equation can always be reduced to the following standard form:

ax + b = 0
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where a and b are constants, a ≠ 0, and x is the unknown (that is, the variable). 

GENERAL SOLUTION
A linear equation in a variable x, once it has been put into standard form, can be
solved as follows:

ax + b = 0

ax + b − b = −b

ax = −b

x = −b/a

ALTERNATIVE FORMS
Here is another way a linear equation can appear. This time, let’s use the vari-
able y, and let’s call the constants c and d, where c ≠ 0. Then the following is a
linear equation:

cy = d

Dividing both sides by c, we get this:

y = d /c

Here is another form in which a linear equation can appear:

kz + m = nz + p

where k, m, n, and p are constants such that k ≠ n, and z is the unknown for which
a solution is to be found. This equation can be solved as follows:

kz + m = nz + p

kz = nz + p − m

kz − nz = p − m

(k − n)z = p − m

z = (p − m) /(k − n)

PROBLEM 6-3
Solve the linear equation 4x − 5 = 2x + 7.

SOLUTION 6-3
Here is how the equation is manipulated to solve for x:
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4x − 5 = 2x + 7

(4x − 5) + 5 = (2x + 7) + 5

4x + (−5 + 5) = 2x + (7 + 5)

4x = 2x + 12

4x − 2x = 2x + 12 − 2x

2x = 12

x = 6

PROBLEM 6-4
Reduce the linear equation 4x − 5 = 2x + 7 to standard form.

SOLUTION 6-4
Here is how the equation is manipulated to put it in standard form:

4x − 5 = 2x + 7

(4x − 5) − 7 = 2x

4x − 12 = 2x

4x − 12 − 2x = 0

2x − 12 = 0

PROBLEM 6-5
Solve the linear equation 2x − 12 = 0, and see how much more quickly,
in this situation, the process proceeds when the equation has been 
reduced to standard form.

SOLUTION 6-5
Here is how the equation, expressed in standard form, is manipulated
to solve for x:

2x − 12 = 0

2x − 12 + 12 = 12

2x = 12

x = 6
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Quadratic Equations
A one-variable, second-order equation, also called a second-order equation in
one variable or, more often, a quadratic equation, can be written in the follow-
ing standard form:

ax2 + bx + c = 0

where a, b, and c are constants, a ≠ 0, and x is the variable. The constants a, b,
and c are also known as coefficients.

SOME EXAMPLES
Any equation that can be converted into the above form is a quadratic equation.
Alternative forms, in which the variable is x, are:

mx2 + nx = p

qx2 = rx + s

(x + t)(x + u) = 0

where m, n, p, q, r, s, t, and u are constants. Here are two specific examples of
quadratic equations that are not in standard form:

−3x2 − 4x = 2

4x2 = −3x + 5

GET IT INTO FORM
Some quadratic equations are easy to solve. Others are difficult. The first step in
finding the value(s) of the variable in a quadratic equation is to get the equation
into standard form.

The first equation above can be reduced to standard form by subtracting 2
from each side:

−3x2 − 4x = 2

−3x2 − 4x − 2 = 0

The second equation above can be reduced to standard form by adding 3x to
each side and then subtracting 5 from each side:

4x2 = −3x + 5

4x2 + 3x = 5

4x2 + 3x − 5 = 0
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The factored form of a quadratic equation is convenient, because an equation
denoted this way can be solved without having to do much work. Here is an
example:

(x + 4)(x − 5) = 0

The expression on the left-hand side of the equals sign is zero if and only if
either of the two factors is zero. If x = −4, then the equation becomes:

(−4 + 4)(−4 − 5) = 0 × −9

= 0

If x = 5, then the equation becomes:

(5 + 4)(5 − 5) = 9 × 0

= 0

Simply take the additive inverses (negatives) of the constants in each factor to
get the solutions to a quadratic equation in factored form.

THE QUADRATIC FORMULA
Examine these two quadratic equations:

−3x2 − 4x = 2

4x2 = −3x + 5

These can be reduced to standard form:

−3x2 − 4x − 2 = 0

4x2 + 3x − 5 = 0

These equations are difficult to put into factored form. But there is a formula,
known as the quadratic formula, that can be used to solve quadratic equations
such as these. 

Consider the following general quadratic equation:

ax2 + bx + c = 0

where a ≠ 0. The solution(s) to this equation can be found using this formula:

x = [−b ± (b2 − 4ac)1/2] / 2a

The symbol ± is read “plus-or-minus,” and is a way of compacting two mathe-
matical expressions that are additive inverses into a single expression. Written
separately, the equations are:
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x = [−b + (b2 − 4ac)1/2] / 2a

x = [−b − (b2 − 4ac)1/2] / 2a

The fractional exponent means the 1/2 power, which is, as you have learned,
another way of expressing the positive square root of a quantity.

THE DISCRIMINANT
Consider again the general quadratic equation:

ax2 + bx + c = 0

where a, b, and c are real numbers, and a ≠ 0. Define the discriminant, d, as fol-
lows:

d = b2 − 4ac

Let the complex-number solutions to the quadratic equation be denoted as
follows:

x1 = a1 + jb1

x2 = a2 + jb2

Then the following statements hold true:

(d > 0) ⇒ (b1 = 0) & (b2 = 0) & (a1 ≠ a2)

(d = 0) ⇒ (b1 = 0) & (b2 = 0) & (a1 = a2)

(d < 0) ⇒ (a1 = a2) & (b1 = −b2)

The double-shafted arrows are translated as “logically implies.” This means that
if the expression to the left of the arrow is true, then the expression to the right of
the arrow is true. The above three principles are often stated verbally as follows:

• If d > 0, then there are two distinct real-number solutions
• If d = 0, then there is a single real-number solution
• If d < 0, then there are two distinct complex-conjugate solutions

PROBLEM 6-6
Solve the following equation, assuming the values of the coefficients
are mathematically exact:

−3x2 − 4x − 2 = 0
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Express the solution(s) to five significant figures.

SOLUTION 6-6
The coefficients are a = −3, b = −4, and c = −2. Plugging these num-
bers into the quadratic formula gives us this:

x = {4 ± [(−4)2 − (4 × −3 × −2)]1/2} / (2 × −3)

= [4 ± (16 − 24)1/2] / (−6)

= [4 ± (−8)1/2] / (−6)

We are confronted with the square root of −8. This is equal to the imag-
inary number j(81/2), which is j2.8284 (accurate to five significant fig-
ures). The solutions are therefore approximately:

x = (4 + j2.8284) / (−6)

x = (4 − j2.8284) / (−6)

These solutions, as complex numbers in their conventional form, are
approximately:

x = −0.66667 − j0.47140

x = −0.66667 + j0.47140

PROBLEM 6-7
Convert the following quadratic equations into factored form:

x2 − 2x − 15 = 0

x2 + 4 = 0

SOLUTION 6-7
The first equation turns out to have a “clean” factored equivalent with
real-number coefficients:

(x + 3)(x − 5) = 0

The second equation does not have any real-number solutions. You
can tell that something is peculiar about this equation if you subtract 4
from each side:

x2 + 4 = 0

x2 = −4
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No real number can be substituted for x in this equation in order to
make it true. However, the equation can be put into complex-number
factored form, as follows:

(x + j2)(x − j2) = 0

PROBLEM 6-8
Put the following factored equations into standard quadratic form:

(x + 5)(x −1) = 0

x(x + 4) = 0

SOLUTION 6-8
Both of these can be converted to standard form by multiplying the fac-
tors. In the first case, it goes like this:

(x + 5)(x − 1) = 0

x2 − x + 5x + (5 × −1) = 0

x2 + 4x − 5 = 0

In the second case, it goes like this:

x(x + 4) = 0

x2 + 4x = 0

Higher-Order Equations
As the exponents in single-variable equations get larger, finding the solutions
becomes challenging. In the olden days, a lot of insight, guesswork, and tedium
was involved in solving such equations. Today, mathematicians and scientists
have the help of computers, and when problems are encountered containing
equations with variables raised to large powers, they let a computer solve the
problem by “brute force.” The material here is presented only so you will rec-
ognize higher-order equations when you see them.

THE CUBIC
A cubic equation, also called a one-variable, third-order equation or a third-
order equation in one variable, can be written in the following standard form:
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ax3 + bx2 + cx + d = 0

where a, b, c, and d are constants, x is the variable, and a ≠ 0.
If you’re lucky, you’ll be able to reduce a cubic equation to factored form to

find real-number solutions r, s, and t:

(x − r)(x − s)(x − t) = 0

Don’t count on being able to factor a cubic equation. Sometimes it’s easy, but
most of the time it is difficult. There is a cubic formula that can be used in a man-
ner similar to the way in which the quadratic formula is used for quadratic equa-
tions, but it’s complicated, and will not be presented here.

THE QUARTIC
A quartic equation, also called a one-variable, fourth-order equation or a fourth-
order equation in one variable, can be written in the following standard form:

ax4 + bx3 + cx2 + dx + e = 0

where a, b, c, d, and e are constants, x is the variable, and a ≠ 0.
Once in a while you will be able to reduce a quartic equation to factored form

to find real-number solutions r, s, t, and u:

(x − r)(x − s)(x − t)(x − u) = 0

As is the case with the cubic, you will be lucky if you can factor a quartic
equation into this form and thus find four real-number solutions with ease.

THE QUINTIC
A quintic equation, also called a one-variable, fifth-order equation or a fifth-
order equation in one variable, can be written in the following standard form:

ax5 + bx4 + cx3 + dx2 + ex + f = 0

where a, b, c, d, e, and f are constants, x is the variable, and a ≠ 0.
There is a remote possibility that, if you come across a quintic, you’ll be able

to reduce it to factored form to find real-number solutions r, s, t, u, and v:

(x − r)(x − s)(x − t)(x − u)(x − v) = 0

As is the case with the cubic and the quartic, you will be lucky if you can fac-
tor a quintic equation into this form.
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THE nth-ORDER EQUATION
A one-variable, nth-order equation can be written in the following standard
form:

a1xn + a2xn-1 + a3xn-2 +. . .+ an-2x2 + an-1x + an = 0

where a1, a2, . . .an are constants, x is the variable, and a1 ≠ 0. We won’t even
think about trying to factor an equation like this in general, although specific
cases might lend themselves to factorization. Solving nth-order equations, where
n > 5, practically demands the use of a computer.

PROBLEM 6-9
What are the solutions to the following factored equation?

(x − j3)(x + 2)(x + j5) = 0

SOLUTION 6-9
To solve this, simply identify the three quantities that make any one of
the factors equal to 0. These quantities are j3 for the first factor, −2 for
the second factor, and −j5 for the third factor. Mathematicians speak of
the set containing the solutions of an equation like this as the solution
set. If we call that set S in this case, then:

S = {j3, −2, −j5}

PROBLEM 6-10
Write the equation from Problem 6-9 as a cubic equation in standard
form. The coefficients will be complex. Be sure these coefficients are
expressed in the form a + jb, where a and b are real numbers and j is
equal to the positive square root of −1.

SOLUTION 6-10
The conversion of a factored equation to standard form is easier than
the reverse process, although it can be tedious if there are more than two
factors. Let’s multiply the second two factors first:

(x + 2)(x + j5) = x2 + j5x + 2x + j10

The product of this with the first factor is:
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(x − j3)(x2 + j5x + 2x + j10) = x3 + j5x2 + 2x2 + j10x − j3x2 − j215x − j6x

− j230

= x3 + j5x2 + 2x2 + j10x − j3x2 + 15x − j6x + 30

= x3 + (j5 + 2 − j3)x2 + (j10 + 15 − j6)x + 30

= x3 + (2 + j2)x2 + (15 + j4)x + 30

The cubic equation in standard form is therefore:

x3 + (2 + j2)x2 + (15 + j4)x + 30 = 0

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Factor the following quadratic equation:

y2 + 7y + 12 = 0

2. State the solution set S for the quadratic equation given in Practice
Problem 1.

3. State the following quadratic equation in standard form:

x(x − 5) = 0

4. What can be said about the solutions to this quadratic equation?

2z2 + 2z + 5 = 0

5. State the solution set S for the quadratic equation given in Practice
Problem 4. Use the quadratic formula to find the solutions.

SOLUTIONS

1. The process of factoring a quadratic equation involves some intuition. In
this case, you might be able to quickly see the factors:
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(y + 3)(y + 4) = y2 + 4y + 3y + 12

= y2 + 7y + 12

so the factored form is:

(y + 3)(y + 4) = 0

2. It’s easy to solve a quadratic or higher-order equation when we see it in
factored form. The solutions are those values of the variable that make
either of the factors equal to 0. In this case, these values are y = −3 and y
= −4. The solution set is therefore:

S = {−3, −4}

3. Multiply the factors. Here, the first factor is x, and the second factor is
(x − 5). Therefore, the side of the equation to the left of the equality
symbol is:

x(x − 5) = x2 − 5x

and the quadratic equation in standard form is:

x2 − 5x + 0 = 0

It is not necessary to write down any addend in the standard form of a
quadratic or higher-order equation when the coefficient of that addend is
equal to 0. It is perfectly all right, in this case, to write:

x2 − 5x = 0

4. Consider the discriminant d = b2 − 4ac, where a = 2, b = 2, and c = 5:

d = 22 − (4 × 2 × 5) = 4 − 40 = −36

In this example, d < 0, indicating that there are two distinct solutions, and
that they are complex conjugates.

5. We already know that b2 − 4ac = −36. The first solution is:

z = [−2 + (−36)1/2] / (2 × 2)

= (−2 + j6) / 4

= −2/4 + (j6)/4

= −1/2 + j(3/2)
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The second solution is:

z = [−2 − (−36)1/2] / (2 × 2)

= (−2 − j6) / 4

= −2/4 − (j6)/4

= −1/2 − j(3/2)

The solution set is therefore:

S = {[−1/2 + j(3/2)], [−1/2 − j(3/2)]}

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Consider the following equation:

z2 + 25 = 0

How many solutions does this equation have, and what is its, or their,
nature?

(a) There are two distinct real-number solutions.
(b) There is a single real-number solution.
(c) There are two complex-conjugate solutions.
(d) It is impossible to tell without more information.

2. What sort of equation is the following?

−21w2 − 17w + 45 = 6w2 + 10w + 3

(a) A linear equation.
(b) A quadratic equation.
(c) An equation of unknown order.
(d) An invalid equation.

3. Consider the following equation:

x3 − x = 0

What is this equation, expressed in factored form?
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(a) x(x − 1)(x + 1) = 0
(b) x2x3 = 0
(c) x + 2x − 3x = 0
(d) It cannot be expressed in factored form.

4. Consider the following equation:

6y + 3 = 8y + 4

How many solutions does this equation have, and what is its, or their,
nature?

(a) There are two distinct real-number solutions.
(b) There is a single real-number solution.
(c) There are two complex-conjugate solutions.
(d) It is impossible to tell without more information.

5. Consider again the following equation:

x3 − x = 0

What is the real-number solution set S for this equation?

(a) S = {0}
(b) S = {0, 1}
(c) S = {0, −1, 1}
(d) S = ∅, because there are no real-number solutions.

6. Which of the following is not a quadratic equation?

(a) (x + 2)(x − 3) = 5
(b) x + 3x − 4 = 3
(c) (x + j5)(x − j4) = 8
(d) None of the above are quadratic equations.

7. Consider the following quadratic equation in standard form:

px2 + qx + r = 0

where p, q, and r are real-number constants, and x is the unknown. This
equation has a single real-number solution if and only if

(a) p = q = r.
(b) q2 = 4pr.
(c) r2 < 4pq.
(d) r > 4pq.
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8. Consider, yet again, the following equation:

x3 − x = 0

It is tempting to suppose that we can divide this equation through on each
side by x, getting a simpler equation, as follows:

x3 − x = 0

(x3 − x) / x = 0/x

x3/x − x/x = 0

x2 − 1 = 0

Unfortunately, we cannot legitimately do this because

(a) this is not a cubic equation in standard form.
(b) there are no real-number solutions.
(c) it cannot generally be done for higher-order equations.
(d) the solution set of the original equation contains the element 0.

9. In a quadratic equation with two distinct solutions, both of which are real
numbers,

(a) the discriminant is a positive real number.
(b) the discriminant is a positive imaginary number.
(c) the discriminant is a negative real number.
(d) the discriminant is a negative imaginary number.

10. Consider the following equation:

x4 = 1

Which, if any, of the following numbers is not an element of the solution
set of this equation?

(a) 1.
(b) −1.
(c) 0 + j1.
(d) All of three of the above are elements of the solution set of this

equation.
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7
CHAPTER

143

Multivariable 
Equations

When you want to solve a group of simultaneous equations, various schemes
can be used. This chapter outlines some of the most common techniques.

2×2 Linear Equations
Let’s look at two methods of solving pairs of simultaneous linear equations.
Either approach can be used for any given pair of linear equations.

2×2 SUBSTITUTION METHOD
Consider the following set of two linear equations in two variables:
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a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

where a1, a2, b1, b2, c1, and c2 are real-number constants, and the variables are
represented by x and y. The substitution method of solving these equations con-
sists in performing either of the following sequences of steps. If a1 ≠ 0, use
Sequence A. If a1 = 0, use Sequence B. (If a1 = 0 and a2 = 0, then we have two
equations in one variable, and the following steps are irrelevant.)

SEQUENCE A
Solve the first equation for x in terms of y:

a1x + b1y + c1 = 0

a1x = −b1y − c1

x = (−b1y − c1) / a1

Next, substitute the above-derived solution for x in the second equation:

a2[(−b1y − c1) / a1] + b2y + c2 = 0

Solve this single-variable linear equation for y, using the “operational rules”
from the previous chapter. Assuming a solution exists, it can be substituted for y
in either of the original equations, deriving a single-variable equation in terms
of x. Once this has been done, solve that equation for x, using the “operational
rules” outlined in the previous chapter.

SEQUENCE B
Because a1 = 0, the first equation has only one variable, and is in the following
form:

b1y + c1 = 0

Solve this equation for y:

b1y = −c1

y = −c1/b1

This can be substituted for y in the second equation, obtaining:
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a2x + b2(−c1/b1) + c2 = 0

a2x − b2(c1/b1) + c2 = 0

a2x = b2(c1/b1) − c2

x = [b2(c1/b1) − c2] / a2

2×2 ADDITION METHOD
Consider the following set of two linear equations in two variables:

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

where a1, a2, b1, b2, c1, and c2 are real-number constants, and the variables are
represented by x and y. The addition method of solving these equations consists
in performing two separate and independent steps:

• Multiply one or both equations through by a constant, if necessary, to can-
cel out the coefficients of x in the sum of the two equations, and then solve
the sum of the two equations for y.

• Multiply one or both equations through by a constant, if necessary, to can-
cel out the coefficients of y in the sum of the two equations, and then solve
the sum of the two equations for x.

To solve for y, begin by multiplying the first equation through by −a2, and the
second equation through by a1, and then add the two resulting equations:

(−a2a1x − a2b1y − a2c1 = 0)

+ (a1a2x + a1b2y + a1c2 = 0)

(a1b2 − a2b1)y + a1c2 − a2c1 = 0

Then, add a2c1 to each side, obtaining:

(a1b2 − a2b1)y + a1c2 = a2c1

Next, subtract a1c2 from each side, obtaining:

(a1b2 − a2b1)y = a2c1 − a1c2

Finally, divide through by a1b2 − a2b1, obtaining:

y = (a2c1 − a1c2) / (a1b2 − a2b1)

CHAPTER 7 Multivariable Equations 145



For this to be valid, the denominator must be nonzero. This requires that a1b2 ≠
a2b1. If it turns out that a1b2 = a2b1, then there are not two distinct solutions to
the set of equations.

The process of solving for x is similar. Consider again the original equations:

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

Multiply the first equation through by −b2, and the second equation through by
b1, and then add the two resulting equations:

(−a1b2x − b1b2y − b2c1 = 0)

+ (a2b1x + b1b2y + b1c2 = 0)

(a2b1 − a1b2)x + b1c2 − b2c1 = 0

Then, add b2c1 to each side, obtaining:

(a2b1 − a1b2)x + b1c2 = b2c1

Next, subtract b1c2 from each side, obtaining:

(a2b1 − a1b2)x = b2c1 − b1c2

Finally, divide through by a2b1 − a1b2, obtaining:

x = (b2c1 − b1c2) / (a2b1 − a1b2)

For this to be valid, the denominator must be nonzero. This requires that a1b2 ≠
a2b1. If it turns out that a1b2 = a2b1, then there are not two distinct solutions to
the set of equations.

PROBLEM 7-1
Solve the following pair of linear equations (if there is a unique solu-
tion) using the substitution method. If no solution exists, or if there are 
infinitely many solutions, then say so.

3x − 6y + 9 = 0

−10x − 5y + 15 = 0

SOLUTION 7-1
Let’s begin by solving for x in terms of y in the first equation. Proceed
as follows:

CHAPTER 7 Multivariable Equations146



3x − 6y + 9 = 0

3x − 6y = −9

3x = 6y − 9

x = 2y − 3

Next, substitute the above-derived solution for x in the second equa-
tion, obtaining:

−10x − 5y + 15 = 0

−10(2y − 3) − 5y + 15 = 0

−20y + 30 − 5y + 15 = 0

−25y + 45 = 0

−25y = −45

25y = 45

y = 45/25 = 9/5

Now that we have the solution for y, we can plug it into either of the
original equations and solve for x. Let’s use the second equation. Then:

−10x − 5y + 15 = 0

−10x − 5(9/5) + 15 = 0

−10x − 9 + 15 = 0

−10x + 6 = 0

−10x = −6

10x = 6

x = 6/10 = 3/5

PROBLEM 7-2
Solve the following pair of linear equations (if there is a unique solu-
tion) using the addition method. If no solution exists, or if there are 
infinitely many solutions, then say so.

−4x + y − 8 = 0

−8x + 2y − 14 = 0

SOLUTION 7-2
Multiply one of the equations through by a constant, such that one of
the variables is canceled out when the two equations are added. Let’s 
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attempt to cancel out x, getting an equation in y only. If we multiply the
first equation through by −2 and then add it to the second one, we get:

(8x − 2y + 16 = 0)

+ (−8x + 2y − 14 = 0)

2 = 0

We’ve derived a contradiction. Is there some mistake? Let’s try to can-
cel out y instead, multiplying the second equation through by −1/2 and
then adding the two equations. In this case we get:

(−4x + y − 8 = 0)

+ (4x − y + 7 = 0)

−1 = 0

Again, a contradiction! There is no mistake here. Whenever you use
the addition method in an attempt to solve a pair of linear equations and
get an equation to the effect that one number equals another, it means
that the pair of equations has no solution. Such a pair of equations in
two variables is said to be inconsistent.

Occasionally, when applying the addition method to a pair of linear
equations, you’ll get another sort of unexpected result: a trivial state-
ment that a number equals itself, such as 0 = 0. When this happens, it
means that the equations are actually different expressions for the same
two-variable equation. In that case, the “pair” of equations has infi-
nitely many solutions.

3×3 Linear Equations
A set of three linear equations in three variables presents a more involved (and
tedious) problem. The same two general methods, addition and substitution, can
be used, but in combination. The following two problems and solutions provide
specific examples.

PROBLEM 7-3
Solve the following set of 3×3 linear equations. If no solution exists, or
if there are infinitely many solutions, then say so.
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2x + 5y − z = 0

−3x − 4y + 2z = 0

x + y + z = 0

SOLUTION 7-3
First, let’s cancel out x, getting an equation in y and z. The coefficients
of x in the above equations are 2, −3, and 1, respectively. When these
three coefficients are added, the result is 0. This is convenient, because
we can add the three equations together just as they are in order to can-
cel x. Proceed:

(2x + 5y − z = 0)

+ (−3x − 4y + 2z = 0)

+ (x + y + z = 0)

2y + 2z = 0

This result can be manipulated to solve for z in terms of y:

2y + 2z = 0

y + z = 0

z = −y

Now we can reduce the original 3×3 set of equations (in x, y, and z) into
a 2×2 set of equations (in x and y). Let’s substitute −y for z in the first
two of the original three equations. This gives us:

2x + 5y − (−y) = 0

−3x − 4y − 2y = 0

which simplifies to this pair of equations:

2x + 6y = 0

−3x − 6y = 0

These can be directly added, obtaining the single-variable equation:

−x = 0

Multiplying this through by −1 tells us that x = 0. That’s one variable
down, and two to go! Let’s substitute 0 for x in the first of the above
pair of equations in x and y. This gives us:
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2x + 6y = 0

(2 × 0) + 6y = 0

6y = 0

y = 0

Now we can substitute x = 0 and y = 0 into any of the original three
equations. Let’s use the last one:

x + y + z = 0

0 + 0 + z = 0

z = 0

The solution to this set of 3×3 linear equations, expressed as an ordered
triple, is (x,y,z) = (0,0,0).

Did this solution seem “too easy to be true”? In this case, the three
equations were selected because there are no constants added or sub-
tracted to any of the three equations. That always makes a 3×3 set of
linear equations comparatively easy to solve. Now let’s try a more dif-
ficult problem.

PROBLEM 7-4
Solve the following set of 3×3 linear equations. If no solution exists, or
if there are infinitely many solutions, then say so.

2x + 5y − z + 2 = 0

−3x − 4y + 2z − 1 = 0

x + y + z + 5 = 0

SOLUTION 7-4
First, let’s cancel out x, getting an equation in y and z. The coefficients
of x in the above equations are 2, −3, and 1, respectively. When these
three coefficients are added, the result is 0, just as it was in the previ-
ous problem. Thus:

(2x + 5y − z + 2 = 0)

+ (−3x − 4y + 2z − 1 = 0)

+ (x + y + z + 5 = 0)

2y + 2z + 6 = 0
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This result can be manipulated to solve for z in terms of y:

2y + 2z + 6 = 0

2y + 2z = −6

y + z = −3

z = −y − 3

Now we can reduce the original 3×3 set of equations (in x, y, and z) into a
2×2 set of equations (in x and y). Let’s substitute the quantity (−y − 3)
for z in the first two of the original three equations. This gives us:

2x + 5y − (−y − 3) + 2 = 0

−3x − 4y + 2(−y − 3) − 1 = 0

which simplifies to this pair of equations:

2x + 6y + 5 = 0

−3x − 6y − 7 = 0

These can be directly added, obtaining the single-variable equation:

−x − 2 = 0

−x = 2

Multiplying this through by −1 tells us that x = −2. Let’s substitute −2
for x in the first of the above pair of equations in x and y. This gives us:

2x + 6y + 5 = 0

(2 × −2) + 6y + 5 = 0

−4 + 6y + 5 = 0

6y + 1 = 0

6y = −1

y = −1/6

Now we can substitute x = −2 and y = −1/6 into any of the original three
equations. Let’s use the last one:

x + y + z + 5 = 0

−2 − 1/6 + z + 5 = 0

z − 2 − 1/6 + 5 = 0

z + 17/6 = 0

z = −17/6
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The solution to this set of 3×3 linear equations, expressed as an ordered
triple, is:

(x,y,z) = (−2,−1/6, −17/6)

CHECK IT OUT!
After solving a set of equations such as that in Problem 7-4, you should always
“plug in the solutions” to each of the original equations, and be sure they check
out correctly. With all the adding, subtracting, multiplying, and dividing that
goes on in these sorts of calculations, along with changes of sign and double-
negatives, it’s easy to make mistakes. As an exercise, check out the above solu-
tions. Plug x = −2, y = −1/6, and z = −17/6 into each of the original three
equations, and see if the results are valid.

2×2 General Equations
When one or both of the equations in a 2×2 set are nonlinear, the substitution
method generally works best. Two examples follow.

EXAMPLE A
Consider the following two equations:

y = x2 + 2x + 1

y = −x + 1

The first equation is quadratic, and the second equation is linear. Either equation
can be directly substituted into the other to solve for x. Substituting the second
equation into the first yields this result.

−x + 1 = x2 + 2x + 1

This equation can be put into standard quadratic form as follows:

−x + 1 = x2 + 2x + 1

−x = x2 + 2x

0 = x2 + 3x

x2 + 3x = 0
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We can use the quadratic formula to solve this. Call the coefficients in the pre-
vious quadratic equation a = 1, b = 3, and c = 0. Call the solutions x1 and x2. Then:

x = [−3 ± (32 − 4 × 1 × 0)1/2] / (2 × 1)

x = [−3 ± (9 − 0)1/2] / 2

x = [−3 ± 91/2] / 2

x = (−3 ± 3) / 2

x1 = −6/2 and x2 = 0/2

x1 = −3 and x2 = 0

These values can be substituted into the original linear equation to obtain the
solutions for y, which we call y1 and y2 to distinguish them from each other:

y1 = −(−3) + 1 and y2 = −0 + 1

y1 = 3 + 1 and y2 = 0 + 1

y1 = 4 and y2 = 1

The solutions are therefore:

(x1,y1) = (−3,4)

(x2,y2) = (0,1)

EXAMPLE B
Consider the following two equations:

y = −2x2 + 4x − 5

y = −2x − 5

The first equation is quadratic, and the second equation is linear. Either equation
can be directly substituted into the other to solve for x. Substituting the second
equation into the first yields this result:

−2x − 5 = −2x2 + 4x − 5

This equation can be put into standard quadratic form as follows:

−2x − 5 = −2x2 + 4x − 5

−2x = −2x2 + 4x

0 = −2x2 + 6x

−2x2 + 6x = 0
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Use the quadratic formula, and let a = −2, b = 6, and c = 0:

x = [−6 ± (62 − 4 × −2 × 0)1/2] / (2 × −2)

x = [−6 ± (36 − 0)1/2] / −4

x = [−6 ± 361/2] / −4

x = (−6 ± 6) / −4

x1 = 0/−4 and x2 = −12/−4

x1 = 0 and x2 = 3

These values can be substituted into the original linear equation to obtain the 
y-values:

y1 = −2 × 0 − 5 and y2 = −2 × 3 − 5

y1 = −5 and y2 = −11

The solutions are therefore:

(x1,y1) = (0,−5)

(x2,y2) = (3,−11)

Graphic Solution of Pairs of Equations
The solutions of pairs of equations in two variables can be approximated by
graphing the equations. In a graph, the solutions to a set of equations appear as
intersection points between the graphs of the equations. If two graphs do not
intersect, then the pair of equations they represent has no solution. If the two
graphs coincide, then the pair of equations they represent has infinitely many
solutions.

EXAMPLE A
Refer to Example A on page 152. Consider this pair of equations:

y = x2 + 2x + 1

y = −x + 1
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These equations are graphed in Fig. 7-1. The graph of the quadratic equation is
a curve known as a parabola, and the graph of the linear equation is a straight
line. The line crosses the parabola at two points, indicating that there are two
solutions of this pair of equations. The coordinates of the points, corresponding
to the solutions, are:

(x1,y1) = (−3,4)

(x2,y2) = (0,1)

EXAMPLE B
Refer to Example B on page 153. Consider this pair of equations:

y = −2x2 + 4x − 5

y = −2x − 5

CHAPTER 7 Multivariable Equations 155

−4 −2 2 4
x

y

−2

2

4

6

8

(−3,4)

(0,1)

Fig. 7-1. A graph showing the solutions of y = x2 + 2x + 1 and 
y = −x + 1.



These equations are graphed in Fig. 7-2. The line crosses the parabola at two
points, indicating that there are two solutions of this set of simultaneous equa-
tions. The coordinates of the points, corresponding to the solutions, are:

(x1,y1) = (0,−5)

(x2,y2) = (3,−11)

PROBLEM 7-5
Convert the pair of linear equations from Problem 7-2 into slope-
intercept form and graph them in the Cartesian plane. Then explain how
this graph portrays the fact that this pair of simultaneous linear equa-
tions has no common solution. Again, this pair of equations is:

−4x + y − 8 = 0

−8x + 2y − 14 = 0
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SOLUTION 7-5
Using the rules of manipulation for linear equations, the first equation
can be changed into slope-intercept form like this:

−4x + y − 8 = 0

y − 8 = 4x

y = 4x + 8

This means that the slope is equal to 4, and the y intercept is equal to
8. This line, with a slope of 4, increases by 4 units along the y axis for
every unit increase along the x axis. Because the y intercept is 8, this
line crosses the y axis at the point (0,8). Its graph is shown in Fig. 7-3
by the solid line.

The second equation is converted to slope-intercept form as follows:

−8x + 2y − 14 = 0

2y − 14 = 8x

2y = 8x + 14

y = 4x + 7
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This means that the slope is equal to 4, and the y intercept is equal to
7. This line, with a slope of 4, increases by 4 units along the y axis for
every unit increase along the x axis (the same situation as with the other
line). Because the y intercept is 7, this line crosses the y axis at the
point (0,7). Its graph is shown in Fig. 7-3 by the dashed line.

Note that the slopes of the two lines are the same, but their y inter-
cepts differ. Any two lines that have the same slope but different y
intercepts are parallel, so they never intersect in the Cartesian plane.
The fact that the graphs of the equations have no point in common por-
trays the fact that the pair of equations has no solution.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Add the following pair of equations so the x values cancel out, giving a
single-variable equation in y:

2x + 5y + 11 = 0

5x − y + 4 = 0

2. Add the following pair of equations so the y values cancel out, giving a
single-variable equation in x:

2x + 5y + 11 = 0

5x − y + 4 = 0

3. Solve the following equation for y in terms of x:

2x + 5y + 11 = 0

4. Solve the following equation for x in terms of y:

2x + 5y + 11 = 0

5. Using the result in Practice Solution 1, solve for y. Reduce the answer to
the simplest possible form.
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SOLUTIONS

1. Multiply the top equation through by −5 and the bottom equation through
by 2, and then add the resulting equations. This gives an equation in y, as
follows:

(−10x − 25y − 55 = 0)

+ (10x − 2y + 8 = 0)

−27y − 47 = 0

2. Multiply the bottom equation through by 5, and then add the resulting
equations. This gives an equation in x, as follows:

(2x + 5y + 11 = 0)

+ (25x − 5y + 20 = 0)

27x + 31 = 0

3. This can be done algebraically, using the principles of calculation in
Chapter 2 and the operational rules in Chapter 6:

2x + 5y + 11 = 0

2x + 5y = −11

5y = −11 − 2x

y = (−11 − 2x) / 5

y = −11/5 − (2/5)x

4. This can be done algebraically, using the principles of calculation in
Chapter 2 and the operational rules in Chapter 6:

2x + 5y + 11 = 0

2x + 5y = −11

2x = −11 − 5y

x = (−11 − 5y) / 2

x = −11/2 − (5/2)y

5. Manipulate the results of Practice Solution 1, as follows:

−27y − 47 = 0

−27y = 47

y = 47 / (−27)

y = −47/27
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Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Figure 7-4 portrays the graphs of three different equations in two vari-
ables, x and y. The graphs are called P, Q, and R. We don’t know exactly
what the equations are, but we can nevertheless tell from the graphs that 

(a) there is no real-number solution to all three of these equations con-
sidered simultaneously.

(b) there is exactly one real-number solution to all three of these equa-
tions considered simultaneously.

(c) there are two distinct real-number solutions to all three of these
equations considered simultaneously.

(d) there are three real-number solutions to all three of these equations
considered simultaneously.

2. In Fig. 7-4, how many real-number solutions exist between the equations
represented by curve P and line Q?
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(a) None
(b) One
(c) Two
(d) Three

3. In Fig. 7-4, how many real-number solutions exist between the equations
represented by curve P and curve R?

(a) None
(b) One
(c) Two
(d) Three

4. In Fig. 7-4, how many real-number solutions exist between the equations
represented by line Q and curve R?

(a) None
(b) One
(c) Two
(d) Three

5. Suppose you encounter a pair of linear equations in two variables. You
reduce them to slope-intercept form and find that their slopes are the same,
but their x intercepts (the points where the graphs intersect the x axis) are
different. From this, you can conclude that

(a) there is no real-number solution to this pair of equations.
(b) there is exactly one real-number solution to this pair of equations.
(c) there are exactly two distinct real-number solutions to this pair of

equations.
(d) there are infinitely many real-number solutions to this pair of

equations.

6. Suppose you encounter a pair of linear equations in two variables. You
reduce them to slope-intercept form and find that their slopes are dif-
ferent, and their x intercepts are also different. From this, you can con-
clude that

(a) there is no real-number solution to this pair of equations.
(b) there is exactly one real-number solution to this pair of equations.
(c) there are exactly two distinct real-number solutions to this pair of

equations.
(d) there are infinitely many real-number solutions to this pair of

equations.
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7. Consider the following two linear equations in variables x and y, where
a, b, and c are constants, and a ≠ b:

y = ax + c
y = bx + c

From this information, what can we conclude about these two equations? 

(a) Their graphs have the same slope and the same y intercept.
(b) Their graphs have the same slope but different y intercepts.
(c) In the real-number solution to these equations, x = c.
(d) In the real-number solution to these equations, y = c.

8. Consider the following two linear equations in variables r and s, where f,
g, and h are constants, and g ≠ h:

s = fr + g
s = fr + h

From this information, what can we conclude about these two equations? 

(a) Their graphs have the same slope.
(b) Their graphs have the same y intercept.
(c) There exists exactly one real-number solution to this pair of equations.
(d) None of the above

9. Imagine two equations in two variables. When graphed in the Cartesian
xy-plane, one of the graphs is a parabola that opens upward, and attains
a minimum y value (it “bottoms out”) at the point (0,3). The other para-
bola opens downward, and attains a maximum y value (it “peaks”) at the
point (0,−3). From this information, you can be certain that

(a) their graphs have the same slope.
(b) there is no real-number solution to this pair of equations.
(c) there is exactly one real-number solution to this pair of equations.
(d) there are two distinct real-number solutions to this pair of equations.

10. Imagine two equations in two variables. When graphed in the Cartesian
xy-plane, one of the graphs is a circle centered at the origin (0,0). The other
graph is a straight line passing through the origin. From this information,
you can be certain that

(a) their graphs have the same slope.
(b) there is no real-number solution to this pair of equations.
(c) there is exactly one real-number solution to this pair of equations.
(d) there are two distinct real-number solutions to this pair of equations.
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CHAPTER

163

Perimeter and Area 
in Two Dimensions

In this chapter, we’ll review formulas for calculating the perimeters and interior
areas of common geometric figures on flat (Euclidean) surfaces.

Triangles
A triangle is a geometric figure defined by three distinct points that do not all lie
along the same line. Each point is a vertex of the triangle. The line segments con-
necting pairs of points compose the sides of the triangle. The angles between
adjacent sides, expressed inside the triangle, are the interior angles. The sum of
the measures of the interior angles of any triangle in a geometric plane is equal
to 180º (π rad).
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PERIMETER OF TRIANGLE
Suppose T is a triangle defined by points P, Q, and R, and having sides of lengths
s1, s2, and s3 as shown in Fig. 8-1. Let s1 be the base length, and let h be the
height. The perimeter, B, of the triangle is given by the following formula:

B = s1 + s2 + s3

INTERIOR AREA OF TRIANGLE
Let T be a triangle as defined above and in Fig. 8-1. Let q be the measure of the
interior angle between the sides having lengths s1 and s2. The interior area, A, of
the triangle is given by either of the following formulas:

A = s1h /2

A = (s1s2 sin q) /2 

where the abbreviation sin represents the sine function. (The trigonometric func-
tions are discussed in more detail in Chapter 11.)

THEOREM OF PYTHAGORAS
Suppose T is a right triangle, which is a triangle in which one of the interior
angles is a right angle. Suppose T is defined by three points P, Q, and R, and the
sides of T have lengths s1, s2, and s3. Let s3 be the length of the hypotenuse (the
side opposite the right angle, and always the longest side in a right triangle). The
following equation applies:
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s3 = (s1
2 + s2

2)1/2

The converse of this is also true: If T is a triangle whose sides have lengths s1,
s2, and s3 such that the above equation holds, then T is a right triangle.

PROBLEM 8-1
Suppose you are 160 cm tall. You stand in the sun, and your shadow
falls on a horizontal, flat surface. Your shadow measures 220 cm in
length. What is the area, in square meters (m2), of the triangle defined
by your feet, the top of your head, and the end of your shadow?

SOLUTION 8-1
Use the formula for the interior area of a triangle, letting the length of
your shadow be s1 and your height be s2. Note that s2 is equal to the
height of the triangle in this case, so s2 = h in the first formula for the in-
terior area of a triangle. Convert the values given into meters: s1 = 220 cm
= 2.20 m, and h = 160 cm = 1.60 m. Then:

A = s1h /2

= 2.20 × 1.60/2

= 2.20 × 0.800

= 1.76 m2

PROBLEM 8-2
What is the perimeter of the triangle in the above scenario, in centimeters?

SOLUTION 8-2
Note that the defined triangle is a right triangle (assuming you stand ver-
tically), because the surface on which you stand is flat and horizontal. 
The angle between the side of length s1 (the length of your shadow)
and the side of length s2 (your height) is a right angle. First, determine
the distance from the top of your head to the end of your shadow. This
is s3 in the formula for the Theorem of Pythagoras. Using the values
given in centimeters, proceed as follows:

s3 = (s1
2 + s2

2)1/2

= (2202 + 1602)1/2

= (48,400 + 25,600)1/2

= 74,0001/2

= 272 cm

CHAPTER 8 Perimeter and Area in Two Dimensions 165



Next, add this to the lengths of the other two sides to get the perimeter:

B = 272 + 220 + 160

= 652 cm

Quadrilaterals
A quadrilateral is a geometric figure defined by four distinct points that all lie
in the same plane, but no three of which lie along a single straight line. Each
point is a vertex of the quadrilateral. The line segments connecting adjacent pairs
of points compose the sides of the quadrilateral. The angles between adjacent
sides, defined inside the figure, are called the interior angles. The sum of the
measures of the interior angles of any quadrilateral in a plane is equal to 360º
(2π rad).

PERIMETER OF PARALLELOGRAM
A parallelogram is a quadrilateral such that both pairs of opposite sides are par-
allel. Whenever both pairs of opposite sides in a quadrilateral are parallel, those
pairs have the same length, and both pairs of opposite angles have equal meas-
ure. Suppose V is a parallelogram defined by points P, Q, R, and S, and having
sides of lengths s1 and s2 as shown in Fig. 8-2. Let s1 be the base length, and let
h be the height. The perimeter, B, of the parallelogram is given by the following
formula:

B = 2s1 + 2s2

INTERIOR AREA OF PARALLELOGRAM
Let V be a parallelogram as defined above and in Fig. 8-2. Let q be the measure
of any one of the interior angles. The interior area, A, is given by either of these
formulas:

A = s1h

A = s1s2 sin q
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PERIMETER OF RHOMBUS
A rhombus is a parallelogram in which all four sides have the same length.
Suppose V is a rhombus defined by points P, Q, R, and S, and having sides of
length s. The rhombus is a special case of the parallelogram (Fig. 8-2) in which
the following holds:

s1 = s2 = s

The perimeter, B, of the rhombus is given by the following formula:

B = 4s

INTERIOR AREA OF RHOMBUS
Let V be a rhombus as defined above and in Fig. 8-2. Let d1 and d2 be the lengths
of the diagonals of the rhombus. The interior area, A, is given by any of these
formulas:

A = sh

A = s2 sin q
A = d1d2 /2
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PERIMETER OF RECTANGLE
A rectangle is a parallelogram in which the interior angles are all right angles.
Suppose V is a rectangle defined by points P, Q, R, and S, and having sides of
lengths s1 and s2 as shown in Fig. 8-3. Let s1 be the base length, and let s2 be the
height. Then the perimeter, B, of the rectangle is given by the following formula:

B = 2s1 + 2s2

INTERIOR AREA OF RECTANGLE
Let V be a rectangle as defined above and in Fig. 8-3. The interior area, A, is
given by:

A = s1s2

PERIMETER OF SQUARE
A square is a rectangle in which all four sides have the same length, or a rhom-
bus in which the interior angles are all right angles. Suppose V is a square
defined by points P, Q, R, and S, and having sides of length s. This is a special
case of the rectangle (Fig. 8-3) in which the following holds:

s1 = s2 = s
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The perimeter, B, of the square is given by the following formula:

B = 4s

INTERIOR AREA OF SQUARE
Let V be a square as defined above and in Fig. 8-3. Let d be the length of the
diagonal of the square. The interior area, A, is given by either of these formulas:

A = s2

A = d2/2

PERIMETER OF TRAPEZOID
A trapezoid is a quadrilateral in which one pair of opposite sides is parallel, but
there are no other constraints. Suppose V is a trapezoid defined by points P, Q,
R, and S, and having sides of lengths s1, s2, s3, and s4 as shown in Fig. 8-4. Let
s1 be the base length, let h be the height, let q be the measure of the angle
between the sides having length s1 and s2, and let f be the measure of the angle
between the sides having length s1 and s4. Suppose the sides having lengths s1
and s3 (line segments PQ and RS) are parallel. The perimeter, B, of the trapezoid
is given by either of the following formulas:

B = s1 + s2 + s3 + s4

B = s1 + s3 + h csc q + h csc f

where the abbreviation csc represents the cosecant function. The cosecant of an
angle is equal to the reciprocal of the sine (1 divided by the sine) of that angle.
Thus, the second formula above can be rewritten in “calculator-friendly” form
like this:

B = s1 + s3 + h /(sin q) + h/(sin f)

INTERIOR AREA OF TRAPEZOID
Let V be a trapezoid as defined above and in Fig. 8-4. The interior area, A, is
given by the following formula:

A = (s1h + s3h) /2

CHAPTER 8 Perimeter and Area in Two Dimensions 169



PROBLEM 8-3
Suppose you want to carpet a room that is shaped like a parallelogram.
The long walls in the room are each 14.0 feet (ft) in length as measured
along the floor, while the short walls are each 10.0 ft in length. The
acute angles between the short walls and the long walls measure 70.0º.
How much carpet will you need?

SOLUTION 8-3
Refer to Fig. 8-2. Let s1 be the length of the long wall, let s2 be the
length of the short wall, and q be the measure of the acute angle between
the walls. Then s1 = 14.0 and s2 = 10.0. We are given q = 70.0º. We can
use the following formula to find the area of the floor in square feet
(ft2), which is the amount of carpet we will need:

A = s1s2 sin q
= 14.0 × 10.0 × sin 70.0º

= 140 × 0.9397

= 132 ft2

PROBLEM 8-4
Suppose you want to carpet a room that is shaped like a rectangle. The
long walls in the room are each 14.0 ft in length (as measured along
the floor), while the short walls are each 10.0 ft in length. How much
carpet will you need?

CHAPTER 8 Perimeter and Area in Two Dimensions170

P Q

S Rs1

s2

s3

s4h

θ φ

Fig. 8-4. Dimensions of a trapezoid.



SOLUTION 8-4
Multiply the length of the long wall by the length of the short wall:

A = s1s2

= 14.0 × 10.0

= 140 ft2

Regular Polygons
A regular polygon is a multisided figure defined by n points, where n is an inte-
ger greater than or equal to 3, and such that all the points lie in a single plane,
all the line segments connecting adjacent pairs of points have the same length,
and all the interior angles of the figure have equal measure.

PERIMETER OF REGULAR POLYGON
Suppose V is a regular polygon having n sides of length s, and whose vertices are
P1, P2, P3, . . . , Pn as shown in Fig. 8-5, and whose interior angles all have equal
measures. The perimeter, B, of the polygon is given by the following formula:

B = ns

INTERIOR AREA OF REGULAR POLYGON
Let V be a regular polygon as defined above and in Fig. 8-5. The interior area,
A, of the polygon is given by the following formula:

A = (ns2/4) cot (180/n)º

where the abbreviation cot represents the cotangent function. The cotangent 
of an angle is equal to the reciprocal of the tangent (1 divided by the tangent) of
that angle. Thus, the second formula above can be rewritten in “calculator-
friendly” form like this:

A = (ns2/4) / [tan (180/n)º]

where the abbreviation tan represents the tangent function.
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PROBLEM 8-5
What is the interior area of a regular octagon whose sides each mea-
sure 1.00 m in length? (An octagon is an eight-sided polygon.)

SOLUTION 8-5
Use the formula for the area of a regular polygon, where n = 8 (an exact
value) and s = 1.00 (to three significant figures):

A = (ns2/4) cot (180/n)º

= (8 × 1.002/4) cot (180/8)º

= 2.00 cot 22.5º

= 2.00 × 2.41421

= 4.83 m2

Circles and Ellipses
Circles and ellipses, and sections of these figures, differ from plane polygons in
the sense that some or all of their “sides” are curves. The constant π generally
appears in formulas used to evaluate the dimensions of these objects.
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CIRCUMFERENCE OF CIRCLE

Suppose C is a circle having radius r as shown in Fig. 8-6. The circumference,
B, of the circle is given by the following formula:

B = 2πr

where π is the ratio of the circumference of a circle to its diameter, a constant
whose value can be taken as 3.14159 for the purposes of most calculations.
Alternatively, if d is the diameter of the circle, the circumference B can be found
by this formula:

B = πd

INTERIOR AREA OF CIRCLE

Let C be a circle as defined above, and as shown in Fig. 8-6. The interior area,
A, of the circle is given by the following formula:

A = πr2

Alternatively, if d is the diameter of the circle (always exactly equal to twice
the radius), the interior area, A, of the circle can be found by means of this formula:

A = πd2/4
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INTERIOR AREA OF ELLIPSE

In an ellipse, there are two important specifications called the semi-axes. The
major semi-axis is half of a line segment passing through the center and also
through two opposing points P1 and P2 on the ellipse, such that the distance
between P1 and P2 is maximum. The minor semi-axis is half of a line segment
passing through the center and also through two opposing points Q1 and Q2 on
the ellipse, such that the distance between Q1 and Q2 is minimum. The full line
segments, representing the “long diameter” and the “short diameter,” are called
the major axis and the minor axis, respectively.

Let E be an ellipse whose major semi-axis has a length of r1 and whose minor
semi-axis has a length of r2, as shown in Fig. 8-7. The interior area, A, of this
ellipse is given by:

A = πr1r2

PROBLEM 8-6
Find the circumference of a circle that has a diameter of 4.252 m.

SOLUTION 8-6
Use the formula for finding the circumference of a circle in terms of its
diameter, and “plug in” the value d = 4.252, as follows:

B = πd

= 3.14159 × 4.252

= 13.36 m

CHAPTER 8 Perimeter and Area in Two Dimensions174

r1

r2

Fig. 8-7. Dimensions of an ellipse.



PROBLEM 8-7
Find the interior area of a circle that has a diameter of 4.2521 m.

SOLUTION 8-7
Use the formula for finding the interior area of a circle in terms of its
diameter, and “plug in” the value d = 4.2521, as follows:

A = πd2/4

= 3.14159 × (4.2521)2/4

= 14.200 m2

PROBLEM 8-8
Find the interior area of an ellipse whose semi-axes measure 2.35 m
and 1.1468 m.

SOLUTION 8-8
Use the formula for the interior area of an ellipse in terms of the lengths
of its semi-axes, letting r1 = 2.35 and r2 = 1.1468, as follows:

A = πr1r2

= 3.14159 × 2.35 × 1.1468

= 8.47 m2

Other Formulas
Here are a few more formulas describing some geometric scenarios that you can
expect to encounter in the real world.

PERIMETER OF REGULAR POLYGON 
INSCRIBED IN CIRCLE
Let V be a regular plane polygon having n sides, and whose vertices P1, P2, P3,
. . . , Pn lie on a circle of radius r (Fig. 8-8). The perimeter, B, of the polygon is
given by the following formula:

B = 2nr sin (180 / n)º
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INTERIOR AREA OF REGULAR POLYGON 
INSCRIBED IN CIRCLE

Let V be a regular polygon as defined above and in Fig. 8-8. The interior area,
A, of the polygon is given by:

A = (nr2/ 2) sin (360/n)º

PERIMETER OF REGULAR POLYGON 
CIRCUMSCRIBING CIRCLE

Suppose V is a regular plane polygon having n sides whose center points P1, P2,
P3, . . . , Pn lie on a circle of radius r (Fig. 8-9). The perimeter, B, of the polygon
is given by the following formula:

B = 2nr tan (180/n)º
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INTERIOR AREA OF REGULAR POLYGON 
CIRCUMSCRIBING CIRCLE
Let V be a regular polygon as defined above and in Fig. 8-9. The interior area,
A, of the polygon is given by:

A = nr2 tan (180/n)º

PERIMETER OF CIRCULAR SEC TOR
Let S be a sector of a circle whose radius is r (Fig. 8-10). Let q be the measure
of the apex angle (the angle between the two radial lines that define the extent
of the sector), expressed in radians. The perimeter, B, of the sector is given by
the following formula:

B = r(2 + q )

If the apex angle q is given in degrees rather than in radians, the following
formula applies:

B = r(2 + q π /180)
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INTERIOR AREA OF CIRCULAR SECTOR
Let S be a sector of a circle as defined above and in Fig. 8-10. The interior area,
A, of the sector is given by:

A = r2q /2

If the apex angle q is specified in degrees rather than in radians, use this formula:

A = r2q π /360

A NOTE ABOUT “EXACT VALUES”
Here’s a little tidbit that was mentioned in Chapter 3, but bears repeating. In
some of the formulas presented in this chapter (and throughout this book), there
are defined constants. In the four equations immediately above, you will see
constants of 2, 180, π, and 360. When you want to decide on the number of
justifiable significant figures in the outcome of a calculation, the values of con-
stants of this sort can be considered “exact.” They are accurate to as many
significant figures as you need. In the case of the constant 2, for example, you can
call it 2.00000. . . , with any number of zeros you want. In the case of π, you 
can extend its decimal rendition to as many digits as necessary. The same is true
for obvious whole-number quantities, such as the number of sides in a polygon.
When any two “exact values” are added to each other, subtracted from each
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other, multiplied by each other, or divided by each other, or when an “exact
value” is taken to a whole-number power, the result is another “exact value” for
purposes of calculation.

PROBLEM 8-9
Suppose a regular decagon (10-sided polygon) is inscribed within a
circle whose radius is 53.25 cm. What is the perimeter of this decagon 
in meters?

SOLUTION 8-9
Use the formula for the perimeter of a regular polygon inscribed within
a circle, setting n = 10 (exactly!) and r = 53.25. The perimeter in cen-
timeters is found using this formula:

B = 2nr sin (180/ n)º

= 2 × 10 × 53.25 × sin (180 /10)º

= 1065 × sin 18º

= 1065 × 0.309017

= 329.1 cm

Because 1 m = 100 cm, this is equal to 3.291 m.

PROBLEM 8-10
What is the interior area of the decagon described in Problem 8-9, in
square meters?

SOLUTION 8-10
Use the formula for the interior area of a regular polygon inscribed
within a circle, setting n = 10 and r = 53.25. The interior area in square
centimeters (cm2) is found using this formula:

A = (nr2/2) sin (360/ n)º

= 10 × (53.252 / 2) × sin (360/10)º

= 14,178 × sin 36º

= 14,178 × 0.58779

= 8333.7 cm2

= 8.334 × 103 cm2

Because 1 m2 = 104 cm2, this is equal to 0.8334 m2.
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Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems. 

PROBLEMS

1. Find the interior area, in square meters, of an equilateral triangle meas-
uring 2.000 m on each side.

2. Find the interior area, in square centimeters, of a right triangle having
sides measuring 300 mm, 400 mm, and 500 mm.

3. Suppose a square has a perimeter in meters that is exactly equal to its
interior area in square meters. What is the length of each side in meters?
(Do not consider the trivial case, where the length of each side is 0.)

4. If the length of the diagonal of a square is increased by a factor of 5, by
what factor does its perimeter increase? By what factor does its interior
area increase?

5. Suppose a trapezoid has two parallel sides measuring 4.57 m and 6.03 m.
These parallel sides are 1.00 m apart. What is the interior area of the
trapezoid in square meters? 

SOLUTIONS

1. Use the second formula for the interior area of a triangle given earlier in
this chapter. In an equilateral triangle, all three angles measure 60º. Set
s1 = 2.000, s2 = 2.000, and q = 60º (this angular measure is exact). Then:

A = (s1s2 sin q ) / 2 

= 2.000 × 2.000 × (sin 60º) /2

= 4.000 × 0.8660254 /2

= 1.732 m2

2. First, convert all lengths to centimeters, because we want to find the area
in square centimeters. Consider the base length to be 30.0 cm. Then the
height is 40.0 cm, because the angle between the 30.0 cm and 40.0 cm
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sides is a right angle. Using the first formula for the interior area of a tri-
angle given earlier in this chapter, set s1 = 30.0 and h = 40.0. Then:

A = s1h /2

= 30.0 × 40.0 / 2

= 600 cm2

3. Let s be the length of each side of this square. Then consider the formu-
las for perimeter, B, and area, A, of a square, as follows:

B = 4s

A = s2

Because the perimeter and the area are represented by the same number
(even though the units differ in terms of dimension), we can set B = A,
obtaining this single-variable equation:

4s = s2

We are told that s ≠ 0. Therefore, it is all right to divide each side of the
above equation by s. This yields the solution directly as 4 = s, which
means that the square we seek has sides that are each exactly 4 m long.
The perimeter of such a square is exactly 16 m, and the interior area is
exactly 16 m2.

4. If the length of the diagonal of a square increases by a factor of 5, then
the length of each side also increases by a factor of 5. In effect, we mag-
nify the square by a linear factor of 5, because all sides of a square are of
equal length. That means the perimeter of the square increases by a fac-
tor of 5. However, the interior area of the square increases by a factor of
52, or 25. This is true regardless of the initial size of the square.

5. We do not have to know the lengths of the sides connecting the ends of
the parallel sides of this trapezoid in order to determine its interior area.
Use the formula for the interior area of a trapezoid, letting s1 = 4.57, s3 =
6.03, and h = 1.00, as follows:

A = (s1h + s3h) /2

= (4.57 × 1.00 + 6.03 × 1.00)/2

= (4.57 + 6.03)/2

= 10.60/2

= 5.30 m2

CHAPTER 8 Perimeter and Area in Two Dimensions 181



Quiz
This is an “open book” quiz. You may refer to the text in this chapter. You may
draw diagrams if that will help you visualize things. A good score is 8 correct.
Answers are in the back of the book.

1. If the radius of a circle is doubled, what happens to the perimeter of a
regular decagon (10-sided polygon) inscribed within the circle?

(a) It increases by a factor of the square root of 2.
(b) It increases by a factor of 2.
(c) It increases by a factor of 4.
(d) We cannot say, unless we know the radius of the circle to begin with.

2. If the radius of a circle is doubled, then what happens to the interior area
of a regular decagon (10-sided polygon) inscribed within the circle?

(a) It increases by a factor of the square root of 2.
(b) It increases by a factor of 2.
(c) It increases by a factor of 4.
(d) We cannot say, unless we know the radius of the circle to begin with.

3. Suppose you have a circle C of radius r. Imagine a sector S of circle C,
such that S has an apex angle of 30.00º. Now imagine a second circle D,
also of radius r. Imagine a sector T of circle D, that T has an apex angle
of 90.00º. How does the perimeter of T compare with the perimeter of S?
Express the answer to four significant figures.

(a) It increases by a factor of 1.415.
(b) It increases by a factor of 2.830.
(c) It increases by a factor of 3.000.
(d) It increases by a factor of 9.000.

4. Suppose you have a circle C of radius r. Imagine a sector S of circle C,
such that S has an apex angle of 45.00º. Now imagine a second circle D,
of radius 3r. Imagine a sector T of circle D, that T has an apex angle of
45.00º. How does the interior area of T compare with the interior area of
S? Express the answer as a number to four significant figures.

(a) It increases by a factor of 1.415.
(b) It increases by a factor of 2.830.
(c) It increases by a factor of 3.000.
(d) It increases by a factor of 9.000.
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5. Imagine two parallel lines, called line L and line M, such that the lines
are separated by a distance s. Let P and Q be two points on line L, such
that the points are separated by a distance t. Let R be a point on line M.
Consider the triangle PQR with vertices at points P, Q, and R. What is a
formula for the interior area A of this triangle?

(a) There is no way to state this formula without more information.
(b) A = st.
(c) A = 2st.
(d) A = st /2.

6. Imagine two parallel lines, called line L and line M, such that the lines
are separated by a distance s. Let P and Q be two points on line L, such
that the points are separated by a distance t. Let R be a point on line M.
Consider the triangle PQR with vertices at points P, Q, and R. What is a
formula for the perimeter B of this triangle?

(a) There is no way to state this formula without more information.
(b) B = st.
(c) B = 2st.
(d) B = st /2.

7. What is the perimeter of a rhombus if all four sides are 4530 mm long?

(a) 18.12 m.
(b) 10.26 m.
(c) 20.52 m.
(d) More information is needed in order to calculate this.

8. What is the interior area of a rhombus if all four sides are 4530 mm long?

(a) 18.12 m2.
(b) 10.26 m2.
(c) 20.52 m2.
(d) More information is needed in order to calculate this.

9. Suppose you are 1533 mm tall. If you stand in the sunshine on a flat,
level surface and your shadow is 2044 mm long, what is the distance
from the top of your head to the end of your shadow?

(a) 1.770 m.
(b) 3.789 m.
(c) 2.555 m.
(d) More information is needed in order to calculate this.
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10. Suppose a triangle has two sides with lengths of 24.00 m and 10.00 m,
and the interior area of the triangle is 120.0 m2. What is the length of the
third side?

(a) 26.00 m.
(b) 28.00 m.
(c) 30.00 m.
(d) More information is needed in order to calculate this.
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9
CHAPTER

185

Surface Area and 
Volume in Three

Dimensions

In this chapter, you’ll learn how to find the surface areas and volumes of vari-
ous simple geometric solids in three dimensions (3D).

Straight-Edged Objects
In Euclidean (that is, “non-warped”) three-space, geometric solids with straight
edges have flat faces, also called facets, each of which is a plane polygon. An
object of this sort is known as a polyhedron.
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THE TETRAHEDRON
A polyhedron in 3D must have at least four faces. A four-faced polyhedron is
called a tetrahedron. Each of the four faces of a tetrahedron is a triangle. There
are four vertices. Any four specific points, if they are not all in a single plane,
define a unique tetrahedron.

Surface Area of Tetrahedron
Figure 9-1 shows a tetrahedron. The surface area is found by adding up the inte-
rior areas of all four triangular faces. In the case of a regular tetrahedron, all six
edges have the same length, and therefore all four faces are equilateral triangles.
If the length of each edge of a regular tetrahedron is equal to s units, then the
surface area, B, of the whole four-faced regular tetrahedron, is given by:

B = 31/2 s2

where 31/2 represents the square root of 3, or approximately 1.732. This also happens
to be twice the sine of 60º, which is the angle between any two edges of the figure.

Volume of Tetrahedron
Imagine a tetrahedron whose base is a triangle with area A, and whose height is h
as shown in Fig. 9-1. The volume, V, of the tetrahedron is given by this formula:

V = Ah /3
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RECTANGULAR PYRAMID
Figure 9-2 illustrates a rectangular pyramid. This figure has a rectangular base
and four slanted faces. If the base is a square, and if the apex (the top of the pyra-
mid) lies directly above a point at the center of the base, then the figure is a sym-
metrical square pyramid, and all of the slanted faces are isosceles triangles.

Surface Area of Symmetrical Square Pyramid
In the case of a symmetrical square pyramid where the length of each slanted
edge, called the slant height, is equal to s units and the length of each edge of
the base is equal to t units, the surface area, B, is given by:

B = t2 + 2t (s2 – t2/4)1/2

Volume of Rectangular Pyramid
Imagine a rectangular pyramid whose base has area A, and whose height is h, as
shown in Fig. 9-2. The volume, V, of the pyramid is given by:

V = Ah /3

This formula works even if the apex is not directly above the center of the base.
In fact, it works even if the apex is above a point outside the base. The height,
h, is always defined as the distance between the apex and the plane containing
the base, as measured along a line normal (perpendicular) to the plane contain-
ing the base.
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THE CUBE
Figure 9-3 illustrates a cube. This is a regular hexahedron (six-sided polyhe-
dron). It has 12 edges, each of which is of the same length. Each of the six faces
is a square.

Surface Area of Cube
Imagine a cube whose edges each have length s, as shown in Fig. 9-3. The sur-
face area, A, of the cube is given by:

A = 6s2

Volume of Cube
Imagine a cube as defined above and in Fig. 9-3. The volume, V, is given by:

V = s3

THE RECTANGULAR PRISM
Figure 9-4 illustrates a rectangular prism. This is a hexahedron, such that all six
faces are rectangles. At each vertex, the edges converge at mutual right angles.
The figure has 12 edges, but they are not necessarily all the same length.
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Surface Area of Rectangular Prism
Imagine a rectangular prism whose edges have lengths s1, s2, and s3, as shown
in Fig. 9-4. The surface area, A, of the prism is given by:

A = 2s1s2 + 2s1s3 + 2s2s3

Volume of Rectangular Prism
Imagine a rectangular prism as defined above and in Fig. 9-4. The volume, V, is
given by:

V = s1s2s3

THE PARALLELEPIPED
A parallelepiped is a six-faced polyhedron in which each face is a parallelo-
gram, and opposite pairs of faces are congruent (meaning that they have identi-
cal size and shape). The figure has 12 edges. An example is shown in Fig. 9-5.

Surface Area of Parallelepiped
Consider a parallelepiped with faces of lengths s1, s2, and s3. Suppose the acute
angles between pairs of edges are x, y, and z, as shown in Fig. 9-5. The surface
area, A, of the parallelepiped is given by the following formula:
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A = 2s1s2 sin x + 2s1s3 sin y + 2s2s3 sin z

where sin x represents the sine of angle x, sin y represents the sine of angle y,
and sin z represents the sine of angle z.

Volume of Parallelepiped
Imagine a parallelepiped whose faces have lengths s1, s2, and s3, and that has
acute angles between edges of x, y, and z, as shown in Fig. 9-5. Suppose further
that the height of the parallelepiped, as measured along a line normal to the plane
containing the base, is equal to h. The volume, V, of the enclosed solid is equal
to the product of the base area and the height:

V = hs1s3 sin y

PROBLEM 9-1
Suppose you want to paint the interior walls of a room in a house. The
room is shaped like a rectangular prism. The ceiling is 3.000 m above
the floor. The floor and the ceiling both measure 4.200 m by 5.500 m. There
are two windows, the outer frames of which both measure 1.500 m high
by 1.000 m wide. There is one doorway, the outer frame of which mea-
sures 2.500 m high by 1.000 m wide. One liter of paint can be expected
to cover exactly 20.00 m2 of wall area. How much paint, in liters, will
you need to completely do the job?
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SOLUTION 9-1
It is necessary to find the amount of wall area that this room has. Based
on the information given, we can conclude that the rectangular prism
formed by the edges between walls, floor, and ceiling measures 3.000 m
high by 4.200 m wide by 5.500 m deep. Let s1 = 3.000, s2 = 4.200, and
s3 = 5.500 (with all units assumed to be in meters) to find the surface
area A of the rectangular prism, in square meters, neglecting the area
subtracted by the windows and doorway. Using the formula:

A = 2s1s2 + 2s1s3 + 2s2s3

= (2 × 3.000 × 4.200) + (2 × 3.000 × 5.500) + (2 × 4.200 × 5.500)

= 25.20 + 33.00 + 46.20

= 104.40 m2

There are two windows measuring 1.500 m by 1.000 m; each of
these therefore takes away 1.500 × 1.000 = 1.500 m2 of area. The
doorway measures 2.500 m by 1.000 m, so it takes away 2.500 × 1.000
= 2.500 m2. Thus the windows and doorway combined take away 1.500
+ 1.500 + 2.500 = 5.500 m2 of wall space. We must also take away the
combined areas of the floor and ceiling, represented by 2s2s3 = 46.20.
The wall area to be painted, call it Aw, is therefore:

Aw = (104.40 – 5.500) – 46.20

= 52.70 m2

We are told that a liter of paint can cover 20.00 m2. Therefore, we will
need 52.70/20.00, or 2.635, liters of paint to do this job.

Cones and Cylinders
A cone has a circular or elliptical base and an apex point. The cone itself con-
sists of the union of the following sets of points:

• The circle or ellipse itself.
• All points inside, and in the plane determined by, the circle or ellipse.
• All line segments connecting the circle or ellipse (not including its interior)

and the apex point.
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The interior of the cone consists of the set of all points within the cone. 
A cylinder has a circular or elliptical base, and a circular or elliptical top that

is congruent to the base and that lies in a plane parallel to the base. The cylinder
itself consists of the union of the following sets of points:

• The base.
• All points inside, and in the plane determined by, the base.
• The top.
• All points inside, and in the plane determined by, the top.
• All line segments connecting corresponding points on the base and the top

(not including their interiors).

The interior of the cylinder consists of the set of all points within the cylinder.
These are general definitions, and they encompass a great variety of objects! In
this chapter, we’ll look only at cones and cylinders whose bases are circles.

THE RIGHT CIRCULAR CONE
A right circular cone has a base that is a circle, and an apex point that lies on a
line normal (perpendicular) to the plane of the base, and that passes through the
center of the base. An example is shown in Fig. 9-6.
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Surface Area of Right Circular Cone
Imagine a right circular cone as shown in Fig. 9-6. Let P be the apex of the cone,
and let Q be the center of the base. Let r be the radius of the base, let h be the
height of the cone (the length of line segment PQ), and let s be the slant height
of the cone as measured from any point on the edge of the base to the apex P.
The surface area S1 of the cone, including the base, is given by either of the fol-
lowing formulas:

S1 = πr2 + πrs
S1 = πr2 + πr(r2 + h2)1/2

The surface area S2 of the cone, not including the base, is called the lateral
surface area and is given by either of the following:

S2 = πrs

S2 = πr(r2 + h2)1/2

Volume of Right Circular Cone
Imagine a right circular cone as defined above and in Fig. 9-6. The volume, V,
of the interior of the cone is given by this formula:

V = πr2h/3

Surface Area of Frustum of Right Circular Cone
Imagine a right circular cone that is truncated (cut off) by a plane parallel to the
base. This is called a frustum of the right circular cone. Let P be the center of
the circle defined by the truncation, and let Q be the center of the base, as shown
in Fig. 9-7. Suppose line segment PQ is perpendicular to the base. Let r1 be the
radius of the top, let r2 be the radius of the base, let h be the height of the object
(the length of line segment PQ), and let s be the slant height. Then the surface
area S1 of the object (including the base and the top) is given by either of the fol-
lowing formulas:

S1 = π(r1 + r2)[h2 + (r2 – r1)2]1/2 + π(r1
2 + r2

2)

S1 = πs(r1 + r2) + π(r1
2 + r2

2)

The surface area S2 of the object (not including the base or the top) is given
by either of the following:
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S2 = π(r1 + r2)[h2 + (r2 – r1)2]1/2

S2 = πs(r1 + r2)

Volume of Frustum of Right Circular Cone
Imagine a frustum of a right circular cone as defined above and in Fig. 9-7. The
volume, V, of the interior of the object is given by this formula:

V = πh(r1
2 + r1r2 + r2

2) /3

THE SLANT CIRCULAR CONE
A slant circular cone has a base that is a circle, and an apex point such that a
normal line from the apex point to the plane of the base does not pass through
the center of the base. In some cases (such as the example shown in Fig. 9-8),
this normal line does not pass through the base.

Volume of Slant Circular Cone
Imagine a cone whose base is a circle. Let P be the apex of the cone, and let
Q be a point in the plane X containing the base such that line segment PQ is
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perpendicular to X, as shown in Fig. 9-8. Let h be the height of the cone (the
length of line segment PQ). Let r be the radius of the base. Then the volume, V,
of the corresponding cone is given by:

V = πr2h /3

THE RIGHT CIRCULAR CYLINDER
A right circular cylinder has a circular base and a circular top. The base and the
top lie in parallel planes. The center of the base and the center of the top lie along
a line that is normal to both the plane containing the base and the plane con-
taining the top (Fig. 9-9).
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Surface Area of Right Circular Cylinder
Imagine a right circular cylinder where P is the center of the top and Q is the cen-
ter of the base (Fig. 9-9). Let r be the radius of the cylinder, and let h be the height
(the length of line segment PQ). Then the surface area S1 of the cylinder, includ-
ing the base, is given by:

S1 = 2πrh + 2πr2

= 2πr(h + r)

The lateral surface area S2 of the cylinder (not including the base) is given by:

S2 = 2πrh

Volume of Right Circular Cylinder
Imagine a right circular cylinder as defined above and shown in Fig. 9-9. The
volume, V, of the cylinder is given by:

V = πr2h

THE SLANT CIRCULAR CYLINDER
A slant circular cylinder has a circular base and a circular top. The base and the
top lie in parallel planes. The center of the base and the center of the top lie along
a line that is not perpendicular to the planes that contain them (Fig. 9-10).
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Volume of Slant Circular Cylinder
Imagine a slant circular cylinder as defined above and in Fig. 9-10. The volume, V,
of the cylinder is given by the same formula as that for the right circular cylinder:

V = πr2h

PROBLEM 9-2
Suppose a cylindrical water tower is exactly 30 m high and exactly 
10 m in radius. How many liters of water can it hold, assuming the entire 
interior can be filled with water? (One liter is equal to a cubic decime-
ter, or the volume of a cube measuring 0.1 m on an edge.) Round the
answer off to the nearest 10 liters.

SOLUTION 9-2
Use the formula for the volume of a right circular cylinder to find the
volume in cubic meters:

V = πr2h

Plugging in the numbers, let r = 10, h = 30, and π = 3.14159:

V = 3.14159 × 102 × 30

= 3.14159 × 100 × 30

= 9424.77

One liter is the volume of a cube measuring 10 cm, or 0.1 m, on an
edge. Thus, there are 1000 liters in a cubic meter. This means that the
amount of water the tower can hold, in liters, is equal to 9424.77 × 1000,
or 9,424,770.

PROBLEM 9-3
Imagine a circus tent shaped like a right circular cone. Suppose its
diameter is exactly 50 m, and the height at the center is exactly 20 m.
How much canvas has been used to make the tent? Express the answer
rounded up to the next higher square meter. (Assume the floor of the
tent is bare ground.)

SOLUTION 9-3
Use the formula for the lateral surface area, S, of the right circular cone.

S = πr(r2 + h2)1/2

CHAPTER 9 Surface Area and Volume in 3 Dimensions 197



We know that the diameter is 50 m, so the radius is 25 m. Therefore, r = 25.
We also know that h = 20. Let π = 3.14159. Then:

S = 3.14159 × 25 × (252 + 202)1/2

= 3.14159 × 25 × (625 + 400)1/2

= 3.14159 × 25 × 10251/2

= 3.14159 × 25 × 32.0156

= 2514.49

There are 2515 m2 of canvas, rounded up to the next higher square meter.

Other Solids
There are many types of geometric solids with curved surfaces throughout. Here,
we examine three of the most common: the sphere, the ellipsoid, and the torus.

THE SPHERE
Consider a specific point P in 3D space. The surface of a sphere S consists of
the set of all points at a specific distance or radius r from point P. The interior
of sphere S, including the surface, consists of the set of all points whose dis-
tance from point P is less than or equal to r. The interior of sphere S, not includ-
ing the surface, consists of the set of all points whose distance from P is less
than r.

Surface Area of Sphere
Imagine a sphere S having radius r as shown in Fig. 9-11. The surface area, A,
of the sphere is given by:

A = 4πr2

Volume of Sphere
Imagine a sphere S as defined above and in Fig. 9-11. The volume, V, of the solid
enclosed by the sphere is given by:
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V = 4πr3/3

This volume applies to the interior of sphere S, either including the surface or
not including it, because the surface has zero volume.

THE ELLIPSOID
Let E be a set of points that forms a closed surface. Then E is an ellipsoid if and
only if, for any plane X that intersects E, the intersection between E and X is
either a single point, a circle, or an ellipse. Figure 9-12 shows an ellipsoid E with
center point P and radii (also called semi-axes) measuring r1, r2, and r3, as spec-
ified in a 3D rectangular coordinate system with P at the origin. If r1, r2, and r3
are all equal, then E is a sphere, which is a special case of the ellipsoid.

Volume of Ellipsoid
Imagine an ellipsoid whose radii are r1, r2, and r3 (Fig. 9-12). The volume, V, of
the enclosed solid is given by:

V = 4πr1r2r3 /3
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THE TORUS
Imagine a ray PQ, and a small circle C centered on point Q whose radius is less
than half of the distance between points P and Q. Suppose ray PQ, along with
the small circle C centered at point Q, is rotated around its end point, P, so that
point Q describes a large circle that lies in a plane perpendicular to the plane
containing the small circle C. The resulting set of points in 3D space, “traced
out” by circle C, is a torus. Figure 9-13 shows a torus T thus constructed, with
center point P. The inner radius is r1 and the outer radius is r2.

Surface Area of Torus
Imagine a torus with an inner radius of r1 and an outer radius of r2 as shown in
Fig. 9-13. The surface area, B, of the torus is given by:

B = π2(r2 + r1)(r2 – r1)

Volume of Torus
Let T be a torus as defined above and in Fig. 9-13. The volume, V, of the
enclosed solid is given by:

V = π2(r2 + r1)(r2 – r1)2/4
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PROBLEM 9-4
Suppose a football field is to be covered by an inflatable dome that
takes the shape of a half-sphere. If the radius of the dome is 100 m, 
what is the volume of air enclosed by the dome in cubic meters? Find
the result to the nearest 1000 cubic meters.

SOLUTION 9-4
First, find the volume V of a sphere whose radius is 100 m, and then
divide the result by 2. Let π = 3.14159. Using the formula with r = 100
gives this result:

V = 4πr3/3

= (4 × 3.14159 × 1003) /3

= (4 × 3.14159 × 1,000,000) /3

= 4,188,787

Therefore, V/2 = 4,188,787/2 = 2,094,393.5. Rounding off to the near-
est 1000 cubic meters, we get 2,094,000 m3 as the volume of air
enclosed by the dome.
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PROBLEM 9-5
Suppose the dome in the previous scenario is a half-ellipsoid. Imagine
that the height of the ellipsoid is 70 m above its center point, which
lies in the middle of the 50-yard line at field level. Suppose that the
distance from the center of the 50-yard line to either end of the dome,
as measured parallel to the sidelines, is 120 m, and the distance from
the center of the 50-yard line, as measured along the line containing the
50-yard line itself, is 90 m. What is the volume of air, to the nearest
1000 cubic meters, enclosed by this dome?

SOLUTION 9-5
Consider the radii with respect to the center point, as r1 = 120, r2 = 90,
and r3 = 70. Then use the formula for the volume V of an ellipsoid, and
calculate as follows:

V = 4πr1r2r3 / 3

= (4 × 3.14159 × 120 × 90 × 70)/3

= (4 × 3.14159 × 756,000)/3

= 3,166,723

Therefore, V / 2 = 3,166,723 /2 = 1,583,361.5. Rounding off to the near-
est 1000 cubic meters, we get 1,583,000 m3 as the volume of air
enclosed by the half-ellipsoidal dome.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. What is the surface area, in square meters, of a regular tetrahedron that
measures 1.000 m on each edge?

2. What is the volume, in cubic meters, of a regular tetrahedron that mea-
sures exactly 1.635 m on each edge around the base, and whose height is
2.761 m?
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3. What is the surface area, in square meters, of a symmetrical square pyra-
mid that measures exactly 2.000 m on each edge around the base, and
whose slant height is also 2.000 m?

4. What is the volume, in cubic meters, of a symmetrical square pyramid
that measures exactly 2.000 m on each edge around the base, and whose
height is 3.000 m?

5. Imagine a room shaped like a rectangular prism that measures 10.00 ft
wide by 15.00 ft long, and whose ceiling is 8.000 ft above the floor. How
many cubic feet of air are inside this room if it is totally empty (except
for air)?

SOLUTIONS

1. Let the length of each edge be s = 1.000. Using the formula for the sur-
face area B of a regular tetrahedron, calculate as follows:

B = 31/2 s2

= 31/2 × 1.0002

= 31/2

= 1.732 m2

2. First, find the area of the base. Note that the base is an equilateral trian-
gle whose sides all have length s = 1.635 m, and whose apex angles all
measure q = 60º. Using the formula for the interior area, A, of an equi-
lateral triangle from the last chapter, and letting s1 = s2 = s, proceed as
follows:

A = (s1s2 sin q ) /2

= (s2 sin 60º) /2

= 1.6352 × 0.8660254/2

= 1.157540 m2

Use this value for A in the formula for the volume of the tetrahedron,
where h = 2.761, as follows:

V = Ah / 3

= 1.157540 × 2.761/ 3

= 1.065 m3

CHAPTER 9 Surface Area and Volume in 3 Dimensions 203



3. In the formula for the surface area, B, of a symmetrical square pyramid,
set s = t = 2.000. Then calculate B as follows:

B = t2 + 2t (s2 – t2/4)1/2

= 2.0002 + 2 × 2.000 (2.0002 − 2.0002/4)1/2

= 4.000 + 4.000 (4.000 − 1.000)1/2

= 4.000 + 4.000 × 31/2

= 10.93 m2

4. First, determine the area of the base. The base is a square with sides of
length s = 2.000 m. Using the formula for the interior area of a square:

A = s2

= 2.0002

= 4.000 m2

The volume, V, of this regular square pyramid with height h = 3.000 m
is found as follows:

V = Ah /3

= 4.000 × 3.000/3

= 4.000 m3

5. Use the formula for the volume, V, of a rectangular prism with edges
measuring s1 = 10.00 ft, s2 = 15.00 ft, and s3 = 8.000 ft, as follows:

V = s1s2s3

= 10.00 × 15.00 × 8.000

= 1200 ft3

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. You may
draw diagrams if that will help you visualize things. A good score is 8 correct.
Answers are in the back of the book.

1. What is the approximate volume of a circular cone whose base has an
area of 30 square units and a height of 10 units?
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(a) 100 cubic units.
(b) 150 cubic units.
(c) 300 cubic units.
(d) There is not enough information given here to calculate it.

2. Consider the earth to be a perfect sphere that measures 12,800 km in
diameter. What is the approximate surface area of the earth based on this
figure?

(a) 5.15 × 108 km2.
(b) 2.06 × 109 km2.
(c) 1.10 × 1012 km2.
(d) 8.80 × 1012 km2.

3. What is the set of points representing the intersection of a torus with a
plane containing its center?

(a) A pair of nonconcentric circles.
(b) A pair of concentric circles.
(c) A pair of nonconcentric ellipses.
(d) To answer this, we must know the orientation of the plane.

4. A rectangular prism has

(a) six edges, all of which are the same length.
(b) eight edges of various lengths.
(c) six faces, all of which are the same shape.
(d) None of the above

5. If all other factors are held constant, the surface area of a torus depends
on all of the following except

(a) its inner radius.
(b) its outer radius.
(c) the difference between the squares of its inner and outer radii.
(d) its orientation in space.

6. If all other factors are held constant, the volume of a parallelepiped
depends on

(a) the height. 
(b) the width.
(c) the ratio of the height to the width.
(d) More than one of the above
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7. In a slant circular cylinder, the height is equal to

(a) the radius of either the base or the top multiplied by 2π.
(b) the distance between the planes containing the base and the top.
(c) the distance between the center of the base and the center of the top.
(d) the distance along any straight line in the periphery.

8. The volume of a rectangular prism is equal to

(a) the sum of the lengths of its edges.
(b) the product of the lengths of its edges.
(c) the sum of the surface areas of its faces.
(d) the product of the surface areas of its faces.

9. The faces of a tetrahedron

(a) are all triangles.
(b) are all quadrilaterals.
(c) are all congruent to each other.
(d) all lie in the same plane.

10. Imagine a cube with edges measuring 10.00 m each. Suppose a pyramid
is carved from this cube, such that the base of the pyramid corresponds to
one of the faces of the cube, and the apex of the pyramid is at the center
of the face of the cube opposite the base. What is the approximate vol-
ume of the pyramid?

(a) 1000 m3.
(b) 7071 m3.
(c) 333.3 m3.
(d) There is not enough information given here to calculate it.
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CHAPTER

207

Boolean Algebra

Boolean algebra is a system of propositional logic using the binary numbers 1
and 0. These logic states are also called high and low, respectively. Sometimes
they are considered as the equivalent of true and false. Boolean operations and
relations behave differently than their counterparts in real-number and complex-
number algebra.

Operations, Relations, and Symbols
In Boolean algebra, statements (or sentences) are represented by uppercase letters
of the alphabet. For example, you say, “It is raining outside,” and represent this
by the letter R. Someone else adds, “It’s cold outside,” and represents this by the
letter C. A third person says, “The weather forecast calls for snow tomorrow,” and
represents this by the letter S. Still another person claims, “Tomorrow’s forecast
calls for bright sunshine,” and represents this by the letter B.
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NEGATION (−)
When we write down a letter to stand for a sentence, we assert that the sentence
is true. So if John writes down C in the above situation, he means “It is cold out-
side.” You would not necessarily agree with this if you grew up in Fairbanks,
Alaska. You could say, “It’s not cold outside.” This would be denoted as C with
a negation symbol in front of it.

There are several ways in which negation, also called the NOT operation,
can be symbolized. In Boolean algebra, the minus sign (−) is used. Thus, the
sentence “It’s not cold outside” is denoted −C. In propositional logic, a com-
mon symbol for negation is a drooping minus sign (¬). Some texts use a tilde
(~) to represent negation. Some put a line over the letter representing the
sentence.

Suppose someone comes along and says, “You are correct to say −C. In fact,
I’d say it’s hot outside!” Suppose this is symbolized H. Does H mean the same
thing as −C? Not necessarily. You’ve seen days that were neither cold nor hot.
There can be in-between states such as “cool” (K), “mild” (M), and “warm” (W).
But there is no in-between condition when it comes to C and −C. In proposi-
tional logic, either it is cold, or else it is not cold. Either it’s hot, or else it is not
hot. A proposition is either true, or else it is false (not true).

There are logical systems in which in-between states exist. These go by nick-
names such as fuzzy logic. We won’t get involved with them.

LOGICAL CONJUNCTION (×)
Propositional logic doesn’t get involved with how the phrases inside a sentence
affect each other, but it is concerned with the ways in which distinct, complete
sentences interact. Logical statements or Boolean variables can be combined to
make larger logical structures, called compound statements or Boolean expres-
sions. The truth or falsity of a Boolean expression depends on the truth or falsity
of its components, and on the ways those components are connected.

Suppose someone says, “It’s cold outside, and it’s raining outside.” Using the
symbols above, we can write this as:

C AND R

In Boolean algebra, a multiplication symbol (×) is used in place of the word
AND. Thus, the expression above is written like this in Boolean algebra:

C × R
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Various other symbols are used by mathematicians and logicians for the AND
operation, including the ampersand (&), the inverted wedge (∧), the asterisk (*),
the period or radix point (.), and the raised dot (·). 

The formal term for the AND operation is logical conjunction. A Boolean
expression containing one or more conjunctions has value 1 when, but only
when, both or all of its components have value 1. If any of the components have
value 0, then the whole expression has value 0.

LOGICAL DISJUNCTION (+)
Suppose that the above conversation about the weather continues. One of your
friends says, “It’s cold and raining; there is no doubt about that. I have been lis-
tening to the radio, and I heard the weather forecast for tomorrow. It’s supposed
to be colder tomorrow than it is today. But it’s going to stay wet. So it might
snow tomorrow.”

You say, “It will rain or it will snow tomorrow, depending on the temperature.”
Your friend says, “It might be a mix of rain and snow together, if the temper-

ature is near freezing.”
“So we might get rain, we might get snow, and we might get both,” you say.
“Correct. But the weather experts say we are certain to get precipitation of

some sort,” your friend says. “Water is going to fall from the sky tomorrow.
Maybe it will be liquid, maybe it will be solid, and maybe it will be both.”

In this case, suppose we let R represent the sentence “It will rain tomorrow,”
and we let S represent the sentence “It will snow tomorrow.” Then we can say:

S OR R

This is an example of logical disjunction. In Boolean algebra, the addition sym-
bol is used to represent this OR operation. We can now write:

S + R

In some texts, you’ll see a wedge (∨) used to represent logical disjunction. That
symbol is used occasionally by mathematicians and logicians.

A Boolean expression in which both, or all, of the components are joined by
disjunctions has value 1 when, but only when, at least one of the components has
value 1. A Boolean expression made up of disjunctions has value 0 when, but
only when, all the components have value 0.

Logical disjunction, as we define it here, is the inclusive OR operation. There’s
another logic operation called exclusive OR, in which the Boolean expression
has value 1 if and only if one, but only one, of the variables has value 1.
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(Usually there are only two variables in this type of scenario, so it is some-
times called “either/or.”) The exclusive OR operation, abbreviated XOR, is
important when logic is applied in engineering, especially in digital electronic
circuit design.

LOGICAL IMPLICATION (⇒)
Imagine that the conversation about the weather continues. You and your friends
are trying to decide if you should get ready for a snowy day tomorrow, or
whether rain and gloom is all you’ll have to contend with.

“Does the weather forecast say anything about snow?” you ask.
“Not exactly,” one your friends says. “The radio announcer made this state-

ment: ‘There is going to be precipitation through tomorrow night, and it’s going
to get colder tomorrow.’ I looked at my car thermometer as she said that, and it
said the outdoor temperature was just a little bit above freezing.”

“If there is precipitation, and if it gets colder, then it will snow,” you say.
“Of course.”
“Unless we get an ice storm.”
“That won’t happen.”
“Okay,” you say. “Let’s discount the ice storm scenario. That means that if

there is precipitation tomorrow, and if it is colder tomorrow than it is today, then
it will snow tomorrow.” (This is a clumsy way to talk, but we’re learning about
Boolean algebra, not the art of elegant conversation!)

Suppose you use P to represent the sentence, “There will be precipitation
tomorrow.” In addition, let S represent the sentence “It will snow tomorrow,”
and let C represent the sentence “It will be colder tomorrow.” Then in the above
conversation, you have made a compound statement consisting of three sen-
tences, like this:

IF (P AND C), THEN S

Another way to write this is:

(P AND C) IMPLIES S

In logic or Boolean algebra, the statement “X implies Y” is the equivalent of
saying “If X, then Y.” There is no question of likelihood or doubt. In Boolean
algebra, “X implies Y” means that if event X occurs, then event Y is inevitable.
Symbolically, the above proposition is written this way:

(P × C) ⇒ S
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The double-shafted arrow pointing to the right represents logical implication,
also known as the IF/THEN operation. In a logical implication, the “implying”
sentence (to the left of the double-shafted arrow) is called the antecedent. In the
above example, the antecedent is (P × C). The “implied” sentence (to the right
of the double-shafted arrow) is called the consequent. In the above example, the
consequent is S.

Some texts make use of other symbols for logical implication, including the
“hook” or “lazy U opening to the left” (⊃), three dots (∴), and a single-shafted
arrow pointing to the right (→).

LOGICAL EQUIVALENCE (=)
Suppose one of your friends keeps on going in the above conversation and says,
“If it snows tomorrow, then there will be precipitation and it will be colder.”

For a moment you hesitate, because this isn’t the way you’d usually think
about this kind of situation. But you have to agree, “That is true. It sounds
strange, but it’s true.” Your friend has just made this implication:

S ⇒ (P × C)

Implication holds in both directions here. You and your friend agree that both of
the following implications are valid:

(P × C) ⇒ S

S ⇒ (P × C)

These two implications can be combined into a conjunction, because we are
asserting them both together:

[(P × C) ⇒ S] × [S ⇒ (P × C)]

When an implication is valid in both directions, the situation is defined as a
case of logical equivalence. The above statement can be rewritten as follows:

(P × C) IF AND ONLY IF S

Mathematicians sometimes shorten the phrase “if and only if” to the single
word “iff.” So we can also write:

(P × C) IFF S

The Boolean symbol for logical equivalence is the equals sign (=). Other
symbols can be used. Sometimes you’ll see a three-barred equals sign (≡), a
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single-shafted, double-headed arrow (↔), or a double-shafted, double-headed
arrow (⇔). Symbolically, for our purposes, the above logical equation becomes:

(P × C) = S

PROBLEM 10-1
Give an example of a situation in which logical implication holds in
one direction but not in the other.

SOLUTION 10-1
Consider this statement: “If it is overcast, then there are clouds in the
sky.” This statement is true. Suppose we let O represent “It is overcast” 
and K represent “There are clouds in the sky.” Then we have this,
symbolically:

O ⇒ K

If we reverse this, we get a statement that isn’t necessarily true.
Consider:

K ⇒ O

This translates to, “If there are clouds in the sky, then it is overcast.”
We have all seen days or nights in which there were clouds in the sky,
but it was not overcast.

Truth Tables
A truth table is a method of denoting all possible combinations of truth values
for the variables in a proposition. The values for the individual variables, with
all possible permutations, are shown in vertical columns at the left. The truth
values for Boolean expressions, as they are built up from atomic propositions,
are shown in horizontal rows. In Boolean algebra, an atomic proposition always
consists of either a logical constant (that is, 0 or 1), or a single variable. Thus,
an atomic proposition can’t be broken down into smaller logical components; it
is like a “fundamental particle of logic.”

TRUTH TABLE FOR NEGATION
The simplest truth table is the one for negation, which operates on a single vari-
able. Table 10-1 shows how this works for a variable X.
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TABLE FOR CONJUNCTION
Let X and Y be two logical variables. Conjunction (X × Y) produces results as
shown in Table 10-2. The resultant of the AND operation has value 1 when, but
only when, both variables have value 1. Otherwise, the operation has value 0.

TABLE FOR DISJUNCTION
Logical disjunction for two variables (X + Y) has a truth table that looks like
Table 10-3. The resultant of the inclusive OR operation has value 1 when either
or both of the variables equal 1. If both of the variables are 0, then the operation
has value 0.

TABLE FOR IMPLICATION
A logical implication is valid (that is, it has truth value 1) except when the ante-
cedent has value 1 and the consequent has value 0. Table 10-4 shows the truth
values for logical implication.
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X −X

0 1

1 0

Table 10-1. Truth table for negation.

X Y X � Y

0 0 0

0 1 0

1 0 0

1 1 1

Table 10-2. Truth table for conjunction (Boolean multiplication).



PROBLEM 10-2
Give an example of a logical implication that is obviously invalid.

SOLUTION 10-2
Let X represent the sentence, “You see a large thunderstorm in the
distance.” Let Y represent the sentence, “A thunderstorm is coming toward 
you.” Consider this sentence:

X ⇒ Y

Now imagine that a thunderstorm is several miles away, moving from
west-to-east, and you can see it. Therefore, variable X has truth value
1. But suppose you are located west of the storm, so it is moving away
from you. Sentence Y has truth value 0. Therefore, the implication is
false. If you see a thunderstorm, that doesn’t necessarily mean it is
coming toward you.

CHAPTER 10 Boolean Algebra214

X Y X � Y

0 0 0

0 1 1

1 0 1

1 1 1

Table 10-3. Truth table for disjunction (Boolean addition).

X Y X ⇒ Y

0 0 1

0 1 1

1 0 0

1 1 1

Table 10-4. Truth table for logical implication.



TABLE FOR LOGICAL EQUIVALENCE
If X and Y are logical variables, then X = Y has truth value 1 when both variables
have value 1, or when both variables have value 0. If the truth values of X and Y are
different, then X = Y has truth value 0. This is broken down fully in Table 10-5.

PROBLEM 10-3
Derive the truth table for logical equivalence based on the truth tables
for conjunction and implication.

SOLUTION 10-3
Remember that X = Y means the same thing as (X ⇒ Y) × (Y ⇒ X).
Based on this fact, you can build up X = Y in steps, as shown in Table 
10-6 (proceeding from left to right). The four possible combinations of
truth values for sentences X and Y are shown in the first (left-most) and
second columns. The truth values for X ⇒ Y are shown in the third col-
umn, and the truth values for Y ⇒ X are shown in the fourth column. In
order to get the truth values for the fifth or right-most column (X = Y),
conjunction is applied to the truth values in the third and fourth columns.
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X Y X � Y

0 0 1

0 1 0

1 0 0

1 1 1

Table 10-5. Truth table for logical equivalence (Boolean equality).

Table 10-6. Truth table for Problem 10-3.

X Y X ⇒ Y Y ⇒ X X � Y

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 1 1 1



Some Boolean Laws
Boolean operations obey certain mathematical laws, which means that they are
inviolable. (If a single counterexample of a hypothesis is proven, then that hypoth-
esis is not a mathematical law.) Here are some basic laws of Boolean algebra.

PRECEDENCE
When reading or constructing logical statements, the operations within paren-
theses are always performed first. If there are multilayered combinations of
sentences (this is called nesting of operations), then you should first use ordi-
nary parentheses, then square brackets [ ], and then curly brackets, also known
as braces {}. Alternatively, you can use groups of plain parentheses inside each
other. But if you do that, be sure you end up with the same number of left-hand
parentheses and right-hand parentheses in the complete expression.

If there are no parentheses or brackets in an expression, instances of negation
should be performed first. Then conjunctions (multiplication operations) should
be done, then disjunctions (addition operations), then logical implications, and
finally logical equivalences.

As an example of how precedence works, consider the following Boolean
expression:

A × −B + C ⇒ D

Using parentheses and brackets to clarify this according to the rules of prece-
dence, we can write it like this:

{[A × (−B)] + C} ⇒ D

Now consider a more complex Boolean expression, which is so messy that
we run out of parenthesis and brackets if we use the “ordinary/square/curly”
scheme:

A × −B + C ⇒ D × E = 0 + G

Using plain parentheses only, we can write it this way:

(((A × (−B)) + C) ⇒ (D × E)) = (0 + G)

When we count up the number of left-hand parentheses and the number of right-
hand parentheses, we see that there are six left-hand ones and six right-hand
ones. (If the number weren’t the same, the expression would be flawed.)
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CONTRADIC TION
A contradiction always results in a false truth value (logic 0). This is one of the
most interesting laws in mathematics, and has been used to prove important
facts—and to construct satirical sentences. Symbolically, if X is any logical
statement, we can write the rule like this:

(X × −X) ⇒ 0

LAW OF DOUBLE NEGATION
The negation of a negation is equivalent to the original expression. That is, if X
is any logical variable, then:

−(−X) = X

COMMUTATIVE LAWS
The conjunction of two variables always has the same value, regardless of the
order in which the variables are expressed. If X and Y are logical variables, then
X × Y is logically equivalent to Y × X:

X × Y = Y × X

The same property holds for logical disjunction:

X + Y = Y + X

These are called the commutative law for conjunction and the commutative law
for disjunction, respectively. The variables can be commuted (interchanged in
order) and it doesn’t affect the truth value of the resulting sentence.

ASSOCIATIVE LAWS
When there are three variables combined by two conjunctions, it doesn’t matter
how the variables are grouped. Suppose you have a Boolean expression that can
be symbolized as follows:

X × Y × Z

where X, Y, and Z represent the truth values of three constituent sentences. Then
we can consider X × Y as a single variable and combine it with Z, or we can
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consider Y × Z as a single variable and combine it with X, and the results are
logically equivalent:

(X × Y) × Z = X × (Y × Z)

The same law holds for logical disjunction:

(X + Y) + Z = X + (Y + Z)

These are called the associative law for conjunction and the associative law for
disjunction, respectively. 

We must be careful when applying associative laws. All the operations in the
Boolean expression must be the same. If a Boolean expression contains a con-
junction and a disjunction, we cannot change the grouping and expect to get the
same truth value in all possible cases. For example, the following two Boolean
expressions are not, in general, logically equivalent:

(X × Y) + Z

X × (Y + Z)

LAW OF IMPLICATION REVERSAL
When one sentence implies another, you can’t reverse the sense of the implica-
tion and still expect the result to be valid. It is not always true that if X ⇒ Y, then
Y ⇒ X. It can be true in certain cases, such as when X = Y. But there are plenty
of cases where it isn’t true.

If you negate both sentences and reverse the sense of the implication, how-
ever, the result is always valid. This is the law of implication reversal. It is also
known as the law of the contrapositive. Expressed symbolically, suppose we are
given two logical variables X and Y. Then the following always holds:

(X ⇒ Y) = (−Y ⇒ −X)

PROBLEM 10-4
Use words to illustrate an example of the above law in a real-world
sense.

SOLUTION 10-4
Let V represent the sentence “Jane is a living vertebrate creature.” Let
B represent the sentence “Jane has a brain.” Then V ⇒ B reads, “If 
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Jane is a living vertebrate creature, then Jane has a brain.” Applying the
law of implication reversal, we can say that −B ⇒ −V. That translates
to: “If Jane does not have a brain, then Jane is not a living vertebrate
creature.” These two sentences, although a bit strange, are logically
equivalent.

DEMORGAN’S LAWS
If the conjunction of two sentences is negated as a whole, the result can be
rewritten as the disjunction of the negations of the original two sentences.
Expressed symbolically, if X and Y are two logical variables, then the following
holds valid in all cases:

−(X × Y) = (−X) + (−Y)

This is called DeMorgan’s law for conjunction.
A similar rule holds for disjunction. If a disjunction of two sentences is

negated as a whole, the resulting Boolean expression can be rewritten as the con-
junction of the negations of the original two sentences. Symbolically:

−(X + Y) = (−X) × (−Y)

This is called DeMorgan’s law for disjunction.

DISTRIBUTIVE LAW
A specific relationship exists between conjunction and disjunction, known as the
distributive law. It works like the distributive principle in arithmetic. That prin-
ciple states that if a and b are any two numbers, then

a(b + c) = ab + ac

Think of logical conjunction as multiplication, and logical disjunction as
addition. Then if X, Y, and Z are any three sentences, the following logical
equivalence exists:

X × (Y + Z) = (X × Y) + (X × Z)

This is called the distributive law of conjunction with respect to disjunc-
tion. Its resemblance to the arithmetic distributive principle can be used as 
a memory aid.
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Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Consider an operation called NAND, which consists of the AND opera-
tion acting on two variables, followed by negation of the result. Suppose
this operation is indicated by a multiplication symbol with a circle
around it (⊗). Define this operation symbolically, and write down a truth
table for it, as applicable to two variables.

2. Consider an operation called NOR, which consists of the inclusive OR
operation acting on two variables, followed by negation of the result.
Suppose this operation is indicated by an addition symbol with a circle
around it (⊕). Define this operation symbolically, and write down a truth
table for it, as applicable to two variables.

3. Consider the exclusive OR operation (called XOR) that was defined
earlier in this chapter. Suppose this operation is indicated by an addition
symbol with a subtraction symbol underneath (±). Write down a truth table
for it, as applicable to two variables.

4. Consider an operation called XNOR (or, alternatively, NXOR), which
consists of the XOR operation acting on two variables, followed by nega-
tion of the result. Suppose this operation is indicated by the division sym-
bol from arithmetic (÷). Define this operation symbolically, and write
down a truth table for it, as applicable to two variables.

5. The truth values for the XNOR operation, as applied to two variables, are
the same as those for a relation with which we are familiar. What relation
is this? What is the difference (if any) between XNOR and this relation?

SOLUTIONS

1. Let X and Y be logical variables. If we let the NAND operation be sym-
bolized ⊗, the following holds:

X ⊗ Y = −(X × Y)
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Table 10-7 shows how the truth values for this operation are derived in
terms of Boolean multiplication and negation.

2. Let X and Y be logical variables. If we let the NOR operation be sym-
bolized ⊕, the following holds:

X ⊕ Y = −(X + Y)

Table 10-8 shows how the truth values for this operation are derived in
terms of Boolean addition and negation.

3. Let X and Y be logical variables. If we let the XOR operation be sym-
bolized ±, then X ± Y = 1 when X ≠ Y, and X ± Y = 0 when X = Y. Table
10-9 shows the values of the XOR operation.
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X Y X � Y X ⊕ Y

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Table 10-8. Truth table for Quick Practice Problem 2.

X Y X � Y X ⊗ Y

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

Table 10-7. Truth table for Quick Practice Problem 1.



4. Let X and Y be logical variables. If we let the XOR operation be symbol-
ized ±, and the XNOR operation be symbolized ÷, the following holds:

X ÷ Y = −(X ± Y)

Table 10-10 shows how the truth values for this operation are derived in
terms of XOR followed by negation.

5. The truth values for XNOR are the same as the truth values for logical
equivalence. However, there is a difference between the two. While
XNOR is an operation, which produces a resultant value on the basis of
input variables, logical equivalence is a relation, which merely defines
how the values of variables compare.
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X Y X � Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 10-9. Truth table for Quick Practice Problem 3.

X Y X � Y X � Y

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Table 10-10. Truth table for Quick Practice Problem 4.



Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. The conjunction of five Boolean variables has value 0

(a) if and only if all the variables have value 0.
(b) if and only if at least one of the variables has value 0.
(c) if and only if all the variables have value 1.
(d) Forget it! A conjunction can’t be defined for five variables.

2. The disjunction of seven variables has value 0

(a) if and only if all the variables have value 0.
(b) if and only if at least one of the variables has value 0.
(c) if and only if all the variables have value 1.
(d) Forget it! A disjunction can’t be defined for seven variables.

3. In a logical statement, a double-shafted arrow pointing to the right means

(a) “and.”
(b) “if.”
(c) “if and only if.”
(d) “logically implies.”

4. How many possible combinations of truth values are there for a set of
three variables, each of which can attain either the value 1 or the value 0?

(a) 2
(b) 4
(c) 8
(d) 16

5. Suppose you observe, “It is not sunny today, and it’s not warm.” Your
friend says, “The statement that it’s sunny or warm today is false.” These
two sentences are logically equivalent, and this constitutes a verbal
example of

(a) one of DeMorgan’s laws.
(b) the law of double negation.
(c) one of the commutative laws.
(d) the law of implication reversal.

CHAPTER 10 Boolean Algebra 223



6. Suppose I make the claim that a certain general statement is a law of
logic. You demonstrate that my supposed law has at least one exception.
This proves that

(a) my statement is not a law of logic.
(b) my statement violates the commutative law.
(c) my statement violates the law of implication reversal.
(d) a disjunction implies logical falsity.

7. Look at Table 10-11. What, if anything, is wrong with this truth table?

(a) Not all possible combinations of truth values are shown for X, Y,
and Z.

(b) The entries in the far right-hand column are incorrect.
(c) It is impossible to have a logical operation such as (X + Y) × Z.
(d) Nothing is wrong with Table 10-11.

8. What, if anything, can be done to make Table 10-11 show a valid
derivation?

(a) Nothing needs to be done. It is correct as it is.
(b) In the top row, far-right column header, change the multiplication

symbol (×) to a double-shafted arrow pointing to the right (⇒).
(c) In the far-left column, change every 0 to 1, and change every 1 to 0.
(d) In the first three columns, change every 1 to 0, and change every 

0 to 1.
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Table 10-11. Truth table for Quiz Questions 7 and 8

X Y Z X � Y (X � Y) � �

0 0 0 0 1

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1



9. An atomic proposition in Boolean algebra

(a) can sometimes be split into smaller logical parts.
(b) can contain multiple Boolean operations.
(c) can always be split into smaller logical parts.
(d) can never be split into smaller logical parts.

10. Imagine that someone says to you, “If I am a human and I am not a
human, then the moon is made of Swiss cheese.” (Forget for a moment
that this person has obviously lost contact with the real world.) This is a
verbal illustration of the fact that

(a) implication can’t be reversed.
(b) DeMorgan’s laws don’t always hold true.
(c) conjunction is not commutative.
(d) a contradiction implies logical falsity.
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CHAPTER

227

Trigonometric 
Functions

Trigonometry involves angles and their relationships to distances. All of these rela-
tionships arise from the characteristics of a circle, and can be defined on the basis
of the graph of a circle in the Cartesian (rectangular coordinate) plane. The rela-
tionships can also be defined in terms of the relative dimensions of triangles.

The Unit Circle
Consider a circle in the Cartesian plane with the following equation:

x2 + y2 = 1

This is called the unit circle because its radius is 1 unit, and it is centered at
the origin (0,0). This circle gives us a simple basis to define the common
trigonometric functions, which are also called the circular functions.
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RADIANS
Imagine two rays emanating outward from the center point of a circle. Suppose
the rays intersect the circle at points P and Q, and the distance between P and Q,
as measured along the arc of the circle, is equal to the radius of the circle. Then
the measure of the angle between the rays is one radian (1 rad).

There are 2π rad in a full circle, where π (the lowercase, non-italicized Greek
letter pi) stands for the ratio of the circumference of a circle to its diameter. The
value of π is approximately 3.14159265359, often rounded off to 3.14159 or
3.14. The angle corresponding to a quarter-circle is π/2 rad; the angle corre-
sponding to a half circle is π rad; the angle corresponding to three-quarters of a
circle is 3π/2 rad.

Mathematicians and physicists often use the radian when working with
trigonometric functions, and the “rad” is sometimes left out when specifying
angles in this form. If you see something like q1 = π/4, you know the angle q1 is
expressed in radians.

DEGREES, MINUTES, SECONDS
The angular degree (°), also called the degree of arc, is the unit of angular mea-
sure familiar to laypeople. One degree (1°) is the equivalent of 1/360 of a full cir-
cle. An angle of 90° represents a quarter circle, 180° represents a half circle, 270°
represents three-quarters of a circle, and 360° represents a full circle. A right
angle has a measure of 90°, an acute angle has a measure of more than 0° but less
than 90°, and an obtuse angle has an angle more than 90° but less than 180°.

To denote the measures of tiny angles, or to precisely denote the measures of
angles in general, smaller units are used. One minute of arc or arc minute, sym-
bolized by an apostrophe or accent (′) or abbreviated as m or min, is (1/60)°. One
second of arc or arc second, symbolized by a closing quotation mark (″) or
abbreviated as s or sec, is (1/60)′ or (1/3600)°. An example of an angle in this
notation is 30° 15′ 0″, which denotes 30 degrees, 15 minutes, 0 seconds.

Alternatively, fractions of a degree can be denoted in decimal form. You
might see, for example, 30.25°. This is the same as 30° 15′ 0″. Decimal fractions
of degrees are easier to work with than the /minute/second scheme when angles
must be added and subtracted, or when using a conventional calculator to work
out trigonometry problems.

PROBLEM 11-1
Suppose a textbook tells you that q1 = π/4. What is the measure of q1
in degrees?
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SOLUTION 11-1
There are 2π rad in a full circle of 360°. The value π/4 is equal to 1/8
of 2π. Therefore, the angle q1 is 1/8 of a full circle, or 45°.

PROBLEM 11-2
Suppose your town is listed in an almanac as being at 40° 20′ north lat-
itude and 93° 48′ west longitude. What are these values in decimal form?
Express your answers to two decimal places.

SOLUTION 11-2
There are 60 minutes of arc in an angular degree. For latitude, note that
20′= (20/60)° = 0.33°; that means the latitude is 40.33° north. For 
longitude, note that 48′ = (48/60)° = 0.80°; that means the longitude is
93.80° west.

Primary Circular Functions
Consider a circle in rectangular coordinates with the following equation:

x2 + y2 = 1

This equation, as defined earlier in this chapter, represents the unit circle. Let q
be an angle whose apex is at the origin, and that is measured counterclockwise
from the x axis, as shown in Fig. 11-1. Suppose this angle corresponds to a ray
that intersects the unit circle at some point P = (x0,y0). We can define three basic
trigonometric functions, called circular functions, of the angle q in a simple and
elegant way.

THE SINE FUNCTION
Consider ray OP passing outward from the origin (point O) through a movable
point P on the circle. Imagine this ray as pointing straight along the positive x
axis, and then starting to rotate counterclockwise on its end point O, as if point
O is a mechanical bearing. The point P, represented by coordinates (x0,y0),
therefore revolves around point O, following the perimeter of the unit circle.

Imagine what happens to the value of y0 (also known as the ordinate of point
P) during one complete revolution of ray OP. The ordinate of P starts out at 
y0 = 0, then increases until it reaches y

0
= 1 after P has gone 90° or π/2 rad
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around the circle (q = 90° = π/2). After that, y0 begins to decrease, getting back
to y0 = 0 when P has gone 180° or π rad around the circle (q = 180° = π). As P
continues to revolve counterclockwise, y0 keeps decreasing until, at q = 270° =
3π/2, the value of y0 reaches its minimum of −1. After that, the value of y0 rises
again until, when P has gone completely around the circle, it returns to y0 = 0
for q = 360° = 2π.

The value of y0 is defined as the sine of the angle q. The sine function is
abbreviated sin, so we can state this simple equation:

sin q = y0

THE COSINE FUNCTION
Look again at Fig. 11-1. Imagine, once again, the ray OP from the origin out-
ward through a movable point P on the circle. Think of the ray pointing directly
along the positive x axis to start out with, and then rotating in a counterclock-
wise direction, as before.
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Now imagine what happens to the value of x0 (also called the abscissa of
point P) during one complete revolution of ray OP. The abscissa of P starts out
at x0 = 1, then decreases until it reaches x0 = 0 when q = 90° = π/2. After that, x0
continues to decrease, getting down x0 = –1 when q = 180° = π. As P continues
counterclockwise around the circle, x0 begins to increase again; at q = 270° =
3π/2, the value gets back up to x0 = 0. After that, x0 increases further until, when
P has gone completely around the circle, it returns to x0 = 1 for q = 360° = 2π.

The value of x0 is defined as the cosine of the angle q. The cosine function is
abbreviated cos. So we can write this:

cos q = x0

THE TANGENT FUNCTION
Once again, refer to Fig. 11-1. The tangent (abbreviated tan) of an angle q is
defined using the same ray OP and the same point P = (x0, y0) as is done with
the sine and cosine functions. The definition is:

tan q = y0 /x0

Because we already know that sin q = y0 and cos q = x0, we can express the
tangent function in terms of the sine and the cosine:

tan q = sin q /cos q

This function “blows up” at certain values of q. Whenever x0 = 0, the denom-
inator of either quotient above becomes zero. Division by zero is not defined,
and that means the tangent function is not defined for any angle q such that
cos q = 0. Such angles are all the odd multiples of 90° (π/2 rad).

PROBLEM 11-3
What is tangent of an exact 45° angle? Do not perform any calcula-
tions. You should be able to infer this without having to write down any 
numerals.

SOLUTION 11-3
Draw a diagram of a unit circle, such as the one in Fig. 11-1, and place
ray OP such that it subtends an angle of exactly 45° with respect to 
the positive x axis. That angle is the angle of which we want to find the
tangent. Note that the ray OP also subtends an angle of 45° with respect
to the positive y axis, because the x and y axes are perpendicular (they
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are oriented at 90° with respect to each other), and 45° is exactly half
of 90°. Every point on the ray OP is equally distant from the positive
x and y axes; this includes the point (x0, y0). It follows that x0 = y0,
and neither of them is equal to zero. From this, we can conclude that
y0 /x0 = 1. According to the definition of the tangent function, there-
fore, the tangent of an exact 45° angle is precisely equal to 1.

Secondary Circular Functions
The three functions defined above form the cornerstone of trigonometry.
However, three more circular functions exist. Their values represent the recip-
rocals of the values of the preceding three functions. To understand the defini-
tions of these functions, look again at Fig. 11-1.

THE COSECANT FUNCTION
Imagine the ray OP, subtending an angle q with respect to the x axis, and ema-
nating out from the origin and intersecting the unit circle at the point P = (x0, y0).
The reciprocal of the ordinate, that is, 1/y0, is defined as the cosecant of the
angle q. The cosecant function is abbreviated csc, so we can state this simple
equation:

csc q = 1/y0

This function is the reciprocal of the sine function. That is to say, for any angle
q, the following equation is always true as long as sin q is not equal to 0:

csc q = 1/sin q

The cosecant function is not defined for 0° (0 rad), or for any multiple of 180°
(π rad). This is because the sine of any such angle is equal to 0, which would mean
that the cosecant would have to be equal to 1/0, which is an undefined quantity.

THE SECANT FUNCTION
Keeping the same rotating-ray notion in mind, consider 1/x0. This is defined as
the secant of the angle q. The secant function is abbreviated sec, so we can
define it like this:

sec q = 1/x0
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The secant of any angle is the reciprocal of the cosine of that angle. That is,
as long as cos q is not equal to 0, the following equation holds:

sec q = 1/cos q

The secant function is not defined for 90° (π/2 rad), or for any odd multiple
thereof. This is because the cosine of any such angle is equal to 0, which 
would mean that the secant would have to be equal to 1/0, which is an un-
defined quantity.

THE COTANGENT FUNCTION
Now consider the value x0 /y0. This is called the cotangent function, abbreviated
cot. For any ray anchored at the origin and crossing the unit circle at an angle q,
the following holds:

cot q = x0 /y0

Because we already know that sin q = y0 and cos q = x0, we can express the
cotangent function in terms of the cosine and the sine:

cot q = cos q /sin q

The cotangent of an angle is also equal to the reciprocal of the tangent of 
that angle:

cot q = 1/ tan q

Whenever y0 = 0, the denominator of either quotient above becomes 0, and
the cotangent function is not defined. This occurs at all integer multiples of 
180° (π rad).

NONSTANDARD ANGLES
Once in awhile you will encounter an angle whose measure is negative, or
whose measure is 360° (2π rad) or more. In trigonometry, any such angle can
be reduced to something that is at least 0° (0 rad), but less than 360° (2π rad).
Figure 11-1 shows why. Even if ray OP makes more than one revolution counter-
clockwise from the x axis, or if it turns clockwise, its orientation can always be
defined by some counterclockwise angle of least 0° (0 rad) but less than 360°
(2π rad) relative to the positive x axis.

CHAPTER 11 Trigonometric Functions 233



For the purposes of determining the values of trigonometric functions, any
angle f of the nonstandard sort, such as 450° or –9π /4 rad, can be reduced to 
an angle q that is at least 0° (0 rad) but less than 360° (2π rad) by adding or sub-
tracting some whole-number multiple of 360° (2π rad). Thus, for example:

sin 450° = sin (450 – 360)°

= sin 90°
= 1

cos (–9π /4) = cos [–9π /4 + (2 × 2π)]
= cos (4π – 9π /4)
= cos 7π /4
= 0.7071

PROBLEM 11-4
Use a portable scientific calculator, or the calculator program in a per-
sonal computer, to find the values of all six circular functions of 66°. 
Round your answers off to three decimal places. If your calculator does
not have keys for the cosecant (csc), secant (sec), or cotangent (cot)
functions, first find the sine (sin), cosine (cos), and tangent (tan)
respectively, then find the reciprocal, and round off your answer to
three decimal places as the final step.

SOLUTION 11-4
You should get the following results. Be sure your calculator is set to
work with degrees, not radians.

sin 66° = 0.914
cos 66° = 0.407
tan 66° = 2.246
csc 66° = 1/sin 66° = 1.095
sec 66° = 1/cos 66°= 2.459
cot 66 = 1/tan 66° = 0.445

The Right Triangle Model
In the previous section, we defined the six circular functions in terms of points on
a circle. There is another way to define these functions: the right-triangle model.
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TRIANGLE AND ANGLE NOTATION
In geometry, it is customary to denote triangles by writing an uppercase Greek
letter delta (∆) followed by the names of the three points representing the cor-
ners, or vertices, of the triangle. Angles are denoted by writing the symbol ∠
(which resembles an italicized, uppercase English letter L without serifs) fol-
lowed by the names of three points that uniquely determine the angle. This
scheme lets us specify the extent and position of the angle, and also the rota-
tional sense in which it is expressed. For example, if there are three points D,
E, and F, then ∠FED (read “angle FED”) has the same measure as∠DEF,
but in the opposite direction. The middle point, E in either case, is the vertex of
the angle.

The rotational sense in which an angle is measured can be significant in
physics, astronomy, and engineering, and also when working in coordinate sys-
tems. In the Cartesian plane, angles measured counterclockwise are considered
positive by convention, while angles measured clockwise are considered nega-
tive. If we have ∠FED that measures 30° counterclockwise around a circle in
Cartesian coordinates, then ∠DEF, which goes clockwise, measures −30°. The
cosines of these two angles happen to be the same, but the sines differ.

RATIOS OF SIDES
Consider a right triangle defined by points D, E, and F, as shown in Fig. 11-2.
Suppose that ∠DFE is a right angle (that is, it has a measure of 90°), so ∆DEF
is a right triangle. Let d be the length of the line segment opposite point D. Let
e be the length of line segment opposite point E. Let f be the length of line seg-
ment opposite point F. Let q be ∠FED, the angle measured counterclockwise
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between line segments EF and ED. The six circular trigonometric functions can
be defined as ratios between the lengths of the sides, as follows:

sin q = e/f

cos q = d/f

tan q = e/d

csc q = f/e

sec q = f/d

cot q = d/e

The longest side of a right triangle is always opposite the 90° angle, and is
called the hypotenuse. In Fig. 11-2, this is the line segment ED, whose length
is f. The other two sides are called adjacent sides because they are both adjacent
to the right angle, and have a common vertex (in this case point F).

SUM OF ANGLE MEASURES
In any triangle, the sum of the measures of the interior angles is 180° (π rad).
This holds true whether it is a right triangle or not, as long as all the angles are
measured in the plane defined by the three vertices of the triangle.

RANGE OF ANGLES
In the right-triangle model, the values of the trigonometric functions are defined
only for angles between (but not including) 0° and 90° (0 rad and π/2 rad). All
angles outside this range are defined using the unit-circle model.

PROBLEM 11-5
Suppose there is a triangle whose sides are precisely 3, 4, and 5 units,
respectively. What is the sine of the angle q opposite the side that 
measures 3 units? Round the answer off to three significant figures.

SOLUTION 11-5
If we are to use the right-triangle model to solve this problem, we must
first be certain that a triangle with sides having lengths of precisely 3, 
4, and 5 units is a right triangle. We can test for this by seeing if the
Pythagorean theorem applies. If this triangle is a right triangle, then
the side measuring 5 units is the hypotenuse, and we should find that
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32 + 42 = 52. Checking, we see that 32 = 9 and 42 = 16. Therefore, 32 +
42 = 9 + 16 = 25, which is equal to 52. This is indeed a right triangle.

It helps to draw a picture here, after the fashion of Fig. 11-2. Put
the angle q, which we are analyzing, at lower left (corresponding to the
vertex point E). Label the hypotenuse f = 5. Set e = 3 and d = 4.
According to the formulas above, the sine of the angle in question is
equal to e/f. In this case, that means sin q = 3/5 = 0.600.

PROBLEM 11-6
What are the values of the other five circular functions for the angle q
as defined in Problem 11-5? Round the answers off to three significant 
figures.

SOLUTION 11-6
Simply plug numbers into the formulas given above, representing the
ratios of the lengths of sides in the right triangle:

cos q = d/f = 4/5 = 0.800

tan q = e/d = 3/4 = 0.750

csc q = f/e = 5/3 = 1.67

sec q = f/d = 5/4 = 1.25

cot q = d/e = 4/3 = 1.33

Trigonometric Identities
The following paragraphs depict common trigonometric identities for the circu-
lar functions. Unless otherwise specified, these formulas apply to angles q and
f in the standard range, as follows:

0 rad ≤ q < 2π rad

0° ≤ q < 360°

0 rad ≤ f < 2π rad

0° ≤ f < 360°

Angles outside the standard range are converted to values within the standard
range by adding or subtracting the appropriate multiple of 360° (2π rad). You will
occasionally hear of an angle with negative measure, or with a measure of more
than 360° (2π rad). Such an angle can always be converted to an equivalent angle
with positive measure that is at least 0° (0 rad) but less than 360° (2π rad).
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PYTHAGOREAN THEOREM FOR SINE AND COSINE
The sum of the squares of the sine and cosine of an angle is always equal to 1.
The following formula holds:

sin2q + cos2q = 1

A NOTE ABOUT EXPONENTS
The expression sin2q refers to the sine of the angle, squared (not the sine of the
square of the angle). That is to say:

sin2q = (sin q )2

In general, the following notational definition applies, for any number x:

sinxq = (sin q )x

This rule also holds for all of the other trigonometric functions.

PYTHAGOREAN THEOREM FOR SECANT AND TANGENT
The following formulas apply for all angles except q = 90° (π/2 rad) and q =
270° (3π/2 rad):

sec2q − tan2q = 1

tan2q − sec2q = −1

PROBLEM 11-7
Use a drawing of the unit circle to help show why it is true that 
sin2q + cos2q = 1 for angles q greater than 0° and less than 90°. 
(Hint: a right triangle is involved.)

SOLUTION 11-7
Figure 11-3 is a drawing of the unit circle, with the angle q defined
counterclockwise between the x axis and a ray emanating from the 
origin. When the angle is greater than 0° but less than 90°, a right tri-
angle is formed, with a segment of the ray as the hypotenuse. The
length of this segment is equal to the radius of the unit circle, or 1 unit.
According to the Pythagorean theorem for right triangles, the square
of the length of the hypotenuse is equal to the sum of the squares of
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the lengths of the other two sides. It is apparent from Fig. 11-3 that the
lengths of these other two sides are sin q and cos q. Therefore:

(sin q )2 + (cos q )2 = 12

which is the same as saying that sin2q + cos2q = 1.

PROBLEM 11-8
Use another drawing of the unit circle to help show why it is true that
sin2q + cos2q = 1 for angles q greater than 270° and less than 360°. 
(Hint: this range of angles can be thought of as the range between, but
not including, –90° and 0°).

SOLUTION 11-8
Figure 11-4 shows how this can be done. Draw a mirror image of Fig.
11-3, with the angle q defined clockwise instead of counterclockwise. 
Again we have a right triangle; and this triangle, like all right triangles,
has dimensions according to the Pythagorean theorem. Therefore:

(sin q)2 + (cos q)2 = 12

which is the same as saying that sin2q + cos2q = 1.
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SINE OF NEGATIVE ANGLE 
The sine of the negative of an angle (an angle measured in the direction oppo-
site to the normal direction) is equal to the negative of the sine of the angle. For
all angles q, the following formula holds:

sin –q = –sin q

COSINE OF NEGATIVE ANGLE
The cosine of the negative of an angle is equal to the cosine of the angle. For all
angles q, the following formula holds:

cos –q = cos q

TANGENT OF NEGATIVE ANGLE
The tangent of the negative of an angle is equal to the negative of the tangent of
the angle. The following formula applies for all angles q except 90° (π/2 rad) and
270° (3π/2 rad):

tan –q = –tan q
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PROBLEM 11-9
Why doesn’t the above formula work when q = 90° (π/2 rad) or q =
270° (3π/2 rad)?

SOLUTION 11-9
The value of the tangent function is not defined for those angles.
Remember that the tangent of any angle is equal to the sine divided 
by the cosine. The cosine of 90° (π/2 rad) and the cosine of 270°
(3π/2 rad) are both equal to 0. When a quotient has 0 in the denomi-
nator, that quotient is not defined. This is the reason for the restric-
tions on the angle measures in some of the formulas in the next few
paragraphs.

COSECANT OF NEGATIVE ANGLE 

The cosecant of the negative of an angle is equal to the negative of the cosecant
of the angle. The following formula applies for all angles except q = 0° (0 rad)
and q = 180° (π rad):

csc –q = –csc q

SECANT OF NEGATIVE ANGLE

The secant of the negative of an angle is equal to the secant of the angle. The
following formula applies for all angles except q = 90° (π/2 rad) and q = 270°
(3π/2 rad):

sec –q = sec q

COTANGENT OF NEGATIVE ANGLE

The cotangent of the negative of an angle is equal to the negative of the cotan-
gent of the angle. The following formula applies for all angles q  except 0° (0 rad)
and 180° (π rad):

cot –q = –cot q
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SINE OF DOUBLE ANGLE
The sine of twice an angle q is equal to twice the sine of the original angle times
the cosine of the original angle:

sin 2q = 2 sin q cos q

COSINE OF DOUBLE ANGLE
The cosine of twice an angle q can be found using either of the following func-
tions of the original angle:

cos 2 q = 1 – (2 sin2q )

cos 2 q = (2 cos2q ) – 1

SINE OF ANGULAR SUM
The sine of the sum of two angles q and f can be found using this formula:

sin (q + f) = sin q cos f + cos q sin f

COSINE OF ANGULAR SUM
The cosine of the sum of two angles q and f can be found using this formula:

cos (q + f) = cos q cos f – sin q sin f

SINE OF ANGULAR DIFFERENCE
The sine of the difference between two angles q and f can be found using this
formula:

sin (q – f) = sin q cos f – cos q sin f

COSINE OF ANGULAR DIFFERENCE
The cosine of the difference between two angles q and f can be found using this
formula:

cos (q – f) = cos q cos f + sin q sin f
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PROBLEM 11-10
Illustrate, using the unit circle model, examples of the following facts:

sin –q = –sin q
cos –q = cos q

SOLUTION 11-10
See Fig. 11-5. This shows an example for an angle q of approximately
60° (π/3 rad). Note that the angle –q is represented by rotation to 
the same extent as, but in the opposite direction from, the angle q.
Remember that positive angles are represented by counterclockwise
rotation from the positive x axis, and negative angles are represented
by clockwise rotation from the positive x axis. The ray from the origin
for –q is the reflection of the ray for q with respect to the positive 
x axis. The above identities can be inferred geometrically from this 
diagram. The two rays intersect the circle at points whose y values
(representing sines) are negatives of each other, and whose x values (rep-
resenting cosines) are equal.

PROBLEM 11-11
Rewrite the expression sin (120° – q) as the sum of trigonometric func-
tions of single angles. Express coefficients to three significant figures.
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SOLUTION 11-11
Use the formula for the sine of an angular difference, given above, sub-
stituting 120° for q, as follows:

sin (120° – f) = (sin 120°)(cos f) – (cos 120°)(sin f)

= 0.866 cos f – (–0.500) sin f
= 0.866 cos f + 0.500 sin f

In case you don’t already know this definition, a coefficient is a
number by which a variable or function is multiplied. In this situation,
for example, the coefficients are 0.866 and 0.500.

PROBLEM 11-12
Illustrate, using the unit circle model, examples of the following facts:

sin (180° – q ) = sin q
cos (180° – q ) = –cos q

SOLUTION 11-12
See Fig. 11-6. This shows an example for an angle q of approximately
30° (π/6 rad). The ray from the origin for 180° – q is the reflection of the
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ray for q with respect to the positive y axis. The above identities can
be inferred geometrically from this diagram. The two rays intersect
the circle at points whose y values (representing sines) are equal, and
whose x values (representing cosines) are negatives of each other.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Sketch a graph of the equation y = sin x for values of x between –3π
and 3π.

2. Sketch a graph of the equation y = cos x for values of x between –3π
and 3π.

3. Sketch a graph of the equation y = tan x for values of x between –3π
and 3π.

4. Sketch a graph of the equation y = csc x for values of x between –3π
and 3π.

5. Sketch a graph of the equation y = sec x for values of x between –3π
and 3π.

SOLUTIONS

1. See Fig. 11-7.

2. See Fig. 11-8.

3. See Fig. 11-9.

4. See Fig. 11-10.

5. See Fig. 11-11.
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Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. The value of tan 90° is

(a) 0.
(b) 1.
(c) π.
(d) not defined.

2. Which of the following statements is true?

(a) tan q = 1/ cot q, provided cot q ≠ 0
(b) tan q = 1 – cos q, provided cos q ≠ 0
(c) tan q = 1 + sin q, provided sin q ≠ 0
(d) tan q + cot q = 0, provided cot q ≠ 0 and tan q ≠ 0

3. With regard to the circular functions, an angle of 5π rad can be consid-
ered equivalent to an angle of
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(a) 0°.
(b) 90°.
(c) 180°.
(d) 270°.

4. Suppose the tangent of a certain angle is –1.0000, and its cosine is
–0.7071, approximated to four decimal places. The sine of this angle,
approximated to four decimal places, is

(a) 1.0000.
(b) 0.7071.
(c) –0.7071.
(d) 0.0000.

5. What is the approximate measure of the angle described in Question 4?

(a) 0°
(b) 90°
(c) 180°
(d) None of the above

6. Refer to Fig. 11-12. The tangent of ∠ABC is equal to

(a) the length of line segment AC divided by the length of line segment
AB.

(b) the length of line segment AD divided by the length of line segment
BD.

(c) the length of line segment AD divided by the length of line segment
AB.

(d) no ratio of lengths that can be shown here.
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7. Refer to Fig. 11-12. Suppose we know that the measure of ∠BCA is 50°
and the length of line segment AD is 5.3 units. What is the length of line
segment AC? Express the answer to one decimal place (that is, the near-
est tenth of a unit).

(a) 6.9 units
(b) 8.2 units
(c) 6.3 units
(d) More information is needed to determine the answer.

8. Refer again to Fig. 11-12. Suppose we know that the measure of ∠BCA
is 50° and the length of line segment AD is 5.3 units. What is the length
of line segment AB? Express the answer to one decimal place (that is, the
nearest tenth of a unit).

(a) 6.9 units
(b) 8.2 units
(c) 6.3 units
(d) More information is needed to determine the answer.

9. Refer again to Fig. 11-12. Suppose we know that line segment AD is
exactly 2/3 as long as line segment AB. What is the measure of ∠DAB?
Express the answer to the nearest tenth of a degree. Use a calculator if
necessary.

(a) 33.7°
(b) 41.8°
(c) 48.2°
(d) 56.3°

10. Suppose, in reference to Fig. 11-12, we are told that the measure of
∠BCA is 50° and the measure of ∠ABC is 38°. We think that the person
who says this is mistaken because

(a) it would imply that ∆ABC is a right triangle, which is impossible.
(b) it would imply that the measure of ∠CAD is something other than

40°, but it must be 40° because the sum of the measures of the inte-
rior angles of any triangle is 180°.

(c) the measure of ∠ABC is 40° because ∆ABC is an isosceles triangle.
(d) of a rush to judgment! It is entirely possible that the measure of

∠BCA is 50° and the measure of ∠ABC is 38°.
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CHAPTER

251

Vectors in Two and 
Three Dimensions

A vector is a quantity with two independent properties: magnitude and direction.
In equations, vectors are denoted as letters in bold type, with lines over them, or
with arrows over them. (In this book, we’ll use lowercase boldface letters.)
Geometrically, a vector is portrayed as a line segment, with length indicating the
magnitude and an arrow indicating the direction with respect to a reference axis.

Vectors in the Cartesian Plane
Consider two arbitrary vectors, a and b, extending in the xy-plane from the
origin (0,0) to points (xa,ya) and (xb,yb), as shown in Fig. 12-1. Here are some
important definitions and properties of these vectors.
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MAGNITUDE IN xy-PLANE
The magnitude of a, written |a| or a, is given by the following formula:

|a| = (xa
2 + ya

2)1/2

DIRECTION IN xy-PLANE
When xa > 0, the direction of a (written dir a) is the angle qa that the vector a
subtends, expressed in a counterclockwise sense, from the +x axis, as follows:

dir a = qa

= arctan (ya/xa)

= tan−1 (ya/xa)

When xa < 0, the formula for angles in degrees is:

dir a = qa

= 180º + arctan (ya/xa)

= 180º + tan−1 (ya/xa)
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When xa < 0, the formula for angles in radians is:

dir a = qa

= π + arctan (ya/xa)

= π + tan−1 (ya/xa)

If xa = 0, then dir a = 90º (or π / 2 rad) for ya > 0, and dir a = 270º (or 3π /2
rad) for ya < 0. If xa = 0 and ya = 0, then dir a is undefined.

SUM IN xy-PLANE
The sum of two vectors a and b in the Cartesian plane is given by the following
formula:

a + b = [(xa + xb),(ya + yb)]

This sum can be found geometrically by constructing a parallelogram with a and
b as adjacent sides. The sum vector, a + b, corresponds to the diagonal of this
parallelogram.

DOT PRODUCT IN xy-PLANE

The dot product a • b of two vectors a and b in the Cartesian plane is a real num-
ber given by the formula:

a • b = xaxb + yayb

The dot product is also known as the scalar product because it is a scalar
quantity, having magnitude but not direction.

CROSS PRODUCT IS PERPENDICULAR 
TO xy-PLANE

The cross product a × b of two vectors a and b is a vector oriented at a right
angle to the plane containing a and b. Let qab be the angle between vectors a
and b, as expressed in the counterclockwise sense in the plane containing them
both, as you look straight down on that plane. That is, qab = (qb − qa). The mag-
nitude of a × b is then given by the following formula:
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|a × b| = |a| |b| sin qab

If the direction angle qb is greater than the direction angle qa (as shown in Fig.
12-1), then a × b points toward you as you look straight down on the xy-plane.
If qb < qa, then a × b points away from you as you look straight down on the
xy-plane.

The vector b × a has the same magnitude as the vector a × b, but points in
exactly the opposite direction. The cross product is often called the vector product
because it is a vector quantity, having both magnitude and direction.

RIGHT-HAND RULE

Imagine two vectors a and b. Suppose the angle between them, when their orig-
inating points (also called back-end points) coincide, is qab. Curl the fingers of
your right hand and point your thumb out so it is perpendicular to the plane
containing your curled-up index finger. Then position your right hand so your
fingers curl in the rotational sense of qab (counterclockwise), while the plane
containing your curled-up index finger coincides with the plane containing a
and b. When you do this, your thumb points in the general direction of a × b,
and in the opposite general direction from b × a.

The vectors a × b and b × a are always oriented exactly perpendicular (also
called normal or orthogonal) to the plane defined by a and b, when a and b are
positioned so that their originating points coincide.

PROBLEM 12-1
Consider two vectors in the Cartesian plane, a = (4,0) and b = (3,4).
What is their sum vector, a + b? What is their dot product, a • b?
Assume that the values given are exact.

SOLUTION 12-1
Let xa = 4, xb = 3, ya = 0, and yb = 4. The sum vector is found by adding
the components:

a + b = [(4 + 3),(0 + 4)]

= (7,4)

The dot product can be found by plugging the numbers into the for-
mula for calculating dot products:
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a • b = (4 × 3) + (0 × 4)

= 12 + 0

= 12

PROBLEM 12-2
What is |a × b| for the vectors a and b defined in Problem 12-1? In what
direction does a × b point? Assume the values given are exact.

SOLUTION 12-2
In order to find |a × b|, we must know the lengths of both vectors, as
well as the sine of the angle between them. If it helps you, feel free to
draw a diagram to accompany this solution. To find |a| and |b|, proceed
as follows:

|a| = (42 + 02)1/2

= 161/2

= 4

|b| = (32 + 42)1/2

= (9 + 16)1/2

= 251/2

= 5

In order to determine the sine of the angle between the two vectors,
consider a right triangle formed by the positive x axis (in which a is con-
tained), the vertical line x = 3, and the vector b. The sine of the angle
qab between the vectors at the origin is equal to the height of this tri-
angle, or yb, divided by the length of the hypotenuse, or |b|. Therefore:

sin qab = yb/ |b|

= 4 /5

To find the magnitude of the cross product vector, use the formula
for that purpose:

|a × b| = |a| |b| sin qab

= 4 × 5 × 4 /5

= 16

If you look straight down on the Cartesian plane containing the vec-
tors, then a × b is perpendicular to that plane, and points directly
toward you.
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PROBLEM 12-3
What is the magnitude of the cross product vector, |b × a|, of the two vectors
a and b defined in Problem 12-1? In what direction does b × a point?

SOLUTION 12-3
The value of |b × a| is the same as the value of |a × b|. This is easy to
prove, as follows:

|b × a| = |b| |a| sin qab

= |a| |b| sin qab

= |a × b|

= 16

The direction of b × a is precisely opposite to the direction of a × b. If you
look straight down on the Cartesian plane containing the vectors, then b × a is
perpendicular to that plane, and points directly away from you.

Vectors in the Polar Plane
In the polar coordinate plane, vectors a and b can be denoted as rays from the
origin (0,0) to points (qa,ra) and (qb,rb), as shown in Fig. 12-2. Angles in this
illustration are portrayed in radians.

MAGNITUDE AND DIRECTION
The magnitude and direction of the vector a = (qa,ra) the polar coordinate plane
are defined as follows:

|a| = ra

dir a = qa

By convention, these restrictions hold:

ra ≥ 0

0º ≤ qa < 360º

0 rad ≤ qa < 2π rad
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SUM IN POLAR PLANE
The sum of two vectors a and b, when they are given in polar form, can be found
by converting both vectors into rectangular (xy-plane) coordinates, adding the
vectors according to the formula for vector addition in the xy-plane, and then
converting the sum vector back to polar coordinates. To convert vector a from
polar to rectangular coordinates, these formulas apply:

xa = ra cos qa

ya = ra sin qa

To convert vector a from rectangular coordinates to polar coordinates, use the
formulas given earlier in this chapter for the direction and magnitude of a vec-
tor in the xy-plane. The value of dir a thus derived is equal to qa, and the value
of |a| is equal to ra.
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DOT PRODUCT IN POLAR PLANE

In the polar coordinate plane, let a = (qa,ra) and b = (qb,rb), as shown in Fig.
12-2. Let qab be the angle between vectors a and b, as expressed in the counter-
clockwise sense in the plane containing them both, as you look straight down on
that plane. That is, qab = (qb − qa). The dot product of a and b can be found using
this formula:

a • b = |a| |b| cos qab

= rarb cos qab

CROSS PRODUCT IN POLAR PLANE

The cross product of a and b is perpendicular to the polar plane. Its magnitude
is given by:

|a × b| = |a| |b| sin qab

= rarb sin qab

If qb > qa (as in Fig. 12-2), then a × b points toward you as you look straight
down on the coordinate plane. If qb < qa, then a × b points away from you as you
look straight down on the coordinate plane.

PROBLEM 12-4
Consider two vectors a and b in the polar plane, with coordinates
(qa,ra) and (qb,rb) as follows, with angles specified in degrees:

a = (30º,3)

b = (150º,2)

What is the dot product, a • b? Assume the values given are exact.

SOLUTION 12-4
The calculation of this is straightforward, using the formula for dot
product in polar coordinates. Note that qab = qb − qa = 150º − 30º = 120º.
Therefore:

a • b = rarb cos qab

= 3 × 2 × cos 120º

= 3 × 2 × (−0.5)

= −3
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PROBLEM 12-5
Consider two vectors a and b in the polar plane, with coordinates
(qa,ra) and (qb,rb) as follows, with angles specified in radians:

a = (π,6)

b = (π/4,7)

What is the cross product, a × b? Assume the values given are exact.
Consider π = 3.14159, and determine the answer to three significant
figures.

SOLUTION 12-5
This problem is a little tricky, because the quantity qab, which is the
quantity (qb − qa), is negative:

qb − qa = π/4 − π
= −3π/4

In this case, the magnitude of the cross product vector is determined as
follows:

|a × b| = rarb sin qab

= 6 × 7 × sin (−3π/4)

= 6 × 7 × −0.7071

= −29.7

In order to determine the direction of a × b, note that if you look
straight down on the polar plane, the angular movement (that is, the
rotational sense) as you go from vector a to vector b is clockwise rather
than counterclockwise. The calculation yields “−29.7 units toward you”
because the sense of angular rotation is reversed from normal (clock-
wise rather than counterclockwise). By convention, vector magnitudes
are non-negative. The correct way to define this vector is “29.7 units away
from you, perpendicular to the polar plane.”

Vectors in Cartesian 3-Space
In xyz-space, vectors a and b can be denoted as rays from the origin (0,0,0) to
points (xa,ya,za) and (xb,yb,zb), as shown in Fig. 12-3. The sum vector, a + b, is
also shown. This is a perspective drawing. All three vectors would point gener-
ally out of the page toward you in a true 3D rendition.
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CORRECT ORIENTATION OF AXES
When xyz-space is portrayed, the +z axis should point toward you when the +x
axis points to your right and the +y axis points upward. Each of the three coor-
dinate axes is perpendicular to the other two at the origin (0,0,0). In properly
constructed xyz-space, the cross product (1,0,0) × (0,1,0) is equal to the vector
(0,0,1). It’s important that the orientations of the +x, +y, and +z axes be in the
correct relative sense. Otherwise, incorrect results will be obtained when deter-
mining dot products and cross products.

SUM IN xyz-SPACE
In Cartesian 3-space, the sum of two vectors a = (xa,ya,za) and b = (xb,yb,zb) is
given by the following formula:

a + b = [(xa + xb),(ya + yb),(za + zb)]
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This sum can be found geometrically by constructing a parallelogram with a and
b as adjacent sides. The sum a + b is the diagonal of the parallelogram. An
example is shown in the perspective drawing of Fig. 12-3.

MAGNITUDE IN xyz-SPACE
The magnitude of vector a = (xa,ya,za) in Cartesian 3-space, written |a| or a, is
given by:

|a| = (xa
2 + ya

2 + za
2)1/2

DIRECTION IN xyz-SPACE
The direction of a vector a in Cartesian 3-space is denoted by specifying the angles
qx, qy, and qz that a subtends relative to the +x, +y, and +z axes respectively, as
shown in Fig. 12-4. These angles, expressed as an ordered triple (qx,qy,qz), are
called the direction angles of the vector a. By convention, the rotational sense in
space is irrelevant when specifying direction angles. Thus, direction angles are
never negative, and they are never larger than 180º (π rad). With this scheme, all
possible vector orientations can be uniquely defined in Cartesian 3-space.
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Sometimes the cosines of the direction angles are specified, rather than the
measures of the angles, to define the orientation of a vector in xyz-space. These
are denoted using the lowercase Greek letters alpha (α), beta (β), and gamma (γ),
and are known as the direction cosines of a:

dir a = (α,β,γ)

where α = cos qx, β = cos qy, and γ = cos qz. Direction cosine values can range
anywhere between, and including, −1 and 1.

DOT PRODUCT IN xyz-SPACE
The dot product a • b of two vectors a = (xa,ya,za) and b = (xb,yb,zb) in xyz-space
is a real number:

a • b = xaxb + yayb + zazb

Alternatively, the dot product a • b of two vectors a and b in Cartesian 3-space
is a real-number quantity given by this formula:

|a × b| = |a| |b| cos qab

where qab is the angle between a and b as determined in the plane P containing
them both, expressed in the rotational sense starting at a and ending up at b, as
seen by an external observer.

CROSS PRODUCT IN xyz-SPACE
The cross product a × b of two vectors a and b in Cartesian 3-space is a vector
perpendicular to the plane P containing both a and b, and whose magnitude is
given by this formula:

|a × b| = |a| |b| sin qab

where qab is the angle between a and b as determined in P, expressed in the rota-
tional sense starting at a and ending up at b, as seen by an external observer.

The vector a × b is always perpendicular to the plane P that contains both a
and b. If a and b are observed from some point on a line perpendicular to P and
intersecting P at the origin, and qab is expressed in a counterclockwise rotational
sense from a to b, then a × b points toward the observer. If a and b are observed
from some point on a line perpendicular to P and intersecting P at the origin, and
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qab is expressed in a clockwise rotational sense from a to b, then a × b points
away from the observer.

PROBLEM 12-6
Consider the vector a = (2.000,3.000,4.000) in Cartesian 3-space. What
is the magnitude of this vector? Express the answer to the appropriate
number of significant figures.

SOLUTION 12-6
Let xa = 2.000, ya = 3.000, and za = 4.000. Plug these values into the
formula for the magnitude of a vector in xyz-space, and calculate as 
follows:

|a| = (xa
2 + ya

2 + za
2)1/2

= (2.0002 + 3.0002 + 4.0002)1/2

= (4.000 + 9.000 + 16.00)1/2

= 29.001/2

= 5.385

PROBLEM 12-7
Consider two vectors a = (2,3,4) and b = (−1,5,0). What is a • b?
Assume the values are exact. Express the answer to four significant 
figures.

SOLUTION 12-7
Let xa = 2, ya = 3, za = 4, xb = −1, yb = 5, and zb = 0. Plug these values
into the formula for the dot product of two vectors in xyz-space, and
calculate as follows:

a • b = xaxb + yayb + zazb

= (2 × −1) + (3 × 5) + (4 × 0)

= −2 + 15 + 0

= 13.00

PROBLEM 12-8
Consider two vectors a and b in Cartesian 3-space. Suppose they both
have magnitude 2.000, but their directions differ by 20º. What is |a × b|?
Express the answer to the appropriate number of significant figures.
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SOLUTION 12-8
Let qab = 20º. Plug the numbers into the formula for the magnitude of
the cross product of two vectors in 3D, and calculate as follows:

|a × b| = |a| |b| sin θab

= 2.000 × 2.000 × sin 20º

= 4.000 × 0.34202014

= 1.368

PROBLEM 12-9
Show that the cross product of any two vectors that point in the same
direction, regardless of their magnitudes, is the zero vector.

SOLUTION 12-9
When two vectors a and b point in the same direction, the angle qab
between them is 0º. In such a situation, |a × b| is determined as follows:

|a × b| = |a| |b| sin qab

= |a| |b| sin 0º

= |a| × |b| × 0

= 0

Therefore, a × b = 0 when the vectors a and b have the same direction.
(The zero vector is denoted by a boldface numeral 0.)

You might wish to show, as an additional exercise, that the cross
product of any two vectors that point in opposite directions is equal to
the zero vector. With this knowledge, we can say that any vector a has
the following three properties:

a × a = 0

−a × a = 0

a × −a = 0

Standard Form of a Vector
In any coordinate system, vectors can be geometrically expressed as finite-
length rays with originating points that coincide with the coordinate origin. This
is the standard form of a vector. In standard form, a vector can be depicted as a
set of coordinates such as (x,y,z) = (3,−5,5) or (q,r) = (π/4,10).
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EQUIVALENT AND IDENTICAL VEC TORS

Two vectors a and b are equivalent if and only if they both have the same mag-
nitude and the same direction. Two vectors a and b are identical if and only if
they both have the same magnitude, the same direction, and the same originat-
ing point. The equality symbol (=) can be used to indicate either situation, as
long as it’s made clear whether the symbol refers to vectors that are truly iden-
tical, or to vectors that are merely equivalent.

In physics and engineering, magnitude and direction are sometimes the only
important factors in the expression of a vector quantity. The actual originating
point is not relevant in these cases. Then two equivalent vectors a and b can be
considered equal, and this is written a = b. Examples include vectors represent-
ing the velocity or acceleration of a moving vehicle, when the location of the
vehicle is not specified.

In pure mathematics, and in general science when the actual originating point
is important, two vectors in the xy-plane or in xyz-space can be equivalent, but
not identical. Then we must be careful about calling two vectors “equal.” In this
interpretation, every vector a has an infinite number of equivalent vectors a�,
where the magnitudes and directions are all the same, but the originating points
are all different.

In the discussions and examples that follow, all vectors are assumed to be in
standard form, so their originating points are always at the origin of the coordi-
nate system, unless otherwise specified. This will eliminate any possible confu-
sion about what is meant when it is said that two vectors are “equal.” When
vectors are expressed in standard form, equivalent vectors are always identical.
Then when we write an expression that claims two vectors are “equal” (for
example a = b), it means that they are identical.

IN THE xy-PLANE

In two-dimensional Cartesian coordinates, let P1 be the originating point of
some vector a�, and let P2 be the terminating point of that same vector a�,
defined as follows:

P1 = (x1,y1)

P2 = (x2,y2)

where the direction of the vector is from P1 to P2. Then the standard form of a�,
denoted a, is defined by point P such that:
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P = (x,y)

= [(x2 − x1),(y2 − y1)]

The two vectors a and a� are equivalent, because they have the same magnitude
and the same direction, even though their originating points differ (Fig. 12-5).

IN THE POLAR PLANE
Vectors in polar coordinates are always denoted in standard form, that is, with
their origins at (q,r) = (0,0). This is necessary, because otherwise the vector
direction becomes difficult to define.

IN xyz-SPACE
In three-dimensional Cartesian coordinates, suppose the originating and termi-
nating points of a vector a� are P1 and P2, defined as follows:

P1 = (x1,y1,z1)

P2 = (x2,y2,z2)
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where the direction of the vector is from P1 to P2. Then the standard form of a�,
denoted a, is defined by point P such that:

P = (x,y,z)

= [(x2 − x1),(y2 − y1),(z2 − z1)]

The two vectors a and a� are equivalent, because they have the same magnitude
and the same direction, even though their originating points differ (Fig. 12-6).

Basic Properties
Here are some basic properties that apply to vectors and real-number scalars in
the xy-plane, in the polar plane, or in xyz-space.

MULTIPLICATION OF VECTOR BY SCALAR
The following rules apply to scalars (that is, real-number quantities), and to vec-
tors in standard form.
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In the xy-plane. In two-dimensional Cartesian coordinates, let vector a be
defined by the coordinates (x,y) as shown in Fig. 12-7. Suppose a is multiplied
by a positive real scalar k. Then the following equation holds:

ka = k(x,y) = (kx,ky)

If a is multiplied by the scalar k = 0, then ka = 0. If a is multiplied by a neg-
ative real scalar −k, then:

−ka = −k(x,y) = (−kx,−ky)

In the polar plane. In two-dimensional polar coordinates, let vector a be
defined by the coordinates (q,r) as shown in Fig. 12-8. Suppose a is multiplied
by a positive real scalar k. Then the following equation holds:

ka = (q,kr)

If a is multiplied by the scalar k = 0, then ka = 0. If a is multiplied by a neg-
ative real scalar −k, then:

−ka = (q + π,kr)
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The addition of π rad (180º) to the angular coordinate is necessary because, in
the polar-coordinate expression of a vector, the magnitude (and therefore the
radius coordinate) is always positive or zero by convention.

In xyz-space. In three-dimensional Cartesian coordinates, let vector a be de-
fined by the coordinates (x,y,z) as shown in Fig. 12-9. Suppose a is multiplied
by a positive real scalar k. Then the following equation holds:

ka = k(x,y,z) = (kx,ky,kz)

If a is multiplied by a negative real scalar −k, then:

−ka = −k(x,y,z) = (−kx,−ky,−kz)

Suppose the direction angles of a are represented by (qx,qy,qz). Then the
direction angles of ka are also given by (qx,qy,qz). The direction angles of −ka
are the supplements of (qx,qy,qz), respectively. For direction angles in degrees:
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dir (−ka) = [(180º − qx),(180º − qy),(180º − qz)]

For direction angles in radians:

dir (−ka) = [(π − qx),(π − qy),(π − qz)]

Suppose the direction cosines of a are represented by (α,β,γ). Then the direc-
tion cosines of ka are also given by (α,β,γ). The direction cosines of −ka are the
negatives of α, β, and γ, respectively:

dir (−ka) = (−α,−β,−γ)

UNIT VECTORS
Consider two vectors a and b expressed in standard form in Cartesian 3-space.
Suppose a = (xa,ya,za) and b = (xb,yb,zb). Either of these two vectors can be bro-
ken down into a sum of three mutually perpendicular component vectors, each
of which lies along one of the coordinate axes. These component vectors are, in
turn, each scalar multiples of mutually perpendicular vectors with magnitude 1,
as follows:
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a = (xa,ya,za)

= (xa,0,0) + (0,ya,0) + (0,0,za)

= xa(1,0,0) + ya(0,1,0) + za(0,0,1)

b = (xb,yb,zb)

= (xb,0,0) + (0,yb,0) + (0,0,zb)

= xb(1,0,0) + yb(0,1,0) + zb(0,0,1)

The three mutually perpendicular vectors (1,0,0), (0,1,0), and (0,0,1) are
called unit vectors because they all have magnitude 1. It is customary to name
these three standard unit vectors i, j, and k, like this:

(1,0,0) = i

(0,1,0) = j

(0,0,1) = k

The vectors a and b, and their sum vector a + b (as shown in Fig. 12-3, for
example), break down this way:

a = (xa,ya,za)

= xai + yaj + zak

b = (xb,yb,zb)

= xbi + ybj + zbk

a + b = (xa + xb)i + (ya + yb)j + (za + zb)k

PROBLEM 12-10
Break the vector b = (–2,3,–7) down into a sum of multiples of the unit
vectors i, j, and k.

SOLUTION 12-10
If you have trouble envisioning this situation, imagine i as having 1 unit
of “width going to the right,” j as having 1 unit of “altitude going straight
up,” and k as having 1 unit of “depth coming straight at you.” The break-
down proceeds like this:

CHAPTER 12 Vectors in Two and Three Dimensions 271



b = (–2,3,–7)

= –2 × (1,0,0) + 3 × (0,1,0) + [–7 × (0,0,1)]

= –2i + 3j + (–7)k

= –2i + 3j – 7k

COMMUTATIVITY OF VECTOR ADDITION
When summing any two vectors, it does not matter in which order the addition is
done. The resultant vector is the same in either case. If a and b are vectors, then:

a + b = b + a

COMMUTATIVITY OF VECTOR-SCALAR 
MULTIPLICATION
When a vector is multiplied by a scalar, it does not matter in which order the
multiplication is done. The resultant vector is the same in either case. If a is a
vector and k is a scalar, then:

ka = ak

COMMUTATIVITY OF DOT PRODUCT
When the dot product of two vectors is determined, it does not matter in which
order the operation is performed. The result is the same scalar quantity in either
case. If a and b are vectors, then:

a • b = b • a

NEGATIVE COMMUTATIVITY OF 
CROSS PRODUCT
Let qab be the angle between two vectors a and b as defined in the plane con-
taining a and b, such that 0º ≤ qab ≤ 180º (0 ≤ qab ≤ π), and such that the rota-
tional sense of the angle is not considered. In this case, the magnitude of the cross
product vector is a nonnegative real number, and is independent of the order in
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which the operation is performed. This can be proven on the basis of the commuta-
tive property for multiplication of scalars, a fact of ordinary arithmetic, as follows:

|a × b| = |a| |b| sin qab

|b × a| = |b| |a| sin qab = |a| |b| sin qab

The direction of b × a is opposite that of a × b. This is shown in the example
of Fig. 12-10. Therefore:

b × a = (−1)(a × b) = −(a × b)

ASSOCIATIVITY OF VECTOR ADDITION
When summing vectors, it makes no difference how the addends are grouped.
The resultant vector is always the same. The case for three vectors is easily
stated. If a, b, and c are vectors, then:

(a + b) + c = a + (b + c)

This situation is shown in Fig. 12-11. Drawing A shows the process of summing
the three vectors as (a + b) + c. Drawing B shows the process of summing them
as a + (b + c).
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ASSOCIATIVITY OF VECTOR-SCALAR 
MULTIPLICATION
Let k1 and k2 be scalar quantities, and let a be a vector quantity. If all three quan-
tities are multiplied, it makes no difference how they are grouped; the resultant
vector is always the same. The following equation applies:

k1(k2a) = (k1k2)a
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Other Properties
Here are some more properties that apply to vectors and real-number scalars.
You’ll encounter these facts less often than the ones in the preceding section, but
you might find them useful when manipulating vector and scalar quantities in
physics and engineering.

DISTRIBUTIVITY OF SCALAR MULTIPLICATION 
OVER SCALAR ADDITION
Let a be a vector, and let k1 and k2 be real-number scalars. Then the following
equations hold. The resultant is a vector quantity:

(k1 + k2)a = k1a + k2a

a(k1 + k2) = ak1 + ak2

= k1a + k2a

DISTRIBUTIVITY OF SCALAR MULTIPLICATION 
OVER VECTOR ADDITION
Let a and b be vectors, and let k be a real-number scalar. Then the following
equations hold. The resultant is a vector quantity:

k(a + b) = ka + kb

(a + b)k = ak + bk = ka + kb

DISTRIBUTIVITY OF DOT PRODUCT OVER 
VECTOR ADDI TION
Let a, b, and c be vectors. Then the following equations hold. The resultant is a
scalar quantity:

a • (b + c) = (a • b) + (a • c)
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(b + c) • a = (b • a) + (c • a)

= (a • b) + (a • c)

DISTRIBUTIVITY OF CROSS PRODUCT 
OVER VECTOR ADDITION
Let a, b, and c be vectors. Then the following equation holds. The resultant is a
vector quantity:

a × (b + c) = (a × b) + (a × c)

This property can be expanded to apply to pairs of vector sums, each having n
addends (where n = 2, n = 3, n = 4, etc.), in the same way as multiplication is
distributive with respect to addition in real-number arithmetic. For example, for
n = 2:

(a + b) × (c + d) = (a × c) + (a × d) + (b × c) + (b × d)

In the case of n = 3, the cross product of two vector sums expands like this:

(a + b + c) × (d + e + f) = (a × d) + (a × e) + (a × f)

+ (b × d) + (b × e) + (b × f)

+ (c × d) + (c × e) + (c × f)

DOT PRODUCT OF CROSS PRODUCTS
Let a, b, c, and d be vectors. Then the following equation holds. The resultant is
a scalar quantity:

(a × b) • (c × d) = (a • c)(b • d) − (a • d)(b • c)

DOT PRODUCT OF MIXED VECTORS AND SCALARS
Let t and u be scalars, and let a and b be vectors. Then the following equation
holds. The resultant is a scalar quantity:

ta • ub = tu(a • b)

CROSS PRODUCT OF MIXED VECTORS AND SCALARS
Let t and u be scalars, and let a and b be vectors. Then the following equation
holds. The resultant is a vector quantity:

ta × ub = tu(a × b)
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PROBLEM 12-11
Consider two vectors, a = (xa, ya, za) and b = (xb, yb, zb). Derive a gen-
eral formula for their cross product in terms of x, y, and z coordinates.
That is, produce an expression for a × b in the form of an ordered triple.

SOLUTION 12-11
Recall the concept of the unit vectors i = (1,0,0), j = (0,1,0), and k =
(0,0,1). Note the following facts, which can be verified using the right-
hand rule and the formula for the magnitude of the cross product of
vectors:

i × j = k

j × i = −k

i × k = −j

k × i = j

j × k = i

k × j = −i

Note the distributive property of the cross product over vector addition,
extrapolated for the cross product of two vector sums. Also, note the
way scalar and vector products mix. Converting a and b to sums of unit
vectors, we have:

a × b = (xa, ya, za) × (xb, yb, zb)

= (xai + yaj + zak) × (xbi + ybj + zbk)

Using the distributive property of the cross product with respect to vec-
tor addition, we can expand this, as follows:

a × b = (xai × xbi) + (xai × ybj) + (xai × zbk)

+ (yaj × xbi) + (yaj × ybj) + (yaj × zbk)

+ (zak × xbi) + (zak × ybj) + (zak × zbk)

Using our knowledge of how scalar multiplication and cross products
can be mixed, the above can be rewritten to obtain:

a × b = xaxb(i × i) + xayb(i × j) + xazb(i × k)

+ yaxb(j × i) + yayb(j × j) + yazb(j × k)

+ zaxb(k × i) + zayb(k × j) + zazb(k × k)
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Remember that the cross product of any vector with itself is the zero
vector, and that the zero vector times any scalar is the zero vector. We
can therefore rewrite the above in this form:

a × b = 0 + xayb(i × j) + xazb(i × k)

+ yaxb(j × i) + 0 + yazb(j × k)

+ zaxb(k × i) + zayb(k × j) + 0

Taking note of the six facts given above for the cross products of unit
vectors i, j, and k, and getting rid of the 0 vectors in the equation, the
above can be simplified to obtain:

a × b = xaybk + xazb(−j)

+ yaxb(−k) + yazbi

+ zaxbj + zayb(−i)

Rearranging the signs, we get this:

a × b = xaybk − xazbj
− yaxbk + yazbi

+ zaxbj − zaybi

This can be rewritten yet again, based on the rules for vector sums:

a × b = (yazb − zayb)i + (zaxb − xazb)j + (xayb − yaxb)k

Therefore, the general formula for a × b as an ordered triple is as
follows:

a × b = [(yazb − zayb),(zaxb − xazb),(xayb − yaxb)]

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Find the magnitude of the vector a = (−7,−10) in the xy-plane. Assume
the values given are exact. Express the answer to three significant
figures.
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2. Convert the vector a = (−7,−10), as expressed in the xy-plane, to polar
form as a vector a = (qa,ra). Assume the values given are exact. Express
the answer to three significant figures, with qa in degrees.

3. Find the magnitude of the vector b = (8, −1,−6) in xyz-space. Assume the
values given are exact. Express the answer to four significant figures.

4. Consider the two vectors a = (−7,−10,0) and b = (8,−1,−6) in xyz-space.
What is their dot product?

5. Consider the two vectors a = (2,6,0) and b = (7,4,3) in xyz-space. What
is their cross product?

SOLUTIONS

1. Use the formula for vector magnitude in the Cartesian plane:

|a| = (xa
2 + ya

2)1/2

= [(−7)2 + (−10)2]1/2

= (49 + 100)1/2

= 1491/2

= 12.2

2. First, find the angle qa according to the formula for the direction of a
vector a in the Cartesian plane when xa < 0:

dir a = qa

= 180º + arctan (ya/xa)

= 180º + arctan (−10 /−7)

= 180º + 55.0º

= 235º

We found ra in the previous problem. It is |a|, which is 12.2. In polar
coordinates:

a = (qa,ra)

= (235º,12.2)

3. Use the formula for vector magnitude in Cartesian 3-space:

|a| = (xa
2 + ya

2 + za
2)1/2

= [82 + (−1)2 + (−6)2]1/2

= (64 + 1 + 36)1/2

= 1011/2

= 10.05
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4. Use the formula for the dot product of two vectors in Cartesian 3-space.
Extra brackets are added for clarity:

a • b = xaxb + yayb + zazb

= (−7 × 8) + [(−10) × (−1)[ + [0 × (−6)]

= −56 + 10 + 0

= −46

5. Use the formula for the cross product of two vectors in Cartesian 3-space,
derived in Solution 12-11 above. Extra brackets and braces are added for
clarity:

a × b = [(yazb − zayb),(zaxb − xazb),(xayb − yaxb)]

= {[(6 × 3) − (0 × 4)],[(0 × 7) − (2 × 3)],[(2 × 4) − (6 × 7)]}

= [(18 − 0),(0 − 6),(8 − 42)]

= (18,−6,−34)

Quiz
This is an “ open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Imagine the vector a = (xa,ya,za) = (1,1,1) in Cartesian 3-space. Which of
the following statements about a is true?

(a) Vector a points right along the x axis.
(b) Vector a points right along the y axis.
(c) Vector a points right along the z axis.
(d) Vector a does not point along the x, y, or z axis.

2. Imagine the vector a = (xa,ya,za) = (1,1,1) in Cartesian 3-space. What 
is dir a, specified in the form of an ordered triple of direction angles
(qx,qy,qz) relative to the x, y, and z axes, respectively? Express the angles in
degrees, to three significant figures. (Warning: This is a tricky problem.
These angles are not 45º, as you might at first suppose. Consider vector
a as the internal diagonal of a cube that is 1 unit high, 1 unit wide, and
1 unit deep.)

(a) (54.7º,54.7º,54.7º)
(b) (35.3º,35.3º,35.3º)
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(c) (60.0º,60.0º,60.0º)
(d) (30.0º,30.0º,30.0º)

3. Imagine the vector a = (xa,ya,za) = (1,1,1) in Cartesian 3-space. What 
is dir a, specified in the form of an ordered triple of direction cosines
(α,β,γ)? Express the cosines to two significant figures.

(a) (0.50,0.50,0.50)
(b) (0.58,0.58.0.58)
(c) (0.82,0.82,0.82)
(d) (0.87,0.87,0.87)

4. Consider a vector a = (xa,ya) in the Cartesian plane. Suppose each of
these values is multiplied by 2, producing the resultant vector b =
(2xa,2ya). The value of |b| is

(a) equal to 2|a|.
(b) equal to 4|a|.
(c) equal to 8|a|.
(d) impossible to determine without more information.

5. Consider a vector a = (xa,ya,za) in Cartesian 3-space. Suppose each of
these values is multiplied by 2, producing the resultant vector b =
(2xa,2ya,2za). The value of |b| is

(a) equal to 2|a|.
(b) equal to 4|a|.
(c) equal to 8|a|.
(d) impossible to determine without more information.

6. Suppose you are told that a certain vector is defined as d = 3i − 4j + 0k
in xyz-space. From this, you can be certain that the vector

(a) is perpendicular to the +x axis.
(b) is perpendicular to the +y axis.
(c) is perpendicular to the +z axis.
(d) is not perpendicular to any of the three axes +x, +y, or +z.

7. Suppose you are told that the direction angles in xyz-space for vector h
are (30º,60º,90º). What are the direction angles for the vector −2h?

(a) (−30º,−60º,−90º).
(b) (150º,120º,90º).
(c) (60º,120º,180º).
(d) None of the above

CHAPTER 12 Vectors in Two and Three Dimensions 281



8. In xyz-space, the sum of any vector with another vector having equal
magnitude but opposite direction is equal to

(a) the scalar quantity 0.
(b) the vector 0.
(c) a vector with twice the magnitude of, but the same direction as, the

original.
(d) a quantity that requires more information to be defined.

9. In physics, it is a well-known fact that the force F (a vector) exerted on
an object is equal to the product of the mass m (a positive real-number
scalar) of the object multiplied by the acceleration a (a vector) of the
object. Mathematically:

F = ma

Based on this, we can be certain that

(a) F and a are perpendicular to each other.
(b) F and a point in opposite directions.
(c) F and a point in the same direction.
(d) F and a have supplementary direction cosines.

10. The cross product of two vectors is

(a) always a scalar.
(b) never a scalar.
(c) sometimes a scalar.
(d) always negative or zero.
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13
CHAPTER

283

Logarithmic and
Exponential 

Functions

A logarithm (sometimes called a log) of a quantity is an exponent to which a
positive real-number constant must be raised to obtain that quantity. An expo-
nential of a quantity is the result of raising a positive real-number constant to a
power equal to that quantity. The constant is known as the base of the logarithmic
function or the exponential function. The two most common bases for logarith-
mic and exponential functions are 10 and e, where e is an irrational number
approximately equal to 2.71828. The number e is also known as Euler’s constant
and the exponential constant.
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Logarithmic Functions
Suppose this relationship exists among three real numbers b, x, and y, where 
b > 0:

by = x

Then y is the base b logarithm of x. This expression is written

y = logb x

COMMON LOGARITHMS
Base-10 logarithms are also known as common logarithms or common logs. In
equations, common logarithms are denoted by writing “log” without a subscript.
For example:

log 10 = 1.000

Figure 13-1 is a partial linear-coordinate graph of the function y = log x.
Figure 13-2 is a partial graph of the same function in semilog coordinates.
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Fig. 13-1. Partial linear-coordinate graph of the common logarithm function.
As x approaches 0, the value of y becomes arbitrarily large in the negative sense.



A logarithmic function of x, regardless of the base, is defined only when x > 0.
The set of x values for which any function of x is defined is called the domain
of the function. The resulting y (or output) values encompass the entire set of
real numbers. The set of all possible y values in a function is known as the range
of the function.

NATURAL LOGARITHMS
Base e logarithms are also called natural logs or Napierian logs. In equations,
the natural-log function is usually denoted “ln” or “loge.” For example:

ln 2.71828 = loge 2.71828 ≈ 1.00000

Figure 13-3 is a partial linear-coordinate graph of the function y = ln x. Figure
13-4 is a partial graph of the same function in semilog coordinates. As with
the base-10 logarithmic function, the domain is limited to the set of positive real
numbers, but the range is the set of all real numbers.
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Fig. 13-3. Partial linear-coordinate graph of the natural logarithm function. As
x approaches 0, the value of y becomes arbitrarily large in the negative sense.
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Fig. 13-4. Partial semilog-coordinate graph of the natural logarithm function.
In this illustration, the y axis intersects the x axis at the point where x = 0.1.



How Logarithmic Functions Behave
Here are some important properties of logarithms that apply to any positive real-
number base, including 10 and e. The principles applicable to logarithms of
products, ratios, and powers are worth memorizing. In the following rules, let
“logb” refer to a logarithm of any positive real-number base b (even including
b = 1, although that case is trivial).

LOGARITHM OF PRODUCT
Let x and y be positive real numbers. The logarithm of the product is equal to the
sum of the logarithms of the individual numbers:

logb xy = logb x + logb y

LOGARITHM OF RATIO
Let x and y be positive real numbers. The logarithm of their ratio, or quotient, is
equal to the difference between the logarithms of the individual numbers:

logb (x/y) = logb x − logb y

LOGARITHM OF POWER
Let x be a positive real number. Let y be any real number (positive, negative, or
zero). The logarithm of x raised to the power y can be reduced to a product, as
follows:

logb xy = y logb x

LOGARITHM OF RECIPROCAL
Let x be a positive real number. The logarithm of the reciprocal (or multiplicative
inverse) of x is equal to the negative (or additive inverse) of the logarithm of x,
as follows:

logb (1/x) = −logb x
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LOGARITHM OF ROOT
Let x be a positive real number. Let y be any real number except zero. The log-
arithm of the yth root of x (also denoted as x to the 1/y power) is given by:

logb (x1/y) = (logb x) /y

LOGARITHM OF THE BASE RAISED TO A POWER
The base b logarithm of b raised to any real-number power is always equal to
that real number. Thus, for every x, the following equation holds:

logb (bx) = x

COMMON LOGARITHM IN TERMS OF NATURAL 
LOGARITHM
Let x be a positive real number. The common logarithm of x can be expressed in
terms of the natural logarithms of x and 10, as follows:

log10 x = (ln x) / (ln 10) ≈ 0.434 ln x

NATURAL LOGARITHM IN TERMS OF COMMON 
LOGARITHM
Let x be a positive real number. The natural logarithm of x can be expressed in
terms of the common logarithms of x and e, as follows:

ln x = (log10 x) / (log10 e) ≈ 2.303 log10 x

PROBLEM 13-1
Compare the common logarithms of 0.01, 0.1, 1, 10, and 100.

SOLUTION 13-1
The common logarithm of a number is the power of 10 that produces
that number. Note that 0.01 = 10−2, 0.1 = 10−1, 1 = 100, 10 = 101, and
100 = 102. Therefore:
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log 0.01 = −2

log 0.1 = −1

log 1 = 0

log 10 = 1

log 100 = 2

PROBLEM 13-2
What is the number whose common logarithm is 15? What is the num-
ber whose common logarithm is −15?

SOLUTION 13-2
The number whose common logarithm is 15 is the quantity 1015 (or
1,000,000,000,000,000). In spoken English, this number is called a 
quadrillion. The number whose common logarithm is −15 is the quan-
tity 10−15 (or 0.000000000000001). In spoken English, this would be
called a quadrillionth.

PROBLEM 13-3
Compare the base-e logarithms (or natural logarithms) of 0.01, 0.1, 1, 10,
and 100. Assume the input values are exact, and express the answers to 
four significant figures.

SOLUTION 13-3
The base-e logarithm of a number is the power of e that produces that
number. These are best found using a calculator. The results are as follows,
to four significant figures in each case:

ln 0.01 = −4.605

ln 0.1 = −2.303

ln 1 = 0.000

ln 10 = 2.303

ln 100 = 4.605
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PROBLEM 13-4
Why is the logarithm of 0, or of any negative number, not defined in
the set of real numbers?

SOLUTION 13-4
Let’s see what happens if we try to calculate the base b logarithm of −2.
Remember that b is a positive real number. Suppose logb −2 = y. This 
can be rewritten in the form by = −2. No real number y satisfies this
equation. No matter what y might happen to be, the value of by is
always positive. If we change −2 to any other negative number, or to 0,
in this scenario, the same problem occurs. It’s impossible to find any
real number y, such that by is less than or equal to 0.

Exponential Functions
Suppose this relationship exists among three real numbers b, x, and y, where b > 0:

bx = y

Then y is the base b exponential of x. The two most common exponential func-
tion bases are b = 10 and b = e ≈ 2.71828.

COMMON EXPONENTIALS
Base 10 exponentials are also known as common exponentials. For example:

10−3.000 = 0.001

Figure 13-5 is a partial linear-coordinate graph of the function y = 10x. Figure
13-6 is a partial graph of the same function in semilog coordinates. The domain
encompasses the entire set of real numbers. The range is limited to the positive
real numbers.

NATURAL EXPONENTIALS
Base e exponentials are also known as natural exponentials. For example:

e−3.000 ≈ 2.71828−3.000 ≈ 0.04979
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Fig. 13-5. Partial linear-coordinate graph of the common exponential function.
As x becomes arbitrarily large in the negative sense, the value of y approaches 0.

Fig. 13-6. Partial semilog graph of the common exponential function. In
this illustration, the x axis intersects the y axis at the point where y = 0.1.



Figure 13-7 is a partial linear-coordinate graph of the function y = ex. Figure
13-8 is a partial graph of the same function in semilog coordinates. The domain
encompasses the entire set of real numbers. The range is limited to the positive
real numbers.

ALTERNATIVE EXPRESSIONS FOR EXPONENTIALS
Sometimes, the common exponential of a quantity is called the common antilog-
arithm (antilog) or the common inverse logarithm (log−1) of that number.
Similarly, the natural exponential of a quantity is called the natural antiloga-
rithm (antiln) or the natural inverse logarithm (ln−1) of that number. Therefore,
you will occasionally see the following alternative notations:

10x = antilog x = log−1 x

ex = antiln x = ln−1 x
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How Exponential Functions Behave
Here are some important properties of exponential functions. As with the facts
involving logarithms, you’ll find it handy to memorize the principles applicable
to products, ratios, and powers. In all the following formulas, let b be a positive
real-number exponential base.

LOGARITHMS VERSUS EXPONENTIALS
The exponential function is the inverse of the logarithm function, and vice-versa.
This means that two functions “undo” each other, provided both functions are
defined for the values in question. For any real number x, and for any positive
real number y, the following equations hold. In this particular example, let logb
be represented by lb (for simplicity of notation, avoiding the need for putting a
subscript within a superscript!). Then:
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lb (bx) = x

b(lb y) = y

RECIPROCAL OF EXPONENTIAL
Let x be a real number. The reciprocal of the exponential of x is equal to the
exponential of the negative of x:

1/(bx) = b−x

PRODUCT OF EXPONENTIALS
Let x and y be real numbers. The product of the exponentials of x and y is equal
to the exponential of the sum of x and y:

bxby = b(x+y)

EXPONENTIAL OF RATIO
Let x and y be real numbers, with the restriction y ≠ 0. The exponential of x /y is
equal to the exponential of 1/y with base bx:

b(x/y) = (bx)(1/y)

RATIO OF EXPONENTIALS
Let x and y be real numbers. The ratio of the exponential of x to the exponential
of y is equal to the exponential of the difference between x and y:

bx /by = b(x−y)

EXPONENTIAL OF EXPONENTIAL
Let x and y be real numbers. The yth power of the exponential of x is equal to
the exponential of the product xy:

(bx)y = b(xy)
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PRODUCT OF COMMON AND NATURAL EXPONENTIALS
Let x be a real number. The product of the common and natural exponentials of
x is equal to the exponential of x to the base 10e:

(10x)(ex) = (10e)x ≈ (27.1828)x

RATIO OF COMMON TO NATURAL EXPONENTIAL
Let x be a real number. The ratio of the common exponential of x to the natural
exponential of x is equal to the exponential of x to the base 10/e:

10x /ex = (10/e)x ≈ (3.6788)x

RATIO OF NATURAL TO COMMON EXPONENTIAL
Let x be a real number. The ratio of the natural exponential of x to the common
exponential of x is equal to the exponential of x to the base e/10:

ex /10x = (e /10)x ≈ (0.271828)x

PROBLEM 13-5
Compare the values of e−2, e−1, e0, e1, and e2. Assume the exponents
given here are exact. Express each answer to five significant figures.

SOLUTION 13-5
In order to determine the values of natural exponentials, it is necessary
to use a calculator that has this function. The key is often labeled ex.
With some calculators, it is necessary to hit an “Inv” key followed by a
“ln” key. Here are the values of the above exponentials, rounded off to
five significant figures:

e−2 = 0.13534

e−1 = 0.36788

e0 = 1.0000

e1 = 2.7183

e2 = 7.3891
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PROBLEM 13-6
What is the number whose common exponential function value is
1,000,000? What is the number whose common exponential function
value is 0.0001? Assume the values given are exact.

SOLUTION 13-6
The number 6 produces the common exponential value 1,000,000. This
can be demonstrated by the fact that 106 = 1,000,000. The number −4
produces the common exponential value 0.0001. This is shown by the
fact that 10−4 = 0.0001.

PROBLEM 13-7
What is the number whose natural exponential function value is
1,000,000? What is the number whose natural exponential function 
value is 0.0001? Assume the input values given here are exact. Express
the answers to four significant figures.

SOLUTION 13-7
In order to solve this problem, we must be sure we know what we’re
trying to get! Suppose we call our solution x. In the first case, we must 
solve the following equation for x:

ex = 1,000,000

Taking the natural logarithm of each side, we get this:

ln(ex) = ln 1,000,000

This simplifies to a matter of finding a natural logarithm with a calculator, as
follows:

x = ln 1,000,000

= 13.82

In the second case, we must solve the following equation for x:

ex = 0.0001

Taking the natural logarithm of each side, we obtain:

ln(ex) = ln 0.0001

This simplifies, as in the first case, to a matter of finding a natural logarithm with
a calculator, as follows:
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x = ln 0.0001

= −9.210

PROBLEM 13-8
What is meant by an order of magnitude for a positive real-number
base b? Give two examples.

SOLUTION 13-8
Let b be a positive real constant. Consider the following two expo-
nentials:

p = bx

q = b(x+n)

where x is a real number and n is a positive integer. In this case, q is n orders of
magnitude greater than p in base b.

To demonstrate how this works by an example, take the facts that 10−2 = 0.01
and 103 = 1000. This means that in the base 10, the number 1000 is five orders
of magnitude greater than the number 0.01, because the power of 10 for 1000 is
five greater than the power of 10 for 0.01. That is, 3 − (−2) = 5.

Another example involves powers of 2. An increase of one order of magni-
tude in base 2 is the equivalent of multiplying a given number by 2 (doubling it).
Thus, starting with 22 = 4:

22 = 4

23 = 8 = 2 × (22)

24 = 16 = 2 × (23)

25 = 32 = 2 × (24)

26 = 64 = 2 × (25)

and so on. Conversely, a decrease of one order of magnitude in base 2 is the
equivalent of dividing a given number by 2 (halving it). Thus, again starting with
22 = 4:

22 = 4

21 = 2 = 1/2 × (22)

20 = 1 = 1/2 × (21)

2−1 = 1/2 = 1/2 × (20)

2−2 = 1/4 = 1/2 × (2−1)
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and so on. Orders of magnitude in the base 2 are unique because of their repeti-
tive doubling and halving properties. This makes them useful in digital elec-
tronics and computing applications.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS
1. Consider the two numbers x = 2.3713018568 and y = 0.902780337. Find

the product xy, using common logarithms, to four significant figures.
(Ignore, for the moment, the fact that a calculator can easily be used to
solve this problem without using logarithms in any form!)

2. Approximate the product of the two numbers xy from Problem 1, but use
natural logarithms instead. Show that the result is the same. Express the
answer to four significant figures.

3. The power gain of an electronic circuit, in units called decibels (dB), is
calculated according to the following formula:

Gain (dB) = 10 log (Pout /Pin)

where Pout is the output signal power and Pin is the input signal power,
both specified in watts. Suppose the audio input to the left channel of a
high-fidelity amplifier is 0.535 watts, and the output is 23.7 watts. What
is the power gain of this circuit in decibels? Round off the answer to three
significant figures.

4. Suppose the audio output signal in the scenario of Problem 3 is run
through a long length of speaker wire, so that instead of the 23.7 watts
that appears at the left-channel amplifier output, the speaker only gets
19.3 watts. What is the power gain of the length of speaker wire, in deci-
bels? Round off the answer to three significant figures.

5. If a positive real number increases by a factor of exactly 10, how does its
common (base-10) logarithm change?
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SOLUTIONS

1. Use the property of common logarithms that converts a product into a
sum. That’s the following formula:

log xy = log x + log y

In this case, x = 2.3713018568 and y = 0.902780337. Using a scientific
calculator, we get:

log (2.3713018568 × 0.902780337)

= log 2.3713018568 + log 0.902780337

= 0.37498684137 + (−0.0444179086)

= 0.37498684137 − 0.0444179086

= 0.3305689328

This is the common logarithm of the product we wish to find. If we find
the common inverse logarithm of this, we’ll get the desired result. In-
putting this to a calculator and then rounding to four significant figures:

log−1 (0.3305689328) = 2.141

2. Use the property of natural logarithms that converts a product into a sum.
That’s the following formula:

ln xy = ln x + ln y

In this case, x = 2.3713018568 and y = 0.902780337. Therefore: 

ln (2.3713018568 × 0.902780337)

= ln 2.3713018568 + ln 0.902780337

= 0.86343911100 + (−0.102276014)

= 0.86343911100 − 0.102276014

= 0.761163097

This is the natural logarithm of the product we wish to find. If we find the
natural inverse logarithm of this, we’ll get the desired result. Inputting
this to a calculator and then rounding to four significant figures:

ln−1 (0.761163097) = 2.141
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3. In this scenario, Pout = 23.7 and Pin = 0.535. Plug these numbers into the
formula for gain in decibels, and then round off as follows:

Gain (dB) = 10 log (Pout /Pin )

= 10 log (23.7/0.535)

= 10 log 44.299

= 10 × 1.6464

= 16.5 dB

4. In this scenario, Pout = 19.3 and Pin = 23.7. Plug these numbers into the
formula for gain in decibels, and then round off as follows:

Gain (dB) = 10 log (Pout /Pin )

= 10 log (19.3 /23.7)

= 10 log (0.81435)

= 10 × (−0.089189)

= −0.892 dB

5. If a positive real number increases by a factor of 10, then its common
logarithm increases (it becomes more positive or less negative) by 1.
This is true regardless of the value of the original number, as long as it
is positive.

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Refer to Fig. 13-9. Assume the numerical values indicated are exact.
What is the equation that line P represents?

(a) y = ln (2x).
(b) y = ln (−x).
(c) y = 0.5 ln x.
(d) None of the above.

2. Refer to Fig. 13-9. Assume the numerical values indicated are exact. What
is the equation that line Q represents?
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(a) y = ln (2x).
(b) y = ln (−x).
(c) y = 0.5 ln x.
(d) None of the above.

3. Refer to Fig. 13-9. Assume the numerical values indicated are exact. What
is the equation that line R represents?

(a) y = ln (2x).
(b) y = ln (−x).
(c) y = 0.5 ln x.
(d) None of the above.

4. What is the common antilogarithm of 0.0036760, accurate to five signif-
icant figures? You may use a calculator.

(a) −5.6059.
(b) −2.4346.
(c) 1.0037.
(d) 1.0085.
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5. What is the value of 104.553 divided by 103.553? Express the answer to
four significant figures, assuming the base 10 is exact. You may use a cal-
culator, although you shouldn’t need one.

(a) 100.0.
(b) 10.00.
(c) 1.000.
(d) 0.1000.

6. Suppose you are given the equation ex = 2.54 × 10−231. What can you say
about the value of x, without actually solving the equation?

(a) It is a large positive real number.
(b) It is between 0 and 1.
(c) It is a real number and is large negatively.
(d) It is not a real number.

7. What is ln 10 to seven significant figures? Do not use a calculator. You
should be able to infer the correct answer from the choices below with-
out using one.

(a) 1.000000.
(b) 2.302585.
(c) 2.202647 × 104.
(d) It is not defined.

8. What is ln (−10) to seven significant figures? Do not use a calculator.
You should be able to infer the correct answer from the choices below
without using one.

(a) −1.000000.
(b) −2.302585.
(c) −2.202647 × 104.
(d) It is not defined.

9. The range of the common logarithm function (as opposed to its domain)
extends over the set of

(a) nonzero real numbers.
(b) positive real numbers.
(c) negative real numbers.
(d) all real numbers.
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10. Let x be a real number that begins at 0 and then becomes larger and larger
negatively without limit. What happens to the value of ex?

(a) It starts out at 0, and then grows larger and larger positively without
limit.

(b) It starts out at 1, and then passes through 0 and grows larger and
larger negatively without limit.

(c) It starts out at 1, and then becomes smaller positively, approaching,
but never quite reaching, 0.

(d) It starts out at 0, and then becomes larger positively, approaching,
but never quite reaching, e.
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14
CHAPTER

305

Differentiation in 
One Variable

This chapter is a quick review of the mechanical basics of differentiation (or
differential calculus). It is assumed that you have already had some first-year
differential calculus. For a more theoretical treatment, Calculus Demystified by
Steven G. Krantz (McGraw-Hill, New York, 2003) is recommended.

Definition of the Derivative
The derivative is a special way of treating a mathematical function in order to
get another function. The most common application of derivatives in physics
and engineering is the determination of the rate at which a quantity changes at
specific points in time. This is known as instantaneous rate of change.

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



WHAT IS A FUNCTION?
Before we formally define the derivative, we should clarify what is meant by the
term function. You have seen this term in this book before, but now it’s time to
present a solid definition of it. In calculus, it’s vital to know exactly what con-
stitutes a mathematical function—and what does not.

A function is a special sort of mathematical relation between two or more
variables. A relation defines, by means of one or more equations, how two or
more quantities compare with each other as their values vary. A function takes
a more active role. It transforms, or maps, a quantity or quantities represented by
one or more independent variables into a quantity or quantities represented by one
or more dependent variables.

The simplest functions are those that have one independent variable and one
dependent variable. (Independent and dependent variables were introduced in
Chapter 4.) These are known as single-variable functions or functions in one
variable, because they have only one independent variable on which the func-
tion operates. Single-variable functions are the only types of functions we will
deal with here.

In a single-variable function, changes in the value of the independent variable
can, in some situations, be envisioned as causative factors in the variations of the
value of the dependent variable. Consider the following real-world statements.

• The outdoor air temperature is a function of the time of day.
• The sunrise time on June 21 is a function of the latitude of the observer.
• The time required for a wet rag to dry is a function of the air temperature.

In scientific and engineering applications, we must be careful when equating
the notion of a mathematical function with the notion of a function in nature,
human behavior, or any other scenario that isn’t purely mathematical. In partic-
ular, we must avoid the temptation to suppose that functions and causative rela-
tions are always the same thing.

We write f(x) = y or y = f(x) to indicate that a function f maps values of x, the
independent variable, to values of y, the dependent variable. We can also say that
the function f assigns values of y to values of x.

WHAT IS NOT A FUNCTION?
A relation can be a function only when every element in the set of its inde-
pendent variables has at most one corresponding element in the set of depend-
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ent variables. If a given value of the dependent variable has more than one
independent-variable value corresponding to it, then that relation might be a func-
tion. But if a given value of the independent variable has two or more corre-
sponding values for the dependent variable, then the relation is not a function.

When graphed, the line or curve representing a function never has more
than one point that intersects a “movable straight line” that is always parallel
to the dependent-variable axis. Examples of functions of the form y = f (x )
include:

y = f(x) = 2x2 + 3x + 4

y = f(x) = sin x

y = f(x) = log x

y = f(x) = ex

Here are some examples of relations, where y is the dependent variable, that
aren’t functions of the independent variable x:

x2 + y2 = 4

x = y2

x = sin y

DOMAIN AND RANGE

Let’s also make sure we know exactly what we’re talking about when we men-
tion the domain and the range of a function! These terms have been used loosely,
but now it’s time to get more rigorous about their meanings.

Let f be a function whose independent variable is x and whose dependent
variable is y. Let X be the set of all x for which f produces some y such that 
f(x) = y. Then X is called the domain of f. Stated in a more simplistic way, the
domain of a function is the set of all independent variable values for which that
function is defined.

Let g be a function whose independent variable is x and whose dependent
variable is y. Let Y be the set of all y for which there exists some x such that
g(x) = y. Then Y is called the range of g. Stated in a more simplistic way, the
range of a function is the set of all dependent variable values for which that func-
tion is defined.
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FIRST DERIVATIVE
Let f be a real-number function, let x0 be an element of the domain of f, and let y0
be an element of the range of f such that y0 = f(x0). Suppose that f is a continuous
function (meaning that its graph is an unbroken line or curve) in the vicinity of
(x0,y0) as shown in Fig. 14-1. Let ∆x represent a small and shrinking change in x,
and let ∆y represent the change in y that occurs as a result of ∆x. Imagine a mov-
able point (x,y) that is always on the graph of f, and that is always near (x0,y0).

The first derivative of the function f at the point (x0,y0), written f ′(x0), is
defined as the limit, as x approaches x0, of the ratio ∆y /∆x. This is equivalent to
the limit, as ∆x approaches 0, of ∆y /∆x. Symbolically this is written as follows:

f ′(x0) = Lim∆x → 0 (∆y /∆x)

The word “limit” is abbreviated as “Lim” in equations. The word “approaches” is
symbolized by a single-shafted arrow pointing to the right.

In Fig. 14-1, the slope of the line L connecting the two points (x0,y0) and (x,y)
approaches f ′(x0) as x approaches x0 from either direction (from the left or from
the right). For this reason, the derivative f ′(x0) is graphically described as the
slope of a line tangent to the curve at the point (x0,y0).

If f is continuous (its graph is an unbroken line or curve) at all values of x in its
domain, then the first derivative of f is defined in general. This can be denoted in
several ways. The most common notations are f ′(x), d/dx( f ), df /dx, and dy /dx.
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Fig. 14-1. The derivative of a continuous function at 
a point can be represented by the slope of the curve at
that point.



SECOND DERIVATIVE
The second derivative of a function f is the derivative of its derivative. This rep-
resents the instantaneous rate of change, or slope, of the first derivative function.
If y = f (x), this can be denoted in various ways, as follows:

f ″(x)

[ f ′(x)]′

d2/dx2(f )

d 2f /dx2

d2y /dx2

HIGHER-ORDER DERIVATIVES
The nth derivative of a function f is the derivative taken in succession n times,
where n is a positive integer. This can be denoted in various ways, as follows:

f (n)(x)

dn/dxn( f )

dnf /dxn

dny /dxn

A WARNING ABOUT NOTATION
The superscript n, written all by itself in parentheses after a function designator
such as f, denotes the nth derivative, not the nth power. The same is true for
superscripts following the letter d or a variable in an expression such as dny /dxn,
which represents the nth derivative of y with respect to x. Be careful when
encountering expressions in calculus where superscripts are used! Be sure you
know whether the superscript refers to a derivative, or is actually intended to be
an exponent. This can sometimes be unclear if it is not explained in the text that
accompanies mathematical equations involving derivatives.

PROBLEM 14-1
The graph of a circle is not a function in Cartesian coordinates (the 
xy-plane), regardless of whether x or y is considered the independent 
variable. This is because there are some values of x for which there
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exist more than one corresponding value of y. How can a circle be ren-
dered as a true function?

SOLUTION 14-1
Consider the polar coordinate plane represented by ordered pairs (q,r),
in which the angle q is the independent variable and the radius r is the 
dependent variable. In this system, you can use a “radial ray test” rather
than the “straight line test” you use in the Cartesian plane. Imagine a
rotating ray M with its endpoint at the origin. A complete 360° rotation
of the ray covers all possible values of q, the independent variable. A
relation defined as r = f (q ) is a function if and only if every value of q
maps into at most one corresponding value of r. Any circle centered at
the origin of such a system has an equation represented as r = f (q ) = k,
where k is a positive real-number constant. As you can verify by draw-
ing a simple illustration, any such equation represents a function in
polar coordinates. It is the analog of the straight line y = f (x) = k, where
k is a real-number constant, in Cartesian coordinates.

PROBLEM 14-2
Consider the circle with the following equation in Cartesian coordinates:

x2 + y2 = 4

How can this equation be modified so it becomes a function of x in
Cartesian coordinates?

SOLUTION 14-2
Most relations that are not functions can be modified so the result is 
a function. This is done by restricting one, or both, of the variables to 
only those values for which there exists at most one value of the
dependent variable. In the case of the above equation, which represents
a circle centered at the origin with a radius of 2, imagine restricting the
values of y so that they are positive (that is, y > 0). When this is done,
the result is the equivalent of “cutting off” the lower half of the circle.
This produces a function whose equation can be derived from the original
equation like this:

x2 + y2 = 4

y2 = 4 − x2

y = (4 − x2)1/2

f (x) = (4 − x2)1/2
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The 1/2 power represents the positive square root. If a radical sym-
bol is used over the quantity (4 − x2) to represent its square root, then
a plus sign must be placed in front of the radical symbol to indicate that
only the positive square-root values are to be considered.

PROBLEM 14-3
In what other ways can the aforementioned equation be modified in
order to get a function of x in Cartesian coordinates?

SOLUTION 14-3
Any restriction that prevents the mapping of an independent-variable
value to more than one dependent-variable value will work. As a sup-
plemental exercise, you can draw illustrations to show several such
situations.

Properties of Derivatives
Normally, derivatives are defined only for functions, and not for relations that
are not functions. This prevents ambiguity that could otherwise occur. Deriv-
atives have some properties that are worth memorizing.

DERIVATIVE OF A CONSTANT FUNCTION
The derivative of a constant function is always the zero function (a function
whose value is equal to 0 throughout its domain). Let f be a function of x such
that f (x) = k, where k is a real-number constant. Then the following equation
always holds:

d ( f ) /dx = 0

DERIVATIVE OF SUM OF FUNCTIONS
Let f and g be two different functions of x. Suppose that f + g = f (x) + g(x) for
all x in the domains of both f and g. Then:

d( f + g) /dx = df /dx + dg /dx

That is, the derivative of a sum is equal to the sum of the derivatives. This can
be extrapolated to a sum of three, four, or any number of derivatives.
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DERIVATIVE OF DIFFERENCE OF TWO FUNCTIONS
Let f and g be two different functions of x. Suppose that f − g = f (x) − g(x) for
all x in the domains of both f and g. Then:

d( f − g) /dx = df /dx − dg /dx

DERIVATIVE OF FUNCTION MULTIPLIED 
BY A CONSTANT
Let f be a function of x, and let k be a constant. Then the following holds true:

d(kf ) /dx = k(df /dx)

DERIVATIVE OF PRODUC T OF TWO FUNCTIONS
Let f and g be two different functions of x. Define the product of f and g as
follows:

f × g = f (x) × g(x)

for all x in the domains of both f and g. Then:

d( f × g) /dx = [ f(x) × (dg /dx)] + [g(x) × (df /dx)]

The square brackets, while technically not necessary, are added for clarity.

DERIVATIVE OF PRODUC T OF THREE FUNCTIONS
Let f, g, and h be three different functions of x. Define the product of f, g, and h
as follows:

f × g × h = f (x) × g(x) × h(x)

for all x in the domains of f, g, and h. Then:

d( f × g × h)/dx = [ f(x) × g(x) × (dh/dx)]

+ [f(x) × h(x) × (dg/dx)] + [g(x) × h(x) × (df/dx)]

The square brackets, while technically not necessary, are added for clarity.
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DERIVATIVE OF QUOTIENT OF TWO FUNCTIONS

Let f and g be two different functions, and define f /g = [ f(x)] /[g(x)] for all x in
the domains of both f and g. Then:

d( f /g ) /dx = {[g(x) × (df /dx)] × [ f(x) × (dg /dx)]}/g2

where g2 = g(x) × g(x), not to be confused with the second derivative d2g /dg2.
The extra brackets in the numerator are added for clarity.

RECIPROCAL DERIVATIVES

Let f be a function, and let x and y be variables such that y = f(x). The following
formulas hold:

dy/dx = 1/(dx /dy)

dx/dy = 1/(dy /dx)

DERIVATIVE OF A VARIABLE RAISED TO A POWER, 
TIMES A CONSTANT

Let f be a function, let x be a variable. Suppose f is of the following form:

f(x) = kxn

where k is a real-number constant and n is an element of the set N = {0, 1, 2, 
3, . . .}. Then the first derivative of f is given by the following general equation:

f ′ (x) = nkx(n−1)

CHAIN RULE

Let f and g be two functions. Suppose g is a function of x. Then the derivative
of f [g(x)] is given by the following formula:

f [g(x)] ′ = f ′ [g(x)] × g′(x)
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PROBLEM 14-4
Consider the following three functions of a variable x:

f (x) = 3x2

g(x) = 7x

h(x) = 6

Now consider the function k(x) = 3x2 + 7x + 6. What is its derivative?

SOLUTION 14-4
In order to solve this, we will need to take advantage of the rules for
the derivatives of:

• a variable raised to a power and then multiplied by a constant
• a constant
• a sum of functions

First, note the following:

f ′ (x) = (2 × 3)x2−1 = 6x1 = 6x

g′(x) = (7 × 1)x1−1 = 7x0 = 7

h′(x) = 0

The function k(x) is the sum of the original three functions. There-
fore, its derivative is the sum of the derivatives of the original three
functions:

k′(x) = f ′ (x) + g′(x) + h′(x)
= 6x + 7

PROBLEM 14-5
Consider the three functions f(x), g(x), and h(x) defined in the previous
problem. Now consider the following function:

p(x) = f(x) × g(x) × h(x)

What is the derivative of this function?

SOLUTION 14-5
Use the formula for the derivative of the product of three functions:
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d( f × g × h ) /dx = [ f(x) × g(x) × (dh /dx)] + [ f(x) × h(x) × (dg /dx)]

+ [g(x) × h(x) × (df /dx)]

= (3x2 × 7x × 0) + (3x2 × 6 × 7) + (7x × 6 × 6x)

= 0 + 126x2 + 252x2

= 378x2

PROBLEM 14-6
Solve the previous problem in a less messy way.

SOLUTION 14-6
Note that p(x) is a product of three expressions:

p(x) = (3x2)(7x)(6)

These expressions can be multiplied together, getting:

p(x) = 126x3

The derivative can be found according to the rule for the derivative
of a variable raised to a power and then multiplied by a constant:

p′(x) = (126 × 3)x3−1 = 378x2

Properties of Curves
Derivatives are useful for defining the characteristics of graphed functions in the
Cartesian plane, especially if those graphs are continuous curves. Here are some
of the most significant principles of derivatives involving curves.

LINE TANGENT TO CURVE AT POINT (x0,y0)
Let f be a continuous function such that y = f(x). Let (x0,y0) be a point on the
graph of f, and suppose f is continuous at (x0,y0). Let L be a line tangent to 
the graph of f, and suppose L passes through (x0,y0) as shown in Fig. 14-2.
Suppose the derivative of f at (x0,y0) is equal to some real number m. The equa-
tion of line L is given by:

y − y0 = m(x − x0)
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If the derivative of f at (x0,y0) is equal to 0, then the equation of the line L
tangent to f at that point is given by:

y = y0

LINE NORMAL TO CURVE AT POINT (x0,y0)
Let f be a continuous function such that y = f(x). Let (x0,y0) be a point on the
graph of f, and suppose f is continuous at (x0,y0). Let L be a line normal (per-
pendicular) to the graph of f, and suppose L passes through (x0,y0) as shown in
Fig. 14-3. Suppose the derivative of f at (x0,y0) is equal to some nonzero real
number m. Then the equation of line L is given by the following:

y − y0 = (−x + x0) /m

If the derivative of f at (x0,y0) is equal to 0, then the equation of the line L
normal to f at that point is given by:

x = x0
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ANGLE OF INTERSECTION BETWEEN CURVES
Let f and g be functions such that y = f(x) and y = g(x), and suppose that both f
and g are continuous in the vicinity of a point (x0,y0) at which the graphs of the
functions intersect, as shown in Fig. 14-4. Suppose the derivative of f at (x0,y0)
is equal to some nonzero real number m, and the derivative of g at (x0,y0) is equal
to some nonzero real number n. Then the acute angle q at which the graphs inter-
sect is given by the following:

q = tan−1 [(m − n) /(mn + 1)]

if m > n, and

q = 180° − tan−1[(m − n) /(mn + 1)]

if m < n, for angle measures in degrees. If m = n, then q = 0° or else q = 180°,
and the two curves are tangent to each other at (x0,y0). For angle measures in
radians, substitute π for 180°.
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LOCAL MAXIMUM
Let f be a function such that y = f(x). Let (x0,y0) be a point on the graph of f, and
suppose f is continuous at (x0,y0). Also, suppose the following are both true:

f ′(x0) = 0

f ″(x0) < 0

Then (x0,y0) is a local maximum in the graph of f. An example is shown in 
Fig. 14-5.

LOCAL MINIMUM
Let f be a function such that y = f(x). Let (x0,y0) be a point on the graph of f, and
suppose f is continuous at (x0,y0). Also, suppose the following are both true:

f ′ (x0) = 0

f ″ (x0) > 0

Then (x0,y0) is a local minimum in the graph of f. An example is shown in 
Fig. 14-6.
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Fig. 14-5. A local maximum value of a function.

x0 y0,( )

Graph of
y = f (x)

Fig. 14-6. A local minimum value of a function.



INFLECTION POINT
Let f be a function such that y = f(x). Let (x0,y0) be a point on the graph of f, and
suppose f is continuous at (x0,y0). Also, suppose the following is true:

f ″(x0) = 0

Then (x0,y0) is an inflection point in the graph of f. Examples are shown in Fig.
14-7. At A, as you move from left to right in the graph, the curve changes from
concave upward to concave downward, and the following inequalities hold:

f ″(x) > 0 for x < x0

f ″(x) < 0 for x > x0

At B, as you move from left to right in the graph, the curve changes from con-
cave downward to concave upward, and the following inequalities hold:

f ″(x) < 0 for x < x0

f ″(x) > 0 for x > x0

The slopes of the tangent lines at the inflection points in both of these examples
happens to be 0; the tangent lines appear “horizontal.” This is because, in both
of these cases, the first derivative happens to be equal to 0 at (x0,y0). That does
not necessarily have to be true. An inflection point can exist in a curve even
when the first derivative is not equal to 0 at that point. The key concept is that
the sense of concavity reverses at an inflection point.

PROBLEM 14-7
Consider the following function:

f(x) = x2 − 4x + 13

The graph of this function is a parabola that opens upward. Thus, it has a
point (x0,y0) at which the value of f(x) is minimum. What is this point?

SOLUTION 14-7
Find the first derivative of the function, f ′ (x). The minimum is the
point at which the value of this first derivative is equal to 0. Recall that 
the derivative of a sum is equal to the sum of the derivatives. Therefore,
according to the rules outlined earlier in this chapter:

f ′ (x) = 2x − 4
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Fig. 14-7. Two examples of inflection points. At A, the
function generally decreases; at B, the function generally
increases. The tangent lines at the inflection points
shown here both happen to have slope 0, but this is a
mere coincidence.



Now solve the following equation for x0:

2x0 − 4 = 0

This is a matter of simple algebra:

2x0 − 4 = 0

2x0 = 4

x0 = 2

Now that we know x0, we can “plug it into” the original function to
obtain y0:

y0 = 22 − (4 × 2) + 13

= 4 − 8 + 13

= 9

The point at which the graph of y = f(x) attains its minimum is there-
fore (x0,y0) = (2,9).

PROBLEM 14-8
Suppose you’re skeptical of the claim, in the statement and solution of
the previous problem, that the point in question is a minimum, and not 
a maximum (which would also produce a derivative equal to 0). Show
that the point actually is a minimum.

SOLUTION 14-8
In order to verify this, we must find f ″ (x), and then determine its value
at the point where x = 2. The point (2,9) is a minimum if and only if 
f ″(2) > 0. The second derivative of a function is equal to the derivative
of the first derivative. Thus:

f ′ (x) = 2x − 4

f ″ (x) = 2

This is the constant function, whose value is always equal to 2. That
means f ″ (2) = 2, and therefore, f ″(2) > 0. This verifies that the point
(2,9) is a minimum and not a maximum.

PROBLEM 14-9
Consider the following function:

f(x) = −4x3 + 4x + 5
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Suppose you are told and assured (so you don’t have to prove it)
that this function contains an inflection point. Find that inflection point.

SOLUTION 14-9
An inflection point occurs when the second derivative of a function is
equal to 0 at that point. The first derivative of f is easy to find, using 
the rules outlined earlier in this chapter:

f ′ (x) = −12x2 + 4

Next, find the derivative of that:

f ″(x) = [ f ′ (x)] ′= −24x

Next, solve the following equation for x0:

−24x0 = 0

We can tell, without doing any algebra, that x0 = 0 is the only solution to
this equation. Plugging this into the original function, we can obtain y0:

y0 = (−4 × 03) + (4 × 0) + 5

= 0 + 0 + 5

= 5

The inflection point of the graph of y = f(x) is therefore (x0,y0) = (0,5).

Derivatives of Wave Functions
Derivatives are of particular interest in electronics and computer engineering. A
circuit called a differentiator is used to generate the derivative of a signal wave.
The output signal from a differentiator represents the instantaneous rate of
change of the input signal. Here are some common periodic wave functions
encountered in electronics, and their first derivatives.

DERIVATIVE OF SINE WAVE
The derivative of a sine wave (the sine function) is a cosine wave (the cosine
function). This is the equivalent of a 90° phase shift to the left (Fig. 14-8). The
amplitude, or signal strength, of the output wave (equivalent to the range of
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the output function, or the peak-to-peak value of the wave) depends on the
amplitude and frequency of the input sine wave.

DERIVATIVE OF UP-RAMP WAVE
The derivative of an up-ramp wave is a positive constant (Fig. 14-9). The value
of this constant, which represents the slope of the function, depends on the
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Fig. 14-9. An up-ramp wave (dashed lines) and its derivative as
the output of a practical differentiator circuit (solid line).
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Derivative (output)

Fig. 14-8. A sine wave (dashed curve) and its derivative as the
output of a practical differentiator circuit (solid curve).



amplitude of the input wave and also on its frequency. In theory, neither the up-
ramp function nor its derivative is defined at the points in time where the input
wave is changing state instantaneously (represented by vertical dashed lines).
But in practice, the output is continuous because time points have zero duration.

DERIVATIVE OF DOWN-RAMP WAVE
The derivative of a down-ramp wave is a negative constant (Fig. 14-10). The value
of this constant, which represents the slope of the function, depends on the
amplitude of the input wave and also on its frequency. In theory, neither the down-
ramp function nor its derivative is defined at the points in time where the input
wave is changing state instantaneously (represented by vertical dashed lines).
But in practice, the output is continuous because time points have zero duration.

DERIVATIVE OF TRIANGULAR WAVE
The derivative of a triangular wave is a square wave (Fig. 14-11). The positive
peak amplitude of the square wave is a positive constant, and the negative peak
amplitude is a negative constant whose absolute value is the same as that of 
the positive constant. The output square-wave peak amplitudes depend on the
amplitude and frequency of the triangular wave. In theory, the derivative is not
defined at the points in time where the input wave is changing from the increas-
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Fig. 14-10. A down-ramp wave (dashed lines) and its derivative
as the output of a practical differentiator circuit (solid line).



ing condition to the decreasing condition (or vice-versa). These are the points at
which the square wave changes state; they have theoretically zero duration. They
are represented by vertical solid lines in Fig. 14-11.

DERIVATIVE OF SQUARE WAVE
The derivative of a square wave is zero (Fig. 14-12), representing the absence of
a signal. This is true regardless of the amplitude or the frequency of the square
wave, because the slope of a square wave function (representing the instanta-
neous rate of change, and thus the derivative) is equal to 0 at all points for which
the function is defined. In theory, neither the square-wave function nor its deriv-
ative is defined at the points in time where the input wave is changing state
instantaneously (represented by vertical solid lines). But in practice, the output
is continuous, because time points have zero duration.
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Fig. 14-11. A triangular wave (dashed lines) and its derivative as the
output of a practical differentiator circuit (solid lines).



DERIVATIVE OF COMMON FUNCTIONS
Table 14-1 li sts the derivatives of some common mathematical functions.

PROBLEM 14-10
Examine Figs. 14-9 and 14-10, showing the derivatives of up-ramp
and down-ramp waves. The outputs in these scenarios are continuous 
constants in practice, because the transition points (where each ramp
ends and the next one begins) have zero duration, and in the “real
world” that means they might as well not exist. But when we scrutinize
these functions from a rigorous theoretical standpoint, the transition
points must be reckoned with! Draw a graph showing the derivatives
of the up-ramp and down-ramp functions from Figs. 14-9 and 14-10, but
taking the input function transitions into account.

SOLUTION 14-10
Figure 14-13 shows the derivatives of the up-ramp and down-ramp
functions (horizontal solid lines), taking the input function transitions 
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Fig. 14-12. A square wave (dashed lines) and its derivative as the
output of a practical differentiator circuit (solid line).
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Function Derivative

f(x) = a f ′(x) = 0

f(x) = ax f ′(x) = a

f(x) = axn f ′(x) = naxn−1

f(x) = 1/x f ′(x) = ln |x|

f(x) = ln x f ′(x) = 1/x

f(x) = ln g(x) f ′(x) = g−1(x)g′(x)

f(x) = 1/xa f ′(x) = −a /(xa+1)

f(x) = ex f ′(x) = ex

f(x) = ax f ′(x) = ax ln a

f(x) = ag(x) f ′(x) =(ag(x))(ln a)g′(x)

f(x) = eax f ′(x) = aex

f(x) = eg(x) f ′(x) = eg(x) g′(x)

f(x) = sin x f ′(x) = cos x

f(x) = cos x f ′(x) = −sin x

f(x) = tan x f ′(x) = sec2 x

f(x) = csc x f ′(x) = −csc x cot x

f(x) = sec x f ′(x) = sec x tan x

f(x) = cot x f ′(x) = −csc2 x

f(x) = arcsin x = sin−1x f ′(x) = 1/(1 − x2)1/2

f(x) = arccos x = cos−1x f ′(x) = −1/(1 − x2)1/2

f(x) = arctan x = tan−1x f ′(x) = 1/(1 + x2)

Table 14-1. Derivatives of common functions. The letter a denotes a general
real-number constant. The letter n denotes an integer. The letter f denotes a
function. The letter x denotes a variable. The letter e represents the exponen-
tial constant (approximately 2.71828). A comprehensive table of derivatives
can be found online at www.mathworld.wolfram.com.

www.mathworld.wolfram.com


(points marked X and vertical dashed lines) into account. Theoretically,
the input functions are not defined at the transition points, so the deriv-
atives at those points can’t be defined either.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Find the first derivative of the following function, in general:

f(x) = 2x4 − 6x2 + sin x
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Fig. 14-13. Illustration for Problem 14-10. Points marked X, and the
vertical dashed lines, represent values for which the input functions
are theoretically undefined.



2. Find the first derivative of the above function at x = π /4. (When a
trigonometric function is differentiated, the variable is in radians unless
otherwise specified.) Express the answer to three significant figures. Take
the value of π to be 3.14159.

3. Find the second derivative of the function f(x) stated in Problem 1, in
general.

4. Find the second derivative of f(x) stated in Problem 1 at x = π /4, where
this value is considered exact. Express the answer to three significant
figures.

5. Find the third derivative of the function f(x) stated in Problem 1, in
general.

SOLUTIONS

1. Remember that the derivative of a sum is equal to the sum of the deriva-
tives. Using this fact, the rule for the derivative of a variable raised to a
power and multiplied by a constant, and the fact that the derivative of the
sine function is equal to the cosine function, we obtain:

f ′ (x) = (4 × 2)x(4−1) − (2 × 6)x(2−1) + cos x

= 8x3 − 12x + cos x

2. Consider π /4 = 3.14159/4 = 0.785398, and note that π /4 radians is the
equivalent of exactly 45° (for use when determining the cosine with a
calculator). We obtain the value of the derivative at x = π /4 this way:

f ′ (π /4) = [8 × (0.785398)3] − (12 × 0.785398) + cos 45°

= 3.87578 − 9.42478 + 0.70711

= −4.84189

Rounded to three significant figures, this is f ′ (π /4) = −4.84.

3. The derivative of the cosine function is equal to the negative of the sine
function (from Table 14-1). We find the derivative of f ′ (x), which is the
second derivative of f(x), as follows:

f ″(x) = (3 × 8)x(3−1) − (12 × 1)x(1−1) + (− sin x)

= 24x2 − 12 − sin x

= 24x2 − sin x − 12
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The above sum is rearranged in the last line because it is customary to
express sums in order by decreasing powers of x.

4. Again consider π /4 = 0.785398, and again note that π /4 radians is the
equivalent of exactly 45°. The value of the second derivative at x = π /4
can be found as follows:

f ″(π /4) = [24 × (0.785398)2] − sin 45° − 12

= 14.8044 − 0.70711 − 12

= 2.09729

Rounded to three significant figures, this is f ″(π /4) = 2.10.

5. The derivative of the sine function is equal to the cosine function (from
Table 14-1). We can therefore find the derivative of f ″(x), which is the
third derivative of f(x), as follows:

f ′″(x) = (2 × 24)x(2−1) − cos x − 0

= 48x − cos x

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. You may
draw diagrams if that will help you visualize things. A good score is 8 correct.
Answers are in the back of the book.

1. Consider the equation x = y2. This is a parabola that opens to the right
when graphed in the rectangular xy-plane. In this case, y is not a function
of x. How can this relation be modified so that y becomes a function of x
with a defined, nonempty domain and a defined, nonempty range?

(a) The allowable values of x can be restricted to the nonnegative real
numbers.

(b) The allowable values of x can be restricted to the negative real
numbers.

(c) The allowable values of y can be restricted to the nonnegative real
numbers.

(d) The allowable values of y can be restricted to real numbers between,
but not including, −1 and 1.
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2. Which of the following is a rough graph of the modification to the equa-
tion x = y2 that results in a function, as defined according to the correct
answer to Question 1? In each graph, the horizontal axis represents x, the
vertical axis represents y, and a single division on either axis represents
an increment of 1 unit.

(a) Figure 14-14A.
(b) Figure 14-14B.
(c) Figure 14-14C.
(d) None of the above.

3. What is the slope, m, of a line tangent to the graph of the function as
defined according to the correct answer to Question 1, at the point where
x = 1?

(a) It is not defined.
(b) m = 1.
(c) m = 1/2.
(d) m = 2.
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4. What is the slope, m, of a line tangent to the graph of the function as
defined according to the correct answer to Question 1, at the point where
x = 0?

(a) It is not defined.
(b) m = 0.
(c) m = 1.
(d) m = −1.

5. Suppose you just bought a new car, and you want to see how fast it can
accelerate. You test it on a straight drag strip. A computer is connected to
the speedometer, and it generates a speed versus time graph that looks
like Fig. 14-15 for speeds ranging from 0 to 25 meters per second. Note
that the instantaneous acceleration of an object traveling in a straight line
is the derivative of the speed. From Fig. 14-15, it is evident that

(a) the acceleration is constant.
(b) the instantaneous acceleration increases as the car goes faster.
(c) the instantaneous acceleration decreases as the car goes faster.
(d) the instantaneous acceleration increases at first, and then decreases

after the car reaches a certain speed.
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6. In the scenario described in Problem 5 and graphed in Fig. 14-15, in what
units would acceleration be expressed?

(a) Meters.
(b) Meters per second.
(c) Meters per second per second (or meters per second squared).
(d) Seconds per meter.

7. Consider the situation described in Problems 5 and 6. Line L (the
slanted, dashed line) is tangent to the graph of the speed versus time
function (the solid curve) at point X. The vertical and horizontal dashed
lines intersect line L and the coordinate axes, and are for reference in
determining the slope of line L. From this information, it is apparent that
the acceleration of the car at point X, expressed in units that arise math-
ematically when time is defined in seconds and speed is defined in
meters per second, is

(a) impossible to figure out without more information.
(b) approximately 22.0/5.0, or 4.4.
(c) approximately 4.2/3.0, or 1.4.
(d) approximately (22.0 − 4.2) /(5.0 − 3.0), or 8.9.

8. Consider a function of the following general form, where x is a real-
number variable and n is an integer greater than or equal to 5:

f(x) = xn + xn−1 + xn−2 + . . . + x2 + x + 1

Suppose you take the derivative of f, and then take the derivative of f ′ to
obtain f ″, and keep on taking derivatives of the derivatives indefinitely.
Sooner or later, no matter how large n happens to be, you will end up
with a function that is its own derivative. That function will be

(a) a quadratic function.
(b) a linear function.
(c) a constant function.
(d) the zero function.

9. Which of the following functions is its own fourth derivative?

(a) f(x) = sin x
(b) g(x) = cos x
(c) h(x) = −sin x
(d) All of the above
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10. In a system of polar coordinates with q as the independent variable and
r as the dependent variable, imagine a function f(q ) with a derivative 
as follows:

dr /dq = f ′ (q ) = k

where k is a real-number constant. What does the graph of r = f (q ) look
like when the domain is restricted to values between, but not including,
0° and 360°?

(a) A straight ray (half-line).
(b) A half-circle.
(c) A single rotation of a spiral.
(d) Half of a parabola.
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CHAPTER

337

Integration in 
One Variable

Integration is the opposite of differentiation. Integral calculus is used to find
areas, volumes, and accumulated quantities. This chapter is a brief review,
intended for students who have had some first-year integral calculus. For a the-
oretical discussion, Calculus Demystified by Steven G. Krantz (McGraw-Hill,
New York, 2003) is recommended.

What Is Integration?
When a function is differentiated, the result is another function that expresses the
instantaneous rate of change of the original function. Integration is, in a sense,
the reverse of this. It produces a new function that expresses the cumulative
growth of the original function.

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



THE ANTIDERIVATIVE
Imagine an object moving in a straight line. The function that defines its instan-
taneous speed is the derivative of the function that defines the distance it has
traveled from the starting point (its cumulative displacement). Reversing this,
the function that defines the cumulative displacement is the antiderivative of the
function that defines the instantaneous speed. For functions denoted by lower-
case italic letters, such as f, g, or h, the antiderivative is denoted by the uppercase
italic counterpart, such as F, G, or H, respectively. The concept of the antideriv-
ative is the basis for mathematical integration. 

THE INDEFINITE INTEGRAL
Let f be a continuous real-number function of a variable x. Consider y = f (x). The
indefinite integral of f is a function F such that dy /dx = f (x), added to a real-
number constant c. This is written as follows:

Ú f (x) dx = F (x) + c

where dx represents the differential of x. The above expression, if read out loud,
is “ the indefinite integral of f (x) dx,” or “ the indefinite integral of f (x) with
respect to x.”

In this book, we won’t get concerned about the precise meaning and signifi-
cance of the differential. But you should remember that it’s customary to include
the differential at the end of any integral. Always end the expression with a lower-
case italic letter d followed by the variable with respect to which the integration
is to be done (x, y, z, q, f, or whatever).

THE CONSTANT OF INTEGRATION
The constant c, which appears in all indefinite integrals, arises from the fact that
the derivative of a constant function is equal to the zero function. Indefinite inte-
gration “undoes” differentiation, but this happens in an ambiguous sense. A
function has only one specific derivative, but it can have infinitely many indef-
inite integrals, all of which differ by some value of c, which is known as the con-
stant of integration. The antiderivative is a special case of the indefinite integral,
where c = 0.
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AN EXAMPLE
Consider the function f (x) = x2. The derivative of this function is f �(x) = 2x.
Consider the following indefinite integral:

Ú 2x dx

Let’s rename the function we are integrating, in order to distract us from the
fact that it’s something we’ve already conjured up. Suppose we have this:

g (x) = 2x

The antiderivative of g is the function G, as follows:

G(x) = x2

It’s important to note that G is not the only function of x that can be 
differentiated to get the function g. Any real number c can be added to G (x),
and when the resulting function, G (x) + c, is differentiated, the result is 
always equal to g(x). Think of it like this, where c can be any real number
whatsoever:

G (x) + c = x2 + c

and therefore:

[G (x) + c]� = 2x + 0

= 2x

= g (x)

That means:

Ú 2x dx = x2 + c

THE DEFINITE INTEGRAL
Let f be a continuous real-number function of a variable x. Let a and b be values
in the domain of f such that a < b. Let F be the antiderivative of f. The definite
integral of f (x) from x = a to x = b is denoted and defined as follows:

Ú
b

a
f (x) dx = F(b) − F(a)
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The expression to the left of the equals sign is read, “the integral from a to b
of f (x) dx,” or “the integral of f (x) dx from a to b.” The above general rule is
known as the Fundamental Theorem of Calculus.

When we find a definite integral, the constant of integration subtracts from
itself, so it disappears.

The definite integral of a function f can be depicted as the area between the
curve and the independent-variable axis (usually the x axis) in the graph of f in
rectangular coordinates. This area can be considered for the entire domain of the
function f, or for only part of the domain. When a definite integral is considered
for only part of the domain, the limiting value or values (a and/or b in the above
expression) must be specified. For example, we might consider the definite inte-
gral of a function for values of the domain such as:

• All the positive real numbers
• All the negative real numbers
• All the real numbers between 0 and 1
• All the real numbers between −π and π

An example of a definite integral is shown in Fig. 15-1. Regions above the x
axis are considered to have positive area. Regions below the x axis are consid-
ered to have negative area.
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PROBLEM 15-1
Suppose g(x) = 2x. Find the definite integral of g (x) dx from 0 to 1.

SOLUTION 15-1
In the general expression for the definite integral, let a = 0 and let b = 1.
From the preceding examples, we know that G (x) = x2. Therefore:

Ú
1

0
g(x) dx = G(1) − G(0)

Therefore, the value of the definite integral is equal to 12 − 02 = 1 − 0 = 1.

PROBLEM 15-2
Again, let g (x) = 2x. Find the definite integral of g (x) dx from −1 to 1.

SOLUTION 15-2
In the general expression for the definite integral, let a = −1 and let
b = 1. As in the previous problem, G(x) = x2. Therefore:

Ú
1

−1
g(x) dx = G(1) − G(−1)

In this case, the value of the definite integral is equal to 12 − (−1)2 =
1 − 1 = 0.

Basic Properties of Integration
Here are several important properties of indefinite integration. These are worth
memorizing, because they apply to frequently encountered situations.

INDEFINITE INTEGRAL OF A CONSTANT
Let k be a constant. Let c be the constant of integration. Let x be a variable. The
integral of k with respect to x is equal to k times x, plus the constant of integra-
tion c. The following formula applies:

Ú k dx = kx + c
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INDEFINITE INTEGRAL OF A VARIABLE

Let x be a variable. Let c be the constant of integration. The integral of x with
respect to itself is equal to x2/2, plus the constant of integration c. The following
formula applies:

Ú x dx = x2/2 + c

INDEFINITE INTEGRAL OF A VARIABLE 
MULTIPLIED BY A CONSTANT

Let x be a variable. Let k be a constant. Let c be the constant of integration. The
integral of the product kx with respect to x is equal to k times x2 / 2, plus the con-
stant of integration c. The following formula applies:

Ú kx dx = kx2/ 2 + c

INDEFINITE INTEGRAL OF A VARIABLE 
RAISED TO AN INTEGER POWER

Let x be a variable. Let k be an integer that is not equal to −1. Let c be the con-
stant of integration. The following general rule applies:

Ú xk dx = [x(k+1) / (k + 1)] + c

INDEFINITE INTEGRAL OF A FUNCTION 
MULTIPLIED BY A CONSTANT

Let f be a function of a variable x. Let k be a constant. The integral of k times
f (x) with respect to x is equal to k times the integral of f (x) with respect to x.
The following formula applies:

Ú k [f (x)] dx = k Ú f (x) dx
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INDEFINITE INTEGRAL OF THE SUM OF TWO 
OR MORE FUNCTIONS
Let f1, f2, f3, . . . , and fn be functions of a variable x. The integral of the sum of
the functions with respect to x is equal to the sum of the integrals of each func-
tion with respect to x. The following general rule applies:

Ú [f1(x) + f2(x) + f3(x) + . . . + fn(x)] dx

= Ú f1(x) dx + Ú f2(x) dx + Ú f3(x) dx + . . . + Ú fn(x) dx

PROBLEM 15-3
Find the indefinite integral of the function f (x) = 4x3 + 3x2 with respect
to x. That is, determine the following:

Ú 4x3 + 3x2 dx

SOLUTION 15-3
The function f is the sum of two simpler functions to which the above
rules can be easily applied. Consider f to break down into the sum of f1
and f2, as follows:

f1(x) = 4x3

f2(x) = 3x2

f (x) = f1(x) + f2(x) = 4x3 + 3x2

The antiderivatives, F1 and F2, are:

F1(x) = 4x(3+1) / (3 + 1) = x4

F2(x) = 3x(2+1) / (2 + 1) = x3

and therefore:

Ú 4x3 + 3x2 dx = x4 + x3 + c

A Few More Formulas
Here are two important principles, and three more properties, that apply to in-
definite integrals. There’s also reference to a table of indefinite integrals for
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commonly encountered functions. The principles of linearity and integration by
parts are worth memorizing.

PRINCIPLE OF LINEARITY
Let f and g be defined, continuous functions of x. Let a and b be real-number
constants. Then the following general formula applies:

Ú [a f (x) + b g (x)] dx = a Ú f (x) dx + b Ú g (x) dx

PRINCIPLE OF INTEGRATION BY PARTS
Let f and g be differentiable, continuous functions of x. Let f � be the derivative
of f with respect to x, and let g� be the derivative of g with respect to x. Then the
following general formula applies:

Ú [f (x) g �(x)] dx = f (x) g (x) − Ú [f �(x) g (x)] dx

INDEFINITE INTEGRAL OF A RECIPROCAL
Let x be a variable. Let c be the constant of integration. Let ln represent the
natural logarithm function. The following rule applies:

Ú (1/x) dx = ln |x| + c

The vertical lines on either side of x represent the absolute value of x. Another
way to state this fact is to consider 1/x as equal to x raised to the −1 power:

Ú x−1 dx = ln |x| + c

INDEFINITE INTEGRAL OF A RECIPROCAL 
MULTIPLIED BY A CONSTANT
Let x be a variable. Let k be a constant, and let c be the constant of integration.
The following general formulas hold:
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Ú (k/x) dx = k ln |x| + c

Ú kx−1 dx = k ln |x| + c

INDEFINITE INTEGRAL OF A CONSTANT 
RAISED TO A VARIABLE POWER
Let x be a variable. Let k be a positive real-number constant that is not equal to
1. Let c be the constant of integration. The following general formula holds:

Ú kx dx = [kx/ (ln k)] + c

INDEFINITE INTEGRALS OF COMMON FUNCTIONS
Table 15-1 lists indefinite integrals of common mathematical functions.

PROBLEM 15-4
Use the principle of linearity to find the following indefinite integral:

Ú (3 sin x + 7 cos x) dx

SOLUTION 15-4
According to the principle of linearity, the constants can be separated
out, and the integral broken down into the sum of two simpler integrals,
so we obtain the following:

3 Ú sin x dx + 7 Ú cos x dx

Refer to Table 15-1 to obtain the indefinite integrals of the sine and
cosine functions. The constants of integration are not identical for the
two integrals in this sum, so let’s call one of them c1 and the other one
c2. Then we obtain the following expression:

3 (−cos x + c1) + 7 (sin x + c2) = −3 cos x + 3c1 + 7 sin x + 7c2

= 7 sin x − 3 cos x + 3c1 + 7c2
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Function Indefinite Integral Function Indefinite Integral

f (x) = a Ú f (x) dx = a + c f (x) = ex Ú f (x) dx = ex + c

f (x) = ax Ú f (x) dx = (1/2) ax2 + c f (x) = a ebx Ú f (x) dx = (aebx/ b) + c

f (x) = ax2 Ú f (x) dx = (1/3) ax3 + c f (x) = x ebx Ú f (x) dx = b−1x ebx −b−2 ebx + c

f (x) = ax3 Ú f (x) dx = (1/4) ax4 + c f (x) = ln x Ú f (x) dx = x ln x − x + c

f (x) = ax4 Ú f (x) dx = (1/5) ax5 + c f (x) = x ln x Ú f (x) dx = (1/2) x2 ln x − (1/4) x2 + c

f (x) = ax−1 Ú f (x) dx = a ln |x| + c f (x) = sin x Ú f (x) dx = −cos x + c

f (x) = ax−2 Ú f (x) dx = −ax−1 + c f (x) = cos x Ú f (x) dx = sin x + c

f (x) = (ax + b)1/2 Ú f (x) dx = (2/3) (ax + b)3/2 a−1 + c f (x) = tan x Ú f (x) dx = ln |sec x| + c

f (x) = (ax + b)−1/2 Ú f (x) dx = 2 (ax + b)1/2 a−1 + c f (x) = csc x Ú f (x) dx = ln |tan (x /2)| + c

f (x) = (ax + b)−1 Ú f (x) dx = a−1 [ln (ax + b)] + c f (x) = sec x Ú f (x) dx = ln |sec x + tan x| + c

f (x) = (ax + b)−2 Ú f (x) dx = −a−1 (ax + b)−1 + c f (x) = cot x Ú f (x) dx = ln |sin x| + c

f (x) = (ax + b)n Úf (x) dx = (ax + b)n+1 (an + a)−1 + c f (x) = arcsin x Ú f (x) dx = x arcsin x + (1 − x2)1/2 + c
where n ≠ −1

f (x) = axn Ú f (x) dx = axn+1 (n + 1)−1 + c f (x) = arccos x Ú f (x) dx = x arccos x − (1 − x2)1/2 + c

provided that n ≠ −1

f (x) = a g (x) Ú f (x) dx = a Úg (x) dx + c f (x) = arctan x Ú f (x) dx = x arctan x − (1/2) ln (1 + x2)
+ c

f (x) = g (x) + h (x) Ú f (x) dx = Úg (x) dx +Úh (x) dx + c

Table 15-1. Indefinite integrals. The letters a and b denote general real-number constants. The letter c
denotes the constant of integration. The letter n denotes an integer. The letters f, g, and h denote functions.
The letter x denotes a variable. The letter e represents the exponential constant (approximately 2.71828). A
comprehensive table of indefinite integrals can be found online at www.mathworld.wolfram.com.

www.mathworld.wolfram.com


Let c = 3c1 + 7c2. Then the original indefinite integral simplifies to this:

Ú (3 sin x + 7 cos x) dx = 7 sin x − 3 cos x + c

PROBLEM 15-5
Calculate the following indefinite integral:

Ú (3x)(cos x) dx

SOLUTION 15-5
In order to find the indefinite integral of the product of two functions,
integration by parts can be a useful technique. Refer again to the gen-
eral formula for the principle of integration by parts:

Ú [f (x) g�(x)] dx = f (x) g (x) − Ú [f �(x) g (x)] dx

Let’s set f (x) = 3x and g �(x) = cos x. The derivative of f (x) is easy
to find:

f �(x) = 3

Note that g(x) is the antiderivative, or the indefinite integral, of g�(x).
Now look at Table 15-1, and note that that g�(x) = cos x. That means
the following is true:

g (x) = sin x + c1

where c1 is a real-number constant, the constant of integration. Now we
know the following four facts:

f (x) = 3x

f �(x) = 3

g (x) = sin x + c1

g�(x) = cos x
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Our original integral therefore becomes:

Ú (3x)(cos x) dx = (3x)(sin x + c1) − Ú 3 (sin x + c1) dx

= 3x sin x + 3c1x − 3 Ú (sin x + c1) dx

= 3x sin x + 3c1x − 3 [ Ú sin x dx + Ú c1 dx]
= 3x sin x + 3c1x − 3 (−cos x + c2 + c1x + c3)

where c2 and c3 are new constants of integration. (The three constants
c1, c2, and c3 are not necessarily the same.) Simplifying the above
expression is a matter of applying basic rules of algebra:

3x sin x + 3c1x − 3 (−cos x + c2 + c1x + c3)

= 3x sin x + 3c1x − (−3 cos x + 3c2 + 3c1x + 3c3)

= 3x sin x + 3c1x + 3 cos x − 3c2 − 3c1x − 3c3

= 3x sin x + 3 cos x − 3c2 − 3c3

Let’s rename the constant (−3c2 − 3c3) and call it c. Then we have
the solution to the original problem as:

Ú (3x)(cos x) dx = 3x sin x + 3 cos x + c

Integrals of Wave Functions
Integrals, like derivatives, are of interest in computer and electronics applica-
tions. An integrator is a circuit that generates an indefinite integral of an input
signal wave. The output signal wave represents the accumulated value of the
input signal wave.

SINE VERSUS SINUSOID
A theoretical sine wave is represented by the function f (x) = sin x, and no other.
However, in electronics practice, all signal waves that have the same geometric
shape as this function are called “sine waves,” even if they are displaced verti-
cally, displaced horizontally, stretched or squashed vertically, or stretched or
squashed horizontally. This can encompass a tremendous variety of signal wave
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shapes, which engineers call waveforms. A technically precise description of such
waves is sinusoid, a term meaning sine-like wave. A sinusoid can be described
as a function in the following general form:

f (x) = p sin (qx + r) + c

where x is the independent variable expressed in radians, and p, q, r, and s are
real-number constants, with the constraint that neither p nor q can be equal to 0.
Any function of the following form is also a sinusoid, because the graph of the
cosine function has the same general shape as the graph of the sine function:

f (x) = p cos (qx + r) + c

The value of p determines the peak-to-peak amplitude (the difference be-
tween the instantaneous maximum and the instantaneous minimum values of the
function). The value of q determines the frequency (the extent to which the wave
is horizontally stretched or squashed). The value of r determines the displace-
ment of the wave along the axis of the independent variable, usually to the left
or right. The value of c determines the displacement of the wave perpendicular
to the axis of the independent variable, usually upward or downward. If the sinu-
soid is the output of an integrator circuit, c is the practical equivalent of the con-
stant of integration.

INTEGRAL OF THEORETICAL SINE WAVE
The integral of a theoretical sine wave, represented by the function f (x) = sin x,
is an inverted cosine wave (the negative of the cosine function) displaced
upward by 1 unit, as shown in Fig. 15-2. In this case, integration begins at the
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point where the input wave has an instantaneous amplitude of 0 and is increas-
ing positively. If the integration begins at some other point in the cycle, the
upward or downward displacement, which is the practical equivalent of the con-
stant of integration, is some value other than 1.

INTEGRAL OF UP-RAMP WAVE
The integral of an up-ramp wave has the appearance of a series of inverted,
vertically displaced half-sine-like waves, as shown in Fig. 15-3. (It is actually a
series of parabolic sections.) The direction and extent of the output-wave dis-
placement depends on the starting point of the input wave, where the integration
is considered to begin. The amplitude of the output wave depends on the ampli-
tude of the input wave. In theory, the up-ramp function is not defined at the
points in time where the input wave is changing state instantaneously (repre-
sented by vertical dashed lines). But in practice, the output is defined at these
points, because time points have zero duration.

INTEGRAL OF DOWN-RAMP WAVE
The integral of a down-ramp wave has the appearance of a series of vertically
displaced half-sine-like waves, as shown in Fig. 15-4. (It is actually a series of
parabolic sections.) The direction and extent of the output-wave displacement
depends on the starting point of the input wave, where the integration is consid-
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ered to begin. The amplitude of the output wave depends on the amplitude of
the input wave. In theory, the down-ramp function is not defined at the points in
time where the input wave is changing state instantaneously (represented by ver-
tical dashed lines). But in practice, the output is defined at these points, because
time points have zero duration.

INTEGRAL OF TRIANGULAR WAVE
The integral of a triangular wave is a vertically displaced sine-like wave (not a
true sine wave, but a series of parabolic sections, as shown in Fig. 15-5). The
direction and extent of the output-wave displacement depends on the starting
point of the input wave, where the integration is considered to begin. The ampli-
tude of the output wave depends on the amplitude of the input wave.

INTEGRAL OF SQUARE WAVE
The integral of a square wave is a vertically displaced triangular wave (Fig. 15-6).
The direction and extent of the output-wave displacement depends on the start-
ing point of the input wave, where the integration is considered to begin. The
amplitude of the output wave depends on the amplitude of the input wave. In the-
ory, the square-wave function is not defined at the points in time where the input
wave is changing state instantaneously (represented by vertical dashed lines).
But in practice, the output is defined, because time points have zero duration.
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PROBLEM 15-6
Suppose that an integrator circuit is supplied with a continuous, posi-
tive input voltage. This means that the input function is a positive con-
stant. The indefinite integral of a positive constant function is a straight
line with a positive slope. What does this mean in a practical circuit?
Can the output of a real-life circuit be a positive voltage that increases
without limit?
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SOLUTION 15-6
If an electronic integrator is supplied with a continuous, positive input
voltage, the theoretical output is a positive voltage that starts out at 0 
and rises indefinitely at a constant rate, as shown in Fig. 15-7A. But in
an actual circuit, the output voltage rises up to a certain limit, as shown
at B, and then remains there until the input voltage is removed. In order
to bring the output voltage back down to 0, it may be necessary to tem-
porarily disconnect the device from the power source (battery or power
supply).

PROBLEM 15-7
How does the shape of the integral of a sinusoid vary when the values
of the constants p and q (described on page 349), vary for the input wave?
What does vertical displacement of a wave function represent in a real-
world electronic system?
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SOLUTION 15-7
The integral of a sinusoid is always another sinusoid. The peak-to-peak
amplitude of the output sinusoid depends on the peak-to-peak ampli-
tude of the input sinusoid, and also on its frequency. That is, it depends
on the values of the constants p and q. The value of p affects the ampli-
tude; the value of q affects the frequency. In electronic circuits, the ver-
tical displacement of the output wave represents a direct-current (DC)
component. This displacement can be as large, either positively or neg-
atively, as half the peak-to-peak amplitude of the input wave. It is the
equivalent of the constant of integration.

Examples of Definite Integration
Definite integration can be used to find the area under a curve between two
points, as we have already seen. It can also be used to define the relationship
among acceleration, speed, and displacement (distance traveled) as functions of
time for objects moving in a straight line. Another useful application of definite
integration is the determination of the average value of a function over a specific
interval.

DISPLACEMENT, SPEED, AND ACCELERATION
In Newtonian physics, the speed function is the derivative of the displacement
function with respect to time, and the acceleration function is the derivative of
the speed function with respect to time. Conversely, the speed function is the
indefinite integral of the acceleration function with respect to time, and the dis-
placement function is the indefinite integral of the speed function with respect
to time. This is a simplistic way to state the relationship, but it’s worth remem-
bering as a general principle.

DISTANCE AND SPEED VERSUS TIME
Imagine a car that starts out from a “dead stop” and accelerates in a straight line
on a level road. Suppose that when the driver steps on the gas pedal, the car
exhibits the following speed-versus-time function s, where s (t) is the speed in
meters per second and t is the time in seconds:
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s (t) = 2.40t

This function is graphed in Fig. 15-8. We can use integration to derive a func-
tion of the distance in meters that the car has traveled versus the elapsed time
after the start. Let m(t) represent the distance function. (The letter m stands for
“meters.” We don’t want to use d for “distance,” because this could get confused
with the differential.) Then:

m (t) = Ú s (t) dt

= Ú 2.40t dt

= 1.20t2 + c

where c is the constant of integration.
Suppose we want to find out how far the car goes between t = 2.00 and

t = 5.00. This is the distance traveled between a time point 2.00 seconds after
the start, until a time point 5.00 seconds after the start. Let’s call this distance z.
Then z is equal to m(t) evaluated from t = 2.00 to t = 5.00, as follows:
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z = m (5.00) − m (2.00)

= (1.20 × 5.002 + c) − (1.20 × 2.002 + c)

= (1.20 × 25.0) − (1.20 × 4.00)

= 30.0 − 4.80

= 25.2 meters

We’re allowed to go to three significant figures in our answer, because our input
data is given to that level of accuracy.

AVERAGE VALUE OF FUNCTION OVER INTERVAL
Let f (x) be a function that is continuous over the domain from x = a to x = b,
where a and b are real numbers and a < b. Let F(x) be the antiderivative of f (x).
Then the average value, A, of f (x) over the open, half-open, or closed interval
bounded by a and b is given by the following formula:

A = [F (b) − F (a)] / (b − a)

This generalized principle is illustrated in Fig. 15-9.
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Geometrically, this is the equivalent of finding the “height” (either positive or
negative) of a rectangle whose area is the same as the area between the curve and
the x axis between “vertical” lines passing through the points x = a and x = b.
Note that F(b) − F(a) is the same as the definite integral from a to b of f (x) with
respect to x. That is the area between the curve and the x axis between “vertical”
lines passing through the points x = a and x = b, and is also the area of the rec-
tangle whose height corresponds to the average value of f (x) over the interval
from x = a to x = b.

PROBLEM 15-8
Use integration to find the average speed of the car in the example
discussed in “Distance and Speed versus Time” above and illustrated in 
Fig. 15-8, for the interval between the time points t = 2.00 and t = 5.00.

SOLUTION 15-8
Let S (t) be the antiderivative of s(t) in the above situation. This func-
tion is the same as m (t) with c = 0. That is:

S (t) = 1.20t2

If A is the average speed over the interval from t = 2.00 to t = 5.00,
then:

A = [S (5.00) − S (2.00)] / (5.00 − 2.00)

= [(1.20 × 5.002) − (1.20 × 2.002)] / (5.00 − 2.00)

= [(1.20 × 25.0) − (1.20 × 4.00)] / 3.00

= 25.2 / 3.00

= 8.40 meters per second

As in the example in “Distance and Speed versus Time” above, we’re
allowed to go to three significant figures in our answer, because our
input data is given to that level of accuracy.

PROBLEM 15-9
Verify that the answer obtained in Solution 15-8 is correct by finding
the arithmetic mean, or average, of the values of the speed function 
s (t) for the time points t = 2.00 and t = 5.00. (Averaging will work in
this situation only because the function of speed versus time is linear.
If it were not linear, averaging would not work, and integration would
have to be used.)
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SOLUTION 15-9
First, find the values of the function s(t ) for t = 2.00 and t = 5.00.
These are:

s (2.00) = 2.40 × 2.00

= 4.80 meters per second

s (5.00) = 2.40 × 5.00

= 12.0 meters per second

The average, A, of these two values is:

A = (4.80 + 12.0) / 2

= 16.8 / 2

= 8.40 meters per second

Here, the value of 2 in the denominator is mathematically exact, because
the arithmetic mean of two numbers is defined as precisely half the
sum of those two numbers. Therefore, we are justified in going to three
significant figures for the final answer, because our input data is given
to that level of accuracy.

Quick Practice
Here are some practice problems that cover the material presented in this chap-
ter. Solutions follow the problems.

PROBLEMS

1. Find the following indefinite integral:

Ú (24y5 + 15y4 − 9y2 + 4y − 4) dy

Assume that the values of the coefficients are exact, so there is no need
to be concerned about significant figures.

2. Find the indefinite integral of the result of the above problem. That is, find:

Ú [Ú (24y5 + 15y4 − 9y2 + 4y − 4) dy] dy
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3. Find the definite integral of f (x) = sin x from x = 0º to x = 90º.

4. Find the definite integral of f (x) = sin x from x = 0º to x = 180º.

5. Find the definite integral of f (x) = sin x from x = 0º to x = 270º.

SOLUTIONS

1. Remember that the integral of a sum of functions is equal to the sum of
the integrals of each of the individual functions. We also need to use both
the rule for the indefinite integral of a variable raised to an integer power
and the rule for the indefinite integral of a function multiplied by a con-
stant. With these three principles in mind, proceed as follows:

Ú (24y5 + 15y4 − 9y2 + 4y − 4) dy

= Ú 24y5 dy + Ú 15y4 dy − Ú 9y2 dy + Ú 4y dy − Ú 4 dy

= 4y6 + a1 + 3y5 + a2 − 3y3 + a3 + 2y2 + a4 − 4y + a5

The values a1 through a5 represent the constants of integration for each
addend in this sum of functions. If we let them all add up to a single
constant, a, then our final answer becomes:

4y6 + 3y5 − 3y3 + 2y2 − 4y + a

2. This looks formidable until we realize that it can be simplified to the
indefinite integral of the solution to Problem 1. That is:

Ú [Ú (24y5 + 15y4 − 9y2 + 4y − 4) dy] dy

= Ú (4y6 + 3y5 − 3y3 + 2y2 − 4y + a) dy

= Ú 4y6 dy + Ú 3y5 dy − Ú 3y3 dy + Ú 2y2 dy − Ú 4y dy + Ú a dy

= (4/7)y7 + b1 + (1/2)y6 + b2 − (3/4)y4 + b3 + (2/3)y3 + b4 − 2y2 + b5
+ ay + b6

The values b1 through b6 represent the constants of integration for each
addend in this sum of functions. If we let them all add up to a single
constant, b, then our final answer becomes:

= (4/7)y7 + (1 /2)y6 − (3/4)y4 + (2/3)y3 − 2y2 + ay + b

Note that the constants a and b are not necessarily the same.
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3. Before solving any integral that contains a trigonometric function, it’s
always a good idea to convert the independent variable to units of radi-
ans (rad). In this case, because 0º = 0 rad and 90º = π /2 rad, we are look-
ing for the definite integral from x = 0 to x = π /2. First, find the indefinite
integral 0f the sine function from Table 15-1:

Ú sin x dx = −cos x + c

We can consider the antiderivative F(x) to be simply −cos x, because
when we find the definite integral, the constant c subtracts from
itself and vanishes. The definite integral we seek can be expressed
this way:

F (π /2) − F (0) = −cos (π / 2) − (−cos 0)

= 0 − (−1)

= 0 + 1

= 1

4. Note that 0º = 0 rad and 180º = π rad. We determined, in solving Prob-
lem 3, that the antiderivative F(x) is equal to −cos x. Therefore, the def-
inite integral from 0 to π can be expressed as follows:

F(π) − F(0) = −cos π − (−cos 0)

= −(−1) − (−1)

= 1 + 1

= 2

5. Note that 0º = 0 rad and 270º = 3π /2 rad. We determined, in solving
Problem 3, that the antiderivative F (x) is equal to −cos x. Therefore, the
definite integral from 0 to 3π /2 can be expressed as follows:

F(3π / 2) − F(0) = −cos (3π / 2) − (−cos 0)

= 0 − (−1)

= 0 + 1

= 1
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Quiz
This is an “open book” quiz. You may refer to the text in this chapter. You may
draw diagrams if that will help you visualize things. A good score is 8 correct.
Answers are in the back of the book.

1. Figure 15-10 is a graph of the tangent function, f (x) = tan x, over values
of the domain ranging from −3π to 3π. Refer to Table 15-1 for the indef-
inite integral of the tangent function, and recall that the secant of a vari-
able x is equal to the reciprocal of the cosine x:

sec x = 1/(cos x)

provided that x is not an odd multiple of π /2.

Based on this information, what happens to the area under the curve
between x = 0 and x = k, as k increases from 0 to π /2?

(a) It grows positively, and reaches a certain positive finite value when
k = 1.

(b) It grows negatively, and reaches a certain negative finite value when
k = 1.
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(c) It grows positively without limit.
(d) It grows negatively without limit.

2. Based on Fig. 15-10 and Table 15-1, what is the definite integral of f (x)
with respect to x, from x = 0 to x = π /2? Express the answer to four dec-
imal places. Consider π = 3.14159.
(a) −0.3466.
(b) 0.3466.
(c) 0.0000.
(d) It is not defined.

3. Based on Fig. 15-10 and Table 15-1, what is the definite integral of f (x)
with respect to x, from x = −π /2 to x = π /2? Express the answer to four
decimal places. Consider π = 3.14159.
(a) −0.6931.
(b) 0.6931.
(c) 0.0000.
(d) It is not defined.

4. Based on Fig. 15-10 and Table 15-1, what is the definite integral of f (x)
with respect to x, from x = 0 to x = π /4? Express the answer to four dec-
imal places. Consider π = 3.14159.
(a) 0.3466.
(b) 0.6931.
(c) −0.3466.
(d) −0.6931.

5. Consider a vehicle that starts up on a level, flat surface and moves in a
straight line. Its speed is defined as the rate of change in the displacement
(distance from the starting point) per unit time. Its acceleration is defined as
the rate of change of the speed per unit time. Suppose the initial position, the
initial speed, and the initial acceleration of the vehicle are all equal to 0.
Also, suppose you know the function of speed versus time. Based on this,
(a) the function of displacement versus time can be found by integrating

once, but the function of acceleration versus time cannot.
(b) the function of acceleration versus time can be found by integrating

once, but the function of displacement versus time cannot.
(c) the functions of displacement versus time and acceleration versus

time can both be found by integrating once.
(d) neither the function of displacement versus time nor the function of

acceleration versus time can be found by integrating once.
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6. Consider the scenario described in Question 5. Suppose the initial posi-
tion, the initial speed, and the initial acceleration of the vehicle are all
equal to 0. Also, suppose you know the function of acceleration versus
time. Based on this,

(a) the function of displacement versus time can be found by integrating
one or more times, but the function of speed versus time cannot.

(b) the function of speed versus time can be found by integrating one or
more times, but the function of displacement versus time cannot.

(c) the functions of displacement versus time and speed versus time can
both be found by integrating one or more times.

(d) neither the function of displacement versus time nor the function of
speed versus time can be found by integrating one or more times.

7. Consider again the scenario described in Question 5. Suppose the initial
position, the initial speed, and the initial acceleration of the vehicle are
all equal to 0. Also, suppose you know the function of displacement ver-
sus time. Based on this,

(a) the function of acceleration versus time can be found by integrating
once, but the function of speed versus time cannot.

(b) the function of speed versus time can be found by integrating once,
but the function of acceleration versus time cannot.

(c) the functions of acceleration versus time and speed versus time can
both be found by integrating once.

(d) neither the function of acceleration versus time nor the function of
speed versus time can be found by integrating once.

8. What is the average value of f (x) = 6x2 over the interval 0 ≤ x < 2?

(a) 2.
(b) 4.
(c) 8.
(d) 12.

9. What is the average value of g (z) = sin z over the interval −π /2 < z
≤ π /2?

(a) 0.
(b) 2/π.
(c) −2/π.
(d) It is not defined.
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10. What is the indefinite integral, with respect to a variable x, of the sum of
three or more different functions of x?

(a) The arithmetic mean of the indefinite integrals of each of the indi-
vidual functions with respect to x.

(b) The geometric mean of the indefinite integrals of each of the indi-
vidual functions with respect to x.

(c) It is impossible to define the integral of a sum of more than two
functions.

(d) None of the above statements (a), (b), or (c) is correct.
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365

Final Exam

Do not refer to the text when taking this exam. You may draw diagrams or use
a calculator if necessary. A good score is at least 75 answers (75% or more) cor-
rect. Answers are in the back of the book.

1. Suppose that the graphs of two equations in the Cartesian plane are iden-
tical; they coincide. This indicates that the pair of equations represented
by the graphs

(a) has no solution.
(b) has exactly one solution.
(c) has two distinct solutions.
(d) has infinitely many solutions.
(e) is nonlinear.

2. The equation x2 = −256 has

(a) two solutions, both real numbers.
(b) two solutions, one a real number and the other a complex number.
(c) two solutions, both of them complex numbers.
(d) infinitely many solutions.
(e) no solutions.
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3. What is the value of (−900)1/2?

(a) 30.
(b) −30.
(c) j30.
(d) ±30.
(e) It is not defined.

4. Consider the following set of simultaneous linear equations in variables
x, y, and z:

x + y + z − 3 = 0

−2x − 2y − 2z + 6 = 0

5x + 5y + 5z − 15 = 0

What can be said about the number of solutions here?

(a) There are infinitely many solutions.
(b) There are three distinct solutions.
(c) There are two distinct solutions.
(d) There is one unique solution.
(e) There are no solutions.

5. Consider the following equation in two variables x and y:

4x + 5y − 7x − 21y = −4

This is an example of

(a) a linear equation that is in standard form.
(b) a linear equation that is not in standard form.
(c) a quadratic equation that is in standard form.
(d) a quadratic equation that is not in standard form.
(e) a complex equation that is in standard form.

6. Consider the expression 7.898 × 107. Which of the following represents
this quantity in plain decimal format?

(a) 789,800,000
(b) 78,980,000
(c) 7,898,000
(d) 0.0000007898
(e) 0.00000007898
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7. A pair of linear equations in x and y is inconsistent if any only if

(a) x is a positive real number and y is a negative real number, or vice-
versa.

(b) x is an imaginary number and y is a real number, or vice-versa.
(c) x and y are complex conjugates.
(d) x = 0 and y = 0.
(e) there exists no set {x, y} that solves the pair of equations.

8. In Fig. Exam-1, the x axis

(a) spans 3 orders of magnitude.
(b) spans 7 orders of magnitude.
(c) spans 10 orders of magnitude.
(d) is linear.
(e) represents an undefined range of quantities.
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9. In Fig. Exam-1, the y axis

(a) spans 3 orders of magnitude.
(b) spans 7 orders of magnitude.
(c) spans 10 orders of magnitude.
(d) is linear.
(e) represents an undefined range of quantities.

10. Consider the following general equation, which holds for all real num-
bers a1, a2, a3, b1, b2, and b3, and where j is equal to the positive square
root of −1:

[(a1 + jb1) + (a2 + jb2)] + (a3 + jb3)
= (a1 + jb1) + [(a2 + jb2) + (a3 + jb3)]

This is an expression of

(a) the property of additive inverses.
(b) the associative property of addition.
(c) the commutative property of addition.
(d) the transitive property of addition.
(e) the symmetric property of addition.

11. The volume of a parallelepiped is equal to

(a) the product of the base area and the height.
(b) the product of the lengths of all the edges.
(c) the product of the lengths of any three edges that converge at a sin-

gle vertex point.
(d) the geometric mean of the lengths of any three edges that converge

at a single vertex point.
(e) the sum of the surface areas of all the faces, divided by 6.

12. Imagine a tetrahedron X whose base is a triangle with area A, and whose
height is h. Also consider a tetrahedron Y whose base is a triangle with
area A, and whose height is h /2. How does the volume VX of X compare
with the volume VY of Y?

(a) VX = 21/2VY
(b) VX = 2VY
(c) VX = 4VY
(d) It depends on whether or not X is a regular tetrahedron.
(e) There is no way to answer this without knowing the actual dimen-

sions of X.
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13. Consider the following equation:

3x + 5 = 5x − 8

This is an example of

(a) a first-order equation in standard form.
(b) a first-order equation not in standard form.
(c) a quadratic equation in standard form.
(d) a quadratic equation not in standard form.
(e) a composite equation.

14. Consider the following equation:

6x − 5 = 8x + 3

What is the solution set for this equation?

(a) {4}
(b) {−4}
(c) {−4, 4}
(d) {−j4, j4}
(e) ∅

15. In Fig. Exam-2, suppose the right ascension of point P is 12 h. Then the
angle labeled q represents

(a) the azimuth of point P.
(b) the celestial longitude of point P.
(c) the range of point P.
(d) the projection angle of point P.
(e) the declination of point P.

16. Consider an ellipsoid with radii of r1, r2, and r3. If r3 is cut in half while
r1 and r2 do not change, what happens to the volume of the ellipse?

(a) It decreases by a factor of the square root of 2.
(b) It decreases by a factor of 2.
(c) It decreases by a factor of 4.
(d) It decreases by a factor of 8.
(e) We can’t answer this without knowing the values of the radii to

begin with.
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17. Consider the function f (x) = 1/x. As x increases positively without limit,
what happens to the value of the first derivative of f ?

(a) It increases positively without limit.
(b) It maintains negative values, but approaches 0.
(c) It maintains positive values, but approaches 0.
(d) It increases negatively without limit.
(e) We cannot answer this question without more information.

18. The equation x2 + y2 = −256 has

(a) two solutions, both real numbers.
(b) two solutions, one a real number and the other a complex number.
(c) two solutions, both of them complex numbers.
(d) infinitely many solutions.
(e) no solutions.
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19. Consider the following expression in Boolean algebra:

A + −B × C = D + E

Which of the following expressions is equivalent to this, and correctly
clarifies the order in which the operations should be performed?

(a) (A + (−(B × C))) = (D + E)
(b) (A + (−(B × C) = D) + E)
(c) (A + ((−B) × C)) = (D + E)
(d) ((A + (−B)) × C) = (D + E)
(e) (A + (−B × (C = D)) + E))

20. What is the decimal-number value of octal 358?

(a) 358.
(b) 101100110.
(c) 1606.
(d) 96.
(e) It is not defined, because 358 is not a legitimate octal number.

21. The symbolic Boolean name for the logical operation that translates to
“ either/or” is

(a) IOR.
(b) EOR.
(c) NOR.
(d) XOR.
(e) OR.

22. Imagine a rectangle with an interior area of 100.000 m2. We are not told
the exact dimensions, but only the fact that it is a plane rectangle. What
is the possible range of lengths, d, of a corner-to-corner diagonal of this
rectangle?

(a) d = 14.1421 m.
(b) 10.0000 m < d ≤ 14.1421 m.
(c) d ≥ 14.1421 m.
(d) d > 10.0000 m.
(e) We must have more information to answer this.
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23. Many calculators lack cotangent function buttons, although they have
buttons for the sine and cosine functions. How can you find the cotan-
gent of an angle with such a calculator?

(a) Divide 1 by the sine of the angle.
(b) Divide 1 by the cosine of the angle.
(c) Divide the sine of the angle by the cosine of the angle.
(d) Divide the cosine of the angle by the sine of the angle.
(e) You can’t find the cotangent of an angle with such a calculator.

24. Examine Fig. Exam-3. The polygon is a trapezoid. The top and bottom
(horizontal) sides are parallel with lengths as indicated, and are separated
by the distance shown. What is the perimeter of this trapezoid, based on
the information given in the diagram?

(a) 22.8 m
(b) 39.6 m
(c) 51.2 m
(d) 64.7 m
(e) It cannot be determined from the information provided.

25. What is the interior area of the trapezoid shown in Fig. Exam-3, based
on the information given in the diagram, and accurate to two significant
figures?

(a) 89 m2

(b) 44 m2
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(c) 96 m2

(d) 48 m2

(e) It cannot be determined from the information provided.

26. In Cartesian 3-space, how far is the point (10,10,10) from the origin?
Consider the coordinates exact, and express the answer to four signifi-
cant figures.

(a) 5.477 units.
(b) 6.694 units.
(c) 10.00 units.
(d) 17.32 units.
(e) 31.62 units.

27. The dot product of two vectors is always

(a) a natural number.
(b) an integer.
(c) a rational number.
(d) a real number.
(e) None of the above

28. The common logarithms of −100 and 100 differ by

(a) 0.
(b) 1.
(c) 2.
(d) 4.
(e) No amount, because the common logarithm of −100 is not defined.

29. Consider the following function f of a variable x:

f (x) = −3x4 + 5x3 + 4

What is f ″ (x)?

(a) f ″ (x) = −12x3 + 15x2

(b) f ″ (x) = 12x3 − 15x2

(c) f ″ (x) = 36x2 − 30x
(d) f ″ (x) = −36x2 + 30x
(e) f ″ (x) cannot be defined unless we know the constant of integration.
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30. Suppose point P is an inflection point on a curve that represents a con-
tinuous function y = f (x). Which, if any, of the following statements (a),
(b), (c), or (d) is true in general? 

(a) The sense of concavity of the curve reverses at point P.
(b) Point P is a local minimum of f.
(c) Point P is a local maximum of f.
(d) The derivative of f is equal to 0 at point P.
(e) None of the above statements (a), (b), (c), and (d) are true in general.

31. How many definite integrals can the following function have?

f (x) = 3x3 + 4x2 + 3x + 2

(a) One.
(b) Two.
(c) Three.
(d) Four.
(e) Infinitely many.

32. How many definite integrals does the following function have for values
of x between, and including, 0 and 1?

f (x) = 3x3 + 4x2 + 3x + 2

(a) One.
(b) Two.
(c) Three.
(d) Four.
(e) Infinitely many, because the constant of integration can be any real

number between 0 and 1.

33. Consider the function f (x) = 1/x. As x remains positive but approaches 0,
what happens to the value of the first derivative of f ?

(a) It increases positively without limit.
(b) It increases negatively without limit. 
(e) It maintains positive values, but approaches 0.
(d) It maintains negative values, but approaches 0.
(e) We cannot answer this question without more information.
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34. Imagine a function h (x) that has a graph in the xy-plane that you don’t
recognize as any familiar class of curve. Suppose we are told that the area
between the curve and the x axis, for the span of values of x between x =
−5 and x = 5, is equal to −100. What is the average value of the function
h (x) over the interval from x = −5 to x = 5?  

(a) We are not given the values of h (−5) and h (5). Unless we know
these values specifically, there is no way for us to determine the
average value of h (x) over this interval.

(b) We are not given the values of H (−5) and H (5), where H is the anti-
derivative of h. Unless we know these values specifically, there is no
way for us to determine the average value of h (x) over this interval.

(c) The area is given as negative, but there is no such thing as negative
area. Thus, the average value of the function over this interval is not
defined.

(d) The average value of the function h (x) over the interval from 
x = −5 to x = 5 is equal to −10.

(e) The average value of the function h (x) over the interval from 
x = −5 to x = 5 is equal to 0.

35. Consider a vector a = 0i + 6j + 8k in Cartesian xyz-space. If the origina-
ting point of this vector is the coordinate origin (0,0,0), then |a| is equal to

(a) 0.
(b) 6.
(c) 8.
(d) 10.
(e) a value that requires more information to be calculated.

36. Imagine a vertical utility pole 17.4 m tall that stands in a flat, level field.
The shadow of the pole, cast by the sun, is 44.5 m long. What is the area,
in square meters (m2), of the triangle defined by the base of the pole, the
top of the pole, and the end of the pole’s shadow?

(a) 31.0 m2

(b) 61.9 m2

(c) 387 m2

(d) 774 m2

(e) 1549 m2
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37. Imagine a vertical utility pole 17.4 m tall that stands in a flat, level field.
The shadow of the pole, cast by the sun, is 44.5 m long. What is the dis-
tance, in meters (m), from the top of the pole to the tip of its shadow?

(a) 31.0 m
(b) 47.8 m
(c) 61.9 m
(d) 95.6 m
(e) More information is necessary to determine this.

38. In Newtonian physics, the displacement function is

(a) the derivative of the acceleration function with respect to time.
(b) the derivative of the speed function with respect to time.
(c) the indefinite integral of the acceleration function with respect to time.
(d) the indefinite integral of the speed function with respect to time.
(e) None of the above

39. Consider the following expression in Boolean algebra:

(X × Y) + (X × Z) = X × (Y + Z)

This statement is a general expression of

(a) the associative law of conjunction with respect to disjunction.
(b) the commutative law of conjunction with respect to disjunction.
(c) the commutative law of disjunction with respect to conjunction.
(d) the distributive law of conjunction with respect to disjunction.
(e) a logically invalid statement, because it is not in general true.

40. Refer to Fig. Exam-4. What is the sum of the complex numbers repre-
sented by the points P and Q?

(a) 3 + j0.
(b) −3 + j0.
(c) 7 + j6.
(d) 7 − j6.
(e) −7 − j6.

41. Refer to Fig. Exam-4. What is the product of the complex numbers rep-
resented by the points P and Q?
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(a) −1 − j21.
(b) −1 + j0.
(c) −10 + j9.
(d) 10 − j9.
(e) It is not defined.

42. Consider the product 4.5101 × 256 × 82.22 × 7.6 × e, where e is the nat-
ural logarithm base, a well-known irrational-number constant. How
many significant figures can we claim after we have multiplied these
numbers?

(a) As many as we want.
(b) 5.
(c) 4.
(d) 3.
(e) 2.
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43. How many radians equal one angular degree? Express the answer to five
significant figures.

(a) 0.31831.
(b) 0.15915.
(c) 0.017453.
(d) 0.0087266.
(e) This question cannot be answered, because radians and angular

degrees do not represent the same parameter.

44. How can you find the cosecant of an angle with a calculator that has
only sine and cosine trigonometric function buttons?

(a) Divide 1 by the sine of the angle.
(b) Divide 1 by the cosine of the angle.
(c) Divide the sine of the angle by the cosine of the angle.
(d) Divide the cosine of the angle by the sine of the angle.
(e) You can’t find the cosecant of an angle with such a calculator.

45. Imagine a triangle with a perimeter of 30.0 m. We are not told its specific
dimensions, but only the fact that it is a plane triangle. What is the pos-
sible range of interior areas, A, of this triangle?

(a) 0 < A ≤ 21.7 m2.
(b) 0 < A ≤ 43.3 m2.
(c) 0 < A ≤ 90.0 m2.
(d) 0 < A ≤ 120 m2.
(e) 0 < A ≤ 150 m2.

46. Which of the following is not a rational number?

(a) 23.23
(b) (−23) / (−99)
(c) The natural logarithm of 1
(d) The positive square root of 16
(e) The cube root of 7

47. In the form of cylindrical coordinates used by aviators and navigators,
the term azimuth, in reference to a target point, refers to
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(a) the actual radius, or distance from the origin to the target.
(b) the compass direction, in degrees, expressed clockwise from north,

for the projection of the target onto the horizontal plane.
(c) the compass direction, in radians, measured counterclockwise from

north, for the projection of the target onto the horizontal plane.
(d) the distance from the origin to the projection of the target onto the

horizontal plane.
(e) the angle between the horizontal plane and a ray connecting the ori-

gin with the target.

48. Consider a continuous function f in the xy-plane, such that y = f (x).
Suppose P is a point on the curve representing the function f. Further
suppose that f � (x) = 0 and f � (x) = −3 at point P. From this information,
we can be certain that

(a) point P is a local minimum of f.
(b) point P is a local maximum of f.
(c) point P is an inflection point of f.
(d) All of the above statements (a), (b), and (c) are true.
(e) None of the above statements (a), (b), and (c) are true.

49. Consider the three standard unit vectors i, j, and k in Cartesian xyz-space.
Which of the following statements (a), (b), (c), or (d), if any, is false?

(a) Each of these vectors has a magnitude equal to 1.
(b) Each of these vectors is perpendicular to both of the other two.
(c) The cross product i × j is equal to the vector k.
(d) The magnitude of i + j + k is equal to the square root of 3.
(e) All of the above statements (a), (b), (c), and (d) are true.

50. Imagine an extremely thin, flat, circular disk. If its radius is reduced by
a factor of 16, then its surface area

(a) is reduced by a factor of 4096.
(b) is reduced by a factor of 256.
(c) is reduced by a factor of 16.
(d) is reduced by a factor of 4.
(e) is reduced by a factor of 2.
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51. Suppose you have a pole that is 4.000 m high, and you also have some
canvas. You want to build a temporary shelter on a level field, in the
shape of a right circular cone. You want the radius of the cone to be 3.000
m. Recall the formula for the lateral surface area of a right circular cone.
If r is the radius of the base and h is the height of the cone at the center,
then the lateral surface area SL is given by:

SL = πr(r2 + h2)1/2

How much canvas will you need to build your shelter, rounded up to
the next higher square meter? Consider π = 3.14159.

(a) This cannot be determined unless we are told the slant height of
the cone.

(b) 16 m2.
(c) 47 m2.
(d) 48 m2.
(e) 95 m2.

52. What is the absolute value of −33 − j44?

(a) 33 + j44.
(b) 33.
(c) 44.
(d) 55.
(e) 77.

53. Suppose that the graphs of two equations in the Cartesian plane are par-
allel, straight lines. This indicates that the pair of equations represented
by the graphs

(a) has no common solution.
(b) has exactly one common solution.
(c) has two distinct common solutions.
(d) has infinitely many common solutions.
(e) is nonlinear.

54. In Fig. Exam-5, the quantity s / t represents

(a) sin q.
(b) cos q.
(c) tan q.
(d) cot q.
(e) sec q.
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55. In Fig. Exam-5, the quantity 1/s represents

(a) sin q.
(b) cos q.
(c) tan q.
(d) cot q.
(e) sec q.

56. Consider an ellipsoid with radii of r1, r2, and r3. If r1 and r3 are both cut
in half while r2 does not change, what happens to the volume of the
ellipse?

(a) It decreases by a factor of the square root of 2.
(b) It decreases by a factor of 2.
(c) It decreases by a factor of 4.
(d) It decreases by a factor of 8.
(e) We can’t answer this without knowing the values of the radii to

begin with.
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57. What is the arithmetic mean of 10, 100, and 1000?

(a) 100.
(b) 370.
(c) 667 (approximately).
(d) 333,333 (approximately).
(e) There is none, because arithmetic means are defined only for pairs

of numbers.

58. What is the geometric mean of 10, 100, and 1000?

(a) 100.
(b) 370.
(c) 667 (approximately).
(d) 333,333 (approximately).
(e) There is none, because geometric means are defined only for pairs

of numbers.

59. Which of the following equations (a), (b), (c), or (d), if any, is false?

(a) 1/(10x) = 10−x

(b) 5(x/y) = (5x)(1/y)

(c) (3x)y = 3(xy)

(d) exey = e(x+y)

(e) All of the above statements are true.

60. Imagine a pair of equations in two variables. Suppose that their graphs
appear as shown in Fig. Exam-6, and that the graphs extend forever in the
directions implied by the arrows. From this, it is apparent that the pair of
equations

(a) has no common solution.
(b) has exactly one common solution.
(c) has two distinct common solutions.
(d) has more than two distinct common solutions, but not infinitely many.
(e) has infinitely many distinct common solutions.

61. Consider two numbers p and q, such that p = 10,000q. By how many
orders of magnitude do p and q differ?

(a) 5.
(b) 4.
(c) 3.
(d) 2.
(e) More information is necessary to answer this.
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62. Consider two numbers r and s, such that r = s /10,000. By how many
orders of magnitude do r and s differ?

(a) 5.
(b) 4.
(c) 3.
(d) 2.
(e) More information is necessary to answer this.

63. Imagine a utility pole 35 m high, standing upright (perfectly vertical) in
a flat, horizontal field. Suppose the shadow of the pole, cast by the sun,
is 70 m long. What is the angle of the sun with respect to the zenith (the
point in the sky directly overhead), to the nearest degree?

(a) 30º.
(b) 60º.
(c) 27º.
(d) 63º.
(e) This angle cannot be calculated without more information.
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64. The symbolic Boolean name for the logical operation that translates to
“inclusive or” is

(a) IOR.
(b) EOR.
(c) NOR.
(d) XOR.
(e) OR.

65. Suppose a triangular wave signal is passed through a differentiator, and
then the output of this differentiator is passed through another differen-
tiator. The resulting output signal is

(a) a sine wave.
(b) the original triangular wave.
(c) an up-ramp wave.
(d) a down-ramp wave.
(e) None of the above

66. The natural logarithms of e−4 and e4 differ by

(a) 2.
(b) 4.
(c) 8.
(d) 16.
(e) No amount, because the natural logarithm of e-4 is not defined.

67. The cross product of a vector with itself is

(a) the vector i2 +j2 + k2.
(b) the vector i + j + k.
(c) the zero vector.
(d) the scalar quantity 1.
(e) the scalar quantity 0.

68. Examine Fig. Exam-7. What is the equation represented by the upper line
in this graph?

(a) y = (3/4)x − 4
(b) y = (3/4)x − 3
(c) y = (3/4)x + 4
(d) y = (3/4)x + 3
(e) More information is needed to answer this.
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69. What is the equation represented by the lower line in Fig. Exam-7?

(a) y = (3/4)x − 4
(b) y = (3/4)x − 3
(c) y = (3/4)x + 4
(d) y = (3/4)x + 3
(e) More information is needed to answer this.

70. How many common solutions are there to the pair of equations repre-
sented by the lines in Fig. Exam-7?

(a) Infinitely many.
(b) Two.
(c) One.
(d) None.
(e) More information is needed to answer this.

71. The cardinality of the set {2, 4, 6, 8, 10, . . .} is

(a) a positive integer.
(b) aleph 0.
(c) a transcendental number.
(d) an imaginary number.
(e) an irrational number.
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72. Which of the following equations (a), (b), (c), or (d), if any, is false?

(a) ln xy = ln x + ln y
(b) ln x = e−x

(c) ln xy = y ln x
(d) ln (1/x) = −ln x
(e) All of the above statements are true.

73. Let x be a variable. Let c be the constant of integration. Consider this:

Ú xn dx = [x(n+1) / (n + 1)] + c

This formula holds true for all integer values of n except

(a) n = 0.
(b) n = 1.
(c) n = −1.
(d) n = −1 and n = 1.
(e) Forget the exception! The formula holds true for all integers.

74. Imagine a deflating, spherical balloon. If its radius is reduced by a factor
of 16, then its surface area

(a) is reduced by a factor of 4096.
(b) is reduced by a factor of 256.
(c) is reduced by a factor of 16.
(d) is reduced by a factor of 4.
(e) is reduced by a factor of 2.

75. In a single-variable quintic equation, what is the largest value of the
exponent to which the variable is raised?

(a) 2.
(b) 3.
(c) 4.
(d) 5.
(e) It depends on the number of solutions the equation has.

76. Consider the equation xy = z (that is, x raised to the yth power equals z),
where x and z are positive real numbers, and y can be any real number.
In this situation,
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(a) The base-x logarithm of z is equal to y.
(b) The base-y logarithm of z is equal to x.
(c) The base-z logarithm of y is equal to x.
(d) The base-z logarithm of x is equal to y.
(e) None of the above statements is true.

77. The value of (−4)! is

(a) 24.
(b) −24.
(c) 0.
(d) j 24.
(e) undefined.

78. The cross product of two vectors is always

(a) a natural number.
(b) an integer.
(c) a rational number.
(d) a real number.
(e) None of the above

79. Of what order is the following equation?

(x2 + 6)(5x2 − 5)(8x − 3) = 0

(a) There is no way to answer this without more information.
(b) Fifth order (quintic).
(c) Fourth order (quartic).
(d) Third order (cubic).
(e) Second order (quadratic).

80. How can you find the secant of an angle with a calculator that has only
sine and cosine trigonometric function buttons?

(a) Divide 1 by the sine of the angle.
(b) Divide 1 by the cosine of the angle.
(c) Divide the sine of the angle by the cosine of the angle.
(d) Divide the cosine of the angle by the sine of the angle.
(e) You can’t find the secant of an angle with such a calculator.
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81. Which of the following represents the quantity −0.000002052 in plain-
text scientific notation?

(a) 2.052E−06
(b) −2.052E−06
(c) 2.052E+06
(d) −2.052E+06
(e) This quantity cannot be represented in plain-text scientific notation.

82. The power gain of an electronic circuit, in units called decibels (dB), is
calculated according to the following formula:

Gain (dB) = 10 log (Pout /Pin)

where Pout is the output signal power and Pin is the input signal power,
both specified in watts. Suppose the audio input to a circuit is 50 watts,
and the output is 0.50 watts (the output is weaker than the input). What
is the power gain of this circuit in decibels?

(a) 14 dB.
(b) 20 dB.
(c) −14 dB.
(d) −20 dB.
(e) 0 dB.

83. In the situation shown by Fig. Exam-8, suppose each angular division
represents 10º. In what direction does a × b point?

(a) Straight up.
(b) Straight down.
(c) Generally eastward, horizontally.
(d) In order to answer this, we must know the actual magnitudes of a

and b.
(e) In no direction, because a × b is not a vector.

84. In the situation shown by Fig. Exam 8, let ra be the radius of vector a,
and let rb be the radius of vector b. Suppose each angular division repre-
sents 10º. Then a • b is

(a) equal to rarb.
(b) equal to −rarb.
(c) equal to 0.
(d) equal to ra + rb.
(e) equal to (ra

2 + rb
2)1/2.
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85. Suppose x is a positive real number. As x becomes smaller and smaller
positively, approaching (but never quite reaching) 0, what happens to the
value of ln x?

(a) It becomes larger and larger positively, without limit.
(b) It approaches 1.
(c) It approaches 0.
(d) It becomes larger and larger negatively, without limit.
(e) It oscillates endlessly between −1 and 1.

86. What is the product of 2.50 × 105 and 4.00 × 10−6 expressed to 3 signif-
icant figures?

(a) 2.50 × 105

(b) 4.00 × 10−6

(c) 1.00
(d) 10.0 × 10−30

(e) It cannot be determined without more information.
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87. What is the sum of 2.50 × 105 and 4.00 × 10−6 expressed to 3 significant
figures?

(a) 2.50 × 105

(b) 4.00 × 10−6

(c) 1.00
(d) 10.0 × 10−30

(e) It cannot be determined without more information.

88. In Boolean algebra, an atomic proposition always consists of either a log-
ical constant or

(a) a single logical variable.
(b) a set of logical variables.
(c) a logical conjunction.
(d) a logical implication.
(e) a logical equivalence.

89. The dot product of two vectors that are perpendicular to each other is

(a) the vector i2 + j2 + k2.
(b) the vector i + j + k.
(c) the zero vector.
(d) the scalar quantity 1.
(e) the scalar quantity 0.

90. Suppose an alternating current (AC) wave completes a cycle exactly
once every 10 microseconds (µs). What is the frequency of this wave in
kilohertz (kHz)?

(a) 1 kHz.
(b) 10 kHz.
(c) 100 kHz.
(d) 1000 kHz.
(e) 10,000 kHz.

91. What general statement can be made about the number of solutions to a
pair of linear equations in two variables?

(a) There are no solutions.
(b) There is one unique solution.
(c) There are two distinct solutions.
(d) There are infinitely many solutions.
(e) We must see the equations before we can say how many solutions exist.
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92. Suppose a radar set shows a target that is 100 km directly southeast of
your location. What are the bearing and range of this target, expressed in
navigator’s polar coordinates? Express the bearing to the nearest degree,
and the range to three significant figures.

(a) The bearing is 315º, and the range is 100 km.
(b) The bearing is 135º, and the range is 100 km.
(c) The bearing is 225º, and the range is 70.7 km.
(d) The bearing is 45º, and the range is 70.7 km.
(e) More information is necessary to answer this.

93. Imagine a rectangle with an interior area of 100.000 m2. We are not told
the exact dimensions, but only the fact that it is a plane rectangle. What
is the possible range of perimeters, B, of this rectangle?

(a) B = 40.0000 m.
(b) 20.0000 m < B ≤ 40.0000 m.
(c) B ≤ 40.0000 m.
(d) B ≥ 40.0000 m.
(e) We must have more information to answer this.

94. Suppose you stand in a flat field and fly a kite. The wind blows directly
from the east. The point on the ground directly below the kite is 600 m
away from you, and the kite is 800 m above the ground. If your body rep-
resents the origin of a spherical coordinate system, what is the radius
coordinate of the kite in kilometers (km)?

(a) 0.693 km
(b) 0.700 km
(c) 1.00 km
(d) 1.40 km
(e) There is no way to tell without more information.

95. Consider the following quadratic equation:

2.3x2 + 3.3x − 10.5 = 0

What can be said about the solutions to this equation without actually
solving it?

(a) There is a single real-number solution.
(b) There are two distinct real-number solutions.
(c) There is a single complex-number solution.
(d) There are two distinct complex-number solutions.
(e) There are no solutions.

Final Exam 391



96. Consider two sets: S = {2, 4, 6, 8, . . .}and T = {1, 3, 5, 7, . . .}. What is 
S ∪ T?

(a) The set of all positive integers.
(b) The set of all rational numbers.
(c) The set of all real numbers.
(d) The set of all complex numbers.
(e) The null set.

97. Which of the graphs in Fig. Exam-9 is or are such that y is a function of
x within the portions of the domain and range as shown?

(a) Graph A only.
(b) Graph B only.
(c) Graph C only.
(d) Graphs A and B.
(e) Graphs A and C.

98. Which of the graphs in Fig. Exam-9 is or are such that x is a function of
y within the portions of the domain and range as shown?

(a) Graph A only.
(b) Graph B only.
(c) Graph C only.
(d) Graphs A and B.
(e) Graphs A and C.
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99. In Newtonian physics, the acceleration function is

(a) the derivative of the displacement function with respect to time.
(b) the derivative of the speed function with respect to time.
(c) the indefinite integral of the displacement function with respect to

time.
(d) the indefinite integral of the speed function with respect to time.
(e) None of the above

100.The surface area, A, of a rectangular prism having edges of lengths r, s,
and t is given by which of the following formulas?

(a) A = r + s + t
(b) A = rst
(c) A = 2rs + 2rt + 2st
(d) A = r2 + s2 + t 2

(e) A = r2s2t2
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A
abscissa, 73, 231
absolute value of complex number, 18, 24
acceleration, 354–358
acute angle, 228
addition

and significant figures, 64–65
associative law of, 31
commutative law of, 31–32
of vectors, 272–274
using scientific notation, 59–60, 64–65

addition method
for solving 2-by-2 linear equations, 145–148

additive
identity element, 30
inverse, 30, 287

adjacent side, 236
aleph, 16–17
altitude, in cylindrical coordinates, 109
amplitude of wave function, 323–324, 349
angle

acute, 228
double, 242
negative, 240–241
nonstandard, 233–234
notation for, 235

obtuse, 228
of intersection between curves, 317–318
right, 164–165

angular
degree, 228–229
difference, 242
radian, 228–229
sum, 242

antecedent, 211
antiderivative, definition of, 338
antilogarithm, 292
apex angle of circular sector, 177–178
approximate-equality symbol, 62
approximation, 42–43
arc

degree of, 228–229
minute of, 95, 228–229
second of, 95, 228–229

arithmetic mean, 35
associative law

of addition, 31
of conjunction, 217–218
of disjunction, 217–218
of multiplication, 32
of vector addition, 272–274
of vector-scalar multiplication, 274

INDEX
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astronomical unit (AU), 117
atomic proposition, 212
AU. See astronomical unit
average value of function over interval, 356–357
azimuth, 87, 112

B
back-end point of vector, 254
base-2 number system, 11–13
base-8 number system, 11–13
base-10

exponential, 290–291
logarithm, 284–285
number system, 10, 12–13

base-16 number system, 12–13
base-e

exponential, 290–293
logarithm, 285–286

bearing, 87
binary number system, 11–13
Boolean algebra, 207–228

C
calculus

differential, 305–335
Fundamental Theorem of, 339–340
integral, 337–364

Cantor, Georg, 17
cardinal number, transfinite, 16–17
cardinality of set, 5
Cartesian 3-space

axes in, 107
definition of, 105–106
distance between points in, 107–108
orientation of axes in, 260
origin in, 107
variables in, 107
vectors in, 259–264

Cartesian 4-space, 114–115
Cartesian n-space

definition of, 118
distance between points in, 119

Cartesian plane
abscissa in, 73

coordinate conversions to and from, 89–91
definition of, 71–72
distance between points in, 73–74
graphs in, 74–80
ordinate in, 73
origin in, 73
vectors in, 251–256

Cartesian time-space, 115–118
celestial coordinates, 94–95, 98–99, 112–113
chain rule for derivatives, 313
circle

circumference of, 173–174
interior area of, 173–175

circular function
primary, 229–232
secondary, 232–234

circular sector
apex angle of, 177–178
interior area of, 178
perimeter of, 177–178

circumference of circle, 173–174
coefficient

as multiple of variable, 244
in scientific notation, 52

coincident sets, 3
common exponential

definition of, 290
common logarithm

definition of, 284–285
in terms of natural logarithm, 288

commutative law
negative, of cross product, 272–273
of addition, 31–32
of conjunction, 217
of disjunction, 217
of dot product, 272
of multiplication, 31
of vector addition, 272
of vector-scalar multiplication, 272

complex number
absolute value of, 18, 24
conjugates, 22
definition of, 18
equality of, 21

INDEX402



operations with, 21
plane, 19
properties of, 19–24

component vector, 270–271
compound statement, 208
concave downward, 320
concave upward, 320
concavity, sense of, 320
cone

definition of, 191–192
frustum, surface area of, 193–194
frustum, volume of, 194
right circular, definition of, 192
right circular, surface area of, 193
right circular, volume of, 193
slant circular, volume of, 194–195

conjunction, logical, 208–209, 213, 219
consequent, 211
constant

function, 311
of integration, 338–339

continuous function, 308
Continuum Hypothesis, 16, 19
contradiction, 217
contrapositive, 218–219
coordinates

Cartesian 3-space, 105–108
Cartesian 4-space, 114–115
Cartesian plane, 73–80, 89–91
celestial, 94–95
conversions, among different systems, 89–92
cylindrical, 109–110, 113
declination and right ascension, 94–95, 99
hyperspace, 113–119
latitude and longitude, 93–94
log-log, 98–99
navigator’s, 87–89
polar, 80–92
semilog, 96–97
spherical, 110–113
time-space, 115–118

cosecant
function, 169, 232
of negative angle, 241

cosine
function, 84–85, 230–231
of angular difference, 242
of angular sum, 242
of double angle, 242
of negative angle, 240
Pythagorean Theorem involving, 238
wave, 323

cotangent
function, 233
of negative angle, 241

counting numbers, 7
cross-multiplication, 38
cross product

of mixed vectors and scalars, 276
of two vectors, 253–254, 258, 262–263, 272

cube
definition of, 188
surface area of, 188
volume of, 188

cubic equation, 134–137
cylinder

definition of, 192
right circular, 195–196
slant circular, 196–197

cylindrical coordinates, 109–110, 113

D
decagon, 179
decimal

expansion, 9
form, 9, 55
number system, 10, 12–13
point, 9, 52

declination
in celestial coordinates, 94–95, 99
in compass direction, 88
in spherical coordinates, 110–111

definite integral, 339–341
degree of arc, 228–229
DeMorgan’s law

for conjunction, 219
for disjunction, 219

denumerable number set, 6–10
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dependent variable, 73, 107, 306
derivative

chain rule for, 313
definition of, 305–311
first, 308
higher-order, 309
notation used for, 309
of constant function, 311
of function multiplied by constant, 312
of difference of two functions, 312
of down-ramp wave, 325
of product of functions, 312
of quotient of two functions, 313
of sum of functions, 311
of variable raised to a power, 313
of sine wave, 323–324
of square wave, 326–327
of triangular wave, 325–327
of up-ramp wave, 324–325
of wave function, 323–327
reciprocal, 313
second, 309
table, 328

difference
of exponents, 41
of functions, 311
powers of, 41

differential
calculus, 305–335
in expression of integral, 338

differentiation, 305–335
direction

angles, 261–262
cosines, 262
in polar coordinates, 82
of vector, 22, 252–253

discriminant, in quadratic equation, 132
disjoint sets, 4
disjunction, logical, 209–210, 213, 219
displacement, 354
distributive law

of conjunction over disjunction, 219
of cross product over vector addition, 276

of division over addition, 38
of dot product over vector addition, 275–276
of multiplication over addition, 32
of scalar multiplication over scalar addition, 275
of scalar multiplication over vector addition, 275

division
and significant figures, 61
by zero, 34
using scientific notation, 59–61

domain of function, 285, 307
dot product

of two vectors, 253, 258, 262, 272
of cross products, 276
of mixed vectors and scalars, 276

double angle, 242
double negation, logical, 217
down-ramp wave

derivative of, 325–326, 327, 329
integral of, 350–351

E
element of set, 1
elevation, in spherical coordinates, 112
ellipse

axes of, 174
definition of, 174
interior area of, 174–175
semi-axes of, 85, 174

ellipsoid
definition of, 199
semi-axes of, 199–200
volume of, 199–200

equality symbol, approximate, 62
equation

2-by-2 general, 152–154
2-by-2 linear, 143–148
3-by-3 linear, 148–152
cubic, 134–137
graphic solution of, 154–158
higher-order, 134–137
linear, 74–80, 127–130, 143–152
nonlinear, 152–154
nth-order, 136
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quadratic, 130–134
quartic, 135
quintic, 135
multivariable, 143–162
single-variable, 125–141

equivalence, logical, 211–212, 215
Euler’s constant, 283
exclusive OR, 209–210
exponent

negative, 40
plain-text, in scientific notation, 53–54
rational-number, 40

exponential
alternative expressions for, 292
base-10, 290–291
base-e, 290–293
behavior of, 293–298
common, 290–291
common and natural, product of, 295
common to natural, ratio of, 295
constant, 283
definition of, 283
function, 290–298
natural, 290–293
natural to common, ratio of, 295
of exponential, 294
of ratio, 294
product of, 294
reciprocal of, 294
versus logarithm, 293–294

exponentiation
and significant figures, 61
in scientific notation, 59, 61

F
facet of polyhedron, 185
factorial, 35
first derivative, 308
frustum of cone, 193–194
function

average value over interval, 356–357
constant, 311
continuous, 308

definition of, 306–307
domain of, 285, 307
inflection point of, 320–321
local maximum of, 318–319
local minimum of, 318–319
multiplied by constant, 312
range of, 285, 307
single-variable, 306
zero, 311

Fundamental Theorem of Calculus, 339–340

G
geographic north, 87, 109–110
geometric mean, 35
Global Positioning System (GPS), 88

H
heading, 87
height, in cylindrical coordinates, 109
hexadecimal number system, 11–15
higher-order

derivative, 309
equation, 134–137

hour, in right ascension, 94–95
hyperspace, 113–119
hypotenuse, 22–23, 164–165

I
identities, trigonometric, 237–245
identity element

additive, 30
multiplicative, 30

IF/THEN operation, 211
imaginary number, 17–18
impedance, 22, 35
implication, logical, 210–211, 213–214
implication reversal, 218–219
inclusive OR, 209–210
indefinite integral

definition of, 338
of constant, 341
of constant raised to variable power, 345
of function multiplied by constant, 342
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indefinite integral, continued
of reciprocal, 344
of reciprocal multiplied by constant, 344–345
of sum of functions, 343
of variable, 342
of variable multiplied by constant, 342
of variable raised to integer power, 342
table, 346

independent variable, 73, 107, 306
“infinity,” 20
inflection point of function, 320–321
instantaneous rate of change, 305
integral

calculus, 337–364
definite, 339–341
indefinite. See indefinite integral
of down-ramp wave, 350–351
of sine wave, 348–350
of square wave, 351–352
of triangular wave, 351–352
of up-ramp wave, 350
of wave function, 348–354

integration
by parts, 344
constant of, 338–339
definition of, 337–341

integrator, 348
interior angle

of quadrilateral, 166
of triangle, 163–164

interior area
of circle, 173–175
of circular sector, 178
of ellipse, 174–175
of parallelogram, 166–167
of quadrilateral, 166–171
of rectangle, 169
of regular polygon, 171–172, 175–177
of rhombus, 167
of square, 168–169
of trapezoid, 169–170
of triangle, 164

intersection of sets, 3–4
inverse

additive, 30
logarithm, 292
multiplicative, 30–31
irrational number, 15–16

J
j operator, 17

L
latitude

celestial, 94–95, 98–99, 112–113
terrestrial, 93–94

line
normal to curve, 316–317
slope of, 75, 157–158
tangent to curve, 308, 315–316

lines, parallel, 158
linear equation

2-by-2, 143–148
3-by-3, 148–152
finding, based on graph, 79–80
graph of, 155–158
point-slope form of, 78–79
single-variable, 127–130
slope-intercept form of, 75–77, 156–157
standard form of, 74–75

linear scale, 55
linearity, principle of, 344, 345, 346
local

maximum of function, 318–319
minimum of function, 318–319

logarithm
base-10, 284–285
base-e, 285–286
behavior of, 287–290
common, 284–285
common in terms of natural, 288
definition of, 283
Napierian, 285–286
natural, 285–286
natural in terms of common, 288
of base raised to power, 288
of power, 287
of product, 287
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of ratio, 287
of reciprocal, 287
of root, 288
versus exponential, 293–294

logarithmic
function, 284–290
scale, 54–55, 96–99

log-log coordinates, 98–99
logical

conjunction, 208–209, 213
contradiction, 217
contrapositive, 218–219
disjunction, 209–210, 213
double negation, 217
equivalence, 211–212, 215
implication, 210–211, 213–214
implication reversal, 218–219
negation, 208, 212–213

longitude
celestial, 94–95, 98–99, 112–113
terrestrial, 93–94

M
magnetic north, 88
magnitude of vector, 22, 252–253
major axis of ellipse, 174
major semi-axis of ellipse, 85, 174
mathematical symbols, 2
mathematician’s polar coordinates, 80–82
maximum of function, local, 318–319
mean

arithmetic, 35
geometric, 35

member of set, 1
minimum of function, local, 318–319
minor axis of ellipse, 174
minor semi-axis of ellipse, 85, 174
minute

of arc, 95, 228–229
of right ascension, 94–95

modulo-2 number system, 11–13
modulo-8 number system, 11–13
modulo-10 number system, 10, 12–13
modulo-16 number system, 12–13

multiplication
and significant figures, 61
associative law of, 32
by zero, 34
commutative law of, 31
of vector and scalar, 272, 274
using scientific notation, 57–58, 60–61

multiplicative
identity element, 30
inverse, 30–31, 287

multivariable equation
2-by-2 general, 152–154
2-by-2 linear, 143–148
3-by-3 linear, 148–152
graphic solution of, 154–158
inconsistent, 148

N
Napierian logarithm, 285–286
natural exponential

definition of, 290–293
natural logarithm

definition of, 285–286
in terms of common logarithm, 288

natural number, 7
navigator’s coordinates, 87–89
negation, 208, 212–213
negative

angle, 240–241
exponent, 40
number, 9

nondenumerable number set, 15–20
nonstandard angle, 233–234
nonterminating, repeating decimal number, 9
North Star, 88
NOT operation, 208
n-space, Cartesian, 118–119
nth-order equation, 136
number

binary, 11–13
complex, 18–24
counting, 7
decimal, 10, 12–13
hexadecimal, 11–13
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number, continued
imaginary, 17–18
integers, 7–8
irrational, 15–16
line, 54–55
natural, 7
negative, 9
nonterminating, repeating decimal, 9
octal, 11–13
rational, 8–9
real, 16
terminating decimal, 9
transfinite cardinal, 16–17
whole, 7

O
obtuse angle, 228
octagon, 172
octal number system, 11–13
one-variable equation. See single-variable equation
OR operation, 209–210
order of magnitude, 54–55, 297
ordered

pair, 72–73
quadruple, 114
triple, 106–107

ordinate, 73, 229
origin

in Cartesian plane, 73
in polar coordinates, 80
originating point of vector, 254, 264–265

P
parabola, 155
parallel lines, 158
parallelepiped

definition of, 189–190
surface area of, 189–190
volume of, 190

parallelogram
definition of, 166
interior area of, 166–167
perimeter of, 166–167

perimeter
of circular sector, 177–178

of parallelogram, 166–167
of quadrilateral, 166–171
of rectangle, 180
of regular polygon, 171–172, 175–177
of rhombus, 167
of square, 168–169
of trapezoid, 169–170
of triangle, 164

point-slope form of linear equation, 78–79
polar coordinates

conversions to and from, 89–92
direction in, 82
functions rendered in, 310
graphs in, 83–88
mathematician’s, 80–82
origin in, 80
radius in, 80–82
vectors in, 256–259

Polaris, 88
polygon, regular. See regular polygon
polyhedron

definition of, 185
facet of, 185

power
logarithm of, 287
of 10, 51–57
of signs, 36

precedence
in calculations, 44–45
in Boolean expressions, 216

prefix multipliers, 56
primary circular function, 229–232
principle of linearity, 344, 345, 346
prism

rectangular, as room interior, 190–191
rectangular, definition of, 188
rectangular, surface area of, 189
rectangular, volume of, 198

product
logarithm of, 287
of exponentials, 294–195
of exponents, 41
of functions, 312
of quotients, 39
of signs, 36
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of sums, 37–38
reciprocal of, 38

proper subset, 5
pyramid

rectangular, definition of, 187
rectangular, volume of, 187
symmetrical square, definition of, 187
symmetrical square, surface area of, 187

Pythagorean Theorem
for right triangle, 22–23, 73, 164–165, 236–240
for secant and tangent, 238
for sine and cosine, 238

Q
quadratic

equation, 130–134, 155–156
formula, 131–132

quadrilateral
definition of, 166
interior angle of, 166
interior area of, 166–171
perimeter of, 166–171
side of, 166
vertex of, 166

quartic equation, 135
quintic equation, 135
quotient

of exponents, 41
of functions, 313
of quotients, 39
of signs, 36
reciprocal of, 39

R
radian, 228–229
radius

in cylindrical coordinates, 109
in polar coordinates, 80–82
in spherical coordinates, 110–112

radix-2 number system, 11–13
radix-8 number system, 11–13
radix-10 number system, 10, 12–13
radix-16 number system, 12–13
radix point, 9, 52–53
range

in navigator’s coordinates, 87
of function, 285, 307

rate of change, instantaneous, 305
ratio

exponential of, 294
logarithm of, 287
of exponentials, 294–295

rational number
definition of, 8–9
in exponent, 40

real number, 16
real-number coefficient, 17
reciprocal

definition of, 36
derivative, 313
logarithm of, 287
of exponential, 294
of product, 38
of quotient, 39
of reciprocal, 36–37

rectangle
definition of, 168
interior area of, 168
perimeter of, 168

rectangular
3D coordinates, 105–105
coordinate plane, 71–72
prism, 188–189
pyramid, 187

reference axis, 251
regular polygon

circumscribing circle, 176–177
definition of, 171
inscribed in circle, 175–176
interior area of, 171–172, 175–177
perimeter of, 171–172, 175–177

relation, 306–307
rhombus

definition of, 167
interior area of, 167
perimeter of, 167

right ascension, 94–95, 99, 110–111
right

angle, 164–165
triangle, 164–165, 234–237
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right-hand rule for cross product of vectors, 254
root

logarithm of, 288
positive integer, 34–35
using scientific notation, 59

rounding, 43–44

S
scalar product of vectors, 253
scientific notation

addition using, 59–60, 64–65
alternative form of, 52
calculations in, 57–61
coefficient in, 52
division using, 58, 60–61
exponentiation in, 59, 61
multiplication using, 57–58, 60–61
multiplication symbol in, 52–53
orders of magnitude in, 54–55
plain-text exponents in, 53–54
powers of 10 in, 51–57
roots using, 59
standard form of, 51–52, 57
subtraction using, 60, 64–65
when to use, 55–56

secant
function, 232–233
of negative angle, 241
Pythagorean Theorem involving, 238

second
of arc, 95, 228–229
of right ascension, 94–95

second derivative, 309
secondary circular function, 232–234
semi-axes

of ellipse, 85, 174
of ellipsoid, 199–200

semilog coordinates, 96–97
sense of concavity, 320
set

cardinality of, 5
definition of, 1–3
denumerable, 6–10
element of, 1

intersection, 3–4
member of, 1
nondenumerable, 15–20
union, 3–5

sets
coincident, 3
disjoint, 4

side
adjacent, 236
of quadrilateral, 166
of triangle, 164

significant figures
addition and, 64–65
accuracy and, 62
division and, 61
exact values and, 63
exponentiation and, 61
multiplication and, 61
subtraction and, 64–65
zeros as, 62

signs
power of, 36
product of, 36
quotient of, 36

sine
function, 85, 229–230
of angular difference, 242
of angular sum, 242
of double angle, 242
of negative angle, 240
Pythagorean Theorem involving, 238
wave, derivative of, 323–324
wave, integral of, 348–350

single-variable equation
linear, 127–130
quadratic, 130–134
operational rules for, 125–127

slope of line, 75, 157–158
slope-intercept form of linear equation, 75–77
sphere

definition of, 198
surface area of, 198–199
volume of, 198–199

spherical coordinates, 110–113
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speed, 354–358
spiral of Archimedes, 85–86
square

definition of, 168
interior area of, 168–169
perimeter of, 168–169

square wave
derivative of, 325–327
integral of, 351–352

standard form of linear equation, 74–75
substitution method

for solving 2x2 linear equations, 143–145,
146–147

subtraction
and significant figures, 64–65
using scientific notation, 60, 64–65

sum
of exponents, 40
of functions, 311
of quotients, 40
of vectors, 253, 257, 260–261
powers of, 41

surface area
of cube, 188
of frustum of cone, 193–194
of parallelepiped, 189–190
of rectangular prism, 189
of right circular cone, 193
of right circular cylinder, 196
of sphere, 198–199
of symmetrical square pyramid, 197
of tetrahedron, 186
of torus, 200–201

symbols, mathematical, 2

T
tangent

function, 230–232
of negative angle, 240–241
Pythagorean Theorem involving, 238

terminating decimal number, 9
tetrahedron

definition of, 186
surface area of, 186

volume of, 186
Theorem of Pythagoras

for right triangle, 22–23, 73, 164–165, 
236–240

for secant and tangent, 238
for sine and cosine, 238

time-space, 115–118
torus

definition of, 200
surface area of, 200–201
volume of, 200–201

transfinite cardinal number, 16–17
trapezoid

definition of, 169
interior area of, 169–170
perimeter of, 169–170

triangle
definition of, 163
interior angle of, 163–164
interior area of, 164
notation for, 235
perimeter of, 164
right, 164–165, 234–237
side of, 163
sum of angle measures in, 236
vertex of, 163

triangular wave
derivative of, 325–327
integral of, 351–352

trigonometry, 227–250
trigonometric identities, 237–245
truncation, 43
truth table

for conjunction, 213
for disjunction, 213
for implication, 213–214
for logical equivalence, 215
for negation, 212–213

U
union of sets, 3–5
unit circle, 227–229
unit imaginary number, 17
unit vector, 270–272
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up-ramp wave
derivative of, 324–325, 327, 329
integral of, 350

V
variable

dependent, 73, 107, 306
independent, 73, 107, 306

vector
addition, 272–274
back-end point of, 254
component, 270–271
cross product, 253–254, 258, 262–263, 272–273, 276
definition of, 22–23
direction of, 22, 252–253, 261–262
dot product, 253, 258, 262, 272, 276
equivalent, 265–266
identical, 265
in Cartesian plane, 251–256
in Cartesian 3-space, 259–264
in polar plane, 256–259
magnitude of, 22–23, 252, 261
multiplication by scalar, 267–270, 272, 274
originating point of, 254, 264–265
portrayal of, 251
product, 253–254
right-hand rule for cross product, 254
scalar product, 253
standard form of, 264–267
sum, 253, 257, 260–261
unit, 270–272

vertex
of quadrilateral, 166
of triangle, 163

volume
of cube, 188

of ellipsoid, 199–200
of frustum of cone, 194
of parallelepiped, 193
of rectangular prism, 189
of rectangular pyramid, 187
of right circular cone, 193
of right circular cylinder, 196
of slant circular cone, 195–195
of slant circular cylinder, 197
of sphere, 198–199
of tetrahedron, 186
of torus, 200–201

W
wave function

derivative of, 323–327
integral of, 348–354

whole numbers, 7

X
x axis in Cartesian plane, 72
xyz-space, 106

Y
y axis in Cartesian plane, 72
y-intercept, 76, 157–158

Z
zero

as a significant figure, 62
denominator, 34
function, 311
multiplication by, 34
numerator, 33

zeroth power, 34
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