

A Developer’s
Guide to Amazon

SimpleDB

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

A Developer’s
Guide to Amazon

SimpleDB

Mocky Habeeb

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the des-
ignations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Habeeb, Mocky, 1971-
A Developer’s Guide to Amazon SimpleDB / Mocky Habeeb.

p. cm.
ISBN 978-0-321-62363-8 (pbk. : alk. paper) 1. Web services. 2. Amazon SimpleDB

(Electronic resource) 3. Cloud computing. 4. Database management. I. Title.
TK5105.88813.H32 2010
006.7’8—dc22

2010016954

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671 3447

ISBN-13: 978-0-321-62363-8
ISBN-10: 0-321-62363-0

Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville, Indiana.

First printing, July 2010

❖

To Jamie, My Soul Mate

❖

Contents at a Glance

1 Introducing Amazon SimpleDB 1

2 Getting Started with SimpleDB 23

3 A Code-Snippet Tour of the SimpleDB API 41

4 A Closer Look at Select 87

5 Bulk Data Operations 111

6 Working Beyond the Boundaries 121

7 Planning for the Application Lifecycle 141

8 Security in SimpleDB-Based Applications 155

9 Increasing Performance 167

10 Writing a SimpleDB Client: A Language-Independent
Guide 185

11 Improving the SimpleDB Client 217

12 Building a Web-Based Task List 233

Contents

Preface xvi
Acknowledgments xviii

1 Introducing Amazon SimpleDB 1
What Is SimpleDB? 1

What SimpleDB Is Not 1

Schema-Less Data 2

Stored Securely in the Cloud 2

Billed Only for Actual Usage 3

Domains, Items, and Attribute Pairs 3

Multi-Valued Attributes 3

Queries 4

High Availability 4

Database Consistency 5

Sizing Up the SimpleDB Feature Set 6

Benefits of Using SimpleDB 6

Database Features SimpleDB Doesn’t Have 7

Higher-Level Framework Functionality 7

Service Limits 8

Abandoning the Relational Model? 8

A Database Without a Schema 9

Areas Where Relational Databases Struggle 10

Scalability Isn’t Your Problem 11

Avoiding the SimpleDB Hype 11

Putting the DBA Out of Work 12

Dodging Copies of C.J. Date 13

Other Pieces of the Puzzle 14

Adding Compute Power with Amazon EC2 14

Storing Large Objects with Amazon S3 14

Queuing Up Tasks with Amazon SQS 15

Comparing SimpleDB to Other Products and Services 15

Windows Azure Platform 15

Google App Engine 17

Apache CouchDB 17

Dynamo-Like Products 18

viiContents

viii Contents

Compelling Use Cases for SimpleDB 18

Web Services for Connected Systems 18

Low-Usage Application 19

Clustered Databases Without the Time Sink 19

Dynamic Data Application 19

Amazon S3 Content Search 20

Empowering the Power Users 20

Existing AWS Customers 20

Summary 21

2 Getting Started with SimpleDB 23
Gaining Access to SimpleDB 23

Creating an AWS Account 23

Signing Up for SimpleDB 24

Managing Account Keys 24

Finding a Client for SimpleDB 24

Building a SimpleDB Domain Administration Tool 25

Administration Tool Features 25

Key Storage 25

Implementing the Base Application 26

Displaying a Domain List 28

Adding Domain Creation 28

Supporting Domain Deletion 29

Listing Domain Metadata 29

Running the Tool 31

Packaging the Tool as a Jar File 31

Building a User Authentication Service 31

Integrating with the Spring Security Framework 32

Representing User Data 32

Fetching User Data with SimpleDBUserService 34

Salting and Encoding Passwords 36

Creating a User Update Tool 37

Summary 39

3 A Code-Snippet Tour of the SimpleDB API 41
Selecting a SimpleDB Client 41

Typica Setup in Java 42

ixContents

C# Library for Amazon SimpleDB Setup 43

Tarzan Setup in PHP 45

Common Concepts 45

The Language Gap 45

SimpleDB Endpoints 45

SimpleDB Service Versions 47

Common Response Elements 47

CreateDomain 48

CreateDomain Parameters 49

CreateDomain Response Data 49

CreateDomain Snippet in Java 49

CreateDomain Snippet in C# 50

CreateDomain Snippet in PHP 50

ListDomains 51

ListDomains Parameters 51

ListDomains Response Data 51

ListDomains Snippet in Java 52

ListDomains Snippet in C# 52

ListDomains Snippet in PHP 53

DeleteDomain 54

DeleteDomain Parameters 54

DeleteDomain Response Data 54

DeleteDomain Snippet in Java 55

DeleteDomain Snippet in C# 55

DeleteDomain Snippet in PHP 55

DomainMetadata 56

DomainMetadata Parameters 56

DomainMetadata Response Data 56

DomainMetadata Snippet in Java 57

DomainMetadata Snippet in C# 58

DomainMetadata Snippet in PHP 58

PutAttributes 59

PutAttributes Parameters 60

PutAttributes Response Data 62

PutAttributes Snippet in Java 63

PutAttributes Snippet in C# 64

PutAttributes Snippet in PHP 65

x Contents

GetAttributes 65

GetAttributes Parameters 65

GetAttributes Response Data 66

GetAttributes Snippet in Java 67

GetAttributes Snippet in C# 68

GetAttributes Snippet in PHP 69

DeleteAttributes 70

DeleteAttributes Parameters 70

DeleteAttributes Response Data 71

DeleteAttributes Snippet in Java 72

DeleteAttributes Snippet in C# 72

DeleteAttributes Snippet in PHP 73

BatchPutAttributes 73

BatchPutAttributes Parameters 74

BatchPutAttributes Response Data 75

BatchPutAttributes Snippet in Java 76

BatchPutAttributes Snippet in C# 77

BatchPutAttributes Snippet in PHP 78

Select 79

Select Parameters 79

Select Response Data 80

Select Snippet in Java 81

Select Snippet in C# 83

Select Snippet in PHP 85

Summary 86

4 A Closer Look at Select 87
Select Syntax 87

Required Clauses 88

Select Quoting Rule for Names 88

Output Selection Clause 89

WHERE Clause 90

Select Quoting Rules for Values 90

Sort Clause 91

LIMIT Clause 92

xiContents

Formatting Attribute Data for Select 93

Integer Formatting 94

Floating Point Formatting 95

Date and Time Formatting 95

Case Sensitivity 97

Expressions and Predicates 97

Simple Comparison Operators 98

Range Operators 98

IN() Queries 99

Prefix Queries with LIKE and NOT LIKE 99

IS NULL and IS NOT NULL 100

Multi-Valued Attribute Queries 100

Multiple Predicate Queries with the INTERSECTION
Operator 101

Selection with EVERY() 102

Query Results with the Same Item Multiple Times
102

Improving Query Performance 103

Attribute Indexes 103

Composite Attributes 104

Judicious Use of LIKE 105

Running on EC2 106

Skipping Pages with count() and LIMIT 106

Measuring Select Performance 107

Automating Performance Measurements 109

Summary 110

5 Bulk Data Operations 111
Importing Data with BatchPutAttributes 112

Calling BatchPutAttributes 112

Mapping the Import File to SimpleDB Attributes 112

Supporting Multiple File Formats 113

Storing the Mapping Data 113

Reporting Import Progress 113

Creating Right-Sized Batches 114

xii Contents

Managing Concurrency 114

Resuming a Stopped Import 115

Verifying Progress and Completion 115

Properly Handling Character Encodings 116

Backup and Data Export 116

Using Third-Party Backup Services 117

Writing Your Own Backup Tool 118

Restoring from Backup 119

Summary 119

6 Working Beyond the Boundaries 121
Availability: The Final Frontier 121

Boundaries of Eventual Consistency 123

Item-Level Atomicity 123

Looking into the Eventual Consistency Window 124

Read-Your-Writes 125

Implementing a Consistent View 125

Handling Text Larger Than 1K 128

Storing Text in S3 128

Storing Overflow in Different Attributes 129

Storing Overflow as a Multi-Valued Attribute 130

Entities with More than 256 Attributes 131

Paging to Arbitrary Query Depth 131

Exact Counting Without Locks or Transactions 133

Using One Item Per Count 134

Storing the Count in a Multi-Valued Attribute 136

Testing Strategies 138

Designing for Testability 138

Alternatives to Live Service Calls 139

Summary 139

7 Planning for the Application Lifecycle 141
Capacity Planning 141

Estimating Initial Costs 141

Keeping Tabs on SimpleDB Usage with AWS Usage
Reports 142

Creating More Finely Detailed Usage Reports 145

Tracking Usage over Time 146

xiiiContents

Storage Requirements 146

Computing Storage Costs 147

Understanding the Cost of Slack Space 147

Evaluating Attribute Concatenation 148

Scalability: Increasing the Load 148

Planning Maintenance 150

Using Read-Repair to Apply Formatting Changes 150

Using Read-Repair to Update Item Layout 152

Using a Batch Process to Apply Updates 152

Summary 153

8 Security in SimpleDB-Based Applications 155
Account Security 155

Managing Access Within the Organization 155

Limiting Amazon Access from AWS Credentials 157

Boosting Security with Multi-Factor Authentication
158

Access Key Security 159

Key Management 159

Secret Key Rotation 160

Data Security 161

Storing Clean Data 161

SSL and Data in Transmission 162

Data Storage and Encryption 164

Storing Data in Multiple Locations 165

Summary 165

9 Increasing Performance 167
Determining If SimpleDB Is Fast Enough 167

Targeting Moderate Performance in Small Projects
167

Exploiting Advanced Features in Small Projects 168

Speeding Up SimpleDB 169

Taking Detailed Performance Measurements 169

Accessing SimpleDB from EC2 169

Caching 170

Concurrency 172

Keeping Requests and Responses Small 173

xiv Contents

Operation-Specific Performance 174

Optimizing GetAttributes 174

Optimizing PutAttributes 178

Optimizing BatchPutAttributes 179

Optimizing Select 180

Data Sharding 181

Partitioning Data 181

Multiplexing Queries 181

Accessing SimpleDB Outside the Amazon Cloud 182

Working Around Latency 182

Ignoring Latency 183

Summary 183

10 Writing a SimpleDB Client: A Language-Independent
Guide 185
Client Design Overview 185

Public Interface 186

Attribute Class 188

Item Class 190

Client Design Considerations 191

High-Level Design Issues 191

Operation-Specific Considerations 193

Implementing the Client Code 196

Safe Handling of the Secret Key 196

Implementing the Constructor 197

Implementing the Remaining Methods 198

Making Requests 200

Computing the Signature 208

Making the Connections 210

Parsing the Response 214

Summary 216

11 Improving the SimpleDB Client 217
Convenience Methods 217

Convenient Count Methods 217

Select with a Real Limit 219

xvContents

Custom Metadata and Building a Smarter Client 219

Justifying a Schema for Numeric Data 220

Database Tools 221

Coordinating Concurrent Clients 221

Storing Custom Metadata within SimpleDB 221

Storing Custom Metadata in S3 222

Automatically Optimizing for Box Usage Cost 222

The Exponential Cost of Write Operations 223

QueryTimeout: The Most Expensive Way to Get Nothing
225

Automated Domain Sharding 228

Domain Sharding Overview 228

Put/Get Delete Routing 228

Query Multiplexing 231

Summary 232

12 Building a Web-Based Task List 233
Application Overview 233

Requirements 233

The Data Model 234

Implementing User Authentication 235

Implementing a Task Workspace 238

Implementing a Task Service 241

Adding the Login Servlet 244

Adding the Logout Servlet 249

Displaying the Tasks 249

Adding New Tasks 252

Deployment 252

Summary 254

Index 255

Preface
This book is a detailed guide for using Amazon SimpleDB. Over the years that I have
been using this web service, I have always tried to contribute back to the developer
community.This primarily involved answering questions on the SimpleDB forums and
on stackoverflow.com.What I saw over time was a general lack of resources and under-
standing about the practical, day-to-day use of the service.As a result, the same types of
questions were being asked repeatedly, and the same misconceptions seemed to be held
by many people.

At the time of this writing, there are no SimpleDB books available. My purpose in
writing this book is to offer my experience and my opinion about getting the most from
SimpleDB in a more structured and thorough format than online forums. I have made
every attempt to avoid rehashing information that is available elsewhere, opting instead
for alternate perspectives and analysis.

About This Book
SimpleDB is a unique service because much of the value proposition has nothing to do
with the actual web service calls. I am referring to the service qualities that include avail-
ability, scalability, and flexibility.These make great marketing bullet points, and not just
for SimpleDB.You would not be surprised to hear those terms used in discussions of just
about any server-side product.With SimpleDB, however, these qualities have a direct
impact on how much benefit you get from the service. It is a service based on a specific
set of tradeoffs; many features are specifically absent, and for good reason. In my experi-
ence, a proper understanding of these tradeoffs is essential to knowing if SimpleDB will
be a good fit for your application.

This book is designed to provide a comprehensive discussion of all the important
issues that come up when using SimpleDB.All of the available web service operations
receive detailed coverage.This includes code samples, notes on how to solve common
problems, and warnings about many pitfalls that are not immediately obvious.

Target Audience
This book is intended for software developers who want to use or evaluate SimpleDB.
Certain chapters should also prove to be useful to managers, executives, or technologists
who want to understand the value of SimpleDB and what problems it seeks to solve.

There is some difficulty in audience targeting that comes from the nature of the
SimpleDB service. On the one hand, it is a web-based service that uses specific message
formats over standard technologies like HTTP and XML. On the other hand, applica-
tion developers, and probably most users, will never deal directly with the low-level wire
protocol, opting instead for client software in his or her chosen programming language.

This creates (at least) two separate perspectives to use when discussing the service.
The low-level viewpoint is needed for the framework designers and those writing a
SimpleDB client, whereas a higher-level, abridged version is more suitable for application

xvi Preface

developers whose view of SimpleDB is strictly through the lens of the client software. In
addition, the app developers are best served with a guide that uses a matching program-
ming language and client.

The official Amazon documentation for SimpleDB is targeted squarely at the devel-
opers writing the clients.This is by necessity—SimpleDB is a web service, and the details
need to be documented.

What I have tried to accomplish is the targeting of both groups. One of the most vis-
ible methods I used is splitting the detailed API coverage into two separate chapters.

Chapter 3,“A Code-Snippet Tour of the SimpleDB API,” presents a detailed discus-
sion of all the SimpleDB operations, including all parameters, error messages, and code
examples in Java, C#, and PHP.This is fully suitable for both groups of developers, with
the inclusion of practical advice and tips that apply to the operations themselves.

Chapter 10,“Writing a SimpleDB Client:A Language-Independent Guide,” offers a
guide and walkthrough for creating a SimpleDB client from scratch.This adds another
layer to the discussion with much more detail about the low-level concerns and issues.
This is intended for the developers of SimpleDB clients and those adding SimpleDB
support to existing frameworks.Apart from Chapter 3, the remainder of the examples in
the book are written in Java.

Code Examples
All of the code listings in this book are available for download at this book’s website at
http://www.simpledbbook.com/code.

xviiPreface

http://www.simpledbbook.com/code

Acknowledgments
I would like to thank my family for their love, support, and inspiration.Thanks to my
mom for teaching me to love books and for getting me that summer job at the college
library back in ’89.Thanks to Mikki and Keenan for their understanding while I was
spending evenings and weekends locked away.

I’m pleased to thank Kunal Mittal for the insightful reviews and for the enthusiasm.
Thanks to Trina MacDonald at Pearson for her patience and for bringing me the idea
for this book in the first place.

Most of all, I want to thank my amazing wife, Jamie. She made many sacrifices to
make this book possible. I offer my deepest thanks to her for consistently helping me
become more than I ever could have become on my own.

About the Author
Mocky Habeeb is the head of web architecture and development for Infrawise Inc.,
where he leads development on the web side of the house for the company’s flagship
product suite. He is actively involved in SimpleDB application development, and in his
spare time, he puts that expertise to work by providing answers and guidance to devel-
opers who visit the official SimpleDB web forums. Over the past 13 years, he has
worked in various software development positions, as a Java instructor for Sun
Microsystems, and before that as a tank driver in the United States Marine Corps.
Mocky studied Computer Science at SUNY, Oswego.

xviii Acknowledgments

1
Introducing Amazon SimpleDB

Amazon has been offering its customers computing infrastructure via Amazon Web Ser-
vices (AWS) since 2006.AWS aims to use its own infrastructure to provide the building
blocks for other organizations to use.The Elastic Compute Cloud (EC2) is an AWS offer-
ing that enables you to spin up virtual servers as you need the computing power and shut
them off when you are done.Amazon Simple Storage Service (S3) provides fast and un-
limited file storage for the web.Amazon SimpleDB is a service designed to complement
EC2 and S3, but the concept is not as easy to grasp as “extra servers” and “extra storage.”
This chapter will cover the concepts behind SimpleDB and discuss how it compares to
other services.

What Is SimpleDB?
SimpleDB is a web service providing structured data storage in the cloud and backed by
clusters of Amazon-managed database servers.The data requires no schema and is stored
securely in the cloud.There is a query function, and all the data values you store are fully
indexed. In keeping with Amazon’s other web services, there is no minimum charge, and
you are only billed for your actual usage.

What SimpleDB Is Not
The name “SimpleDB” might lead you to believe that it is just like relational database
management systems (RDBMS), only simpler to use. In some respects, this is true, but it
is not just about making simplistic database usage simpler. SimpleDB aims to simplify
the much harder task of creating and managing a database cluster that is fault-tolerant in
the face of multiple failures, replicated across data centers, and delivers high levels of
availability.

One misconception that seems to be very common among people just learning about
SimpleDB is the idea that migrating from an RDBMS to SimpleDB will automatically
solve your database performance problems. Performance certainly is an important part of

2 Chapter 1 Introducing Amazon SimpleDB

the equation when you seek to evaluate databases. Unfortunately, for some people, speed
is the beginning and the end of the thought process. It can be tempting to view any of
the new hosted database services as a silver bullet when offered by a mega-company like
Microsoft,Amazon, or Google. But the fact is that SimpleDB is not going to solve your
existing speed issues.The service exists to solve an entirely different set of problems.
Reads and writes are not blazingly fast.They are meant to be “fast enough.” It is entirely
possible that AWS may increase performance of the service over time, based on user feed-
back. But SimpleDB is never going to be as speedy as a standalone database running on
fast hardware. SimpleDB has a different purpose.

Robust database clusters replicating data across multiple data centers is not a data stor-
age solution that is typically easy to throw together. It is a time consuming and costly un-
dertaking. Even in organizations that have the database administrator (DBA) expertise and
are using multiple data centers, it is still time consuming. It is costly enough that you
would not do it unless there was a quantifiable business need for it. SimpleDB offers data
storage with these features on a pay-as-you-go basis.

Of course, taking advantage of these features is not without a downside. SimpleDB is a
moderately restrictive environment, and it is not suitable for many types of applications.
There are various restrictions and limitations on how much data can be stored and trans-
ferred and how much network bandwidth you can consume.

Schema-Less Data
SimpleDB differs from relational databases where you must define a schema for each
database table before you can use it and where you must explicitly change that schema
before you can store your data differently. In SimpleDB, there is no schema requirement.
Although you still have to consider the format of your data, this approach has the benefit
of freeing you from the time it takes to manage schema modifications.

The lack of schema means that there are no data types; all data values are treated as
variable length character data.As a result, there is literally nothing extra to do if you
want to add a new field to an existing database.You just add the new field to
whichever data items require it.There is no rule that forces every data item to have
the same fields.

The drawbacks of a schema-less database include the lack of automatic integrity
checking in the database and an increased burden on the application to handle format-
ting and type conversions. Detailed coverage of the impact of schema-less data on queries
appears in Chapter 4,“A Closer Look at Select,” along with a discussion of the format-
ting issues.

Stored Securely in the Cloud
The data that you store in SimpleDB is available both from the Internet and (with less la-
tency) from EC2.The security of that data is of great importance for many applications,

3What Is SimpleDB?

while the security of the underlying web services account should be important to all
users.

To protect that data, all access to SimpleDB, whether read or write, is protected by
your account credentials. Every request must bear the correct and authorized digital sig-
nature or else it is rejected with an error code. Security of the account, data transmis-
sion, and data storage is the subject of Chapter 8,“Security in SimpleDB-Based
Applications.”

Billed Only for Actual Usage
In keeping with the AWS philosophy of pay-as-you-go, SimpleDB has a pricing structure
that includes charges for data storage, data transfer, and processor usage.There are no base
fees and there are no minimums.At the time of this writing,Amazon’s monthly billing for
SimpleDB has a free usage tier that covers the first gigabyte (GB) of data storage, the first
GB of data transfer, and the first 25 hours of processor usage each month. Data transfer
costs beyond the free tier have historically been on par with S3 pricing, whereas storage
costs have always been somewhat higher. Consult the AWS website at https://aws.
amazon.com/simpledb/ for current pricing information.

Domains, Items, and Attribute Pairs
The top level of data storage in SimpleDB is the domain.A domain is roughly analogous
to a database table.You can create and delete domains as needed.There are no configura-
tion options to set on a domain; the only parameter you can set is the name of the domain.

All the data stored in a SimpleDB domain takes the form of name-value attribute
pairs. Each attribute pair is associated with an item, which plays the role of a table row.
The attribute name is similar to a database column name but unlike database rows that
must all have identical columns, SimpleDB items can each contain different attribute
names.This gives you the freedom to store different data in some items without changing
the layout of other items that do not have that data. It also allows the painless addition of
new data fields in the future.

Multi-Valued Attributes
It is possible for each attribute to have not just one value, but an array of values. For ex-
ample, an application that allows user tagging can use a single attribute named “tags” to
hold as many or as few tags as needed for each item.You do not need to change a schema
definition to enable multi-valued attributes.All you need to do is add another attribute to
an item and use the same attribute name with a different value.This provides you with
flexibility in how you store your data.

https://aws.amazon.com/simpledb/
https://aws.amazon.com/simpledb/

4 Chapter 1 Introducing Amazon SimpleDB

Queries
SimpleDB is primarily a key-value store, but it also has useful query functionality.A SQL-
style query language is used to issue queries over the scope of a single domain.A subset of
the SQL select syntax is recognized.The following is an example SimpleDB select statement:

SELECT * FROM products WHERE rating > '03' ORDER BY rating LIMIT 10

You put a domain name—in this case, products—in the FROM clause where a table
name would normally be.The WHERE clause recognizes a dozen or so comparison opera-
tors, but an attribute name must always be on the left side of the operator and a literal
value must always be on the right.There is no relational comparison between attributes
allowed here. So, the following is not valid:

SELECT * FROM users WHERE creation-date = last-activity-date

All the data stored in SimpleDB is treated as plain string data.There are no explicit in-
dexes to maintain; each value is automatically indexed as you add it.

High Availability
High availability is an important benefit of using SimpleDB.There are many types of fail-
ures that can occur with a database solution that will affect the availability of your appli-
cation.When you run your own database servers, there is a spectrum of different
configurations you can employ.

To help quantify the availability benefits that you get automatically with SimpleDB, let’s
consider how you might achieve the same results using replication for your own database
servers.At the easier end of the spectrum is a master-slave database replication scheme, where
the master database accepts client updates and a second database acts as a slave and pulls all the
updates from the master.This eliminates the single point of failure. If the master goes down,
the slave can take over. Managing these failures (when not using SimpleDB) requires some
additional work for swapping IP addresses or domain name entries, but it is not very difficult.

Moving toward the more difficult end of the self-managed replication spectrum allows
you to maintain availability during failure that involves more than a single server.There is
more work to be done if you are going to handle two servers going down in a short period,
or a server problem and a network outage, or a problem that affects the whole data center.

Creating a database solution that maintains uptime during these more severe failures
requires a certain level of expertise. It can be simplified with cloud computing services
like EC2 that make it easy to start and manage servers in different geographical locations.
However, when there are many moving parts, the task remains time consuming. It can
also be expensive.

When you use SimpleDB, you get high availability with your data replicated to different
geographic locations automatically.You do not need to do any extra work or become an ex-
pert on high availability or the specifics of replication techniques for one vendor’s database
product.This is a huge benefit not because that level of expertise is not worth attaining, but
because there is a whole class of applications that previously could not justify that effort.

5What Is SimpleDB?

Database Consistency
One of the consequences of replicating database updates across multiple servers and data
centers is the need to decide what kind of consistency guarantees will be maintained.A
database running on a single server can easily maintain strong consistency.With strong
consistency, after an update occurs, every subsequent database access by every client re-
flects the change and the previous state of the database is never seen.

This can be a problem for a database cluster if the purpose of the cluster is to im-
prove availability. If there is a master database replicating updates to slave databases,
strong consistency requires the slaves to accept the update at the same time as the mas-
ter.All access to the database would then be strongly consistent. However, in the case
of a problem preventing communication between the master and a slave, the master
would be unable to accept updates because doing so out of sync with a slave would
break the consistency guarantee. If the database rejects updates during even simple
problem scenarios, it defeats the availability. In practice, replication is often not done
this way.A common solution to this problem is to allow only the master database to
accept updates and do so without direct contact with any slave databases.After the
master commits each transaction, slaves are sent the update in near real-time.This
amounts to a relaxing of the consistency guarantee. If clients only connect to the
slave when the master goes down, then the weakened consistency only applies to
this scenario.

SimpleDB sports the option of either eventual consistency or strong consistency for
each read request.With eventual consistency, when you submit an update to SimpleDB,
the database server handling your request will forward the update to the other database
servers where that domain is replicated.The full update of all replicas does not happen
before your update request returns.The replication continues in the background while
other requests are handled.The period of time it takes for all replicas to be updated is
called the eventual consistency window.The eventual consistency window is usually
small.AWS does not offer any guarantees about this window, but it is frequently less than
one second.

A couple things can make the consistency window larger. One is a high request load.
If the servers hosting a given SimpleDB domain are under heavy load, the time it takes
for full replication is increased.Additionally a network or server failure can block replica-
tion until it is resolved. Consider a network outage between data centers hosting your
data. If the SimpleDB load-balancer is able to successfully route your requests to both
data centers, your updates will be accepted at both locations. However, replication will fail
between the two locations.The data you fetch from one will not be consistent with up-
dates you have applied to the other. Once the problem is fixed, SimpleDB will complete
the replication automatically.

Using a consistent read eliminates the consistency window for that request.The results
of a consistent read will reflect all previous writes. In the normal case, a consistent read is
no slower than an eventually consistent read. However, it is possible for consistent read re-
quests to display higher latency and lower bandwidth on occasion.

6 Chapter 1 Introducing Amazon SimpleDB

Sizing Up the SimpleDB Feature Set
The SimpleDB API exposes a limited set of features. Here is a list of what you get:

n You can create named domains within your account.At the time of this writing,
the initial allocation allows you to create up to 100 domains.You can request a
larger allocation on the AWS website.

n You can delete an existing domain at any time without first deleting the data
stored in it.

n You can store a data item for the first time or for subsequent updates using a call to
PutAttributes.When you issue an update, you do not need to pass the full item;
you can pass just the attributes that have changed.

n There is a batch call that allows you to put up to 25 items at once.
n You can retrieve the data with a call to GetAttributes.
n You can query for items based on criteria on multiple attributes of an item.
n You can store any type of data. SimpleDB treats it all as string data, and you are free

to format it as you choose.
n You can store different types of items in the same domain, and items of the same

type can vary in which attributes have values.

Benefits of Using SimpleDB
When you use SimpleDB, you give up some features you might otherwise have, but as a
trade-off, you gain some important benefits, as follows:

n Availability— When you store your data in SimpleDB, it is automatically replicated
across multiple storage nodes and across multiple data centers in the same region.

n Simplicity— There are not a lot of knobs or dials, and there are not any configura-
tion parameters.This makes it a lot harder to shoot yourself in the foot.

n Scalability— The service is designed for scalability and concurrent access.
n Flexibility— Store the data you need to store now, and if the requirements change,

store it differently without changing the database.
n Low latency within the same region— Access to SimpleDB from an EC2 in-

stance in the same region has the latency of a typical LAN.
n Low maintenance— Most of the administrative burden is transferred to Amazon.

They maintain the hardware and the database software.

7Sizing Up the SimpleDB Feature Set

Database Features SimpleDB Doesn’t Have
There are a number of common database features noticeably absent from Amazon Sim-
pleDB. Programs based on relational database products typically rely on these features.You
should be aware of what you will not find in SimpleDB, as follows:

n Full SQL support— A query language similar to SQL is supported for queries
only. However, it only applies to “select” statements, and there are some syntax dif-
ferences and other limitations.

n Joins— You can issue queries, but there are no foreign keys and no joins.
n Auto-incrementing primary keys— You have to create your own primary keys in

the form of an item name.
n Transactions— There are no explicit transaction boundaries that you can mark or

isolation levels that you can define.There is no notion of a commit or a rollback.
There is some implicit support for atomic writes, but it only applies within the
scope of each individual item being written.

Higher-Level Framework Functionality
This simplicity of what SimpleDB offers on the server side is matched by the simplicity of
what AWS provides in officially supported SimpleDB clients.There is a one-to-one map-
ping of service features to client calls.There is a lot of functionality that can be built atop
the basic SimpleDB primitives. In addition, the inclusion of these advance features has al-
ready begun with a number of third-party SimpleDB clients. Popular persistence frame-
works used as an abstraction layer above relational databases are prime candidates for this.

Some features normally included within the database server can be written into Sim-
pleDB clients for automatic handling.Third-party client software is constantly improving,
and some of the following features may be present already or you may have to write it for
yourself:

n Data formatting— Integers, floats, and dates require special formatting in some cases.
n Object mapping— It can be convenient to map programming language objects to

SimpleDB attributes.
n Sharding— The domain is the basic unit of horizontal scalability in SimpleDB.

However, there is no explicit support for automatically distributing data across
domains.

n Cache integration— Caching is an important aspect of many applications, and
caching popular data objects is a well-understood optimization. Configurable
caching that is well integrated with a SimpleDB client is an important feature.

8 Chapter 1 Introducing Amazon SimpleDB

Service Limits
There are quite a few limitations on what you are allowed to do with SimpleDB. Most of
these are size and quantity restrictions.There is an underlying philosophy that small and
quickly serviced units of work provide the greatest opportunity for load balancing and
maintaining uniform service levels.AWS maintains a current listing of the service limita-
tions within the latest online SimpleDB Developer Guide at the AWS website.At the
time of this writing, the limits are as follows:

n Max storage per domain: 10GB
n Max attribute values per domain: 1 billion
n Initial max domains per account: 100
n Max attribute values per item: 256
n Max length of item name, attribute name, or value: 1024 bytes
n Max query execution time: 5 seconds
n Max query results: 2500
n Max query response size: 1MB
n Max comparisons per query: 20

These limits may seem restrictive when compared to the unlimited nature of data sizes
you can store in other database offerings. However, there are two things to keep in mind
about these limits. First, SimpleDB is not a general-purpose data store suitable for every-
thing. It is specifically designed for storing small chunks of data. For larger data objects
that you want to store in the cloud, you are advised to use Amazon S3. Secondly, consider
the steps that need to be taken with a relational database at higher loads when perform-
ance begins to degrade.Typical recommendations often include offloading processing
from the database, reducing long-running queries, and applying selective de-normaliza-
tion of the data.These limits are what help enable efficient and automatic background
replication and high concurrency and availability. Some of these limits can be worked
around to a degree, but no workarounds exist for you to make SimpleDB universally ap-
propriate for all data storage needs.

Abandoning the Relational Model?
There have been many recent products and services offering data storage but rejecting the
relational model.This trend has been dubbed by some as the NoSQL movement.There is
a fair amount of enthusiasm both for and against this trend.A few of those in the
“against” column argue that databases without schemas, type checking, normalization, and
so on are throwing away 40 years of database progress. Likewise, some proponents are
quick to dispense the hype about how a given NoSQL solution will solve your problems.
The aim of this section is to present a case for the value of a service like SimpleDB that
addresses legitimate criticism and avoids hype and exaggeration.

9Abandoning the Relational Model?

A Database Without a Schema
One of the primary areas of contention around SimpleDB and other NoSQL solutions
centers on the lack of a database schema. Database schemas turn out to be very important
in the relational model.The formalism of predefining your data model into a schema pro-
vides a number of specific benefits, but it also imposes restrictions.

SimpleDB has no notion of a schema at all. Many of the structures defined in a typical
database schema do not even exist in SimpleDB.This includes things such as stored pro-
cedures, triggers, relationships, and views. Other elements of a database schema like fields
and types do exist in SimpleDB but are flexible and are not enforced on the server. Still
other features, like indexes, require no formal definition because the SimpleDB service
creates and manages them behind the scenes.

However, the lack of a schema requirement in SimpleDB does not prevent you from
gaining the benefits of a schema.You can create your own schema for whatever portion
of your data model that is appropriate.This allows you to cherry-pick the benefits that are
helpful to your application without the unneeded restrictions.

One of the most important things you gain from codifying your data layout is a sepa-
ration between it and the application.This is an enabling feature for tools and application
plug-ins.Third-party tools can query your data, convert your data from one format to an-
other, and analyze and report on your data based solely on the schema definition.The al-
ternative is less attractive.Tools and extensions are more limited in what they can do
without knowledge of the formats. For example, you cannot compute the sum of values
in a numeric column if you do not know the format of that column. In the degenerate
case, developers must search through your source code to infer data types.

In SimpleDB, many of the most common database features are not available. Query,
however, is one important feature that is present and has some bearing on your data for-
matting. Because all the data you store in SimpleDB is variable length character data, you
must apply padding to numeric data in order for queries to work properly. For example, if
you want to store an attribute named “price” with a value of “269.94,” you must first add
leading zeros to make it “00000269.94.”This is required because greater-than and less-
than comparisons within SimpleDB compare each character from left to right. Padding
with zeros allows you to line up the decimal point so the comparisons will be correct for
all possible values of that attribute. Relational database products handle this for you be-
hind the scenes when you declare a column type is a numeric type like int.

This is a case in SimpleDB where a schema is beneficial.The code that initially im-
ports records into SimpleDB, the code that writes records as your app runs, and any code
that uses a numeric attribute in a query all need to use the exact same format. Explicitly
storing the schema externally is a much less error-prone approach than implicitly defin-
ing the format in duplicated code across various modules.

Another benefit of the predefined schema in the relational model is that it forces you
to think through the data relationships and make unambiguous decisions about your data
layout. Sometimes, however, the data is simple, there are no relationships, and creating a
data model is overkill. Sometimes you may still be in the process of defining the data

10 Chapter 1 Introducing Amazon SimpleDB

model. SimpleDB can be used as part of the prototyping process, enabling you to evolve
your schema dynamically as issues surface that may not otherwise have become known so
quickly.You may be migrating from a different database with an existing data model.The
important thing to remember is that SimpleDB is simple by design. It can be useful in a
variety of situations and does not prevent you from creating your own schema external to
SimpleDB.

Areas Where Relational Databases Struggle
Relational databases have been around for some time.There are many robust and mature
products available. Modern database products offer a multitude of features and a host of
configuration options.

One area where difficulty arises is with database features that you do not need or that
you should not use for a particular application.Applications that have simple data storage
requirements do not benefit from the myriad of available options. In fact, it can be detri-
mental in a couple different ways. If you need to learn the intricacies of a particular data-
base product before you can make good use of it, the time spent learning takes away from
time you could have spent on your application. Knowledge of how database products
work is good to have. It would be hard to argue that you wasted your time by learning it
because that information could serve you well far into the future. Similarly, if there is a
much simpler solution that meets your needs, you could choose that instead. If you had
no immediate requirement to gain product specific database expertise, it would be hard to
insist that you made the wrong choice. It is a tough sell to argue that the more time-con-
suming, yet educational, route is always better than the simple and direct route.This is a
challenge faced by databases today, when the simple problems are not met with simple
solutions.

Another pain point with relational databases is horizontal scaling. It is easy to scale a
database vertically by beefing up your server because memory and disk drives are inex-
pensive. However, scaling a database across multiple servers can be extremely difficult.
There is a whole spectrum of options available for horizontal scaling that includes basic
master-slave replication as well as complicated sharding strategies.These solutions each re-
quire a different, and sometimes considerable, amount of expertise. Nevertheless, they all
have one thing in common when compared to vertical scaling solutions. On top of the
implementation difficulty, each additional server results in an additional increase in ongo-
ing maintenance responsibility. Moreover, it is not merely the additional server mainte-
nance of having more servers. I am referring to the actual database administration tasks of
managing additional replicas, backups, and log shipping. It also includes the tasks of rolling
out schema changes and new indexes to all servers in the cluster.

If you are in a situation where you want a simple database solution or you want hori-
zontal scaling, SimpleDB is definitely a service to consider. However, you may need to be
prepared to defend your decision.

11Abandoning the Relational Model?

Scalability Isn’t Your Problem
Around every corner, you can find people who will challenge your efforts to scale hori-
zontally. Beyond the cost and difficulty, there is a degree of resistance to products and
services that seek to solve these problems.

The typical, and now clichéd, advice tends to be that scalability is not your problem,
and trying to solve scalability at the outset is a case of premature optimization.This is fol-
lowed by a discussion of how many daily page views a single high-performance database
server can support. Finally, it ends by noting that it is really just a problem for when you
reach the scale of Google or Amazon.

The premise of the argument is actually solid, although not applicable to all situations.
The premise is that when you are building a site or service that nobody has heard of yet,
you are more concerned about handling loads of people than about making the site re-
markable. It is good advice for these situations. Moreover, it is especially timely consider-
ing that there is a small but religious segment of Internet commentators who eagerly
chime,“X doesn’t scale,” where X is any alternative to the solution the commenter uses.
Among programmers, there is a general preoccupation with performance optimization
that seems somewhat out of balance.

The fact is that for many projects, scalability really is not your problem, but availability
can be. Distributing your data store across servers from the outset is not a premature opti-
mization when you can quantify the cost of down time. If a couple hours of downtime
will have an impact on your business, then availability is something worth thinking about.
For the IT department delivering a mission-critical application, availability is important.
Even if only 20 users will use it during normal business hours, when it provides a com-
petitive advantage, it is important to maintain availability through expected outages.
When you have a product launch, and your credibility is at stake as much as your rev-
enue, you are not putting the cart before the horse when you protect yourself against
hardware failures.

There are many situations where availability is an important system quality. Look at
how common it is for a multi-server web cluster to host one website. Before you can add
a second web server, you must first solve a small set of known problems. User sessions
have to be managed properly; load balancing has to be in place and routing around unre-
sponsive servers. However, web server clusters are useful for more than high-traffic load
handling.They are also beneficial because we know that hardware will fail, and we want
to maintain service during the failure.We can add another web server because it is neither
costly nor difficult, and it improves the availability.With the advent of systems designed to
provide higher database availability that are not costly nor hard, availability becomes
worth pursuing for less-critical projects.

Avoiding the SimpleDB Hype
There are many different application scenarios where SimpleDB is an interesting option.
That said, some people have overstated the benefits of using SimpleDB specifically and
hosted NoSQL databases in general.The reasoning seems to be that services running on

12 Chapter 1 Introducing Amazon SimpleDB

the infrastructure of companies like Amazon, Google, or Microsoft will undoubtedly have
nearly unlimited automatic scalability.Although there is nothing wrong with enthusiasm
for products and services that you like, it is good to base that enthusiasm on reality.

Do not be fooled into thinking that any of these new databases is going to be a
panacea. Make sure you educate yourself about the pros and cons of each solution as you
evaluate it.The majority of services in this space have a free usage tier, and all the open-
source alternatives are completely free to use.Take advantage of it, and try them out for
yourself.We live in an amazing time in history where the quantity of information avail-
able at our fingertips is unprecedented.Access to web-based services and open-source
projects is a huge opportunity.The tragedy is that in a time when it has never been easier
to gain personal experience with new technology, all too often we are tempted to adopt
the opinions of others instead of taking the time to form our own opinions. Do not be-
lieve the hype—find out for yourself.

Putting the DBA Out of Work
One of the stated goals of SimpleDB is allowing customers to outsource the time and ef-
fort associated with managing a web-scale database. Managing the database is traditionally
the world of the DBA. Some people have assumed that advocating the use of SimpleDB
amounts to advocating a world where the DBA diminishes in importance. However, this
is not the case at all.

One of the things that have come about from the widespread popularity of EC2 has
been a change in the role of system administrators.What we have found is that managing
EC2 virtual instances is less work than managing a physical server instance. However, the
result has not been a rash of system administrator firings. Instead, the result has been that
system administrators are able to become more productive by managing larger numbers
of servers than they otherwise could.The ease of acquisition and the low cost to acquire
and release the computing power have led, in many cases, to a greater and more dynamic
use of the servers. In other words, organizations are using more server instances because
the various levels of the organization can handle it, from a cost, risk, and labor standpoint.

SimpleDB and its cohorts seem to facilitate a similar change but on a smaller scale.
First, SimpleDB has less general applicability than EC2. It is a suitable solution for a much
smaller set of problems.AWS fully advocates the use of existing relational database prod-
ucts. SimpleDB is an additional option, not a replacement. Moreover, SimpleDB finds
good usage in some areas where a relational database might not normally be used, as in
the case of storing web user session data. In addition, for those projects that choose to use
SimpleDB instead of, or along with, a relational database, it does not mean that there is no
role for the DBA. Some tasks remain similar to EC2, which can result in a greater capac-
ity for IT departments to create solutions.

13Abandoning the Relational Model?

Dodging Copies of C.J. Date
There are database purists who wholeheartedly try to dissuade people from using any
type of non-relational database on principle alone. Not only that, but they also go to
great lengths to advocate the proper use of relational databases and lament the fact that no
current database products correctly implement the relational model. Having found the
one-true data storage paradigm, they believe that the relational model is “right” and is the
only one that will last.The purists are not wrong in their appreciation for the relational
model and for SQL.The relational model is the cornerstone of the database field, and
more than that, an invaluable contribution to the world of computing. It is one of the
two best things to come out of 1969. Invented by a mathematician and considered a
branch of mathematics itself, there is a solid theoretical rigor that underlies its principles.
Even though it is not a complete or finished branch, the work to date has been sound.

The world of mathematics and academic research is an interesting place.When you
have spent large quantities of your life and career there, you are highly qualified to make
authoritative comments on topics like correctness and provability. Nevertheless, being ei-
ther a relational model expert or merely someone who holds them in high regard does
not say anything about your ability to deliver value to users. It is clearly true that model-
ing your data “correctly” can provide measurable benefits and that making mistakes in
your model can lead to certain classes of problems. However, you can still provide signifi-
cant user value with a flawed model, and correctness is no guarantee of success.

It is like perfectly generated XHTML that always validates. It is like programming with
a functional style (in any programming language) that lets you prove your programs are
correct. It is like maintaining unit tests that provide 100% test coverage for every line of
code you write.There is nothing inherently bad you can say about these things. In fact,
there are plenty of good things to say about them.The problem is not a technical prob-
lem—it is a people problem.The problem is when people become hyper-focused on nar-
row technological aspects to the exclusion of the broader issues of the application’s
purpose.

The people conducting database research and the ones who take the time to help edu-
cate the computing industry deserve our respect. If you have a degree in computer sci-
ence, chances are you studied C.J. Date’s work in your database class.Among professional
programmers, there is no good excuse for not knowing data and relational fundamentals.
However, the person in the next row of cubicles who is only contributing condescending
criticism to your project is no C.J. Date. In addition, the user with 50 times your
stackoverflow.com reputation who ridicules the premise of your questions without pro-
viding useful suggestions is no E.F. Codd. Understanding the theory is of great impor-
tance. Knowing how to deliver value to your users is of greater importance. In the end,
avoid vociferous ignorance and don’t let anyone kick copies of C.J. Date in your face.

14 Chapter 1 Introducing Amazon SimpleDB

Other Pieces of the Puzzle
In the world of cloud computing, there are a growing number of companies and services
from which to choose. Each service provider seeks to align its offerings with a broader
strategy.With Amazon, that strategy includes providing very basic infrastructure building
blocks for users to assemble customized solutions.AWS tries to get you to use more than
one service offering by making the different services useful with each other and by offer-
ing fast and free data transfer between services in the same region.This section describes
three other Amazon Web Services, along with some ways you might find them to be use-
ful in conjunction with SimpleDB.

Adding Compute Power with Amazon EC2
AWS sells computing power by the hour via the Amazon Elastic Compute Cloud (Ama-
zon EC2).This computing power takes the form of virtual server instances running on
top of physical servers within Amazon data centers.These server instances come in vary-
ing amounts of processor horsepower and memory, depending on your needs and budget.
What makes this compute cloud elastic is the fact that users can start up, and shut down,
dozens of virtual instances at a moment’s notice.

These general-purpose servers can fulfill the role of just about any server. Some of the
popular choices include web server, database server, batch-processing server, and media
server.The use of EC2 can result in a large reduction in ongoing infrastructure mainte-
nance when compared to managing private in-house servers.Another big benefit is the
elimination of up-front capital expenditures on hardware in favor of paying for only the
compute power that is used.

The sweet spot between SimpleDB and EC2 comes for high-data bandwidth applica-
tions. For those apps that need fast access to high volumes of data in SimpleDB, EC2 is
the platform of choice.The free same region data transfer can add up to a sizable cost sav-
ings for large data sets, but the biggest win comes from the consistently low latency.AWS
does not guarantee any particular latency numbers but typically, round-tripping times are
in the neighborhood of 2 to 7 milliseconds between EC2 instances and SimpleDB in the
same region.These numbers are on par with the latencies others have reported between
EC2 instances. For contrast, additional latencies of 50 to 200 milliseconds or more are
common when using SimpleDB across the open Internet.When you need fast Sim-
pleDB, EC2 has a lot to offer.

Storing Large Objects with Amazon S3
Amazon Simple Storage Service (Amazon S3) is a web service that enables you to store
an unlimited number of files and charges you (low) fees for the actual storage space you
use and the data transfer you use.As you might expect, data transfer between S3 and other
Amazon Web Services is fast and free. S3 is easy to understand, easy to use, and has a mul-
titude of great uses.You can keep the files you store in S3 private, but you can also make

15Comparing SimpleDB to Other Products and Services

them publicly available from the web. Many websites are using S3 as a media-hosting
service to reduce the load on web servers.

EC2 virtual machine images are stored and loaded from S3. EC2 copies storage vol-
umes to and loads storage volumes from S3.The Amazon CloudFront content delivery
network can serve frequently accessed web files in S3.The Amazon Elastic MapReduce
service runs MapReduce jobs stored in S3. Publicly visible files in S3 can be served up via
the BitTorrent peer-to-peer protocol.The list of uses goes on and on.... S3 is really a
common denominator cloud service.

SimpleDB users can also find good uses for S3. Because of the high speed within the
Amazon cloud, S3 is an obvious storage location choice for SimpleDB import and export
data. It is also a solid location to place SimpleDB backup files.

Queuing Up Tasks with Amazon SQS
Amazon Simple Queue Service (Amazon SQS) is a web service that reliably stores mes-
sages between distributed computers. Placing a robust queue between the computers
allows them to work independently. It also opens the door to dynamically scaling the
number of machines that push messages and the number that retrieve messages.

Although there is no direct connection between SQS and SimpleDB, SQS does have
some complementary features that can be useful in SimpleDB-based applications.The se-
mantics of reliable messaging can make it easier to coordinate multiple concurrent clients
than when using SimpleDB alone. In cases where there are multiple SimpleDB clients,
you can coordinate clients using a reliable SQS queue. For example, you might have mul-
tiple servers that are encoding video files and storing information about those videos in
SimpleDB. SimpleDB makes a great place to store that data, but it could be cumbersome
for use in telling each server which file to process next.The reliable message delivery of
SQS would be much more appropriate for that task.

Comparing SimpleDB to Other Products and
Services
Numerous new types of products and services are now available or will soon be available
in the database/data service space. Some of these are similar to SimpleDB, and others are
tangential.A few of them are listed here, along with a brief description and comparison to
SimpleDB.

Windows Azure Platform
The Windows Azure Platform is Microsoft’s entry into the cloud-computing fray.Azure
defines a raft of service offerings that includes virtual computing, cloud storage, and reli-
able message queuing. Most of these services are counterparts to Amazon services.At the
time of this writing, the Azure services are available as a Community Technology Preview.
To date, Microsoft has been struggling to gain its footing in the cloud services arena.

16 Chapter 1 Introducing Amazon SimpleDB

There have been numerous, somewhat confusing, changes in product direction and
product naming.Although Microsoft’s cloud platform has been lagging behind AWS a bit,
it seems that customer feedback is driving the recent Azure changes.There is every reason
to suspect that once Azure becomes generally available, it will be a solid alternative to AWS.

Among the services falling under the Azure umbrella, there is one (currently) named
Windows Azure Table.Azure Table is a distributed key-value store with explicit support
for partitioning across storage nodes. It is designed for scalability and is in many ways simi-
lar to SimpleDB.The following is a list of similarities between Azure Table and SimpleDB:

n All access to the service is in the form of web requests.As a result, any program-
ming language can be used.

n Requests are authenticated with encrypted signatures.
n Consistency is loosened to some degree.
n Unique primary keys are required for each data entity.
n Data within each entity is stored as a set of properties, each of which is a name-

value pair.
n There is a limit of 256 properties per entity.
n A flexible schema allows different entities to have different properties.
n There is a limit on how much data can be stored in each entity.
n The number of entities you can get back from a query is limited and a query con-

tinuation token must be used to get the next page of results.
n Service versioning is in place so older versions of the service API can still be used

after new versions are rolled out.
n Scalability is achieved through the horizontal partitioning of data.

There are also differences between the services, as listed here:

n Azure Table uses a composite key comprised of a partition key followed by a row
key, whereas SimpleDB uses a single item name.

n Azure Table keeps all data with the same partition key on a single storage node. En-
tities with different partition keys may be automatically spread across hundreds of
storage nodes to achieve scalability.With SimpleDB, items must be explicitly placed
into multiple domains to get horizontal scaling.

n The only index in Azure Table is based on the composite key.Any properties you
want to query or sort must be included as part of the partition key or row key. In
contrast, SimpleDB creates an index for each attribute name, and a SQL-like query
language allows query and sort on any attribute.

n To resolve conflicts resulting from concurrent updates with Azure Table, you have a
choice of either last-write-wins or resolving on the client.With SimpleDB, last-
write-wins is the only option.

17Comparing SimpleDB to Other Products and Services

n Transactions are supported in Azure Table at the entity level as well as for entity
groups with the same partition key. SimpleDB applies updates atomically only
within the scope of a single item.

Windows Azure Table overall is very SimpleDB-like, with some significant differences
in the scalability approach. Neither service has reached maturity yet, so we may still see
enhancements aimed at easing the transition from relational databases.

It is worth noting that Microsoft also has another database service in the Windows
Azure fold. Microsoft SQL Azure is a cloud database service with full replication across
physical servers, transparent automated backups, and support for the full relational data
model.This technology is based on SQL Server, and it includes support for T-SQL, stored
procedures, views, and indexes.This service is intended to enable direct porting of exist-
ing SQL-based applications to the Microsoft cloud.

Google App Engine
App Engine is a service offered by Google that lets you run web applications, written in
Java or Python, on Google’s infrastructure.As an application-hosting platform,App En-
gine includes many non-database functions, but the App Engine data store has similarities
to SimpleDB.The non-database functions include a number of different services, all of
which are available via API calls.The APIs include service calls to Memcached, email,
XMPP, and URL fetching.

App Engine includes an API for data storage based on Google Big Table and in some
ways is comparable to SimpleDB.Although Big Table is not directly accessible to App En-
gine applications, there is support in the data store API for a number of features not avail-
able in SimpleDB.These features include data relations, object mapping, transactions, and
a user-defined index for each query.

App Engine also has a number of restrictions, some of which are similar to SimpleDB
restrictions, like query run time. By default, the App Engine data store is strongly consistent.
Once a transaction commits, all subsequent reads will reflect the changes in that transaction.
It also means that if the primary storage node you are using goes down,App Engine will fail
any update attempts you make until a suitable replacement takes over.To alleviate this issue,
App Engine has recently added support for the same type of eventual consistency that Sim-
pleDB has had all along.This move in the direction of SimpleDB gives App Engine apps
the same ability as SimpleDB apps to run with strong consistency with option to fall back
on eventual consistency to continue with a degraded level of service.

Apache CouchDB
Apache CouchDB is a document database where a self-contained document with metadata
is the basic unit of data. CouchDB documents, like SimpleDB items, consist of a group of
named fields. Each document has a unique ID in the same way that each SimpleDB item
has a unique item name. CouchDB does not use a schema to define or validate documents.
Different types of documents can be stored in the same database. For querying, CouchDB
uses a system of JavaScript views and map-reduce.The loosely structured data in CouchDB

18 Chapter 1 Introducing Amazon SimpleDB

documents is similar to SimpleDB data but does not place limits on the amount of data you
can store in each document or on the size of the data fields.

CouchDB is an open-source product that you install and manage yourself. It allows dis-
tributed replication among peer servers and has full support for robust clustering. CouchDB
was designed from the start to handle high levels of concurrency and to maintain high levels
of availability. It seeks to solve many of the same problems as SimpleDB, but from the stand-
point of an open-source product offering rather than a pay-as-you-go service.

Dynamo-Like Products
Amazon Dynamo is a data store used internally within Amazon that is not available to the
public.Amazon has published information about Dynamo that includes design goals, run-
time characteristics, and examples of how it is used. From the published information, we
know that SimpleDB has some things in common with Dynamo, most notably the even-
tual consistency.

Since the publication of Dynamo information, a number of distributed key-value stores
have been developed that are in the same vein as Dynamo.Three open-source products that
fit into this category are Project Voldemort, Dynomite, and Cassandra. Each of these projects
takes a different approach to the technology, but when you compare them to SimpleDB,
they generally fall into the same category.They give you a chance to have highly available
key-value access distributed across machines.You get more control over the servers and the
implementation that comes with the maintenance cost of managing the setup and the ma-
chines. If you are looking for something in this class of data storage, SimpleDB is a likely
touch-free hosted option, and these projects are hands-on self-hosted alternatives.

Compelling Use Cases for SimpleDB
SimpleDB is not a replacement for relational databases.You need to give careful consider-
ation to the type of data storage solution that is appropriate for a given application.This
section includes a discussion of some of the use cases that match up well with SimpleDB.

Web Services for Connected Systems
IT departments in the enterprise are tasked with delivering business value and support in
an efficient way. In recent years, there has been movement toward both service orienta-
tion and cloud computing. One of the driving forces behind service orientation is a de-
sire to make more effective use of existing applications. Simple Object Access Protocol
(SOAP) has emerged as an important standard for message passing between these con-
nected systems as a means of enabling forward compatibility. For new services deployed in
the cloud, SimpleDB is a compelling data storage option.

Data transfer between EC2 instances and the SimpleDB endpoint in the same region
is fast and free.The consistent speed and high availability of SimpleDB are helpful when
defining a Service Level Agreement (SLA) between IT and business units.All this meshes
with the ability of EC2 to scale out additional instances on demand.

19Compelling Use Cases for SimpleDB

Low-Usage Application
There are applications in the enterprise and on the open web that do not see a consistent
heavy load.They can be low usage in general with periodic or seasonal spikes—for in-
stance, at the end of the month or during the holidays. Sometimes there are few users at
all times by design or simply by lack of popularity.

For these types of applications, it can be difficult to justify an entire database server for
the one application.The typical answer in organizations with sufficient infrastructure is to
host multiple databases on the same server.This can work well but may not be an option
for small organizations or for individuals. Shared database hosting is available from hosting
companies, but service levels are notoriously unpredictable.With SimpleDB, low-usage
applications can run within the free tier of service while maintaining the ability to scale
up to large request volumes when necessary.This can be an attractive option even when
database-sharing options are available.

Clustered Databases Without the Time Sink
Clustering databases for scalability or for availability is no easy task. If you already have
the heavy data access load or if you have the quantifiable need for uptime, it is obviously a
task worth taking on. Moreover, if you already have the expertise to deploy and manage
clusters of replicated databases, SimpleDB may not be something you need. However, if
you do have the experience, you know many other things as well: you know the cost to
roll the clusters into production, to roll out schema updates, and to handle outages.This
information can actually make it easier to decide whether new applications will provide
enough revenue or business value to merit the time and cost.You also have a great
knowledge base to make comparisons between in-house solutions and SimpleDB for the
features it provides.

You may have a real need for scalability or uptime but not the expertise. In this case,
SimpleDB can enable you to outsource the potentially expensive ongoing database main-
tenance costs.

Dynamic Data Application
Rigid and highly structured data models serve as the foundation of many applications,
while others need to be more dynamic. It is becoming much more important for new ap-
plications to include some sort of social component than it was in the past.Along with
these social aspects, there are requirements to support various types of user input and cus-
tomization, like tagging, voting, and sharing. Many types of social applications require
community building, and can benefit from a platform, which allows data to be stored in
new ways, without breaking the old data. Customer-facing applications, even those with-
out a social component, need to be attentive to user feedback.

Whether it is dynamic data coming from users or dynamic changes made in response
to user feedback, a flexible data store can enable faster innovation.

20 Chapter 1 Introducing Amazon SimpleDB

Amazon S3 Content Search
Amazon S3 has become a popular solution for storing web-accessible media files.Appli-
cations that deal with audio, video, or images can access the media files from EC2 with
no transfer costs and allow end users to download or stream them on a large scale with-
out needing to handle the additional load.When there are a large number of files in S3,
and there is a need to search the content along various attributes, SimpleDB can be an
excellent solution.

It is easy to store attributes in SimpleDB, along with pointers to where the media is
stored in S3. SimpleDB creates an index for every attribute for quick searching. Different
file types can have different attributes in the same SimpleDB domain. New file types or
new attributes on existing file types can be added at any time without requiring existing
records to be updated.

Empowering the Power Users
For a long time, databases have been just beyond the edge of what highly technical users
can effectively reach. Many business analysts, managers, and information workers have
technical aptitude but not the skills of a developer or DBA.These power users make use
of tools like spreadsheet software and desktop databases to solve problems. Unfortunately,
these tools work best on a single workstation, and attempts at sharing or concurrent use
frequently cause difficulty and frustration; enterprise-capable database software requires a
level of expertise and time commitment beyond what these users are willing to spend.

The flexibility and scalability of SimpleDB can be a great boon to a new class of appli-
cations designed for power users. SimpleDB itself still requires programming on the client
and is not itself directly usable by power users. However, the ability to store data directly
without a predefined schema and create queries is an enabling feature. For applications
that seek to empower the power users, by creating simple, open-ended applications with
dynamic capabilities, SimpleDB can make a great back end.

Existing AWS Customers
This chapter pointed out earlier the benefits of using EC2 for high-bandwidth applica-
tions. However, if you are already using one or more of the Amazon Web Services, Sim-
pleDB can be a strong candidate for queryable data storage across a wide range of
applications. Of course, running a relational database on an EC2 instance is also a viable
and popular choice. Moreover, you would do well to consider both options. SimpleDB
requires you to make certain trade-offs, but if the choices provide a net benefit to your
application, you will have gained some great features from AWS that are difficult and time
consuming to develop on your own.

21Compelling Use Cases for SimpleDB

Summary
Amazon SimpleDB is a web service that enables you to store semi-structured data within
Amazon’s data centers.The service provides automatic, geographically diverse data repli-
cation and internal routing around failed storage nodes. It offers high availability and en-
ables horizontal scalability.The service allows you to offload hardware maintenance and
database management tasks.

You can use SimpleDB as a distributed key-value store using the GetAttributes,
PutAttributes, and DeleteAttributes API calls.You also have the option to query for
your data along any of its attributes using the Select API call. SimpleDB is not a relational
database, so there are no joins, foreign keys, schema definitions, or relational constraints
that you can specify. SimpleDB also has limited support for transactions, and updates
propagate between replicas in the background. SimpleDB supports strong consistency,
where read operations immediately reflect the results of all completed and eventual con-
sistency, where storage nodes are updated asynchronously in the background.

The normal window of time for all storage nodes to reach consistency in the back-
ground is typically small. During a server or network failure, consistency may not be
reached for longer periods of time, but eventually all updates will propagate. SimpleDB
is best used by applications able to deal with eventual consistency and benefit from the
ability to remain available in the midst of a failure.

This page intentionally left blank

2
Getting Started with SimpleDB

The SimpleDB web service API exposes a small number of database request types.The
myriad of configuration options that you find with other database products have inten-
tionally been excluded.The SimpleDB API provides only nine operations, with the goal
of enabling you to manage your data without requiring you to manage the database clus-
ter.This chapter gets you up and running with these operations by developing several
small applications.The chapter starts with some coverage of how to sign up for an
account.The sign-up process is simple and straightforward.The expectation is that you
have an account already or, if not, that you can easily make your way through the sign-up
process without assistance. However, questions about the account sign-up process do arise
on occasion, so for completeness, some basic information is included.

Gaining Access to SimpleDB
Like any Amazon Web Service, SimpleDB will only honor a request after it verifies that
the request came from a valid account.With SimpleDB, this means using your AWS
account credentials to place a digital signature on your request.As such, you will need to
obtain the actual credentials first.This section briefly walks you through the process of
signing up with Amazon and requesting access to SimpleDB. If you already have an exist-
ing AWS account with SimpleDB access, you can safely skip this section.

Creating an AWS Account
An Amazon Web Services account is just an Amazon.com account with web services
turned on.The account serves as the top-level unit of billing for all of your AWS usage.
You need to associate a credit card with your account before you can start using any of
the web services.Amazon maintains detailed usage data for your account throughout the
month that you can monitor at the AWS website.At the end of each month,Amazon
generates the final billing for your actual usage of each Amazon Web Service and charges
your credit card.

24 Chapter 2 Getting Started with SimpleDB

To create an Amazon Web Services account, go to the AWS website (http://aws.
amazon.com) and click the link to create a new account.You can use your existing
Amazon.com account if you have one, or you can create a new account.

Signing Up for SimpleDB
Once you successfully sign into your Amazon Web Services account, head over to the
SimpleDB home page (http://aws.amazon.com/simpledb) and click the sign-up button
to add the new service. If you do not yet have a credit card on file with Amazon, or if you
have one but have not linked it to your web services account, you will be prompted for it
now. Go ahead and enter your information.You cannot use any of the services without
pre-authorizing a payment option.You should be aware, however, that at the time of this
writing,Amazon has a free access tier for SimpleDB usage.The current free tier terms
allow for 25 hours of SimpleDB box usage, 1GB of data transfer, and 1GB of data storage
per month before charges begin to accrue.Also, be aware that all data transfer from EC2
to SimpleDB is always free.

Managing Account Keys
When you log into your Amazon Web Services account, you will be able to view your
Account Access Identifiers. For SimpleDB, this will be an Access Key ID and a Secret
Access Key.These will act as the username and signature generator for your SimpleDB
requests.You will pass the Access Key ID with every request to identify your account.You
prove the request is from you by computing a signature for each request using the Secret
Access Key.

It is of the utmost importance that you keep your Secret Access Key a secret.Your keys
provide full access to your Amazon Web Services accounts. Someone with your keys
could corrupt or delete your data and rack up account usage charges to your credit card.
Keep security in mind, and do not post your secret key on any Internet forum, hard code
it into shared source code, or include it in an email message that is not secure.You can
generate a new Secret Access Key at any time from your account at the AWS website.

Finding a Client for SimpleDB
Whether you write your own library or use someone else’s, you need a SimpleDB client
to code against.There is a directory of SimpleDB clients maintained at http://developer.
amazonwebservices.com on the SimpleDB discussion forums.This list includes client
libraries written and supported by AWS, as well as third-party libraries.AWS provides
SimpleDB client libraries for Java, C#, PHP, Perl, and VB.Net.

This chapter uses the SimpleDB Reference Client developed in Chapter 10,“Writing
a SimpleDB Client:A Language-Independent Guide.” It is a Java client library specifically
designed for the demonstration of SimpleDB concepts. In later chapters, it serves as a
guide for how to write a SimpleDB client in any programming language, but it is used
here because it makes example code easy to understand.

http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com/simpledb
http://developer.amazonwebservices.com
http://developer.amazonwebservices.com

25Building a SimpleDB Domain Administration Tool

Building a SimpleDB Domain Administration Tool
One of the weaknesses of SimpleDB in its current form is the lack of robust and sophisti-
cated tooling.The tooling for relational databases has become mature, and there are many
tool options available.Amazon does provide a few basic tools and, in fact, continues to
release new and better tools, but a lot of room still remains for innovation.Amazon’s strat-
egy of providing the infrastructure building blocks around which an ecosystem of tools
and services can grow seems to be working well for its other web services. In time, client
tooling could become a strong point for SimpleDB because one of the foundational prin-
ciples is the small feature set on the service side.We begin the examples by developing a
domain administration tool.

Administration Tool Features
Having a tool that can list all of your domains with the ability to create new domains is a
pretty basic feature when using SimpleDB.Amazon has released an Eclipse plug-in that
allows you to do that, but it is only available while eclipse is running.We are going to
write this functionality in a command-line tool that will be available outside of an IDE.
In this section, we develop a stand-alone administration tool that you can to use to man-
age your domains.

The tool will have the following features:

n A command-line interface
n Creation of new domains
n Deletion of existing domains
n Listing all the domains in your account
n Detailed listing for an existing domain

Key Storage
It is very important to treat your AWS credentials with care to prevent anyone from gain-
ing unauthorized access to your account. Beyond the risk of loss or compromising of
your data, an unauthorized user will be able to run up potentially large usage charges. I
recommend that you never type your Access Key ID or Secret Access Key directly into
source code files, even if it is only for sample code.All the code in this book will pull the
AWS keys from a separate file. In the case of the admin tool in this section, the keys will
be loaded from the file .awssecret in the user’s home directory.You will need to create this
file in order to allow the admin tool to authenticate.The format of the file is as follows:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

When you create this file, add the appropriate values for your account after the
equal signs.

26 Chapter 2 Getting Started with SimpleDB

Implementing the Base Application
The base application provides the code to parse the arguments and a framework to invoke
the commands. Because this is a command-line tool, the base application, shown in
Listing 2-1, is very simple.

Listing 2-1 AdminTool.java Base Command-Line Application for the Admin Tool

import java.io.*;

import java.util.*;

import com.simpledbbook.*;

public abstract class AdminTool {

static String USAGE = "java AdminTool [-l] [-m] [-c] [-d] [domain]";

protected SimpleDB simpleDb;

protected String domain;

public static void main(String[] argz) {

AdminTool tool = createInstance(argz);

tool.invoke();

}

private static AdminTool createInstance(String[] argz) {

try {

String cmd = argz[0];

if (cmd.equals("-l")) {

return new ListingTool();

} else if (cmd.equals("-m")) {

return new MetadataTool(argz[1]);

} else if (cmd.equals("-c")) {

return new CreateTool(argz[1]);

} else if (cmd.equals("-d")) {

return new DeleteTool(argz[1]);

}

} catch (Exception e) {}

System.err.println(USAGE);

System.exit(-1);

return null;

}

abstract void doInvoke();

private void invoke() {

try {

loadCredentials();

doInvoke();

27Building a SimpleDB Domain Administration Tool

} catch (Exception e) {

System.out.println(e.getMessage());

}

}

private void loadCredentials() {

try {

initSimpledbFromDisk();

} catch (Exception e) {

String errorMsg = "credentials not found in $HOME/.awssecret";

throw new RuntimeException(errorMsg);

}

}

private void initSimpledbFromDisk() throws Exception {

Properties props = new Properties();

String home = System.getProperty("user.home");

props.load(new FileReader(new File(home, ".awssecret")));

String accessKeyId = props.getProperty("AWS_ACCESS_KEY_ID");

String secretAccessKey = props.getProperty("AWS_SECRET_ACCESS_KEY");

simpleDb = new SimpleDB(accessKeyId, secretAccessKey);

}

protected AdminTool(String domainName) {

this.domain = domainName;

}

}

At the main method entry point, you can see that the createInstance() method
returns an AdminTool reference. AdminTool is an abstract class that defines the common
application features and delegates the specific implementation to a subclass. In
createInstance(), the command-line arguments are parsed and an appropriate subclass
of AdminTool is instantiated.Any exception at this point or the failure to find a matching
argument will fall through to the usage message, and the application will exit.

The main method ends by calling invoke() on the tool instance.The invoke()
method wraps the final two actions with exception handling. If an exception is thrown
from this point on, it will be caught here, the exception message will be printed, and the
application will terminate.The final two steps are loading the AWS credentials via the
loadCredentials() method and calling the abstract doInvoke() method, which con-
tains the tool-specific code in the subclass.

The loadCredentials() method acts as a pass-through to the
initSimpledbFromDisk() method, re-throwing any exception as a generic exception
with the appropriate message.Within initSimpledbFromDisk(), the file .awssecret in the

28 Chapter 2 Getting Started with SimpleDB

user home directory is loaded into a Properties object.The Access Key ID and the Secret
Access Key are retrieved and then used to initialize the SimpleDB client library.

The final member of the AdminTool class is the constructor that subclasses will use to
store the target domain name.

Displaying a Domain List
Now that the base class has handled all the application setup, all that remains in each sub-
class is the specific tool operation.The ListingTool class shown in Listing 2-2 gives a
first, but brief, look at coding with a SimpleDB client library.

Listing 2-2 ListingTool.java Implementation of List Domains

public class ListingTool extends AdminTool {

ListingTool() {

super(null);

}

@Override

void doInvoke() {

for (String domain : simpleDb.listDomains()) {

System.out.println(domain);

}

}

}

The ListDomains operation in SimpleDB returns a listing of all the domains for the
given account. Because no single domain name is required for this operation, the no-arg
constructor passes null to the super class constructor in place of an actual domain name.

ListingTool overrides the doInvoke() method to loop through the results of the
client library’s listDomain() method, printing each name to the console.

Adding Domain Creation
The CreateTool class in Listing 2-3 is similar to the ListingTool class from Listing 2-2,
with only a single constructor and an override of the doInvoke() method.

Listing 2-3 CreateTool.java Implementation of Domain Creation

public class CreateTool extends AdminTool {

public CreateTool(String domainName) {

super(domainName);

}

@Override

29Building a SimpleDB Domain Administration Tool

void doInvoke() {

simpleDb.createDomain(domain);

System.out.println("Domain created: " + domain);

}

}

In this case, a domain name is required, so the CreateTool constructor declares a sin-
gle String parameter and passes through to the super class constructor where it is stored.
The domain creation takes place with the call to the createDomain() method with the
domain name as a parameter. If the call returns successfully, a message is printed to the
console. Be aware that calls to the SimpleDB operation CreateDomain for domains that
already exist have no effect, and an error is not raised.

Supporting Domain Deletion
Domain deletion is nearly identical to domain creation from a code perspective. Listing
2-4 shows domain deletion.

Listing 2-4 DeleteTool.java Implementation of Domain Deletion

public class DeleteTool extends AdminTool {

public DeleteTool(String domainName) {

super(domainName);

}

@Override

void doInvoke() {

simpleDb.deleteDomain(domain);

System.out.println("Domain deleted: " + domain);

}

}

The only difference between the DeleteTool class and the CreateTool class is the call
to the SimpleDB library’s deleteDomain() method and the text of the console message.

Listing Domain Metadata
The final tool in the AdminTool arsenal is the MetadataTool, found in Listing 2-5.This
tool has a lot more code to it, but only the first line of the doInvoke() method pertains
directly to SimpleDB.The remainder is code that gets and formats the values.

Listing 2-5 MetadataTool.java Implementation of Domain Metadata

import static java.lang.System.*;

import java.util.*;

30 Chapter 2 Getting Started with SimpleDB

public class MetadataTool extends AdminTool {

public MetadataTool(String domainName) {

super(domainName);

}

@Override

void doInvoke() {

Map<String, Long> info = simpleDb.domainMetadata(domain);

long epochMillis = info.get("Timestamp") * 1000L;

long deltaMillis = System.currentTimeMillis() - epochMillis;

double deltaHours = deltaMillis / 3600000D;

long items = info.get("ItemCount");

long itemNameBytes = info.get("ItemNamesSizeBytes");

long attrNames = info.get("AttributeNameCount");

long attrNameBytes = info.get("AttributeNamesSizeBytes");

long attrValues = info.get("AttributeValueCount");

long attrValueBytes = info.get("AttributeValuesSizeBytes");

long totalBytes = itemNameBytes + attrNameBytes + attrValueBytes;

double totalGB = totalBytes/ONE_GB;

String headerA = "'%s' using %.2f%% of 10GB capacity";

String headerB = " (as of %.1f hours ago)\n";

out.printf(headerA + headerB, domain, totalGB, deltaHours);

String lineFmt = "%16s: %,10d (%,d bytes)\n";

out.printf(lineFmt, "Item names", items, itemNameBytes);

out.printf(lineFmt, "Attribute names", attrNames, attrNameBytes);

out.printf(lineFmt, "Attribute values", attrValues, attrValueBytes); }

}

The call to the client method domainMetadata() returns a map of metadata entry
names to numeric values.Amazon serves the DomainMetadata operation values from a
cache and not necessarily from a fresh computation at the time of the call.The data pro-
vides a recent picture of the domain’s state typically from within the past 24 hours.The
timestamp entry tells you the cache time for this domain’s metadata values. MetadataTool
uses the timestamp to calculate the metadata’s age in hours.

There are three remaining dimensions of your domain described by the metadata:
items, attribute names, and attribute values. For each of these is both a count that is given
and storage size in bytes. MetadataTool pulls each of these values from the map, calculates
the percentage of storage capacity in use, and then prints it all out to the console with
some formatting.

31Building a User Authentication Service

Running the Tool
Before you can compile and run the tool, you’ll need to have the Java Development Kit
(JDK) 1.6 or later installed.The classpath also needs to be set so that it can find the Sim-
pleDB client code imported by the tool.You can compile these five source files from the
Chapter 2 source code directory and set the classpath with the following command:

javac –cp SimpleDBClient.jar *.java

After you compile these classes, you can run the domain-listing tool with the follow-
ing command:

java AdminTool -l

If you are new to SimpleDB and have not yet created any domains, this tool prints no
output for you yet.You can create a domain with the following command:

java AdminTool –c sample001

The length of domain names has to be between 3 and 255 characters, and there are
rules covering which characters the CreateDomain operation will accept.The only char-
acters you are allowed to use in domain names are a–z,A–Z, 0–9,‘_’,‘-’, and ‘.’

Packaging the Tool as a Jar File
This tool is useful for simple administration tasks, and it can be bundled into a Jar file for
quick deployment on any platform that can run Java. Bundling the application in a jar file
is done with the jar command-line tool that comes with the Java Development Kit
(JDK).You will have to provide a manifest file that declares AdminTool as your Main-
Class and provide that file as an argument to the jar tool. Once it is packaged, you can
run the tool in a similar way using the command line:

java –jar AdminTool.jar –l

where “AdminTool.jar” is the name of your jar file.You can learn more about jar files
from the Java website: http://java.sun.com/docs/books/tutorial/deployment/jar/.

Building a User Authentication Service
The requirement for user authentication is a common one: It is necessary in any publicly
facing web application or web service.There are many ways to provide methods of user
password collection, and there are just as many alternatives for storing that data. In many
private intranet applications, there is a need to integrate with an existing authentication
system, such as LDAP,Active Directory, or NTLM. On the public Internet, relational
database tables are a more likely choice. In this section, you learn how to use SimpleDB as
the data store for a user authentication service.

http://java.sun.com/docs/books/tutorial/deployment/jar/

32 Chapter 2 Getting Started with SimpleDB

Integrating with the Spring Security Framework
User authentication is only one small part of the security picture. Overall security for an
application is complex and difficult to get right. In the vast majority of cases, you inte-
grate your code into a larger security framework rather than writing your own. One pop-
ular Java security framework is Spring Security. Spring Security is an open-source project
and has been available for many years. One of the benefits of using the Spring Security
framework is that it can be used in many different contexts, whether you run it as a web
application or as a web service, or from within a desktop client.

Spring Security itself is large and somewhat complex. If you are not familiar with it
already, getting it up and running is beyond the scope of this book. However, the data
model is modular, and you can integrate the data storage portion in isolation and use it
with a bit of sample code.The current list of supported back-end user data providers is
quite extensive, but SimpleDB is not yet one of them.To create a SimpleDB user data
provider for Spring Security, you need to create the following functionality:

n A user service that is able to load user data from SimpleDB
n A user class to hold the user data and user authorizations
n A feature to add and edit users

Representing User Data
The first thing you need is a way to represent the user data.The things you need to store
for each user are as follows:

n The username
n The user’s password
n A flag indicating if the user is currently enabled
n A list of authorizations or roles associated with that user

These elements can be stored together in a single class. Listing 2-6 shows this within
the User class.

Listing 2-6 User.java Implementation of a User Authorization Class

package com.simpledbbook.user;

import java.io.*;

import java.util.*;

public class User implements Serializable {

private String username;

private String password;

private boolean enabled;

private List<String> authorities = new ArrayList<String>();

33Building a User Authentication Service

public User(String u, String p, boolean en, List<String> au) {

username = u.intern();

password = p.intern();

enabled = en;

au.get(0).charAt(0);

for (String auth : new TreeSet<String>(au)) {

authorities.add(auth.intern());

}

}

String getUsername() {

return username;

}

String getPassword() {

return password;

}

boolean isEnabled() {

return enabled;

}

List<String> getAuthorities() {

return authorities;

}

@Override

public boolean equals(Object o) {

if (o == null) return false;

if (!(o instanceof User)) return false;

User other = (User) o;

if (other.username != username) return false;

if (other.password != password) return false;

if (other.enabled != enabled) return false;

if (!other.authorities.equals(authorities)) return false;

return true;

}

@Override

public int hashCode() {

int prime = 37;

int result = 23;

result = result * prime + username.hashCode();

result = result * prime + password.hashCode();

result = result * prime + (enabled ? 1 : 0);

34 Chapter 2 Getting Started with SimpleDB

for (String auth : authorities) {

result = result * prime + auth.hashCode();

}

return result;

}

}

The User class exposes an immutable view of a user where the class responsible for the
instantiation passes all the data into the constructor, and it never changes.At the top of
the class, you can see that the four fields storing the data are private, with the public get-
ter methods below them.

One thing that is important to note about this class is how the constructor verifies all
the data fields to be non-null.This ensures that all users of the class have completely valid
and filled-out instances. Each String passed into the constructor is stored only after it is
interned.This returns a canonical representation of the String that is easier to compare
for equality. It also has the side effect of performing a check for null.

The list of Strings passed in with the name authorities is the set of roles the user has
been granted.A TreeSet is used to remove duplicate entries and sort the remaining roles.
The call to intern() for each element in the set serves the same purpose as it did for the
single String fields.

The class finishes up by declaring the equals() and hashcode() methods. In order to
uphold the general contract for equals() and hashcode(), equality and the hash code
are computed using all four of the fields. In addition, any time the equals method returns
true for two instances, they will also return the same hash code.

Fetching User Data with SimpleDBUserService
Now that the storage class is complete, a class is needed to retrieve the data from Sim-
pleDB.This class will be passed a username, and it will need to look up the remainder of
the data for that user and return a fully constructed user object.You can see the code for
this user service in Listing 2-7.

Listing 2-7 SimpleDBUserService.java Implementation of a SimpleDB Storage Class

package com.simpledbbook.user;

import java.util.*;

import com.simpledbbook.*;

public class SimpleDBUserService {

private static final String AUTH_NAMES = "authorities";

private boolean enableGroups;

private SimpleDB sdb;

private String domainName = "users";

35Building a User Authentication Service

public User loadUserByUsername(String username) {

Item item = sdb.getItem(domainName, username);

List<String> auth = getAuthorities(item);

String pass = item.getAttribute("password");

String enabledString = item.getAttribute("enabled");

boolean enabled = enabledString.equals("true");

User user = new User(username, pass, enabled, auth);

return user;

}

private List<String> getAuthorities(Item item) {

if (!enableGroups) {

return item.getAttributes(AUTH_NAMES);

}

List<String> groupNames = item.getAttributes("group");

String query = buildGroupQuery(groupNames);

return sdb.singleAttributeSelect(query, AUTH_NAMES);

}

private String buildGroupQuery(List<String> groupNames) {

String f = "SELECT `%s` FROM `%s` WHERE itemName() IN(%s)";

String groups = listToQueryString(groupNames);

return String.format(f, AUTH_NAMES, domainName, groups);

}

private String listToQueryString(List<String> groupNames) {

String result = "";

for (String group : groupNames) {

result = result + "," + group;

}

return result.substring(1);

}

public boolean isEnableGroups() {

return enableGroups;

}

public void setEnableGroups(boolean groups) {

enableGroups = groups;

}

public String getDomainName() {

return domainName;

}

36 Chapter 2 Getting Started with SimpleDB

public void setDomainName(String domainName) {

this.domainName = domainName;

}

}

At this point, you have to consider the name of the SimpleDB domain where you will
store your user data.This class uses the “users” domain by default but allows a different
name to be set via the setDomainName() method.Another consideration is whether you
will store the user roles directly with the user or if you associate the user with a set of
groups and assign roles to the groups at a higher level.This decision is dependent on your
application domain, and this class supports both ways of storing the authorities. If the
enableGroups flag is set, a different set of queries is used to look up the groups first and
then the authorities. If enableGroups is not set, the roles are pulled directly from the
user item.

The method loadUserByUsername() is the entry point for this class. It is called with
the username that needs to be looked up.A SimpleDB GetAttributes call is done
immediately to pull the user item.This item has, at a minimum, the encoded password
and the enabled flag. Next, the item is passed to the getAuthorities() method, which
determines how to obtain the roles based on the enableGroups flag. Finally, all the fields
are passed to the User constructor, and the newly created User object is returned.

Salting and Encoding Passwords
So far, the user authentication service has only dealt with the raw storage features. How-
ever, for any legitimate authentication, you will need to salt and encode the passwords.
Encoding normally involves some form of encryption so that the passwords do not sit in
the database as plain text.Any form of encryption will protect you from an attacker who
gains access to your database. But if the attacker also is able to gain access to your encryp-
tion key, he will be able to decrypt each password.

A good encoding method is to use a one-way cryptographic function.With one-way
encryption, there is no way to decode an encrypted message to get the original text, even
when you have the encryption key.This prevents decryption by an attacker with the key,
but it is still vulnerable to a dictionary attack. In a dictionary attack, a large body of
potential passwords is encrypted with the proper key. Each potential password is stored
together with the encrypted version as a look-up key.The attacker can then look up
encrypted passwords in the dictionary to find the original. Protection from the dictionary
attack comes in the form of salting.

Salting is any process that applies a consistent change to the password value before
encryption.This makes it much more difficult for an unauthorized user who gains access
to the database to use a dictionary attack to find the original password values.

Therefore, the process for storing passwords involves first salting, followed by one-way
encryption.When the time comes to verify the password of a user, there is no way to
decrypt the password in the database and compare it. Instead, you just salt and encode the

37Building a User Authentication Service

supplied password at verification time and compare it to the stored, salted, and encoded
password.Within the Spring Security framework, these functions are implemented by
existing framework classes.You have a variety of configuration options available to you for
control of exactly how the passwords are salted and encoded.Whether you use the default
configuration or make some configuration changes, Spring Security will already have
salted and encoded the password before it calls SimpleDBUserService. Moreover, the
passwords retrieved from SimpleDB need to already be encoded in order for the authori-
zation check to succeed.

Creating a User Update Tool
Although the Spring Security framework has much of the functionality already, one thing
it does not do is provide you with a way to add and update user data.This is something
that you need to do for yourself. Because you cannot test out the data storage without
users to test on, you will create your own user tool in this section.The requirements for
this tool are straightforward, as follows:

n Add a user
n Toggle the enabled flag
n Add and remove roles for a user
n Add and remove the user from a group
n Add and remove roles for a user

The code for this tool can be found in Listing 2-8.

Listing 2-8 SimpleDBUserTool.java Implementation of a Tool to Manage Users

package com.simpledbbook.user;

import java.util.*;

import com.simpledbbook.*;

public class SimpleDBUserTool {

private static final String AUTH_NAMES = "authorities";

private static final String PASS_NAME = "password";

private static final String ENAB_NAME = "enabled";

private static final String GROUP_NAME = "group";

private String domainName = "users";

private boolean enableGroups;

private SimpleDB sdb;

public User storeUserByUsername(String username) {

Item item = sdb.getItem(domainName, username);

List<String> auth = null;

setAuthorities(item);

38 Chapter 2 Getting Started with SimpleDB

String pass = item.getAttribute(PASS_NAME);

String enabledString = item.getAttribute(ENAB_NAME);

boolean enabled = enabledString.equals("true");

User user = new User(username, pass, enabled, auth);

return user;

}

private void setAuthorities(Item item) {

if (!enableGroups) {

item.getAttributes(AUTH_NAMES);

}

List<String> groupNames = item.getAttributes(GROUP_NAME);

String query = buildGroupQuery(groupNames);

sdb.singleAttributeSelect(query, AUTH_NAMES);

}

private String buildGroupQuery(List<String> groupNames) {

String f = "SELECT `%s` FROM `%s` WHERE itemName() IN(%s)";

String groups = listToQueryString(groupNames);

return String.format(f, AUTH_NAMES, domainName, groups);

}

private String listToQueryString(List<String> groupNames) {

String result = "";

for (String group : groupNames) {

result = result + "," + group;

}

return result.substring(1);

}

public boolean isEnableGroups() {

return enableGroups;

}

public void setEnableGroups(boolean groups) {

enableGroups = groups;

}

public String getDomainName() {

return domainName;

}

public void setDomainName(String domainName) {

this.domainName = domainName;

}

39Building a User Authentication Service

public void setSimpleDBClient(SimpleDB simpleDb) {

sdb = simpleDb;

}

}

Summary
Invariably one of the things you notice when working with SimpleDB is that much of
the code ends up revolving around the application logic and the business rules, with a
somewhat small amount of SimpleDB code.That certainly holds true with the domain
administration tool, where more than 60 lines of code end up devoted to application-
level issues, with only a few lines of code calling SimpleDB. In this chapter, you have used
a number of the SimpleDB operations and gotten a feel for how they work and what
they do.The next chapter goes into much greater depth, covering each of the SimpleDB
operations in turn.

This page intentionally left blank

3
A Code-Snippet Tour of the

SimpleDB API

The AWS website hosts a comprehensive set of documentation on SimpleDB.The set of
documents includes an officially maintained guide for developers, which provides thor-
ough coverage of every API call.The problem with all this great documentation is that it
covers SimpleDB as a raw HTTP web service, whereas most users are never going to
program to the low-level guts of the service. Most users are going to use a SimpleDB
client for which there is no direct coverage in the official docs.This is not the fault of
AWS; after all, SimpleDB is a web service, and that is exactly what they have docu-
mented. Moreover, even though AWS has released SimpleDB clients for Java, PHP, C#,
andVB.NET, those clients have essentially no documentation.The source code serves as
documentation.

The purpose of this chapter is to fill the gap between the web service documentation
and the clients that people actually use.To this end, each API call documented here comes
with source code showing client usage. For the sample code, this chapter covers the three
most popular SimpleDB clients, one in each of the three different programming lan-
guages. Each API call is documented to at least the same level as the official docs. In many
cases, the chapter also includes additional information including details of how the API
works in practice and pitfalls to avoid. For the API calls that have options, multiple source
code listings are included so you can see how it works in different scenarios.

Selecting a SimpleDB Client
The selection of a client is normally dictated by the programming language you’ll be us-
ing.There are SimpleDB clients for a wide variety of programming languages, which are
free to use, usually with an open-source license.The limited feature set of SimpleDB
makes a basic client straightforward to write.You can realistically throw together a bare-
bones client over a weekend or two. If writing your own client, bare bones or otherwise,
is something that interests you, Chapter 10,“Writing a SimpleDB Client:A Language-In-
dependent Guide,” provides thorough coverage of the topic. Perhaps owing to the simple

42 Chapter 3 A Code-Snippet Tour of the SimpleDB API

API, there are a number of clients available that have the minimal feature set, but do not
appear to be actively maintained.You can find an updated list of currently available Sim-
pleDB clients at SimpleDBBook.com.

At the time of this writing, some of the best-maintained SimpleDB clients are those
featuring support for the full range of AWS APIs and not just SimpleDB. Here is a list of
some popular client choices by programming language:

n Java— Typica is an open-source Java client for the Amazon Web Services: Sim-
pleDB, EC2, SQS, and DevPay. Released under the Apache License 2.0,Typica may
be the most popular of all the third-party SimpleDB clients. It is well maintained,
keeping pace with new AWS features, and it sports additional SimpleDB utilities,
such as a query tool and a command-line tool.Typica is one of the clients used for
code samples in this chapter.

n PHP— Tarzan is a third-party PHP client with support for SimpleDB and half a
dozen other Amazon Web Services.Tarzan has high-quality documentation and is
released under the Simplified BSD License.This chapter’s PHP code snippets use
Tarzan.

n C#— The C# Library for Amazon SimpleDB is a SimpleDB client released by
AWS under the Apache License 2.0.The other C# client that appears to be well
maintained is the third-party product LightSpeed by Mindscape. LightSpeed is a
fully featured object/relational mapping product with support for many databases.
LightSpeed operates at a higher modeling level than the SimpleDB API and it is
not open source.This chapter uses the C# Library for Amazon SimpleDB for the
C# example code.

n Python— There are a few Python clients available.The open-source Boto project
is actively maintained and is the most fully featured client, with support beyond
SimpleDB for virtually every other AWS offering.This chapter does not include
Python sample code.

The details of how you use each client in each respective language are different, but
the underlying semantics of the SimpleDB operations remain the same.What happens on
the back end as a result of your client calls is the focus of the following sections.

Typica Setup in Java
To compile and run the Java samples in this chapter, you will need to download the Typ-
ica client from the project website at http://code.google.com/p/typica/ and add the typ-
ica.jar file to your Java classpath.Typica has dependencies on other freely available
libraries, and they are listed (with links) on the project website.At the time of this writ-
ing, the dependencies are commons-logging, JAXB, commons-httpclient, and commons-
codec.The samples in this chapter are written against version 1.6 of Typica.

http://code.google.com/p/typica/

43Selecting a SimpleDB Client

Once you have Typica and its dependencies in your classpath, there are several source
code-level steps required for the snippets to run.You need the following three import
statements:

import java.util.*;

import com.xerox.amazonws.common.*;

import com.xerox.amazonws.sdb.*;

You also will need to load your AWS credentials into the variables accessKeyID and
secretAccessKey.The following code has been adapted from the examples in Chapter 2,
“Getting Started with SimpleDB,” and will load your credentials from a file named
.awssecret in the current user’s home directory.This is the same file used previously, so if
you stored your credentials in the file for the Chapter 2 examples, you won’t need to do
it again:

private String accessKeyID;

private String secretAccessKey;

{

try {

loadCredentialsFromDisk();

} catch (Exception e) {

String errorMsg = "credentials not found in $HOME/.awssecret";

throw new RuntimeException(errorMsg);

}

}

private void loadCredentialsFromDisk() throws Exception {

Properties props = new Properties();

String home = System.getProperty("user.home");

props.load(new FileReader(new File(home, ".awssecret")));

accessKeyID = props.getProperty("AWS_ACCESS_KEY_ID");

secretAccessKey = props.getProperty("AWS_SECRET_ACCESSS_KEY");

}

Adding these two member variables, the instance initializer, and the instance method
to the top of your Java class file is an easy way to load your credentials without hard cod-
ing them into the source.

C# Library for Amazon SimpleDB Setup
The C# code samples require Visual Studio 2005 or later and .NET version 2.0+.You
will need to download Amazon’s C# from the AWS website (http://aws.amazon.com/re-
sources/) under “SimpleDB” and “Sample Code & Libraries.” Make sure your .NET
project references Amazon.SimpleDB, and add these using statements to the top of your
.cs file:

using System;

http://aws.amazon.com/resources/
http://aws.amazon.com/resources/

44 Chapter 3 A Code-Snippet Tour of the SimpleDB API

using System.IO;

using System.Collections.Generic;

using Amazon.SimpleDB;

using Amazon.SimpleDB.Model;

using Attr = Amazon.SimpleDB.Model.Attribute;

using RequestAttr = Amazon.SimpleDB.Model.ReplaceableAttribute;

For the purposes of avoiding name collisions and formatting code to fit on book
pages, the length of Amazon’s Attribute and ReplaceableAttribute class names were
reduced.

As always, you should avoid hard coding your AWS credentials into source code files.
There is no benefit to doing this, and you have the double drawbacks of needing to re-
compile on credential/environment change and the potential exposure of your creden-
tials.The .NET platform has a number of easy ways to load program configuration data.
For consistency with the Java samples, the following code will load AWS credentials from
a file named .awssecret in the user home directory in the file format described previously:

private String id;

private String secret;

private void LoadCredentials()

{

String home = (Environment.OSVersion.Platform == PlatformID.Unix ||

Environment.OSVersion.Platform == PlatformID.MacOSX) ?

Environment.GetEnvironmentVariable("HOME") :

Environment.ExpandEnvironmentVariables("%HOMEDRIVE%%HOMEPATH%");

Dictionary<String, String> data = new Dictionary<String, String>();

String path = home + Path.DirectorySeparatorChar + ".awssecret";

foreach (String row in File.ReadAllLines(path))

{

data.Add(row.Split('=')[0], row.Split('=')[1]);

}

id = data["AWS_ACCESS_KEY_ID"];

secret = data["AWS_SECRET_ACCESSS_KEY"];

}

This will work under both Windows and Mono, and this is the same file used previ-
ously, so if you stored your credentials in this file for the Chapter 2 examples, you won’t
need to do it again.The C# snippet code uses the variables id and secret declared pre-
viously.To make these work, just be sure the declarations fall within your scope and that
LoadCredentials() gets called before you first access them.

45Common Concepts

Tarzan Setup in PHP
The PHP sample code uses PHP 5+ and the Tarzan client Tarzan is available for down-
load at http://tarzan-aws.com.Add the following required statements to the top of your
PHP file:

require_once('tarzan.class.php');

require_once('config.inc.php');

The first line pulls in Tarzan, and the second line brings in your AWS credentials.
Tarzan will automatically look for your credentials in the predefined constants: AWS_KEY
and AWS_SECRET_KEY.You can set them in your config.inc.php file like this:

define('AWS_KEY', '<access-key-id>');

define('AWS_SECRET_KEY', '<secret-access-key>');

You must replace <access-key-id> and <secret-access-key> with the actual values
of your AWS credentials.

Common Concepts
There are some commonalities among all the SimpleDB operations that you should be
familiar with before you dive into the specifics.

The Language Gap
For each of the SimpleDB operations documented in this chapter, there are code samples
demonstrating the operation with three different SimpleDB clients. Each of the clients is
in a different programming language and each exposes a unique interface.This presents a
challenge when deciding what vocabulary to use with the explanations because there is a
split between the language of the web service and the language used in the multiple
clients.

The approach of this chapter is to use the official SimpleDB web service lexicon when
referring to the names of operations, parameters, error codes, and so on.These are the lit-
eral, case-sensitive terms that clients must use when communicating with SimpleDB, but
those clients may not expose the exact same naming. For example, the nine SimpleDB
operations are CreateDomain, ListDomains, DeleteDomain, DomainMetadata,
PutAttributes, GetAttributes, DeleteAttributes, BatchPutAttributes, and Select.
Even though the Tarzan function for domain creation is called create_domain(), this
book will always refer to the name of the operation as CreateDomain.The details of how
each client individually exposes each operation are covered alongside the code snippets.

SimpleDB Endpoints
The concept of a service endpoint is important for understanding the scope of all Sim-
pleDB operations.Within the context of SimpleDB, an endpoint is a completely inde-
pendent service cluster with its own domain name and internal servers distributed across
data centers within a single geographical region.

http://tarzan-aws.com

46 Chapter 3 A Code-Snippet Tour of the SimpleDB API

Figure 3-1 illustrates how endpoints are geographically isolated and how a SimpleDB
cluster at one of these endpoints spans more than one data center.

The current endpoints are as follows:

n sdb.amazonaws.com— Located in the eastern region of the United States (North-
ern Virginia).

n sdb.ap-southeast-1.amazonaws.com— Located in the Asia Pacific region (Singa-
pore).

n sdb.us-west-1.amazonaws.com— Located in the western region of the United
States (Northern California).

n sdb.eu-west-1.amazonaws.com— Located in the European region (Ireland).

When you successfully sign up for SimpleDB and supply your billing information,
AWS grants you access to all endpoints.There is nothing special you need to do to gain
access to a specific endpoint.All account charges across endpoints will accrue under the

Europe West Region

Data
Center

Data
Center

SimpleDB Cluster

Internet

sdb.eu-west.amazonaws.com

U.S. East Region

Data
Center

Data
Center

SimpleDB Cluster

sdb.amazonaws.com

Figure 3-1 A SimpleDB endpoint is backed by a cluster of servers and hosted by the data
centers in one region.

47Common Concepts

same billing to the same account. However, each endpoint is completely independent
with respect to actual SimpleDB operations. Invoking an operation at one endpoint has
no impact on the data stored at any other endpoint.

Most SimpleDB clients support the primary U.S. endpoint by default and support al-
ternate endpoints via a constructor argument on the base client object.The code samples
for the ListDomains operation demonstrate access to an alternate endpoint for all of the
programming languages.

SimpleDB Service Versions
SimpleDB implements a web service versioning scheme. Every request must indicate
which version of the API is being used. Service versioning allows a web service to intro-
duce new features and phase out old ones, without breaking existing clients.The Sim-
pleDB client normally handles the versioning of each request, and there is nothing
specific for a user to do. However, as a user, you should understand the concept behind
versioning as a means of understanding the capabilities of the clients you evaluate and
compatibility with the code examples.

The code snippets in this chapter use version “2009-04-15” of the SimpleDB API.At
the time of this writing, that is the most recent version.The code here is also fully com-
patible with the prior API version “2007-11-07.” One notable change in the newer ver-
sion is that it no longer supports two of the previously available operations.The newer
functionality in Select has become the replacement for both Query and
QueryWithAttributes.AWS deprecated both of them, and they are only available in the
older version “2007-11-07” of the API.This book offers no coverage of Query and
QueryWithAttributes but provides extensive coverage of Select.

Common Response Elements
Every SimpleDB operation has a specific set of parameters and responses. However, Sim-
pleDB also returns two generic response values. Both BoxUsage and RequestID come
back as part of every success response and also as part of certain error responses.

Box Usage
BoxUsage is a fractional approximation of how much CPU time is consumed servicing
your request, in hours. Here is an example BoxUsage number from a GetAttributes re-
quest: 0.0000093382. For the purpose of clarity, this example value is a little more than
9.3 millionths of an hour, and it would take more than 100,000 requests with this usage
to break the one-hour mark for billing purposes.That is an important purpose of this re-
sponse value: to enable you to correlate requests and billing.At the end of the month,
AWS bills you for the sum of all your BoxUsage numbers, in addition to the cost of stor-
age and data transfer. Beyond the billing transparency, BoxUsage has a practical use in
helping you tune your queries.

SimpleDB computes BoxUsage based on a number of different factors, depending on
the operation. Some operations always return a constant BoxUsage and others compute a

48 Chapter 3 A Code-Snippet Tour of the SimpleDB API

number based on some combination of request parameters, response data, and existing
stored data.The important thing to understand is that the value is the result of a computa-
tion and not a measurement. It is not a record of actual CPU time; it is an estimate, which
allows consistency from one request to another and uniformity across a heterogeneous
network of machines.As a result, you are insulated from the variability in charges that
might otherwise arise based solely on which machines happened to service your requests.

Request Identifier
The other universal response element is RequestID. RequestID is a unique identifier at-
tached to each response, which AWS logs. It provides a mechanism for you to communi-
cate with AWS support regarding issues with specific requests. For applications where this
type of support is important, it is best to implement a mechanism to log the RequestID,
timestamp, error code, and error message for errors.

With these common elements covered, let’s move on to the actual SimpleDB operations.

CreateDomain
The CreateDomain operation allocates a new domain at the endpoint to which you are
connected.The only parameter to CreateDomain is the domain name you want to create.
Each domain name is unique only for the account making the request and the endpoint.
Because each endpoint is completely independent, you can have domains with the same
name at different endpoints.Also, domain names do not need to be unique across ac-
counts, so you are not limited to only those names not yet taken by other SimpleDB
users (as is the case with S3 buckets.)

Beware of Automated Domain Creation
CreateDomain and DeleteDomain are heavyweight operations. They each take a relatively
long time to complete, on the order of a fraction of a minute as opposed to the fraction of a
second typical of the other operations. And since your calls to them result in resource allo-
cation on multiple servers, the box usage is even larger than the response time would sug-
gest. As a result, you should treat CreateDomain and DeleteDomain as administrative
functions and avoid calling them from automated code.

One common scenario that can lead to problems is including domain creation as part of an
automated unit test suite or an automated build process. This has the potential to rack up a
lot of box usage charges unnecessarily. For example, if you create and delete three domains
as part of unit test setup and tear-down, you will incur about two minutes of box usage cost,
although issuing the calls concurrently may only take 20 seconds. This is roughly equivalent
to 3,500 calls to GetAttributes. If the testing framework invokes the setup and tear-down
functions before and after each test method, or if the tests are run by multiple users and an
automated build each day, you can see how this could start to get expensive. You can view
your current SimpleDB usage on the AWS website, but unless you specifically look at it, you
may not even notice the usage until the bill is generated at the end of the month.

49CreateDomain

You should use mock objects or a fake client for your testing. This is good general testing
practice; your unit tests should be testing small sections of your own code and not large
sections of Amazon’s code. It also has the benefit of allowing your test code to run without
the embedded credentials for an active AWS account.

CreateDomain Parameters
CreateDomain has only one parameter, as follows:

n DomainName (required)— The name of the domain to be created.The mini-
mum length is three characters and the maximum length is 255 characters.The
only valid characters for this parameter are letters, numbers,‘_’,‘-’, and ‘.’.

CreateDomain Response Data
CreateDomain does not return any operation-specific data. If the call returns an error
message, the domain was not created. If there is no error message, the domain was cre-
ated. Calling CreateDomain with the name of a domain that already exists does not result
in an error.The call has no effect on the existing domain.

There are three operation-specific errors SimpleDB may return from a CreateDomain.
The form of these errors depends on what client you use. Obvious errors may be pre-
vented or checked by the client before a web service call is made.The following is a com-
plete list of errors that can come back from a CreateDomain operation:

n MissingParameter— Returned when you fail to pass the DomainName param-
eter.

n InvalidParameterValue— Returned when the DomainName does not meet
the length or valid character range requirements.

n NumberDomainsExceeded— Returned when your account already has the
maximum number of domains.The default maximum is 100 domains.You can
request a higher limit at the AWS website: http://aws.amazon.com/contact-us/
simpledb-limit-request/.

The MissingParameter error is one that you are not likely to ever see.The SimpleDB
client will require a value to be present.

CreateDomain Snippet in Java
Here is the Typica code to create a domain:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

simpleDB.createDomain("users");

System.out.println("create domain succeeded");

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

http://aws.amazon.com/contact-us/simpledb-limit-request/
http://aws.amazon.com/contact-us/simpledb-limit-request/

50 Chapter 3 A Code-Snippet Tour of the SimpleDB API

System.err.printf("create domain failed: %s: %s", code, message);

}

If the call to createDomain() returns normally, the domain was created (or already
existed).Any problem, including InvalidParameterValue and NumberDomainsExceeded,
that results in a failure to create the domain throws an SDBException. Embedded in the
SDBException is a list of AWSError objects. In the case of operation-specific SimpleDB
error codes, there will only be one error, and that error will be holding the error code
and message from the SimpleDB response.

CreateDomain Snippet in C#
In C #, this is how you create a SimpleDB domain:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

CreateDomainRequest request = new CreateDomainRequest();

request.DomainName = "users";

try

{

simpleDB.CreateDomain(request);

Console.WriteLine("create domain successful");

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("create domain failed: {0}: {1}", code, message);

}

Request setup with the C# library for Amazon SimpleDB is a bit more verbose, but
the error code and message are conveniently available as properties of the exception.

CreateDomain Snippet in PHP
The PHP code using Tarzan looks like this:

$sdb = new AmazonSDB();

$domain = $sdb->create_domain('users');

sleep(15);

if ($domain->isOK())

{

echo 'create domain succeeded';

}

else

{

echo 'create domain failed: ';

$error = $domain->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

51ListDomains

The variable $domain holds the response in the form of a SimpleXML object. In the
case of an error that prevents the domain from being created, you have to navigate
through the XML response body to get to the error code and message.

ListDomains
The operation ListDomains returns a listing of all the domains associated with your ac-
count at that endpoint. If you have domains at different endpoints, you will need to issue
this call to each to get a full list of your domains.

ListDomains Parameters
There are two optional parameters for the ListDomains operation. However, the most
common usage is with no parameters at all.This is true because unless you have had your
allotment of domains increased, you can get a full listing of all your domains using the
no-parameter version:

n MaxNumberOfDomains (optional)— A number between 1 and 100 that speci-
fies the limit of domains to be returned in response to this call.The default value of
100 is used if you do not provide a value.

n NextToken (optional)— A value obtained from a previous call to ListDomains
that returned only partial results. Passing this value back enables you to pick up
with the next page of results.

The NextToken allows you to page through results in the same way for ListDomains
as it does with Select.The typical reason for getting only partial results is setting the
MaxNumberOfDomains on the prior call to be smaller than the number of domains you
have.You may never need to specify a limit via the MaxNumberOfDomains parameter, but
you should be prepared to handle a NextToken returned to you with a partial result.

ListDomains Response Data
The response from a ListDomains request is terse.The following is a list of the response
parameters returned from successful calls to this operation:

n DomainName— A list of the domain names.
n NextToken— A token indicating that a partial result has been provided. Passing

this token to a subsequent ListDomains call will allow you to pick up where the
last response left off.

A NextToken value does not have an explicit expiration, and there is nothing useful
that you can really do with it, apart from passing it back. Despite the fact that it will not
expire, you do not want to keep that value around for later use.You should use it for a
follow-up request and then discard it. Domains that are created after a specific NextToken
value is issued may not appear in response to requests with that old NextToken value.

52 Chapter 3 A Code-Snippet Tour of the SimpleDB API

The actual content of the NextToken value returned by SimpleDB is somewhat of a
black box, in that you don’t really know what is in there. It enables SimpleDB to resume
processing your request mid-stream without having to route your follow-up requests to
the same back-end server. It is an encoded value that SimpleDB expects you to pass back
unmodified. If you are the curious type, however, you can work out what is inside it.

The full list of error responses that can come back from a ListDomains operation is
equally brief:

n InvalidParameterValue— Returned when the MaxNumberOfDomains pa-
rameter is not between 1 and 100.

n InvalidNextToken— Returned when you pass a NextToken that is not valid.

ListDomains Snippet in Java
The Java code to perform a ListDomains operation for the European endpoint is here:

boolean secure = true;

String eu = "sdb.eu-west-1.amazonaws.com";

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey, secure, eu);

try {

ListDomainsResult result = simpleDB.listDomains();

for (Domain domain : result.getDomainList()) {

System.out.println(domain.getName());

}

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("list domain failed: %s: %s", code, message);

}

The endpoint for Europe is set by means of a four-argument alternate constructor.
The extra two parameters beyond what we have seen already are a boolean indicating
whether to use SSL and the endpoint domain.After the constructor, the code is the same
regardless of endpoint.The result of the ListDomains() method is a List of Typica
Domain objects wrapped in a ListDomainsResult object.

ListDomains Snippet in C#
In C#, you can produce a domain listing from the European endpoint, like this:

AmazonSimpleDBConfig config = new AmazonSimpleDBConfig();

config.ServiceURL = "http://sdb.eu-west-1.amazonaws.com/";

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret, config);

ListDomainsRequest request = new ListDomainsRequest();

try

{

ListDomainsResponse response = simpleDB.ListDomains(request);

53ListDomains

ListDomainsResult listDomainsResult = response.ListDomainsResult;

foreach (String domainName in listDomainsResult.DomainName)

{

Console.WriteLine(domainName);

}

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("list domain failed: {0}: {1}", code, message);

}

The endpoint here is also set via a constructor; in this case, it takes an object of class
AmazonSimpleDBConfig.There are numerous properties available to set on the configura-
tion object, but the only one of concern here is the ServiceURL.The
ListDomainsResult holds all of the domain names in DomainName property of type
List<String>.

ListDomains Snippet in PHP
To list all the domains associated with an AWS account at the European endpoint with
PHP, use the following code:

define('SDB_DEFAULT_URL', 'http://sdb.eu-west-1.amazonaws.com');

$sdb = new AmazonSDB();

$domain_list = $sdb->list_domains();

if ($domain_list->isOK())

{

foreach($domain_list->body->ListDomainsResult->DomainName as $name)

{

echo $name . PHP_EOL;

}

}

else

{

echo 'list domain failed: ';

$error = $domain_list->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

Tarzan uses a constant to determine which endpoint to use.The first line of the pre-
ceding code snippet redefines that constant to be the URL of the endpoint in Europe.
The list of names takes the form of an array of strings within the ListDomainsResult.

54 Chapter 3 A Code-Snippet Tour of the SimpleDB API

DeleteDomain
The DeleteDomain operation is the analog to CreateDomain. It permanently deletes all
the data associated with the named domain. Like CreateDomain, calling DeleteDomain
multiple times, with the same name as a previous call or one that does not exist will not
result in an error.As with all operations, the scope of this operation is limited to the end-
point to which you issue the request. If you have domains with the same name at differ-
ent endpoints, you will need to call DeleteDomain at each endpoint to delete them all.

DeleteDomain is a heavyweight operation as detailed in the CreateDomain warning
section.Whether returning success in ten seconds or failure in one second, you will be
charged for at least an order of magnitude greater box usage than with the lighter opera-
tions. Call DeleteDomain from automated processes (like tests) with great caution, or
preferably not at all.

DeleteDomain Parameters
DeleteDomain accepts a single parameter.The parameter to this operation is as follows:

n DomainName (required)— The name of the domain to be deleted.The mini-
mum length is 3 characters and the maximum length is 255 characters.The only
valid characters are letters, numbers,‘_’,‘-’, and ‘.’.

Passing the name of an existing domain will ensure that you do not pass an invalid pa-
rameter here.Valid names that do not exist will be silently ignored.

DeleteDomain Response Data
No specific data comes back from a DeleteDomain operation with the exception of an
error message. If an error message is returned, the domain was not deleted.A normal re-
turn from this operation indicates a successful deletion.Although the official documenta-
tion lists only a single error for this operation, there are actually two possible errors that
could be returned as part of an abnormal response.Those two error codes are listed here:

n MissingParameter— Returned when the required domain name parameter is
not present.

n InvalidParameterValue— Returned when the DomainName does not meet
the length or valid character range requirements.

You will probably never see a MissingParameter error response since the function or
method you call will require its presence. InvalidParameterValue is not listed as a
DeleteDomain-specific error response in the official documentation, but you will get it if
you call this operation with an invalid name.

55DeleteDomain

The most likely scenario is that you pass the name of an existing domain to this opera-
tion.When an existing name is passed, you will never see either of these errors.

DeleteDomain Snippet in Java
Deleting a domain using Java is shown in this code snippet:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

simpleDB.deleteDomain("users");

System.out.println("delete domain succeeded");

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("delete domain failed: %s: %s", code, message);

}

The deleteDomain() method returns no value. If the method call returns without
throwing an exception, the domain has been deleted.

DeleteDomain Snippet in C#
Here is the C# code to delete a domain:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

DeleteDomainRequest request = new DeleteDomainRequest();

try

{

request.DomainName = "users";

simpleDB.DeleteDomain(request);

Console.WriteLine("delete domain successful");

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("delete domain failed: {0}: {1}", code, message);

}

The DeleteDomain() method takes a DeleteDomainRequest as a parameter, and if it
returns normally, the domain was deleted or did not exist. In the case of an error, an
AmazonSimpleDBException is thrown, and the domain was not deleted.

DeleteDomain Snippet in PHP
This is how you implement domain deletion in PHP:

$sdb = new AmazonSDB();

$domain_delete = $sdb->delete_domain('users');

56 Chapter 3 A Code-Snippet Tour of the SimpleDB API

sleep(15);

if ($domain_delete->isOK())

{

echo 'delete domain succeeded';

}

else

{

echo 'delete domain failed: ';

$error = $domain_delete->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

As with Java and C#, nothing interesting is returned in the case of success.The normal
return of the operation signals successful deletion, subject to eventual consistency.

DomainMetadata
The DomainMetadata operation returns detailed information about one domain.The in-
formation includes key size metrics across the dimensions of a domain, which have a
billing component or enforced limits.This information, if saved periodically, is useful for
tracking the growth of a domain over time.Tracking growth is important if you are con-
cerned about reaching the domain size limits.

DomainMetadata Parameters
The full list of parameters that can be passed to this operation has a single entry:

n DomainName (required)— The name of the domain for which metadata is to be
returned.

DomainMetadata Response Data
The response data contains numeric values for all the counts and sizes that pertain to
your data storage within the specified domain. Here is the list of response values from this
operation:

n ItemCount— A number representing the count of all items in the domain.
n ItemNameSizeBytes— The accumulated size, in bytes, of all the item names

in the domain.
n AttributeNameCount— A number representing the count of all unique at-

tribute names in the domain.
n AttributeNameSizeBytes— The total storage size of attribute names, in

bytes. Each unique attribute name that you put into a domain counts once for stor-
age purposes.

57DomainMetadata

n AttributeValueCount— A number representing the count of all name/value
pairs in the domain.

n AttributeValueSizeBytes— The total storage size of attribute values, in
bytes.

n Timestamp— The time at which the metadata was computed, in Unix time.

In the case of a bad request, one of the following DomainMetadata-specific error re-
sponses comes back:

n NoSuchDomain— Returned if the specified domain name does not exist at that
endpoint.

n MissingParameter— Returned if the request did not include a DomainName.

The two current domain size limitations are 1 billion attributes and 10GB of storage.
You can see how close you are to the attribute limit by looking at the
AttributeValueCount number.Adding up the three byte sizes in the metadata gives you
the total user storage for the domain.This tells you how close you are to the 10GB limit.
Plotting those two metrics over time in a report can inform decisions about using addi-
tional domains.

Another benefit to this metadata is the billing transparency it affords.AWS bills you for
the storage you use in terms of GB per month.To arrive at the final storage number, the
storage in each of your domains is sampled periodically.There are no assurances that the
metadata is updated at the same frequency as the automated sampling. However, it does
enable you to monitor the size of your own data storage at the finer grain level of the in-
dividual domain.

The metadata is not the result of a fresh computation for each call.The data is calcu-
lated and then cached.You can see how fresh the data is by looking at the Timestamp re-
sponse value.Typically the metadata updates differently based on usage of the domain.
Domains with normal everyday usage seem to update once a day between midnight and
1:00 a.m. Eastern time. New domains and rarely used domains do not show that same
pattern. However, at various times, freshly computed metadata can come back from con-
secutive calls, so there are no hard and fast rules.Treat the domain metadata as if it were
served from a day-old cache, even though it may sometimes be fresh. Feel free to use it in
a graph that plots storage over time or in a chart that shows how evenly your data is dis-
tributed across domains. Just do not use it immediately after a call to PutAttributes or
DeleteAttributes as a way to verify success. In the same way, it is not suitable for use in
an automated verification step of a unit test or a data import tool.

DomainMetadata Snippet in Java
The metadata fetching code using Java looks like this:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

Domain d = simpleDB.getDomain("users");

58 Chapter 3 A Code-Snippet Tour of the SimpleDB API

DomainMetadataResult meta = d.getMetadata();

System.out.printf("'%s': %d items", d.getName(), meta.getItemCount());

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("domain metadata failed: %s: %s", code, message);

}

The Typica class that holds the resulting metadata is DomainMetadataResult, and it
defines seven properties for access to the seven data values in the response.This sample
only accesses the ItemCount property.

DomainMetadata Snippet in C#
The code implementing a domain metadata request in Amazon’s C# library is as follows:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

DomainMetadataRequest request = new DomainMetadataRequest();

String domain = "products";

try

{

request.DomainName = domain;

DomainMetadataResponse resp = simpleDB.DomainMetadata(request);

DomainMetadataResult meta = resp.DomainMetadataResult;

Console.WriteLine("'{0}': {1} items", domain, meta.ItemCount);

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("...failed: {0}: {1}", code, message);

}

The DomainMetadataResult embedded in the response allows access to all of the
metadata properties. Here, the sample code writes the DomainName and the ItemCount to
the console.

DomainMetadata Snippet in PHP
In Tarzan for PHP, you pull the metadata for a domain like this:

$sdb = new AmazonSDB();

$meta = $sdb->domain_metadata('products');

if ($meta->isOK())

{

$meta_values = $meta->body->DomainMetadataResult;

59PutAttributes

echo 'products: ' . $meta_values->ItemCount;

}

else

{

echo 'domain metadata failed: ';

$error = $meta->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

All of the resulting metadata values are accessible by name inside
DomainMetadataResult via SimpleXML.

PutAttributes
PutAttributes is the operation that enables you to store data in SimpleDB.As the name
suggests, each element of data you pass must be in the form of an attribute, which is sim-
ply a name/value pair.An example of a name/value pair that you can store is “song-ti-
tle”:“Everything”.You can store more than one attribute at a time with this call, so the
following is valid:“song-title”:“Everything”,“artist”:“Michael Bublé”,“album”:“Call Me
Irresponsible”. Each attribute name can have multiple values as well. In the case of the
previous example, you can add tags to the song data by storing additional attributes with
the same name:“tags”:“jazz”,“tags”:“alternative”,“tags”:“vocal”.

All of the data stored by a single invocation of this operation is stored in the context of
a single item.You specify that item by supplying an ItemName along with the attribute
pairs.The concept of an item is roughly analogous to a database row.The ItemName is like
a row’s primary key; it needs to exist, and it needs to be unique.

In SimpleDB, you must always provide your own ItemName; there are no auto-incre-
ment fields. Because you do not define columns in SimpleDB, each item can have
whichever attributes you chose. In this regard, PutAttributes fills the role of both SQL
Insert and SQL Update, where none of the columns are predefined and all of them are
nullable.

The only distinction between inserting and updating is an optional Replace flag.To
continue with the prior example, if you want to add an additional tag to the song at a
later time, you can issue another PutAttributes call with a single attribute:“tags”:“con-
temporary”. If you do that PutAttributes but set the Replace flag, instead of adding an
additional attribute, the existing three “tags” attributes will be removed and only the new
one will remain.

All of the changes in a single PutAttributes call are applied atomically so that subse-
quent read operations never return a partial update. In addition to the implicit atomicity,
an explicit conditional check against one attribute can be included to add transactional
semantics.You have the option of checking for the existence, non-existence, or specific
value of any single-valued attribute in the item being updated.The write will succeed
only when the condition is met and fails with a specific error code otherwise.

60 Chapter 3 A Code-Snippet Tour of the SimpleDB API

Do Items Even Exist?
Items are an interesting concept in SimpleDB. You’ll notice from the API that there are no
operations with “Item” in the name. There are no operations named CreateItem,
DeleteItem, and so on. And, in fact, you cannot explicitly create or delete them. If you hold
to the concept of an item, you would be forced to say that items are created the first time
you issue a PutAttributes call with a given ItemName and that they are deleted when the
last attribute with that ItemName is deleted.

The fact is that, in a way, items don’t really exist in SimpleDB. What exists is the ItemName.
Each ItemName is an immutable key that associates a group of attributes together. Never-
theless, the item is an important conceptual element. The limit of 256 attribute pairs that
can be grouped together is most clearly expressed as an attribute limit on items. All calls to
PutAttributes, GetAttributes, and DeleteAttributes require an ItemName, and
thinking about these operations in terms of “performing actions on items” is natural. The
entire basis of SimpleDB queries revolves around returning data matches at the item level.
And the query limits, both the default and what you can specify yourself, are expressed in
terms of item count. What is more, SimpleDB clients commonly use the item abstraction
when creating classes and methods.

The idea of items is central to SimpleDB, and you will see it referred to at all levels, from of-
ficial AWS documentation and code, to third-party SimpleDB clients, to anywhere people talk
about it. This book uses the term often because the concept is important and easy to un-
derstand. But on a practical level, you should be aware that the ItemName is the tangible
thing holding the concept together.

PutAttributes Parameters
As the primary write operation in SimpleDB, PutAttributes has a longer list of available
parameters than the previously shown operations.The full list of possible request parame-
ters is as follows:

n DomainName (required)— The name of the domain where the attribute(s) will be
stored.This parameter must be the name of a domain that has already been created.

n ItemName (required)— The unique key with which the attributes will be associ-
ated.This can be a new ItemName for the purposes of an insert or an existing
ItemName for the purposes of an update.The maximum length of this parameter is
1,024 bytes.

n AttributeName (required)— The name of the attribute, similar to a column
name, passed as a list in combination with an AttributeValue and optionally a
Replace flag.The minimum length is 1 and the maximum length of this parameter
is 1,024 bytes.

n AttributeValue (required)— The value to be stored, passed as a list in combi-
nation with an AttributeName and optionally a Replace flag.This value must be
present, but it can have zero length (the empty string).The maximum length of this
parameter is 1,024 bytes.

61PutAttributes

n ExpectedName (optional)— The attribute name to check for a conditional write.
This parameter is only valid when either an ExpectedValue or an ExpectedExists

is also included.The maximum length of this parameter is 1,024 bytes.
n ExpectedValue (optional)— The value to check for a conditional write.This

value must exist in SimpleDB in order for the conditional write to succeed.This pa-
rameter is only valid when an ExpectedName is also included.The maximum length
of this parameter is 1,024 bytes.

n ExpectedExists (optional)— The flag to check for existence in a conditional
write.When set to true, write only succeeds when the ExpectedName exists.When
false, write only succeeds when the ExpectedName does not exist.This parameter is
only valid when an ExpectedName is also included.The maximum length of this pa-
rameter is 1,024 bytes.

n Replace (optional)— The flag that specifies whether to replace the existing at-
tribute value, passed as a list in combination with an AttributeName and an
AttributeValue. If Replace is true, SimpleDB removes all of the existing attribute
values. If Replace is false, SimpleDB adds the new value to any existing values. If
this parameter is not given, a default value of false is used. If there is no existing at-
tribute, the Replace flag has no effect.

The operation takes DomainName, ItemName and conditionals as individual parameters.
AttributeName, AttributeValue, and Replace, on the other hand, are grouped together
and specified once for each attribute you are sending in the PutAttributes call.

The maximum number of attributes that you can store in an item is 256.You can pass
any number of them in a single call, up to the 256 limit, but it is wise to pass the fewest
number of attributes possible for reasons of box usage charges. In cases where
PutAttributes is used to update an existing item, this is easily accomplished by passing
only the changed values. Even in cases where PutAttributes is used to insert new data,
you may want to split the attributes into multiple calls to this operation if there are more
than 52 attributes. Chapter 11,“Improving the SimpleDB Client,” provides an in-depth
analysis into the surprising pricing issues surrounding PutAttributes.

Tip
You can set the replace flag to true on any PutAttributes call, even if the item doesn’t ex-
ist yet or the item doesn’t have the attribute you are passing. It won’t result in an error, but
it also doesn’t provide any benefit. A single PutAttributes call can accept hundreds of at-
tributes. Because the replace flag is set at the individual attribute level, you can mix replace
attributes with non-replace attributes in the same call. Of course, as always, all the attrib-
utes in a single call will apply to a single item.

The fact that PutAttributes accepts a variable amount of data presents a challenge to
SimpleDB client developers. It is not a challenge because it is difficult to implement, the
challenging part is trying to provide a high level of usability for many different use cases.
Decisions have to be made about how attribute data is structured within the program.

62 Chapter 3 A Code-Snippet Tour of the SimpleDB API

Even if you never write a SimpleDB client yourself, these decisions affect you as the user
of the client.

The typical solution for clients in statically typed languages like Java, is the use of an
Attribute class to hold name, value, and the replace flag.As a user, you first create the ob-
ject instances to hold the data and then pass those instances to the appropriate method of
the SimpleDB client.

PutAttributes Response Data
PutAttributes does not return any operation-specific data. If the call returns an error
message, none of the attributes were stored and none of the existing attributes requested
to be replaced (if any) were removed. If the call returns normally with no error message,
all of the attributes were stored and any existing attributes subject to replacement were re-
moved.Attributes stored with this operation are subject to eventual consistency as they
are automatically replicated in the background after this call returns.Any subsequent ac-
cess with GetAttributes or Select may not reflect changes for a brief period during
normal usage and longer periods during heavy load or a failure unless the
ConsistentRead flag is set.

These are quite a few possible error codes.The full list of error codes that can come
back in a PutAttributes response is as follows:

n InvalidParameterValue— Returned when the 1,024-byte size limit is ex-
ceeded by either the ItemName, the AttributeName, or the AttributeValue.

n MissingParameter— Returned when any of the four required parameters to
this operation are omitted. However, your SimpleDB client will require you to pass
these values, so this is an error code you are not likely to encounter in practice.

n NoSuchDomain— Returned when the domain name in the request did not exist
at that endpoint.

n NumberDomainBytesExceeded— Returned when the 10GB per domain
limit has been reached.

n NumberDomainAttributesExceeded— Returned when the 1 billion at-
tributes per domain limit has been reached.

n NumberItemAttributesExceeded— Returned when the 256 attributes per
item limit has been reached.

n AttributeDoesNotExist— Returned when the ExpectedExists parameter
was set to true and the ExpectedName or ExpectedValue did not exist.

n ConditionalCheckFailed— Returned when the ExpectedName parameter
unexpectedly exists or when ExpectedValue was different than the actual value.

n MultiValuedAttribute— Returned when the conditional check was
applied to a multi-valued attribute. Conditional checks can only be

applied to single-valued attributes.

63PutAttributes

If you fill up a domain to the limits with data, error responses from this operation is
where you will find that out. Once a domain is full, you will no longer be able to perform
any PutAttributes operations, even in cases where you are trying to submit replacements
that would have a net result of less storage being used.The PutAttributes operation does
not check to see what the result would be; it simply returns the error code as long as the
domain is full.You are still free to use as many GetAttributes and Select operations as
you wish. DeleteAttributes will work as well. Once you have deleted enough data to
drop below the limit, PutAttributes calls will be accepted again.

Full Items
On the SimpleDB back-end, the code that rejects PutAttributes requests due to full
items is separate from the code that actually applies the update. What this means is that
the 256 attributes per item limit in SimpleDB is not as hard and fast as you might think it
is. To ensure data integrity in an eventually consistent environment, the way the limit is im-
plemented is this: If the item specified in the PutAttributes request has fewer than 256
attributes, the put is allowed. If the item has 256 attributes or more, the put is rejected.
What this means is that if you have an item with 255 attributes and you submit a
PutAttributes request with an additional 256 attributes, the call will succeed, giving you
an item with 511 attributes.

This can come as a surprise, as can the fact that an item with 256 attributes will cause
the rejection of a PutAttributes that would replace attributes and leave the item below
the limit.

Whether you are considering the case of intentionally overstuffing your item or the case of
filling to the exact limit, limit yourself to 255 attributes per item so you aren’t stuck with
items that can only be updated with DeleteAttributes.

PutAttributes Snippet in Java
Storing data with the PutAttributes operation in Java is shown with this code:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

boolean replace = false;

ItemAttribute[] userData = new ItemAttribute[] {

new ItemAttribute("userid", "Mocky", replace),

new ItemAttribute("location", "Oswego", replace),

new ItemAttribute("tags", "SimpleDB", replace),

new ItemAttribute("tags", "Azure-Table", replace),

new ItemAttribute("tags", "App-Engine", replace),

};

try {

Domain domain = simpleDB.getDomain("users");

Item newItem = domain.getItem("1234567");

newItem.putAttributes(Arrays.asList(userData));

System.out.println("put attributes succeeded");

} catch (SDBException e) {

64 Chapter 3 A Code-Snippet Tour of the SimpleDB API

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("put attributes failed: %s: %s", code, message);

}

Instances of the ItemAttribute class are used to the name/value pairs, each with a re-
place flag. In this example, the attributes are stored in an array and subsequently converted
to a List for the putAttributes() call, where the actual web service call is made. Notice
that the sample code stores the multi-valued attribute “tags” by creating a separate
ItemAttribute for each value.Also notice that the putAttributes() method is in the
Item class and not in the SimpleDB class.

PutAttributes Snippet in C#
To accomplish PutAttributes in C#, use this code:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

RequestAttr[] userData = new RequestAttr[]

{

new RequestAttr().WithName("userid").WithValue("Mocky"),

new RequestAttr().WithName("location").WithValue("Oswego"),

new RequestAttr().WithName("tags").WithValue("SimpleDB"),

new RequestAttr().WithName("tags").WithValue("Azure-Table"),

new RequestAttr().WithName("tags").WithValue("App-Engine")

};

PutAttributesRequest request = new PutAttributesRequest();

try

{

request.DomainName = "users";

request.ItemName = "1234567";

request.WithAttribute(userData);

simpleDB.PutAttributes(request);

Console.WriteLine("put attributes successful");

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("put attributes failed: {0}: {1}", code, message);

}

This code sets up the PutAttributes call in the same way as the Java code sample. In
the C# case, the client-specific attribute class used to gather the request data is
ReplaceableAttribute, which has been remapped to the name RequestAttr. Notice
that a separate attribute is used for each of the values in the multi-valued attribute “tags.”

65GetAttributes

PutAttributes Snippet in PHP
This is how you store an item using PHP:

$sdb = new AmazonSDB();

$put = $sdb->put_attributes('users', '1234567', array(

'userid' => 'Mocky',

'location' => 'Oswego',

'tags' => array('SimpleDB','Azure-Table','App-Engine')

));

if ($put->isOK())

{

echo 'put attributes succeeded';

}

else

{

echo 'put attributes failed: ';

$error = $put->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

The PHP code using Tarzan does not require any special classes for gathering up the
request data.Associative arrays are used both for the mapping of attribute names to indi-
vidual values and for the mapping of attribute names to arrays of values.The code snippet
shows the latter type of mapping for the multi-valued attribute named “tags.”

GetAttributes
GetAttributes is the operation that allows primary key access to the data you have stored
in SimpleDB.You pass the DomainName and the ItemName, and you get back a listing of all
the attributes associated with that item. If you don’t need all the attributes, you have the
option of also passing an AttributeName list with the exact attributes you want.

GetAttributes Parameters
There are two required and one optional parameter for GetAttributes. Here is the full
list of those parameters:

n DomainName (required)— The name of the domain where the attributes are
stored.

n ItemName (required)— The unique key identifying the attributes to return.
n AttributeName (optional)— The name of the attribute(s) to which the re-

sponse should be restricted, passed as a list. If this parameter is omitted, all of the at-
tributes associated with this item will be returned.

66 Chapter 3 A Code-Snippet Tour of the SimpleDB API

n ConsistentRead (optional)— The flag that specifies whether to perform a
consistent read.When true, the most recent data is returned. Setting this flag to true
may result in greater latency and lower throughput.

GetAttributes Response Data
The data that is returned by this operation is a list of name/value pairs that makes up the
item you requested:

n AttributeName— The name of the attribute, similar to a column name.
n AttributeValue— The value associated with this AttributeName and this
ItemName by a previous PutAttributes call.The maximum length of this value is
1,024 bytes.The data is returned in the form of plain string data.

The response data in its raw form as it comes back from SimpleDB is a list.The client
you use may leave it as a list or convert it into a map, where the content of each
AttributeName is a key and maps to one or more AttributeValue values. Be aware that
the SimpleDB makes no guarantee with regard to the order of attributes in the response.
Attributes in the response do not come back in the original order specified in
PutAttributes, and they do not come back in the order of AttributeName request pa-
rameters.This undefined ordering can make map access a convenient way to access the
data when compared to iterating over a list repeatedly in search of a specific attribute.

Attributes are allowed to have multiple values in SimpleDB.When these multi-valued
attributes are returned via a GetAttributes response, there is a separate name/value pair
on the list for each value. In the case where your client converts the list into a map, it will
also convert multiple values into an array or a list for you.

There is not very much that can go wrong in the way of errors specific to a
GetAttributes operation:

n NoSuchDomain— The error code returned if the DomainName parameter does
not correspond to a domain created with your account at that endpoint.

n InvalidParameterValue— The error code returned if you pass an ItemName
or an AttributeName longer than 1,024 bytes in length. Because you could not
have stored any data with names that long, if you only pass existing ItemName and
AttributeName parameters, you will never get this error code.

n MissingParameter— The error code returned if you fail to pass a DomainName
or an ItemName.The API of your client will protect you from getting this error.

Note that it is not an error to pass an ItemName that does not exist. Instead, an empty
list is returned.A request for an item that has not yet been fully replicated is not consid-
ered an exceptional case.As part of eventual consistency, it is possible that during a server
or network failure, items that exist at one replica of your domain have not yet propagated
to another.

67GetAttributes

Eventual Consistency for GetAttributes
Eventual consistency does not only apply to failure situations. It is built into the fabric of
how SimpleDB works. All the data you store with PutAttributes is replicated on different
back-end servers and across different Amazon data centers in the same region. This hap-
pens automatically behind the scenes. As a result, the updates you make with
PutAttributes and DeleteAttributes will always take some time to propagate to all
the replicas servicing a domain. Calls to GetAttributes immediately after an update will
still return responses in accordance with the prior state of things.

The ConsistentRead flag can be set on a GetAttributes request to eliminate the con-
sistency window. Data returned from a consistent read reflects all of the prior writes. This
allows you to immediately follow a write with a consistent read to verify what was written.
If consistency cannot be established during a consistent read the call will return a
ServiceUnavailable error. When that happens, the application can abort the task, however, it
also has the option to turn off the flag and use the results of an eventually consistent read.

Sub-second consistency times commonly occur during normal usage, but this is not guaran-
teed. Nor should you write an application that relies on a specific consistency time for cor-
rect function. If you need immediate read access to a value you just stored, consistent
reads are the solution. Nevertheless, be aware that consistent reads may be more sensitive
to hardware and network failures.

GetAttributes Snippet in Java
Getting back the data you previously stored via primary key is shown here in Java:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

Domain domain = simpleDB.getDomain("users");

Item item = domain.getItem("1234567");

List<String> allAttributes = null;

Map<String,List<String>> user = item.getAttributesMap(allAttributes);

String name = user.get("userid").get(0);

String location = user.get("location").get(0);

List<String> tags = user.get("tags");

System.out.printf("%s (%s) follows %s", name, location, tags);

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("get attributes failed: %s: %s", code, message);

}

With Typica, it is possible to retrieve the results of the GetAttributes operation as a
Map or a List. In both cases, there is a single required parameter, which is the list of attrib-
ute names you are requesting.To get them all, pass null to the method.The preceding

68 Chapter 3 A Code-Snippet Tour of the SimpleDB API

sample code passes null via the extraneous variable allAttributes to prevent a mysteri-
ous null parameter from causing reader confusion.

The data from this call comes back in the form of a String to List<String> mapping
of attribute names to values.The map format is convenient when you know the names of
the attributes you want to access.The values being inside a list provides the capability to
handle both single-valued and multi-valued attributes in a consistent way. Note that this is
different from the way the data is passed into Typica’s PutAttributes call and that it re-
quires the extra step of indexing into the list to access the value of single-valued attributes.

GetAttributes Snippet in C#
The same functionality discussed in the previous section looks like this in C#:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

GetAttributesRequest request = new GetAttributesRequest();

try

{

request.DomainName = "users";

request.ItemName = "1234567";

GetAttributesResponse resp = simpleDB.GetAttributes(request);

GetAttributesResult user = resp.GetAttributesResult;

List<Attr> attrs = user.Attribute;

String name = attrs.Find(

delegate(Attr a) { return a.Name == "userid"; }).Value;

String location = attrs.Find(

delegate(Attr a) { return a.Name == "location"; }).Value;

List<Attr> tags = attrs.FindAll(

delegate(Attr a) { return a.Name == "tags"; });

Console.Write("{0} ({1}) follows: ", name, location);

tags.ForEach(

delegate(Attr a) { Console.Write("{0} ", a.Value); });

Console.WriteLine();

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("get attributes failed: {0}: {1}", code, message);

}

The C# client only returns the data in the form of a list. Since access to attributes by
name is a common need, this example shows one way to do it. Here, List.Find() and
List.FindAll() are called, each with a delegate holding a specific attribute name.This
offers compatibility with C# 2.0+.With .NET 3.0+, LINQ offers a more concise syntax
to accomplish the same thing.

69DeleteAttributes

GetAttributes Snippet in PHP
Here is the PHP code to call the GetAttributes operation:

$sdb = new AmazonSDB();

$get = $sdb->get_attributes('users', '1234567');

if ($get->isOK())

{

$xml = $get->body;

$name = attribute_values($xml,'userid');

$location = attribute_values($xml,'location');

$tags = attribute_values($xml,'tags');

echo $name[0] . '(' . $location[0] . ') follows: ';

foreach ($tags as $tag)

{

echo $tag . ' ';

}

}

else

{

echo 'get attributes failed: ';

$error = $get->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

function attribute_values($xml, $name) {

$xml->registerXPathNamespace("sdb","http://sdb.amazonaws.com/doc/2009-04-15/");

$query = '//sdb:Value[../sdb:Name/text() = "' .$name. '"]/text()';

return $xml->xpath($query);

}

The Tarzan response to the GetAttributes request is a SimpleXML object, which you
are on your own to parse.To handle single-valued and multi-valued attributes consistently,
XPath was used here for pulling the values out.The function attribute_values() was
created to return an array of values given the SimpleXML and an attribute name. One
peculiarity of SimpleXML is that any default namespace in the document needs to be
registered with a prefix before the xpath() function will work properly.Additionally this
registration sometimes needs to be called before each XPath evaluation, and the XPath
expression must incorporate the prefix.

Those details are tucked away within the attribute_values() function. One side ef-
fect that remains is that an array is returned even in the case of single-valued attributes.
Note the indexed access to both $name and $location.

70 Chapter 3 A Code-Snippet Tour of the SimpleDB API

DeleteAttributes
The DeleteAttributes operation enables you to remove data that has previously been
stored in SimpleDB.When you call DeleteAttributes, you must always pass a
DomainName and an ItemName.All the processing for a delete will take place within the
scope of that single item. DeleteAttributes also accepts several optional parameters that
allow you to control the granularity of the delete.You can delete attributes at three levels
of granularity, as follows:

n Delete the whole item.If you pass only the required DomainName an ItemName to
the operation, all the attributes associated with that ItemName will be deleted.

n Delete any and all values of specific attributes.If you pass a list of
AttributeName parameters in addition to the required parameters, only the attrib-
utes you specify will be deleted from that item.

n Delete only specific attribute values.If you want to delete individual values from
a multi-valued attribute, you can do that by specifying both the AttributeName and
AttributeValue to be deleted.

When the AttributeName and AttributeValue are passed to this operation, it is done
in the form of a list. If you want to delete several, but not all, values from a multi-valued
attribute, pass each name/value pair as a separate entry in the list.When you pass a list of
attributes for deletion, you are permitted to pass a list where some of the attributes in-
clude only a name while others include both a name and a value.

In addition to granularity, you can also specify one of three types of condition for the
delete to succeed.You can condition the delete on an attribute having a specific value, on
an attribute being present regardless of the value, or on the fact that an attribute must
not exist.

DeleteAttributes Parameters
The full list of parameters for the DeleteAttributes operation follows:

n DomainName (required)— The name of the domain where the attributes are
stored.This parameter must be the name of a domain that has already been created
at that endpoint.

n ItemName (required)— The unique key of the item associated with the attributes
to be deleted.

n AttributeName (optional)— The name of the attribute. Passed as a list, alone,
or in combination with a matching AttributeValue. Only used when some, but
not all, attributes in this item are to be deleted.

n ExpectedName (optional)— The attribute name to check for a conditional write.
This parameter is only valid when either an ExpectedValue or an ExpectedExists

is also included.The maximum length of this parameter is 1,024 bytes.

71DeleteAttributes

n ExpectedValue (optional)— The value to check for a conditional write.This
value must exist in SimpleDB in order for the conditional write to succeed.This pa-
rameter is only valid when an ExpectedName is also included.The maximum length
of this parameter is 1,024 bytes.

n ExpectedExists (optional)— The flag to check for existence in a conditional
write.When set to true, write only succeeds when the ExpectedName exists.When
false, write only succeeds when the ExpectedName does not exist.This parameter is
only valid when an ExpectedName is also included.The maximum length of this pa-
rameter is 1,024 bytes.

n AttributeValue (optional)— The attribute value to be deleted. Passed as a list
in combination with an AttributeName.This is only used when some values, but
not all, of a multi-valued attribute are to be deleted.

If you omit the optional AttributeName and AttributeValue, the whole item will be
deleted.

Note
All the attributes you pass for deletion will be deleted as a unit. However, the update will not
be immediately visible from calls to GetAttributes or Select. The time it takes for up-
dates to become visible is subject to eventual consistency. Don’t do a delete and then im-
mediately do a get to make sure it worked without also passing the ConsistentRead flag.
If the delete has not been fully processed yet, you will get back old values.

DeleteAttributes Response Data
No operation-specific data values come back from a successful DeleteAttributes call. If
the call returns normally, the delete was processed and the full contents of the request will
be processed. If the operation returns an error code, nothing will be deleted:

n NoSuchDomain— The error code returned if the DomainName parameter does
not correspond to a domain created with your account at that endpoint.

n InvalidParameterValue— The error code returned if you pass an
ItemName, AttributeName, or AttributeValue longer than 1,024 bytes in length.

n MissingParameter— The error code returned if you fail to pass a DomainName
or an ItemName.The API of your client will protect you from getting this error.

n AttributeDoesNotExist— Returned when the ExpectedExists parameter
was set to true and the ExpectedName or ExpectedValue did not exist.

n ConditionalCheckFailed— Returned when the ExpectedName parameter
unexpectedly exists or when ExpectedValue was different than the actual value.

n MultiValuedAttribute— Returned when the conditional check was ap-
plied to a multi-valued attribute. Conditional checks can only be applied to single-
valued attributes.

72 Chapter 3 A Code-Snippet Tour of the SimpleDB API

It is not an error to pass an ItemName that does not exist; neither is it an error to pass
an AttributeName or AttributeValue that does not exist. If there is no matching item,
the call will return normally and nothing will happen. If there is no match for an
AttributeName or AttributeValue parameter, it will be ignored while other valid attrib-
utes in the request are deleted. However, a single oversized parameter will trigger an
InvalidParameterValue and no deletes in the request will be processed.

DeleteAttributes Snippet in Java
This Java code shows how to delete one specific attribute value from an existing item:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

Item oldItem = simpleDB.getDomain("users").getItem("1234567");

boolean replace = false;

ItemAttribute delAttr = new ItemAttribute("tags", "App-Engine", replace);

oldItem.deleteAttributes(Collections.singletonList(delAttr));

System.out.println("delete attributes succeeded");

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("delete attributes failed: %s: %s", code, message);

}

As with the putAttributes() method in Typica, deleteAttributes() is called by
passing a list of ItemAttribute objects to an instance of the Item class.This example
shows the deletion of a single value from the multi-valued attribute created in the
PutAttributes code snippet. For the purpose of this example, the Java Collections API is
used to wrap a single attribute in a list.To delete more than one attribute, include a list
with an ItemAttribute for each one you want to delete.To delete the entire item, pass
null to the delete method.To delete the entire set of values for an attribute, omit the spe-
cific value (“App-Engine” in this sample) and only pass the attribute name inside an
ItemAttribute.

DeleteAttributes Snippet in C#
Performing the delete in C# can be done using the following code:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

DeleteAttributesRequest request = new DeleteAttributesRequest();

try

{

request.DomainName = "users";

request.ItemName = "1234567";

request.WithAttribute(

new Attr().WithName("tags").WithValue("App-Engine"));

simpleDB.DeleteAttributes(request);

73BatchPutAttributes

Console.WriteLine("delete attributes successful");

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("delete attribues failed: {0}: {1}", code, message);

}

A DeleteAttributesRequest object must be configured with a DomainName, an
ItemName, and a list of attributes to be deleted.To delete more than one attribute, add
more attributes to the list.To delete the entire item, omit the attribute list from the re-
quest.To delete all the values of a single attribute, omit the specific value (“App-Engine”
in this sample) and only pass the name to the Attr.

DeleteAttributes Snippet in PHP
Here is the PHP version of delete:

$sdb = new AmazonSDB();

$delete = $sdb->delete_attributes('users', '1234567', array(

'tags' => 'App-Engine'

));

if ($delete->isOK())

{

echo 'delete attributes succeeded';

}

else

{

echo 'delete attributes failed: ';

$error = $delete->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

Tarzan’s delete_attributes() method takes a DomainName, an ItemName, and an ar-
ray.To delete an individual value from a multi-valued attribute, as shown here, pass an
associative array of names to values.To delete all values of some attributes, pass just an
array of names. Omit the third parameter to delete the whole item.

BatchPutAttributes
The BatchPutAttributes operation enables you to store the data for multiple items in a
single call.All the data for a PutAttributes request is limited to a single item, whereas
BatchPutAttributes allows you to store up to 25 items. BatchPutAttributes has the
same capabilities and parameters as PutAttributes, but it has very different performance

74 Chapter 3 A Code-Snippet Tour of the SimpleDB API

characteristics.There is more initial request overhead when using BatchPutAttributes as
compared to PutAttributes.Although you can use this operation to store anywhere
from 1 to 25 items at a time, it is really only worth it when the number is closer to 25
than to 1. If you only have a few items to store, individual PutAttributes calls are likely
to be faster and more efficient.

There is no rule set in stone dictating the minimum number of items needed to make
BatchPutAttributes worth the overhead. In fact, the important factors for deciding
whether to batch up your puts have nothing to do with performance. One factor is the
way SimpleDB handles errors.All of the items in a batch will be rejected or accepted as a
unit. Items in the batch will never be partially applied. If your application needs to take
individual actions based on the results of each item in the batch (for example, generating
responses for application users), individual errors can be disruptive because just one of
them causes the entire batch to fail.You can avoid most of the errors that can occur with
BatchPutAttributes by sending a request that respects the operation limits. However,
you may have no way of knowing ahead of time that one of the items in the batch is
already at the 256-attributes limit and the whole operation will fail.This makes
BatchPutAttributes potentially cumbersome for updating existing items.

If you only have a few items at a time to store, if you are updating existing items or if
you need to minimize latency, my recommendation is to use PutAttributes. If you have
a large quantity of new data to store and total throughput is more important than individ-
ual request latency, BatchPutAttributes is a better option.

BatchPutAttributes Parameters
The parameters for BatchPutAttributes are the same as PutAttributes.The difference
is that instead of a single ItemName with a list of attributes, you have an ItemName list each
with a corresponding list of attributes:

n DomainName (required)— The name of the domain where the attribute(s) will be
stored.This parameter must be the name of a domain that has already been created.

n ItemName (required)— The unique key with which a list of attributes will be as-
sociated.This parameter is passed as a list, each with an associated sub-list of attributes.
This can be a new ItemName for the purposes of an insert or an existing ItemName for
the purposes of an update.The maximum length of this parameter is 1,024 bytes.The
maximum number of ItemName parameters for a single request is 25.

n AttributeName (required)— The name of the attribute, similar to a column
name, passed as a list in combination with an AttributeValue and optionally a
Replace flag.The minimum length is 1 and the maximum length of this parameter
is 1,024 bytes.

n AttributeValue (required)— The value to be stored, passed as a list in combi-
nation with an AttributeName and optionally a Replace flag.This value must be
present but it can have zero length (the empty string).The maximum length of this
parameter is 1,024 bytes.

75BatchPutAttributes

n Replace (optional)— The flag that specifies whether to replace existing attribute
values or merely add a new attribute value.This parameter is passed as a list in com-
bination with an AttributeName and an AttributeValue. If this parameter is not
given, a default value of false is used.

Your SimpleDB client will expose a specific interface for passing data in a batch.This
usually involves either a collection of objects, each representing an item, or a map object,
where each ItemName maps to a collection of attributes. In addition to the limits on spe-
cific parameters to this operation, there is a 1MB limit on the total request size.

Tip
To get the best performance from BatchPutAttributes, there are two criteria that must be
met. The items must not yet exist and no replace flag should be passed. Items meeting
these conditions appear to be processed by a faster algorithm than other items.

BatchPutAttributes Response Data
No operation-specific data comes back from BatchPutAttributes when the call is suc-
cessful. However, there are quite a few potential errors:

n InvalidParameterValue— Returned when the 1,024-byte size limit is ex-
ceeded by either the ItemName, the AttributeName, or the AttributeValue.

n DuplicateItemName— Returned when two or more of the items have the
same ItemName.

n MissingParameter— Returned when any of the four required parameters to
this operation are omitted. However, your SimpleDB client will require you to pass
these values, so this is an error code you are unlikely to encounter in practice.

n NoSuchDomain— Returned when the domain name in the request did not exist
at that endpoint.

n NumberDomainBytesExceeded— Returned when the 10GB per domain
limit has been reached.

n NumberDomainAttributesExceeded— Returned when the 1 billion at-
tributes per domain limit has been reached.

n NumberSubmittedItemsExceeded— Returned when you try to pass more
than 25 items in a single request.

n NumberSubmittedAttributesExceeded— Returned when you try to
pass more than 256 attributes for an item in a single request.

n TooLargeRequest— Returned when the size of your request is greater than
1MB.

n NumberItemAttributesExceeded— Returned when any items in the
batch already have 256 attributes stored in SimpleDB.This error can occur even if
you are reducing the number of attributes in the item by means of the replace flag.

76 Chapter 3 A Code-Snippet Tour of the SimpleDB API

The error message that accompanies this error code includes the offending
ItemName(s).

Of all the possible errors, only the last one cannot be prevented on the client side be-
fore the request goes out.Any error that occurs will cause the whole batch to be rejected
and none of the items will be stored.

Note
All the items that you include with a BatchPutAttributes request will be accepted or re-
jected as a unit. However, the updated items will not be immediately visible from calls to
GetAttributes or Select. The time it takes for updates to become visible to normal
reads is subject to eventual consistency, while consistent reads are capable of returning the
new data immediately in most cases.

Moreover, although the individual attributes in an item will be updated atomically, some
items may be updated before others. Therefore, you cannot use BatchPutAttributes to
guarantee transaction semantics, or consistency between items.

BatchPutAttributes Snippet in Java
Following is Java code to put multiple items at once:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

// a collection to map item name to attributes

Map<String, List<ItemAttribute>> items;

items = new HashMap<String, List<ItemAttribute>>();

items.put("Cigar001", buildRomeoCigar("No. 2", "90"));

items.put("Cigar002", buildRomeoCigar("Toro", "89"));

items.put("Cigar003", buildRomeoCigar("Churchill", "94"));

items.put("Cigar004", buildRomeoCigar("Robusto", "81"));

try {

Domain domain = simpleDB.getDomain("products");

domain.batchPutAttributes(items);

System.out.println("batch put succeeded");

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("batch put failed: %s: %s", code, message);

}

private List<ItemAttribute> buildRomeoCigar(String make,String rating) {

boolean replace = false;

ItemAttribute[] attributes = new ItemAttribute[] {

new ItemAttribute("ProductType", "Cigar", replace),

77BatchPutAttributes

new ItemAttribute("Supplier", "Romeo y Julieta", replace),

new ItemAttribute("Make", make, replace),

new ItemAttribute("Rating", rating, replace)

};

return Arrays.asList(attributes);

}

In Typica, gathering up items in the batch takes some setting up.A Map<String,
List<ItemAttribute>> must be assembled and passed to the batchPutAttributes()
method.To demonstrate one possible way to do this, the buildRomeoCigar() method
handles the repetitive portion of the setup.After each attribute list is placed into the map
(keyed by ItemName), the operation is invoked on an instance of the Domain class.

BatchPutAttributes Snippet in C#
Sending a batch of puts in one request is shown here using C#:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

BatchPutAttributesRequest request = new BatchPutAttributesRequest();

try

{

request.DomainName = "products";

request.WithItem(buildRomeoCigar("Cigar001", "No. 2", "90"));

request.WithItem(buildRomeoCigar("Cigar002", "Toro", "89"));

request.WithItem(buildRomeoCigar("Cigar003", "Churchill", "94"));

request.WithItem(buildRomeoCigar("Cigar004", "Robusto", "81"));

simpleDB.BatchPutAttributes(request);

Console.WriteLine("batch put successful");

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("batch put failed: {0}: {1}", code, message);

}

private ReplaceableItem buildRomeoCigar(String id, String make,

String rating)

{

RequestAttr[] attributes = new RequestAttr[] {

new RequestAttr().WithName("ProductType").WithValue("Cigar"),

new RequestAttr().WithName("Supplier").WithValue("Romeo y Julieta"),

new RequestAttr().WithName("Make").WithValue(make),

new RequestAttr().WithName("Rating").WithValue(rating),

};

ReplaceableItem item = new ReplaceableItem();

item.ItemName = id;

78 Chapter 3 A Code-Snippet Tour of the SimpleDB API

return item.WithAttribute(attributes);

}

The C# code is similar to the Java code, except that a list of ReplaceableItem objects
is used in place of a map.The buildRomeoCigar() method reflects these differences, tak-
ing an additional argument and returning a single instance that wraps the attribute list.
No specific data comes back from a successful invocation of this operation.The items will
be stored, subject to eventual consistency.

BatchPutAttributes Snippet in PHP
Here is the PHP code to make a BatchPutAttributes request:

$sdb = new AmazonSDB();

$batch = $sdb->batch_put_attributes('products', array(

'Cigar001' => array(

'ProductType' => 'Cigar',

'Supplier' => 'Romeo y Julieta',

'Make' => '"No. 2',

'Rating' => '90',

),

'Cigar002' => array(

'ProductType' => 'Cigar',

'Supplier' => 'Romeo y Julieta',

'Make' => 'Toro',

'Rating' => '89',

),

'Cigar003' => array(

'ProductType' => 'Cigar',

'Supplier' => 'Romeo y Julieta',

'Make' => 'Churchill',

'Rating' => '94',

),

'Cigar004' => array(

'ProductType' => 'Cigar',

'Supplier' => 'Romeo y Julieta',

'Make' => 'Robusto',

'Rating' => '81',

),

));

if ($batch->isOK())

{

echo 'batch put succeeded';

}

else

{

79Select

echo 'batch put failed: ';

$error = $batch->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

The batch_put_attributes() method takes a domain and an array.The array is con-
structed in much the same way as all of the arrays passed to Tarzan SimpleDB methods. It
is an associative array with ItemName mapped to an array of name/value pairs. Each at-
tribute value in turn, can be an array of values, allowing for multi-valued attributes.

Most of the example code is spent explicitly building up this array.The hard-coded
values used for illustration make the code look verbose, but in fact, it is the most concise
client when assembling batch put data in practice.

Select
The Select operation enables you to run queries against the data you have stored in
SimpleDB. Select uses query syntax similar to SQL select statements with which you
may already be familiar.There is a lot to know about the Select operation.This section
covers how to call the operation, including the parameters, the response data, and the er-
rors.The next chapter provides in-depth coverage of the syntax, options, and limitations
of Select.

Select Parameters
There are only three parameters to Select, and one of them is required:

n SelectExpression (required)— The expression used to find matching items.
n NextToken (optional)— A value obtained from a previous call to Select that

returned only partial results. Passing this value back (along with a
SelectExpression with the same WHERE clause) enables you to pick up with the
next page of results.

n ConsistentRead (optional)— The flag that specifies whether to perform a
consistent read.When true, the most recent data is returned. Setting this flag to true
may result in greater latency and lower throughput.

SelectExpression is the text of your query and is the only required parameter.There
is no DomainName parameter; however, the query must apply to a single domain.The do-
main is passed within SelectExpression in the FROM clause. If you need to query multi-
ple domains, you must submit a separate query for each domain.There is no way to
search multiple domains with one Select operation.The details of SelectExpression
are covered in Chapter 4,“A Closer Look at Select.”

80 Chapter 3 A Code-Snippet Tour of the SimpleDB API

Select Response Data
The response data for the Select operation is as follows:

n ItemName— The name of the item matching your query, returned in the form of
a list in combination with an optional list of AttributeName and AttributeValue

pairs for each ItemName. ItemName is always present in successful Select responses,
even if not specifically requested.

n AttributeName— The name of an attribute associated with an item matching
your query, returned as a list, always in combination with exactly one correspon-
ding AttributeValue.

n AttributeValue— The value of an attribute associated with an item matching
your query, returned as a list, always in combination with exactly one correspon-
ding AttributeName.The data is returned in the form of plain string data.

n NextToken— A token indicating that a partial result has been provided. Passing
this token to a subsequent Select call (along with a SelectExpression with the
same WHERE clause) will enable you to pick up where the last response left off.

The bulk of the response data is a list of items matching your query.The item forms the
basis not only of Select responses but of query processing as well.All the results are
matched at the item level. No comparisons are done between items, and there are no joins.

An ItemName value is always present in a successful response that contains data. It is
possible for a response to contain no data if there are no matching results or if the time-
out limit is reached before any matching items were found.You can request only
ItemName without additional attributes, but if you do request attributes, they are returned
as pairs with an AttributeValue for each AttributeName. In the case of multi-valued at-
tributes, a name/value pair (with the same name) is returned for each value.The order of
returned attributes is not guaranteed to match either the order you used in
PutAttributes or the order in which you request them in your SelectExpression.

NextToken acts as a control valve.The SimpleDB service tailors the size of Select re-
sponses to keep request processing within service limits.There are two hard service limits
on the Select operation.The maximum response size is 1MB; the limit on query pro-
cessing time is 5 seconds.There is also a configurable limit on the number of items in the
response, with a default of 100 and a maximum of 2,500. If SimpleDB reaches any of
these limits while building your Select response, the partial results are returned with a
NextToken.You can then repeatedly call Select again, passing the NextToken value with
the same SelectExpression, and you will get the next page of results, either the full list
of matches or until a limit is reached.A response without a NextToken signals the end of
the matching items.

NextToken is useful for more than just restriction enforcement by SimpleDB.When
used in conjunction with the LIMIT clause, it allows some of the functionality of a data-
base cursor, but without maintaining continuous resource allocation on the server.You
can fetch query results one at a time or in pages up to 2,500 at a time.You can seek ahead

81Select

in the results to an absolute or relative position, and you can use concurrency to pull
down many pages of results in parallel.

A specific NextToken value does not have an explicit expiration but it is not advisable
to store it for later use.Added or deleted items matching your query, which appear earlier
in your results than the NextToken value you may have saved, will not be reflected in sub-
sequent calls that pass the old NextToken value. For example, if you scroll ahead 1,000 in
a query result, the NextToken value will be pointing to item 1,001. If you store that token
and use it later, Select will still resume at the same item and it will return fresh data.
However, updates and deletes may have caused that item to now be at position 500 or
5,000 rather than the initial 1,001. It is best to use it for a follow-up request and then dis-
card it, getting a new one when you need it.

What follows is the lengthy list of all possible error codes returned by Select:

n MissingParameter— Returned when you omit the SelectExpression
parameter.

n InvalidParameterValue— Returned when your SelectExpression uses a
LIMIT that is not between 1 and 2,500 or an attribute name longer than 1,024 bytes.

n InvalidNextToken— Returned when you pass a NextToken that is not valid.
n InvalidNumberPredicates— Returned when your SelectExpression

contains more than 20 predicates.
n InvalidNumberValueTests— Returned when your SelectExpression

contains a predicate with more than 20 comparisons.
n NoSuchDomain— Returned when SelectExpression contains a domain that

does not exist at that endpoint.
n RequestTimeout— Returned sometimes when the query processing takes

longer than 5 seconds.
n TooManyRequestedAttributes— Returned when SelectExpression re-

quests more than 256 attributes.
n InvalidQueryExpression— Returned when your SelectExpression con-

tains a syntax error.

The error you will most commonly see when learning to use the Select syntax is the
last one, InvalidQueryExpression. It is triggered for all types of mistakes you can make
using SQL syntax constructs, which are not valid in SimpleDB queries.

Select Snippet in Java
This code prints out a single page of select results in Java:

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

Domain domain = simpleDB.getDomain("users");

printSelectResults(domain.selectItems("SELECT * FROM users", null));

} catch (SDBException e) {

82 Chapter 3 A Code-Snippet Tour of the SimpleDB API

AWSError error = e.getErrors().get(0);

String code = error.getCode();

String message = error.getMessage();

System.err.printf("select failed: %s: %s", code, message);

}

private void printSelectResults(QueryWithAttributesResult result) {

for (String itemName : result.getItems().keySet()) {

System.out.println(itemName);

for (ItemAttribute attr : result.getItems().get(itemName)) {

System.out.println("\t" + attr.getValue());

}

}

}

The sample code defines the SelectExpression, makes the call to Select, and prints
the results all in the same line.The null parameter after SelectExpression in the call to
selectItems() is the only other valid Select parameter: NextToken. It is null here
since this is an initial query.The printSelectResults() method iterates through the
map keys, which are returned by Typica.This map is in the same format that
batchPutAttributes() required in the previous Java snippet. Each key is an ItemName
and maps to an ItemAttribute list.The map could be empty if no items matched the
SelectExpression query.

The prior example used a simple query.The following example shows how to fetch
multiple pages of select results using NextToken and uses a much more specific query:

String select =

"SELECT Rating, Make, Supplier" +

" FROM products" +

" WHERE Rating > '85'" +

" AND ProductType = 'Cigar'" +

" ORDER BY Rating DESC" +

" LIMIT 2";

SimpleDB simpleDB = new SimpleDB(accessKeyID, secretAccessKey);

try {

Domain domain = simpleDB.getDomain("products");

String nextToken = null;

QueryWithAttributesResult results = null;

do {

results = domain.selectItems(select, nextToken);

printSelectResults(results);

nextToken = results.getNextToken();

} while (nextToken != null);

} catch (SDBException e) {

AWSError error = e.getErrors().get(0);

83Select

String code = error.getCode();

String message = error.getMessage();

System.err.printf("select failed: %s: %s", code, message);

}

In looking at the query, notice that there are only three specific attributes being re-
quested.This query matches up with the data stored in the prior BatchPutAttributes
code sample. Four items were stored in the “products” domain.This query only requests
the items with a rating greater than 85 and only two at a time. Because three of the four
items meet these criteria and the limit per page is two, the first Select will come back
with two items and a NextToken allowing retrieval of the final match.

A loop is used when calling selectItems() to handle an unknown number of pages.
The result is printed for each iteration, and the fresh NextToken is attached to the re-
quest.The existing request is reused with the same SelectExpression still attached.
When no token comes back, the loop falls through.

Also, notice that the query calls for results to be sorted by rating, from high to low.
When you run this sample code, look to see that all the ratings are greater than 85 and
that they are sorted.

Select Snippet in C#
This is the C# version of the single-page query code:

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

SelectRequest request = new SelectRequest();

try

{

request.SelectExpression = "SELECT * FROM users";

printSelectResults(simpleDB.Select(request).SelectResult);

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("select failed: {0}: {1}", code, message);

}

private void printSelectResults(SelectResult result)

{

foreach (Item item in result.Item)

{

Console.WriteLine(item.Name);

foreach (Attr attr in item.Attribute)

{

Console.WriteLine("\t{0}", attr.Value);

}

}

84 Chapter 3 A Code-Snippet Tour of the SimpleDB API

}

Each item returned from a single request is printed out in turn.The code for handling
multiple pages is shown here:

String select =

"SELECT Rating, Make, Supplier" +

" FROM products" +

" WHERE Rating > '85'" +

" AND ProductType = 'Cigar'" +

" ORDER BY Rating DESC" +

" LIMIT 2";

AmazonSimpleDB simpleDB = new AmazonSimpleDBClient(id, secret);

SelectRequest request = new SelectRequest();

try

{

request.SelectExpression = select;

SelectResult result = null;

do

{

result = simpleDB.Select(request).SelectResult;

printSelectResults(result);

request.NextToken = result.NextToken;

} while (result.IsSetNextToken());

}

catch (AmazonSimpleDBException ex)

{

String code = ex.ErrorCode;

String message = ex.Message;

Console.WriteLine("select failed: {0}: {1}", code, message);

}

Notice that this query is only requesting three specific attributes.This query matches
up with the data stored in the BatchPutAttributes code sample.With this query, only
the items with a rating greater than 85 are requested and a limit of two items is specified.
Because only three of the four items meet these criteria, the first select will contain two
items, and a NextToken and a second call, which includes that token, will contain the fi-
nal item.

A loop is used when calling Select() to handle an unknown number of pages. Dur-
ing each loop, results are printed, and the NextToken is attached to the existing request.
The existing request is reused since it is still configured with the same
SelectExpression.When no token is returned in the response, the loop falls through.

Also, notice that the SelectExpression value calls for results to be sorted by rating,
from high to low.When you run this sample code, look to see that all the ratings are
greater than 85 and that they are sorted.

85Select

Select Snippet in PHP
In PHP, you can fetch a single-page query like this:

$sdb = new AmazonSDB();

$select = $sdb->select('SELECT * FROM users');

if ($select->isOK())

{

print_select($select);

}

else

{

echo 'select failed: ';

$error = $select->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

function print_select($select)

{

foreach ($select->body->SelectResult->Item as $item)

{

echo $item->Name . PHP_EOL;

foreach ($item->Attribute as $attr)

{

echo "\t" . $attr->Value . PHP_EOL;

}

}

}

The code for multiple pages follows:

$select =

"SELECT Rating, Make, Supplier" .

" FROM products" .

" WHERE Rating > '85'" .

" AND ProductType = 'Cigar'" .

" ORDER BY Rating DESC" .

" LIMIT 2";

$sdb = new AmazonSDB();

$opt = null;

do

{

$select_result = $sdb->select($select, $opt);

if ($select_result->isOK())

{

$next_token = $select_result->body->SelectResult->NextToken;

86 Chapter 3 A Code-Snippet Tour of the SimpleDB API

print_select($select_result);

}

else

{

echo 'select failed: ';

$error = $select_result->body->Errors->Error;

echo $error->Code . ': ' . $error->Message;

}

$opt = array('NextToken' => $next_token);

} while ($next_token != null);

The variable $select now contains a query that is only requesting three specific at-
tributes.This query matches up with the data stored previously using the
BatchPutAttributes code sample.The query criteria only allow items with a rating
greater than 85 and limit two per response. Because only three of the four items meet
these criteria, the first select will contain two items and a NextToken, and a second call,
which includes that token, will contain the final item.

A loop is used when calling select() to handle an unknown number of pages. In the
body of the loop, results are printed and the current NextToken value is attached to the
existing request.The existing request is reused with the same SelectExpression.The
loop falls through when a token fails to come back.

Also, notice that the query string calls for results to be sorted by rating, from high to
low.When you run this sample code, look to see that all the ratings are greater than 85
and that they are sorted.

Summary
Each of the nine SimpleDB operations has been covered with multiple code samples.
There are many ways to use and combine the basic operation building blocks, and this
chapter has only scratched the surface of what is possible. One operation in particular is
worthy of considerably more attention, and that is Select.The Select operation is im-
portant to just about any use of SimpleDB. Its syntax is similar enough to SQL users that
it is easy to learn the basics. However, the next chapter will cover some subtleties in the
Select API.All the details will be provided, along with a large serving of practical advice.

4
A Closer Look at Select

The last chapter concluded with the mechanics of how to call Select, how to handle
the errors, and how to access the returned items.This chapter continues that discussion
with a walkthrough of the query language used in Select.

The chapter starts by walking through the five clauses that make up the Select query
language; some are required or conditionally required. Following that is the section on
data formatting. Nowhere in SimpleDB is the storage format of your data more impor-
tant than in the realm of queries.We then get into the nitty-gritty details of what Sim-
pleDB allows when forming expressions and predicates.The comparisons and operators
and how they interrelate is the real heart of Select.The chapter concludes with a look at
query performance: how to measure it, how to improve it, and how to avoid the common
query pitfalls.

No two people have the same level of technical background.To account for this, the
chapter follows a logical progression and is filled with small query examples. Seasoned
SQL veterans will be in familiar territory with this query language and may easily skim
over the simpler bits by scanning the titles and examples. Be aware, however, that despite
the similar syntax, there are differences.

Select Syntax
The SimpleDB Select API uses a query language that is similar to the SQL Select
statement.This query language makes SimpleDB Selects very approachable with a gentle
learning curve. Keep in mind, however, that SimpleDB applies the familiar SQL termi-
nology to domains and attributes rather than tables and columns.These structures are
analogous but not identical.Also, be aware that there are no relations, joins, or sub-selects.

Select But Not DELETE
The presence of an API roughly based on SQL Select statements might lead you to wonder if
there are also other SQL statements available, such as INSERT, UPDATE, or DELETE. The
answer is no; these other SQL statements do not exist in the SimpleDB API. All data,
whether new or updated, is stored via calls to PutAttributes.

88 Chapter 4 A Closer Look at Select

Notably, the bulk deletion capabilities of the SQL DELETE statement are absent. Data
can be stored or retrieved in batches, but items must be deleted one at a time.AWS has a
good record for responding to customer feedback, so if this becomes a highly requested
feature, it could be the target of a future enhancement.

Required Clauses
The minimal Select statement consists of two required clauses—an output selection clause
followed by a domain clause:

SELECT * FROM users

The output selection clause begins with SELECT and is followed by a specification of
what output is requested.The domain clause begins with the keyword FROM, and because
there are no joins in SimpleDB, ends with the case-sensitive name of a single domain to
be queried.The domain name is subject to the Select quoting rule for names.

Select Keywords
Keywords in the SimpleDB Select query language will be uppercase in the examples in this
book for clarity. However, they are not case sensitive. You can use lowercase in your own Se-
lect statements. A complete list of the Select keywords follow:

In addition, lowercase is used for all of the example domain names and attribute names to
easily distinguish between user-defined names and query language keywords.

Select Quoting Rule for Names
Domain names and attribute names can appear in various places within a Select expres-
sion. Depending on the characters used in a name, it may need to be quoted.The charac-
ter used for quoting names is the backtick (`). Quoting is optional if the name contains
only letters, numbers, dollar signs, and underscores and does not start with a number. In all
other cases, the name must be quoted with backtick characters.

SELECT IN NULL

FROM BETWEEN ORDER

WHERE AND BY

LIKE EVERY DESC

INTERSECTION IS ASC

OR NOT LIMIT

89Select Syntax

If the name itself contains the backtick character, it must be escaped when used in a
Select expression. Substitute each backtick with two backtick characters. For example, the
attribute name cats`dogs becomes `cats``dogs` when quoted and escaped according
to this rule.

Note
SimpleDB imposes much stricter naming requirements on domain names than on attribute
names. Because of the restricted set of characters, quoting is less frequently an issue for
domain names. The only characters allowed in a domain name that trigger the name quoting
rule are the dot (.), the hyphen (-), and a leading number.

Output Selection Clause
The initial clause of the Select expression lists the data to be returned for matching re-
sults.There are three ways to specify the output, all beginning with the SELECT keyword,
as follows:

n Use an asterisk to request all attributes:

SELECT * FROM users

n Use a function to request the count:

SELECT count(*) FROM users

n List the attribute names specifically:

SELECT id, name FROM users

The size of an explicit attribute list can be from 1 to 256.A comma is used to separate
attribute names when more than one is given. Each attribute name in this list is subject to
the Select quoting rule for names (as discussed previously).You can also request the item
name by including the function itemName() in the list:

SELECT itemName() FROM users

SELECT itemName(), `date-created` FROM users

Count Response Formatting
When you use count(*), the format is special and perhaps a bit unexpected. The actual re-
sponse is in the same structured XML data format as all Select responses with items and
attributes. Here is an example:

<Item>
<Name>Domain</Name>
<Attribute>

<Name>Count</Name>
<Value>49</Value>

</Attribute>

</Item>

90 Chapter 4 A Closer Look at Select

The thing to realize is that there is no real item named “Domain” with an attribute named
“Count.” This is just SimpleDB formatting the count data into the existing response format.
Realize that to get the count data, depending on your SimpleDB client, you may need to
make a call like the following in order to get the count value:

result.getItems().get("Domain").getAttribute("Count")

WHERE Clause
Select expressions with only Domain and Output selection clauses will return all the items
in the domain.The inclusion of a WHERE clause enables you to restrict query results to a
smaller subset.This clause is not required in a Select expression, but if you do include it, it
must immediately follow the Domain clause.

In a WHERE clause, you define a set of criteria, and only items that match all the criteria
are returned. For example:

SELECT * FROM users WHERE `last-name` = 'Smith'

When using this Select expression, only those items having an attribute named “last-
name” with a value of “Smith” are returned. Here, the equals operator is used in a single
comparison.There are a dozen other operators that you can use, and you can combine
multiple comparisons in a single query.The WHERE clause really forms the heart of the Se-
lect expression, determining the exact set of return items.A detailed discussion of the
available operators and how they are used in the context of comparisons occurs later in
this chapter.

Notice that both the attribute name and the attribute value are quoted in the preced-
ing example. But also notice that they are quoted using a different character.Attribute
names used in a WHERE clause are subject to the Select quoting rules for names.Attribute
values, on the other hand, are subject to the Select quoting rules for values.

Select Quoting Rules for Values
Unlike names that require quoting only when they contain certain characters, attribute
value constants must always be quoted within a Select.You can quote values using either
the single-quote character (‘) or the double-quote character (“):

SELECT * FROM users WHERE lastname = "O'Reilly"

SELECT * FROM users WHERE displayname = 'Mikki "The Great" Larkin'

If the chosen quote character appears within the constant, it must be escaped.As with
the backtick name quoting, escaping is accomplished by replacing each quote character
with two of that same quote character. Rewriting the preceding examples using the alter-
nate quote character for each demonstrates the escaping:

SELECT * FROM users WHERE lastname = 'O''Reilly'

SELECT * FROM users WHERE displayname = "Mikki ""The Great"" Larkin"

91Select Syntax

These two rewritten examples are functionally identical to the preceding two.The
choice of quote character has no bearing on the outcome of the Select. It is merely a mat-
ter of preference or convenience.

Sort Clause
When you call Select, SimpleDB does not guarantee the order of the results by default.
For example, when using the following Select expression, SimpleDB does not sort the re-
sults by name or score:

SELECT name, score FROM tests WHERE score < '75'

A common misconception is that results in this case are returned in the same order that
you inserted them. However, this is untrue.The default ordering is undefined. If you want
to guarantee the order of results, you must include a sort clause.

The beginning of the sort clause is signaled with the keywords ORDER BY immediately
following the WHERE clause.You must specify a single attribute name to sort on, and may
optionally include a sort direction.An example follows:

SELECT name, score FROM tests WHERE score < '75' ORDER BY score

This is the same as the prior Select example, but now the results will come back
sorted on the value of the score attribute.The default sort direction is ascending if no di-
rection is given.

SELECT name, score FROM tests WHERE score < '75' ORDER BY score ASC

This Select is the same as when no direction was given.To sort the results descending,
use the following:

SELECT name, score FROM tests WHERE score < '75' ORDER BY score DESC

Guaranteeing the Existence of Sort Attributes
Because SimpleDB never enforces any form of required attributes, your sort attribute might
not exist in all items that match your query. If this were to happen, SimpleDB would not re-
ally have a meaningful way to order your search results. You could argue that items without
the sort attribute should just be included at the end of the results, following the properly
sorted results. However, inclusion at the end does nothing to solve the ordering problem be-
tween those items at the end. Moreover, what is worse, if the sort attribute is not in the list
of requested attributes, there would be no way of knowing which of the result items had the
sort attribute and which did not.

SimpleDB prevents these issues by only accepting a sort when the accompanying WHERE
clause guarantees the presence of the sort attribute. Constructing such a WHERE clause is
not difficult. In fact, merely including the sort attribute in a comparison will usually be suffi-
cient to meet this requirement. The preceding example does just this:

SELECT name, score FROM tests WHERE score < '75' ORDER BY score

Restricting matches to those items with score less than '75' implicitly requires the attrib-
ute to exist.

92 Chapter 4 A Closer Look at Select

Here is a variation that fails this test and returns an InvalidQueryExpression response:

SELECT name, score FROM tests WHERE score < '75' ORDER BY name

In order to sort by name, the WHERE clause must guarantee the existence of that attribute. In
this case, we do not want to add any specific restrictions to the name, so the inclusion of the
IS NOT NULL comparison fits well:

SELECT name, score FROM tests

WHERE score < '75' and name IS NOT NULL ORDER BY name

The IS NOT NULL operator filters out any item from the results that does not have a value
for that attribute.

Note
Even though SimpleDB does not perform any schema enforcement, you may still implement
required attributes in your application logic. When this is the case, it means you must have
gone to the trouble of ensuring that a certain attribute always has a value. It can then seem
redundant and awkward that now, after having done all that, you must also add another com-
parison to your query that will always evaluate to true.

Consider, however, that the SimpleDB service has no way of knowing what your code is doing
now, or what someone else might change it to do in the future. The sorting in SimpleDB was
designed to return a meaningful response in all cases. Absent a schema, there needs to be
some mechanism to achieve it.

LIMIT Clause
The final clause in a Select is the optional LIMIT clause.The function of this clause is to
cap the number of results that will come back from a single call to Select.The syntax for
this clause calls for the keyword LIMIT followed by a number from 1 to 2500. Here is an
example of LIMIT used in a query:

SELECT name, score FROM tests WHERE score < '75' LIMIT 5

Every Select call is subject to limit processing; if you do not include a limit clause,
SimpleDB uses the default LIMIT value of 100.As the search results list is built during
query processing, if the size of the list reaches the limit value, processing stops and the re-
sults are returned.When this happens, SimpleDB returns a NextToken along with the
search results.The NextToken is an encoded value that holds the state information neces-
sary to allow processing to continue where it left off without the need for SimpleDB to
maintain the state on the back-end.This allows SimpleDB, internally, to handle any query
using any node that has a replica of the target domain. From the client side, query process-
ing can be resumed by making the same Select call and passing the NextToken.

The LIMIT clause is most obviously useful in those cases where you truly care about
only a certain number of results. For instance, when you want the name of the student
with the highest test score:

SELECT name, score FROM tests

WHERE score IS NOT NULL ORDER BY score DESC LIMIT 1

93Formatting Attribute Data for Select

Another common use of the LIMIT clause is to display search results one page at a
time. Setting the LIMIT to the size of the page lets you fetch the exact number of results
required for a single page. In this case, storing the NextToken will enable you to fetch the
next page more conveniently in response to a future request.

It is true that a query LIMIT is always in effect, whether default or specified, but there
are three cases where the Select call returns early without reaching the LIMIT.The first
case is when the number of items matching the query is smaller than the LIMIT value.You
will know this has occurred when the search response does not contain a NextToken.The
lack of a NextToken always signals that the full set of matching items has been returned.

The other two cases where Select returns before the LIMIT is reached involve other
service limits that take precedence.To maintain quality of service, SimpleDB enforces a
per-request restriction on the size of the response it is willing to send, and on the length
of time it is willing to spend. If the response size grows to 1MB or takes 5 seconds, the call
will return immediately with the results thus far, if any, and a NextToken. Consequently,
when you use a LIMIT clause to retrieve a specific number of items, you must check for
the presence of a NextToken and the number of items in the response to determine if you
need to issue another call to fetch the outstanding results.

Formatting Attribute Data for Select
All attribute values in SimpleDB are stored as raw character strings.This eliminates the
work and deployment headaches of rolling out cluster-wide schema changes. However,
the lack of a robust set of data types has serious implications for data formatting and
queries.

The issue with string data, with regard to queries, is the way comparisons are per-
formed, alphabetically from left to right. For instance, the following two names sort cor-
rectly, even though they are different lengths:

Samson

Samuels

Each character is compared in turn; this is a standard string comparison in all program-
ming languages and databases. However, numbers and dates do not fare as well with lexi-
cographical comparisons:

156

89

A left-to-right comparison wrongly places 156 as less than 89 after looking at only the
first character because 1 comes before 8.The problem, of course, is that the decimal places
need to be aligned, and left padding with zeros solves this problem:

156

089

This task is normally handled by a type system, which defines an exact length for each
numeric type. Because SimpleDB has no type system, it remains an issue for the applica-

94 Chapter 4 A Closer Look at Select

tion developer to handle. Unfortunately, there is more to deal with than length and
alignment.

Integer Formatting
The standard way to store integers is in a binary format using from 1 to 8 bytes depend-
ing on the maximum value that must be handled. Standard binary formats are not an
option in SimpleDB where all data is stored as text. It is possible to define ad-hoc for-
mats for individual attributes as you go, and this can be tempting especially when repre-
senting quantities like years where no additional formatting or padding is necessary.
However, a more general approach is to use formats compatible with standard integer
sizes.

The two most commonly used integer sizes in programming languages are 32-bit ints
and 64-bit longs.When represented as text without thousands separators, these integers
take 10 and 19 characters to represent. Using zeros to pad all integers to a length of either
10 or 19 characters allows SimpleDB querying to avoid decimal misalignment for all same
length comparisons. Here is an example of a large and a small 32-bit integer padded to 10
characters:

2147483647

0000001010

Mere padding works perfectly well for positive integers, but it does not solve the sort-
ing problem for negative numbers.With negative numbers, a higher number represents a
lower value.The number -5 is numerically less than -1, which is exactly backward from
lexicographical order.The solution is to add an offset value to every number before you
zero-pad and store it.The offset must be large enough to push all possible values out of the
negative.The lowest possible value for a 32-bit integer is -2147483648, so the smallest pos-
sible offset is 2147483648.The smallest 64-bit offset is 9223372036854775808. Using the
minimum offset, the examples of large and small 32-bit integers become the following:

4294967295

2147484658

This minimum offset approach is now fully functional for integer queries when com-
bined with padding. One unfortunate side effect of using this format is that the resulting
numbers bear no resemblance to the original values. It could be argued that this is a stor-
age format and that it, like a binary format, does not need to be readable.That argument
carries weight, if you have the type information and the tools to automatically format all
your numeric data and rewrite your application queries into this format. If you do not
have the tools, manual offsetting becomes necessary in order to transform the base query
you intend:

SELECT * FROM vendors WHERE `year-to-date-billing` > '25000'

into the offset and padded query that is required:

SELECT * FROM vendors WHERE `year-to-date-billing` > '2147508648'

95Formatting Attribute Data for Select

No one reading that query without a calculator is going to know what the value is. If
there is an arithmetic error, it is unlikely to be caught by someone reviewing the code.Al-
though it is not possible to preserve readability for all values, we can tweak our offset
value to make the positive numbers readable. If you take the minimum offset, with lengths
of 10 and 19 characters, and round it up to the next digit, you get a much friendlier num-
ber.The 10-digit 2147483648 becomes the 11-digit 10000000000, and the same tech-
nique applies to 64-bit values. Here is the base query repeated from the previous example:

SELECT * FROM vendors WHERE `year-to-date-billing` > '25000'

The constant must now be converted into a new format and the result is almost as easy
to understand:

SELECT * FROM vendors WHERE `year-to-date-billing` > '10000025000'

Ignoring the leading 1 does not require as much mental overhead. In addition, errors
are detectable without a calculator. Negative numbers, however, retain the readability
problem.A practical solution to that problem could come in the form of smart client-side
tooling that can handle the formatting automatically.

Floating Point Formatting
Floating-point numbers pose an additional challenge. Not only can the numbers be posi-
tive and negative, but the exponents can be positive and negative as well.What is more, it
is not possible to use an offset because of the limit on the number of significant digits that
can be preserved.Adding a large offset to a tiny fractional number could potentially wipe
out the data.There is no standard string representation for floating point numbers suitable
for lexicographical sorting that preserves numerical order. But remember that special for-
matting is only necessary for numeric attributes that will be in query comparisons or
sorts. If you do not need to compare the floating point numbers in a query, then you are
free to represent them in any format.

If, however, you do need to compare them, a method exists to represent floating point
numbers in a string format such that lexicographical text ordering rules result in proper
numeric ordering.This format is not a standard, and it accommodates decimals only up to
64-bits in length. Doug Wood published the technique in a proposed Internet draft in
1999 entitled:“Directory string representation for floating point values.”The draft appears
to have received no additional work or approval beyond the initial proposal, which ex-
pired in 2000.Although the text of the proposal contains a few minor errors, the idea is
suitable as a basis for query-friendly floating-point storage format in SimpleDB. However,
the level of complexity puts its implementation beyond typical application development.
This type of formatting is most appropriately found in a SimpleDB client.

Date and Time Formatting
As with all data stored in SimpleDB, there is no intrinsic type information associated
with attributes that contain timestamps, and so there are no official requirements on how
you must store them. Like other types of data, the only caveat is that if you want to use

96 Chapter 4 A Closer Look at Select

query comparisons and sorting with your date values, they must be formatted to sort
chronologically.

The Internet standard timestamp format is defined by RFC 3339 and is widely used
for the storage and transmission of dates over the Internet.Applying a string sorting to
timestamps in RFC 3339 format results in a time-ordered sequence.This is the exact be-
havior required for query comparisons in SimpleDB. Because it is easy to create date
strings in this format using built-in programming language facilities, this is the recom-
mended format for all SimpleDB timestamp data.

RFC 3339 is a profile of the much more complex, international standard ISO 8601
and is based on the Gregorian calendar and the 24-hour clock.Timestamp rendering is in
a format of increasing precision from left to right, for example:

2010-07-16T12:20:30Z

This example shows the four-digit year, two-digit month, and two-digit day separated
with hyphens.The literal ‘T’ character marks the beginning of the time data.The hours
minutes, and seconds each span two digits and are separated by a colon.All of these com-
ponents are fixed length.The full four-digit year must always be used, and each of the re-
maining two-digit values must be zero padded when less than 10.The format ends with
the time zone indicator—in this case,‘Z’.

Because of the convoluted and unpredictable nature of local time rules, the format is
based on Coordinated Universal Time (UTC). If the timestamp directly represents a time
in UTC, the literal ‘Z’ character appears immediately after the time to indicate no time
zone offset. If the time is in a different time zone, the difference between that zone and
UTC is represented as an offset in hours and minutes, as in the following example of a
timestamp in the U.S. Eastern time zone:

2010-07-16T07:20:31-05:00

Notice that this example represents a point in time one second later in absolute time
than the preceding one, but the difference in time zone causes it to appear earlier in a lex-
icographical sort. Converting all times to UTC is important for timestamps that represent
absolute times—for instance, when used to track peak global request volume for a web
service. If the timestamp is specifically representing a point in time in a certain time zone,
retain the local time along with the appropriate offset.This would be the case, for exam-
ple, if the data contains the time of day that subjects are awake during a sleep study. How-
ever, be aware that all timestamp data, whether local or absolute, can be meaningfully
compared only to other timestamps in the same format. So, choose a single convention for
each SimpleDB attribute name and stick with it.

This format also makes it possible to represent higher-precision timestamps using frac-
tions of a second.To include this information, expand the seconds beyond two digits by
placing a trailing dot (.) followed by the fractional digits:

2010-07-16T12:20:30.453Z

97Expressions and Predicates

Case Sensitivity
All query comparisons in SimpleDB are case sensitive and based entirely on the byte value
of each UTF-8 character.This means that the value ‘Jones’ is not equal to the value ‘jones’,
because of capitalization. More than that, because all the uppercase letters have lower byte
values than the set of all lowercase letters, inconsistent capitalization results in a sort order
that appears wrong to case-insensitive eyes.The following example shows three names
sorted alphabetically using UTF-8:

Richards

Stewart

jagger

In an ascending sort, all lowercase values will appear strictly after all uppercase values.
This is the lexicographical order for UTF-8. If a case-insensitive query is needed, the so-
lution is to store both the original value and a lowercase counterpart of the value, direct-
ing all query comparisons to the lowercase version. Here is an example:

SELECT name FROM members WHERE `name-lowercase` < 'watts' ORDER BY `name-lowercase`

Be sure that all string literals are also lowercase in these types of comparisons.

Expressions and Predicates
The earlier section on the WHERE clause briefly alluded to predicates and the comparisons
within them.This section offers a more thorough dissection of this important area.

A predicate is the set of comparisons made for a given attribute within the WHERE
clause. Here is an example of a single predicate with a single comparison:

WHERE date LIKE '200%'

Multiple comparisons for the same attribute are combined into the same predicate. For
example:

WHERE date LIKE '200%' OR date > '1989'

This is still one predicate because all the comparisons are for a single attribute.You can
use the operators AND and OR to separate comparisons.The order of comparison evaluation
is from left to right within a predicate. Specify comparison grouping using parenthesis, as
follows:

WHERE date LIKE '200%' OR (date > '1989' AND date <= '1993')

The SimpleDB query engine uses the full predicate to filter the target attribute values.
Only items where the target attribute values match the full predicate are returned.

The WHERE clause can contain more than one predicate.Additional predicates are
formed by including comparisons for different attributes, as follows:

WHERE date LIKE '200%' OR (date > '1988' AND date <= '1993')

AND `last-name` = 'Bush'

98 Chapter 4 A Closer Look at Select

Table 4-1 Simple Comparison Operators

Operator Meaning

= Matches equality

!= Matches inequality

> Matches values strictly greater than

>= Matches values greater than or equal to

< Matches values strictly less than

<= Matches values less than or equal to

This is a two-predicate query.You are permitted to have as many as 20 predicates in a
Select expression. Depending on how selective the predicates are, adding additional pred-
icates can negatively influence query performance.

There is an index in SimpleDB for each attribute, and so an index is available for each
predicate. SimpleDB attempts to choose the best index for each query as part of the exe-
cution plan. Indexes are discussed in greater depth later in this chapter.

Simple Comparison Operators
If you have even a passing familiarity with programming languages and with SQL, there
will be a number of simple operators you will expect to have available when constructing
query expressions. Most of these have been shown in example queries already.The discus-
sion of comparison operators begins with this set of basic ones shown in Table 4-1.All of
these operators take an attribute name or the function itemName() on the left side and a
constant value on the right.You cannot put an attribute name or itemName() on the right
side of the operator.

Range Operators
When constructing a query using a simple operator, you can define an open-ended range
with an expression like length <= '10000001024'.To define a more narrow range, you
can add a second expression by using AND:

SELECT * FROM posts WHERE length <= '10000001024' AND length >= '10000000140'

The combination of a greater-than comparison and a less-than comparison gives you
the flexibility to specify any range you may need.You can specify multiple ranges by en-
closing each range in parenthesis and using the OR operator between them, as in a previous
example.

If, however, you have the common case where you want to specify a range in terms of
<= on one side and >= on the other, you can use the BETWEEN operator:

SELECT * FROM posts WHERE length BETWEEN '10000001024' AND '10000000140'

99Expressions and Predicates

This will return the same results as the prior example.The BETWEEN operator takes the
standard attribute name or itemName() on the left and two constant values separated by
AND on the right.The comparisons matches are inclusive:Values are returned when they
are equal to or between the constants.

IN() Queries
In addition to queries that match all values in a range, there is a function that lets you
match a set of discreet values.The IN() function has the same capabilities as a long set of
equals operators. Instead of writing this:

WHERE id = '1' OR id = '2' OR id = '3' OR id = '4' OR id = '5' OR id = '6'

The IN() function lets you abbreviate it like this:

WHERE id IN('1','2','3','4','5','6')

The IN() function takes an attribute name or itemName() on the left and a list of
comma-separated constants between the parenthesis.You can include a maximum of 20
values as arguments to the function.When using the itemName() function with the IN()
function, it serves as a form of batch get.

Tip
It is an error to attempt more than 20 comparisons in a single predicate within the WHERE
clause of a Select, and each parameter to the IN() function counts as a comparison. If
you use all 20 available IN() parameter slots, you will not be able to use any other compar-
isons in that predicate. However, comparisons with different attribute names are in different
predicates. A maximum of 20 predicates are allowed. This means that you can make up to
20 separate calls to IN() each with 20 constants within a single Select, provided that no
single attribute exceeds the comparison limit. Nevertheless, just because it is possible does
not mean it is advisable. Examine the performance implications carefully before relying on
such a technique.

Prefix Queries with LIKE and NOT LIKE
The LIKE operator enables you to perform substring text matching as part of a query.
When using LIKE, the percent sign (%) is the wildcard character.To do a prefix search, put
the prefix constant followed by the percent sign within single quotes:

WHERE name LIKE 'Wil%'

You can also place the wildcard character at the beginning:

WHERE name LIKE '%Smith'

Finally, it can be placed at both the beginning and the end:

WHERE name LIKE '%son%'

Placing the wildcard at the beginning will circumvent the index and potentially re-
quire a table scan.This is an expensive operation, so combining it with other selective
comparisons is advised.

100 Chapter 4 A Closer Look at Select

You can use the NOT LIKE operator to match values that do not contain the specified
constant.The usage is the same as LIKE:

WHERE name NOT LIKE 'Wil%'

WHERE name NOT LIKE '%Smith'

WHERE name NOT LIKE '%son%'

IS NULL and IS NOT NULL
Testing for the existence of an attribute within an item can be an important condition,
and the IS NOT NULL operator enables you to do it.This operator takes a single attribute
name on the left side:

SELECT * FROM users WHERE `email-confirmation` IS NOT NULL

The IS NULL operator matches items where no value exists for the named attribute:

SELECT * FROM users WHERE `email-confirmation` IS NULL

A common use for IS NOT NULL, beyond the need to find values that exist, is to meet
the requirement of the WHERE clause to ensure that the sort attribute exists in all match-
ing rows:

SELECT * FROM users ORDER BY `date-created`

This Select returns an InvalidQueryExpression error because you cannot sort on an
attribute that might not exist in the result set.The easiest way to ensure existence is add an
IS NOT NULL test, as follows:

SELECT * FROM users WHERE `date-created` IS NOT NULL ORDER BY `date-created`

Multi-Valued Attribute Queries
An important consideration overlooked thus far is what is going to happen with these
comparisons for attributes with multiple values.The answer to this question is that each
attribute value is considered individually. Given the function of the operators as discussed
so far, considering each attribute individually might seem to be problematic. It is very pos-
sible to construct queries where every item with a multi-valued attribute is returned. For
example:

SELECT * FROM products WHERE count != '100'

Every item with more than one value for the “count” attribute will end up matching
this comparison because each value is required to be unique, therefore at least one value
must be something other than “100.” It is just as easy to construct a query that is guaran-
teed to match none of the items with multiple values. For example, consider that the
“products” domain has multi-valued attribute named “size” containing the available sizes

101Multi-Valued Attribute Queries

for the product.A query to find products that come in both medium and small might
look like this:

SELECT * FROM products WHERE size = 'S' AND size = 'M'

The preceding query can never return any values because both comparisons are evalu-
ated together as a single predicate against each value.

Beyond the mere avoidance of these problems, it is necessary to have a way to isolate
the individual values of a multi-valued attribute for comparison purposes.The SimpleDB
query language defines two constructs to fill this role: the INTERSECTION operator and the
EVERY() function.

Multiple Predicate Queries with the INTERSECTION Operator
To illustrate the difference between the single predicate queries demonstrated so far and
multiple predicate queries, here is an example scenario. Consider a data set where each
item in the domain is the bookmark of a user. One of the attributes stored with a book-
mark is tag.Tag can hold multiple values as defined by the user.This is the query to get
bookmarks with a specific tag—for instance,“css”:

SELECT * FROM bookmarks WHERE tag = 'css'

This works as expected for both items with a single tag attribute set to “css,” as well as
items with many tag values, one of which is “css”.You can run into problems when select-
ing for bookmarks tagged with two specific tags, though:

SELECT * FROM bookmarks WHERE tag = 'css' AND tag = 'html'

This does not work, and is actually guaranteed to always return no results.The reason
has to do with the way SimpleDB executes queries.This query, as well as each of the
queries shown so far, is a single predicate query.The behavior of the single predicate is as
if all of the conditions are combined into exactly one matching expression for each attrib-
ute in the query.These expressions are then compared against each value individually. In
the case of the preceding tag query, the two conditions = 'css' and = 'html' are applied
together to each value of the tag attribute. Because no value can equal both “css” and
“html,” the query always returns empty.

To solve this problem and apply criteria separately to multiple attribute values, the
INTERSECTION operator enables the definition of multiple predicates.To adjust the previ-
ous example:

SELECT * FROM bookmarks WHERE tag = 'css' INTERSECTION tag = 'html'

Now, instead of two comparisons combined into a single predicate, two separate predi-
cates are created.The behavior of INTERSECTION is as if each predicate is run as a separate
query in isolation and then only those items appearing in the results of both predicates are
returned.The limit on the number of predicates is 20.

Dividing a query into predicates with the INTERSECTION operator is mainly useful for
selecting attributes with multiple values.Although INTERSECTION can also be used with

102 Chapter 4 A Closer Look at Select

Table 4-2 Sample Data: Items with Multiple Tag Values

ItemName Tag

Bookmark0 ajax.net

vb.net

Bookmark1 asp.net

aspx

Bookmark2 jscript.net

json.net

Bookmark3 system.net

c#

single value attributes, it does not produce different results than using AND, but usually re-
sults in slower performance.

Selection with EVERY()
SimpleDB enables you to query for multi-valued attributes based on matching a compari-
son against every existing value, rather than just a single value, which is the normal case.
To match a comparison for every attribute value, you use the EVERY() function.The func-
tion is applied to the attribute name or the itemName() on the left side of the comparison
operator. For example:

SELECT itemName() FROM bookmarks WHERE every(tag) LIKE '%.net'

The preceding query will not return items that have a tag value ending in “.net” if
other tag values with other endings are present.The EVERY() function can be applied to
any of the operators, but it does not make sense to use it with IS NULL or IS NOT NULL:

SELECT * FROM students WHERE EVERY(`test-score`) BETWEEN '060' AND '075'

SELECT * FROM students WHERE EVERY(`project-status`) IN('Completed','Excused')

When every() is combined with the equals operator, it enables you to select items
with exactly one value and no more:

SELECT itemName() FROM bookmarks WHERE EVERY(tag) = '.net'

Query Results with the Same Item Multiple Times
One of the things to consider when constructing a query for multi-valued attributes is
whether it is possible for more than one value to match the criteria. Consider, again, the
fictitious domain that contains tagged bookmarks.A query to find all bookmarks with a
tag that ends with “.net” might look like this:

SELECT itemName() FROM bookmarks WHERE tag LIKE '%.net'

Table 4-2 shows the sample data set for these examples.

103Multi-Valued Attribute Queries

First, you can see that all four of these bookmarks have at least one tag ending in
“.net”.The second thing to notice is that Bookmark0 and Bookmark2 each have two dif-
ferent tags that match the criteria.When SimpleDB processes this Select, it will return
each of these items exactly once without duplicates:

Bookmark0

Bookmark1

Bookmark2

Bookmark3

The issue arises, however, if the Select contains a sort directive on the attribute with
multiple matches. Suppose the query is changed to read as follows:

SELECT itemName() FROM bookmarks WHERE tag LIKE '%.net' ORDER BY tag

Now you can see that returning each matching bookmark exactly once is going to be
a problem. Looking at the sorted list of tag values, Bookmark0 has a match at the begin-
ning with “ajax.net” and the end with “vb.net”.And this is exactly how SimpleDB re-
sponds to this query: with Bookmark0 at both the beginning and the end of the list:

Bookmark0

Bookmark1

Bookmark2

Bookmark3

Bookmark0

An additional point to notice is that Bookmark2 also has two tags that match the crite-
ria but it is not returned twice in the results.The reason for this is that the two tags
(“jscript.net” and “json.net”) appear sequentially in the sorted list. SimpleDB returns the
same item as many times as necessary to satisfy the ORDER BY directive. However, separate
entries for the same item are never generated for sequential ORDER BY matches.

Improving Query Performance
The SimpleDB Select query language does not have nearly the same capabilities as SQL
and so is less powerful, but by the same token avoids a great deal of the complexity. How-
ever, there is still quite a bit that you can do with it, and the opportunity certainly exists to
create complex and inefficient queries.Achieving good query performance is important
no matter what database or query language you use.

Attribute Indexes
An index is a database structure that occupies extra storage space for each record in ex-
change for faster data retrieval. In a typical relational database, you must create and manage
each index.This includes deciding which and how many columns to index for each table,
as well as when to rebuild the indexes. Performing the analysis on each index to deter-
mine if it is providing more benefit than cost can be time consuming.

104 Chapter 4 A Closer Look at Select

SimpleDB, on the other hand, handles all the indexing automatically.An index is cre-
ated for each unique attribute name in a domain, and every attribute value is added to the
index at the time you store it.There is no maintenance work of any kind for you to do
with SimpleDB indexes.Although you do not have any direct control over the indexing,
having an understanding of it can help you get the best performance from your queries.

Composite Attributes
Although SimpleDB indexes every value, at the time of this writing, each index is single
column only.AWS has suggested that they may implement multi-column indexes in the
future, but not the immediate future.

In the meantime,AWS suggests a way to simulate a multi-column index with an addi-
tional synthetic attribute.This technique is specifically applicable to queries where the
main two attributes being searched are in the following configuration: one of them is be-
ing tested for equality, the other one is a being tested for a range.These types of queries
are actually quite common, depending on the type of data you are storing.An example is
searching for items with the following:

userid='001' and viewcount > '00025'

If this query becomes too slow, you can simulate an index that spans both the userid
and viewcount columns by creating a synthetic attribute.The synthetic attribute is just a
new attribute created programmatically that is a duplication of the two field values con-
catenated together.This value must be set for all items, and it must be kept up to date any
time one of the values gets a PutAttributes call.

In this example, the new attribute might be called `userid-viewcount` and the Select
statement to take advantage of it would have this comparison in it:

`userid-viewcount` LIKE '001%' and `userid-viewcount` > '00100025'

Now both comparisons are using the same index.The actual userid has to be concate-
nated at the beginning of the constant viewcount value.This works with the strictly
greater-than operator because the first comparison has already restricted the output to
only those items with userid beginning with “001”.

Performance with Composite Attributes
Generating an extra attribute for each item that must be kept in sync is an advanced tech-
nique. It has the drawbacks of added complexity, added storage, and added bandwidth. You
definitely want to be sure it is warranted before you implement it. If you do implement it,
keep the following in mind:

n You probably will only need to span two columns with this technique. It is possible to
do more, if there is more than one equality test in your Select, but using two may well
be sufficient.

n Although you are using the synthetic field for comparison and maybe even for sorting,
you do not need to return that field and then parse it; just return the regular fields as
you need them.

105Improving Query Performance

n The performance gain from this technique will depend on the correlation between the
two values. If there are only a few items for each userid or only a few items meeting
the viewcount criteria, this technique will not be very helpful. If there are many
matches to both criteria but very few in common, this method should give a sizeable
performance boost.

n In the case where the composite criteria is highly selective, many more comparisons
can safely be added to the query without hurting performance, since only a few items
remain to be filtered.

n You must be careful to maintain the proper field length and padding when composing
a composite attribute from formatted numbers or dates.

Judicious Use of LIKE
When using the LIKE operator in a query to do wildcard matching, placement of the
wildcard character can have a large impact on performance. Placing the wildcard at the
end, as in this example comparison, allows the index to be used when fetching results:

`name` LIKE 'Will%'

This yields excellent performance. However, placing a wildcard character at the begin-
ning like the following prevents the index from being used and results in a full table scan
that, depending on your data, is likely to be much slower:

`email` LIKE '%@yk.com'

This is true with the character data indexed in any type of database, since characters are
indexed from left to right. In a relational database, you have the option to create an index
with the characters reversed and use a reverse function in the SQL query.You create a
similar solution in SimpleDB.You cannot create the reversed index directly and there is
no built-in reverse function, but if you include an extra attribute in your data with values
that you have reversed yourself, the reversed index will be created for you automatically.
This leaves you with the task of reversing the literal value in the query yourself, as in the
following:

`email-reversed` LIKE 'moc.ky@%'

Now the wildcard is back on the right where the index can be used.
Of course, you don’t want to be in a situation where you have constant string values

typed into a hard-coded query in reverse. In reality, you don’t want to be in a situation
where any of the query literals are hard coded; they should be passed in as parameters.
Publicly available SimpleDB clients today do not have support for a programming model
where prepared statement type constructs are used. Hopefully, in the near future, such
functionality will be available. It is conceivable that client-side functions like reverse()
could also be implemented in such a layer.

106 Chapter 4 A Closer Look at Select

Performance with LIKE
When you need to improve the performance of queries that contain LIKE, following are
some good recommendations, in order of importance:

1. First, use the wildcard character at the end.

2. If you have to use it at the front, measure the performance and do not automatically
assume it will be too slow.

3. Try to find ways to add additional comparisons to the predicate to allow the index to
be used and reduce the breadth of the scan.

4. If it is still too slow, also consider the request volume of that query before you start
adding new synthetic fields.

5. If you need to, add an additional field that is the reversal of an actual field.

Like composite attributes, be aware that you will need to keep this extra field updated with
the real value at all times. However, do not feel bad about it as if it were strictly a hack. It is
no more overhead than adding an extra index; it is just more work because you have to man-
age it yourself. In an ideal world, some form of data mapping layer would handle this for you
on the client, and you would not have to deal with it yourself.

Running on EC2
Deploying your application into the Amazon cloud is going to result in less network la-
tency for all of your requests when compared to accessing SimpleDB via the public Inter-
net.That doesn’t mean that latency will necessarily be bad from the outside. It certainly
doesn’t mean it is ill-advised to store and retrieve your data from the outside. Neverthe-
less, it does mean that for the absolute best performance, if EC2 deployment is an option,
you would be wise to test the differences and consider it.

This is especially true for high levels of small, concurrent requests, for which SimpleDB
is optimized. Small and quick requests actually incur a much higher Internet latency
penalty when viewed as a percentage. For example, if you make a Select call that takes
50ms to process but then incur an additional 100ms round-trip Internet latency, the over-
all call time increased by 200%. However, if you issue a Select that takes 3000ms, adding
on 100ms latency only results in a 3.3% increase.

Skipping Pages with count() and LIMIT
When you need to access data that is many pages deep into a result set, the round-trip
costs can really kill performance.A shortcut to quickly accessing these pages relies on the
way NextToken works.A NextToken combines the SimpleDB internal search state with
the WHERE and sort clauses. Each NextToken can be used to resume the query by passing it
back along with the original query string. However, as long as the WHERE clause and the
sort attribute do not change (and obviously the domain), you are free to change the return
attributes and the LIMIT.

The technique for skipping ahead involves setting the LIMIT to the number immedi-
ately preceding the first value you need. If you want to start at result number 1000, you

107Improving Query Performance

initially set the LIMIT to 999. Instead of including the actual attributes you want, you set
the output listing to count(*).This has the effect of reducing both the query time and
the response size. Once the query returns with the desired count, you resubmit it with the
actual attribute list and the desired LIMIT value.

Even though count(*) is faster, there is no guarantee that it will reach your target
LIMIT on the first request. In this situation, the response will contain both a count value
and a NextToken.The count value is the actual number of items counted in the current
NextToken.To make this tactic work, you will need to call your query in a loop and
maintain a total count so far until you reach the desired LIMIT.Although you very well
may reach the correct LIMIT on the first try, you have to be prepared for the cases where
you do not.At each page along the way, reevaluate the temporary LIMIT and adjust as
necessary.To expand on the last example, if you need the actual query to start at result
number 1000, your temporary LIMIT is 999. If the first response with count(*) comes
back with a count value of 501, you will need to submit another request with count(*)
and an updated LIMIT of 498.

Tip
The maximum LIMIT you can specify within a normal Select expression is 2,500, but this
limit does not apply when you use count(*). You can specify a LIMIT value as high as you
need but the actual count value returned will depend on the complexity of the query and the
data in your domain. Even with simple queries on a large domain it is unusual to get back a
count greater than 200,000, but sometimes you may get back zero. Remember to use a loop
and update the total count so far and compute a new LIMIT value during each iteration.

Measuring Select Performance
When there is an issue with query speed, you need to be able to measure the perform-
ance accurately.The measuring itself is unusually not difficult, but there can be subtle is-
sues that prevent you from getting accurate numbers.You really do need accurate
numbers in order to make the best optimization decisions, so here is a checklist of per-
formance measurement items to consider. It is likely that many of these points will seem
obvious:

n Isolate the Select call from any code interference.There are a number of different
ways that unwanted code interference could be occurring.The SimpleDB client
you are using could be having issues with connection management, running out of
available threads or available connections. Memory leaks in your code or in the
SimpleDB client may eventually influence performance. Excessive object creation
or parsing inefficiencies while handling large result sets can make queries appear
artificially slower in proportion to the size of the XML response. Monitoring
memory usage and trying queries in a different client or tool can help rule out
these issues.

n Isolate the SimpleDB response time from the network latency.Accessing SimpleDB
from an EC2 instance in the same region as your domain will always provide the

108 Chapter 4 A Closer Look at Select

lowest latency. Even in the cases where your application is not deployed to Ama-
zon’s cloud, it can still be beneficial to do some performance testing there.The ben-
efit is that latency is eliminated as a variable from the equation. By using EC2 Spot
Instances, it might be possible to do the testing for less than three cents an hour.

n Be aware of service-level spikes.There are rare delays that occur when making Sim-
pleDB requests that result in response times being much longer than normal.They
might not happen for days at a time, and when they do happen, they seem to occur
for 1 in 10,000 to 1 in 5,000 requests.This is not Internet latency, since it happens
on EC2, but it could be network related. Make sure that you can reproduce any
slow query times you see and that it was not just an outlier.

n When using test data, make sure it is as close as possible to the size and composition
of the production data.This problem could bite you in either direction. Select
performance decreases as the size of the domain increases. If your test data set is
smaller than the production data set, testing could give you a false sense of query
performance.Alternately, some queries will take much longer based on the compo-
sition of your data. For example, if your test data has a disproportionately large
number of users with the email address “example@example.com,” then multi-pred-
icate Select statements using the email address attribute could end up with a
workload that is much higher in test than in production.

n Be aware of SimpleDB caching that may be occurring behind the scenes.Although
the implementation details of the service are not known, based on observation, it
seems clear that there are different levels of performance based on how frequently
or how recently certain domains or queries are used.These differences appear con-
sistent with caching. Ensure a period of “warming up” while testing queries by is-
suing the Select calls for several minutes at a level consistent with how actual usage
might occur prior to taking measurements.This is especially true with test data that
sits idle much of the time.

n Eliminate any unnecessary NextToken paging.When a query returns partial results
along with a NextToken, subsequent calls may not be passing the correct LIMIT
value.When this happens, it is an issue with the SimpleDB client or with how you
use it.The problem is when the results come back with a number just shy of the
LIMIT, whether default or explicit. For example, if you omit the LIMIT, SimpleDB
uses the default of 100. If the response contains only 95 items, because of a large re-
sponse size or a long processing time, the SimpleDB client may be configured to
automatically send a follow-up call with the next token.Alternatively, you may
make the follow-up call yourself.This is a perfectly valid action, but if the LIMIT on
the subsequent call is not being set to 5 and remains as the default 100, this could
result in net doubling of the response time. If the first 100 is all that is needed, the
query time will be artificially high.

n Compare both box usage and actual execution time.The box usage number re-
turned from each Select call is an estimation derived from both the complexity of

109Improving Query Performance

the query and the data in the domain.Although it is not an actual measurement, it is
still useful for comparison between different queries called against the same domain.

Given that query times tend to increase as domain size increases, keeping historical
performance data can yield key insights when combined in a report along with historical
domain metadata. If you are able to log automated performance measurements, these re-
ports can become trivially easy to produce.

Automating Performance Measurements
Logging query performance measurements automatically is a powerful solution that de-
livers great insight with very little effort.You could do this yourself by adding a layer on
top of any SimpleDB client, but it is best done as a built-in part of the client. It is con-
venient when the client logs details of each request and response in a way very similar to
the way a web server logs requests.

Web server logs have long been used to analyze data about web sites and about web-
site users.At a high level, web server logs are stored as text files with relevant information
listed about each HTTP request, with one line per request. It is an easy-to-parse format,
and tools exist to read these log files using a user-specified configuration of fields and to
generate reports. Having a large set of historical data is useful for capacity planning and
tracking performance metrics over time. It also provides you with specific information for
your own troubleshooting efforts and when dealing with AWS support.

Following is a list of useful fields you might want to log:

n Timestamp— Logging each request time with a precision down to the millisecond
enables you to establish a definitive request order. If you do not need a high level of
detail, consider using a less-granular timestamp.

n Application— If you have multiple applications aggregated into a single report, or
if your SimpleDB access is from a web service with more than one client applica-
tion, this field is useful.

n Action— The SimpleDB API call being made is important information. It gives
you the ability to pick out the Select calls for analysis.

n Domain— If request levels to or response times from a certain domain are higher,
you want to know about it.

n Select query— This is only included for Select calls. Knowing the exact query
turns out to be very useful for performance analysis. Including the entire raw query
is a good first step. However, an even better format for the Select statement is in a
prepared statement format with the parameters at the end.This lets you see overall
numbers for queries that differ only on parameter value, while preserving the abil-
ity to drill down into detail.

n Bytes transmitted— This is useful for self-monitoring bandwidth usage, as well as
identifying BatchPutAttributes calls near the size limit.

110 Chapter 4 A Closer Look at Select

n Bytes received— This field allows for correlation between response size and re-
sponse time. It also lets you self-monitor bandwidth and identify Select responses
being paged at the 1MB limit.

n HTTP response code— The magnitude of the HTTP response code indicates the
general class of response.The 200s mean success, the 400s indicate a client error,
and the 500s indicate a server error. Of particular interest are the HTTP 503 throt-
tling response rates.

n Box usage— This is good for query performance analysis and for self-monitoring
account charges.

n Request id— This lets you correlate errors on your end with the SimpleDB log-
ging that AWS support people are able to view.

n Actual response time— This is the time in milliseconds between when the last re-
quest byte is written to when the last response byte is read.The more accurately
you can collect this number, the better.

You may want to log more fields or fewer. But having these logs can provide a great
deal of insight when dealing with a black box service like SimpleDB that offers very little
configuration and very little insight as to what is going on.

Summary
In this chapter, the SimpleDB Select query language has been explained with a level of
detail that should empower you to construct your own queries, measure their perform-
ance, and take the necessary action to improve them. One thing you may have noticed is
the discussion on performance largely ignored issues of application design, data sharding,
and caching.This was not an error of omission, but an intentional focus on the base per-
formance of queries.There are many actions that can be taken at a higher level to im-
prove performance, but after those things have been done, performance still needs to be
addressed at the basic level.Addressing that need was part of this chapter. Higher-level
performance enhancements, for Select and other calls, is the subject of Chapter 9,“In-
creasing Performance.”The next chapter deals with the details of bulk data operations.

5
Bulk Data Operations

This is a short chapter about the various ways to get large quantities of data into and out
of SimpleDB.Actually, this really should not be a short chapter.There should be a data
import and export facility built into SimpleDB, but there is not.As a result, migrating data
in and out of SimpleDB on a large scale is more cumbersome than it ought to be.There
is no easy or automated way to do this. Unlike S3, where you can upload the data directly
or have physical storage media delivered to an AWS data center and imported for you,
with SimpleDB, it is more likely that you may have to write your own tool to do this.
The two available approaches to accomplish these tasks are manually with Select and
BatchPutAttributes calls, or with a third-party product handling it for you.

At the time of this writing, there are two SimpleDB tools boasting backup and re-
store/import features.They turn up easily in a web search.At this point in time, however,
neither of them is mature or feature rich.You may have to deal with tool issues, such as
not being able to select the domain name for a data restore, or a requirement to back up
all of your domains, rather than selected domains.

Third-party tool developers who might consider filling this gap are in a bit of an awk-
ward position. One of the problems is that SimpleDB is still in beta, and AWS has been
tight-lipped with the SimpleDB roadmap. It was expected that a bulk-load facility would
be released, and after a time, BatchPutAttributes was subsequently added to the API. It
is not known if that is the final word on import or if the API will be enhanced with an-
other solution that is yet to be released.This makes it risky to invest the engineering costs
to build a robust and general-purpose import/export tool as a product because a new
SimpleDB feature could make it obsolete.

Because of this environment, the current crop of third-party tools has evolved out of
homegrown solutions designed for the needs of internal projects that have later been pol-
ished and released into the market. Before looking at these tools, let’s consider the type of
issues involved in writing your own import tool.

112 Chapter 5 Bulk Data Operations

Importing Data with BatchPutAttributes
Getting your data into SimpleDB is such a common issue for new SimpleDB users that it
is surprising that it has not yet been adequately addressed with an official tool. It is in the
best interest of AWS to allow easy data import.They shouldn’t be merely allowing it,
however; they should be “enabling” it, with a robust and fully featured solution. In the
meantime, you don’t have those solutions, and you may need to create your own.

In the absence of an official data import tool or API operation, the most effective re-
maining option is BatchPutAttributes. BatchPutAttributes is much faster for adding
a large number of items than individual PutAttributes calls. However, there is some
baseline overhead associated with the call that typically makes it a bit too sluggish for
time-sensitive tasks like building a web page.

The following sections cover the things that you should think about while designing
your import tool, even though you probably will not need to implement all of them. De-
pending on your data, each feature may be required or optional. If you are building a tool
for one specific data import run, you have the freedom to meet the specific needs of the
project.Alternately, a more general solution could be useful across different projects.The
more of these features that you implement, the more general purpose your import tool
will be.

Calling BatchPutAttributes
The simplest import solution is to loop through your data rows and call
BatchPutAttributes with bundles of 25 items.This solution is simple to write, but mak-
ing the calls sequentially in a single thread is not going to be the fastest solution. Never-
theless, don’t be fooled by the myriad of considerations presented here; the simple
solution could still be your best option.

Consider the development time for some of the advanced options and weigh that
against the time that a simpler solution could be chugging away at the import. Unless you
have reuse in mind, spending two development days to achieve an eight-hour import
time savings may be a bad trade. It might be difficult to know how long it will take to
work the multi-threaded kinks out of your tool, but you can figure out pretty quickly the
rate at which the simple solution can insert items.

Mapping the Import File to SimpleDB Attributes
If you are writing an import tool, you likely have a file that you want to import.You
need a way to specify which fields in the import file should be included or excluded.You
also need a way to designate which field to use as the item name, or that one should be
generated.

The last chapter established the need to apply formatting to certain types of attributes
that will be in queries. Consistency is required in the application of that formatting, and
this begins with the initial import. Having a way to specify which format to apply to each

113Importing Data with BatchPutAttributes

field is part of the mapping. For instance, integers may need padding or offsetting, and
floats may need only formatting for parts of searches. Multiple columns or single columns
with delimited values may need to be placed into multi-valued attributes.

At its simplest, mapping data can be just a list of field names and types and even then
only for fields that need special handling. It might be easy to put this type of project-spe-
cific mapping information directly into your tool’s source code, but this is the type of
thing that frequently needs tweaking, and allowing the mapping to change separately
from the source code will go a long way toward making the tool reusable.

Supporting Multiple File Formats
Many different data export file formats are in common use.The list of popular file for-
mats includes delimited flat files, JSON, and XML.Although you may only have one that
you need to support right now, separating the code that processes that format can leave a
nice space to hook in other formats later.

A key concern is the backup format you will use for your production domains. If the
formats are compatible, your import tool can become your restore tool. One way to han-
dle this is to use a base format for imports that is very SimpleDB-centric with formatting
and multi-valued attribute support already in place, without the need for mapping. Sup-
port for other file formats can then be added later by creating a single new conversion
utility for the target format.

This approach has the benefit of allowing you to support only the file formats that
you actually need and enabling you to verify the full result of the mapping and format-
ting before you begin to upload data.This verification would be additional code to write,
but if you opt to write it, it would be useful as part of a backup file verification process in
the future.

Storing the Mapping Data
You have a few options when it comes to how to store the mapping between the import
file and SimpleDB attributes. It could just be parameters to the import tool stored in a
script or you could make a separate file format for it. In more complex cases, having a
separate file capable of representing relationships (like XML or JSON) can be valuable.

These complex cases include times where data is bound for different domains, differ-
ent regions, and even different accounts. In this scenario, you may need a way to store a
hierarchy of parameters in your mapping configuration.This might include cases where
separate accounts are used to support various deployment scenarios like development,
testing, staging, and production.

Reporting Import Progress
For small deployments, the time requirement to process the import might not be a con-
cern. For larger data sets that will take hours to import, the percentage of import comple-
tion is valuable information.As you design and implement your tool, consider ways to
display the import progress or status.

114 Chapter 5 Bulk Data Operations

It is always possible to run queries on the domain to count the number of records.
Eventual consistency normally gives you a count that is only a few seconds old.This can
be sufficient provided you know the total number of records to be imported or even
when you just need to verify that the import tool is still adding records.

Creating Right-Sized Batches
When creating an import tool using BatchPutAttributes, the 25-item limit on a single
batch is immediately obvious. However, the second limit on batch size is one that you
might not be aware of, and, depending on your data, you might not run into it during
testing.You might not even encounter it immediately during actual use. If you are going
to reach this limit, you don’t want it to happen while in the middle of importing a large
data set.

The maximum request size of a BatchPutAttributes call is 1MB. It is uncommon to
reach this limit. Part of the reason is that, although 256 attributes are allowed per item, ac-
tual data commonly has many fewer than that, typically less than a few dozen. However,
be aware that the SimpleDB request-formatting characters are included in the 1MB limit,
and that the length of those character strings are longer for BatchPutAttributes than for
other operations. For example, a small name/value pair might look like this:

CreationDate=2010-08-01T13:3A37:3A59.723

It shows up within a BatchPutAttributes request in a much more verbose and
URL-encoded form like this, taking up more than double the size of the raw data:

&Item.17.Attribute.14.Name=CreationDate

&Item.17.Attribute.14.Value=2010-08-01T13%3A37%3A59.723

The typical ways to reach the 1MB limit are by filling up many attributes to the 1,024
limit or by using all 256 attributes in an item. Doing either of those things does not guar-
antee that you will reach this limit, just that your chances are increased.The only step you
need to take is to check the request size before you send it and move items that overflow
the limit into the next batch.

Managing Concurrency
Even in the case of inserting large numbers of items with BatchPutAttributes, there is
still an obstacle to maximizing throughput.The difficulty is in the fact that the call is not
blazingly fast, but it can be called concurrently.This is both a benefit and a drawback.The
drawback is the difficulty in the implementation of your own multithreaded import tool.
The threads need to be coordinated, and some state will need to be shared across threads.

Multithreaded code is error prone to write even for concurrency experts.This is the
type of task that, for typical application developers, is distinctly non-simple.Application
developers who are unfamiliar with writing multi-threaded code will find it to be diffi-
cult to write a custom multi-threaded import tool.Although it may be difficult depend-

115Importing Data with BatchPutAttributes

ing on your background, it is certainly not impossible. If you take on this task and need
some guidance, here are some suggestions for getting it done.

Storing data in SimpleDB using the BatchPutAttributes call can yield higher data
throughput versus plain PutAttributes calls by a factor of six or seven. In addition, the
box usage charges for batches are in the neighborhood of 30% to 40% less. Even so, you
are going to want to issue these calls concurrently to get the best data transfer rate.

Concurrency is going to involve either multiple threads or non-blocking I/O.The
choice is going to depend on which SimpleDB client you use, unless you write your
own.The number of simultaneous connections required to maximize throughput de-
pends, in large part, on the size of the items.There is no single optimal number for all sit-
uations.The best way to manage this is to track throughput dynamically as you increase
the concurrency and be prepared to back off when you encounter either throttling with
503 ServiceUnavailable errors, or HTTP timeouts.

Resuming a Stopped Import
If all goes well, each import will complete successfully without any problems. However, a
persistent network outage, a corrupt record, or a software defect could cause your import
to fail.With large imports, the cost of restarting from the beginning after a problem is
high. Consider keeping track of the import progress and saving it to disk regularly for use
as a resume point.This could be simple in the case of data that comes with predefined
row IDs, or more complex if you have to insert auto-numbering as part of the import.

Either auto-numbering will need to be deterministic to support resumption, or some
sophisticated query logic will need to be added to ensure that items are not added multi-
ple times with different item names. If you use the technique of pre-converting the im-
port file into a SimpleDB-friendly format, as mentioned earlier, the automatically
generated item name situation will be much easier to handle.

Verifying Progress and Completion
When the import is complete, you will naturally want to check SimpleDB to verify that
all the records were added. Even when the import tool includes a status message that ver-
ifies success, direct confirmation from the database is desirable.When performing this ver-
ification, use calls to Select and not calls to DomainMetadata.

The DomainMetadata call has the exact information you would want for verifying an
import, including the number of items and unique attribute names in the domain. How-
ever, the metadata is not guaranteed fresh. It is subject to caching much longer than even-
tual consistency delays.The correct way to an up-to-the-minute count of items in a
domain is to issue a query using the count function. For example:

SELECT count(*) FROM `product-details`

This query returns the number of items in the domain, subject to paging with a re-
turned NextToken.The proper handling of paging with the count function is documented

116 Chapter 5 Bulk Data Operations

in the previous chapter. Minimally, you need to resubmit the query with the returned
NextToken until the query returns without a NextToken.The total count is the sum of
counts returned with each page. Using ConsistentRead with these Select statements will
yield verification that is not subject to errors arising from eventual consistency delays.

Properly Handling Character Encodings
All of your data in SimpleDB is stored as UTF-8 character strings. Be careful with the
handling of character data to be sure you don’t encode it to a platform-default encoding
when the proper encoding is UTF-8. Character encoding involves the conversion of
characters to bytes.A common place this issue comes up is in the code that converts text
back and forth between String objects and byte arrays.This process always involves a
character encoding, and if one is not specified explicitly, a default encoding is being used,
and it may not be what you think it is.

Different programming languages and libraries have different ways of setting the de-
fault encoding, but the safest way to handle it is to make an explicit call with the proper
encoding name whenever converting between strings and bytes. It is also a good idea to
perform testing of the import tool with a variety of Unicode characters to ensure that
they are stored in the way that you expect.

Backup and Data Export
Maintaining a backup copy of all your data is an important part of any data storage solu-
tion. SimpleDB’s automatic domain replication across data centers should reduce the
number of circumstances where a backup is required. Less risk, however, does not elimi-
nate the need for backups.A mistakenly deleted domain does not benefit from replica-
tion. It can only be restored from a backup.

Beyond maintaining a backup copy in case of disaster, you may also discover someday
that you need to take your data and leave SimpleDB.This is more of a concern with data-
base services than with database products; you are more at the mercy of the service
provider. For example, if you are not satisfied with MySQL, you can choose a different
product, but you never have to worry about your version of MySQL becoming unavail-
able to you.Although AWS is not known for account bannings and large price increases,
these things are beyond your control; they are unlikely yet still involve risk. Having a
backup of all your data under your control removes the risk that your data could be made
completely unavailable to you.

The ideal backup solution would be for SimpleDB to have an export function built in
that you could call and then collect your backup file at completion.As with the bulk load
facility, however, such a feature has not been made available.This leaves you with the same
two options: Use a third-party backup tool or write your own.

117Backup and Data Export

Using Third-Party Backup Services
There are backup solutions that not only back up data, but also re-import the data for
you. Some of these currently will, or promise future versions that will, also import data
for you. Each has some peculiarities, but the support is very responsive.The two currently
available services that do SimpleDB backups are SimpleBackr and BackupSDB.

SimpleBackr is a free SimpleDB backup service hosted at SimpleBackr.com. Simple-
Backr examines your domains and enables you to start a backup process that saves all the
data from all of your domains.The backup files are saved in JSON format to a bucket in
your S3 account.The bucket structure matches the calendar date on which the backup
was taken, and each domain gets its own JSON backup file. Figure 5-1 shows a screenshot
of SimpleBackr.com.

BackupSDB.com is another website that offers a backup service for SimpleDB do-
mains. BackupSDB enables you to select individual domains for backup and individual
backups for restore. It maintains a detailed backup and restore history log of all your ac-
tivity on the site.When backing up a domain, the data is saved to a set of XML files with
1,000 records per file.These files are then zipped up into a master backup file. Back-
upSDB is a paid service that also has a free service tier that limits the number of items
backed up. Figure 5-2 shows a screenshot of the BackupSDB website.

Figure 5-1 SimpleBackr.com

118 Chapter 5 Bulk Data Operations

Writing Your Own Backup Tool
If you decide to write your own backup tool, there are a few things to consider. First, and
this is true of all SimpleDB backups, there is no way to lock the domain.A backup is not
going to be a snapshot of the entire domain at one instance in time if changes to your
data occur during the backup.The only way around this is if you are able to stop all
writes to the domain during the backup. However, SimpleDB is designed around data
consistency at the item level, and this is maintained in any backup you take. SimpleDB is
not relational, but you can still have one item reference another. However, if you have a
relationship between two items that will break if they are not updated atomically, not
only do you have a backup problem, but you also have a consistency problem.

One feature that can be beneficial is a backup verification routine that checks for or-
phaned items or bad references.This function would need access to some minimal
knowledge of your data layout, but in return, you would be able to confirm the consis-
tency of your backup or resolve any issues.

As a mechanism to download your data, use a Select call requesting all attributes and
page through the entire domain. Setting a sort criterion may be helpful if your SimpleDB
usage supports it.As the backup process pages through the data, updates to items you have
already fetched will not make it into the backup, whereas updates to items appearing in
upcoming pages may make it in. If you arrange the sort criteria such that the data most
likely to be updated appears in the final pages, you will end up with a backup that is
closer to a snapshot in time. If most of your updates involve new items with item name

Figure 5-2 BackupSDB.com

119Backup and Data Export

values that are strictly increasing, use a sort on itemName(). If each of your items has a
time stamp indicating that last modification time, use that as a sort criterion.

Be aware that it may take some time for a backup of a large domain to complete.To
mitigate this, run the backup from an EC2 instance in the same region to minimize
round-trip request latencies.An obvious step is to run the backup during an off-peak
time, and if possible, suspend writes to that domain.That is not always practical, but if it is,
it will improve both the speed of the backup and the consistency of the data within the
backup file.

Choose a backup file format that is convenient for restoring. Because you are writing
your own backup code, and you have to choose a file format of some kind, you might as
well make it as easy as possible. Keep in mind how you want to be able to restore the
data. If you want the ability to insert the data into SimpleDB as well as other databases,
that will lead you to a different file format than data meant only for SimpleDB. If your
restore procedure involves multiple simultaneous upload processes, consider saving your
data into multiple files.

Restoring from Backup
Your backup efforts are meaningless if you do not have the ability to restore a backup. If
you have a restore procedure but don’t test your backup files with it, any confidence you
have in the system is misplaced. Restoring backup data to separate AWS account can en-
able you to test the backup and restore without affecting your production domains.This
can be especially useful if you already have a separate account for use in development and
testing. If the sensitivity of the data allows, a regularly scheduled backup from production
can be restored to development.This allows development efforts to benefit from near-live
data while also testing the integrity of the restore operation.

Summary
If you have a large quantity of import data, you cannot live without a SimpleDB import
tool.This is true even if you only want to evaluate SimpleDB.Then, once you have pro-
duction data in SimpleDB, you should not live without a backup tool.Through some
combination of third-party tools and future SimpleDB enhancements, the tooling land-
scape should begin to look much better. Until that time, writing your own tool may be
the best option.You may be able to get a lot of mileage out of a simple tool that you
write yourself or that is already available as a service today.

If you do anything out of the ordinary with your SimpleDB data, chances are that
third-party backup and restore services will not be able to handle it, and you will have to
provide your own tooling support.The next chapter details some out-of-the-ordinary
things you might want to do to work around the built-in SimpleDB limitations.

This page intentionally left blank

6
Working Beyond the Boundaries

Once you start working with SimpleDB and start trying to find ways to make it fit with
your application, you may run into one of the downsides of a compact and relatively new
API: the lack of support for all the data access patterns you’d like to use (for example, re-
liance on transactions). Moreover, many of the operations that are present have limitations
in place that may not be suitable for the way you want to use the service.

It comes as no surprise that the most common SimpleDB questions from developers
revolve around how to lift or work around the AWS-imposed limitations. SimpleDB does
not make a suitable data store for every application. For some situations, there is just no
practical way to make SimpleDB do what you can do with a relational database. How-
ever, some creative workarounds exist for those situations where only a few issues are
standing in the way.This type of information is important for the practical user of Sim-
pleDB but can be hard to find, if it is available at all.This chapter details a number of
practical strategies for working around the SimpleDB service limitations.

The approach of this chapter is to suggest specific strategies but not specific imple-
mentation. Examples are given that include queries and pseudocode, but not in a cook-
book style.The spartan set of API calls in SimpleDB serve as primitive building blocks.
Each suggestion needs to be applied differently depending on the application, the pro-
gramming language, and the deployment environment. Consider these suggestions as a
springboard for your own application design.

However, before you consider implementing a workaround for something in Sim-
pleDB, you should have a good understanding of why things are the way they are.There
is a difference between working around the system and subverting the system. Examine
the reasoning behind the SimpleDB qualities and claims so that you can avoid unneces-
sary frustration.

Availability: The Final Frontier
Perhaps the biggest claim made about SimpleDB is that it provides high availability.Avail-
ability is an important reason to use SimpleDB, and some consistency and speed is traded
off to get it.

122 Chapter 6 Working Beyond the Boundaries

However, speed and consistency are easier to measure than availability.With a service
like SimpleDB, it is hard to know from the outside what will happen during various fail-
ure scenarios.There may be internal failures that occur that we do not even know about.
Those hidden failures, handled swiftly or automatically, are a credit to AWS, but can make
it difficult for users to understand the difference between a system that hasn’t had a failure
yet and one that handles failures gracefully.

Consider the July 2009 Google AppEngine outage that lasted for six hours. Google
AppEngine provides a data store that has some similarities to SimpleDB in that it is en-
tirely hosted and managed by Google in its data centers, as SimpleDB is hosted and man-
aged by AWS in Amazon data centers. One week after the outage, Chris Beckmann
(Google AppEngine PM) provided a very detailed explanation for the outage, including a
timeline of events throughout the failure. One sentence highlights the difference between
the AppEngine data store and SimpleDB, as follows:

“Since needed application data was completely unreachable for a longer than expected
time period, we could not follow the usual procedure of serving of App Engine applica-
tions from an alternate data center, because doing so would have resulted in inconsis-
tent or unavailable data for applications.”

This is a key insight into the different levels of availability.The root cause of the prob-
lem was a software bug, but that’s not the whole story.The interesting part is that there
was a choice to be made. Google engineers had a 30-minute-old copy of all the data for
the thousands of AppEngine apps.They could have just switched it on at a different data
center. However, the choice was essentially made for them because they had a consistency
guarantee to uphold. Some data would be missing, some would be stale, and in the end,
they would have no way to reconcile the divergent updates to stale data.

With SimpleDB, that same choice has already been made, but the difference is that
availability is chosen over consistency. It has already been decided, and the mechanism is
already in place to synchronize up the stale or temporarily missing data.

The important thing to realize is that outages inevitably occur, even at Google and
Amazon, and this leaves a choice for the developers who use these services. If an outage
causes the temporary loss of 30 minutes worth of data, is it better for your app to con-
tinue running without that data and have it synced up later or is it better for the app to
wait out a six-hour outage unavailable to all users, even those unaffected by the data issue?

SimpleDB is a solution for those applications that would benefit from continuing to
offer users access to the system even if the data is stale for a while. If all the data in the ap-
plication belongs to the user—for example, in an email application—the user is probably
going to argue for the ability to keep working even if the data entered between 6:00 a.m.
and 6:30 a.m. is absent for a while.When the application provides quantifiable business
value, the decision can be far easier to make.When you weigh the cost of your entire on-
line shopping cart application going down for all users for six hours in the middle of the
day, against the cost of serving 30-minute-old stale shopping cart data to only those users
who were active between 6:00 a.m. and 6:30 a.m., there might be a dollar value differ-
ence you can compare.

123Boundaries of Eventual Consistency

A big part of the value of an eventually consistent system like SimpleDB lies in the
ability to maintain availability during an outage. It also lies in being able to reason about
the qualities that you want your application to have, and in the ability to choose a data-
base that supports those qualities.

Boundaries of Eventual Consistency
One of the things that people commonly wonder about when first getting into Sim-
pleDB is how eventual consistency affects an application. How far do you have to go to
avoid data corruption, and is it a practical choice for building applications?

Item-Level Atomicity
The first thing to understand is that even though the SimpleDB consistency guarantee is
relaxed compared to relational databases, there is still atomicity and durability.The unit
of atomicity is the item.When you update the attributes of an item via a single
PutAttributes request, the entire update is applied atomically. It may take some time be-
fore the update is fully visible to clients attempting to retrieve that item via a call to
GetAttributes or Select.This is the same type of delay you might see with a master-
slave relational database cluster, where the slave database services queries, even though it is
always slightly out of sync with the master that accepts all the writes.The time it takes to
replicate in SimpleDB is called the consistency window. Regardless of the consistency
window, SimpleDB always presents an internally consistent view of the item.The item
will have the prior state of the attributes or the new state of the attributes; it will never
have a mixed state, where some of the new attribute values have been applied and some
have not.This is atomicity at the item level.

At a higher level of granularity, this does not hold. If you issue a batch put and update
two items at once, subsequent reads of that data could result in one of the items being
updated but not the other. But, again, within each item, partial updates will never be
shown. Given how lean the SimpleDB API is, BatchPutAttributes is the only higher
level of granularity.There are no transactions and so no opportunity for dirty reads or
any isolation levels. It could be said that if an application requires transactions, SimpleDB
will not be the right choice of database, and this might be true. But if the real application
requirement is for atomicity rather than strictly transactions, placing all the necessary
data inside one item can accomplish that.This can serve as a workaround for the lack
of transactions: Place the data that must change atomically within a single item and up-
date it using a single call to PutAttributes using a conditional write. In SimpleDB,
PutAttributes can be used for all three of initial inserts, updates, and deleting or clearing
of values.

124 Chapter 6 Working Beyond the Boundaries

Looking into the Eventual Consistency Window
So then, understanding that eventual consistency does not equate to the absence of con-
sistency, the question becomes: How long is the eventual consistency window? The time
required for consistency is never a constant number.All data is replicated across multiple
data centers. It happens over a fast network, and those data centers are in the same region,
but it is still an operation across data centers.As with any distributed database, network
and hardware failures can occur. During normal operations, even under peak usage, even-
tual consistency times are usually under a second, but this is not guaranteed.A faster alter-
native to waiting is using consistent reads, which are on average just as fast as normal reads
but are slower or unavailable during outages.

The difficulty is that it is probably a mistake to design your application such that it
works when consistency is reached in one second but fails otherwise.The reason it may
be a mistake is because this is the primary benefit of SimpleDB.This is the benefit
achieved by the tradeoffs, and so this is the reason to use it: because it remains available to
accept your writes in the midst of failure when consistency is not, for the moment, possi-
ble.When everything is going wrong and serious failures have not yet been rectified, you,
and your users, still have access to your data; even if the writes are not immediately visi-
ble, they will not be lost and consistency will eventually be reached.To write an app that
fails when the consistency window grows past some arbitrary number of milliseconds, is
to snatch defeat from the jaws of victory. It is to trade down your consistency guarantee
to achieve higher availability and then throw away the availability.

There is nothing wrong with making extensive use of consistent reads throughout an
application. If you produce an application that uses SimpleDB but is unable to maintain a,
possibly degraded, level of service during a partial failure that causes consistent reads to
fail, you may be missing one of SimpleDB’s big benefits. It is not necessarily easy to take
advantage of this benefit, but it does not need to be hard either.The central question is
what you will do when calls to GetAttributes and Select return stale values.Alterna-
tively, in the case of newly added data, what do you do when they don’t return the items
that you expect them to?

One thing that people commonly want to do is to check if the value is consistent. In
fact, sometimes there is a tendency to want to check every single value and make sure it is
consistent before proceeding.Although this is possible to do, it is highly impractical. If
your app can only maintain correctness when every value become consistent before pro-
ceeding, building it atop SimpleDB could be considered the creation of a software monu-
ment to wasted time.There’s nothing wrong with consistency, the issue is that SimpleDB
alerts you when a consistent read cannot be guaranteed and enables you to proceed with
eventual consistency instead. If you are building an application that permanently requires
strong consistency that is unable to tolerate eventual consistency, it might be better to save
yourself the trouble and just use a relational database with strong consistency.There are
better ways to deal with the eventual consistency; there are ways to work with it rather
than try to eliminate it.

125Boundaries of Eventual Consistency

Read-Your-Writes
For many applications, particularly applications where each of the data items is owned by
exactly one user, consistency becomes a more narrow concern. For example, consider an
application that maintains a set of to-do lists for users. If all of the lists are private, consis-
tency involves how each user sees his or her own data, and it makes no difference to Jill
whether Jack’s data is consistent.

This narrowing holds even in cases where the data is made public. Pretend that these
are now wish lists and not to-do lists. If Jack adds a new pail to his wish list, it is impor-
tant that the publicly visible list be updated, but if that update is delayed by a full second,
the delay is probably not even noticeable. However, it is quite important for Jack to see a
consistent view of his own list. If he adds an item and then finds it immediately absent
from the list, it will look like the update failed.This level of consistency, where each read
reflects the results of every prior write by the same client, is called read-your-writes.

Allowing a client to see an always-consistent view of the data he is changing is a level
of consistency that is useful in many situations.A relational database will give you this
level of consistency automatically by virtue of the strong consistency guarantee.A rela-
tional database cluster, on the other hand, may not be able to guarantee read-your-writes
when a slave database services client reads. SimpleDB does not have the notion of a con-
nected client, however, and does not guarantee read-your-writes consistency. Each request
is independent, and there is neither a persistent connection nor a session layer.This is not
really a concern for batch-processing situations like indexing or data import; this is the
concern when handling requests for connected users who are submitting updates.This
applies equally to application users for a website, a desktop app, or a mobile app.

It is important to realize that it is easy to build a system with guaranteed read-your-
writes consistency (or stronger) on top of SimpleDB by using consistent reads but that it
comes by giving back some of the availability. Having said that, it is possible to build a
system that provides read-your-writes most of the time.There is a situation that you need
to be aware of when using SimpleDB—during an outage, you may be unable to achieve
read-your-writes for some users until the problem is resolved. Knowing that, the remain-
ing issue is the implementation of a system that can give you that consistency most of the
time while still offering (potentially degraded) service during an outage.

Implementing a Consistent View
When it comes down to the practical matter of how to deliver a consistent view to your
users when consistent reads are failing, there are two types of strategy you can use: data
access patterns and caching.These techniques are independent and can be used together
to achieve the best outcome.

Optimizing Data Access Patterns
Many of the data access needs of an application are dictated by the application’s require-
ments. However, the database access patterns are frequently a consequence of application
design. Modern technologies, particularly web technologies, make it possible to sculpt

126 Chapter 6 Working Beyond the Boundaries

the application’s data access to achieve a quicker and more responsive user experience.
These same technologies can also help you work within the SimpleDB eventual consis-
tency window.

There is one primary data access pattern that causes eventual consistency issues: a
write immediately followed by a read. In most cases, this means a call to PutAttributes
for a specific item and then a query whose results should reflect the changes to that item.
It could also be a GetAttributes request for the same item that follows the
PutAttributes.

As an example of the query scenario, consider the way forums typically work on the
Internet.You view a thread of comments and you decide to post your own comment, so
you click on the reply link.After typing in your comment, you click on the submit but-
ton; the server saves your comment to the database (subject to any rules) and then redi-
rects your browser to the thread page, where your new comment is posted at the end. In a
hypothetical forum application based on SimpleDB, the place where things could go
wrong is in the redirect after the new comment is saved. If the part of the application that
saves the post is completely separate from the part that subsequently displays the post,
some trade-offs are being made.This pattern is not inherently bad, but with an eventually
consistent database, the new comment could fail to turn up in the subsequent query be-
cause it is performed so quickly after saving the data. Using a consistent read solves this
problem much of the time but if one of the replicas storing your domain data fails, it can
cause consistent reads to return an error while normal reads continue to work with even-
tual consistency.

The real problem with this situation is that the necessary data is available in memory
but is being dumped.The solutions to this problem all involve holding on to that data
rather than dumping it. One option is to use a dispatch mechanism rather than a redirect
for populating the follow-up query. Rather than round tripping to the user’s web
browser, a dispatch hands off the request to a different handler on the server.The unnec-
essary Internet latency is avoided, and because dispatch allows data passing, the important
data is not discarded. In this scenario, the handler that saves the comment to the database
passes that comment to the handler responsible for displaying a thread.The thread display
handler needs one extra capability: merging the passed data into the normal query results.

This technique, and others like it, works well with SimpleDB because consistency is
normally reached before the user can make another request.When looking at the data ac-
cess patterns in an application, whenever you see a write immediately followed by a read,
it is OK to use a consistent read but it is also wise to add error handling that either handle
it in the same request if the immediacy is required, or place a user action between them if
it can wait.This allows you to benefit from the high availability built into SimpleDB.

Another example of this principle is the display of user profile information. Consider a
web application where the user has a profile page and can change some aspects of how it
appears. In the use case where the user saves a profile change and automatically receives a
redirect to the profile page, the same data access pattern emerges as with posting forum
comments. In this case, the follow-up action is a lookup rather than a query, but the im-

127Boundaries of Eventual Consistency

mediate redirect is what causes the problem. In addition, the question that needs to be
asked is the same: Does the user need to see this data immediately? If the answer is yes,
then handling it in the same request can eliminate the need for consistent reads. Depend-
ing on the application, this user profile issue may be solved using the same dispatch tech-
nique discussed previously.

There are also other solutions to consider.Asynchronous JavaScript and XML (AJAX)
can be used to update pages in-place, without triggering a new page load.This type of
functionality becomes easier to implement each year as more supporting tools and
frameworks are created.AJAX has both user experience benefits and server resource ben-
efits. It is a powerful tool when designing user interactions with SimpleDB-based web
applications.

The principle to remember when examining data access patterns is that discarding data
between a back-to-back—that is, without user interaction—write-and-read will cause
problems.The normal flow of user actions is not too quick for eventual consistency to
catch up in the vast majority of cases.This forms a sweet spot where responses to user ac-
tions usually have a naturally consistent appearance, provided you avoid artificially quick
data access.

Session Scope Caching
Although the normal delay between a user’s clicks can make eventual consistency look
like read-your-writes consistency most of the time, in some situations it is not enough.
Sometimes a user clicks quickly; other times, high-traffic loads or large request sizes
lengthen the eventual consistency window.These conditions, which can happen during
normal operation, should be handled appropriately.

One useful technique is a cache at the user level for holding updates that have not yet
become consistent.A typical way to implement caching at this level is within the session
object on the web server.This is appropriate when there is only a single web server or
within a web server cluster using sticky sessions.This cache should be small and only store
updates the user has made in the last few seconds, which most of the time will only be a
single item.This special-purpose caching can smooth out the bumps commonly encoun-
tered with the normal operation of eventual consistency, fast clicks, and users with multi-
ple browser windows.

Caching for Fast Data Access
The aggressive use of caching at various levels yields great benefits for applications based
on SimpleDB.This is true when working to scale up applications that use any type of
database, but even more so with SimpleDB because it is intended to be fast enough,
rather than blazing fast.

At the time of this writing, there is no standardized or widely acknowledged “best”
caching technology to recommend.There are many options, and you should consider us-
ing what is easily available. Consider caching the results of calls to GetAttributes and
Select. Caching query results is especially important for queries that are large or time
consuming and return a NextToken.Also, consider making sure query strings appear in

128 Chapter 6 Working Beyond the Boundaries

canonical form so the results can be cached effectively. For example, if you use a Select
to fetch five items at once, your query may look like this:

SELECT * FROM media WHERE itemName() IN('01', '02', '03', '04', '05')

Be sure that the item name constants that you pass to the query always appear in the
same order; otherwise, they will be cached as different queries.

Handling Text Larger Than 1K
The limit of 1,024 bytes per attribute value is one of the SimpleDB limitation most com-
plained about by users. It is large enough for any small data type but not nearly large
enough to store the text of comments, descriptions, articles, or reviews.Taking this limit
alone at face value rules out a vast swath of potential applications. Fortunately, there are
ways to work around this limit.

Getting around this limit can allow you to store large blocks of text using SimpleDB,
but do not make the mistake of thinking you will end up with a text-searching engine as
a result. SimpleDB provides basic query capabilities, but it isn’t a good solution for full
text search.The Select operator LIKE lets you search for attributes that contain the text
you specify, but it’s not particularly fast, it is case sensitive, and it doesn’t provide relevance
nor does it match different word forms. If you need to index documents for search, con-
sider something like Apache Lucene.The purpose of these large text workaround sugges-
tions is to enable you to store the text for later retrieval in cases where the need to search
it is minimal or nonexistent.

Storing Text in S3
A very simple option is to store the actual text in Amazon’s Simple Storage Service and
use a SimpleDB item attribute to point to the location of the text file. If the application
using this data is on EC2 in the same region, it will have fast free data transfer to both S3
and SimpleDB. It can be made available using the same AWS credentials used with Sim-
pleDB.Additionally, S3 supports versioning, so you can easily maintain older versions of
files. Depending on the application, it may be useful to store the previous S3 text file
version-identifiers as attribute values in SimpleDB for quick access or querying. Even
though the actual text data in this case in not available to SimpleDB queries, you may
want to store keywords, topics, or tags in SimpleDB for this purpose.

When storing the large text in S3, consider storing the full bucket location and path of
the text file.This can work in the same way as when you store any type of file in S3, and
you may want to implement a common mechanism for referencing data in S3. It may be
helpful to use a naming convention to match domains to buckets if the data is not going
to be used externally.

129Handling Text Larger Than 1K

Storing Overflow in Different Attributes
When you know the maximum size of the text that you need to store, and if it is larger
than the 1k attribute limit, you may be able to reserve a few attributes for storing that
text. For instance, if the maximum text length is 100k, you can break it into 100 1k
chunks and have 100 attributes like ‘BodyText’,‘BodyText01’,‘BodyText02’, and so on.
This can work even if you don’t know what the maximum size of the text will be, so
long as you don’t overflow the number of attributes allowed within an item.

A situation where this technique is useful is storing user-entered data where the text
could be large in theory, but where a very low percentage of entries ever exceed 1,024
bytes. In these cases, an attribute like ‘BodyText’ will hold the full text in almost all cases,
with extra overflow attributes for those few items that actually need it.

Examples of applications where this can be useful include user comments on blogs,
product review websites, and social news and bookmarking sites.Assuming that users will
generally type in 1,024 bytes or fewer is reasonable in many situations, even though it
may not be intuitive.

Consider an extreme example of this principle: the website stackoverflow.com. Stack-
overflow is a large question-and-answer site for programming questions, where the users
are specifically encouraged to post detailed questions and responses. Not only is markup
permitted within the user-submitted text, but it is also stored in the database with the full
HTML markup.

With these forces pushing the size of user posts upward, it is interesting to note that
more than 72% of questions and answers on the site are smaller than 1,024 bytes. Stack-
overflow does not use SimpleDB, but they do publish data dumps that can be analyzed,
and they are an excellent example of how difficult it can be to get users to type in large
blocks of text, even for a fraction of the time.

The trade-off from using this approach is that you lose a few of the conveniences you
would normally have with a query.You cannot easily do a query for text matches across
the variable number of attributes.Also, it makes it difficult to use that attribute specifically
as part of the output selection clause; you end up needing to use SELECT * anytime you
need that attribute in a query. However, the benefit is that it is easy to split up and re-
assemble the text because it doesn’t require any special processing. It is most applicable
when the majority of read operations are in the form of GetAttributes rather than
Select. In these cases, you don’t suffer the query inconvenience.

It is more difficult to update the text stored in these types of items, however, because
there are more steps involved.Anytime the text needs to be updated, you must be sure to
delete any attributes no longer used.The procedure for processing an update of text
would be something like this:

1. Read the item using GetAttributes or Select.

2. Reassemble the original text using the attribute naming conventions.

3. Present this text to the user.

4. Accept the user’s new text and break it into chunks.

130 Chapter 6 Working Beyond the Boundaries

5. If the new text has fewer chunks, create blank values to overwrite the old chunks
that need to be cleared.

6. Call PutAttributes with the new attribute values, setting the replace flag to true
for each.

6a. If you are willing to make the comparisons, you can exclude unchanged attributes.

7. Optionally, call DeleteAttributes for the now-blank chunks.

The extra step specific to storing extra text is to count the chunks and pass the empty
string as a new value for each of the abandoned overflow attributes.You might be
tempted to just delete the empty attributes and not overwrite them first with an empty
value. However, performing the update in one step is the only way to get atomicity. If you
do not do it in one step, you will have an item with bad data until consistency is reached.
During a failure, you could have bad data for an extended period. By performing it in
one step, the item will always have good data: either the old text or the new text.

Storing Overflow as a Multi-Valued Attribute
Another option is to use a multi-valued attribute to store all the text. For example, if you
have 100k of text, you might have an attribute named ‘Body’ with 100 separate values.
The benefit of this approach is that you retain the ability to write queries that target the
attribute, such as the following:

SELECT * FROM posts WHERE Body LIKE '%turbine%'

One of the drawbacks of this approach, however, comes from the fact that there is no
guaranteed ordering of multi-valued attributes.Therefore, you have to insert some sort of
modifier into each text chunk to indicate order.

Although you would not split text this short, it illustrates the issue. If you have the text
“I went to the market last Thursday” and split it into three parts of a multi-valued attrib-
ute named Body, SimpleDB might respond to your GetAttributes, or you Select with
the following:

Body: ["the market", "I went to ", " last Thursday"]

Unless you insert some ordering, you will not be able to reconstruct the original text:

Body: ["02:the market", "01:I went to ", "03: last Thursday"]

Inserting attribute-ordering information into the text value takes up some extra space,
but it opens up the possibility of doing text searches on the attribute, which is not there
when overflowing text to different attributes.

131Entities with More than 256 Attributes

Entities with More than 256 Attributes
Another of the common limits that users try to work around is the 256-attributes-per-
item limit. In reality, this limit is not as strict as the other limits.There is some subtlety to
the way it is implemented; it was designed with flexibility and speed as higher priorities
than enforcement.

The complicating issue is that PutAttributes serves the role of both inserting and
updating data. Calls to PutAttributes that include the replace flag could actually result
in an item with fewer values rather than more.A naïve enforcement of this limit would
reject calls to PutAttributes based only on the existing attribute count and the number
of attributes in the request. However, that implementation would reject many valid re-
quests that merely replace existing values.

This could be handled in two other ways. One way would be for SimpleDB to fully
apply the updates in each PutAttributes request to the item and then examine the re-
sults before deciding if the call should be rejected.A much less computationally intensive
technique would be to relax the limit by only enforcing it on items already past the limit.
The latter approach is the way SimpleDB is implemented. PutAttributes calls are re-
jected when the item already has 256 or more attribute values.This allows the successful
replacement of all 255 attributes that may exist in an item by calling PutAttributes with
255 new values and the replace flags set to true.

One negative side effect of this enforcement mechanism is that for all practical pur-
poses, the limit is 255 and not 256.As soon as you have 256 attributes in an item, addi-
tional calls to PutAttributes are blocked, even though you have not exceeded the limit
and even if you are trying to replace a value.You must first delete at least one attribute
value before you can make the replacement.Therefore, 255 is the limit of attribute values
you can store and still update the item with put calls.

Alternately, a different consequence of this implementation assists those seeking to ex-
ceed this limit. Because you can only get the resulting NumberItemAttributesExceeded
error when the item is already full, you can easily exceed the limit by inserting the initial
255 attributes and then adding an additional 256 attributes.Thus, you easily can store 511
attributes in any item.

You must be aware, however, that these overstuffed items have limited usefulness, since
you can never update the values without first deleting most of them.Also, although Sim-
pleDB has worked this way since it entered public beta, there is no guarantee that it will
always work this way; use it at your own risk. Even if you do overstuff your items, this
type of hack is only applicable for data that will be primarily read only.

Paging to Arbitrary Query Depth
A frequent requirement, when displaying the results of a query, is to enable the user to
navigate through the results in pages.The basic function of fetching another page of re-
sults is built into SimpleDB with the NextToken. Unfortunately, there are many things
you might want to do with search results pages that SimpleDB does not directly support.

132 Chapter 6 Working Beyond the Boundaries

One of the common ways to display search results in pages is to begin by showing the
results for the current page, and also showing links to each of the other pages.This has the
benefit of quickly allowing the user to see how many pages there are and going to one
specific page quickly. However, as a practical matter, when there are many pages, there is
seldom a good reason for the user to navigate to an arbitrary middle page. Usually, either
the next page or the last page is the next navigation target.As such, it has become com-
mon, on the web, to see search results that do not include full pagination but only the
more common first, last, next, and previous links.This can serve to reduce visual clutter,
and it is well suited to SimpleDB, where getting the full query result count can be time
consuming for a large domain.When going to the next page, you may be able to simplify
the use case by only allowing a “next page” and not arbitrary paging.You can do this in
SimpleDB by using the LIMIT clause:

SELECT title, summary, votecount FROM posts WHERE userid = '000022656' LIMIT 25

You already know how to handle the NextToken, but if you use this tactic, you can
support “previous page” by storing the breadcrumb trail of next tokens (for example, in
the web session) and re-issuing the query with a previous NextToken rather than a subse-
quent one.

However, the general case for handling arbitrary pagination in SimpleDB is the same
for previous and next. In the general case, the user may click on an arbitrary page num-
ber, like five, without ever having visited page four or six.

You handle this in SimpleDB by using the fact that NextToken only requires the
WHERE clause and ORDER BY clause to be the same to work properly. So, rather than query-
ing through every page in sequence and pulling down all the intervening items, you can
usually do it in two steps, as follows:

1. Issue your query with a limit value of where the desired page should start, and SE-
LECT count(*) instead of the actual attributes you want.

2. Use the NextToken from step one to fetch the actual page data using the desired
attributes and the page size as the LIMIT.

Listing 6-1 shows a first pass at the pseudocode to implement this.

Listing 6-1 First-Pass Pseudocode for Jumping to an Arbitrary Search Page

int targetPage, pageSize;

...

int jumpLimit = pageSize * (targetPage - 1);

String query = "SELECT %1 FROM posts WHERE userid = '000022656' LIMIT %2";

String output = "title, summary, votecount";

Result temp = sdb.select(query, "count(*)", jumpLimit);

Result data = sdb.select(query, output, pageSize, temp.getToken());

133Exact Counting Without Locks or Transactions

In this code, %1 and %2 are String substitutions and sdb.select() is a fictitious
method that includes the String substitution code along with the SimpleDB call.

Whether or not you can accomplish this in two calls to SimpleDB (as shown in the
code) will depend on the complexity of your WHERE clause and the size of your data set.
The preceding code is simplified in that the temporary result may have returned a partial
count if the query took more than five seconds to run.You would really want to put that
line in a loop until the proper count is reached.To make the code a little more realistic, I
have added the loop, placed it within methods, and abandoned the String substitutions.
The updated code is shown in Listing 6-2.

Listing 6-2 Updated Pseudocode for Jumping to an Arbitrary Search Page

private Result fetchPage(String query, int targetPage) {

int pageSize = extractLimitValue(query);

int skipLimit = pageSize * (targetPage - 1);

String token = skipAhead(query, skipLimit);

return sdb.select(query, token);

}

private String skipAhead(String query, int skipLimit) {

String tempQuery = replaceClause(query, "SELECT", "count(*)");

int accumulatedCount = 0;

String token = "";

do {

int tempLimit = skipLimit - accumulatedCount;

tempQuery = replaceClause(tempQuery , "LIMIT", tempLimit + "");

Result tempResult = sdb.select(query, token);

token = tempResult.getToken();

accumulatedCount += tempResult.getCount();

} while (accumulatedCount < skipLimit);

return token;

}

private int extractLimitValue(String query) {...}

private String replaceClause(String query, String clause, String value){...}

This is the general idea without error handling, and works for any arbitrary page, ex-
cluding page 1.

Exact Counting Without Locks or Transactions
When using SimpleDB, you may find that you need to store a count of something. It may
be how many times something has been viewed, placed in a shopping cart, ordered, and
so on.With SimpleDB, this involves the normal read, increment, and then write process,
and it works fine if there is only one process executing that cycle. However, if there is

134 Chapter 6 Working Beyond the Boundaries

contention for any given item or attribute involved in the count, eventual consistency can
result in missed counts.

With the advent of conditional writes and consistent reads exact counting has become
easy for the general case.A normal read is followed by an incremented write conditioned
on the prior value. If the write fails, use a consistent read to pull the new value, incre-
ment, and do another conditional write.This is the recommended way to perform count-
ing in SimpleDB, however during high contention or outages this technique can break
down.When you want to get the highest levels of availability from a SimpleDB based
counter, you need a way to deal with those rare times when eventual consistency is the
only consistency available.

Eventual consistency does not lend itself naturally to the implementation of a distrib-
uted counter because there is no way to lock a row or perform a transaction.Although
not straightforward, it is certainly possible to do.Two potential approaches to make it
work are using one item per count and storing the count in a multi-valued attribute.The
first is the easier way that uses a new item for each count but requires periodic mainte-
nance to clean up the old items.The second technique maintains the count as an attribute
within the item being counted.This protocol can be much more convenient to use and
requires no ongoing cleanup, but the implementation complexity is significantly higher.

Using One Item Per Count
The easiest way to accumulate a count is to make a different item for each increment of
the counter.This approach is very focused on the individual count values, since they ac-
count for a whole item each.As such, it is possible to store additional audit data along
with each count, like a timestamp, a user ID, or an IP address.

When storing counts this way, you will probably want a domain that only holds these
counts.The domain can store the counts for many different things, and you can indicate
which thing is being counted with another attribute.The domain can be the focus of a
large volume of quick puts from many unrelated processes and requires no coordination
between them. For uniqueness and decentralization, the item names should be UUID
values.When you need to fetch the count, presumably much less frequently, you issue a
query. For example:

SELECT count(*) FROM `shopping-cart-adds` WHERE `product-id` = '5869926'

Over time, this domain continues to grow and, as a result, the queries will incremen-
tally take longer to execute.A simple way to keep the query time low when you are
counting many things in the same domain is to Select based on the attribute name in-
stead of the attribute value.You would need to store the data slightly differently, but the
query would be very similar:

SELECT count(*) FROM `shopping-cart-adds` WHERE `5869926` = 'product-id'

As you can see, the attribute name and the attribute value are swapped for the attribute
that identifies the thing being counted.This makes the queries more efficient based on the

135Exact Counting Without Locks or Transactions

fact that a separate index is created for each attribute name. Instead of searching through a
large index, the query uses a smaller index where all the items match your criteria.

Faster Counts with NextToken Caching
Over time, the count query may begin to take so long to execute, you get back a
NextToken requiring a second query to get the full count. If the multi-page query takes
too long for your needs, one option is to cache the NextToken at a well-known value and
query only for updates that are more recent.To accomplish this, you will need to store a
timestamp with each count and that attribute will need to be added to the query as a sort
criteria.To update the shopping cart example:

SELECT count(*) FROM `shopping-cart-adds`

WHERE `5869926` = 'product-id' AND timestamp IS NOT NULL

ORDER BY timestamp

If the query begins returning a NextToken once there are 120,000 matching count
items, you can manipulate the limit value to get a token at the 100,000 mark and pass
that token to subsequent queries for the remainder of the cache period.You do not need
to use a round number like 100,000; you might want to regenerate the token each day to
a recent value for each of the things being counted to keep the queries fast.

Cleaning Up Old Counts with Summary Records
Specific NextToken caching is useful in general when you want to keep all the historical
items, but if older counts have little value and the count volume is very high, you may
want a way to clean out the old items. One solution to that problem is a summary record,
where you roll up all the counts collected so far for each thing being counted and then
delete the original items.The summary record is just an item with a timestamp, count,
and a way to identify the thing being counted.The timestamp granularity should be
down to the millisecond.This also requires that the normal count items contain a time-
stamp.The summary records don’t need to be in the same domain; the choice of where to
store them is up to you.

Using a summary record involves two things: pulling it along with each count query
and updating it periodically. Computing the count is now a three-step process.You have
to first pull the summary record and then perform the original query, adding the addi-
tional criteria of a timestamp strictly greater than what was in the summary record. Fi-
nally, add the two counts together. Here is what the updated query might look like:

SELECT count(*) FROM `shopping-cart-adds`

WHERE `5869926` = 'product-id' AND timestamp > '2010-01-10T22:50:21.453Z'

You will also need a way to update each summary record periodically.This can be done
on a schedule (every hour, for instance), or dynamically based on some other criteria, like
whenever the query returns more than one page. Just make sure that when you update
your summary record, you base it on a time that is far enough in the past that you are past
the eventual consistency window.A delay of one minute is safe when there is no outage.

136 Chapter 6 Working Beyond the Boundaries

This solution works well in the face of concurrent updates, even if many summary
records are written at the same time.As long as each one contains a total that is consis-
tent with the timestamp, it doesn’t matter which one wins the last-write-wins contest,
because they are all correct. It also works well when you expand your count items across
multiple domains.You can pull the summary records from all the domains simultaneously
and then issue the queries to all domains in parallel.The reason to do this is when you
need higher throughput for a certain thing being counted than what you can get from
one domain. In addition, it also works well with caching. If your cache fails, you have an
authoritative backup.

The time will come when someone needs to go back and edit, remove, or add a
record that has an old timestamp value.The code that performs that change needs to also
update the summary record for that domain or the count will be off until the summary
record is recomputed.

As with any SimpleDB-based solution, this will give you a count that is coordinated
with the data currently viewable within the consistency window. In practice, it is likely to
be several seconds behind.

Storing the Count in a Multi-Valued Attribute
Sometimes the count is not a first-class concept.The data model has been decided, and
the count is one of many values of some other entity. In a traditional database, it would be
an integer field like any other. It doesn’t merit its own database table, or in SimpleDB, its
own domain.You can accomplish this, in spite of eventual consistency, but not with a sim-
ple integer.

Because it is not possible to do an atomic read-increment-write during the outages
that cause conditional writes to fail, the new data must be added without destroying the
old.A multi-valued attribute is used for this reason. In addition to the count, a version
number needs to be included as part of the value.A single authoritative version of the
count is not possible, so there needs to be a way to specify which version is being up-
dated. One possible format includes the previous version, the current version, and the
value—for example, using System.currentTimeMillis() in Java to generate version
numbers, as follows:

1263163821453:1263163821531:89

Here you retrieve a count of 89 that was stored as version 1263163821531, and it is
based on version 1263163821453. If this is the value you find when you read this attrib-
ute and you want to add one to the count, you would write the following value without
setting the replace flag:

1263163821531:1263176339225:90

137Exact Counting Without Locks or Transactions

The previous value is not removed, and you end up with an audit trail of updates that
are reminiscent of a version control revision-history.This requires you to do a few extra
things, as follows:

n You need to be able to parse the revision tree, identify divergent versions, and
merge them whenever the item is read, to get an accurate count.

n A simple version number isn’t going to work, so you may want to make it a time-
stamp, as shown in this code, or include a timestamp in addition to a version num-
ber.A process ID could be added as well, to prevent collisions.

n You can’t keep an infinite audit trail in one item, so you’ll need to issue deletes for
older values as you go.

What you get with this technique is like a tree of divergent updates, as depicted in
Figure 6-1.There will be one value, and then all of a sudden, multiple updates will
occur—you will have a bunch of updated counts based off the same old value, none of
which knows about each other because of eventual consistency.

Parsing the revision tree means taking the set of values and finding all the values that
are not part of the most recent branch. Looking at the example shown in Figure 6-1, the
most recent branch ends with the count at 91.Also notice that the version numbers end-
ing in 183 and 941 are not counted as part of the most recent branch. Merging the count
values involves combining all the divergent branches to get the total count.The code
reading this attribute value needs to be able to figure out that the correct count for this
example is 93.

1263163821531:1263176339225:90
1263176339225:1263176340021:91
1263163821453:1263163821531:89
1263163821531:1263176340183:90
1263163821531:1263176339941:90

90

90

91

89 90

Figure 6-1 Multi-valued attribute representing a
count and the corresponding revision tree of count

values

138 Chapter 6 Working Beyond the Boundaries

Figuring this out can be done if you include for each new value the version of the
value(s) you are updating.There are ways to make this more robust and more complex. If
you have to implement this yourself, it may seem like rocket science and is probably
overkill.This is why SimpleDB may not be the best choice for making simple counters.

Note
These counters may seem complex, but if all these implementation details were hidden from
you, and you just had to call increment(key), it would not be complex at all. With Sim-
pleDB, the client library is the key to making the complex things simple. The problem is the
lack of publicly available libraries that implement robust degraded-mode compatible routines
like this.

Testing Strategies
Unit testing a SimpleDB-based application is not really a boundary, but it can be an ob-
stacle. If you don’t get it right, the tests can be both ineffective and time consuming,
which can be a source of frustration. Furthermore, the eventual consistency inherent in
SimpleDB provides its own set of testing challenges.You will benefit from keeping testing
in mind from the beginning of your SimpleDB development.

Designing for Testability
Your SimpleDB applications will always use a SimpleDB client, whether from a third
party or of your own creation.A big part of testability in this situation involves writing to
an interface and not an implementation.The difficulty in this will depend on the lan-
guage and client you use.The basic approach is to create a wrapper class around the client
and write your application against the wrapper instead of the client.

Writing to an interface in this manner has three primary benefits. First, it prevents you
from being locked into the details of a particular version of a particular client.When a
new version comes out or when you decide to try a different client, all of the changes
you need to make are conveniently located in one location.

Second, it gives you an appropriate place to put convenience methods and work
around the idiosyncrasies of a SimpleDB client.A wrapper is a good place, for example, to
put a GetAttributes function that returns the values in the form of a map instead of a
list.Another example is a Select function that automatically issues the follow-up queries
based on how many results you want back.This frees your application code from ever
seeing the NextToken.

The third benefit of writing to the interface is that testing becomes easier.When you
run unit tests on your application code, you don’t want to test the SimpleDB client,
HTTP client, and the SimpleDB service all at the same time.The unit tests should test
only the code being written.This enables the tests to run quickly while maintaining a
narrow focus.Writing to the interface allows your tests to swap in a substitute test fixture
in place of the SimpleDB client.The test client can respond to calls quickly without wait-

139Testing Strategies

ing for responses over the network. It can also support your testing scenarios by storing
values in memory between test method calls.

Alternatives to Live Service Calls
Avoiding live services calls in your tests is important. Not only will they slow down your
tests, which should execute quickly, they also incur expense and make it more difficult to
test eventual consistency.You might think that using live service calls to SimpleDB is a
good way to test eventual consistency because your tests are forced to deal with the gen-
uine article. However, the fact is that the duration of real-life eventual consistency is be-
yond your control, and this is not the same from one test run to the next.

Creating your own tests that use configurable response times and eventual consisten-
cies will enable you to test your application in a wide variety of situations and do it on
every test run.This is something that cannot be achieved when your test code is dealing
directly with SimpleDB and gives your test a high level of repeatability.

Summary
SimpleDB can be very convenient for simple applications. It can also be a great benefit
for applications that are not simple.Whether simple or complex, all types of application
design may require some creative thinking to handle the boundaries and limitations en-
forced by the SimpleDB service.Although you can implement these creative extensions as
an application designer, they are probably best handled as part of the implementation of
SimpleDB clients. If you use an open-source SimpleDB client and find that you need to
add additional functionality, consider contributing it back to the project.

This page intentionally left blank

7
Planning for the Application

Lifecycle

Over time, long-running applications need more storage space in SimpleDB and may
need to support a higher traffic load. Planning for this situation ahead of time and track-
ing historical usage will serve as an aid to decision making.This chapter covers practical
considerations when planning for the future of a SimpleDB application.

Capacity Planning
Planning for the level of storage and bandwidth an application will need is important. Of-
ten, the default level of storage and bandwidth available from a database is more than
enough to cover the expected usage of an application.This is commonly true of web ap-
plications based on a relational database that you manage yourself using reasonably fast
hardware. However, with SimpleDB, the limit of 10GB domains can cause an application
to run out of space eventually, or even be insufficient from the beginning.

Additionally, there are costs associated with your every use of the database service. Part
of the planning you do may need to deal with what the costs will be in the beginning
and how they will grow over time.When considering SimpleDB costs, there are both
storage costs and box usage costs to factor into your calculations.

Estimating Initial Costs
When you first move to a pay-as-you-go model, it is difficult to know what the actual
costs will be.The more basic the service, the easier it is to compute. Storage on S3 is a
very simple example—if you know the size of the data you need to store, calculating stor-
age and transfer costs is a straightforward computation. EC2 is not necessarily as simple if
you use a framework that automatically spins up new instances as needed.Although you
may not know whether the peak will require, for example, 5 or 10 servers, it is possible to
calculate the cost of each scenario individually to get an approximation.

Estimating costs in SimpleDB is different from S3 and EC2, though.The storage and
transfer costs are just as easy to calculate, but for most applications, the box usage costs are

142 Chapter 7 Planning for the Application Lifecycle

likely to be both the largest percent of the costs and, initially, the largest unknown.The
actual box usage numbers returned with SimpleDB responses are not true measurements,
but estimates based on a wide variety of factors.You can analyze the numbers, but that
doesn’t provide a direct indication of what the actual box usage numbers will be in total
for a production deployment.A good approach, and maybe the best you can do, is to
store a quantity of data similar in size and composition to what you expect to use in pro-
duction and do some testing to find out how much the various operations are going to
cost you.

Some of the costs are fixed, like the cost of a GetAttributes call. Other costs are vari-
able based only on what you pass.An example of this type is the PutAttributes call,
which generates a box usage charge as a factor of how many attributes you store, plus a
fixed overhead charge. Calls to Select generate a box usage that is much more difficult to
predict. Despite the difficulty in estimating ahead of time, all the calls are easy to measure
after the fact, and so this is an effective method for gathering that data. However, perform
the testing on a domain with as much data as you expect in production, because the costs
can vary considerably. If one of the main queries you execute comes back with low box
usage numbers with a small domain size, this does not mean that it will always come back
with low numbers. In fact, the numbers could both become much larger and then multi-
ply if you need to fetch additional pages because of long query times.

This brings up another important point. Not only do the box usage numbers for
Select calls grow as the domain grows, but the execution time grows as well.This is en-
tirely expected—the more data you have, the more time it takes to query it. Just be aware
that because you are dealing with an external service, you should run performance tests
that are as realistic as possible.

Keeping Tabs on SimpleDB Usage with AWS Usage Reports
There are several ways to track your SimpleDB usage over time, and you should definitely
use one of them.You don’t want to be surprised by extremely high costs, and the best
way to avoid the surprise is to track the usage. One way to track SimpleDB usage costs is
to use the Amazon-provided reporting.

AWS makes detailed reporting available on the website under the account options.You
can select from among all the services for which AWS bills the account.After selecting
SimpleDB from the list, you get options for the type of billing. Figure 7-1 shows the
AWS usage report page and the usage type options.Types include data transfer in, data
transfer out, storage costs, number of requests made, and box usage.

There are separate selections available for the preceding report types in the different
regions, so one entry is for “BoxUsage” and another entry is for “EU-BoxUsage.”Addi-
tionally, you can select to have all the types of usage included in the report.After selecting
the type of usage, you can also choose if you want to restrict the report to one particular
operation.The choices are the nine SimpleDB operations, plus an option for just storage
followed by an option to include them all. Once the set of operations to report on has
been made, you can also choose the time period to report on.The choices are the current

143Capacity Planning

Figure 7-1 AWS usage report page: available usage types

billing period, previous billing period, last week, last month, and custom date range.This
enables you to view and compare historical data in addition to data for the billing period
currently in progress.

The final option on the AWS report screen lets you select the granularity of the report
data.The choices are hours, days, or months.There will be an entry in the report for each
time period within the billing period you selected earlier. Selecting hours in combination
with a large custom date range can lead to a very large report file. For example, if you
chose all operations, report by the hour, and report on a full month’s worth of usage, you
will get an entry in the report for each hour of each day of the month for each of the op-
erations—for a total of more than 7,000 entries, if you have round-the-clock usage.

Once you have made all the selections, you can choose to download the report as an
XML document or as a CSV file.The report you get is just a long list of raw data, so you
will need some means to analyze it. If you have a spreadsheet program and prefer to use
that for your reporting, that can be a viable option.A sample CSV report download is
shown in Figure 7-2, as displayed in a spreadsheet program.To be practical, in the long
term, this would either require some sort of automation within the spreadsheet to convert
the data into the final report, or else the time commitment (or staff) to do it manually.

If you do not like the idea of generating the report within the spreadsheet or if you
want a higher level of automation, the XML document format can be parsed by a pro-
gram of your own or by a reporting tool.There are a wide variety of reporting tools that
accept XML.The XML usage report format is much more verbose than the CSV report,
as is typical of XML. Figure 7-3 shows a sample XML report as viewed in an XML editor.

144 Chapter 7 Planning for the Application Lifecycle

Figure 7-2 CSV usage report displayed as a spreadsheet

Figure 7-3 XML usage report opened
in a text editor

145Capacity Planning

Creating More Finely Detailed Usage Reports
Amazon usage reports provide detail down to the level of the hour, and this may be suffi-
cient for your needs. If you desire a higher level of detail, you will need to track your own
usage rather than relying on the AWS-provided reports. My recommendation for self-
tracking SimpleDB usage is to have the SimpleDB client log the details of each request to
a file. If there are multiple clients running, the files for all of them can be aggregated later
based on timestamps.There are many different parsers available for parsing and reporting
on web server-style log files. If your SimpleDB logs use a compatible format, this can be
more convenient than using the AWS reports, since you don’t need to log into your Ama-
zon account on the AWS website and manually download the files.

In addition to mere convenience, you can get a much finer-grained reporting from
your own custom logs.The most important place for this functionality is in the tracking
of Select calls.The best you can tell by looking at the AWS reports alone is that Select
operations are costing a lot of box usage.You cannot get any detail out of it, other than
the cost breakdown by hour, and therefore there are no actionable insights. In fact, be-
cause it is probably common sense that the Select operations will cost a lot of box us-
age, you may end up gaining no insight of any kind from seeing the Select charges in
the AWS report. If you log SimpleDB access yourself, you can include in the log files the
actual select expressions being passed, along with the box usage, response size, and re-
sponse time.

In addition, detailed logging enables a much more in-depth analysis into the true fre-
quency of query use and the associated costs of each.This becomes more and more bene-
ficial when you have various layers of caching in place.When that is the case, there is no
other way to know how often you call a particular query. For a web application that al-
ready has web server log files, you may be tempted to use the existing web logs for this
purpose, combined with an analysis of the code.This will provide more insight than the
AWS usage reports alone, but unless the application is very simple, you cannot trust that it
is giving you an accurate picture.What looks like the most-used query may end up being
served from the cache most of the time, and multiple SimpleDB operations called from
the same request cannot be differentiated.

The finer-grained reporting continues to add value beyond the identification of ex-
pensive queries. It can provide a wealth of information not available via any other means.
Which queries are taking the longest to execute? This is not answered by the box usage;
remember that the box usage is a synthetic estimate that is not based on the actual execu-
tion time.Why are these errors so expensive? One dimension of box usage that is not
broken out at all on the Amazon reports is the box usage costs associated with the errors
you receive. In the canned reports, these numbers are rolled into the totals for whichever
operation generated the error.When you break out this data in your own report, you find
out useful information. Sometimes the box usage for timeout errors and service unavail-
able errors is significantly higher than normal. Sometimes a query that normally returns
in less than 200ms will take 5 seconds, return a NextToken with no results, and charge 20
seconds worth of box usage.

146 Chapter 7 Planning for the Application Lifecycle

These things are rare, and as such, are merely interesting facts, rather than being neces-
sarily actionable on an individual basis. However, if you have the means to do detailed re-
porting, you then also have the ability to determine if these aberrations correlate with
higher-request volumes, large domain sizes, specific queries, and so forth. It may be some-
thing that needs to be dealt with by AWS support, or you may need to tweak the applica-
tion-caching policies. If you don’t have your own detailed reporting, you will never know.

Tracking Usage over Time
Although tracking usage can be beneficial during initial testing and deployment to verify
costs and work out kinks, it is of particular value in the later phases of the application life-
cycle. It is useful for running down issues that crop up, but more importantly, it allows
you to plot the path that the application is taking in terms of growth.

Tracking growth across multiple dimensions is important when it comes to planning
for the future. Different types of growth have different levels of impact on the application
and on the database. For example, if a public web application experiences a spike in traffic
from various sources, it may not have a large impact on storage if most of those new visi-
tors either don’t create an account and continue to use the site or if the usage is low.An-
other example is that a steady growth in data size could eventually cause a cascade of
performance issues, even when there is not a significant increase in traffic.

Having the ability to plot different usage and growth trends over time can enable the
types of planning that keep the application running smoothly. Either AWS logs or detailed
logs can be used for this purpose.The detailed logging can lead to insights that are more
actionable, but the larger trends will be present regardless and the added detail typically is
not needed, except for purposes of drilling down into the data.

Storage Requirements
It is important to be aware of the SimpleDB performance characteristics compared to
your other storage options. SimpleDB has significant differences from other types of stor-
age you may use.When you compare SimpleDB to Amazon S3, at first glance you see
that storage costs are more than 50% higher than S3 and the storage limits are much
lower. In fact, despite the S3 limit on file size, the number of files you can store is actually
unlimited.Although the data you store in both SimpleDB and S3 is replicated for high
availability, there are many differences. One major difference is that S3 is optimized for
accessing large files.This involves dense storage drives optimized for the cheap storage of
those large files. SimpleDB, on the other hand, is not tuned for low cost, but for fast ac-
cess to smaller chunks of data.This involves the use of storage drives that are less dense.
Additionally, SimpleDB maintains indexes for every attribute name, to enable fast queries.
These differences amount to very different sets of capabilities and a higher per-gigabyte
storage cost for the additional SimpleDB features.

When comparing SimpleDB to other database products or services, it is good to keep
in mind that, unlike a database running on a single server, SimpleDB is automatically
replicated to multiple servers; thus, the storage costs may be higher.When comparing

147Storage Requirements

SimpleDB to a relational database, it may be more accurate to compare costs based on a
relational database cluster rather than a single database.

Computing Storage Costs
When computing storage costs, there is an additional charge for the storage of the index.
The extra charge is assessed as the addition of 45 bytes added to the billable storage total
for each entry in an index.These entries come in one of three forms: an item name, an
attribute name, or an attribute value. For the majority of applications, the attribute name
costs will be negligible, being dwarfed by the comparatively larger number of item names
and values.

For the purposes of the storage cost billing, you can consider the item name to be just
like any other attribute value being stored.As a result, the (simplified) formula for com-
puting the billable per item storage is TotalBytesStored + NumberOfValues x 45. In this
formula, each value of a multi-valued attribute, each value for a single attribute, and the
item name each count once for the purpose of counting the number of values.These ad-
ditional billable storage bytes are probably an accurate indicator of the index data that
SimpleDB needs to store. However, the next section details some important implications
of these costs related to the slack space in your data.

Understanding the Cost of Slack Space
The index storage cost can be a small part of your total storage costs, but depending on
the data you store, it could also become larger than the raw storage numbers.This can
happen if the size of the values you are storing is consistently less than 45 bytes. Some
values are likely to be naturally small.A popular format of randomized UUID is fre-
quently used for item names in the absence of an auto-increment feature.This UUID is
36 bytes long. User tags are frequently short in length, sometimes averaging only two to
six letters long. 64-bit integers and floats can be stored in a string searchable format for 24
or fewer bytes. Sometimes there is a need to indicate that an item is one of a small num-
ber of types. For example, a user account could be active or suspended, a post could be
open to comments or locked, or an event on a calendar could be pending, scheduled, or
completed.These type fields can usually be stored with a single byte value.

Storing many small values has the effect of leaving a lot of slack space in attribute val-
ues, when you compare it to the size of what could be stored there.There is nothing
wrong with this, and there is no extra charge for that slack space; you are charged for the
actual bytes you store. However, you should be aware that there is also no discount on the
index cost for small values. If you store an attribute value of only one byte, you still get
charged for the additional 45 bytes for the index.Therefore, it is possible to store 2GB of
values that average out to be 10 characters long and be charged for an additional 8GB
worth of index.

Although the cost of storage is really not that high, it is still good to be informed
about how the system works.You certainly won’t benefit from storing your data in a
more verbose format just to save slack space.That will reduce the percentage of your costs

148 Chapter 7 Planning for the Application Lifecycle

that come from index storage, but it will accomplish it by raising the overall cost, rather
than reducing it. However, there is something you can do about it if it is a problem for
you—you can store multiple logical values together in a single attribute value.

Evaluating Attribute Concatenation
Before you take that step, you should understand what you gain by separating out your
data into naturally distinct attributes in the first place.You essentially gain three things.
First, you can query for that attribute individually. Part of the benefit of using SimpleDB
is the query capability, so there are probably values that you are required to include in
queries. Others, however, may not need to be queried.The second benefit is the ability to
have the equivalent of an array of values by using a multi-valued attribute.This can be
very useful, and there is nothing special you need to do to enable this feature for any
value of any item, other than keep it in its own attribute.The third thing you gain is the
ability to update the value in isolation.This allows multiple clients to update different val-
ues within the same item without stepping on each other. If you concatenate values to-
gether, you lose this ability.

Knowing what you gain with separate attributes allows you to evaluate when it may
be beneficial to combine attributes. If the values are small, are never queried, never con-
tain multiple values, and are never updated independently by concurrent clients, it might
be worth considering.To weigh the other side of the equation, here is what you will gain
by combining attributes. First, you will save on the cost of index storage by having fewer
attributes to index. Second, you will save on PutAttributes costs, which can be an issue
because the box usage charge of PutAttributes is proportional to the number of attrib-
utes cubed.This is a surprising and extraordinary fact; however, you are not charged for
box usage based on the size of the PutAttributes but instead on the number of attrib-
utes raised to the power of three.Anything over 53 attributes could be more cheaply
stored with two separate calls.

One requirement this attribute-combining puts on the application is the ability to
concatenate and parse these combined values in all situations. Ideally, this could be done
automatically in a persistence layer, if at all. However, this does reduce flexibility for the
future and thus should only be considered if storage costs are a serious issue.

Scalability: Increasing the Load
If you cannot get the throughput or performance you need from the initial number of
domains for an application, it may be necessary to spread out the data across more do-
mains.This can also be the case if the domain actually becomes full, but that is less likely.
Performance tends to degrade faster as the domain fills up, so the need to expand will
probably be felt before it is enforced. If your application is able to archive older items, if
archiving fits into your application processing, that is something to consider before shard-
ing. However, the primary unit of scalability in SimpleDB is the domain.This is true
whether you are talking about scaling up the bandwidth, scaling up the storage, or scaling
up the concurrency. Unfortunately, increasing the number of domains is seldom a simple

149Scalability: Increasing the Load

matter.The data set must first support partitioning, and many types of data are not well
suited to this.

There is a limit to how far you will be able to scale when the data cannot be split
across multiple domains.This is something that needs to be considered upfront. In one re-
spect, this may be easier than with the data in a relational database.Without the ability to
create relations and perform joins, the data is naturally connected more loosely. If your
data is structured such that the individual item forms the basis of unique data that must
change together, as it ideally should, the process of splitting data may be easier.

One way to split the data is across a natural boundary. For instance, the data can be
split across the natural categories already present, such as music, movies, and games or ap-
parel for men, women, and infants. Other types of natural boundaries could be users,
posts, and votes. If there are no natural boundaries, or if there are many but all are too
small to warrant a domain, you are left with an arbitrary splitting. Moreover, this can also
be the case if you have already split the data but still need the ability to scale more.

Splitting you data arbitrarily across domains will most likely involve using a hash
function to assign each to one of the available domains.This is a straightforward process
for all operations except Select. If you hash the items based on the item name, and if you
perform GetAttributes, PutAttributes, and DeleteAttributes based on the item
names, it is a simple matter of hashing the item name before each call to determine the
proper domain.

The complication with data splitting and Select is a twofold problem that involves lo-
gistics and expense. On the logistics side, under ideal conditions, you will need to multi-
plex every query to each domain. For example, if you store metadata for videos in two
domains, every time you perform a query to find videos with a specified tag, you will
have to issue the query to both domains.This is not a problem from a performance stand-
point—because you can call the queries concurrently, it will actually be faster.The multi-
plexing difficulty arises both from the need to have a mechanism in place to make the
calls concurrently, which not every SimpleDB client supports, and from the standpoint of
box usage.You will need some framework, or SimpleDB client extension to handle the
concurrent calls, because there is some trickiness involved.The domain name will need to
be substituted into the body of each SelectExpression, since it resides within the string
and not as a parameter, like the other operations.The concurrency will need to be imple-
mented, and this could mean multiple threads or asynchronous I/O. Scaling across do-
mains will yield faster query times if done concurrently, but will lead to slower times if
the queries are called sequentially.Additionally, the standard mechanisms of retrying the
queries that experience a timeout or require the fetching of multiple pages will need to
be in place.This is a more complicated affair because of the concurrency, and trou-
bleshooting problems is more difficult.

The preceding discussion assumed that it is possible to multiplex Select calls success-
fully across multiple domains, but this condition is not always true.The factor to consider
is the data model. If the logical unit of data that constitutes a query match can all be
placed within the level of a single item, then this is ideal. But if you are not able to fit all

150 Chapter 7 Planning for the Application Lifecycle

the data into one item and make up for it by allowing that logical data to spill over into
multiple items, there are going to be problems with multi-domain queries. It is easy to
analyze how this will work for your application by taking a dozen sample items, splitting
them across two domains and constructing the queries by hand. If you can make it work
with two domains, it will work with any number of domains.

When the time comes to increase the number of domains in use, you have the same
two options as when making other major types of SimpleDB maintenance.The two op-
tions are to either do it all at once during a period of downtime or update data during
live usage of the application.These two options are explored in the next section.

Planning Maintenance
For simple applications or applications that do not need to undergo major changes, there
may never be a need for large maintenance tasks. Nevertheless, there are many types of
changes that may need to be made that would necessitate database-wide changes. Sim-
pleDB maintains no schema requirements, but formatting is required to make numbers
searchable; if you need to roll out a change in the format, you will need to deal with the
SimpleDB equivalent of a schema update. Luckily, you should not need to take your ap-
plication offline to implement the change.There are also other types of changes you may
need to make on a large scale.The most convenient way to make any of these updates
may be via a single blocking update procedure during a maintenance window, but read-
repair updates are also a viable alternative.

Using Read-Repair to Apply Formatting Changes
Read-repair is a process that involves making changes incrementally over time to each
item as an additional overhead at the time it is read.This is in contrast to stopping all ac-
cess to the database and making all the changes in one large shot. If you primarily access
data items using the item name, this technique can be effective. If there is a combination
of item name and query access but the queries are mainly not sorted, read-repair could
still work well. It is less suitable when sorted queries are continually being issued; it will
require more work to accomplish.

The general technique first requires you to have a way to indicate what is changing.
You will need to have the code to read both formats, old and new, and differentiate be-
tween them. Once you signal for the change to begin, the normal flow of your applica-
tion should continue.Whenever the target of the change is detected on a read operation,
an additional write operation is added that overwrites the old value with the new value.
In the beginning, all the items that come back may need the repair.The popular items
will be updated quickly, and the remainder will be the target updates over time in the or-
der that they are actually accessed. In the end, you may need to clean up some items that
were never accessed, but once you have the process working well, the cleanup may not be
an issue.

An example of this type of change is if you have a certain count value stored in an at-
tribute named “count.” In the beginning, consider that you may have stored it in a format

151Planning Maintenance

compatible with storing 32-bit integers. But now you find that you need to support
larger numbers and need to move to a format capable of storing 64-bit integers. In this
example, assume that this SimpleDB domain is being used as a key-value store, and there
are no Select statements to consider.The steps you need to take, which should probably
be a part of the persistence layer, are the following:

n Set the type information for this field to indicate the old format and the new format.
n Store the format information where the SimpleDB client can find it and use it for

all subsequent calls to PutAttributes.The new format needs to be used for all
subsequent writes of this.

n Access that stored format information from every call to GetAttributes.At the
completion of each read where this attribute is present, the format of the value
needs to be checked. If it is in the old format, a follow-up PutAttributes call
needs to be made immediately with the single value in the new format, overwriting
the old value.This call can be done asynchronously.

The reason the call needs to be immediately is so subsequent writes that update the
value are not clobbered by the automatic format update.

When there are queries to consider, there is some additional work to do.There are ba-
sically three types of query handling to be done.The three cases cover the three levels of
importance the attribute with the changing format can have to the query it is in.

In the first type of query, the attribute is present in the output selection clause but not
in the Where clause. In this situation, the attribute is merely being returned as a value, and
the format does not impact what the query returns.This case is very similar to the
GetAttributes case.The query results need to be examined for items with the old for-
mat and a follow-up set of writes need to be made for those items.The writes can be
rolled up into a BatchPutAttributes request for convenience, and depending on the size
of the query results, more than one batch call may need to be made.This will also work
for queries that use count(*) as the output selection parameter.

The second type adds an additional complication that may prevent read-repair entirely
for the given attribute.These are the queries where the attribute in question is part of the
actual search criteria. In this case, it is not always possible to use read-repair because it
may not be possible to get correct query results back while values exist in two different
formats. If the query uses equality via either the equals operator or the IN() function, it
will be possible. Multiple queries will have to be issued for each query where the target
attribute is in the Where clause, until such time as the read-repair is complete. If another
type of comparison, other than equality, is used in the Where clause, it may not even be
possible to match the criteria during a format change. It will depend on how the format
is changing and what other criteria are in the query.You will need to analyze each query
where this is the case to determine if it is possible.

The final case is when the target attribute is the subject of the ORDER BY clause.
This case is similar to the previous case, except that because it is rare to sort on a value

152 Chapter 7 Planning for the Application Lifecycle

selected with an equality operator, it is almost certainly not possible to use read-repair in
this situation.

Using Read-Repair to Update Item Layout
Adding new fields to items that already exist is especially easy in SimpleDB.Whether you
use a batch process or make the changes more slowly over time is up to you.There are no
schema changes to coordinate between clients or between domains.You are free to make
just the changes as you need to.This can include the same read-repair style process as dis-
cussed previously with the format changes.

More simply, you may just be adding a new data field. If this is the case, you can just
add the data when it is available. For example, if a user-tagging feature is being rolled out,
you can just deploy the code responsible for storing the tags.The tags will be stored as
they are created, and there is nothing special that needs to be done.

In a case where you already have the full set of data, you will need to put into place a
mechanism to backfill the existing items in addition to adding the new values. Read-re-
pair can work nicely for this in situations where an extended but incremental perform-
ance hit is more desirable than a short but full outage.An example is a count that is
derived (and then cached) from a query, and now you want to store the actual count
value in the item.Assuming it is a vote count, updating the vote count as votes are made
will be part of the normal application code, but going back to update the older votes can
be done as a special-case process while old-style items still exist.The read-repair can be
done in the same steps as with a format change, transitioning between the old way and
the new way. In this case, there is no need to run separate queries; it is the old vote-count
query that must be run if there is no vote value in the item.Therefore, the code must be
able to detect the old style items as they are read and make the change.

Using a Batch Process to Apply Updates
Updating the format or the layout of data items in SimpleDB has the benefits of speed
and simplicity.The drawback is that you will need to prevent normal application access to
the domain during the course of the update. If you are able to use a scheduled mainte-
nance period to perform changes, using a batch update can be very convenient.The speed
comes from the fact that you can submit updates as fast as SimpleDB will accept them
without competing with normal application requests for domain bandwidth.This is how
you would expect to apply an update.

The simplicity, compared to the read-repair approach, comes from the fact that you do
not need to implement and test any special application logic.The expected application
changes still have to be made surrounding the changes being applied, but nothing extra.
Further, those changes may be confined to a persistence layer and only touch the applica-
tion code via annotations or configuration.All of the data conversion logic remains neatly
contained within the update utility, which can run to completion, enabling a nice clean
end to the update activities.

153Planning Maintenance

Summary
If your application is one where growth is steady and performance is critical, it is wise to
keep an eye on database usage and growth.Although rolling out synchronous schema up-
dates is not typically part of SimpleDB usage, by design, some of the same issues can crop
up and require some attention. In particular, you may need some form of limited and
homegrown schema to manage object mapping, admin tools, or reporting tools in some
combination. If you do, it is best to be informed about what a schema change rollout
might look like.

This page intentionally left blank

8
Security in SimpleDB-Based

Applications

A single secret key may be the only thing that stands between the public Internet and
all the data you have in SimpleDB. Security is an important consideration during the de-
velopment of any application.The use of web services in the cloud has the benefit of re-
ducing maintenance costs, but it also serves to reduce the amount of control, and it can
make security seem like more of an unknown quantity.

This chapter discusses security topics that apply to applications storing data in Sim-
pleDB.The discussion includes many of the differences between applications running
within the Amazon cloud and those using SimpleDB from the outside.

The three primary security areas covered are those pertaining to securing the AWS ac-
count, securing the service access keys, and securing the data.

Account Security
The safekeeping of your Amazon Web Services account is crucial.The account used to
create a SimpleDB domain automatically has access to perform all operations on that do-
main.Anyone with access to that account will be able to view all the data, add to or up-
date the data, and delete any or all of that data.The security and integrity of your data is
at stake if you do not protect your account credentials.

Managing Access Within the Organization
Not only is your data at risk, your money is at risk too.The AWS account may also be
tied to other services besides SimpleDB.An unauthorized user accessing a compromised
account could also have access to run EC2 instances and use other resources that will end
up costing you money and leave a mess for you to clean up.The first rule to follow is to
limit access to the account credentials to only those people who actually need them.The
primary use of the credentials is administrative.They are not required for day-to-day use

156 Chapter 8 Security in SimpleDB-Based Applications

by applications to access SimpleDB domains. Only trusted people playing the role of
database administrator should have access to them.

Here is a list of the AWS tasks requiring account access:

n Downloading usage reports
n Signing up for any Amazon Web Service
n Viewing or modifying payment information
n Activating, deactivating, or creating access keys
n Consolidating billing
n Using the AWS management console

Limiting the access to account credentials in production to only those people required
to perform the preceding tasks offers a first line of defense.Typically, these are the people
in production support positions.

Although low-level software unit testing can be done using SimpleDB substitutes,
other types of testing will require access to an actual SimpleDB account.This may not be
an issue for small organizations and departments using the service in isolation. Larger or-
ganizations, however, can face a challenge when dealing with the need to use the service
widely and safeguard account credentials.

The best solutions provide a way for each distinct group of stakeholders to maintain re-
sponsibility for their own account and account credentials. Remember that this concerns
the AWS website login credentials and not the access keys used by applications.When
there are database administrators and managers on staff tasked with handling database ac-
cess and budgetary matters, the developers likely have no need for account credentials.

Also, remember that the AWS account is the management point for more than just
SimpleDB. S3, EC2, RDS, and all the other services all require the same level of account
handling.The challenge comes from trying to balance the separation benefits that come
from multiple accounts with the headache associated with the need to deal with many
accounts.

Consolidated billing offers a clean way to link AWS accounts and separate the techni-
cal concerns from the payment concerns.The feature allows the billing detail and pay-
ment responsibility for one account to be forwarded to a designated account, without
granting any other privileges.At the end of the month, the billing account is charged in-
stead of the account that accrued the charges.The billing account can see the breakdown
of the charges but cannot manage or view resources or keys associated with the forward-
ing account.

This can work between any two AWS accounts and between multiple accounts. How-
ever, the primary intended configuration is to have multiple accounts that directly use
Amazon services and forward the billing to a single account with no direct service access.
This leaves one account to handle only billing and the remainder to handle only the
technical matters. Figure 8-1 shows a graphical depiction of multiple accounts linked
with consolidated billing.

157Account Security

Account consolidation can be convenient if it fits well with your organizational struc-
ture. Better alignment can be achieved by mapping the accounts you need to the people
or roles who manage them, as opposed to arbitrarily mapping accounts to departments or
groups.Although different groups may have isolated needs, access to computing resources
cuts across concerns.

However, the convenience of billing consolidation does not in any way lessen the need
for security. Even though the billing for a given account is forwarded to an alternate ac-
count with no special access, the original account is no more secure than before.The risk
of unauthorized access to the account is unchanged by the consolidation.The IT admin-
istration, DBA, or production support members with security responsibilities are the ones
who ought to be handling the AWS account credentials.

Limiting Amazon Access from AWS Credentials
An AWS account is really a specific add-on or upgrade to a more general Amazon.com
account.The Amazon.com account that exists behind every AWS account uses the same
username and password, and grants access to the wide range of services available on the
Amazon website.As a result, a raft of additional non-web service tasks can be performed
with the Amazon account credentials.Those actions include placing product orders on

Paying Account

Account A

Account B

Account C

Account D

Account E

Account F

Linked to

uses

AWS

SimpleDB

SQS

EC2

RDS

VPC
S3

$ Monthly
Billing

$ Monthly
Billing

$ Monthly
Billing

$ Monthly
Billing

Figure 8-1 Multiple AWS accounts linked with consolidated billing

158 Chapter 8 Security in SimpleDB-Based Applications

the Amazon.com retail site and accessing an Amazon payments account or Amazon seller
account.

All active AWS accounts must have valid payment information attached, so compro-
mised accounts have the potential to be used for making direct purchases.This provides
even more incentive to protect the account.

One area where unnecessary access can leak is with the AWS online support forums.
Although the forums require you to login with an Amazon.com account, they do not re-
quire the AWS credentials you use for your production deployments.There is no special
security risk when using these forums, and if the person posting to the forums is always
the person managing the accounts, there may be no problem.

Nevertheless, this practice is not recommended.Access to the support forums are avail-
able to anyone willing to sign up for a free account.Various people may have a need to
post on the forums, but it is unwise to pass around the AWS account login information
for that purpose alone.

It is best to use the AWS accounts exclusively for web services and use other accounts
to participate in the other Amazon programs, such as corporate purchasing, selling, shop-
ping, product reviewing, fulfillment, and wish listing.

Boosting Security with Multi-Factor Authentication
One feature that can be used to boost AWS account security significantly is associating a
multi-factor authentication (MFA) device with the account. By default, access is granted
to the AWS account based on one factor. MFA requires an additional, unrelated factor to
be supplied before allowing access to the account.

The default single factor authentication is a function of something you know: the pass-
word. In MFA mode, a second factor is added that is a function of something you have:
an electronic device.AWS currently supports one specific device produced by Gemalto,
Inc. Each device is unique, and you must have access to that one device each time you
want to log in to the AWS account.To find out the specifics about this device and view
the official information published by Amazon, open the web address http://aws.amazon.
com/mfa/ in your web browser.

The device is the size of a small car-door remote and can fit on a key chain.The de-
vice has a single button and a numeric LCD display screen. Each time the button is
pushed, a different number appears on the screen. On the back, a unique serial number is
printed.

Before you can use the device, it must be associated to the account.This is done by se-
lecting the option while logged into the AWS account.The serial number and consecu-
tive number readouts are used for confirmation. Once the device is associated, the login
process changes.After the normal username and password are verified, a new screen is dis-
played, prompting you to provide a current readout on the device. Only then is account
access granted.

The added security is substantial; no one is able to log in to the account without the
device and the password, for any reason. Employees or consultants who had access to the

http://aws.amazon.com/mfa/
http://aws.amazon.com/mfa/

159Access Key Security

account credentials but have since left the company have no method of continued access.
The account is also more secure against outside attack. Phishing scams, cross-site scripting
attacks, and all other remote attacks are unable to supply account access in the absence of
the physical device.

However, the security also applies to valid users.Administrators receiving a support call
at home in the middle of the night cannot disable compromised AWS access keys without
the device, even when they have full remote access to company systems. If the administra-
tor carries the device home on a keychain, no one else is able to gain access to the account
in its absence. Higher security involves a loss of convenience. If you have more than one
account to manage, and you wonder if you can use the same device to secure multiple ac-
counts, the answer is no.An MFA device can only be associated with a single account.

The actual content that remains locked behind MFA is limited to the AWS account
and the Amazon Management Console.All other use of the account is still available to
users with only the username and password.This includes access to shopping, the AWS
support forums, and the other Amazon services.

Access Key Security
The AWS account credentials covered previously allow management of every aspect of
the account.The Access Key ID and Secret Access Key, on the other hand, only permit
access to the individual services and not the account management.These keys, however,
are still important to keep safe.

Although very few people need access to the account credentials, the access keys will
need to be distributed more widely. Each application using Amazon Web Services that
you develop will need access to the keys during development, testing, and deployment.

Any tools you use will also need these keys. Common tools include S3 file transfer
apps, SimpleDB query and backup tools, and EC2 launching and monitoring tools. In the
midst of this wider distribution of credentials, it pays to guard them within a circle of trust.

Key Management
One good thing about key management in the AWS account is that it makes it easy to
generate new credentials.Two sets of keys can exist for an account, and they can be dis-
abled and deleted at any time. Generating a new set of keys requires nothing more than a
button push on the AWS account page.

Once a pair of keys has been generated, the distribution of the credentials from the
AWS website out to the applications is up to you.There are not any tools to automate the
process of logging into your AWS account on the web and downloading the keys; some-
one has to do it manually. However, once that has been done, there is plenty of room for
automating the process of key distribution.The keys are just text strings.

A very convenient arrangement is when a deployed application is able to detect a
change in credential settings and switch to the new keys automatically.Another deploy-
ment option is for the application to look for new credentials in the event of a SimpleDB

160 Chapter 8 Security in SimpleDB-Based Applications

authentication failure. In both of these cases, the convenience comes from the elimination
of an application restart to pick up new credentials.

The location of configuration files varies depending on the application and platform.
For example, J2EE configuration might be in the web.xml file, whereas .NET settings
might reside within the app.config file. Regardless of where the standard configuration is,
if you want the ability to swap access keys without bringing down the application, it’s best
to store them in a file under your control.That frees you from reliance on another frame-
work. For instance, if you place the keys within web.xml in J2EE, you won’t have access
to the updated keys until the application server decides to reload the web context.

In a situation where the access keys need to be replaced in a live running system, the
benefits of this type of automation increase with the number of servers. However, even if
there is not automation, the keys certainly should not be hard coded into the application;
doing so would make it both brittle and insecure.

If you don’t anticipate the need to change AWS credentials often, or if reloading the
application is not a burden, then putting them where you would normally put the data-
base credentials is probably a good idea. In a web application, that might mean putting it
in a deployment descriptor or standard configuration file. For a stand-alone server appli-
cation, it should go where the rest of the configuration goes.

Use caution when dealing with tools that need AWS access keys.There are an ever-
growing number of tools to make your Amazon cloud deployment life easier. However,
be careful that your credentials are being treated with adequate security precautions.

Secret Key Rotation
A general practice that can help limit your losses in the event of compromised keys is key
rotation.When logged into the AWS account manager, you have the option to create a
second set of keys.You have the ability to deactivate or delete the keys at any time.

To rotate the keys, you just log in, delete the old key, and generate a new key at regular
intervals.As a result, you do not end up in a situation where an unauthorized user has ac-
cess to the account over a long period using an old key.

There needs to be a process in place to distribute the new key each time it is gener-
ated.This is where there is room for some automation.The presence of two active keys is
what makes the rotation work, even with large deployments. Both keys remain active
during the distribution period, and the old one is deactivated only when it is no longer
being used.

In addition to limiting your exposure, key rotation helps you clarify who has your keys
and who really needs the keys.You can track who has them because it is part of the distri-
bution process.As the rotation marches on, applications or projects no longer in need of
the key may opt out rather than deal with unnecessary updates.

The key distribution will also need to include the tools you use, although this can be
harder to automate. However, for third-party tool providers that hold a copy of your ac-
cess keys, rotation is definitely a good thing.This is especially true for tools you merely
evaluate, or tools that you no longer user. If you don’t know how much care they take

161Data Security

with your access keys, rotation makes it so you have nothing to fear from old credentials
that were never properly purged.

A special case of key handling is to generate special-purpose keys.The key is then only
used for the one database import, for example, and then deleted.This limits your exposure
on a one-off basis, but is not a good substitute for a solid key rotation process.

Access Key Security in Desktop and Browser Applications
There is only one effective way to secure AWS access keys when used in applications that
run on the user’s machine, like desktop applications and JavaScript code running in a
browser. The security technique is this: Do not put your keys there because it is not secure.

Any time you put your access keys on a client machine, you open up a security vulnerability,
because all SimpleDB operations are available for all domains in the account. The same is
true for all of the other REST or query-based Amazon Web Services associated with your
SimpleDB access keys. Key rotation will not help you because you will need to distribute the
new keys out to the same clients.

I have been making SimpleDB feature requests on the AWS support forums for several
years now for S3-style access control lists, or SQS-style access policy language. A feature
like this would allow keys to be distributed with strictly limited risk, or open the option for
users to access your resources using their own keys. Because no such feature has
emerged, the desktop and browser is not a safe storage location for your access keys. Ap-
plications in this space need to proxy calls through a server that holds the keys and signs
the requests.

Data Security
Another aspect of security pertains to how you protect the sensitive bits of application
data.Although account security is always important, the need for data security depends
on the type of data being stored.Applications mashing up freely available information
from the web, for example, have little need to protect it. Private enterprise data that pro-
vides a competitive advantage and personal user data both clearly require protection.

Regardless of the type of data in question, keeping it safe means examining the ways it
could be compromised.Whether it is traveling across the open Internet or tucked away
on a drive spindle in a data center, it does not become secure unless someone works to
make it secure.

Storing Clean Data
One of the first things to think about with regard to collecting and transmitting user data
is the possibility that the data you collect could include cross-site scripting (XSS) attacks.
XSS is a website attack that, when successful, allows an attacker to execute malicious
scripts from another site in the browsers of all the users visiting the infected page.

XSS is a serious threat. It can allow an attacker to steal the site-specific credentials of
users and administrators, steal browser cookies, and automatically take actions with the
user’s session, like posting links or sending spam messages.

162 Chapter 8 Security in SimpleDB-Based Applications

Although XSS should be a security concern for any site, it is most specifically a danger
to those sites driven by a database. XSS attack vectors depend on pages that store data
gathered from users and then display that data without the proper sanitization. If you store
user-entered data in SimpleDB and then display that data to other users in a web page,
your application could be just as vulnerable as any site that runs off database content.

The basis of the attack is that the attacker must find a way to inject script code that
will intermingle with the HTML in the page.The key to preventing this is to sanitize all
user-submitted data by stripping out the things that can break the HTML. In the case of
user data that does not need to contain any HTML markup, sanitizing is very easy.Angle
brackets, ampersands, and the various quote characters need to be encoded.This encoding
alone will stop the vast majority of script injection attacks by blocking the insertion of
malicious HTML tags. However, it has to be applied consistently to all user data, includ-
ing links, images, usernames, and so forth, before it is stored in the database.

It is much more difficult to protect against XSS attacks when the user-entered data is
designed to allow HTML tags.The same goals apply in trying to keep the data clean, but
stripping out all the special markup characters is not an option.The best approach in this
case is a comprehensive white list of the HTML tags that will be allowed along with the
approved tag attributes, if any. For example, you may choose to allow only <p>, ,
, <i>, <strike>, <code>, and . In this case, all tags and attributes
need to be filtered out or encoded ruthlessly.

The white list approach of things to accept is far superior to a black list of things to
ban. It is significantly more work to try to name all the bad things and also more prone to
error.As a matter of computer security, an error of omission while black listing the mali-
cious is called a vulnerability, whereas an error of omission while white listing the in-
nocuous is called a feature request.

SSL and Data in Transmission
Data sent over the open Internet can be intercepted or observed.You do not have control
over the systems between the endpoints, and one of those systems could be listening in.

At an application level, you need to decide what portion of the data should be en-
crypted over the wire and between which endpoints. If you want to use standard SSL en-
cryption between the client and the server running your SimpleDB-based application, it
may be a wise choice. However, that choice has nothing to do with SimpleDB.

The choice that is relevant to this discussion is whether to encrypt between the server
and the SimpleDB endpoint. SimpleDB supports SSL encryption using HTTPS and port
443.All of the major SimpleDB clients support SSL.

The benefits of using SSL include security against data interception, packet replay at-
tacks, and man-in-the-middle attacks.There is no real configuration downside, since it
amounts to flipping a switch. However, there is additional latency in setting up each con-
nection while the encryption is negotiated. None of the technical issues are a big con-
cern; the two deciding factors should be 1) the location of the server and 2) the desired
level of security.

163Data Security

Location, Location, Location
Endorsing server location as the primary decision criteria is for one simple reason. If the
server is running within the Amazon cloud, in the same region as the SimpleDB end-
point, SSL is essentially worthless. It is true not because it has no effect, but because it
provides no added benefits.

Amazon takes security seriously, and EC2 instances are well locked down by default.
You cannot even SSH into your own instance without first specifically opening port 22.
Moreover, network security is also very tight. Under no circumstances are network pack-
ets addressed to one instance delivered to a different instance.This is even true of multiple
instances running on the same physical hardware with network adapters configured for
promiscuous mode.

The result is that the EC2 to SimpleDB pipe is already well protected. Packets cannot
be intercepted, so you are never subject to packet replay or man-in-the-middle attacks.
The only additional protection you get from SSL is from Amazon employees listening in.
However, this also is of no benefit since those few employees with physical access to the
network also have physical access to the server before it encrypts the data and the Sim-
pleDB replicas storing the unencrypted data.Therefore, it still provides a sum total of zero
additional protection.

This does not mean that unauthorized physical access to your SimpleDB data should
be a big concern.Amazon keeps the exact locations of the data centers secret, provides
perimeter security around the buildings, and requires security credentials to be provided
at multiple checkpoints within the building to get into the server rooms. Even then, only
those who require access to those rooms are allowed in, and they are subject to a back-
ground check.

Of course, this is not a guarantee against unauthorized internal access, but it provides
evidence of how important security is to Amazon and of how far they are willing to go in
taking reasonable precautions to safeguard your data.

The bottom line is that SSL within the Amazon cloud is extra latency with nothing
tangible to show for it. In addition, the added latency is particularly unwelcome with
SimpleDB applications running on EC2 for several reasons. First, EC2 is presumably be-
ing used, at least partially, because of the reduced latency to SimpleDB. Second, high-vol-
ume SimpleDB access is heavy on the reconnects. Only the smallest requests can be
pipelined; every medium-sized and larger request requires opening a new connection, and
the initial connection overhead is the worst part of SSL latency.

Level of Security
For access to SimpleDB from anywhere else, the specific location makes no difference be-
cause the open Internet will be between the endpoints. If the need for connection secu-
rity is there, SSL should be considered.The security benefits can be realized in this case.

The additional SSL latency is actually worse from outside the Amazon cloud.This is
true because the inherently higher round-trip latencies are multiplied by the upfront SSL

164 Chapter 8 Security in SimpleDB-Based Applications

handshaking messages—the larger the base latency, the more pronounced the SSL over-
head is.

Access to SimpleDB from other non-Amazon data centers in the same part of the
country is not slow and can provide speed that is adequate for a variety of applications.
SSL for these applications is not likely to be crippling. In fact, optimizing for this scenario
can involve performing full GetAttributes calls and the use of SELECT * to facilitate
caching and take advantage of the smaller incremental cost of pulling down more data per
request. Both of these performance enhancers, fewer requests with more data and
caching, also mitigate the SSL connection overhead. Fewer connections results in fewer
handshakes, and effective caching results in even fewer handshakes.

The bottom line from outside the Amazon cloud is to let security considerations be-
come the deciding factor for SSL use between the server and SimpleDB.

Data Storage and Encryption
Using SSL to encrypt data over the wire provides security against a narrow range of at-
tacks.The threats are real; however, the focus is tight.A much broader security measure is
to encrypt the actual data and not just the connection.

On the face of it, encrypted data storage prevents it from being read both during
transmission and while it remains stored in the database. Unfortunately, just like SSL, the
use case for data encryption from EC2 is completely pointless.To understand why, ask
yourself from whom the encryption protects you.

The answer is not anyone on the open Internet, since the EC2 to SimpleDB pipe
never leaves the Amazon cloud.The answer is not other AWS users, since they can access
neither your network traffic nor your SimpleDB domains.The only conceivable protec-
tion you get is against Amazon staff members, either acting as lone attackers, or as part of
an internal investigation of bad account behavior, or acting on behalf of law enforcement
armed with a court order.

In all of those cases, the encryption has not helped you because you are keeping the
decryption key on an EC2 instance.The EC2 instance is just as accessible to those people.
It would be like locking your front door and leaving the key under the doormat: It may
be convenient, but it is lousy security. Encryption for the purpose of security demands
that you make the key difficult for an intruder to obtain.

On the other hand, the case for encrypting sensitive data on the outside and storing it
in SimpleDB is easy to make. No one in the Amazon fold would have the ability to de-
crypt it, the brute-force capabilities of hundreds of thousands of commodity servers in
close proximity not withstanding.

One thing to be clear about is the fact that although the case can be made for this en-
cryption, it still offers protection only against the exact same group of Amazon employees
and law enforcement officials but no one else. In order to make a rational case for data
encryption, you need a real reason to protect against these threats.A false sense of security
provides only imagined benefits.

165Data Security

The common reason for encrypting this data is in order to adhere to privacy regula-
tions or policies. Certain rules apply when you need to store credit card data or patient
health information.The accessibility of certain sensitive data to the IT personnel is one of
the things for which an account needs to be made.

If you do decide to encrypt data before you store it, there are a few side effects.The
biggest one may be that you lose the ability to do most queries against the attributes that
are encrypted.The only comparison operator you can use on encrypted data is the equal-
ity operator. Even then, the data value within the query must be encrypted first. Sorting
on any of those attributes will also be off the table.

If the data is fully encrypted, it essentially results in the loss of queries. Encryption also
results in an increase in the number of bytes when the raw bytes are Base 64 encoded.
Take care that the 1,024-byte limit is not exceeded.When data encryption is used, SSL
will probably not be needed.

Storing Data in Multiple Locations
Another security option you have is to break down the data and store it in different loca-
tions. One example of this is patient health data.The individual bits of data are not as sen-
sitive as the correlation between personally identifiable information and the procedures,
treatments, and diagnosis information.

A large set of regulations govern the storage and transmission of protected health in-
formation in the United States. Data security is only one small piece of the puzzle. Orga-
nizational policies, procedures, training, and disaster recovery are just a few of the areas
subject to audit.The Amazon cloud offers both the security controls and the privacy con-
trols needed for the deployment of compliant applications.

In the context of database storage, the multiple location option allows for storing part
of the data (procedures and billing, for example) in SimpleDB, with only a primary key to
identify patients.The primary key references patient data, like name and contact info,
stored at another location.

This arrangement prevents a security breach at one location from exposing usable in-
formation.As a practical matter, it results in a bifurcated system performing the same
types of data storage in different ways. However, it can make full data encryption unnec-
essary, and it allows the smaller fraction of sensitive data to be stored with heavy security,
whereas the remainder is unusable without the core and can be stored with less security
and cost.

Summary
The bulk of security discussion in this chapter applies to services provided through a
website or to SimpleDB access from beyond the borders of Amazon data centers.This is
where the security weaknesses are.

Any part of your application that has to travel across the Internet or reside within a
web browser is subject to attack.The Internet is not something to fear and avoid, espe-

166 Chapter 8 Security in SimpleDB-Based Applications

cially in the era of web services and cloud computing. However, security remains as high
of a concern as ever.

The most important steps you can take to secure your cloud-based applications involve
a thorough evaluation of possible attack vectors. Consistency is required in the handling
of credentials, in sanitizing user data, and in protecting sensitive information.

9
Increasing Performance

Concern for SimpleDB performance is expressed frequently and comparisons to stan-
dard database products are often made.There are many steps that can be taken to ensure
the best possible performance when making calls into SimpleDB.This chapter explains
these techniques in a practical way with code samples.

SimpleDB is fast—not super-fast, but fast. SimpleDB is not the king of total through-
put or complex query speed. Nevertheless, for the simple cases, speed is probably not go-
ing to be one of your problems. How you use the service has important implications on
how it will perform, however: If you use it in certain ways, it simply will not be fast.

Determining If SimpleDB Is Fast Enough
It is often said that everything is fast for small N.When applied to databases, this means
that when the database is storing a small amount of data and the request volume is low, all
the database functions will appear speedy.There is truth in this, and a few logical conclu-
sions follow.The first thing this assertion implies is that when you use this service for
small projects, it is going to be fast no matter what you do.All the operations are quick,
and even complex queries return quickly without the need for optimization.This is not
only true for permanently small projects but for projects that start out small and grow
over time. In some quarters, this has become part of the standard advice; don’t worry
about optimizing your database when your current scale is small because it does not mat-
ter.The reason it is worth discussing here is the added benefits SimpleDB affords your
project at a small scale.

Targeting Moderate Performance in Small Projects
It is easy to make accurate and precise comparisons between databases; anyone can do it,
post a nice blog about it, and throw in a couple pretty graphs to go with it.The difficulty
is in making valid comparisons. It’s hard enough with installable, configurable databases
competing in the same category.They have various options or storage engines, and even
though you install them on identical hardware, there is still a need to find the most appro-
priate set of configurations.Valid comparisons are even more difficult for services like

168 Chapter 9 Increasing Performance

SimpleDB, where the differences lie not only in the feature set but also in qualities of the
service that are not addressed in other offerings.These difficult-to-measure aspects are
what make the service so attractive.

SimpleDB is targeted at relatively small data sets, where modest query capability is
needed.This should immediately eliminate comparisons to any sort of data warehousing
or analytical database configurations. SimpleDB can scale up to medium-sized data, but
only in increments of 10GB domains.The typical performance comparisons between
databases today consist of benchmark operations against database tables measured in the
hundreds of gigabytes if not terabytes.

This is where the interesting comparisons are for large-scale databases.Those compar-
isons are interesting because at that scale, you can really see the benefits of the perform-
ance optimizations. Conversely, at the small scale, benchmarking is less interesting because
it is much harder to see the performance differences. Moreover, it is not even that the dif-
ferences are harder to see; it is just that they are so small, it’s harder to see them as impor-
tant.This is no accident.At the small scale, the performance differences between databases
may actually be unimportant, even order-of-magnitude differences. If a web page needs to
be populated by data returned from a set of queries, a database that can return the data in
two milliseconds is not significantly better than one that takes 20 milliseconds.The data-
base time is dwarfed by the combination of times required for page building, internet la-
tency, and browser rendering. Dropping the page load time for a web page from 1.540
seconds to 1.502 seconds is not an important accomplishment.

This is the territory where SimpleDB lives—fast, but not super-fast. Operations do not
come back in the single-digit milliseconds (usually), but double-digit millisecond re-
sponses can be achieved. In addition, SimpleDB is excellent at handling concurrency, and
so multiple requests can be made in parallel.This makes it possible to issue a handful of
requests, each of which may take double-digit milliseconds and still potentially get all the
responses back without breaking double digits. For small projects, the SimpleDB benefits
can be much more important than the performance boost from fast to really fast that you
might get by switching to a relational database.

Exploiting Advanced Features in Small Projects
At small scale, there are certain things that just are not worth doing with any database.
These include things like engineering the application to handle thousands of transactions
per second and optimizing queries that do not present performance problems until there
are tens of millions of rows.Those efforts do not provide any value in the short term, if
ever. However, there are also actions you can take that provide clear value, but the effort
or expense is too high to justify at a small scale.

This category of valuable but expensive features includes implementing your database
on a cluster of servers to mitigate hardware failures, spreading the cluster across data cen-
ters to mitigate catastrophic failures, and a custom replication protocol that tolerates net-
work failures.Advanced features like these are difficult to justify for a small-scale
application using a relational database product, even though they would provide value,

169Speeding Up SimpleDB

potentially large value, to the small number of users. However, a database service that has
already been engineered to provide these features serves as a small project enabler when it
exposes those same features without the high upfront cost.

For this reason, everything being fast for small N is more beneficial for SimpleDB than
for relational database products.With a relational database, the “everything” includes
strong technical features like the optimized processing of complex relational queries,
which a small project may not be able to use.Alternately, with SimpleDB, the “every-
thing” includes strong service-level features like high availability and low maintenance.
The latter features are immediately valuable to all small projects.

Speeding Up SimpleDB
A narrow focus on SimpleDB speed revolves around maximizing the performance of the
individual operations.A broader view of performance examines how operations are com-
posed and how data flows through an application to accomplish a given task.Across a dif-
ferent dimension, the application is scaled horizontally across servers and domains.
However, tracking progress in any of these directions first requires the existing perform-
ance to be measured as a basis for comparison.

Taking Detailed Performance Measurements
Before you take steps to improve the performance of your SimpleDB access code, you
need a way to measure that performance. It may seem obvious, but it is important for
both knowing the source of any performance problems, as well as giving you the ability
to observe the results of any changes you make.

If it is your only option, you can measure timings in your application code, but ideally,
the SimpleDB client you use will expose it or log it for you.This is preferable when it has
been done in a way that lets you view timings of individual operations, even when they
are submitted to the client in batches, and when you can separate the response time from
the connect time.The latter is beneficial because a long connect time indicates a different
issue than a long response time. If they are measured together, it will increase the amount
of guesswork you need to do.

Accessing SimpleDB from EC2
When you are concerned with performance, the first thing you should consider is run-
ning the application on EC2, if it is not there already, for an across-the-board speedup. In
any multi-tier software architecture, it is advisable to locate the database tier as close as
possible to any other tier that makes heavy use of that data.This is even more true for
SimpleDB because of the way the service is optimized. SimpleDB is fastest and most scal-
able with small, concurrent operations. However, it is just this scenario, with many small
service calls, that is most susceptible to the latency effects of the public Internet.

170 Chapter 9 Increasing Performance

Optimizing for SimpleDB often involves trimming the fat from individual requests so
you can make more of them. Optimizing for the Internet, in contrast, can mean loading
up each request with as much data as possible to minimize the number of requests
needed.The result is that optimizing for SimpleDB performance can be at cross-purposes
with optimizing for the open Internet.This is not to say that you cannot get good per-
formance from SimpleDB outside of EC2—you can, and there are many situations where
it works well or where performance is not a big issue. If performance is an issue, EC2 can
be beneficial, but in the end, most of the steps you take to ensure peak performance will
work just as well from outside the Amazon cloud as from within.

Quoting Specific Performance Numbers
All the specific timings used as examples in this chapter are based on my personal experi-
ence with SimpleDB access code running on small EC2 instances accessing the SimpleDB
endpoint in the same region. AWS does not guarantee any specific performance numbers,
and this chapter does not make any promises either. What I am trying to do is relay my per-
sonal experiences and conclusions, and give you a starting point for looking into SimpleDB
performance for yourself.

I encourage you to take your own measurements and come to your own conclusions rather
than merely relying on my numbers. Your results will depend on the details of your data and
your requirements.

Caching
The use of caching has a lot of value in increasing performance and reducing both the
load on SimpleDB and the resulting usage billing. Not only is this generally true of all
database applications, but it is especially true when the database is a web service with no
persistent connection.

Caching is most effective in a read-heavy environment.A large number of applications
fit into this category, including most web applications and web services. In an application
where the data access is dominated by writes, caching still may prove beneficial for the re-
maining reads, but more likely it will not make a significant difference. Consider the read-
request volume and the likelihood of cache hits. If the application is write-heavy because
the existing data is constantly changing, a cache is not going to help.

Another data access pattern that lends itself well to caching is the presence of a set of
popular items that is accessed with greater frequency. For example, in applications where
new data is constantly being added and queries that display the latest updates are invoked
frequently, caching those query results can be a big win.When data access is more widely
distributed, and there are neither popular queries nor popular data items, caching will not
be very effective unless you cache the entire data set.

Local Caching
Given that SimpleDB is not designed to store large data sets, it is entirely possible to
cache several domains full of data into the memory of a single beefy server. However, that

171Speeding Up SimpleDB

would be an extreme case.A much more likely case is a local in-memory cache of limited
size.You can get a lot of mileage out of a local cache in those read-heavy situations, even
if it is small.You do not necessarily need to keep it small, but you do need to accommo-
date the memory needs of the application.A cache whose memory can be reclaimed as
needed is ideal.

Distributed Caching
When your application spans multiple servers, local caches are still beneficial, but a dis-
tributed cache starts to become more attractive.With a distributed cache, you can spread
the cached items across servers utilizing the unused memory.This can provide a very large
cache.This is especially effective when your servers do not reside within the Amazon
cloud. Caching products are typically light on configuration and setup when compared to
other categories of server software like databases and application servers. However, be
aware that there will be some configuration and maintenance involved.The benefit of
running a distributed cache on your existing servers is that you already have a process in
place to deal with configuration and problem resolution.Adding a caching service to an
existing deployment should only incur a small incremental maintenance cost.

There is a host of caching options available from commercial and open-source prod-
ucts to pay-as-you-go services. Examples of distributed cache products include Mem-
cached and Terracotta.An example of a distributed caching service is Cloud Cache.

The Dangers of Caching
One of the general dangers of heavy cache use early on in any project is that it can mask
true performance problems.This can manifest in the form of unacceptable performance
when the cache is empty. Caching is undoubtedly a powerful tool.Take care, however, not
to over-rely on the cache too early.The performance of the system in the event of cache
misses is important and not something to be merely glossed over.

SimpleDB is implemented with complex replication and failover behind the scenes.
The hidden things going on in the background are what prevent SimpleDB from being
super-fast. Putting a caching layer between your application and SimpleDB is all the more
valuable because it can give you some extra speed on top of your availability and failover.
In fact, it can be tempting to just cache the whole data set for fast access and use Sim-
pleDB as a durable backing data store.There is nothing inherently wrong with this ap-
proach; however, trouble can arise when you expose a strongly consistent view of the data.

The trouble comes if the application relies on the strong consistency guarantee for
proper function. SimpleDB is based on eventually consistent semantics for the express
purpose of granting higher levels of availability.Any cache that fronts SimpleDB and relies
on SimpleDB as the authoritative source of data can never guarantee stronger consistency
without compromising the availability. Some people have expressed the sentiment that a
strongly consistent cache backed by the highly available SimpleDB gives you the best of
both worlds, but it simply does not. If your cache is hosted in a single data center and the
data center experiences an outage, your cache is unavailable, whereas SimpleDB would

172 Chapter 9 Increasing Performance

not be. If your cache is distributed across multiple data centers and there is a network fail-
ure between them, you have to reject writes to the cache because you cannot guarantee
consistency.

Just be aware that a cache in front of SimpleDB is not a silver bullet.You can string to-
gether cache servers and protocols in clever and useful ways. Nevertheless, as long as you
use SimpleDB as the authoritative data source, no amount of cleverness will support a
strengthened consistency guaranteed without weakening the availability. Of course, it is
possible to assemble a system that provides strong consistency during normal operation
and falls back to eventual consistency during periods where consistency cannot be
reached. Nevertheless, that can only work when the application is designed to function
properly with the weaker consistency.

This is not an indictment against caching or strong consistency. It may be perfectly
valid for your application to have a super-sized cache with strong consistency. If this is the
case, it ought to be the result of informed decisions about the service qualities you seek to
provide your users. For example, if you cache the full data set in memory with strong
consistency, you should have considered the actual benefits you derive from using Sim-
pleDB versus an alternative like RDS.

Concurrency
Concurrency is one of the service features that let SimpleDB scale up so well. For the
best performance, you clearly want to be able to take advantage of that concurrency. Un-
fortunately, it can be difficult for the application developer to take advantage of the con-
currency support in a SimpleDB client, and it can be nearly impossible to achieve a high
level of concurrency if the SimpleDB client does not explicitly support it.

Parallel Requests Using Threads
One of the ways to enjoy the benefits of SimpleDB concurrency is to make requests in
multiple threads. Each thread can open a connection and make the web service request
via a blocking I/O call. Each thread continues when the response comes back.

There are situations where this is a very natural solution; one of them is when the ap-
plication is running in a naturally threaded environment like an application server.When
a thread is used to service each incoming request, making SimpleDB requests in separate
threads is almost a foregone conclusion. Other tasks that lend themselves to multi-thread-
ing include backup, restore, and import jobs. For these jobs, there is a large quantity of
easily divided requests that can be queued up and a thread pool to make the service calls
concurrently.

There are some problems with threads, though.The first is that not every situation is
conducive to thread use. In truth, many are not. It is extremely common for a single unit
of processing to require multiple calls to the database.Although multiple processes can
easily take advantage of the concurrency in aggregate using threads, each individual
process in a single thread can benefit greatly from concurrency. However, when the

173Speeding Up SimpleDB

threading is not built into the SimpleDB client, each processing thread would need to co-
ordinate with a pool of I/O threads to achieve concurrency.

Another problem with threads is shared state and synchronization. Each of the threads
operates as independently as possible; however, coordination is needed.This coordination
requires a shared state, which is not only difficult and error-prone to code, but also acts as
a point of contention and a potential bottleneck.The most practical slice of shared state
that needs to be coordinated is the information about 503 ServiceUnavailable errors and
the subsequent backing off that needs to be done.

As an example, if you have 10 threads pounding out requests to SimpleDB, and one of
them gets a 503, it is fine for that one thread to use a delay before retrying that request.
Unfortunately, there are nine other threads humming along, happy to take up the slack,
and the total request volume can remain just as high. Unless there is some shared state
where the various threads can coordinate, the responsiveness to changing conditions is
somewhat clumsy and lagging.

Asynchronous Requests in a Single Thread
There is a good solution for those situations where threading is awkward.A single-
threaded solution can be implemented to manage a set of non-blocking SimpleDB re-
quests.The state of each connection and the various error conditions is easily kept in one
place without contention. Changes can be made across the board without delays or points
of contention. For example, if the DNS entries for a SimpleDB endpoint change, it is eas-
ier for a single thread to accommodate the change than notifying a dozen threads each in
various stages of execution and each vying for CPU time.

The problem is that managing queues of non-blocking I/O operations is even less ap-
proachable for application developers than threading is.As such, it is really in the purview
of the SimpleDB client developer to handle the concurrency in a useful way.

Keeping Requests and Responses Small
The most universal performance advice for SimpleDB is to keep requests and responses
small.The SimpleDB API gives us the first clues in this direction with a very strict set of
limits on the size of items, attributes, requests, and responses and on the amount of time
used to service a single request.This is for a good reason; the service is optimized to han-
dle a high volume of small requests efficiently.

Small requests are easier to load balance across multiple back-end machines, providing
the best utilization of heterogeneous hardware. Small requests are easier to handle concur-
rently within a single machine.The heavyweight, long-running tasks tend to monopolize
resources.

Taking a cue from these limits, and from performance measurements of the service,
leads you to keep the request and response sizes as small as possible.Across all of the oper-
ations, as you increase the quantity of data to process in a single request, there comes a
point where the performance starts to degrade.There is no specific byte limitation in play.
It’s not like a line in the sand, which, if crossed, causes problems. It is more of a general

174 Chapter 9 Increasing Performance

trend.You’ll have to test and see how much is too much in your own situation, but all
things being equal, once the size of a single request or response starts to get large, per-
formance will slowly being to decrease.

Operation-Specific Performance
Caching and concurrency are important, but no matter how much you employ them,
eventually performance comes down to the speed of the actual SimpleDB operations.
Knowing how to optimize each of them enables you to get the most out of your other
performance measures.

In this portion of the chapter, we look at optimizing four of the most heavily used op-
erations, beginning with GetAttributes.

Optimizing GetAttributes
The core functionality of reading data items via a primary key is the fastest and most scal-
able operation in SimpleDB.This is the most basic and foundational function of the data-
base. GetAttributes scales predictably across most dimensions.A large part of this is that
this predictability stems from the number of variables that have no noticeable impact on
the time required to issue a GetAttributes call.The speed of a GetAttributes call is
unrelated to the quantity of data stored in a domain.As a domain fills to capacity and
even once it has become full, the GetAttributes calls do not begin to slow down.
GetAttributes speed is also independent of the quantity of data stored in an item. Calls
to read an attribute of an item storing 512KB of data need be no slower than if that item
contained a single 10-byte value.

Those factors are not responsible for slowing down primary key reads; however, two
factors do have an impact. One of these is request throttling that appears to be in effect
on a per-domain basis. SimpleDB supports high levels of concurrency and this makes up,
in large part, for individual request latencies. In my own testing, I have found that once I
reach a level of about 1,000 to 1,200 GetAttributes requests per second, I begin to ex-
perience the effects of—what I have concluded is—throttling.The symptoms are a high
level of network errors and a noticeable slowdown in the time required to open new
HTTP connections to the service endpoint.While this is occurring, successful
GetAttributes calls do not appear slower.Therefore, this is less of a slowdown and more
of a limit.

The second factor is general traffic levels, and this is similar to the first.When you have
a steady load of other request types, the number of GetAttributes calls per second will
go down in the same way as with throttling. Combine this with the ability to realize
higher requests per second during off-peak hours, and it points toward a general capacity
threshold for internal SimpleDB nodes servicing domain requests.

Those factors indirectly affect GetAttributes responses by limiting the total request
volume.The one remaining factor is the one that most directly controls the actual re-

175Operation-Specific Performance

sponse time of the operation.This main factor is the size of the response, and it is impor-
tant in terms of both the raw number of bytes returned and the number of attributes re-
quested.

For each call, a base level of overhead determines minimum response time.This mini-
mum response time is the time it takes for small requests to be satisfied.Typically, it is be-
tween 20 and 50 milliseconds for the vast majority of small requests.This base level is on
the order of double-digit milliseconds, as a ballpark figure. In the world of sequential calls,
waiting 50 milliseconds for a response is more than twice as bad as waiting only 20 mil-
liseconds. However, when you are able to make the calls in parallel at a rate of more than
1,000 per second, the incremental cost of making additional requests averages out to be
very small.

Figure 9-1 depicts the difference between sequential and concurrent calls.The upper
portion represents the time taken by six calls that each return very quickly, but each does
not begin until the prior call is complete.The bottom portion shows six calls that have
more variability in response time and are all generally slower than the top depiction.
However, the fact that the requests are all in flight at the same time makes up for both the
variability and the speed of the requests.

This approach scales differently than the sequential calls.The time taken by any indi-
vidual call is much more important when there is no concurrency since the overall time
taken is directly related to every individual call. In contrast, the response time of most of
the concurrent calls does not change the total time taken since the total time is usually
dominated by the longest request.As the number of calls increases for a given process, the
total time taken increases much more slowly for concurrent calls compared to sequential

Sequential Fast Tasks

Concurrent
Slower Tasks

Time

Figure 9-1 The time taken by sequential and
concurrent calls

176 Chapter 9 Increasing Performance

calls. Figure 9-2 shows what happens when you double the number of calls shown in
Figure 9-1.

Leveraging Concurrency
In order to take advantage of the concurrency that SimpleDB is optimized for, you have
to have a client that supports it.Three of the common approaches taken by SimpleDB
clients in exposing the concurrency are with futures, collections, and threads.At a basic
level, a SimpleDB client can be implemented in a thread-safe way.This permits you to in-
voke operations on the client from different threads without breaking it.This can be awk-
ward because it requires the application to handle all the threading issues properly.

A more friendly way for a SimpleDB client to expose the concurrency is with some
form of API that allows requests to be submitted in collections. In the case of
GetAttributes, the client may provide a get method that allows an arbitrary number of
item names to be passed and returns all the results together as collection of results. In this
scenario, all the concurrency is handled by the client behind the scenes, and the applica-

Sequential Fast Tasks

Concurrent
Slower Tasks

Time

Figure 9-2 Scaling the number of calls sequentially and concurrently

177Operation-Specific Performance

tion does not have the need to implement or even be aware of the concurrency.The API
method is called with a collection of item names, the caller is blocked until all the results
have come back, and then those results are returned all together.The calling code is not
required to know the details about the implementation used by the API to make the calls.

The approach of using futures as a placeholder for the results of a pending operation is
becoming more common.When this is the case, the API methods will return immediately
after the request has been queued, rather than waiting for the response to come back. In-
stead of returning the actual values, a wrapper object is returned.This wrapper object is
initially empty, but behind the scenes, it will be updated with the response data once it
has been received.The benefit of this pattern is that the application does not need to wait
around in a blocked state for the operation to come back; it can continue with other
work that must be done and retrieve the response data later.This permits the application
to not only execute SimpleDB requests in parallel, but also execute application code in
parallel without any explicit need to manage the threading or synchronization at the ap-
plication level.

In a simplistic example, an application may need to fetch a dozen SimpleDB items to
populate a web page that has been requested. Using a SimpleDB client with futures, the
dozen requests can be made, and immediately a dozen empty futures are returned.The
application can then proceed to the next stage of assembling the final web page, which
may include tasks that do not depend on the responses from SimpleDB.This processing
could consist of selecting an HTML template to use, building some HTML based on ap-
plication-wide settings, and pulling in HTML page fragments from a cache. Once the ap-
plication reaches a point where the data responses must be used, calls to get that data from
the futures may already be populated. If any are not, they will block until the response
comes back.

Having a client that supports asynchronous SimpleDB operations gets you part of the
way there, but you must also have an application design that supports it.As a practical
matter, there are usually some dependencies between data items.These dependencies pre-
vent you from fully exploiting the available concurrency.When the data in one item de-
termines what other items you need to get, it acts as a bottleneck, preventing
concurrency until that first response comes back.This is something to keep in mind:The
way data flows through your application will have an impact on the level of concurrency
you can achieve.The degree to which performance might suffer from sequential access
will depend on how much data you need to collect for a single process. If you only need
to get a few items, it is unlikely to matter much.

Limiting the Use of Consistent Get
The ability to set the consistency flag on a GetAttributes request is an important fea-
ture.There are many situations where this is exactly what is needed.Another great aspect
of consistent get is that frequently it is just as fast as the default eventually consistent get.
However, be cautious about setting the consistent flag for all calls to GetAttributes, or
even a majority of calls.The performance characteristics are less predictable; sometimes it

178 Chapter 9 Increasing Performance

will have higher latency and lower throughput. It could happen for a variety of reasons
internal to the service, like network congestion.

The more heavily you use consistent get, the more at the mercy of failures you are.To
ensure consistency, each replica currently accepting writes for your domain has to report
back with the latest version of the data. If any of those replicas is having health issues, or if
the network path to any of them is experiencing a slowdown, it will be reflected in your
response time.Alternatively, a normal eventually consistent get should remain relatively
unaffected by slow responses from a single replica.The most recent value from the replicas
with a timely report will be returned.

Of course, it is entirely possible that you can write code to drop the consistent flag
when there are either slowdowns or ServiceUnavailable errors.This is a wise thing to do
in any case, especially when it allows the application to offer a useful, if degraded, level of
service in the midst of an internal failure.The thing to realize is that the ability to drop
the consistency flag presupposes that the application can function properly without it.
Despite the stronger consistency, the application still needs to deal with the realities of an
eventually consistent system.

That being said, you should consider using consistent get only when you have a good
reason.This is not because it is always slower, but because the occasions when it does be-
come slower are beyond your ability to control or predict.

Optimizing PutAttributes
There are two different ways to optimize SimpleDB writes.You will want to either mini-
mize the latency for the most quickness, or maximize the throughput to push through
bulky data at the highest rate.There are different operations to use depending on which
of these you are trying to maximize. PutAttributes is the choice that gives you the best
latency and BatchPutAttributes gives you the best throughput.

Minimizing Request Size
The best thing you can do to prevent PutAttributes performance from degrading is to
keep the request size small.As a practical matter, you often cannot really reduce the size of
individual data items that an application needs to store. However, what you can do is
make sure to send only the data that has changed.This keeps your request sizes as small as
possible, which will give you the fastest turnaround time on your writes.

Limiting Conditional Writes
Next, limit the use of conditional puts. Conditional writes make it easy to solve some
problems that previously were very cumbersome to solve. Use them only when you actu-
ally need them. Setting a condition on every PutAttributes just to be safe will not have
a huge impact on a small application; everything is fast for small N. However, fully “con-
ditionalizing” all your writes is something that doesn’t scale up well. If every write needs
a condition check, why not just use a database with transactions?

179Operation-Specific Performance

One option that seems to have a slight impact on performance is the replace flag. Re-
placing a value seems to average out to be a little slower than adding a new value. Unfor-
tunately, this is barely worth mentioning because most of the time, you will not have any
choice in the matter.Application logic will dictate that certain attributes have multiple
values and that others be limited to a single value.Therefore, any value that needs updat-
ing will have the replace flag set by necessity.

Optimizing BatchPutAttributes
BatchPutAttributes allows for optimizing the throughput side of the equation, accept-
ing a good bit more data at speed than PutAttributes with additional latency.This oper-
ation is best used when the latency of any individual request is unimportant compared to
the speed with which a large quantity of data can be shoveled into the service.

There is not much room to change the behavior of BatchPutAttributes; its use is
straightforward. It handles up to 25 items at a time, but with much less concurrency than
single-item puts. Batch puts per second in the double-digit range is common on items
with 10 to 40 attributes.That rate is nearly triple the rate of normal PutAttributes
throughput.

Consolidating Writes
Keep all the attributes for a single item in a single request.This rule could also be called,
“don’t use BatchPutAttributes to update existing items.” Batched puts are reported to
have a fast track-handling algorithm when the item does not yet exit and the replace flag
is not set.This is the most natural way to handle an initial data import. It might occur to
you to split the attributes of each item into multiple batch calls to keep request sizes low,
but that only makes it slower. However, aside from a data import, there might be many
occasions where you need to update existing items in batches.This is not something to
avoid since it will still have higher throughput than individual puts, but be aware that the
performance of batch updates will be lower than batch inserts.

Throttling Request Volume
The other thing to keep the batches flowing in as fast as possible is to mind the 503s.
HTTP 503 errors with a SimpleDB ServiceUnavailable error code are what you get,
in this situation, when SimpleDB wants to express to you its feelings about your request
volume. Pay attention and ease back on the requests when you start to get a lot of 503 er-
rors. Error rates can climb very quickly.A slight reduction in request volume can keep the
data moving, whereas trying to maintain too high a rate could possibly result in 50% of
your requests being rejected with ServiceUnavailable.

180 Chapter 9 Increasing Performance

Optimizing Select
Select is really the operation that requires the most effort to optimize. If you use Select
frequently in your application, you will find that a good deal of time is spent on that call
in comparison to the other calls.There are many variables in play.There are a good num-
ber of principles and suggestions, but the best thing you can do is test for yourself using
both nearly full and nearly empty domains, and compare the differences.

Focusing on a Single Attribute
In SimpleDB, there is an index for each attribute name in a domain. However, there are
no composite indexes spanning multiple attributes.What this means to would-be query
optimizers is that when SimpleDB executes your query, it will need to look at the criteria
and the sort and determine a single best index to use. If the sort attribute is different from
the attribute that is selected, the full result will need to be compiled before the first sorted
result can be returned.

That fact can be a real killer for performance.As much as you can, you want to hone in
on a poorly performing query with as few attributes as possible (ideally, a single attribute).

Being as Selective as Possible
Working within the single index that will be used for a query, you want to be as selective
as possible. Limiting the number of criteria can be good, but you never want to eliminate
a condition that only matches a small number of items.These highly selective conditions
are what cause Select operations to return quickly despite there being tens of millions of
items in the domain.

Using Parallel Range Queries
If you have trouble finding an attribute value that is selective enough, you might be able
to create some artificial selectivity based on your knowledge of the data. For example, if
the query matches hundreds of thousands of items, there may be no way to trim that
down. However, if the item names are roughly sequential and you have a million of them,
you may be able to break down the query by item name.As an example of how this is
done, your single query might look like this:

SELECT * FROM songs WHERE tags = 'rock'

That query can be turned into, for example, five queries, each of which is more selec-
tive than the original, and all five can be executed in parallel:

SELECT * FROM songs WHERE tags = 'rock' AND itemName() < '0200000'

SELECT * FROM songs WHERE tags = 'rock' AND itemName() BETWEEN '0200000' and
'0400000'

SELECT * FROM songs WHERE tags = 'rock' AND itemName() BETWEEN '0400000' and
'0600000'

SELECT * FROM songs WHERE tags = 'rock' AND itemName() BETWEEN '0600000' and
'0800000'

SELECT * FROM songs WHERE tags = 'rock' AND itemName() > '0800000'

181Data Sharding

Limiting the Use of Consistent Select
Like the other calls with enhanced consistency guarantees, consistent Select is best used
in moderation. It is highly useful in a number of situations, when you need to get an ex-
act count or guarantee that you have all the most recent results. Over-reliance on the
consistent Select can hurt performance more than with the other consistent operations
because of the variability of the work you are asking the database to do.

Data Sharding
Sometimes streamlining your usage of SimpleDB leads to better performance and a lower
bill.Alternately, other performance-improving measures result in more usage and a higher
bill.The former improvements are a win-win, but the latter will cost you, so consider the
costs and the benefits.

Partitioning Data
Sharding is important for scaling in SimpleDB. Because each domain has a limited
throughput, the ability to spread your data across multiple domains becomes a fundamen-
tal requirement. Obviously, this only works when there is a way to partition the data,
whether along some natural boundary or via consistent hashing. On top of that is a de-
gree of complexity inherent in routing each request to the proper domain. Much of that
complexity can be abstracted away.

Once you have a partitioning scheme in place and have dealt with the complexity, you
have to decide how many domains to shard across. Because each domain affords additional
throughput, you may want to shard across as many domains as possible so that the capacity
will be available when you need it. In some situations, this may be a viable option, but
usually it will not be cost effective.All things being equal, cost is the deciding factor.

The cost of most operations is actually unaffected by the number of shards.
GetAttributes, PutAttributes, BatchPutAttributes, and DeleteAttributes will all
need to be routed to exactly one domain for each request.As a result, the cost remains a
function of request volume but not of domain count.The only operation that causes an
issue is Select.

Multiplexing Queries
An application with data shards may need to issue queries across all domains. In the case
where data shards are determined by hashing, every query will need to be issued to every
domain. However, even when the data is partitioned along natural boundaries, queries to
all domains may still be needed. For example, if product categories like Art, Jewelry, and
Toys are stored in different domains, queries in a single category can be sent to a single
domain, but cross-category searches will still need to be issued to multiple domains.

182 Chapter 9 Increasing Performance

The query box usage costs that scale up with the number of domains is the single fac-
tor that will determine the cost effectiveness of sharding.Throughput is also a factor, to
the degree that your throughput needs determine the minimum number of domains,
whereas the box usage of Select calls determine the most cost-effective number of do-
mains.The actual costs are different in every situation.The data is different, the complex-
ity and selectiveness of the queries is different, and the number of attributes that must be
returned as well as the number of items will vary.

In some situations, it can work out that sharding across more domains will actually re-
duce your Select costs.This is the case when queries are complex and you find that the
number of items returned within the time limit drops below the number you need, forc-
ing a follow-up query with the NextToken.A sharp increase in QueryTimeout responses
is expensive, and when it happens, it also contributes to the cost savings of additional
sharding.

In other cases, sharding will cost more in terms of Select box usage, and there is no
way around it. In these cases, you want to have the minimum number of domains that
will support your required throughput. Because it varies so much, the only way to deter-
mine that number is to test.

Accessing SimpleDB Outside the Amazon Cloud
One of the early suggestions in this chapter was to consider running your application on
EC2 because of the low latency and the potential for free data transfer. If you decide
against EC2 for whatever reason, you should be aware that there are some differences in
the way you optimize performance.

The main difference is the latency, which will almost certainly not be as low.The addi-
tional request latency you see in practice will depend on the connection between your
application and the Amazon data center servicing your requests. Much of the latency will
be both beyond your control and more highly variable.As a result, it is less advantageous
to optimize for latency and focus more on throughput and caching.

Working Around Latency
Caching is the first, and most obvious, thing to consider when optimizing SimpleDB per-
formance outside the Amazon cloud. For those situations where caching is beneficial, as
outlined previously, it will be doubly so from outside the Amazon data centers.The bigger
the cache, the better.

The second action you can take to optimize around the latency goes hand in hand
with caching: reading full items whenever possible.This is contrary to the best practice
when inside the Amazon cloud; from the inside, you want to pull data chunks that are as
small as possible. From the outside, the latency benefits from pulling the small chunks will
be far less noticeable because of the Internet latency.Thus, the marginal cost of pulling
full items is much smaller.This works well with caching because caching full items is
more likely to maximize your cache hit rate. Because the cost of each additional request is

183Accessing SimpleDB Outside the Amazon Cloud

higher, pulling the maximum data in each GetAttributes and Select call is beneficial
whenever it results in subsequent requests.

Another consideration is that the additional variability and occasional slowdowns from
consistent reads and conditional writes is less of a concern.You will still receive
ServiceUnavailable when consistency is not immediately reachable. However, there
will be a larger percentage of the time where a slowdown from the consistent call is ob-
servable.When you combine that with the fact that there is no additional box usage
charge for the consistent calls, they become more attractive from the outside. Running a
SimpleDB-based application from the outside means that you aren’t going to have the ab-
solute top-tier of database performance.Thus, these applications are most likely already
tolerant of the incremental latency effects.

Ignoring Latency
One thing to consider is that there is a wide range of applications that can function very
well from the outside with only minimal performance concerns. One of these categories
is write-heavy applications with only minimal reads and queries.Think of applications
that are primarily logging information from devices or websites.When write throughput
dominates and reads and queries are more seldom, you are free to shard widely. If queries
can be associated with reporting, and the reports can be generated by a scheduled batch
process, any slowness or box usage concerns tend to fade.This is even true without the
batch processing.

Another class of applications that can benefit from outside access to SimpleDB are
small data-driven websites or blogs.These are usually read-heavy and respond well to
caching.The low frequency of writes and low data storage requirements allows them to
fit easily within a single domain. So, the only optimization that needs to be done is at the
lowest level to make sure that the data for a page being built can be retrieved in a reason-
able period of time. Caching may not even be necessary.

Summary
There are many steps you can take to improve the performance of an application based
on SimpleDB.The important considerations include what level of performance to target.
Caching yields great benefits to read access, but additional domains will be needed to
scale write throughput. Queries are always fast for small quantities of data, but even when
the domain is full, queries with selective criteria for a single attribute can be just as fast.
Complex queries with criteria that span numerous attributes scale much more poorly.
Simplifying them or breaking them down into multiple range queries may be necessary
to minimize QueryTimeout errors and keep response times low.

Spreading data across domains also helps with slower query times, but often at an addi-
tional box usage cost. However, this additional cost applies only to Select and not to the
other read and write operations.At a high level, this partitioning is important for scalabil-
ity but comes with some cost in terms of application complexity.

184 Chapter 9 Increasing Performance

The one thing that holds true for the entire realm of SimpleDB performance opti-
mization is that you truly need to test and measure for yourself. Every situation is differ-
ent, and what generally works for others may not work well for your specific situation. Be
aware of the principles involved and think creatively, but realistically, about your options.
Cloud computing and SimpleDB are not a panacea.Your scalability and performance
problems do not get solved automatically, so consider what you give up and what you get
by using SimpleDB.

10
Writing a SimpleDB Client:A
Language-Independent Guide

This chapter covers the process of writing a client library from scratch. In addition to
being a resource to client implementers, this chapter also affords the opportunity to go
over the SimpleDB API calls again from a web service perspective.This chapter develops a
full implementation of a new SimpleDB client geared toward simplicity and ease of use.
The first portion of the chapter presents the client interface and uses that as a launching
pad into a discussion about design choices and implementation considerations.The full
implementation of the client is then presented in Java, tying the earlier discussion with
the actual code. Even though the programming language used in this chapter is Java, both
the design and the implementation issues addressed here exist in any language.

The SimpleDB client in this chapter implements all nine of the API operations.The
goal is to raise many of the issues that crop up when working with this API and work
through them.The design of this client makes a certain set of tradeoffs, which is a topic of
discussion throughout the chapter.The coverage of these design decisions is meant to spur
your own thought process.Think about how you might do it differently.

Note
Throughout this chapter, “this client” refers to the SimpleDB client software being presented
here. Likewise, “the users” refers to all the people who may use a SimpleDB client that you
write in the development of an application. The intentions and expectations of those who
may use our software should be central to the design process, especially when they are
other developers.

Client Design Overview
SimpleDB exposes a limited feature set with a simple, straightforward API. Functions that
are more complex can be built using the small set of primitive operations.The most im-
portant considerations in the design of this client revolve around the users.The users of
this client are developers using SimpleDB in applications.The service is simple, so the

186 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

client should be simple to use.The API exposed to users needs to match up as closely as
possible with the SimpleDB calls documented on the AWS website.

An important consideration is that the client should be as convenient to use as possible.
One of the things that can make a client difficult to use is the requirement to write a lot
of boilerplate code to set up service calls and to parse results.Another concern is the
alignment with the expected use cases. For example, a client designed for use in mobile
device applications may warrant a simpler interface that omits CreateDomain,
DeleteDomain, and BatchPutAttributes.Alternately, a client embedded in a persistence
framework may need much more complexity for the purpose of interfacing with exiting
frameworks for object mapping, caching at various levels, and query manipulation.

The client developed in this chapter is intended for general-purpose use while main-
taining as much simplicity as possible.The classes exposed to the user comprise three main
abstractions, as follows:

n A SimpleDB class to act as the primary interface.
n An Attribute class to represent each instance of a name/value pair.
n An Item class to represent a named set of attributes.

From the user’s perspective, this will be the full extent of classes in the interface, aside
from the exception classes.That is about as simple as you can get.The role of the Sim-
pleDB class is needed at some level, although you have more leeway when deciding how
to represent items and attributes.

The item and attribute concepts are very simple. Depending on your programming
language, you may have the option to use built-in language features to represent these ab-
stractions. For example, PHP associative arrays might work, or a Python dictionary.A
compelling reason for using dedicated classes to represent them is the fact that attributes
need to also hold a replace flag in addition to the name and value, and no existing Java
collection stands out as an obvious choice.

Public Interface
Let’s take a stab at the primary interface for this client. Listing 10-1 shows ISimpleDB, a
Java interface with abstract methods for all of the key functions.This interface is not in-
tended as a necessary part of the client, although there is no reason why it could not be.
Its purpose is to present the API of the client in a way that allows the initial discussion of
the concepts without the cognitive load of the full implementation.

Listing 10-1 ISimpleDB.java The Public Methods of the Client Interface

package com.simpledbbook;

import java.util.List;

import java.util.Map;

public interface ISimpleDB {

187Client Design Overview

void createDomain(String domainName);

void deleteDomain(String domainName);

List<String> listDomains();

Map<String, Long> domainMetadata(String domain);

void batchPut(String domain, List<Item> items);

void put(String domain, Item item);

void putIfNotExists(String domain, Item item, String expectedName);

void putIfExists(String domain, Item item, String expectedName,

String expectedValue);

void delete(String domain, Item item);

void deleteIfNotExists(String domain, Item item, String expected);

void deleteIfExists(String domain, Item item, String expectedName,

String expectedValue);

Item get(String domain, String itemName, String... atts);

Item getConsistent(String domain, String itemName, String... atts);

List<Item> select(String select);

List<Item> selectConsistent(String select);

boolean hasNextPage();

List<Item> getNextPage();

List<Item> getNextPageConsistent();

}

One thing you can see in this class is that built-in Java collections and types are re-
turned from the methods in combination with the container class Item and its attribute
children.This keeps the usage simple and minimizes the dependencies. One example of
this is the listDomains() method that invokes the ListDomains operation.This method
returns the list of SimpleDB domains, each in the form of a Java String.

A second example is the domainMetadata() method, which returns values in the form
of a Java Map of String names to Long values. Custom classes could be added here to add

188 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

another layer of API abstraction and allow more data to be returned—for instance, the box
usage value contained in the SimpleDB response.That approach results in a more capable
client by way of empowering the user with advanced features like the ability to track box
usage. However, advanced features must be weighed against the extra complexity and boil-
erplate code it might require.

Providing a way for users to access everything that comes back in a response is impor-
tant, but it doesn’t need to be done at the level of the individual call. Logging to a file is one
option; embedding the full response within an exception for error conditions is another.

Continuing to look down through the class, the next four methods make use of abbre-
viated naming. put(), batchPut(), get(), and delete() correspond to the SimpleDB
operations PutAttributes, BatchPutAttributes, GetAttributes, and
DeleteAttributes.This is done here to keep the line length down for the constraints of
the printed page. It would be better to use names that match the operations identically, to
avoid any confusion.

The remaining methods in this class expose the query functionality. Unlike the other
operations, for which there is a one-to-one correspondence between operations and
methods, this sample client defines four methods for Select.The first has a single parame-
ter for the query expression, whereas the second adds an additional parameter for passing
the NextToken.You will notice that the return type for both methods is an Item list and
that no NextToken is ever actually returned to the caller.This design choice is justified in
basic use cases, if not in advance situations.The caller has no use for a NextToken other
than to pass it back to a subsequent call. It is purely a bookkeeping construct, and requir-
ing callers to manage it explicitly is inconvenient.

The inconvenience can be understood considering any query in SimpleDB that runs
too long can return with a NextToken along with as few as zero results.This means that
proper handling of a query will require the user to code NextToken handling at the site of
every select() call.The following chapter will present a more substantial solution to this
problem.This chapter resolves it in a basic way, by implementing some rudimentary
NextToken handling and providing a method to check for its presence called
hasNextPage() and a method to resubmit the same query with the NextToken called
getNextPage().To support these methods, the class declares the private members
nextToken and select.These store the values from the immediately prior call to
select().

Attribute Class
The basic unit of data in SimpleDB is the attribute, and having a structure to represent
that data is fundamental. In addition to the expected name and value Strings, there is also
a need for a boolean value to indicate replacement within requests. Listing 10-2 shows the
full Attribute class.

189Client Design Overview

Listing 10-2 Attribute.java A Structure to Hold Named Values

package com.simpledbbook;

public class Attribute {

private String name;

private String value;

private boolean replace;

public Attribute(String name, String value) {

this(name, value, false);

}

public Attribute(String attName, String val, boolean repl) {

name = attName;

value = val;

replace = repl;

}

public String toString() {

return String.format("{%s:%s}", name, value);

}

public String getName() {

return name;

}

public void setName(String n) {

name = n;

}

public String getValue() {

return value != null ? value : "";

}

public void setValue(String val) {

value = val;

}

public boolean isReplace() {

return replace;

}

public void setReplace(boolean repl) {

replace = repl;

}

}

190 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

The Attribute class is a very simplistic, JavaBean-like data structure.The three private
members are exposed with three getter/setter pairs, the constructor comes in two variants,
and a toString() method is thrown in for good measure.There should not be much sur-
prising here.

Item Class
Because an item is nothing more than a named set of attributes in SimpleDB, the Item
class has only two fields: a name and a collection of attributes. Listing 10-3 gives the code.

Listing 10-3 Item.java A Named Collection of Attributes

package com.simpledbbook;

import java.util.*;

public class Item {

private final List<Attribute> atts = new ArrayList<Attribute>();

private String name;

public Item(String itemName) {

name = itemName;

}

public Item(String itemName, List<Attribute> attList) {

this(itemName);

addAttributes(attList);

}

public String toString() {

return String.format("\nItem: %s\n %s", name, atts);

}

public String getName() {

return name;

}

public void setName(String n) {

name = n;

}

public Attribute[] getAtts() {

return atts.toArray(new Attribute[atts.size()]);

}

public String getAttribute(String name) {

List<String> values = getAttributes(name);

191Client Design Considerations

return values.isEmpty() ? null: values.get(0);

}

public List<String> getAttributes(String name) {

List<String> result = new ArrayList<String>();

for (Attribute att : atts) {

if (att.getName().equals(name)) {

result.add(att.getValue());

}

}

return result;

}

public void addAttributes(List<Attribute> newAtts) {

atts.addAll(newAtts);

}

}

The Item class starts out simple, declaring two constructor variants along with a
matching pair of accessor methods, and ends with a twist, but not a complex one.The
twist is the way the Attribute collection is exposed: Multiple getters are provided as a
convenience, while the setter method is abandoned in favor of an add method.

Client Design Considerations
Every design decision comes with a tradeoff. Even before diving down into the details of
the various operations, there are decisions to be made about a client of this nature. Let’s be-
gin with a discussion of the broader issues and then drop down to more specific concerns.

High-Level Design Issues
There are plenty of details to get hung up on when writing and debugging a SimpleDB
client, but it’s worth taking the time to consider those cross-cutting concerns that have an
impact on the whole thing.These are the issues that come up repeatedly during develop-
ment, and it’s better to think about them ahead of time.

Simplicity vs. Feature Set
If you think of SimpleDB as a tool, then the client software can be considered the handle
to that tool.There is value in choosing which parts to expose and which parts to keep
hidden.The alternative is writing what merely works without giving the interface much
thought.When designing an interface like this, it is useful to consider each concept in the
underlying service and decide which ones to gloss over and which ones to emphasize.

Items, attributes, and domains are the core concepts, so they need to be well repre-
sented. Domains are just names, though; you cannot do anything with it but pass it
around, so it probably does not need its own class. If it did have its own class, all that you

192 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

could put in it is the name and the metadata, and the metadata would go unpopulated
99% of the time while domain objects are being passed around for virtually every opera-
tion.You could use a domain object as a front for operations on the data stored in that do-
main with calls like media_domain02.getAttributes(item).This turns out to be a
convenient way to decouple the calling code from the name of the domain.The problem
is that it breaks down for ListDomains and Select calls where there are no domain pa-
rameters. ListDomains might be called infrequently, but you have to expect heavy Select
use.You do not want to end up with confusion over where operations are called. It also
hurts simplicity if you must pass multiple objects around. It is difficult to code enough
usefulness into a domain class for it to pull its own weight, so in this client, it is repre-
sented as a String and kept simple.

Ease of Use
Exposing proper support for the underlying database is necessary. However, it is not suffi-
cient.You need to think about the needs of the users and how they will use the client. If
the attributes returned in an item are accessed via the attribute name, providing the attrib-
utes in the form of a list forces the user to loop and compare every single one.Alternately,
if the attributes are being manipulated in bulk by code that has no knowledge of the at-
tribute names, providing the attributes in map makes it more cumbersome.

When the user needs to drill down through three levels of object hierarchy to reach
the data after each call, it results in boilerplate code. However, the other side of the coin is
that you are simply unable to return that extra metadata about the operation when you
have a bare data-only interface. Examining the raw request and response can be useful on
occasion and can be crucial when there is an error, but are those occasions often enough
to justify returning a wrapper object for every call? There is no one right answer, but if
you don’t think about it, you are more likely to go wrong.

More Methods vs. More Parameters
Sometimes you can do multiple things with the same operation, due to the underlying
SimpleDB options. One example of this is the GetAttributes operation that can fetch a
full item or fetch part of an item, and those can be done with either eventual consistency
or read-your-writes consistency.When designing the client, you get to choose if you will
mirror the web service verbatim with all the options or if you will create simpler, individ-
ual functions for each conceptual task.The verbatim approach suggests method signatures
like the following:

Item getAttributes(String domain, String itemName, List attributes,

boolean consistent);

This leads to a concise API, but long parameter lists with boolean and null value argu-
ments obscure the intent to those reading the code.A more task-oriented AP leads you
toward signatures like this:

Item getItem(String domain, String itemName);

Item getAttributes(String domain, String itemName, List attributes);

193Client Design Considerations

Item getItemConsistent(String domain, String itemName);

Item getAttributesConsistent(String domain, String itemName,

List attributes);

In this case, you end up with a more bloated API, but the application code written
against it is more readable.A balance needs to be struck between the two.

The choice you make also depends on where those parameters are going to come
from.When users are going to be typing in the code to call the functions, the narrow
functions with clear and distinct meaning can be easier to read.When the parameters are
coming from another framework or interface, the comprehensive functions can be easier
to interface while keeping excessive conditional logic in check.

Concurrency
SimpleDB is optimized for concurrency, and you cannot scale up the request volume
without it.Writing a SimpleDB client that does not address the need for concurrency may
significantly hinder its usefulness. Some applications, however, benefit from the inherent
parallelism of networked platforms and require no client-level concurrency—for example,
mobile device applications and browser plug-ins. Consider the expected use of the client
when you make the concurrency decisions.The client presented here does not expose any
explicit concurrency via the API; for example, there are no asynchronous methods or task
queues. However, the design allows room for a thread-safe implementation.This supports
the goal of having simple code for reference purposes without crippling all chances at
scaling up the request volume.

Thread safety allows any number of threads to make concurrent calls into a single
client instance without the corruption of internal state. Specific implementation steps have
to be taken to realize actual thread safety, like minimizing contention for shared resources
and synchronizing all access to mutable shared state.An alternative in one direction is to
provide explicit concurrency controls, and in the other direction, the client can balk at
thread safety and require each thread to use its own instance. Regardless of the stance
taken, it is wise to document it for your users. It is difficult and error prone to write
multi-threaded code. Isolating it into small and manageable constructs makes it easier to
achieve correctness and reuse.

Operation-Specific Considerations
Basic operations should be simple.The two most basic operations in the SimpleDB API
are CreateDomain and DeleteDomain.These operations accept a single parameter and re-
turn nothing.There is not much to them, and it is probably best not to overcomplicate
their implementation.These functions are likely to be called rarely and in an administra-
tive capacity.There are really no other considerations for these calls.

ListDomains and BatchPutAttributes also fall into the simple category.These opera-
tions don’t force you to make any choices. ListDomains accepts no arguments and returns
a list of names, whereas BatchPutAttributes takes a domain and a set of items and re-
turns nothing. Both parameters are always required, and there are no other options.The
considerations for these is also minimal.

194 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

Flexibility and DomainMetadata
DomainMetadata returns various named sizes and counts.The basic design choice is be-
tween returning the raw data and creating a custom type with named properties.The
named properties are more convenient and relieve the application of the need to know
the exact constant names. It also provides a nice place for convenience methods to calcu-
late total storage, billable storage, and remaining space.When the client includes a domain
class, it acts as a natural home for these responsibilities.

The client here does not have a domain class and instead returns a mapping of string
names to Long values.The reasoning is that this function returns data that is as much as a
day old, so it is not likely to see heavy use. It also would not illustrate anything interesting.
However, as a practical matter, it would be easy to implement and is a useful addition to
this client.

If you do implement a class to hold this data, it is best to make clear which functions
result in the actual web service calls.When it is returned from a getDomainMetadata()
call, it seems obvious that a fresh call is made. If it is returned from a call like
domain.getItemCount(), the answer is less obvious. Does the call go over the wire at the
time the domain is instantiated or when the method is called? If you call the method
again, is it going to make more service calls? If the object is being reused and you call the
method on the same instance tomorrow, will it make a new call? It is possible to answer
these questions in the documentation, but making it clear via the API is preferable.

There is an additional consideration for this function regardless of the structure of the
return type.A 32-bit integer will hold all the possible values when the domain is small,
but once it grows larger, it will overflow.A 64-bit integer is needed to represent the meta-
data of a full domain.

GetAttributes
The get() method in this example client uses the Java varargs language feature for the
optional attribute names.This helps resolve the more parameters vs. more methods ques-
tion. Requests for the full item accept the domain name and item name, whereas requests
for specific attributes can take a variable number of values or an array.Take advantage of
the available language features available to keep the API clean and the intention of each
method clear.

With regard to the SimpleDB option to attach a ConsistentRead flag to a
GetAttributes call, for the client has separate methods: one for a normal read and one
for a consistent read. For one thing, the difference in naming makes the intention clearer
when reading the application code.Additionally, the choice in naming emphasizes the se-
mantics that one call represents the standard mechanism and the other one has special
consistency treatment.This choice aligns with the idea that the eventually consistent oper-
ations should be used unless there is a good reason to do otherwise. It also presents a uni-
form naming convention when you see the same naming used with the select() and
selectConsistent() methods.

195Client Design Considerations

Conditional and Unconditional Writes
PutAttributes and DeleteAttributes are similar from the standpoint of both design
and implementation.The basic forms are simple enough with only a domain and an item
parameter.The addition of conditional writes based on the state of an expected attribute
certainly adds a wrinkle.

The real issue is that there are three parameters used to expose two separate functions.
On the one hand, you need to set Expected.1.Name and Expected.1.Value if you want
to proceed based on a value that exists. On the other hand, you have to set
Expected.1.Name and Expected.1.Exists when you want to proceed based on a value
not existing.

You need to know how the conditional write system works, but there is no require-
ment for you to pass the parameter burden on to your users. If you pass all those argu-
ments straight through your API, not only do you end up with a method with five
parameters (which is bad enough), but it is also guaranteed that every call to that method
will require the passing of unused parameters.

An even worse problem with that situation is the fact that the correctness of the request
is at risk. For example, it is not valid to pass Expected.1.Value if Expected.1.Exists is
set to false.And of course, you can validate the parameters before proceeding, but it is too
late for the following reason: Giving the users of your client a method where each of the
parameters can be correct individually but invalid together is a problem in itself. It’s not
going to matter to the user whether the runtime error comes from your client directly or
from the SimpleDB response your client is parsing. Runtime is too late to catch this error,
when it could be done in the mind of the developer while typing, or compile time at the
latest.

This client declares three methods each for PutAttributes and DeleteAttributes,
one method for each different type of action you would want to take, as shown in Listing
10-1.The PutAttributes methods are put(), putIfExists(), and putIfNotExists().
The naming of the “ifNotExists” is a little awkward as part of a method name, but it is in
line with the type of phrasing used in other databases. Each of these methods has the exact
number of parameters needed for the underlying action, with no optional parameters. It is
still possible to pass bad data, as with any call, but it is not possible for the user to form an
invalid request.

Hijacking the NextToken
Breaking down an operation into multiple methods is one thing, but a more drastic ac-
tion has been taken with the Select operation.The design change to the select call re-
volves around removing all traces of the NextToken. Instead of returning the NextToken

to users, it is stored for later use. Later use involves handling user calls to hasMorePages()

and getNextPage().The last SelectExpression is stored as well, for use in the follow-
up calls.

Deviating from the base API is something to consider carefully when you are writing
a client that other people will use. People who are familiar with SimpleDB and want to

196 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

use your client will not be expecting substantial changes. Here is the reasoning behind
this change:

n There is nothing productive the user can do with the token, except bear the burden
of storing it and passing it back at the proper time.

n Any query can return the token, so every query may need to be wrapped in token-
handling code.

n There is a strong mismatch between the meaning of NextToken and what users typ-
ically want to do.

From the standpoint of SimpleDB, the token always means the same thing,“Query ex-
ecution stopped before exhausting the potential results; here’s a token to resume the
search.” From the SimpleDB side, it does not matter why execution stopped, but from the
user perspective, the “why” means everything.Was it because the specified limit was
reached or the default limit, or did it run out of time? Determining the “why” requires
looking at both the token and the result count, and that is confusing to users.

The mismatch really extends to the meaning of the LIMIT clause as well; you still get a
NextToken when the LIMIT is reached. LIMIT is not expressive enough because you can-
not say,“Give me the first 100 results.” You cannot even say,“Give me the first 100 results,
and if it takes too long, give me a token to fetch the remainder.”What you end up saying
is,“Give me the first 100 results; if it takes too long, give me a token. I’ll check the result
count to see if I got all 100, and if not, I’ll check for a token just in case there aren’t 100
matches. I’ll then rewrite my query with a new limit to get the remainder.”

NextToken and LIMIT are request-level parameters, while users have intentions that
reach beyond one individual request.That is the source of the mismatch.The solution pre-
sented here is by no means an ideal solution.The biggest design flaw with the token hi-
jacking attempt is the failure to address the LIMIT issue as well.This idea is rejected in the
context of this chapter, because it involves rewriting select expressions, and that does not
fit well in a chapter about a basic client.Another shortcoming of this approach is that the
ability to fetch follow-up pages for a query is lost once a new query is issued.

Implementing the Client Code
With all the high-level considerations addressed, that wraps up the design discussion.What
remains is to take the interface defined in Listing 10-1 and flesh it out into the implemen-
tation code.

Safe Handling of the Secret Key
Before the user can call the methods of this client, it must first be initialized.You may no-
tice that the only constructor argument in this class is a service URL. Proper initialization
also requires valid account credentials.An important consideration early in the develop-
ment of this client is the safeguarding of the user’s account credentials. First, we want to be
careful how we store the Secret Access Key. It is impossible to predict where this client
code might end up running someday.You do not want to be in a situation where you left

197Implementing the Client Code

a vulnerability in the SimpleDB client where some malicious code, perhaps running as a
plug-in in the same process, might be able to gain access to the secret key. It may not be
totally preventable, but there are some steps you can take to store only the minimum.

It is also beneficial to discourage users from hard coding credentials directly into source
files. In keeping with this idea, keys will be loaded from the file .awssecret in the user’s
home directory.There are a number of other likely candidates for loading credentials.Web
application containers define standard means to load configuration information, and a de-
pendency injection framework would allow the credentials to be injected. Ideally, the
client would have the ability to pull the credentials from any of these sources. For the pur-
poses of this chapter, only the user home directory will be used.

The important thing is that database logon information needs to be externalized as
configuration information. Giving the client code the ability to pull the credentials di-
rectly from the source has another nice side effect. It gives the client everything needed to
look for updated credentials in the event of an authentication failure.The AWS website
grants you the ability to activate and deactivate credentials as well as create new ones.
Deleting old credentials may become necessary for a variety of reasons, not the least of
which is compromised keys resulting from the lack of safe handling.

Having a SimpleDB client that can immediately refresh the credentials when needed,
with no intervention from the application, can be very convenient. It is only a minor con-
venience when the client stores a small amount of state, as this client does. In a more so-
phisticated client handling thousands of simultaneous in-flight requests, the benefit of
having a client capable of hot swapping credentials without an abrupt shutdown and re-
initialization is much greater.

Implementing the Constructor
Listing 10-4 shows the implementation of the SimpleDB constructor.The full implemen-
tation is available for download from the book’s website.

At the top of the constructor, a Java Properties instance is used to load the contents
of the .awssecret file.The AccessKeyId is then stored in the final String member named
KEY. Rather than storing the SecretAccessKey directly, it is used instead to initialize an
instance of the javax.crypto.Mac class.The Mac provides an abstraction for the Message
Authentication Code needed to compute the digital signature for each request.

The raw bytes of the SecretAccessKey along with the String name of a hash algo-
rithm are needed for this initialization in conjunction with a
javax.crypto.spec.SecretKeySpec object. Import statements have been added for these
classes, and a constant has been added to hold the hash algorithm name. More details
about the signature computation and options are covered later in the chapter in the
“Computing the Signature” section.

Listing 10-4 SimpleDB.java Implementation of the SimpleDB Constructor

public SimpleDB(String serviceUrl) {

try {

Properties props = new Properties();

198 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

String home = System.getProperty("user.home");

props.load(new FileReader(new File(home, ".awssecret")));

KEY = props.getProperty("AWS_ACCESS_KEY_ID");

String secret = props.getProperty("AWS_SECRET_ACCESSS_KEY");

HMAC = Mac.getInstance(ALORITHM);

HMAC.init(new SecretKeySpec(secret.getBytes(), ALORITHM));

URL = new URL(serviceUrl);

CLIENT = new HTTPClient();

} catch (Exception e) {

throw new RuntimeException(e);

}

}

The constructor ends with the creation of a URL object and some exception han-
dling.Any problem with the file loading, Mac, or the URL will be caught here and
rethrown as a RuntimeException.A RuntimeException is used because of the shortcom-
ings of Java checked exceptions. In a nutshell, checked exceptions force both class depend-
encies and handling code at every level of the call chain, even those levels with no need to
know.A better choice would be to define a custom exception class that subclasses
RuntimeException type for convenient catching.

Implementing the Remaining Methods
Listing 10-5 shows a partial implementation of the SimpleDB class.The full implementa-
tion is available for download from the book’s website.

Listing 10-5 SimpleDB.java Partial Implementation the SimpleDB Client Class

public void createDomain(String domainName) {

Request request = createNewRequest("CreateDomain");

request.setDomain(domainName);

CLIENT.fetch(request);

}

public List<String> listDomains() {

Request request = createNewRequest("ListDomains");

Response response = CLIENT.fetch(request);

return response.extractDomains();

}

public Map<String, Long> domainMetadata(String domain) {

Request request = createNewRequest("DomainMetadata");

request.setDomain(domain);

Response response = CLIENT.fetch(request);

return response.extractDomainMetadata();

}

199Implementing the Client Code

public void batchPut(String domain, List<Item> items) {

Request request = createNewRequest("BatchPutAttributes");

request.setDomain(domain);

request.addItems(items);

CLIENT.fetch(request);

}

public void put(String domain, Item item) {

Request request = createNewRequest("PutAttributes");

request.setItemName(item.getName());

request.addAttributes(item.getAtts());

request.setDomain(domain);

CLIENT.fetch(request);

}

public void delete(String domain, Item item) {

Request request = createNewRequest("DeleteAttributes");

request.setDomain(domain);

request.setItemName(item.getName());

request.addAttributes(item.getAtts());

CLIENT.fetch(request);

}

public Item get(String domain, String itemName, String... atts) {

Request request = createNewRequest("GetAttributes");

request.setDomain(domain);

request.setItemName(itemName);

request.addAttributeNames(atts);

Response response = CLIENT.fetch(request);

return new Item(itemName, response.extractAttributes());

}

public List<Item> select(String select) {

return select(select, "");

}

public boolean hasNextPage() {

return lastToken.get().length() > 0;

}

public List<Item> getNextPage() {

return select(lastSelect.get(), lastToken.get());

}

private List<Item> select(String select, String nextToken) {

lastSelect.set(select);

Request request = createNewRequest("Select");

200 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

request.setSelectExpression(select);

request.setNextToken(nextToken);

Response response = CLIENT.fetch(request);

lastToken.set(response.extractNextToken());

return response.extractItems();

}

private Request createNewRequest(String action) {

return new Request(HMAC, action, KEY, URL);

}

}

All the methods in the SimpleDB class in this listing have a similar flow with only mi-
nor differences.They each take the following form:

1. Create a request.

2. Set parameters on the request.

3. Pass the request to the HTTPClient for transmission.

4. Optionally, extract a return value from the response.

Even though each method has slight differences, there is room in this class to refactor
away some of the duplicated code. Nevertheless, it is arguable whether that is necessary.
The current form of these methods allows them to remain below six lines in length while
retaining a high level of clarity. Refactoring to eliminate this type of duplicate code style
requires some type of new abstraction to be inserted into the clear flow of these methods.

Such a change would be an improvement if the abstraction makes the methods clearer
rather than merely shorter. In order for this to be the case, there has to be some deeper,
more basic, abstraction lurking in the code that is yet to emerge. Inventing one artificially
to reduce line count is not an improvement.

In addition, three more classes in the client are used as part of the implementation but
are not visible to the user.They are as follows:

n A Request class to handle the details of assembling a proper request.
n A Response class to hold the logic for parsing responses.
n An HTTPClient class to manage the connection specific code.

It could certainly be more complex; there are SimpleDB concepts that do not get
classes. Nevertheless, simplicity has its own set of advantages.To maintain simplicity, each
domain, SelectExpression, and NextToken is represented as plain string object.

Making Requests
Now that the basic structure is in place and a set of credentials have been loaded, let’s
work our way toward making requests. Creating a request involves the proper encoding
and assembly of all the required parameters followed by a signature.

201Implementing the Client Code

SOAP Requests vs. REST Requests
The SimpleDB web service supports requests in both SOAP format and REST format.
There is no functional difference between the two, so the decision usually comes down to
the technical differences.The SOAP format is more verbose and so to some degree con-
sumes more memory and bandwidth. Because there are no benefits to be had from using
that extra resource usage, the REST format is used for this client.The one situation where
there are real benefits from using SOAP is when the developer of the client has web serv-
ice tooling in place to generate the access code automatically. In this case, SOAP may be
more convenient. Be aware, however, that convenience for the SimpleDB client creator is
not the same as convenience for the client user. In my experience, code generation based
on XML definitions has been awkward.

Merely a Wire Protocol
Across the Internet, battles have raged for years between the supporters of SOAP and REST.
REST is the clear winner in the browser to server space but lacks the built-in features
needed for robust enterprise web services.

However, the SOAP vs. REST debate has zero bearing on the SimpleDB interfaces. First, the
SimpleDB version of a REST interface is more of a HTTP query interface, and not RESTful at
all. Second, and more importantly, SimpleDB is not a high-level service; it is a low-level data-
base with only basic features. There is no service composition or grand web service activi-
ties going on here. It is just a wire protocol.

If you want to feel the joy of using a RESTful service, go ahead: Write a proxy server that ac-
cepts a RESTful version of SimpleDB, and translates it into real SimpleDB requests. Then
you can write a RESTful client and, in the end, what you’ll find is that it didn’t make the
slightest bit of difference to real users who neither know nor care about the wire protocol. In
the end, the only thing to be had is a little more overhead, which, incidentally, is what you
would get from using SOAP.

Setting the Required Parameters
There are seven mandatory parameters required in every request.They are as follows:

n AWSAccessKeyId— A valid and currently active access key.
n Action— This is the name of the SimpleDB operation; for example:“Domain-

Metadata”.
n SignatureMethod— The name of the hash algorithm; for example:“Hmac-

SHA256”.
n SignatureVersion— SimpleDB has supported three different methods of re-

quest signing over the years, named “0”,“1”, and “2”.Version 2 is the most recent
and the most secure, and is the one I recommend.

n Version— This is the published API version; the most recent is “2009-04-15”.
n Signature— This parameter holds the final signature hash value of all the other

parameters.

202 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

n Timestamp— A string that represents the request time in UTC; for example:
“2007-01-31T23:59:59.645Z”.

In addition to these, there are also request specific parameters that must be set for each
operation.These parameters are discussed in detail in Chapter 3,“A Code-Snippet Tour of
the SimpleDB API.” However, for our purposes here, we need to collect all the parameters
and sort them for the signature computation.

Listing 10-6 shows the start of a Request class to encapsulate the parameter holding,
sorting, and signing.This class is declared in the package com.simpledbbook.core. In ad-
dition to Request, this package will also hold a Response class and an HTTPClient class.
None of the classes in this package will be seen by users of the client; they are strictly for
internal use.

Listing 10-6 Request.java The Beginning of a SimpleDB Request Class

package com.simpledbbook.core;

import java.net.*;

import java.text.*;

import java.util.*;

import javax.crypto.Mac;

public class Request {

private static final SimpleDateFormat TIMESTAMP;

private final SortedMap<String, String> PARAMS;

private final Mac HMAC;

private final URL URL;

static {

String format = "yyyy-MM-dd'T'HH%3'A'mm%3'A'ss.SSS'Z'";

TIMESTAMP = new SimpleDateFormat(format);

TIMESTAMP.setTimeZone(TimeZone.getTimeZone("GMT"));

}

public Request(Mac hMac, String action, String key, URL url) {

URL = url;

HMAC = hMac;

PARAMS = new TreeMap<String, String>();

PARAMS.put("Version", "2009-04-15");

PARAMS.put("Timestamp", TIMESTAMP.format(new Date()));

PARAMS.put("SignatureVersion", "2");

PARAMS.put("SignatureMethod", HMAC.getAlgorithm());

PARAMS.put("Action", action);

PARAMS.put("AWSAccessKeyId", key);

}

203Implementing the Client Code

public URL getURL() {

return URL;

}

}

A timestamp format is held in a class constant of type SimpleDateFormat; it can be
reused for every request instance.The format is instantiated and initialized in the static
block.The format string uses the special format defined by the SimpleDateFormat class.A
notable modification to the format is that the “:” characters have been replaced with the
final URL-encoded value ‘%3A,’ making encoding unnecessary.Also, the GMT time zone
is set, so the result will be compatible with UTC time.

In addition to the formatter, there are three final members, one each for Mac and URL
passed into the constructor, plus a SortedMap to hold the parameters.The SortedMap is
able to store all the parameter names and values in sorted order so that no explicit sorting
needs to be done.

The constructor saves off the URL and the Mac, allocates a concrete instance of Sort-
edMap, and proceeds to insert six parameters. Of the seven required parameters, these six
are all known in advance, so they might as well be set immediately.The version and signa-
ture version are constant values.The timestamp is created by passing the current time to
the formatter.The signature hashing method could conceivably change, so it is pulled di-
rectly from the Mac.The action and key are variable, but passed to the constructor.

The two remaining required parameters are the signature and the timestamp.The signa-
ture cannot be added until the request is complete, but the timestamp could be added now.
The only concern is that the timestamp defines a window of validity for the request of 15
minutes. Even though it is unlikely that 15 minutes would elapse between request creation
and transmission, sometimes the unlikely events occur, so the timestamp is set later.

Setting Optional Parameters
Because this Request class needs to handle all SimpleDB operations, it needs a way to ac-
cept all of the possible parameters.A simple way to do that is to create a method that can
accept any set of parameters and add them to the sorted map.The method could look
like this:

public void setParam(String name, String value) {

PARAMS.put(name, value);

}

Then the SimpleDB class can set parameters with the following code:

request.setParam("DomainName", "users");

That approach will work, but when you start to think about it, you realize that seven of
nine will need to set this domain name parameter.The inconvenience of having to repeat
the hard-coded constant “DomainName” seven times suggests refactoring it into a class
constant. However, it seems much more appropriate to make the Request class responsible

204 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

for the names of the request parameters. So, let’s move the parameter name into the
Request class, as follows:

public void setDomain(String name) {

PARAMS.put("DomainName", name);

}

Now it can be called as follows:

request.setDomain(domainName);

This conveys intent better and avoids the use of constants in awkward places. It also
ends up requiring a separate method in the Request class for each optional parameter, but
as you’ll see, many of those parameters require special handling anyway.

Proper Request Encoding
One omission from the setDomain() method is the proper encoding of the domain
name.The technical requirement for all SimpleDB requests is that all parameter names and
values must be percent encoded in accordance with RFC 3986 section 2, commonly re-
ferred to as URL encoding. RFC 3986 defines the following set of unreserved characters:

A-Z, a-z, "-", ".", "_", "~"

These unreserved characters must not be encoded, whereas all other bytes must be per-
cent encoded. However, there are a few situations where you can be certain that the value
contains only unreserved characters and therefore skip the encoding step.The main case
where this applies is to all AWS-defined constants.This includes all of the SimpleDB pa-
rameter names, all of the operation names, and a number of values.This is why no encod-
ing was done in the Request constructor in Listing 10-6. In the case of the domain name
parameter, the characters allowed in domain names are a strict subset of the unreserved
characters. For all parameters other than domain name, however, all of the values need to
be encoded.

Because setDomain() does not require encoding, let’s add another parameter setting
method to the Request class that does. Listing 10-7 shows setting the SelectExpression
parameter and a method to implement the percent encoding.

Listing 10-7 Request.java The Addition of Percent Encoding to the Request Class

...

public void setSelectExpression(String select) {

PARAMS.put("SelectExpression", encode(select));

}

private String encode(String value) {

String result = "";

try {

result = URLEncoder.encode(value, "UTF-8");

} catch (UnsupportedEncodingException e) {

e.printStackTrace(); // can't happen

205Implementing the Client Code

}

result = result.replace("+", "%20");

result = result.replace("*", "%2A");

result = result.replace("%7E", "~");

return result;

}

...

The encode() method uses java.net.URLEncoder.encode() to do the actual encod-
ing. It is crucial that the value first be converted to UTF-8 bytes before it is URL en-
coded and that is done here by passing the name of a character encoding along with the
value. SimpleDB interprets all incoming data as URL-encoded UTF-8 bytes, so using any
other encoding, including the platform-default encoding, can result in sending incorrect
data. Storing improperly encoded data can be difficult to diagnose because usually you do
not get an error at the time the data is written; the more common symptom is seeing in-
correct characters coming back in a read.

It is also very important that every bit of data that needs encoding go through this
process. It is possible to assemble all the parameters first and then encode the entire pa-
rameter list later, when it is used.The benefit of that approach is that you do not need to
be vigilant about avoiding bugs of omission when encoding the parameter data coming
into each method.You don’t need to guard a dozen doors coming in when you are guard-
ing the one door that goes out. However, the tradeoff here is with the number of times
the parameters must be encoded.The parameter string is used multiple times: First to
compute the signature, another time when the final request is sent, possibly a third to
compute the content length, and maybe again for use in logging.Although it is possible to
cache some of these, you cannot cache them all because the value changes once you add
the signature.

The alternate tactic used here is to encode each piece of data, faithfully and fully, as it
comes in to the parameter map. It leaves you exposed to potential bugs if you add new
methods and forget to encode, but it obviates the need to encode the same data repeat-
edly. More than that, it lets you selectively encode the data that requires it while passing
over the data that does not need to be encoded.

Looking back at the encode() method in Listing 10-7, URL encoding ought to be a
straightforward task, but sometimes there are idiosyncrasies to deal with. In Java, you are
forced to deal with an UnsupportedEncodingException, even though UTF-8 is always
supported. More importantly, the Java implementation encodes spaces into the plus sign
(+), fails to encode the asterisk (*), and encodes the tilde (~) unnecessarily. Listing 10-7
resolves these issues after the fact with string replacement.

Now that the encoding mechanism is in place, let’s flesh out the rest of the parameter
setting methods. Listing 10-8 displays the remaining eight methods needed for parameter
settings, along with a private utility method.This listing is lengthier, but the methods are
all quite small.

206 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

Listing 10-8 Request.java The Remaining Parameter Setting Methods in the Request
Class

public void setNextToken(String nextToken) {

PARAMS.put("NextToken", encode(nextToken));

}

public void setConsistentRead() {

PARAMS.put("ConsistentRead", "true");

}

public void setItemName(String name) {

PARAMS.put("ItemName", encode(name));

}

public void setExpectedAttribute(String name, String value) {

PARAMS.put("Expected.1.Name", encode(name));

PARAMS.put("Expected.1.Value", encode(value));

}

public void setExpectedToNotExist(String name) {

PARAMS.put("Expected.1.Name", encode(name));

PARAMS.put("Expected.1.Exists", "false");

}

public void addAttributeNames(String... atts) {

for (int i = 0; i < atts.length; i++) {

PARAMS.put("AttributeName." + i, encode(atts[i]));

}

}

public void addAttributes(Attribute... atts) {

addPrefixAttributes("", atts);

}

private void addPrefixAttributes(String prefix, Attribute... atts){

for (int i = 0; i < atts.length; i++) {

String finalPrefix = prefix + "Attribute." + i + ".";

PARAMS.put(finalPrefix + "Value", encode(atts[i].getValue()));

PARAMS.put(finalPrefix + "Name", encode(atts[i].getName()));

if (atts[i].isReplace()) {

PARAMS.put(finalPrefix + "Replace", "true");

}

}

}

public void addItems(List<Item> items) {

207Implementing the Client Code

for (int i = 0; i < items.size(); i++) {

String prefix = "Item." + i + ".";

PARAMS.put(prefix + "ItemName", encode(items.get(i).getName()));

addPrefixAttributes(prefix, items.get(i).getAtts());

}

}

The first three methods in Listing 10-8 are similar to those shown already; an entry is
added to the parameter map and the value is encoded.The semantics of the second
method, setConsistentRead(), are that it is called only to request the strengthened con-
sistency.The SimpleDB API allows ConsistentRead to have a value of false, but since it is
false by default, there is no reason to send the parameter at all in that case.The next two
methods, setExpectedAttribute() and setExpectedToNotExist(), follow suit, only
adding two parameter pairs instead of one.

These are followed by a method that starts us down the path of more complex attrib-
utes: addAttributeNames().At this point, we must contend with adding a list of values
rather than just a single value.This method is called as part of the GetAttributes process
when the attributes to be fetched are listed by name.To adhere to the SimpleDB naming
protocol, these parameters will take the following general form:

Attribute.Name.N=importantAttribute

In this form, N is zero for the first attribute name and increases by one for each subse-
quent attribute name.This form is realized via a simple loop and counter, culminating in
the expected call to PARAMS.put().

The final two public methods take that concept a step further.The PutAttributes and
DeleteAttributes operations need the ability to set parameters of the form, as follows:

Attribute.0.Name=DisplayName

Attribute.0.Value=Mocky

Attribute.1.Name=ProfileLocation

Attribute.1.Value=NY

Attribute.1.Replace=true

Those parameters need to be created in a loop, with one iteration for each passed at-
tribute. BatchPutAttributes requires the exact same treatment, the only difference being
the need to add an item number to the front.The batch parameters look like this:

Item.7.Attribute.0.Name=DisplayName

Item.7.Attribute.0.Value=AnnikaHansen

Item.7.Attribute.1.Name=ProfileLocation

Item.7.Attribute.1.Value=UnimatrixZero

Item.7.Attribute.1.Replace=true

The parameter-building process for these two forms could easily be done in separate
methods, but the differences are small enough to warrant a single method. Considering

208 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

that the second form merely requires an extra item name prefix, this difference can be ab-
stracted away by assigning a blank prefix to the first form.

This is done in the Listing 10-8 addAttributes() method.When this method is
called, the attributes are forwarded to the private addPrefixedAttributes() method,
along with an empty prefix.This method performs the work of looping through the at-
tributes, building up the full parameter names based on the passed-in item prefix and a
loop counter.The parameter values are all encoded before being set into the parameter
map and the replace parameter is conditionally set.

The addItems() method fills in the last piece of the puzzle by looping through the
items, setting the encoded item name parameter and calling addPrefixedAttributes()
with an item prefix built from the loop counter.

Computing the Signature
The final bit of functionality missing from this Request class is the signature computation.
The signature is merely another parameter that needs to be set, along with all the others.
The difference, of course, is that it is a hash of the final request. Listing 10-9 shows the re-
maining methods in the Request class.

Listing 10-9 Request.java The Signature Computation Methods in the Request Class

void sign() {

PARAMS.put("Signature", computeSignature());

}

private String computeSignature() {

byte[] bytes = getStringToSign().getBytes();

byte[] signature = null;

synchronized (HMAC) {

signature = HMAC.doFinal(bytes);

}

return encode(Base64.encode(signature));

}

private String getStringToSign() {

StringBuilder toSign = new StringBuilder("POST\n");

toSign.append(URL.getHost()).append("\n");

toSign.append(URL.getPath()).append("\n");

toSign.append(getParamString());

return toSign.toString();

}

String getParamString() {

StringBuilder result = new StringBuilder();

for (Map.Entry<String, String> p : PARAMS.entrySet()) {

result.append('&').append(p.getKey());

result.append('=').append(p.getValue());

209Implementing the Client Code

}

return result.substring(1); // omit the leading '&'

}

Computing the Signature Hash
Reading through the Listing 10-9 methods in order, first we have sign().The single-line
implementation is a concise description of the two actions taking place:
computeSignature() is being called, and the result is stored in the parameter map.

In order to perform the actual signature computation, we need to obtain the final
string to sign and convert it into a byte array.A call to the Mac is needed to get the hash
of those bytes.The result of that hash is a byte array that must be first Base64 encoded and
then percent encoded before it can be returned.Those are the steps taken in
computeSignature(), but let’s take a closer look at each of them.

The astute reader may notice that the string to sign is converted into bytes with the
no-arg version of the getBytes() method that uses the platform-default encoding.Al-
though it is crucial that the UTF-8 encoding be used, it is not needed at this stage; this
string has already been through character encoding and percent encoding.

You may also have noticed that the same Mac instance is being passed to the construc-
tor of each request.The call to doFinal() here presents the lone thread-safety concern for
this instance.To protect the Mac from simultaneous calls to doFinal() from different
threads, it is wrapped in a synchronized block, where only one thread at a time can get in.

The byte array containing the signature hash is just that: a set of bytes. Because these
bytes represent binary data and not character data, the Base64 encoding is used to make
them transmittable over HTTP.A follow-up encoding is needed, however, because there
are three characters in the output of Base64 that require percent encoding: plus (+), for-
ward slash (/), and the equals sign (=).

Building the Sorted Parameter String
Assembly of the string to sign occurs in getStringToSign().The string takes the follow-
ing form for REST requests:

HTTPVerb<newline>

HTTPHost<newline>

HTTPRequestPath<newline>

SortedParameterString

In this form, <newline> is the ASCII newline character and HTTPVerb is either GET or
POST. HTTPHost and HTTPRequestPath are the host and path in the HTTP request and
SortedParameterString is the culmination of all the parameter handling up to this point.

The getStringToSign() method mirrors this format.The verb POST is here.The
main difference between POST and GET for SimpleDB purposes is the limit on the
maximum size of a GET URL.The limit does not apply to POST, since the parameter
string is sent as content and is not part of the URL.The limit is easily reachable with

210 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

BatchPutAttributes calls that use GET, so this client uses POST for all requests for
consistency.

Parameter Ordering
The final method in Listing 10-8, getParamString(), wraps up the signature code by
providing the base value upon which the others operate.The format for the parameter
string is the familiar series of name/value pairs, separated internally by an equals sign (=)
and delimited with an ampersand (&):

param2=value2¶m3=value3

The getParamString() method loops over each map entry, building up the result.The
most important part of this process does not appear in this code: the sorting.When com-
puting the signature, the parameters must be put into a canonical order so that SimpleDB
is able to compute an identical signature.The ordering that SimpleDB requires is an as-
cending lexicographic sort, which is commonly the natural sort order for strings.This is
exactly the key ordering that SortedMap uses when it returns the list of map entries.

The keys, in this case, are the parameter names, and only the parameter names need to
be sorted. Because they are all unique within a request, the variation in parameter values
will never affect the order.The SortedMap is convenient, but there is nothing special
about it.You can use whatever data structure is convenient for you.

Sorting the Parameters Properly
The final ordering of the parameters as they are sent across the wire is irrelevant because
SimpleDB reconstructs the canonical order to verify the signature. Nevertheless, the order-
ing at signature computation time is the difference between success and a 403
SignatureDoesNotMatch error code.

The signature code seems pretty cut and dried, in the sense that it always fails until you get
it right and then it always succeeds. However, there are conditional errors that occur due to
sorting bugs that only manifest once you have enough parameters.

The classic case is when the parameter string is built on the fly without an explicit sort. If
the request has nine attributes, you can get by without a data structure to hold the names
and values. You can loop through the attributes, appending values to the result:

...Attribute.0.Name=color&Attribute.0.Value=red...

However, as soon as you try it with 10 or more attributes, you are hosed:

...Attribute.9.Value=red&Attribute.10.Name=...

With a string-based sort, Attribute.10 comes before not only Attribute.9, but before
Attribute.2 as well.

Making the Connections
With a Request instance populated with parameters and ready to sign, it is time to start
opening HTTP connections.There are various HTTP client options available, from writ-
ing your own to using full-featured third-party library code.The approach taken for the
SimpleDB client in this chapter is to make use of the humble java.net.URLConnection

211Implementing the Client Code

that comes standard with Java.As a result, there are not any advanced features available, and
neither do you get much fine-grained control. However, you get to see how to make
things work simply and without having to spend the time hunting for a third-party
download and learning yet another API.

Like the Request class, the HTTPClient class that encapsulates all the network I/O is in
the com.simpledbbook.core package.The SimpleDB class instantiates an instance of
HTTPClient in its constructor and uses it for all subsequent requests. Listing 10-10 gives
the full implementation of the class.

Listing 10-10 HTTPClient.java A Class to Handle All the Network I/O to SimpleDB

package com.simpledbbook.core;

import java.io.*;

import java.net.*;

public class HTTPClient {

private static final String CONTENT_TYPE =

"application/x-www-form-urlencoded; charset=utf-8";

public Response fetch(Request request) {

request.sign();

URLConnection con = getConnection(request);

writeRequest(request, con);

String body = readInput(con);

int code = getResponseCode(con);

Response result = new Response(body, code);

return result;

}

private URLConnection getConnection(Request request) {

try {

URLConnection con = request.getURL().openConnection();

con.setRequestProperty("Content-Type", CONTENT_TYPE);

String contentLength = request.getParamString().length() + "";

con.setRequestProperty("Content-Length", contentLength);

con.setDoOutput(true);

con.connect();

return con;

} catch (IOException e) {

throw new RuntimeException("Error opening connection", e);

}

}

private void writeRequest(Request request, URLConnection con) {

try {

OutputStream outputStream = con.getOutputStream();

212 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

OutputStreamWriter wr = new OutputStreamWriter(outputStream);

wr.write(request.getParamString());

wr.flush();

} catch (Exception e) {

e.printStackTrace();

}

}

private String readInput(URLConnection con) {

InputStream in = null;

try {

in = con.getInputStream();

} catch (Exception e) {

HttpURLConnection http = (HttpURLConnection) con;

in = http.getErrorStream();

}

return readFully(in);

}

private String readFully(InputStream in) {

try {

BufferedReader br = new BufferedReader(

new InputStreamReader(in));

StringBuilder page = new StringBuilder();

String line = null;

while ((line = br.readLine()) != null) {

page.append(line);

}

in.close();

return page.toString();

} catch (IOException e) {

throw new RuntimeException("Error reading from stream", e);

}

}

private int getResponseCode(URLConnection con) {

try {

return ((HttpURLConnection)con).getResponseCode();

} catch (IOException e) {

return -1;

}

}

}

213Implementing the Client Code

Instances of HTTPClient maintain no state and have a single public method: fetch().
It is designed to be thread safe.With no shared state and each call to fetch() operating in
isolation, multiple threads can be performing I/O concurrently.

The body of the fetch() method is a high-level overview of what needs to be done.
All the remaining methods in the class play a support role.The first thing that happens is
the request signing. It can be done here because it is now clear that no more parameters
are being added to the request.

After that, a connection is opened, the data is written out, the XML response is read
back, and then a new Response object is returned, holding that XML and the HTTP re-
sponse code.All of it is straightforward, with the exception of two points that apply specif-
ically to SimpleDB.

When using POST, you have to be sure to set the headers correctly.This is done within
getConnection(), and there are two headers to be set.“Content-Type” must be set to
“application/x-www-form-urlencoded; charset=utf-8” and the “Content-Length” must
be set to the length of the parameter string, which is all that is being sent.

The second thing to notice is the way errors are handled in readInput().An excep-
tion thrown while trying to retrieve the URLConnection input stream indicates an abnor-
mal response.At this point, attention is shifted from the input stream to the error stream
and the code continues as if nothing happened.This is because a proper XML response is
being returned regardless of the source; it is just a matter of reading it in at this point.

The need to switch to reading from a different stream is an idiosyncrasy of the under-
lying URL connection; however, the concept applies to all languages and libraries.You
must handle any errors in such a way that processing can continue and the full error re-
sponse can be retrieved.

This type of handling can be seen in the writeRequest() method. If an exception is
thrown during the write, the stack trace is printed, but it is otherwise ignored.This is not
an oversight; the error message needs to be read, and that happens in the very next
method call.

Checking the HTTP Response Code
When everything is successful with your SimpleDB requests, the response code will always
be 200. When there is a problem, a different code is returned. The type of code returned
can give insight into the type of problem, and it is a good practice to make these codes
available to your users. Codes in the 400s indicate a problem with your request that retry at-
tempts do not fix. This includes signature problems, invalid SelectExpression issues, and
conditional check failure, just to name a few.

Alternately, response codes in the 500’s indicate an issue on the SimpleDB end that is not
the result of a client error. These requests can be retried later. This includes the indetermi-
nate InternalError, as well as the Service Unavailable error.

Although the 500 class codes indicate a retry, the specifics depend on the situation. 503
Service Unavailable in response to a BatchPutAttributes hints at an overloaded service
with a prescription for a dose of exponential back-off. However, 503 Service Unavailable
from a ConsistentRead or conditional write hints at a rare failure scenario or outage that
may take time to repair.

214 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

There is not much else that is interesting in HTTPClient, other than some Java-specific
blocking I/O. So, let’s turn our attention to the final class in the SimpleDB client.

Parsing the Response
With the network I/O complete, the last step is to take the XML response and parse out
the appropriate data.This functionality is the responsibility of the Response class, which
stores the raw XML and HTTP response code, providing methods to extract every possi-
ble piece of data.

The best way to parse XML is with an XML parser; in addition, XPath can also be a
very nice solution.The data extraction in this chapter is not done with any of the power-
ful XML tools, though. It is done with regular expressions.There is no design justification
for going this route. In fact, XML is not a regular language, and so it is not possible to
construct regular expressions to parse XML in provably correct ways. Regular expressions
are used here because the XML is simple, the parsing requirements are simple, and the ex-
pressions are all simple. Moreover, it just works. If XML comments or CDATA sections
start to come back from SimpleDB, this class could have some issues with it.This chapter
does not endorse regular expressions as a superior or desirable XML parser; the only en-
dorsement is that it can work with just as little effort as the other uninteresting XML
parsers options.

Listing 10-11 gives a partial implementation of the Response class as part of the user-
hidden com.simpledbbook.core package.The full code is available for download from
the book’s website.

Listing 10-11 Response.java A Class to Extract the Data from SimpleDB XML Responses

public class Response {

// single group expressions passed to matchSingles()

private static final Pattern DOMAIN_REGEX = Pattern.compile(

"<DomainName>(.*?)</DomainName>");

private static final Pattern TOKEN_REGEX = Pattern.compile(

"<NextToken>(.*?)</NextToken>");

// double group expressions passed to matchDoubles()

private static final Pattern ATTRIBUTE_REGEX = Pattern.compile(

"<Attribute><Name>(.*?)</Name><Value>(.*?)</Value></Attribute>");

private static final Pattern ITEM_REGEX = Pattern.compile(

"<Item><Name>(.*?)</Name>(.*?)</Item>");

public List<String> extractDomains() {

return matchSingles(DOMAIN_REGEX);

}

// returns a list of all single group expression matches

215Implementing the Client Code

private List<String> matchSingles(Pattern pattern) {

Matcher matcher = pattern.matcher(body);

List<String> result = new ArrayList<String>();

while (hasMoreMatches(matcher)) {

result.add(matcher.group(1));

}

return result;

}

private boolean hasMoreMatches(Matcher matcher) {

return matcher.find() && matcher.groupCount() > 0;

}

public String extractNextToken() {

List<String> token = matchSingles(TOKEN_REGEX);

return token.size() > 0 ? token.get(0) : "";

}

// Select returns Items with nested Attributes

public List<Item> extractItems() {

List<Item> items = new ArrayList<Item>();

for (Attribute row : matchDoubles(ITEM_REGEX, body)) {

Item i = new Item(row.getName());

i.addAttributes(matchDoubles(ATTRIBUTE_REGEX,row.getValue()));

items.add(i);

}

return items;

}

// returns a list of double group expression matches

// with group 1 in the name and group 2 in the value

private List<Attribute> matchDoubles(Pattern pattern, String s) {

Matcher matcher = pattern.matcher(s);

List<Attribute> result = new ArrayList<Attribute>();

while (hasMoreMatches(matcher)) {

String attrName = matcher.group(1);

String attrValue = decodeXMLEntities(matcher.group(2));

result.add(new Attribute(attrName, attrValue));

}

return result;

}

public List<Attribute> extractAttributes() {

return matchDoubles(ATTRIBUTE_REGEX, body);

}

216 Chapter 10 Writing a SimpleDB Client: A Language-Independent Guide

private String decodeXMLEntities(String str) {

String result = str.replace("&", "&");

result = result.replace("<", "<");

result = result.replace(">", ">");

return result;

}

At the top of the class are static constants for all expression patterns.The first section of
patterns is made up of expressions with a single group, and the second section expressions
contain two groups.

Although there is a swarm of extractXXX() methods, the lion’s share of work is done
by two matching methods, which are called by everything else: matchSingles() and
matchDoubles().The matchSingles() method simply returns a list of strings from the
XML body matching the passed expression.The matchDoubles() method returns a list of
Attribute objects, where the attribute name is the content of a group one match and
the value is the content of a group two match.

The only SimpleDB specifics are that even though you were careful to percent encode
all the outgoing data, none of it comes back percent encoded. However, there are three
characters in the response XML subject to encoding, and all three of them are XML enti-
ties.The less-than sign (<), greater-than sign (>), and ampersand (&) embedded within
your data come back encoded as <, >, and & and need to be decoded.

Summary
Writing a SimpleDB client does not require six classes—it can be done with one class
and with fewer than 200 lines of code. However, writing one that is well suited to its pur-
pose takes some thought.You have to get a handle on the technical details of HTTP re-
quests and XML parsing, but none of it is inherently more difficult than what you find
with other web services.

There are weaknesses in the client presented here.A better, perhaps more scalable
HTTPClient could be built using a library more advanced than the URLConnection.A
proper XML parser could be substituted, and it would probably add clarity and reduce
the quantity of code needed.The metadata could be enhanced with some nice methods
to get at the values.The beauty of a design with a separation of concerns is the ability to
vary one part independently of the others.A new HTTP class that honored the fetch()
method would be a drop-in replacement.An alternate Response class with the same ex-
tract methods would have the freedom to implement the XML parsing in any conceiv-
able way.

Instead of improving what already works, in the next chapter, new and advanced client
functionality is discussed.

11
Improving the SimpleDB Client

Simplicity is one of the main characteristics of SimpleDB, but achieving simplicity does
not guarantee convenience.The SimpleDB operations provide an excellent set of primi-
tives, and there are many useful and creative ways to assemble those primitives.

Some of the most common usage patterns of SimpleDB involve a degree of awkward-
ness when the underlying abstractions do not fit the task you want to accomplish. It is in
these areas that the SimpleDB client can be enhanced by adding the conveniences and
the abstractions that fit better.

This chapter provides ideas, suggestions, and, in some cases code, as part of a discussion
on where the future of SimpleDB clients could be.The overall viewpoint is the practical
day-to-day use of the service.The goal is to address a wide variety of topics, all of which
apply in some way to practical enhancements of SimpleDB clients.The themes include
user convenience, avoidance of pain points in the pricing structure, and the development
of a new level of primitives to support the enablement of better clients and better tooling.

The ideas here can be used directly by client implementers or by the users of clients
when designing applications or requesting features.

Convenience Methods
If you spend much time writing application code that uses SimpleDB, you start to run
into situations where you need the same small bits of extra functionality throughout your
code.These convenience methods can exist as part of the application, but since they typi-
cally have feature envy of the SimpleDB client, the client is a better home for them.
When developing a client, consider adding these.

Convenient Count Methods
One of the annoyances of using count(*) in a query is that you do not just get a number
back.The response includes a fake item with one fake attribute that holds the number.
This is a good thing from the standpoint of having an operation that always returns con-
sistent responses.The response XML has the following format:

<SelectResult>

218 Chapter 11 Improving the SimpleDB Client

<Item>

<Name>Domain</Name>

<Attribute>

<Name>Count</Name>

<Value>2</Value>

</Attribute>

</Item>

</SelectResult>

In addition, if there is a NextToken included in the response, this count will need to be
added to all subsequent counts to get the final count.At the application level, frequently
you just want the count as a number without the fake item and without the loops and
the math. Placing the loops and the math within the client makes it more convenient.

Listing 11-1 shows convenience methods for obtaining a query count based on the
client developed in the last chapter.

Listing 11-1 SimpleDB.java Additional Convenience Methods for Counting

...

public long count(String domain) {

return count(domain, "");

}

public int count(String domain, String whereClause) {

return count(domain, whereClause, Integer.MAX_VALUE);

}

public int count(String domain, String where, int limit) {

String query = "SELECT count(*) FROM `" + domain + "` " + where;

List<Item> items = select(query);

int count = 0;

count = extractCount(items);

while (hasNextPage() && count < limit) {

items = getNextPage();

count += extractCount(items);

}

return count;

}

private int extractCount(List<Item> items) {

int result = 0;

if (items.size() > 0) {

Item item = items.get(0);

result = Integer.parseInt(item.getAttribute("Count"));

}

219Custom Metadata and Building a Smarter Client

return result;

}

...

The first three methods provide the option to count all the items in a domain, only
those matching a WHERE clause, and finally specifying a limit.The first two forward the
call along to the third, where the work takes place.This code builds the final
SelectExpression from the component parts. In all cases, the limit parameter is left out
of the actual expression. Using a limit is not required when selecting a count because the
default limit of 100 does not apply.

Typically, you will not get back counts of more than 120,000 to 200,000. If the final
count number is in the millions, multiple follow-up selects will be necessary.The count
method in Listing 11-1 performs an initial query, and if there is a NextToken and the
limit has not been reached, it continues to query in a loop.The final method,
extractCount(), provides the code to turn the resulting item into the numeric count.

Select with a Real Limit
Another frequent need is to get the results of a query that returns a NextToken and loop
until the final desired limit is reached, as opposed to intermediate limits during the loop.
This better serves the user intention of fetching the desired number of results. Listing 11-
2 shows the implementation of a method that handles the looping and the limit checking
internally.This method is based on the SimpleDB client developed in the last chapter.

Listing 11-2 SimpleDB.java Additional Convenience Method for Querying with a Limit

...

public List<Item> selectWithRealLimit(String select, int limit) {

List<Item> result = select(select);

while (result.size() < limit && hasNextPage()) {

result.addAll(getNextPage());

}

return result;

}

...

The method selectWithRealLimit() builds up a list of matching items by calling the
query in a loop until the query returns all matching items or the limit is reached.The fi-
nal collection is then returned.

Custom Metadata and Building a Smarter Client
The operation built into SimpleDB that reports domain metadata gives you the basic
counts and sizes required to see how close a domain is to the limits.There are limits on
the number of attributes and bytes a single domain can hold.

220 Chapter 11 Improving the SimpleDB Client

This metadata is a description of the domain that represents the key information from
the perspective of account billing and database administration.There is additional infor-
mation, however, that is important to the application, which is usually stored in configu-
ration files.

It can be convenient to use a configuration file for an application running on a single
machine. However, the more machines in a deployment, the more of a task it becomes to
distribute these files.Automation works well, but for applications using SimpleDB, there is
another option.

There are trade-offs when you choose to use a database service instead of a database
product. One of the benefits of this service, in particular, is the high availability and the
fact that it always runs on a well-known host.Treating the configuration like a combina-
tion of database metadata and application metadata with storage directly in SimpleDB be-
comes a viable option.

Obviously, you cannot store the entire configuration in SimpleDB because the applica-
tion at a minimum needs the database credentials. Nevertheless, it may be possible to keep
the remainder of the configuration in the database.

Maintaining a single authoritative copy of the configuration not only makes it easy to
administer; it also allows changes to propagate quickly and acts as an enabler for dynamic
application features.

Justifying a Schema for Numeric Data
SimpleDB does not have a schema feature. However, if you store and query numeric data,
special formatting is required.That format has to be stored in at least two locations: in the
code that calls the format encoder/decoder at the right time, and in the queries.

The well-understood problem with storing information twice is that neglecting to
make the change to all copies causes things to break.Another problem with the number
formatting is that all queries written by hand must have any constants written in the tar-
get format.The format is most certainly not human readable.

A big step forward is the elimination of handwritten queries in favor of prepared state-
ment style queries. Implementing this requires you to write code that manipulates the
query string, building it from parameters. Passing parameters into a query is more con-
venient and less error prone. It also opens the door to other advanced features that require
query string rewriting. One example is query execution in an environment of domain
sharding; each query must be sent to each domain.

At some point, it becomes necessary to extract the type information about those num-
bers to a single location. Persistence frameworks commonly use a configuration file or
source code annotations.Wherever it is stored, having a simple, declarative means to de-
fine types is convenient.

Whether it is declared formally or not, the schema types for numbers exist if you
query them. Because you already have a schema, you might as well make it explicit and
get the benefits of tooling.

221Custom Metadata and Building a Smarter Client

Database Tools
The required schema in relational databases makes tool integration a breeze.That does
not mean the tool is easy to develop, but the part of the tool that pulls the type informa-
tion from the database is never the difficult part.

SimpleDB tools exist, but they suffer from some common problems. Running queries
in a query tool never gives you a readable format for your numeric data, and if you want
to run queries against numeric data, you have to manually convert the numbers in the
query into the offset and padded format. Import and export tools also need to be told
what to do with those numbers, as do reporting tools.

Storing a limited schema in a single, easily accessible location allows a greater degree
of automation in the application and in tools.

Coordinating Concurrent Clients
A schema is not the only thing you can store as part of your custom metadata.Applica-
tions that use multiple servers generally need to coordinate in some way.Whether the
servers need to share a common resource or a common workload, they frequently need
to know about each other.

It can be beneficial to use SimpleDB as the well-known point of contact between in-
dividual servers in a deployment.This protects them from needing to have preconfigured
information about the other servers. Preconfigured information can go out of date as
soon as one of the servers needs a reboot.

Each server can keep its status updated at a configurable interval and use the database
to discover both needed application settings as well as details about other servers.

Storing Custom Metadata within SimpleDB
Custom metadata could be stored anywhere, but the more universally accessible it is the
better. Possibly the most accessible place to keep it is in the SimpleDB domain to which
it applies.Any application or tool with access to the domain will also have access to the
metadata.This also takes advantage of the high availability of the SimpleDB service.

However, storing metadata in the same domain as data could cause a problem.The is-
sue is that you do not ever want metadata to come back from a data query.You can name
the metadata attributes using a naming convention that prevents any conflicts with data
attributes, but data queries will always exist that will match these items. It is the negation
and IS NULL queries that do not really have a workaround.

Another option is to store the data in a separate SimpleDB domain dedicated solely to
metadata storage.The domain can store all the metadata for domains in the same account.
Access to this domain will be available to any client or tool with the credentials to access
the account.

A naming convention can be used for the domain name, and because domain names
only need to be unique per account, the same name can be used for the metadata domain
in every account. Using multiple accounts became more convenient with the release of

222 Chapter 11 Improving the SimpleDB Client

AWS consolidated billing. Consolidated billing allows AWS accounts to be linked to-
gether for the purpose of billing.This makes it easier to manage the billing of multiple
accounts associated with individual projects, departments, or clients.

Storing Custom Metadata in S3
A different option for the storage of custom metadata is to keep it in S3. It would be
stored as a file and would not have the same query capabilities as SimpleDB, but it is un-
likely that those will be needed. S3 also provides high availability.

On the plus side, there are more access controls available in S3.As a result, the meta-
data could be made publicly readable or only readable by specific AWS accounts.Addi-
tionally, versioning can be turned on to make all previous versions of the metadata
available.

On the negative side, there is more latency when reading a file from S3 than a Sim-
pleDB GetAttributes request.Also, the accessibility will have to be managed since S3
has to be signed up for separately from the SimpleDB sign-up.The S3 Access Control List
will need to be updated to grant each account access, if you go that route.

The final problem is that S3 bucket names must be universally unique.As a result, you
cannot select a single bucket name and use it to store metadata for every account. Each
account would need its own, unique bucket name.The effect of this is that clients and
tools cannot know ahead of time the exact name of the bucket to examine when fetching
the metadata.A workaround for this is to use a naming convention and append unique
characters at the end to create a bucket name that is both unique and identifiable.

Automatically Optimizing for Box Usage Cost
The pricing model for SimpleDB is straightforward.There are data transfer charges for
moving data in and out of Amazon’s cloud, frequently with discounts on inbound data.
There are storage charges, currently at $0.25 per GB-month ($0.275 for Singapore, N.
California and Ireland). Finally, there are charges for the box usage of each operation.
Each SimpleDB response includes a number indicating the fractional hours to be billed.
Box usage charges stand at $0.14 per hour ($0.154 for Singapore, N. California and Ire-
land), with the first 25 hours free (at the time of this writing).

Data transfer usage is measured directly. Data storage is measured at intervals through-
out the month. Box usage, however, is not measured; it is assigned for each request based
on formulas and variables. Formula-based assignments eliminate the variability that might
otherwise be present across SimpleDB replicas running on heterogeneous hardware. It
also obviates the overhead of measuring every operation.

Although the box usage is computed and not measured, the pricing turns out to be
reasonable.There are, however, two noteworthy exceptions to that reasonableness.The
first exception includes certain forms of
PutAttributes/DeleteAttributes/BatchPutAttributes and the second is the cost of
QueryTimeout.

223Automatically Optimizing for Box Usage Cost

The Exponential Cost of Write Operations
Back in June of 2008, Colin Percival broke down the SimpleDB box usage formulas in a
post on his blog at www.daemonology.net/blog. He reported that the formula for
PutAttributes and DeleteAttributes box usage was as follows:

0.0000219907 + 0.0000000002 N^3
In the equation, N is the number of attributes passed to the operation.The important

fact is that the operation cost rises proportionally to the attribute count cubed. I verified
the accuracy of the formula when it was posted, and it is still accurate at the time of this
writing.The numbers are the same whether you pass single-valued attributes or multi-
valued attributes, and the formula holds true for BatchPutAttributes as well.

What this means is that the cost of these write operations grows outrageously fast at
the top end of the range. Figure 11-1 shows a graph of the cost of SimpleDB write as the
number of attributes in the request grows.

The x-axis in Figure 11-1 is the number of attributes, from 1 to 256.The y-axis is the
box usage charge per million requests, in dollars.

There is a base charge for the operation, independent of the data you pass, of slightly
more than $3 per million.At the bottom end of the graph, where the number of attrib-
utes is small, the base charge dominates the total charge. In fact, as you increase the num-
ber of attributes in a request up to 32, the charge per million never exceeds $4.

Figure 11-1 The charges for write operations as a
function of attribute count

www.daemonology.net/blog

224 Chapter 11 Improving the SimpleDB Client

At this point, the incremental attribute cost begins to rise quickly. By the time you get
to 53 attributes per request, the cost is above $7 per million, and it would actually be
cheaper to write the data using two requests.

The remainder of this graph has charges rising fast enough to make your head spin.At
120 attributes, you pay above $50 per million.Add 50 more attributes, and the charges
triple to above $150 per million.At the per-item limit of 256 attributes, the charge is a
mammoth $472.84 per million.

What this all means is that if you have 256 attributes to put into an item, and you do it
in a single request, you will pay a charge an order of magnitude higher than if you sent
the exact same data in five smaller requests.To make the point in dollars, imagine that you
have an application that sends data to SimpleDB at an average rate of two writes per sec-
ond. If those writes each contain 2KB of data in 20 attributes, the monthly box usage
charges will be roughly $34, or about half the cost of a small EC2 instance. If, however,
those writes contain the same 2KB of data, but in 256 attributes, the charges will be
about $4,902, which is enough to run 80 small EC2 instances all month long.

Attribute Counting
Applications that naturally have 50 or fewer attributes per item are not going to suffer
from those punitive box usage charges.There are a wide variety of applications in this
group. For applications writing larger quantities of attributes, there are a few workarounds
to reduce the cost. However, there are tradeoffs with each choice, so none of them can
apply to every situation.

The first thing to realize is that using SimpleDB for some applications would be pro-
hibitively expensive. If 256 attributes per item feels restrictive for a given project, and you
need to use the full 256 to make it work, SimpleDB may not be the best choice.This is
especially true if none of the workarounds is suitable.

For those applications that fall somewhere in the middle, one workaround is merging
values into composite attributes.With attribute merging, multiple attributes values are ap-
pended together and stored in one attribute.This was discussed in the context of query
performance, and it can be used here as well.The benefit comes from reducing the num-
ber of attributes that need to be written. One drawback is the 1,024-byte limit on attrib-
ute values that limits how much data can be merged.Another drawback is that you only
have the ability to query efficiently the first of the merged attribute. Subsequent attribute
values stored within the composite can only be queried by combining the prior values as
query constant, or using LIKE. Since using LIKE to match the end or middle of a value
cannot use an index, the query can be done, but it will require a table scan and will not
be efficient unless there are other criteria that limit the items that must be scanned.

A different option is to write all the attributes that you normally would, but write them
in multiple requests, each with 52 or fewer attributes.The benefit is the significant reduc-
tion in cost by avoiding the high-attribute count in any single request. However, there are
two downsides.The first is the loss of atomicity.When you perform a write of any kind in
SimpleDB, the change is applied atomically.This is true for both normal writes and condi-

225Automatically Optimizing for Box Usage Cost

tional writes.With eventual consistency, you may not see the change immediately, but sub-
sequent reads always reflect the update either fully or not at all; it is never seen partially.
When splitting a write across requests, each partial write remains atomic, but the write as a
whole is not.The loss of atomicity should be carefully considered.

The other downside to request splitting is the impact on request volume. If you are
able to maintain 100 writes per second normally, splitting each write into four smaller
writes quadruples the request volume, and you may only be able to write data at a net
rate of 25 items per second.This can be alleviated in the same way as throughput issues,
spreading the data over multiple domains.

Avoiding high-attribute counts are more likely to be an issue for inserts. Updates and
deletes frequently do not require passing as many attributes.When PutAttributes is used
to update an item, only the changed attributes need to be passed.There is no reason to
pass the unchanged values, and high cost is a good reason not to.

Deletes are typically rarer than inserts and updates, and it is, in fact, difficult to rack up
high charges using deletes. If you want to delete specific attributes, those attributes must
be passed specifically, and deleting the whole item is done by passing the item name and
no attributes.The main thing that can get you in trouble with deletes is deleting items by
passing every attribute.

Automatic Attribute Merging and Request Splitting
The one drawback that applies to all of these workarounds is the fact that you have to
somehow code the knowledge of when to do them and when not. It is undesirable to
write a lot of application code just to get around the database pricing.This is something
best done declaratively in the application, in combination with a smart client providing
the implementation.

This declarative information is just the sort of thing that fits into application-level
metadata. Having a way to declare an attribute as an integer could allow a smart Sim-
pleDB client to read, write, and query for it using a format suitable to the task. In the
same way, a mechanism could be provided to specify which attributes can be merged and
which attributes cannot be split up among multiple requests.

The value of having a way to define this information declaratively and then storing it
somewhere accessible is that tools will also be able to use this information.

QueryTimeout: The Most Expensive Way to Get Nothing
Sending a write to SimpleDB with 256 attributes is expensive at upwards of $472 per
million. It is especially expensive compared to writing one attribute for $3 per million.
However, it isn’t nearly as expensive as getting back a QueryTimeout response.

A QueryTimeout can come back as a response from any query. Complex queries are
more likely to experience this, but it can happen with queries using a single comparison.
It is difficult to predict when they will happen, but often they are easy to reproduce once
they do happen.

226 Chapter 11 Improving the SimpleDB Client

One example is a domain I have that is close to the 10GB limit with 12.4 million
items in it. Each item has an attribute named “tags” containing one or more tag values.A
frequent query for this domain fetches the 20 most recently created items for a given tag.
The query looks like this:

SELECT title, description, dateCreated, userCreated, tags

FROM `domain_024`

WHERE tags = '%s' AND dateCreated IS NOT NULL

ORDER BY dateCreated DESC

LIMIT 20

To run the query, I replace %s with the name of the tag I want to query.This query
runs all the time, each time with one given tag. Some tags are very common, being pres-
ent in more than 200,000 items. Other tags are much more rare.

Initially, I expected the popular tags to be most likely to have problems, because of the
combination of a sort and a where clause that is not very selective. However, this did not
turn out to be the case at all.

Popular tags like “family” matching 203,878 items,“travel” matching 201,416 items,
and “friends” matching 37,699 items had no problems at all. Performance is always good,
and they never see QueryTimeout.At the other end of the spectrum are the tags set in
very few items.These rare tags also have flawless performance and no QueryTimeout er-
rors, from tags with only one match up to tags like “autumn” with 544 matches.

However, some tags in the middle almost always return with the QueryTimeout error.
From “party” matching 11,694 items to “dance” with 5378, all of the problem tags are
middle of the road with regard to selectivity. I have been unable to discern any pattern to
it, other than that they mostly happen in domains with millions of items.

When you get the QueryTimeout, it is bad in many ways. First of all, it takes the full
five seconds to return, which is far too long to wait when building a web page, for exam-
ple.Then when it finally does come back, you get an error message and no data.You don’t
even get a NextToken; you get nothing.Well, you don’t get nothing—you get the maxi-
mum box usage charge of all operations.

The box usage charge for a QueryTimeout is a constant value of $778.26 per million,
or $856.09 for Singapore, N. California and Ireland.That is 65% higher than a fully
loaded write operation, and equal to the two rightfully expensive operations
CreateDomain and DeleteDomain.When creating and deleting domains, at least you
know ahead of time that they will be expensive and can use them in a strictly administra-
tive capacity. QueryTimeout error could come back from any query.

If you have millions of attributes in a domain that gets regular use, you will want to
have something in place to alert you to a high incidence of these errors. If you get 42 of
them per day, it adds $100 to your monthly bill.This is a useful feature in a smart Sim-
pleDB client—the ability to track QueryTimeout errors.The seriousness comes from the
fact that the same queries tend to bring out that error at a high rate.

227Automatically Optimizing for Box Usage Cost

To fix the problem, I implemented a solution of adding a new set of attributes that
contained the same information as the “tags” attribute, but the names and values inverted.
So, for example, an item with the following attributes:

"tags" = "birthday" and "tags" = "party"

gets the additional new attributes:

"birthday" = "tags" and "party" = "tags"

The point of this is that the new attribute names get their own index, so I am able to
change my query to use these new smaller indexes, where every attribute in the index is
a match.

Now, in the worst case, these extra attributes could conflict with existing attributes, but
even if they don’t, it is desirable to be able to distinguish between the natural attributes
and the synthetic ones.To resolve this, I prefixed each of these inverted attributes with
“tags_”.This eliminates the possibility of name conflicts and makes it easy to tell the pur-
pose of the attribute.

The next step is to incorporate the new attributes into the query and see if it performs
better.As you look at that initial query, you may notice that a descending sort was being
done on “dateCreated” to display the newest items first. Because these new attributes all
have the redundant value “tags”, I decided to put the value of “dateCreated” into the new
synthetic attributes instead.Therefore, those additional new attributes look like this:

"tags_birthday" = "2009-12-24T17:20:54.893"

"tags_party" = "2009-12-24T17:20:54.893"

It is still redundant, but now that query can be written to use only one attribute:

SELECT title, description, dateCreated, userCreated, tags

FROM `domain_024`

WHERE `tags_%s` IS NOT NULL

ORDER BY `tags_%s` DESC

LIMIT 20

In this query, %s still needs to be replaced with the tag name for each query. Notice
that the attributes being selected in this query have not changed.The synthetic attributes
are used to find matches, but “dateCreated” and “tags” are still the values returned.

I expected the new query to be faster than the old one because there is only one at-
tribute in it.As it turns out, it is not faster at all, on average. Sometimes it is slightly faster,
and other times it is slightly slower. However, one thing was unquestionably improved:
The new query never returns a QueryTimeout, running in the same domain as the initial
query.

The inverted attributes addition was an adequate solution for this project due to the
complete elimination of the QueryTimeout errors. One reason this turned out to be an
option is that the number of existing attributes in the target items was already low, with
none above 30. If the attribute count had been high, adding additional attributes may not
have been a good solution because of the exponential write costs.

228 Chapter 11 Improving the SimpleDB Client

It would be a useful feature of an advanced SimpleDB client to allow the application
developer to specify declaratively which attributes to invert.The client would then au-
tomatically handle creating, updating, and deleting the synthetic attributes.This would
also require integration with some advanced query functionality to rewrite conditions
and sorts.

Automated Domain Sharding
You can get a good performance boost for read operations by using a cache, but for in-
creased write throughput, you need to scale up the number of domains. Queuing up
writes above the throughput limit can allow requests to be serviced quickly but does not
solve the problem.

Domain Sharding Overview
Sharding data across domains, as discussed near the end of Chapter 9,“Increasing Perfor-
mance,” can be tricky. If the data is split on natural criteria, finding further ways to split
it can be difficult. If the data is split based on a consistent hash function, it’s better not to
shard until you need the throughput, because all queries need to be multiplexed to
every domain.

Sharding only when you need the throughput means you have to shuffle the data
around to new domains after it has been stored in one domain.A common approach is to
rehash the data based on the new number of locations.

The best approach might be to keep the same hash values, but use a configurable
number of the hash bits to determine the location. If the application is configured to look
at the last one bit of the hash, each item will have a value of either 1 or 0.A domain must
be assigned to store the each of those—for example “users_0” and “users_1”.

When the time comes to expand, the application can be reconfigured to look at the fi-
nal two bits of the hash, which doubles the number of possible values to four.Two new
domains would need to be created:“users_2” and “users_3”.This can continue as needed,
each time looking at an additional hash bit, and doubling the number of domains.

Put/Get Delete Routing
When the data is sharded across multiple domains, each call PutAttributes,
GetAttributes, and DeleteAttributes will need to be routed to the proper domain.
Each of these operations requires an item name and exactly one of the domains will be
the proper location.

To find that location, the item name must be run though the hash function and then
mapped to the domain responsible for that hash.

The implementation of the domain routing requires the hash function, the number of
bits to examine, and the name of the domains in use.The domain names can use a nam-
ing convention as in the example of “user_0” and so on. However, it is better not to de-
pend on a naming convention and instead use configuration.The domain names may

229Automated Domain Sharding

need to change for administrative reasons like the restoration from a backup. Explicitly
configured domain naming is more flexible

The code that implements the routing will need to stand between the application and
the normal SimpleDB client. It could be a wrapper class for the client, selecting the do-
main before passing the data onto the client code.This wrapper code requires access to the
application configuration that specifies the parameters of the hashing and domain map-
ping. Listing 11-3 shows what a class might look like that holds this configuration data.

Listing 11-3 AppConfig.java A Class to Hold the Application Configuration

package com.simpledbbook.metadata;

import java.util.*;

public class AppConfig {

private List<String> domainList;

private int bitCount;

private int bitMask;

private String serviceURL;

private AppConfig(String appName, int bits, String... domains) {

bitCount = bits;

bitMask = (int) (Math.pow(2, bitCount) - 1);

domainList = Arrays.asList(domains);

}

public String getDomain(int hash) {

return domainList.get(hash & bitMask);

}

public String getServiceURL() {

return serviceURL;

}

}

The configuration would need to be stored somewhere accessible to the application
and be loaded upon initialization.The data is passed into the constructor and consists of
an application name, the number of hash bits to use, and an ordered list of domains for
the mapping.

A derived field named bitMask is created in the constructor.The purpose of the bit
mask is to encode the number of bits currently in use into a mask that easily allows a hash
value to be converted into a list index.

The getDomain() method demonstrates the use of the bit mask.The hash value is
passed into the method as an argument.Within the method, the hash value is combined

230 Chapter 11 Improving the SimpleDB Client

with the bit mask using the Java bitwise AND (&) operator.The result of this operation is a
numeric index corresponding to a domain in the list.The index is used to look up and
return the name of the domain.

Listing 11-4 shows the implementation of a sharding wrapper class for the client de-
veloped in the last chapter.The wrapper class uses the AppConfig from Listing 11-3 to
route all the gets, puts, and deletes to the proper domain.

Listing 11-4 ShardingClient.javaA SimpleDB Client Wrapper Class for Sharding

package com.simpledbbook.metadata;

import com.simpledbbook.*;

public class ShardingClient {

private final SimpleDB sdb;

private AppConfig config;

public ShardingClient(AppConfig appConfig) {

config = appConfig;

sdb = new SimpleDB(config.getServiceURL());

}

public void put(Item item) {

sdb.put(domainForItemName(item.getName()), item);

}

public void putIfNotExists(Item item, String expectedName) {

String domain = domainForItemName(item.getName());

sdb.putIfNotExists(domain, item, expectedName);

}

public void putIfExists(Item item, String expectedName,

String expectedValue) {

String domain = domainForItemName(item.getName());

sdb.putIfExists(domain, item, expectedName, expectedValue);

}

public void delete(Item item) {

sdb.delete(domainForItemName(item.getName()), item);

}

public void deleteIfNotExists(Item item, String expectedName) {

String domain = domainForItemName(item.getName());

sdb.deleteIfNotExists(domain, item, expectedName);

}

231Automated Domain Sharding

public void deleteIfExists(Item item, String expectedName,

String expectedValue) {

String domain = domainForItemName(item.getName());

sdb.deleteIfExists(domain, item, expectedName, expectedValue);

}

public Item get(String itemName, String... atts) {

return sdb.get(domainForItemName(itemName), itemName, atts);

}

public Item getConsistent(String itemName, String... atts) {

return sdb.get(domainForItemName(itemName), itemName, atts);

}

private String domainForItemName(String itemName) {

int hash = ConsistentHash.hash(itemName);

return config.getDomain(hash);

}

}

This sharding client takes an AppConfig instance in the constructor and initializes a
SimpleDB object for use in request forwarding. Notice that each put, get, and delete
method from the original client is present and that the method signatures are identical
except that the domain name parameter is absent.

Each method makes an initial call to domainForItemName().The bottom of Listing
11-4 shows the implementation of that method. First, a consistent hash value is computed
for the item name and then the corresponding domain name is looked up and returned
using the saved AppConfig instance.The referenced class ConsistentHash is fictitious and
not provided.All that is needed is the implementation of a hash function that returns val-
ues that are well distributed.

With the appropriate domain name in place, each of the public methods has all the
necessary parameters to call the underlying SimpleDB client.An instance of this class
would be initialized and used instead of the vanilla SimpleDB client.

Query Multiplexing
The queries in a sharded application need to be sent to every domain.The results from all
domains must then be merged together and returned. Because the data is evenly distrib-
uted across the domains, potential matches exist in all locations. Identical Select calls to
each domain are the only way to gather all the matching results.

The process of taking a single input request and splitting it to multiple destinations si-
multaneously is called multiplexing.

This multiplexing of Select operations is implemented in a similar way as the routing
of item-specific requests.The difference is that when selecting all of the application’s do-

232 Chapter 11 Improving the SimpleDB Client

mains, the query string has to be modified with the updated domain name, rather than
passing it as a parameter.

The code to implement this is not as straightforward as the routing code, and this is
not only because of the domain replacement. It is also necessary to honor the sort if
one is present and within the limit. On top of that, a count request has to be handled
appropriately.

Summary
Some of the ideas in this chapter are more practical, and some are more conceptual.
Any of them may be needed or beneficial for a given project.Any of the tooling, con-
venience methods, or sharding support that you may need requires code to be written.
Where you put that code is up to you, but much of it can be rolled into SimpleDB
client advancements.

12
Building a Web-Based Task List

In this chapter, you create a web application where users can log in and enter to-do
items into a task list.The user interface is simple and easy to use; all of the list manage-
ment is handled via Asynchronous JavaScript and XML (AJAX) calls, so the web page
does not need to reload each time.

In this project, you get a chance to see a diverse set of SimpleDB usage scenarios.The
goal of this chapter is to take a top-to-bottom walk through the process of writing the
application in Java.This includes full source code for the implementation and the neces-
sary artifacts to deploy and use the application with minimum effort.

Application Overview
The application presents a very simple interface.After logging through a web page, a list
of all the day’s tasks is presented.At the top of the list is a text field to enter additional
items.There are no buttons or checkboxes; the user just types in new items and hits the
Enter key to save it.

Requirements
Through the course of this example, you implement the following features:

n Authenticating users through a login page
n Providing a means to log out of the application
n Displaying error messages in the case of an incorrect username or password
n Presenting the list of task items
n Storing newly added task items
n Allowing multiple task items with the same name, to accommodate cases where the

same action needs to be taken multiple times
n Updating the list immediately as new items are saved without reloading the page

234 Chapter 12 Building a Web-Based Task List

On the back end, SimpleDB is used for all of the data storage.This includes the fol-
lowing:

n User accounts with configurable authentication groups
n The hashes of user passwords for authentication
n Each of the task items
n The proper order of task items
n A key for each user session

The inclusion of authentication groups allows for the existence of more privileged
classes of users (site administrators, for example), and leaves the door open to use the
stored user data for different applications entirely.

Passwords need to be stored securely. Storing the passwords in plain text is a bad idea.
Anyone with access to the database, the SimpleDB credentials stored with the application,
or any administrative tools will have full access to all the passwords—this is not secure.
The secure way to store them is to take a one-way cryptographic hash and store that
value instead of the password. Checking the password is then a matter of performing the
same hash function on the password the user supplies and comparing the two hashes.You
then have the ability to authenticate users without keeping clear-text password data.

The Data Model
It is probably obvious that each task item needs to be stored in the database.The more
difficult aspect of this, however, is storing the proper order.There are multiple ways to ac-
complish that goal, but most of them are difficult to update consistently.

Remember that in SimpleDB, the item is the unit of consistency.Any time you call
PutAttributes, those values are applied atomically.This is not the case, however, when
you update multiple items at once.As a result, when you need to keep multiple chunks of
data in sync with each other, it leads you toward putting those chunks into the same item.

In this case, the chunks of data are the sequence of items.When the order of tasks in
the list is changed, you want that to be reflected consistently.You do not want a user to
move an item and see it disappear from the old location but not show up at the new loca-
tion for a while because of eventual consistency.

In keeping with this idea, the data model for the task list is as follows. Each task is
stored in a separate item.These items are lightweight, consisting of a unique ID and the
text of the task. It is necessary to put each task in its own item to accommodate tasks
with the same text. Because the text does not uniquely identify each task, another identi-
fier is needed and an item is the logical choice.

It is possible to store the tasks as individual attributes of a larger item; however, space
in an item is limited. It would be easy to run out of space in an item for all the tasks. In
addition, it becomes awkward to try to store both a unique ID and the text in a
name/value attribute pair.You end up with an item filled with unique attribute names.

235Implementing User Authentication

This makes it more difficult to read, and it completely prevents queries. Using Select ef-
fectively requires consistent attribute naming.

The remainder of the task data that needs to be stored consists of the date, the order of
items on the list, and a session ID.All of these are stored in a single item associated with
the user.The dates and task sequences are stored together, where the date is used as the
attribute name, with a prefix, and the task IDs for that date are the attribute value in the
form of a comma-separated list.

In a way, it feels awkward to store a list as a comma-separated string. However, this is
one of the idiosyncrasies of SimpleDB:You can easily store an array of values in a multi-
valued attribute, but there is no easy way to maintain the sequence.

User data is the final piece of the data puzzle.This is stored in a different domain with
the user ID as the unique item name.The hashed password and an ‘enabled’ flag are
stored as single-valued attributes, and a multi-valued attribute holds the names of the au-
thority groups.

Implementing User Authentication
The first set of Java classes here form a small API for managing users and tasks.These
classes are the ones that deal directly with SimpleDB and handle all the details of map-
ping items and attributes to instance fields.

Let’s begin with the UserService, which is shown in Listing 12-1.

Listing 12-1 UserService.java A Utility Class for Managing Users

package com.simpledbbook.tasklist;

import java.nio.charset.Charset;

import java.security.*;

import java.util.*;

import com.simpledbbook.*;

import com.sun.org.apache.xerces.internal.impl.dv.util.Base64;

public class UserService {

private static final String SALT = "Salting-Thwarts-Rainbow-Attack";

private static final Charset UTF_8 = Charset.forName("UTF-8");

private static final String AUTH_GROUP = "AUTH_GROUP";

private static final String PASSWORD = "PASSWORD";

private static final String ENABLED = "ENABLED";

private MessageDigest MD5;

private SimpleDB sdb;

private String domainName;

public UserService(SimpleDB simpleDB, String domain) {

sdb = simpleDB;

236 Chapter 12 Building a Web-Based Task List

domainName = domain;

try {

MD5 = MessageDigest.getInstance("MD5");

} catch (NoSuchAlgorithmException cannotHappen) {}

}

public String createUser(String name, String pass, String... group){

Item item = new Item(name);

item.addAttribute(PASSWORD, hash(pass));

item.addAttribute(ENABLED, Boolean.TRUE.toString());

item.addMultiValuedAttr(AUTH_GROUP, group);

try {

sdb.putIfNotExists(domainName, item, PASSWORD);

} catch (RuntimeException e) { // condition failed

throw new UserNameUnavailable();

}

return item.getName();

}

public void deleteUser(String name) {

sdb.delete(domainName, new Item(name));

}

private String hash(String pass) {

byte[] salted = (SALT + pass).getBytes(UTF_8);

byte[] hash;

synchronized (MD5) {

hash = MD5.digest(salted);

}

return Base64.encode(hash);

}

public List<String> authenticate(String userName, String password) {

Item user = sdb.get(domainName, userName);

String suppliedCredential = hash(password);

String storedCredential = user.getAttribute(PASSWORD);

if (! suppliedCredential.equals(storedCredential)) {

throw new AuthenticationFailure();

}

return user.getAttributes(AUTH_GROUP);

}

public void addAuthGroup(String userName, String group) {

Item item = new Item(userName);

item.addMultiValuedAttr(AUTH_GROUP, group);

sdb.put(domainName, item);

237Implementing User Authentication

}

public void removeAuthGroup(String userName, String group) {

Item item = new Item(userName);

item.addMultiValuedAttr(AUTH_GROUP, group);

sdb.delete(domainName, item);

}

public List<String> listUsers(String group) {

String query = "SELECT itemName() FROM `" + domainName +

"` WHERE " + AUTH_GROUP + " = '" + group + "'";

List<Item> items = sdb.selectWithRealLimit(query, 100000);

List<String> result = new ArrayList<String>();

for (Item item: items) {

result.add(item.getName());

}

return result;

}

}

There is a lot to look at in Listing 12-1, but the following quick summary of the pub-
lic methods should bring it into sharper focus:

n createUser(String name, String pass, String... group)

n deleteUser(String name)

n authenticate(String userName, String password)

n addAuthGroup(String userName, String group)

n removeAuthGroup(String userName, String group)

n listUsers(String group)

These are all the basic management functions for user accounts.This is a thread-safe
class with a SimpleDB client instance passed into the constructor.

The user creation method does a conditional write of the requested username that
only succeeds when that item name is not yet taken.This lets you guarantee unique
names.When the name is taken, an exception is thrown back to the caller.

In addition, this is where the password is salted and hashed before storage.This is the
only place where it appears in plain text.The remainder of the methods in this class are
straightforward.

The two exception classes defined for this package are shown next. First is
UserNameUnavailable, as follows:

package com.simpledbbook.tasklist;

public class UserNameUnavailable extends RuntimeException {}

238 Chapter 12 Building a Web-Based Task List

The other exception represents a bad username/password combination as an
AuthenticationFailure:

package com.simpledbbook.tasklist;

public class AuthenticationFailure extends RuntimeException {

public AuthenticationFailure(){}

public AuthenticationFailure(String message){

super(message);

}

}

There is not much to these exception classes; they serve two purposes. First, they per-
form the normal exception function of giving an easy-to-understand name to place in a
catch block for readable code.The other function is merely to extend RuntimeException
rather than a checked exception.This enables exception handling to be placed where it
belongs without unnecessary dependencies where it does not.

Implementing a Task Workspace
Having handled the users, we need a class to convert between our big SimpleDB item
that is storing all of the task list dates and sequences. Listing 12-2 shows a TaskWorkspace
class that encapsulates these responsibilities.

Listing 12-2 TaskWorkspace.java A Class to Hold All of the Workspace Data

package com.simpledbbook.tasklist;

import java.util.*;

import com.simpledbbook.*;

public class TaskWorkspace {

public static final String REVISION = "workspaceRevision";

private static final String NEXT_TASK = "nextTaskId";

private final String name;

private Item originalItem;

private HashMap<String, List<String>> calendar;

private int nextTaskId = 0;

private int revision = 0;

private String sessionId;

public TaskWorkspace(String workspaceName) {

name = workspaceName;

calendar = new HashMap<String, List<String>>();

}

239Implementing a Task Workspace

public int getNextTaskId() {

return nextTaskId;

}

public void setNextTaskId(int nextTaskId) {

this.nextTaskId = nextTaskId;

}

public int getWorkspaceRevision() {

return revision;

}

public void setWorkspaceRevision(int rev) {

revision = rev;

}

public String getSessionId() {

return sessionId;

}

public void setSessionId(String sessionId) {

this.sessionId = sessionId;

}

public List<String> getDay(String day) {

List<String> list = calendar.get(day);

List<String> result = new ArrayList<String>();

if (list != null) {

result.addAll(list);

}

return result;

}

public void setDay(String day, List<String> values) {

calendar.put(day, new ArrayList<String>(values));

}

public Item toItem() {

Item item = new Item(name);

item.addAttribute(NEXT_TASK, nextTaskId + "", true);

item.addAttribute(REVISION, revision + "", true);

item.addAttribute("sessionId", sessionId, true);

for (Map.Entry<String, List<String>> day: calendar.entrySet()){

String serializedDay = serializeDay(day.getValue());

item.addAttribute("date_" + day.getKey(), serializedDay, true);

240 Chapter 12 Building a Web-Based Task List

}

return item;

}

public static TaskWorkspace fromItem(Item item) {

TaskWorkspace result = new TaskWorkspace(item.getName());

result.nextTaskId = Integer.parseInt(item.getAttribute(NEXT_TASK));

result.revision = Integer.parseInt(item.getAttribute(NEXT_TASK));

result.sessionId = item.getAttribute("sessionId");

result.originalItem = item;

result.calendar = toCalendar(item);

return result;

}

private static String serializeDay(List<String> values) {

StringBuilder result = new StringBuilder();

for (String s : values) {

result.append(',').append(s);

}

return result.substring(1); // omit the leading ','

}

private static HashMap<String, List<String>> toCalendar(Item item) {

HashMap<String, List<String>> result;

result = new HashMap<String, List<String>>();

for (Attribute attribute: item.getAtts()) {

String name = attribute.getName();

if (name.startsWith("date_")) {

String date = name.substring(5);

List<String> tasks = parseTasks(attribute.getValue());

result.put(date, tasks);

}

}

return result;

}

private static List<String> parseTasks(String value) {

String[] values = value.split(",");

return Arrays.asList(values);

}

public String toString() {

return originalItem.toString();

}

}

241Implementing a Task Service

The first half portion of the class is devoted to getter and setter methods.Two of the
important ones are the workspace revision number and the next task ID.The revision
number is used to keep the item from falling victim to destructive writes.

It is true that each call to PutAttributes is applied atomically. However, two calls to
the same attribute can be made at nearly the same time, and the last write wins. It is con-
sistent with the last write, but the first write gets clobbered.We do not want this to hap-
pen to the sequence info we are storing, so we can use the revision attribute as an
optimistic lock with conditional writes.The revision number is incremented each time
the workspace is updated with new sequences.

Something similar is being done with the next task ID.The actual task text is kept in
separate items.We could use UUID values to get unique item names, but since we are
keeping the list sequence data in a comma-separated list, smaller values are better.

To meet these requirements, the nextTaskId attribute is used in the workspace item.
The value is incremented with a conditional write, and if it is successful, the value can
then be used as the primary key of the next task item.

The code in Listing 12-2 does not show the mechanics of how these processes are im-
plemented. Instead, it is the class that holds the data and provides access for the service
class that performs the actual work.

Implementing a Task Service
Listing 12-3 shows the actual work behind managing the tasks in the workspace with a
partial implementation of TaskService.java.The full implementation is available as a
download on the book’s website.

Listing 12-3 TaskService.java A Class for Managing Tasks

public class TaskService {

private UserService userService;

private SimpleDB sdb;

private String domain;

public TaskService(SimpleDB sdb, String userDomain,

String appDomain) {

this.sdb = sdb;

this.domain = appDomain;

this.userService = new UserService(sdb, userDomain);

}

public String registerNewUser(String name, String password) {

if (! validateUserName(name)) {

throw new InvalidParameterException(name);

}

if (! validatePassword(password)) {

throw new InvalidParameterException(password);

242 Chapter 12 Building a Web-Based Task List

}

userService.createUser(name, password, USER_GROUP);

TaskWorkspace workspace = new TaskWorkspace(name);

workspace.setSessionId(randomSessionId());

sdb.put(domain, workspace.toItem());

return workspace.getSessionId();

}

public String addTask(String user, String date, String value,

String sessionId) {

TaskWorkspace workspace = validateSession(user, sessionId);

int taskId = incrementTaskId(workspace);

int revision = incrementRevision(workspace);

addTaskIntoWorkspace(date, workspace, taskId);

sdb.putIfExists(domain, workspace.toItem(),REVISION,revision +"");

storeTask(user, value, taskId);

return taskId + "";

}

private TaskWorkspace validateSession(String user, String sessionId){

Item item = sdb.getConsistent(domain, user);

String storedId = item.getAttribute("sessionId");

if (storedId == null || ! sessionId.equals(storedId)) {

throw new AuthenticationFailure();

}

return TaskWorkspace.fromItem(item);

}

public List<String> getTasksForDay(String user, String date,

String sessionId) {

TaskWorkspace workspace = validateSession(user, sessionId);

List<String> taskIds = workspace.getDay(date);

String queryString = String.format(TASK_SELECT, domain, user, "%");

List<Item> items = sdb.select(queryString);

List<String> result = new ArrayList<String>();

for (Item i: items) {

String taskId = i.getName().substring(user.length() + 1);

if (taskIds.contains(taskId)) {

result.add(i.getAttribute("text"));

}

}

return result;

}

public TaskWorkspace logIn(String user, String password) {

List<String> groups = userService.authenticate(user, password);

243Implementing a Task Service

if (! groups.contains(USER_GROUP)) {

throw new AuthenticationFailure();

}

Item item = sdb.get(domain, user);

TaskWorkspace workspace = TaskWorkspace.fromItem(item);

workspace.setSessionId(randomSessionId());

sdb.put(domain, workspace.toItem());

return workspace;

}

public void logOut(String user, String sessionId) {

TaskWorkspace workspace = validateSession(user, sessionId);

workspace.setSessionId("");

sdb.put(domain, workspace.toItem());

}

public List<String> listUsers() {

return userService.listUsers(USER_GROUP);

}

}

This class is the analog to UserService, providing methods to perform all the man-
agement functions, but for the workspace rather than for users. In fact, it actually makes
use of UserService to do many of these things.As a result, managing the Task List appli-
cation mainly involves interactions with this one class.

This class holds the real meat of dealing with SimpleDB. It is a hefty class, but many of
the methods are private utility methods.The primary methods of the class are as follows:

n registerNewUser(String name, String password)

n logIn(String user, String password)

n logOut(String user, String sessionId)

n getTasksForDay(String user, String date, String sessionId)

n addTask(String user, String date, String value, String sessionId)

The method registerNewUser() combines the functionality of creating a user ac-
count, creating the workspace, as well as initializing the sessionId.The sessionId is a ran-
dom number stored in the SimpleDB workspace item for each user.This number is
matched against a web browser cookie to grant access to users who have already logged
in. For this application, no other session state is being stored, so simply matching the ID
is done.

As with any cookie-based session management, stolen cookies could cause a security
issue.The solution is to store additional data along with the ID so that the cookie alone
does not grant access. However, since this application is not storing sensitive data, extra
precautions are not really warranted.

244 Chapter 12 Building a Web-Based Task List

One thing that is different about this style of session is that it is stored in the database
rather than in memory on the web server.The lack of state on the web server allows the
application to scale horizontally across many servers without the need to route users al-
ways back to the same server they first hit.

Another interesting side effect of this arrangement is the speed with which you can
get the sessionId. It is certainly true that data stored in server memory will be accessed
with much lower latency than a call to SimpleDB. However, that does not tell the whole
story.The real situation is that each of these calls has to pull a SimpleDB item by primary
key anyway. Fetching one extra attribute does not add a statistically significant latency to
the existing call, on average.This essentially means that storing the sessionId in an item
you have to fetch anyway makes it a freebie.

Finishing up the discussion of the primary methods from Listing 12-3, logIn(),
logOut(), and addTasks() are fairly self-explanatory.The method getTasksForDay()
takes the workspace object and gathers all of the tasks marked with the chosen date.A Se-
lect is used against SimpleDB to fetch the text for all of those tasks; remember that the
workspace only stores the task IDs in sequence.This query is highly selective and runs
very quickly even when the domain contains many users. However, it is still more work
than most of the other methods do, but this only gets called when the full page loads.
AJAX calls are used for all of the list manipulation, and so the processing occurs without a
page reload.

Adding the Login Servlet
Now that we have worked through the primary business logic workhorse, let’s turn our
attention to web interface. Listing 12-4 shows the super class servlet that defines the com-
monality between all of the web interface servlets.

Listing 12-4 BaseServlet.java Abstract Parent Servlet with Cookie Management

package com.simpledbbook.servlet;

import java.io.IOException;

import javax.naming.*;

import javax.servlet.ServletException;

import javax.servlet.http.*;

import com.simpledbbook.SimpleDB;

import com.simpledbbook.tasklist.TaskService;

public abstract class BaseServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

private static final int ONE_WEEK = 1000 * 60 * 60 * 24 * 7;

public static final String USER_DOMAIN;

public static final String TASK_DOMAIN;

245Adding the Login Servlet

public static final String SESSION_COOKIE_NAME = "tasksession";

public static final String USER_COOKIE_NAME = "taskuser";

protected TaskService app=

new TaskService(new SimpleDB(), USER_DOMAIN, TASK_DOMAIN);

static {

String userDomain = "users_01";

String taskDomain = "tasks_01";

try {

Context ic = new InitialContext();

Context context = (Context) ic.lookup("java:comp/env");

userDomain = (String) context.lookup("userDomain");

taskDomain = (String) context.lookup("taskDomain");

} catch (Exception e) {

e.printStackTrace();

}

USER_DOMAIN = userDomain;

TASK_DOMAIN = taskDomain;

}

protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

doGet(request, response);

}

protected String getSessionCookie(HttpServletRequest request) {

return getCookie(request, SESSION_COOKIE_NAME);

}

protected String getUserCookie(HttpServletRequest request) {

return getCookie(request, USER_COOKIE_NAME);

}

private String getCookie(HttpServletRequest request,

String cookieName) {

if (request.getCookies() != null) {

for (Cookie cookie : request.getCookies()) {

if (cookie.getName().equals(cookieName)) {

return cookie.getValue();

}

}

}

return "";

}

246 Chapter 12 Building a Web-Based Task List

protected void deleteSessionCookie(HttpServletResponse response) {

response.setContentType("text/html");

Cookie cookie = new Cookie(SESSION_COOKIE_NAME, "");

cookie.setMaxAge(0);

cookie.setPath("/");

response.addCookie(cookie);

}

protected void setCookies(HttpServletResponse response,

String session, String user) {

response.setContentType("text/html");

Cookie cookie = new Cookie(SESSION_COOKIE_NAME, session);

cookie.setMaxAge(ONE_WEEK);

cookie.setPath("/");

response.addCookie(cookie);

Cookie cookie2 = new Cookie(USER_COOKIE_NAME, user);

cookie2.setMaxAge(ONE_WEEK);

cookie2.setPath("/");

response.addCookie(cookie2);

}

protected boolean empty(String value) {

return value == null || "".equals(value.trim());

}

}

There are a number of methods to look through, but they all have pretty cut-and-dry
purposes.The constants at the top are immediately followed by a static initializer block.
This initializer is loading the domain name settings from the web application deployment
descriptor file, web.xml.Those constants are made available to all of the subclasses that we
will look at next.

Following that block is a single doPost() method, as a convenience that forwards the
request on to doGet() in the subclass.The class winds down with four protected cookie
management methods.These are also used by subclasses to fetch and manage this little bit
of state.

Listing 12-5 shows the first concrete servlet: a humble login servlet.

Listing 12-5 Login.java A Servlet Providing Login Functionality

package com.simpledbbook.servlet;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.*;

import com.simpledbbook.tasklist.*;

247Adding the Login Servlet

public class Login extends BaseServlet {

private static final long serialVersionUID = 1L;

protected void doGet(HttpServletRequest req,

HttpServletResponse resp) throws ServletException, IOException {

String userId = req.getParameter("userId");

String password = req.getParameter("password");

// handle direct navigation

if (empty(userId) || empty(password)) {

if (empty(getSessionCookie(req))) {

req.getRequestDispatcher("index.jsp").forward(req, resp);

} else { // redirect for the logged in

resp.sendRedirect("tasks");

}

return;

}

// login

try {

TaskWorkspace workspace = app.logIn(userId, password);

setCookies(resp, workspace.getSessionId(), userId);

resp.sendRedirect("tasks");

} catch (AuthenticationFailure af) {

req.setAttribute("message", "Invalid Credentials");

req.getRequestDispatcher("index.jsp").forward(req, resp);

} catch (Exception e) {

e.printStackTrace();

req.setAttribute("message", "Error: " + e.getClass().getName());

req.getRequestDispatcher("index.jsp").forward(req, resp);

}

}

}

The real purpose of this class is to authenticate users who are coming from the login
JSP, and redirect them to the main part of the application.That happens in the lone
method in this class, but not until the end; some other things need to be handled first.

It is possible that a user arrives at this URL from direct navigation, for whatever rea-
son, and does not have a username and password in the request. If this is the case, but a
cookie has been set, they can be sent to the main application. If the cookie is missing too,
the only alternative is to send them to the logon page.

If we get past that part of the code, we know there is a username and password, so go
ahead: Put the workspace to good use, and log in.The result of the login is the actual
workspace object. Because the password hash is stored right in the SimpleDB workspace

248 Chapter 12 Building a Web-Based Task List

item, it is convenient to return it from the login so we can prepare and store the authenti-
cation cookie.

Listing 12-6 shows the index.jsp page that collects that login data in the first place.

Listing 12-6 index.jsp A JSP Logon Page

<%@ page pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Login to Task List</title>

</head>

<body>

<form action="login" method="post" name="Login">

<div><c:if test="${not empty requestScope.message}">

<div><c:out value="${requestScope.message}" /></div>

</c:if>

<div>Username <input type="text" name="userId" size="14"

maxlength="20" /></div>

<div>Password <input type="password" name="password" size="14"

maxlength="32" /></div>

<div><input type="submit" name="Login" title="Login"

value="Login" /></div>

</div>

</form>

</body>

</html>

There is not much special going on here, other than a simple HTML form.At the top
of the form, a message is conditionally written into the output.When present, this is the
error message you may have noticed being set in the first catch block of Listing 12-5, sur-
rounding the appearance of an AuthenticationFailure.

249Adding the Logout Servlet

Adding the Logout Servlet
Logging out of the application is a simple matter, as shown in Listing 12-7.The browser
cookie is deleted, the client is redirected to the logon page, and an attempt is made to
clear the sessionId stored in the SimpleDB workspace item.

Listing 12-7 Logout.java A Servlet Providing Logout Functionality

package com.simpledbbook.servlet;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.*;

import com.simpledbbook.tasklist.AuthenticationFailure;

public class Logout extends BaseServlet {

private static final long serialVersionUID = 1L;

protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

deleteSessionCookie(response);

response.sendRedirect("./");

try {

app.logOut(getUserCookie(request), getSessionCookie(request));

} catch (AuthenticationFailure af) {

} // ignore

}

}

Displaying the Tasks
Now we come to the heart of the user interface: the code that fetches the tasks in Listing
12-8.The first thing that happens in the doGet() method is a check to verify that the ses-
sion cookie is set.All that really remains after that is to pull today’s tasks and set them in
the request object where the JSP page can pick them up.

Listing 12-8 Tasks.java A Servlet to Fetch the Task List

package com.simpledbbook.servlet;

import java.io.IOException;

import java.util.List;

250 Chapter 12 Building a Web-Based Task List

import javax.servlet.ServletException;

import javax.servlet.http.*;

import com.simpledbbook.tasklist.*;

public class Tasks extends BaseServlet {

private static final long serialVersionUID = 1L;

protected void doGet(HttpServletRequest req,

HttpServletResponse resp) throws ServletException, IOException {

String session = getSessionCookie(req);

if (empty(session)) {

resp.sendRedirect("./");

} else {

try {

String today = TaskService.today();

String user = getUserCookie(req);

List<String> tasks = app.getTasksForDay(user, today, session);

req.setAttribute("tasklist", tasks);

req.getRequestDispatcher("tasks.jsp").forward(req, resp);

} catch (AuthenticationFailure af) {

af.printStackTrace();

deleteSessionCookie(resp);

resp.sendRedirect("./");

}

}

}

}

Listing 12-9 shows this follow-up JSP that performs the actual HTML presentation.
Notice that a reference to the jQuery JavaScript library is present in the HTML head.
This is used as the basis of the AJAX functionality.

Beneath that is a logout link and a single text field for entering new tasks.An un-
ordered list follows that with a loop that emits a list item tag for each task present in the
tasklist variable.

Listing 12-9 tasks.jsp A JSP to Display the Task List

<%@ page pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

251Displaying the Tasks

<title>Task List</title>

<script src="http://code.jquery.com/jquery-latest.js"></script>

</head>

<body>

<div>Logout</div>

<div>

<form action="add" name="form">

<div><input id="input_field" name="task" type="text" size="20"

maxlength="140" /> <input type="hidden" name="date"

value="20100315" />

<ul id="list_">

<c:forEach items="${requestScope.tasklist}" var="task">

<c:out value="${task}" />

</c:forEach>

</div>

</form>

</div>

<script>

$("form").submit(function() {

$.post("add", $("form").serialize(), function(data) {

$("#input_field").val("");

$("#list_").append(data);

});

return false;

});

</script>

</body>

</html>

Listing 12-9 wraps up with a script tag.Within that script tag is the jQuery code nec-
essary to send new tasks back to the server when the user presses enter in the text field.

After the call to serialize the HTML form, a callback function is declared.The callback
first clears the text field, and then appends the data from the server to the end of the un-
ordered list.This callback function is declared at the time the user presses Enter, but does
not get called until the round trip between the server and SimpleDB is complete and the
response comes back from the servlet.

252 Chapter 12 Building a Web-Based Task List

Adding New Tasks
When the Enter key is pressed, the jQuery code specifies that the form data be posted to
the URL named “add.”“Add” maps to the AddTask servlet, shown in Listing 12-10.

Listing 12-10 AddTask.java A Servlet for Handling New Tasks via AJAX

package com.simpledbbook.servlet;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class AddTask extends BaseServlet {

private static final long serialVersionUID = 1L;

private static final String TASK_HTML =

" %s ";

protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

String session = getSessionCookie(request);

String user = getUserCookie(request);

String date = request.getParameter("date");

String task = request.getParameter("task");

String taskId = app.addTask(user, date, task, session);

String result = String.format(TASK_HTML, taskId, task);

response.getWriter().write(result);

}

}

The server-side function of this call is simple.All of the parameters are gathered and
then passed to workspace.addTask(). Once that call returns, the data has been stored in
SimpleDB.The only thing that remains to do is format the HTML tag with the new task
and ship it back to the jQuery callback handler patiently waiting in the browser.

Deployment
This last file shown in Listing 12-11 is the web application deployment descriptor. It pro-
vides all the mapping between URLs and servlets.

Listing 12-11 web.xml The Web Application Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_ID" version="2.4">

253Deployment

<display-name>Chapter12</display-name>

<servlet>

<display-name>Login</display-name>

<servlet-name>Login</servlet-name>

<servlet-class>com.simpledbbook.servlet.Login</servlet-class>

</servlet>

<servlet>

<display-name>Tasks</display-name>

<servlet-name>Tasks</servlet-name>

<servlet-class>com.simpledbbook.servlet.Tasks</servlet-class>

</servlet>

<servlet>

<display-name>Logout</display-name>

<servlet-name>Logout</servlet-name>

<servlet-class>com.simpledbbook.servlet.Logout</servlet-class>

</servlet>

<servlet>

<display-name>AddTask</display-name>

<servlet-name>AddTask</servlet-name>

<servlet-class>com.simpledbbook.servlet.AddTask</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Login</servlet-name>

<url-pattern>/login</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>Tasks</servlet-name>

<url-pattern>/tasks</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>Logout</servlet-name>

<url-pattern>/logout</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>AddTask</servlet-name>

<url-pattern>/add</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>Login</welcome-file>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>

<welcome-file>index.jsp</welcome-file>

<welcome-file>default.html</welcome-file>

<welcome-file>default.htm</welcome-file>

<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

254 Chapter 12 Building a Web-Based Task List

<env-entry>

<env-entry-name>userDomain</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>users_01</env-entry-value>

</env-entry>

<env-entry>

<env-entry-name>taskDomain</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>tasks_01</env-entry-value>

</env-entry>

</web-app>

This xml descriptor has a lot of boilerplate to it, but at the very bottom, you can see
the environment entries for our SimpleDB domains:“users_01” and “tasks_01”.When
you need to set the names for the domains, this is the place to do it.

Summary
In this chapter, you have gone through the full cycle with this simple application.A num-
ber of additional features could usefully be added to this tool.The display can be en-
hanced to show a full week’s worth of lists. Support can be added to rearrange the items
on the list.

There are many things that could be done.This is one of the types of basic applications
that can benefit from SimpleDB.The application is rudimentary, but it never touches a
web server session object. Clients could bounce around from one web server to another
and never know the difference.

Storing a session key in the database is not really anything special, and it is not specific
to SimpleDB.You could do it with any database.The part that is specific to SimpleDB is
the availability and automatic replication.You can store session data in a database without
SimpleDB, but you cannot as easily deal with database failures.

Index

A
abandoning relational model, 8

access

caching for fast data access, 127-128
gaining access to SimpleDB, signing

up, 24
gaining to SimpleDB, 23

creating AWS accounts, 23-24
managing within organizations,

155-157
access key security, 159

secret key rotation, 160-161
access key security

key management, 159-160
accessing

SimpleDB from EC2, 169-170
SimpleDB outside the Amazon

cloud, 182
latency, 182-183

account keys, managing, 24

account security, 155

boosting with multi-factor
authentication, 158-159

limiting Amazon access from AWS
credentials, 157-158

managing access within the
organization, 155-157

accounts, creating AWS accounts, 23-24

adding

computing power with Amazon
EC2, 14

domain creation to domain
administration tool, 28-29

login servlet, 244-248
logout servlet, 249
new tasks, 252

addTask.java, 252

AdminTool.java, 26-27

advanced features in small projects,
168-169

Amazon access, limiting from AWS
credentials, 157-158

Amazon SQS (Amazon Simple Queue
Service), queuing up tasks, 15

Amazon Web Services (AWS). See AWS
(Amazon Web Services)

Apache CouchDB versus SimpleDB, 17-18

API, methods versus parameters, 192-193

AppConfig.java, 229

applications, web-based task lists

data model, 234-235
requirements, 233-234

arbitrary query depths, paging to, 131-133

asynchronous requests, threads, 173

Attribute class, clients, 188-190

attribute concatenation, evaluating, 148

attribute counting, write operations, 224-225

attribute data, formatting for Select, 93-94

case sensitivity, 97
date and time formatting, 95-96
floating point formatting, 95
integer formatting, 94-95

attribute indexes, improving query
performance, 103-104

attribute pairs, SimpleDB, 3

Attribute.java, 189

attributes

entities with more than 256 attributes,
131-122

multi-valued attributes
SimpleDB, 3
storing counts, 55-138

sort, 91
authentication, multli-factor authentication,

158-159

automated domain sharding, 228

overview, 228
Put/Get delete routing, 228-231
query multiplexing, 231-232

automatic attribute merging, 225

automating performance measurements,
109-110

availability, 121-123

AWS (Amazon Web Services),

accounts, creating, 23-24
existing AWS customers, use cases, 20
usage reports, 142-144

AWS credentials, limiting Amazon access
from, 157-158

B
backup tools, writing, 118-119

backups, 116

restoring, 119
third-party backup services, 117
writing backup tools, 118-119

BackupSDB.com, 117

base application, implementing domain
administration tool, 26-28

BaseServlet.java, 244-246

batch processes, applying updates, 152

batches, creating right-sized batches
(BatchPutAttributes), 114

BatchPutAttributes, 73-74, 112

C#, 77-78
calling, 112

256 adding

character encodings, 116
concurrency, managing, 114-115
creating right-sized batches, 114
Java, 76-77
mapping import files to SimpleDB

attributes, 112-113
optimizing, 179
parameters, 74-75
PHP, 78-79
reporting import progress, 113-114
response data, 75-76
resuming stopped imports, 115
storing mapping data, 113
supporting multiple file formats, 113
verifying progress and completion,

115-116
benefits of SimpleDB, 6

boosting security with multi-factor
authentication, 158-159

box usage cost, optimizing, 222

query timeouts, 225-228
write operations, 223-225

BoxUsage, 47-48

C
C#, 42

BatchPutAttributes, 77-78
CreateDomain, 50
DeleteAttributes, 72-73
DeleteDomain, 55
DomainMetadata, 58
GetAttributes, 68
ListDomains, 52-53
PutAttributes, 64
Select, 83-84
SimpleDB setup, 43-44

cache integration, 7

caching

dangers of, 171-172
distributed caching, 171
for fast data access, 127-128
local caching, 170-171
NextToken, 135
session scope caching, 127
speeding up SimpleDB, 170-172

calling BatchPutAttributes, 112

capacity planning, 141

estimating initial costs, 141-142
usage reports, 142-144

detailed reports, 145-146
case sensitivity, formatting attribute data for

Select, 97

character encodings, BatchPutAttributes,
116

client code, implementing, 196

connections, making, 210-214
constructors, 197-198
methods, 198-200
parsing responses, 214-216
requests, making, 200-208
secret keys, 196-197
signature computation, 208-210

clients

building smarter with metadata,
219-220

coordinating concurrent
clients, 221

database tools, 221
justifying schemas for numeric

data, 220
storing custom metadata in S3, 222
storing custom metadata within

SimpleDB, 221-222
coordinating concurrent clients, 221

257clients

design considerations
high-level design issues, 191-193
operation-specific considerations,

193-196
design overview, 185-186

Attribute class, 188-190
Item class, 190-191
public interfaces, 186-188

endpoints, 45-47
finding, 24
Java, 42
language gap, 45
PHP, 42, 45
Python, 42
response elements

BoxUsage, 47-48
request identifiers, 48

selecting, 41-42
service versions, 47

clouds, SimpleDB, 2-3

clustered databases without time sink,
use cases, 19

comparisons, predicates. See predicates

composite attributes, improving query
performance, 104-105

computeSignature(), 209

computing

signature hash, 209
signatures, 208-210
storage costs, 147

computing power, adding with Amazon
EC2, 14

concurrency

BatchPutAttributes, 114-115
clients, design considerations, 193
leveraging, 176-177
speeding up SimpleDB, 172-173

conditional writes, 195

limiting, 178-179
connections, client code, 210-214

consistency, SimpleDB, 5

consistent views, implementing, 125-128

consolidating writes, 179

constructors, implementing, 197-198

convenience methods, 217

convenient count methods, 217-219
convenient count methods, 217-219

selectWithRealLimit(), 219
coordinating concurrent clients, 221

costs

box usage cost, 222
query timeouts, 225-228
write operations, 223-225

computing storage costs, 147
estimating initial costs, capacity

planning, 141-142
of slack space, storage requirements,

147-148
count(), improving query performance,

106-107

count response formatting, Select, 89-90

counting, 133-134

cleaning up old counts with summary
records, 135-136

NextToken caching, 135
one item per count, 134-136
storing counts in multi-valued

attributes, 55-138
CreateDomain, 48-49

C#, 50
Java, 49-50
parameters, 49
PHP, 50-51
response data, 49

CreateTool.java, 28-29

CSV, usage reports, 143

258 clients

D
data

importing with
BatchPutAttributes, 112

splitting across domains, 149
storing clean data, 161-162

storing in multiple locations, 165

in transmission, data security, 162-164
data access patterns, optimizing, 125-127

data exports, 116

data formatting, 7

data model, web-based task lists
(applications), 234-235

data security, 161

SSL and data in transmission, 162-164
storage and encryption, 164-165
storing clean data, 161-162
storing data in multiple locations, 165

data sharding, 181

multiplexing queries, 181-182
partitioning data, 181

database tools, metadata, 221

databases without schemas, relational
model, 9-10

Date, C.J., 13

date and time formatting, 95-96

DBA, putting out of work, 12

DeleteAttributes, 70

C#, 72-73
Java, 72
parameters, 70-71
PHP, 73
response data, 71-72

DeleteDomain, 48, 54

C#, 55
Java, 55
parameters, 54

PHP, 55-56
response data, 54-55

DeleteTool.java, 29

deleting domains, domain administration
tool, 29

deployment, web-based task lists, 252-254

design, clients, 185-186

Attribute class, 188-190
high-level design issues, 191-193
Item class, 190-191
operation-specific considerations,

193-196
public interfaces, 186-188

designing for testability, 138-139

displaying tasks, 249-251

displaying domain lists, domain
administration tool, 28

distributed caching, 171

domain administration tool, 25

displaying domain lists, 28
domain creation, adding, 28-29
features, 25
implementing base application, 26-28
key storage, 25
listing domain metadata, 29-30
packaging as a Jar File, 31
running, 31
supporting domain deletion, 29

domain creation, adding to domain
administration tool, 28-29

domain deletion, domain administration
tool, 29

domain lists, displaying, 28

domain metadata, listing, 29-30

domain sharding. See automated domain
sharding

259domain sharding

DomainMetadata, 56, 194

C#, 58
Java, 57-58
parameters, 56
PHP, 58-59
response data, 56-57

DomainName, 51

domains

SimpleDB, 3
splitting data across, 149

dynamic data application, use cases, 19

Dynamo versus SimpleDB, 18

E
ease of use, clients (design

considerations), 192

EC2 (Elastic Compute Cloud), 12

accessing SimpleDB from, 169-170
computing power, adding, 14
data security, 162-164
(Elastic Compute Cloud),
improving query performance, 106

Eclipse plug-in, 25

empowering power users, 20

encoding

passwords, user authentication service,
36-37

requests, 204
encryption, data security, 164-165

endpoints, clients, 45-47

entities with more than 256 attributes,
131-122

estimating costs, capacity planning, 141-142

evaluating attribute concatenation, 148

eventual consistency, 123

counting, 134
implementing consistent views, 125

item-level atomicity, 123
read-your-writes, 125
window, 124

EVERY(), 102

existing AWS customers, use cases, 20

F
fetch(), 213

file formats, supporting multiple file formats
(BatchPutAttributes), 113

files, large text files, 128

finding clients for SimpleDB, 24

floating point formatting, 95

formatting

applying changes with read-repair,
150-152

attribute data for Select, 93-94
case sensitivity, 97
date and time formatting, 95-96
floating point formatting, 95
integer formatting, 94-95

G
Get delete routing, 228-231

GetAttributes, 65, 194

C#, 68
Java, 67-68
optimizing, 174-178
parameters, 65-66
PHP, 69
response data, 66-67

getStringToSign(), 210

Google App Engine

outage, 122
versus SimpleDB, 17

260 DomainMetadata

H
high availability, SimpleDB, 4

higher-level framework functionality,
SimpleDB, 7

hijacking NextToken, 195-196

horizontal scaling, 10

HTML, storing clean data, 162

HTTPClient.java, 211-212

I
implementing

base application, domain
administration tool, 26-28

client code, 196
connections, making, 210-214
constructors, 197-198
methods, 198-200
parsing responses, 214-216
requests, making, 200-208
secret keys, 196-197
signature computation, 208-210

consistent views, 125-128
task services, 241-244
task workspace, 238-241
user authentication, web-based task

lists, 235-238
import files, mapping to SimpleDB

attributes, 112-113

import progress, reporting
(BatchPutAttributes), 113-114

importing data with BatchPutAttributes, 112

improving query performance, 103

attribute indexes, 103-104
automating performance

measurements, 109-110
composite attributes, 104-105
EC2, 106

LIKE, 105-106
Select, 107-109
skipping pages with count() and

LIMIT, 106-107
IN() queries, 99

increasing speed of SimpleDB, 169

accessing from EC2, 169-170
caching, 170-172
concurrency, 172-173
keeping requests and responses small,

173-174
performance measurements, 169

index.jsp, 248

integer formatting, Select, 94-95

integrating Spring Security, user
authentication service, 32

INTERSECTION operator, multiple predicate
queries, 101-102

IS NOT NULL, 100

IS NULL, 100

ISimpleDB.java, 186-187

Item class, clients, 190-191

item layout, updating with read-repair, 152

Item.java, 190-191

item-level atomicity, 123

items, SimpleDB, 3

J
Jar files, packaging (domain administration

tool), 31

Java, 42

BatchPutAttributes, 76-77
CreateDomain, 49-50
DeleteAttributes, 72
DeleteDomain, 55
DomainMetadata, 57-58
GetAttributes, 67-68

261Java

ListDomains, 52
PutAttributes, 63-64
Select, 81-83
Typica, 42-43

jumping to arbitrary search pages, 132-133

K
key management, access key security,

159-160

key storage, domain administration tool, 25

keywords, Select, 88

L
language gap, clients, 45

large objects, storing with S3, 14-15

large text files, 128

storing in S3, 128
storing overflow as multi-valued

attributes, 130
storing overflow in different attributes,

129-130
latency, 182-183

leveraging concurrency, 176-177

LIKE, 99-100

improving query performance,
105-106

LIMIT clause

improving query performance,
106-107

Select, 92-93
limiting

Amazon access from AWS credentials,
157-158, 177-178

conditional writes, 178-179
ListDomains, 51

C#, 52-53
Java, 52
parameters, 51

PHP, 53
response data, 51-52

listing domain metadata, domain
administration tool, 29-30

ListingTool.java, 28

live service calls, alternatives to, 139

loadUserByUsername(), 36

local caching, 170-171

login servlet, adding, 244-248

Login.java, 246-247

logout servlet, adding, 249

logout.java, 249

low-usage applications, use cases, 19

M
maintenance, planning, 150

read-repair to apply formatting
changes, 150-152

read-repair to update item layout, 152
managing

access within organizations, 155-157
account keys, 24
concurrency, BatchPutAttributes,

114-115
mapping data, storing, 113

mapping import files to SimpleDB
attributes, 112-113

measuring performance

automating, 109-110
Select, 107-109

metadata, building smarter clients, 219-220

coordinating concurrent clients, 221
database tools, 221
justifying schemas for numeric

data, 220
storing custom metadata in S3, 222
storing custom metadata within

SimpleDB, 221-222

262 Java

MetadataTool.java, 29-30

methods, implementing, 198-200

minimizing request size, 178

multi-factor authentication, boosting security
with multi-factor authentication, 158-159

multiple predicate queries, INTERSECTION
operator, 101-102

multiplexing queries, data sharding,
181-182

multi-valued attribute queries, 100-101

multi-valued attributes

SimpleDB, 3
storing counts, 55-138
storing overflow as, 130

N
.NET platform, 43-44

NextToken, 51

caching, 135
hijacking, 195-196

NoSQL solution, 8

NOT LIKE, 99-100

numeric data, justifying schemas for
numeric data, 220

O
object mapping, 7

one item per count, 134-136

operation-specific performance, 174

optimizing
BatchPutAttributes, 179
GetAttributes, 174-178
PutAttributes, 178-179
Select, 180-181

operators

INTERSECTION operator, 101-102
range operators, 98-99
simple comparison operators, 98

optimizing

BatchPutAttributes, 179
box usage cost, 222

query timeouts, 225-228
write operations, 223-225

data access patterns, 125-127
GetAttributes, 174-178
PutAttributes, 178-179
Select, 180-181

ordering parameters, 210

organizations, managing access within,
155-157

output selection clause, Select, 89-90

P
packaging domain administration tool as a

Jar File, 31

paging to arbitrary query depths, 131-133

parallel range queries, 180

parallel requests, threads, 172-173

parameter strings, building, 209-210

parameters

BatchPutAttributes, 74-75
CreateDomain, 49
DeleteAttributes, 70-71
DeleteDomain, 54
DomainMetadata, 56
GetAttributes, 65-66
ListDomains, 51
optional parameters, 203-204
ordering, 210
PutAttributes, 60-62
requests, 201
Select, 79

parsing responses, 214-216

partitioning data, data sharding, 181

passwords, salting and encoding (user
authentication service), 36-37

263passwords, salting and encoding (user authentication service)

Percival, Colin, 223

performance, operation-specific. See
operation-specific performance

performance

improving query performance, 103
attribute indexes, 103-104
automating performance

measurements, 109-110
composite attributes, 104-105
EC2, 106
LIKE, 105-106
Select, 107-109
skipping pages with count() and

LIMIT, 106-107
speed of SimpleDB, 166

advanced features in small projects,
168-169

targeting performance in small
projects, 166-168

performance measurements, speeding up
SimpleDB, 169

PHP, 42

BatchPutAttributes, 78-79
CreateDomain, 50-51
DeleteAttributes, 73
DeleteDomain, 55-56
DomainMetadata, 58-59
GetAttributes, 69
ListDomains, 53
PutAttributes, 65
Select, 85-86
Tarzan setup, 45

planning

for capacity. See capacity planning
maintenance, 150

batch processes, 152
read-repair to apply formatting

changes, 150-152

read-repair to update item layout,
152

plug-ins, Eclipse, 25

power users, empowering, 20

predefined schemas, relational model, 10

predicates, 97

IN() queries, 99
IS NOT NULL, 100
IS NULL, 100
LIKE, 99-100
NOT LIKE, 99-100
range operators, 98-99
simple comparison operators, 98

prefix queries, 99-100

pricing structure, SimpleDB, 3

public interfaces, clients, 186-188

Put delete routing, 228-231

PutAttributes, 59-60, 131

C#, 64
Java, 63-64
optimizing, 178-179
parameters, 60-62
PHP, 65
response data, 62-63

Python, 42

Q
queries

EVERY(), 102
improving performance, 103

attribute indexes, 103-104
composite attributes, 104-105
EC2, 106
LIKE, 105-106
Select, 107-109
skipping pages with count() and

LIMIT, 106-107

264 Percival, Colin

improving query performance,
automating performance
measurements, 109-110

IN() queries, 99
multiple predicate queries,

INTERSECTION operator,
101-102

multiplexing queries, data sharding,
181-182

multi-valued attributes, 100-101
paging to arbitrary query depths,

131-133
parallel range queries, 180
prefix queries, 99-100
results with same item multiple times,

102-103
SimpleDB, 4

query multiplexing, automated domain
sharding, 231-232

query timeouts, box usage cost, 225-228

queuing tasks with Amazon SQS, 15

quoting rule for names, Select, 88-89

quoting rules for values, Select, 90-91

R
range operators, 98-99

read-repair, updating item layout, 152

read-repair to apply formatting changes,
150-152

relational model

abandoning, 8
challenges of, 10
databases without schemas, 9-10
Date, C.J., 13
DBA, putting out of work, 12
predefined schemas, 10
scalability, 11

reporting import progress,
BatchPutAttributes, 113-114

representing user data (user authentication
service), 32-34

request identifiers, 48

request size, minimizing, 178

request volume, throttling, 179

Request.java, 202-203, 204, 206

requests

encoding, 204
making, 200-208
SOAP requests versus REST

requests, 201
splitting, 225

requirements, applications (web-based task
lists), 233-234

response data

BatchPutAttributes, 75-76
CreateDomain, 49
DeleteAttributes, 71-72
DeleteDomain, 54-55
DomainMetadata, 56-57
GetAttributes, 66-67
ListDomains, 51-52
PutAttributes, 62-63
Select, 80-81

response elements, clients

BoxUsage, 47-48
request identifiers, 48

Response.java, 214-216

responses, parsing, 214-216

REST requests versus SOAP requests, 201

restoring backups, 119

results, queries (results with same item
multiple times), 102-103

resuming stopped imports,
BatchPutAttributes, 115

running domain administration tool, 31

265running domain administration tool

S
S3 (Simple Storage Service),

storing custom metadata, 222
storing large objects, 14-15
storing text, 128
use cases, 20

salting passwords, user authentication
service, 36-37

scalability, 148-150

relational model, 11
scaling, horizontal scaling, 10

schema-less data, SimpleDB, 2

schemas

justifying, 220
predefined schemas, relational

model, 10
sdb.amazonaws.com, 46

sdb.ap-southeast-1.amazonaws.com, 46

sdb.eu-west-1.amazonaws.com, 46

sdb.us-west-1.amazonaws.com, 46

secret key rotation, access key security,
160-161

secret keys, safe handling of, 196-197

security

access key security. See access key
security

account security, 155
boosting security with multi-factor

authentication, 158-159
limiting Amazon access from AWS

credentials, 157-158
managing access within

organizations, 155-157
data security. See data security

Select, 79, 86-88

C#, 83-84
count response formatting, 89-90

formatting attribute data, 93-94
case sensitivity, 97
date and time formatting, 95-96
floating point formatting, 95
integer formatting, 94-95

Java, 81-83
keywords, 88
LIMIT clause, 92-93
measuring performance, 107-109
optimizing, 180-181
output selection clause, 89-90
parameters, 79
PHP, 85-86
quoting rule for names, 88-89
quoting rules for values, 90-91
required clauses, 88
response data, 80-81
Sort clause, 91-92
WHERE clause, 90

SelectExpression, 79

selecting clients, 41-42

selectWithRealLimit(), 219

service limits, SimpleDB, 8

service versions, clients, 47

session scope caching, 127

setDomain(), 204

sharding, 7

ShardingClient.java, 230-231

signature computation, 208-210

signature hash, computing, 209

signing up for SimpleDB, 24

simple comparison operators, 98

Simple Storage Service

(S3). See S3 (Simple Storage Service)
SimpleBackr, 117

266 S3 (Simple Storage Service)

SimpleDB

versus Apache CouchDB, 17-18
attribute pairs, 3
avoiding the hype, 11-12
benefits of, 6
clouds, 2-3
consistency, 5
database features it doesn’t have, 7
defined, 1
domains, 3
versus Dynamo-like products, 18
feature set, 6
gaining access to, 23

creating AWS accounts, 23-24
signing up for, 24

versus Google App Engine, 17
high availability, 4
higher-level framework

functionality, 7
items, 3
multi-valued attributes, 3
pricing structure, 3
queries, 4
schema-less data, 2
service limits, 8
signing up for, 24
use cases

clustered databases without time
sink, 19

dynamic data application, 19
empowering power users, 20
existing AWS customers, 20
low-usage applications, 19
S3 content search, 20
Web Services for connected

systems, 18
what it is not, 1-2

versus Windows Azure Platform,
15-17

SimpleDB.java, 197-198, 218-219

SimpleDBUserService, fetching user data,
34-36

SimpleDBUserService.java, 34-36

SimpleDBUserTool.java, 37-39

skipping pages with count() and LIMIT,
improving query performance, 106-107

slack space, cost of, 147-148

small projects, targeting performance,
166-168

SOAP requests versus REST requests, 201

Sort attributes, guaranteeing existence
of, 91

Sort clause, Select, 91-92

speed

increasing, 169
performance measurements, 169

of SimpleDB, 166
accessing from EC2, 169-170
advanced features in small projects,

168-169
caching, 170-172
concurrency, 172-173
keeping requests and responses

small, 173-174
targeting performance in small

projects, 166-168
splitting

data across domains, 149
requests, 225

Spring Security, integrating with user
authentication service, 32

SSL, data security, 162-164

stopped imports, resuming
(BatchPutAttributes), 115

267stopped imports, resuming (BatchPutAttributes)

storage

data security, 164-165
key storage, domain administration

tool, 25
storage requirements, 146-

computing storage costs, 147
cost of slack space, 147-148
evaluating attribute concatenation, 148

storing

clean data, data security, 161-162
counts in multi-valued attributes,

55-138
custom metadata

in S3, 222
in SimpleDB, 221-222

data in multiple locations, 165
large objects with S3, 14-15
mapping data, BatchPutAttributes, 113
overflow as multi-valued attributes,

large text files, 130
overflow in different attributes, large

text files, 129-130
text in S3, 128

summary records, cleaning up old counts,
135-136

supporting multiple file formats,
BatchPutAttributes, 113

T
targeting performance in small projects,

166-168

Tarzan, PHP, 45

task services, implementing, 241-244

task workspace, implementing, 238-241

tasks

adding new, 252
displaying, 249-251
queuing up with Amazon SQS, 15

TaskService.java, 241-243

tasks.java, 249-250

tasks.jsp, 250-251

TaskWorkspace.java, 238-240

testability, designing for, 138-139

testing strategies, 138

alternatives to live service calls, 139
designing for testability, 138-139

text, storing in S3, 128

third-party backup services, 117

threads

asynchronous requests, 173
parallel requests, 172-173

throttling request volume, 179

tools

backup tools, writing, 118-119
domain administration tool. See

domain administration tool
User Update Tool, 37-39

tracking usage over time, capacity
planning, 146

Typica, Java, 42-43

U
unconditional writes, 195

updates, applying with batch processes, 152

usage, tracking over time (capacity
planning), 146

usage reports, capacity planning, 142-144

detailed reports, 145-146
use cases, SimpleDB

clustered databases without time
sink, 19

dynamic data application, 19
empowering power users, 20
existing AWS customers, 20
low-usage applications, 19

268 storage

S3 content search, 20
Web services for connected

systems, 18
user authentication, implementing, 235-238

user authentication service

fetching user data with
SimpleDBUserService, 34-36

integrating with Spring Security, 32
passwords, salting and encoding, 36-37
representing user data, 32-34
User Update Tool, creating AWS

accounts, 37-39
user data

fetching with SimpleDBUserService,
34-36

representing user authentication
service, 32-34

User Update Tool, creating AWS accounts,
37-39

User.java, 32-34

UserService, 243

UserService.java, 235-237

V
verifying progress and completion,

BatchPutAttributes, 115-116

W
web services for connected systems, use

cases, 18

web-based task lists

adding
login servlet, 244-248
logout servlet, 249
new tasks, 252

applications
data model, 234-235
requirements, 232-234

deployment, 252-254
displaying tasks, 249-251
implementing

task services, 241-244
task workspace, 238-241
user authentication, 235-238

web.xml, 252-254

WHERE clause, Select, 90

Windows Azure Platform versus SimpleDB,
15-17

write operations

attribute counting, 224-225
costs, 223-225

writes

conditional and unconditional, 195
consolidating, 179

writing backup tools, 118-119

X
XML, usage reports, 143

XSS (cross-site scripting), storing clean data,
161-162

269XSS (cross-site scripting), storing clean data

Your purchase of A Developer’s Guide to Amazon SimpleDB includes access to a free
online edition for 45 days through the Safari Books Online subscription service. Nearly
every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: TVNHNCB.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Contents
	Preface
	Acknowledgments
	1 Introducing Amazon SimpleDB
	What Is SimpleDB?
	What SimpleDB Is Not
	Schema-Less Data
	Stored Securely in the Cloud
	Billed Only for Actual Usage
	Domains, Items, and Attribute Pairs
	Multi-Valued Attributes
	Queries
	High Availability
	Database Consistency

	Sizing Up the SimpleDB Feature Set
	Benefits of Using SimpleDB
	Database Features SimpleDB Doesn’t Have
	Higher-Level Framework Functionality
	Service Limits

	Abandoning the Relational Model?
	A Database Without a Schema
	Areas Where Relational Databases Struggle
	Scalability Isn’t Your Problem
	Avoiding the SimpleDB Hype
	Putting the DBA Out of Work
	Dodging Copies of C.J. Date

	Other Pieces of the Puzzle
	Adding Compute Power with Amazon EC2
	Storing Large Objects with Amazon S3
	Queuing Up Tasks with Amazon SQS

	Comparing SimpleDB to Other Products and Services
	Windows Azure Platform
	Google App Engine
	Apache CouchDB
	Dynamo-Like Products

	Compelling Use Cases for SimpleDB
	Web Services for Connected Systems
	Low-Usage Application
	Clustered Databases Without the Time Sink
	Dynamic Data Application
	Amazon S3 Content Search
	Empowering the Power Users
	Existing AWS Customers

	Summary

	2 Getting Started with SimpleDB
	Gaining Access to SimpleDB
	Creating an AWS Account
	Signing Up for SimpleDB
	Managing Account Keys
	Finding a Client for SimpleDB

	Building a SimpleDB Domain Administration Tool
	Administration Tool Features
	Key Storage
	Implementing the Base Application
	Displaying a Domain List
	Adding Domain Creation
	Supporting Domain Deletion
	Listing Domain Metadata
	Running the Tool
	Packaging the Tool as a Jar File

	Building a User Authentication Service
	Integrating with the Spring Security Framework
	Representing User Data
	Fetching User Data with SimpleDBUserService
	Salting and Encoding Passwords
	Creating a User Update Tool

	Summary

	3 A Code-Snippet Tour of the SimpleDB API
	Selecting a SimpleDB Client
	Typica Setup in Java
	C# Library for Amazon SimpleDB Setup
	Tarzan Setup in PHP

	Common Concepts
	The Language Gap
	SimpleDB Endpoints
	SimpleDB Service Versions
	Common Response Elements

	CreateDomain
	CreateDomain Parameters
	CreateDomain Response Data
	CreateDomain Snippet in Java
	CreateDomain Snippet in C#
	CreateDomain Snippet in PHP

	ListDomains
	ListDomains Parameters
	ListDomains Response Data
	ListDomains Snippet in Java
	ListDomains Snippet in C#
	ListDomains Snippet in PHP

	DeleteDomain
	DeleteDomain Parameters
	DeleteDomain Response Data
	DeleteDomain Snippet in Java
	DeleteDomain Snippet in C#
	DeleteDomain Snippet in PHP

	DomainMetadata
	DomainMetadata Parameters
	DomainMetadata Response Data
	DomainMetadata Snippet in Java
	DomainMetadata Snippet in C#
	DomainMetadata Snippet in PHP

	PutAttributes
	PutAttributes Parameters
	PutAttributes Response Data
	PutAttributes Snippet in Java
	PutAttributes Snippet in C#
	PutAttributes Snippet in PHP

	GetAttributes
	GetAttributes Parameters
	GetAttributes Response Data
	GetAttributes Snippet in Java
	GetAttributes Snippet in C#
	GetAttributes Snippet in PHP

	DeleteAttributes
	DeleteAttributes Parameters
	DeleteAttributes Response Data
	DeleteAttributes Snippet in Java
	DeleteAttributes Snippet in C#
	DeleteAttributes Snippet in PHP

	BatchPutAttributes
	BatchPutAttributes Parameters
	BatchPutAttributes Response Data
	BatchPutAttributes Snippet in Java
	BatchPutAttributes Snippet in C#
	BatchPutAttributes Snippet in PHP

	Select
	Select Parameters
	Select Response Data
	Select Snippet in Java
	Select Snippet in C#
	Select Snippet in PHP

	Summary

	4 A Closer Look at Select
	Select Syntax
	Required Clauses
	Select Quoting Rule for Names
	Output Selection Clause
	WHERE Clause
	Select Quoting Rules for Values
	Sort Clause
	LIMIT Clause

	Formatting Attribute Data for Select
	Integer Formatting
	Floating Point Formatting
	Date and Time Formatting
	Case Sensitivity

	Expressions and Predicates
	Simple Comparison Operators
	Range Operators
	IN() Queries
	Prefix Queries with LIKE and NOT LIKE
	IS NULL and IS NOT NULL

	Multi-Valued Attribute Queries
	Multiple Predicate Queries with the INTERSECTION Operator
	Selection with EVERY()
	Query Results with the Same Item Multiple Times

	Improving Query Performance
	Attribute Indexes
	Composite Attributes
	Judicious Use of LIKE
	Running on EC2
	Skipping Pages with count() and LIMIT
	Measuring Select Performance
	Automating Performance Measurements

	Summary

	5 Bulk Data Operations
	Importing Data with BatchPutAttributes
	Calling BatchPutAttributes
	Mapping the Import File to SimpleDB Attributes
	Supporting Multiple File Formats
	Storing the Mapping Data
	Reporting Import Progress
	Creating Right-Sized Batches
	Managing Concurrency
	Resuming a Stopped Import
	Verifying Progress and Completion
	Properly Handling Character Encodings

	Backup and Data Export
	Using Third-Party Backup Services
	Writing Your Own Backup Tool
	Restoring from Backup

	Summary

	6 Working Beyond the Boundaries
	Availability: The Final Frontier
	Boundaries of Eventual Consistency
	Item-Level Atomicity
	Looking into the Eventual Consistency Window
	Read-Your-Writes
	Implementing a Consistent View

	Handling Text Larger Than 1K
	Storing Text in S3
	Storing Overflow in Different Attributes
	Storing Overflow as a Multi-Valued Attribute

	Entities with More than 256 Attributes
	Paging to Arbitrary Query Depth
	Exact Counting Without Locks or Transactions
	Using One Item Per Count
	Storing the Count in a Multi-Valued Attribute

	Testing Strategies
	Designing for Testability
	Alternatives to Live Service Calls

	Summary

	7 Planning for the Application Lifecycle
	Capacity Planning
	Estimating Initial Costs
	Keeping Tabs on SimpleDB Usage with AWS Usage Reports
	Creating More Finely Detailed Usage Reports
	Tracking Usage over Time

	Storage Requirements
	Computing Storage Costs
	Understanding the Cost of Slack Space
	Evaluating Attribute Concatenation

	Scalability: Increasing the Load
	Planning Maintenance
	Using Read-Repair to Apply Formatting Changes
	Using Read-Repair to Update Item Layout
	Using a Batch Process to Apply Updates

	Summary

	8 Security in SimpleDB-Based Applications
	Account Security
	Managing Access Within the Organization
	Limiting Amazon Access from AWS Credentials
	Boosting Security with Multi-Factor Authentication

	Access Key Security
	Key Management
	Secret Key Rotation

	Data Security
	Storing Clean Data
	SSL and Data in Transmission
	Data Storage and Encryption
	Storing Data in Multiple Locations

	Summary

	9 Increasing Performance
	Determining If SimpleDB Is Fast Enough
	Targeting Moderate Performance in Small Projects
	Exploiting Advanced Features in Small Projects

	Speeding Up SimpleDB
	Taking Detailed Performance Measurements
	Accessing SimpleDB from EC2
	Caching
	Concurrency
	Keeping Requests and Responses Small

	Operation-Specific Performance
	Optimizing GetAttributes
	Optimizing PutAttributes
	Optimizing BatchPutAttributes
	Optimizing Select

	Data Sharding
	Partitioning Data
	Multiplexing Queries

	Accessing SimpleDB Outside the Amazon Cloud
	Working Around Latency
	Ignoring Latency

	Summary

	10 Writing a SimpleDB Client: A Language-Independent Guide
	Client Design Overview
	Public Interface
	Attribute Class
	Item Class

	Client Design Considerations
	High-Level Design Issues
	Operation-Specific Considerations

	Implementing the Client Code
	Safe Handling of the Secret Key
	Implementing the Constructor
	Implementing the Remaining Methods
	Making Requests
	Computing the Signature
	Making the Connections
	Parsing the Response

	Summary

	11 Improving the SimpleDB Client
	Convenience Methods
	Convenient Count Methods
	Select with a Real Limit

	Custom Metadata and Building a Smarter Client
	Justifying a Schema for Numeric Data
	Database Tools
	Coordinating Concurrent Clients
	Storing Custom Metadata within SimpleDB
	Storing Custom Metadata in S3

	Automatically Optimizing for Box Usage Cost
	The Exponential Cost of Write Operations
	QueryTimeout: The Most Expensive Way to Get Nothing

	Automated Domain Sharding
	Domain Sharding Overview
	Put/Get Delete Routing
	Query Multiplexing

	Summary

	12 Building a Web-Based Task List
	Application Overview
	Requirements
	The Data Model

	Implementing User Authentication
	Implementing a Task Workspace
	Implementing a Task Service
	Adding the Login Servlet
	Adding the Logout Servlet
	Displaying the Tasks
	Adding New Tasks
	Deployment
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

