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PREFACE

Protocols are sets of rules that govern the interaction of concurrent processes in distri-
buted systems. Protocol design is therefore closely related to a number of established
fields, such as operating systems, computer networks, data transmission, and data
communications. It is rarely singled out and studied as a discipline in its own right.
Designing a logically consistent protocol that can be proven correct, however, is a
challenging and often frustrating task. It can already be hard to convince ourselves of
the validity of a sequentially executed program. In distributed systems we must rea-
son about concurrently executed, interacting programs.

Books about distributed systems, computer networks, or data communications often
do no better than describe a set of standard solutions that have been accepted as
correct by, for instance, large international organizations. They do not tell us why the
solutions work, what problems they solve, or what pitfalls they avoid.

This text is intended as a guide to protocol design and analysis, rather than as a guide
to standards and formats. It discusses design issues instead of applications. Two
issues, therefore, are beyond the scope of this text: network control (including routing,
addressing, and congestion control) and implementation. There is, however, no shor-
tage of texts on both topics. The design problem is addressed here as a fundamental
and challenging issue, rather than as an irritating practical obstacle to the development
of reliable communication systems. The aim of the book is to make you familiar with
all the issues of protocol validation and protocol design.

The first part of the book covers the basics. Chapter 1 gives a flavor of the types of
problems that are discussed. Chapter 2 deals with protocol structure and general
design issues. Chapters 3 and 4 discuss the basics of error control and flow control.

The next four chapters cover formal protocol modeling and specification techniques,
beginning in Chapters 5 and 6 with the introduction of the concept of a protocol vali-
dation model, that serves as an abstraction of a design and a prototype of its imple-
mentation. In Chapter 5 a terse new language called PROMELA is introduced for the
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PREFACE xi

description of protocol validation models, and in Chapter 6 it is extended for the
specification of protocol correctness requirements. In Chapter 7 we use PROMELA to
discuss a number of standard design problems in the development of a sample file
transfer protocol. Part II closes with a discussion, in Chapter 8, of the extended finite
state machine, a basic notion in many formal modeling techniques.

The third part of the book focuses on protocol synthesis, testing, and validation tech-
niques that can be used to battle a protocol’s complexity. Both the capabilities and
the limitations of the formal design techniques are covered.

The fourth and last part of the book gives a detailed description of the design of two
protocol design tools based on PROMELA: an interpreter and an automated validator.
Based on these tools, an implementation generator is simple to add. Source code for
the tools is provided in Appendices D and E. The source is also available in elec-
tronic form. Ordering information can be found in Appendix E.

LECTURE PLAN
The core of this book is contained in Chapters 2, 5, 6, 7, and 11. These chapters
explore a design discipline that is supported by the tools discussed in Chapters 12 to
14. The remaining text is meant to make the book relatively self-contained. Chapter
3 on error control, Chapter 4 on flow control, and Chapter 8 on finite state machines
give background information that should be part of the working knowledge of every
protocol designer. Chapters 9 and 10 bring the reader up-to-date with the latest tech-
niques in closely related fields of protocol engineering.

For a one-semester course in protocol design the following sequence of chapters and
appendices is suggested: 1, 2, A, 3, B, 4, 5 & C, 6-14. A shorter course, for instance
embedded in full semester course on operating systems or data networks, would con-
sist of Chapters 1, 2, 5, 6, 7-11, 14. The software discussed in the book can be used
for class projects in the design and validation of sample protocols. Suggestions for
exercises are included throughout the text.
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1.1 EARLY BEGINNINGS
The problem of designing efficient and unambiguous communication protocols
existed long before the first computers were built. There is a long history of attempts
to construct systems for transferring information quickly over long distances. From a
protocol designer’s point of view, the mishaps that were caused by misinterpreted
communications are fascinating. Of course, the problems of the early systems were
not always documented as diligently as the features.

BEACONS AND ALARUMS
Anything that is detectable over a large distance is a potential means of communica-
tion. In the play Agamemnon from 458 B.C., for instance, Aeschylus describes in
detail how fire signals were used, supposedly, to communicate the fall of Troy to
Athens over a distance of more than 300 miles. But the number of different messages
that can be transferred by a single big fire is limited. A detailed account of that prob-
lem was given by the Greek historian Polybius in the 2nd century B. C.1 It is probably
one of the first explicit descriptions of data transmission methods. Polybius starts by
explaining why a signaling method is useful in the first place.

‘‘It is evident to all that in every matter, and especially in warfare, the power of acting
at the right time contributes very much to the success of enterprises, and fire signals
are the most efficient of all the devices which aid us to do this. For they show what has
recently occurred and what is still in the course of being done, and by means of them
anyone who cares to do so even if he is at a distance of three, four or even more days’
journey can be informed. So that it is always surprising how help can be brought by
means of fire messages when the situation requires it.’’

The use of fire signals must have been commonplace in Polybius’ days. But, there
were a few problems to solve.
__________________
1. The Histories, Book X, Chapter 43. The translation is by W.R. Patton and was published by Harvard
University Press in 1925.
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2 INTRODUCTION CHAPTER 1

‘‘Now in former times, as fire signals were simple beacons, they were for the most part
of little use to those who used them. For the service should have been performed by
signals previously determined upon, and as facts are indefinite, most of them defied
communication by fire signals. To take the case I just mentioned, it was possible for
those who had agreed on this to convey information that a fleet had arrived at Oreus,
Peparethus, or Chalcis, but when it came to some of the citizens having changed sides
or having been guilty of treachery or a massacre having taken place in the town, or
anything of the kind, things that often happen, but cannot all be foreseen — and it is
chiefly unexpected occurrences which require instant consideration and help — all
such matters defied communication by fire signal. For it was quite impossible to have
a preconcerted code for things which there was no means of foretelling.’’

The crucial observation is the part in bold. Throughout this book we will see that it is
still a problem. It is the unexpected sequences of events that lead to protocol failures,
and the hardest problem in protocol design is precisely that we must try to expect the
unexpected.

Polybius continues his account with a description of a new signaling method that he
believed solved the communication problem. It is remarkably sophisticated, though it
only partly solves the problem. The new system used two sets of five torches. By
lighting between one and five torches in each set, a total of 52 characters could be
encoded, sufficient to transmit arbitrary messages as a sequence of encoded letters.

Screen

1

0

Torch

Figure 1.1 — Torch Telegraph
As shown in Figure 1.1, the torches could be used to send a binary torch code. A
torch could be made visible to the remote receiver by raising it above a screen, and it
could be hidden by lowering it. Polybius describes the torch code as follows.

‘‘We take the alphabet and divide it into five parts, each consisting of five letters.
There is one letter fewer in the last division, but it makes no practical difference. Each
of the two parties who are about to signal to each other must now get ready five tablets
and write one division of the alphabet on each tablet, and then come to an agreement
that the man who is going to signal is in the first place to raise two torches and wait
until the other replies by doing the same. This is for the purpose of conveying to each
other that they are both at attention. These torches having been lowered, the
dispatcher of the message will now raise the first set of torches on the left side
indicating which tablet is to be consulted, i.e., one torch if it is the first, two if it is the
second, and so on. Next he will raise the second set on the right on the same principle
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to indicate what letter of the tablet the receiver should write down.’’

No real improvements over Polybius’ telegraph were made for almost twenty centu-
ries, though there was no lack of inferior alternatives. In 1684, the English scientist
Robert Hooke described a rather clumsy optical system that worked with large
wooden characters. The characters could be displayed at a signaling station and
observed from a distance with a telescope.2 As far as we know, it was never put into
practice.

In 1796, the German G. Huth invented an equally unsuccessful system that he named
‘‘telephone.’’ The idea was to place men with ‘‘speaking tubes’’ on roof tops and
have them shout messages to each other. In fact, Huth’s idea had been tried before.
Alexander the Great (356-323 B.C.) is said to have used a twelve foot megaphone to
shout commands to his armies from nearby hills. Not surprisingly, Polybius did not
spend much time discussing this system.

Another remarkable device was used during the American Revolutionary War (1775-
1783). It consisted of a pole from which any combination of three different objects
could be displayed. With a barrel, a flag, and a basket, 23 −1 different messages
could be transmitted, though obviously not in very rapid succession.

OPTICAL SYSTEMS
The first successful pre-electric telegraph system was developed by the French
engineer Claude Chappe in 1793. His system consisted of large wooden constructions
built on hill tops or church towers and was operated by civil servants equipped with
telescopes. The semaphore had three movable parts, regulator and two indicators, as
illustrated in Figure 1.2. The regulator was roughly 15 ft long, the indicators meas-
ured approximately 7 by 1 ft each.

It is not clear from the reports what the precise signaling ‘‘alphabet’’ was or how it
was encoded in the positions of regulator and indicators. The semaphore arms could
be moved only in 45° increments. Theoretically, with three movable parts, each
semaphore could be set in 256 (8×8×4) different positions. Particularly confusing
combinations were not used, for instance positions where the indicators duplicate the
angle of the regulator. Reportedly, about half of the valid semaphore positions were
used to encode digits, punctuation marks, upper- and lower-case letters, and the other
half were used for special control codes. The civil servants were hired to read the
semaphore position from the neighboring stations and to copy it onto their own sema-
phore to relay messages.

At the peak of its success, shortly before electric telegraphs took over, Chappe’s sys-
tem had grown into a complete network of no less than 556 semaphore stations cover-
ing more than 3000 miles and reaching nearly every part of France. Little is known
__________________
2. The telescope was also a recent invention at the time. It was described by Galileo in Siderius Nuncius
(The Starry Messenger) in 1610.
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about the specific operating procedures employed or the coordination problems that
must have plagued the semaphore operators. What, for instance, was a semaphore
operator supposed to do when two messages came in simultaneously from opposite
directions?

. .. . . . . . .

..
..

..
..

.

Indicator

Regulator

Figure 1.2 — Chappe’s Semaphore
Almost every country had one or more variations of Chappe’s optical telegraph in this
period. The British admiralty, for instance, used a six-shutter semaphore designed by
a Lord George Murray. Each shutter could be either opened or closed to transmit a
message: a 6-bit binary code. The use of control messages is also documented for this
system. All six shutters closed was used to signal not ready, all six shutters open
meant ready to send.

Figure 1.3 — George Murray’s Six-Shutter Telegraph

A similar system, using ten shutters, was developed in Sweden. The Swedish system
is documented in detail in a publication of its inventor, the Swedish Chancery Secre-
tary A.N. Edelcrantz, called Avhandling om Telegrapher published in 1796. A coding
table, based on a simple system for assigning numbers to shutter positions, was
included.

‘‘All telegraphic correspondence is started with a signal indicating that you want to
speak, or a speak sign, which is left up until the receiver has given the corresponding
alert sign. (...) When this is done, the speak sign is taken down and the first signal in
the message is given. The receiver then takes down the alert sign and repeats the
signal from the sender to show that it has read it correctly. The same procedure is
repeated for all signals in the message.

In 1796 this telegraph connected Stockholm and A° land. One shutter telegraph sta-
tion, built in Furusund in 1836, has survived and can still be visited today (see also
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Bibliographic Notes). The signaling codes used on the Swedish system include codes
for session control (start, stop), error control, flow control (repeat), rate control
(slower, faster), and even a negative acknowledgment, which was named appropri-
ately ‘‘cannot see.’’

The transmission speed of the optical telegraphs varied. On Chappe’s telegraph the
semaphore position was changed once every 15-20 seconds. With a subset of 128
possible symbols (or 7 bits of information) this gave a transmission speed of roughly
0.5 bits/sec. The 10-bit code of the Swedish shutter telegraph was changed every
8-10 seconds, and the 6-bit code of the British system every 5 seconds, both giving a
signaling speed of approximately 1 bit/sec.

The visibility of the semaphores must have been another concern of the operators. On
an average of twenty days per year, for example, weather conditions prevented the
usage of a shutter semaphore that connected five cities in The Netherlands between
1831 and 1839.

After 1840, the electric telegraph finally proved to be faster, more reliable, and less
conspicuous than optical telegraphs.

ELECTROMAGNETISM
The principle of an electric telegraph was described as early as 1753 by a mysterious
‘‘C.M.’’ in a letter to the Scots’ Magazine .3 The identity of the author has never been
fully established. Some sources say that the initials are those of a Charles Marshall
from Renfrew (the letter was mailed from Renfrew). Others claim that the author was
someone called Charles Morrison of Greenock. The letter describes an electric tele-
graph with a number of parallel wires: one for each different code, or character, to be
transmitted. Small pithballs were placed at the receiver near the terminals of each
wire. The sender could place a static electric charge on one of the wires (by discharg-
ing a Leyden jar) and cause the corresponding pithball at the receiver to move.

Shortly after 1830 a new insight into electromagnetic induction was obtained through
the work of Michael Faraday in England and Joseph Henry in the United States. In
England, the principle was used in 1837 by William Cooke in the construction of the
first electric telegraph. Cooke used an electric charge to deflect a compass needle in a
small magnetic field at the receiving instrument. The idea for such a ‘‘needle tele-
graph’’ was perfected by Cooke in cooperation with Sir Charles Wheatstone. It was
patented in 1837 as a Method of Giving Signals and Sounding Alarums at Distant
Places by Means of Electric Currents Transmitted through Metallic Circuits. In the
United States similar work was done by Samuel Morse and Theodore Vail.

__________________
3. The Scots’ Magazine, February 17, 1753, Vol. XV, p. 73. The letter was titled An expeditious method for
conveying intelligence.
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Figure 1.4 — The First Multiple-Needle Telegraphs

The first patent, dated 12 June 1837, was for a telegraph system with five magnetic
needles. Any combination of two out of the five needles could be deflected either left
or right, enough to signal twenty different letters. In Figure 1.4 a five-needle and a
two-needle telegraph are shown. On both instruments only two needles would be
deflected at a time. Together the two needles would point at the character or the code
being transmitted. A little later, Cooke and Wheatstone also developed transmission
codes for single-needle telegraphs that included a small number of control codes, such
as repeat and wait. The repeat code, for instance, was sent on a single-needle tele-
graph as a sequence of ten clicks of the needle to the right.

William Cooke made great efforts to sell his system to the railway companies in Eng-
land as a method for traffic control. In 1842, Cooke published an amusing booklet
with a long title ,4 which documents his lobbying. He was perhaps a little too
optimistic about the potential benefits:

‘‘... trains might proceed fearlessly, whether in time or out of time, whether on the
right or on the wrong line, as their speed could always be slackened soon enough to
avoid a collision.’’

The system was readily adopted and used on several lines of the Great Western
__________________
4. Telegraphic Railways or the single way recommended by safety, economy, and efficiency, under the safe-
guard and control of the electric telegraph — with particular reference to railway communication with
Scotland, and to Irish Railways. (Cooke [1842]).
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Railways in England. The first experiments showed that the operating expenses were
only one-tenth of those for optical telegraphs, and the transmission speeds were much
higher.

Unfortunately, one of the first applications of the electric telegraph was to protect
notoriously dangerous stretches of railroad, such as single-track lines and tunnels.
Many railway accidents from this period were caused by subtle misunderstandings
between the signalmen using the new equipment.

TRAIN CRASHES
The cause of a railway accident is usually investigated and documented in minute
detail, so there is no shortage of material on the early protocol design problems. A
single example may suffice to illustrate how major accidents could result merely from
an unexpected combination of events. To be sure, the accident to be described could
have been prevented if an adequate protocol had been used for the communication
between the signalmen.

Needle Telegraph
Signal Man
Semaphore

TunnelA B

Figure 1.5 — Clayton Tunnel
The accident occurred in the Clayton tunnel, which must have been one of the best
protected railway sections in England. On each end of the 1.5 mile long tunnel, 24
hours per day, signalmen were on duty. Furthermore, in 1841, the tunnel was
equipped with a new space-interval block-signaling system. There were semaphore
signals on each end of the tunnel, and the block-interval system guaranteed that any
train passing a green signal automatically set that signal to red. It was up to the sig-
nalmen to reset the signals to green, but before doing so they were required to make
certain that trains that had entered the tunnel on one side had indeed emerged again at
the other end.

There were two tracks through the tunnel: one for each direction. At all times, only
one train was allowed per track in the tunnel. As a further safety measure the tunnel
had been equipped with a single-needle telegraph. This system was set up for the
exchange of a small number of predefined messages between the signalmen on both
ends of the tunnel.

Typically, after allowing a train to enter one side of the tunnel, the signalman at that
side transmitted the code train in tunnel to his colleague. When (and if) the train
emerged from the tunnel at the other end, his colleague responded with the code
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tunnel is free. Upon the receipt of that message, the first signalman could reset the
entrance signal to allow the next train to enter.

To make the system foolproof, yet a third message code had been added with which a
signalman could ask his colleague: has the train left the tunnel? The presence of the
two signalmen guaranteed that the tunnel could be used safely even if, for any reason,
the semaphore signal on either side of the tunnel malfunctioned. If a semaphore
failed to show red after a train had passed, the signalman was warned by a bell. He
could then use red and white flags to signal trains and keep the traffic going.

Still, the protocol turned out to be incompletely specified. Here is what happened in
August 1861.

A first train passes semaphore A and fails to set the signal to red. As expected, the
bell warns the signalman at A (call him signalman A). He dutifully first transmits
the code train in tunnel to his colleague, and then fetches the red flag to warn the
next train.
A second train, however, is too fast, and has already passed the green signal. For-
tunately, its driver catches a glimpse of the red flag just in time as he enters the
tunnel. A third train is warned in time and comes to a full stop before the tunnel
entrance.
Signalman A returns to his box and again signals train in tunnel to indicate that
there are now two trains in the tunnel. The protocol did not account for this event
so the meaning of two subsequent train in tunnel messages had not been specified.
However, since it was unlikely that the second train could overtake the first one,
no real problem existed. The only problem for signalman A was to find out from
his colleague when both trains had left the tunnel, so that the third one could enter.
To alert his colleague to the problem, signalman A transmits the only other
appropriate message he has: has the train left the tunnel? At this point there is no
hope of recovery. Even if the signalman at B could understand precisely what the
problem was, he had no way of communicating this. After seeing the first train
emerge from the tunnel he responds, in full agreement with his instructions, tunnel
is clear.
Signalman A cannot know if he should wait for two subsequent tunnel is clear
messages or whether the message can be taken literally. He decides that both
trains must have left the tunnel and allows the third train to enter by waving a
white flag. The driver of the second train, though, had seen the red flag while
entering the tunnel and has come to a full stop in the middle of the tunnel. After
some deliberation the driver decides to play it safe and back out of the tunnel.
In the collision that followed 21 people died and 176 were injured.

It is hard to assess who would be to blame for this accident. Once, by a freak combi-
nation of events, it had become possible for the second train to enter the tunnel before
the first one had left it, there was no way to recover. The common sense of both the
signalmen and the driver of the second train could not prevent the accident. The set
of instructions given to the signalmen was incomplete. At the time, though, some
were more eager to blame the relatively new block signaling method or the telegraph
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instruments than the men who had drafted the operating procedures for the
signalmen’s interactions.

In the early days of the railways, many accidents and near accidents were the result of
an outright lack of means for communication. Later, when the right tools were avail-
able, it was discovered how surprisingly difficult it can be to establish unambiguous
rules for communication. A historian of railway disasters (Nock [1967]) described
the problem as follows, much in line with Polybius’ earlier observations:

‘‘One can almost hear the same comment being made time after time. ‘I could not
imagine that could ever happen.’ Yet bitter experience showed that it could, and
gradually the regulations and railway engineering practice were elaborated.’’

The problem was to design a practical, common sense set of rules that was efficient to
use under normal circumstances and that allowed for a safe recovery from unexpected
events.

1.2 THE FIRST NETWORKS
Though originally the electric telegraph was mostly used for railway signaling, it did
not take long before it became more generally available. In 1851 the stock exchanges
in London and Paris had been connected by telegraph, and the first public telegraph
companies were founded. By 1875 almost 200,000 miles of telegraph line were in
operation. At first, the telegraphs were operated with either needle instruments or
Morse signaling keys. The most frequently used signaling code was a modified
Morse code. The original Morse code used three signaling elements of varying dura-
tion: dots, dashes, and long dashes. The modern version was introduced in 1851,
using a variable length binary code of the two familiar signaling elements: dots and
dashes.

A first improvement made to this still manually operated system was the paper tape
punch reader. In 1858 Wheatstone built the Wheatstone Automatic, with which
transmission speeds of 300 words per minute could be achieved (about 30 bits/sec). It
was used until very recently. After 1920 special ‘‘tele-typewriter’’ keyboards and
printers were connected directly to the telegraph wires. The 5-bit code that was used
on these machines was developed by the Frenchman Emil Baudot in 1874. By 1925
complete ‘‘telex’’ (telegraph-exchange) networks were in operation.

In the same period, between 1850 and 1950, two other now familiar methods of com-
munication were developed: telephone and radio. Elisha Gray and Alexander Graham
Bell, for instance, filed their applications for a patent on the invention of the tele-
phone5 in 1876, and in 1897 Guiglielmo Marconi built and used the first radio tele-
graph.

__________________
5. Bell’s patent, in fact, did not mention the word ‘‘telephone’’ at all; it was titled Improvements in Telegra-
phy.
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MASTER-SLAVE PROTOCOLS
The demands for the thoroughness of new communication protocols increased
dramatically after 1950, when protocol execution was first automated on large main-
frame computers.

One of the earliest programmable computers, the ENIAC, was built at the University
of Pennsylvania in 1946. It weighed in at 30 tons. As we know, after the invention of
the transistor in 1947 by J. Bardeen, W.H. Brattain, and W. Shockley of AT&T Bell
Laboratories, subsequent systems quickly became both smaller and faster. Though
size is not really an issue in protocol design, speed is. Even today, it continues to
change the nature of the protocol design problem.

The first computers had to be connected to peripheral devices, such as paper tape
readers and teletype keyboards. Since computers were initially large, expensive, and
scarce, one single ‘‘intelligent’’ mainframe was often connected to large arrays of
‘‘dumb’’ peripherals.

P

T

T

MainframeT

Figure 1.6 — Master-Slave Protocols

At first, the peripherals were at fairly close range, say within the same room as the
mainframe computer, connected by multidrop lines. If there were no data to transfer
to the peripherals, the mainframe would ‘‘poll’’ the peripherals to see if any of them
had data to return or a status report to file.

Already in 1956 the first experiments took place with long-distance data transmission
from computer to computer across telephone wires, causing fundamentally different
types of control problems. Six years later the first data transmission via a satellite
(Telstar) took place.

The first data communications protocols run on computers were rather simple encod-
ings of the heuristics of manual operations. The procedures were used to solve a trad-
itional master-slave coordination problem. At all times one of the two parties
involved in the communication was in control and responsible for all data transfer,
recovery, synchronization, and connection management tasks. Many of the older pro-
tocols were designed with this concept in mind. IBM’s Bisync protocol, for example,
dates from this period. In the 1960s, with direct connections of mainframe computers
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via data networks, the protocol design problem became more important. The data
speeds were higher, the traffic load larger, and much of the convenience of master-
slave relations was lost. Mainframes were now talking directly to each other, con-
nected in networks of peers.

M

M

M

M

M

Figure 1.7 — Network of Peers

PEER PROTOCOLS
The first large-scale computer networks were the airline reservation systems from the
early 1960s. The SABRE system from American Airlines, for instance, was built in
1961. In 1969 a large general-purpose packet-switching network was developed,
sponsored by the U.S. Department of Defense. This ARPA (Advanced Research Pro-
jects Agency) network connected almost 1200 nodes by 1985. The Internet, a succes-
sor to the ARPA network, grew from about 25,000 nodes in 1987 to an estimated
250,000 nodes towards the end of 1989.

The number of private and public data networks is expected to continue to grow
rapidly. The technology available for the construction of these systems is often
sophisticated, at least as far as the hardware and the basic operating procedures are
concerned. Yet, though the systems may now operate with optical fibers and satellite
links, the problems that have to be solved to utilize a communication system effec-
tively are essentially the same as in the days of Polybius.

The protocol design problem is to establish agreement about the usage of shared
resources in a network of peers. It is not immediately clear which process is responsi-
ble for which task; those responsibilities may have to be negotiated. If more than one
process erroneously assumes responsibility for a task, havoc can result. The network
designers of the 1960s learned the hard way that very unlikely sequences of events
really do happen and can ruin the best design.

Entire networks can be paralyzed by faulty or incomplete protocols. Although a colli-
sion of two data streams on a satellite channel seems harmless compared to a head-on
collision of two trains, in both cases the damage can be substantial.
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1.3 PROTOCOLS AS LANGUAGES
The term protocol for a data communications procedure was first used by R.A. Scan-
tlebury and K.A. Bartlett at the National Physical Laboratory in England, in a
memorandum that was written in April 1967. The memorandum was titled A protocol
for use in the NPL data communications network.

We already know that a protocol is a kind of agreement about the exchange of infor-
mation in a distributed system. A full protocol definition, in fact, looks much like a
language definition.

It defines a precise format for valid messages, such as the dots and dashes that
make up the Morse code (a syntax).
It defines the procedure rules for the data exchange (a grammar).
And it defines a vocabulary of valid messages that can be exchanged, with their
meaning (semantics).

We will come up with a slightly extended definition of a protocol in the next chapter.
But note that the grammar of the protocol must be logically consistent and complete:
under all possible circumstances the rules should prescribe in unambiguous terms
what is allowed and what is forbidden. In practice, this is a difficult requirement to
meet.

Although protocols, in one form or another, have been used on long-distance com-
munication systems throughout history, until recently there was always a human
operator who could be relied upon to make common sense decisions to resolve unex-
pected problems. In the 5-bit telex-code there are even two special symbols to invoke
human action: the code 10010 means who is there?, and the code 11010 rings a
bell.

In using machines rather than human operators, we have the same communication and
coordination problems, but this time the errors can happen faster, and we can no
longer rely on human intervention to recover from the unexpected cases.

One important hidden requirement of protocol design is now obvious: not only should
there be rules for the exchange of information, there should also be an agreement
between the sender and the receiver about those rules. IBM’s Bisync protocol, for
instance, had been implemented on many different systems, and on each new system
it was embellished with the inevitable common sense of the implementer for shortcuts
and improvements. These slightly differing interpretations of the rules of the Bisync
protocol ruled out any hope that two arbitrarily chosen implementations of the same
protocol could really communicate. Instead of leading to stricter guidelines for the
design, specification, and implementation of protocols, this led to the institution of
international standardization bodies.
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1.4 PROTOCOL STANDARDIZATION
Many standardization bodies are active in the area of data communications. Exam-
ples are the National Institute of Science and Technology (NIST, formerly the
National Bureau of Standards or NBS), the Federal Telecommunications Standards
Committee (FTSC), and the Institute of Electrical and Electronics Engineers (IEEE).
The two most important standardization bodies in this area, however, are the ISO and
the CCITT.

The International Standards Organization (ISO) includes many national standards
bodies, such as the American National Standards Institute (ANSI). ANSI is
responsible for important standards such as the ASCII character code and the
RS232 interface definition. The ISO is organized in technical committees (TC),
each organized in subcommittees (SC), and working groups (WG). TC97, for
instance, is concerned with standards for computers, TC97/SC6 deals with
telecommunications, and TC97/SC6/WG1 works on standards for data link proto-
cols. The ASCII code is formally known as ISO standard 646. Unlike the
CCITT, the ISO is not a treaty organization and membership is voluntary.
The Comite ´ Consultatif International Te ´ le ´ graphique et Te ´ le ´ phonique (CCITT) is
part of the International Telecommunications Union (ITU). The CCITT is a U.N.
treaty organization that was formed in 1956 by the union of two separate entities:
the CCIT (telegraph systems) and the CCIF (telephone systems). Today it
includes many of the public telephone companies, such as the European PTTs and
America’s AT&T. The U.S. Department of State is also an official member of the
organization. The CCITT is organized in study groups (SG) and working parties
(WP). SGVII, for instance, is concerned with data communication networks, and
SGVII/WP2 works on network interfaces. The 5-bit telex code is officially known
as CCITT-Alphabet No. 2. The best known protocol recommendations published
by the CCITT are X.21 and X.25 (see also Chapter 2). X.21 has the dubious
honor (see Bibliographic Notes to Chapter 11) of being the first reference protocol
to be validated by exhaustive reachability analysis.

Another organization that does important work in this area, though it is not directly
involved with protocol standardization, is the International Federation for Information
Processing (IFIP). One of IFIP’s aims is to serve as a bridge organization that con-
nects the work performed in bodies such as the CCITT and the ISO. Like the ISO the
IFIP is organized in Technical Committees (TC), where each Technical Committee is
further subdivided into Working Groups (WG). TC6, for instance, is devoted to data
communications, and WG 6.1 studies Architecture and Protocols for Computer Net-
works. IFIP was established in 1960.

Of course, protocol standardization still does not solve the protocol design problem
itself. After all, what good is an international standard that is incomplete or even
faulty? The standardization bodies face the same problem as all other protocol
designers, and one can well say that ‘‘design by committee’’ does not always guaran-
tee the best results.

Before this problem can be solved, we will need convincing methods to design and
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describe protocols, and effective methods to check that any protocol submitted to a
standardization body is correct. Clearly, to design and describe a protocol we need to
be able to express its design criteria, and to verify a protocol effectively we need to be
able to check that its design criteria are met.

The problem to define a common format for the specification protocols in standardi-
zation documents has been studied for many years. Three protocol specification
languages have now been developed: SDL, Lotos, and Estelle. They are commonly
referred to as the three FDTs, or Formal Description Techniques.

The Specification and Description Language (SDL) was developed by study
groups SGXI and SGX of the CCITT. It is meant specifically for the specification
and design of telecommunications systems, such as telephone switches. The study
was started in 1968. A first version became CCITT Recommendation Z101-Z104
in 1976, and revised versions were published in 1982 and in 1985. A final, stable
version was approved in 1987. There are two, largely equivalent, variants of SDL
in use: a graphical form and a program form. The flow charting language used in
the first part of this book is loosely based on the graphical form (see Appendix B).
The Language of Temporal Ordering Specifications (Lotos) is being developed
within the ISO, TC97/SC21/WG1. Lotos is also called a ‘‘process algebra.’’ It is
based on the Calculus of Communicating Systems (CCS) developed by Robin
Milner at the University of Edinburgh. The main goal of the process algebras is
the formal specification of process behaviors on a high level of abstraction. The
algebras define a rigorous set of transformation rules and equivalence relations
that can allow a designer to reason formally about behaviors. Lotos was issued as
ISO international standard IS8807 in February 1989.
Estelle is a second formal description technique being developed within another
subgroup of ISO TC97/SC21/WG1. A total of three subgroups of WG1 studying
formal description techniques have been active since 1981. (The third subgroup
studies architectural methods.) The language Estelle is based on an extended fin-
ite state machine concept (see Chapter 8). It was issued as ISO international stan-
dard IS9074 in July 1989.

Lotos is the only FDT from this range that specifically also addresses the design prob-
lem. We can learn quite a lot from the experience gained here. None of the FDTs,
however, have addressed also the problem that complete designs must be verifiable at
the protocol specification level. We must be able to check, preferably with automated
tools, that a design meets its requirements. As it stands, verifiability cannot be
guaranteed for any of the FDTs. Both Lotos and SDL specifications, for instance, can
specify infinite systems, which renders many verification problems formally undecid-
able. There is an active area of research to develop tools for subsets of the languages,
but also here the problems to be solved are formidable.
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1.5 SUMMARY
Protocol design is not a new problem. It is as old as communication itself. Only
when the interpretation of the protocol rules had to be automated on high-speed
machines, was it discovered that protocol design in itself can be a challenging prob-
lem. The protocols being developed today are larger and more sophisticated than ever
before. They try to offer more functionality and reliability, but as a result they have
increased in size and in complexity. The problem that a designer now faces is funda-
mental: how to design large sets of rules for information exchange that are minimal,
logically consistent, complete, and efficiently implemented. The problem can be
approached from two sides.

Given a problem, how can a designer solve it systematically so that design
requirements are realized?
Given a protocol, how can an analyzer demonstrate convincingly that it conforms
to the correctness requirements?

In this book we study the fundamental problem of designing and analyzing protocols
that formalize interactions in distributed systems. Typically, these will be interactions
of computers, but they apply equally well to the interaction of people with torch tele-
graphs. The problem in all such systems is to come up with an unambiguous set of
rules that allows one to initiate, maintain, and complete information exchanges reli-
ably.

DESIGN DISCIPLINE
First we need to understand what the basic problems are, and we spend the first few
chapters studying that. Next, we need to establish a design discipline, a set of self-
imposed constraints that can help us avoid trouble. But that is not all. All freshly
designed protocols, no matter how disciplined their designers have been, must be
treated with suspicion.

Every protocol should be considered to be incorrect until the opposite is proven.

We will argue that to prove the correctness or incorrectness of protocols, a good set of
efficient and automated design tools is indispensable.

DESIGN TOOLS
Not even the best set of rules can prevent all errors. That is a simple fact of life. We
must require, however, that protocol rules always provide for a graceful recovery
from the errors that do occur. It is not good enough if the protocol rules allow for an
interpretation that prevents disaster in unexpected circumstances. We must require
that the rules preclude interpretations that may lead to disaster.

The design methods we develop in this book are based on the concept of a validation
model. A validation model expresses the essential characteristics of the protocol,
without going into the details of its implementation. Automated tools can interpret
these validation models and find the flaws in the design with relentless precision.

In the next chapters we begin exploring the general structure of communication proto-
cols and some of the basic issues involved in protocol design.
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EXERCISES

1-1. 1-1. The transmission code developed by Polybius for his torch telegraph divided the 24-letter
Greek alphabet into five groups. The first four groups had five letters each, and the fifth
group had the remaining four.
The telegraph worked with two groups of torches: one was used to encode the group
number, the other to transmit the character number within that group. Transmission took
place character by character, by raising and lowering torches in the two groups. There
were no codes for spaces to separate words, nor for any kind of punctuation. (Punctua-
tion was not used yet in written Greek either.) There was, however, one additional con-
trol message to signal the start of a message: two torches raised simultaneously (see the
quotation from Polybius on page 2).
What are the possible synchronization problems, in the absence of a proper agreement on
the order in which the torches in the two groups are to be lowered and raised?

1-2. 1-2. Estimate the transmission speed of the torch telegraph and compare it with Chappe’s sys-
tem. How long does it take to transmit the message ‘‘protocol failure?’’

1-3. 1-3. Polybius recommended the compaction of messages to reduce transmission time and thus
the number of errors. Comment on this discipline. Hint: consider the opposite technique
of increasing redundancy to protect against transmission and interpretation errors.

1-4. 1-4. If the signalmen at the Clayton tunnel had had the complete character set on their needle
telegraphs, consider how they could have used it to resolve the problem. The length of
the tunnel is 1.5 miles, the speed of the trains was approximately 45 miles per hour, and
the transmission speed of a needle telegraph is about 25 symbols per minute.
The problem for the signalmen was to establish the whereabouts of the second train. At
the crucial moment the second train was backing out of the tunnel to where the third train
was waiting. The signalman at A assumed that the second train had already left the tun-
nel; the signalman at B did not know that a second train was involved.

1-5. 1-5. Try to revise the protocol for the Clayton Tunnel to avoid completely the possibility of
the accident. Do not assume that the number of trains in the tunnel is always either zero
or one, and do not assume that trains always travel in one direction.

1-6. 1-6. The complete code for the needle telegraph had a repeat message that could be used to
request the retransmission of the last message sent by the other station. Consider what
would happen if this discipline was strictly enforced and the repeat message itself was
the last transmitted message of both stations.

1-7. 1-7. (Jon Bentley) If a telephone call is unexpectedly terminated, there is an informal ‘‘tele-
phone protocol’’ which says that the caller should redial the call. If the called party is
unaware of this protocol a curious problem results. A ‘‘Lover’s Paradox’’ prevents con-
tact from being made when both parties try to establish it simultaneously. What is the
protocol flaw? Assume the callers are machines, how could the machines be pro-
grammed to prevent the problem from repeating itself ad infinitem? What happens to
this protocol if both parties have a ‘‘call interrupt’’ feature (the ability to take an extra
call when already offhook)?

BIBLIOGRAPHIC NOTES
The French engineer Claude Chappe was born in Bru ˆ lon, France, in 1763. He origi-
nally joined a religious order as a monk, but in 1791 was forced to leave the order.
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Together with his brother Ignace he set up a shop to work on the telegraph. His only
publication was a short note on the optical telegraph from 1798 (Chappe [1798]). His
life is described in a book by his brother, published in 1824 (Chappe [1824]). Claude
Chappe committed suicide in 1805, supposedly when others claimed credit for his
inventions.

The shutter telegraph used in England was designed by Lord George Murray in 1794.
It is described in Reid [1886] and Michaelis [1965]. The system was in operation
until 1816. The Edelcrantz system, and its signaling code, is described in Edelcrantz
[1796]. Malmgren [1964] and Herbarth [1978] write that the optical system coexisted
with the first electric telegraphs for a period of about five years. Herbarth [1978]
includes a detailed history of the optical telegraph networks that were built in France,
Sweden, England, and Germany. A photo of the telegraph station in Furusund pro-
vided the logo for the 11th conference on Protocol Specification, Testing and Verifi-
cation, held in Stockholm in 1991.

The needle telegraphs of Cooke and Wheatstone were used for signaling on British
railways until well into the twentieth century. A description of the early telegraphs,
such as the one installed in the Clayton tunnel, can be found in Hubbard [1965], Mar-
land [1964], Michaelis [1965], Prescott [1877], and Bennet and Davey [1965]. Only
two of the five-needle telegraph instruments shown in Figure 1.4 were ever built. One
of these is now in the London Science Museum; the other is in the Berlin Postal
Museum.

It is still not uncommon, though less frequent, that railway signaling procedures are
revised after a major accident has demonstrated that unlikely events do occur in prac-
tice. The cause of even minor railway accidents is usually studied in great detail and
well documented; see for instance Nock [1967], Rolt [1976], Schneider and Mase
[1968], and Shaw [1978].

Much is also known about the sometimes elaborate drum signaling methods used by
African and Australian tribes and the smoke and fire signals of the American Indians.
Descriptions can be found in Mallery [1881] and Hodge [1910]. Hooke’s optical tele-
graph and the American ‘‘basket telegraph’’ are described in Still [1946].

The first use of the term ‘‘protocol’’ for data communications systems was attributed
to Scantlebury and Bartlett in Campbell-Kelly [1988]. He writes:

‘‘Bartlett’s recollection is that the term ‘procedure’ had been used up to that point but
was now objected to on the grounds that it had acquired a special meaning in the
ALGOL report.’’

The term became a permanent part of computer jargon when it was adopted in the
early 1970s by the developers of the ARPA network (Pouzin and Zimmerman
[1978]).

The specification language SDL is documented in CCITT [1988]; see also Saracco,
Smith, and Reed [1989], Rockstrom and Saracco [1982], and Saracco and Tilanus
[1987]. The construction of an automated validator for a subset of SDL is discussed
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in Holzmann and Patti [1989]. Excellent introductions to Lotos can be found in
Brinksma [1987, 1988], Bolognesi and Brinksma [1987], and Eijk, Vissers, and Diaz
[1989]. An overview of the calculus for communication systems CCS can be found in
Milner [1980].

For a different perspective of protocol standardization work and the development of
the three FDTs see also Bochmann [1986] and Vissers [1990]. Estelle is described in
Budkowski and Dembinski [1987].
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2.1 INTRODUCTION
In the first chapter we have seen some general examples of the protocol design prob-
lem. Having chosen a transmission medium, be it a torch telegraph or an optical fiber,
we have to write down a set of rules for its proper use, defining how messages are
encoded, how a transmission is initiated and terminated, and so on. Two types of
errors are hard to avoid: designing an incomplete set of rules, or designing rules that
are contradictory.

In this chapter we look at ways to make sure that the set of rules is both complete and
consistent. It requires us to be very precise in specifying all the relevant pieces of a
protocol. It also requires some discipline in separating orthogonal issues, using
modularity and structure.

Let us first look at the general types of services that a computer communications pro-
tocol must be able to provide. Assume we have two computers, A and B. A is con-
nected to a file store device d, and B connects to a printer p. We want to send a text
file from the file store at A to the printer at B.

pd A B

Figure 2.1 — File Server and Print Server

Obviously, to be able to communicate at all, the two machines must use the same phy-
sical wires, use compatible character encodings, and transmit and scan the signals on
the wires at roughly the same speed. But, assuming that those issues have been
resolved, there is still more to the problem than sending signals down a wire.

19



20 PROTOCOL STRUCTURE CHAPTER 2

A must be able to check whether or not the printer is available. It must be able to
adapt the rate at which it is sending the characters to the rate at which the printer can
handle them. Specifically, the machine must be able to suspend sending when the
printer runs out of paper or is switched off line.

It is important to note that, even though the actual data flow in only one direction,
from A to B, we need a two-way channel to exchange control information. The two
machines must have reached prior agreement on the meaning of control information
and on the procedures used to start, suspend, resume, and conclude transmissions. In
addition, if transmission errors are possible, control information must be exchanged to
guard the transfer of the data. Typical control messages, for instance, are positive and
negative acknowledgments that can be used by the receiver to let the sender know
whether or not the data were received intact.

All rules, formats, and procedures that have been agreed upon between A and B are
collectively called a protocol . In a way, the protocol formalizes the interaction by
standardizing the use of a communication channel. The protocol, then, can contain
agreements on the methods used for:

Initiation and termination of data exchanges
Synchronization of senders and receivers
Detection and correction of transmission errors
Formatting and encoding of data

Most of these issues can be defined on more than one level of abstraction (Figure 2.2).
At a low level of abstraction, for instance, any synchronization concerns apply to the
synchronization of the sender’s and receiver’s clock that is used to drive or to scan the
physical transmission line. At a higher level of abstraction, it is concerned with the
synchronization of message transfers (for example, in flow control and rate control
methods), and at a still higher level it deals with the synchronization and coordination
of the main protocol phases.

At the lowest level a format definition can consist of a method for encoding bits with
analog electrical signals. One level up, it may consist of methods for encoding the
individual characters of a transmission alphabet into bit patterns. Next, character
codes can be grouped into message fields, and message fields into frames or packets,
each with a specific meaning and structure.

The error control methods required in a protocol depend on the specific properties of
the transmission medium used. This medium may insert, delete, distort, or even
duplicate and reorder messages. Depending on the specific behavior, the protocol
designer can devise an error control strategy.

The protocol descriptions we have discussed so far have been fairly informal and frag-
mented. Unfortunately, this is not unusual. It is all too tempting to rely on the
goodwill and common sense of the reader (or implementer) to fill in the details that
have been omitted, to understand the hidden assumptions, and to disambiguate the
language. A first step towards more reliable protocol design is to formalize and to
structure the descriptions, to make explicit all assumptions.
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message fields

frames/packets

electrical signal

bits

symbols/characters

Figure 2.2 — Sample Levels of Abstraction: Formatting
In the next section we begin this process by considering what the essential elements in
a protocol definition are.

2.2 THE FIVE ELEMENTS OF A PROTOCOL
A protocol specification consists of five distinct parts. To be complete, each specifi-
cation should include explicitly:

1. The service to be provided by the protocol
2. The assumptions about the environment in which the protocol is executed
3. The vocabulary of messages used to implement the protocol
4. The encoding (format) of each message in the vocabulary
5. The procedure rules guarding the consistency of message exchanges

The fifth element of a protocol specification is the most difficult to design and also
the hardest to verify. The larger part of this book is therefore devoted to precisely that
topic: the design and validation of unambiguous sets of procedure rules.

Each part of the protocol specification can define a hierarchy of elements. The proto-
col vocabulary, for example, can consist of a hierarchy of message classes. Similarly,
the format definition can specify how higher-level messages are constructed from
lower-level message elements, and so on.

As noted in Chapter 1, a protocol definition can be compared to a language definition:
it contains a vocabulary and a syntax definition (i.e., the protocol format); the
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procedure rules collectively define a grammar; and the service specification defines
the semantics of the language.

There are some special requirements we have to impose on this language. Like any
computer language the protocol language must be unambiguous . Unlike most pro-
gramming languages, however, the protocol language specifies the behavior of con-
currently executing processes. This concurrency creates a new class of subtle prob-
lems. We have to deal with, for example, timing , race conditions , and possible
deadlocks. Since the precise sequence of events cannot always be predicted, the
number of possible orderings of events can be so overwhelming that it defeats any
attempt to analyze the protocol by simple manual case analysis.

The next section gives an informal example of the definition of the five protocol ele-
ments, and the types of errors that can linger in a design. Following that, we consider
each of the five main protocol elements in more detail. The chapter is concluded with
a discussion of protocol design techniques that can help to structure a design, so that it
ultimately can be implemented efficiently and proven correct with automated tools.

2.3 AN EXAMPLE
The following protocol was described by W.C. Lynch [1968] as

‘‘... a reasonable looking but inadequate scheme published by one of the major
computer manufacturers in a system information manual.’’

We discuss this protocol here to see how we can identify the basic building blocks in
a specification discussed above. Let us first consider the service specification.

SERVICE SPECIFICATION
The purpose of the protocol is to transfer text files as sequences of characters across a
telephone line while protecting against transmission errors, assuming that all
transmission errors can in fact be detected. The protocol is defined for full-duplex file
transfer, that is, it should allow for transfers in two directions simultaneously (see also
Appendix A). Positive and negative acknowledgments for traffic from A to B are sent
on the channel from B to A , and vice versa. Every message contains two parts: a mes-
sage part, and a control part that applies to traffic on the reverse channel.

ASSUMPTIONS ABOUT THE ENVIRONMENT
The ‘‘environment’’ in which the protocol is to be executed consists minimally of two
users of the file transfer service and a transmission channel. The users can be
assumed to simply submit a request for file transfer and await its completion. The
transmission channel is assumed to cause arbitrary message distortions, but not to
lose, duplicate, insert, or reorder messages. We will assume here that a lower-level
module (see Chapter 3) is used to catch all distortions and change them into undis-
torted messages of type err.
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PROTOCOL VOCABULARY
The protocol vocabulary defines three distinct types of messages: ack for a message
combined with a positive acknowledgment, nak for a message combined with a nega-
tive acknowledgment, and err for a message with a transmission error. The vocabu-
lary can be succinctly expressed as a set:

V = { ack, err, nak }.
Each message type can further be refined into a class of lower-level messages, con-
sisting for instance of one sub-type for each character code to be transmitted.

MESSAGE FORMAT
Each message consists of a control field identifying the message type and a data field
with the character code. For the example we assume that the data and control fields
are of a fixed size.

The general form of each message can now be represented symbolically as a simple
structure of two fields:

{ control tag, data }
which in a C-like specification may be specified in more detail as follows:

enum control { ack, nak, err };

struct message {
enum control tag;
unsigned char data;

};

The line starting with the keyword enum declares an enumeration type named
control with three possible values: one for each message type used. The message
structure itself contains two fields: a tag of type control, and a data field declared
as an unsigned character (one byte).

PROCEDURE RULES
The procedure rules for the protocol were informally described as follows:

‘‘1. If the previous reception was error-free, the next message on the reverse channel
will carry a positive acknowledgment; if the reception was in error it will carry a
negative acknowledgment.’’
‘‘2. If the previous reception carried a negative acknowledgment, or the previous
reception was in error, retransmit the old message; otherwise fetch a new message for
transmission.’’

To formalize these rules, we can use state transition diagrams, flow charts, algebraic
expressions, or program-form descriptions. In Chapters 5 and 6 we develop a new
language to describe procedure rules like these in protocol validation models. For the
time being, though, we can use simple flow charts, such as the one shown in Figure
2.3. An overview of the flow chart language is given in Appendix B.
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ack:o ack:o

Figure 2.3 — Lynch’s Protocol

The box labeled receive symbolizes a state in which the reception of a new message
from the channel is awaited. Depending on the type of message received, one of three
execution paths is then chosen. The dented box represents the recognition of a mes-
sage of the type that matches its label. The pointed box indicates the transmission of
a message with the corresponding type.

The box labeled next:o indicates an internal action to obtain the next data item (char-
acter) to be transferred. The data item is stored in variable o, which is used in the out-
put operations. For instance, ack:o sends data item o with a positive acknowledgment
of the last received message. Incoming data is stored in variable i.

As we might expect, there are some problems with this description that need to be
considered.

DESIGN FLAWS
First we have the problem that data transfer in one direction can only continue if data
transfer in the other direction also takes place. We could try to overcome this prob-
lem by having the processes use filler messages whenever no real data are to be
transferred.

Another problem that has to be solved before the protocol can be used is to decide
how a data transmission is to be initiated or concluded. The two procedure rules
specify normal data transfer, but not the setup and termination procedures.
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We can try to initiate the data transfer by having one of the two processes send a fake
error message. Note that if both parties are allowed to initiate the protocol in this
way, it is hard to bring the two processes into phase. To terminate the transfer when
the processes have ended up exchanging filler messages, however, requires extra con-
trol messages.

A more important deficiency of the protocol is that an essential operation has been
omitted from the specification. The receiver has to be able to decide whether or not a
data item that was received correctly, and temporarily stored in variable i, is to be
accepted (and, for instance, saved in a file). Correctly received duplicates of previ-
ously received messages should, of course, not be accepted again. This problem
seems to have no solution if we are to maintain the two procedure rules listed above.

Consider what can happen if every correctly received message is accepted, that is,
data appended to ack and nak messages is accepted, but data appended to err mes-
sages is not. The extension looks plausible enough but unfortunately does not solve
the problem. The following execution sequence, for instance, leads to the acceptance
of a duplicate message. First, process A initiates the transfer by sending a deliberate
error message to B . Assume that A attempts to transmit the characters a to z, and that
B responds by transmitting the characters in the reverse order, from z to a. Consider
then the sequence of events shown in the time sequence diagram of Figure 2.4. The
two solid lines in the figure track the executions of the two processes. The dotted
lines show successful message transfers. The dashed lines show message transfers
that are distorted by the channel. Two messages are distorted in this manner: a posi-
tive acknowledgment from A to B and a negative acknowledgment from B to A.

A

next

accept ’z’

accept ’z’
next

B
err. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nak ’z’ ...............................

ack ’a’ → err

nak ’z’ → err

nak ’a’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ack ’z’ ...............................

ack ’b’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

next

accept ’a’

Figure 2.4 — Time Sequence Diagram

At the end of the sequence, when A receives the last message from B , it cannot tell
whether the message is new or an old duplicate. The nak message that contained this
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information was corrupted. In the example sequence, A erroneously accepts the mes-
sage.

It must be noted that, even though the protocol is simple, it is disproportionately hard
to discover the error. To assume that the error, if overlooked in the design phase, will
sooner or later reveal itself in practice would be naive. The error only occurs in the
rare event that two transmission errors occur in sequence. As Lynch observed:

‘‘Such errors, while rare, do occur, and their rareness will make it extremely difficult
to catch the flaw in the system. This inadequate scheme will work ‘almost’ all of the
time.’’

The example protocol is simple. The informal description is convincing, and based
on that description alone few would doubt the protocol’s correctness. Yet the
specification is incomplete, and any straightforward implementation allows subtle
errors during the exchange of the data. If anything, this example should convince us
that, even for the simplest of protocols, a good design discipline and effective analyti-
cal tools are indispensable.

In the next sections we return to the five elements of a protocol specification defined
in Section 2.2, and consider the corresponding structuring methods and design criteria
that we could use. First, in Section 2.4, we consider the structuring of service
specifications and the explicit assumptions that must be made about a protocol’s
environment. In Section 2.5, we look at the protocol vocabulary and data format, and
in Section 2.6 we talk in more detail about the issues involved in the design of proto-
col procedure rules.

2.4 SERVICE AND ENVIRONMENT
To accomplish a higher-level task like file transfer, a protocol must perform a range of
lower-level functions such as synchronization and error recovery. The specific reali-
zation of a service depends on the assumptions that are made about the environment
in which the protocol is to be executed. Error recovery, for instance, should correct
for the assumed behavior of the transmission medium. Particulars on the types of
assumptions one can make about transmission channels are given in Appendix A and
in Chapter 3. Here we concentrate on the structure of service specifications proper.

Common sense tells us that if a problem is too large to solve we must partition it into
subproblems that are either easier to solve or that have been solved before. Software,
and in particular protocol software, is then most conveniently structured in layers.
More abstract functions are defined and implemented in terms of lower-level con-
structs, where each layer hides certain undesirable properties of the communication
channel and transforms it into a more idealized medium.

As an example, assume we want to implement a data transmission protocol that pro-
vides for the encoding of characters into tuples of 7 bits each, and for some rudimen-
tary error detection scheme to protect the bytes against transmission errors, for
instance by the addition of one parity bit to each 7-bit byte. This protocol then pro-
vides two services: encoding and error detection. We can separate these two services
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into two functional submodules, an encoder and a parity module, and invoke them
sequentially. At the other end of the line, there will be a decoder and a parity checker.
For full-duplex transmission, we can conveniently combine the function of the
encoder and decoder into one module, say P 2 , and similarly we can combine the par-
ity adder and checker into a single module P 1 .

P 2 P 1 P 1 P 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
..
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .....................

Figure 2.5 — Building a Virtual Channel

Figure 2.5 illustrates the principle. The channel (the dashed line) is wrapped in two
layers. In effect, each layer provides a different service and implements a separate
protocol. The first layer implements the P 1 protocol; the second layer implements the
P 2 protocol. The data format of the P 2 protocol is a 7-bit byte. The data format of
the P 1 protocol is an 8-bit byte.

The P 2 protocol does not see and does not know about the eighth bit that is added to
its bytes. The only thing it cares about is that the channel its 7-bit bytes travel on is
more reliable than the raw channel at the lower level. The P 1 protocol provides a vir-
tual channel for the P 2 protocol, but is transparent to the P 2 protocol. The two key-
words are transparent and virtual. ‘‘Transparent’’ is something that exists but seems
not to. ‘‘Virtual’’ is something that seems to exist but does not.

To the P 1 protocol, any data format that is enforced by the P 2 protocol is invisible
(transparent). As far as P 1 is concerned, it is an uninterpreted sequence of data, of
which only the length is known. Similarly, neither the P 2 nor the P 1 protocol layer
knows anything about the format imposed by possible higher layers in the hierarchy
(e.g., a P 0 layer), or lower layers (e.g., P 3).

P n P 2 P 1 P 0 P 1 P 2 P n

n-th level envelope
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.6 — Data Envelopes

As shown in Figure 2.6, each layer can enclose the data to be transmitted in a new
data envelope, consisting of a header and/or trailer, before passing it to the next layer.
The original data format from the upper layers need not even be preserved by the
lower layers. The data may well be divided up differently, in larger or in smaller por-
tions, as long as the original format can be restored by the receiving protocol module.

The principle of hierarchical design is well-known in sequential programming, but is
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relatively new for distributed systems. The advantages are clear:
A layered design helps to indicate the logical structure of the protocol by separat-
ing higher-level tasks from lower-level details.
When the protocol must be extended or changed, it is easier to replace a module
than it is to rewrite the whole protocol.

In 1980 the International Standards Organization (ISO) recognized the advantages of
standardizing a hierarchy of protocol services as a reference model for protocol
designers. The ISO recommendation defines seven layers, as illustrated in Figure 2.7.
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Figure 2.7 — ISO Reference Model for Open Systems Interconnection
The layers are listed below with a short descriptive phrase explaining their place in
the hierarchy.

1. Physical layer: transmission of bits over a physical circuit
2. Data link layer: error detection and recovery
3. Network layer: transparent data transfer and routing
4. Transport layer: user to user higher-level data transfer
5. Session layer: coordination of interactions in user sessions
6. Presentation layer: interpretation of user-level syntax

for instance for encryption or compression of data
7. Application layer: entry point for application processes

such as electronic mail or file transfer demons
The first layer contains all protocol functions that apply to the actual transmission of
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bits over a physical connection. It specifies, for instance, whether a connection is a
copper wire, a coaxial cable, a radio channel, or an optical fiber. The physical
medium could be a point-to-point channel, dedicated to communication between two
specific machines, or it could be a shared broadcast channel, such as the University of
Hawaii’s Aloha network, or an Ethernet link. All relevant properties of raw data
channels and of the modems that are used to drive them (see Appendix A) are defined
here. The first layer also defines the encoding of bits in, for instance, electrical, opti-
cal, or radio signals. It also defines and standardizes the mechanical requirements of
cables, switches, and connectors, including pin assignments and the like. The physi-
cal layer protocols hide all these details from the subsequent layers and transform the
physical line into a rudimentary data link.

The next three layers are the most important ones. Their relative function is illus-
trated in Figure 2.8. The boxes represent network nodes or hosts, the circles represent
user-level processes executing at these hosts, and the lines represent the logical con-
nections viewed at three different levels of abstraction.

The data link layer uses the service provided by the physical layer and transforms a
raw data link into a reliable one by adding error handling. It connects two hosts, pos-
sibly but not necessarily hosts that function as nodes in a network (see Figure 2.8). It
transmits the data in blocks (frames) and can provide for the multiplexing of indepen-
dent data streams over a single data link. It may provide a flow control service to
guarantee that frames can only be received from the link in the precise order in which
they were sent, despite channel errors. Protocols that operate on the data link level are
known as link-level protocols.

The network layer takes care of typical network functions, such as the addressing and
routing of messages. It can try to avoid bottlenecks in the network by using adaptive
routing schemes, or it can try to reduce congestion in the network with rate control
methods. The network layer provides the means to set up and release network con-
nections, potentially spanning multiple data links, or hops, through the network, e.g.,
from node A to node B in Figure 2.8.

q p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B A

Transport Layer

Network Layer

Data Link Layer

Figure 2.8 — Relative Function of Three Layers

The transport layer connects user-level processes, such as p and q in Figure 2.8,
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transparently through a network. Network and transport layer protocols are some-
times called end-to-end protocols, and data link protocols are called hop-by-hop.
Either the network or the transport layer may provide a flow control service, which is
now called end-to-end, instead of the hop-by-hop flow control that can be imple-
mented at the data link layer. It can, in fact, make quite a difference which of these
two types of flow control is used (see Chapter 4, Rate Control).

Each layer in the hierarchy defines a distinct service and implements a different proto-
col. The format used by any specific layer is largely independent of the formats used
by the other layers. The network layer, for instance, sends data packets, the data link
layer casts them into frames, and the physical layer translates them into byte or bit
streams. The receiver decodes the raw data on layer 1, interprets and deletes the
frame structure on layer 2, so that layer 3 can again recognize the packet structure.
The format enforced by the lower layers is transparent to the higher layers.

Officially the model sketched above is called the ISO Reference Model of Open Sys-
tems Interconnection. It has, however, quickly become known as ISO’s OSI model.

The first layers of the OSI model are the most frequently used. A layer 1 protocol was
standardized by the CCITT1 as Recommendation X.21. The recommendation for the
second layer is largely based on the HDLC protocol we mentioned earlier (see Section
2.5, Bit Stuffing). The first three OSI layers together are defined in CCITT Recom-
mendation X.25. The X.25 protocol defines the interaction of a computer, or DTE for
data terminal equipment in CCITT terminology, and a network link, or DCE for data
circuit terminating equipment. Computer-to-computer interaction is not defined until
the fourth layer in the OSI reference model: the transport layer. A well-known tran-
sport layer protocol is the Transmission Control Protocol (TCP) that was standardized
by the U.S. Department of Defense. The corresponding network layer protocol is
called the Internet Protocol (IP).

__________________
1. Comite ´ Consultatif International Te ´ le ´ graphique et Te ´ le ´ phonique.
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Figure 2.9 — Protocol Layering

The precise functions performed on each layer of the OSI model and the definition of
the X.25 protocol are of little interest to us here (see Bibliographic Notes). More
important is the structuring method itself. Software layering is a design principle that
can be powerful when used properly, but it defeats its purpose when carried to
extremes.

A layer defines a level of abstraction in the protocol, grouping closely related
functions and separating them from orthogonal ones. By decoupling layers, future
changes made in one layer need not affect the design of the other layers. The
correct choice of the required levels of abstraction necessarily depend on the
specific protocol being designed.
An interface separates distinct levels of abstraction. A correctly placed interface is
small and well-defined. A badly placed interface causes unnecessary complexity,
it causes code duplication, and it may degrade performance.

Figure 2.9 illustrates the main concepts of a layering technique. The protocol func-
tions on the N-th layer form a logical entity. In the model they are referred to as peer
entities. By convention the vertical boundary between two adjacent layers is called an
interface, and the horizontal boundary between two entities in different systems is
called a peer protocol. Since the local implementation details of the layer interfaces
can easily be hidden from the environment, only the peer protocols must be standard-
ized among systems.

The interface between two adjacent layers is defined as a collection of service access
points implemented by the lower layer and available to the higher layer. The informa-
tion to be exchanged is formatted incrementally by the various layers in data units or
data envelopes. In sequence, the information is passed from the sender down from
the highest layer used, to the physical layer, transmitted via the actual physical circuit
from system to system, and interpreted step by step while being passed up the proto-
col hierarchy again to the highest layer used by the receiver.
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In this framework, we can recognize the first two elements of the five-part protocol
specification discussed in this section

the service to be provided by the protocol, and
the assumptions made about its environment

as formal specifications of the upper and lower interface of a given protocol layer.
The service is provided to the upper layer protocols, or to the user at the top layer.
The assumptions made are assumptions about the services provided by the lower layer
protocols. At the lowest protocol layer these assumptions concern the bare service
provided by the physical transmission medium, i.e., an optical fiber, a copper wire, or
a torch telegraph.

The protocol hierarchy is an excellent example of the application of design discipline.
Design issues are separated from one another and solved independently. The prob-
lems of error control, error recovery, addressing and routing, flow control, data
encryption etc., can be solved step by step in a disciplined manner. From a designer’s
point of view, though, it is not predetermined that every design problem is always
best subdivided as suggested in Figure 2.7. The specifics of the protocol system and
the environment in which it is executed determine how a design problem can best be
decomposed into smaller problems.

2.5 VOCABULARY AND FORMAT
We first look, on a fairly low level of abstraction, at some protocol formatting
methods. These formats must underly all higher-level structures, for example, the
structures that are used to encode the protocol message vocabulary. The three main
formatting methods are:

Bit oriented
Character oriented
Byte-count oriented

BIT ORIENTED
A bit-oriented protocol transmits data as a stream of bits. To allow a receiver to
recognize where a message (a frame) starts and ends in the bit stream, a small set of
unique bit patterns, or flags, is used. Of course, these bit patterns can be part of the
user data too, so something has to be done to ensure that they are always interpreted
properly. If a framing flag, for instance, is defined as a series of six one bits enclosed
in zeros, 01111110, series of six adjacent ones in the user data must be intercepted.
This can be done by inserting an extra zero after every series of five ones in the user
data.
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Figure 2.10 — Bit Stuffing

The receiver can now correctly detect the structure enforced by the flags in the bit
stream by inspecting the first bit after every series of five ones: if it is a zero it must be
deleted, else the pattern being scanned must be part of a true frame delimiter. This bit
stuffing technique is used in ISO’s layer 2 protocol (see Section 2.6) for High Level
Data Link Control, HDLC, which is in turn based on IBM’s Synchronous Data Link
Control protocol, SDLC. Once the basic low-level flag structure is in place, it can be
used to support higher-level structures.

CHARACTER ORIENTED
In a character-oriented protocol some minimal structure is enforced on the bit stream.
If the number of bits per character is fixed to n bits (typically 7 or 8), all communica-
tion takes place in multiples of n bits. These data units are then used to encode both
user data and control codes. Examples of control codes are the ASCII2 start of text
STX and end of text ETX messages that can serve as delimiters and can be used to
enclose the user data.
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delimiter delimiter user data

STX, DLE, STX, ETX, ... ETX STX
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Figure 2.11 — Character Stuffing

Again, if raw data are transmitted (for example, binary object code), care must be
taken that the delimiters do not accidentally occur in the user data. In IBM’s Bisync
protocol, for instance, every control character, such as STX and ETX, is preceded by
an extra code, the data link escape character DLE. If any control message, such as
STX, ETX, or even DLE itself, happens to occur literally in the user data, it is preceded
by an extra DLE character. The DLE code is interpreted by the receiver as a control
code that turns off any special meaning of the first character that follows it. The
receiver deletes the first DLE code that it sees in the character stream, and passes on
the following character uninterpreted. Only if the special meaning of an STX or ETX
code is not suppressed by a preceding DLE character is it interpreted as a delimiter.
__________________
2. American Standard Code for Information Interchange.
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The technique is called character stuffing.

Figure 2.11 shows where the DLE codes would be inserted in a stream that consists of
four subsequent control characters in the user data.

BYTE-COUNT ORIENTED
The flags of a bit-oriented protocol and the control characters of a character-oriented
protocol are used to structure a raw data stream into larger fragments. One reason for
such structuring is to indicate to a receiver where a data stream begins and ends. In
byte-count oriented protocols a slightly different method is chosen. In a known place
after the STX control message, the sender includes the precise number of bytes (char-
acters) that the message contains. An ETX message is now superfluous, and tech-
niques such as bit stuffing or character stuffing are no longer needed. Most protocols
in use today are of this type. A specific example is DEC’s Digital Data Communica-
tion Message Protocol, DDCMP.

HEADERS AND TRAILERS
With the basic structuring methods we have discussed above, more systematic
higher-level data formatting methods can be built. So far we have silently assumed
the absence of transmission errors. If a byte-count field is distorted, or a DLE charac-
ter is lost, these techniques fail. In the absence of an error detection and error
recovery strategy, therefore, the techniques are of little use.

As we will see in more detail in Chapter 3, error detection schemes require transmis-
sion of redundant information, typically in the form of a checksum. If flow control
techniques are added, for instance to detect loss or reordering of text frames, a
sequence number field is appended. If more than one type of message is used we
further have to include an indication of the type of message being transferred. And
then, if we are transmitting redundant information anyway we might as well add other
potentially useful data such as the name of the sender or the priority of the message.

All this overhead is most conveniently grouped into separate structures that encapsu-
late the user data: a mere STX control message thus expands into a header structure,
and similarly the simple ETX grows into a composite message trailer.

For obvious reasons, byte counts are typically placed in message headers and check-
sums are placed in the trailer. The message format may then be defined as an ordered
set of three elements:

format = { header, data, trailer }.
The header and trailer again define ordered subsets of control fields, which may be
defined as follows:

header = { type, destination, sequence number, count },
trailer = { checksum, return address }.

The length of the data field is defined by the last field in the header. The destination
and the return address can again be defined by substructures.
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Figure 2.12 — Message Format
The type field can be used to identify the messages that make up the protocol vocabu-
lary. Depending on the particular structure of the protocol vocabulary, this field can
be refined still further.

2.6 PROCEDURE RULES
Up to this point, we have stressed the similarity of the protocol design task and nor-
mal software development. It is time to look at one of the differences. An important
aspect of the protocol design problem is that the procedure rules are interpreted con-
currently by a number of interacting processes. The effect of each new rule we add to
the set is often much larger than can be foreseen. Many different interleavings in time
of the interpretation of these rules by the various processes will be possible. Precisely
because of this concurrency a protocol behavior is not always reproducible. To con-
vince ourselves of the correctness of a design we need something better than informal
reasoning. The most popular tool for reasoning about protocols, unfortunately, is the
time sequence diagram, like the one used in Figure 2.4. To be sure, the time sequence
diagram is convenient for reporting a single known error. But it is woefully inade-
quate for reasoning about the working of a protocol in general. To allow this we
must, at least, be able to express behavior unambiguously in a convenient formal
notation. Transition tables, or formal finite state machines (see Chapter 8), for
instance, can be used for this purpose. In addition, we must be able to express arbi-
trary correctness requirements on the behaviors that we specify (see Chapters 5 and
6).

There is no general methodology that can guarantee a priori the design of an unambi-
guous set of procedure rules (we discuss this in more detail in Chapter 10). There are,
however, tools with which we can, even automatically, verify the logical consistency
of the rules (see Chapter 11) and the observance of the correctness requirements.
And, of course, there is common sense and plain good engineering practice that can
help us to keep the protocol rules manageable. We look at some of those issues in the
next section.

2.7 STRUCTURED PROTOCOL DESIGN
Protocol design touches on a broad range of issues. Some of these issues are well
understood; others we are only beginning to understand. Protocol design is partly an
engineering problem that can be addressed by the application of well-known tech-
niques. At the physical layer of the ISO hierarchy, for instance, we know precisely
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what the characteristic behaviors of different types of information carriers are, how
fast we can transmit data on them and what the resulting average bit error rate will be.

There are various techniques for encoding binary data into the analog signals that can
be carried by the various media, and there are well-known techniques for synchroniz-
ing transmitters and receivers at this level. We do not have to reinvent and revalidate
those techniques for each new protocol, and indeed they can be considered so stan-
dard that we need not discuss them in this book. For the interested reader, the details
are included in Appendix A.

Much higher up in the protocol hierarchy, we face problems of network design: rout-
ing data through networks, the precise dimensioning of network structures, the inter-
connection of multiple networks with gateways, and the development of higher-level
disciplines for congestion control and congestion avoidance. In between this high
level network view and the low level view of transmission codes and data carriers
there is a large unknown territory, where there are few techniques that can help us
through the design process. There is still a range of well-known error control and
flow control techniques that can be used to build reliable data links, but this is only
where real protocol design problem begins: the actual problem of devising unambigu-
ous and complete sets of rules for the exchange of information in a distributed system.

Before this ‘‘gray area’’ of protocol design can become a true engineering discipline,
it has to be established what the principal design tools are, what rules are to be fol-
lowed, and what mistakes are to be avoided.

The development of a new engineering discipline often happens in two phases. In the
first phase, the new technology is explored, and the designers seek tools that restrict
them as little as possible in their exploration of its possibilities. If difficulties are
encountered the capability of the tools is expanded to allow the user to cope with the
growing set of problems. The trend in this first phase, then, is to remove constraints
rather than to impose them.

In the second phase, after a better understanding of the nature of the problems
develops, a new set of tools appears. These tools deliberately impose a carefully
selected set of constraints upon the user. These constraints are meant to enforce a
design discipline that is based upon the history of mistakes, collectively called
‘‘experience,’’ from the first development phase. In protocol design we are still wait-
ing to make the transition to the second phase of development. Below we discuss
some central concepts in the new design discipline for protocols that is emerging.

A designer will adhere to the discipline only if in return, provably and reproducibly, a
more reliable product can be obtained. Below we give an overview of what is likely
to become part of a general set of principles of sound design, which will allow us to
enter the second phase of development in the field of protocol engineering. It is
important to recognize that all these notes are variations on two common themes: sim-
plicity and modularity.
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SIMPLICITY — THE CASE FOR LIGHT-WEIGHT PROTOCOLS
A well-structured protocol can be built from a small number of well-designed and
well-understood pieces. Each piece performs one function and performs it well. To
understand the working of the protocol it should suffice to understand the working of
the pieces from which it is constructed and the way in which they interact. Protocols
that are designed in this way are easier to understand and easier to implement
efficiently, and they are more likely to be verifiable and maintainable. A light-weight
protocol is simple, robust, and efficient. The case for light-weight protocols directly
supports the argument that efficiency and verifiability are not orthogonal, but comple-
mentary concerns.

MODULARITY — A HIERARCHY OF FUNCTIONS
A protocol that performs a complex function can be built from smaller pieces that
interact in a well-defined and simple way. Each smaller piece is a light-weight proto-
col that can be separately developed, verified, implemented, and maintained. Orthog-
onal functions are not mixed; they are designed as independent entities. The indivi-
dual modules make no assumptions about each other’s working, or even presence.
Error control and flow control, for instance, are orthogonal functions. They are best
solved by separate light-weight modules that are completely unaware of each other’s
existence. They make no assumptions about the data stream other than what is strictly
necessary to perform their function. An error-correction scheme should make no
assumptions about the operating system, physical addresses, data encoding methods,
line speeds, or time of day. Those concerns, should they exist, are placed in other
modules, specifically optimized for that purpose. The resulting protocol structure is
open, extendible, and rearrangeable without affecting the proper working of the indi-
vidual components.

WELL-FORMED PROTOCOLS
A well-formed protocol is not over-specified, that is, it does not contain any unreach-
able or unexecutable code. A well-formed protocol is also not under-specified or
incomplete. An incompletely specified protocol, for instance, may cause unspecified
receptions during its execution. An unspecified reception occurs if a message arrives
when the receiver does not expect it or cannot respond to it.

A well-formed protocol is bounded: it cannot overflow known system limits, such as
the limited capacity of message queues.

A well-formed protocol is self-stabilizing. If a transient error arbitrarily changes the
protocol state, a self-stabilizing protocol always returns to a desirable state within a
finite number of transitions, and resumes normal operation. Similarly, if such a proto-
col is started in an arbitrary system state, it always reaches one of the intended states
within finite time.

A well-formed protocol, finally, is self-adapting. It can adapt, for instance, the rate at
which data are sent to the rate at which the data links can transfer them, and to the rate
at which the receiver can consume them. A rate control method, for instance, can be
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used to change either the speed of a data transmission or its volume.

ROBUSTNESS
As Polybius (Chapter 1) noted,

‘‘it is chiefly unexpected occurrences which require instant consideration and help.’’

It is not difficult to design protocols that work under normal circumstances. It is the
unexpected that challenges them. It means that the protocol must be prepared to deal
appropriately with every feasible action and with every possible sequence of actions
under all possible conditions. The protocol should make only minimal assumptions
about its environment to avoid dependencies on particular features that could change.
Many link-level protocols that were designed in the 1970s, for instance, no longer
work properly if they are used on very high speed data lines (in the Gigabits/sec
range). A robust design automatically scales up with new technology, without requir-
ing fundamental changes. The best form of robustness, then, is not over-design by
adding functionality for anticipated new conditions, but minimal design by removing
non-essential assumptions that could prevent adaption to unanticipated conditions.

CONSISTENCY
There are some standard and dreaded ways in which protocols can fail. We list three
of the more important ones.

Deadlocks — states in which no further protocol execution is possible, for
instance because all protocol processes are waiting for conditions that can never
be fulfilled.
Livelocks — execution sequences that can be repeated indefinitely often without
ever making effective progress.
Improper terminations — the completion of a protocol execution without satisfy-
ing the proper termination conditions.

In general, the observance of these criteria cannot be verified by a manual inspection
of the protocol specification. More powerful tools are needed to prevent or detect
them. Such tools are discussed in Part III.

2.8 TEN RULES OF DESIGN
The principles discussed above lead to ten basic rules of protocol design.
1. Make sure that the problem is well-defined. All design criteria, requirements and

constraints, should be enumerated before a design is started.
2. Define the service to be performed at every level of abstraction before deciding

which structures should be used to realize these services (what comes before how).
3. Design external functionality before internal functionality. First consider the

solution as a black-box and decide how it should interact with its environment.
Then decide how the black-box can internally be organized. Likely it consists of
smaller black-boxes that can be refined in a similar fashion.

4. Keep it simple. Fancy protocols are buggier than simple ones; they are harder to
implement, harder to verify, and often less efficient. There are few truly complex
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problems in protocol design. Problems that appear complex are often just simple
problems huddled together. Our job as designers is to identify the simpler prob-
lems, separate them, and then solve them individually.

5. Do not connect what is independent. Separate orthogonal concerns.
6. Do not introduce what is immaterial. Do not restrict what is irrelevant. A good

design is ‘‘open-ended,’’ i.e., easily extendible. A good design solves a class of
problems rather than a single instance.

7. Before implementing a design, build a high-level prototype (Chapters 5 and 6) and
verify that the design criteria are met (Chapters 11 to 14).

8. Implement the design, measure its performance, and if necessary, optimize it.
9. Check that the final optimized implementation is equivalent to the high-level

design that was verified (Chapter 9).
10. Don’t skip Rules 1 to 7.
The most frequently violated rule, clearly, is Rule 10.

2.9 SUMMARY
A protocol includes more than an agreement on the meaning of signals for data.
Minimally, the protocol must include agreements on the use of control information,
which is needed to standardize the use of the channel itself.

To be complete, the definition of a protocol should include the five main elements
listed in Section 2.2. Protocol failures are often caused by hidden assumptions about
events or about the possible sequences of events. It is the responsibility of the proto-
col designer to make these assumptions explicit. Again: it is not sufficient if a correct
interpretation of the specification is merely possible. It is required that no incorrect
interpretation is possible.

The main protocol structuring techniques are the layering of control software and the
structuring of data. The OSI model is given as an example of this approach. Beware,
it is not a recipe. Similarly, the ten rules of design are guidelines, not command-
ments. A structured and sound approach to the design of consistent procedure rules
must always be a self-imposed discipline.

In the next two chapters we first cover the basics of protocol design, the known tech-
niques for building reliable channels out of unreliable ones. The remainder of the
book is devoted to the study of the protocol design problem itself. It does not discuss
network design issues, nor the specific encoding or usage of the protocol standards
that are in use today. Instead, our goal is to discuss how protocols can be designed
using a simple discipline based on the rules given above.

EXERCISES

2-1. 2-1. Identify the five protocol elements from Section 2.2 for the torch telegraph of Polybius,
discussed in Chapter 1. List at least three cases of incompleteness in the protocol.
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2-2. 2-2. Give an informal description of the procedure rules of a protocol that manages the data
transfer from a file server to a printer (Section 2.1). Make sure that the protocol can
recover when the printer runs out of paper or is switched off line.

2-3. 2-3. Explain what the equivalents of control and data messages are in a telephone call. Write
down a complete (Section 2.2) protocol specification for a phone call, taking into account
all possible signals and exception conditions. Consider the case where two people try to
call each other simultaneously and consider the best procedure rules for redialing after a
busy signal.

2-4. 2-4. Extend Lynch’s protocol to avoid the duplication error, and show with a rigorous argu-
ment that the revised version works.

2-5. 2-5. Explain why a byte count is most conveniently placed in a message header (Section 2.5).

2-6. 2-6. Explain the difference between bit stuffing and character stuffing.

2-7. 2-7. Calculate the optimal length for a framing flag in a bit oriented protocol. Note that a
longer series of ones in the framing flag reduces the probability of its occurrence in the
user data and thus the overhead in the number of stuffed bits, at the expense of a higher
overhead in the framing flag itself. Assume random user data. (See Bertsekas and Gal-
lager [1987, p. 78-79]).

2-8. 2-8. In your favorite programming language, write a function that performs STX — ETX fram-
ing and character stuffing on an arbitrary byte stream. Provide the matching receive
function and test it.

BIBLIOGRAPHIC NOTES
That control messages are vital to a reliable operation of communication lines was
already known in the days of the pre-electric telegraphs. Even the torch telegraph had
a start of text message, and most later systems had at least special control codes for
repeat and wait. The same control signals are defined on nearly every data link in use
today. Hubbard [1965], reports yet another type of control message, devised by ‘‘an
anonymous French inventor’’ for an early electro-static telegraph system. He sug-
gested using the static charge of the telegraph line to ignite a small amount of gun-
powder in the receiving station to wake a sleeping attendant.

The system described by Marland [1964] wins the prize for the best control messages
ever devised. It noted a telegraphic system that was described in the Mechanics’
Magazine of June 11, 1825 (Vol. IV, p.148). In this system the electro-static shocks
are administered directly to the operator. And, if that is not enough, it suggests a most
original solution to the problem of a drowsy telegraph operator:

‘‘Let the first shock pass through his elbows, then he will be quite awake to attend the
second.’’

Excellent introductions to the problems of protocol design can be found in Pouzin and
Zimmerman [1978] and in Merlin [1979]. The formalism for describing protocols as
an abstract language, with vocabulary, formal grammar, and syntax was introduced in
Puzman and Porizek [1980].

Perhaps the greatest importance of the paper by Lynch [1968] is that it sparked a
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famous paper by Bartlett, Scantlebury, and Wilkinson from the National Physical
Laboratory in England, defining one of the simplest and best known protocols in use
today: the alternating bit protocol. We discuss it in Chapter 4.

The symbols used in the flow chart in Figure 2.3 are from the CCITT specification
language SDL. The language is quickly gaining popularity as a specification method
for communication protocols. For an overview see, for instance, Rockstrom and
Saracco [1982] and SDL [1987]. The official SDL language definition is in CCITT
[1988]. The flow charting ‘‘language’’ used here is more fully described in Appendix
B. The best reference to the C language, referred to briefly in Section 2.3, is Ker-
nighan and Ritchie [1978, 1988].

The principal ideas of structured programming and software layering stem from E.W.
Dijkstra [1968a, 1968b, 1969a, 1969b, 1972, 1976] and N. Wirth [1971, 1974]. They
are closely related to the technique of design by stepwise refinement Wirth [1971], see
also Gouda [1983]. That the principle of stepwise refinement was known long before
program design became an issue is illustrated by the following quote from E.F.
Moore.

‘‘One way of describing what engineers do in designing actual machines is to say that
they start with an overall description of a machine and break it down successively into
smaller and smaller machines, until the individual relays or vacuum tubes are
ultimately reached.’’ (Moore [1956])

The ideas on protocol design expressed here are also inspired by discussions with
many others, most notably Jon Bentley, John Chaves, Peter van Eijk, Rob Pike, and
Chris Vissers. The importance of the service concept in protocol design is eloquently
explained in Vissers and Logrippo [1985].

The term self-stabilization was also coined by Dijkstra, see for example, [1974,
1986], see also Kruijer [1979]. Lamport discussed self-stabilization in several papers,
Lamport [1984, 1986]. Multari wrote his thesis on self-stabilizing protocols, Multari
[1989]. Other pioneering work in this area is done at the University of Texas at Aus-
tin by M.G. Gouda [1987] and at Cornell University by G.M. Brown [1989].

The study of light-weight protocols was pioneered in the 1970s by a research group at
the Computer Laboratory of the University of Cambridge, involved with the design of
the Cambridge Ring Network, e.g., Needham and Herbert [1982], and a little later by
a group at AT&T Bell Labs, including Sandy Fraser, Greg Chesson, and Bill
Marshall, involved with the design of the hardware and software for the Datakit
switch.

The term light-weight protocol was coined by the Cambridge group, who also
developed the first serious contender in this class: the byte stream protocol that is
used on the Cambridge Ring. The work at Bell Labs led ultimately to the design of
the standard Universal Receiver Protocol (URP), Fraser and Marshall [1989], and its
successors the PSP and MSP packet switch protocols.

A complete description of the OSI model can be found in ISO [1979]. The X.25
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protocol, finally, is documented in CCITT [1977] and explained in, for instance,
Lindgren [1987], and Stallings et al. [1988]. More about data networking problems
can be found in Tanenbaum [1981, 1988] or in Stallings [1985].
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3.1 INTRODUCTION
The number of errors caused by data transmission is typically orders of magnitude
larger than the number of errors caused by hardware failures within a computer sys-
tem. The bit error probability for internal circuits is usually below 10 −15 . On an opti-
cal fiber link the average probability of errors is approximately 10−9 . That is, on the
average, one in every 109 bits transmitted (or processed) is distorted, six orders of
magnitude more than for hardware circuits. Similarly, on a coaxial cable the proba-
bility of bit errors is approximately 10−6 . For a switched telephone line, the numbers
are even higher, between 10−4 and 10−5 .

The difference in magnitude between an error probability of 10 −15 and one of 10−4

should not be underestimated. A bit error rate of 10 −15 on a transmission line would
be immeasurably small at today’s transmission rates. At a rate of 9600 bits per
second, it would cause one single bit error every 3303 years of continuous operation.
At the same data rate, a bit error rate of 10 −4 causes a bit error, on average, once a
second.

Depending on line and network characteristics, transmitted data may be reordered,
distorted, or deleted, and occasionally noisy lines may even insert new data into
transmissions. The errors introduced in data transmissions are, of course, not entirely
unpredictable or inexplicable. The errors have two main causes, discussed in more
detail in Appendix A:

Linear distortion of the original data, for instance, as caused by bandwidth lim-
itations of the raw data channel
Non-linear distortion that is caused by echoes, cross-talk, white noise, and

43
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impulse noise
The effect of these distortions can be remedied, to a certain extent, with cable insula-
tion and hardware compensation filters. The errors that remain must be caught in
software by the communications protocol.

There are several ways in which the error characteristics of a data line can be
expressed. The first, and most important, is the long-term average bit error rate. But,
since this is only an average, there are two other factors in use:

The percentage of time that the average bit error rate does not exceed a given
threshold value
The percentage of error-free seconds

The last two measures give an indication of the overall quality of a line or a network.
For the design of an error control method one commonly uses only the average bit
error rate, as an indication of the expected performance.

No error control method can be expected to catch all errors that can possibly occur.
We can, however, require that an error control scheme increase the reliability of the
transmissions, preferably to the level of reliability of the stand-alone operation of a
computer.

An often overlooked issue is that an effective error control scheme should match the
error characteristics of the channels to be used. If a channel only produces insertion
errors, it would be unwise to design a protocol that protects against deletions. Simi-
larly, if a channel produces independent, single-bit errors with a relatively low proba-
bility, even the simplest parity scheme (Section 3.6) can easily outperform the most
sophisticated error control methods. And, finally, if the error rate of the channel is
already lower than that of peripheral equipment, the inclusion of any error control
scheme needlessly degrades performance and may even turn out to decrease rather
than increase the protocol’s reliability.

3.2 ERROR MODEL
For a channel with a long-term average bit error rate of p, it is theoretically most con-
venient if we assume a random distribution of the errors over the sequence of bits
transmitted. The probability of n subsequent bit errors in a message is then simply
p n , and the probability of one or more bit errors in a message of n bits is 1 − ( 1 −p) n .
Though this ignores the effect of impulse noise, it gives us a good starting point for
the study of error control disciplines. The formal model for a channel of this type is
the discrete memoryless channel shown in Figure 3.1.

The channel is called discrete because it recognizes only a finite number of distinct
signal levels. It is called memoryless because the probability of an error is assumed to
be independent of all occurrences of previous errors. Since we have assumed that the
probability of a bit error is the same for both signal elements, the channel in Figure
3.1 is also called a symmetric channel.

Many different variations to this basic model are possible, accompanied by
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Figure 3.1 — Discrete Memoryless Channel
increasingly complex calculations to predict the effect of error control methods. In an
asymmetric channel, for instance, the probability of an error may depend on the signal
value being transmitted. The distribution of error probabilities can also be defined as
a process with memory: if the last n bits transmitted were in error it is very probable
that the next few will be wrong too. It is difficult to capture this behavior in a predic-
tive model. The error model provided by the binary symmetric channel predicts that
the probability of a series of at least n contiguous error-free bit transmissions, called
an ‘‘error-free interval’’ (EFI), is equal to

Pr(EFI≥n) = ( 1 −b) n, n≥0 (3.1)

where b is the long-term average bit error rate.

The probability decreases linearly with the length of the interval. Similarly, the pro-
bability that the duration of a burst exceeds n bits decreases linearly with n. To
express that the probability of an error-free interval decreases exponentially with its
duration, we can replace formula (3.1) with a Poisson distribution:

Pr(EFI≥n) = e−b(n −1 ) , n ≥ 1 (3.2)

The best way to verify the accuracy of this prediction is, of course, to compare it
against empirical data. Such studies indicate indeed that formula (3.2) predicts error
free intervals better than (3.1). A still better match can be found if a correction factor
is added to (3.2). We thus obtain the following approximation, which is due to Benoit
Mandelbrot (see Bibliographic Notes):

Pr(EFI≥n) = 
 n ( 1 −a) − (n −1 )( 1 −a) 

 e−b(n −1 ) , 0≤a <1 , n ≥ 1 (3.3)

The parameter a determines how serious the clustering effect is predicted to be.
When a is zero, formula (3.3) reduces to the Poisson distribution in (3.2). For non-
zero a, the probability of longer error-free intervals decreases more than the probabil-
ity of shorter intervals. With growing a this effect becomes more pronounced. Of
course, if the error characteristics are independent of the bit rate they can be expressed
in seconds.

With different parameter values a and b, functions of type (3.2) and (3.3) can be used
to predict both the duration of error-free intervals and the duration of bursts indepen-
dently. We will use this method in Chapter 7. For the remainder of this chapter,
however, we will restrict ourselves to the model of a binary symmetric channel.
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3.3 TYPES OF TRANSMISSION ERRORS
Many different types of errors can occur on data lines. The most important transmis-
sion errors show up as data

Insertion
Deletion
Duplication
Distortion
Reordering

Inserted and deleted data may be caused by the temporary loss of synchronization
between sender and receiver. Deletion errors may also be caused artificially by inade-
quate flow control disciplines. A receiver, for instance, may run out of buffers to hold
incoming messages and lose messages that it cannot store. Data duplication may even
be performed intentionally, for instance by a sender that implements a retransmission
protocol. If data are routed through networks, potentially via many different routes,
also data reordering may occur.

Data sequencing problems, such as deletion, duplication, and reordering, are solved
with proper flow control schemes (Chapter 4). But, in all cases where data distortion
or insertion can occur, no matter what the cause is, we need methods to verify the
consistency of the data. We discuss such methods below.

3.4 REDUNDANCY
An error detection method can only work by increasing the redundancy of messages
in some well-defined way. By checking the consistency of a message the receiver can
then assess the reliability of the information it contains. Apart from detecting
transmission errors, though, the receiver must also be able to correct the errors. There
are two ways in which this can be done:

Forward error control
Feedback error control

If the redundancy is made large enough the receiver may be able to reconstruct a mes-
sage from the distorted signal. This method is called forward error control. The
corresponding transmission codes are named error-correcting codes.

The alternative is to use an error-detecting code and arrange for the retransmission of
corrupted messages. This is called feedback error control. A retransmission request
can be an explicit negative acknowledgment sent from receiver to sender or, when the
probability of error is sufficiently low, it can be implicit in the absence of a positive
acknowledgment for correctly received data. In that case the receiver simply ignores
any corrupted data and waits for the sender to time out waiting for the acknowledg-
ment and retransmit the message.

The purpose of error control is to bring the channel error rate down. Not all errors can
be detected, so there is always a residual error rate. Assume that the probability of a
transmission error in a message is p and that the error control method catches a frac-
tion f of all errors. For a given f and p, we can then calculate the residual error rate
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p .( 1 − f ) and convince ourselves that it is, for instance, in the order of 10−9 or less.

If probability p is very close to zero, an error-correcting code is generally ill-advised:
it merely slows down the data transfer. If, on the other hand, p approaches one, a
retransmission scheme would be a bad choice: almost every message, including the
retransmitted ones, would be hit. Of course there are exceptions to these rules. If p is
small, and the cost of retransmission high, a forward error control scheme may still be
profitable. In other cases still, a combination of forward and feedback error control
may be a good compromise: the receiver corrects frequently occurring errors and asks
the sender for the retransmission of messages that contain less frequent errors.

In the next section we first look at the main types of error-correcting and error-
detecting codes that have been developed.

3.5 TYPES OF CODES
The two basic types of codes are

Block codes
Convolution codes

In a block code all code words have the same length, and the encoding for each possi-
ble data message can be statically defined. In a convolution code the code word pro-
duced depends on both the data message itself and a given number of previously
encoded messages: the encoder changes its state with every message processed. The
length of the code words is usually constant. We can further distinguish between

Linear codes
Cyclic codes
Systematic codes

Linear and cyclic block codes are the most commonly used codes in data communica-
tion protocols. In a linear code every linear combination of valid code words (such as
a modulo-2 sum) produces another valid code word. A cyclic code is a code in which
every cyclic shift of a valid code word also produces a valid code word. A systematic
code, finally, is a code in which each code word includes the data bits from the origi-
nal message unaltered, either followed or preceded by a separate group of check bits.

In all cases the code words are longer than the data words on which they are based. If
the number of original bits is d and the number of additional bits is e, the ratio
d /(d +e) is called the code rate. Improving the quality of a code often means increas-
ing its redundancy and thus lowering the code rate. To reduce the channel error rate
by a factor of 5.102 by forward error control, for instance, may require a code with a
code rate of 0. 5 or less.

The remainder of this chapter is organized as follows. Section 3.6, gives a general
introduction to parity check codes. In Section 3.7, we extend the code into a forward
error control method. Section 3.8 discusses a simple linear block code, due to R.
Hamming, that offers protection against independent single bit errors. Section 3.9
focuses on cyclic block codes, using the popular cyclic redundancy check as an exam-
ple. Section 3.10 discusses a simple alternative to a cyclic redundancy check: the
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arithmetic checksum method.

3.6 PARITY CHECK
If the probability of multiple bit errors per message is sufficiently low, all the error
control needed on a binary symmetric channel is a parity check code. To every mes-
sage we add a single bit that makes the modulo-2 sum of the bits in that message
equal to one. The overhead is merely one bit per message. If any single bit, including
the check bit, is distorted by the channel the parity at the receiver comes out wrong
and the transmission error can be detected.

If we set q =1 −p, the probability of an error-free transmission of n message bits plus
one parity bit is q (n +1 ) , and the probability of a single bit error in n +1 bits transmit-
ted is the binomial probability (n +1 ) .p .q n . Under these assumptions (i.e., a
memoryless channel) the residual error rate of a one-bit parity check is

1 −q (n +1 ) − (n +1 ) .p .q n

For n =15 and p =10−4 this leaves a residual error rate on the order of 10−6 per mes-
sage, or about 10−7 per bit.
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Figure 3.2 — Residual Error Rate of a 1-bit Parity Check, n=15

The solid line in Figure 3.2a shows how the residual error rate per code word
increases as a function of the bit error rate p. The dotted line shows what the error
rate per code word would be without the parity check bit: 1 −q n . When p is suffi-
ciently small, therefore, the parity check code can indeed bring the error rate of the
channel down. The curve in Figure 3.2b shows the difference between the error rate
of the uncorrected and the corrected code. It reaches a maximum for p ∼− 0. 06.

3.7 ERROR CORRECTION
A forward error control scheme uses only a small subset of the available bit combina-
tions to encode messages. The codes are chosen such that it takes a relatively large
number of bit errors to convert one valid message into another. By mapping an
erroneous message onto the ‘‘closest’’ valid message in the coding scheme, a receiver
can try to correct for occasional transmission errors. The closest valid message in this
case is the message that differs from the code word received in the fewest number of
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bits.

The code rate of an error-correcting code is in general lower than that of a mere
error-detecting code. In principle, therefore, forward error correction is only con-
sidered to be useful when the communication of control messages from a receiver
back to a sender is difficult. The difficulty may be

A very long transmission delay
The absence of a return channel
A high bit-error rate

A good example of the first problem is the communication between a space probe and
its remote control center on earth. A control signal, for instance to release a camera
shutter or to make a course adjustment, may take several minutes to reach the distant
probe. There may not be enough time to repeat a signal in case of a transmission
error. The signal either gets through or is lost forever.

The second problem can exist in radio broadcast transmission systems with one
sender and multiple receivers. A more perverse, but very real, example is when
transmission sequences are stored on a backup-device and played back later. At the
time of transmission the original data may no longer be available for retransmission.

The third problem, a high bit error rate, may mean that even the probability that a
request for retransmission can be received correctly is unacceptably low. In all three
cases, adding redundancy to a message may be the only way to avoid the irrevocable
loss of some of the messages transmitted.

Even a single parity check per code word can be extended easily from a single-error
detecting code into a single-error correcting code. Every sequence of seven bits is
first extended with a single parity bit that makes the number of one bits in each
sequence even. The parity bit is called a longitudinal redundancy check, or LRC bit.
By adding an extra sequence of eight bits to every series of n codes, we can include a
vertical redundancy check, or VRC bit, for the set of bits that occupy the same bit
position in each sequence. For instance, with ASCII coding, for n =4:

LRC
D = 1000100 0
A = 1000001 0
T = 1010100 1
A = 1000001 0

-------
0010000 1 VRC

A faulty VRC bit encodes the column number and a faulty LRC bit the corresponding
row number for an error bit so that any single bit error per series of 40 transmitted bits
can indeed be corrected. We have used 12 check bits to protect a sequence of 28 data
bits, which corresponds to a code rate of 28/( 12 +28 ) = 0. 7.

Now, let us forget about parity checks and develop an error-correcting code from
scratch. The following example is based on J.H. van Lint [1971].
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EXAMPLE
Suppose we would like to standardize the generation of random numbers. The
method we choose is to appoint an impartial person to be our standard random
number generator. He performs this task by flipping a standard coin A times per
second. The results are transmitted to all four corners of the earth via a standard
binary symmetric channel that operates at a maximum speed of 2A bps (bits per
second), with a bit error rate of 2.10−2 .

Clearly, the result of each flip of the standard coin can be encoded in one bit of infor-
mation. Transmitting the raw bits can be done at a rate of A bps, but causes the
receivers to get an average 2% of the numbers deviating from the ‘‘random stan-
dard.’’

The first thing we may come up with to solve this problem could be to transmit each
result not once but twice, that is we encode each result in two bits instead of one. The
receivers are now able to detect most transmission errors, but clearly there is no time
left to correct them. An error-correcting code is in order. We can now try to encode
two flips of the coin, as a pair, into four bits of data, using Table 3.1.

Table 3.1 — Coding
_ ______________ _____________
Result Code_ _____________

hh 0000
th 1001
ht 0111
tt 1110_ _____________ 








The receivers use a different table, shown as Table 3.2, that allow them to decode any
code word received as one of the four possible messages.

Table 3.2 — Decoding
_ ____________________________________ ___________________________________

Valid Codes Result_ ___________________________________
0000 1000 0100 0010 hh
1001 0001 1101 1011 th
0111 1111 0011 0101 ht
1110 0110 1010 1100 tt_ ___________________________________ 








The code is resistant to single bit errors in the first three bits of each code word sent.
The first column in Table 3.2 contains the original code word sent, and the next three
columns contain the codes that result after an error in the first, second, or third bit,
respectively. Multiple bit errors, or a single error in the fourth bit, still lead to the
reception of a non-standard random number. What are the odds that this happens? A
code is received correctly if, with probability q 4 , it has no errors or, with probability
3p .q 3 , it has exactly one error among the first three bits.
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q 4 + 3p .q 3 = 0. 9788

We started out with an error rate of 2% per single bit, that is a 4% chance of at least
one error in a series of two bits. The error rate is reduced to 1 −0. 9788 = 0. 0212 or
2.12% for two subsequent bits. We used four bits to encode two flips, giving a code
rate of 0. 5. We wasted twelve out of sixteen possible code words to accomplish this
reduction in the error rate, but we are still transmitting the codes as fast as the results
are produced by our standard random number generator.

Without changing the effective signaling speed, or the code rate, we could boost the
amount of waste still further by using eight bits to encode series of four data bits. To
select the 24 valid code words needed from the range of 28 available we can again
attempt to reduce the possibility that one valid word is transformed into another by
transmission errors.

HAMMING DISTANCE
The difference between two code words can be defined as the number of bits in which
they differ. The minimum difference between two words in a code is called its
Hamming distance. If we succeed in finding a code with a Hamming distance of n,
any combination of up to n −1 bit errors can be detected. Better still, any combina-
tion of up to (n −1 )/2 errors per code word can be corrected if we tell the receiver to
interpret every nonvalid code word as the closest valid code word. The receiver will
guess wrong for higher numbers of bit errors, but if the probability of these is suffi-
ciently low the overall error rate of the channel may still be reduced.

Formally, this method is called maximum likelihood decoding, or also nearest
neighbor decoding. By increasing the Hamming distance, choosing longer and longer
code words, we should then be able to increase the reliability of a code as much as we
want.

The following question now comes up: is this true for any transmission rate and for
any channel? The answer can be found in a paper published by Claude Shannon in
1948, A Mathematical Theory of Communication. Assuming a bandwidth limited
channel with white noise, Shannon proved that only for transmission rates up to a cer-
tain limit can the error rate of the channel be made arbitrarily small (Appendix A).
The limit is called the channel capacity.

Shannon’s argument is based on the observation that the amount of information
transferred by a channel can never exceed the entropy of the information source nor
the entropy of the channel itself caused by noise. Below that limit it is theoretically
always possible to derive reliable information from the channel. Informally, Shannon
found that when the signal-to-noise ratio gets smaller, each signal must last longer to
make it stand out from the noise, which in turn reduces the maximum signaling speed
that can be obtained.

The effort required in coding the data, however, normally prohibits the operation of a
channel near the theoretical limit. For a telephone line, for instance, with a bandwidth
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of 3.1 kHz and a signal-to-noise ratio of 30 dB (that is, 8:1), the Shannon limit is
roughly 30 Kbit/sec, which is much more than the maximum rate used in practice.

3.8 A LINEAR BLOCK CODE
We saw in the last section that the redundancy of a code determines its power to
detect and correct transmission errors. The redundancy can be defined as the number
of bits used over the minimum required to encode a message unambiguously. To
encode one of n equally likely messages, for instance, requires log 2 n bits, rounded up
to the nearest integer value. We call this quantity m.

m =  log 2 n 

We can protect these m bits by adding c check bits and choosing the n codes used
from the 2(m +c) codes now available in such a way that each combination of two valid
codes differs in as many bits as possible.

Table 3.3 — Parity Protection
_ __________________ _________________
c m m/(m+c)_ _________________
1 0 0.00
2 1 0.50
3 4 0.57
4 11 0.73
5 26 0.84
6 57 0.90
7 120 0.94
8 247 0.97_ _________________

To be able to correct all single bit errors, we know that we need a Hamming distance
of at least three between code words, but how many check bits will this minimally
cost? For every code word of m +c bits, there are precisely m +c codes that can result
from single bit errors. For every word from the range of 2m possible data codes,
therefore, we need m +c +1 words to protect it against single bit errors. The total
number of words in the code then is (m +c +1 ) .2m, which should be equal to the
2(m +c) words with which we started.
Setting

(m +c +1 ) .2m = 2(m +c)

gives

m +c +1 = 2c

allowing us to calculate the minimal number of check bits c for any given number of
data bits m. For m =8, we find a minimum of c =3. 66 or 4 check bits per message,
giving a code rate of 8/( 8 +4 ) = 0. 66.
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Alternatively, we can find the maximum number of data bits m for a given number of
check bits c. The first eight numbers are listed in Table 3.3, with the corresponding
maximum code rates. The same effect is illustrated for up to 16 checkbits in Figure
3.3.

With good approximation, the number of data bits that can be protected goes up
exponentially with the number of check bits that are available.

1

10

102

103

104

105

5 10 15

Maximum Number of Data Bits

(a) — Number of Check Bits

0. 0

0. 5

1. 0

5 10 15

Resulting Code Rate

(b) — Number of Check Bits

Figure 3.3 — Parity Protection

HAMMING CODE
An example of a code that realizes this protection is a code developed by R. Ham-
ming. In Hamming’s code, included as an example of a perfect single-error correcting
code in Shannon’s 1948 paper, the bits in a code word are numbered from 1 to m +c.
The i-th check bit is placed at the bit position 2i for 1 ≤ i ≤ log 2 (m +c).

The check bits have been placed in the code word in such a way that the sum of the
bit positions they occupy points at the erroneous bit for any single bit error. To catch
a single bit error the check bits are used as parity bits.

When a bit position is written as a sum of powers of two, for example, (1 +2 +4), it
also points at the check bits that cover it. Data bit 7 = ( 1 +2 +4 ), for instance, is
counted in the three check bits at positions 1, 2, and 4. A single bit error that changes
the seventh data bit changes the parity of precisely these three checks. The receiver
can therefore indeed determine which bit is in error by summing the bit positions of
all check bits that flagged a parity error. An error that changes, for instance, the
second bit only affects that single bit and can also be corrected.
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Figure 3.4 — Correction of a Transmission Error

As an example, the ASCII character code for the letter D is 1000100. Figure 3.4
shows how the data and parity bits are placed in a Hamming code. If a transmission
error changes bit position 7 from a 0 into a 1 the code arrives as the ASCII code for an
L 1001100. But, the first three parity bits transmitted now differ from the values the
receiver can calculate and reveal the faulty seventh bit.

It is of course not really relevant to the code as such in what order the code bits are
placed in a code word. By rearranging the bits, for instance, every binary Hamming
code can be changed into a systematic code or into a cyclic code.

MATRIX REPRESENTATION
There is a convenient method to define the linear block parity check codes in matrix
form. As an example, consider a code with three data bits, named D1, D2, and D3,
and three check bits, C4, C5, and C6. We can define the three check bits as the
modulo-2 sum of the data bits, for instance as follows:

C4 = D1 + D2
C5 = D1 + D3
C6 = D2 + D3

These three functions can be defined in matrix form as follows:



 C 6
C 5
C 4 




=


 0
1
1

1
0
1

1
1
0 






 D 3
D 2
D 1 




Taking this one step further, we can also express the three defining functions as fol-
lows:

D1 + D2 + + C4 = 0
D1 + + D3 + C5 = 0

D2 + D3 + C6 = 0
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which leads to the following matrix representation.



 0
1
1

1
0
1

1
1
0

0
0
1

0
1
0

1
0
0 




. Ct =


 0
0
0 




In this formula, Ct is the transpose of the data word, written as a vector of bits.
According to the definition, the matrix multiplication must produce a zero vector.
Note that the right side of the matrix is a unit submatrix, with ones only on the diago-
nal. The matrix can always be written in this form by grouping all the check bits on
the right side of the defining formulas.

H .Ct = 0

H is called a parity check matrix. Transmission errors can be formalized as an error
vector E that is added to the code word. When the receiver performs the check now,
it may find a non-zero result s.

H .( Ct + E) = s

The vector s is called a syndrome. In this code every modulo-2 sum of valid code
words produces another valid code word. Therefore, if the error vector E happens to
match any valid code word, the syndrome is zero and the error goes undetected.

BURSTS
Until now we have focused mainly on the detection and correction of single bit
transmission errors, assuming that errors would be mutually independent. In practice,
we know that transmission errors are not mutually independent: they tend to come in
bursts.

Noise spikes, echoes, and cross-talk all affect series of subsequent bits whenever they
occur. For a switched telephone line the average probability of a bit error may be
10−5 . But, if one bit in an arbitrary message has been distorted the probability that
the next bit is also wrong can be as high as 0. 5. The result is that relatively few mes-
sages are distorted overall, but the ones that are distorted are more seriously hurt.
Clearly, it is rather pointless to develop an error control scheme that can flawlessly
detect and correct a rare single bit error if the burst errors are more common.

Though the definition of the Hamming code is relatively simple, it is surprisingly hard
to extend it into a code that can correct multiple bit errors per word. To guarantee the
detection of even numbers of bit errors per code word the Hamming code can be
extended with a single longitudinal parity check. A more general solution, however,
is more difficult.

CODE INTERLEAVING
A general method to counter burst errors is code interleaving, One interleaving
method is to change the order in which bits are transmitted across the channel.

Assume we have messages of n bits each, protected against single bit errors.
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Assuming further that traffic is non-interactive, we can intercept burst errors up to a
length of k bits by buffering each block of k subsequent messages, placing them in a
matrix of k×n bits and transmitting the bits in this matrix column by column instead
of row by row. At the receiver end the original matrix is restored column by column
and read row by row. A burst error of length k or less then only causes a single bit
error per row and can be corrected properly.

True double-error correcting codes, not based on interleaving schemes, were first pub-
lished by Hocquenghem [1959], and Bose and Ray-Chaudhuri [1960]. These codes,
collectively known as BCH codes, require substantially more theoretical justification
than can be given here. A further generalization of the BCH codes is known as the
Reed-Solomon code. It has found application, for instance, in the digital encoding of
sound on compact disks.

In a study performed at IBM in 1964, it was found that in almost all cases feedback
error control can be superior to forward error control in both throughput and in resi-
dual error rates. We therefore continue with a discussion of a cyclic block code that is
used for feedback error control.

3.9 CYCLIC REDUNDANCY CHECKS
The cyclic redundancy check, or CRC, method is also based on the addition of series
of check bits to code words. In this case the added bits guarantee that, in the absence
of transmission errors, the code word plus check bits is divisible by a given factor.
The specific division method and the factor used determine the range of transmission
errors that can be detected. To simplify the algebraic manipulation of code words we
can define a mapping of codes onto polynomials. A sequence of N bits can then be
interpreted as a polynomial of maximum degree N −1:

i =0
Σ

N −1

b i
.x i

where each b i takes the value of the bit in position i in the sequence, with bits num-
bered right to left. The code word 10011, for instance, defines polynomial

x 4 + x + 1

We are working in a binary system so all operations, including division and multipli-
cation, are defined modulo-2. Modulo-2 addition is defined as follows:

0 + 0 = 0 - 0 = 0

0 + 1 = 0 - 1 = 1

1 + 0 = 1 - 0 = 1

1 + 1 = 1 - 1 = 0

In longer additions there is no carry, and in subtractions there is no borrow. In poly-
nomial form, therefore, for any i we have x i + x i = 0, since both 1 +1 =0 and
0 +0 =0. To multiply two code words, we can multiply the corresponding polynomi-
als.
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Table 3.4 — A Cyclic Code
_ _________________________________________________________________ ________________________________________________________________
Data Word Polynomial Multiplied By Produces Code Word_ ________________________________________________________________
0 0 0 0 x + 1 0 0 0 0 0

0 0 1 1 x + 1 x + 1 0 0 1 1

0 1 0 x x + 1 x 2 + x 0 1 1 0

0 1 1 x + 1 x + 1 x 2 + 1 0 1 0 1

1 0 0 x 2 x + 1 x 3 + x 2 1 1 0 0

1 0 1 x 2 + 1 x + 1 x 3 + x 2 + x + 1 1 1 1 1

1 1 0 x 2 + x x + 1 x 3 + x 1 0 1 0

1 1 1 x 2 + x + 1 x + 1 x 3 + 1 1 0 0 1_ ________________________________________________________________ 

























For example,

(x 4 +x +1 ) × (x 3 +x 2 ) = x 7 +x 6 +x 4 +x 2

We can use this mechanism easily to define a code. Consider, for instance, a code
with three data bits. We encode the data in four bits by multiplying every data word
with the polynomial x +1, as shown in Table 3.4. The resulting code is a parity check
code with a code rate of 3/4. It is also a cyclic code, but not a systematic one.

If we can add, subtract and multiply polynomials, we can of course also divide them.
Let us try dividing the polynomial x 7 +x 6 +x 3 +x 4 +x 2 by a factor x 5 +x 2 +1.

x 5 +x 2 +1 / x 7 +x 6 +x 4 +x 3 +x 2 \ x 2 +x

x 6 +0 +x 3
x 7 +0 +x 4 +0 +x 2
_ ________________

x
x 6 +0 +x 3 +x_ ____________

To make the original polynomial divisible by factor x 5 +x 2 +1, we could simply sub-
tract the residual x from it. But, although the receiver would then be able to detect
transmission errors, it would not be able to recover the original message from the
code word. Better is to append the residual as a checksum. The factor used to gen-
erate a checksum is called the generator polynomial of the code.

We now first multiply the message polynomial by a factor equal to the highest degree
of the generator polynomial, in this case x 5 , to make room for the checksum. It sim-
ply means shifting the bits in the code word five places to the left. Then we divide the
message polynomial by the generator polynomial and subtract the residual.

Since the CRC is a linear code, every error pattern E must be equal to some valid code
word T. For a known code this property can be used to calculate the residual error
rate. If P is the message polynomial and G a generator polynomial of degree r, the
residual R has degree r −1 and is defined to be the remainder of

G
P .x r
_ ____
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The code word T to be transmitted is

T = P .x r − R

A transmission error in effect adds an error polynomial E to the transmitted code.
When the receiver divides the code by the generator polynomial it finds the error term

G
T +E_ ____ =

G
T_ __ +

G
E_ __ =

G
E_ __

A transmission error is only undetected if the remainder of the division of the error
pattern E by the generator polynomial G is zero. If E is nonzero and of a lower degree
than G, the division always leaves a remainder. This means that all burst errors of
length r and less are detected perfectly. Note carefully that this is independent of the
position of the burst within the code word T. The error pattern E cannot turn into a
multiple of G simply by multiplication with a factor x i (assuming, of course, that G is
not equal to x i).

Longer burst errors only go undetected if the error pattern E is an integer factor times
the generator polynomial. If we assume random error patterns, the probability of this
can easily be calculated. With n + r code bits transmitted, there are a total of 2n + r

possible error patterns. The number of integer multiples of a generator polynomial of
degree r in a code word of length n + r is equal to 2n . Each multiple can be con-
sidered as a finite sum of n factors, where each factor is obtained by a left shift of the
generator polynomial into the data word. The generator can be shifted left by n bit
positions. Each of these n factors is either present or absent in the final multiple, giv-
ing 2n possible multiples. This means that a fraction

2n + r
2n

_ ____ =
2r
1_ __

of all random errors are missed. For r =16, this corresponds to 10−5 of all error pat-
terns.

STANDARDIZED GENERATOR POLYNOMIALS
The problem of designing a cyclic redundancy check code is clearly to find generator
polynomials that trap the largest class of transmission errors. One such polynomial is
known as CRC-12:

x 12 +x 11 +x 3 +x 2 +1

It generates a 12-bit checksum.

The CCITT has recommended the following generator polynomial for 16-bit check-
sums, usually referred to as CRC-CCITT:

x 16 +x 12 +x 5 +1

The highest degree of the polynomial is sixteen so this code detects all burst errors up
to 16 bits in length. In modulo-2 arithmetic, this polynomial can also be written as



SECTION 3.9 CYCLIC REDUNDANCY CHECKS 59

follows:

(x +1 ) × (x 15 +x 14 +x 13 +x 12 +x 4 +x 3 +x 2 +x +1 )

Now, it is easy to see that any polynomial multiplied by the factor x +1 must have an
even number of terms (that is, non-zero bits). This means that any E with an odd
number of terms, produced by any odd number of single bit transmission errors, is not
divisible by x +1, and can be detected. For this reason most standard generator poly-
nomials have at least a factor x +1. The CCITT polynomial can also be shown to trap
all double bit errors, 99.997% of burst errors of 17 bits, and 99.998% of all burst
errors longer than 17 bits.

Another frequently used generator polynomial is the one used in IBM’s Bisync proto-
col, known as CRC-16 (which also has the factor x +1):

x 16 +x 15 +x 2 +1

There is also a 32-bit checksum polynomial, CRC-32, defined by an IEEE standards
committee (IEEE-802):

x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 +x 8 +x 7 +x 5 +x 4 +x 2 +x +1

THE ANSI FDDI STANDARD
The 32-bit checksum CRC-32 is also the polynomial used in the Fiber Distributed
Data Interface (FDDI) standard, defined by ANSI in 1986. In the FDDI standard,
though, the calculation of the checksum is somewhat different from the standard
method explained above. The calculation is as follows. Let p be the degree of the
message polynomial P, and let L be a polynomial representing a sequence of 32 bits,
all with value one. The checksum is calculated as the complement of the remainder of

G
(L .x p + P) .x 32
_ ______________

First the pattern L is prepended to the code word. The resulting word is shifted left by
32 bits to make room for the checksum. The checksum is then calculated as before
and complemented before transmission. The complement can be obtained in
modulo-2 arithmetic by adding the pattern L to the remainder. Since the resulting
checksum is obviously different from the earlier

G
P .x 32
_ _____

a division of the transmitted code word T by the generator polynomial G no longer
yields zero in the absence of errors. To perform the check, the FDDI receiver does a
different calculation. Let M be the code word as it is received, that is,

M = T + E

The receiver now checks that the remainder of the division
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G
(L .x p + M) .x 32
_ ______________

equals

G
L .x 32
_ _____

that is, it must equal the pattern L that was added to the checksum at the FDDI sender
to invert it before the transmission. The addition of the pattern L and the inversion of
the checksum guarantee, among other things, that a transmitted code word never con-
sists of only zero bits.

EFFICIENCY
The encoding and decoding of CRC checksums can be a time consuming task that
may degrade the performance of a protocol. The implementation is therefore typically
done either in hardware with shift registers or in software with lookup tables storing
precomputed values for parts of the CRC sum.

The following C program, by Don Mitchell of AT&T Bell Laboratories, generates a
lookup table for an arbitrary checksum polynomial. Input for the routine is an octal
number, specified as an argument, that encodes the generator polynomial. In the ver-
sion of the program shown here, compliments of Ned W. Rhodes, Software Systems
Group, bits are numbered from zero to r −1, with bit zero corresponding to the right-
most bit, and r the degree of the generator polynomial. (In Mitchell’s original algo-
rithm the bits in the message and generator polynomial were reversed.) The r-th bit
itself is omitted from the code word, since it is implicit in the length.

Using this program takes two separate steps. First, the program is compiled and run
to generate the lookup tables. Then the checksum generation routine can be com-
piled, with the precalculated lookup tables in place. On a UNIX system, the genera-
tor program is compiled as

$ cc -o crc_init crc_init.c

Lookup tables for the two most popular CRC-polynomials can now be produced as
follows:

$ crc_init 0100005 > crc_16.h
$ crc_init 010041 > crc_ccitt.h

This is the text of crc_init.c:

main(argc, argv)
int argc; char *argv[];

{
unsigned long crc, poly;
int n, i;

sscanf(argv[1], "%lo", &poly);
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if (poly & 0xffff0000)
{ fprintf(stderr, "polynomial is too large\n");

exit(1);
}

printf("/*\n * CRC 0%o\n */\n", poly);
printf("static unsigned short crc_table[256] = {\n");
for (n = 0; n < 256; n++)
{ if (n % 8 == 0) printf(" ");

crc = n << 8;
for (i = 0; i < 8; i++)
{ if (crc & 0x8000)

crc = (crc << 1) ˆ poly;
else

crc <<= 1;
crc &= 0xFFFF;

}
if (n == 255) printf("0x%04X ", crc);
else printf("0x%04X, ", crc);
if (n % 8 == 7) printf("\n");

}
exit(0);

}

The table can now be used to generate checksums:

unsigned short
cksum(s, n)

register unsigned char *s;
register int n;

{
register unsigned short crc=0;

while (n-- > 0)
crc = crc_table[(crc>>8 ˆ *s++) & 0xff] ˆ (crc<<8);

return crc;
}

The CRC checksum, using a lookup table with the algorithm shown above, is com-
puted in approximately 1.1 msec of CPU time (for a 512-bit message, when running
on a DEC/VAX-750). For comparison, the following is the checksum routine from
the UNIX system uucp code.

cksum(s,n)
register char *s;
register n;

{
register short sum;
register unsigned short t;
register short x;
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sum = -1;
x = 0;

do {
if (sum<0) {

sum <<= 1;
sum++;

} else
sum <<= 1;

t = sum;
sum += (unsigned)*s++ & 0377;
x += sumˆn;
if ((unsigned short)sum <= t) {

sum ˆ= x;
}

} while (--n > 0);

return(sum);
}

The method is a simple and somewhat ad hoc hashing scheme. It takes slightly more
CPU time for a checksum computation (1.8 msec per call), yet the protection it pro-
vides against transmission errors is smaller than that of the cyclic redundancy check.
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Figure 3.5 — Comparison of Checksumming Methods
Uucp Checksum, solid; CRC-16 Checksum, dashed

The data for Figure 3.5 were obtained by randomly distorting 164,864 messages of
512 bits each. In a first test (shown in Figure 3.5a) independent single bit errors were
introduced. In a second test (Figure 3.5b) burst errors were simulated. Checksums
were calculated for both the distorted and the undistorted messages. A distorted mes-
sage was accepted only if its checksum was the same as for the undistorted message.

The CRC-16 catches all odd numbers of bit errors and properly rejects all burst errors
up to 16 bits. The two methods have a comparable performance only for even
numbers of single bit errors and for burst errors longer than 16 bits long (not shown).
In all other cases the CRC-16 method is superior.



SECTION 3.10 ARITHMETIC CHECKSUM 63

3.10 ARITHMETIC CHECKSUM
Each checksumming method has an overhead in bits that is expressed as its code rate.
It also has a hidden overhead in the CPU-time that is required to calculate the check-
sum bits, which erodes the maximum transmission rate. The time requirements can
be reduced by using lookup tables, as shown above, or by developing special purpose
hardware for the checksum calculation. In applications where the requirements for
the residual error rate do not justify a CRC implementation, it can be attractive to find
a simple alternative that can still provide serious error protection.

A very interesting method of this type was published by John Fletcher in 1982. The
checksum in Fletcher’s algorithm requires only addition and modulo operations and is
trivially simple. Here is the code of a version that has been adopted for the ISO Class
4 transport protocol standard (TP4).

unsigned short
cksum(s, n)

register unsigned char *s;
register int n;

{
register int c0=0, c1=0;
do {

c0 = (c0 + *s++)%255;
c1 = (c0 + c1)%255;

} while (--n > 0);
return (unsigned short) (c1<<8+c0);

}

It is remarkably simple, yet it turns out to have a respectable error detection capabil-
ity. Figure 3.6 compares the performance of Fletcher’s algorithm with that of the
uucp checksum.
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Figure 3.6 — Comparison of Checksumming Methods
Uucp Checksum, solid; Arithmetic Checksum, dashed

Given the simplicity of the algorithm, the return in error detection capability is cer-
tainly worthwhile.
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3.11 SUMMARY
One functional module in the protocol hierarchy is error control. The inclusion of an
error control scheme can and should be transparent to the rest of the protocol. Its
function is to transform a channel with error rate p into one with a lower (residual)
error rate p .( 1 − f ), where f is the fraction of the errors that is intercepted by the error
code.

An error control scheme requires overhead that is measured by the number of redun-
dant bits that are added to each code word. Redundancy is rarely equal to protection
(see Exercise 3-1), but a small amount of redundancy is a prerequisite to any error
control scheme.

With proper encoding and at the price of lower transfer rates, the receiver can use an
error-correcting code to recover from the characteristic errors introduced by the chan-
nel. With lower overhead an acceptable performance can be achieved with error-
detecting codes that rely on flow control schemes for the retransmission of distorted
data. Flow control schemes are studied in Chapter 4.

The adequacy of an error control scheme, however, can only be assessed properly
when the error characteristics of the transmission channel, the required transfer rate
(i.e., code rate), and the required level for the residual error rate are known.

EXERCISES

3-1. 3-1. A phone company recently considered running new 56 Kbit/sec data lines at an end-to-
end data rate of 9600 bits/sec, using the extra bandwidth to enhance reliability. The
method chosen was to transmit each single byte five times in succession. By a majority
vote, comparing the five successive bytes and choosing the most frequent one from each
set, the receiver would then decide which byte had been transmitted. Comment on the
code rate and the protection against burst errors.

3-2. 3-2. A simple error control scheme has the receiver retransmit all the messages it receives
back to the sender. Each message then has to survive two successive transmissions to be
accepted. Try to build a protocol that works this way.

3-3. 3-3. The protocol of Exercise 3-2 is modified to have the receiver merely return a CRC check-
sum field to the sender by way of acknowledgment. The checksum is returned for every
message received, distorted or not, and is used by the sender to decide upon retransmis-
sion. Comment upon this improvement.

3-4. 3-4. (Jon Bentley) The two sentences ‘‘the dog runs’’ and ‘‘the dogs run’’ are both valid in
English. The sentences ‘‘the dogs runs’’ and ‘‘the dog run’’ are both invalid. Would this
classify English grammar as a feedback or as a forward error control method?

3-5. 3-5. The message 101011000110 is protected by a CRC checksum that was generated with
the polynomial x 6 + x 4 + x + 1. The checksum is in the tail (the right side) of the
message. (a) How many bits is the checksum? (b) If no transmission errors occurred,
what would the original data be? (c) Were there any transmission errors?

3-6. 3-6. List the circumstances under which an error-correcting code with a code rate of 0.1 can
be more attractive than an error-detecting code with feedback error control? Consider
error rates and roundtrip message propagation delays.
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3-7. 3-7. Another method to adapt a single error-correcting code for protection against burst errors
is to use n error codes for a sequence of n messages, where the i-th code word covers
only the i-th bit from each message. To protect against burst errors of up to k bits this
method attempts to separate the bits that make up one new ‘‘code word,’’ spanning n
messages, by more than k bit positions. Work out the details of this method and apply it
to a sample message.

3-8. 3-8. CRC checksum polynomials that contain the factor x + 1 catch all odd numbers of bit
errors. Think of a method to catch all even numbers of bit errors as well, for instance, by
deliberately introducing a bit error in a second transmission, and comment upon this
scheme. Consider the code rate as well.

3-9. 3-9. How would you classify Fletcher’s algorithm? (See Section 3.4)

BIBLIOGRAPHIC NOTES
More information on the various types of transmission errors and their causes can be
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[1968], Kuo [1981], Peterson and Weldon [1972], and MacWilliams and Sloane
[1977]. The results of the IBM study of error-correcting and error-detecting codes,
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instance, Decina and Julio [1982] or in Ritchie and Scheffler [1982].
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4.1 INTRODUCTION
The simplest form of a flow control scheme merely adjusts the rate at which a sender
produces data to the rate at which the receiver can absorb it.1 More elaborate schemes
can protect against the deletion, insertion, duplication, and reordering of data as well.
But let us first look at the simpler version of the problem. It is used

To make sure that data are not sent faster than they can be processed.
To optimize channel utilization.
To avoid data clogging transmission links.

The second and the third goals are complementary: sending the data too slowly is
wasteful, but sending data too fast can cause congestion. The data path between
sender and receiver may contain transfer points with a limited capacity for storing
messages shared between several sender-receiver pairs. A prudent flow control
scheme prevents one such pair from hogging all the available storage space.

In this chapter we build up a full flow control discipline in a sequence of modifica-
tions of a simple, basic model. The procedure rules of these protocols are specified
with the flow charting language introduced in Chapter 2 and summarized in Appendix
B. The notation mesg:o in an input or output statement, for instance, indicates that a
message of type mesg with data field o is received or sent, respectively. The state-
ment next:o indicates the internal retrieval of data item o to be transmitted in the next
output message. Similarly, accept:i indicates the acceptance (storage) of i as correctly
received data.

Figure 4.1 illustrates a protocol without any form of flow control. Note that it is a
simplex protocol: it can be used for transfer of data in only one direction (see Figure
2.1 and Appendix A).
__________________
1. At the lowest level such synchronization must already take place to drive a physical line. See Syn-
chronous and Asynchronous Transmission in Appendix A.
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sender

next:o

mesg:o

receiver

receive

mesg:i

accept:i

Figure 4.1 — No Flow Control
The protocol in Figure 4.1 only works reliably if the receiver process is guaranteed to
be faster than the sender. If this assumption is false, the sender can overflow the input
queue of the receiver. The protocol violates a basic law of program design for con-
current systems:

Never make assumptions about the relative speeds of concurrent processes.

The relative speed of concurrent processes depends on too many factors to base any
design decisions on it. Apart from that, the assumption about the relative speed of
sender and receiver is often not just dangerous but also invalid. Receiving data is
generally a more time-consuming process than sending data. The receiver must inter-
pret the data, decide what to do with it, allocate memory for it, and perhaps forward it
to the appropriate recipient. The sender need not find a provider for the data it is
transmitting: it does not run unless there are data to transfer. And, instead of allocat-
ing memory, the sender may have to free memory after the data are transmitted, usu-
ally a less time-consuming task. Therefore, the bottleneck in the protocol is likely to
be the receiver process. It is bad planning to assume that it can always keep up with
the sender.

The oldest and least reliable flow control technique that can be used to address this
synchronization problem requires no prior negotiation between sender and receiver
about the pace at which messages can be transmitted. The method uses two control
messages: one to suspend and one to resume traffic. The messages are sometimes
called x-off and x-on.2 Assume, then, that we have an error-free channel and a proto-
col vocabulary of the following three message types:

V = { mesg, suspend, resume }
__________________
2. The control-s and control-q codes on many data terminals provide the same two functions.
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where the control messages suspend and resume are used to implement the flow con-
trol discipline. The procedure rules of the protocol can now be added. We implement
them here with two additional processes, one in the sender and one in the receiver, as
shown in Figure 4.2.

sender

next:o

state==go

mesg:o

toggle

receive

suspend

state=wait

resume

state=go

Figure 4.2 — X-on/X-off Protocol: Sender Processes
After receiving a suspend message, the toggle process in the sender sets the value of a
variable state to wait. It resets the variable to its initial value go after the arrival of a
resume message. The sender process simply waits (at the oval box) until state has the
proper value before transmitting the next message.3 3. Recall that the oval box indi-
cates a potential delay. The process waits for a message to arrive when the box is
labeled receive, or else it waits until the condition specified becomes true. Cf. Figure
2.1.

The receiver is also split into two parts. After the arrival of a data message a counter
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counter/buffer

receive

mesg:i

mesg:i

n++

n>max
false

receiver

receive

mesg:j

accept:j

n––

n<min
falsetrue

suspend

true

resume

Figure 4.3 — X-on/X-off Protocol: Receiver Processes
process increments a variable n, and upon the acceptance of the message, an acceptor
process decrements it. The data messages are passed from the counter process to the
acceptor process via an internal queue. The count remembers the number of messages
that have been received from the sender and the number that are waiting to be
accepted by the receiver. If its value increases beyond some predefined limit, a
suspend message is sent to the sender. If it drops below a lower bound, the resume
message is sent, as shown in Figure 4.3. To split the receiver into two processes, of
course, only makes sense if accept is a relatively time-consuming operation.

There are some problems to be resolved. The correct working of the protocol depends
on the properties of the transmission channel. If a suspend message is lost or even
delayed, the overflow problem recurs. The working of a protocol should not depend
on the time it takes a control message to reach the receiver. Worse still, if a resume
message is lost, the four-process system comes to a complete halt.

We have these two problems to solve:
Protect against overrun errors in a more reliable way.
Protect against message loss.

A standard method of solving the first problem is to let the sender explicitly wait for
the acknowledgment of transferred messages. An example is the Ping-Pong protocol
of Figure 4.4. This method is often called a stop and wait protocol. The overflow
problem has disappeared, but the system still deadlocks if either a control or a data
message is lost. The sender and receiver are too tightly coupled. Let t be the message
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sender

next:o

mesg:o

receive

ack

receiver

receive

mesg:i

accept:i

ack

Figure 4.4 — Ping-Pong Protocol
propagation time on the channel, a the time it takes the receiver to process and accept
an incoming message, and p the time it takes the sender to prepare a message for
transmission. With the above scheme the sender incurs a delay of 2t +a −p units of
time for every message transmitted.

Typically p <a and, obviously, t increases at least linearly with the distance between
sender and receiver. Note, however, that the acknowledgment message does not just
signify the arrival of the last message, it is also used as a credit that the receiver
extends to the sender to transmit the next message. This idea directly leads to a solu-
tion that can alleviate the delay problem: the window protocol.

4.2 WINDOW PROTOCOLS
In a call-setup phase, the receiver can tell the sender exactly how much buffer space it
is prepared to reserve for incoming messages. The sender is then given credit for a
fixed number of outstanding messages. The credit can be updated dynamically when
the amount of available buffer space changes.

Let us not worry about message loss just yet and first look at the basic working of a
window protocol. Each message received is acknowledged with a single ack control
message on a return channel. All we have to do is to keep count of the number of
messages in transit.

The initial credit can either be negotiated, or it can be set to a fixed number of mes-
sages W. For each message sent the sender decrements its credit, and for each mes-
sage received the receiver extends a new credit to the sender via the return channel.
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The example protocol shown in Figure 4.5 illustrates this. The quantity W −n gives
the number of unused credits.

sender

n<W
true

next:o

n++

mesg:o

false

receive

ack

n − −

receiver

receiver

mesg:i

accept:i

ack

Figure 4.5 — Window Protocol for an Ideal Channel

Let a(t) be the number of credit messages received by the sender at time t after initial-
ization, let m(t) be the number of messages sent to the receiver, and let n(t) be the
value of n at time t. The maximum number of messages that the sender can have out-
standing, waiting acknowledgment, is

W −n(t) +m(t) −a(t)

where W −n(t) is the number of unused credits and m(t) −a(t) the number of used
credits. We would like to convince ourselves that

W −n(t) +m(t) −a(t) ≤W

or

m(t) −a(t) ≤n(t)

Initially all variables in this inequality are zero and the condition is trivially true.
Every send action in the sender increments both sides of the inequality, right side
first, and preserves its validity. Similarly, with every receive action the receiver pro-
cess decrements both sides by one, the left side first, again preserving the correctness.

MESSAGE LOSS
The maximum credit W is called the window size of the protocol. During a transfer,
the current credit varies between zero and W, depending on the relative speeds of
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sender and receiver. The sender is only delayed when the credit is reduced to zero.
This flow control discipline can optimize communication on channels with long tran-
sit delays by enabling the sender to transmit new messages while waiting for the ack-
nowledgment of old ones.

The problems of lost, inserted, duplicated, or reordered messages do, of course, still
exist. If, for instance, a set of acknowledgment messages is lost, both parties may
hang: the sender waiting for the acknowledgments that were lost, the receiver waiting
for the messages it credited.

TIMEOUTS
To protect against the loss of essential messages the sender has to keep track of
elapsed time. In the Ping-Pong protocol of Figure 4.4, for instance, the sender can try
to predict the worst turn-around time for each acknowledgment. If the response has
not arrived within that period, the sender can time out and assume that it was lost.

In practice, the ‘‘worst’’ turn-around time is often calculated with a heuristic:

T worst = T
_

+ N .√ var(T)

where T is the round-trip delay N is usually one, and rarely larger than two. The
round-trip delay is simply the time it takes a message to go from sender to receiver
plus the time it takes a response to return to the sender (see Exercise 4-12). T

_
and

var(T) are, respectively, the average and the variance of T. The factor N is thus a
multiplication factor for standard deviation of the turn-around time (the square root of
the variance).

In many cases, the behavior of the receiver process at the far end of a transmission
channel can be modeled by an M/M/1 queueing system.4 We then assume that, from
the receiver’s point of view, the distribution function of the interarrival times of mes-
sages is a Poisson process and the distribution time for the processing of these mes-
sages is a simple exponential function. For an M/M/1 queueing system, it can be
shown that the variance of the time spent in the system is the square of the mean.
This means that for our transmission channel the variance of both the one-way and the
round-trip delay is also the square of the mean, var(T) = T

_2
. This leads to the sim-

ple rule of thumb that an approximation for the retransmission time can be obtained
by doubling the average round-trip delay T (assuming a factor N =1 in the above esti-
mate:

T worst
∼∼ 2.T

_

A timeout after a deletion error certainly looks straightforward. A common mistake,
however, is to let both the sender and the receiver use timeouts. Consider the exten-
sion of the Ping-Pong protocol shown in Figure 4.6.

__________________
4. The notation is due to D.G. Kendall [1951].
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sender

next:o

mesg:o
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Figure 4.6 — Ping-Pong Protocol with Timeouts

sender

next

timeout

next

next

receiver

timeout

accept

accept

mesg

mesg. . . . . . . . . . . . . . . . . .

ack ........ ......... mesg. . . . . . . . . . . . . . . . . .

ack ........ .........

Figure 4.7 — Time Sequence Diagram of An Error
Figure 4.7 shows what can happen with this protocol if a deletion error occurs. Both
sender and receiver decide to retransmit the last sent message when a deletion error is
assumed. When the first ack message reaches the sender, it cannot possibly tell
whether it acknowledges the lost or the retransmitted message. The sender ends up
matching the wrong ack and mesg messages indefinitely.

One lesson to be learned from this is that sender and receiver should not both be able
to initiate retransmissions. It is sufficient to place this responsibility with one of the
two processes. Traditionally, this is the sender process, since only the sender can
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know for certain when new data has been sent. Another lesson is that we must be able
to tell from an acknowledgment exactly which message is being acknowledged, even
if we only intend to send one message at a time, as in the Ping-Pong protocol. We
can do this by adding sequence numbers to each data and control message. By doing
so, we also obtain a mechanism for solving other classes of transmission problems in
a fairly straightforward way: duplication errors and out-of-sequence messages.

Since sequence numbers necessarily have a restricted range ,5 we must have a way to
verify that recycled numbers cannot disturb the correct working of the protocol. We
will see below that if sequence numbers are used in combination with a window pro-
tocol this requirement can be fulfilled relatively easily. Before we make that combi-
nation, the sliding window protocol, let us take a closer look at the use of timeouts
and sequence numbers.

4.3 SEQUENCE NUMBERS

A0_ __

B1A0_ __

B0

A1_ __

B0 A1_ __

B1

A1

A0

B0_ __

A0 B0_ __

A1

B1_ __

B1_ __

Figure 4.8 — Original Alternating Bit Protocol
As an example of a better use of a timeout, and a one-bit sequence number, we can
consider an extended version of the alternating bit protocol (a famous protocol, see
the Bibliographic Notes). The protocol continues to surface in so many different dis-
guises in the protocol literature that it is worthwhile to first look at the original specif-
ication from Bartlett, Scantlebury and Wilkinson [1969]. In their paper, the protocol
is defined with two finite state machines of six states each, as shown in Figure 4.8.
The original protocol, therefore, can be in no more than 36 different states, substan-
tially fewer than all other variations that have been studied.

Figure 4.8 specifies the behavior of two processes, A and B. The notation is from
Bartlett, Scantlebury and Wilkinson [1969]. The edge labels specify the message
exchanges. Each label consists of two characters. The first specifies the origin of the
message being received or transmitted, and the second specifies the sequence number,
__________________
5. There is only a finite number of bits to store them in the message headers.
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called the alternation bit in the original paper. Send actions are underlined.

The double headed arrows indicate states where input is to be accepted in the receiver
or where a new message is fetched for output in the sender. Erroneous inputs, i.e.,
messages that carry the wrong sequence number, prompt a retransmission of the last
message sent. It is relatively easy to extend the protocol with timeouts to allow for
recovery from message loss. A flow chart version of this extension is shown in Fig-
ure 4.9.

sender

next:o

mesg:o:s

receive

ack:r

r==s

true

s=1–s

timeout

false

receiver

receive

mesg:i:a

ack:a

a==e

true

e=1–e

accept:i

false

Figure 4.9 — Alternating Bit Protocol with Timeouts

We have used two types of messages, mesg and ack, with, for instance, the format
{ mesg, data, sequence number }

and
{ ack, sequence number }

respectively. In the flow chart, mesg:o:s indicates a message mesg with data field o
and sequence number field s.

We have also used four single-bit variables: a, e, r, and s. Variable s is used by the
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sender to store the last sequence number sent, and r holds the last sequence number
received. The receiver uses e to hold the next number expected to arrive and variable
a to store the last actual sequence number received. All variables have an initial value
zero.

Figure 4.10 illustrates what happens if the deletion error from Figure 4.7 occurs in the
alternating bit protocol. The protocol recovers from the error when the sender process
times out and retransmits the lost message.

sender

next

timeout

next

receiver

accept

mesg

mesg. . . . . . . . . . . . . . . . . .ack ........ .........

Figure 4.10 — Time Sequence Diagram of Error

Consider also what happens if an acknowledgment is delayed long enough for the
sender to time out and retransmit the last message (see Exercise 4-6).

MESSAGE REORDERING
Now let us consider the duplication and reordering of messages, as may happen in, for
instance, datagram networks where messages can travel along different routes to their
destination. The obvious solution is to encode the original order of the messages in a
larger sequence number that is attached to each message. With a 16-bit field for the
sequence numbers we can number 65,536 subsequent messages. Assuming a message
length of 128 bits and an effective line speed of 9600 bps (bits per second), we could
run out of numbers within 15 minutes. Fortunately, this range problem readily disap-
pears if we limit the maximum number of messages that can be in transit at any one
time: the sender’s credit. Clearly, the range of the sequence numbers has to be larger
than the maximum credit used so that a receiver can always distinguish duplicate mes-
sages from originals.

Assume a range M of available sequence numbers and an initial credit of W messages.
We assume for the time being that M is sufficiently larger than W to avoid confusion
of recycled sequence numbers. The sender must do some bookkeeping for every out-
standing message within the current window. We use two arrays for this purpose.
Boolean array element busy[s] is set to true if a message with sequence number s was
sent and has not yet been acknowledged. The second array store[s] remembers the
last message with sequence number s that was transmitted. Initially, all elements of
array busy are set to true.
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There are many problems to solve to get this version of the window protocol to work.
The task can be split into three subtasks: transmitting messages, processing ack-
nowledgments, and retransmitting messages that remain unacknowledged for too
long. In addition to the constants W and M, the following four variables are used, all
with an initial value of zero:

s, the sequence number of the next message to send
window, the number of outstanding unacknowledged messages
n, the sequence number of the oldest unacknowledged message
m, the sequence number of the last acknowledged message

transmission
process

window<W

next:o

window++
busy[s]=true
store[s]=o

mesg:o:s

s=(s+1)%M

retransmission
process

window>0

busy[n]

true

timeout

mesg:
store[n]:n

false

window− −
n=(n+1)%M

acknowledgement
process

receive

ack:m

busy[m]=
false

Figure 4.11 — Sender Processes, Sliding Window Protocol

First consider the transmission process in Figure 4.11. As long as all credits have not
been used up, messages can be transmitted. Each message transmitted increments the
number of outstanding messages, and by doing so, it implicitly decrements the credit
for the transmission of new messages. A sequence number s is assigned, the message
contents are stored in store[s] for possible retransmission later, the flag is set in
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busy[s], and s is incremented modulo the range of the sequence numbers M (using the
‘%’ operator).

The acknowledgment process is even simpler. It receives the incoming acknowledg-
ments and sets the busy[m] flag to false. The order in which these acknowledgments
are received is irrelevant.

The retransmission process waits until there are messages in transit by checking that
window is non-zero. Each message that is sent must ultimately be acknowledged and
have its busy[n] flag reset to false. The retransmission process waits for this to hap-
pen at the second wait clause. If it does, the window size is decremented, and n is
incremented to point to the next oldest unacknowledged message. If the busy flag is
not reset to false within a finite amount of time, the retransmission process times out
and retransmits the message. The oval box delays the process until the condition
specified becomes true or, as in the current case, until a timeout occurs (cf. Appendix
B). The way we have specified it here, the retransmission timer repeats just one mes-
sage, the oldest unacknowledged message.

The receiver for the sliding window protocol is given in Figure 4.12. It is split into
two processes. One process receives and stores the incoming messages in whatever
order they may happen to arrive. A second process accepts and acknowledges the
messages, using the sequence numbers to restore their proper order. Messages cannot
be acknowledged until they are accepted, to avoid the risk of running out of buffers to
store messages if the accepting process turns out to be slower than the sender. We use
a boolean array recvd[M] to remember the sequence numbers of messages that have
been received, but not yet accepted, and an array buffer[M] to remember the contents
of those messages. There is one extra variable to keep track of the protocol’s pro-
gress: p, the sequence number of the next message to be accepted. It has an initial
value of zero.

The accept process is straightforward. It waits for the received flag of the next mes-
sage to be accepted to become true, accepts and acknowledges the message, and
increments p. The receiver checks whether a newly arrived message is an original or
a duplicate. For a new message, the received flags are set, and the message is stored
in array buffer. Two flags must be updated, one for the message that was just
received and one for a message that we now know can no longer be received because
it is outside the current window (see Exercise 4-14.)

recvd[m] = true

and

recvd[ (m −W +M) %M] = false

or equivalently

recvd[ (m −W) %M] = false

A duplicate message is recognized by the fact that the received flag was set to true
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receiver
process

receive

mesg:i:m

recvd[m]
false

set flags
buffer[m]=i

true

valid(m)

true

ack:m

false

accept
process

recvd[p]

accept
buffer[p]

ack:p

p=
(p+1)%M

Figure 4.12 — Receiver Processes, Sliding Window Protocol
before. There are two possible reasons for the arrival of a duplicate message:

The message was received, but not yet acknowledged.
The message was received and acknowledged, but the acknowledgment
somehow did not reach the sender.

Only in the second case should the acknowledgment be repeated. The current value
of variable p should be sufficient to figure out which of the two cases applies. If the
sequence number count was not modulo M, the test would simply be:

valid(m) = m <p

since only values smaller than p were acknowledged before. Taking the modulo M
effect into account (p is always smaller than M), this becomes:

valid(m) = ( 0 <p −m≤W)   ( 0 <p +M −m≤W)

The window protocol guarantees that a retransmitted message cannot have a sequence
number that is more than W smaller than the last message that was acknowledged.
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The only case, then, where we can have m >p or p −m >W is when p has wrapped
around the maximum M, and m has not.

MAXIMUM WINDOW SIZE
If M is the range of the sequence numbers, what is the maximum number of outstand-
ing messages W that we can use and still guarantee that the window protocol works
properly? If all messages that arrive out of order were simply rejected by the receiver,
the answer would be M −1. As long as a sequence number is not recycled before the
last message using it is acknowledged, all is well. This means that if messages may
be received out of order, as in Figure 4.12, the window size cannot exceed M /2 (cf.
Exercise 4-9).

As an example, consider the following case. Let H be the highest sequence number
(modulo M) that the receiver has read and acknowledged. It signifies to the receiver
that the sender has at least processed an acknowledgment for the W-th message
preceding the one numbered H (observation 1). The receiver also knows that at best
the sender has processed all acknowledgments up to and including the one for the
message numbered H (observation 2).

Observation 1 means that the sender may decide to retransmit any one of the W −1
messages preceding H, and H itself. The oldest message that could be retransmit-
ted would carry sequence number (H −W +1 ) %M.
Observation 2 means that the sender may also transmit up to W of the messages
that succeed the message numbered H. The first W −1 of these messages may
even be lost on the transmission channel so that the message with number
(H +W) %M is the first new message to arrive.

The highest-numbered message that may succeed H must be distinguishable from the
lowest-numbered message that may be retransmitted preceding sequence number H.
This means M > 2W −1, or a maximum window size of W = M /2.

4.4 NEGATIVE ACKNOWLEDGMENTS
So far, we have used acknowledgments as a method of flow control, not of error con-
trol. If a message is lost or damaged beyond recognition, the absence of a positive
acknowledgment would cause the sender eventually to time out and retransmit the
message. If the probability of error is high enough, this can degrade the efficiency of
the protocol, forcing the sender to be idle until it can be certain that an acknowledg-
ment is not merely delayed, but is positively lost. The problem can be alleviated,
though not avoided completely, with the introduction of negative acknowledgments.

The negative acknowledgment is used by the receiver whenever it receives a message
that is damaged on the transmission channel. How the receiver may be able to estab-
lish that is discussed in Chapter 3. When the sender receives a negative acknowledg-
ment, it knows immediately that it must retransmit the corresponding message,
without having to wait for a timeout. The timeout itself is still needed, of course, to
allow for a recovery from messages that disappear on the channel.

Figures 4.13 and 4.14 show an extension of the alternating bit protocol from Figure
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sender

next:o

mesg:o:s

receive

timeout err nak ack:r

r==s
false

true

s=1–s

Figure 4.13 — Sender, Extended Alternating Bit Protocol
4.9 with negative acknowledgments. In this simple case, the nak needs no sequence
number. (See also Exercise 4-3.)

TERMINOLOGY
The method of using acknowledgments to control the retransmission of messages is
usually referred to as an ARQ method, where ARQ stands for Automatic Repeat
Request. There are three main variants:

Stop-and-wait ARQ
Selective repeat ARQ
Go-back-N continuous ARQ

The Ping-Pong protocol of Figure 4.4, possibly extended with negative acknowledg-
ments, classifies as a stop-and-wait ARQ. After each message is sent, the sender must
wait for a positive or a negative acknowledgment, or perhaps a timeout.

The use of acknowledgments in the sliding window protocol of Figures 4.11 and 4.12
is a selective repeat ARQ method. In Figure 4.11 implemented a ‘‘one-at-a-time’’
selective repeat method where only the oldest unacknowledged message is retransmit-
ted. In general, however, any message that triggers either a negative acknowledgment
or a timeout may be retransmitted, independently of any other outstanding message.
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Figure 4.14 — Receiver, Extended Alternating Bit Protocol

The generalized method is called ‘‘continuous’’ selective repeat.

The last strategy, go-back-N continuous ARQ, could be implemented in the above pro-
tocol by having the sender retransmit the corrupted message and all subsequently sent
messages. In that case the design of the receiver can be simplified. The accept pro-
cessor from Figure 4.12, for instance, can now be deleted and the buffer becomes
superfluous. In a go-back-N discipline the receiver refuses to accept all messages that
arrive out of order, and waits for them to arrive in the proper sequence. It will not
acknowledge any out-of-order messages. An acknowledgment with sequence number
s can now be understood to acknowledge all messages up to and including s. Such an
acknowledgment is therefore sometimes called a cumulative acknowledgment.

BLOCK ACKNOWLEDGMENT
A variation that can be used with the selective repeat and the go-back-N strategy to
reduce the number of individual acknowledgment messages that must be sent from
receiver to sender is known as block acknowledgment. In this case each positive ack-
nowledgment can specify a range of sequence numbers of messages that have been
received correctly. The block acknowledgment can be sent periodically or at the
sender’s request. Block acknowledgment can be seen as an extended form of cumula-
tive acknowledgment.
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4.5 CONGESTION AVOIDANCE
At the start of this chapter we gave two main reasons for the inclusion of flow control
schemes in protocols: synchronization and congestion avoidance.

Up to this point we have mostly ignored congestion avoidance and focused on end-
to-end synchronization. One important issue in particular has not been discussed yet:
For a given data link, how is the actual window size and the corresponding range of
sequence numbers chosen? It is relatively easy to set an upper limit on the window
size: at some point increasing it can no longer improve the throughput if the channel
is already fully saturated.

Assume it takes 0.5 seconds for a message to travel from sender to receiver, and
another 0.5 seconds for the acknowledgment to come back to the sender. The sender
can then fully saturate the channel if it can keep sending data for 1 second. If the data
rate of the channel is S bps the sender should be able to transmit S bits before it needs
to check for acknowledgments. If there are M bits in each message that is transmitted,
the best window size is trivially S/M. And, of course, we had better make certain that
M<S. A larger window size than S/M is wasteful: by the time the last message in the
current window is transmitted, the acknowledgment for the oldest outstanding mes-
sage should have arrived, and if it has not, it may be time to start considering the
retransmission of that message.

There is a danger in the type of calculation we have performed here. It reduces the
flow control problem to a link-level issue, while ignoring the network that contains
the data link. Consider, for example, the two-hop data link shown in Figure 4.15.

Sender
1 Mbps Transfer

Point

10 Kbps
Receiver

Figure 4.15 — Two-Hop Link

There are two ways of defining a flow control protocol for transfers from the sender to
the receiver in this two-link network:

Hop-by-hop (also called node-to-node)
End-to-end

In a hop-by-hop protocol, the window size is calculated separately for each link to try
to saturate each one. The first link is 100 times faster than the second. But if we
succeed in saturating both channels we have only succeeded in creating a bigger prob-
lem. Data arrive at the transfer point about 100 times faster than they can be passed
on to the receiver. No matter how much buffer space the transfer point initially has, it
eventually runs out of space, and unless it can throttle down the sender, it will start
losing messages.

The only way the transfer point can control the sender is to refuse to acknowledge
messages. The sender, however, tries to saturate the channel and will do so, either
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with retransmissions or with new data. If the number of acknowledgments drops, the
sender will continue to saturate the channel by retransmitting data.

A flow control scheme, then, must be designed to optimize the utilization of two
separate resources:

The buffer space in the network nodes
The bandwidth of the links connecting the nodes

The simple scheme above fails on both counts: it wastes buffer space in the transfer
point, thereby potentially blocking other traffic that may be routed through that node,
and it wastes bandwidth by triggering a deluge of retransmissions on the link from the
sender to the transfer point. Optimal use of the two-link data path can only be
achieved if the sender offers data at the data rate of the slowest link in the path: just
1% of the saturation point of the first link, which implies some type of feedback
scheme from the second link back to the first.

In an end-to-end protocol this problem does not exist. The end-to-end capacity of the
network path equals the capacity of the slowest link, and the window size can be set
accordingly. The problem is that in a complicated network there is no hope that a
sender can easily predict where the slowest link in its path to the receiver will be. The
safest thing to do would be to derive a maximum window size for the whole network
that is based on its slowest link. But that is hardly an inspiring solution, not to men-
tion a wasteful one. Furthermore, in a larger network the capacity of a data link
depends not just on the hardware but also on the number of competing users. If ten
users start transferring large files over the fastest link in the network, that link can
suddenly become the slowest one for all other users.

Going back to the original problem, even though we have pretended otherwise up to
this point, flow control is not a static problem, but a dynamic one. In a static flow
control protocol a sender always assumes that a message was either lost or distorted if
its acknowledgment does not arrive with the round-trip message delay time. The
appropriate response of the sender, in that case, is to retransmit the message. It can,
however, also mean that the network is overloaded. The appropriate response of the
sender is then to reduce the amount of traffic it offers to the network. The simplest
method the sender has for doing this is to decrease its window size.

DYNAMIC FLOW CONTROL
A dynamic window flow control method makes the protocol self-adapting, one of the
principles of sound design we listed in Chapter 2. A simple and commonly used
method is to force a sender to decrease its window size whenever a retransmission
timeout occurs. Once the timeouts disappear, the sender can be allowed to gradually
increase the window size back to its maximum value. There are different philoso-
phies about the precise parameters to be used in such a technique. Three popular vari-
ations are listed below.

Decrease the window by one for every timeout that occurs, and increase it by one
for every positive acknowledgment.
Decrease the window to half its current size upon every timeout, and increase it by
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one message for every N positive acknowledgments received.
Decrease to its minimum value of one, immediately when a timeout occurs, and
increase the window by one for every N positive acknowledgments received.

All methods assume a minimum window size of one. The maximum size can be cal-
culated as before, or it can be set to a heuristic value, such as the number of hops on
the link through the network between sender and receiver. The heuristic guarantees
that in normal operation every intermediate node stores just one message per connec-
tion.

With all three techniques it is assumed that the protocol by default uses its pre-
calculated maximum window size. The slow start protocol developed by Van Jacob-
son also removes that assumption: the protocol starts with the minimum window size
of one, and only starts increasing the effective window size once the first acknowledg-
ment has been received. In the slow start protocol the round-trip delay is continu-
ously measured, and it, rather than the retransmission timeout, is used as a measure
for increasing or decreasing the window size.

RATE CONTROL
With the dynamic window flow control schemes above, we have touched upon more
specific network design issues, which are outside the range of this book. From a net-
work operator’s point of view, the best congestion avoidance technique is to control
the amount of traffic that enters the network under overload conditions, rather than
attempting to minimize the damage for the traffic that has already been accepted, for
instance, with timeouts and retransmissions. These methods are collectively called
rate control methods. Figure 4.16 shows a well-known throughput versus traffic load
chart that illustrates the need for rate control.
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Figure 4.16 — Network Congestion

Ideally, the throughput of the network increases linearly with the offered load until it
is fully saturated. In practice, network control algorithms eat away a little from the
network capacity and a somewhat lower throughput is realized. Close to the satura-
tion point, a growing offered load leads to an increasing degradation of service caused
by the network congestion. The effect is comparable to a busy high-way where traffic
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slowly comes to a complete standstill under peak loads. Congestion, then, is usually
defined as a condition in the network where an increase in traffic load causes a
decrease in throughput. The best point at which to operate the network is to the left of
the dashed line in Figure 4.16, by controlling the offered load directly with, for
instance, a rate control method. In some studies it was found that the optimal point is
at the knee of the curve in Figure 4.16: the saturation point of the network under ideal
conditions. Optimization is then interpreted as the maximization of throughput
divided by measured round-trip message delay.

Rate control and flow control can be applied independently of one another. A stan-
dard rate control method is to give the sender a permit to offer data to the network at a
specific average number of bytes per second. It can specify two parameters:

The average data rate R in bytes per second
The averaging interval that is used to calculate R

In the XTP protocol (see the Bibliographic Notes to Chapter 2) a third parameter is
used:

The maximum data burst rate
Rate control is important as an efficiency and network control issue. It cannot, how-
ever, affect the logical consistency of a protocol definition, which is the primary focus
of this book.

4.6 SUMMARY
Problems such as the ones we have discussed in this chapter have been discovered in
many real-life protocols, and protocol designers will continue to be confronted with
them over and over again. We have presented them here in their most basic form, to
identify where the potential design flaws are.

Flow control and error control are often hard to distinguish. A flow control scheme
can be used to coordinate the rate of transmission of messages between the processes
in a distributed system. It can be used to avoid bottlenecks, and to recover from
transmission errors. The strategies we have explored include the use of timeouts, the
extension of messages with sequence numbers, and the use of positive and negative
acknowledgments. A logical extension of static window flow control mechanism is
dynamic window flow control. It allows protocols to become self-adapting, a princi-
ple of sound design. Flow control methods can be used to solve a variety of prob-
lems. They can be used in an end-to-end protocol to synchronize a sender and a
receiver. They can be used in link level protocols to optimize buffer management and
bandwidth utilization. Finally, they can be used as specific congestion avoidance
techniques to match the capacity of a sender to the capacity of the network that carries
the traffic.

Throughout this chapter we have assumed that a receiver process can establish
whether incoming messages should be acknowledged and accepted, or should be
rejected due to transmission errors. Refer to Chapter 3 to see how this can be
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accomplished.

EXERCISES

4-1. 4-1. Describe in detail the conditions under which an X-on/X-off protocol and a Ping-Pong
(stop-and-wait) protocol can fail.

4-2. 4-2. Consider the adequacy of the alternating bit protocol under message loss, duplication,
and reordering.

4-3. 4-3. Change the extended alternating bit protocol from Figures 4.13 and 4.14 by also sending
a negative acknowledgment when a message is received with the wrong sequence
number. Show precisely what can go wrong.

4-4. 4-4. Extend the X-on/X-off protocol for full-duplex transmissions. Consider the extra prob-
lems that the loss of control messages can now cause.

4-5. 4-5. Show what happens if the timeout period in the alternating bit protocol is not chosen
correctly.

4-6. 4-6. If the acknowledgment message in the alternating bit protocol is delayed long enough to
trigger the sender’s timeout, a duplicate mesg from the sender is created, which in turn
triggers a duplicate ack message, and so on. How would you change the protocol to
solve this problem?

4-7. 4-7. Describe your favorite traffic control problem (for example, grid lock, right of way prob-
lems, traffic circles) as a protocol problem.

4-8. 4-8. Two divisions of an army are encamped to the south and to the north of a guerrilla force
that is slightly stronger than either of the two divisions separately. Together, however,
the two divisions can launch a surprise attack and defeat their adversaries. The problem
for them is to coordinate their plans such that neither will mistakenly attack alone. It is
decided beforehand that division A will notify division B of the plan for attack by sending
a messenger. The messenger, though, must pass guerrilla-held territory to reach his goal.
This ‘‘communication channel’’ between A and B is expected to have a substantial loss
rate, and at least a potential for message distortion and insertion. Assume that message
distortion can be dealt with by using proper encoding techniques. There is a flow control
problem caused by the disappearance and reappearance of detained messengers. It is
decided that to confirm the safe arrival of a messenger from A to B a second messenger
will be sent from B to A with an acknowledgment. But, when can division B be sure that
its acknowledgment arrived? The acknowledgment has to survive the same channel
behavior as the original message. Therefore, the acknowledgment must itself be ack-
nowledged. But in that case, the acknowledgment of acknowledgments would have to
continue ad infinitum. What is the flaw in this reasoning? (This is a ‘‘folk’’ problem in
protocol theory; for instance, see Bertsekas and Gallager [1987, pp. 28-29.]).

4-9. 4-9. In a sliding window protocol where messages are not accepted out of order, show what
can happen when the window size W equals to the range of the sequence numbers M (see
Figure 4.11).

4-10. 4-10. Show how you can reduce the dimensions of all four arrays in the protocol of Figure 4.11
to the maximum window size.
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4-11. 4-11. Consider the following problem on a channel that can reorder messages. A message with
sequence number N is sent and acknowledged by the receiver, but the acknowledgment
suffers a very long delay in the channel. A timeout occurs, and the message numbered N
is retransmitted. The new acknowledgment overtakes the old one. The window of the
sliding window protocol advances, and after it has advanced one full cycle, a new mes-
sage with sequence number N is transmitted. By this time, the old acknowledgment
finally makes it back to the sender and is confused for a new acknowledgment for the last
message sent. Can you devise a solution to this problem?

4-12. 4-12. An alternative method for the calculation of a retransmission timeout, used in the TCP
protocol, is based on the following formula Stallings [1985, p. 508], Zhang [1986], Karn
and Partridge [1987]: β.(α .T

_
+ ( 1 − α) .T last ), where T last is the last observed round-trip

delay. Compare this method with the one given in this chapter. Explain the effect of
parameters α and β.

4-13. 4-13. The original alternating bit protocol, shown in Figure 4.8, is only partially specified.
Provide the missing pieces.

4-14. 4-14. Consider in detail what might happen if, in Figure 4.12, recvd[p] would be reset to false
in the accept process immediately after an acknowledgment is sent.

BIBLIOGRAPHIC NOTES
The ‘‘alternating bit protocol,’’ introduced in this chapter, is one of the simplest, best
documented, and most thoroughly verified protocol designs. It was first described in
a paper by three people from the National Physical Laboratory in England, Bartlett,
Scantlebury and Wilkinson [1969], in response to an article by W.C. Lynch [1968].
Variations of the NPL protocol are still popular as a litmus test for new protocol vali-
dation and specification methods. Cerf and Kahn [1974] first extended the alternating
bit protocol into a go-back-N sliding window protocol. The selective repeat strategy
is due to Stenning [1976]. The block acknowledgment strategy was first described in
Brown, Gouda, and Miller [1989].

A general introduction to flow control techniques can be found in, for instance,
Pouzin [1976], Tanenbaum [1981, 1988], or Stallings [1985]. An excellent survey
and comparison of flow control techniques was published in Gerla and Kleinrock
[1980]. An early attempt at rate control is described in Beeforth et al. [1972]. It dis-
tinguishes between two types of acknowledgment: one acknowledges to the sender
that a message was correctly received and need not be retransmitted, and another sig-
nals to the sender that the buffer space occupied by that message was released (e.g.,
because the packet was forwarded), and that the window of sequence numbers can
advance a notch.

Various versions of Figure 4.16 have been published over the years. It is discussed in
detail in, for instance, Gerla and Kleinrock [1980] and Jain [1986].

The XTP, or Express Transfer Protocol is described in Chesson [1987]. The protocol
was designed to survive applications in high speed data networks. It is promoted by
the company ‘‘Protocol Engines,’’ founded by Greg Chesson. Other important work
on protocols for high-speed data networks is reported in Clark [1985], and Clark,
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Lambert and Zhang [1988]. Dynamic window flow control methods are described in,
for instance, Gerla and Kleinrock [1980], Jain [1986]. Jacobson’s slow start protocol
is described in Jacobson [1988].

More on the choice of timeout intervals for network protocols can be found in Zhang
[1986] and Karn and Partridge [1987]. For an introduction to general network control
issues refer to McQuillan and Walden [1977], Tanenbaum [1981, 1988], Cole [1987],
or Stallings [1985, 1988].
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5.1 INTRODUCTION
In Chapter 2 we discussed the five main elements of a protocol definition: a service
specification, explicit assumptions about the environment, the protocol vocabulary,
format definitions, and procedure rules. Most of these elements can be structured in a
hierarchical manner. The service specification, for instance, can be divided into
layers, each new layer building upon the ones below it and providing a higher-level
service to the user. To realize the service at a given layer, a consistent set of pro-
cedure rules must be derived and described in some formal language. The design of a
complete and consistent set of procedure rules, however, is one of the hardest prob-
lems in protocol design.

A PROTOCOL VALIDATION LANGUAGE
In this chapter we introduce a notation for the specification and verification of pro-
cedure rules. Since the focus is on the procedure rules, these specifications provide
only a partial description of a protocol. We call such a partial description a protocol
validation model. The language we use to describe validation models is called
PROMELA.

Our aim is to model protocols as succinctly as possible in order to be able to study
their structure and to verify their completeness and logical consistency. Doing so, we
deliberately abstract from other issues of protocol design, such as message format. A
validation model defines the interactions of processes in a distributed system. It does
not resolve implementation details. It does not say how a message is to be transmit-
ted, encoded, or stored. By simplifying the problem in this way we can isolate and

90
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concentrate on the hardest part: the design of a complete and consistent set of rules to
govern the interactions in a distributed system.

This chapter gives an introduction to the use of PROMELA for specifying system
behavior in formal validation models. The next chapter discusses specific methods
for defining the precise correctness criteria that can be applied to the validation of
these models. A brief reference manual to PROMELA can be found in Appendix C.
Chapter 7 gives an example of a serious application of PROMELA in the design of a file
transfer protocol. Chapter 12 discusses the design of an interpreter/simulator for the
language, and Chapter 13 discusses how this software can be extended with an
automated analyzer for PROMELA models.

5.2 PROCESSES, CHANNELS, VARIABLES
We describe procedure rules as formal programs for an abstract model of a distributed
system. Of course, we want this model to be as simple as possible, yet sufficiently
powerful to represent all types of coordination problems that can occur in distributed
systems. As far as descriptive power is concerned, it would suffice to define just one
type of object: the finite state machine. The state machine can model all other objects
that we may be interested in, including finite variables and message channels
(bounded FIFO queues). Though such a model may be sufficient, it is not very con-
venient to work with. We therefore define validation models directly in terms of three
specific types of objects:

processes
message channels
state variables

For the purpose of analysis, each of these objects may be translated into a finite state
machine by a simple translation process that is considered in Chapter 8. For now,
however, we can pretend to have the luxury of working directly with these higher-
level objects. All processes are by definition global objects. Variables and channels
represent data that can be either global or local to a process.

5.3 EXECUTABILITY OF STATEMENTS
In PROMELA there is no difference between conditions and statements. Even isolated
boolean conditions can be used as statements. The execution of a statement is condi-
tional on its executability. All PROMELA statements are either executable or blocked,
depending on the current values of variables or the contents of message channels.
Executability is the basic means of synchronization. A process can wait for an event
to happen by waiting for a statement to become executable. For instance, instead of
writing a busy wait loop:

while (a != b) skip /* wait for a == b */

we can achieve the same effect in PROMELA with the statement

(a == b)

The condition can only be executed (passed) if it holds. If the condition does not
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hold, execution blocks until it does. Arithmetic and boolean operators in conditions
such as these are the same as in C. As we will see below, assignments to variables are
always executable.

5.4 VARIABLES AND DATA TYPES
Variables in PROMELA are used to store either global information about the system as
a whole or information that is local to one specific process, depending on where the
declaration for the variable is placed. A variable can be one of the following six
predefined data types:

bit, bool, byte, short, int, chan.

The first five types in this list are called the basic data types. They are used to specify
objects that can hold a single value at a time. The sixth type specifies message chan-
nels. A message channel is an object that can store a number of values, grouped in
user-defined structures. We discuss the basic data types first. Message channels are
discussed separately in Section 5.6.

The declarations

bool flag;
int state;
byte msg;

define variables that can store integer values in three different ranges. The scope of
the variable is global if it is declared outside all process declarations, and local if it is
declared within a process declaration. Table 5.1 summarizes the basic data types,
sizes, and the corresponding value ranges on DEC/VAX computers.

Table 5.1 — Basic Data Types
_ ____________________________________________ ___________________________________________
Name Size (bits) Usage Range_ ___________________________________________
bit 1 unsigned 0..1
bool 1 unsigned 0..1
byte 8 unsigned 0..255
short 16 signed −215 ..215 −1
int 32 signed −231 ..231 −1_ ___________________________________________

The names bit and bool are synonyms for a single bit of information. A byte is an
unsigned quantity that can store a value between 0 and 255. shorts and ints are
signed quantities that differ only in the range of values they can hold.

ARRAYS
Variables can be declared as arrays. For instance,

byte state[N]

declares an array of N bytes that can be accessed in statements such as
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state[0] = state[3] + 5 * state[3*2/n]

where n is a constant or a variable declared elsewhere. The index to an array can be
any expression that determines a unique integer value. The valid range of indexes is 0
.. N-1. The effect of the use of an index value outside that range is undefined; most
likely it will cause a runtime error.

So far we have seen examples of a variable declaration and of two basic types of
statements: boolean conditions and assignments. Declarations and assignments are
always executable.

5.5 PROCESS TYPES
To execute a process we have to be able to name it, define its type, and instantiate it.
Let us first look at the definition and naming of processes. All types of processes that
can be instantiated are defined in proctype declarations. The following, for
instance, declares a process with one local variable named state.

proctype A() { byte state; state = 3 }

The process type is named A. The body of the declaration, enclosed in parentheses,
consists of local variable or channel declarations and statements. The declaration
above contains one local variable declaration and a single statement: an assignment of
the value 3 to variable state.

The semicolon is a statement separator (not a statement terminator, hence there is no
semicolon after the last statement). PROMELA defines two different statement separa-
tors: an arrow, ->, and a semicolon, ;. The two separators are equivalent. The arrow
is sometimes used as an informal way to indicate a causal relation between two state-
ments. Consider the following example.

byte state = 2;

proctype A() { (state == 1) -> state = 3 }

proctype B() { state = state – 1 }

In this example we declared two process types, A and B. Variable state is now a glo-
bal, initialized to the value 2. Process type A contains two statements, separated by an
arrow. Process type declaration B contains a single statement that decrements the
value of the state variable by 1. Since the assignment is always executable, processes
of type B can always terminate without delay. Processes of type A, however, are
delayed until the variable state contains the proper value.

THE INITIAL PROCESS
A proctype definition only declares process behavior, it does not execute it. Ini-
tially, just one process is executed: a process of type init which must be declared
explicitly in every PROMELA specification. The init process is comparable to the
function main() of a standard C program. The smallest possible PROMELA

specification is
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init { skip }

where skip is a null statement. Only slightly more complicated is the PROMELA

equivalent of the famous ‘‘hello world’’ program from C:

init { printf("hello world\n") }

More interestingly, however, the initial process can initialize global variables, create
message channels, and instantiate processes. An init declaration for the two-process
system in Section 5.5, for instance, might look as follows.

init { run A(); run B() }

This init process starts two processes, which will run concurrently with the init

process from then on. In the above case, the init process terminates after starting
the second process, but it need not do so. Run is a unary operator that instantiates a
copy of a given process type (for example, A). It does not wait for the process to ter-
minate. The run statement is executable and returns a positive result only if the pro-
cess can effectively be instantiated. It is unexecutable and returns zero if this cannot
be done, for instance if too many processes are already running. Since PROMELA

models finite state systems, the number of processes and message channels is always
bounded. The precise value of the bound is hardware-dependent and therefore
undefined in PROMELA. The value returned by run is a run-time process number, or
pid. Because run is defined as an operator, run A() is an expression that can be
embedded in other expressions. It would therefore be valid, though perhaps not too
useful, to use it in a composite expression such as

i = run A() && (run B() || run C())

Since communication between processes is defined on named channels, the process
numbers (pids) are usually irrelevant. There is one important exception that we dis-
cuss in Chapter 6, Section 6.7.

The run operator can pass parameter values to the new process, for instance as fol-
lows:

proctype A(byte state; short set)
{ (state == 1) -> state = set
}
init { run A(1, 3) }

Only message channels, discussed later, and instances of the five basic data types can
be passed as parameters. Arrays and process types cannot be passed.

Run can be used in any process to spawn new processes, not just in the initial process.
An executing process disappears when it terminates (i.e., reaches the end of the body
of its process type declaration), but not before all the processes that it has instantiated
(its ‘‘children’’) have terminated first.

Going back to the earlier example, note that using run we can create any number of
copies of the process types A and B. If, however, more than one concurrent process is
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allowed both to read and write the value of a global variable a well-known set of
problems can result (see Bibliographic Notes). Consider, for instance, the following
system of two processes, sharing access to the global variable state.

byte state = 1;

proctype A() { (state == 1) -> state = state + 1 }

proctype B() { (state == 1) -> state = state – 1 }

init { run A(); run B() }

If one of the two processes terminates before its competitor has started, the other pro-
cess will block forever on the initial condition. If both pass the condition simultane-
ously, both can terminate, but the resulting value of state is unpredictable. It can be
0, 1, or 2.

Many solutions to this problem have been considered, ranging from the abolition of
global variables to the provision of special machine instructions that can guarantee an
indivisible test-and-set sequence on a shared variable. The example below was one of
the first solutions published. It is due to the Dutch mathematician T. Dekker. It
grants two processes mutually exclusive access to an arbitrary critical section in their
code by manipulating three global state variables. The first four lines in the PROMELA

specification below are C-style macro definitions. The first two macros define true
to be a constant value equal to 1 and false to be a constant 0. Similarly, Aturn and
Bturn are defined as boolean constants.

1 #define true 1
2 #define false 0
3 #define Aturn 1
4 #define Bturn 0
5
6 bool x, y, t;
7
8 proctype A()
9 { x = true;

10 t = Bturn;
11 (y == false || t == Aturn);
12 /* critical section */
13 x = false
14 }
15 proctype B()
16 { y = true;
17 t = Aturn;
18 (x == false || t == Bturn);
19 /* critical section */
20 y = false
21 }
22 init { run A(); run B() }

The conditions on lines 11 and 18 are used to synchronize the processes. They can
only be executed if they hold. The algorithm can be executed repeatedly and is
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independent of the relative speeds of the two processes.

ATOMIC SEQUENCES
In PROMELA there is another way to avoid the test-and-set problem: atomic

sequences. A sequence of statements enclosed in parentheses prefixed with the key-
word atomic indicates that the sequence is to be executed as one indivisible unit,
non-interleaved with any other processes. It is an error if any statement, other than
the first one, can block in an atomic sequence. The executing process will abort in
that case. Here is the earlier example, rewritten with two atomic sequences.

byte state = 1;
proctype A() { atomic { (state == 1) -> state = state + 1 } }
proctype B() { atomic { (state == 1) -> state = state – 1 } }
init { run A(); run B() }

In this case the final value of state is either 0 or 2, depending on which process exe-
cutes. The other process will be blocked forever.

Atomic sequences can be an important tool in reducing the complexity of a validation
model. An atomic sequence restricts the amount of interleaving that is allowed which
can effectively render complex validation models tractable, without loss of generality.
The example below illustrates this.

proctype nr(short pid, a, b)
{ int res;

atomic { res = (a*a+b)/2*a;
printf("result %d: %d\n", pid, res)

}
}
init { run nr(1,1,1); run nr(1,2,2); run nr(1,3,2) }

The init process starts up three copies of the process type nr. Each process com-
putes some number and prints it. The manipulations of the variables within these
processes are all local and cannot affect the behavior of the other processes. Defining
the body of the process as an atomic sequence dramatically reduces the number of
cases that would need to be considered in a validation (Chapter 11), without changing
the possible behaviors of the processes in any way. It is usually trivial to identify
statement sequences that can be rewritten with atomic sequences.

5.6 MESSAGE CHANNELS
Message channels are used to model the transfer of data from one process to another.
They are declared either locally or globally, just like variables of the basic data types,
using the keyword chan. For instance,

chan a, b; chan c[3]

declares the names a, b, and c as channel identifiers, the last one as an array. A chan-
nel declaration can have an initializer field as well:
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chan a = [16] of { short }

initializes channel a. The initializer says that the channel can store up to 16 messages
of type short. Similarly,

chan c[3] = [4] of { byte }

initializes an array of 3 channels, each with a capacity of 4 message slots, each slot
consisting of one message field of type byte.

If the messages to be passed by the channel have more than one field, the declaration
looks as follows:

chan qname = [16] of { byte, int, chan, byte }

This time, we have defined a single channel that can store up to 16 messages, each
consisting of 4 fields: an 8-bit value, a 32-bit value, a channel name, and another 8-bit
value.

The statement

qname!expr

sends the value of expression expr to the channel we just created, that is, it appends
the value to the tail of the channel.

qname?msg

retrieves a message from the head of the channel, and stores it in the variable msg.
Channels pass messages in first-in first-out order. In the above cases, only a single
value is passed through the channel. If multiple values are transferred per message,
they are specified in a comma-separated list

qname!expr1,expr2,expr3
qname?var1,var2,var3

If more parameters are sent per message than the message channel can store, the
redundant parameters are lost. If fewer parameters are sent then the message channel
can store, the value of the remaining parameters is undefined. Similarly, if the receive
operation tries to retrieve more parameters than are available, the value of the extra
parameters is undefined; if it receives fewer than the number of parameters that was
sent, the extra information is lost.

By convention, the first message field is often used to specify the message type (a
constant). An alternative and equivalent notation for the send and receive operations
is therefore to specify the message type, followed by a list of message fields enclosed
in parentheses. In general:

qname!expr1(expr2,expr3)
qname?var1(var2,var3)

The send operation is executable only when the channel addressed is not full. The
receive operation, similarly, is only executable when the channel is non-empty.
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Optionally, some of the arguments in the receive operation can be constants:

qname?cons1,var2,cons2

In this case, a further condition on the executability of the receive operation is that the
value of all message fields that are specified as constants match the value of the
corresponding fields in the message that is at the head of the channel.

Here is an example that uses some of the mechanisms introduced so far.

proctype A(chan q1)
{ chan q2;

q1?q2;
q2!123

}
proctype B(chan qforb)
{ int x;

qforb?x;
printf("x = %d\n", x)

}
init
{ chan qname[2] = [1] of { chan };

chan qforb = [1] of { int };
run A(qname[0]);
run B(qforb);
qname[0]!qforb

}

Note that channel qforb is not declared as an array and therefore it does not need an
index in the send operation at the end of the initial process. The value printed by the
process of type B will be 123.

A predefined unary operator len(qname) takes the name of a channel qname as an
operand and returns the number of messages that it currently holds. Note that if len
is used as a condition, rather than on the right side of an assignment, it is unexecut-
able if the channel is empty: it returns a zero result, which by definition means that the
statement is temporarily unexecutable.

Send and receive operations cannot be evaluated without potential side-effects. Com-
posite conditions such as

(qname?var == 0)

or

(a > b && qname!123)

are therefore invalid in PROMELA. For the receive operation, however, there is an
alternative notation, using square brackets around the clause behind the question
mark. For instance,

qname?[ack,var]

is evaluated as a condition and can be combined with other boolean expressions. It
returns a positive result (1) if the corresponding receive statement
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qname?ack,var

would be executable, i.e., if there is indeed a message ack at the head of the channel.
It returns zero otherwise. It has no side-effect; specifically, it does not remove the
message from the channel.

Note carefully that in non-atomic sequences of two statements such as

(len(qname) > 0) -> qname?msgtype

or

qname?[msgtype] -> qname?msgtype

the second statement is not necessarily executable after the first one has been exe-
cuted. There may be race conditions if access to the channels is shared between
several processes. In both cases, a second process can steal the message just after the
current one determined its presence. PROMELA does not, and indeed cannot, prevent
the user from writing these specifications. On the contrary, these are precisely the
types of problems we want to model in our validation language.

RENDEZVOUS COMMUNICATION
So far we have talked about asynchronous communication between processes via
message channels created in statements such as

chan qname = [N] of { byte }

where N is a positive constant that defines the buffer size. Using a channel size of
zero, as in

chan port = [0] of { byte }

defines a rendezvous port that can only pass, and not store, single-byte messages.
Message interactions via such rendezvous ports are synchronous, by definition. Con-
sider the following example:

#define msgtype 33

chan name = [0] of { byte, byte };

byte name;

proctype A()
{ name!msgtype(124);

name!msgtype(121)
}
proctype B()
{ byte state;

name?msgtype(state)
}
init
{ atomic { run A(); run B() }
}
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The two run statements are placed in an atomic sequence to enforce that the two
processes start simultaneously. Of course, they need not terminate simultaneously,
and they need not have run to completion before the atomic sequence terminates.
Channel name is a global rendezvous port. The two processes synchronously execute
their first statement: a handshake on message msgtype and a transfer of the value 124
to local variable state. The second statement in process A is unexecutable, because
there is no matching receive operation in process B.

If the channel name is defined with a non-zero buffer capacity, the behavior is dif-
ferent. If the buffer size is at least two, the process of type A can complete its execu-
tion before its peer even starts. If the buffer size is one, the sequence of events is as
follows. The process of type A can complete its first send action, but it blocks on the
second, because the channel is now filled to capacity. The process of type B can then
retrieve the first message and terminate. At this point, A becomes executable again
and terminates, leaving its last message as a residual in the channel.

Synchronous ports can be declared as arrays, just like asynchronous channels. Ren-
dezvous communication is binary: only two processes, a sender and a receiver, can be
synchronized in this way. We will see an example of a way to exploit this to build a
semaphore below. But first, let us introduce a few more control flow structures.

5.7 CONTROL FLOW
Between the lines, we have already introduced three ways of defining control flow:
concatenation of statements within a process, parallel execution of processes, and
atomic sequences. There are three other control flow constructs in PROMELA to be
discussed:

Case selection
Repetition
Unconditional jumps

CASE SELECTION
The simplest construct is the selection structure. Using the relative values of two
variables a and b to choose between two options, for instance, we can write

if
:: (a != b) -> option1
:: (a == b) -> option2
fi

The selection structure contains two execution sequences, each preceded by a double
colon. Only one sequence from the list is executed. A sequence can be selected only
if its first statement is executable. The first statement is therefore called a guard.

In the example above the guards are mutually exclusive, but they need not be. If more
than one guard is executable, one of the corresponding sequences is selected at ran-
dom. If all guards are unexecutable, the process blocks until at least one of them can
be selected. There is no restriction on the type of statement that can be used as a
guard. The following example uses input statements:
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#define a 1
#define b 2

chan ch = [1] of { byte };

proctype A() { ch!a }
proctype B() { ch!b }
proctype C()
{ if

:: ch?a
:: ch?b
fi

}
init { atomic { run A(); run B(); run C() } }

This example defines three processes and one channel. The first option in the selec-
tion structure of the process of type C is executable if the channel contains a message
a, where a is a constant with value 1, as defined in a macro definition at the start of
the program. The second option is executable if it contains a message b, where b is a
constant. Which message will be available depends on the relative speeds of the
processes.

A process of the following type either increments or decrements the value of variable
count once.

byte count;

proctype counter()
{ if

:: count = count + 1
:: count = count – 1
fi

}

REPETITION
A logical extension of the selection structure is the repetition structure. We can
modify the above program to obtain a cyclic program that randomly increments or
decrements the variable.

byte count;

proctype counter()
{ do

:: count = count + 1
:: count = count – 1
:: (count == 0) -> break
od

}

Only one option can be selected for execution at a time. After the option completes,
the execution of the structure is repeated. The normal way to terminate the repetition
structure is with a break statement. In the example, the loop can be broken when the
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count reaches zero. It need not terminate since the other two options remain execut-
able. To force termination, we could modify the program as follows:

proctype counter()
{ do

:: (count != 0) ->
if
:: count = count + 1
:: count = count – 1
fi

:: (count == 0) -> break
od

}

JUMPS
Another way to break the loop is with an unconditional jump: the infamous goto

statement. This is illustrated in the following implementation of Euclid’s algorithm
for finding the greatest common divisor of two positive numbers:

proctype Euclid(int x, y)
{ do

:: (x > y) -> x = x – y
:: (x < y) -> y = y – x
:: (x == y) -> goto done
od;

done:
skip

}

The goto in this example jumps to a label named done. A label can only appear
before a statement. Above, we want to jump to the end of the program. In this case a
dummy statement skip is useful: it is a place holder that is always executable and has
no effect. The goto statement itself is always executable.

5.8 EXAMPLES
The following example specifies a filter that receives messages from a channel in and
divides them over two channels large and small depending on the values attached.
The constant N is defined to be 128, and size is defined to be 16 in two macro
definitions.

#define N 128
#define size 16

chan in = [size] of { short };
chan large = [size] of { short };
chan small = [size] of { short };
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proctype split()
{ short cargo;

do
:: in?cargo ->

if
:: (cargo >= N) -> large!cargo
:: (cargo < N) -> small!cargo
fi

od
}
init { run split() }

A process type that merges the two streams back into one, most likely in a different
order, and writes it back to the channel in could be specified as

proctype merge()
{ short cargo;

do
:: if

:: large?cargo
:: small?cargo
fi;
in!cargo

od
}

With the following modification to the init process, the split and merge processes
can busily perform their duties forever.

init
{ in!345; in!12; in!6777; in!32; in!0;

run split(); run merge()
}

As a final example, consider the following implementation of a Dijkstra semaphore,
using binary rendezvous communication.

#define p 0
#define v 1

chan sema = [0] of { bit };

proctype dijkstra()
{ do

:: sema!p -> sema?v
od

}
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proctype user()
{ sema?p;

/* critical section */
sema!v
/* non-critical section */

}
init
{ atomic {

run dijkstra();
run user(); run user(); run user()

}
}

The semaphore guarantees that only one user process can enter its critical section at a
time. In the example, each user process accesses its critical section only once. If
repeated access could be requested, the semaphore would not necessarily prevent one
process from monopolizing access to the critical section.

5.9 MODELING PROCEDURES AND RECURSION
Procedures, even recursive ones, can be modeled as processes. The return value can
be passed back to the calling process via a global variable or via a message. The fol-
lowing program illustrates this.

proctype fact(int n; chan p)
{ int result;

if
:: (n <= 1) -> p!1
:: (n >= 2) ->

chan child = [1] of { int };
run fact(n-1, child);
child?result;
p!n*result

fi
}
init
{ int result;

chan child = [1] of { int };

run fact(7, child);
child?result;
printf("result: %d\n", result)

}

The process fact(n, p) recursively calculates the factorial of n, communicating the
result to its parent process via channel p.

5.10 MESSAGE-TYPE DEFINITIONS
We have seen how constants can be defined using C-style macros. As a mild form of
syntactic sugar, PROMELA allows for message type definitions of the form

mtype = { ack, nak, err, next, accept }
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The definition is equivalent to the following sequence of macro definitions.

#define ack 1
#define nak 2
#define err 3
#define next 4
#define accept 5

A formal message-type definition is the preferred way of specifying the message types
since it defers any decision on the specific values to be used. At the same time, it
makes the names of the constants, rather than the values, available to an implementa-
tion, which can improve error reporting. There can be only one message-type
definition per specification.

5.11 MODELING TIMEOUTS
We have already discussed two types of statements with a predefined meaning in
PROMELA: skip and break. Another predefined statement is timeout. The timeout
statement allows a process to abort the waiting for a condition that can no longer
become true, for example, an input from an empty channel. The timeout provides an
escape from a hang state. It can be considered an artificial, predefined condition that
becomes true only when no other statements in the distributed system are executable.
Note that it carries no value: it does not specify a timeout interval, but a timeout pos-
sibility. We deliberately abstract from absolute timing considerations, which is cru-
cial in validation work, and we do not specify how the timeout should be imple-
mented. A simple example is the following process that sends a reset message to a
channel named guard whenever the system comes to a standstill.

proctype watchdog()
{ do

:: timeout -> guard!reset
od

}

The timeout, as defined here, does not model errors caused by premature timeouts in a
real system. If this is required, it can be achieved by redefining the keyword in a
macro, for instance as follows.

#define timeout 1 /* always enabled, arbitrary delay */

More examples are given in Chapter 7.

STATEMENT TYPES
With the exception of assert statements and temporal claim primitives (see Chapter
6) we have now discussed all basic types of statements defined in PROMELA:

Assignments and conditions
Selections and repetitions
Send and receive
Goto and break statements
Timeout
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Note that run and len are not statements but unary operators that can be used in
assignments and conditions.

The skip statement was introduced as a filler to satisfy syntax requirements. It is not
formally part of the language but a pseudo-statement, a synonym for another state-
ment with the same effect. Trivially, skip is equivalent to the condition (1); it is
always executable and has no effect.

5.12 LYNCH´s PROTOCOL REVISITED
Now that we have a language, let us try to describe the example protocol from
Chapter 2. The version below is based on Figures 2.1 and 2.3, with the trial extension
for accepting messages and for initializing the data transfer discussed in Section 2.4.

mtype = { ack, nak, err, next, accept }

proctype transfer(chan in, out, chin, chout)
{ byte o, i;

in?next(o);
do
:: chin?nak(i) -> out!accept(i); chout!ack(o)
:: chin?ack(i) -> out!accept(i); in?next(o); chout!ack(o)
:: chin?err(i) -> chout!nak(o)
od

}
init
{ chan AtoB = [1] of { byte, byte };

chan BtoA = [1] of { byte, byte };
chan Ain = [2] of { byte, byte };
chan Bin = [2] of { byte, byte };
chan Aout = [2] of { byte, byte };
chan Bout = [2] of { byte, byte };

atomic {
run transfer(Ain, Aout, AtoB, BtoA);
run transfer(Bin, Bout, BtoA, AtoB)

};
AtoB!err(0)

}

The channels Ain and Bin are to be filled with token messages of type next and arbi-
trary values (e.g., ASCII character values) by unspecified background processes: the
users of the transfer service. Similarly, these user processes can read received data
from the channels Aout and Bout. The processes are initialized in an atomic state-
ment and started with the dummy err message.

As a last example, below is a listing in PROMELA of a viciously complex procedure to
calculate Ackermann’s function, which is defined recursively as

ack(0,b) = b+1
ack(a,0) = ack(a-1, 1)
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ack(a,b) = ack(a-1, ack(a,b-1))

The PROMELA version is as follows.

/***** Ackermann’s function *****/

proctype ack(short a, b; chan ch1)
{ chan ch2 = [1] of { short };

short ans;

if
:: (a == 0) ->

ans = b+1
:: (a != 0) ->

if
:: (b == 0) ->

run ack(a-1, 1, ch2)
:: (b != 0) ->

run ack(a, b-1, ch2);
ch2?ans;
run ack(a-1, ans, ch2)

fi;
ch2?ans

fi;
ch1!ans

}
init
{ chan ch = [1] of { short };

short ans;

run ack(3, 3, ch);
ch?ans;
printf("ack(3,3) = %d\n", ans);
assert(0) /* a forced stop, (Chapter 6) */

}

Seems simple enough? It takes 2433 process instantiations to produce the answer.
The answer, by the way, is 61.

5.13 SUMMARY
We have introduced a notation for describing protocol procedure rules in a
specification and modeling language named PROMELA. In this chapter we have dis-
cussed PROMELA features for describing system behavior only. In the next chapter we
discuss the remaining language features that are specifically related to the
specification of correctness criteria.

The validation modeling language has several unusual features that make it suited for
modeling distributed systems. All communication between processes takes place via
either messages or shared variables. Synchronous and asynchronous communication
are modeled as special cases of a general message-passing mechanism.

Every statement in PROMELA can potentially model delay: it is either executable or
not, in most cases depending on the state of the environment of the running process.
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Process interaction and process coordination are thus at the very basis of the language.
The semantics of the language make a mapping from the flow chart language used in
the first part of the book to PROMELA programs straightforward. It is probably good to
keep in mind that PROMELA is a modeling language, not a programming language.
There are no abstract data types, and only a few basic types of variables. A validation
model is an abstraction of a protocol implementation. The abstraction maintains the
essentials of the process interaction so that it can be studied in isolation. It suppresses
implementation and programming detail. An overview of the language can be found
in Appendix C.

In the next chapters we find good use for the language. In Chapter 7 it is used in the
design of a file transfer protocol. In Part IV we show how to develop the software for
analyzing protocol models written in PROMELA.

EXERCISES

5-1. 5-1. Assume the statement run A() is unexecutable, for instance because there were too many
processes running. Can you say if b = run A() is executable?

5-2. 5-2. If the statement (qname?var == 0) were allowed in PROMELA, what would its effect be?
Hint: consider the side-effects of the receive operation.

5-3. 5-3. Revise the two programs from Section 5.6 to incorporate the use of messages of type eot
to signify the end of an input stream.

5-4. 5-4. Rewrite the declaration for process types fact() and ack() to use a global variable
instead of messages to communicate the result of the calculation from a child process to
its parent.

5-5. 5-5. Rewrite the fact() program to return the n-th Fibonacci number, f(n) = f(n-1) +
f(n-2), instead of a factorial. By definition, f(0) = 0 and f(1) = 1.

5-6. 5-6. Rewrite your program for generating Fibonacci numbers to reduce the number of
processes that is required. (Hint: make the program singly recursive; every process
creates no more than one child.)

5-7. 5-7. Extend the model of Lynch’s protocol with two user processes that use the transfer ser-
vice.

5-8. 5-8. Extend the same program with a process type modeling a faulty transmission channel
between the two users.

5-9. 5-9. Write a PROMELA program that performs a bubble sort on the elements of a channel that
is initialized with messages of type int, each carrying a value. A bubble sort is done by
scanning through a list of numbers repeatedly, swapping any pair of adjacent numbers
that are out of order.

5-10. 5-10. Write a PROMELA program that sorts integers by building a binary tree of processes. Each
process holds one integer in the sequence. It has one parent process and up to two chil-
dren processes, left and right. The integers enter the sorter via the process at the root of
the tree. All processes follow the same discipline. If the next integer received is larger
than the one held by the receiver, it is routed to the left. If it is smaller, it is routed to the
right. Children processes are created only when necessary. When the last integer has
been processed, the values stored in the tree must be retrieved in the right order and
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printed.

5-11. 5-11. With distributed processes, it is relatively easy to design resource managers that can, for
instance, provide user programs mutually exclusive access to devices or services. Write
a sample printer server that ‘‘owns’’ a display channel and allows processes to submit a
sequence of messages to it (e.g., anything up to an eot) in fragments, without the possi-
bility of interruption by other processes.

5-12. 5-12. Rewrite the example using the Dijkstra semaphore with rendezvous communication into
a solution using asynchronous communication between the monitor process and the user
processes.

5-13. 5-13. Consider in detail why the C data types real or double are not defined in PROMELA.

5-14. 5-14. (Paul Haahr) Many processors use ‘‘interrupt priority levels’’ to ensure that some devices
get handled before others (e.g., disks are usually treated as more urgent that keyboards).
The current priority level is stored in a special CPU register, usually a 3-bit or 4-bit
integer. During normal operation, the priority level is zero. Each hardware device that
can interrupt the CPU is assigned a priority level. When a hardware interrupt occurs, if
the processor is currently running at a level less than that of the device, the processor
starts running the appropriate interrupt handler; if not, the device waits until the priority
drops and then interrupts. When the interrupt handler starts, the priority level is set to the
device’s priority. It is reset to the previous level when the handler terminates. The pro-
cessor can also set the priority level independently of the interrupt handlers, e.g., with an
instruction spl(x). This can be used to prevent an interrupt handler from being inter-
rupted in the middle—when its data structures are not necessarily in a proper state—by
another interrupt that will use the same structures. It is also used by operating systems to
assure mutual exclusion. For example, if a device (say a disk) interrupts at level six, the
device driver that runs the disk has to set the priority level temporarily to six before using
data structures that may be altered by a disk interrupt. Model the interrupt priority
scheme in PROMELA for three processes, modeling the behavior of a CPU, a disk process
and a terminal process. (Hint: use an array to model the stack of priority levels.)

5-15. 5-15. Modify the validation model for Lynch’s protocol to model the possibility of transmis-
sion errors.

BIBLIOGRAPHIC NOTES
PROMELA is an extension of a smaller language named Argos that was developed in
1983 for protocol validation, e.g., Holzmann [1985]. The syntax of PROMELA expres-
sions, declarations, and assignments is loosely based on the language C, Kernighan
and Ritchie [1978]. The language was influenced significantly by the ‘‘guarded com-
mand languages’’ of E.W. Dijkstra [1975] and C.A.R. Hoare [1978]. There are, how-
ever, important differences. Dijkstra’s language had no primitives for process interac-
tion. Hoare’s language was based exclusively on synchronous communication. Also
in Hoare’s language, the type of statements that could appear in the guards of an
option was restricted. The semantics of the selection and cycling statements in
PROMELA is also rather different from other guarded command languages: the state-
ments are not aborted when all guards are false but they block, thus providing the
required synchronization.

The mutual exclusion (or ‘‘critical section’’) problem, referred to briefly in this
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chapter, has been studied for many years. The following intriguing series of articles
documents some of the improvements that have been made: Dijkstra [1965], Knuth
[1966], deBruyn [1967], Dijkstra [1968], Eisenberg and McGuire [1972], Lamport
[1974, 1976, 1986]. More elaborate discussions can also be found in Bredt [1970] or
Holzmann [1979].
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6.1 INTRODUCTION
In Chapter 5 we developed a language for modeling behavior in distributed systems.
The language is deliberately defined at a high level of abstraction to allow us to focus
on design rather than on implementation issues. The programs that can be written in
this language are therefore called validation models. The details required to convert a
validation model into an implementation could presumably be filled in with relatively
little effort, perhaps even mechanically. But the primary purpose of PROMELA is vali-
dation, not implementation.

To validate a design, we need to be able to specify precisely what it means for a
design to be correct. A design can be proven correct only with respect to specific
correctness criteria. Three fairly standard criteria were listed in Chapter 2: the
absence of deadlocks, livelocks, and improper terminations. It is, for instance, never
enough to just ‘‘know’’ that a design is free of deadlocks.

A good design is provably free of deadlocks.

There are many protocol properties that one might be interested in proving for any
given design. But the problems we are dealing with are complex. It is not too hard to
show that the problem of verifying even the simplest protocol properties, such as
absence of deadlock, is PSPACE hard (see Bibliographic Notes), even for a finite
state model. In attempting to prove the correctness of a protocol, we have to be aware
of these complexity bounds. Since it is our goal to develop a validation methodology
that can be applied to protocols of arbitrary size, we need to develop methods for bat-
tling the complexity from two different sides:

We need a formalism for specifying correctness requirements that is not so
inherently complex that effective analysis for larger models becomes impossible.
We need a method for reducing the complexity of models that are beyond the
range of our validation methods.

111
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The second point, reduction, is discussed in Chapters 8 and 11 (see Section 8.9, Gen-
eralization of Machines, and Section 11.7, Complexity Management). The first point
will be addressed here. It says that the more expressive we make our notation for
specifying correctness requirements, the less useful it will be in practice. The set of
correctness criteria that can be expressed in PROMELA is therefore chosen carefully.
This set is deliberately not restricted to a single all-powerful mechanism. Several
independent levels of complexity are supported. The simplest, most frequently used
requirements, such as absence of deadlock, are expressed straightforwardly and
checked independently of other properties. They can be analyzed mechanically with
fast and frugal algorithms even for very large systems. Slightly more complicated
types of requirements, such as absence of livelocks, are expressed independently, and
carry an independent price-tag in computational expense when validated mechani-
cally. The most sophisticated requirements are inevitably also the most expensive to
check. In Chapter 11 we discuss the best known algorithms for the automated valida-
tion of each type of correctness requirement and quantify the size of systems that they
can validate.

In the next section we give an overview of the types of correctness criteria that can be
expressed for PROMELA models. Each of the sections that follow it elaborates one of
these properties in detail. It shows the PROMELA language structures that are needed
to express each property and gives some examples of its use.

6.2 REASONING ABOUT BEHAVIOR
We formalize correctness criteria as claims about the behavior of a PROMELA valida-
tion model. Two general types of claims are then that a given behavior is either

Inevitable or
Impossible

Since the number of possible behaviors of any given PROMELA model is finite, how-
ever, a claim of either type implicitly defines a complementary and equivalent claim
of the other type. It therefore suffices to support just one.

All correctness criteria that can be expressed in PROMELA define behaviors
that are claimed to be impossible.

To state that a given behavior is inevitable, for instance, we can state that all deviant
behaviors are impossible. Similarly, if a correctness assertion states that a condition
is invariantly true, the correctness claim states that it is impossible for the assertion to
be violated, independent of the system behavior.

Before we can continue, however, we will have to be more precise about the terms we
are using. What, for instance, is a behavior, and how can we make claims about it?

The behavior of a validation model is defined completely by the set of all the execu-
tion sequences it can perform, where an execution sequence is simply a finite, ordered
set of states. A state, in turn, is completely defined by the specification of all values
for local and global variables, all control flow points of running processes, and the
contents of all message channels. We say that a validation model can reach a given
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state by the execution of PROMELA statements, using the earlier defined semantics of
executability. A validation model can also be placed in a given state by an assign-
ment of the appropriate values to variables, control flow points and channels.

Of course, not just any arbitrary collection of states is also a valid execution sequence.
A finite, ordered set of states is said to be valid for a given PROMELA model M if it
satisfies the following two criteria:

The first state of the sequence, i.e., the state with ordinal number 1, is the initial
system state of M, with all variables initialized to zero, all message channels
empty, with only the init process active, and set in its initial state.
If M is placed in the state with ordinal number i, there is at least one executable
statement that can bring it to the state with ordinal number i+1.

We will consider two special types of sequences, called terminating and cyclic
sequences.

An execution sequence is said to be terminating if no state occurs more than once
in the sequence, and the model M contains no executable statements when placed
in the last state of the sequence.
An execution sequence is said to be cyclic if all states except the last one are dis-
tinct, and the last state of the sequence is equal to one of the earlier states.

Cyclic sequences define potentially infinite executions. All terminating and cyclic
execution sequences that can be generated by executing a PROMELA model, together
define the system behavior of that model. The union of all states included in the sys-
tem behavior is called the set of reachable states of the model.

PROPERTIES OF STATES
Correctness claims for PROMELA models can be built up from simple propositions,
where a proposition is a boolean condition on the state of the system. The proposi-
tions can refer to all the elements of a system state: local and global variables,
control-flow points of arbitrary executing processes, and the contents of message
channels. Some of the notation for this was discussed in Chapter 5; the remaining
features will be introduced shortly.

The propositions implicitly define a labeling of states. In any given state a proposi-
tion is either true or false. Correctness criteria then can be expressed in terms of
states, e.g., by defining explicitly in which states a given proposition is required to
hold. Some of these requirements can be specified in PROMELA with, for instance,
assertion statements that are embedded in the model. This mechanism by itself, how-
ever, is not sufficient. If more than one proposition is used, we may want to express a
correctness requirement as a temporal ordering of propositions, i.e., by specifying the
order in which propositions are required to hold (with the truth of one proposition
either immediately or eventually following the truth of another). Alternatively, the
temporal ordering can define the order in which propositions should never hold. As
indicated above, these two alternatives for defining temporal orderings are comple-
mentary. Only the second alternative is supported in PROMELA. The formalism to
support this is a new language feature called a temporal claim.
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TEMPORAL CLAIMS
In the formalization of temporal claims we specify an ordering of propositions. It is
important to note that the semantics of these proposition orderings is different from
the semantics of statement orderings elsewhere in a PROMELA model. Within
proctype definitions, a sequential ordering of two statements implies that the second
statement is to be executed after the first one terminates. Since we are not allowed to
make any assumptions about the relative speeds of concurrently executing processes,
the only valid interpretation of the word after in the above sentence is eventually
after. Correctness claims, however, may have to be more specific. In a temporal
claim a sequential ordering of two propositions defines an immediate consequence.
We will show later how other types of temporal relations can also be specified with
this mechanism.

The types of correctness requirements we make can be different for terminating and
cyclic sequences, as are the algorithms we will ultimately need to check these claims.
An important requirement that applies to terminating sequences is, for instance,
absence of deadlock. Not all terminating sequences, however, correspond to
deadlocks. We will have to be able to express which properties the final state in a
sequence must have to make that sequence acceptable as a non-deadlocking terminat-
ing sequence. For cyclic sequences, finally, we should be able to express general con-
ditions such as the absence of livelock.

OVERVIEW
The remainder of this chapter is devoted to a more detailed discussion of the formali-
zation of correctness criteria in PROMELA. It will introduce the last few language con-
structs that specifically deal with validation:

The assert() statement, which can be used to express both local assertions
and global system invariants
Three types of labels that can be used to define a small class of frequently used
correctness claims for terminating and cyclic sequences
The formalization of general temporal claims
The notation that can be used in assertions and in temporal claims to refer to
the control-flow states and the local variables of arbitrary running processes

We begin by taking a closer look at the specification of the correctness properties of
states.

6.3 ASSERTIONS
Correctness criteria can often be expressed as boolean conditions that must be
satisfied whenever a process reaches a given state. The PROMELA statement

assert(condition)

is always executable and can be placed anywhere in a PROMELA model. The condi-
tion can be an arbitrary boolean expression. If the condition is true, the statement has
no effect. The validity of the statement is violated, however, if there is at least one
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execution sequence in which the condition is false when the assert statement
becomes executable.

Consider the following example from Chapter 5.

byte state = 1;

proctype A() { (state == 1) -> state = state + 1 }

proctype B() { (state == 1) -> state = state – 1 }

init { run A(); run B() }

We could try to claim that when a process of type A() completes the value of variable
state must be 2, and when a process of type B() completes it must be 0. This could
be expressed as follows.

byte state = 1;

proctype A()
{ (state == 1) -> state = state + 1;

assert(state == 2)
}
proctype B()
{ (state == 1) -> state = state – 1;

assert(state == 0)
}
init { run A(); run B() }

The claims are, of course, false, and an automated validator would demonstrate that
quickly.

6.4 SYSTEM INVARIANTS
A more general application of the assert statement is to formalize system invariants,
i.e., boolean conditions that, if true in the initial system state, remain true in all reach-
able system states, independently of the execution sequence that leads to each specific
state. To express this in PROMELA, it suffices to place the system invariant by itself in
a separate, monitor process.

proctype monitor() { assert(invariant) }

Once an instance of the process type monitor has been started (the name is imma-
terial), with a regular run statement, it executes independently of the rest of the sys-
tem. It can decide to evaluate the assertion at any time; its assert statement is exe-
cutable precisely once for every state of the system.

For a simple application of this type of correctness claim, consider the dijkstra

semaphore validation model, introduced in Chapter 5.
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#define p 0
#define v 1

chan sema[0] of { bit };

proctype dijkstra()
{ do

:: sema!p -> sema?v
od

}
proctype user()
{ sema?p;

/* critical section */
sema!v
/* non-critical section */

}
init
{ atomic {

run dijkstra();
run user(); run user(); run user()

}
}

The semaphore guarantees mutually exclusive access of user processes to their critical
sections. We can modify the user processes as follows, to count the number of
processes in the critical section in a global variable count.

byte count;

proctype user()
{ sema?p;

count = count+1;
skip; /* critical section */
count = count-1;
sema!v;
skip /* non-critical section */

}

The following system invariant can now be used to verify the correct operation of the
semaphore:

proctype monitor() { assert(count == 0 || count == 1) }

An instantiation of the monitor must be included in the initial process, to allow it to
perform the correctness check.

init
{ atomic {

run dijkstra(); run monitor();
run user(); run user(); run user()

}
}
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6.5 DEADLOCKS
In a finite state system, all execution sequences either terminate after a finite number
of state transitions, or they cycle back to a previously visited state. Not all terminat-
ing sequences, however, are necessarily deadlocks. In order to define what a deadlock
in a PROMELA model is, we must be able to distinguish the expected, or proper, end-
states from the unexpected ones. The unexpected end-states will include not just
deadlock states, but also many error states that are the result of a logical incomplete-
ness of the protocol specification. The classic example of the latter is the unspecified
reception.

The final state in a terminating execution sequence must minimally satisfy the follow-
ing two criteria to be considered a proper end-state:

Every process that was instantiated has terminated
All message channels are empty

But not all processes necessarily terminate. It can be perfectly valid, for instance, for
server processes to stay alive after user processes terminate. We must be able, there-
fore, to identify individual process states in proctype definitions as proper end-
states. In PROMELA this can be done with end-state labels. In the semaphore example
from Chapter 5, for instance, we can write

proctype dijkstra()
{
end: do

:: sema!p -> sema?v
od

}

to define that any process of type dijkstra is considered to be in a proper end-state
when it is in the state labeled end.

If there is more than one proper end-state within a single proctype definition, all
label-names must still be unique. An end-state label is defined to be any label-name
that has a three-character prefix end. So it is valid to use variations such as enddne,
end0, end_war. We can now revise the first criterion from the definition of a proper
end-state:

Every process that was instantiated has either terminated or has reached a state
marked as a proper end-state

Any final state in a terminating execution sequence that does not satisfy the two cri-
teria for proper end-states is automatically classified as an improper end-state. An
implicit correctness claim that is made about all validation models will be that the
behaviors they define do not include any improper end-states.

Refer to Chapter 14 and Appendix F for some examples of the use of end-state labels
in a real validation.
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6.6 BAD CYCLES
Two properties of cyclic sequences can be expressed in PROMELA, corresponding to
two standard types of correctness requirements. Both properties are based on the
explicit marking of states in a validation model. The first property specifies that

There are no infinite behaviors of only unmarked states
that is, the system cannot infinitely cycle through unmarked states. The marked states
are called progress-states, and the execution sequences that violate the above correct-
ness claim are called non-progress cycles. The second property is the opposite of the
first. It is used to specify that

There are no infinite behaviors that include marked states
Execution sequences that violate this claim are called livelocks. We discuss each type
of correctness claim in more detail below.

NON-PROGRESS CYCLES
To claim the absence of non-progress cycles, we must be able to define the system
states within the PROMELA model that denote progress. These progress states are
defined much like end-state labels.

A progress-state label marks a state that must be executed for the protocol to make
progress. An example can be the incrementing of a sequence number, or the delivery
of data to a receiver. In the semaphore example we can label the successful passing of
a semaphore test as ‘‘progress.’’ Simply by marking it as a progress state we can
express the correctness criterion that the passing of the semaphore guard cannot be
postponed infinitely long, e.g., by an infinite execution cycle that does not pass the
progress state.

proctype dijkstra()
{
end: do

:: sema!p ->
progress: sema?v

od
}

An automated validator can readily confirm that indeed this claim cannot be violated.
If more than one state carries a progress-state label, variations with a common prefix
are again valid: progress0, progressisslow, and so on.

LIVELOCKS
Suppose we wanted to express the opposite of a progress condition, e.g., we want to
formalize that something cannot happen infinitely often. We can express properties
like this with the third, and last, class of special PROMELA labels. In addition to the
end-state, and progress-state labels introduced earlier, we now define acceptance-state
labels. An acceptance-state label is any label starting with the character sequence
‘‘accept.’’ It marks a state that may not be part of a sequence of states that can be
repeated infinitely often.

For example, if we replace the progress-state label in proctype dijkstra() with an
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acceptance-state label

proctype dijkstra()
{
end: do

:: sema!p ->
accept: sema?v

od
}

we claim that it is impossible to cycle through a series of p and v operations. We
know, of course, that this claim is false. We can either prove that it is false manually,
or we can use an automated validator to provide a counter-example.

Again, all variations, such as acceptor, acceptable, and accept_yo, are allowed.
In principle, we could make the best use of an acceptance state if we could use it to
express complete behaviors that are required to be impossible, rather than only the
absence of a designated state in all cycles. We will do precisely that by using the
labels to define the acceptance states of special claim automata that model error
behaviors. (This also explains the choice of the term ‘‘accept.’’) These automata
express general temporal claims.

6.7 TEMPORAL CLAIMS
Up to this point we have talked about the specification of correctness criteria with
assertions and with three special types of labels that can be used to mark end states,
progress states, and acceptance states. Powerful types of correctness criteria can
already be expressed with these tools, yet so far our only option is to add them to
proctype definitions. Suppose that, within this framework, we want to express the
temporal claim ‘‘every state in which property P is true is followed by a state in
which property Q is true.’’ We noted before that two different interpretations of the
term ‘‘followed by’’ are possible, depending on whether the two states must immedi-
ately or eventually follow each other. It is basic to the semantics of PROMELA that no
assumptions whatsoever can be made about the relative timing of process executions.
This means that, so far, the only legitimate interpretation of the above term is that two
steps ‘‘eventually’’ follow each other (including ‘‘immediately’’ as a special case).
That, however, leaves us with the problem to express the other types of properties.
For this we need a different type of validation primitive.

Temporal claims define temporal orderings of properties of states. To express the
requirement that ‘‘every state in which property P is true is followed by a state in
which property Q is true,’’ we could write

P -> Q

But, it’s not quite that simple. There are two snags.
Since all our correctness criteria are based on properties that are claimed to be
impossible, the temporal claims we use must also express orderings of properties
that are impossible.
The temporal claims are defined on complete execution sequences (terminating or
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cyclic). Even if a prefix of the sequence is irrelevant, it must still be represented
as a trivially-true sequence of propositions.

The requirement above should be expressed, therefore, as

never { do :: skip :: break od -> P -> !Q }

that is, independent of the initial sequence of events, it is impossible for a state in
which property P is true to be followed by a state in which property Q is false. The
claim is matched, and the corresponding correctness property thereby violated, if and
when the claim body terminates.

The PROMELA notation for a temporal claim is

never { ... }

where the dots contain the details of the claim.

Temporal claims can be primed with progress-state or acceptance-state labels to catch
more types of errors than just a complete match of a terminating behavior. The
never claims can be expressed, for instance, as special finite state machines that
cycle through an acceptance state if the undesirable behavior is recognized.

Suppose we wanted to express the temporal property that condition1 can never
remain true infinitely long. To catch violations of this property, we must find a
representation in a temporal claim of all behaviors where condition1 may be false
initially, becomes true eventually, and remains true. It is expressed as follows

never {
do
:: skip
:: condition1 -> break
od;

accept: do
:: condition1
od

}

This (non-terminating) claim is matched, and the corresponding correctness property
violated, if and when the acceptance cycle is detected. The tricky part is to remember
the inclusion of the skip (a condition that is always true) in the first loop. Note that
sequences where the truth value of condition1 first changes from true to false a few
times are permitted by the claim.

The claim itself is simply a finite state machine, with a proposition defined in every
state. For every state transition elsewhere in the validation model, i.e., by the execu-
tion of a PROMELA statement, the claim machine must change its state and move from
one proposition to the next. To match a temporal claim, at every state in a sequence
of states the proposition at corresponding state in the claim machine must be true. If
we write erroneously, for instance
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never {
do
:: skip
:: condition1 -> break
od;

accept:
condition1

}

the claim contains just two state transitions after condition1 becomes true. This
claim is completely matched if there is at least one execution sequence in which
condition1 holds in two subsequent states.

The finite state machines specified in the claims above contain three states each: the
initial state, the state labeled accept and the normal end state. The first, correct, ver-
sion of the claim specifies that it would be an error (a livelock) if the machine can stay
in the second state infinitely long. The second version specified that it would be an
error if the third (terminal) state is reachable.

SPECIFYING TEMPORAL CLAIMS
The body of a temporal claim is defined just like PROMELA proctype bodies. This
means that all control flow structures, such as if-fi selections, do-od repetitions,
and goto jumps, are allowed. There is, however, one important difference:

Every statement inside a temporal claim is (interpreted as) a condition.
Specifically, this means that the statements inside temporal claims should be free of
side-effects. For reference, the PROMELA statements with side-effects are: assign-
ments, assertions, sends, receives, and printf statements.

Temporal claims are used to express system behaviors that are considered undesirable
or illegal. We say that a temporal claim is matched if the undesirable behavior can be
realized, and thus our correctness claim can be violated.

The most useful application of temporal claims is in combination with acceptance
labels. There are then two ways to match a temporal claim, depending on whether the
undesirable behavior defines terminating or cyclic execution sequences.

For a terminating execution sequence, a temporal claim is matched only when it
can terminate (reaches the closing curly brace) That is, the claim can be violated if
the closing curly brace of the PROMELA body of the claim is reachable.
For a cyclic execution sequence, the claim is matched only when an explicit
acceptance cycle exists. The acceptance labels within temporal claims are user
defined, there are no defaults. This means that in the absence of acceptance labels
no cyclic behavior can be matched by a temporal claim. It also means that to
check a cyclic temporal claim, acceptance labels should only occur within the
claim and not elsewhere in the PROMELA code.

Never claims, used in combination with acceptance-state labels, can express also the
absence of non-progress cycles. The claims are therefore more general than
progress-state labels. The expense (complexity) of finding non-progress cycles
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directly with progress-state labels, however, is smaller than the expense of the valida-
tion of a claim that specifies the same property.

To get the full benefit of temporal claims, we must be able to refer to the control-flow
states and the variable values of running processes. As an example, consider the fol-
lowing version of the alternating bit protocol.
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1 /* alternating bit - version with message loss */
2
3 #define MAX 3
4
5 mtype = { msg0, msg1, ack0, ack1 };
6
7 chan sender =[1] of { byte };
8 chan receiver=[1] of { byte };
9

10 proctype Sender()
11 { byte any;
12 again:
13 do
14 :: receiver!msg1;
15 if
16 :: sender?ack1 -> break
17 :: sender?any /* lost */
18 :: timeout /* retransmit */
19 fi
20 od;
21 do
22 :: receiver!msg0;
23 if
24 :: sender?ack0 -> break
25 :: sender?any /* lost */
26 :: timeout /* retransmit */
27 fi
28 od;
29 goto again
30 }
31
32 proctype Receiver()
33 { byte any;
34 again:
35 do
36 :: receiver?msg1 -> sender!ack1; break
37 :: receiver?msg0 -> sender!ack0
38 :: receiver?any /* lost */
39 od;
40 P0:
41 do
42 :: receiver?msg0 -> sender!ack0; break
43 :: receiver?msg1 -> sender!ack1
44 :: receiver?any /* lost */
45 od;
46 P1:
47 goto again
48 }
49
50 init { atomic { run Sender(); run Receiver() } }

Processes Receiver and Sender communicate via message channels named
receiver and sender. Each channel can hold one message of type byte.

Message loss is modeled explicitly in the sender and the receiver processes with a
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clause that can steal an incoming message before it is processed (lines 15, 23, 36, and
42). We may want to express the claim ‘‘it is always true that when the sender
transmits a message, the receiver will eventually accept it.’’ Our first job is again to
find the corresponding undesirable property that can be expressed in a temporal claim.
To be able to specify this, however, we need to be able to refer to states inside the
sender and receiver processes. The required notation is used in the following formali-
zation of the claim.

never {
do
:: skip /* allow any time delay */
:: receiver?[msg0] -> goto accept0
:: receiver?[msg1] -> goto accept1
od;

accept0:
do
:: !Receiver[2]:P0
od;

accept1:
do
:: !Receiver[2]:P1
od

}

The claim above is a four-state machine: the inital state, the two states that were
labeled, and the normal end state. At least one of three conditions must be true in the
initial system state. The claim remains in this state as long as channel receiver is
empty. If it contains a message1 msg0 or msg1 it will change state to either accept0
or accept1, depending on the message that was matched. Once the transition to, for
instance, state accept0 has been made, the claim can only remain in that state if the
receiver process will never accept a message with the same sequence number, i.e., if
the receiver process never passes the state labeled P0.

There can be many instantiations of the process type Receiver so we need some way
of specifying exactly which particular instantiation we mean when we refer to the
state of a process. This is the only time that we need to be able to refer to the instan-
tiation number or the pid of a process. The pid of a process is the number that is
returned by the run operator, when a process is instantiated. The pids are assigned in
the order in which processes are started, but they may be recycled when processes die.
The initial process always has pid zero, and its number is never recycled. A pid can
usually easily be inferred from the program text. Since the receiver process is the
second process that is instantiated in this system, its pid is two. We can refer to the
receiver process unambiguously as Receiver[2]. The condition that the receiver is
currently in the state labeled P0 is expressed as Receiver[2]:P0. The condition is
false whenever the second process that was instantiated is in any state other than at
__________________
1. The notation for a side-effect free inspection of the contents of a message channel was introduced in
Chapter 5 on page 98.
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label P0 of process type Receiver.

The notation Receiver[2]:P0 is a special case of a more general construct which
allows temporal claims to refer to internal conditions of the asynchronous processes
defined within a PROMELA model. A reference to the current value of local variable
any in the receiver process, for instance, is written Receiver[2].any. It can be used
in arbitrary expressions, such as

assert(Receiver[2].any < 0)

In process references, a colon is used to refer to labels (i.e., control flow states) and a
period is used to refer to local variables. In the first case, the value returned is a
boolean. In the second case it is the integer value of the variable specified.

The example claim can be proven for the alternating bit protocol as specified, using
the default semantics of timeout. This means that the claim is matched provided that
the retransmission timers behave as intended: there will be no retransmission unless a
message was lost. To check also the rather perverse case where timeouts can fire at
any time, independently of message loss, we could add the macro definition

#define timeout skip

Now the temporal claim can be violated. Counter-examples are easily produced with
an automated validator, such as the one discussed in Chapters 11-14.

6.8 SUMMARY
In this chapter we have introduced all the remaining language features of the valida-
tion modeling language PROMELA. All are directly related to the specification of the
correctness requirements of a model. They are

Assertion statements
End-state, progress-state, and acceptance-state labels
The temporal claim never

The notation for referring to the control-flow states and local variable values of
running processes within assertions and temporal claims

The order in which we have introduced the tools for expressing correctness properties
corresponds roughly to an increasing level of sophistication in performing validations.

In the initial stages of a design, a user is unlikely to use more than assertions and
perhaps end-state labels. In the final stages of a design, when all initial flaws have
been corrected and a more precise qualitative assessment of the design can be made,
validations with explicit temporal claims may be developed. In many cases this level
of sophistication in a validation is never required and all the necessary properties can
be established without it.

It is almost impossible to manually verify correctness requirements such as the ones
we have discussed. The behavior of even very simple protocol systems is of a
staggering complexity that no designer can be expected to assess accurately. Tools
are needed not only to express the correctness requirements of a protocol design, but
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also to verify them reliably. In the next chapters we show how we can use a language
such as PROMELA for systematic protocol design and how automated systems can be
developed to support efficient validations of correctness claims.

EXERCISES

6-1. 6-1. The assertion used to verify mutual exclusion in the semaphore example was formalized
as a global system invariant. Find another place for the assertion to perform the same
check without an extra monitor process.

6-2. 6-2. Find the temporal claim never that expresses the same correctness requirement as the
‘‘ordinary’’ proctype definition

proctype monitor() { (invariant) -> assert(invariant) }

Explain the difference in semantics of the semicolon (or arrow).

6-3. 6-3. Consider Dekker’s algorithm from Chapter 5. Make a new PROMELA model, where the
processes repeatedly access their critical sections. Express the correctness requirement
that no two processes can be in their critical sections simultaneously, with

An assertion
A system invariant
End-state labels
A temporal claim never (combined with acceptance-state labels)

End-state labels can be used in this problem, for instance, by forcing the system into an
improper end-state when the exclusion is violated. You are allowed to introduce extra
global ‘‘state’’ variables, e.g., to count the number of processes inside the critical section.

6-4. 6-4. Repeat Exercise 6-3, but this time do not use any global variables in the assertions or in
the temporal claim. Define extra ‘‘ordinary’’ labels to define control flow points in the
program bodies that can be monitored in assertions and claims.

6-5. 6-5. For the model from Exercise 6-4, express the correctness requirement that no single pro-
cess can monopolize access to the critical section. Express the claim that within finite
time after access is attempted, access is granted. Use

Progress-state labels
Acceptance-state labels
A temporal claim never combined with acceptance-state labels

(Three different solutions.) Add variables and labels as needed.

6-6. 6-6. All ‘‘linear-time propositional temporal logic formulas’’ (see Bibliographic Notes) can
be expressed in PROMELA with acceptance-state labels and temporal claims. To illustrate
this, find PROMELA representations of the following requirements

Eventually, proposition p always remains true
p is always true until q becomes true
Eventually, p is always true until q becomes true

Can you discover a pattern in the modeling of these formulas into PROMELA temporal
claims? Could it be automated?

6-7. 6-7. Find a way translate arbitrary temporal claims back into temporal logic formulas.

6-8. 6-8. In temporal claims, consider if the following construction is equivalent to assert(0)

accept:do :: skip od
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BIBLIOGRAPHIC NOTES
The definition of terminating and cyclic execution sequences to reason about the
behavior of a distributed system is described in Owicki and Lamport [1982], Manna
and Wolper [1984], and Snepscheut [1985]. The formalization of correctness require-
ments in a notation that is based on temporal logic formulas was first explored in
Pnueli [1977]. It was soon also applied to the study of concurrent systems. Early
applications are the French validation system Cesar, Queille [1982], and Clarke’s
model checking system, Clarke [1982], Browne, Clarke, Dill, and Mishra [1986].
Formally, the temporal claims defined in this chapter describe nondeterministic B

. .
uchi

automata, a special class of the ∀ -automata described in Manna and Pnueli [1987]. In
Wolper [1981] it was shown that B

. .
uchi automata have the expressive power of an

extended type of temporal logic formulas.

PSPACE hardness is a measure for the complexity of algorithms. Informally, a prob-
lem that is PSPACE hard is known to have no efficient solution. For a detailed dis-
cussion see Garey and Johnson [1979].
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7.1 INTRODUCTION
So far, our discussion of protocol design has covered specification and structuring
methods, design principles, and solutions to a set of standard protocol problems. It is
time to see how we can apply all this to a real design problem. As an example, in this
chapter we undertake the design of a protocol for the transfer of files between two
asynchronous machines.

Our purpose in this chapter is to use a disciplined method to specify the five essential
elements of the protocol (Chapter 2, Section 2.2). For the protocol procedure rules
our aim is to construct a high level prototype with explicit correctness criteria. Later,
we will then be able to show convincingly that the design criteria are either satisfied
or violated, using automated tools.

We will try to do this by applying the rules of design that are listed in Chapter 2, Sec-
tion 2.8. Most important among those for validation purposes is Rule 7:

Before implementing a design, build a high level prototype and verify that the
design criteria are met.

Our prototype is a validation model, as defined in Chapters 5 and 6. A verification
that the design criteria are met is done in Chapter 14, with the tools that are developed
in Chapters 11 to 13.

We make two crucial assumptions about the design process.
Protocol design is an iterative process. The design is not likely to be correct the
first time it is written down, and very likely it will not be quite correct the second
or third time around either.
Worse, each time a design phase is completed, we, the designers, will be con-
vinced that it is error-free. A manual walk-through of the code can reveal the big-
gest blunders, but cannot be expected also to reveal the subtle ones. Almost by
definition, we will overlook the unexpected cases that can cause errors.
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The construction of a formal validation model (a prototype) and a fast and unbiased
automated correctness checker is therefore indispensable for all but the simplest
designs. Chapters 11 and 13 discuss how a correctness checker for PROMELA models
can be constructed. In Chapter 14 the validation tool is applied to the design of this
chapter, either to verify that it meets the specifications or to reveal where it is flawed.
Our concern in this chapter is design and correctness. In the discussion that follows it
is important to keep in mind that we are building a validation model, not an imple-
mentation. The model is an abstraction, and as such it is a design tool in itself.

A full listing of the protocol developed here can be found in Appendix F. The valida-
tion of the design with a tool called SPIN is discussed in Chapter 14.

A FILE TRANSFER PROTOCOL
The file transfer protocol we develop can be classified in a number of different ways.
It is a point-to-point protocol, that is, it has one sender and one receiver. Protocols
with more than one receiver are sometimes called multi-point or broadcast protocols.
The file transfer protocol provides an end-to-end service between two users on two
different machines, possibly communicating through many intermediate machines.1

The procedure rules for the protocol are developed as a sequence of validation models
that can be checked on their correctness properties either individually or in combina-
tion. The assumption throughout this part of the design is that adequate tools are
available for verifying the consistency of the intermediate validation models, and that
they can be refined and adjusted with the help of those tools.

First we will make sure that the problem is completely defined. We explicitly specify
the other four elements of the protocol: the service specification, the assumptions
about the environment (the transmission channel), the protocol vocabulary, and the
message format.

7.2 SERVICE SPECIFICATION
The protocol must implement a reliable end-to-end file transfer service. This service
includes connection establishment and termination, recovery from transmission errors,
and a flow control strategy to prevent the sender from overflowing the receiver. The
protocol must be able to transfer ASCII text files, one at a time, with the probability
of an undetected bit error being less than a modest 1 in 108 bits transmitted. We
require that the user be able to abort a file transfer in progress, and that the protocol be
able to recover from message loss.

__________________
1. Cf. the OSI hierarchy in Chapter 2, Section 2.6. Only layers 4 to 7 provide end-to-end service.



7.3 ASSUMPTIONS ABOUT THE CHANNEL
The protocol is to be designed for full-duplex transfer of messages over voice-grade,
switched telephone lines. Having a dedicated line, rather than a network connection,
we can safely ignore specific networking issues such as routing, congestion control,
queueing delays, etc., and focus on concurrency control. To make it interesting, we
assume that the transfers take place between New York and Los Angeles, a distance
of approximately 4500 km. Given that the propagation time of an electrical signal in
a cable is about 30,000 km/sec (Appendix A), the minimal time for a message to
travel from sender to receiver is then approximately 0.15 seconds.

The bandwidth and average signal-to-noise ratio of a voice-grade telephone line allow
us to transmit comfortably at a signaling speed of 1200 bps, using a standard modem
(cf. Chapter 3 and Appendix A). We assume that transmission is character-oriented,
using ASCII character encoding (Chapter 2, Section 2.5).

Most errors on telephone lines are caused by noise spikes, echoes and cross-talk. The
resulting bit errors are not uniformly distributed: they come in bursts. Therefore, to
describe the error characteristics, we must know some error distribution functions. In
Chapter 3 (page 45) we gave several methods for predicting the probability of error-
free intervals and burst durations. For the error-free intervals we are mostly interested
in the average duration, not in the precise error distributions, so we will assume a sim-
ple Poisson distribution

Pr(EFI =n) = f .e− f .n , n ≥ 0

where 1/ f gives us the average duration of the error-free interval. We will use
f =8.10−6 , which corresponds to an average error-free interval of 125 , 000 bit
transmissions (or about 100 seconds).

For the error bursts we are interested in a more accurate prediction of the probability
that a given burst lasts at least n bit transmissions. We use Mandelbrot’s function:

Pr(Burst≥n) = 
 n ( 1 −a) − (n −1 )( 1 −a) 

 e−g(n −1 ) , 0≤a <1 , n ≥ 1

where a and g are parameters. The parameter values that we choose here will deter-
mine the type of error control method that will be needed. The precise values should
be derived from measurements on the telephone channels used. They are, however,
largely irrelevant to the discussion that follows. We will assume a =0. 9 and
g =0. 009, a choice that matches our intuition about the behavior of burst errors. The
average duration of a burst error that can be calculated for these parameter values is
roughly 12 bit transmission times (10 msec). Figure 7.1 shows how the probability of
a burst depends on its length, using the above prediction. The y-axis is logarithmic.

If we succeed in reducing the residual error rate to no more than 1 in 108 transmitted
bits, at 1200 bps this gives an expectation of no more than one undetected error for
every 23 hours of continuous operation.
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Figure 7.1 — Probability of Burst Errors
7.4 PROTOCOL VOCABULARY
Consider the protocol as a black box. To perform its function, the protocol has to
communicate with its environment. It exchanges messages with the remote system
via a data link, and with the local user and a local file server via internal message
channels.
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Figure 7.2 — Protocol Environment
Without going into the details of the protocol itself just yet, let us see what types of
messages are needed to build it.

The black box accepts two types of messages from the local user. The first message
type is used to initiate a file transfer. It can have a single parameter:

transfer(file_descriptor)

The second message type can be used by the user to interrupt a transfer in progress.
abort

The transfer message must trigger a message to the local file server to verify that
the file to be transferred really exists, and if so, what the size of the file is. We call
that message

open(file_descriptor)

If the file can be opened, its size is determined, and a connection is made with the
remote system. To communicate the connection request from the local to the remote
system we use the message



connect(size)

At the remote side, an incoming connect request again triggers a message to the file
server, this time to verify that a new file of the given size can be stored. The message
for that can be

create(size)

We need at least two more messages from the file server to indicate whether an open

or a create request can be accepted or must be rejected:
accept(size)

and
reject(status)

In response to an open request, the accept message returns the file size to the calling
process. If the request is rejected, an integer parameter can be used to carry informa-
tion about the reason. The message types accept and reject can also be used to
inform the local user about the success or failure of an outgoing file transfer. And
similarly, they can be used by the local system to inform a remote system whether an
incoming file transfer is accepted.
To transfer a file, four things have to happen in a specific order:

Establishment of a connection with the local file server
Establishment of a connection with the remote system
Transfer of data
Orderly termination of the connection

Each protocol phase has its own vocabulary of messages and its own rules for inter-
preting them. Each phase may again have to be sub-divided into still smaller steps.
The second phase, for instance, will consist of two steps: (1) an initialization of the
flow control protocol, and (2) a handshake with the remote system using the connect
and accept or reject message. The synchronization of the local and the remote
flow control layer protocols is necessary to guarantee that they agree on the initial
sequence numbers to be used. We can use the message

sync

and its acknowledgment
sync_ack

for this purpose.

In the third protocol phase we need messages for retrieving the data from the file
server and transmitting them to the remote system. For example, we can use a mes-
sage

data(cnt, ptr)

to transfer cnt bytes of information, available in a data buffer that is identified by the
second parameter. This, of course, is not necessarily the way in which interactions
with the file server have to be implemented in a final design. For now, however, it
suffices that it accurately models the essentials of these interactions.

Another message,
eof

can be used by the file server to signify the end of a file. The correct completion of a



file transfer, with the eof message, can be confirmed by the remote system with a sin-
gle message

close

So far, the only assumption we have made about the file server is that it recognizes six
messages: open, create, accept, reject, data, and eof. To avoid synchroniza-
tion problems between the local system and the local file server, we assume that the
above six messages are exchanged by rendezvous communication (i.e., they are
equivalent to local procedure calls). This guarantees that, for instance, unused data

messages from or to the file server do not accumulate. After the successful comple-
tion of both a local open and a remote create request, the data messages are used
to transfer data from local file server to the remote file server, using the protocol to be
developed.

We need one extra message to implement a simple flow control discipline that ack-
nowledges correctly received data:

ack

The complete protocol vocabulary then consists of thirteen distinct message types.
Nine of these messages can be exchanged by the two remote machines: accept, ack,
close, connect, data, eof, reject, sync_ack, and sync. The other four, abort,
create, open, and transfer, are internal messages only.

7.5 MESSAGE FORMAT
It should now be decided what the right format for the above messages is. The mes-
sages minimally require a type field and an optional data field. To implement a flow
control discipline, the messages sent to the remote system must also carry sequence
numbers, and to implement error control they must carry a checksum field. Since the
transmission channel is byte oriented, we can format each message as a sequence of
bytes. Clearly, we would like these sequences to be as short as possible. Let us see
how we can calculate the minimal size required, knowing only what we know so far
about the protocol and the transmission channel to be used.

At the highest level, a message can be encoded into a series of bytes, indicating its
type and the value of its parameters. Before the message is sent, the flow control
appends a sequence number, and the error control appends a checksum field. At the
lowest level, just before the message is placed onto the transmission line, a line driver
appends the message delimiters, to enable the remote system to recognize where a
message starts and stops. The ASCII 8-bit patterns STX (start of text) and ETX (end of
text) can be used for this purpose. With byte stuffing (Chapter 2), misinterpretation
message delimiters that are part of the data itself can be avoided.

The remote receiver strips the STX and ETX characters and removes the stuffed charac-
ters. The remote error control strips and interprets the checksum, and the remote flow
control strips and interprets the sequence number. If all is well, the message finally
arrives at its peer as the original series of bytes again.

The best position of the various message fields in the byte sequence depends to some



extent on the encoding of the protocol routines at the lowest level (the physical layer)
in the hierarchy. Placing the checksum field at the end of a message has the advan-
tage that the sender can compute it on the fly while transmitting the body of the mes-
sage. There can also be a small difference in performance depending on where the
message-type field is placed. It can either be placed at the front of the message, in a
fixed place behind the STX symbol, or at the end, in a fixed place before the ETX sym-
bol. Since we have variable length messages, the position of the ETX symbol is less
predictable than that of the STX symbol. Placing the type field at the start of the mes-
sage can therefore make it easier to parse an incoming message.

We thus arrive at the message format shown in Figure 7.3, where the Data field is
absent in control messages.

STX
8

Message Type
h1

Sequence Number

h2
Data

8D
Checksum

t1
ETX

8

Figure 7.3 — Message Format
In Figure 7.3, a symbol representing the length of each field in bits is indicated in the
lower-righ corner. D bytes of information in the data field corresponds to a field width
of 8D bits. How are the numbers h1, h2, D, and t1 determined?

THE MESSAGE TYPE FIELD
This is the easiest of the four numbers to calculate. We have 13 different types of
message. Since 23 < 13 ≤ 24 , 4 bits for the type field suffice.

h 1 = 4

THE SEQUENCE NUMBER FIELD
Now, let us derive an appropriate width for the sequence number field h 2 . The mes-
sage propagation time is 0.15 seconds, long enough to transmit 180 bits. If a message
would be bounced back by the receiver without processing delays, the sender could
transmit 360 bits before receiving the return message. We would like to design the
protocol in such a way that the sender can completely saturate the channel whenever
the receiver consumes the data as fast as the sender produces data. We must therefore
make certain that the sender will not have to wait idly for acknowledgments when it
could be sending messages. This means that the sender should be able to be at least
360 bits ahead of the receiver under normal circumstances. The number of messages
that this corresponds to depends on the number of bytes in the data field and in the
header and trailer.

If we use a selective repeat continuous ARQ method (Chapter 4), the most flexible
flow control method we have discussed, the maximum number of outstanding mes-
sages with a sequence number field of h 2 bits is 2h 2 −1 . With a one-bit sequence
number only one message can be outstanding at a time, forcing the sender to remain



idle for at least 0.3 seconds, waiting for the acknowledgment on that message (twice
the message propagation time). With a two-bit sequence number, two messages may
be outstanding, meaning that the sender can transmit one message while awaiting the
acknowledgment for another. If that message is at least 360 bits long, no time is lost.
Below we will see that it is indeed advantageous to use a data field longer than 360
bits. So, we have

h 2 ≥ 2

Assuming again that the receiver is at least as fast as the sender, we could organize the
flow control as follows. All messages within the current window are sent before the
acknowledgment for the oldest outstanding message is checked. If no acknowledg-
ment is received by that time, the oldest message is retransmitted. If an acknowledg-
ment is received, the window slides up one notch and a new message can be transmit-
ted. The sender is never idle, and the channel is saturated.

Note carefully that if the receiver is slower than the sender it is prudent not to try to
saturate the channel: the receiver needs time to catch up with the sender. For this case
we can include a timer. If no acknowledgment for the oldest outstanding frame is
received by the time the sender checks for one, the sender now waits at least an addi-
tional timeout period for the acknowledgment to arrive. The appropriate value for the
timeout count can be estimated, or it can be adjusted dynamically with a rate control
method. We shall restrict ourselves to the optimal case, with a fully saturated chan-
nel.

THE DATA FIELD
The length of the data field is expressed in the byte count D and is variable per data
message. It is not to our advantage to make a message too long, since the expectation
that a message contains bit errors trivially increases with its length. On the other
hand, if we make the messages too small, the overhead2 of the header and trailer
becomes too large. The average duration of an error-free interval was estimated at
approximately 125 , 000 bit transmissions, so we certainly should not make a message
longer than that. Somewhere between these 125 Kbits and the 360 bits we derived
earlier there must be an optimal length for the data field. We can approximate this
optimum as follows.

OPTIMAL DATA SIZE
Let t be the length of the data message overhead in bits (header plus trailer) and d the
length of the data field, also in bits: d =8D. Further, let a be the length of an ack

control message, p d the probability of a data message being distorted or lost, and p a

the probability of the same error for an acknowledgment.

Let us first consider the case where p d =p a =0. The transmission of one message
requires one data message and one acknowledgment message, a total of d + t +a bits.
__________________
2. See also ‘‘code rates’’ defined in Chapter 3, Section 3.5.



The overhead is t +a, and the protocol efficiency is

E =
d + t +a

d_______

So in the absence of errors, it is best to chose d as large as possible.

Now consider the case where p d and p a are non-zero. The probability that neither the
data message nor its acknowledgment is hit by a transmission error is
( 1 −p d ) ( 1 −p a ). Therefore, the probability that the message must be retransmitted is

p r = 1 − ( 1 −p d ) ( 1 −p a )

The probability that it takes i subsequent transmissions to get the data message across,
i −1 retransmissions and one successful transmission, is

p i = ( 1 −p r ) pr
i −1

The expected number of transmissions per message R is then given by

R =
i =1
Σ
∞

ip i

=
i =1
Σ
∞

i( 1 −p r ) pr
i −1

= ( 1 −p r )
i =1
Σ
∞

ipr
i −1

= ( 1 −p r )
j =0
Σ
∞

i = j
Σ
∞

pr
i

= ( 1 −p r )
j =0
Σ
∞

1 −p r

pr
j

_ _____

=
1 −p r

1_ _____

The relative efficiency E, in the presence of errors, is then

E =
R(d + t +a)

d__________

The optimal value for d can be found by setting the derivative of E with respect to d to
zero: δE /δd =0. Alternatively, we can simply fill in the known or approximate
values for R, t, and a, and plot E as a function of d.

With the values we derived earlier, and counting 8 bits each for the STX and ETX mes-
sage delimiter, we have

a = h 1 +h 2 + t 1 +16

= 4 +2 +16 +16 = 38



and trivially

t = a = 38

We earlier assumed that an error-free interval would last an average of 125 Kbits.
This corresponds to ( 125.103 )/(d + t) messages or ( 125.103 )/ a acknowledgments.
A first-order approximation can then be obtained by taking

p d = (d +38 )/( 125.103 )

and

p a = 38/( 125.103 ) = 3. 04 10−4

We now have

R =
1 −p r

1_ _____

=
( 1 −p d ) ( 1 −p a )

1_ _____________

Substituting in the last expression for E gives:

E =
d + t +a

d .( 1 −p d ) ( 1 −p a )_ _______________

=
d +76

d .( 1 − (d +38 )/( 125.103 ) ) ( 1 −38/( 125.103 ) )_ ______________________________________

In Figure 7.4 the protocol efficiency E is plotted as a function of the length of the
message data field d.
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Figure 7.4 — Protocol Efficiency versus Data Size in Bits
There is clearly an optimum value for d. The maximum efficiency of 95.13% is
achieved for a data size of 3004 bits, or 376 bytes. So we have now derived the third
value D for Figure 7.3.



In reality, of course, the probability of lost and distorted data should be derived from
the error distribution functions. We should have solved the more difficult equations

p d =
i =0
Σ

d +38

Pr(EFI = i) p a =
i =0
Σ
38

Pr(EFI = i)

To see how large the mistake is we made, we set d =3004 and calculate

p d =
i =0
Σ

3004 +38

Pr(EFI = i) = 240. 42 10−4

and

p a =
i =0
Σ
38

Pr(EFI = i) = 3. 039 10−4

The earlier approximations give for the same value of d

p d = ( 3004 +38 )/( 125.103 ) = 243. 36 10−4

and

p a = 38/( 125.103 ) = 3. 04 10−4

Our first estimate is within 1.2 percent of the recalculated values. Since we have no
reason to trust the predictive value of the error distribution function with that degree
of accuracy, we settle for the first estimate.

THE CHECKSUM FIELD
All that remains is to derive the value for t 1 , the width of the checksum field. The
channel has deletion and distortion errors, but is not expected to produce insertions or
message reorderings. The error rate is low enough that we do not need an error
correcting code. For a reasonable message length, well below 125 Kbits, most mes-
sages get through without transmission errors. We must, however, be able to correct
for the characteristic errors of the channel: burst errors. This makes a cyclic redun-
dancy check a good choice. The average duration of a burst error was assumed to be
10 msec, affecting a sequence of 12 bits. The degree of the generator polynomial
therefore at least has to be larger than 12 to catch these errors.

The target residual bit error rate is 10 −8 . To be able to check if we can comply with
this requirement by choosing the 16-bit CRC-CCITT checksum polynomial, we have
to look at the distribution of burst-error durations. We know that the CRC-CCITT
checksum catches all single and double bit errors, all odd numbers of bit errors, all
burst errors up to 16 bits long, 99.997% of burst errors of 17 bits, and 99.998% of all
burst errors longer than 17 bits.

We assumed that burst errors occur on the average once every 100 seconds. A burst
of roughly 12 bits long then corresponds to a long-term average bit error rate of 10 −4 .
Of the bursts longer than 16 bits, two or three out of every 105 bursts will go
undetected. If every burst was longer than 16 bits, this would mean that two or three



burst errors per 100 × 105 seconds would get through, corresponding to a long-term
average bit error rate of roughly 10−6 (there are more than ten bits in every burst).
We can therefore only realize a target residual bit-error rate of 10−8 if burst errors
longer than 16 bits occur less than once out of every 102 bursts, or fewer than once
every 10,000 seconds. Using the probability distribution function, we find (cf. Figure
7.1):

Pr(Burst≥17 ) = 0. 009 . e−0. 009.17 = 0. 007

The result is within range of the target. We can choose the 16-bit checksum, and have
our last value:

t 1 = 16

For the control messages it seems like overkill to include even a 16-bit checksum for
a message that carries only two small numbers. Note, however, that a burst error can
wipe out the complete message, so with the same redundancy an error correcting code
could not perform better.

As an aside, the message format, with all the field widths we have now derived, can
be defined in C as follows.

struct {
unsigned type : 4;
unsigned seqno : 2;
unsigned char data[376];
unsigned char checksum[2];

} message;

We used bit-fields for the fields in the message header and unsigned characters (8 bits
wide) for the data field and the checksum. The message delimiters STX and ETX were
omitted. This is, however, not necessarily the way in which a C compiler would
arrange for the bits to be stored in memory. Some padding may occur to align bit-
fields with word or byte boundaries.

EFFECTS OF ROUNDING
In Figure 7.4 we see that the protocol efficiency is not very sensitive to variations in
the data size near the optimum. We are also stuck with the peculiar values for h 1 and
h 2 that we calculated earlier. Multiples of 8 bits would be more convenient for the
receiver to process. Let us see how badly the efficiency would be affected if we used
the nearest multiple of 8 for all field widths, as shown in Table 7.1.

Table 7.1 — Rounding
_ ____________________ ___________________
Symbol Old New_ ___________________
h1 4 8
h2 2 8
t1 16 16_ ___________________ 














The recalculated values for E as a function of d for these new values are indicated by



the lower curve in Figure 7.5. The effect of adding 10 bits of overhead is a reduction
of E by less than one percent, which should be considered insignificant compared to
the errors introduced by earlier approximations. The new optimum is reached for a
data length of 3370 bits, or about 422 bytes (46 bytes more than before).
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Figure 7.5 — Degradation of Protocol Efficiency by Rounding

After rounding, the message format can be written without bit-fields

struct {
unsigned char type;
unsigned char seqno;
unsigned char data[422];
unsigned char checksum[2];

} message;

7.6 PROCEDURE RULES
We are now ready to start with the description of the procedure rules. In this part of
the design, few things can be calculated or measured. Yet the rules have to be com-
plete and consistent. Before committing ourselves directly to an implementation, we
would like to be able to design and debug the rules in an intermediate form, for
instance as a validation model. PROMELA was designed for precisely this purpose.
We first look at some of the abstractions we have to make in the modeling of the mes-
sages. Then we look at the layering of the protocol and derive a rough global struc-
ture. Finally, from the highest layer down to the lowest we refine each layer and com-
bine them into the final design. The correctness requirements for each layer are for-
malized using the notation developed in Chapter 6.

ABSTRACTION
The precise encoding for the messages, derived in the previous sections, contains too
much information for the problem we are now facing. Manipulating messages at this
level of detail would needlessly complicate the design, description, and validation of
the procedure rules. To derive the procedure rules we build a model of the



communication system in which we consider only the semantics of the protocol, not
its precise syntax. To the model, for instance, the contents of transferred files are
irrelevant. The variable length Data field from Figure 7.3, therefore, need not be
represented, nor (as we will argue below) the checksum field. We use a message tem-
plate of just two fields in the validation model.

fld1,fld2

The first field represents the generic message type, e.g., data, and the second field
carries a parameter, such as a sequence number. Both fields can be of PROMELA type
byte.

What we are designing from this point on is a validation model, not an implementa-
tion. If we do our job right though, it should be simple to remove the abstractions
from the model, refine it where necessary, and derive an implementation.

LAYERS
To structure the design, we divide it into several layers. The user interacts with a
presentation layer protocol. Below that we place a session control layer, and below
that a data link layer that enforces a general flow control discipline. The data link is
the physical data line, equipped with modems, for encoding binary data into analog
signals, and providing error detection on every message transmitted using CRC-
CCITT checksumming. The data link we work with from this point on, therefore, can
lose but not distort messages.

User
Process

Present-
ation

Session
Flow

Control
Error-protected

Data Link

File Server

Figure 7.6 — Protocol Hierarchy

Each layer in this hierarchy is managed by one or more PROMELA processes, as indi-
cated with the protocol ‘‘pipeline’’ in Figure 7.6.

PROTOCOL ENVIRONMENT
Our first job in building a validation model is to make explicit all relevant assump-
tions about the behavior of the environment, as illustrated in Figures 7.2 and 7.6. The
environment consists of three entities:

User process
File server
Data link

The minimal assumptions we must make about the behavior of each of these three is
formalized in PROMELA code.

First consider the user level protocol. There can be two user processes: one on each



end of the data link. The users can submit a transfer request at any time by passing a
file descriptor to the presentation layer of the protocol. At any time after the transfer
request, the originating user may also decide to abort a transfer. We assume that the
user then waits for a response from the lower protocol layers, signaling either the suc-
cessful or unsuccessful completion of the transfer. We can model these assumptions
with the following PROMELA process.

proctype userprc(bit n)
{ use_to_pres[n]!transfer;

if
:: pres_to_use[n]?accept -> goto Done
:: pres_to_use[n]?reject -> goto Done
:: use_to_pres[n]!abort -> goto Aborted
fi;

Aborted:
if
:: pres_to_use[n]?accept -> goto Done
:: pres_to_use[n]?reject -> goto Done
fi;

Done:
skip

}

The binary argument n identifies the user and the channels that it accesses. The mes-
sage transfer would ordinarily carry a parameter that points to the file to be
transferred (e.g., a file-descriptor). To a validation, however, the value of that param-
eter is irrelevant, and it is therefore not present in the model. Clearly, the correctness
of the file transfer protocol should not depend on the particular file-descriptors used.

The message channels we use in the model can be defined globally. Every arrow in
Figure 7.6 corresponds to two such channels, one for each side of the protocol. Using
a simple naming scheme to indicate which layers each channel connects, we can
define the following types of channels. There are two users, and QSZ is a queue size
of at least one (cf. Figure 7.6).

chan use_to_pres[2] = [QSZ] of { byte };
chan pres_to_use[2] = [QSZ] of { byte };
chan pres_to_ses[2] = [QSZ] of { byte };
chan ses_to_pres[2] = [QSZ] of { byte, byte };
chan ses_to_flow[2] = [QSZ] of { byte, byte };
chan flow_to_ses[2] = [QSZ] of { byte, byte };
chan dll_to_flow[2] = [QSZ] of { byte, byte };
chan flow_to_dll[2] = [QSZ] of { byte, byte };

The channels for the synchronous communication between the session layer protocol
and the file server are defined with zero buffer capacity, as follows:

chan ses_to_fsrv[2] = [0] of { byte };
chan fsrv_to_ses[2] = [0] of { byte };

This brings the total to ten different types of message channels, with one copy being
instantiated for each side of the connection. The channels used for the higher protocol
layers can be defined with a simpler message format than the lower layers. The



sequence number field, for instance, is used only by the flow control layer.

Next we must formalize our assumptions about the behavior of the file server. Again,
no design decisions are made yet. The aim is merely to make explicit what must
minimally be assumed about the external behavior of the file server process. An
incoming file transfer begins with a create message. The file server responds with
either a reject or an accept message. As far as the validation model is concerned,
either choice is equally likely, so it can be modeled as a nondeterministic one. If the
request is accepted, zero or more data messages follow, and the file server falls back
into its initial state upon the reception of the final eof or, in case of an abort, the
close message. In first approximation, disregarding what we said earlier about
abstraction, we may try to describe this behavior in a PROMELA validation model as
follows.

proctype fserver(bit n)
{ int fd, size, ptr, cnt;

do
:: ses_to_fsrv[n]?create(size) -> /* incoming */

if /* nondeterministic choice */
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->

do
:: ses_to_fsrv[n]?data(cnt,ptr)
:: ses_to_fsrv[n]?eof -> break

/* abort */ :: ses_to_fsrv[n]?close -> break
od

fi
:: ses_to_fsrv[n]?open(fd) -> /* outgoing */

...
od

}

But we are on the wrong track with this model. Notice that local variables and mes-
sage parameters fd, size, cnt, and ptr really provide unwanted detail in the model.
We are designing the procedure rules for the interaction of the file server with the ses-
sion layer protocol. We want to specify how these two modules interact, i.e., the
types of messages that they will exchange and the inherent expectations about the
order in which the different types of messages will arrive and will be sent. Important
to specify at this level of abstraction is when data can be passed, not which data will
be passed. The size and contents of data transferred are therefore still irrelevant at
this level of modeling (cf. Chapter 14 about the formal generalization of models).

A better way to model the relevant behavior of the file server for incoming data is

proctype fserver(bit n)
{ do

:: ses_to_fsrv[n]?create -> /* incoming */



if
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->

do
:: ses_to_fsrv[n]?data
:: ses_to_fsrv[n]?eof -> break
:: ses_to_fsrv[n]?close -> break
od

fi
:: ses_to_fsrv[n]?open -> /* outgoing */

...
od

}

The model for outgoing data is similar. After the server receives an open message, it
may respond with either an accept or a reject message. If the request is accepted,
a series of data messages is transferred, followed by a single eof message. The file
transfer can be aborted again by a close message from the session layer to the file
server.

:: ses_to_fsrv[n]?open -> /* outgoing */
if
:: fsrv_to_ses[n]!reject
:: fsrv_to_ses[n]!accept ->

do
:: fsrv_to_ses[n]!data
:: fsrv_to_ses[n]!eof -> break
:: ses_to_fsrv[n]?close -> break
od

fi

The last piece of the environment is the data link. Again, we must make explicit all
our assumptions about its behavior, in so far as it relates to the protocol we are
designing.

The data link is assumed to be protected with an error detection protocol. The details
of the checksum calculation can be found in Chapter 3, Section 3.7, but for this part of
the design problem these details are irrelevant. The checksum calculation is a compu-
tation, and not an interaction pattern. It would be folly to try to model it in detail in
PROMELA as if it were a procedure rule.

All we are interested in here is the external behavior of the data link. The data link,
then, can arbitrarily omit messages from the sequences that it passes, using some hid-
den oracle to decide the fate of each message. The choice can be modeled as a non-
deterministic one.

proctype data_link()
{ byte type, seq;



do
:: flow_to_dll[0]?type,seq ->

if
:: dll_to_flow[1]!type,seq
:: skip /* lose */
fi

:: flow_to_dll[1]?type,seq ->
if
:: dll_to_flow[0]!type,seq
:: skip /* lose */
fi

od
}

We have now completed the formalization of all assumptions about the environment
in which the protocol must be used. We are now ready to design the three core proto-
col layers: the presentation, the session layer, and the flow control layer.

7.6.1 PRESENTATION LAYER
The presentation layer provides the interface to the user. Its job is to take care of the
details of the file transfer, providing, for instance, for the resubmission of the request
for file transfer when a non-fatal error occurs. We can anticipate five different reasons
for an outgoing file transfer request to fail.

1. The local system is busy serving an incoming file transfer.
2. The local file server rejects the request, for instance because the file to be

transferred does not exist.
3. The remote file server rejects the request, for instance because it cannot allo-

cate sufficient space.
4. There is a collision between an incoming and an outgoing file transfer request.
5. The file transfer was aborted by the user.

Two of these five possible causes of a failure are transient (1 and 4) and may disap-
pear if the transfer request is repeated. The presentation layer can further try to pro-
tect itself against repeated abort requests from the user processes by filtering out any
duplicates.

To get started on a design for the presentation layer we can draw a tentative state
diagram. The presentation layer, then, can be given two main states: an IDLE state
and a busy, or TRANSFER state. The process moves from IDLE to TRANSFER upon the
reception of the user’s transfer request. It returns to the IDLE state upon the suc-
cessful completion of the transfer or the detection of a fatal error. This initial outline
is shown in Figure 7.7.
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Figure 7.7 — Partial State Transition Diagram: Presentation Layer

Using Figure 7.7 as a guideline we can fill in the relevant details in a validation model
as follows.

#define FATAL 1 /* failure types */
#define NON_FATAL 2 /* repeatable */
#define COMPLETE 3 /* success */

proctype present(bit n)
{ byte status, uabort;

IDLE:
do
:: use_to_pres[n]?transfer ->

uabort = 0;
goto TRANSFER

:: use_to_pres[n]?abort ->
skip /* ignore */

od;
TRANSFER:

pres_to_ses[n]!transfer;
do
:: use_to_pres[n]?abort ->

if
:: (!uabort) ->

uabort = 1;
pres_to_ses[n]!abort

:: (uabort) ->
skip

fi
:: ses_to_pres[n]?accept ->

goto DONE;
:: ses_to_pres[n]?reject(status) ->

if
:: (status == FATAL || uabort) ->

goto FAIL
:: (status == NON_FATAL && !uabort) ->

goto TRANSFER
fi

od;
DONE:

pres_to_use[n]!accept;
goto IDLE;



FAIL:
pres_to_use[n]!reject;
goto IDLE

}

The file transfer request is repeated until it succeeds or until it triggers a fatal error.
The main assumption that the presentation layer makes about the session layer proto-
col is that it will eventually respond to a transfer request with either an accept or a
reject message. It also assumes that the session layer can accept an abort message
at any time.
Correctness Requirements: As a correctness requirement for the presentation
layer we will identify its valid end-states. There is one valid end-state only, the IDLE
state. By adding the prefix ‘‘end,’’ i.e. replacing the name IDLE with endIDLE, we
can specify the requirement that the presentation layer must be in the given state when
a protocol transfer terminates. Provided that our assumptions about the session layer
and the user layer are true, it is not too hard to show that this requirement is satisfied.
The presentation layer can be blocked only in a small number of unexecutable state-
ments. The assumptions about the user and session layers guarantee that none of
those statements can remain unexecutable forever. But an informal argument, such as
the one above, is not a proof. In Chapter 14 we use an automated prover to show that
the assumptions we have made and the conclusions we have drawn from them are not
just convincing but also correct.

7.6.2 SESSION LAYER
Earlier we decided that the protocol would have four phases:

Initialization of the file server
Connection establishment
Data transfer
Call completion

The messages in the protocol vocabulary that we looked at earlier are, of course, not
unrelated; they imply a certain ordering. A transfer request should precede a connec-
tion confirmation, just as connection establishment should precede data transfer. We
can make some of these implied relations explicit with the outline shown in Figure
7.8.
The transitions are labeled with numbers that refer to some, though not all, of the
messages that are exchanged. Incoming messages are prefixed with a question mark,
outgoing messages with an exclamation point. The dashed arrows indicate the
expected sequence of events for a successful outgoing file transfer; the dotted lines
indicate a normal incoming file transfer. Writing down the state transition diagram
has forced us to make some further design choices. In the call establishment phase,
for instance, a connection request may come from the remote system directly after the
processing of a local connection request has started. In Figure 7.8 we have chosen to
reject both requests when such a call collision occurs. The call completion phase is
entered when a file has been successfully transferred, and the eof message has been
sent. Alternatively, the transfer can be interrupted when the user sends the abort
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Figure 7.8 — Partial State Transition Diagram: Session Layer
1: transfer, 2: connect, 3: accept, 4: reject, 5: closed, 6: eof

message. In the following paragraphs we consider each protocol phase separately and
fill in the details.

CALL ESTABLISHMENT PHASE
The session layer sits between the presentation and the flow control layer. After the
local transfer message from the presentation layer arrives, the session layer must
perform a number of crucial tasks. It must try to open the file for reading on the local
system, it must create a file for writing on the remote system, and in between it must
establish a connection with the remote system. Any of these three tasks may fail. The
local file server takes care of all file access.

This leads to the following descriptions for the call establishment phase. First, there
are only two messages that can trigger a file transfer: the local transfer message
and the remote connect message. Everything else should be ignored by the session
protocol. Instead of explicitly specifying all non-valid messages, we can make the
session layer receive a message of arbitrary type and check only for a match with the
expected message, which in state IDLE is either a transfer message coming from
the upper protocol layer or a connect message from the lower layer.

proctype session(bit n)
{ bit toggle;

byte type, status;

IDLE:



do
:: pres_to_ses[n]?type ->

if
:: (type == transfer) ->

goto DATA_OUT
:: (type != transfer)

/* ignore */
fi

:: flow_to_ses[n]?type ->
if
:: (type == connect) ->

goto DATA_IN
:: (type != connect)

/* ignore */
fi

od;
DATA_OUT:

...
DATA_IN:

...
}

It seems best to separate the data transfer phases for incoming and outgoing files. The
easier case is the preparation for an incoming file. There is only one interaction with
the local file server.

DATA_IN: /* prepare local file server */
ses_to_fsrv[n]!create;
do
:: fsrv_to_ses[n]?reject ->

ses_to_flow[n]!reject;
goto IDLE

:: fsrv_to_ses[n]?accept ->
ses_to_flow[n]!accept;
break

od;
... incoming data transfer ...
... close connection etc. ...

An outgoing transfer is done in three steps, each of which can fail:
Handshake on a local open request with the file server
Initialization of the flow control layer
Handshake with the remote system on a connect request

The first step can be specified as follows.

DATA_OUT: /* 1. prepare local file */
ses_to_fsrv[n]!open;
if
:: fsrv_to_ses[n]?reject ->

ses_to_pres[n]!reject(FATAL);
goto IDLE



:: fsrv_to_ses[n]?accept ->
skip /* proceed */

fi;

The second step is harder. We must make sure that we cannot accidentally accept an
old sync_ack message from a previous initialization attempt. We use a one-bit
sequence number to solve that problem (see Exercise 7-12.)

/* 2. initialize flow control */
ses_to_flow[n]!sync,toggle;
do
:: flow_to_ses[n]?sync_ack,type ->

if
:: (type != toggle) /* ignore */
:: (type == toggle) -> break
fi

:: timeout -> /* failed */
ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(FATAL);
goto IDLE

od;
toggle = 1 - toggle;

In the third and last step, we must consider the possibility of a call collision.

/* 3. prepare remote file */
ses_to_flow[n]!connect;
if
:: flow_to_ses[n]?accept ->

skip /* success */
:: flow_to_ses[n]?reject ->

ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(FATAL);
goto IDLE

:: flow_to_ses[n]?connect ->
ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(NON_FATAL);
goto IDLE

:: timeout -> /* got disconnected? */
ses_to_fsrv[n]!close;
ses_to_pres[n]!reject(FATAL);
goto IDLE

fi;
... outgoing data transfer...
... close connection etc. ...

When a call collision is detected both parties close their files and return to the initial
state, leaving it up to the presentation layers to make another attempt to transfer their
files. Prudence dictates that we include a timeout clause in every state where we
wait for events that can only be supplied by the remote system. In case all communi-
cation is lost, e.g., on carrier loss, it gives us a way back to the initial state.



DATA TRANSFER PHASES
The design of the data transfer phases is relatively straightforward. For outgoing
transfers we obtain data from the file server and transfer them to the flow control
layer. The only things that can complicate the design are the messages that can inter-
rupt the transfer: a timeout or an abort message from the user.

do /* outgoing data */
:: fsrv_to_ses[n]?data ->

ses_to_flow[n]!data
:: fsrv_to_ses[n]?eof ->

ses_to_flow[n]!eof;
status = COMPLETE;
break /* goto call termination */

:: pres_to_ses[n]?abort -> /* user aborts */
ses_to_fsrv[n]!close;
ses_to_flow[n]!close;
status = FATAL;
break /* goto call termination */

od;

For incoming file transfers, we obtain data messages from the flow control layer and
transfer them to the file server. Only the remote user can abort an incoming transfer.
When the remote user aborts, the local system receives a close message from the
remote system (see above). This leads to the following PROMELA model.

do /* incoming data */
:: flow_to_ses[n]?data ->

ses_to_fsrv[n]!data
:: flow_to_ses[n]?eof ->

ses_to_fsrv[n]!eof;
break

:: pres_to_ses[n]?transfer -> /* sorry, busy */
ses_to_pres[n]!reject(NON_FATAL)

:: flow_to_ses[n]?close -> /* remote user aborts */
ses_to_fsrv[n]!close;
break

:: timeout -> /* got disconnected? */
ses_to_fsrv[n]!close;
goto IDLE

od;

All the necessary character stuffing and byte encoding operations (Chapter 2, Section
2.5) are again irrelevant to the validation model. We can safely assume that they hap-
pen elsewhere, e.g., in the modem that connects us to the physical line.

CALL TERMINATION PHASE
We complete the high-level design of the data transfer phase by adding the processing
of call termination messages. The call termination phase can only be entered from the
data transfer phase, as shown above. First let us consider the normal termination of
an outgoing file transfer session.



/* close connection, outgoing transfer */
do
:: pres_to_ses[n]?abort /* too late, ignored */
:: flow_to_ses[n]?close ->

if
:: (status == COMPLETE) ->

ses_to_pres[n]!accept
:: (status != COMPLETE) ->

ses_to_pres[n]!reject(status)
fi;
break

:: timeout -> /* disconnected? */
ses_to_pres[n]!reject(FATAL);
break

od;
goto IDLE

The code for responding to the termination of an incoming file transfer is simpler:

/* close connection, incoming transfer */
ses_to_flow[n]!close; /* confirm it */
goto IDLE

Correctness Requirements: The main correctness requirement for the session
control layer protocol is that it satisfies the assumptions made by the presentation
layer protocol: it always responds to a transfer message, within a finite amount of
time, with either an accept or a reject message. Similarly, a remote connect

message should be followed by an accept or a reject message to the remote
presentation layer, within a finite amount of time. We can formalize both these
requirements in a temporal claim by defining behavior that is required to be absent. A
first attempt is shown below.

never {
do
:: !pres_to_ses[n]?[transfer]
&& !flow_to_ses[n]?[connect]
:: pres_to_ses[n]?[transfer] ->

goto accept0
:: flow_to_ses[n]?[connect] ->

goto accept1
od;

accept0:
do
:: !ses_to_pres[n]?[accept]
&& !ses_to_pres[n]?[reject]
od;

accept1:
do
:: !ses_to_pres[1-n]?[accept]
&& !ses_to_pres[1-n]?[reject]
od

}

where n is either zero or one. An automated validation of the session layer protocol



based on this claim is discussed in Chapter 14. We can also identify the IDLE state in
the session layer as a valid end-state, again by simply replacing the name with
endIDLE.

To complete the design, we now provide the data link layer, which comes in two
parts: one layer implementing a flow control discipline and one providing error con-
trol.

7.6.3 FLOW CONTROL LAYER
We can model a full sliding window protocol, as discussed in Chapter 4, by directly
encoding Figures 4.11 and 4.12. To make things interesting, we will restrict ourselves
to an encoding with a single process instead of five. In this case we cannot get away
with an abstraction for parameters such as the window size and the range of sequence
numbers used, without losing essential information about the operation of this proto-
col layer. All data in PROMELA is initialized to zero by default. We discuss the model
step by step.

#define true 1 /* for convenience */
#define false 0

#define M 4 /* range sequence numbers */
#define W 2 /* window size: M/2 */

As we saw in Chapter 4, and will prove in Chapter 11, the maximum number of out-
standing messages in a protocol of this type is equal to half the range of the sequence
numbers.

proctype fc(bit n)
{ bool busy[M]; /* outstanding messages */

byte q; /* seq# oldest unacked msg */
byte m; /* seq# last msg received */
byte s; /* seq# next msg to send */
byte window; /* nr of outstanding msgs */
byte type; /* msg type */
bit received[M]; /* receiver housekeeping */
bit x; /* scratch variable */
byte p; /* seq# of last msg acked */
byte I_buf[M], O_buf[M]; /* message buffers */

The fc model contains code for independent sender and receiver actions in full-
duplex communications. Some of the housekeeping, then, has to do with keeping
track of outgoing messages and some with incoming messages on the return channel.

Outgoing messages are stored in a message buffer O_buf, indexed by their sequence
number. Buffering the outgoing messages allows the protocol to retransmit old mes-
sages when they are not acknowledged. A boolean array busy is used to remember
which slots in the array of outgoing data are free and which are taken.

The main body of the flow control layer is a single do loop that checks for outgoing
messages from the session layer, adds sequence numbers, forwards the messages to
the error control layer, and keeps track of their acknowledgment. In separate clauses



it checks for incoming messages from the error control layer, strips sequence
numbers, and forwards the remainders to the session layer. Sending of messages can
be modeled as follows. A message is only sent if it is available, i.e., if the message
channel ses_to_flow is non-empty, and if the lower protocol layer is free to accept
it, i.e., if the message channel flow_to_dll is non-full.

do
:: (window < W && len(ses_to_flow[n]) > 0

&& len(flow_to_dll[n]) < QSZ) ->
ses_to_flow[n]?type;
window = window+1;
busy[s] = true;
O_buf[s] = type;
flow_to_dll[n]!type,s;

There is a little extra dance to be done if the message sent is a message of type sync,
which is used by the session layer to reset the flow control layer protocol. In that
case, all busy flags are cleared, and the sequence number returns to zero.

if
:: (type != sync) ->

s = (s+1)%M
:: (type == sync) ->

window = 0;
s = M;
do
:: (s > 0) ->

s = s-1;
busy[s] = false

:: (s == 0) ->
break

od
fi

When an ack message arrives, its sequence number m points to the message that is
being acknowledged. The status of that message, kept in array busy[m], is reset to
zero, meaning that the slot has become free. In the receiver code discussed below this
is included as follows:

:: dll_to_flow[n]?type,m ->
if
:: (type == ack) ->

busy[m] = false
...

If the message that was acknowledged is the oldest outstanding message, the window
can slide up one or more notches and make room for more messages to be transmitted.
This is modeled with two independent conditional clauses in the outer execution loop.
The advancement of the window is guarded with a timeout clause to protect against
lost messages.



:: (window > 0 && busy[q] == false) ->
window = window - 1;
q = (q+1)%M

:: (timeout && window > 0 && busy[q] == true) ->
flow_to_dll[n]!O_buf[q],q

All that remains is the modeling of the clauses for the receiver part of the flow control
layer. The messages are received in a generic clause

:: dll_to_flow[n]?type,m ->

followed by a switch on the message type. Incoming data are buffered to protect
against messages that are received out of order, e.g., as a result of message loss and
retransmission, and to allow the flow control layer to forward these messages to the
session layer in the right order. The boolean array received is used to keep track of
which messages have arrived and which are pending.

Let us first look at the processing of sync and sync_ack messages.

if
...
:: (type == sync) ->

m = 0;
do
:: (m < M) ->

received[m] = 0;
m = m+1

:: (m == M) ->
break

od;
flow_to_dll[n]!sync_ack,m

:: (type == sync_ack) ->
flow_to_ses[n]!sync_ack,m

The sync message is meant to initialize the flow control layer. In this case, the mes-
sage comes from the remote peer and should be acknowledged with an sync_ack

when the re-initialization is completed. If an sync_ack message arrives from the
remote peer, it is passed on to the session layer protocol. The sync_ack message
echos the session number of the sync message (cf. page 150, bottom).

All other messages are considered to be data messages:

:: (type != ack && type != sync && type != sync_ack)->
if
:: (received[m] == true) ->

x = ((0<p-m && p-m<=W)
|| (0<p-m+M && p-m+M<=W));
if /* ack was lost? */
:: (x) -> flow_to_dll[n]!ack,m
:: (!x) /* else skip */
fi



:: (received[m] == false) ->
I_buf[m] = type;
received[m] = true;
received[(m-W+M)%M] = false

fi

When a data message arrives, we must first check whether or not it was received
before (cf. page 79). If it was received before, we have received[m]==true, and
we must check to see if it has been acknowledged yet. Messages are only ack-
nowledged after they have been passed on to the session layer and have freed up the
buffer space that they held. A message that has not been received before is stored,
and the appropriate flag is set in array received.

The same clause is used to reset the received flag to false for the message that is one
full window size away from the last received message: only at this point in the proto-
col can we be certain that this message cannot be transmitted again. The acknowledg-
ment for that message must have been received or we could not have received the
current message.

If the current message was received before, a check on the sequence number tells us if
it was previously acknowledged or not. If it was, the fact that it was retransmitted
indicates that the acknowledgment was lost, and needs to be repeated. One more
clause remains: the one that encodes the accept process from Figure 4.12.

:: (received[p] == true && len(flow_to_ses[n])<QSZ
&& len(flow_to_dll[n])<QSZ) ->

flow_to_ses[n]!I_buf[p];
flow_to_dll[n]!ack,p;
p = (p+1)%M

od
}

The flow control layer is now complete. It takes some time to convince ourselves that
it really works. Though the protocol is only about a hundred lines of code, the
behavior it specifies can be complex, especially in the presence of transmission errors.
Correctness Requirements: The main correctness requirement for this protocol
layer is that it transfers messages without deletions and reorderings, despite the
behavior of the underlying transmission channel. To express, or check, this require-
ment we could label each message transferred by the sender, and check at the receiver
that no labels are lost and that the relative ordering of the labels is undisturbed. In a
way, such a label acts like just another sequence number.

Given a flow control protocol with a window size W and a range of sequence numbers
M, how many distinct labels would minimally be needed to check the correctness
requirement? The answer, due to Pierre Wolper (see Bibliographic Notes), is surpris-
ing. The number is independent of W and M: three different labels suffice for any pro-
tocol. Consider the following checking experiment. We transmit sequences of mes-
sages through the flow control layer, carrying just the label, and no other data. The
three different types of labels are arbitrarily called red, white, and blue. For con-
venience we call the corresponding messages red, white, and blue messages as



well. To construct a range of test sequences, one red and one blue message are
placed randomly in an infinite sequence of white messages. If the flow control pro-
tocol can ever lose a message, it will be able to lose the red or the blue message in at
least one of the test sequences. Similarly, if the protocol can ever reorder two mes-
sages, it will be able to change the order of the red and the blue message in at least
one sequence. The test sequences can be generated by a fake session layer protocol
module.

proctype test_sender(bit n)
{ do

:: ses_to_flow[n]!white
:: ses_to_flow[n]!red -> break
od;
do
:: ses_to_flow[n]!white
:: ses_to_flow[n]!blue -> break
od;
do
:: ses_to_flow[n]!white
:: break
od

}

The matching test model, which receives the test messages at the remote end of the
protocol, can be defined as follows.

proctype test_receiver(bit n)
{ do

:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> break
od;
do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?blue -> break
od;
do
:: flow_to_ses[n]?white
od

}

The correctness requirement can now be formalized with a temporal claim or even
more simply by adding some assertions to the receiver process.

proctype test_receiver(bit n)
{ do

:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> break
:: flow_to_ses[n]?blue -> assert(0) /* error */
od;



do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0) /* error */
:: flow_to_ses[n]?blue -> break
od;
do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0) /* error */
:: flow_to_ses[n]?blue -> assert(0) /* error */
od

}

This completes the design of the three main protocol layers. We have designed a pro-
tocol model that has sufficient detail to allow us to express and verify a set of formal
correctness requirements about the protocol. It is not an implementation. The issue,
however, need not come up until after the design itself has been validated (Chapter
14). Only then, the task of deriving an efficient implementation from the design will
become relevant. We only take a quick peek at some of the issues here.

AN ASIDE ON IMPLEMENTATION
It is not relevant to the design of the validation model, but just out of curiosity we can
look at how we could implement the parsing of messages at the lowest level in the
protocol, just below the error control layer, or perhaps even combined with it. In C,
for instance, the bytes obtained from the line can be stored, without processing, in a
buffer raw that is large enough to hold one complete data message. We assume that
the line drivers take care of character stuffing and de-stuffing, so we have a pure mes-
sage delimited by STX and ETX control bytes.

If we use the protocol with the fields in the message header rounded to the nearest
multiple of eight (Table 7.1), the maximum buffer size required is 428 bytes (422 data
bytes plus 6 bytes overhead). The bytes are read into the buffer in a tight loop that
can be coded as follows. We use a union of a raw buffer, a data message, and a
non-data message. The code below assumes that the low-order byte of a 16-bit
number, such as the checksum, is sent before the high-order byte.

typedef struct DATA_MSG {
unsigned char type;
unsigned char seqno;
unsigned char tail[424]; /* includes checksum */

} DATA_MSG;

typedef struct NON_DATA_MSG {
unsigned char type;
unsigned char seqno;
unsigned char checksum[2];

} NON_DATA_MSG;



union {
unsigned char raw[426]; /* data+header+trailer */
DATA_MSG data;
NON_DATA_MSG non_data;

} in;

Assuming that protection against the accidental occurrence of the STX and ETX mes-
sage delimiters is provided by the sender by inserting (stuffing) a DLE (data link
escape) character before all data that matches one of the three special characters STX,
ETX, or DLE, we can write the byte scanning and de-stuffing routine as follows.

recv()
{ unsigned char c;

unsigned char *start = in.raw;
unsigned char *stop = start+428;
unsigned char *ptr = start;

scan:
for (;;) /* forever */
{ if ((c = line_in()) == STX) /* next byte */

ptr = start; /* reset ptr */
else if (c == ETX)

goto check; /* have msg */
else if (ptr < stop)
{ if (c == DLE) /* escape */

*ptr++ = line_in();
else

*ptr++ = c; /* store */
}

}
check:

...
}

When the ETX marker has been seen we must check for a valid message by calculating
the checksum, for instance by calling the CRC routine discussed in Chapter 3. If
indeed the low-order byte of the checksum is sent first, a recalculation of the check-
sum of all the raw data as received, including the checksum field, should come out
zero in the absence of transmission errors:

check:
if (cksum(in.raw, ptr-start) == 0)

/* good message, accept */
else

/* distorted message, ignore */
goto scan; /* resume scanning for messages */

When the checksum is nonzero, the buffer contents must be discarded; otherwise it
can be copied to a safe place and passed to the upper protocol layer.



7.7 SUMMARY
In this chapter we have discussed a protocol design, leading up to a hierarchy of vali-
dation models written in PROMELA. The function of each layer in this hierarchy is
largely independent of the functions performed by the other layers. Each layer adds
some functionality, and helps to transform the underlying physical channel into a vir-
tual one with a progressively more idealized behavior.

With the derivation of the validation models the design process is not complete. The
behavior of the model will have to be formally validated, perhaps revised, and finally
implemented. Finding unspecified receptions, unexecutable code segments, or
deadlocks is almost impossible to do by inspection alone. The normal, expected
sequences of events can be checked easily. The errors, however, usually hide in the
unexpected combinations of events: execution sequences that have a low probability
of occurring. In Chapter 14, we consider the validation of the models we have
derived.

If the implementation is not derived automatically from the validated model, we must
add another validation step to guarantee that the implementation and the model are
equivalent: conformance testing (see Chapter 8, Section 8.6, and Chapter 9).

EXERCISES

7-1. 7-1. Compare the protocol hierarchy derived in this chapter to the OSI reference model dis-
cussed in Chapter 2, Section 2.6. Which layers are missing?

7-2. 7-2. Describe precisely in which order framing (using STX and ETX symbols), byte stuffing,
and checksum calculations must be performed at the receiver and at the sender.

7-3. 7-3. Which layer would have to be modified to include a rate control method in this protocol?
Which layer would have to be modified to include a dynamic flow control method?
Describe a simple version of each method.

7-4. 7-4. Consider the possibility of recalculating the optimal data size D at run time and using the
information gained to make the protocol adapt to dynamically changing channel charac-
teristics.

7-5. 7-5. Complete the state transition diagram from Figure 7.8, adding transitions and states for
all messages in the protocol vocabulary.

7-6. 7-6. Redesign the protocol for a transmission rate of 2400 bps.

7-7. 7-7. Redesign the protocol for a channel with zero error rate and zero signal propagation
delay.

7-8. 7-8. (Doug McIlroy) Extend the protocol to allow for the file transfer to resume where it left
off after carrier loss. Consider the option to use a status parameter in the accept and
reject messages sent by the presentation layer to indicate how much of the file was suc-
cessfully transferred. Hint: there can be no acknowledgment for the last data received
and stored at the remote system at the moment of carrier loss.

7-9. 7-9. Is there a possibility that the two parties in the file transfer protocol can be caught in an
execution cycle, or livelock, where both continue to send messages, but neither party
succeeds in reaching the data transfer phase? If true, suggest a way to amend the proto-
col to avoid this problem.



7-10. 7-10. Redesign the file server process to allow for asynchronous communication with the ses-
sion layer.

7-11. 7-11. Try to merge the two data link layers into one layer, performing both flow control and
error control.

7-12. 7-12. Show that the one-bit toggle session number protects against the misinterpretation of
sync_ack messages. Hint: compare with the alternating bit protocol.

7-13. 7-13. Suppose that the channel assumptions are changed to include the possibility of data
reordering on the transmission channel. Does the one-bit connection set up method from
Exercise 7-12 still work? Hint: a standard solution to this generalized version of the
problem is known as the three-way handshake, see for instance, Stallings [1985, p. 490].

7-14. 7-14. Consider what would need to be changed in the implementation (see ‘‘An Aside on
Implementation’’) for transmissions in which the high-order byte of a 16-bit quantity is
sent before the low-order byte.

7-15. 7-15. Express the correctness requirement for the flow control layer in a temporal claim. Hint:
first express a requirement on the correct behavior; then reverse it to specify all invalid
behaviors. Use a do-loop labeled with an acceptance-state label as the specification of
the error state that is reached (and never exited) whenever the correct behavior is
violated.

7-16. 7-16. Check the ten design rules from Chapter 2 and verify how they were applied to this
design. Criticize the design where the rules were violated.

BIBLIOGRAPHIC NOTES
Software layering is a concept that is primarily due to E.W. Dijkstra (see Biblio-
graphic Notes, Chapter 2). More on the derivation of protocol parameters, such as the
optimal data length, can be found in Field [1976], Tanenbaum [1981, 1988], or
Arthurs, Chesson and Stuck [1983].

In spirit at least, the design borrows many ideas from the world of light-weight proto-
cols (see Chapter 2). The importance of a judicious placement of control information
in either the header or the trailer of a protocol, was first emphasized by Greg Chesson,
one of the initiators of light-weight protocol design.

In many standards all control information is by default placed in one single control
block that is placed at the header of each message. The term ‘‘trailer protocol’’ was
coined by Chesson in an effort to show that the opposite discipline, of placing all con-
trol information in the trailer and none, except perhaps a routing address, in the
header, could lead to more efficient encodings of both sender and receiver. For
instance, both the byte count and the checksum of a message can then be computed on
the fly by the sender. The receiver can similarly compute checksums on the fly (start-
ing at an STX control flag), and after spotting the matching ETX flag the receiver can
find the byte count close by. The checksum can be verified immediately.

The correctness criterion that we specified for the flow control layer was first dis-
cussed in Wolper [1986]. It is also discussed in Aggarwal, Courcoubetis, and Wolper
[1990].
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8.1 INTRODUCTION
At a low level of abstraction, a protocol is often most easily understood as a state
machine. Design criteria can also easily be expressed in terms of desirable or undesir-
able protocol states and state transitions. In a way, the protocol state symbolizes the
assumptions that each process in the system makes about the others. It defines what
actions a process is allowed to take, which events it expects to happen, and how it will
respond to those events.

The formal model of a communicating finite state machine plays an important role in
three different areas of protocol design: formal validation, protocol synthesis, and
conformance testing. This chapter introduces the main concepts. First the basic finite
state machine model is discussed. There are several, equally valid, ways of extending
this basic model into a model for communicating finite state machines. We select one
of those models and formalize it in a definition of a generalized communicating finite
state machine. The model can readily be applied to represent PROMELA specifications
and to build an automated validator.

There exist many variations of the basic finite state machine model. Rather than list
them all, we conclude this chapter with a discussion of two of the more interesting
examples: the Petri Net and the FIFO Net.

8.2 INFORMAL DESCRIPTION
A finite state machine is usually specified in the form of a transition table, much like
the one shown in Table 8.1 below.
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Table 8.1 — Mealy1

_ ____________________________________ ___________________________________
Condition Effect_ ___________________________________

Current State In Out Next State_ ___________________________________
q0 – 1 q2
q1 – 0 q0
q2 0 0 q3
q2 1 0 q1
q3 0 0 q0
q3 1 0 q1_ ___________________________________ 


































For each control state of the machine the table specifies a set of transition rules.
There is one rule per row in the table, and usually more than one rule per state. The
example table contains transition rules for control states named q0, q1, q2, and q3.
Each transition rule has four parts, each part corresponding to one of the four columns
in the table. The first two are conditions that must be satisfied for the transition rule
to be executable. They specify

The control state in which the machine must be
A condition on the ‘‘environment’’ of the machine, such as the value of an
input signal

The last two columns of the table define the effect of the application of a transition
rule. They specify

How the ‘‘environment’’ of the machine is changed, e.g., how the value of an
output signal changes
The new state that the machine reaches if the transition rule is applied

In the traditional finite state machine model, the environment of the machine consists
of two finite and disjoint sets of signals: input signals and output signals. Each signal
has an arbitrary, but finite, range of possible values. The condition that must be satis-
fied for the transition rule to be executable is then phrased as a condition on the value
of each input signal, and the effect of the transition can be a change of the values of
the output signals. The machine in Table 8.1 illustrates that model. It has one input
signal, named In, and one output signal, named Out.

A dash in one of the first two columns is used as a shorthand to indicate a ‘‘don’t
care’’ condition (that always evaluates to the boolean value true). A transition rule,
then, with a dash in the first column applies to all states of the machine, and a transi-
tion rule with a dash in the second column applies to all possible values of the input
signal. Dashes in the last two columns can be used to indicate that the execution of a
transition rule does not change the environment. A dash in the third column means
__________________
1. This example first appeared in two seminal papers on finite state machines, published by George H. Mea-
ly [1955] and Edward F. Moore [1956].
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that the output signal does not change, and similarly, a dash in the fourth column
means that the control state remains unaffected.

In each particular state of the machine there can be zero or more transition rules that
are executable. If no transition rule is executable, the machine is said to be in an end-
state. If precisely one transition rule is executable, the machine makes a deterministic
move to a new control state. If more than one transition rule is executable a nondeter-
ministic choice is made to select a transition rule. A nondeterministic choice in this
context means that the selection criterion is undefined. Without further information
either option is to be considered equally likely. From here on, we will call machines
that can make such choices nondeterministic machines.2 Table 8.2 illustrates the con-
cept. Two transition rules are defined for control state q1. If the input signal is one,
only the first rule is executable. If the input signal is zero, however, both rules will be
executable and the machine will move either to state q0 or to state q3.

Table 8.2 — Non-Determinism
_ ____________________________________ ___________________________________
Current State In Out Next State_ ___________________________________

q1 – 0 q0
q1 0 0 q3_ ___________________________________ 















The behavior of the machine in Table 8.1 is more easily understood when represented
graphically in the form of a state transition diagram, as shown in Figure 8.1.

q0

q3

q1 q2

–/1

1/0

–/0

0/0

1/0 0/0

Figure 8.1 — State Transition Diagram
The control states are represented by circles, and the transition rules are specified as
directed edges. The edge labels are of the type c/e, where c specifies the transition
condition (e.g., the required set of input values) and e the corresponding effect (e.g., a
new assignment to the set of output values).
__________________
2. The nondeterministic formal automata (NFA) from automata theory are often defined differently. (See
for instance, Aho, Sethi and Ullman [1986, p. 114].) Unlike our nondeterministic machines, an NFA can be
in more than one state at the same time.
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TURING MACHINES
The above definition of a finite state machine is intuitively the simplest. There are
many variants of this basic model that differ in the way that the environment of the
machines is defined and thus in the definition of the conditions and the effects of the
transition rules. For truly finite state systems, of course, the environment must be fin-
ite state as well (e.g., it could be defined as another finite state machine). If this
requirement is dropped, we obtain the well-known Turing Machine model. It is used
extensively in theoretical computer science as the model of choice in, for instance, the
study of computational complexity. The Turing machine can be seen as a generaliza-
tion of the finite state machine model, although Turing’s work predates that of Mealy
and Moore by almost two decades.

The ‘‘environment’’ in the Turing machine model is a tape of infinite length. The
tape consists of a sequence of squares, where each square can store one of a finite set
of tape symbols. All tape squares are initially blank. The machine can read or write
one tape square at a time, and it can move the tape left or right, also by one square at a
time. Initially the tape is empty and the machine points to an arbitrary square. The
condition of a transition rule now consists of the control state of the finite state
machine and the tape symbol that can be read from the square that the machine
currently points to. The effect of a transition rule is the potential output of a new tape
symbol onto the current square, a possible left or right move, and a jump to a new
control state.

The tape is general enough to model a random access memory, be it an inefficient
one. Table 8.3 illustrates this type of finite state machine.

Table 8.3 — Busy Beaver3

_ _________________________________________ ________________________________________
Condition Effect_ ________________________________________

Current State In Out/Move Next State_ ________________________________________
q0 0 1/L q1
q0 1 1/R q2
q1 0 1/R q0
q1 1 1/L –
q2 0 1/R q1
q2 1 1/L q3
q3 – – –_ ________________________________________ 






































This machine has two output signals: one is used to overwrite the current square on
the tape with a new symbol, and one is used to move the tape left or right one square.
State q3 is an end state.
__________________
3. This table is Tibor Rado’s classic entry into the busy beaver game. The object of the game is to create an
N-state (here N =3) finite state machine that, when started on an empty tape (i.e., with all squares zero)
reaches a known end state in a finite number of steps, leaving the longest possible sequence of ones on the
tape.



166 FINITE STATE MACHINES CHAPTER 8

It is fairly hard to define an extension of this variant of the model with a practical
method for modeling the controlled interaction of multiple finite state machines. The
obvious choice would be to let one machine read a tape that is written by another, but
this is not very realistic. Furthermore, the infinite number of potential states for the
environment means that many problems become computationally intractable. For the
study of protocol design problems, therefore, we must explore other variants of the
finite state machine.

COMMUNICATING FINITE STATE MACHINES
Consider what happens if we allow overlap of the sets of input and output signals of a
finite state machine of the type shown in Table 8.1. In all fairness, we cannot say
what will happen without first considering in more detail what a ‘‘signal’’ is.

We assume that signals have a finite range of possible values and can change value
only at precisely defined moments. The machine executes a two-step algorithm. In
the first step, the input signal values are inspected and an arbitrary executable transi-
tion rule is selected. In the second step, the machine changes its control state in
accordance with that rule and updates its output signals. These two steps are repeated
forever. If no transition rule is executable, the machine will continue cycling through
its two-step algorithm without changing state, until a change in the input signal
values, effected by another finite state machine, makes a transition possible. A signal,
then, has a state, much like a finite state machine. It can be interpreted as a variable
that can only be evaluated or assigned to at precisely defined moments.

The behavior of the machine from Table 8.1 is now fully defined, even if we assume a
feedback from the output to the input signal. In this case the machine will loop
through the following sequence of three states forever: q0, q2, q1. At each step, the
machine inspects the output value that was set in the previous transition. The
behavior of the machine is independent of the initial value of the input signal.

We can build elaborate systems of interacting machines in this way, connecting the
output signals of one machine to the input signals of another. The machines must
share a common ‘‘clock’’ for their two-step algorithm, but they are not otherwise syn-
chronized. If further synchronization is required, it must be realized with a subtle sys-
tem of handshaking on the signals connecting the machines. This problem, as we saw
in Chapter 5, has three noticeable features: it is a hard problem, it has been solved,
and, from the protocol designer’s point of view, it is irrelevant. Most systems provide
a designer with higher-level synchronization primitives to build a protocol. An exam-
ple of such synchronization primitives are the send and receive operations defined in
PROMELA.

ASYNCHRONOUS COUPLING
In protocol design, finite state machines are most useful if they can directly model the
phenomena in a distributed computer system. There are two different and equally
valid ways of doing this, based on an asynchronous or a synchronous communication
model. With the asynchronous model, the machines are coupled via bounded FIFO
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(first-in first-out) message queues. The signals of a machine are now abstract objects
called messages. The input signals are retrieved from input queues, and the output
signals are appended to output queues. All queues, and the sets of signals, are still
finite, so we have not given up the finiteness of our model.

Synchronization is achieved by defining both input and output signals to be condi-
tional on the state of the message queues. If an input queue is empty, no input signal
is available from that queue, and the transition rules that require one are unexecutable.
If an output queue is full, no output signal can be generated for that queue, and the
transition rules that produce one are similarly unexecutable.

From this point on we restrict the models we are considering to those with no more
than one synchronizing event per transition rule; that is, a single rule can specify an
input or an output, but not both. The reason for this restriction is twofold. First, it
simplifies the model. We do not have to consider the semantics of complicated com-
posites of synchronizing events that may be inconsistent (e.g., two outputs to the same
output queue that can accommodate only one of the two). Second, it models the real
behavior of a process in a distributed system more closely. Note that the execution of
a transition rule is an atomic event of the system. In most distributed systems a single
send or receive operation is guaranteed to be an atomic event. It is therefore appropri-
ate not to assume yet another level of interlocking in our basic system model.

Table 8.4 — Sender
_ __________________________________ _________________________________
State In Out Next State_ _________________________________

q0 – mesg0 q1
q1 ack1 – q0
q1 ack0 – q2
q2 – mesg1 q3
q3 ack0 – q2
q3 ack1 – q0_ _________________________________ 

































As an example of asynchronous coupling of finite state machines, Tables 8.4 and 8.5
give transition table models for a simple version of the alternating bit protocol (see
also Chapter 4, Figure 4.8). The possibility of a retransmission after a timeout is not
modeled in Table 8.4. We could do so with spontaneous transitions, by adding two
rules:

__________________________________________________________
State In Out Next State_____________________________

q1 – mesg0 –
q3 – mesg1 –_____________________________ 















The table can model the possibility of retransmissions in this way, though not their
probability. Fortunately, this is exactly the modeling power we need in a system that
must analyze protocols independently of any assumptions on the timing or speed of
individual processes (see also Chapter 11).
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Table 8.5 — Receiver
_ __________________________________ _________________________________
State In Out Next State_ _________________________________

q0 mesg1 – q1
q0 mesg0 – q2
q1 – ack1 q3
q2 – ack0 q0
q3 mesg0 – q4
q3 mesg1 – q5
q4 – ack0 q0
q5 – ack1 q3_ _________________________________ 







































The last received message can be accepted as correct in states q1 and q4. A state tran-
sition diagram for Tables 8.4 and 8.5 is given in Figure 8.2. The timeout option in the
sender would produce and extra self-loop on states q1 and q3.

q0

q1

q2

q3

q5

q4

!mesg0 ?ack1

?ack0

!mesg1 ?ack1

!mesg0

?ack0 !mesg1

Sender (Table 8.4)

q2

q0

q1

q3

q5

q4

!ack0 ?mesg0

?mesg1

!ack1 ?mesg0

!ack0

?mesg1 !ack1

Receiver (Table 8.5)

Figure 8.2 — State Transition Diagrams, Tables 8.4 and 8.5

We do not have parameter values in messages just yet. In the above model the value
of the alternating bit is therefore tagged onto the name of each message.

SYNCHRONOUS COUPLING
The second method for coupling machines is based on a synchronous model of com-
munication, like the one discussed briefly in Chapter 5. The transition conditions are
now the ‘‘selections’’ that the machine can make for communication. Again we allow
only one synchronizing event per transition rule. The machine can select either an
input or an output signal for which a transition rule is specified. To make a move, a
signal has to be selected by precisely two machines simultaneously, in one machine as
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an output and in the other as an input. If such a match on a signal occurs, both
machines make the corresponding transition simultaneously and change their selec-
tions in accordance with the new states they reach.

Tables 8.6 and 8.7 give an example of synchronously coupled finite state machines.
The machine in Table 8.6 can make just one input selection P in state q0 and one out-
put selection V in state q1.

Table 8.6 — User
_ ____________________________ ___________________________
State In Out Next State_ ___________________________

q0 P – q1
q1 – V q0_ ___________________________ 















The second machine is almost the same as the first, but has the inputs and outputs
swapped (Table 8.7).

Table 8.7 — Server
_ ____________________________ ___________________________
State In Out Next State_ ___________________________

q0 – P q1
q1 V – q0_ ___________________________ 















If we create two machines of type 8.6 and combine them with one machine of type
8.7, we can be certain that for all possible executions the first two machines cannot
both be in state q1 at the same time. Note that synchronous communication was
defined to be binary: exactly two machines must participate, one with a given input
selection and the other with the matching output selection. Typically, a parameter
value will be passed from sender to receiver in the synchronous handshake. The value
transfer, however, is not in the model just yet.

We can again consider the synchronous communication as a special case of asynchro-
nous communication with a queue capacity of zero slots (see also Chapters 5 and 11).
In the remainder of this chapter we therefore focus on the more general case of a fully
asynchronous coupling of finite state machines.

8.3 FORMAL DESCRIPTION
Let us now see if we can tidy up the informal definitions discussed so far. A com-
municating finite state machine can be defined as an abstract demon that accepts input
symbols, generates output symbols, and changes its inner state in accordance with
some predefined plan. For now, these symbols or ‘‘messages’’ are defined as abstract
objects without contents. We will consider the extensions required to include value
transfer in Section 8.8. The finite state machine demons communicate via bounded
FIFO queues that map the output of one machine upon the input of another. Let us
first formally define the concept of a queue.

A message queue is a triple (S, N, C), where:
S is a finite set called the queue vocabulary,



170 FINITE STATE MACHINES CHAPTER 8

N is an integer that defines the number of slots in the queue, and
C is the queue contents, an ordered set of elements from S.

The elements of S and C are called messages. They are uniquely named, but other-
wise undefined abstract objects. If more than one queue is defined we require that the
queue vocabularies be disjoint. Let M be the set of all messages queues, a superscript
1≤m≤ M is used to identify a single queue, and an index 1≤n≤N is used to identify
a slot within the queue. Cn

m, then, is the n-th message in the m-th queue. A system
vocabulary V can be defined as the conjunction of all queue vocabularies, plus a null
element that we indicate with the symbol ε. Given the set of queues M, numbered
from 1 to  M , the system vocabulary V is defined as

V =
m =1
∪
 M

S m ∪ ε

Now, let us define a communicating finite state machine.

A communicating finite state machine is a tuple (Q, q 0 , M, T), where
Q is a finite, non-empty set of states,
q 0 is an element of Q, the initial state,
M is a set of message queues, as defined above, and
T is a state transition relation.

Relation T takes two arguments, T(q ,a), where q is the current state and a is an
action. So far, we allow just three types of actions: inputs, outputs, and a null action
ε. The executability of the first two types of actions is conditional on the state of the
message queues. If executed, they both change the state of precisely one message
queue. Beyond this, it is immaterial, at least for our current purposes, what the pre-
cise definition of an input or an output action is.

The transition relation T defines a set of zero or more possible successor states in set
Q for current state q. This set will contain precisely one state, unless nondeterminism
is modeled, as in Table 8.2. When T(q ,a) is not explicitly defined, we assume
T(q ,a) = ∅ .

T(q ,ε) specifies spontaneous transitions. A sufficient condition for these transitions
to be executable is that the machine be in state q.

8.4 EXECUTION OF MACHINES
Consider a system of P finite state machines, with overlapping sets of message
queues. The union of the sets of all message queues is again called M. This system of
communicating finite state machines is executed by applying the following rules,
assuming asynchronous coupling only. The elements of finite state machine i are
referred to with a superscript i.

ALGORITHM 8.1 — FSM EXECUTION

1. Set all machines in their initial state, and initialize all message queues to empty:

∀ (i) , 1≤ i≤P → q i = q0
i
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∀ (i) , 1≤ i≤ M → C i = ∅

2. Select an arbitrary machine i and an arbitrary transition rule T i with

T i (q , ia) ≠ ∅ and a is executable

and execute it.
3. If no executable transition rules remain, the algorithm terminates.

Action a can be an input, an output, or it can be the null action ε. Let 1≤d(a) ≤ M
be destination queue of an action a, and let m(a) be the message that is sent or
received, m(a) ∈ S d(a) . Further, let N i represent the number of slots in message
queue i. In an asynchronous system, for instance, the following three rules can be
used to determine if a is executable.

a = ε (1)

or

a is an input and m(a) = C1
d(a) (2)

or

a is an output and  C d(a)  < N d(a) (3)

Algorithm 8.1 does not necessarily terminate.

8.5 MINIMIZATION OF MACHINES
Consider the finite state machine shown in Table 8.8, with the corresponding state
transition diagram in Figure 8.3.

Table 8.8 — Receiver-II
_ _________________________________________ ________________________________________

Condition Effect_ ________________________________________
Current State In Out Next State_ ________________________________________

q0 mesg1 – q1
q0 mesg0 – q2
q1 – ack1 q0
q2 – ack0 q0_ ________________________________________ 


























Though this machine has three states fewer than the machine from Table 8.5, it cer-
tainly looks like it behaves no differently. Two machines are said to be equivalent if
they can generate the same sequence of output symbols when offered the same
sequence of input symbols. The keyword here is can. The machines we study can
make nondeterministic choices between transition rules if more than one is executable
at the same time. This nondeterminism means that even two equal machines can
behave differently when offered the same input symbols. The rule for equivalence is
that the machines must have equivalent choices to be in equivalent states.
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q1 q0 q2

?mesg1

!ack1

?mesg0

!ack0

Figure 8.3 — State Transition Diagram for Table 8.8

States within a single machine are said to be equivalent if the machine can be started
in any one of these states and generate the same set of possible sequences of outputs
when offered any given test sequence of inputs. The definition of an appropriate
equivalence relation for states, however, has to be chosen with some care. Consider
the following PROMELA process.

proctype A()
{ if

:: q?a -> q?b
:: q?a -> q?c
fi

}

Under the standard notion of language equivalence that is often defined for deter-
ministic finite state machines, this would be equivalent to

proctype B()
{ q?a;

if
:: q?b
:: q?c
fi

}

since the set of all input sequences (the language) accepted by both machines is the
same. It contains two sequences, of two messages each:

{ q?a;q?b , q?a;q?c }

The behavior of the two processes, however, is very different. The input sequence
q?a;q?b, for instance, is always accepted by process B but may lead to an unspecified
reception in process A. For nondeterministic communicating finite state machines,
therefore processes A and B are not equivalent. The definitions given below will sup-
port that notion.

In the following discussion of equivalence, state minimization, and machine composi-
tion, we will focus exclusively on the set of control states Q and the set of transitions
T of the finite state machines. Specifically, the internal ‘‘state’’ of the message
queues in set M is considered to be part of the environment of a machine and not con-
tributing to the state of the machine itself. That this is a safe assumption needs some
motivation. Consider, as an extreme case, a communicating finite state machine that
accesses a private message queue to store internal state information. It can do so by
appending messages with state information in the queue and by retrieving that infor-
mation later. The message queue is internal and artificially increases the number of
states of the machine.



SECTION 8.5 MINIMIZATION OF MACHINES 173

When we consider the message queue to be part of the environment of a machine in
the definitions that follow, we ignore the fact that the information that is retrieved
from such a private queue is always fixed (i.e., it can only have been placed in the
queue by the same machine in a previous state). If we say that two states of this
machine are equivalent if they respond to the same input messages in the same way,
we do in fact place a stronger requirement on the states than strictly necessary. We
require, for instance, that the two states would respond similarly to messages that
could never be in a private queue for the given state. To suppress state information
that could be implicit in the messages queue contents therefore does not relax the
equivalence requirements. As we will see, it does lead to simpler algorithms.

Using this approach, the set of control states of a communicating finite state machine
can be minimized, without changing the external behavior of the machine, by replac-
ing every set of equivalent states with a single state. More formally, we can say that
this equivalence relation defines a partitioning of the states into a finite set of disjoint
equivalence classes. The smallest machine equivalent to the given one will have as
many states as the original machine has equivalence classes.

We can now define a procedure for the minimization of an arbitrary finite state
machine with  Q states.

ALGORITHM 8.2 — FSM MINIMIZATION

1. Define an array E of  Q ×  Q boolean values. Initially, every element E[i , j] of
the array is set to the truth value of the following condition, for all actions a:

T(i ,a) ≠ ∅ ⇔ T( j ,a) ≠ ∅

Two states are not equivalent unless the corresponding state transition relations are
defined for the same actions.
2. If the machine considered contains only deterministic choices, T defines a unique
successor state for all true entries of array E. Change the value of all those entries
E[i , j] to the value of

∀ (a) , E[T(i ,a) ,T( j ,a) ]

It means that states are not equivalent unless their successors are also equivalent.
When T(i ,a) and T( j ,a) can have more than one element, the relation is more
complicated. The value of E[i , j] is now set to false if either of the following two
conditions is false for any action a.

∀ (p) , p ∈ T(i ,a) → ∃ (q) ,q ∈ T( j ,a) and E[p ,q]
∀ (q) , q ∈ T( j ,a) → ∃ (p) ,p ∈ T(i ,a) and E[q ,p]

This means that states i and j are not equivalent unless for every possible successor
state p of state i there is at least one equivalent successor state q of state j, and vice
versa.
3. Repeat step 2 until the number of false entries in array E can no longer be increased.

The procedure always terminates since the number of entries of the array is finite and
each entry can only be changed once, from true to false, in step 2. When the
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procedure terminates, the entries of the array define a partitioning of the  Q states
into equivalence classes. State i, 1≤i≤ Q , is equivalent with all states j, 1≤ j≤ Q ,
with E[i , j] = true.

Table 8.9 — Equivalence
_ __________________________________ _________________________________

q0 q1 q2 q3 q4 q5_ _________________________________
q0 1 0 0 1 0 0
q1 0 1 0 0 0 1
q2 0 0 1 0 1 0
q3 1 0 0 1 0 0
q4 0 0 1 0 1 0
q5 0 1 0 0 0 1_ _________________________________ 











If we apply this procedure to the finite state machine in Table 8.5, we obtain the stable
array of values for E shown in Table 8.9 after a single application of the first two
steps. A one in the table represents the boolean value true. From the table we see that
state pairs (q0, q3), (q1, q5), and (q2, q4) are equivalent. We can therefore reduce
Table 8.5 to the three-state finite state machine that was shown in Table 8.8. It is
necessarily the smallest machine that can realize the behavior of Table 8.5.

The procedure above can be optimized by noting, for instance, that array E is sym-
metric: for all values of i and j we must have E(i , j) =E( j ,i). Trivially, every state is
equivalent with itself.

8.6 THE CONFORMANCE TESTING PROBLEM
The procedure for testing equivalence of states can also be applied to determine the
equivalence of two machines. The problem is then to determine that every state in
one machine has an equivalent in the other machine, and vice versa. Of course, the
machines need not be equal to be equivalent.

A variant of this problem is of great practical importance. Suppose we have a formal
protocol specification, in finite state machine form, and an implementation of that
specification. The two machines must be equivalent, that is the implementation, seen
as a black box, should respond to input signals exactly as the reference machine
would. We cannot, however, know anything with certainty about the
implementation’s true internal structure. We can try to establish equivalence by sys-
tematically probing the implementation with trial input sequences and by comparing
the responses with those of the reference machine. The problem is now to find just
the right set of test sequences to establish the equivalence or non-equivalence of the
two machines. This problem is known in finite state machine theory as the fault
detection or conformance testing problem. Chapter 10 reviews the methods that have
been developed for solving this problem.

Carrying this one step further, we may also want to determine the internal structure of
an unknown finite state machine, just by probing it with a known set of input signals
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and by observing its responses. This problem is known as the state verification prob-
lem. Without any further knowledge about the machine, that problem is alas unsolv-
able. Note, for instance, that in Figure 8.1 state q3 cannot be distinguished from state
q2 by any test sequence that starts with an input symbol one. Similarly, state q1 can-
not be distinguished from state q3 by any sequence starting with a zero. Since every
test sequence has to start with either a one or a zero there can be no single test
sequence that can tell us reliably in which state this machine is.

8.7 COMBINING MACHINES
By collapsing two separate finite state machines into a single machine the complexity
of formal validations based on finite state machine models may be reduced. The algo-
rithm below is referred to in Chapter 11 in the discussion of an incremental protocol
validation method, and in Chapter 14 in the discussion of methods for stepwise
abstraction.

The problem is to find a tuple (Q, q 0 , M, T) for the combined machine, given two
machines (Q 1 , q0

1 , M 1 , T 1) and (Q 2 , q0
2 , M 2 , T 2).

ALGORITHM 8.3 — FSM COMPOSITION

1. Define the product set of the two sets of states of the two state machines. If the first
machine has  Q 1  states and the second machine has  Q 2  states the product set
contains  Q 1  ×  Q 2  states. We initially name the states of the new machine by
concatenating the state names of the original machines in a fixed order. This defines
set Q of the combined machine. The initial state q 0 of the new machine is the
combination q0

1 q0
2 of the initial states of the two original machines.

2. The set of message queues M of the combined machine is the union of the sets of
queues of the separate machines, M 1 ∪ M 2 . The two original sets need not be
disjoint. The vocabulary V of the new machine is the combined vocabulary of M 1 and
M 2 , and the set of actions a is the union of all actions that the individual machines can
perform.
3. For each state q 1 q 2 in Q, define transition relation T for each action a as the
nondeterministic choice of the corresponding relations of M 1 and M 2 separately, when
placed in the individual states q 1 and q 2 . This can be written:

∀ (q 1 q 2 ) ∀ (a) , → T(q 1 q 2 ,a) = T 1 (q 1 ,a) ∪ T 2 (q 2 ,a)

The combined machine can now be minimized using Algorithm 8.2. Algorithm 8.3
can be readily adapted to combine more than two machines.

The greatest value of the composition technique from the last section is that it allows
us to simplify complex behaviors. In protocol validations, for instance, we could cer-
tainly take advantage of a method that allows us to collapse two machines into one.
One method would be to compose two machines using Algorithm 8.3, remove all
their internal interactions, i.e., the original interface between the two machines, and
minimize the resulting machine.

There are two pieces missing from our finite state machine framework to allow us to
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apply compositions and reductions in this way. First, the finite state machine model
we have developed so far cannot easily represent PROMELA models. In the next sec-
tion we show how the basic finite state machine model can be extended sufficiently to
model PROMELA models elegantly. The second piece that is missing from our frame-
work is a method for removing internal actions from a machine without disturbing its
external behavior. We discuss such methods in Section 8.9.

8.8 EXTENDED FINITE STATE MACHINES
The finite state machine models we have considered so far still fall short in two
important aspects: the ability to model the manipulation of variables conveniently and
the ability to model the transfer of arbitrary values. These machines where defined to
work with abstract objects that can be appended to and retrieved from queues and they
are only synchronized on the access to these queues.

We make three changes to this basic finite state machine model. First, we introduce
an extra primitive that is defined much like a queue: the variable. Variables have
symbolic names and they hold abstract objects. The abstract objects, in this case, are
integer values. The main difference from a real queue is that a variable can hold only
one value at a time, selected from a finite range of possible values. Any number of
values can be appended to a variable, but only the last value that was appended can be
retrieved.

The second change is that we will now use the queues specifically to transfer integer
values, rather than undefined abstract objects. Third, and last, we introduce a range of
arithmetic and logical operators to manipulate the contents of variables.

Table 8.10 — Finite State Variable
_ ____________________________________ ___________________________________
Current State In Out Next State_ ___________________________________

q0 s0 – –
q0 s1 – q1
q0 s2 – q2
q0 rv – r0
r0 – 0 q0_ ___________________________________
q1 s0 – q0
q1 s1 – –
q1 s2 – q2
q1 rv – r1
r1 – 1 q1_ ___________________________________
q2 s0 – q0
q2 s1 – q1
q2 s2 – –
q2 rv – r2
r2 – 2 q2_ ___________________________________ 
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The extension with variables, provided that they have a finite range of possible values,
does not increase the computational power of finite state machines with bounded
FIFO queues. A variable with a finite range can be simulated trivially by a finite state
machine. Consider the six-state machine shown in Table 8.10, that models a variable
with the range of values from zero to two. The machine accepts four different input
messages. Three are used to set the pseudo variable to one of its three possible
values. The fourth message, rv, is used to test the current value of the pseudo vari-
able. The machine will respond to the message rv by returning one of the three possi-
ble values as an output message.

Thus, at the expense of a large number of states, we can model any finite variable
without extending the basic model, as a special purpose finite state machine. The
extension with explicit variables, therefore, is no more than a modeling convenience.

Recall that the transition rules of a finite state machine have two parts: a condition and
an effect. The conditions of the transition rules are now generalized to include
boolean expressions on the value of variables, and the effects (i.e. the actions) are
generalized to include assignment to variables.

An extended finite state machine can now be defined as a tuple (Q ,q 0 ,M ,A ,T), where
A is the set of variable names. Q, q 0 , and M are as defined before. The state transi-
tion relation T is unchanged. We have simply defined two extra types of actions:
boolean conditions on and assignments to elements of set A. A single assignment can
change the value of only one variable. Expressions are built from variables and con-
stant values, with the usual arithmetic and relational operators.

In the spirit of the validation language PROMELA, we can define a condition to be exe-
cutable only if it evaluates to true, and let an assignment always be executable. Note
carefully that the extended model of communicating finite state machines is a finite
state model, and almost all results that apply to finite state machines also apply to this
model.

EXTENDED I/O
Input and output actions can now be generalized as well. We will define I/O actions
as finite, ordered sets of values. The values can be expressions on variables from A,
or simply constants. By definition the first value from such an ordered set defines the
destination queue for the I/O, within the range 1 .. M . The remaining values define a
data structure that is appended to, or retrieved from, the queue when the I/O action is
performed. The semantics of executability can again be defined as in PROMELA.

EXAMPLE
Consider the following PROMELA fragment, based on an example from Chapter 5.

proctype Euclid
{ pvar x, y;

In?x,y;
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do
:: (x > y) -> x = x – y
:: (x < y) -> y = y – x
:: (x == y) -> break
od;
Out!x

}

The process begins by receiving two values into variables x and y, and it completes
by returning the greatest common divisor of these two values to its output queue. The
matching extended finite state machine is shown in Table 8.11, where we combine all
conditions, assignments and I/O operations in a single column.

Table 8.11 — Extended Finite State Machine
_ _________________________________ ________________________________
Current State Action Next State_ ________________________________

q0 In?x,y q1
q1 x>y q2
q1 x<y q3
q1 x=y q4
q2 x=x-y q1
q3 y=y-x q1
q4 Out!x q5
q5 – –_ ________________________________ 


























Set A has two elements, x and y.

We now have a simple mapping from PROMELA models to extended finite state
machines. Algorithm 8.3, for instance, can now be used to express the combined
behavior of two PROMELA processes by a single process. We noted before that this
technique could be especially useful in combination with a hiding method that
removes internal actions from a machine without disturbing its external behavior. We
take a closer look at such methods in the next section.

8.9 GENERALIZATION OF MACHINES
Consider the following PROMELA model.

1 proctype generalize_me(chan ans; byte p)
2 { chan internal[1] of { byte };
3 int r, q;
4
5 internal!cookie;
6 r = p/2;
7 do
8 :: (r <= 0) -> break
9 :: (r > 0) ->

10 q = (r*r + p)/(2*r);
11 if
12 :: (q != r) -> skip
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13 :: (q == r) -> break
14 fi;
15 r = q
16 od;
17 internal?cookie;
18 if
19 :: (q < p/3) -> ans!small
20 :: (q >= p/3) -> ans!great
21 fi
22 }

A process of this type will start by sending a message cookie to a local message
channel. It will then perform some horrible computation, using only local variables,
read back the message from the channel internal, and send one of two possible
messages over an external message channel ans.

Now, for starters, nothing detectable will change in the external behavior of this pro-
cess if we remove lines 2, 5 and 17. The message channel is strictly local, and there is
no possible behavior for which any of the actions performed on the channel can be
unexecutable. Lines 5 and 17 are therefore equivalent to skip operations and can be
deleted from the model. Reductions, or prunings, of this type produce machines that
have a equivalent external behavior to the non-reduced machines. This is not true for
the next type of reduction we discuss: generalization.

The horrible computation performed by the process, between lines 6 and 16, does not
involve any global variables or message interactions. Once the initial value of vari-
able p is chosen, the resulting message sent to channel ans is fixed. If we are
interested in just the external behavior of processes of type generalize_me,
independently of the precise value of p, the model could be rewritten as

proctype generalized(chan ans; byte p)
{

if
:: ans!small
:: ans!great
fi

}

This specification merely says that within a finite time after a process of this type is
instantiated, it sends either a message of type small or a message of type great and
terminates. To justify the reduction we must of course show that the loop in the origi-
nal specification will always terminate. If this is not the case, or cannot be proven, the
correct reduction would be
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proctype generalized(chan ans; byte p)
{

if
:: (0)
:: ans!small
:: ans!great
fi

}

where the possibility of blocking is preserved explicitly.

We call a reduction of this type, where uninteresting but strictly local, behavior is
removed, a generalization. A process of type generalized can do everything that a
process of type generalize_me can do, but it can do more. The generalized process
can, for instance, for any given parameter p, return either of the two messages, while
the non-generalized processes will pick only one. The generalized processes is only
more general in the way it can produce output, not in the way it can accept input, or in
general in the way other processes can constrain its behavior via global objects.

The usefulness of generalizations in protocol validation can be explained as follows.
Consider two protocol modules A and B whose combined behavior is too complex to
be analyzed directly. We want to validate a correctness requirement for the processes
in module A. We can do this by simplifying the behavior in module B, for instance by
combining, pruning, generalizing, and minimizing machines. If the behavior in
module B is generalized as discussed above, the new module B will still be capable of
behaving precisely like the unmodified module B, but it can do more. If we can prove
the observance of a correctness requirement for module A in the presence of the gen-
eralized module B, which may be easier, the result will necessarily also hold for the
original, more complex, module B, because the original behavior is a subset of the
new behavior.

Two things should be noted. First, if we are interested in proving a property of
module A we simplify its environment, which in this case is module B. We do not
change module A itself. Second, it is important that the modified behavior of module
B does not, by virtue of the modifications, allow module A to pass its test. This is
guaranteed by the fact that the generalized module B continues to adhere to all con-
straints that can be imposed by A, via global objects, such as message channels and
variables. The validation, then, gives us the best of both worlds. It performs a
stronger test, since it validates properties for more general conditions than defined in
the original protocol, yet it is easier to perform, since a generalized process can be
smaller than its original.

A general method for the reduction of an arbitrary PROMELA proctype definition can
be described as follows.

Identify selection and repetition structures in which all the guards are conditions
on local variables only, and in which the union of all guards is true.
Replace each of the guards identified in the first step with the PROMELA statement
skip.
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Replace all assignments to local variables that are no longer part of any condition,
with skip.
Remove all redundant declarations and minimize or simplify the new proctype

body, for instance, by combining equal clauses in selection and repetition struc-
tures, and by removing redundant skip statements.

If we apply this method to the process type generalize_me, after pruning away the
interactions on channel internal, we can reduce it to

proctype generalized_2(chan ans; byte p)
{

do
:: break
:: skip
od;
if
:: ans!small
:: ans!great
fi

}

which is similar to and has the same external behavior as the (second) version we
derived earlier with a little more handwaving. Note that the loop in the above version
does not necessarily terminate.

A more substantial application of this generalization technique and the resulting
reduction in complexity is discussed in Chapter 14.

8.10 RESTRICTED MODELS
To conclude this chapter, we look at two other interesting variants of the basic finite
state machine model that have been applied to the study of protocol problems. Many
variations of the basic finite state machine model have been used for the analysis of
protocol systems, both restrictions and extensions. The restricted versions have the
advantage, at least in principle, of a gain in analytical power. The extended versions
have the advantage of a gain in modeling power. The most popular variants of the
finite state machine are formalized token nets, often derived from the Petri Net model.
Below we briefly review the Petri Net model and discuss one of the variations, the
FIFO Net.

PETRI NETS
A Petri Net is a collection of places, transitions, and directed edges. Every edge con-
nects a place to a transition or vice versa. Places are graphically represented by cir-
cles, transitions by bars, and edges by directed arcs. Informally, a place corresponds
to a condition and a transition corresponds to an event. The input places of transition
T are the places that are directly connected to T by one or more edges. The input
places correspond to conditions that must be fulfilled before the event corresponding
to T can occur. The output places of a transition similarly correspond to the effect of
the event on the conditions represented by the places.
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Each place that corresponds to a fulfilled condition is marked with one or more tokens
(sometimes called a stone). The occurrence of an event is represented in the Petri Net
as the firing of a transition. A transition is enabled if there is at least one token in
each of its input places. The effect of a firing is that one token is added to the mark-
ings of all output places of the firing transition, and one token is removed from the
markings of all its input places.

Two transitions are said to conflict if they share at least one input place. If the shared
place contains precisely one token, both transitions may be enabled to fire, but the
firing of one transition disables the other. By definition the firing of any combination
of two transitions is always mutually exclusive: only one transition can fire at a time.

By assigning zero or more tokens to each place in the net we obtain an initial mark-
ing. Each firing creates a new marking. A series of firings is called an execution
sequence. If for a given initial marking all possible execution sequences can be made
infinitely long, the initial marking, and trivially all subsequent markings, are said to
be live. If in a certain marking no transition is enabled to fire, the net is said to hang.
An initial making is said to be safe if no subsequent execution sequence can produce a
marking where any place has more than one token.

A number of properties has been proven about Petri Nets, but mostly about still
further simplified versions. Two examples of such variants are:

Petri Nets in which precisely one edge is directed to and from each place. Such
nets are called marked graphs. In a marked graph there can be no conflicting tran-
sitions.
Petri Nets in which all transitions have at most one input place and one output
place. These nets are called transition diagrams.

Figure 8.4 gives an example of a Petri Net modeling a deadlock problem. Initially,
the two top transitions t1 and t2 are enabled. After t1 fires, transition t3 becomes
enabled. If it fires, all is well. If in this marking, however, transition t2 fires, the net
will hang.

A token in a Petri Net symbolizes more than the fulfillment of a condition, as
described above. It also symbolizes a control flow point in the program, and it sym-
bolizes a privilege to proceed beyond a certain point. A token models a shared
resource that can be claimed by more than one transition. All these abstractions sym-
bolize the enforcement of partial orderings on the set of possible execution sequences
in the system modeled. Especially relevant to the protocol modeling problem is that
mixing these abstractions can make it more difficult than necessary to distinguish
computation from communication in a Petri Net model.

The complexity of a Petri Net representation rises rapidly with the size of the problem
being modeled. It is virtually impossible to draw a clear net for protocol systems that
include more than two or three processes. This makes the Petri Net models relatively
weak in modeling power compared to communicating finite state machines, without
offering an increase in analytical power. There are, for instance, no standard pro-
cedures, other than reachability analysis, to analyze a Petri Net for the presence of
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Figure 8.4 — Petri Net with hang state
hang states. Neither are there standard procedures for simplifying a large Petri Net
into one or more smaller, equivalent ones.

One final note on the modeling power of basic Petri Nets. We observed above that
the places in a Petri Net can be used to model conditions. It is fairly easy to model
logical and and or tests on places using multiple edges, but there is no general way to
model a logical not-operation (negation). With a logical not-operation it would be
possible to define that a transition can fire if a place holds no tokens.

Of course, there are many good applications of Petri Net theory. They have been
applied successfully to the study of a range of theoretical problems in parallel compu-
tation. For the above pragmatic reasons, however, we conclude that Petri Nets do not
give us an advantage in the study of protocol design and validation problems.

FIFO NETS
FIFO Nets are an interesting generalization of Petri Nets and a relatively recent addi-
tion to the range of tools proposed for studying distributed systems (see Bibliographic
Notes).

A FIFO Net, like a Petri Net, has places, edges, and transitions, but the places contain
symbols rather than tokens. The symbols are appended to and reclaimed from the
places by transition firings. They are stored by the places in FIFO queues. Both
incoming and outgoing edges of transitions are labeled with symbol names. A transi-
tion can only fire if the queue of each of its input places can deliver the symbol that
corresponds to the edge connecting the transition to that place. Upon firing the labels
on the outgoing edges specify which symbols are to be appended to the queues of the
corresponding output places.

The generalization of FIFO Nets is strong enough to make them equivalent in compu-
tational power to the finite state machines that we defined earlier. Alas, there are no



184 FINITE STATE MACHINES CHAPTER 8

better procedures to analyze FIFO Nets for interesting protocol errors, such as
deadlock. In some cases, procedures do exist for restricted versions of FIFO Nets, but
again the restrictions generally reduce the modeling power too severely to make them
of interest as a general tool for designing or analyzing protocol systems.

8.11 SUMMARY
The formal model of a finite state machine was developed in the early 1950s for the
study of problems in computational complexity and, independently, for the study of
problems in the design of combinatorial and sequential circuits. There are almost as
many variants of the basic model of a finite state machine as there are applications.
For the study of protocol design problems we need a formalism in which we can
model the primitives of process interactions as succinctly as possible. With this in
mind we developed an extended finite state machine model that can directly model
message passing and the manipulation of variables. Its semantics are closely linked to
the semantics of PROMELA.

There are three main criteria for evaluating the adequacy of formal modeling tools:
Modeling power
Analytical power
Descriptive clarity

The main purpose of the modeling is to obtain a gain in analytical power. It should be
easier to analyze the model than it is to analyze the original system being modeled.
We have chosen the finite state machine as our basic model. There is a small set of
useful properties that can easily be established with a static analysis of finite state
machine models. More importantly, however, the manipulation of finite state
machines can be automated, and more sophisticated dynamic analysis tools can be
developed. We study such tools in Part IV of this book. The descriptive clarity of the
finite state machines is debatable. It can well be argued that they trade descriptive
clarity for analytical power. By using PROMELA as an intermediate form of an
extended finite state machine, however, we can circumvent this problem.

The Turing machine model falls short on all three criteria listed above when applied
to the study of protocol problems. In particular, the definition of the ‘‘environment’’
is hard to exploit in the modeling of communications. Perhaps even more impor-
tantly, many problems of interest, such as absence of deadlock, are intractable for
Turing machine models. The model is too powerful for our purpose.

Petri Nets have been used for the study of distributed systems since their inception in
the early 1960s. The Petri Net and the FIFO Net have an appealing conceptual sim-
plicity that is mostly based on the graphical representation of the mechanism of pro-
cess interaction. This advantage in descriptive clarity, however, is lost when the size
of the problem exceeds a modest limit. Beyond roughly fifty states per process, the
nets become inscrutable. Another, more subtle problem is to distinguish synchroniza-
tion aspects from the control flow aspects in a Petri Net model. Both are modeled
with the same tool: the token. It can be argued that descriptive clarity is traded here
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for conceptual simplicity. For the modeling of protocol systems this turns out to be
an unfortunate trade-off. Protocols of a realistic size typically have many times the
numbers of states beyond which a Petri Net becomes unusable. The restrictions of the
model imply a loss of modeling power that is not offset by a comparable gain in
analytical power.

EXERCISES

8-1. 8-1. Explain the difference between the dash introduced as a notational convenience in Sec-
tion 8.2 and the ε introduced in Section 8.3.

8-2. 8-2. Apply Algorithm 8.1 to Table 8.1.

8-3. 8-3. Define the rules for the executability of a in Algorithm 8.1, assuming a synchronous
instead of asynchronous coupling of machines.

8-4. 8-4. Change Algorithm 8.3 to combine any number of machines.

8-5. 8-5. Implement Algorithms 8.1 to 8.3 in your favorite programming language. Invent a syn-
tax for specifying a system of finite state machines. Specify Tables 8.4 and 8.5 in this
formalism and use your programs to minimize the corresponding machines, to combine
them into one single machine, and to simulate the execution of the resulting description.

8-6. 8-6. Model the behavior of Tables 8.6 and 8.7 in PROMELA.

8-7. 8-7. Do the run and chan operators in PROMELA make the systems modeled unbounded?

8-8. 8-8. Find an algorithm that detects which message queues from the definition of a communi-
cating finite state machine are only used internally, to store state information, and that
removes them from the specification by increasing the number of states.

8-9. 8-9. (S. Purushothaman) Are two machine states equivalent if one of the two states contains
an unexecutable transition that the other state lacks (cf. a receive from an always-empty
message queue) ?

8-10. 8-10. Derive a formal finite state machine description for the example processes A and B on
page 172 and show that they are not equivalent.

BIBLIOGRAPHIC NOTES
The theory of finite state machines has a long history and at least parts of it can be
found in many computer science text books, e.g., Aho, Hopcroft and Ullman [1974],
Aho, Sethi and Ullman [1986]. The original idea of the finite state machine is attri-
buted to McCulloch and Pitts [1943]. Most tightly connected to the theory that was
subsequently developed are the names of D.A. Huffman, G.H. Mealy, E.F. Moore and
A.M. Turing. The original paper on Turing machines is Turing [1936]. For a more
recent discussion see, for instance, Kain [1972]. Huffman’s early work on the con-
cept of finite state machines and state equivalence was published in Huffman [1954]
and reprinted in Moore [1964]. Edward Moore’s first paper on finite state machines is
Moore [1956]. In Moore’s model the output of a finite state machine depends only on
its current state, not on the transition that produced it. The early papers by Moore are
collected in Moore [1964]. George Mealy’s original paper, on the finite state machine
model can be found in Mealy [1955]. Mealy’s model is slightly more general than



186 FINITE STATE MACHINES CHAPTER 8

Moore’s. In his model the output of a finite state machine depends on the last transi-
tion that was executed, not necessarily on the current state.

For a more general introduction to the basic theory and its application to circuit
design, refer to, for instance, Harrison [1965], Hartmanis and Stearns [1966], Kain
[1972], Shannon and McCarthy [1956]. The ‘‘busy beaver problem’’ was introduced
in Rado [1962] and further studied in Lin and Rado [1965].

The formal model of a finite state machine has been applied to the study of communi-
cation protocols since the very first publications, e.g., Bartlett, Scantlebury and Wil-
kinson [1969]. It has long been the method of choice in almost all formal modeling
and validation techniques, cf. Bochmann and Sunshine [1980]. The model was first
applied to a protocol validation problem in Zafiropulo [1978]. A very readable intro-
duction the theory of communicating finite state machines can be found in Brand and
Zafiropulo [1983].

An excellent overview of various methods for deriving equivalence relations for con-
current processes, and the complexity of the corresponding algorithms, can be found
in Kanellakis and Smolka [1990]. The generalization of machines is closely related to
the concept of a ‘‘protocol projection’’ that was introduced in Lam and Shankar
[1984].

Petri’s model was first described in Petri [1962]. See also Agerwala [1975] for a dis-
cussion of the Petri Net’s modeling power and for some extensions. A discussion of
FIFO Nets can be found in Finkel and Rosier [1987]. There are, of course, many
other interesting analytical models for concurrent systems. An overview and assess-
ment can be found in, e.g., Holzmann [1979].
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9.1 INTRODUCTION
The goals of protocol conformance testing and of protocol validation are easily con-
fused.

A conformance test is used to check that the external behavior of a given imple-
mentation of a protocol is equivalent to its formal specification.
A validation is used to check that the formal specification itself is logically con-
sistent.

If a formal specification has a design error, a faithful implementation of that specifica-
tion should pass a conformance test if and only if it contains the same error. A con-
formance test should fail only if implementation and specification differ. A con-
sistency validation of the protocol, however, must always reveal the design error. In
this chapter we study conformance testing methods. Chapters 11 and 13 are devoted
to consistency validation.

Reference
Specification

Tester
test

sequence
Implementation

Under Test

Figure 9.1 — Conformance Testing

We are given a known reference specification, for instance in finite state machine for-
mat, and an unknown implementation. For all practical purposes, the implementation
is a black box with a finite set of inputs and outputs. The only type of experiment we
can do with the black box is to provide it with sequences of input signals (messages)
and observe the resulting output signals. The implementation under test, commonly
referred to as the IUT, passes the test only if all observed outputs match those
prescribed by the formal specification. A series of input sequences that is used to
exercise the protocol implementation in this way is called a conformance test suite.
The test is derived from the reference specification, ideally by a mechanical procedure

187
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(Figure 9.1).

There are two main problems to be solved.
Finding a generally applicable, efficient procedure for generating a conformance
test suite for a given protocol implementation.
Finding a method for applying the test suite to a running implementation.

The second problem looks simpler than it is. The IUT may be a single layer in a
hierarchy of protocol functions with two interfaces to surrounding layers, as illus-
trated in Figure 2.12 on page 31. To test this layer we may need both an upper and a
lower tester, and some systematic method for coordinating the sequences they gen-
erate. Another complicating factor exists when the IUT and the tester are physically
separated from each other, as illustrated in Figure 9.2.

actual channel

virtual channel

Interface Interface

Tester

Network Network

N

N–1

N+1Application

Implementation
Under Test

Figure 9.2 — The General Conformance Testing Problem

The tester may only be able to access the IUT via a remote network connection, and
may not be able to supply inputs and retrieve outputs from the IUT in a completely
reliable manner. In this chapter we discuss only the first problem: the problem of
deriving high-quality conformance test sequences.

9.2 FUNCTIONAL TESTING
Protocol conformance testing became an issue when the administrators of the first
public data networks had to determine the adequacy of commercial equipment that
was to be used on their networks. The problem was to verify the conformance of the
equipment to the network standard without having access to the, often proprietary,
internal details of the equipment. In the early 1980s, the first attempts to build effec-
tive protocol test suites, therefore, had two main goals.

To establish that a given implementation realizes all functions of the original
specification, over the full range of parameter values.
To establish that a given implementation can properly reject erroneous inputs in a
way that is consistent with the original specification.

An example of a functional test of the first type could be a basic interconnection test,
meant to establish that the IUT is minimally able to set up and to tear down a standard
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connection. An example of a test of the second type could be a format test, used to
verify that the IUT properly rejects violations of the required packet format and viola-
tions of the consistency of the packet content (e.g., checksum or byte-count errors).

The problem encountered in these tests is a conflict between complexity and standard-
ization. It is virtually impossible to exhaustively test all possible behaviors of an
unknown implementation by simply probing it and observing its responses. There is
always a possibility that some untried sequence of probes would reveal a new
behavior that is unacceptable. The specific test suite selected for a conformance test
of this type, therefore, is always a small selection of the infinite set of all possible test
suites. To prevent a manufacturer from rigging a device to pass a given conformance
test rather than making it equivalent to the specification proper, the test suites for
functional conformance testing cannot be standardized or published.

There is, however, a basic unfairness in requiring a manufacturer to pass a test
without making public what the test is, or without standardizing the test in such a way
that all competing manufacturers have to submit their equipment to the same test.
Ultimately, the complexity of conducting the tests, the difficulty of standardizing
them, and the uncertainty of their value has led to a new approach to conformance
testing. This new approach has the following purpose.

To establish that the control structure of the implementation conforms to the
structure of the specification. Implementation and specification have the same
structure if they model equivalent sets of states and allow for the same state transi-
tions.

Though a test suite of this type can easily be standardized, there are no methods avail-
able yet that will work for protocols of arbitrary complexity, taking into account, for
instance, internal variables, message parameter values, and timer settings. Good
methods are known only for a restricted class of protocols that can be specified by
non-extended finite state machines. The remainder of this chapter is devoted to a dis-
cussion of those methods.

9.3 STRUCTURAL TESTING
No data or parameter values are considered in this type of test. Instead, the emphasis
is on the control structure of the protocol. Again, probing an unknown device to com-
pare its internal structure with that of a reference specification is generally impossible.
We have to make some simplifying assumptions.

1. The IUT models a deterministic finite state machine with a known maximum
number of states and with a known input and output vocabulary.
2. The IUT produces a response to an input signal within a known, finite amount
of time.
3. The states and the transitions of the IUT form a strongly connected graph:
every state in the graph is reachable from every other state in the machine via one
or more state transitions.

A state of the IUT, for the purposes of this discussion, is defined as a stable condition
in which the IUT is waiting for a new input signal. A transition is defined as the
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consumption of an input signal, the possible generation of an output signal, and the
possible move to a new state. For a reproducible test result the move must be a deter-
ministic one, which means that the model of a finite state machine that we can use is a
subset of the model discussed in Chapter 8. However, since we are discussing con-
crete implementations rather than abstract designs, the determinism is not likely to be
a restriction.

The three properties listed above are requirements. Without them a conformance test
of the type to be discussed is not possible. In the remainder we also assume that the
IUT corresponds to a completely specified finite state machine.

4. In each state the IUT can accept and respond to all input symbols from the
complete system vocabulary. A null response, i.e., a transition back to the same
state, is a valid response.

This completeness assumption allows us to generalize the algorithms below by
removing a special case, but it is not a requirement. In many cases, a conformance
test can even be shortened if not all possible input combinations need to be tested.

The IUT can also have properties that can simplify the task of conformance testing
itself. Unlike the first three requirements, the following three properties are con-
venient but not essential.

5. Status property. When a ‘‘status’’ message is received, the IUT responds with
an output message that uniquely identifies its current state. The IUT does not
change state.
6. Reset property. When a ‘‘reset’’ message is received, the IUT responds by
making a transition to a known initial state, independent of its current state. The
IUT need not produce an output.
7. Set property. When a ‘‘set’’ message is received in the initial system state, the
IUT responds by making a transition to the state that is specified in a parameter of
that message. The IUT need not produce an output.

Given a machine with all seven properties listed above, a conformance test can be per-
formed as follows.

ALGORITHM 9.1 — CONFORMANCE TESTING

1. For all possible combinations of a state i and an input signal j, perform the following
three steps.
2. Use the reset message to bring the IUT to the initial state, and then use the set
message to transfer the IUT to state i.
3. Apply input signal j. Verify that any output received, including the null output,
matches the output required by the specification.
4. Use the status message to interrogate the IUT about its final state. Verify that this
final state matches the one required by the specification.

The test verifies that the IUT is capable of correctly performing all state transitions in
the formal specification. The set of input signals tested should, of course, include the
set, reset, and status messages. If the IUT passes these tests, it is capable of repro-
ducing the behavior of the formal specification, but it remains unknown if the IUT is
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capable of any other behavior. Specifically, if the IUT is faulty, it may violate the
first requirement for conformance testing that we listed above. The acceptance of an
input signal that is outside the official input vocabulary may then cause a transition of
the faulty IUT into a set of states that produces erroneous behavior.

Within these constraints, the result of Algorithm 9.1 is the best we can hope to
achieve with a conformance test. But is it also the best possible algorithm? The cost
of the test can be expressed as the length of the test suite, that is as the total number of
messages that is sent to the IUT. Assume that the formal specification contains
S = Q states and has an input vocabulary of V distinct messages, which includes the
set, reset, and status messages. The length of the test suite for Algorithm 9.1 then is

4SV

After every test the IUT is forced back into the initial state. We can avoid that if we
can find a sequence of state transitions that passes through every state and every tran-
sition at least once. Such a sequence of transitions is called a transition tour. At best
such a transition tour starts with a single reset message and exercises every transition
exactly once, each time followed by a status message to verify the destination state.
A set message is no longer required. The length of the test suite is now minimally

1 +2SV

The problem is now to find the minimal transition tour or one that is as close as possi-
ble to it. It is a standard problem from graph theory. An Euler tour in a directed
graph is a sequence of transitions that starts and ends at the same state and contains
every transition exactly once. A sufficient condition for the existence of an Euler tour
is that the graph (the finite state machine) be both strongly connected and symmetric,
that is, every vertex (state) must be the destination and the origin of the same number
of edges (transitions).

Given a symmetric and strongly connected graph, an Euler tour can be found with a
standard procedure that is summarized in Algorithm 9.2. In the first step, the algo-
rithm derives a simple spanning tree of the graph. A spanning tree of a graph contains
all its vertices, but only a subset of the edges. In the spanning tree that is constructed
in Algorithm 9.2 any vertex can have multiple incoming edges, but is restricted to
only one outgoing edge, as illustrated in Figure 9.3. In graph theory, a spanning tree
with this property is called a spanning arborescence.
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Figure 9.3 — A Spanning Arborescence
Every directed edge represented in the spanning arborescence must be present in the
original graph. In Figure 9.3, for instance, there must exist edges in the original graph
from vertex b to a, from g to b, and so on. In the second step of Algorithm 9.2, the
tree is used to decide in which order edges should be added to the transition tour.
Edges in the spanning arborescence are added last.

An edge i in the graph that starts at vertex s is written (s ,i). Its destination is written
dest(s ,i). The set of vertices that are represented in the spanning arborescence is
called T. After the first step of Algorithm 9.2 is completed T should equal the set of
vertices (states) in the original graph Q.

ALGORITHM 9.2 — DERIVING A TRANSITION TOUR

1. Spanning Arborescence — Choose an arbitrary vertex of the original graph and add
it to set T. This vertex will become the root of the spanning arborescence. Next, select
an edge (s ,i) with s /∈ T and dest(s ,i) ∈ T add vertex s and edge (s ,i) to the spanning
arborescence. Vertex s is added to T. Continue to grow the tree until no more vertices
can be added.
2. Transition Tour — Beginning at the vertex that was chosen as the root node of the
spanning arborescence, select an outgoing edge and move to the corresponding
destination vertex. The lowest priority in the selection of outgoing edges is given to
the edges that are part of the spanning arborescence. The other edges can be chosen in
arbitrary order. Continue to grow the transition tour until no more edges can be added.

As an example, consider the symmetric graph in Figure 9.4. To identify the edges, we
have labeled them with letters. Multiple labels represent multiple edges. There are,
for instance, three directed edges from q0 to q2, named d, e, and f.

q0

q3

q1 q2

d,e,f

h

a,b
c

g i,j

Figure 9.4 — A Symmetric Graph
A spanning arborescence with root q3 could contain, for instance, edges i, d, and b.
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Using Algorithm 9.2, two different transition tours based on this spanning arbores-
cence are then c, e, j, g, a, f, h, b, d, i and g, a, f, j, c, e, h, b, d, i.

If the graph we are considering is not symmetric, we must first transform it into a
symmetric graph by duplicating edges. Every edge that is duplicated then
corresponds to a transition that will be executed more than once in the final transition
tour. In graph theory, the duplication is called an augmentation of the original graph.
Algorithm 9.3 is a simple way to derive such an augmentation (cf. Exercise 9-12).

ALGORITHM 9.3 — GRAPH AUGMENTATION

1. Label every vertex in the graph with an integer that represents the difference
between the number of outgoing and incoming edges for that vertex. This number can
be positive, zero, or negative. Since, by definition, every edge has both an origin and a
destination, the sum of all label values must be zero.
2. Select a vertex A with a negative label and a vertex B with a positive label. Find the
shortest path from A to B by traversing the fewest number of edges in the original
graph. Duplicate the edges along this path. Update the labels of A and B. The labels
on the intermediate vertices do not change.
3. If the augmented graph is symmetric the algorithm terminates. The cost of the
augmentation is the total number of edges that have been duplicated. If the graph is not
symmetric, return to step 2.

Verify, for instance, that the graph in Figure 9.4 is a symmetric augmentation of the
state transition diagram in Figure 8.1 (cf. Exercise 9-4).

Step 2 of the algorithm calls for the calculation of the shortest distance between two
vertices. A range of algorithms has been studied to solve this problem efficiently.
Refer to the Bibliographic Notes at the end of this chapter for an overview. The ulti-
mate cost of the augmentation depends in a subtle way on the choice of vertices that is
made in step 2 of Algorithm 9.3. Fortunately, there is only a finite number of ways in
which these choices can be made each time step 2 is executed. Therefore, we could
try to find the minimum-cost augmentation by exhaustive search. There are, however,
better methods. One method is to study graph augmentation as a network flow prob-
lem. The problem can then be represented as a minimum-cost flow problem, which
can be solved in polynomial time (see Bibliographic Notes).

After a symmetric augmentation Algorithm 9.2 can be used to derive a transition tour.
For a minimum-cost augmentation, the transition tour produced by Algorithm 9.2 will
also be the shortest, and therefore the lowest cost test suite for the IUT. The problem
of finding a transition tour in a non-symmetric graph, where every transition is exer-
cised at least once, and possible more than once, is known as the Chinese Postman
Problem. As indicated above, the problem can be solved in polynomial time.

To derive the test sequence with Algorithms 9.1 we assumed that the IUT has three
properties: a reset message, a set message, and a status message. The set message is
an oddity that is not likely to be present in many IUTs, but fortunately, in the con-
struction of test sequences based on a transition tour with Algorithm 9.2, we did not
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need it anymore.

The absence of the reset and the status messages are more problematic. The reset
message can be replaced by a sequence of transitions, called a homing sequence, that
is known to bring the system back to the initial state, whatever its current state may
be. In general, a homing sequence is defined as an adaptive procedure, where the
responses generated by the machine can be used to determine what the next input
message should be. It can be shown that every strongly connected finite state
machine must have such an adaptive homing sequence. Better still, the homing
sequence can be derived algorithmically. It can be shown that it need never take more
than S(S − 1 )/2 transitions before the machine reaches a known state (see Biblio-
graphic Notes). To reach the initial system state after that point is reached requires
between zero and S −1 extra transitions. Consider, for example, the machine in Table
9.1.

Table 9.1 – Example
_ ______________________ _____________________
Current State In_ _____________________
q0 0 0 q1
q0 1 0 q1
q1 0 1 q0
q1 1 1 q0_ _____________________ 






















The machine has two states, so S =2 and S(S − 1 )/2 = 1. A sequence of length one
can tell us in which state the machine is. It never takes more than
(S − 1 ) + S(S − 1 )/2 = 2 inputs to reset the machine to state q0 with certainty.

A more significant challenge is posed by the omission of the status message. The
status property is also not likely to be present in an IUT, if it is not needed for the nor-
mal operation of the protocol. To replace the status message, we can use a sequence
of transitions called a state signature or Unique Input/Output (UIO) sequence. A UIO
sequence can determine whether the IUT is in a given state when the UIO begins. A
UIO sequence then has the opposite goal of a homing sequence: it identifies the first
instead of the last state in the sequence. To be able to verify every state in the IUT,
we must be able to derive a UIO sequence for every state separately.

Not all UIO sequences are necessarily different. In fact, it may be possible to derive a
single UIO sequence that can be used to identify any state in a finite state machine.
Such a sequence is called a distinguishing sequence. The finite state machine that was
discussed in Chapter 8 (cf. Figure 8.1) illustrates, however, that not all finite state
machines have such a distinguishing sequence. It can also be shown, in much the
same way, that not all states have a UIO sequence. In the next two sections we first
assume that a UIO sequence can be derived for all states in the specification. We
show how these UIO sequences can be used to replace the status messages in a transi-
tion tour.

The method discussed below is popular, but it must be remembered that, with the
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replacement of the status message by a UIO sequence, the fault-detecting power of the
transition tour is reduced. The UIO sequences, after all, assume a correct implemen-
tation. A faulty machine could in principle fool an observer into believing that a
given state has been reached by accidentally generating just the right responses to a
precomputed UIO sequence. An alternative method that is not based on UIO
sequences is discussed in Section 9.6.

9.4 DERIVING UIO SEQUENCES
In this section we first show how UIO sequences can be derived, assuming that they
exist. In the next section we show how the transition tour can be modified to counter
the side-effect of the application of UIO sequences.

So far, the best known method to find UIO sequences is to enumerate all possible I/O
sequences and to check them for the UIO property. Algorithm 9.4 accomplishes that
by building an exponentially expanding tree of I/O sequences. The nodes in the tree
at distance N from the root correspond to the I/O sequences of length N. Each node
has associated with it two sets of states. The first set, P, contains a partitioning of the
set of S states into classes, where S, by definition, is equal to  Q . Two states are in
the same class of the partitioning P if and only if they cannot be distinguished from
one another by the application of the I/O sequence represented by the node: the
specification produces the same outputs under this sequence, no matter which of these
states is chosen as an initial state. The members of the second (ordered) set T define
for each state in S what the final state will be if the I/O sequence represented by the
node were applied with that state as an initial state.

Let dest(i , j) again be the state that the IUT should reach if input j is received while in
state i, and let output(i , j) define the output signal that is generated during the transi-
tion, if any. Further, let T[i] define the i-th element of set T for the current node, and
T j [i] the i-th element of set T for its j-th successor node.

ALGORITHM 9.4 — UIO DERIVATION

1. Initially, partitioning P consists of a single set that includes all S states of the
specification. Set T has S members. The initial value for the i-th member in T, with
1≤ i≤S, is i. The tree of I/O sequences is initialized to a single node, called the root
node, which corresponds to the null sequence. Initially, the root node is the only leaf
node in the tree. (A leaf node is a node without successors.)
2. Sort the leaf nodes of the tree in a list and delete duplicates. To every leaf node
now assign V successor nodes in the tree, one for every possible input signal. Set
T j [i] = dest(T[i] , j) .
3. The partitioning P j for the j-th successor node is derived from the current
partitioning P as follows. Let set O define the output signals associated with each of
the S states for the last transition. Consider each class in P separately. Make a list of
all distinct output signals that are generated by the states that are included in the class
considered. This class in P is now split into sub-classes in such a way that all states
that generated the same output signal are assigned to the same sub-class. If all states
within the class considered generated the same output signal for the last input symbol
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applied, they all remain in the same class of the partitioning.
4. If there is a class in the partitioning of P at this point that contains just one state, the
node that holds this partitioning will define a UIO sequence for that state.
5. Steps 2 to 4 are repeated until UIO sequences for all states have been found (or until
available memory is exhausted).

This algorithm searches UIO sequences for all states in the specification at the same
time. Because it exhaustively checks all possible input sequences, with the shortest
sequences being inspected first, it finds the shortest UIO sequences first. The algo-
rithm requires a rapidly growing amount of space to pursue the search for sequences
beyond the first few levels. In the worst case the number of nodes in the tree for
sequences of length n is

i =0
Σ
n

V i

This means that for an input alphabet of ten messages or more it becomes impractical
to search for sequences that are longer than five or six steps. The problem of deter-
mining if a state has a UIO sequence was proven to be PSPACE hard, and similarly
the problem of determining the shortest possible UIO sequence, given that at least one
such sequence exists (see Bibliographic Notes). In practice, however, UIO sequences
can often be found within the limits of the algorithm.

9.5 MODIFIED TRANSITION TOURS
Next it must be shown how the UIO sequences can be incorporated into a transition
tour to construct a conformance test. A problem is that a UIO sequence will in gen-
eral leave the IUT in a state different from the one that is being verified and thus inter-
feres with the transition tour.

Call the UIO sequence that identifies state i UIO i , and call its final state dest(UIO i ).
For every state i we now augment the graph of the original specification with a
‘‘pseudo-transition’’ for each input symbol j in state i:

(i ,dest(UIOdest(i , j) ) )

This pseudo-transition consists of the edge traversed for the test of input signal j fol-
lowed by the verification of the target state, using the UIO sequence for that state.
With S states and V input symbols, there are trivially SV pseudo-transitions. The
problem of modifying an existing transition tour for the inclusion of UIO sequences,
then, is really the problem of finding a new transition tour through the pseudo-
transitions only. Call the graph containing only pseudo-transitions the pseudo-graph.

We make a symmetric augmentation of the pseudo-graph and then compute an Euler
tour with Algorithm 9.2. For the augmentation we can use Algorithm 9.3, but with
one important exception: the calculation of the shortest distance in step 2 is based on
the original graph without the pseudo-transitions.

This problem of finding a transition tour through a subset of the edges of a graph (i.e.,
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the pseudo-edges) is known as the Rural Chinese Postman Problem.

9.6 AN ALTERNATIVE METHOD
The method based on UIO sequences can be used to produce conformance tests of
good quality, but it has some drawbacks. First, not all states in a finite state machine
necessarily have a UIO sequence, and even if they do, the UIO sequence may be too
long to be derived algorithmically. The problem of deriving UIO sequences is
PSPACE-complete, which means that only very short UIO sequences can be found in
practice. Second, the UIO sequences can only reliably identify states in a correct IUT.
It is unknown, and unknowable, what their behavior is for faulty IUTs. In particular,
they cannot guarantee that any type of fault in an IUT remains detectable with the
modified transition tours.

If further assumptions can be made about the types of faults in the IUT, the construc-
tion of a reliable test is possible, and can be done with a polynomial time algorithm.
The main assumption is that no fault can increase the number of reachable states or
the number of input signals of the IUT. The method we discuss below is based on the
use of characterizing sequences.

CHARACTERIZING SEQUENCES
Assume that the original protocol specification corresponds to a minimized finite state
machine. For every two states from this machine there exists a finite sequence of
inputs that triggers a different sequence of outputs. Such a sequence is called a
characterizing sequence. It can be shown that every characterizing sequence has a
length smaller than S steps, the number of states in the machine. Though there are
S(S − 1 )/2 distinct pairs of states in a machine, it is easy to see that no more than
(S − 1 ) different characterizing sequences are needed to separate any combination of
two states. The S −1 characterizing sequences can be selected from the maximal set
of S(S −1 )/2 sequences as follows.

ALGORITHM 9.5 — SELECTING CHARACTERIZING SEQUENCES

1. Select two arbitrary states from the machine and find a sequence that separates them.
The different output sequences in response to this sequence can be used to partition the
S states into at least two different sets. The sets are blocks in a partitioning of states.
2. Select one of these blocks containing more than one state. Select two states from
that block and find a sequence from the original collection that can separate them.
3. The number of state sets (blocks in a partitioning of the states) is increased by at
least one extra set for each new characterizing sequence that we find. The procedure,
therefore, can be repeated at most S − 1 times.
At this time each block in the partitioning contains just a single state. For any two
states in two different blocks we have now selected a sequence that can separate them.
The set of S − 1 characterizing sequences selected from the original collection can be
used to distinguish between any pair of states in the machine.

Let CS(i , j) be the characterizing sequence that distinguishes state i from state j. Let
P(i) be a sequence of inputs that leads the machine from the initial state to state i in
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the reference specification, and let R be the reset message that returns the machine to
the initial state. The conformance test can now be performed as follows. The algo-
rithm starts by numbering the states of the finite state machine in breadth-first search
order. The numbers are later used to make sure that states that can be reached in the
fewest number of transitions from the initial state are tested first.

ALGORITHM 9.6 — CONFORMANCE TESTING

1. Number the states of the machine in breadth-first order. This can be done by
constructing a spanning tree of the states. The initial state of the machine becomes the
root node of the tree. Initially it is the only leaf in the tree (a node without successors)
and it gets the lowest number in the breadth-first search order.
2. To every leaf of the tree we connect all states that can be reached by a single
transition in the finite state machine. No state, however, can be added to the tree more
than once. The new leafs are numbered consecutively, in arbitrary order. Step 2 is
repeated until all states from the machine are represented.
3. The k-th state in breadth-first search order, 1 ≤ k ≤ S, is tested with the input
sequence.

∀ (i) ,i <k → R P(i) CS(i ,k) R P(k) CS(i ,k)

The test sequence checks that the k-th state can be distinguished from all states with a
lower breadth-first search number, i.e., from all states that were checked before.
Passing the k-th test in this series shows that the IUT has at least k distinct states and
that transitions along the edges of the tree, from the initial state to each one of these
states, are correctly implemented.
4. Next, all remaining transitions of the machine must be verified. In general, for every
state i and transition j, we must perform the following test

R P(i) j

We can skip testing transitions that correspond to edges in the breadth-first search tree;
they were already tested in step 3. After the output in response to input j has been
verified, the new state that has been reached must again be checked, using the method
from step 3, by comparing it systematically against all other states in the specification.

The breadth-first search order guarantees that the paths P(i) are verified one transition
at a time. If state i can only be reached from the initial state after passing through
some other state j, the search order guarantees that state j is verified first.

The total cost of identifying the S states is O(S 3). The cost of verifying a single tran-
sition is O(S 2), and since there are VS transitions the total cost is O(VS 3). The cost,
finally, of deriving the characteristic sequences (another standard graph theory prob-
lem) is O(VS 2).

This cost of the conformance test, therefore, is still polynomial in S and V, and, unlike
the UIO based method, the cost of its construction is also polynomial in S and V.
Also, unlike the UIO based method, a conformance test such as this can always be
constructed and is guaranteed to detect any fault in the IUT other than those that
increase the number of states or input signals. Algorithm 9.6 assumes the existence of
a reliable reset message. Yannakakis and Lee have shown that for a machine without



SECTION 9.7 SUMMARY 199

a reset message there still exists a polynomial length conformance test with the same
fault coverage as Algorithm 9.6 (see Bibliographic Notes). No polynomial time algo-
rithm is known, however, to derive such a test sequence for a reset-less machine.

9.7 SUMMARY
A conformance test is designed to verify whether an unknown implementation of a
protocol can be considered to be equivalent to a known specification. The test can
never produce an answer that is completely reliable. Only the presence of desirable
behavior can be tested for, not the absence of undesirable behavior. It is therefore
always possible that an implementation is capable of responses that are not part of the
specification.

In principle, there are two approaches to the conformance testing problem. One is a
rather ad hoc approach where, by trial and error, the correct provision of the main pro-
tocol functions is verified for as broad a range of parameter values as possible. For
example, if the purpose of the protocol is connection management, we can test ran-
domly chosen sequences for connection setup and tear-down. A second method is to
systematically probe the implementation with test sequences to establish whether its
internal structure, seen as a finite state machine, conforms to the structure of the
specification. Parameter and data values are not considered in this type of test.
Instead the focus is on the control structure of the protocol proper. Most of the pro-
gress in the development of protocol conformance testing tools has been made with
the second type of testing.

Not surprisingly, an effective conformance test can be greatly facilitated if
specification and implementation were developed with the feasibility of a test in mind.
A systematic conformance test is only possible if the IUT has at least the three proper-
ties listed in Section 9.3. A particularly simple algorithm (Algorithm 9.1) can be
applied if, in addition, the IUT has a reset, status, and set transition on every state.
The hard work in conformance testing comes when one or more of the desirable pro-
perties are missing.

Without the set property, the best method is to find a transition tour of all states using
Algorithms 9.2 and 9.3, testing the response of the IUT to all possible input signals.
A status message can be replaced by a test sequence, called a UIO sequence, that can
similarly reveal the state of the machine. Algorithm 9.4 can be used to derive these
UIO sequences. The main problem to be solved here is that the UIO sequences dis-
turb the state of the IUT when they are applied. Section 9.5 shows how a transition
tour can be constructed that avoids this problem.

An alternative method, that also avoids the use of status and set messages is discussed
in Section 9.6. All methods discussed can fail when an implementation error in the
IUT increases the number of reachable states or the number of input signals. In the
absence of such errors, the conformance testing sequence produced by Algorithm 9.6
can guarantee the detection of all faults. The length of the test sequence, however,
can be considerably larger than the one based on UIO sequences.
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EXERCISES

9-1. 9-1. Explain in detail why it is essential that each of the first three requirements on the struc-
ture of an IUT be fulfilled for a conformance test to be feasible.

9-2. 9-2. Is it necessary that the finite state machine modeled by the IUT has been minimized?

9-3. 9-3. How will the algorithms in this chapter have to be changed for incompletely specified
finite state machines?

9-4. 9-4. Is the symmetric augmentation of Figure 8.1 shown in Figure 9.4 unique. If not, is it an
augmentation with the lowest cost?

9-5. 9-5. Can a conformance test detect whether the IUT has more states than the formal
specification? Fewer states?

9-6. 9-6. Can the fault coverage of a conformance test ever reach 100%?

9-7. 9-7. Explain the difference between a distinguishing sequence, a homing sequence, a charac-
terizing sequence, and a UIO sequence.

9-8. 9-8. How would the fault coverage of a conformance test be affected if the application of a
status message, or its equivalent, were deleted from a transition tour?

9-9. 9-9. Write an algorithm for finding homing sequences.

9-10. 9-10. Write an algorithm for finding characterizing sequences.

9-11. 9-11. How does the cost of the above two algorithms (the number of operations to be per-
formed in the worst case) depend on the number of edges and vertices in the graph? Can
you derive upper bounds?

BIBLIOGRAPHIC NOTES
Conformance testing methods are of interest to all protocol users who want to assess
the quality of protocol implementations. They are also of interest to international
standardization bodies, who aim to provide a neutral third party certification of proto-
cols and protocol implementation. Organizations such as the ISO and the CCITT are
in the process of developing standards and guidelines for the certification of protocols
meant to comply with, for instance, the reference model for Open Systems Intercon-
nection discussed in Chapter 2, Rayner [1987].

The general conformance testing problem, i.e., the problem of testing implementa-
tions of arbitrary extended finite state machines, using remote testers across a data
network, is an active research area. Progress is reported in the yearly IFIP Working
Group 6.1 Symposia on Protocol Specification, Testing and Verification, IFIP [1982-
present]. An excellent overview of the general problem can be found in Rayner
[1987]. Work is also underway to standardize a notation for conformance test suites,
named the Tree and Tabular Combined Notation or TTCN, see ISO [1987].

One of the first efforts to develop an independent center for the assessment and
certification of protocol implementations was begun by the National Physical Labora-
tory (NPL) in England, in the early 1980s, Rayner [1982, 1987]. In the U.S.A., this
work was undertaken by the National Institute of Science and Technology (NIST,
formerly the National Bureau of Standards or NBS), Nightingale [1982]. An over-
view of other test and certification centers is given in Wang and Hutchinson [1987].
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Two issues complicate the work of the certification centers. First, the certification
centers should be able to perform remote testing of implementations, across a trusted
data network. Second, the certification tests sometimes have to be applied to a single
protocol layer in a hierarchy of otherwise trusted layers.

The certification centers have concentrated mainly on service, or functional, confor-
mance testing. Structural testing, as described here, is a more recent development.
The conformance testing work we have described is based on both finite state
machine theory and on graph theory. The concept of a test sequence was studied as
early as 1956 by E.F. Moore in one of his first papers on finite state machines, Moore
[1956]. Moore was also the first to define homing sequences and distinguishing
sequences. The concept of a distinguishing sequence was further developed in Gill
[1962] and in Hennie [1964]. Huffman independently studied problems similar to
those in Moore [1956]. His results can be found in Huffman [1964]. A complete dis-
cussion of homing sequences and characterizing sequences can be found in Kohavi
[1978].

Naito [1981] and Sarikaya [1984] were among the first to study systematic protocol
test generation techniques using transition tours. The concept of a UIO sequence, was
introduced in Hsieh [1971], and was discussed in Friedman and Menon [1971].
Independently it was also discovered by Gobershtein [1974]. K.K. Sabnani and A.T.
Dahbura [1985, 1988] rediscovered the principle and applied it to the conformance
testing problem. The term UIO sequence was coined by them. Hsieh used the term
simple I/O sequence; Gobershtein used check word. Yannakakis and Lee [1990]
introduced the term state signature.

A method to reduce the length of a conformance test sequence by computing multiple
UIO sequences per state is described in Shen and Lombardi [1989].

COMPLEXITY
The problem of finding the minimum length transition tour of a finite state machine,
described for instance in Klee [1980], can be solved in polynomial time. Algorithm
9.2 comes from Edmonds and Johnson [1973] and was applied to the conformance
testing problem in Uyar and Dahbura [1986]. A symmetric augmentation of a graph
can also be found in polynomial time with network flow algorithms. An Euler tour
can be found in a time that is linear in the number of transitions in the symmetric
graph. The corresponding algorithm can be found in Edmonds and Johnson [1973].

The problem of finding a transition tour through a subset of the transitions in a graph,
for instance the pseudo-transitions corresponding to UIO sequences in a modified
transition tour, can be shown to be NP-complete. If, however, the graph consisting of
pseudo-transitions is weakly connected, the problem reduces to one that can be solved
in polynomial time, as shown in Aho, Dahbura, Lee and Uyar [1988]. Efficient algo-
rithms for the derivation of transition tours for restricted classes of finite state
machines are studied in Edmonds and Johnson [1973]. The algorithms were first
applied to protocol conformance testing in Uyar and Dahbura [1986] and extended in
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Aho, Dahbura, Lee and Uyar [1988]. The Chinese Postman Problem was first
described by the Chinese mathematician M-K. Kuan [1962].

In general, the cost of traversing a transition in the finite state machine machine can
be given by a real number. A well-known algorithm for finding the shortest distance
(i.e., lowest cost path) between two vertices in a graph, given those constraints, is
Dijkstra’s shortest path algorithm, e.g., Dijkstra [1959], Aho [1974], Price [1971].
There are, however, also faster methods, see for instance Tarjan [1983]. In confor-
mance testing it is often possible to associate simply a unit cost with the traversal of
all transitions. In this case, the best algorithm for finding shortest paths is breadth-
first search.

Efficient solutions to minimum-cost — maximum-flow problems are also discussed in
detail in Tarjan [1983] and Gibbons [1985]. An overview can be found in Aho, Dah-
bura, Lee and Uyar [1988].

Algorithm 9.6, and the analysis of its complexity, was described in Yannakakis and
Lee [1990]. It is similar to the W-method from Chow [1978]. A proof of the
PSPACE hardness of the UIO derivation problem can also be found in Yannakakis
and Lee [1990].

An issue not discussed here is the problem of estimating the quality or fault coverage
of a conformance test. Note that, despite the first three requirements from Section 9.3,
a faulty IUT may well have more states or more inputs than our reference
specification. In Vasilevskii [1973] it was shown that a checking sequence becomes
inherently exponential if faults increase the number of states. The machine may also
have nondeterministic responses, or it may not be strongly connected, as required.
There is always an infinite number of such implementations that can pass a given con-
formance test without being equivalent to the reference specification. In theory, there-
fore, the fault coverage of every conformance test of the type we have described must
approach zero. Yet, the relative fault coverage of individual conformance test
methods may well differ. Empirical methods to measure such differences are illus-
trated in Dahbura and Sabnani [1988] and Sidhu and Leung [1989]. By randomly
modifying transitions in a finite state machine description of the IUT it can be meas-
ured what percentage of this restricted class of errors is caught by a conformance test-
ing method. As yet, however, such tests have only been used successfully to confirm
results that can also be proven theoretically.

Not discussed in this chapter are two alternative methods for conformance testing that
have been explored. The W-method was introduced in Vasilevskii [1973] and ela-
borated in Chow [1978]. The method is also explained in Shih and Sidhu [1986].
The second method is based on the use of grammars to generate test sequences and
was explored in Linn and McCoy [1983], and Probert and Ural [1983]. A general
overview of test methods is given in Sidhu [1990]. An interesting formal study of the
conformance testing problem is described in Brinksma et al. [1989].
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10.1 INTRODUCTION
One of the toughest open problems in protocol design is finding a discipline of pro-
gramming that can guarantee a priori the derivation of a functionally correct protocol
that is free of dynamic errors such as deadlock. A proper design discipline will lead
to a smaller and more effective product that is easier to maintain and modify. As yet,
little progress has been made in this area. This chapter is therefore necessarily tenta-
tive.

We briefly discuss three methods for interactively building correct protocol specifica-
tions. The first two of these methods focus on the functionality of a protocol design;
the third emphasizes structure.

Bear in mind that a protocol synthesis method cannot synthesize service specifica-
tions. No automated tool can determine the purpose of a new protocol. The design
problem is to find a protocol that (1) realizes a given service, and (2) does so in an
error-free manner. All three methods discussed below assume that a service specifica-
tion exists, either in a formalized form or informally in the mind of the user of the
synthesis tool.

In the next section we illustrate a protocol derivation method that allows us to syn-
thesize the protocol components from a formal specification. We do this by formaliz-
ing the service specification in such a way that a skeleton structure for the protocol
procedure rules of each communicating process can be extracted from it. The syn-
thesized processes can then be fine-tuned manually.

10.2 PROTOCOL DERIVATION
In protocol validation we may want verify assertions that the user makes about the
structure of possible dialogues between processes. A dialogue is a sequence of mes-
sage exchanges that can be observed at a given interface, e.g., a set of channels.

Consider the problem of designing a connection management protocol.

203
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a b

.............

Figure 10.1 — Interface
There are two processes, a and b, that share access to a full-duplex data link, indicated
with two arrows in Figure 10.1. Processes a and b have to coordinate the beginning
and the ending of data transfers across the link.

Typically, the designer is asked to supply two process specifications, one for each
side of the connection, in an attempt to constrain the possible dialogues to a well-
defined set. An assertion about these constraints can be formalized and verified by an
automated protocol validator. In protocol synthesis we can try to turn this problem
around by beginning with a specification of the set of allowable dialogues and deriv-
ing the processes from them so that, by construction, these processes will be unable to
exhibit any other than the stated behavior.

We provide a specification for two processes. Either side can initiate a connection; if
both processes try to do so at the same time the attempt fails. The behavior can be
specified as a six-state machine, as follows, in an informal notation resembling
PROMELA. The notation a->b informally encodes the direction in which a message
flows.

spec manager
{
idle:

if
:: b->a!connect -> goto b_opens
:: a->b!connect -> goto a_opens
fi;

a_opens:
if
:: b->a!accept -> goto connected
:: b->a!connect -> goto idle /* conflict */
fi;

b_opens:
if
:: a->b!accept -> goto connected
:: a->b!connect -> goto idle /* conflict */
fi;

connected:
if
:: b->a!disconnect -> goto b_closes
:: a->b!disconnect -> goto a_closes
fi;
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a_closes:
b->a!disconnect -> goto idle;

b_closes:
a->b!disconnect -> goto idle

}

This specification describes the message exchanges that are visible at the interface
between a and b, i.e., at the dotted line in Figure 10.1. There may be other messages
that are handled by a or b, and there may be many other tests and data manipulations
to be performed. The above specification is therefore partial.

Some of the messages are to be sent by process a and some are to be received by a.
We can derive a skeleton process description from the specification that describes pre-
cisely the constraints for process a. Mechanically, we can then derive the following
state machine for process a. We can say it is the derivative of specification manager
with respect to a.

proctype D_manager_D_a()
{
R0: if

:: b!connect -> goto R1
:: a?connect -> goto R2
fi;

R1: if
:: a?connect -> goto R0
:: a?accept -> goto R3
fi;

R2: if
:: b!connect -> goto R0
:: b!accept -> goto R3
fi;

R3: if
:: b!disconnect -> goto R4
:: a?disconnect -> goto R5
fi;

R4: a?disconnect -> goto R0;
R5: b!disconnect -> goto R0
}

The state machine for process b is similar, since the protocol specification is sym-
metric. The derivation is trivial in this case and can easily done by hand. In general,
though, the derivation is more subtle.

Consider the following example that describes the behavior of a simple alternating bit
protocol. The interface is the same as shown in Figure 10.1. The specification for the
messages that cross the interface at the dotted line, however, is now formalized as fol-
lows.

spec abp
{ do

:: a->b!msg0;
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do
:: b->a!ack0; break
:: b->a!ack1; a->b!msg0
od;

a->b!msg1;
do
:: b->a!ack0; a->b!msg1
:: b->a!ack1; break
od

od
}

This single specification completely describes the behavior of two protocol machines,
the sender a and the receiver b. The two derivations produce the following results.

proctype D_abp_D_a()
{
R0: b!msg0 -> goto R1;
R1: if

:: a?ack0 -> goto R2
:: a?ack1 -> goto R0
fi;

R2:
b!msg1 -> goto R1

}
proctype D_abp_D_b()
{
R0: b?msg0 -> goto R1;
R1: if

:: a!ack0 -> goto R2
:: a!ack1 -> goto R0
fi;

R2: b?msg1 -> goto R1
}

According to this specification the wrong acknowledgment may be repeated by the
receiver and will be ignored by the sender. As a result, the skeleton state machine for
b includes behavior that is permissible, but not desirable. To avoid this, we must
rewrite the derived process, manually, as follows, splitting state R1 into two halves:

proctype D_abp_D_b()
{
R0: b?msg0 -> goto R11;
R11: if

:: a!ack0 -> goto R2
fi;

R12: if
:: a!ack1 -> goto R0
fi;

R2: b?msg1 -> goto R12
}

which can be simplified via
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proctype D_abp_D_b()
{
R0: b?msg0 -> goto R11;
R11: a!ack0 -> goto R2;
R12: a!ack1 -> goto R0;
R2: b?msg1 -> goto R12
}

to its final form:

proctype D_abp_D_b()
{
R0: b?msg0 -> a!ack0;

b?msg1 -> a!ack1;
goto R0

}

Now let us see how the derivation is affected if we expand the specification with a
message to a third process c that logs all correctly transmitted and acknowledged mes-
sages with sequence number zero.

spec abp2
{

do
:: a->b!msg0;

do
:: b->a!ack0; a->c!log; break
:: b->a!ack1; a->b!msg0
od;
a->b!msg1;
do
:: b->a!ack0; a->b!msg1
:: b->a!ack1; break
od

od
}

The derivative of the specification for c is simply

proctype D_abp2_D_c()
{
R0: c?log -> goto R0
}

The derivative for b remains unchanged, but the derivative for a becomes

proctype D_abp2_D_a()
{
R0: b!msg0 -> goto R1;
R1: if

:: a?ack0 -> goto R2
:: a?ack1 -> goto R0
fi;

R2: c!log -> goto R3;
R3: b!msg1 -> goto R4;
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R4: if
:: a?ack0 -> goto R3
:: a?ack1 -> goto R0
fi

}

10.3 DERIVATION ALGORITHM
The skeleton machine can be derived from a specification in two steps. First, if we
derive a machine for process p, all messages in the specification that are not either
sent or received by p are replaced by skip. Next, all specifications of the type

q->p!message

are translated into

p?message

and, similarly, all specifications

p->q!message

become

q!message

The last step is to handle cases such as these

R0: if
:: p?message0 -> goto R1
:: skip -> goto R2
fi

where the skip was inserted in the first step. In this case, an event outside the derived
process can make the system change state, presumably changing the future behavior
of the environment of the derived process. The derived process does not, and cannot,
know when or if this invisible transition takes place. It must, however, be capable of
accepting any incoming messages that may arrive after the invisible transition takes
place. Therefore, for the above example, state R0 of the derived process inherits all
receive operations from state R2, together with the corresponding transitions.
If state R2 is specified

R2: p?message1 -> goto R3

the new state R0 becomes

R0: if
:: p?message0 -> goto R1
:: p?message1 -> goto R3
fi

If state R2 offers a choice
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R2: if
:: p?message1 -> goto R3
:: q!message2 -> goto R0
:: p?message3 -> goto R0
fi

we inherit only the receive operations and write

R0: if
:: p?message0 -> goto R1
:: p?message1 -> goto R3
:: p?message3 -> goto R0
fi

The only remaining possibility is if state R2 specifies only a send operation:

R2: q!message2 -> goto R0

In this case the skip transition is omitted, and we write

R0: if
:: p?message0 -> goto R1
fi

which simplifies to

R0: p?message0 -> goto R1

This last case may be flagged as a potential inconsistency in the specification. The
specification in this case requires a process to wait for an event that it cannot observe.

The last derivation step above is repeated until all the ‘‘hidden’’ transitions have been
removed. Note that if the target state R2 has its own skip transitions the last deriva-
tion step may require the inspection of still more states.

R2: if
:: p?message1 -> goto R3
:: skip -> goto R0
:: skip -> goto R4
fi

The derivation algorithm can produce skeleton state machines for the target processes
that adhere to the constraints of the specification. It illustrates one of the purposes of
a protocol synthesis procedure: offering automated assistance to a protocol designer.
The designer can concentrate on defining just one central item: the protocol
specification itself.

Unfortunately, this design procedure gives no guarantee that the interaction of the
derived processes will not lead to dynamic errors, such as deadlocks. Concentrating
on that aspect of the design problem leads to a different type of design procedure,
which we discuss next.
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10.4 INCREMENTAL DESIGN
The following design method, originally published in 1980, is often used as a guide-
line for attempts to build protocol synthesis procedures. The procedure is interactive,
and assumes the existence of an independent service specification that the designer
will follow while developing the protocol processes.

The user specifies only message transmissions. The system deduces where in the pro-
tocol the corresponding receive actions are required. Initially, all processes, i.e., the
‘‘skeleton state machines’’ from the first method, are assigned a dummy initial state.
The designer can now select one of the states in the system and extend it with a mes-
sage transmission. The designer must specify the name of the message, its parame-
ters, and its destination. For the process that is to transmit the message, the designer
must also specify a successor state for the send action: either an existing or a newly
created process state.

For each transmission edge added to one of the processes in this way, the synthesis
software traces all possible states of the destination process in which the message can
be received, and updates the state machine for that process automatically. The user
has to name the successor states for all message receptions events that are added.

After each update, the incremental design procedure can warn the designer which
stable state tuples have been created. A stable state tuple is defined as a composite
system state in which no messages are in transit or stored in buffers. If such a compo-
site system state is reachable, the state must persist until one of the processes sends a
message. If none of the processes can transmit a message, the reachable stable state
tuple corresponds to a deadlock.

The designer in this method can only specify send actions. The place where the
corresponding receive actions are required is deduced by the synthesis software. This
avoids unspecified receptions and certain types of deadlock, but it cannot guarantee
the functional correctness of the protocol. That is, the synthesis method cannot
guarantee that a protocol synthesized in this way will realize a given service.

10.5 PLACE SYNCHRONIZATION
The third approach can be considered a compromise between the first two methods
discussed above. This method starts with a service specification written as a regular
expression of synchronization requirements. The symbols in the service expression
are the names of service primitives. The operators of the expression determine how
the execution of these primitives is to be synchronized. In the expression

a 1 ; (b 2   c 3 ) (1)

the superscripts denote service access points, the physical places where the service
primitives are executed. The semicolon is used to indicate a sequential execution: the
execution of service primitive a, at the place represented by 1, must have been com-
pleted before the primitives b or c can be executed at places 2 or 3, respectively. The
parallel bars are used to indicate that the two subexpressions can be executed
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simultaneously. Parentheses are used for grouping. A single bar between two subex-
pressions implies alternation, either one of the two subexpressions can be executed,
but not both.

To enforce the synchronization requirements formalized in the service expression, the
synthesis algorithm can derive a protocol that controls the execution of the service
primitives. The sequential execution in expression (1), for instance, can be enforced
by having the first primitive a 1 complete by transmitting a unique message from place
1 to places 2 and 3, and by delaying the execution of primitives b 2 and c 3 until that
message has arrived.

The synthesis method is appealing, but it also has drawbacks. The method can derive
protocols for only a limited class of global synchronization requirements. Not all pro-
tocol specifications can easily be expressed in those terms. Consider a reader/writer
protocol for a data base shared between multiple processes. One method to secure the
integrity of the data is to allow multiple readers to be active, but to allow access to at
most one writer process at a time, and then only when no reader processes are active.

If a reader process i, requiring access to item n, is represented by the symbol r n i , and
the corresponding writer process is represented by w n i , the design problem is now to
write a regular expression on these symbols, using the operators ;,  , and  . To prop-
erly describe the solution, we must count the number of active processes of each type
and express the synchronization requirement as conditions on those counts. But the
regular expression does not allow us to do that. If a synchronizing expression can be
found, it may not be easier to find it than to invent the final protocol directly.

10.6 SUMMARY
An ideal method for protocol design would be to build a model from scratch that can
be proven correct by construction. No such method exists, although many interesting
attempts have been made. In this chapter we have given an overview of three such
attempts. The first method allows one to extract skeleton state machines from a sin-
gle, formalized statement of a correctness requirement. The method has drawbacks,
the most important of which are:

The method does not provide any help in the correct formalization of the protocol
specification itself.
The derived processes must, in some cases, be tuned to remove permissible but
undesirable behavior. The method offers no help here, nor can it help us to verify
that the alterations preserve the correctness of the derivations.

The second method interactively guides the protocol designer to a complete design
and issues warnings on potential deadlocks. The most important drawbacks of this
approach are:

The method does not guarantee that the protocol constructed realizes a given ser-
vice.
The method does not guarantee absence of dynamic errors such as deadlocks. It
can only warn for the possibility of a deadlock. When the number of possible
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deadlock states rises, as it does in a design of a realistic size, it quickly becomes
impossible for a human designer to verify manually that all potential deadlock
states are effectively unreachable.

The third method derives protocols from concise expressions of global synchroniza-
tion requirements. Its main drawback is:

Only a restricted class of protocol design problems can be expressed in the regular
expression language on which the method is based.

All three methods share one other drawback that is perhaps of even greater impor-
tance: they do not really seem to facilitate the design process.

EXERCISES

10-1. 10-1. Try to derive Lynch’s protocol (Chapter 2) and parts of the file server protocol (Chapter
7) with a protocol synthesis method.

10-2. 10-2. Some protocol synthesis methods that have been described in the literature guarantee
‘‘correctness by construction’’ with the help of an exhaustive reachability analysis algo-
rithm that is run over partial specifications during the design. Consider the possible
drawbacks of this method.

10-3. 10-3. Compare the place synchronization method with the protocol derivation method. Both
start out with an abstract ‘‘service specification’’ from which a protocol is derived. How
do the two types of service specifications differ? Do they have the same expressive
power?

10-4. 10-4. Develop a workable protocol synthesis method and mail the solution to the author for the
next edition of this book.

BIBLIOGRAPHIC NOTES
This chapter has given only a brief overview of synthesis methodologies since, alas,
none exist that can adequately solve the protocol design problem.

The best known method for protocol synthesis is the incremental method from Sec-
tion 10.4. It was first described in Brand and Zafiropulo [1980]. The method has
many variations and has even been applied in protocol validation algorithms. The
place synchronization method from Section 10.5 is a formal method to derive parts of
a lower-level protocol from a higher-level service specification. The method is fully
developed in Gotzheim and Bochmann [1986]. A variant can also be found in Chu
and Liu [1988].

The derivation method from Section 10.2 can be seen as an extension of earlier work
on methods to derive the description of a protocol entity from a specification of its
communication partner, see Zafiropulo et al. [1980], Gouda [1983], Merlin and Boch-
mann [1983].

Not studied here is a potentially interesting, recent application of control theory to the
protocol synthesis problem that was reported in Rudie and Wonham [1990]. In this
approach, the original protocol system is first described as an uncontrolled process in
which all feasible actions, such as message transfers, happen chaotically. A high-
level service specification details the constraints for the system. Assuming that the
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process contains a sufficient number of control points, a protocol can then be derived
as a minimal restriction of the chaotic process behavior that satisfies the system con-
straints.

Several methods have also been studied for partitioning a sequential program into a
distributed program, preserving functionality and correctness, e.g., Moitra [1985], Pri-
noth [1982]. These algorithms require an initial solution to the problem, through the
derivation of a sequential program, before the synthesis method itself can be applied.

A general overview of protocol synthesis methods can be found in Chu [1989].
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11.1 INTRODUCTION
In Chapter 9 we studied the problem of checking that the implementation of a proto-
col conforms to a formal specification. We now discuss the problem of verifying the
logical consistency of the formal specification itself, independent of an implementa-
tion. For consistency we assume that the specification is formalized as a validation
model in PROMELA, although this is not essential to many of the algorithms we dis-
cuss. We first describe a manual proof method based on the notion of state invariants
only. We then show how the same principle can be used to build an automated vali-
dation system. Finally, we extend the algorithms to support also the verification of
the other correctness requirements that can be expressed in PROMELA (see Chapter 6).

Most automated validation systems are based on exhaustive reachability analysis. To
establish the observance of state invariants, then, it suffices to verify their correctness
with a simple boolean test for each state that is reachable from a given initial system
state. The main problem that must be addressed in the design of such a system is the
‘‘state space explosion problem.’’ For protocols of a realistic size, the number of
reachable system states is usually too large for purely exhaustive analyses. We dis-
cuss the nature of this problem and some of the counter-strategies that have been
developed.

11.2 A MANUAL PROOF METHOD
Consider a simple transmission system with a sender S and a receiver R. Process S
sends messages to process R over an unreliable transmission medium that can lose but
not insert, reorder, or distort messages. Every message transmitted carries a sequence
number. Initially, this number is zero, and it is incremented by one for every new
message transmitted. It can grow arbitrarily large. The receiver acknowledges the
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receipt of messages by echoing the sequence numbers over a similarly unreliable
return channel. The receiver stores the largest sequence number it has received in a
local variable B. The sender tries to keep track of that number by maintaining a count
in a local variable A. The value of A is equal to the largest sequence number that the
sender can be certain R has received. Initially, we have

A =B =0

In the following we assume that sender and receiver simply exchange sequence
numbers and no other data. The protocol is then defined by four atomic operations,
two in each process. They can be formalized in PROMELA as follows, where for the
time being we will pretend that data of the type int have unbounded range. W is an
arbitrary positive constant.

mtype = { mesg, ack }

proctype S()
{ int A;

do
:: R!mesg(A + rand()%W) /* S1 */
:: S?ack(A) /* S2 */
od

}

proctype R()
{ int B, b;

do
:: S!ack(B) /* R1 */
:: atomic { /* R2 */

R?mesg(b);
B = fct(b,B);

}
od

}

Transition R2 consists of two statements that are, at least conceptually, executed in
one indivisible step. In the first step a new message is received. In the second step a
new value for B is obtained via a function fct(). The function records the reception
of a message numbered b and returns a value X≥B for which it can guarantee that all
messages with numbers smaller than X were recorded by fct() before. It could
accomplish this, for instance, by setting

if
:: (b == B+1) -> B = b
:: (b != B+1) -> skip
fi

forcing messages to be received in sequence, but it could also be more liberal (see
Chapter 4).

Assuming that there are r messages in queue R and s acknowledgments in S, with

r≥0 and s≥0
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the following condition holds invariantly for the acknowledgments that are buffered
in S:

A ≤ S[ 1 ] ≤ S[ 2 ] ≤ . . . ≤ S[s] ≤ B (1)

The correctness of this system invariant is proven by induction. First notice that in
the initial state the channels are empty and the invariant reduces to A≤B, which holds
trivially since A =B =0. Next observe that if the invariant holds in an arbitrary sys-
tem state it must hold in all its successor states, since it cannot be invalidated by the
four atomic operations:

S1 does not change any of the variables in (1). S2 transforms (1) into

A =S[ 1 ] ≤S[ 2 ] ≤ . . . ≤S[s] ≤B

which must hold if (1) holds. R1, assuming that the acknowledgment is not lost,
transforms (1) into

A≤S[ 1 ] ≤S[ 2 ] ≤ . . . ≤S[s] ≤S[s +1 ] =B

which also must hold if (1) held before R1 was executed. R2 can increase, but
never decrease, the value of B, and thus cannot invalidate the invariant either.

Together, this proves the validity of invariant (1). The next invariant applies to the r
messages waiting in queue R:

R[i] < R[ j] +W , for 0≤i≤r and i < j≤r +1 (2)

where, for convenience, we define

R[ 0 ] =B and R[r +1 ] =A

In the initial state, with r =0, the queue is empty, and the invariant becomes B <A +W
which trivially holds for all W >0, since A =B =0. We must check again that the
correctness of the invariant is unaffected by the four atomic operations.

S1 can add an element r +1 to queue R (if the message is not lost):

A ≤ R[r +1 ] < A +W (2a)

and then increment r. There are only two cases to consider where the invariant
could now be violated: i = r and j = r. For i = r, invariant (2) states

R[r] < R[r +1 ] +W

By definition, this means

R[r] < A +W

which (2a) clearly cannot violate. For j = r, invariant (2) states

R[i] < R[r] +W , for 0≤i < r

Since (2a) guarantees that R[r] ≥A, after S1 completes, this reduces to

R[i] < A +W , for 0≤i < r
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which must hold if it held before S1 was executed. S2 can only increase the value
of A, as a direct result of (1). R1 does not change any of the variables in (2). R2

deletes a message from the queue, thus removing one of the conditions from the
invariant. Either it has no effect or it sets R[ 0 ] =R[ 1 ], which also cannot disturb
the correctness of (2).

This completes the proof of invariant (2).

THE WINDOW PROTOCOL INVARIANT
Invariants (1) and (2) can be used to prove a more general property of the window
protocol.

B −W ≤ R[i] <B +W for 1≤i≤r (3)

To prove this, first note that by invariant (2) we have

R[i] < A +W for 1≤i≤r

Since by invariant (1) we also have A≤B the right side of (3) is easily proven.
Second, by invariant (2) we have

B < A +W or B −W < A

Since by invariant (1) we also have A ≤ R[i] the left side of (3) is also proven.

Invariant (3) implies that the receiver can deduce the true value of a message (i.e., its
sequence number) even if only part of the value is transmitted, for instance the value
modulo 2W. It is an elegant demonstration that the selective repeat ARQ protocol,
discussed in Chapter 4, needs a range of sequence numbers that is twice the window
size W.

DISCUSSION OF MANUAL PROOFS
The proof technique we have discussed was first described by Stein Krogdahl and
later refined by Donald Knuth. It is based on the notion of state invariants. Unlike
the methods used in most automated validation systems, this method is not based on
the inspection of reachable system states, but on the inspection of state transitions.
There are usually far fewer state transitions than reachable system states. The exam-
ple system illustrates this nicely: since the sequence numbers are unbounded, the
number of reachable system states is infinite, but the number of state transitions is res-
tricted to four. The effort required to verify that a transition cannot invalidate an arbi-
trary system invariant, however, can be substantial.

In independent work, Mohamed Gouda (see Bibliographic Notes) has argued that all
manual proofs can be build on just two basic notions:

System invariants, and
Well-founded formulas

A well-founded formula can be used, for instance, to prove termination or to build
induction proofs. To construct such a proof we must find a quantity that is inevitably
decreased during the lifetime of the program and that forces a desirable outcome of
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the program when it reaches a minimum. To find the right invariants and well-
founded formulas can be hard. In general, the manual proofs must be structured care-
fully, requiring the user to find and to prove a series of intermediate invariants before
the correctness of a more general property can be demonstrated. The advantage of
this approach is that it forces the user to thoroughly understand both the design prob-
lem and the suggested solution.

This advantage, however, can turn into a disadvantage when the method is applied to
larger problems. The manual proofs can be tedious, and they are inevitably suscepti-
ble to human error, much like the protocol design that is the subject of the proof. For
each invariant that is to be proven the method may require a manual inspection of all
atomic state transitions within the system. The manual techniques break down in
cases where validation is needed most, i.e., for larger protocols. We accept here,
therefore, that there is a need for automatic tools to help us either in constructing
proofs, or in finding counter-examples to correctness claims (a euphemism for
‘‘debugging’’). After all, even a proof is not a proof unless its validity can be
checked. To quote Lamport [1977]:

‘‘A formal proof is one which is sufficiently detailed, and carried out in a sufficiently
precise formal system, so that it can be checked by a computer.’’

Although there is no simple algorithm that could automate the manual proof methods
we have discussed, there is, at least for finite state systems, an alternative. The alter-
native becomes possible if we base our proof method directly on reachable system
states, rather than indirectly on the transitions that connect them. Methods of this
type can be used to validate both properties of states and properties of sequences of
states, as discussed in Chapter 6. The remainder of this chapter is devoted to a discus-
sion of these methods.

11.3 AUTOMATED VALIDATION METHODS
Let us look at the general structure of automated validation systems based on reacha-
bility analysis. Initially, we will consider only the validation of state properties, such
as assertion violations and improper terminations. We discuss in some detail the lim-
itations of the reachability analysis methods and the strategies that have been
developed to exploit them. In later sections we show how the method can be
extended to validate properties of sequences of states, such as non-progress conditions
and temporal claims, as discussed in Chapter 6.

REACHABILITY ANALYSIS ALGORITHMS
A reachability analysis algorithm tries to generate and inspect all the states of a distri-
buted system that are reachable from a given initial state. Implicitly, it will construct
all possible execution sequences, although, depending on the type of algorithm used,
not all information about state sequences is necessarily available for analysis. There
are three main types of reachability analysis algorithms. In the order in which they
are listed here, they can be applied to systems of increasing complexity:

Full search (systems up to 105 states)



SECTION 11.3 AUTOMATED VALIDATION METHODS 219

Controlled partial search (systems up to 108 states)
Random simulation (larger systems)

The full search is the simplest algorithm. It performs the most thorough analysis of
the three types of algorithm, but it can only analyze the smallest class of protocols.
We quantify the limitations later in this chapter. If the full search method exceeds its
limits, it effectively reduces to an uncontrolled partial search method, and the quality
of the analysis deteriorates quickly.

The controlled partial search tries to optimize the quality of the reachability analysis
specifically for those cases where a full search is infeasible. It attempts this by select-
ing an optimal fraction of the full state space that can be searched within given con-
straints of memory and time.

Random simulation techniques are specifically meant for the validation of systems of
a complexity that defeats even the controlled partial search. The system state space
for these systems can be estimated to be so large that no partial search technique can
make a sensible selection. The best possible search in these cases is a random, or
biased random, walk of the state space.

There are two different measures for expressing the capabilities of a reachability
analysis tool: coverage and quality. The search coverage is easily quantified as the
number of system states tested divided by the number of states in the full state space.
A perhaps more appropriate, but less easily quantified measure, is the search’s ability
to find errors: the number of distinct errors found divided by the total number of
errors present. In the comparison of the three basic search methods below we use
both measures. In Chapter 13 we develop an automated protocol validation system
for PROMELA models that can perform reachability analysis in all three basic modes:
random simulations and either fully exhaustive or partial state space searches.

11.3.1 FULL STATE SPACE SEARCH
The standard full, or exhaustive, search algorithm explores all reachable composite
system states of a set of interacting finite state machines. How precisely the interac-
tion among the machines is defined is largely irrelevant to the design of the search
algorithm. The basic state machine model can be extended with finite message
queues, or local and global variables. As discussed in Chapter 8, these additions do
not extend the power of the finite state machine model, provided that they are defined
over a finite domain.

A state machine, in this model, is defined by a finite number of states and state transi-
tions. Each state transition has two parts: a pre-condition and an effect. The pre-
condition is typically a boolean condition on the state of the machine, the queues, and
the variables. The transition is enabled, and can be executed, only if the pre-condition
holds. The effect of an execution can change the state of the system, for instance the
states of the local machine, the queues, and the variables, and perhaps even the state
of other machines (e.g., in a multi-party rendezvous system).

The system as a whole is defined by the composite of all individual machine, variable,
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and queue states, and the combination of all simultaneously enabled local state transi-
tions. From here on, the term state is used as a short-hand for composite system state.
Where this can cause confusion we use the terms machine state or system state.
Given an initial state for each machine in the system, the sets of machine states and
system states can each be divided into two disjoint classes: reachable states and
unreachable states. Normally it is required that the system not contain any unreach-
able machine states: they would correspond to unexecutable code in an implementa-
tion. Normally, also, the set of unreachable system states is several orders of magni-
tude larger than the set of reachable system states. The set of unreachable system
states should include all error states.

An exhaustive reachability analysis tries to determine which states are reachable and
which are not. Every reachable state and every sequence of reachable states can be
checked for a given set of correctness criteria. These criteria can be general condi-
tions that must hold for any protocol, such as the absence of deadlocks or buffer over-
runs, or they can be protocol-specific requirements such as a temporal claim about the
proper working of a message retransmission discipline. In many cases protocol-
specific requirements can be formalized as state invariants, the correctness of which
can be verified with a simple boolean test in every reachable system state.

In the algorithm below, the reachability analysis starts with a small routine named
start() that initializes two sets: a working set of system states to be analyzed, called
W, and a set of states that have been analyzed, called A.

start()
{ W = { initial_state }; /* work set: to be analyzed */

A = { }; /* previously analyzed states */
analyze();

}

Set A is also referred to as the system state space. When the algorithm terminates, it
should include all the reachable system states The basic structure of the reachability
analysis algorithm is as follows.

analyze() /* exhaustive or full search */
{ if (W is empty) return;

q = last element from W;
add q to A;
if (q == error_state)

report_error();
else
{ for each successor state s of q

if (s is not in A or W)
{ add s to W;

analyze();
}

}
delete q from W;

}
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The order in which states are retrieved from working set W seems irrelevant at first, but
it turns out to be an important control point. If states are stored in set W in first-in
last-out (i.e., stack) order, the algorithm performs a depth-first search of the state
space tree. If states are stored and removed in first-in first-out order, this changes into
a breadth-first search (element q must be deleted upon retrieval from set W in this type
of algorithm). A breadth-first search has the advantage that it finds the shortest error
sequences first. A depth-first search, however, has the advantage that it requires a
smaller work set W. An intuitive explanation for this is that the size of W in a depth-first
search is a function of the depth of the search tree, but a function of its width in a
breadth-first search. The depth of the search tree depends on the maximum length of
a unique execution sequence. The width of the tree, however, is determined by the
maximum number of distinct execution sequences, which is usually a much larger
number.

As an example, consider a protocol where every state has two successors. The state
space is then equivalent to a binary expanding tree. After n transitions, the breadth of
the search tree is 2n states. The depth of the tree, however, is only n states.

There is one other important advantage to the depth-first search discipline. When an
error is discovered we would like the algorithm to be able to produce an execution
sequence that leads to the error via a valid sequence of state transitions, starting from
the initial system state. With a breadth-first search method, the path from the initial
system state must be reconstructed from information stored in the state space set A.
With a depth-first search, however, such a path need not be reconstructed: a sequence
is implicitly defined by the stack order of set W.

DISCUSSION OF THE FULL SEARCH METHOD
The main problem with the full search strategy is its restricted applicability. It is
important to note that the coverage of the full state space search technique is not
necessarily 100%: it depends on the size of the state space and the amount of memory
that is available for the search. If the size of the state space is R and the maximum
number of states that can be stored in memory during the search is A both the cover-
age and the search quality can only reach 100% when R≤A. When R >A the coverage
reduces to A / R, but the search quality is likely to be worse.

For large protocols the exhaustive search algorithm deteriorates into a low-
quality partial search.

Consider a protocol for two processes, each having 100 states, one message queue,
and each accessing five local variables. The two message queues are restricted to five
slots each, and the effective range of the local variables is assumed to be limited to ten
values. The number of distinct messages exchanged is ten. In this relatively small
example system, there are 105.2 possible states of the protocol variables. Each pro-
cess can be in one of 102 different states, so two processes can maximally be in 104

different composite system states. Finally, each queue can hold between zero and five
messages, where each message can be one out of ten possible messages. The total
number of system states in the worst case then is
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or in the order of 1024 different states. If we assume, quite unrealistically, that each
state can be encoded in 1 byte of memory and can be analyzed in 10−6 sec of CPU
time, we would still need a machine with at least 1015 times as much memory as
currently available, and would need roughly 1011 years of CPU time to perform an
exhaustive analysis.

Fortunately, the number of effectively reachable states is usually much smaller than
the total number of system states calculated above. After all, it is the purpose of a
protocol to restrict the the behavior of the protocol processes, and thus the number of
effectively reachable states, in order to realize the desired functionality. Still, even
relatively small protocol systems can easily generate anywhere from 105 to 109 reach-
able system states. The number of states grows dramatically if, for instance, the size
of a message queue is increased, or if the assumptions about the behavior of the
‘‘environment’’ in which the protocol is executed (e.g., the channel characteristics)
are relaxed.

The exhaustive search method unavoidably breaks down when the state space grows
beyond approximately 105 states. A quick ‘‘back of the envelope’’ calculation can
illustrate this.

If one system state can be stored in S bytes of memory, and we have a machine with M
bytes available, we can generate and analyze no more than M / S states. M is a
machine-dependent constant that is typically in the range from 106 to 107 . Values for
S are typically in the range 10 to 102 bytes, with larger values corresponding to the
larger numbers of reachable states. This leads to an estimate for the maximum state
space size of about 105 states. This value can also be found experimentally by running
the full search algorithm until it has exhausted available memory.

This means that in many cases the full search method is feasible only if we can reduce
the complexity of our validation models to the maximum that a given machine can
analyze. The complexity of protocol models can be reduced substantially by structur-
ing and layering techniques, but in some cases, even after such reductions, the prob-
lems to be analyzed remain inherently complex and cannot be further reduced without
losing essential features.

As one example, consider the window protocol described in Chapter 7. It is a simple
protocol, with no obvious further simplification. In its basic form this protocol is well
within the range of the full search method. As illustrated in Chapter 14, however, the
complexity of the search goes up dramatically if the assumptions about channel
behavior are relaxed and can make a full search impossible.

11.3.2 CONTROLLED PARTIAL SEARCH
If the state space is larger than the available memory can accommodate, the exhaus-
tive search strategy discussed above effectively reduces to a partial search, without
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guaranteeing that the most important parts of the protocol are inspected. This obser-
vation has led to the development of a new class of algorithms that specifically try to
exploit the benefits of a partial search. They are based on the premise that in most
cases of practical interest the maximum number of states that can be analyzed, A, is
only a fraction of the total number of reachable states R. A controlled partial search,
then, has the following objectives:

To analyze precisely A states, with A =M / S
To select these A states from the complete set of reachable states R in such a
way that all major protocol functions are tested
To select the A states in such a way that the search quality, i.e., the probability
of finding any given error, is better than the coverage A / R

An algorithm for the partial search looks exactly like the earlier algorithm for an
exhaustive search, with only one difference: not all successor states are analyzed.

analyze() /* partial search */
{ if (W is empty) return;

q = last element from W;
add q to A;
if (q == error_state)

report_error();
else
{ for some successor state s of q

if (s is not in A or W)
{ add s to W;

analyze(); /* recursive */
}

}
delete q from W;

}

It is interesting to note that even a random selection of successor states is superior to
an uncontrolled partial search, since it guarantees that the complete state space is sam-
pled, rather than the unknown fragment that happens to be generated first in a full
search. The selection can also be based on a heuristic that favors executions that are
likely to reveal design errors fast. Many different ways of organizing a controlled
partial search have been studied. They include methods based on:

Depth-bounds
Scatter searches
Guided searches
Probabilistic searches
Partial orders
Random selections

We discuss the first five methods briefly below. The last method, based on random
selections, is developed in the remainder of this chapter. References to more detailed
descriptions of all techniques are included in the Bibliographic Notes.
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DEPTH-BOUNDS
A fairly standard and simple partial search technique is the placement of a bound on
the length of the execution sequences that are analyzed. It limits the search to a useful
subset of behaviors, ruling out, for instance, degenerate cases of multiple overlapping
executions. In the full search algorithm, for instance, it allows us to restrict the max-
imum size of working set W.

SCATTER SEARCH
In a scatter search, executions are selected that lead closer to potential deadlock states.
One of the requisites of a deadlock state, for instance, is that there are no messages
pending (all channels are empty). The algorithm therefore favors receive operations
over send operations. The goal of the method is to increase the probability of finding
errors fast.

GUIDED SEARCH
In a guided search, the state selection criterion is a cost function that is dynamically
evaluated for each successor state. The cost function can be fixed, as in a scatter
search, or it can be changed dynamically during the search. Not much is known about
the types of cost functions, or ‘‘guiding expressions,’’ that could prove to be useful.

PROBABILISTIC SEARCH
In a probabilistic search, successor states are explored in decreasing order of their pro-
bability of occurrence. All transitions in the system are labeled, minimally with a tag
that gives them a ‘‘high’’ or a ‘‘low’’ probability of occurrence, and these tags are
used as the selection criteria.

PARTIAL ORDERS
The main factor that is responsible for the state space explosion problem is the large
number of possible interleavings of concurrent events. As shown in Chapter 5 (page
96), not all interleavings are necessarily relevant in the search for error states.

There are several ways of exploiting partial orders. A first method is based on the
definition of a heuristic for either

Fair progress state exploration or
Maximum progress state exploration

Both heuristics work by assigning a search priority to the protocol processes. The
number of transitions that are inspected during the search is limited, with preference
given to the transitions that belong to high-priority processes. Transitions in lower-
priority processes are only considered if all higher-priority processes are blocked. In
a fair progress exploration technique, the relative priority of a process is decreased
when one of its transitions is executed during the search; in the maximum progress
exploration technique the relative priority is increased.

A second, more recent, method to exploit partial orders is based on formal definitions
of equivalence relations on system behavior. The goal is then to prune away that part
of a search that can be proven to be irrelevant. (References to these and the other
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techniques are collected in the Bibliographic Notes.)

RANDOM SELECTIONS
In a controlled partial search based on random selections of successor states, no effort
is made to predict where likely errors in the state space are to be found. We will
argue below that this is not only the simplest technique to implement, but is also
likely to produce the highest quality search. It is the only technique that can satisfy
all three requirements for a controlled partial search that were listed at the start of this
section.

DISCUSSION OF CONTROLLED PARTIAL SEARCH METHODS
The first four techniques for controlling the partial search that we discussed above
have one main problem in common. All four methods try to predict where the errors
in a protocol can be found. This is an inherently risky approach. As a corollary of
Murphy’s law, the errors are likely to hide where a designer or a validator has decided
not to look. Next to the random selection of successor states, the techniques based on
partial orders can, in principle, avoid that problem. The dependencies between
processes, however, can be subtle. Consider, for instance, a system of three processes
A, B, and C, where A and B interact with C, but not with each other. It would be tempt-
ing to conclude that since A and B are disjoint, all possible interleavings of their
behaviors are necessarily equivalent. But, alas, this assumption is invalid. Note that
the behavior of process A can depend on B’s behavior indirectly through their mutual
interaction with C. Every distinct interleaving of the actions of A and B can be
significant in determining the outcome.

To determine mechanically, therefore, which particular interleavings can safely be
ignored in state space searches can be non-trivial. An accurate assessment may well
be more expensive that a full blast exhaustive search, and thus be self-defeating as an
optimization technique.

A final problem with the first five methods is that, although they can reduce the size of
the state space, none of these methods provides a tool for matching the size of the
state space to the size of available memory. For all these methods the size of the frac-
tion of the state space that is effectively searched can only be determined experimen-
tally, and is protocol dependent. This means that we may have to perform many vali-
dations, with different selection criteria, before we can find the optimal one that
analyzes precisely M / S states. In Section 11.4 we will develop the idea of the random
selection of successor states and show that it can be used to effectively solve also this
problem.

Before doing so, we discuss a final state space exploration method, also based on the
random selection of successor states, but this time without any attempt to build a state
space
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11.3.3 RANDOM SIMULATION
The controlled partial search methods have wide applicability. There are applications,
however, where also a controlled partial search becomes infeasible. One can attempt,
for instance, to apply a protocol validation algorithm directly to highly-detailed, com-
piled code that runs in a machine. In those cases, the parameter S, measuring the size
of a single composite system state in bytes, can range anywhere from 103 to 105 bytes
of memory.

Even on a larger machine, the largest number of states that can be maintained by a
partial search then drops to a few hundred system states at best, in a state space that is
many orders of magnitude larger. In cases like these, the only sensible approach is to
discard sets A and W from the search algorithm and to explore the state space with a
random simulation or ‘random walk.’ The algorithm is as follows.

analyze() /* random simulation */
{ q = initial state;

while (1) /* forever */
{ if (q is error_state)

{ report_error();
q = initial state;

} else
q = a successor state of q;

}
}

This technique works largely independent of the size and complexity of the system
being modeled; even ‘‘infinite size’’ systems can be explored in this manner. The
coverage of the method, of course, cannot be measured, though in principle an
exhaustive coverage of finite state spaces is guaranteed, given a sufficient amount of
time. In practice this is not a very useful guideline, since a ‘‘sufficient’’ amount of
time can easily mean a century of computation time or worse. In experiments, how-
ever, Colin West was able to show that even for an immeasurably small search cover-
age the quality, or error-finding capability, of the search can be adequate.

The remainder of this chapter is devoted to the development and motivation of a con-
trolled partial search technique that was named supertrace. An implementation in C
of an exhaustive search algorithm for PROMELA, with a supertrace option for large
problems, is discussed in Chapters 12 to 13.

11.4 THE SUPERTRACE ALGORITHM
Given M bytes of memory, how can we organize a state space search to use precisely
M bytes, no more and no less, and perform the largest search possible within that
arena? To answer that question we look in a little more detail at the memory storage
methods that are traditionally used. The standard way to maintain the state space set
A in either a full or a partial search algorithm is to use a storage technique called
hashing. Hashing allows us to determine quickly whether or not a new state s is
already a member of set A and can be discarded or is not yet in A and needs to be
inserted. The method is to use the contents of s to calculate a hash value h(s), which
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is used as an index into a lookup table of states. The table is organized as shown in
Figure 11.1.

Linked List

Lookup Table

state: s h(s)

H–1

0

Figure 11.1 — Hash Table Lookup
Assume that we have H slots in the hash table. Hash function h(s) is defined such
that it returns an arbitrary value in the range 0 .. (H −1 ). For the same state s ∈ A, h(s)
always returns the same value. But there is also a possibility that two different states
produce the same hash value. In the case we are studying, the hash table will have to
accommodate a large number of states, which means A >H. The hash function will
then produce the same hash value for an average of A / H different states. All states
that hash to the same value are stored in a linked list that is accessible via the lookup
table under the calculated index (the hash value). On the average then, when the table
is full, each new state must be compared to A / H other states before it is either inserted
into the linked list, or discarded as redundant. When A grows beyond the first H
states, the number of comparisons required grows steadily, and the search efficiency
degrades: there is a time penalty for analyzing systems of more than H states.

A typical value for H is 104 slots. The table itself takes up H×B bytes of memory,
plus B bytes for each state that is inserted, where B is the size of an address pointer.
On most machines B =4, which means that a table with say 256,000 slots requires
more than 1 Mbyte of overhead that can no longer be used to store states. To accom-
modate the largest possible state space, therefore, a small value for H is required. As
shown above, however, a small value for H means a low search efficiency.

If we could somehow manage to use a very large value for H, the number of hash
conflicts could be minimized and thus the speed of the search algorithm could be
optimized. Let us assume we can use the full search algorithm with a value for H in
the order of 108 slots. In a state space of up to 105 states we can expect to have fewer
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than 105 /108 hash conflicts, or less than one conflict in a thousand states. This means
that there will rarely be more than a single state in the linked list that is connected to
each slot in the hash table. But this means that we do not have to store complete state
descriptions in the hash table: in all but a few cases the hash table index (the hash
value) uniquely identifies a state. The only bookkeeping required is to remember if a
slot in the hash table is filled or not. A single bit of storage per state will suffice. If
we have M bytes of memory available, we have 8M bits for the state space (assuming
8 bits per byte). A 10 Mbyte machine can thus give us a state space large enough to
hold 80 million states. The hash function h(s) is used to calculate the position of a bit
in the available memory arena M. A bit value of 1 will now indicate that the state
corresponding to this hash value has been previously analyzed. The state itself is not
stored.

Since no states are stored, there are no states to compare a new state against: the bit
position uniquely identifies the state. The method can be expected to work well if the
state space is sparse and indeed H is very large. A large value of H makes hash
conflicts rare for all cases where A <H. Most importantly, however, when A >H the
hashing automatically defines a randomized partial search method that matches the
coverage of the search to the available memory. The method therefore approximates
an exhaustive search for smaller protocols and slowly changes into a controlled partial
search method for larger protocols. For smaller protocols, however, we do not need a
partial search method: we can use a traditional exhaustive search technique.

Supertrace is a controlled partial-search technique that is only meant for the
validation of protocol systems that cannot be analyzed exhaustively.

As an exhaustive search technique the supertrace algorithm would compare unfavor-
ably with almost any other standard depth-first search method, simply because it can-
not guarantee 100% coverage due to the possibility of unresolved hash conflicts (cf.
Tables 13.1 and 13.2 in Chapter 13). We will show, however, that as a partial search
technique, the new algorithm is superior to other methods.

HASH CONFLICTS
The overhead of the lookup table with a supertrace algorithm reduces from

HB + (S +B) A

bytes to

H /8

bytes. However, since the states are no longer stored we can no longer compensate
for hash conflicts. Remarkably, this defect has a positive effect on the overload
behavior of the algorithm during partial searches. Here is how it works.

If a new state s is generated and it is found that the flag is set at index h(s), we must
conclude that state s was analyzed before and should be ignored. When a hash
conflict occurs, the above conclusion is wrong, and the search will ignore a state that
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should have been analyzed: the search is truncated. As A / H → 0, the number of hash
conflicts that will be encountered approaches zero, and the method approaches (but
can never guarantee to be) a fully exhaustive search. Indeed, therefore, it is best to
choose H as large as possible.

The maximum value for H that we can choose for given memory size M is H = 8M.
Let us see how this algorithm compares to a traditional partial search.

The memory requirements are the same. The limit to the coverage of the traditional
search, however, is A = M / S. Storing the same M / S states in the hash table of the
modified algorithm, with H = 8M, gives a ratio

A / H = M /( 8MS) = 1/( 8S)

For a typical value of S ∼− 100, the probability of a hash conflict then approaches 10−3 .
But the new algorithm is not restricted to a maximum of M / S states. It can analyze a
maximum of H distinct states. The hash conflicts, which increases as the state space
fills up, now work to scatter the states that are selected for analysis across the set of
reachable states in an approximately random manner.

There are two cases to consider. For R < M / S, the coverage of the traditional algo-
rithm will be the same as or slightly better than the new algorithm, since it avoids the
effect of the hash conflicts. However, when R < M / S we do not need a partial search
algorithm at all since we can still perform an exhaustive (traditional) search in
memory. The supertrace algorithm should not be used in these cases.

For problems with R > M / S, the coverage of the new algorithm, i.e., the total number
of effectively analyzed states compared to the total number of reachable states, is sub-
stantially higher than the coverage of the traditional algorithm. For R >>M it
approaches 8M / R, compared to M /(S R) for the traditional algorithm (see also Figure
11.2).

If state description S becomes larger the traditional algorithm can analyze fewer and
fewer states, but the performance of the new algorithm stays the same. If, for M fixed
at 107 bytes of memory, S grows from 100 to 1000 bytes per state, the coverage of a
traditional partial search algorithm drops from 105 to 104 analyzable states. The cov-
erage of the new algorithm, however, remains constant at a maximum of H = 8.107

analyzable states.

The effect is illustrated, for a fixed size S, in Figure 11.2. Increasing S is equivalent to
moving the dotted and the dashed line to the left: the behavior of the traditional algo-
rithm changes, but the behavior of the supertrace algorithm remains constant.

For state spaces that are larger than an exhaustive search algorithm can accommodate,
the traditional method breaks down very rapidly, its coverage dropping by a factor of
ten for every tenfold increase in the number of reachable states. The coverage of the
new algorithm is substantially better.

When A→R, A is the same order of magnitude as H, which means that a large fraction
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Figure 11.2 — Comparison of Two Algorithms
of the state space can still be analyzed, the hash conflicts acting as a random pruning
that scatters the search over the oversized state space. For still larger protocols with
A >H the coverage of the search approaches H / A, or 8M / R.

MULTIPLE HASHINGS
The hash functions helps us to make a fast random selection of states from a large
state space, and thus implements an efficient controlled partial search. Assume a
hypothetical 10 Mbytes of memory available for the search and a state space of 800
million states of 100 bytes each. The coverage of all traditional search methods,
except supertrace and random simulation, is limited to the analysis of 107 /100 in
8.108 states or 0.0125 %. A single run of supertrace would give a maximum cover-
age of 8.107 /8.108 or 10%. The question is: Can we ever achieve a still better cover-
age with the same system constraints? Surprisingly, the answer for the supertrace
algorithm is: Yes.

The hash function can be used as a parameter in repeated searches. Suppose the first
search with hash function H1 selected 80 million states are random from the 800 mil-
lion reachable states. A second search with a different hash function H2 will also
select 80 million states, but it will make a different selection. We may expect that
there will be a 10% overlap between the two state sets, but the combined coverage of
the two searches has now gone up to 80 +72 million states out of the 800 million can-
didates, or 19%. Continuing this process, we can in theory get arbitrarily close to a
coverage of 100% of the state space, provided that a sufficient number of independent
hash functions can be found.

The validator developed in Chapter 13 uses this principle to increase the coverage of
searches. It uses two hash functions in each single run.
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11.5 DETECTING NON-PROGRESS CYCLES
So far, we have only discussed the validation of state properties, using a straightfor-
ward reachability analysis algorithm. The complexity of the algorithm, even for this
simple case, is in PSPACE. We have therefore made a deliberate effort to find the
fastest, most frugal implementation so that the range of problems we can apply it to is
as large as possible. But we are not done. There are other properties that we may be
interested in proving, specifically for PROMELA validation models. If, as we have
argued above, the efficiency of a straight reachability analysis is a concern, the
efficiency of the more subtle types of validation is crucial.

A straightforward check for non-progress conditions could be based on the construc-
tion and inspection of all strongly connected components in the reachability graph
that is implicitly defined by the state space of the system being analyzed. This
approach, though commonly used, fails when the state space is too large to be stored
completely. Here we explore a different option that has a modest expense and, most
importantly, that can be used in combination with a supertrace algorithm to do partial
validations of very large systems.

Our first problem is to detect cycles in the reachability graph that do not pass through
any states marked as progress-states. The algorithm we develop is only for identify-
ing non-progress cycles. We will not try to combine it with a simultaneous search for
assertion violations and improper terminations. A first attempt to find the non-
progress cycles is to perform a standard depth-first reachability analysis where all
sequences are truncated when a progress-state is reached. That is, progress-states are
treated as if they have no successors. All cycles that can be constructed in a search of
this type, must be non-progress cycles. The size of the state space that is created in
this search is at most equal to the size of a straight depth-first search. It is likely to be
smaller due to the truncations at progress states.

To see how this may be implemented, refer to the algorithm for the full state space
search given in Section 11.3.1. A cycle is detected if the depth-first search reaches a
state that is already in work-set W, assuming that states are extracted from set W in last-
in first-out order.

The flaw of this method is that it does not allow us to detect cycles that do not pass
through the initial system state. There may well be a cyclic execution sequence (as
defined in Chapter 6) that first passes through a finite number of states, some of which
may be marked as progress states, before entering a cycle of strictly non-progress
states. This observation, however, immediately leads to a new algorithm that does
work.

A non-progress cycle might start in any reachable system state. So we must inspect
two distinct state spaces: one created by the original depth-first search, and one that is
created when transitions from progress states are disabled. The task of our search
algorithm is to inspect every possible prefix of a cyclic sequence in the original state
space and see if it can be continued into a cycle in the second state space. The imple-
mentation is simple. We can add a two-state demon to our validation model that
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defines in which mode the search will operate, as follows

proctype demon() { bit magic = 0; magic = 1 }

The initial state of demon process is just before the assignment, with variable magic
equal to zero. The second, and final, state of the demon is immediately after the
assignment, with magic equal to one. The demon process can switch from the initial
state to the final state nondeterministically, and once it has switched it cannot go back.
The value of variable magic defines in which mode the search is performed. When
magic is zero, a normal depth-first search is performed, without any error checking.
When magic is one, all transitions that originate in progress states are disabled. All
subsequent execution sequences should be terminating. If there is any cycle of states
that are reachable while magic is one, it must be a non-progress cycle.

The value of magic can only change once in any given execution sequence, and it can
only change from zero to one. Let us assume that, after magic has changed value, a
cycle of states is detected that is not a non-progress cycle. By definition that cycle
contains at least one transition originating at a progress state. This transition can only
occur when magic is equal to zero. This means that the value of variable magic

changes from zero to one and back at least once each time through the cycle. This
contradicts the earlier observation that magic only changes value once.

The algorithm we have constructed further has the property that if any non-progress
cycle exists, at least one will be detected. To prove that, let us assume that there
exists a reachable strongly connected component that contains only non-progress
states. (A strongly connected component is any set of states in which every member
can reach every other member of the set via one or more transitions.)

The algorithm generates two copies of every reachable state; there is one copy in which
magic is equal to zero, and one copy with magic equal to one. There is a transition
from the first copy to the second that corresponds to the one transition that the demon
process can make. Consider the case where no state from the strongly connected
component has been generated with magic equal to one. Consider the first such state
that is generated. Since the strongly connected component is assumed to be reachable,
and the transition of the demon process is always executable, this must happen at some
point in the search. Call this state the seed state. The depth-first search tree that is
rooted at the seed has all states from the strongly connected component as successors,
including itself (by the definition of a strongly connected component). Since the seed
state is also reachable from itself (by the same definition) via non-progress states only
(by our original assumption), it must be revisited. The moment the seed is revisited, a
cycle is detected. By our earlier proof, that cycle must be a non-progress cycle.

There can, of course, be many different paths through a strongly connected com-
ponent, each one of which may represent a different type of non-progress cycle. The
algorithm above does not guarantee that all variants are detectable in a single execu-
tion of the search. It does guarantee that at least one variant is detected. If no non-
progress cycles are detected, therefore, we can be certain that none exist.

Figure 11.3 illustrates how a difficult case of a non-progress cycle is detected. The
circles represent system states and the arrows represent transitions. The states are
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Figure 11.3 — Detection of a Non-Progress Cycle
numbered in the order in which they are visited during a search. The state marked P
is a progress-state. State 1 is the initial system state. The dashed line from state 1 to
state 2 is an arbitrary execution sequence. The dotted lines indicate state matches.
Remember that after the creation of every state our depth-first search algorithm
checks to see if the state was created before. If a match is found the search is trun-
cated. If the match occurs in work set W, i.e., on the stack, a cycle is detected.

In Figure 11.3a a fragment of the state space is shown as it would be created in a nor-
mal depth-first search. In Figure 11.3b the same states are shown after the transition
of the demon process to the state in which transitions starting at progress states are
disabled. The numbers indicate the order in which states are visited.

Before the transition of the demon process, in Figure 11.3a, just one cycle is detected
by the normal depth-first search method. It is detected when the fifth state visited is
found to match the second state, which is on the stack. The loop is benign, since it
contains the progress-state. The search continues, after removing states 4, 3, and 2
from the stack, with the new state 6. The seventh state visited matches the fourth one,
and the search is completed. The last match does not produce a cycle, because state 4
is no longer on the stack.

The non-progress loop through the states marked 2, 6, 7, 4, and 5 therefore remains
undetected in the standard depth-first search. After the transition of the demon pro-
cess, all transitions from the state marked P are disabled. This means that the states
are now visited in the order indicated in Figure 11.3b. The first, harmless, cycle can
now no longer be constructed, but the second cycle can, and is correctly detected.

With the addition of a simple two-state demon process, the algorithm is trivial to
implement. An implementation in C is given in Appendix E. Its expense is a dou-
bling of the time and space requirements. Perhaps the most important advantage of
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the algorithm, however, is that it can be used in combination with any controlled par-
tial search method. Specifically it can be used with a bit state space technique, as
used in the supertrace algorithm.

11.6 DETECTING ACCEPTANCE CYCLES
The detection of acceptance cycles (see Chapter 6, page 118) is substantially harder
than the detection of non-progress cycles, discussed in the last section. This time, all
execution cycles that pass through at least one acceptance state must be detected. We
are interested in finding an algorithm that continues to work with supertrace, so that
its application to very large problems is not excluded.

The following algorithm is due to Mihalis Yannakakis (see the Bibliographic Notes).
The expense of the algorithm is at worst a doubling of the time and space require-
ments of the basic search. We conduct a depth-first search with two state spaces
instead of one (i.e., two copies of set A). Call the second state space set C. When no
acceptance state is encountered, set C remains unused, and the search is precisely the
same as before. For every acceptance state that is removed from work set W and added
to set A (i.e., after all its successor states have been visited) the algorithm switches
sets A and C and begins a new search. Call the acceptance state the seed of that
search. If at any time during this search the seed state can be revisited, an acceptance
cycle is found, and an error can be declared (i.e., the temporal claim is satisfied, which
means that an undesirable behavior is possible). When no such error is found, the
second search terminates when all successors of the seed have been added to set C. At
this point, sets A and C are swapped again, and the depth-first search continues as
before.

No state will be visited more than twice in this search, once in set A and once in set C.
It is not hard to convince ourselves that any cycle found by this algorithm is neces-
sarily an acceptance cycle. It is harder to show, however, that in the absence of hash
collisions any acceptance cycle that exists is also found.

Assume that there are acceptance states that belong to one or more strongly connected
components in the reachability graph. If all states in the reachability graph are
numbered in the order in which they are added to set A, consider the acceptance state
with the lowest number. Call that state the seed. Because the seed belongs to a
strongly connected component it is reachable from itself. The acceptance cycle is
detected if and only if none of the intermediate states along that path have been added
to set C before the seed. If there is any such state, however, it necessarily has a lower
search number than the seed. All states along the path we are interested in belong, by
definition, to the same strongly connected component as the seed. If any one of those
states has a lower search number, and was added to set C before, its complete set of
successors must have been analyzed as well, before we reach the seed. This means that
all these successor states have a lower search number than the seed. The set of
successors, however, includes the seed, because they all belong the same strongly
connected component. This means that this is not the first visit to the seed, which
contradicts our assumption.
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11.7 CHECKING TEMPORAL CLAIMS
To check temporal claims, as they were defined in Chapter 6, every state transition in
the reachability graph for the original system, without the temporal claim, must be
matched with a state transition in the finite state machine that represents the temporal
claim.

Fortunately, this requirement is relatively easy to meet, and compatible with super-
trace. After the generation of a successor state during the standard search we include
one extra test, a forced transition of the temporal claim process to a new state. If such
a transition cannot be made, the search can be truncated as if a state match was found.
It means that the undesirable behavior that is expressed in the claim cannot be realized
after the last transition in the system is made. The details of an implementation in C
are given in Appendix E. In the best possible case, if no transition from the initial
system state can be matched by a transition in the claim, the time and space require-
ments of the new algorithm reduce to almost zero. In the worst possible case, how-
ever, the size of the state space is multiplied by the number of reachable states of the
claim.

The worst-case expense of the validation of temporal claims increases linearly with
the size of the claim, measured as the number of states of the extended finite state
machine that defines the claim. With the discussion of the last two sections, we can
compare the complexity of the validation of different types of PROMELA correctness
requirements. The minimum expense is incurred for the validation of properties of
states, such as assertions and improper terminations. It can be twice as hard to check
for non-progress properties, and 2N times as hard to check a temporal claim of N
states.

If we turn this argument around, we can say that, with the same search quality, for the
validation of state properties the system can be 2N times larger than for the validation
of temporal claims. It is therefore important that a validation system, such as
PROMELA, allows us to validate each type of property separately ,1 so that the simpler
requirements do not incur the expense of the more complicated ones. The system size
determines in all cases precisely which types of validation of a given quality can be
performed. If the best search quality that can be realized for a given system is
insufficient, we can do two things:

Express the correctness requirement differently so that it can be checked more
efficiently
Express the system behavior differently in an effort to reduce its final size

We discuss the second method in more detail below.

__________________
1. Temporal claims could be used to express state properties, and even non-progress conditions, and could
therefore be used as a single default mechanism for specifying correctness requirements.
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11.8 COMPLEXITY MANAGEMENT
The validation of protocol systems that generate up to a few hundred thousand states
is well within reach of of the automated validation systems we have described. The
validation of larger systems, however, can be a substantial challenge in the manage-
ment of complexity. It could well be claimed that complexity management itself is
the most important issue in the design of a validation strategy. In this section we
review some of the main issues.

The discussion of partial search techniques (page 224) was the primary motivation for
the complexity management technique that we have chosen as the basis of the super-
trace algorithm. Two other important issues remain to be discussed:

Reduction methods
Incremental composition

Both methods are applied before a state space search is started, instead of taking effect
during a search as in the partial searches. They therefore apply to all search methods,
from fully exhaustive searches to random walks. We discuss them in more detail
below.

REDUCTION METHODS
The design of a validation model trivially determines the complexity of the validation
that is to be performed. If protocol layering and structuring techniques are applied, it
is often possible to separate, without loss of generality, the validation of multiple
orthogonal protocol functions. An example of that is given in Chapter 14, where the
validation of the flow control protocol from Chapter 7 is separated from the validation
of the session control protocol.

In Chapter 8, Section 8.9, we discussed a technique to further reduce the complexity
of a validation model by systematic generalizations that do not affect the scope of a
validation. Similar ideas have been based on the notion of ‘‘protocol projections,’’ as
first described by Lam and Shankar.

In some cases, however, it may still be hard or impossible to find the ideal behavior
preserving reduction. In those cases we have one more complexity management
option. There are many modeling parameters that control the range of possible
behaviors defined by a model. The determining factors for the complexity of
PROMELA models, for instance, are the number of processes, message queues, and
variables, and the size of the message queues. Decreasing the number of slots in mes-
sage queues can reduce the maximum amount of asynchrony in a concurrent system
and dramatically decrease the number of reachable composite system states, without
necessarily decreasing its scope. A validation model often can be analyzed exhaus-
tively by restricting some of these parameters. The model, of course, becomes a par-
tial one when the parameter settings are decreased. This means that we often have a
choice between performing an exhaustive search for a partial model, or a partial
search for a full model. Which approach is the most appropriate naturally depends on
the problem being studied.
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INCREMENTAL COMPOSITION
In the reachability analysis algorithms we have discussed up to this point, we have
assumed that all asynchronous processes that contribute to the global behavior of the
protocol are combined in a single step in the generation of the global system state
space. In some cases, an incremental composition method can be used to reduce the
size of the state space that is being constructed. (See Algorithm 8.3, and see also
Chapter 8, Section 8.7.) With this method we first generate the set of all reachable
composite system states of two or more of the protocol processes. This partial state
space is then reduced by standard state machine minimization and then composed
with the remaining processes, again in an incremental fashion.

In a typical application of this method, at each step two separate state machines are
replaced by one state machine, which is reduced in size before it is combined with the
other machines. To work, this method obviously requires that the validation model
consist of more than two state machines (asynchronous processes). It further relies
crucially on the user’s ability to find precisely those combinations of state machines
that can produce the greatest reductions. The reduction is meant to remove behavior
that is internal to the machines that are combined. It reduces the combined machine
to the external behavior of the machines that were collapsed.

This means that the method works best if it is applied to machines that are tightly cou-
pled (that is, they exchange a lot of messages) and that are relatively independent of
the rest of the system. If the user, by mistake, combines two machines that are dis-
joint, the state space explosion problem is worsened: effectively the two machines
would be replaced by an irreducible composite state machine that defines the com-
plete Cartesian product of all states in the two individual state machines. A large frac-
tion of those states can be recognized as unreachable only when the remaining compo-
sition steps are taken.

Several researchers have implemented the incremental composition method and
applied it to validation models that only use rendezvous communications. The advan-
tage here is that the rendezvous points can disappear in the reduction steps. It is not
clear if the method can still be effective when it is applied to systems such as
PROMELA that allow asynchronous, buffered message exchanges. In these cases the
internal buffers may complicate the minimization process.

11.9 BOUNDEDNESS OF PROMELA MODELS
It is not immediately obvious that any given PROMELA model can be reduced to a
finite state system and validated with the algorithms we have discussed in this
chapter. A PROMELA validation model allows an arbitrary number of process instan-
tiations and an arbitrary number of message queues to be created. The following pro-
gram, for instance, is valid in PROMELA.
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proctype A()
{ chan Ain = [1024] of { int, int };

do
:: run A()
od

}
init { run A() }

To simulate the execution of this model would require an infinite amount of memory
and an infinite length of time. Any real execution of the model, however, can only
take place on a finite machine. Most models are therefore finite by design, and it can
even be argued that the possibility of infinite growth is a design error.

PROMELA restricts the maximum number of processes and message queues that can be
created. The precise limit is not defined. At some point during the execution of the
example program above the run statement will become unexecutable and block the
last process that was created. Every PROMELA model is therefore by definition a finite
state system and can be analyzed with a standard reachability analysis algorithm.
Each process has a fixed number of states, each message queue has a fixed number of
slots, and the range of all variables used in the system is fixed. When the model is
executed, it can only reach a finite number of possible states. At some point in the
execution of process A() above, for instance, the run statement becomes unexecut-
able and prohibits further growth.

In Chapters 12 and 13 we discuss the implementation of a program that converts
PROMELA specifications into the required finite state models. The program imple-
ments all three basic search modes we have discussed: random simulation, bit state
space search, and the full state space search.

11.10 SUMMARY
Given a new, carefully designed protocol, how can we gain confidence that it will not
fail in some unexpected way? For instance, we may want to prove that the protocol is
robust under adverse channel behavior, or we may want to show that certain undesir-
able events, such as system deadlocks, cannot occur. The methods we have described
in this chapter are based on the verification of correctness requirements that can be
expressed as system invariants: properties that remain invariantly true for all possible
executions of the system.

The manual proof method we gave is based on an exhaustive inspection of state tran-
sitions, and the automated variant is based on an exhaustive inspection of system
states. The manual validation procedure can be expected to work for systems of up to
ten or twenty state transitions, but is largely independent of the number of reachable
states. The credibility of these manual proofs, however, is at best inversely propor-
tional to their length.

The automated procedure does not have this drawback, but its applicability depends
crucially on the number of reachable system states. For relatively small systems, up
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to approximately 105 reachable system states, we can apply a fully exhaustive state
space search. The purpose of the exhaustive search is to show the absence of errors.
If it can be completed without reporting any errors, it is certain that the protocol can-
not violate any of the correctness criteria.

For larger systems, up to approximately 108 reachable system states, the best valida-
tion that can be performed is a controlled, partial search. The purpose of a partial
search is to show the presence of errors, not the absence. The partial search is
designed in such a way that if it is applied to a protocol that contains an error, it
optimizes our chances of exposing it within the constraints of the machine on which
the validation algorithm is run. We have discussed three different ways of achieving
this objective:

Using search heuristics to restrict the partial search to system states that are likely
to contain the errors.
Using a hashing technique that dramatically increases the number of system states
that can be manipulated.
Using reduction methods to simplify validation models before they are subjected
to a search.

The first method has the disadvantage that it tries to predict where the errors are likely
to be, an inherently dangerous strategy. The second strategy does not have this prob-
lem, and turns out to be the only one that allows us to match the scope of the analysis
to the constraints of the system on which the validation algorithm is executed, what-
ever they may be. The application to PROMELA is elaborated in the next two chapters.

For exceptionally large validation problems, finally, the only workable validation
method is a random simulation that tries to explore as many system states as possible,
trying to home in on those states that can violate the system invariants.

EXERCISES

11-1. 11-1. Use the manual proof technique to show that the alternating bit protocol preserves the
correctness of the window protocol invariant for a window size of one.

11-2. 11-2. Modify the partial search algorithm to include a maximum or fair state space exploration
heuristic.

11-3. 11-3. The following solution to Dijkstra’s mutual exclusion problem (see Chapter 2, and Dijks-
tra [1965]) appeared in the Communications of the ACM , Hyman [1966]. It is repro-
duced here as it was published (in pseudo Algol).

1 Boolean array b(0;1) integer k, i, j,
2 comment process i, with i either 0 or 1;
3 C0: b(i) := false;
4 C1: if k != i then begin
5 C2: if not (b(j) then go to C2;
6 else k := i; go to C1 end;
7 else critical section;
8 b(i) := true;
9 remainder of program;
10 go to C0;
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11 end

Show that the solution is incorrect by modeling the solution in PROMELA, and performing
an automated validation with one of the reachability analysis algorithms discussed in this
chapter.

11-4. 11-4. The reachability analysis algorithms we have considered verify the observance of system
state invariants. Consider possible extensions to the basic full-search algorithm to check
for properties of system state sequences: paths through the global state space. What
extensions are necessary, for instance, to be able to prove or disprove for the alternating
bit protocol that there is no infinite sequence of transitions in which the 1-bit sequence
number remains unchanged?

11-5. 11-5. There are algorithms that can find all strongly connected components in a directed cyclic
graph, e.g., Aho, Hopcroft & Ullman [1974, p. 192]. Consider how such an algorithm
could be used to extend the capabilities of the reachability analyzers, what the cost in
added time and space complexity would be, and how these extensions would be affected
by partial searching.

BIBLIOGRAPHIC NOTES
The manual proof technique based on system invariants is due to Krogdahl [1978] and
Knuth [1981]. The proof of the window invariant discussed here was also first given
in Knuth [1981]. The method was also used more recently in Brown, Gouda, and
Miller [1989]. Gouda’s manual validation method based on state invariants and
well-founded formulas is inspired by the seminal paper Floyd [1967].

Several other attempts have been made to develop automated protocol validation tools
that are not based on reachability analysis. Early experience with some automated
versions of these tools was reported in Schwabe [1981] and Sunshine and Smallberg
[1982]. A promising new manual proof theory is based on the Oxford specification
language Z. See for instance Duke, Hayes, King and Rose [1988], Duke, Hayes and
Rose [1988], and Hayes, Mowbray and Rose [1989].

Work on automated protocol validation methods was pioneered by Brand and Joyner
[1978], Hajek [1978], West and Zafiropulo [1978], West [1978], Zafiropulo [1978],
and Razouk and Estrin [1980]. The work of Colin West and Pitro Zafiropulo [1978]
provided a first demonstration that with automated tools even protocols that have
withstood the scrutiny of years of development in an international standardization
organization can, within a few seconds of computer time, be shown to be flawed. In
this case, the protocol was the CCITT Recommendation X.21, and the validation tool
was a straightforward implementation of the validation theory developed in
Zafiropulo [1978]. Important subsequent work was reported in Zafiropulo et al.
[1980], Rubin and West [1982]. Excellent surveys of the work on protocol validation
can be found in IFIP conference proceedings such as IFIP [1983], or the April 1980
special issue on ‘‘Computer Network Architectures and Protocols’’ of the IEEE Tran-
sactions on Communications , which contains the standard reference Bochmann and
Sunshine [1980].

There are many results on the computational complexity of the validation task of a
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communicating finite state machine model, see for instance Cunha and Maibaum
[1981], Brand and Zafiropulo [1983], Apt and Kozen [1986], Reif and Smolka [1988].
In general, the problem of finding deadlocks in a system of communicating finite state
machines is PSPACE complete at best, and becomes formally undecidable when the
message channels are unbounded.

This result, of course, does not mean that any further analysis of finite state machine
models is pointless. It does mean that the complexity of a protocol validation algo-
rithm is a main concern. These algorithms can carry no more overhead than strictly
necessary to solve the problem. Though it can be tempting to extend a search algo-
rithm to capture more subtle features, it is generally ill-advised to do so if the method
is to survive application to problems of a realistic size.

The necessity of partial search techniques was first described in West [1986b] and in
Holzmann [1985, 1987a]. An overview of a range of search heuristics that have since
been invented for partial searches can be found in Lin, Chu and Liu [1987]. The ran-
dom state space exploration method as first studied by Colin West [1986b, 1989].
Probabilistic partial search techniques were described by Maxemchuck and Sabnani
[1987]. A scatter search technique with guiding expressions was introduced in Pageot
and Jard [1988]. A heuristic for partial orders was first suggested in Holzmann
[1985]. Several more formal approaches have been investigated in the last few years,
e.g., Probst [1990], Valmari [1990] and Godefroid [1990]. The fair progress state
exploration heuristic was first suggested in Rubin and West [1982], and further
explored in Gouda and Han [1985]. Maximum progress state exploration was
described in Gouda and Yu [1984]. The concept of ‘‘protocol projections’’ was intro-
duced in Lam and Shankar [1984].

The bit state space technique was first described in Holzmann [1987b] and elaborated
in Holzmann [1988]. The hashing technique is based on a much older technique
called ‘‘scatter storage,’’ described in Morris [1968], and applied in McIlroy [1982].
The bit state space search technique can easily be applied to all FSM based models,
e.g., Rafiq and Ansart [1983], Estelle, e.g., Richier et al. [1987], the S/R model,
Aggarwal, Kurshan and Sharma [1983], and Petri Net models, e.g., Bourguet [1986],
to name just a few.

The extension of the exhaustive search algorithm with assertion proving capabilities
was described in Holzmann [1987a]. An comparison of search algorithms based on
reachability analysis appeared in Holzmann [1990].

The algorithm for the detection of non-progress cycles has not been published before.
The algorithm for the detection of acceptance cycles, for instance in the context of a
temporal claim, is due to Mihalis Yannakakis of AT&T Bell Laboratories. It was first
described in Courcoubetis, Vardi, Wolper, and Yannakakis [1990]. A standard algo-
rithm for detecting strongly connected components in a graph can be found in Aho,
Hopcroft and Ullman [1974].

The application of pure finite state models to the protocol validation problem can be
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found in, for instance, Brand and Zafiropulo [1983], Bochmann [1983], or Knudsen
[1983].

Many interesting approaches to the protocol validation problem could not be dis-
cussed here. In particular this goes for the work on the S/R model and omega regular
languages, Aggarwal, Kurshan and Sharma [1983], Har’El and Kurshan [1990], and
model checking systems for circuit verification, e.g., Clarke [1982], Browne, Clarke,
Dill, and Mishra [1986].
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12.1 INTRODUCTION
Without the proper tools it may be possible to design a correct protocol, but in most
cases it will be impossible to formally establish its correctness with any measure of
reliability. So far, we have occupied ourselves mainly with the development of a
design discipline based on the usage of formal validation models. In this chapter we
extend this discipline with a software tool for simulating the behavior of validation
models written in PROMELA. The tool is called SPIN, which is short for: simple
PROMELA interpreter1 . SPIN can simulate the execution of a validation model by inter-
preting PROMELA statements on the fly. It can be used on either partial or complete
protocol designs, at any level of abstraction. It can quickly tell us whether or not we
are on the right track with a design and as such it can be a valuable design tool.

The program that we develop in this chapter will not try to validate correctness
requirements. That is a task for a validator (Chapter 13). A small exception to that
rule is made for PROMELA assert statements, since the corresponding requirements
are validated as a mere side-effect of their execution. The validation of non-progress
cycles, invalid end-states, and temporal claims, however, is outside the scope of a
simulator. The complete program for the simulator contains about 2000 lines of text.
It includes a lexical analyzer, a parser, and a process scheduler. It does require a fair
amount of explanation and some familiarity with C and UNIX to get through this
chapter. But, rest assured, it is not necessary to understand the details of the imple-
mentation to be able to use the simulator. Below we first discuss the general structure
and the type of output the simulator can generate. Then we discuss a small version of
the program, only for evaluating PROMELA expressions, and show how it works.
__________________
1. The terms simulator, interpreter, and evaluator are used as synonyms in this chapter.
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Finally, we extend this program into a complete interpreter, by adding the missing
pieces one by one. In the next chapter SPIN is extended with an option for performing
fast automated protocol validations. A source listing for the final version of SPIN can
be found in Appendices D and E.

12.2 SPIN – OVERVIEW
To build the interpreter we rely on the UNIX programming tools yacc, lex, and make.
A casual familiarity with these tools is therefore assumed. We concentrate here on
what the tools can do for us, rather than explain how they work inside. In case of
emergency consult a UNIX manual or refer to the Bibliographic Notes at the end of
this chapter for pointers to other literature that may be helpful.

A SAMPLE SIMULATION RUN
Consider the example program from Chapter 5 for calculating the factorial of a posi-
tive integer number.

proctype fact(int n; chan p)
{ int result;

if
:: (n <= 1) -> p!1
:: (n >= 2) ->

chan child = [1] of { int };
run fact(n-1, child);
child?result;
p!n*result

fi
}
init
{ int result;

chan child = [1] of { int };

run fact(12, child);
child?result;
printf("result: %d\n", result)

}

Running the analyzer on this program produces the following output:

$ spin factorial
result: 479001600
13 processes created

where $ is a UNIX system prompt. And fortunately,

12*11*10*9*8*7*6*5*4*3*2*1 = 479001600

Running the simulator in verbose mode gives us a little more information about the
run, for instance by printing all message transmissions, with the number of the pro-
cess performing them, the contents of the message being sent, and the name of the
destination channel.
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$ spin -s factorial
proc 12 (fact) line 5, Send 1 -> queue 12 (p)
proc 11 (fact) line 10, Send 2 -> queue 11 (p)
proc 10 (fact) line 10, Send 6 -> queue 10 (p)
proc 9 (fact) line 10, Send 24 -> queue 9 (p)
proc 8 (fact) line 10, Send 120 -> queue 8 (p)
proc 7 (fact) line 10, Send 720 -> queue 7 (p)
proc 6 (fact) line 10, Send 5040 -> queue 6 (p)
proc 5 (fact) line 10, Send 40320 -> queue 5 (p)
proc 4 (fact) line 10, Send 362880 -> queue 4 (p)
proc 3 (fact) line 10, Send 3628800 -> queue 3 (p)
proc 2 (fact) line 10, Send 39916800 -> queue 2 (p)
proc 1 (fact) line 10, Send 479001600 -> queue 1 (p)
result: 479001600
13 processes created

The column with the message value now implicitly gives us a running count of the
factorial being computed. If still more information is needed, we can also run the
simulator with additional flags to print, for instance, message receptions or the values
of variables. But the above example suffices for now.

12.3 EXPRESSIONS
One specific function that the simulator must perform is the evaluation of expressions.
In a statement such as

crunch!data(3*12+4/2)

the simulator must evaluate three expressions:
The value of the destination crunch
The value of the message type data and
The value of the argument 3*12+4/2

The evaluation of expressions may seem insignificant at first, but since PROMELA is
founded on the concept of executability, the evaluation of statements in general is
really at the core of the simulator. To keep things simple, let us therefore begin with a
small program that can do no more than evaluate PROMELA expressions.

We have to tell our program what valid expressions look like and how they should be
evaluated. The first issue calls for a grammar specification. If we ignore variable
names for a while, the simplest form of expression is a number, say an integer con-
stant. We write a constant as a series of one or more digits, where a digit is any sym-
bol in the range ’0’ to ’9’. If we formalize this we can write

digit : ’0’ | ’1’ | ’2’ | ’3’ | ’4’
| ’5’ | ’6’ | ’7’ | ’8’ | ’9’

The term we are defining is on the left side of the colon, and the defining symbols are
on the right side where the vertical bar ’|’ is used to separate alternatives. Recur-
sively then, we can define a constant as a series of one or more digits, as follows:
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const : digit
| digit const

And, similarly, we can specify that a simple expression is just a number by writing

expr : const

It is now easy to tag on more interesting types of expressions. From any two valid
expressions we can make another valid one by adding, subtracting, multiplying, or
dividing them. Recursively again, we define

expr : const
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ’(’ expr ’)’

The last line is for good form: if 2+5 is a valid expression, then so is (2+5). It also
allows us to force the order of evaluation of subexpressions, but more about that later.

Formally, what we have defined here are three production rules. On the left side of
the rule (before the colon) we write the phrase we want to define. On the right side
we write a number of alternative ways in which the phrase can be constructed,
separated by vertical bars. Quoted characters are called literals. Names written in
capitals are called terminals or tokens. Everything else is called a non-terminal and
must be defined, that is, it must occur somewhere on the left side of a production rule.
A lexical analyzer is used to recognize the terminals and literals and pass them on to a
parser. The parser can then restrict itself to checking the grammar, and building a
‘‘parse tree.’’ This general structure is illustrated in Figure 12.1.

PROMELA

Specification

Lexical

Analyzer
Parser Scheduler

Simulation

Output

Figure 12.1 — General Structure of the Simulator
The scheduler evaluates the program by walking down the parse tree, evaluating its
nodes in accordance with the semantics of the language. So it is important that the
parser delivers a tree structure to the scheduler that is connected in such a way that it
can be evaluated on the fly. But, more about the parser and the scheduler later; let us
first look at the lexical analyzer.

A first specification of the lexical analyzer is fairly straightforward to define with the
UNIX tool lex. In fact, with lex, it is easy to consider numbers a special class of token
named CONST (uppercase, because it is now a terminal), with their numeric value
attached as an attribute. In this way the grammar specification can assume the
existence of the number tokens, rather than having to parse and check them for syn-
tax. This is what the specification of the lexical analyzer looks like. We call this first
version of the program spine (SPIN expression evaluator). As always, the line
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numbers are not part of the program text.

1 /***** spine: lex.l *****/
2
3 %{
4 #include "spin.h"
5 #include "y.tab.h"
6
7 int lineno = 1;
8 %}
9

10 %%
11 [ \t] { /* ignore white space */ }
12 [0-9]+ { yylval.val = atoi(yytext); return CONST; }
13 \n { lineno++; }
14 . { return yytext[0]; }

The program skips over white space (line 11), counts newlines (line 13), calculates
the value of sequences of digits (line 12) and returns it as part of a token of type
CONST. Everything else is passed on as a literal (line 14), i.e., as a single character.
We rely on yacc to produce the definition of the name CONST. It is contained in the
header file y.tab.h that is included on line 5. But before we discuss the input for
yacc, we have to go back briefly to the grammar definition.

We still have to define what an expression such as 2+5*3 means. As far as our pro-
gram is concerned, it could equally well mean either (2+5)*3 or 2+(5*3). The con-
vention is that multiplication and division have a higher precedence than addition and
subtraction, which means that the second interpretation is the correct one. We will
see below how these precedence rules can be stated formally in a grammar
specification.

All rules and definitions given so far can be expressed with the UNIX parser generator
yacc. A complete yacc specification for the grammar defined so far looks as follows:
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1 /***** spine: spin.y *****/
2
3 %{
4 #include "spin.h" /* defines what Nodes are etc */
5 %}
6
7 %union{ /* defines the data type of */
8 int val; /* the internal parse stack */
9 Node *node;
10 }
11
12 %token <val> CONST /* token CONST has a value */
13 %type <node> expr /* expressions produce nodes */
14
15 %left ’+’ ’-’ /* left associative operators */
16 %left ’*’ ’/’ /* idem, highest precedence */
17 %%
18
19 /** Grammar Rules **/
20
21 program : expr { printf("= %d\n", eval($1)); }
22 ;
23 expr : ’(’ expr ’)’ { $$ = $2; }
24 | expr ’+’ expr { $$ = nn( 0, ’+’, $1, $3); }
25 | expr ’-’ expr { $$ = nn( 0, ’-’, $1, $3); }
26 | expr ’*’ expr { $$ = nn( 0, ’*’, $1, $3); }
27 | expr ’/’ expr { $$ = nn( 0, ’/’, $1, $3); }
28 | CONST { $$ = nn($1, CONST, 0, 0); }
29 ;
30 %%

Parts of this specification will look familiar. Lines 23 to 29 define the structure of
expressions, and lines 15 and 16 define the precedence rules. Line 12 defines CONST
to be a token with an attribute of type val. Line 21 defines that, in this version, we
expect a PROMELA program to consist of a single expression.

There are also some new phrases. Line 13, for instance, contains the definition for the
internal representation of an expression: a data structure named node. We use yacc to
build a parse tree of a PROMELA program, or in this case a parse tree of an expression.
For example, parsing the expression 2+5*3 produces the tree shown in Figure 12.2.
The parse tree defines the structure of the program and will help us later to determine
how it is to be interpreted.

The yacc file is used to generate what is called an LALR(1) parser that can build the
tree in Figure 12.2. The parser scans its input in one pass from left-to-right. It builds
a rightmost derivation in reverse, using at most one look-ahead token. Each node in
the parse tree is represented by a data structure that is defined in the include file
spin.h, on lines 3 to 7. The structure is referred to in spin.y on lines 9 and 13.
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Figure 12.2 — Parse Tree for 2+5*3

1 /***** spine: spin.h *****/
2
3 typedef struct Node {
4 int nval; /* value attribute */
5 short ntyp; /* node type */
6 struct Node *lft, *rgt; /* children parse tree */
7 } Node;
8
9 extern Node *nn(); /* allocates nodes */

10 extern char *emalloc(); /* allocates memory */
11 extern void exit();

We have used only binary arithmetic operators so each node in the tree needs to point
to at most two descendants. In spin.h these are called lft and rgt, two pointers to
structures of type Node. The definition of a Node also contains a field for storing the
node type, which can be an operator such as ’+’, and ’*’, or it can be a terminal
node of type CONST. Terminal nodes, of course, have no descendants (cf. Figure
12.2), but they do have an attribute of type nval which is used to store the numerical
value of the constant calculated by the lexical analyzer and passed on to the parser in
the yylval.val field of the token (line 12 of lex.l).

Now, back to the parser. Whenever a subexpression is recognized it is remembered in
a structure of type Node. In our example we use the function nn() to prepare such a
structure. Its type is declared in spin.h on line 9. The definition of the procedure
itself looks as follows:
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Node *
nn(v, t, l, r)

Node *l, *r;
{

Node *n = (Node *) emalloc(sizeof(Node));
n->nval = v;
n->ntyp = t;
n->lft = l;
n->rgt = r;
return n;

}

The routine allocates memory for a new node in the parse tree, relying on emalloc()

to check for error conditions and it returns a pointer to the initialized structure. For
instance, when expression 5*3 is parsed, line 28 in spin.y is invoked twice, once for
5, once for 3. Each call produces a sub-expression of type CONST that is passed to line
26. The nodes of type CONST have no descendants, but the attribute fields are set to
the value of the constant. The value produced by lex.l is available in a predefined
parameter named $1, where the 1 refers to the first field in the production rule on line
28. In this case there is only one field on the right side of that rule, so $1 is also the
only valid parameter. The type of the field is an integer in this case, as defined on
lines 8 and 12.

On line 26 a new node is constructed of type ’*’ with the two sub-expressions of
type CONST as descendants. Arithmetical operators, such as ’*’, are passed as literals
from the lexical analyzer to the parser. The data structures representing the two sub-
expressions for the multiplication are again passed by yacc in two parameters, named
$1 and $3. They point at the first and the third field of the production rule.

When the complete parse tree has been built it is passed to the production rule on line
21 and it can be interpreted. Here is the code for the interpreter.

eval(now)
Node *now;

{
if (now != (Node *) 0)
switch (now->ntyp) {
case CONST: return now->nval;
case ’/’: return (eval(now->lft) / eval(now->rgt));
case ’*’: return (eval(now->lft) * eval(now->rgt));
case ’-’: return (eval(now->lft) - eval(now->rgt));
case ’+’: return (eval(now->lft) + eval(now->rgt));
default : printf("spin: bad node type %d\n", now->ntyp);

exit(1);
}
return 0;

}

The default clause defends against unknown node types. The known types of nodes
are evaluated recursively until the final answer is produced.

If we put all these pieces together we get the PROMELA expression evaluator. Here is
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a complete listing, together with the remaining routines that escaped mention above.

1 /***** spine: spin.h *****/
2
3 typedef struct Node {
4 int nval; /* value attribute */
5 short ntyp; /* node type */
6 struct Node *lft, *rgt; /* children parse tree */
7 } Node;
8
9 extern Node *nn(); /* allocates nodes */

10 extern char *emalloc(); /* allocates memory */
11 extern void exit();
12
13 /***** spine: lex.l *****/
14
15 %{
16 #include "spin.h"
17 #include "y.tab.h"
18
19 int lineno = 1;
20 %}
21
22 %%
23 [ \t] { /* ignore white space */ }
24 [0-9]+ { yylval.val = atoi(yytext); return CONST; }
25 \n { lineno++; }
26 . { return yytext[0]; }
27
28 /***** spine: spin.y *****/
29
30 %{
31 #include "spin.h" /* defines what Nodes are etc */
32 %}
33
34 %union{ /* defines the data type of */
35 int val; /* the internal parse stack */
36 Node *node;
37 }
38
39 %token <val> CONST /* token CONST has a value */
40 %type <node> expr /* expressions produce nodes */
41
42 %left ’+’ ’-’ /* left associative operators */
43 %left ’*’ ’/’ /* idem, highest precedence */
44 %%
45
46 /** Grammar Rules **/
47
48 program : expr { printf("= %d\n", eval($1)); }
49 ;
50 expr : ’(’ expr ’)’ { $$ = $2; }
51 | expr ’+’ expr { $$ = nn( 0, ’+’, $1, $3); }
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52 | expr ’-’ expr { $$ = nn( 0, ’-’, $1, $3); }
53 | expr ’*’ expr { $$ = nn( 0, ’*’, $1, $3); }
54 | expr ’/’ expr { $$ = nn( 0, ’/’, $1, $3); }
55 | CONST { $$ = nn($1, CONST, 0, 0); }
56 ;
57 %%
58
59 /***** spine: run.c *****/
60
61 #include "spin.h"
62 #include "y.tab.h"
63
64 eval(now)
65 Node *now;
66 {
67 if (now != (Node *) 0)
68 switch (now->ntyp) {
69 case CONST: return now->nval;
70 case ’/’: return (eval(now->lft) / eval(now->rgt));
71 case ’*’: return (eval(now->lft) * eval(now->rgt));
72 case ’-’: return (eval(now->lft) - eval(now->rgt));
73 case ’+’: return (eval(now->lft) + eval(now->rgt));
74 default : printf("spin: bad node type %d\n", now->ntyp);
75 exit(1);
76 }
77 return 0;
78 }
79
80 /***** spine: main.c *****/
81
82 #include "spin.h"
83 #include "y.tab.h"
84
85 main()
86 {
87 yyparse();
88 exit(0);
89 }
90
91 yywrap() /* a dummy routine */
92 {
93 return 1;
94 }
95
96 yyerror(s1, s2) /* called by yacc on syntax errors */
97 char *s1, *s2;
98 {
99 extern int lineno;

100 char buf[128];
101 sprintf(buf, s1, s2);
102 printf("spine: line %d: %s\n", lineno, buf);
103 }
104
105 char *
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106 emalloc(n)
107 { extern char *malloc(); /* library functions */
108 extern char *memset();
109
110 char *tmp = malloc(n);
111 if (!tmp)
112 { printf("spine: not enough memory\n");
113 exit(1);
114 }
115 memset(tmp,0,n); /* clear memory */
116 return tmp;
117 }
118
119 Node *
120 nn(v, t, l, r)
121 Node *l, *r;
122 {
123 Node *n = (Node *) emalloc(sizeof(Node));
124 n->nval = v;
125 n->ntyp = t;
126 n->lft = l;
127 n->rgt = r;
128 return n;
129 }

To compile this set of programs, the following makefile can be used.

# ***** spine: makefile *****

CC=cc # ANSI C compiler
CFLAGS= # no flags yet
YFLAGS=-v -d -D # verbose, debugging
OFILES= spin.o lex.o main.o run.o

spine: $(OFILES)
$(CC) $(CFLAGS) -o spine $(OFILES)

%.o: %.c spin.h # all files depend on spin.h
$(CC) $(CFLAGS) -c $%.c

The makefile defines which flags must be passed to yacc and cc and it records the
dependencies among the source files. It states, for instance, that when spin.h

changes, all object files must be recreated. The makefile is read by another UNIX util-
ity called make to produce the executable program spine. Here is the dialogue that is
printed on my system if this program is compiled and invoked with a sample expres-
sion.

$ make
yacc -v -d -D spin.y
cc -c y.tab.c
rm y.tab.c
mv y.tab.o spin.o
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lex lex.l
cc -c lex.yy.c
rm lex.yy.c
mv lex.yy.o lex.o
cc -c main.c
cc -c run.c
cc -o spine spin.o lex.o main.o run.o
$ echo "2+5*3" | spine
= 17
$

The complete program must of course recognize quite a few other language features
before it can simulate PROMELA programs. They can be grouped into five classes:

Variables
Statements
Control-flow constructs
Processes
Macro expansion

VARIABLES (Section 12.4, page 255)
We have to consider variable declarations, assignments to variables and references
variables, generally in expressions built from the full range of arithmetic and logical
operators, plus the special operators len and run. We consider variables of the five
basic data types bit, bool, byte, short, and int, plus the declaration of channel
type identifiers with the keyword chan.

STATEMENTS (Section 12.5, page 265)
There are two types of unconditional statements: assignments to variables and the
print statement we added to the simulator. There are also five basic types of condi-
tional statements: boolean conditions, timeouts, send and receive statements, and
assert. The ‘‘pseudo-statement’’ skip can be implemented as the equivalent of the
condition (1).

CONTROL FLOW (Section 12.6, page 275)
We have to consider the sequential control flow specifications: goto, break, selec-
tion, repetition, and atomic statements.

PROCESSES AND MESSAGE TYPES (Section 12.7, page 282)
Most importantly, we have to implement the code for parsing and interpreting global
declarations for both process types and message types.

MACRO EXPANSION (Section 12.8, page 292)
One of the easier parts of the code. Macro expansion is achieved by routing the input
to SPIN through the standard C preprocessor before parsing begins.

TO THE BRAVE
Each of the next four sections focuses on one of these four extensions of the little pro-
gram spine, that was discussed above. This discussion ultimately leads us to the full
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simulator source of SPIN as it is listed in Appendix D. The discussion below is pri-
marily meant for the benefit of those who would like to expand, or modify the code,
or the language that it parses. Feel free to skip sections or to move directly to a safer
part of the chapter, such as Section 12.9 explaining the general use of the program.
The brave who delve into the code may occasionally want to refer back to this over-
view or to the previews at the beginning of each section. To see the code in context
they may also want to refer to the appendix. Appendix D includes an index of all the
code, together with references to the page numbers that explain it.

12.4 VARIABLES
Most of the code that is required for the manipulation of variables is contained in two
files. The first file, sym.c, contains the definition of a general symbol table handler.
The second file, vars.c, contains the code for storing and manipulating variables of
the basic data types. We do not worry too much about variables of type chan just yet.
The bulk of that will come in the next extension when message passing is imple-
mented. For now, we will just parse the declarations. To fully implement the other
types of variables, we need some new hooks in the lexical analyzer, the parser and in
the expression evaluation routine. The next four subsections, then, focus on these
extensions:

Extensions to the lexical analyzer (Section 12.4.1, page 255)
New symbol table routines (Section 12.4.2, page 257)
Extensions to the parser (Section 12.4.3, page 260)
New code for the evaluator (Section 12.4.4, page 263)

We begin by taking a look at the changes that have to be made in the lexical analyzer.

12.4.1 LEXICAL ANALYZER
There is a range of new tokens that must be added to recognize variable names and
declarations in the input to the simulator. There are also several PROMELA operators
that consist of more than one character and are best recognized in the lexical analyzer
and converted into tokens. Let’s first look at variable declarations. Recognizing the
five basic data types and the keyword chan produces the following extra rules in
lex.l.

"int" { yylval.val = INT; Token TYPE; }
"short" { yylval.val = SHORT; Token TYPE; }
"byte" { yylval.val = BYTE; Token TYPE; }
"bool" { yylval.val = BIT; Token TYPE; }
"bit" { yylval.val = BIT; Token TYPE; }
"chan" { yylval.val = CHAN; Token TYPE; }

Each declarator is passed as a token of type TYPE. The attribute is a constant, defined
in spin.h, that specifies the width of each data type in bits (except for CHAN).
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#define BIT 1 /* data types */
#define BYTE 8 /* width in bits */
#define SHORT 16
#define INT 32
#define CHAN 64

The term Token is also defined in a macro

#define Token if (!in_comment) return

which in combination with the following two lines

"/*" { in_comment=1; }
"*/" { in_comment=0; }

guarantees that no lexical tokens are passed to the parser within PROMELA comments.
The two-character operators are recognized by the following new lex rules.

"<<" { Token LSHIFT; /* shift bits left */ }
">>" { Token RSHIFT; /* shift bits right */ }
"<=" { Token LE; /* less than or equal to */ }
">=" { Token GE; /* greater than or equal to */ }
"==" { Token EQ; /* equal to */ }
"!=" { Token NE; /* not equal to */ }
"&&" { Token AND; /* logical and */ }
"||" { Token OR; /* logical or */ }

Most single character operators, such as ’<’ or ’>’ are still passed by the last line of
the rules section:

. { Token yytext[0]; }

which was basically unmodified from the version used in spine. An exception is the
assignment operator ’=’, which is converted into a real token, named ASGN. It is also
given a value attribute that is set to the line number on which the assignment was
found.

"=" { yylval.val = lineno; Token ASGN; }

To facilitate debugging, as many tokens as possible are tagged with a line number that
refers back to the PROMELA source file. The above lex rule shows how that works for
the assignment statement. The treatment of tokens for alphanumeric names is imple-
mented slightly differently. To simplify the code that lex has to produce a little bit,
we look up predefined alphanumeric names in a static table with procedure
check_name(). The procedure is called from within the lex rule

[a-zA-Z_][a-zA-Z_0-9]* { Token check_name(yytext); }

An arbitrary name starts with an upper or lower case letter, and is followed by zero or
more letters or digits. Underscores are allowed in names. To recognize the keywords
len, run, and of (used in chan initializers), for instance, we can write:
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static struct {
char *s; int tok;

} Names[] = {
"len", LEN,
"run", RUN,
"of", OF,
0, 0,

};

check_name(s)
char *s;

{
register int i;
for (i = 0; Names[i].s; i++)

if (strcmp(s, Names[i].s) == 0)
{ yylval.val = lineno;

return Names[i].tok;
}

yylval.sym = lookup(s); /* symbol table */
return NAME;

}

Unrecognized names go through to the symbol table routines, all others come back
immediately with a line number attached.

All new token names must be defined properly in the yacc grammar specification, but
we will come to that later. Let us first look at the way in which names are stored in
the symbol table. So far we have no separate processes, so all names are necessarily
global. The routine lookup() is defined in a new file sym.c with a symbol table
handler.

12.4.2 SYMBOL TABLE HANDLER
Each new name is stored in a data structure of type Symbol that is defined in the new
version of spin.h.

typedef struct Symbol {
char *name;
short type; /* variable or chan type */
int nel; /* 1 if scalar, >1 if array */
int *val; /* runtime value(s), initl 0 */
struct Node *ini; /* initial value, or chan-def */
struct Symbol *next; /* linked list */

} Symbol;

The structure Symbol contains the full name of the symbol being stored as a pointer
to a character string. It also holds its type and the number of elements that are acces-
sible if the name is defined to be an array. The pointer ini points to a parse tree frag-
ment that can be evaluated to initialize a new identifier: a channel initializer for mes-
sage channels, or an integer expression for variables of the five basic data types. The
integer pointer val points to a location where the runtime values of global variables
are stored.
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The last element of the structure, next, points to another symbol. In its simplest form
then, the symbol table can be implemented as a single linked list pointed to by

Symbol *symtab.

Initially the list is empty:

symtab = (Symbol *) 0.

Inserting a new symbol sp at the front list takes just two assignments in C:

sp->next = symtab;
symtab = sp;

Linked lists will come back a few more times in the other extensions we make. We
use them, for instance, to implement message channels and for storing process refer-
ences in the scheduler. Figure 12.3 illustrates how the linked list is used for the sym-
bol table routines.

symtab *
Symbol

next *
Symbol

next *
NULL

name, val,

..etc

name, val,

..etc

Figure 12.3 — Linked List for the Symbol Table

The complete lookup routine, using the linked list, can be written as follows:

Symbol *
lookup(s)

char *s;
{

Symbol *sp;

/* check if symbol is already in the list */
for (sp = symtab; sp; sp = sp->next)

if (strcmp(sp->name, s) == 0)
return sp; /* yes it is */

/* if not, create a new symbol */
sp = (Symbol *) emalloc(sizeof(Symbol));
sp->name = (char *) emalloc(strlen(s) + 1);
strcpy(sp->name, s);
sp->nel = 1; /* scalar */
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/* insert it in the list */
sp->next = symtab;
symtab = sp;

return sp;
}

The routine emalloc() allocates and clears memory for us, so by default the type
and the initial value of a new variable are both zero. The lookup routine is called by
the lexical analyzer that, as defined, has not enough context to determine the type of a
variable name or even if it is used as a scalar or as a vector. A separate routine
settype() is called by the parser to initialize the type field of variables when that
information has been collected. In the same check we can also make sure that an
array was not accidentally given a negative dimension. The first argument to
settype() is a linked list of names, with a pointer into the symbol table for each
name.

settype(n, t)
Node *n;

{
while (n)
{ if (n->nsym->type)

yyerror("redeclaration of ‘%s’", n->nsym->name);
n->nsym->type = t;
if (n->nsym->nel <= 0)

yyerror("bad array size for ‘%s’", n->nsym->name);
n = n->rgt;

}
}

The code maintains the same bookkeeping for all variables, scalars and arrays alike.
A scalar is simply an array of size one.

Using only a single linked list to store all names, however, makes the lexical analyzer
spend a disproportionate amount of time looking up variable names in the initial for
loop of routine lookup(). For each new name, the routine would be forced to look at
all previously entered names, before it can finally decide that a new symbol must be
created. The longer the list, the more severe the time penalty becomes. A standard
solution to this problem is to use a hash-table lookup scheme. We use the name of
the symbol to calculate a unique index into an array of symbol tables (the hash-table),
and store the symbol there. The average search time goes down linearly with the size
of the hash table. It leads to the following version, with Nhash a constant defined in
spin.h.
The value of Nhash must be of the type 2n −1, with arbitrary n.

Symbol *symtab[Nhash+1];
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hash(s)
char *s;

{
int h=0;

while (*s)
{ h += *s++;

h <<= 1;
if (h&(Nhash+1))

h |= 1;
}
return h&Nhash;

}

Symbol *
lookup(s)

char *s;
{

Symbol *sp;
int h=hash(s);

for (sp = symtab[h]; sp; sp = sp->next)
return sp; /* found */

for (sp = symtab[h]; sp; sp = sp->next)
return sp; /* global */

sp = (Symbol *) emalloc(sizeof(Symbol)); /* add */
sp->name = (char *) emalloc(strlen(s) + 1);
strcpy(sp->name, s);
sp->nel = 1;
sp->next = symtab[h];
symtab[h] = sp;

return sp;
}

12.4.3 PARSER
Now let us look at the extensions that we must make in the parser to recognize vari-
able names, declarations, and the new operators. First, recall that a token of type
NAME has an attribute of type Symbol. We must therefore extend the definition of the
parser’s stack.

%union{
int val;
Node *node;
Symbol *sym;

}

There are also some new token names and quite a few new precedence rules. Here is
what we added.
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%token <val> LEN OF
%token <val> CONST TYPE ASGN
%token <sym> NAME

%type <sym> var ivar
%type <node> expr var_list
%type <node> args arg typ_list

%right ASGN
%left OR
%left AND
%left ’|’
%left ’&’
%left EQ NE
%left ’>’ ’<’ GE LE
%left LSHIFT RSHIFT
%left ’+’ ’-’
%left ’*’ ’/’ ’%’
%left ’˜’ UMIN NEG

The assignment operator ASGN is right associative and gets the lowest precedence of
all operators. The new token of type NAME has a symbol attribute pointing to a slot in
the symbol table.
A sequence of zero or more variable declarations is parsed as follows:

any_decl: /* empty */ { $$ = (Node *) 0; }
| one_decl ’;’ any_decl { $$ = nn(0, 0, ’,’, $1, $3); }
;

one_decl: TYPE var_list { settype($2, $1); $$ = $2; }
;

As soon as a complete variable declaration is recognized, in the last production above,
the routine settype() is called to store the extra type information in the symbol
table. Before we look at the definition of a var_list, note that a variable name can
be followed by an array index. Variables are therefore defined in the grammar as a
non-terminal var, of type sym.

var : NAME { $1->nel = 1; $$ = $1; }
| NAME ’[’ CONST ’]’ { $1->nel = $3; $$ = $1; }

For the time being we just remember the array size specified, and check it for its vali-
dity later when a procedure settype() is called. A variable can also have an initiali-
zation field. An initialized variable can be defined as a non-terminal ivar, as fol-
lows:
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ivar : var { $$ = $1; }
| var ASGN expr { $1->ini = $3; $$ = $1; }
| var ASGN ch_init { $1->ini = $3; $$ = $1; }
;

ch_init : ’[’ CONST ’]’ OF ’{’ typ_list ’}’
{ if ($2) u_async++; else u_sync++;

cnt_mpars($6);
$$ = nn(0, $2, CHAN, 0, $6);

}
;

The initializer can be either an expression returning a value or a channel specification.
The production rules above allow both. Some statistics are gathered about the number
of message parameters used and the number of synchronous and asynchronous chan-
nels that are declared. The list of data types in a channel initializer is also quickly
defined.

typ_list: TYPE { $$ = nn(0, 0, $1, 0, 0); }
| TYPE ’,’ typ_list { $$ = nn(0, 0, $1, 0, $3); }
;

The check that, for instance, a channel is not initialized with an expression can be
placed in the code that performs the actual initializations. The set of production rules
that deals with variable declarations can be completed by defining

var_list: ivar { $$ = nn($1, 0, TYPE, 0, 0); }
| ivar ’,’ var_list { $$ = nn($1, 0, TYPE, 0, $3); }
;

The node allocation routine nn() must now also handle the new symbol-table refer-
ences. It is extended as follows:

Node *
nn(s, v, t, l, r)

Symbol *s;
Node *l, *r;

{
Node *n = (Node *) emalloc(sizeof(Node));
n->nval = v;
n->ntyp = t;
n->nsym = s;
n->fname = Fname;
n->lft = l;
n->rgt = r;
return n;

}

Next, we have to prepare to parse the new operators that we have added. Most of it is
straightforward. The series of production rules for expressions merely grows a bit.
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expr : ’(’ expr ’)’ { $$ = $2; }
| expr ’+’ expr { $$ = nn(0, 0, ’+’, $1, $3); }
| expr ’-’ expr { $$ = nn(0, 0, ’-’, $1, $3); }
...
| expr AND expr { $$ = nn(0, 0, AND, $1, $3); }
| expr OR expr { $$ = nn(0, 0, OR, $1, $3); }
...
| expr LSHIFT expr { $$ = nn(0, 0,LSHIFT,$1, $3); }
| expr RSHIFT expr { $$ = nn(0, 0,RSHIFT,$1, $3); }
| ’˜’ expr { $$ = nn(0, 0, ’˜’, $2, 0); }
| ’-’ expr %prec UMIN { $$ = nn(0, 0, UMIN, $2, 0); }
| ’!’ expr %prec NEG { $$ = nn(0, 0, ’!’, $2, 0); }
| LEN ’(’ varref ’)’ { $$ = nn($3->nsym,$1,LEN,$3,0); }
| varref { $$ = $1; }
| CONST { $$ = nn(0, $1, CONST, 0, 0); }
;

Perhaps the most interesting additions are the new types of expressions for the bit-
wise, arithmetic and logical unary operations: bitwise complement ’˜’, unary minus
and boolean negation. Since the minus operator can also be used as a binary operator
we have to set its precedence explicitly with the yacc keyword %prec. And, of course,
the negation operator ’!’ will double in one of the next extensions as a binary send
operator, so its precedence in this grammar rule is also explicitly set. In the final ver-
sion we replace the character token ’!’ with a token SND, which is again labeled with
a line number to improve error reporting.

The variable references, used in the last two production rules, are defined as follows:

varref : NAME { $$ = nn($1, 0, NAME, 0, 0); }
| NAME ’[’ expr ’]’ { $$ = nn($1, 0, NAME, $3, 0); }
;

There are just two types of variable references, one for scalars and one for arrays.
They both return a node of type NAME with the first field referring to the symbol that
defines the variable name. The left pointer specifies the optional array index. A null
pointer in place of an index trivially evaluates to zero. It should produce an error if
we try to determine the ‘‘length’’ of anything other than a channel variable. The
parser, however, does not check this.

12.4.4 EVALUATOR
The last routine we must look at for the addition of variables is the evaluator code in
run.c Luckily, the extension is almost trivial. There are merely some new cases in
the switch. For instance:
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switch (now->ntyp) {
...
case NE: return (eval(now->lft) != eval(now->rgt));
case EQ: return (eval(now->lft) == eval(now->rgt));
case OR: return (eval(now->lft) || eval(now->rgt));
case AND: return (eval(now->lft) && eval(now->rgt));
case LSHIFT: return (eval(now->lft) << eval(now->rgt));
case RSHIFT: return (eval(now->lft) >> eval(now->rgt));
...
case ASGN: return setval(now->lft, eval(now->rgt));
case NAME: return getval(now->nsym, eval(now->lft));
...

The only interesting new cases are the variable references on the last two lines above.
They are implemented with two procedure calls: getval() and setval().

To process an assignment, first the value to be assigned is determined by evaluating
the expression pointed to via now->rgt. Next, the target variable, and possibly its
index, must be found. All the information is available via the left pointer, which is
passed to setval(). A node of type NAME contains a pointer to the symbol table,
with the alpha-numeric variable name, and it contains an index for array references or
a null pointer for scalars. The routines getval() and setval() are defined in
vars.c. For global variables, the only type of variables we have so far, the routine
setval() hands the job to routine setglobal(), which checks the index and if
necessary allocates memory for the variables.

setglobal(v, m)
Node *v;

{
int n = eval(v->lft);

if (checkvar(v->nsym, n))
v->nsym->val[n] = m;

return 1;
}

with checkvar() defined as follows:

checkvar(s, n)
Symbol *s;

{
int i;

if (n >= s->nel || n < 0)
{ yyerror("array indexing error, ‘%s’", s->name);

return 0;
}
if (s->type == 0)
{ yyerror("undecl var ‘%s’ (assuming int)", s->name);

s->type = INT;
}
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if (s->val == (int *) 0) /* uninitialized */
{ s->val = (int *) emalloc(s->nel*sizeof(int));

for (i = 0; i < s->nel; i++)
{ if (s->type != CHAN)

s->val[i] = eval(s->ini);
else

s->val[i] = qmake(s);
} }
return 1;

}

A plain variable is initialized by evaluating the expression in the initialization field of
the symbol. A null pointer in this field, again, trivially evaluates to the default initial
value zero. A channel variable is initialized by passing the initialization pointer to a
routine qmake() that is discussed in the next section. A type clash between initializer
and variable triggers an error in either the evaluator or in the channel building routine.

The routine getval() hands off to getglobal().

getglobal(s, n)
Symbol *s;

{
if (checkvar(s, n))

return cast_val(s->type, s->val[n]);
return 0;

}

A zero result is returned if the checkvar routine fails, that is, if an indexing error was
detected. The routine cast_val() interprets the type of the variable and masks or
casts variable values accordingly.

cast_val(t, v)
{ int i=0; short s=0; unsigned char u=0;

if (t == INT || t == CHAN) i = v;
else if (t == SHORT) s = (short) v;
else if (t == BYTE) u = (unsigned char)v;
else if (t == BIT) u = (unsigned char)(v&1);

if (v != i+s+u)
yyerror("value %d truncated in assignment", v);

return (int)(i+s+u);
}

It is considered an error if a value changes due to type casting. Variables are only cast
to the right value when they are read. Internally, all values are stored in 32-bit
integers.

12.5 STATEMENTS
Adding statements is relatively easy at this point. We discuss four sets of extensions:

Extensions to the lexical analyzer (Section 12.5.1, page 266)
Extensions to the parser (Section 12.5.2, page 266)
Extensions to the evaluation routines (Section 12.5.3, page 267)
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The implementation of message passing (Section 12.5.4, page 268)
To implement message passing statements we add a new file mesg.c. We begin by
adding five types of statements: boolean conditions, timeouts, assignments, printf,
and assert statements, plus the pseudo-statement skip.

12.5.1 LEXICAL ANALYZER
Three of the statements, assert, printf, and timeout, produce new entries into the
static lookup table of alphanumeric names in the lexical analyzer.

static struct {
char *s; int tok;

} Names[] = {
"assert", ASSERT,
"printf", PRINT,
"timeout", TIMEOUT,
...

};

The line number attached to the tokens by the routine checkname() allows us to pro-
duce the right feedback to a user when an assert statement fails during a simulation
run.
The pseudo statement skip is translated into the equivalent constant with the lex rule

"skip" { yylval.val = 1; return CONST; }

To implement the printf statement properly, we must define strings. The only place
where string arguments are used is in printf’s, so we can treat it as a special token
with a symbol attribute. The symbol pointer than holds the string, rather than the
variable name. This produces one more lex rule.

\".*\" { yylval.sym = lookup(yytext); return STRING; }

Finally, we add a rule for translating arrows into semicolons.

"->" { return ’;’; /* statement separator */ }

12.5.2 PARSER
To update the parser we must add some new production rules again for parsing state-
ments. So far, a statement can be an assignment, a print statement, an assertion, a
jump, or an expression (a condition). The timeout is implemented as a special
predefined variable that can be part of a condition. It is added in the code for parsing
expressions.

stmnt : varref ASGN expr { $$ = nn($1->nsym,$2, ASGN,$1,$3); }
| PRINT ’(’ STRING prargs ’)’ { $$=nn($3, $1, PRINT,$4, 0); }
| ASSERT expr { $$ = nn(0, $1, ASSERT, $2, 0); }
| GOTO NAME { $$ = nn($2,$1, GOTO, 0, 0); }
| expr { $$ = nn(0,lineno, ’c’, $1, 0); }
...

expr : TIMEOUT { $$ = nn(0, $1,TIMEOUT, 0, 0); }
...
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We have made a separate production rule for parsing variable references, named
varref. It can be used in a few more cases later.

A sequence of statements is defined as follows:

sequence: step { add_seq($1); }
| sequence ’;’ step { add_seq($3); }
;

step : any_decl stmnt { $$ = $2; }
;

There is no need to group declarations at the start of a program body in PROMELA, so
in the rules above we have allowed each statement to be preceded by one or more
declarations. The routine add_seq() is defined in flow.c to tag statements onto a
linked list, but we look at that in more detail in Section 12.6. For now, a program
body is just a sequence of statements, which is parsed as follows:

body : ’{’ { open_seq(1); }
sequence { add_seq(Stop); }

’}’ { $$ = close_seq(); }
;

The first open brace starts a new linked list to store the statements via a call on routine
open_seq(). When a complete sequence is recognized a special Stop node is tagged
onto the end and the sequence is closed and passed up in the parse tree. We look at
the routines for manipulating the sequences in flow.c in more detail later when we
discuss compound statements. Let us first now consider the additions we have to
make in the interpreter code to evaluate the statements added so far.

12.5.3 EVALUATOR
The additions are still modest. The interpreter only has to handle these new node
types.

case TIMEOUT: return Tval;
case ’c’: return eval(now->lft); /* condition */
case PRINT: return interprint(now);
case ASSERT: if (eval(now->lft)) return 1;

yyerror("assertion violated", (char *)0);
wrapup(); exit(1);

Timeouts are a modeling feature of PROMELA; they are implemented as a test on a
predefined variable here. In the final simulator the scheduler can explicitly enable or
disable timeout events to test if the protocol can recover from exception conditions.
Conditions, identified by the internal node type ’c’, are evaluated recursively and
return a zero or non-zero status. The assert statement is interpreted directly and
causes an error exit if it fails, printing the line number that was duly carried along as a
token attribute. We have moved the grubby details of the implementation of the print
statements into a separate procedure interprint(). It can be defined as follows:
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interprint(n)
Node *n;

{
Node *tmp = n->lft;
char c, *s = n->nsym->name;
int i, j;

for (i = 0; i < strlen(s); i++)
switch (s[i]) {
default: putchar(s[i]); break;
case ’\"’: break; /* ignore */
case ’\\’:

switch(s[++i]) {
case ’t’: putchar(’\t’); break;
case ’n’: putchar(’\n’); break;
default: putchar(s[i]); break;
}
break;

case ’%’:
if ((c = s[++i]) == ’%’)
{ putchar(’%’); /* literal */

break;
}
if (!tmp)
{ yyerror("too few print args %s", s);

break;
}
j = eval(tmp->lft);
tmp = tmp->rgt;
switch(c) {
case ’c’: printf("%c", j); break;
case ’d’: printf("%d", j); break;
case ’o’: printf("%o", j); break;
case ’u’: printf("%u", j); break;
case ’x’: printf("%x", j); break;
default: yyerror("unrecognized print cmd %%’%c’", c);

break;
}
break;

}
fflush(stdout);
return 1;

}

which recognizes a modest number of conversions of the UNIX library function
printf().

12.5.4 IMPLEMENTING MESSAGE PASSING
The synchronous and asynchronous message passing primitives are good for another
two to three hundred lines of source text. The easiest part is the extension of the
parser to pass the new statements on to the interpreter.

The sending and receiving get a relatively low evaluation priority, equivalent to
assignment. Three new types of statements are added.
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stmnt : ...
| varref RCV margs { $$ = nn($1->nsym, $2, ’r’,$1,$3); }
| varref SND margs { $$ = nn($1->nsym, $2, ’s’,$1,$3); }

with message arguments defined as follows:

margs : arg { $$ = $1; }
| expr ’(’ arg ’)’ { $$ = nn(0, 0, ’,’, $1, $3); }
;

arg : expr { $$ = nn(0, 0, ’,’, $1, 0); }
| expr ’,’ arg { $$ = nn(0, 0, ’,’, $1, $3); }
;

The arguments of a receive operation can only be constants or names, but it is easier
to verify that part of the syntax later. There is also one new type of expression

expr : ...
| varref RCV ’[’ margs ’]’ { $$ = nn($1->nsym,$2, ’R’, $1, $4); }

which corresponds to a side-effect free test of the executability of a receive statement
(see Chapter 5).

The interpreter now has three extra clauses for the new internal node types ’r’, ’s’,
and ’R’. This corresponds to the following code in run.c.

case LEN: return qlen(now);
case ’s’: return qsend(now);
case ’r’: return qrecv(now, 1); /* full-receive */
case ’R’: return qrecv(now, 0); /* test only */

The three procedures called here, together with the procedure for the initialization of
new channels qmake() mentioned in passing before, are expanded in the file mesg.c.
Let us first look at the implementation of qmake().

The descriptions of the message channels are stored in a linked list of structures of
type Queue, using the following definition from spin.h.

typedef struct Queue {
short qid; /* runtime q index */
short qlen; /* nr messages stored */
short nslots, nflds; /* capacity, flds/slot */
short *fld_width; /* type of each field */
int *contents; /* the actual buffer */
struct Queue *nxt; /* linked list */

} Queue;

In mesg.c the head of the list is defined like this.

Queue *qtab = (Queue *) 0; /* linked list */
int nqs = 0; /* number of queues */

The rest is easy. We give zero length (rendezvous) channels one slot to temporarily
hold a message as it is passed from a sender to a receiver.
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qmake(s)
Symbol *s;

{
Node *m;
Queue *q;
int i; extern int analyze;

if (!s->ini)
return 0;

if (s->ini->ntyp != CHAN)
fatal("bad channel initializer for %s\n", s->name);

if (nqs >= MAXQ)
fatal("too many queues (%s)", s->name);

q = (Queue *) emalloc(sizeof(Queue));
q->qid = ++nqs;
q->nslots = s->ini->nval;
for (m = s->ini->rgt; m; m = m->rgt)

q->nflds++;
i = max(1, q->nslots); /* 0-slot qs get 1 slot minimum */

q->contents = (int *) emalloc(q->nflds*i*sizeof(int));
q->fld_width = (short *) emalloc(q->nflds*sizeof(short));
for (m = s->ini->rgt, i = 0; m; m = m->rgt)

q->fld_width[i++] = m->ntyp;
q->nxt = qtab;
qtab = q;
ltab[q->qid-1] = q;

return q->qid;
}

Of course, a channel can only be created if an initializer is provided. It is a fatal error
if the initializer has the wrong type or if too many channels already exist. For
efficiency only, an index to all active channels is also maintained in a linear list
named ltab. Implementing qlen() is now straightforward.

qlen(n)
Node *n;

{
int whichq = eval(n->lft)-1;

if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
return ltab[whichq]->qlen;

return 0;
}

We check that the index calculated is within the correct range, that the corresponding
queue exists, and return the length field from the corresponding data structure. The
hard part remains: the implementation of synchronous and asynchronous versions of
qsend() and qrecv(). We use a simple interface to decide which routine to use.
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qsend(n)
Node *n;

{
int whichq = eval(n->lft)-1;
if (whichq == -1)
{ printf("Error: sending to an uninitialized chan\n");

whichq = 0;
}
if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
{ if (ltab[whichq]->nslots > 0)

return a_snd(ltab[whichq], n);
else

return s_snd(ltab[whichq], n);
}
return 0;

}
qrecv(n, full)

Node *n;
{

int whichq = eval(n->lft)-1;

if (whichq == -1)
{ printf("Error: receiving from an uninitialized chan\n");

whichq = 0;
}
if (whichq < MAXQ && whichq >= 0 && ltab[whichq])

return a_rcv(ltab[whichq], n, full);
return 0;

}

A rendezvous is triggered by the sender of a message. If, at that time, at least one pro-
cess is blocked on the matching receive operation, a rendezvous can take place. The
rendezvous receive operation, therefore, can be the same for both synchronous and
asynchronous operations. First we consider the asynchronous case. Its basic form
looks as follows (the version in Appendix D contains a few more features that are not
relevant here):

a_snd(q, n)
Queue *q;
Node *n;

{
Node *m;
int i = q->qlen*q->nflds; /* q offset */
int j = 0; /* q field# */

if (q->nslots > 0 && q->qlen >= q->nslots)
return 0; /* q is full */

for (m = n->rgt; m && j < q->nflds; m = m->rgt, j++)
q->contents[i+j] = cast_val(q->fld_width[j], eval(m->lft));
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q->qlen++;
return 1;

}

If the channel is full, a zero status is returned, which means that the statement is
currently unexecutable. If there is at least one free slot in the queue, the fields are
copied and masked with the predefined field widths. The receive operation is a little
more involved.

a_rcv(q, n, full)
Queue *q;
Node *n;

{
Node *m;
int j, k;

if (q->qlen == 0) return 0; /* q is empty */

for (m = n->rgt, j=0; m && j<q->nflds; m = m->rgt, j++)
{ if (m->lft->ntyp == CONST

&& q->contents[j] != m->lft->nval)
return 0; /* no match */

}
for (m = n->rgt, j=0; j<q->nflds; m = (m)?m->rgt:m, j++)
{ if (m && m->lft->ntyp == NAME)

setval(m->lft, q->contents[j]);
for (k = 0; full && k < q->qlen-1; k++)

q->contents[k*q->nflds+j] =
q->contents[(k+1)*q->nflds+j];

}
if (full) q->qlen--;
return 1;

}

The argument full is zero when the receive operation is used as a condition, as in
qname?[ack], and non-zero otherwise. In the first case the procedure has no side-
effects and merely returns the executability status of the receive. There are two for

loops in the procedure. The first one checks that all message parameters that are
declared as constants are properly matched and it checks that the other parameters are
variable names. The second cycle copies the data from the queue into the variables
specified and, as required, shifts message fields up one slot.

Only the synchronous version of the send operation remains to be expanded.

s_snd(q, n)
Queue *q;
Node *n;

{
Node *m;
int i, j = 0; /* q field# */
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for (m = n->rgt; m && j < q->nflds; m = m->rgt, j++)
q->contents[j] = cast_val(q->fld_width[j], eval(m->lft));

q->qlen = 1;
if (complete_rendez())

return 1;
q->qlen = 0;
return 0;

}

The sender first appends the message and then checks if there is a receiver that can
execute the matching receive. There is no need to check the queue length here: when
the send operation is executable, all rendezvous channels are guaranteed to be empty.
If no matching receive is found, the send operation fails, cancels the message in the
queue and returns a zero. If there is a matching receive operation, it will execute
before the routine complete_rendez() returns, and both sender and receiver
proceed to the next statement, again leaving the channel empty. The routine
complete_rendez() is in fact a tiny portion of the scheduler and is listed in
sched.c. It blocks all statements except a synchronous receive and the code that is
required for evaluating expressions.

complete_rendez()
{ RunList *orun = X;

Element *e;
int res=0;

Rvous = 1;
for (X = run; X; X = X->nxt)

if (X != orun && (e = eval_sub(X->pc)))
{ X->pc = e;

res = 1;
break;

}
Rvous = 0;
X = orun;
return res;

}

The routine first sets a global flag Rvous to make sure that only receive operations are
enabled. The variable X is then pointed to every runnable process to check if it can
complete the rendezvous handshake. The evaluation routine that looks into every
option of a compound for a possible match is called eval_sub().

Element *
eval_sub(e)

Element *e;
{

Element *f, *g;
SeqList *z;
int i, j, k;
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...
if (e->sub)
{ for (z = e->sub, j=0; z; z = z->nxt)

j++;
k = rand()%j; /* nondeterminism */
for (i = 0, z = e->sub; i < j+k; i++)
{ if (i >= k && f = eval_sub(z->this->frst))

return f;
z = (z->nxt)?z->nxt:e->sub;

}
} else
{ if (e->n->ntyp == ATOMIC)

{ ...
} else if (Rvous)
{ if (eval_sync(e->n))

return e->nxt;
} else

return (eval(e->n))?e->nxt:(Element *)0;
}
return (Element *)0;

}

The evaluation routine recursively searches through the options of compounds. If
there is more than one option, the scheduler picks one at random, using the library
routine rand(). When, at the lowest level in the recursion, it finds a statement instead
of a compound to evaluate, it checks for the value of Rvous and calls this routine
when it is set.

eval_sync(now)
Node *now;

{ /* allow only synchronous receives
/* and related node types */

if (now)
switch (now->ntyp) {
case TIMEOUT: case PRINT: case ASSERT:
case RUN: case LEN: case ’s’:
case ’c’: case ASGN: case BREAK:
case IF: case DO: case ’.’:

return 0;
case ’R’:
case ’r’:

if (!q_is_sync(now))
return 0;

}
return eval(now);

}

We will come back to the details later when we look more closely at the scheduler
code itself.
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12.6 CONTROL FLOW
Our next job is to bring some structure into the language by implementing the selec-
tion, repetition, break, goto and atomic statements. We have to build up a program
as a coherent set of statements, with a control flow discipline that defines which state-
ment from this set is to be evaluated by the scheduler at each execution step. All rou-
tines that deal explicitly with the control flow are placed in the file flow.c. This sec-
tion discusses:

Code for manipulating sequences (Section 12.6.1, page 275)
Keeping track of labels (Section 12.6.2, page 278)
Code for parsing compound statements (Section 12.6.3, page 279)

12.6.1 SEQUENCES
Recall the definition of the non-terminal program in spin.y, which we discussed
before.

body:
’{’ { open_seq(1); }

sequence { add_seq(Stop); }
’}’ { $$ = close_seq(); }

sequence:
step { add_seq($1); }

| sequence ’;’ step { add_seq($3); }

A program body is a sequence of statements terminated by a special Stop node. But
this time we have to carry around some extra information for compound statements.
A compound statement is basically a fork in the execution sequence, where one
sequence divides into a number of option sequences. We store each individual
sequence in a structure of type Sequence defined in spin.h.

typedef struct Sequence {
Element *frst;
Element *last;

} Sequence;

A set of sequences is stored as a linked list, as follows:

typedef struct SeqList {
Sequence *this; /* one sequence */
struct SeqList *nxt; /* linked list */

} SeqList;

And, of course the nodes of the parse tree will have to accommodate the new informa-
tion, so the data structure for a Node is expanded somewhat more.
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typedef struct Node {
int nval; /* value attribute */
short ntyp; /* node type */
Symbol *nsym; /* new attribute */
Symbol *fname; /* filename of src */
struct SeqList *seql; /* list of sequences */
struct Node *lft, *rgt; /* children in parse tree */

} Node;

Statements are added one by one to a sequence with add_seq(). The statements are
most conveniently stored in structures of type Element. The definition in spin.h

looks as follows:

typedef struct Element {
Node *n; /* defines the type & contents */
int seqno; /* uniquely identifies this el */
unsigned char status; /* used by analyzer generator */
struct SeqList *sub; /* subsequences, for compounds */
struct Element *nxt; /* linked list */

} Element;

Each element in a sequence is labeled with a unique sequence (or state) number, that
will prove to be useful in building the validator in the next chapter. The numbers are
handed out by routine new_el().

Element *
new_el(n)

Node *n;
{

Element *m;

if (n && (n->ntyp == IF || n->ntyp == DO))
return if_seq(n->seql, n->ntyp, n->nval);

m = (Element *) emalloc(sizeof(Element));
m->n = n;
m->seqno = Elcnt++;
return m;

}

The sub field of an element points to the options of a compound. It is set, only for
those types of statements, in routine if_seq(), which is examined in detail in Sec-
tion 12.6.3.
The sequence numbers are kept in a global counter Elcnt that is reset to one at the
start of every new process. In the code below this happens when open_seq() is
called with a non-zero argument.
The open brace of a body initializes a new sequence by a call on procedure
open_seq(). The closing brace closes the sequence and passes it via close_seq().
Initializing a new sequence of elements or returning a completed one is fairly straight-
forward. In its simplest form it looks like this.
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void
open_seq(top)
{ SeqList *t;

Sequence *s = (Sequence *) emalloc(sizeof(Sequence));

t = seqlist(s, cur_s);
cur_s = t;
if (top) Elcnt = 1;

}

Sequence *
close_seq()
{ Sequence *s = cur_s->this;

cur_s = cur_s->nxt;
return s;

}

The listing in Appendix D performs some extra checks that are relevant only to the
validator.

The routine seqlist() attaches a new sequence to a linked list of sequences.

SeqList *
seqlist(s, r)

Sequence *s;
SeqList *r;

{
SeqList *t = (SeqList *) emalloc(sizeof(SeqList));
t->this = s;
t->nxt = r;
return t;

}

Adding an element to the current sequence happens as follows:

add_seq(n)
Node *n;

{
Element *e;
if (!n) return;
innermost = n;
e = colons(n);
if (innermost->ntyp != IF && innermost->ntyp != DO)

add_el(e, cur_s->this);
}

The routine that allocates memory for a new element new_el() filters out the com-
pound statements and does all the hard work for them, so that need not be repeated
above. The routine add_el() which is used here is not too exciting.
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add_el(e, s)
Element *e;
Sequence *s;

{
if (!s->frst)

s->frst = e;
else

s->last->nxt = e;
s->last = e;

}

12.6.2 JUMPS AND LABELS
Routine add_seq() also catches labels, identified by a node type ’:’, and
remembers them in another linked list.

typedef struct Label {
Symbol *s;
Symbol *c;
Element *e;
struct Label *nxt;

} Label;

The code is again straightforward.

set_lab(s, e)
Symbol *s;
Element *e;

{
Label *l; extern Symbol *context;
if (!s) return;
l = (Label *) emalloc(sizeof(Label));
l->s = s;
l->c = context;
l->e = e;
l->nxt = labtab;
labtab = l;

}

When the scheduler has to determine the destination of a goto jump, it consults that
list, and retrieves a pointer to the element that carried the label.

Element *
get_lab(s)

Symbol *s;
{

Label *l;
for (l = labtab; l; l = l->nxt)

if (s == l->s)
return (l->e);

fatal("undefined label %s", s->name);
return 0; /* doesn’t get here */

}

The routine is called at the top of every invocation of the generic evaluation routine
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eval_sub(), as follows:

if (e->n->ntyp == GOTO)
return get_lab(e->n->nsym);

Of course, to get the goto statements and labels at the right places into the parse tree,
we must add a few more rules to the lex and yacc files. The lookup table in lex.l is
expanded with

"goto", GOTO,

while adding a token GOTO to spin.y. The two production rules that recognize jumps
and labels are:

| GOTO NAME { $$ = nn($2, $1, GOTO, 0, 0); }
| NAME ’:’ stmnt { $$ = nn($1, $3->nval, ’:’, $3, 0); }

The line number for a labeled statement is extracted from the node that is passed up
through the third parameter $3. The GOTO token carries its own line number that is
copied from $1.

12.6.3 COMPOUND STATEMENTS
The real challenge is to process the compound statements. There are a few new
tokens to be handled, such as if, fi, do, od, ::, break, and atomic. The lexical
analyzer is again extended with one line for each. Three new statement types and two
new production rules are added to the production rules in spin.y.

stmnt : ...
| IF options FI { $$ = nn(0, $1, IF, 0, 0);

$$->seql = $2;
}

| DO { pushbreak(); }
options OD { $$ = nn(0, $1, DO, 0, 0);

$$->seql = $3;
}

| BREAK { $$ = nn(break_dest(),$1,GOTO,0,0); }
| ATOMIC

’{’ { open_seq(0); }
sequence

’}’ { $$ = nn(0,$1, ATOMIC, 0, 0);
$$->seql = seqlist(close_seq(), 0);
make_atomic($$->seql->this);

}
;

options : option { $$ = seqlist($1, 0); }
| option options { $$ = seqlist($1, $2); }
;

option : SEP { open_seq(0); }
sequence { $$ = close_seq(); }

;

Every option in a compound statement can be a sequence of statements and is again
captured in a data structure of type Sequence. Multiple options are again grouped
into a linked list of sequences of the type SeqList that was defined before.
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Repetition statements can be terminated with break statements. To keep track of the
proper destinations we use pushbreak() to push an internal label onto a stack for
every new repetition structure that is entered, and a routine breakdest() to retrieve
the current destination of a break statement, much as with the labels and goto jumps
we discussed earlier.

typedef struct Lbreak {
Symbol *l;
struct Lbreak *nxt;

} Lbreak;

pushbreak()
{ Lbreak *r = (Lbreak *) emalloc(sizeof(Lbreak));

Symbol *l;
char buf[32];

sprintf(buf, ":b%d", break_id++);
l = lookup(buf);
r->l = l;
r->nxt = breakstack;
breakstack = r;

}

Symbol *
break_dest()
{ if (!breakstack)

fatal("misplaced break statement", (char *)0);
return breakstack->l;

}

A break statement, if it occurs, is translated with a call on break_dest() into a
jump to the last break statement that was pushed onto the stack.
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Figure 12.4 — Parse Tree for a Selection Structure

Now it is time to turn to one of the toughest procedures for parsing the compound
statements: if_seq(). A selection or repetition structure must push several elements
into the statement sequence. Figure 12.4 illustrates the node structure that is built by
the procedure if_seq() to include selection statements into a sequence. Only com-
pound statements (selections and repetitions) attach any nodes to the sub field of an
Element. That field of sub-sequences starts a linked list (a SeqList) of options, with
one complete Sequence structure per option in the compound statement. Figure 12.4
shows a selection statement with two options.

The last pointer of the sub sequence that defines an option is connected to the ele-
ment that immediately follows the one that contains the original sub field. In the
figure this is the Element labeled t (for target). It formalizes that a selection
sequence is terminated whenever an option terminates.

The structure build for a repetition statement is almost the same, with just one excep-
tion: the last field of each sub sequence is now pointed at an Element that is placed
immediately preceding the compound, at the place of the dotted box in Figure 12.4. It
formalizes that a repetition structure is repeated when an option terminates. The
break statement in the repetition structure will still point to the target Element t.
The code that makes all this happen looks as follows:
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Element *
if_seq(s, tok, lnno)

SeqList *s;
{

Element *e = new_el((Node *) 0);
Element *t = new_el(nn((Symbol *) 0, lnno, ’.’,

(Node *)0, (Node *)0)); /* target */
SeqList *z;

e->n = nn((Symbol *)0, lnno, tok, (Node *)0, (Node *)0);
e->sub = s;
for (z = s; z; z = z->nxt)

add_el(t, z->this);
if (tok == DO)
{ add_el(t, cur_s->this);

t = new_el(nn((Symbol *)0, lnno, BREAK, (Node *)0, (Node *)0));
set_lab(break_dest(), t);
breakstack = breakstack->nxt; /* pop stack */

}
add_el(e, cur_s->this);
add_el(t, cur_s->this);
return e; /* destination node for label */

}

12.7 PROCESSES AND MESSAGE TYPES
The main thing missing from our simulator at this point is the concept of a process.
With that extension we can place some finishing touches on the software by also cod-
ing the scheduler, by adding the distinction between local and global variables. The
code for the scheduler is confined to a file named sched.c. The extension of the lexi-
cal analyzer is minimal at this point: the mere addition of the keywords proctype,
init, and mtype. The other extensions are more substantial:

Extensions to the parser (Section 12.7.1, page 282)
The process scheduler (Section 12.7.2, page 285)
Interpreting local variables (Section 12.7.3, page 289)

12.7.1 PARSER
A complete PROMELA program is constructed from a series of program units defined
as follows:

program : units { sched(); }
;

units : unit | units unit
;

unit : proc
| init
| claim
| one_decl
| mtype
;
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proc : PROCTYPE NAME { context = $2; }
’(’ decl ’)’

body { ready($2, $5, $7);
context = (Symbol *) 0;

}
;

mtype : MTYPE ASGN ’{’ args ’}’ { setmtype($4); }
| ’;’ /* optional ; as separator of units */
;
...

decl : /* empty */ { $$ = (Node *) 0; }
| decl_lst { $$ = $1; }
;

decl_lst: one_decl { $$ = nn(0, 0, ’,’, $1, 0); }
| one_decl ’;’ decl_lst { $$ = nn(0, 0, ’,’, $1, $3); }
;

A unit is either a process declaration, a list of message types, a temporal claim, or an
init specification, each of which can be preceded by one or more global variable
declarations. The init module and the temporal claims are defined as special type of
processes:

init : INIT { context = $1; }
body { runnable($3, $1);

context = (Symbol *) 0;
}

;
claim : CLAIM { context = $1;

if (claimproc)
yyerror("claim %s redefined",

claimproc);
claimproc = $1->name;

}
body { ready($1, (Node *) 0, $3);

context = (Symbol *) 0;
}

;

There can be only one init and one temporal claim per specification. The first is
required, the second optional. The presence of a claim is flagged in the global pointer
claimproc.

Process declarations are placed in a ready queue of process bodies. To allow us to
remember type declarations of formal parameters, declarations must now return a
node containing the parameter list. Before the body of a process declaration is
parsed, though, a context variable is set to identify any variable names and parameters
to be recognized as local to the process declaration. Initially, only the init process is
labeled runnable. Procedure setmtype() logically belongs in sym.c and can be
implemented as follows:

Node *Mtype = (Node *) 0;
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void
setmtype(m)

Node *m;
{

Node *n = m;
if (Mtype)

yyerror("mtype redeclared", (char *)0);

Mtype = n;
while (n) /* syntax check */
{ if (!n->lft || !n->lft->nsym

|| (n->lft->ntyp != NAME)
|| n->lft->lft) /* indexed variable */

fatal("bad mtype definition", (char *)0);
n = n->rgt;

}
}
Node *Symnode = 0;

void
syms(m)

Node *m;
{

if (Symnode)
yyerror("Duplicate Symmetry definition", (char *)0);

Symnode = m;
}

The procedure merely checks syntax and stores the arguments for later processing.
The message-type definitions can be hidden completely from the rest of the program
if we let the lexical analyzer check the list whenever it sees a NAME and map all mes-
sage names found there onto constants. We can do that in procedure check_name().

check_name(s)
char *s;

{
register int i;
for (i = 0; Names[i].s; i++)

if (strcmp(s, Names[i].s) == 0)
{ yylval.val = lineno;

return Names[i].tok;
}

if (yylval.val = ismtype(s))
return CONST;

yylval.sym = lookup(s); /* symbol table */
return NAME;

}

The routine ismtype() looks up names in the list of message types.



SECTION 12.7 PROCESSES AND MESSAGE TYPES 285

ismtype(str)
char *str;

{
Node *n;
int cnt = 1;

for (n = Mtype; n; n = n->rgt)
{ if (strcmp(str, n->lft->nsym->name) == 0)

return cnt;
cnt++;

}
return 0;

}

12.7.2 SCHEDULER
The procedures ready() and runnable() require little imagination; they need
merely store their arguments in linked lists where the scheduler can find them. The
list of runnable processes is defined as follows:

typedef struct ProcList {
Symbol *n; /* name */
Node *p; /* parameters */
Sequence *s; /* body */
struct ProcList *nxt; /* linked list */

} ProcList;

And the routine that fills the list is

runnable(s, n)
Sequence *s; /* body */
Symbol *n; /* name */

{
RunList *r = (RunList *) emalloc(sizeof(RunList));
r->n = n;
r->pid = nproc++;
r->pc = s->frst;
r->maxseq = s->last->seqno;
r->nxt = run;
run = r;

}

The actual runlist of executing processes has a program counter pc and a pointer to
current values of local variables, which we call symtab again, since it is basically
another symbol table list.

typedef struct RunList {
Symbol *n; /* name */
int pid; /* process id */
int maxseq; /* used by analyzer generator */
Element *pc; /* current stmnt */
Symbol *symtab; /* local variables */
struct RunList *nxt; /* linked list */

} RunList;
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Inserting a process into the list is easy.

ready(n, p, s)
Symbol *n; /* process name */
Node *p; /* formal parameters */
Sequence *s; /* process body */

{
ProcList *r = (ProcList *) emalloc(sizeof(ProcList));
r->n = n;
r->p = p;
r->s = s;
r->nxt = rdy;
rdy = r;

}

Moving a process from the process list to the run list is a little more involved, since
also the parameter fields must be initialized.

enable(s, n)
Symbol *s; /* process name */
Node *n; /* actual parameters */

{
ProcList *p;
for (p = rdy; p; p = p->nxt)

if (strcmp(s->name, p->n->name) == 0)
{ runnable(p->s, p->n);

setparams(run, p, n);
return (nproc-nstop-1); /* pid */

}
return 0; /* process not found */

}

where

setparams(r, p, q)
RunList *r;
ProcList *p;
Node *q;

{
Node *f, *a; /* formal and actual pars */
Node *t; /* list of pars of 1 type */

for (f = p->p, a = q; f; f = f->rgt) /* one type at a time */
for (t = f->lft; t; t = t->rgt, a = (a)?a->rgt:a)
{ int k;

if (!a) fatal("missing actual parameters: ’%s’", p->n->name);
k = eval(a->lft); /* must be initialized*/
if (typck(a, t->nsym->type, p->n->name))
{ if (t->nsym->type == CHAN)

naddsymbol(r, t->nsym, k); /* copy */
else
{ t->nsym->ini = a->lft;

addsymbol(r, t->nsym);
}

}
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}
}

with

naddsymbol(r, s, k)
RunList *r;
Symbol *s;

{
Symbol *t = (Symbol *) emalloc(sizeof(Symbol));
int i;

t->name = s->name;
t->type = s->type;
t->nel = s->nel;
t->ini = s->ini;
t->val = (int *) emalloc(s->nel*sizeof(int));
if (s->nel != 1)
fatal("array in formal parameter list, %s", s->name);
for (i = 0; i < s->nel; i++)

t->val[i] = k;
t->next = r->symtab;
r->symtab = t;

}

and

addsymbol(r, s)
RunList *r;
Symbol *s;

{
Symbol *t = (Symbol *) emalloc(sizeof(Symbol));
int i;

t->name = s->name;
t->type = s->type;
t->nel = s->nel;
t->ini = s->ini;
if (s->val) /* if initialized, copy it */
{ t->val = (int *) emalloc(s->nel*sizeof(int));

for (i = 0; i < s->nel; i++)
t->val[i] = s->val[i];

} else
checkvar(t, 0); /* initialize it */

t->next = r->symtab; /* add it */
r->symtab = t;

}

To be able to create new process instantiations on the fly during a simulation, we
expand the run statement in run.c as follows:

case RUN: return enable(now->nsym, now->lft);

Processes can only be deleted from the run-list in reverse order of creation: a process
can only disappear if all its children have disappeared first (Chapter 5). The pids can
therefore be recycled in stack order. In the value returned by enable(),
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(nproc-nstop-1), the count nproc equals the total number of processes created,
and nstop, the number of processes that deleted.

The most interesting routine left to discuss is the scheduling routine proper: sched().
Its relevant portion looks as follows:

sched()
{ Element *e, *eval_sub();

RunList *Y; /* previous process in run queue */
int i=0;
...
for (Tval = 0; Tval < 2; Tval++)
{ while (i < nproc-nstop)

for (X=run, Y=0, i=0; X; X = X->nxt)
{ lineno = X->pc->n->nval;

Fname = X->pc->n->fname;
if (e = eval_sub(X->pc))
{ X->pc = e; Tval=0;
} else /* process terminated? */
{ if (X->pc->n->ntyp == ’@’

&& X->pid == (nproc-nstop-1))
{ if (Y)

Y->nxt = X->nxt;
else

run = X->nxt;
nstop++; Tval=0;

} else
i++;

}
Y = X;

} }
wrapup();

}

The scheduler executes one statement in each runnable process in round-robin
fashion. It calls the routine eval_sub(), which we saw earlier, to recursively evalu-
ate compound statements and atomic sequences. The evaluation of an atomic
sequence only succeeds if the whole sequence can be completed. The code is part of
eval_sub().

if (e->n->ntyp == ATOMIC)
{ f = e->n->seql->this->frst;

g = e->n->seql->this->last;
g->nxt = e->nxt;
if (!(g = eval_sub(f)))

return (Element *)0;
Rvous = 0;
while (g && (g->status & (ATOM|L_ATOM))
&& !(f->status & L_ATOM))
{ f = g;

g = eval_sub(f);
}
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if (!g)
{ wrapup();

lineno = f->n->nval;
fatal("atomic sequence blocks", (cha *)0);

}
return g;

} else if (Rvous)
...

It is a fatal error if an atomic sequence blocks. If a process hits an unexecutable state-
ment the scheduler checks to see if it is in a stop state. If so, the process is removed
from the run queue and the count of terminated processes nstop is incremented. A
global variable X points to the currently executing process. It is mainly used by the
new routines for manipulating local variables, getlocal() and setlocal(), to
determine in which process structure the variables are located. The scheduler also
maintains a value Tval that is used by the interpreter in run.c to determine the exe-
cutability of the timeout statement.

case TIMEOUT: return Tval;

During normal execution, when the system is not blocked, Tval is zero and condi-
tions that include a timeout are unexecutable. To recover from a potential deadlock,
the scheduler can enable the timeout statements by incrementing Tval. If the system
does not recover, the scheduler declares a true hang state and gives up.

12.7.3 LOCAL VARIABLES
Since local variables are created on the fly, upon the instantiation of new processes,
the logical place for the code that manipulates them is in the scheduler. If a variable
name is local, two special variants of getvar() and setvar() are used.

getlocal(s, n)
Symbol *s;

{
Symbol *r;

r = findloc(s, n);
if (r) return cast_val(r->type, r->val[n]);
return 0;

}

setlocal(p, m)
Node *p;

{
int n = eval(p->lft);
Symbol *r = findloc(p->nsym, n);

if (r) r->val[n] = m;
return 1;

}

The routine findloc() locates the name in the symbol table of the currently execut-
ing process, pointed to by X->symtab.
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Symbol *
findloc(s, n)

Symbol *s;
{

Symbol *r = (Symbol *) 0;

if (n >= s->nel || n < 0)
{ yyerror("array indexing error %s", s->name);

return (Symbol *) 0;
}

if (!X)
{ if (analyze)

fatal("error, cannot evaluate variable ’%s’", s->name);
else

yyerror("error, cannot evaluate variable ’%s’", s->name);
return (Symbol *) 0;

}
for (r = X->symtab; r; r = r->next)

if (strcmp(r->name, s->name) == 0)
break;

if (!r && !Noglobal)
{ addsymbol(X, s);

r = X->symtab;
}
return r;

}

The local variables and the process states of any running process can be referred to in
assertions and temporal claims. The hooks in the parser that enable remote referenc-
ing are simple. References to remote variables and process states require the last two
production rules:

| NAME ’[’ expr ’]’ ’.’ varref { $$ = rem_var($1, $3, $6); }
| NAME ’[’ expr ’]’ ’:’ NAME { $$ = rem_lab($1, $3, $6); }

with

Node *
rem_var(a, b, c)

Symbol *a;
Node *b, *c;

{
Node *tmp;
if (!context || strcmp(context->name, ":never:") != 0)

yyerror("warning: illegal use of ’.’ (outside never claim)", (char *)0);
tmp = nn(a, 0, ’?’, b, (Node *)0);
return nn(c->nsym, 0, ’p’, tmp, c->lft);

}

and
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Node *
rem_lab(a, b, c)

Symbol *a, *c;
Node *b;

{
if (!context || strcmp(context->name, ":never:") != 0)

yyerror("warning: illegal use of ’:’ (outside never claim)", (char *)0);
return nn((Symbol *)0, 0, EQ,

nn(lookup("_p"), 0, ’p’, nn(a, 0, ’?’, b, (Node *)0), (Node *)0),
nn(c, 0, ’q’, nn(a, 0, NAME, (Node *)0, (Node *)0), (Node *)0));

}

The reference is implemented as a condition on the control flow state of a process,
represented by the internal variable _p, and the state value of a label name. The value
of the special variable _p is determined, just like the other remote variables, using a
node of type ’p’. The label name is determined with a new node of type ’q’. The
node type ’?’ is only used as a temporary place holder.

In the evaluator two new node types trigger calls on these two routines:

case ’p’: return remotevar(now);
case ’q’: return remotelab(now);

The first routine, for referencing the current value of a local variable in a remote pro-
cess, is implemented with a context switch in the scheduler, as follows:

remotevar(n)
Node *n;

{
int pno, i, j;
RunList *Y, *oX = X;

pno = eval(n->lft->lft); /* pid */
i = nproc - nstop;
for (Y = run; Y; Y = Y->nxt)
if (--i == pno)
{ if (strcmp(Y->n->name, n->lft->nsym->name))

yyerror("wrong proctype %s", Y->n->name);
X = Y; j = getval(n->nsym, eval(n->rgt)); X = oX;
return j;

}
yyerror("remote ref: proc %s not found", n->nsym->name);
return 0;

}

The second routine, for determining the control flow state in a remote process that
corresponds to a given label name, is implemented with a search in the list of labels,
as follows:
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remotelab(n)
Node *n;

{
int i;

if (n->nsym->type)
fatal("not a labelname: ‘%s’", n->nsym->name);

if ((i = find_lab(n->nsym, n->lft->nsym)) == 0)
fatal("unknown labelname: %s", n->nsym->name);

return i;
}

12.8 MACRO EXPANSION
The final version of SPIN in Appendix D has an expanded version of main() that
properly interprets option flags, accepts a file argument and routes its input through
the C preprocessor in /lib/cpp for macro expansion. The output of the preprocessor
is dumped into a temporary file that is immediately unlinked to make sure that it
disappears from the file system, even if the run of the simulator is interrupted. The
parser, however, keeps a link to the file in the predefined file pointer yyin.

if (argc > 1)
{ char outfile[17], cmd[64];

strcpy(filename, argv[1]);
mktemp(strcpy(outfile, "/tmp/spin.XXXXXX"));
sprintf(cmd, "/lib/cpp %s > %s", argv[1], outfile);
if (system(cmd))
{ unlink(outfile);

exit(1);
} else if (!(yyin = fopen(outfile, "r")))
{ printf("cannot open %s\n", outfile);

exit(1);
}
unlink(outfile);

} else
strcpy(filename, "<stdin>");

The preprocessor drops lines into the file that look like

# 1 "spin.examples/lynch"

The lexical analyzer can pick them up and interpret them with an extra rule that is
defined as follows:

\#\ [0-9]+\ \"[ˆ\"]*\" { /* preprocessor directive */
int i=1;
while (yytext[i] == ’ ’) i++;
lineno = atoi(&yytext[i])-1;
while (yytext[i] != ’ ’) i++;
Fname = lookup(&yytext[i+1]);

}

The line number is remembered in variable lineno. The file name is stored in the
symbol table and a global pointer to it is kept in Fname. But most of these remaining
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features are cosmetic and can be either changed or ignored without undue risk.

12.9 SPIN — OPTIONS
The simulator recognizes eight command line options which can be used in any com-
bination. Two (flags a and t) are specific to the analysis code that we have yet to
develop in Chapter 13. The other six are discussed below.
spin –s

Prints a line on the display for every message that is sent. Example:

$ spin -s factorial
proc 12 (fact) line 5, Send 1 -> queue 12 (p)
proc 11 (fact) line 10, Send 2 -> queue 11 (p)
proc 10 (fact) line 10, Send 6 -> queue 10 (p)
proc 9 (fact) line 10, Send 24 -> queue 9 (p)
proc 8 (fact) line 10, Send 120 -> queue 8 (p)
...

spin –r
Prints a line on the display for every message received. It prints the name and pid

of the running process, and a source line number for its current state. Example:

$ spin -s -r factorial
proc 12 (fact) line 5, Send 1 -> queue 12 (p)
proc 11 (fact) line 9, Recv 1 <- queue 12 (child)
proc 11 (fact) line 10, Send 2 -> queue 11 (p)
proc 10 (fact) line 9, Recv 2 <- queue 11 (child)
proc 10 (fact) line 10, Send 6 -> queue 10 (p)
proc 9 (fact) line 9, Recv 6 <- queue 10 (child)
....

spin –p
Prints a line on the display for every statement executed. Example:

$ spin -p factorial
proc 0 (_init) line 18 (state 2)
proc 1 (fact) line 8 (state 4)
proc 1 (fact) line 9 (state 5)
proc 2 (fact) line 8 (state 4)
proc 2 (fact) line 9 (state 5)
proc 3 (fact) line 8 (state 4)
...
proc 3 (fact) terminates

spin –l
Adds the value of all local variables to the output. This option, like the next one,
is most useful in combination with –p. Example:

$ spin -p -l factorial
...
proc 12 (fact) line 12 (state 9)

queue 12 (p):
n = 1
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proc 11 (fact) line 4 (state 8)
result = 1
queue 12 (child):
queue 11 (p): [2]
n = 2

...
proc 12 (fact) terminates
...

spin –g
Adds the current values of all global variables to the listings.

spin –t12345
Initializes the random number generator with the user specified seed 12345 to
secure a simulation run that can be reproduced exactly.

12.10 SUMMARY
The last version of SPIN contains about 2000 lines of source code, more than ten times
the size of the little expression evaluator that we started this chapter with. To give an
indication of the performance of SPIN we ran the following program to calculate
Fibonacci numbers. It creates and runs a total of 1000 processes.

/***** Fibonacci Sequence *****/

proctype fib(short n)
{ short a = 0;

short b = 1;
short c;

atomic
{ do

:: (b < n) ->
c = b;
b = a+b;
a = c

:: (b >= n) ->
break

od
}

}

init
{ int i = 1;

atomic
{ do

:: (i < 1000) -> i = i+1; run fib(1000)
:: (i > 999) -> break
od

}
}

On a DEC-VAX/8550 computer, one simulation run takes about 7.6 second of user
time. A program optimized for calculation can run a similar program two to ten times
faster, but of course does not have the synchronization and multi-process features of
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PROMELA. The most expensive function calls of a simulation run can be found with
the UNIX utility prof. For the Fibonacci test 80% of the runtime is spend in the fol-
lowing routines:

% Time #Calls Name
23 2.633 433411 _eval
13 1.533 166433 _findloc
11 1.233 116950 _eval_sub
9 1.050 0 _strcmp
8 0.917 0 mcount
6 0.717 117482 _getlocal
5 0.617 117482 _cast_val
5 0.617 117482 _getval

If at some point SPIN’s efficiency must be improved, a good target for optimizations
would be procedure eval(). (See also the Exercises.) For protocol simulations, how-
ever, the program is sufficiently fast.

In the next chapter we will see how we can extend SPIN’s capabilities with a generator
for exhaustive protocol validations. As discussed in Chapter 11, the potential perfor-
mance bottlenecks in protocol validators do require careful attention if we are to pro-
duce a tool of practical value. We therefore shift most efficiency considerations to
that part of the SPIN software.

EXERCISES

12-1. 12-1. Change the semantics of the timeout statement by allowing a timeout count to be
specified. Add a predefined variable time that is incremented once for each cycle
through the list on running processes by the scheduler. Apply and test the new features
with a sample protocol.

12-2. 12-2. The simulator and the language PROMELA use a 32-bit signed quantity as the largest
number. This puts restrictions on the use of SPIN as a calculator. What is the largest fac-
torial that can be computed with the factorial program from Section 12.2?

12-3. 12-3. Run the Fibonacci test on your system and measure the run-time. Make the atomic
sequences non-atomic and repeat the test. Explain the result.

12-4. 12-4. Model and simulate an arbitrary example PROMELA program from this book.

12-5. 12-5. Add more features to PROMELA. For instance,
Allow inline C code fragments
Allow a keyword else in compound statements
Add C-like data structures
(Rob Pike) Add device channels

A device channel is a prefined message queue that connects a PROMELA program to the
outside world (for instance, add a terminal-screen and a keyboard channel).

12-6. 12-6. Add a pre-simulation run optimizer that rewrites parts of the parse tree on the fly. Good
candidates for optimization, for instance, are expressions involving only constant refer-
ences, such as (5*3+2).
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12-7. 12-7. Use the simulator to implement a random walk validation strategy. Consider the feasibil-
ity of validating each of the correctness criteria discussed in Chapter 6.

BIBLIOGRAPHIC NOTES
The best reference to the C programming language is still Kernighan and Ritchie
[1978, 1988]. The second edition of this book, published in 1988, is an excellent
reference to the new ANSI standard version of the C language. Another good discus-
sion of the ANSI standard definition can be found in Harbison and Steele [1987].
Much more about the design of parsers and lexical analyzers can be found in the
famous dragon books by Al Aho and others. See for instance Aho and Ullman
[1977], and Aho, Sethi and Ullman [1986]. A very useful guide to the usage of the
UNIX tools yacc and lex can also be found in Schreiner and Friedman [1985].
An outstanding tutorial on C program development can be found in Kernighan and
Pike [1984]. Chapter 8 of that book is especially recommended.
Device channels (Exercise 12-5) were also defined in the language Squeak, and its
successor Newsqueak. See, for instance, Cardelli and Pike [1985].
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13.1 INTRODUCTION
To extend the protocol simulator from Chapter 12 with an validator generator, all we
have to do is to activate two command line options from the source listing in Appen-
dix D:

-a, To generate a protocol specific SPIN analyzer
-t, To follow an error trail produced by that analyzer

To do this we have to replace the two dummy routines gensrc() and
match_trail() in Appendix D with real code. To see how the analyzer is used
refer to Section 13.8 or Chapter 14.

The analyzer described here is based on the discussion in Chapter 11. To keep the
code reasonably simple, we will not discuss a complete implementation of the state
vector model. Even without that, it takes a fair amount of code to produce a validator
of good performance. But once the job is done right an efficient validator can be pro-
duced in a matter of seconds, and can be applied to problems of arbitrary complexity.
The validators that are produced by SPIN in this way are among the fastest programs
for exhaustive searching known to date. A full implementation of the state vector
model can secure a still better performance, but that is well beyond the scope of this
book.

The validators can be used in two different modes. For small to medium size models
the validators can be used with an exhaustive state space. The result of all validations
performed in this mode is equivalent to an exhaustive proof of correctness, for the
correctness requirements that were specified (by default, absence of deadlock). For
systems that are larger, the validators can also be used in supertrace mode, with the
bit state space technique as discussed in Chapter 11. In these cases the validations can
be performed in much smaller amounts of memory, and still retain excellent coverage

297
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of the state space. The results of all validations performed in supertrace mode are
superior to any other type of validation performed within the same physical con-
straints of the host machine (e.g., memory size and speed).

To produce an analyzer, the parse tree that is constructed by the SPIN simulator is
translated into a C program, and extended with state space searching modules. The
program that is generated is then compiled stand-alone. When it is executed it per-
forms the required validation. If an error is discovered, the program writes a simula-
tion trail into a file and stops. The simulation trail can be read by the original simula-
tor, which can then reproduce the error sequence and allow the user to probe the cause
of the error in detail.

Below we first discuss the general structure of the protocol analyzers that are gen-
erated. We then give an overview of the routines that extract the protocol specific
information from the SPIN parse tree. Next we discuss the extensions of the simulator
to provide for guided simulations. We conclude with some examples of the usage of
the new tool.

13.2 STRUCTURE OF THE VALIDATOR
Figure 13.1 shows the main components of the analyzers that can be generated.

run()

new_state()

Transition
Matrix

hash()
Variable Size
State Space

uerror()

Figure 13.1 — Structure of SPIN Validators
A procedure called run() allocates memory and prepares all data structures that the
validator will use during the search. It calls a single procedure new_state() to per-
form the actual search. The two main data structures used by this procedure
new_state() are the state space and a large transition matrix that encodes the com-
plete PROMELA validation model. Each statement in the model produces an entry in
this matrix, defining precisely the executability predicate and the effect of the execu-
tion. Every proctype definition contributes entries to this matrix.

The current state of the system is maintained in a vector of values that can grow and
shrink dynamically: a rubber state-vector. PROMELA run statements append new
processes to the state-vector. The rubber state-vector, therefore, fulfills a role that is
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similar to that of the run queue in the simulator scheduler. Procedure new_state()
performs a depth first search of all executable statements in the model. Instead of
selecting just one executable statement from the list of runnable processes, as the
simulator did, the validator’s job is to test the effects of all executable statements, in
all possible interleavings. Before starting the analysis for a new state new_state()
consults the state space, via the hash() function and decides whether the current state
was analyzed before and can be skipped.

If an error is found, procedure uerror() is called to produce an error trail for the
simulator and, unless otherwise specified, analysis stops. An error can be any viola-
tion of the formal correctness requirements, for instance, a local assertion failure or a
global system state in which all processes are permanently blocked.

Finding an inconsistency in the SPIN model and assisting the user in determining its
causes, is done with two different tools: validator and simulator. The rationale behind
this approach is the standard UNIX discipline: each tool we develop should do one
thing, and do it well.

The simulator is designed as an interactive tool. It has a short start-up time and
can give a a detailed look at the working of the protocol.
The validator is a non-interactive tool. It has a longer start-up time, since it
requires the compilation of an intermediate program, but it is optimized for
exhaustive searches.

13.3 THE VALIDATION KERNEL
Procedure new_state() is the core of the analyzer. It controls all executions, moni-
tors progress, and performs the correctness checks. More than half of the runtime is
spend in this routine, with the larger part of the remainder being used up in the calcu-
lation of hash values to access the state space.

The procedure is statically defined in a header file named pangen1.h. Different por-
tions of the code are enabled or disabled depending on the presence or absence of ren-
dezvous communications, temporal claims, acceptance states, or progress states, and
depending on the type of state space storage that is selected. Ignoring, for the time
being, all these options, the plain exhaustive state searching algorithm looks as fol-
lows:

1 new_state()
2 { register Trans *t, *ta;
3 char n, m, ot, lst;
4 short II, tt;
5 short From = now.nr_pr-1;
6 short To = 0;
7 Down:
8 if (depth >= maxdepth)
9 { truncs++;

10 goto Up;
11 }
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12 if (To == 0)
13 { if (hstore((char *)&now, vsize))
14 { truncs++;
15 goto Up;
16 }
17 nstates++;
18 }
19 if (depth > mreached)
20 mreached = depth;
21 n = timeout = 0;
22
23 Again:
24 for (II = From; II >= To; II -= 1)
25 { this = pptr(II);
26 tt = (short) ((P0 *)this)->_p;
27 ot = (unsigned char) ((P0 *)this)->_t;
28 for (t = trans[ot][tt]; t; t = t->nxt)
29 {
30 #include "pan.m"
31 P999: /* jumps here when move succeeds */
32 if (m>n||(n>3&&m!=0)) n=m;
33 depth++; trpt++;
34 trpt->pr = II;
35 trpt->st = tt;
36 if (t->st)
37 { ((P0 *)this)->_p = t->st;
38 reached[ot][t->st] = 1;
39 }
40 trpt->o_t = t; trpt->o_n = n;
41 trpt->o_ot = ot; trpt->o_tt = tt;
42 trpt->o_To = To;
43 if (t->atom&2)
44 { From = To = II; nlinks++;
45 } else
46 { From = now.nr_pr-1; To = 0;
47 }
48 goto Down; /* pseudo-recursion */
49 Up:
50 t = trpt->o_t; n = trpt->o_n;
51 ot = trpt->o_ot; II = trpt->pr;
52 tt = trpt->o_tt; this = pptr(II);
53 To = trpt->o_To;
54 #include "pan.b"
55 R999: /* jumps here when done */
56 depth--; trpt--;
57 ((P0 *)this)->_p = tt;
58 } /* all options */
59 } /* all processes */
60
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61 if (n == 0)
62 { if (!endstate() && now.nr_pr)
63 { if (!timeout)
64 { timeout=1;
65 goto Again;
66 }
67 uerror("deadlock");
68 }
69 }
70 if (depth > 0) goto Up;
71 }

The procedure is called once and does not return until either a complete search is per-
formed or an error found. In this version, without all the trimmings of a full imple-
mentation, the only type of error checked for is an invalid end-state. The main work
is done in two for loops. The first one, on line 24, loops over all currently executing
processes. The second one, on line 28, exhaustively checks all executable statements
in each process. The proctype of the current process is stored in a local variable ot,
and the process state is kept in a local variable tt. These two variables together are
used to index the transition matrix, trans[ot][tt], on line 28. A pointer T points
to the definition of the transition itself: the condition, the effect and the next state.
The execution of the transitions themselves are hidden in a file pan.m that is included
on line 30. It is a simple case switch that records all transitions that are defined in the
system. If a transition is executable, it leads to label P999. If it is unexecutable a
continue is executed that brings us back into the inner loop on line 28.

A successful transition produces a new state that must be analyzed in precisely the
same fashion as the current one. This is where normally a recursion step is executed.
The time and space required for the recursive procedure calls, however, can easily be
avoided if the recursion is replaced with iteration. Let us look at how this is imple-
mented.

Lines 32 to 42 perform some housekeeping to prepare the validator for the analysis of
a newly generated state. The depth count is increased, a pointer is incremented for the
user level stack stptr, which maintains, among others, the execution trail. If the
transition was labeled atomic, line 43 makes sure that the current process will con-
tinue executing in the next step, foregoing options for executions in the other
processes. The default case is invoked on line 46, defining that all currently execution
processes must be considered. The recursion step is replaced on line 48 with a jump
to the label Down.

On the return from the pseudo recursion, with a jump to label Up on line 48, all
relevant local variables are retrieved via the stack pointer stptr, which, if all is well,
points at exactly the location where they were saved before the matching jump to
Down. Then the state vector is restored to its original value by performing a reverse
operation that undoes the effect of the last forward transition that was explored. The
code that does this is hidden in a separate file pan.b that is included on line 48. This
file also contains a case switch, that relies on the pointer to the transition matrix t to
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point the program to the right operation to execute.

The state itself, storing state information about all currently executing processes and
all currently accessible queues and variables, is maintained in a global variable now,
though that is not visible in the body of this procedure.

The label Again, on line 23, with the matching jump on line 65, is used to implement
the timeout recovery mechanism. If the search gets stuck this is first noticed on line
61 by the zero value of variable n. A quick check is then performed to see if the
deadlock is not in fact a valid endstate. If this test fails, the timeouts are enabled and
second attempt is made to perform a transition with a return to label Again. If this
also fails, the error routine uerror() is called, which can trigger the writing of an
error trail and optionally abort the search.

The extensions that are needed to implement the full range of correctness checks dis-
cussed in Chapter 6 triple the size of the algorithm, though in a none too exciting way.
To check temporal claims, for instance, the search alternately executes atomic state-
ments in the model and in the claim. The toggle bit, which determines where to look
for the next statement to execute, is piggybacked onto the variable tau. To implement
rendezvous message passing, a global variable boq (short for ‘‘blocked on queue’’) is
set after every rendezvous send operation. The variable blocks all operations other
than a matching receive operation. Effectively, then, the send-receive handshake
becomes one indivisible step, though the validator performs it as two distinct transi-
tions. The other extensions similarly make the algorithm somewhat harder to read,
but do not change it in a fundamental way. In the discussion we therefore restrict our-
selves mainly to the basic version. A listing of the complete algorithm for exhaustive
validation is given in Appendix E.

13.4 THE TRANSITION MATRIX
The transition matrix shown in Figure 13.1 performs a central role in the search.
Some precautions are taken to make sure that it does not contain any spurious moves
that could slow down the search. It is constructed from elements of the following
type:

typedef struct Trans {
short atom; /* is this an atomic transition */
int st; /* the next state/statement */
int forw; /* index for forward transition */
int back; /* index for return transition */
struct Trans *nxt;",

} Trans;

Every proctype in the original SPIN specification defines a set of entries in the
matrix: one for every control flow state. The following array is used to keep track of
them.

Trans *trans[NPROCS][NSTATES]

The transitions of a process of type 19 for control flow state 90 can be found through
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the pointer

trans[19][90]

Figure 13.2 illustrates a typical use of the matrix elements.

trans[19][90]

atom: 0

st: 51

back: 41

forw: 14

trans[19][51]

atom

st

back

forw

pan.m: switch (t->forw) {
case 1: ...
case 2: ...

case 14: ...

pan.b: switch (t->back) {
case 1: ...
case 2: ...

case 41: ...

Figure 13.2 — Transition Matrix Elements
The first field of a Trans structure is used to label transitions that are atomic. A zero
entry means that the transition is a normal, asynchronous one. Field st defines the
successor state that is reached if a transition is successfully executed. The next field
forw is an index that identifies the right operation to execute. It indexes a switch of
transitions that is generated in the include file pan.m. Similarly, back is an index into
the switch of pan.b that identifies the operation that can undo the effect of the for-
ward transition and restore the state vector to its original state.

Whenever there is a nondeterministic choice of transitions to make, e.g., for SPIN

selection and repetition structures, the options are placed in a linked list that is con-
nected via the transition element’s nxt pointer (not shown in Figure 13.2). To exam-
ine all executable options, the inner loop of new_state() simply walks down the
linked list.

13.5 THE VALIDATOR-GENERATOR CODE
It would seem that all that is left to do to make the analyzer run is to generate the right
transition matrix. Well, not quite. Since we are generating code anyway we can also
generate protocol specific routines for manipulating the queues, instantiating process
instances, and the like. It is a fairly substantial piece of code that generates all this
information, but well worth it.
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MESSAGE CHANNELS
Before discussing the code of the validator generator itself, let us look briefly at the
code that it tries to produce. From the 25 relevant routines that are part of every
analyzer generated, 7 deal with the message channels:

addqueue()
delq()
q_restor()
qsend()
qrecv()
unsend()
unrecv()

The first routine, for instance, implements the PROMELA chan statement, and the
second routine removes a channel when it goes out of scope, that is, when the creating
process has terminated. For every different type of message channel, a separate queue
template is generated. For example,

typedef struct Q1 {
unsigned char Qlen; /* q_size */
unsigned char _t; /* q_type */
struct {

unsigned fld0 : 32;
} contents[1];

} Q1;

defines a queue with one slot and one message field. Two queue fields are predefined:
one specifies the type of the channel and the other the current number of messages
that the corresponding queue stores. The routine q_restor() is used in backward
moves to restore a deleted queue to its last known state, just before a deletion with
qdel(). Messages are appended to a queue with the procedure qsend(into,

fld0, ...). Parameter fld0 indicates the value of the first message parameter.
Procedure qrecv(from, slot, fld, done) retrieves a single message field fld

from slot slot in a queue from. The parameter done is set to one after all fields have
been extracted and the message can be removed from the queue. Note that a single
receive operation can have multiple side-effects by setting variables. The definition
of a procedure that reads one message parameter at a time is a simple general solution
to that problem.

Every action has an undo. The counterparts of send and receive are named unsend()

and unrecv(), which, respectively, remove a complete message from the tail of a
queue or put one back at its head.

PROCESSES
Three routines deal with processes.

addproc()
delproc()
p_restor()

Every type of process is again defined in a different template. For instance, for the
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factorial program we find

typedef struct P1 { /* factorial */
unsigned _t : 2; /* proctype */
unsigned _p : 4; /* state */
int result;
unsigned char child;
int n;
unsigned char p;

} P1;

The process type and the current process state are a standard part of the template. The
required width of the bitfields is calculated by the generator. These first two fields are
used to index the transition matrix. The remaining entries reserve slots for local vari-
ables. The procedure addproc() appends one of these templates to the state vector,
and delproc() removes it. Procedure p_restor() is used in backward moves to
restore a deleted process to its last known state.

STATE SPACE MAINTENANCE
The state space can be accessed in two different ways, selectable by a preprocessor
directive named BITSTATE. Unless this name has been defined, a full state space is
constructed with a traditional exhaustive search method. To access the state space the
routine hstore() is used. Seen from procedure new_state() this looks as follows:

if (hstore((char *)&now, vsize))
{ truncs++;

goto Up;
}
nstates++;

The variable vsize gives the current size of the state vector in bytes. The global now
points to it. If hstore() returns the boolean value false, the state is new and must
be analyzed. As a side effect of hstore(), the state is also stored in full in the state
space. The next time that this same state is encountered the routine will return the
boolean value true, which means that the state can be skipped. Internally hstore()

uses a fast hash function called s_hash().

If the name BITSTATE is explicitly defined during compilation, the more memory
efficient supertrace, bit state space memory routines are used. They invoke a double
value hashing function called d_hash(). The routine uses the state vector to calculate
two different hash values (see Chapter 11, page 230). A check is then made on the
two bit positions in the state space, and if a double match is found, the state is
assumed to have been analyzed before. This is how it works:
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d_hash((unsigned char *) &now, vsize);
j3 = (1<<(J1&7)); j1 = J1>>3;
j4 = (1<<(J2&7)); j2 = J2>>3;
if ((SS[j2]&j3) && (SS[j1]&j4))
{ truncs++;

goto Up;
}
SS[j2] |= j3; SS[j1] |= j4; /* storage */
nstates++;

First d_hash() is called to produce two hash values for the first vsize bytes of the
state vector, stored in now. The values are written into the integer global variables J1,
and J2. The next few operations take the low order 3 bits from J1 and J2, using the
bit mask 7, and assign them to j3 and j4. The remaining bits are shifted down by
three bit positions and assigned to j1 and j2. The test

if ((SS[j2]&j3) && (SS[j1]&j4))

selects the calculated bit positions and only if both bits are on a match is assumed.
The last line sets the two bits with a binary OR operation, to secure a future match on
the same state. It is the only storage operation performed: a savings in memory of
(8×vsize−2) bits per state, assuming 8 bits per byte.

THE REMAINING ROUTINES
The remainder of the validation routines is fairly straightforward. There is a routine
endstate() to determine if the current combination of process states is a valid end-
state, by comparing them with the known stop states in each process. A routine
assert() checks user defined assertions and produces an error trail if one is violated.
There is a routine r_ck() for every process type in the system that performs the
reachability check after the depth-first search by verifying that every relevant control
flow state in the specification has indeed been reached by at least one of the executing
processes. Two main routines deal with the transition matrix, settable() and
retrans(). The first sets the table (matrix) to its default contents as produced by the
generator, using the parse tree structure. The second quickly goes through the struc-
ture to optimize it a little for the validation task. Nested choices, for instance, are
rewritten into single choices, without, of course, violating the semantics of PROMELA.

13.6 OVERVIEW OF THE CODE
The code for the generator is included in four C files. At the time of writing, a count
of these routines produced:

$ wc pangen[1-4].c
424 1341 8812 pangen1.c
501 1784 13595 pangen2.c
102 303 1659 pangen3.c
170 583 4024 pangen4.c

Three header files contain fixed code that is included with every program generated:
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$ wc pangen[1-2].h
910 3363 22276 pangen1.h
127 528 3389 pangen2.h
108 348 2151 pangen3.h

And finally, one more file is used to implement the guided simulation option.

$ wc pangen5.c
158 489 3292 pangen5.c

The complete code for the exhaustive validation option can be found in Appendix E.
Here we highlight only the major parts.

The routine that is actually called by the simulator, if the command line option -a is
given, is called gensrc(). It is included in pangen2.c. It starts by creating the five
target files pan.[chtmb] and copying some code from pangen2.h into them. It
then calls procedure putproc() once for every basic proctype that was parsed:
once for the description of the init process, stored in the simulator’s run queue, and
once for every process in the ready queue. These calls generate all the code for the
transition matrix and for the case switches with the transition statements. The remain-
ing procedures to make the analyzer run are mostly included in the file pangen1.c

and are invoked in calls at the close of gensrc().

The actual work of translating portions of the parse tree into C code happens in just
two procedures: putstmnt() and undostmnt(). There is no magic here, just the
generation of code, with some care taken to reduce the runtime requirements of vali-
dations. The state numbers are given by the seqno field in parse tree elements: every
basic statement is assigned a unique sequence number by the parsing routines, as
explained in Chapter 12. A set of transitions is assigned to every state to index the
case switches. The transitions are numbered separately (note that there are likely to
be more transitions than states if selection structures are used), and they are stored in
the transition matrix.

Every sequence in a process body results in a call on procedure putseq(). The
sequence is translated one statement at a time in a largely arbitrary order. Every ele-
ment in the sequence that has been translated is labeled DONE in the status field. For
the transitions the pointers between elements are followed, skipping as many inter-
mediate steps as possible, using the routine huntini(). The actual code that repro-
duces the effect of a forward transition is generated by putstmnt(), listed in
pangen2.c. The code that can undo the effect, when the depth first search unwinds,
is generated by undostmnt(), listed in pangen4.c. Rather then giving a detailed
expose of all the code being generated, let us consider the translation of one specific
type of statement: an assignment.

The routine putstmnt() contains code which, after macro substitutions, amounts to
the following:



308 A PROTOCOL VALIDATOR CHAPTER 13

case ASGN: fprintf(fd, "(trpt+1)->oval = ");
putstmnt(fd, now->lft,m,pid);
fprintf(fd, ";\n\t\t");
putstmnt(fd,now->lft,m,pid);
fprintf(fd," = ");
putstmnt(fd,now->rgt,m,pid);
break;

Given the parse tree for the SPIN assignment

nips = 12+3*crunch;

this is translated into the sequence

case 34: (trpt+1)->oval = now.nips;
now.nips = (12 + (3 * ((P1 *)this)->crunch));
m = 3; goto P333;

assuming that 34 is the number in the transition matrix assigned to the current
transition, nips is a global variable, a permanent part of the state vector now, and
crunch is a local variable that is accessible via the predefined pointer to the template
of the current process in the state vector this. The first line is a backup of the old
value of global nips in a special field of the stack that is used to organize the search
in procedure new_state(). There is an offset of 1 to account for the fact that
officially we do not know yet if the transition is going to be executable or not. Only if
the execution is executable is the stack pointer increased, and the backup value will be
in the right place for the undo operation.

The code for the generation of the matching undo operation looks as follows:

case ASGN: putstmnt(tb, now->lft, m, pid);
fprintf(tb, " = trpt->oval");
checkchan(now->rgt, m, pid);
break;

which for the same statement produces this code

case 28: now.nips = trpt->oval;
goto R333;

assuming again that 28 is the index assigned to the current undo operation in the tran-
sition matrix. The additional call on checkchan() in the undo code above is to
make sure that no channels were created as a side effect of the assignment. If so,
these channels are to be deleted again in the reverse transition.

13.7 GUIDED SIMULATION
The last extension to the simulator source code to be discussed is the implementation
of procedure match_trail(). The code can be found in file pangen5.c. It looks for
the simulation trail in file pan.trail, where the validator puts it. In its basic form,
the trail has the following format:
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0:0:1
1:0:2
2:0:3
3:0:4
4:0:5
5:0:6
6:0:8
7:3:15

Each line specifies a transition in three integer fields, separated by colons. The first
field is a step number, counting up from zero to whatever the length of the error trail
may be. The second field is the process number, with 0 for the init process, 1 for
the first process that was started in a run statement, and so on. The last number on
each line of the error trail identifies the state to which the process moves. The
simulator’s job is to follow the trail and touch upon all states listed. If, for now, we
omit error recovery, temporal claim processes, and the treatment of stop states, the
code looks as follows:

1 match_trail()
2 { FILE *fd;
3 int i, pno, nst;
4
5 if (!(fd = fopen("pan.trail", "r")))
6 { printf("spin -t: cannot find ‘pan.trail’\n");
7 exit(1);
8 }
9 Tval = 1; /* timeouts may be part of the trail */

10 while (fscanf(fd, "%d:%d:%d\n", &depth, &pno, &nst) == 3)
11 { i = nproc - nstop; /* number of running procs */
12 for (X = run; X; X = X->nxt)
13 if (--i == pno) /* find process pno */
14 break;
15 lineno = X->pc->n->nval;
16 do /* bring it to state nst */
17 { X->pc = d_eval_sub(X->pc, pno, nst);
18 } while (X && X->pc && X->pc->seqno != nst);
19 }
20 printf("spin: trail ends after %d steps\n", depth);
21 wrapup();
22 }

After opening the trail file (lines 5-8), one directive at a time is read from the trail
(lines 10). The right process is located (lines 12-14), and it is executed until the right
state is reached (lines 16-18).

A stop state is identified by the new state 0, a non-existing state. It is executed as a
removal of the process that was identified. The full code for match_trail() in
Appendix E has extra checks to prepare it for cases where the validation model is
unable to follow the trail, for instance if the model was changed since the trail was
written. In these cases the simulator will report, for example,
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step 23: lost trail (proc 4 state .13)

giving a rough indication where the simulation failed. In this case an inconsistency
was discovered in step 23, just before process 4 reached state 13.

One case in which the simulator may lose track of the simulation trail, in a syntacti-
cally correct validation model, is illustrated by the following example.

do
:: (m >= N-1) -> break
:: (m < N-1) -> m = m - 1
:: (m < N-1) -> m = m - 1; n = n + 1
od

The two almost equal execution paths may, with the current implementation of the
simulator, lead to an ambiguous trail. The problem can be avoided straightforwardly,
by removing the ambiguity:

do
:: (m >= N-1) -> break
:: (m < N-1) -> m = m - 1

if
:: skip
:: n = n + 1
fi

od

13.8 SOME APPLICATIONS
The analysis option is invoked from the original simulator with the flag -a, for
instance, as follows:

$ spin -a factorial

At this point, typically within a second, we have generated a program that consists of
five separate C files: a header file, the two case switches with forward and backward
transitions, a main file with the main C routines, and a file with the transition matrix
and some related routines.

$ wc pan.?
55 197 1161 pan.b # backward moves

731 2159 14822 pan.c # c routines
108 409 2526 pan.h # header
120 482 2925 pan.m # forward moves
129 377 2580 pan.t # transition matrix

1143 3624 24014 total

The program can be compiled in two different ways. The default

$ cc -o pan pan.c

generates an analyzer that constructs a full state space, ruling out any chance of
incompleteness. It provides 100% coverage, unless it runs out of memory. Option-
ally, a more frugal supertrace validator can be generated with the command
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$ cc -DBITSTATE -o pan pan.c

In either case, the validation is started by typing

$ pan
pan: deadlock
pan: wrote pan.trail
...etc

If the validator finds an error it writes the simulation trail. The trail is used with the
simulator in any of the modes discussed in Chapter 12, for instance with the -s

option:

$ spin -t -s factorial
....etc.

where the new -t flag will tell the simulator to follow the trail in pan.trail rather
than performing a random simulation.

Consider the following PROMELA version of Lynch’s protocol, discussed in Chapters
2 and 5.
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1 #define MIN 9 /* first data message to send */
2 #define MAX 12 /* last data message to send */
3 #define FILL 99 /* filler message */
4
5 mtype = { ack, nak, err }
6
7 proctype transfer(chan chin, chout)
8 { byte o, i, last_i=MIN;
9

10 o = MIN+1;
11 do
12 :: chin?nak(i) ->
13 assert(i == last_i+1);
14 chout!ack(o)
15 :: chin?ack(i) ->
16 if
17 :: (o < MAX) -> o = o+1 /* next */
18 :: (o >= MAX) -> o = FILL /* done */
19 fi;
20 chout!ack(o)
21 :: chin?err(i) ->
22 chout!nak(o)
23 od
24 }
25
26 proctype channel(chan in, out)
27 { byte md, mt;
28 do
29 :: in?mt,md ->
30 if
31 :: out!mt,md
32 :: out!err,0
33 fi
34 od
35 }
36
37 init
38 { chan AtoB = [1] of { mtype, byte };
39 chan BtoC = [1] of { mtype, byte };
40 chan CtoA = [1] of { mtype, byte };
41 atomic {
42 run transfer(AtoB, BtoC);
43 run channel(BtoC, CtoA);
44 run transfer(CtoA, AtoB)
45 };
46 AtoB!err,0 /* start */
47 }

A few integer data messages are inserted into the system to allow us to look at at least
a few message exchanges. We have also added a process type to model the expected
behavior of the communication channel: randomly distorting messages. We can
simulate the behavior of the system with the old simulator code, for instance
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$ spin -s lynch
proc 0 (_init) line 46, Send err,0 -> queue 1 (AtoB)
proc 1 (transfer) line 22, Send nak,10 -> queue 2 (chout)
proc 2 (channel) line 31, Send nak,10 -> queue 3 (out)
proc 3 (transfer) line 14, Send ack,10 -> queue 1 (chout)
...etc.

This may or may not hit the assertion violation, depending on how the nondetermin-
ism is resolved at each step.

For a validation of the same specification, we generate and compile the validation pro-
gram, let’s assume in supertrace mode, as follows:

$ spin -a lynch
$ cc -o pan pan.c

We now have an executable program called pan. To see what options it accepts to
perform the search, we can try

$ pan -?
unknown option
-cN stop at Nth error (default=1)
-l find non-progress loops
-mN max depth N (default=10k)
-wN hash-table of 2ˆN entries (default=18)

We can, for instance, set the maximum search depth (the size of the backtrace stack)
to another value than the default of 10,000 steps, or we can change the size of the hash
table.

With full state space storage, the size of the hash table should be chosen larger
than or equal too the total number of reachable states that is expected, to avoid a
serious time penalty for the resolution of the hash collisions (see Chapter 11).
In supertrace mode the size of the hash-table is equal to the number of bits in the
state space, so the -w flag really selects the actual size of the state space that is
used for the search. By default this state space is set to 2ˆ22 = 4,194,304 bits =
524,288 bytes. The size of the state space determines the maximum number of
states that can be analyzed. For the default case this is roughly 4,194,304/2 =
2,097,152 states, independent of the size of the state vector. (In this implementa-
tion two bits are used for every state stored.)

The coverage of the search will be smaller as we get closer to that limit. We discuss
an indicator of that coverage, the hash factor, with a few other examples later. We
first try the validator in exhaustive mode.
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$ pan
assertion violated (i==(last_i+1))
pan: aborted (at depth 53)
pan: wrote pan.trail
full state space search for:

assertion violations and invalid endstates
search was not completed
vector 56 byte, depth reached 53, errors: 1

58 states, stored
2 states, linked
1 states, matched total: 61

hash conflicts: 0 (resolved)
(size 2ˆ18 states, stackframes: 0/16)

At the end of each run the validator prints the numbers of states stored, linked and
matched. Stored states are states that have been added to the state space, either in full
or in compressed form as two bits, depending on how the program was compiled.
Linked states are states that were encountered within an atomic sequence, no state
space checks are performed on them. Matched states are states that were analyzed
and later revisited.

The validator found an error that is documented in the file pan.trail. We can now
feed back this error trail to the simulator to look precisely at what goes on. For
instance:

$ spin -t -s -r lynch
proc 0 (_init) line 46, Send err,0 -> queue 1 (AtoB)
proc 1 (transfer) line 21, Recv err,0 <- queue 1 (chin)
proc 1 (transfer) line 22, Send nak,10 -> queue 2 (chout)
proc 2 (channel) line 29, Recv nak,10 <- queue 2 (in)
proc 2 (channel) line 32, Send err,0 -> queue 3 (out)
proc 3 (transfer) line 21, Recv err,0 <- queue 3 (chin)
proc 3 (transfer) line 22, Send nak,10 -> queue 1 (chout)
proc 1 (transfer) line 12, Recv nak,10 <- queue 1 (chin)
proc 1 (transfer) line 14, Send ack,10 -> queue 2 (chout)
....
proc 3 (transfer) line 21, Recv err,0 <- queue 3 (chin)
proc 3 (transfer) line 22, Send nak,99 -> queue 1 (chout)
proc 1 (transfer) line 12, Recv nak,99 <- queue 1 (chin)
spin: "lynch" line 13: assertion violated
#processes: 4

_p = 3
proc 3 (transfer) line 11 (state 15)
proc 2 (channel) line 28 (state 6)
proc 1 (transfer) line 13 (state 3)
proc 0 (_init) line 47 (state 6)
4 processes created

The simulator run can be repeated with different flags, e.g., printing variable values
and process states, until the cause of the error is determined and can be repaired.
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13.9 COVERAGE IN SUPERTRACE MODE
The coverage of the search in supertrace mode is determined by the number of hash
collisions that occur. This number, of course, is usually unknown. It can be deter-
mined by comparing a run with full state storage to a run with a bit state space, but
this is not always feasible. The number of hash collisions, however, depends criti-
cally on the ratio of the size of the hash-table, i.e., the number of bits in the state
space, and the number of states that is stored. We call this factor the hash factor. It is
calculated by the validator after each run as the size of the hash-table divided by the
number of states stored. A high number (more than 100) correlates with good cover-
age. Low numbers (near 1) imply poor coverage.

Since we store two bits per state in supertrace mode, the hash factor can be anywhere
from 2ˆN up to and including 0.5, where N can be set by the user to grab the maximum
amount of memory that is available on the target machine. (For full state space
storage the lower limit on the hash factor is zero.) By empirical testing with full and
bit state space runs it can be confirmed that a hash-factor of 100 or more virtually
guarantees a coverage of 99% to 100% of all reachable states. As an example, Table
13.1 gives the results of tests with a protocol model that has 334,151 reachable states.

The original run in this case was the full state space version, using 45.6 Mbyte of
memory. It stored all states and resolved a total of 66,455 hash conflicts on the way.
The run was repeated, first with a supertrace validation using the flag -w25, giving a
hash factor of 100.9 and a coverage of 99.45%. By virtue of the double bit hash func-
tion, the number of hash conflicts is substantially lower than in the first run. The pre-
cise number can be found by subtracting the number of reached and stored states in
the first run from the number of reached (but not stored) states in the second run. In
each of the next three supertrace validations we halved the hash factor by using the
flags -w24, -w23, and -w22. The last run uses no more than 6.3 Mbyte of memory, of
which 6 Mbyte, in both the full state space storage version and the supertrace version,
is used for storing the backup trail which was 300,000 steps long for all runs of this
test protocol. (This also explains why the amount of memory required does not pre-
cisely half each time the argument to the -w flag is decremented.)

Table 13.1 – Correlation between Hash Factor and Coverage
_ _____________________________________________________________________________ ____________________________________________________________________________

Search Hash Factor States Stored Hash Collisions Memory Used Coverage_ ____________________________________________________________________________
exhaustive — 334,151 66,455 45.6 Mb 100%
supertrace 100.9 332,316 1,835 9.9 Mb 99.45%
supertrace 50.9 329,570 4,581 7.9 Mb 98.62%
supertrace 25.7 326,310 7,841 6.9 Mb 97.65%
supertrace 13.0 322,491 11,660 6.3 Mb 96.51%_ ____________________________________________________________________________

For comparison, a run of the full state space storage method that is restricted to 6.3
Mbyte of memory to store its state space, predictably, gets less coverage. The
exhaustive search effectively degrades into an uncontrolled partial search, as illus-
trated in Table 13.2.
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Table 13.2 – Coverage of Partial Searches
_ _____________________________________________________________________________ ____________________________________________________________________________

Search Hash Factor States Stored Hash Collisions Memory Used Coverage_ ____________________________________________________________________________
exhaustive — 83,961 389,671 6.3 Mb 25.12%
supertrace 13.0 322,491 11,660 6.3 Mb 96.51%_ ____________________________________________________________________________

The bit state space is clearly the method of choice here.

13.10 SUMMARY
Many automated validation tools require considerable effort from the user to translate
a validation model into the low level code that is used to run the validator. The
interpretation of error reports produced by those tools similarly can require consider-
able human ingenuity. With the simulator and validator generator SPIN, and the vali-
dation language PROMELA, we have tried to provide a high level design environment
in which everything from simple protocols, up to complete designs for distributed
message passing systems can be thoroughly tested and debugged before they are
implemented. These tools can help us to deal effectively with the notoriously difficult
problems of asynchrony and concurrency. The tools are portable, powerful, and
efficient.

EXERCISES

13-1. 13-1. Consider how the code must be changed to replace the depth-first search order with
breadth-first. What are the memory requirements?

13-2. 13-2. Modify the code to optimize the implementation of send and receive routines, and meas-
ure its effect.

13-3. 13-3. Add an option to SPIN for restricting the validation runs to ‘‘fair’’ executions. This
option is based on the assumption of a ‘‘fair process scheduler.’’ This means that any
process that can execute a statement is assumed to be enabled to do so within finite time.
All infinite executions (cycles) that violate this fairness assumption can be ignored. All
non-progress loops or acceptance cycles that violate this assumption should similarly be
ignored. Hint: perform an extra check before reporting any error in cyclic sequences.

13-4. 13-4. (E.A. Emerson - P. van Eijk) Implement a method that can give a better prediction of the
coverage of partial supertrace validations. Do this by starting a supertrace validation by
selecting 1000 states at random from the state space. (How?) Store those full states in a
separate lookup table and check during the supertrace validation how many of those 1000
states are reached. The fraction of the states reached is an indication of the coverage.
How reliable is the estimate? How expensive?

13-5. 13-5. Modify the validator generator to allow for the automatic generation of protocol imple-
mentations from PROMELA code. Note that C code is already generated for all transitions
and actions. Replace the search procedure new_state() with a scheduler, as used in the
simulator code (Chapter 12), and allow for certain channels to be identified as special
device channels (for example, files) that can be linked to C library routines that access
the raw I/O channels. Your solution need not contain more than two pages of code.
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BIBLIOGRAPHIC NOTES
The validator described has several predecessors of varying scope and performance.
For those interested, the papers Holzmann [1984a, 1985, 1988] document the more
significant changes. The last of these papers contains a detailed explanation of the
state vector model and the bit state space method. The method described in
Holzmann [1988] is the only version from this sequence that achieves a better perfor-
mance, in terms of runtime and memory usage, than the method described here. It
requires substantially more code to implement.
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14.1 INTRODUCTION
It is time to put the tools we have developed in the last three chapters to use. First, to
get our feet wet, let us look at two simple examples. The first is a reconstruction of a
protocol used on the optical telegraphs in 1794 (see Chapter 1). The second is a
small, but very important, example from Chapter 5: Dekker’s algorithm for providing
two competing processes mutually exclusive access to a critical section in their code.

14.2 AN OPTICAL TELEGRAPH PROTOCOL
The details of the communications protocols used on the optical telegraphs built in the
late 18th century are hard to find. The best source is a booklet published by the
Swedish inventor of a shutter telegraph Edelcrantz [1796], which comes complete
with coding tables and elaborate, informal descriptions of the required coding and sig-
naling methods. All stations along a line, except the first and the last one, had to
monitor two neighboring stations for incoming traffic. Two telegraph operators were
therefore usually on duty. In the validation model we build for the optical telegraph
we will therefore also use two asynchronous processes, one to model the actions of
each operator.

To transfer a message, the sending operator had to set the telegraph on his station to a
special start signal, which had to be confirmed with an attention signal from the
receiving station. The start signal could then be removed, and the first message
transfered. Each message had to be reproduced faithfully by the receiver before the
sender could remove it from the telegraph. (Edelcrantz system also allowed for the
use of a special error signal, but we will not model that here.) The end of a message
was signaled with a special stop signal. After the stop signal was transfered, the
telegraph was released for other traffic, for instance to traffic flowing in the opposite
direction.

Clearly, an operator could not use the telegraph on his station for incoming or

318
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outgoing traffic if his colleague was already using it. We model the state of the tele-
graphs with a boolean array busy[N], where N is the number of telegraph stations.
The validation model below puts three stations in a ring (it’s unlikely that they were
ever used that way), with two operators per station this gives a total of six processes.

1 #define true 1
2 #define false 0
3
4 bool busy[3];
5
6 chan up[3] = [1] of { byte };
7 chan down[3] = [1] of { byte };
8
9 mtype = { start, attention, data, stop }

10
11 proctype station(byte id; chan in, out)
12 { do
13 :: in?start ->
14 atomic { !busy[id] -> busy[id] = true };
15 out!attention;
16 do
17 :: in?data -> out!data
18 :: in?stop -> break
19 od;
20 out!stop;
21 busy[id] = false
22 :: atomic { !busy[id] -> busy[id] = true };
23 out!start;
24 in?attention;
25 do
26 :: out!data -> in?data
27 :: out!stop -> break
28 od;
29 in?stop;
30 busy[id] = false
31 od
32 }
33
34 init {
35 atomic {
36 run station(0, up[2], down[2]);
37 run station(1, up[0], down[0]);
38 run station(2, up[1], down[1]);
39
40 run station(0, down[0], up[0]);
41 run station(1, down[1], up[1]);
42 run station(2, down[2], up[2])
43 }
44 }

If we run a random simulation on this protocol we quickly find a problem.
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$ spin -r -s optical
proc 6 (station) line 23, Send start -> queue 3 (out)
proc 5 (station) line 23, Send start -> queue 2 (out)
proc 4 (station) line 23, Send start -> queue 1 (out)
proc 3 (station) line 13, Recv start <- queue 2 (in)
proc 2 (station) line 13, Recv start <- queue 1 (in)
proc 1 (station) line 13, Recv start <- queue 3 (in)

#processes: 7
proc 6 (station) line 24 (state 19)
proc 5 (station) line 24 (state 19)
proc 4 (station) line 24 (state 19)
proc 3 (station) line 14 (state 4)
proc 2 (station) line 14 (state 4)
proc 1 (station) line 14 (state 4)
proc 0 (_init) line 44 (state 8)
7 processes created

The simulation gets stuck after all three stations simultaneously send out the start

message. The three messages are received, but then the deadlock trap closes. Three
operators are waiting for a confirmation of their start messages, the other three are
waiting for the telegraph to be released by their colleagues before they can sent the
required attention signal. In the deadlock state, three processes are at line 14 and
the other three at line 24 in the source of proctype station.

The deadlock problem is a curious variant of Dijkstra’s well-known dining philoso-
phers’ problem.

14.3 DEKKER´s ALGORITHM
To build a useful validation model, we extend Dekker’s algorithm with two boolean
variables, ain and bin, as follows:

1 #define true 1
2 #define false 0
3 #define Aturn false
4 #define Bturn true
5
6 bool x, y, t;
7 bool ain, bin;
8
9 proctype A()

10 { x = true;
11 t = Bturn;
12 (y == false || t == Aturn);
13 ain = true;
14 assert(bin == false); /* critical section */
15 ain = false;
16 x = false
17 }
18
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19 proctype B()
20 { y = true;
21 t = Aturn;
22 (x == false || t == Bturn);
23 bin = true;
24 assert(ain == false); /* critical section */
25 bin = false;
26 y = false
27 }
28
29 init
30 { run A(); run B()
31 }

The variables ain and bin are set to true only when process A() or B(), respec-
tively, enters its critical section. A simple assert() statement can be used to verify
that both processes cannot be in their critical sections at the same time.

First, let us do a random simulation. The above validation model is stored in a file
named ‘‘dekker.’’ We try

$ spin dekker
3 processes created

No assertion violations are reported, but the run is not very informative. We try
again, this time printing out all statements.

$ spin -p dekker
proc 0 (_init) line 31 (state 2)
proc 1 (A) line 11 (state 2)
proc 0 (_init) line 31 (state 3)
proc 2 (B) line 21 (state 2)
proc 1 (A) line 12 (state 3)
proc 2 (B) line 22 (state 3)
proc 1 (A) line 13 (state 4)
proc 1 (A) line 14 (state 5)
proc 1 (A) line 15 (state 6)
proc 1 (A) line 16 (state 7)
proc 1 (A) line 17 (state 8)
proc 2 (B) line 23 (state 4)
proc 2 (B) line 24 (state 5)
proc 2 (B) line 25 (state 6)
proc 2 (B) line 26 (state 7)
proc 2 (B) line 27 (state 8)
proc 2 (B) terminates
proc 1 (A) terminates
proc 0 (_init) terminates
3 processes created

We can repeat this a few times to gain confidence that indeed the algorithm seems to
perform as advertised. But that is no proof. We can easily do an exhaustive search to
establish once and for all that the algorithm is correct. First we generate and compile
the analyzer.
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$ spin -a dekker
$ cc -o pan pan.c

That is all there is to it; except for the exhaustive validation run itself of course.

$ pan
full state space search for:

assertion violations and invalid endstates
vector 16 byte, depth reached 19, errors: 0

81 states, stored
0 states, linked

36 states, matched total: 117
hash conflicts: 0 (resolved)
(max size 2ˆ18 states, stackframes: 3/0)

unreached in proctype _init:
reached all 3 states

unreached in proctype B:
reached all 8 states

unreached in proctype A:
reached all 8 states

The first two lines tell us what type of validation is being performed. Since no tem-
poral claims or progress states were defined, a basic search for assertion violations
and invalid end-states is performed. The next line says that the state vector for this
validation model took up 16 bytes of memory, the longest unique execution sequence
was 19 steps long, and, alas, there were no errors found. A total of 81 reachable sys-
tem states was logged. 36 times the symbolic executions performed by the validator
returned the system to a reachable state that was analyzed before. There were no hash
conflicts. If there had been any, since this is a full state space search, they would have
been resolved with a linked list in the hash table. All states in all processes, finally,
were found to be reachable and, implicitly, we proved that no execution sequence can
violate the correctness assertions: the validator tried them all. No doubt about it, the
algorithm enforces mutual exclusion.

14.4 A LARGER VALIDATION
A validation of the design of the file transfer protocol from Chapter 7 is a larger job.
The complete design required us to address a large number of small problems, all of
which could be solved with some degree of confidence. But having solved these sub-
problems our job is not done. The logical consistency of the complete design is hard
to assess. All the small solutions together define the behavior of a larger composite
machine that can interact with its environment in an astounding number of ways.
After we complete the design, the composite machine will respond in one way or
another to all the possible sequences of events that the environment can offer: the
ones we had in mind when we made the initial design, and all the ones we never
thought of. A protocol designer quickly learns that the second class of sequences is
usually larger than the first. Our job here is to find out if, despite this, the design cri-
teria for the protocol are met.
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A full listing of the protocol model, as validated here, is given in Appendix F. If all
goes well, we can either prove or disprove, for instance, that this protocol is free from
deadlocks, can recover gracefully from user aborts, and reliably transmits data in the
presence of transmission errors.

The full protocol contains 12 asynchronous processes and 20 message channels. The
model is of a realistic complexity and provides a good test case for the applicability of
our tools. It is tempting to begin by trying to perform an exhaustive validation of the
complete model. A straight exhaustive validation of the model, however, runs una-
voidably into the traps discussed in Chapter 11; there cannot ever be enough memory
or enough time to complete it. An arbitrarily placed memory limit of 16 Mbytes, for
instance, is exhausted quickly and produces the following result. The maximum
search depth was guessed.

$ spin -a pftp # the full model, as listed in App. F
$ cc -DMEMCNT=24 -o pan pan.c # set memory bound at 2ˆ24 bytes
$ pan -m15000 # max search depth 15,000 steps
pan: out of memory
full statespace search for:

assertion violations and invalid endstates
search was not completed
vector 256 byte, depth reached 7047, errors: 0

57316 states, stored
44880 states, linked
76300 states, matched total: 178496

hash conflicts: 10319 (resolved)
(max size 2ˆ18 states, stackframes: 0/1009)

memory used: 16777241

The exhaustive search deteriorated into an uncontrolled partial search when it
exhausted the 16 Mbytes of available memory. As argued in Chapter 11, a bit state
space technique can achieve better coverage in these cases, even within stricter
memory bounds. For instance, with a memory arena 8 times smaller than before, a bit
state space analysis reaches approximately 40 times more states:

$ cc -DMEMCNT=21 -DBITSTATE -o pan pan.c # 8 times less memory
$ pan -w22 -m15000 # 2ˆ22 = 4 Mbit = 0.5 Mbyte state space
bit state space search for:

assertion violations and invalid endstates
vector 256 byte, depth reached 14,999, errors: 0
2136023 states, stored
1987936 states, linked
3499761 states, matched total: 7623720

hash factor: 1.963603 (best coverage if >100)
(max size 2ˆ22 states, stackframes: 0/2365)

memory used: 1507425 # state space + 15,000 slot stack
unreached in proctype _init:

reached all 13 states
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unreached in proctype data_link:
line 20 (state 14)
reached: 13 of 14 states

unreached in proctype fc:
...
reached: 61 of 73 states

unreached in proctype fserver:
line 29 (state 30)
reached: 29 of 30 states

unreached in proctype session:
...
reached: 96 of 99 states

unreached in proctype present:
...
reached: 32 of 34 states

unreached in proctype userprc:
reached all 17 states

The analyzer inspected 7.6 million composite system states, of which more than 2
million were distinct. The state descriptions were 256 bytes long. There are, how-
ever, a number of indications that the analysis was incomplete.

The hash factor is too low. The hash factor must be over a hundred, before we can
be confident of sufficient coverage (Chapter 13).
The depth limit of 15,000 steps was too small (note the depth-reached of 14,999
steps). The search would have to be repeated with a larger depth limit to avoid
truncation.
The list of unreached code, abbreviated above, shows that not all parts of the
model were exercised.

We can boost the coverage a little bit by picking a larger memory arena, but the
results are not encouraging:

$ cc -DMEMCNT=23 -DBITSTATE -o pan pan.c # use more memory
$ pan -w25 -m45000 # allow up to 32 million states
bit state space search for:

assertion violations and invalid endstates
vector 256 byte, depth reached 36569, errors: 0
18302437 states, stored
19482180 states, linked
33989843 states, matched total: 71774460
hash factor: 1.833331 (best coverage if >100)
(max size 2ˆ25 states, stackframes: 0/6167)

memory used: 6857209
...

This time, in less than half the memory arena of the first, ‘‘full search’’ we analyzed
over 300 times more states using the supertrace algorithm. Still, however, the indica-
tions are that the coverage is poor. If we want to do better, we have to take a different
approach. Rather than performing a single monolithic test of all layers at the same
time, we can break up the validation problem into smaller, more manageable pieces.
(See also the discussion of complexity management techniques such as reduction and
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generalization in Chapters 8 and 11.) In the design phase we already made an effort
to separate orthogonal issues, such as error control, flow control, and session control.
This effort can pay off now. The correctness of the flow control layer, for instance, is
completely independent of the correctness of the session control layer. We can there-
fore reduce the complexity of the validation substantially by validating protocol
modules separately.

Design by stepwise refinement and validation by stepwise abstraction are
complementary techniques.

Each separate validation can achieve a much better coverage than a monolithic valida-
tion of all layers put together.

Let’s look at the layers one by one. The correctness of the error control depends on
the accuracy of the checksumming method, which was discussed in Chapter 3. Vali-
dation of a checksum algorithm by exhaustive reachability analysis would be inap-
propriate; it is a mere computation. We look at the validation of the core protocol
layers: flow control, session control, and presentation. We base the validation on the
assumptions that were made earlier about the behavior of the three environment
processes: the user, the file server, and the data link.

14.5 FLOW CONTROL VALIDATION
The main correctness requirement for the flow control layer is that it cannot lose or
reorder messages, despite the fact that the lower protocol module does lose messages.
In Chapter 7 we expressed a correctness of the flow control layer, using a labeling of
messages with three colors, red, white, and blue. To perform the validation we use
the test sender and receiver process described in Chapter 7, extended with some extra
code. Before any data are transferred, the test sender must synchronize the two flow
control layer processes. The code is borrowed from the original session layer (see
Chapter 7 and Appendix F).

proctype test_sender(bit n)
{ byte par, toggle;

ses_to_flow[n]!sync,toggle;
do
:: flow_to_ses[n]?sync_ack,par ->

if
:: (par != toggle)
:: (par == toggle) -> break
fi

:: timeout ->
ses_to_flow[n]!sync,toggle

od;
toggle = 1 - toggle;
do
:: ses_to_flow[n]!white
:: ses_to_flow[n]!red -> break
od;
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do
:: ses_to_flow[n]!white
:: ses_to_flow[n]!blue -> break
od;
do
:: ses_to_flow[n]!white
:: break
od

}
proctype test_receiver(bit n)
{

do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> break
:: flow_to_ses[n]?blue -> assert(0)
od;
do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0)
:: flow_to_ses[n]?blue -> break
od;

end: do
:: flow_to_ses[n]?white
:: flow_to_ses[n]?red -> assert(0)
:: flow_to_ses[n]?blue -> assert(0)
od

}

The last cycle in the receiver was labeled as an end-state. It is where we would expect
the receiver process to be in all valid end-states of the system. It is not wise to rely on
the system reaching a deadlock state when an incorrect message is received. The
receiver process blocks on unspecified receptions, but the other processes may con-
tinue, e.g., with retransmissions. For this reason, an explicit assertion violation is
forced in the above validation model.

This test sender and receiver model the upper protocol layer for the flow control layer
process. The lower protocol layer is the data link. It was modeled as follows:

proctype data_link()
{ byte type, seq;

end: do
:: flow_to_dll[0]?type,seq ->

if
:: dll_to_flow[1]!type,seq
:: skip /* lose */
fi

:: flow_to_dll[1]?type,seq ->
if
:: dll_to_flow[0]!type,seq
:: skip /* lose */
fi
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od
}

The only function of the data link model is to simulate the loss of messages. There is,
however, an equivalent and simpler way to model the same behavior. We can connect
the two flow control processes directly and modify them to randomly discard any
messages that arrive. This reduction allows us to remove two processes and two mes-
sage channels from the model by the addition of just one clause to the receiver part of
the flow control layer process (see Appendix F).

#if LOSS
:: err_to_flow[N]?type,m /* lose any message */

#endif

We have used a preprocessor directive LOSS to enable or disable the possibility of
message loss in validations. (The message is received, but not responded to.) In the
flow control layer validation model listed in Appendix F there is one other preproces-
sor directive, named DUPS. It can be used to model the possibility of duplicate mes-
sages by triggering premature retransmissions, i.e., the retransmission of messages
that are not really lost. Another step in our effort to reduce the complexity of the vali-
dation can be to group code into atomic statements wherever we can safely do so, and
to combine the test sender and receiver into a single upper level tester. (See incre-
mental composition, discussed in Chapters 8 and 11.) The complete code for the
upper tester then looks as follows:

1 proctype upper()
2 { byte s_state, r_state;
3 byte type, toggle;
4
5 ses_to_flow[0]!sync,toggle;
6 do
7 :: flow_to_ses[0]?sync_ack,type ->
8 if
9 :: (type != toggle)

10 :: (type == toggle) -> break
11 fi
12 :: timeout ->
13 ses_to_flow[0]!sync,toggle
14 od;
15 toggle = 1 - toggle;
16
17 do
18 /* sender */
19 :: ses_to_flow[0]!white,0
20 :: atomic {
21 (s_state == 0 && len (ses_to_flow[0]) < QSZ) ->
22 ses_to_flow[0]!red,0 ->
23 s_state = 1
24 }
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25 :: atomic {
26 (s_state == 1 && len (ses_to_flow[0]) < QSZ) ->
27 ses_to_flow[0]!blue,0 ->
28 s_state = 2
29 }
30 /* receiver */
31 :: flow_to_ses[1]?white,0
32 :: atomic {
33 (r_state == 0 && flow_to_ses[1]?[red]) ->
34 flow_to_ses[1]?red,0 ->
35 r_state = 1
36 }
37 :: atomic {
38 (r_state == 0 && flow_to_ses[1]?[blue]) ->
39 assert(0)
40 }
41 :: atomic {
42 (r_state == 1 && flow_to_ses[1]?[blue]) ->
43 flow_to_ses[1]?blue,0;
44 break
45 }
46 :: atomic {
47 (r_state == 1 && flow_to_ses[1]?[red]) ->
48 assert(0)
49 }
50 od;
51 end:
52 do
53 :: flow_to_ses[1]?white,0
54 :: flow_to_ses[1]?red,0 -> assert(0)
55 :: flow_to_ses[1]?blue,0 -> assert(0)
56 od
57 }

The structure of the test system we have described is shown in Figure 14.1.

Upper

Tester

Flow Control Flow Control

Figure 14.1 — Validation of the Flow Control Layer
The circle represents the upper level model that was added specifically for this valida-
tion. The two boxes are the flow control layer processes being validated. By the con-
struction of the upper tester we know that if there is any error in the flow control
layer, the upper tester module will trip on a false assertion.
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IDEAL CHANNELS
In a first validation run we check that in the absence of errors, data are transferred
correctly and the temporal claim cannot be violated. The startup script looks as fol-
lows:

1 /*
2 * PROMELA Validation Model
3 * FLOW CONTROL LAYER VALIDATION
4 */
5
6 #define LOSS 0 /* message loss */
7 #define DUPS 0 /* duplicate msgs */
8 #define QSZ 2 /* queue size */
9

10 mtype = {
11 red, white, blue,
12 abort, accept, ack, sync_ack, close, connect,
13 create, data, eof, open, reject, sync, transfer,
14 FATAL, NON_FATAL, COMPLETE
15 }
16
17 chan ses_to_flow[2] = [QSZ] of { byte, byte };
18 chan flow_to_ses[2] = [QSZ] of { byte, byte };
19 chan dll_to_flow[2] = [QSZ] of { byte, byte };
20 chan flow_to_dll[2];
21
22 #include "flow_cl"
23 #include "upper_tester"
24
25 init
26 {
27 atomic {
28 flow_to_dll[0] = dll_to_flow[1];
29 flow_to_dll[1] = dll_to_flow[0];
30 run fc(0); run fc(1);
31 run upper()
32 }
33 }

The include files contain the model definitions we have just discussed. The flow con-
trol layer processes are directly linked with the first two assignments in the initial pro-
cess, and they are started in the two subsequent run statements. The following num-
bered listing of the flow control layer, as tested, is useful for cross referencing the
unreachable code.



330 USING THE VALIDATOR CHAPTER 14

1 /*
2 * Flow Control Layer Validation Model
3 */
4
5 #define true 1
6 #define false 0
7
8 #define M 4 /* range sequence numbers */
9 #define W 2 /* window size: M/2 */

10
11 proctype fc(bit n)
12 { bool busy[M]; /* outstanding messages */
13 byte q; /* seq# oldest unacked msg */
14 byte m; /* seq# last msg received */
15 byte s; /* seq# next msg to send */
16 byte window; /* nr of outstanding msgs */
17 byte type; /* msg type */
18 bit received[M]; /* receiver housekeeping */
19 bit x; /* scratch variable */
20 byte p; /* seq# of last msg acked */
21 byte I_buf[M], O_buf[M]; /* message buffers */
22
23 /* sender part */
24 end: do
25 :: atomic {
26 (window < W && len(ses_to_flow[n]) > 0
27 && len(flow_to_dll[n]) < QSZ) ->
28 ses_to_flow[n]?type,x;
29 window = window + 1;
30 busy[s] = true;
31 O_buf[s] = type;
32 flow_to_dll[n]!type,s;
33 if
34 :: (type != sync) ->
35 s = (s+1)%M
36 :: (type == sync) ->
37 window = 0;
38 s = M;
39 do
40 :: (s > 0) ->
41 s = s-1;
42 busy[s] = false
43 :: (s == 0) ->
44 break
45 od
46 fi
47 }
48 :: atomic {
49 (window > 0 && busy[q] == false) ->
50 window = window - 1;
51 q = (q+1)%M
52 }
53 #if DUPS
54 :: atomic {
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55 (len(flow_to_dll[n]) < QSZ
56 && window > 0 && busy[q] == true) ->
57 flow_to_dll[n]! O_buf[q],q
58 }
59 #endif
60 :: atomic {
61 (timeout && len(flow_to_dll[n]) < QSZ
62 && window > 0 && busy[q] == true) ->
63 flow_to_dll[n]! O_buf[q],q
64 }
65
66 /* receiver part */
67 #if LOSS
68 :: dll_to_flow[n]?type,m /* lose any message */
69 #endif
70 :: dll_to_flow[n]?type,m ->
71 if
72 :: atomic {
73 (type == ack) ->
74 busy[m] = false
75 }
76 :: atomic {
77 (type == sync) ->
78 flow_to_dll[n]!sync_ack,m;
79 m = 0;
80 do
81 :: (m < M) ->
82 received[m] = 0;
83 m = m+1
84 :: (m == M) ->
85 break
86 od
87 }
88 :: (type == sync_ack) ->
89 flow_to_ses[n]!sync_ack,m
90 :: (type != ack && type != sync && type != sync_ack)->
91 if
92 :: atomic {
93 (received[m] == true) ->
94 x = ((0<p-m && p-m<=W)
95 || (0<p-m+M && p-m+M<=W)) };
96 if
97 :: (x) -> flow_to_dll[n]!ack,m
98 :: (!x) /* else skip */
99 fi

100 :: atomic {
101 (received[m] == false) ->
102 I_buf[m] = type;
103 received[m] = true;
104 received[(m-W+M)%M] = false
105 }
106 fi
107 fi
108 :: (received[p] == true && len(flow_to_ses[n])<QSZ
109 && len(flow_to_dll[n])<QSZ) ->
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110 flow_to_ses[n]!I_buf[p],0;
111 flow_to_dll[n]!ack,p;
112 p = (p+1)%M
113 od
114 }

Not knowing anything about the complexity of the model that we have constructed for
the validation, the best approach is to run a quick supertrace (bit state space) analysis
and check the hash factor and the number of reachable states. By multiplying the
number of states stored with the number of bytes required per state we can then get an
estimate of the amount of memory that would be required for an exhaustive search.
For instance, a supertrace analysis of the flow control layer validation model from
Figure 14.1 is performed as follows, using a memory arena of roughly 4.5 Mbytes:

$ spin -a pftp.flow
$ cc -DMEMCNT=23 -DBITSTATE -o pan pan.c
$ pan -w25
bit statespace search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 3781, errors: 0

90843 states, stored
317124 states, linked
182422 states, matched total: 590389

hash factor: 369.363216 (best coverage if >100)
(max size 2ˆ25 states, stackframes: 0/418)

memory used: 4463832
...

The search was of good quality (the hash factor is high) so the number of states
reached should be a good approximation of the true number of reachable states in the
full state space. A quick calculation shows that we would need 90843×128, or
roughly 12 Mbytes to store the complete state space. Having a machine with 64
Mbytes available, we can decide to repeat the analysis with an exhaustive check.

$ cc -DMEMCNT=24 -o pan pan.c # memory bound 2ˆ24
$ pan -w16 # hash table of 2ˆ16 slots
full state space search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 5580, errors: 0

90845 states, stored
317134 states, linked
182425 states, matched total: 590404

hash conflicts: 154271 (resolved)
(max size 2ˆ16 states, stackframes: 0/418)

memory used: 12886356
unreached in proctype _init:

reached all 7 states
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unreached in proctype upper:
line 13 (state 9)
line 39 (state 29)
line 48 (state 36)
line 54 (state 43)
line 55 (state 45)
line 57 (state 49)
reached: 43 of 49 states

unreached in proctype fc:
line 63 (state 28)
line 93 (state 50)
line 96 (state 53)
line 95 (state 55)
line 113 (state 73)
reached: 68 of 73 states

The state space built held 90,845 reachable system states, with 317,134 linked states
(intermediate states in atomic sequences), and a longest unique execution sequence of
3781 steps. A total of 182,425 times a state was reached that was previously analyzed
in the depth first search. The earlier bit state space analysis had 99.997% coverage.

Next, let us consider the states that are reported to be unreachable. Four of the six
unreachable states in the upper tester correspond to the assertion violations that we
want to be unreachable: lines 39, 48, 54, and 55. Line 13 specifies the action to be
taken if a timeout occurs while the upper tester is waiting for a response to its initial
sync message. It is readily checked that indeed this code should also be unreachable:
if there is no message loss, the timeout should never occur. Line 57, finally, is the
normal stop state of the upper tester, at the end of its code. Since the code for the
upper tester is written as an infinite loop, we would also not expect that state to be
reachable.

Five states are reported to be unreachable in the flow control layer protocol. The
unreached code tells us that no timeout’s can occur (line 63). This is correct, in the
absence of message loss timeouts are redundant. It also confirms that, in the absence
of all errors, acknowledgments always arrive in the exact order in which the data mes-
sages are sent (lines 93-97). Line 113, finally, is the normal end-state of the flow con-
trol layer process. Since the process never terminates, it is also correctly labeled as
unreachable.

In examining the listings, remember that the line numbers are approximate, off-by-
one errors are sometimes hard to avoid. In case of doubt, the state numbers given in
parentheses can be used to look up the precise statement of the process in the file
pan.m.

In the absence of message loss in the underlying data link, then, the flow control layer
meets its correctness requirements. Since the assertions in the temporal claim cannot
be violated, no messages can ever be lost or reordered.
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MESSAGE LOSS AND DUPLICATION ERRORS
In the next validation runs we check the working of the flow control layer in the pres-
ence of two different types of errors: message loss and duplicate messages. First we
check for message loss by giving the preprocessor directive LOSS a non-zero value. It
is just within the reach of a full state space analysis.

$ spin -a pftp.flow1
$ cc -o pan pan.c
$ pan -w20
full state space search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 4421, errors: 0
396123 states, stored

1046768 states, linked
748273 states, matched total: 2191164

hash conflicts: 186761 (resolved)
(max size 2ˆ20 states, stackframes: 0/543)

unreached in proctype _init:
reached all 7 states

unreached in proctype upper:
line 39 (state 29)
line 48 (state 36)
line 54 (state 43)
line 55 (state 45)
line 57 (state 49)
reached: 44 of 49 states

unreached in proctype fc:
line 113 (state 74)
reached: 73 of 74 states

The timeout option in the upper tester has now been exercised, and all states of the
flow control layer process were reached. All remaining unreachable states in the
upper tester correspond to the error states that should be unreachable.

A next test is for duplicate messages. We enable this test with the preprocessor direc-
tive DUPS. This type of error dramatically increases the complexity of the model. A
validation is now solidly outside the range of exhaustive searches. Only a bit state
space search can still be performed with reasonable coverage.

$ spin -a pftp.flow2
$ cc -DMEMCNT=27 -DBITSTATE -o pan pan.c
$ pan -w29 -m100000
vector 128 byte, depth reached 56089, errors: 0
8241456 states, stored

22946550 states, linked
21143649 states, matched total: 52331655
hash factor: 65.142718 (best coverage if >100)
(max size 2ˆ29 states, stackframes: 0/7621)

memory used: 70073429
unreached in proctype _init:

reached all 7 states
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unreached in proctype upper:
line 13 (state 9)
line 39 (state 29)
line 48 (state 36)
line 54 (state 43)
line 55 (state 45)
line 57 (state 49)
reached: 43 of 49 states

unreached in proctype fc:
line 63 (state 31)
line 113 (state 76)
reached: 74 of 76 states

Storing a full state space of 8,241,456 states of 128 bytes each would take a Gigabyte
of memory. The bit state space search above used 70 Mbytes and completed with a
hash factor of 65, thus with a reasonable guarantee of complete coverage (see Chapter
13). The longest unique execution sequence has now grown to 56,089 steps. All pro-
tocol states except those corresponding to errors and retransmission timeouts have
been exercised. The flow control layer passes also this test, that is, in the absence of
the other types of errors, the flow control layer seems able to cope successfully with
arbitrary amounts of duplication errors.

This validation test is, of course, a rather drastic one. Premature retransmission
timeouts can occur perhaps several times during a file transfer session, but very
unlikely hundreds of times or more. Many other variations of validation runs are pos-
sible. We could, for instance, reduce the complexity of the search by counting and
restricting the number of duplication errors per session. We can also test for combi-
nations of loss and duplication errors, and we could intersperse the sending of white,
red, and blue messages with flow control resynchronizations. We consider just one
variant of a validation run below.

VIOLATIONS OF THE WINDOW INVARIANT
To make sure that errors are properly caught in the validation runs, we can try to
tamper with the window size and replace the correct parameters:

#define M 4 /* range sequence numbers */
#define W 2 /* window size: M/2 */

in the flow control layer protocol, with, for instance

#define M 4 /* range sequence numbers */
#define W 3 /* window size: > M/2 */

In the presence of message loss this should reveal errors, because it violates the win-
dow protocol invariant we proved earlier. We first try a search without the possibility
of message loss:
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$ spin -a pftp.flow3
$ cc -o pan pan.c
$ pan -m20000
full statespace search for:

assertion violations and invalid endstates
vector 128 byte, depth reached 10194, errors: 0
287445 states, stored

1181892 states, linked
664505 states, matched total: 2133842

hash conflicts: 487165 (resolved)
(max size 2ˆ18 states, stackframes: 0/1130)

There are more states than before, because there can be more messages outstanding at
the same time, but, as expected, no errors just yet. Next, we turn on message loss by
setting the compiler directive LOSS to 1.

$ spin -a pftp.flow4
$ cc -o pan pan.c
$ pan
assertion violated 0
pan: aborted (at depth 656)
pan: wrote pan.trail
full statespace search for:

assertion violations and invalid endstates
search was not completed
vector 128 byte, depth reached 1290, errors: 1

22469 states, stored
45816 states, linked
28041 states, matched total: 96326

hash conflicts: 3267 (resolved)
(max size 2ˆ18 states, stackframes: 0/199)
...

As expected, the tampering with the window protocol invariant introduces an error
that is discovered in the reachability analysis after only a few thousand states are
checked. It can be tracked down with a guided simulation, using the error trail pro-
duced by the analyzer.

14.6 SESSION LAYER VALIDATION
Having convinced ourselves that, with the right window size parameters, the flow
control layer correctly mimics the behavior of an ideal transmission channel to the
upper protocol layers, we can now use that result to simplify the validation of the ses-
sion layer. We can build a validation model for this test as follows, omitting every-
thing that was tested before:

/*
* PROMELA Validation Model
* Session Layer
*/
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#include "defines2"
#include "user"
#include "present"
#include "session"
#include "fserver"

init
{ atomic {

run userprc(0); run userprc(1);
run present(0); run present(1);
run session(0); run session(1);
run fserver(0); run fserver(1);
flow_to_ses[0] = ses_to_flow[1];
flow_to_ses[1] = ses_to_flow[0]

}
}

The session layers are connected directly, as if connected by an ideal channel that
never loses, distorts or reorders messages. Since no flow control layer is present, we
can comment out the code in the session layer that is specifically meant for the initial-
ization of the flow control layer sequence numbers. The resulting code looks as fol-
lows:

1 /*
2 * Session Layer Validation Model
3 */
4
5 proctype session(bit n)
6 { bit toggle;
7 byte type, status;
8
9 endIDLE:

10 do
11 :: pres_to_ses[n]?type ->
12 if
13 :: (type == transfer) ->
14 goto DATA_OUT
15 :: (type != transfer) /* ignore */
16 fi
17 :: flow_to_ses[n]?type,0 ->
18 if
19 :: (type == connect) ->
20 goto DATA_IN
21 :: (type != connect) /* ignore */
22 fi
23 od;
24
25 DATA_IN: /* 1. prepare local file fsrver */
26 ses_to_fsrv[n]!create;
27 do
28 :: fsrv_to_ses[n]?reject ->
29 ses_to_flow[n]!reject,0;
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30 goto endIDLE
31 :: fsrv_to_ses[n]?accept ->
32 ses_to_flow[n]!accept,0;
33 break
34 od;
35 /* 2. Receive the data, upto eof */
36 do
37 :: flow_to_ses[n]?data,0 ->
38 ses_to_fsrv[n]!data
39 :: flow_to_ses[n]?eof,0 ->
40 ses_to_fsrv[n]!eof;
41 break
42 :: pres_to_ses[n]?transfer ->
43 ses_to_pres[n]!reject(NON_FATAL)
44 :: flow_to_ses[n]?close,0 -> /* remote user aborted */
45 ses_to_fsrv[n]!close;
46 break
47 :: timeout -> /* got disconnected */
48 ses_to_fsrv[n]!close;
49 goto endIDLE
50 od;
51 /* 3. Close the connection */
52 ses_to_flow[n]!close,0;
53 goto endIDLE;
54
55 DATA_OUT: /* 1. prepare local file fsrver */
56 ses_to_fsrv[n]!open;
57 if
58 :: fsrv_to_ses[n]?reject ->
59 ses_to_pres[n]!reject(FATAL);
60 goto endIDLE
61 :: fsrv_to_ses[n]?accept ->
62 skip
63 fi;
64 /* 2. initialize flow control *** disabled
65 ses_to_flow[n]!sync,toggle;
66 do
67 :: atomic {
68 flow_to_ses[n]?sync_ack,type ->
69 if
70 :: (type != toggle)
71 :: (type == toggle) -> break
72 fi
73 }
74 :: timeout ->
75 ses_to_fsrv[n]!close;
76 ses_to_pres[n]!reject(FATAL);
77 goto endIDLE
78 od;
79 toggle = 1 - toggle;
80 /* 3. prepare remote file fsrver */
81 ses_to_flow[n]!connect,0;
82 if
83 :: flow_to_ses[n]?reject,0 ->
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84 ses_to_fsrv[n]!close;
85 ses_to_pres[n]!reject(FATAL);
86 goto endIDLE
87 :: flow_to_ses[n]?connect,0 ->
88 ses_to_fsrv[n]!close;
89 ses_to_pres[n]!reject(NON_FATAL);
90 goto endIDLE
91 :: flow_to_ses[n]?accept,0 ->
92 skip
93 :: timeout ->
94 ses_to_fsrv[n]!close;
95 ses_to_pres[n]!reject(FATAL);
96 goto endIDLE
97 fi;
98 /* 4. Transmit the data, upto eof */
99 do

100 :: fsrv_to_ses[n]?data ->
101 ses_to_flow[n]!data,0
102 :: fsrv_to_ses[n]?eof ->
103 ses_to_flow[n]!eof,0;
104 status = COMPLETE;
105 break
106 :: pres_to_ses[n]?abort -> /* local user aborted */
107 ses_to_fsrv[n]!close;
108 ses_to_flow[n]!close,0;
109 status = FATAL;
110 break
111 od;
112 /* 5. Close the connection */
113 do
114 :: pres_to_ses[n]?abort /* ignore */
115 :: flow_to_ses[n]?close,0 ->
116 if
117 :: (status == COMPLETE) ->
118 ses_to_pres[n]!accept,0
119 :: (status != COMPLETE) ->
120 ses_to_pres[n]!reject(status)
121 fi;
122 break
123 :: timeout ->
124 ses_to_pres[n]!reject(FATAL);
125 break
126 od;
127 goto endIDLE
128 }

The user code is:
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1 /*
2 * User Layer Validation Model
3 */
4
5 proctype userprc(bit n)
6 {
7 use_to_pres[n]!transfer;
8 if
9 :: pres_to_use[n]?accept -> goto Done

10 :: pres_to_use[n]?reject -> goto Done
11 :: use_to_pres[n]!abort -> goto Aborted
12 fi;
13 Aborted:
14 if
15 :: pres_to_use[n]?accept -> goto Done
16 :: pres_to_use[n]?reject -> goto Done
17 fi;
18 Done:
19 skip
20 }

And, finally, the presentation layer code is:
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1 /*
2 * Presentation Layer Validation Model
3 */
4
5 proctype present(bit n)
6 { byte status, uabort;
7
8 endIDLE:
9 do

10 :: use_to_pres[n]?transfer ->
11 uabort = 0;
12 break
13 :: use_to_pres[n]?abort ->
14 skip
15 od;
16
17 TRANSFER:
18 pres_to_ses[n]!transfer;
19 do
20 :: use_to_pres[n]?abort ->
21 if
22 :: (!uabort) ->
23 uabort = 1;
24 pres_to_ses[n]!abort
25 :: (uabort) ->
26 assert(1+1!=2)
27 fi
28 :: ses_to_pres[n]?accept,0 ->
29 goto DONE
30 :: ses_to_pres[n]?reject(status) ->
31 if
32 :: (status == FATAL || uabort) ->
33 goto FAIL
34 :: (status == NON_FATAL && !uabort) ->
35 progress: goto TRANSFER
36 fi
37 od;
38 DONE:
39 pres_to_use[n]!accept;
40 goto endIDLE;
41 FAIL:
42 pres_to_use[n]!reject;
43 goto endIDLE
44 }

We will do a validation in two separate steps. The file server, session, and presenta-
tion layer processes are all cyclic: they should never terminate. The initial process
and the user processes, however, are terminating, and once they have completed their
execution, the other processes must have reached a well-defined end-state. In the first
validation, therefore, we can try to make sure that the system has no reachable invalid
end-states. We can do this with an exhaustive validation, as follows:
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$ spin -a pftp.ses
$ cc -o pan pan.c
$ pan -w19
full state space search for:

assertion violations and invalid endstates
vector 144 byte, depth reached 451, errors: 0
509179 states, stored

9 states, linked
576192 states, matched total: 1085380

hash conflicts: 369417 (resolved)
(max size 2ˆ19 states, stackframes: 0/23)

unreached in proctype _init:
reached all 12 states

unreached in proctype fserver:
line 29 (state 30)
reached: 29 of 30 states

unreached in proctype session:
line 48 (state 37)
line 94 (state 64)
line 95 (state 65)
line 124 (state 93)
line 128 (state 99)
reached: 94 of 99 states

unreached in proctype present:
line 26 (state 15)
line 44 (state 34)
reached: 32 of 34 states

unreached in proctype userprc:
reached all 17 states

The unreached code in the presentation layer (line 26) indicates that no case was
found in which two subsequent abort messages are received from the user process.
Checking the user process, we can quickly see why that is: the user process does not
allow it. The unreached code in the session layer protocol, however, flags an incom-
pleteness in this first validation test. The unreached lines 48, 94, 95, 124, and line 128
are responses to timeout conditions that were included to allow the session layer to
recover from a sudden loss of communication with its peer process. This possibility,
however, is not modeled as part of the channel behavior and cannot be exercised.

To verify also that these timeout conditions cannot cause havoc, we must revise the
validation model. We can do so by adding a few lines to the initialization code in the
init process given above:

atomic
{ byte any;

chan foo = [1] of { byte, byte };
ses_to_flow[0] = foo;
ses_to_flow[1] = foo

};
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end: do
:: foo?any,any
od

}

At any time after the initial start-up of the protocol, these extra lines can now be exe-
cuted. The effect is that the two peer session layer processes are disconnected. The
loop at the end removes all the messages that the two session layers produce. The
extension increases the complexity of the test somewhat more, but a bit state space
analysis is still feasible. The result is now

$ spin -a pftp.ses1
$ cc -DBITSTATE -o pan pan.c
$ pan -w29
bit state space search for:

assertion violations and invalid endstates
vector 148 byte, depth reached 456, errors: 0
1686543 states, stored
246135 states, linked

1960294 states, matched total: 3892972
hash factor: 318.326063 (best coverage if >100)
(max size 2ˆ29 states, stackframes: 0/25)

unreached in proctype _init:
line 31 (state 19)
reached: 18 of 19 states

unreached in proctype fserver:
line 29 (state 30)
reached: 29 of 30 states

unreached in proctype session:
line 128 (state 99)
reached: 98 of 99 states

unreached in proctype present:
line 26 (state 15)
line 44 (state 34)
reached: 32 of 34 states

unreached in proctype userprc:
reached all 17 states

Compared to the first test, we have now explored over three times as many states and
effectively reached all relevant protocol states. The hash factor is large enough to be
confident that close to 100% of the reachable system states have been tested within
the memory arena that is available. An exhaustive search would have required at least
1,686,543×148 or 249 Mbytes of memory, four times more than we have used.

THE TEMPORAL CLAIM
In the second validation of the session layer protocol that we undertake here, we con-
sider the temporal claim that was formulated in Chapter 7.
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never {
do
:: !pres_to_ses[n]?[transfer]
&& !flow_to_ses[n]?[connect]
:: pres_to_ses[n]?[transfer] ->

goto accept0
:: flow_to_ses[n]?[connect] ->

goto accept1
od;

accept0:
do
:: !ses_to_pres[n]?[accept]
&& !ses_to_pres[n]?[reject]
od;

accept1:
do
:: !ses_to_pres[1-n]?[accept]
&& !ses_to_pres[1-n]?[reject]
od

}

Since the protocol is symmetric, it suffices to validate this claim for just one value of
n, e.g., zero. The result is as follows:

$ spin -a pftp.ses2
$ cc -o pan pan.c
$ pan
cycle of length 6 (99) 104
pan: accept state in cycle (at depth 99)
pan: wrote pan.trail
full statespace search on behavior restricted to claim for:

assertion violations
and absence of acceptance labels in all cycles

search was not completed
vector 148 byte, depth reached 100, errors: 1

151 states, stored
9 states, linked

16 states, matched total: 176
hash conflicts: 0 (resolved)
(max size 2ˆ18 states, stackframes: 0/4)

An acceptance cycle was detected, which means that the claim can be violated. A
closer look with the simulator can reveal the cause.

$ spin -t -r -s pftp.ses2 # -t: follow trail produced by pan
proc 3 (userprc) line 8, Send transfer -> queue 6 (use_to_pres[1])
proc 5 (present) line 11, Recv transfer <- queue 6 (use_to_pres[1])
proc 5 (present) line 19, Send transfer -> queue 4 (pres_to_ses[1])
proc 7 (session) line 11, Recv 13 <- queue 4 (pres_to_ses[1])
proc 7 (session) line 56, Sent open -> queue 8 (ses_to_fsrv[1])
...
<<<<<START OF CYCLE>>>>>
proc 9 (fserver) line 13, Recv data <- queue 8 (ses_to_fsrv[1])
proc 6 (session) line 101, Send data,0 -> queue 1 (ses_to_flow[0])
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proc 8 (fserver) line 23, Sent data -> queue 9 (fsrv_to_ses[0])
proc 6 (session) line 100, Recv data <- queue 9 (fsrv_to_ses[0])
proc 7 (session) line 37, Recv data,0 <- queue 1 (flow_to_ses[1])
spin: trail ends after 179 steps
step 179, #processes: 10
...

The validator discovered here that the number of data messages that is exchanged
during a file transfer session is not bounded. This means that the sending of a final
accept or reject message to the presentation layer can be postponed indefinitely,
which is a direct violation of our correctness requirement.

To fix this problem we can try telling the temporal claim to ignore data messages,
that is, to consider only zero-length file transfers.

never {
do
:: !pres_to_ses[0]?[transfer]
&& !flow_to_ses[0]?[connect]
:: pres_to_ses[0]?[transfer] ->

goto accept0
:: flow_to_ses[0]?[connect] ->

goto accept1
od;

accept0:
do
:: !ses_to_pres[0]?[accept]
&& !ses_to_pres[0]?[reject]
&& !ses_to_flow[0]?[data]
od;

accept1:
do
:: !ses_to_pres[1]?[accept]
&& !ses_to_pres[1]?[reject]
&& !ses_to_flow[1]?[data]
od

}

The validation with this new claim proceeds as follows:

$ spin -a pftp.ses3
$ cc -o pan pan.c
$ pan
cycle of length 5 (99) 103
pan: accept state in cycle (at depth 99)
pan: wrote pan.trail
full state space search on behavior restricted to claim for:

assertion violations
and absence of accept states in all cycles

search was not completed
vector 148 byte, depth reached 132, errors: 1

21645 states, stored
9 states, linked

20316 states, matched total: 41970
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hash conflicts: 2293 (resolved)
(size 2ˆ18 states, stackframes: 0/5)

Again, the validator discovered that the correctness requirement can be violated. The
relevant part of the trail is as follows:

$ spin -t -r -s pftp.ses3
...
proc 4 (present) line 19, Send transfer -> queue 3 (pres_to_ses[0])
proc 6 (session) line 42, Recv transfer <- queue 3 (pres_to_ses[0])
<<<<<START OF CYCLE>>>>>
proc 6 (session) line 43, Send reject,NON_FATAL -> \

queue 11 (ses_to_pres[0])
proc 4 (present) line 31, Recv reject,15 <- queue 11 (ses_to_pres[0])
proc 4 (present) line 19, Send transfer -> queue 3 (pres_to_ses[0])
spin: trail ends after 176 steps
...

After a file transfer has started, there can be an unbounded number of conflicting
transfer requests from the remote peer process. Again, processing these requests as
non-fatal rejects can postpone for arbitrarily long the sending of the final accept or
reject message for the active file transfer.

This time it is much harder to modify the temporal claim to remove this pattern from
consideration. An acceptance-state label identifies events as potentially bad. In this
case, however, we can work more effectively with a method for labeling a small set of
events as good and focus on others. The right tool for that is the progress-state label.
If we can rephrase the temporal claim as a correctness requirement on the absence of
non-progress cycles it becomes easier to exclude certain patterns from consideration.

Note that, if we disregard the two patterns discovered earlier, all executions of the ses-
sion layer protocol must terminate. Any cycle that can be identified, therefore, will
become a non-progress cycle and thus a detectable a violation of the correctness
requirements. We label the states DATA_IN and DATA_OUT in the session layer proto-
col as progress states. To exclude the two patterns discovered above, we also label
the data exchanges with the file server as progress states, plus one state in the presen-
tation layer protocol. A new listing of the presentation layer is given below:

proctype present(bit n)
{ byte status, uabort;

endIDLE:
do
:: use_to_pres[n]?transfer ->

uabort = 0;
break

:: use_to_pres[n]?abort ->
skip

od;

TRANSFER:
pres_to_ses[n]!transfer;
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do
:: use_to_pres[n]?abort ->

if
:: (!uabort) ->

uabort = 1;
pres_to_ses[n]!abort

:: (uabort) ->
assert(1+1!=2)

fi
:: ses_to_pres[n]?accept ->

goto DONE
:: ses_to_pres[n]?reject(status) ->

progress: if
:: (status == FATAL || uabort) ->

goto FAIL
:: (status == NON_FATAL && !uabort) ->

goto TRANSFER
fi

od;
DONE:

pres_to_use[n]!accept;
goto endIDLE;

FAIL:
pres_to_use[n]!reject;
goto endIDLE

}

The validation is straightforward from this point on.

$ spin -a pftp.ses4
$ cc -DBITSTATE -o pan pan.c
$ pan -l -w28
bit state space search for:

assertion violations and non-progress loops
vector 148 byte, depth reached 458, non-progress loops: 0
847134 states, stored

18 states, linked
1104341 states, matched total: 1951493

hash factor: 316.874472 (best coverage if >100)
(size 2ˆ28 states, stackframes: 0/489)

A bit state space analysis completed with good coverage. No non-progress cycles
were discovered, which means that with good probability the correctness require-
ments are met.

FURTHER REDUCTIONS
To confirm the earlier results with an exhaustive validation, we could pursue several
options. Incremental composition and generalization can be used to combine the user
and presentation layer processes into a single environment process to the session
layer. This model may look as follows, appropriately labeled with progress tags:
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/*
* PROMELA Validation Model
* Presentation & User Layer - combined and reduced
*/

proctype present(bit n)
{ byte status;

progress0:
pres_to_ses[n]!transfer ->
do
:: pres_to_ses[n]!abort;

progress1: skip
:: ses_to_pres[n]?accept,status ->

break
:: ses_to_pres[n]?reject,status ->

if
:: (status == NON_FATAL) ->

goto progress0
:: (status != NON_FATAL) ->

break
fi

od
}

The external behavior of this process is indistinguishable from the external behavior
of the two separate processes, with one important exception: the new model is less
well-behaved. The reduced model can spark an arbitrary number of abort messages
while a transfer request is outstanding. If the session layer protocol is correct for this
environment, it must also be correct with respect to the original one, simply because
the original behavior is a subset of the new one. The validation can now be done
exhaustively and produces the following result:

$ spin -a pftp.ses5
$ cc -DMEMCNT=27 -o pan pan.c
$ pan -l -m2000
full state space search for:

assertion violations and non-progress loops
vector 132 byte, depth reached 1783, non-progress loops: 0
553987 states, stored

8 states, linked
798367 states, matched total: 1352362

hash conflicts: 990275 (resolved)
(size 2ˆ18 states, stackframes: 0/325)

memory used: 70872461

The validation run confirms that the correctness requirement of the session layer pro-
tocol is properly met. Had this first reduction been insufficient, further reduction
steps could still be taken to force an exhaustive validation. All interactions of the ses-
sion layer with the file server, for instance, could be removed and replaced with
equivalent nondeterministic choices within the session layer. Similarly, the combined
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user and presentation layer could be merged into the session layer protocol to produce
a single process that represents the behavior of one protocol session layer entity. The
combinations can be made manually, carefully preserving the equivalence with the
original model, or automatically with an incremental composition method as dis-
cussed in Chapters 8 and 11.

14.7 SUMMARY
Our admiration for programmers who can design and debug a protocol using only
tools developed for sequential systems can only grow after the first experience with an
automated protocol validation system. It is, of course, not really surprising that the
validation runs reported in this chapter have failed to reveal serious errors in the
design from Chapter 7. The errors were certainly present in the initial versions of the
protocol, but were found with SPIN and removed before these final tests were per-
formed. Most of the errors found in the earlier stages of the design were cases of
incompleteness that are very hard to find by manual inspection of the code.

Given a machine of reasonable size, the basic protocols for session control and flow
control can fairly easily be validated with purely exhaustive searches of all reachable
system states. This much is well within the power of the automated tools. The tools
are severely tested by the exception conditions that must be validated: message loss,
duplication errors, and hangups. The increase in complexity makes it impossible to
perform the traditional completely exhaustive validations. Bit state space hashing
proves to be a powerful alternative here. As an example, one test performed for an
earlier version of the session layer protocol generated 15,462,939 system states of 472
bytes each. A full state space that stores all these states would be over 7 Gigabytes
(7,298,507,208 bytes), well beyond what can effectively be stored or processed. On a
machine with 64 Mbytes of memory available for the search, no more than 142,179 of
these states can be stored in a full state space search: a coverage of less than 1%. The
bit state space technique, using the same amount of memory, can accommodate over
250,000,000 states, more than 15 times what is required. With this method we could
effectively increase the coverage of that search from less than 1% to one that, with
high probability, is close to 100%. No other method known to date can do better.

EXERCISES

14-1. 14-1. Validate your favorite protocol with the tools described here.

14-2. 14-2. Develop and implement more specific tools for automating the generalization or incre-
mental composition of PROMELA models (research project).

BIBLIOGRAPHIC NOTES
A detailed validation study as performed in this chapter is rarely documented. The
first automated validations were reported in West and Zafiropulo [1978], though the
analytical power of our tools has grown substantially since then. The validation
method applied in this chapter was originally described in Holzmann [1987b, 1988].
Its capabilities are compared with more conventional approaches to the protocol
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validation problem in Holzmann [1990]. It has been applied to systems that are ordi-
narily well outside the range of exhaustive validation, as reported in Holzmann and
Patti [1989].



CONCLUSION

While the performance of computers and the speed of data networks continues to
improve steadily, our ability to utilize these resources effectively does not. Data com-
munications software has become a bottleneck in many high performance systems; it
is often much slower than the hardware permits and it can be hard to establish its logi-
cal consistency.

It is notoriously difficult to write software for a distributed system. It is even harder
to prove rigorously the correctness of such software. In its simplest form, the problem
is to design methods that allow asynchronously executing communicating machines
to exchange information quickly and reliably and to prove that these methods, or pro-
tocols, have certain desirable properties.

Today, most protocols are designed in an ad hoc matter. There is a known set of pro-
tocol standards, whose description is faithfully copied in most textbooks. There is,
however, little understanding of why some protocols work and what is wrong with
others. A designer needs to know how a correct protocol can be constructed from
scratch and how that design can be matched to specific design and correctness criteria.
The techniques that can be used to prove that a new protocol design is correct have
long been considered too esoteric for real day-to-day use. This book is meant to show
that the tools have come of age.

The design methods and tools that we have discussed allow the designer to attack fun-
damental process coordination problems in a rigorous and a practical manner. To
design reliable protocols, no matter what your application is, you need tools to test
your ideas. This book should convince you that the right tools are available. The
capabilities of the new validation tools is sometimes justifiably regarded with scepti-
cism. A generous number of pages is therefore devoted in this text to a detailed dis-
cussion of tools. For the first time, the complete source to these tools is now made
available, both in this text and in electronic form. Your critical evaluation, experi-
ments, applications, and comparisons are eagerly invited.
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DATA TRANSMISSION A

For the purposes of protocol design, it can suffice to model a physical channel as a
black box with just one interesting feature: it can distort the data that passes through
it. We will understand a channel to be any medium capable of transferring signals
from sender to receiver. The physical realization of the channel can be anything from
a twisted pair of copper wires to a satellite link. The only thing we are interested in is
the behavior of the channel in so far as it can modify the signals it transfers.

Trusted
Data

Distortion
Box

Untrusted
Data

Figure A.1 — Channel Behavior
The distortion that is introduced by the channel is typically defined by an error distri-
bution function with known characteristics. For a given medium, the average proba-
bility of bit errors can be looked up in a table (see Table A.1 at the end of this Appen-
dix). With this information we can devise an error detection scheme that encodes the
trusted data in such a way that its integrity can be checked after it has passed through
the distortion box (Chapter 3). Such an error detection scheme intercepts most of the
distortions, but is transparent to undistorted data. This transforms the distortion box
into a deletion box.

Deletion errors can be dealt with straightforwardly in a flow control protocol that
numbers messages (Chapter 4). Because the error control schemes are based on an
estimate of the average bit error rate, there is always some probability that distorted
data are not intercepted. The purpose of error control is to make the probability of
these events acceptably small (Chapter 3).

To gain a better insight into the nature of transmission errors, however, we do take a
peek into the distortion box in this appendix. We will see how the behavior of the
physical channel is influenced by factors such as

The data encoding method
The channel quality (bandwidth, noise level)
The physical dimensions of the channel
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The signaling speed
With this background, it will be easier to make the right assessment about the protocol
requirements for different types of channels. For instance, it would be utter folly to
devise an elaborate protocol with forward error control (Chapter 3) on a 10 foot
fiber-optic link. Similarly, it would be unwise to attempt to send data at 100 Mbps on
a twisted pair cable, no matter what error control scheme is used.

TYPES OF CHANNELS
In practice, three different types of data transmission channels are used. A simplex
channel can only be used for data transfer in one direction. The sender typically has a
‘‘modulator’’ to translate binary data into analog signals, and the receiver has a
‘‘demodulator’’ for the reverse translation. A duplex, or full-duplex, channel can
transfer information in both directions simultaneously. Each station has both a
‘‘modulator’’ and a ‘‘demodulator’’ combined into a single instrument called a
‘‘modem.’’ A half-duplex channel, finally, can transfer data in both directions, but
not simultaneously. The stations have to be switched from sending to receiving or
back. The switch usually takes about 200 msec.

SERIAL AND PARALLEL
Depending on the available hardware, the raw data bits may be transmitted on a phy-
sical channel with several bits at a time in parallel, or one bit at a time in series.
Parallel transmission is normally only used on short distances, e.g., from a machine to
a peripheral. In parallel transmissions one extra line is used to carry a special clock or
‘‘strobe’’ signal that will indicate when precisely the signals on the other lines consti-
tute a valid data word. Due to variations in propagation delays, and the range of pos-
sible distortions, it becomes increasingly difficult on longer lines to synchronize the
strobe signal and the various bit-streams. For long distances serial transmission is
therefore more common.

ASYNCHRONOUS AND SYNCHRONOUS
On a serial line both the sender and the receiver have a separate clock that sets the
transmission rate. The sender uses its clock to drive the line (i.e., to transmit the bits),
and the receiver uses its clock to scan it. In asynchronous transmissions the two
clocks need not be in perfect synchrony when no data are transmitted. Data is
transmitted in chunks of, for instance, 7 or 8 bits, preceded by a special start symbol
and followed by a stop symbol. The receiver uses the start symbol to synchronize its
clock with the sender.

It is sufficient if the two clocks can stay in synchrony for only the 7 or 8 bits that
make up a data word. The length of the data word is sometimes called the ‘‘syn-
chronization gap,’’ the period of time that the two clocks must stay in synchrony. The
stop symbol is usually either 1.5 or 2 bits long, to allow the receiver to process the
data and catch up with the sender and to restore synchrony at the next start symbol.
The period of time that passes between the stop symbol and the next start symbol,
however, need not be an integral number of bit times.
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Figure A.2 — Asynchronous Transmission
Figure A.2 shows the asynchronous transmission of an 8 bit ASCII character: 7 bits of
data followed by a parity bit, labeled P (see Chapter 3). The idle state of the line is
indicated by a high voltage, a logical one. The one symbol is sometimes called a
mark and the zero symbol a space.

The asynchronous transmission method is self-stabilizing, even when the receiver
erroneously starts its clock at a data bit instead of the start symbol. The number of
data bits scanned will come out wrong, producing a ‘‘framing error.’’ But since the
assumed start of a data word can only move forward in time sooner or later the
receiver will re-synchronize.

In synchronous transmission the sender and receiver’s clock must stay in synchrony at
all times. When no data are transmitted, the two clocks can be kept synchronous with
special ‘‘SYNC’’ characters.

Data can also be encoded in such a way that the signal always has a sufficient number
of transitions to keep the receiver’s clock synchronized with the sender’s. With this
method the bits are encoded in the transitions of a binary signal, rather than in abso-
lute signal levels. The best known method of this type is the Manchester encoding. A
one symbol is encoded in the Manchester code by a downward transition (one to zero)
and a zero is encoded by an upward (zero to one) transition. This method uses two
Baud (signal elements) to encode one bit of information. Figure A.3 illustrates this
process.

Signal

1 1 0 0 1 0 Data

Figure A.3 — Manchester Encoding
The Manchester code is called a ‘‘self-clocking code.’’ The receiver’s clock can syn-
chronize on the transition that is guaranteed to occur in the middle of each symbol.
The Manchester code has another important property: it creates a ‘‘balanced’’ signal.
The average value of the signal over time approaches zero, even if a continuous
sequence of equal bits is transmitted. The distortion of a balanced signal on the phy-
sical data link is generally smaller than that of an unbalanced signal. The electrical
properties of media such as a twisted pair or a coaxial cable are relatively unfavorable
for DC (direct current) signals, but more favorable for AC (alternating current), or
balanced signals.

Experiment has shown that the maximum signaling speed on a twisted pair cable can



be increased by a factor of ten if an unbalanced code is replaced with a balanced one.

SIGNALING SPEED
Signals are normally transmitted on channels as sequences of signal elements of some
fixed duration1 . Each signal element can have a finite value chosen from V distinct
signal levels. When V =2, the signal is called a binary signal. The duration of each
signal determines the signaling speed. This speed is expressed in the unit Baud 2

which is defined as the number of signal elements that can be transmitted per second.
The signaling speed of a channel, however, is more appropriately measured by the
rate at which ‘‘information’’ can be transferred. A bit 3 is the smallest unit of infor-
mation. It has one of two possible values. If one signal level is used to encode one
symbol, V discrete signal levels trivially allow the encoding of log 2 V bits of informa-
tion per signal element, so

1 Baud = log 2 V bits per second ( bps )

For binary signals the signaling speed in Baud therefore always equals the signaling
speed in bps. Note, however, that in the Manchester code a sequence of two signal
levels is used to encode a single symbol. For the Manchester codes, therefore, 2 Baud
= 1 bps.

It is understandable that these units are easily confused. Note carefully what the
difference is between a signaling speed of, for instance, 1200 Baud, 1200 bps, and
1200 char/sec.

SIGNAL PROPAGATION
Information can be transferred over many different signal carriers, ranging from
copper wires, coaxial cables, and optical fibers, to satellite links. Each channel has a
characteristic behavior and requires a specific coding of the information into electrical
or electromagnetic signals. Theoretically, the signal propagation time on each chan-
nel will set an upper limit to the maximum obtainable signaling speed. In practice, we
will see that other factors, such as ‘‘noise’’ and bandwidth limitations, have a larger
limiting effect. For electromagnetic waves, e.g., satellite links and optical fibers, the
signal propagation time is roughly 3.108 meter/sec. For electrical signals in cables it
is about a factor of ten less.

Consider, in Figure A.4, the projection p of an imaginary dot that moves around the
circle. On the right it is shown how the projection on the y-axis changes with time
when the dot moves with constant velocity: a perfect sine curve. One complete
__________________
__________________
1. A notable exception is the Morse code. The familiar dot and dash signals are of unequal length.
2. The word ‘‘Baud’’ honors the French telegraph operator Emil Baudot who invented a five bit code for
telegraph transmissions in 1874.
3. The term ‘‘bit’’ was coined by J.W. Tukey of AT&T Bell Laboratories as a shorthand for ‘binary digit’
Shannon [1948].
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Figure A.4 — Sine Curve
traversal of circle produces one ‘‘period’’ or ‘‘cycle’’ of the sine. The maximum
‘‘amplitude’’ of the curve equals the radius of the circle a. If the curve is interpreted
as an electrical signal, the velocity of the dot determines the signal ‘‘frequency.’’ The
unit for measuring frequency is Hertz (Hz). One Hertz equals one cycle per second.

Figure A.4 also shows a dotted curve that would correspond to the projection of a
second dot that would follow the first one at a fixed distance, given by the angle φ.
The angle is called the ‘‘phase-shift’’ between the first and the second signal. Obvi-
ously, the maximum phase-shift will be one complete circle traversal, or 2π radians.
Formally, a sine curve is described by

a sin( 2πft − φ)

where a is the amplitude, f the frequency, t the time, and φ the phase shift.

The sine curve has two properties that make it attractive to theoreticians: it is continu-
ous and it is periodic. The signal in Figure A.5, for instance, is neither, but it does
seem to be a more likely representation of a binary bit stream.

a

t

Figure A.5 — Discrete, Non-periodic Signal

FOURIER SERIES
Fortunately, when we study the characteristics of transmission channels we do not
have to consider all possible waveforms, like the complicated one in Figure A.5. We
can achieve a very good approximation by considering only sine waves. Let us con-
sider an arbitrary periodic signal like the one in Figure A.5. There are two problems
with this signal: it is not periodic, and it is not continuous. The first problem is easy



to fix, at least for modeling purposes. If we want to describe this fragment of the sig-
nal elegantly, we can model it as part of a longer, periodic, signal that is obtained by
repeating the signal fragment infinitely often. The second problem is a non-problem:
the ideal discontinuous square wave is just an abstraction. In practice, any change in
signal levels takes a non-zero amount of time, and no discontinuity exists.

Fourier discovered that every continuous periodic signal can be described by a sum of
simple sine waves, each with a frequency that is an integer multiple of a ‘‘base fre-
quency’’ f.

n =1
Σ
∞

a n sin ( 2πnft − φn )

In this formula, a n is a coefficient that determines the amplitude of the n-th frequency
component and φn is the corresponding phase shift. For aperiodic signals the discrete
series of frequency components changes into a continuum of frequencies, but in prin-
ciple the same type of analysis can be performed.

Figure A.6 gives an example of the approximation of a discrete square wave by the
sum of two sine components.
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Figure A.6 — Fourier Series
The more sine components we add, the better the approximation. The composite sig-
nal is again constructed from one base frequency and a range of ‘‘harmonics,’’ of
which we have used only the first one. The complete composite is defined by

n =0
Σ
∞

2n +1
1_ _____ sin ( ( 2n +1 ) 2πft)

BANDWIDTH
If we set out signal frequency along the x-axis and amplitude along the y-axis, we can
describe this signal in the ‘‘frequency domain’’ as shown in Figure A.7.
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Figure A.7 — Frequency Domain
If we increase the signaling speed, the base frequency and all its harmonics will also
increase. Unfortunately, a real transmission channel can only transfer a limited range
of signal frequencies. A voice-grade telephone line, for instance, can only transfer
signals between 300 Hz and 3400 Hz. If we increase the signaling speed, the higher
frequency components may fall outside the signaling band and disappear from the sig-
nal transmitted. If we decrease the signaling speed the same may happen with the
lower frequency components, having an even more detrimental effect on the signal
quality.

The ‘‘bandwidth’’ of the channel determines its quality. Bandwidth is defined as the
difference between the highest and the lowest frequency that the channel can reliably
transfer. The larger the bandwidth, the more information the channel can carry.
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Figure A.8 — Cutoff Frequencies
In general, if we transmit a composite signal over a bandwidth-limited channel some
frequency components will be attenuated more than others, and some will be lost
completely. The result will be a distorted signal. If we try to transmit the binary sig-
nal from Figure A.5 directly as an electrical signal, the distorted signal that will arrive
at the receiver may well look like the dotted line in Figure A.6.

Figure A.8 shows the bandwidth of a standard switched telephone line. No signal
with a frequency less than 300 Hz will get through it, and no signal with a frequency
higher than 3400 Hz. The bandwidth is 3.1 kHz. To transfer an arbitrary binary sig-
nal across a telephone channel, it must be translated into frequencies that do pass the
channel effortlessly. This process, called modulation, is discussed below. For now, it
should be noticed that every physical transmission medium has a finite bandwidth,
and consequently distorts the signals transmitted on it. An ordinary wire pair has a
bandwidth of roughly 250 kHz (see Table A.1). The cutoff frequency is roughly at
200 kHz, with the attenuation of signals of a higher frequency rising exponentially.
For coaxial cables the high cutoff frequency is about an order of magnitude higher.



The distortion will increase with the signaling speed, simply because the higher data
rates cause higher signal frequencies.

A sequence of binary signals will deteriorate from a nice clean square wave to a
smooth waveform in which the individual bits may be hard to recognize. The dotted
line in Figure A.9 shows the ‘‘decision level’’ below which a signal is classified as a
zero. The accuracy of the receiver is severely tested by the signal distortion. A small
amount of noise can immediately cause classification errors in the receiver. Note also
that the presence of the two one signals surrounding the isolated zero signal in Figure
A.9, contribute to the distortion of the zero. This ‘‘inter-symbol interference’’
becomes worse as the signaling speed goes up, and the ‘‘symbols’’ are more closely
spaced.

Receiver

Sender

............

Figure A.9 — Distorted Signal

MODULATION
Modulation is used to adapt the signals to the characteristics of a channel. On a phone
line, for instance, we can transmit a binary one as a frequency (a sine) of 1270 Hz,
and a zero as 1070 Hz. To make a full-duplex channel, we can choose 2225 Hz and
2025 Hz for the transmission of respectively a one and a zero on the return channel4 .
All these frequencies are within the range that is transmitted with little or no signal
attenuation on a phone line (Figure A.8), in order to avoid some of the effects of har-
monic distortions on signal quality.

This modulation method is known as frequency shift keying, or also simply as fre-
quency modulation. As we noted earlier, not too many channels can transmit DC sig-
nals conveniently. A balanced, or AC, signal can survive the damage done by the
channel much better. If we take a standard sine wave as a basic carrier signal to
transmit the data, there are three different ways in which we can change (modulate)
__________________
__________________
4. These are in fact the frequencies used on a 300 Baud Bell 108 modem.



that carrier to encode the information. We can use the data signal to vary the carrier’s
Amplitude
Frequency
Phase angle

Amplitude modulation for a binary signal would be achieved if we chose two
representative amplitudes, e.g., 5 Volts and 10 Volts, to encode binary data. The fre-
quency transmitted is constant, and can be chosen in the middle of the band of fre-
quencies that is accepted by the channel. Any noise on the channel, however, is
added to the signal as transmitted and can cause bit errors. Signal attenuation, espe-
cially time dependent variations in attenuations can cause extra errors.

Frequency modulation is more robust against noise and direct attenuation of the sig-
nal. But now, frequency dependent propagation delays and subtle frequency interfer-
ence patterns caused by echo and cross talk can cause problems (see below). By
using multiple frequencies, however, it is easy to increase the signaling speed in bits
per second, for a given baud rate.

• •

• •
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Figure A.10 — Quadrature Amplitude Modulation

The third method, using phase shift keying, or phase modulation, is the most compli-
cated one of the three. Every signal element is now encoded by a phase shift from the
previous signal element. In these quadrature amplitude modulation techniques (Fig-
ure A.10) a combination of amplitude and phase modulation is used. A simple ver-
sion of this uses four different phase shifts: at 90° increments: 45°, 135°, 225°, and
315°. Since this is a one out of four choice, every new symbol now encodes two bits
of information, and the data rate in bits per second will be twice the data rate meas-
ured in Baud.

DISTORTION
A signal transmitted on a bandwidth-limited channel incurs a frequency-dependent
attenuation. This type of signal distortion is a linear distortion. It can be measured
and can, to an extent, be compensated for with special filters that flatten the response
curve in the frequency domain.

The signal propagation time can be different for each frequency component in a com-
posite signal. This causes an unintended phase shift between harmonics: the higher
frequencies usually travel faster than the others. For a given channel, this phase



distortion can also be corrected with special filters.

Transmission channels can also add new waveforms of varying frequencies to a sig-
nal. These non-linear distortions can be completely unrelated to the original signal
and are much harder to counter.

Signal echoes are an example of non-linear distortions. Wherever there is a sudden
change of impedance in the channel, e.g., at the terminals, the signal may bounce back
onto the line and travel in the opposite direction, distorting the original signal. A
similar type of non-linear distortion is caused by cross-talk. The distortion comes
from other channels that are physically close enough to cause shadow signals by elec-
tromagnetic induction. In modulated signals the same type of problem can occur as
inter-modulation noise.

Still more drastic causes of error are electric spikes and sparks: short, powerful, and
unpredictable electric discharges. They can be caused by switches, engines, or simply
by spontaneous discharges in the atmosphere. They are hard to avoid, other than by
thorough insulation.

NYQUIST´s SAMPLING THEOREM
The relation between signaling speed and bandwidth was first studied by H. Nyquist
in 1924. He showed that if samples are taken from an arbitrary signal that is transmit-
ted across a channel with a bandwidth B, the original signal can be completely recon-
structed if at least 2B samples per second are taken. This sampling theorem can be
used to determine the maximum signaling speed. 2B samples can maximally define
2B different signal elements. The maximum signaling speed on a channel with a
bandwidth of B Hz is then

2B log 2 V bps

According to this estimate, the signaling speed can be increased arbitrarily by increas-
ing the number of signal values V. Below we will see that there is yet another factor
that limits the signaling speed: noise.

NOISE
Noise is a fundamental and unavoidable cause of signal distortion. Thermal noise is
caused by thermal fluctuations of electrons in conductors. It has no preference for any
particular frequency: it is equally present in all. It is therefore sometimes referred to
as white noise. An important measure for the quality of a signal is the signal-to-noise
ratio.

The strength, or power, of a signal is expressed in watts (energy per second). Signal
ratios are most conveniently defined in decibel. If P 1 and P 2 give the power of two
signals in watts, then

10 log 10 P 2

P 1_ __ dB



is their ratio in decibels. Decibels are used, for instance, to express the signal attenua-
tion on a channel. If R 1 is the signal attenuation on one channel in dB, and R 2 is the
attenuation on another channel, the combined loss if both channels are used in series
will simply be R 1 +R 2 .

SHANNON-HARTLEY LIMIT
In 1948, Claude E. Shannon studied the precise effect of the signal-to-noise ratio on
data transmission. He showed, for instance, that the maximum signaling speed in on a
channel with bandwidth B and signal-to-noise ratio S / N, with S and N in watts, is

C = Blog 2 ( 1 +
N
S_ _ ) bps

This result is known as the Shannon-Hartley limit. C is called the channel capacity.
For a telephone line we have B =3100 Hz and a signal-to-noise ratio of 30 dB
(1000:1), giving a maximum signaling speed of 30 Kbit/sec. Above this limit is in
general not possible to distinguish the signal transmitted from the background noise:
the information content of the signal is too low.

Figure A.11 shows the values that can be calculated from the Shannon-Hartley limit
for a telephone line, for signal-to-noise ratios from 1 to 30 dB. The dotted line shows
the asymptote Blog 2 (S / N). Signaling speeds above the drawn line cannot be real-
ized, not even with the most clever encoding of data one can imagine.
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Figure A.11 — Shannon-Hartley Limit

For binary signals the Nyquist rate of 2B bps (about 6 Kbit/sec) can be achieved,
theoretically, for a signal-to-noise ratio of only 2.5 dB.

To even approach the Shannon-Hartley limit we must make optimal use of statistical
information about the data to be transmitted. The transfer of English text, for



instance, can be optimized by taking the frequency of occurrence of certain letters and
letter combinations into account, assigning the shortest code to the most frequent
ones.

The Nyquist rate for a bandwidth-limited channel was 2B, or, for B =3100 Hz, 6200
Baud. This means that to realize a signaling speed of 30 Kbit/sec we must also use 32
different signal levels: it cannot be realized with a binary signal.

In practice, the signaling speeds that are used are much lower than both the Nyquist
and the Shannon-Hartley limit. One reason is that all other causes of distortion (echo,
cross-talk, non-linear distortions, and so on) are not taken into account in these
results. Furthermore, it is not always worthwhile or possible to include very elaborate
coding schemes that can truly optimize the transmission rates. In practice the max-
imum signaling speed on voice-grade phone lines is not higher than 1200 to 2400
Baud.

The simplest way to obtain a higher signaling speed on a bandwidth-limited channel
is, of course, to increase the bandwidth. This is precisely what the phone company
does with the new voice over data (Co-Lan) services on specially equipped telephone
lines, offering both normal phone service and simultaneous duplex data transfers at
signaling speeds up to 19.2 Kbit/sec.

OVERVIEW
A signal that is transmitted on a physical channel can be affected by two main types
of distortion:

The transformation of the original signal
The addition of information unrelated to the original signal

Examples of the first type of distortion are frequency dependent attenuation, and the
loss of high and low frequency signal components due to bandwidth limitations.
Examples of the second type of distortion are noise, echoes, crosstalk, and interfer-
ence patterns caused by non-linear signal distortions.

The effect of the first type of distortion can be reduced by using proper data encoding,
modulation, and signal filtering techniques.

Typical data and error rates for three common types of physical media are given in
Table A.1.

Table A.1
_ _____________________________________________________________ ____________________________________________________________

Twisted Pair Coaxial Cable Optical Fiber_ ____________________________________________________________
Data Rate in Mbps 10 100 1000
Bit Error Rate 10−5 10−6 10−9

Bandwidth 250 kHz 350 MHz 1 GHz_ ____________________________________________________________

Note, however, that many other factors besides bandwidth affect the data and error
rates: the particular method of data encoding used, the length of the data line and



hence its susceptibility to noise, echoes, cross-talk, non-linear distortions, etc. For a
twisted pair cable, for instance, the quoted rate of 10 Mbps holds for a line length up
to about 30 ft, for ‘‘balanced transmissions’’ (for example, with a Manchester encod-
ing). At 300 ft, the data rate drops to 1 Mbps; at 3000 ft it drops to 100 Kbit/sec.
Transmission at 1 Mbps on a 3000 ft twisted pair cable, therefore, requires signal
regenerators (repeaters).

BIBLIOGRAPHIC NOTES
A detailed study of line characteristics and data transmission theory is given in Bennet
and Davey [1965]. An excellent tutorial on modems, data lines and protocol stan-
dards is McNamara [1982]; a well recommended practical reference book. An appli-
cation oriented treatment of data transmission techniques is presented in Tugal and
Tugal [1982]. Other solid treatments of data transmission theory and techniques can
be found in Bertsekas and Gallager [1987], [Stallings ’85], and, of course, Tanenbaum
[1981, 1988]. A pleasant introduction to some of the details of data transmission can
also be found in Byte [1989].



FLOW CHART LANGUAGE B

The flow chart language used in Part I is based on a small subset of the CCITT
Specification and Description Language SDL, CCITT [1988], Rockstrom and Saracco
[1982], SDL [1987], Saracco, Smith and Reed [1989]. There are a few deviations that
bring its semantics closer to that of the PROMELA language discussed in Chapters 5, 6
and Appendix C.

Each self-contained flow chart defines a process that, at least conceptually, is exe-
cuted concurrently with all other similarly defined processes. Each flow chart has one
entry point that is labeled either with a process name or with the symbol start.

As in a traditional flow chart, the actions of a process are specified with symbols of
various shapes linked by directed arcs. Six different types of symbols are used, as
illustrated in Figure B.1.

Statement Test Wait

Internal Input Output

Figure B.1 — Flow Chart Symbols
These symbols represent:

Statements, e.g, assignments
Boolean tests, e.g., expressions
Wait conditions, e.g., receives
Internal events, e.g., timeouts
Message inputs and outputs

The boolean tests are evaluated without delay. Wait conditions, however, are used to
model process synchronizations. They specify that the executing process does not
proceed beyond that point in the program unless a specific condition holds. The two
remaining flow chart elements, used for connecting the symbols from Figure B.1, are:

Directed arcs
Connectors

This gives us a total of eight basic building blocks to construct charts.
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The directed arcs indicating the control flow can only converge in connectors, as illus-
trated in Figure B.2. They can diverge, without connectors, at wait conditions and at
boolean tests.

Figure B.2 — Connector and Arcs
Each flow chart process has associated with it an implicit message queue, theoreti-
cally of infinite capacity, that is used to store the incoming messages. Messages are
appended to the queues in output statements and they are retrieved from the queues in
input statements. Message names must uniquely identify the receiving process. Note
that a message name can always be extended with the name of a process to guarantee
this.

Outputs, statements, wait conditions, internal events, and boolean tests may appear
anywhere in a flow chart. Inputs may only follow a wait symbol labeled receive.
More than one input may appear.

receive

acktimeout

Figure B.3 — Inputs and Timeouts
A wait condition labeled receive will delay the executing process until the implicit
message queue of that process contains, in its first slot, a message of a type specified
in one of the inputs that follow the wait symbol in the flow chart. It is a protocol error
if the message in the first slot of the queue is of another type.

A timeout is an internal synchronizing condition that is represented as an internal
event. The corresponding condition will always eventually become true. If a timeout
event is specified following a wait symbol labeled receive, the executing process can
abort the wait for an incoming message and continue with the execution of the state-
ments following the timeout.

The wait symbol can also be labeled with an expression. In this case the executing
process will be delayed until the expression, when evaluated, yields the boolean value
true (or any non-zero integer value).



A boolean test must be labeled with an expression, but in this case the expression is
evaluated once and the resulting value is used to select an outgoing link with the
corresponding label. The process is not delayed. It is an error if the evaluation of the
expression yields a value for which there is no matching label on any of the outgoing
arcs. The effect of such an error is undefined.

next:a,b

msg:a,b

msg:a,b

accept:a,b

timeout

Figure B.4 — Internal Events
Two special internal actions modeling file access are predefined: next and accept.
The notation next:a,b indicates the internal retrieval of data items a and b from an
internal data base. Similarly, accept:a,b indicates the storage of the data items in an
internal data base. The two actions next and accept include all background processing
that is associated with the retrieval and storage of data items, respectively. Their
usage is illustrated in Figure B.4.

The use of variables and abstract data types is not restricted by the flow chart
language. Similarly, the contents of a statement box can be anything that does not
involve wait conditions, receiving or sending messages, timeouts and boolean tests.

For examples, refer to the flow charts in Chapters 2 and 4.



PROMELA LANGUAGE REPORT C

This appendix is a reference manual for PROMELA, the language for describing proto-
col validation models introduced in this book. It gives a terse overview of the main
syntax requirements of the language. Semantics and usage is more fully explained in
Chapters 5 and 6. This manual describes the language proper. It does not cover pos-
sible restrictions or extensions of specific implementations. In case of doubt, for
instance when you have to find out what the precise effect is of an expression such as
(-10)%(-9) or (-10)<<(-2) on your machine, the quickest way to learn is to
execute a little PROMELA test program, like

init { printf("%d\t%d\n", (-10)%(-9), (-10)<<(-2)) }

using the PROMELA simulator (Chapter 12). The meaning of all binary, arithmetic,
and relational operators matches that of ANSI standard C.

C.1 LEXICAL CONVENTIONS
There are five classes of tokens: identifiers, keywords, constants, operators and state-
ment separators. Blanks, tabs, newlines, and comments serve only to separate tokens.
If more than one interpretation is possible, a token is taken to be the longest string of
characters that can constitute a token.

C.2 COMMENTS
Any string started with /* and terminated with */ is a comment. Comments cannot
be nested.

C.3 IDENTIFIERS
An identifier is a single letter or underscore, followed by zero or more letters, digits,
or underscores.

C.4 KEYWORDS
The following identifiers are reserved for use as keywords:

assert atomic bit bool
break byte chan do
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fi goto if init
int len mtype never
od of printf proctype
run short skip timeout

C.5 CONSTANTS
There are three types of constants.

String constants
Enumeration constants
Integer constants

String constants can only be used in printf statements.

Enumeration constants can be used to define symbolic names for message types.
They can be defined in mtype declarations of the type

mtype = { namelist }

where namelist is a comma separated list of symbolic names. Only one mtype

declaration per program can be used.

An integer constant is a sequence of digits representing a decimal integer. There are
no floating point numbers in PROMELA.

C.6 EXPRESSIONS
The evaluation of expressions is defined in integer arithmetic. Unsigned data, that is
all variables declared with type bit, byte, or bool, are cast to signed integers before
being used in expressions. For example, the value of expression (p-1), with p a vari-
able of type byte (unsigned char) and value zero, is the signed value -1 in PROMELA,
and not the unsigned equivalent 255. On assignments, however, the type of the desti-
nation always prevails. The value -1 is cast to 255 when it is stored in a unsigned
variable, but it remains -1 when stored in a signed variable.

The following operators can be used to build expressions.

+, –, *, /, %, arithmetic operators
>, >=, <, <=, ==, !=, relational operators
&&, ||, ! logical AND, OR, NOT
&, |, ˜, >>, << C-style bit operators
!, ? send and receive operators
(), [] grouping, indexing
len, run special operators

The syntax, semantics, side effects, and machine dependencies of all operators match
ANSI standard C. Table C.1 defines the precedence levels. The operators on the first
line in the table have the highest precedence.
Most operators, including assignment =, take two operands. The boolean negation !
and the unary minus − operator can be both unary and binary, depending on context.
The assignment operator takes an expression on the right, and a variable reference on
the left:



Table C.1 — Precedence and Associativity
_ ____________________________________________________ ___________________________________________________

Operators Associativity_ ___________________________________________________
() [] left to right
˜ - (unary minus) ! (boolean negation) left to right
* / % left to right
+ - left to right
>> << left to right
> < >= <= left to right
== != left to right
& left to right
| left to right
&& left to right
|| left to right
! (send) ? (receive) left to right
len run left to right
= right to left_ ___________________________________________________

varref = expression

Unlike C, the assignment operator cannot be used in expressions in PROMELA. The
unary operator, len, applies to message channels only, and the unary operator run
applies to process types. Informally, we talk about len- or run- statements, and simi-
larly about send- and receive-statements, for statements that contain these operators.

REMOTE REFERENCING
Global variables and local variables declared within the same process type can be
referred to by name. For instance

byte glob;

proctype same()
{ bool loc;

here: (loc+glob)
}

Local variables of other processes can be referred to as follows:

proctype other()
{

assert(same[2].loc > 3) /* NB!: no longer valid in current version */
}

Here a process of type other refer to the local variable loc of the process with pid

two, i.e., the second process that was instantiated. It is a run-time error if the type of
that process is different from the specified type same.



The process state of a remote process can be tested with boolean colon expressions.
For instance, the condition

same[2]:here /* NB! the current syntax is: same[2]@here */

is true if and only if the process referred to is currently in the state that was labeled
here. Remote referencing of variables and control flow states is intended to be used
only in assertions and in temporal claims. The language definition, however, does not
prevent other applications.

C.7 DECLARATIONS
Processes and variables must be declared before they can be used. Variables can be
declared either locally, within a process type, or globally. A process can only be
declared globally in a proctype declaration. Proctype declarations cannot be
nested. Local declarations may appear anywhere in a process body. The scope of a
local variable is the complete process body, irrespective where its declaration is
placed. It is not accessible, though, until execution has passed the point of declaration
at least once. There are six data types:

bit, bool, byte, chan, short, int

VARIABLES
A variable declaration begins with a keyword indicating the data type of the variable
followed by a list of identifier names, each one optionally followed by an initializer.

byte name1, name2 = 4, name3;
chan qname; chan a = [3] of { byte };

The initializer must be an expression for a variable of a basic data type, and a channel
specification for variables of type chan. By default, variables of all types except chan
are initialized to zero. Variables of type chan must be initialized explicitly before
they can be used for message passing. It is undefined what the result is of using an
uninitialized channel variable. Most likely, it causes a fatal runtime error.

Table C.2 summarizes the width and attributes of the five basic data types.

Table C.2 — Basic Data Types
_ _____________________________ ____________________________
Name Size (bits) Usage_ ____________________________
bit 1 unsigned
bool 1 unsigned
byte 8 unsigned
short 16 signed
int 32 signed_ ____________________________

The names bit and bool are synonyms for a single bit of information. A byte is an
unsigned quantity that can store a value between 0 and 255. Shorts and ints are
signed quantities that differ only in the range of values they can hold.



An array of variables is declared as follows:

int name1[N];
chan q[M];

where N and M are constants. An array declaration may have an initializer, which ini-
tializes all elements of the array. If the array is a channel, one message channel of the
given type per array element is created. In the channel initializer

chan q[M] = [x] of { types }

M is a constant, x is an expression that specifies the size of the channel, and types is a
comma separated list of one or more data types that defines the format of each mes-
sage that can be passed through the channel. All channels are initialized to be empty.
Initialized channel identifiers can be passed from one process to another in messages
or in run statements.

C.8 PROCESSES AND TEMPORAL CLAIMS
A process declaration starts with the keyword proctype followed by a name, a list of
formal parameters enclosed in round braces, and a sequence of statements and local
variable declarations. The body of a process declaration is enclosed in parentheses.

proctype name( /* parameter declarations */ )
{

/* declarations and statements */
}

The parameter declarations cannot have initializers. One process declaration is
required in every PROMELA model: the initial process. It is declared without the key-
word proctype and without a parameter list.

init {
/* declarations and statements */

}

It is the first process running and it has pid zero.

A temporal claim starts with the keyword never and can contain any PROMELA text

never {
/* declarations and statements */

}

There can be at most one temporal claim per PROMELA model. It is used to specify a
correctness requirement about the executions of the system specified. The temporal
claim specifies a behavior that is claimed to be impossible. The claim will normally
only contain conditions, though it is valid to allow the temporal claim to contain vari-
able declarations, atomic sequences, and send and receive statements. To violate a
correctness claim, it must be possible to execute one statement, or one atomic
sequence of statements, for every statement that is executed by any of the other
processes in the model. By using the temporal claim in combination with
acceptance-state labels, any linear-time propositional temporal logic formula on the



system behavior can be expressed (see Chapter 6).

C.9 STATEMENTS
There are twelve types of statements:

assertion assignment atomic break
expression goto printf receive
selection repetition send timeout

Any statement can be preceded by one or more declarations. A statement can only be
passed if it is executable. To determine its executability the statement can be
evaluated: if evaluation returns a zero value the statement is blocked. In all other
cases the statement is executable and can be passed. The evaluation of a compound
expression is always indivisible. This means that the statement

(a == b && a != b)

will always be unexecutable, but the sequence

(a == b); (a != b)

may be executable in that order.

The act of passing the statement after a successful evaluation is called the ‘‘execu-
tion’’ of the statement. There is one pseudo statement, skip, which is syntactically
equivalent to the condition (1). Skip, is a null statement; it is always executable and
has no effect when executed. It may be needed to satisfy syntax requirements.

Goto statements can be used to transfer control to any labeled statement within the
same process or procedure. They are always executable. Assignments and declara-
tions are also always executable. Expressions are only executable if they return a
non-zero value. That is, the expression 0 (zero) is never executable, and similarly 1 is
always executable.

Each statement may be preceded by a label: a name followed by a colon. Each label
may be used as the destination of a goto. Three types of labels have predefined mean-
ings in validations: end-state labels, progress-state labels, and acceptance-state labels.
The semantics are explained in Chapter 6.

The remaining statements, selection, repetition, send, receive, break, timeout, and
atomic sequences, are discussed below.

SELECTION
A selection statement begins with the keyword if, is followed by a list of one or more
options and ends with the keyword fi. Every option begins with the flag :: followed
by any sequence of statements. One and only one option from a selection statement
will be selected for execution. The first statement of an option determines whether
the option can be selected or not. If more than one option is executable, one will be
selected at random. Thus the language defines nondeterministic machines as defined
on page 164.



REPETITION AND BREAK
A repetition or do statement is similar to a selection statement, but is executed repeat-
edly until either a break statement is executed or a goto jump transfers control out-
side the cycle. The keywords of the repetition statement are do and od instead of if
and fi. The break statement will terminate the innermost repetition statement in
which it is executed. The use of a break statement outside a repetition statement is
illegal.

ATOMIC SEQUENCE
The keyword atomic introduces an atomic sequence of statements that is to be exe-
cuted as one indivisible step. The syntax is as follows:

atomic { sequence };

Logically the sequence of statements is now equivalent to one single statement. It is a
run-time error if any statement in an atomic sequence other than the first one is found
to be unexecutable. The first statement is called the guard of the sequence. If it is
executable, so should be the rest of the sequence. In general, therefore, the guard of
an atomic sequence is followed only with local assignments and local conditions, but
not with any send or receive statements.

SEND
The syntax of a send statement is

q!expr

where q is the name of a channel, and the evaluation of expression expr returns a
value to be appended to the channel. The send statement is not executable (blocks) if
the channel is full or does not exist. If more than one value is to be passed from
sender to receiver, the expressions are written in a comma-separated list:

q!expr1,expr2,expr3

Equivalently, this may be written

q!expr1(expr2,expr3)

RECEIVE
The syntax of the receive statement is

q?name

where q is the name of a channel and name is a variable or a constant. If a constant is
specified the receive statement is only executable if the channel exists and the oldest
message stored in the channel contains the same value. If a variable is specified, the
receive statement is executable if the channel exists and contains any message at all.
The variable in that case will receive the value of the message that is retrieved. If
more than one value is sent per message, the receive statement also take a comma-
separated list of variables and constants,



q?name1,name2,...

which again is syntactically equivalent to

q?name1(name2,...)

Each constant in this list puts an extra condition on the executability of the receive: it
must be matched by the value of the corresponding message field of the message to be
retrieved. The variable fields retrieve the values of the corresponding message fields
on a receive. It is an error to attempt to receive a value when none was transferred,
and vice versa.

Any receive statement can be used as a side-effect free condition by enclosing its
parameter list in square braces:

q?[name1,name2,...]
q?[name1(name2,...)]

The statement is executable (returns a non-zero result) only if the corresponding
receive operation is executable, but it has no effect on the variables or the channel.

The only other type of operation allowed on channels is

len(varref)

where varref identifies an instantiated channel. The operation returns the number of
messages in the channel specified, or zero if the channel does not exist.

TIMEOUT
The keyword timeout represents a condition that becomes true if and only if no
other statement in the system is executable. A timeout statement has no effect when
executed. Timeouts can be included in expressions.

C.10 MACROS AND INCLUDE FILES
The source text of a specification is processed by the C preprocessor for macro-
expansion and file inclusions, Kernighan and Ritchie [1978].

C.11 PROMELA GRAMMAR
The grammar is listed in BNF-style. Parenthesis are used for grouping. A plus indi-
cates a repetition of one or more times of the last syntactical unit; a star indicates a
repetition of zero or more times. Square brackets are used to indicate optional ele-
ments. A vertical bar separates options. Literals are quoted. Terminals are written in
upper-case, non-terminals in lower-case.

program ::= { unit } +



unit ::= PROCTYPE NAME ’(’ [ decl_lst ] ’)’ body
| CLAIM body
| INIT body
| one_decl
| MTYPE ASGN ’{’ NAME { ’,’ NAME } * ’}’
| ’;’

body ::= ’{’ sequence ’}’

sequence ::= step { ’;’ step } *

step ::= [ decl_lst ] stmnt

one_decl ::= [ TYPE ivar { ’,’ ivar } * ]

decl_lst ::= one_decl { ’;’ one_decl } *

ivar ::= var_dcl | var_dcl ASGN expr | var_dcl ASGN ch_init

ch_init ::= ’[’ CONST ’]’ OF ’{’ TYPE { ’,’ TYPE } * ’}’

var_dcl ::= NAME [ ’[’ CONST ’]’ ]

var_ref ::= NAME [ ’[’ expr ’]’ ]

stmnt ::= var_ref ASGN expr
| var_ref RCV margs
| var_ref SND margs
| PRINT ’(’ STRING { ’,’ expr } * ’)’
| ASSERT expr
| GOTO NAME
| expr
| NAME ’:’ stmnt
| IF options FI
| DO options OD
| BREAK
| ATOMIC ’{’ sequence ’}’

options ::= { SEP sequence } +

binop ::= ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’ | ’|’ | ’>’ | ’<’
| GE | LE | EQ | NE | AND | OR | LSHIFT | RSHIFT

unop ::= ’˜’ | ’-’ | SND



expr ::= ’(’ expr ’)’
| expr binop expr
| unop expr
| RUN NAME ’(’ [ arg_lst ] ’)’
| LEN ’(’ var_ref ’)’
| var_ref RCV ’[’ margs ’]’
| var_ref
| CONST
| TIMEOUT
| var_ref ’.’ var_ref
| var_ref ’:’ NAME

arg_lst ::= expr { ’,’ expr } *

margs ::= arg_lst | expr ’(’ arg_lst ’)’
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The makefile for the final version of SPIN, discussed in Chapter 12, is defined as fol-
lows.

CC=cc # ANSI C compiler
CFLAGS=-O # optimizer
YFLAGS=-v -d -D # create y.output, y.debug, and y.tab.h
OFILES= spin.o lex.o sym.o vars.o main.o debug.o \

mesg.o flow.o sched.o run.o dummy.o

spin: $(OFILES)
$(CC) $(CFLAGS) -o spin $(OFILES) -lm

%.o: %.c spin.h
$(CC) $(CFLAGS) -c $%.c

The remainder of this Appendix lists the contents of the 11 source files (see Table
D.1) that are required to compile the program, plus one dummy file as temporary
place holder for the analysis routines that are added in Chapter 13 and listed in
Appendix E. The program should run on any UNIX system with an ANSI-standard
compatible C compiler.
See the introduction to Appendix E for information on retrieving an online copy of
the most recent version of SPIN.

393
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Table D.1 – Source File Index
_ _______________________ ______________________
File Line Number_ ______________________
dummy.c 1907
flow.c 1137
lex.l 194
main.c 487
mesg.c 867
run.c 1378
sched.c 1553
spin.h 1
spin.y 283
sym.c 626
vars.c 717_ ______________________



SPIN VERSION 0 SIMULATOR SOURCE 395

Table D.2 – Procedures Listed – Appendix D
_ ______________________________________________________________ _____________________________________________________________
Procedure Line Procedure Line_ _____________________________________________________________
a_rcv(q, n, full) 1001 a_snd(q, n) 969
add_el(e, s) 1232 add_seq(n) 1256
addsymbol(r, s) 1719 break_dest() 1348
cast_val(t, v) 791 check_name(s) 268
checkvar(s, n) 745 close_seq() 1158
cnt_mpars(n) 882 complete_rendez() 1688
doq(s, n) 1111 dumpglobals() 815
dumplocal(s) 847 emalloc(n) 582
enable(s, n) 1602 eval(now) 1455
eval_sub(e) 1385 eval_sync(now) 1435
fatal(s1, s2) 573 find_lab(s, c) 1322
findloc(s, n) 1801 gensrc() 1909
get_lab(s) 1287 getglobal(s, n) 769
getlocal(s, n) 1821 getval(s, n) 725
has_lab(e) 1298 hash(s) 634
if_seq(s, tok, lnno) 1209 interprint(n) 1511
ismtype(str) 703 lookup(s) 649
main(argc, argv) 502 make_atomic(s) 1355
match_trail() 1914 mov_lab(z, e, y) 1309
naddsymbol(r, s, k) 1741 new_el(n) 1195
nn(s, v, t, l, r) 592 open_seq(top) 1148
p_talk(e) 1860 pushbreak() 1335
q_is_sync(n) 935 qlen(n) 925
qmake(s) 893 qrecv(n, full) 959
qsend(n) 945 ready(n, p, s) 1589
rem_lab(a, b, c) 607 rem_var(a, b, c) 617
remotelab(n) 1868 remotevar(n) 1880
runnable(s, n) 1575 s_snd(q, n) 1039
sched() 1631 seqlist(s, r) 1184
set_lab(s, e) 1272 setglobal(v, m) 804
setlocal(p, m) 1831 setmtype(m) 686
setparams(r, p, q) 1778 settype(n, t) 670
setval(v, n) 735 sr_mesg(v, j) 1098
sr_talk(n, v, s, a, j, mx, named) 1073 start_claim(n) 1617
talk(e, s) 1848 typck(n, t, s) 1761
typex(n, t) 783 walk_atomic(a, b) 1364
whoruns() 1842 wrapup() 1674
yyerror(s1, s2) 561_ _____________________________________________________________
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Table D.3 – Procedures Explained – Chapter 12
_ ________________________________________________ _______________________________________________
Procedure Page Procedure Page_ _______________________________________________
a_rcv() 275 a_snd() 274
add_el() 280 add_seq() 280
addsymbol() 289 break_dest() 283
cast_val() 268 check_name() 260
check_name() 269 check_name() 286
checkvar() 267 close_seq() 279
complete_rendez() 276 emalloc() 262
enable() 288 eval() 254
eval() 267 eval() 272
eval() 289 eval() 291
eval_sub() 281 eval_sub() 290
eval_sync() 277 findloc() 291
get_lab() 281 getglobal() 268
getlocal() 291 hash() 263
if_seq() 284 interprint() 271
ismtype() 286 lookup() 262
lookup() 263 main() 293
new_el() 279 nn() 253
nn() 265 open_seq() 279
pushbreak() 282 qlen() 273
qmake() 268 qmake() 273
qrecv() 274 qsend() 274
ready() 287 rem_lab() 292
rem_var() 292 runnable() 287
s_snd() 275 sched() 289
seqlist() 279 set_lab() 281
setglobal() 267 setlocal() 291
setmtype() 286 setparams() 288
setparams() 288_ _______________________________________________
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1 /***** spin: spin.h *****/
2
3 typedef struct Symbol {
4 char *name;
5 short type; /* variable or chan type */
6 int nel; /* 1 if scalar, >1 if array */
7 int *val; /* runtime value(s), initl 0 */
8 struct Node *ini; /* initial value, or chan-def */
9 struct Symbol *context; /* 0 if global, or procname */

10 struct Symbol *next; /* linked list */
11 } Symbol;
12
13 typedef struct Node {
14 int nval; /* value attribute */
15 short ntyp; /* node type */
16 Symbol *nsym; /* new attribute */
17 Symbol *fname; /* filename of src */
18 struct SeqList *seql; /* list of sequences */
19 struct Node *lft, *rgt; /* children in parse tree */
20 } Node;
21
22 typedef struct Queue {
23 short qid; /* runtime q index */
24 short qlen; /* nr messages stored */
25 short nslots, nflds; /* capacity, flds/slot */
26 short *fld_width; /* type of each field */
27 int *contents; /* the actual buffer */
28 struct Queue *nxt; /* linked list */
29 } Queue;
30
31 typedef struct Element {
32 Node *n; /* defines the type & contents */
33 int seqno; /* uniquely identifies this el */
34 unsigned char status; /* used by analyzer generator */
35 struct SeqList *sub; /* subsequences, for compounds */
36 struct Element *nxt; /* linked list */
37 } Element;
38
39 typedef struct Sequence {
40 Element *frst;
41 Element *last;
42 } Sequence;
43
44 typedef struct SeqList {
45 Sequence *this; /* one sequence */
46 struct SeqList *nxt; /* linked list */
47 } SeqList;
48
49 typedef struct Label {
50 Symbol *s;
51 Symbol *c;
52 Element *e;
53 struct Label *nxt;
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54 } Label;
55
56 typedef struct Lbreak {
57 Symbol *l;
58 struct Lbreak *nxt;
59 } Lbreak;
60
61 typedef struct RunList {
62 Symbol *n; /* name */
63 int pid; /* process id */
64 int maxseq; /* used by analyzer generator */
65 Element *pc; /* current stmnt */
66 Symbol *symtab; /* local variables */
67 struct RunList *nxt; /* linked list */
68 } RunList;
69
70 typedef struct ProcList {
71 Symbol *n; /* name */
72 Node *p; /* parameters */
73 Sequence *s; /* body */
74 struct ProcList *nxt; /* linked list */
75 } ProcList;
76
77 #ifdef GODEF
78 typedef struct atom_stack { /* all conflict sets hit in atomic seq. */
79 char *what; /* what = "R_LOCK", "W_LOCK" */
80 int when; /* when == Direct or Indirect */
81 int cause; /* type of operation, e.g. ’r’ */
82 Node *n;
83 struct atom_stack *nxt;
84 } atom_stack;
85
86 #define DONE 1 /* status bits of elements */
87 #define ATOM 2 /* part of an atomic chain */
88 #define L_ATOM 4 /* last element in a chain */
89 #ifdef VARSTACK
90 #define HIT 8 /* hit in dflow.c search */
91 #define Nhash 255 /* size of hash table */
92
93 #define PREDEF 5 /* predefined identifier */
94 #define BIT 1 /* data types */
95 #define BYTE 8 /* width in bits */
96 #define SHORT 16
97 #define INT 32
98 #define CHAN 64
99

100 #ifdef GODEF
101 #define Direct 1
102 #define Indirect 2
103
104 #define max(a,b) (((a)<(b)) ? (b) : (a))
105
106 /***** Old-Style C - prototype definitions *****/
107 extern char *malloc();
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108 extern char *memcpy();
109 extern char *memset();
110 extern char *mktemp();
111 extern char *strcat();
112 extern char *strcpy();
113 extern long time();
114 extern void exit();
115 extern void srand();
116
117 extern Element *d_eval_sub();
118 extern Element *colons();
119 extern Element *eval_sub();
120 extern Element *get_lab();
121 extern Element *huntele();
122 extern Element *if_seq();
123 extern Element *new_el();
124 extern Element *walk_sub();
125 extern Node *nn();
126 extern Node *rem_var();
127 extern Node *rem_lab();
128 extern SeqList *seqlist();
129 extern Sequence *close_seq();
130 extern Symbol *break_dest();
131 extern Symbol *findloc();
132 extern Symbol *has_lab();
133 extern Symbol *lookup();
134 extern char *emalloc();
135 extern void add_el();
136 extern void add_seq();
137 extern void addsymbol();
138 #ifdef DEBUG
139 extern void auto2();
140 extern void auto_atomic();
141 extern void check_proc();
142 extern void cnt_mpars();
143 extern void comment();
144 extern void do_var();
145 extern void doglobal();
146 extern void do_init();
147 extern void dolocal();
148 extern void doq();
149 extern void dumpglobals();
150 extern void dumplocal();
151 extern void dumpskip();
152 extern void dumpsrc();
153 extern void end_labs();
154 extern void explain();
155 extern void fatal();
156 extern void genaddproc();
157 extern void genaddqueue();
158 extern void genaddclaim();
159 extern void genheader();
160 extern void genother();
161 extern void gensrc();
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162 extern void genunio();
163 extern void lost_trail();
164 extern void main();
165 extern void make_atomic();
166 extern void match_trail();
167 extern void mov_lab();
168 extern void naddsymbol();
169 extern void ncases();
170 extern void ntimes();
171 extern void open_seq();
172 extern void p_talk();
173 extern void patch_atomic();
174 extern void pushbreak();
175 extern void put_pinit();
176 extern void put_ptype();
177 extern void putname();
178 extern void putnr();
179 extern void putremote();
180 extern void putproc();
181 extern void putprogress();
182 extern void putseq();
183 extern void putseq_el();
184 extern void putseq_lst();
185 extern void putskip();
186 extern void putsrc();
187 extern void putstmnt();
188 extern void ready();
189 extern void runnable();
190 extern void sched();
191 extern void set_lab();
192 extern void setmtype();
193 extern void setparams();
194 extern void settype();
195 extern void sr_mesg();
196 extern void sr_talk();
197 extern void start_claim();
198 extern void talk();
199 extern void typ2c();
200 extern void typex();
201 extern void undostmnt();
202 extern void walk_atomic();
203 extern void whoruns();
204
205 /***** spin: lex.l *****/
206
207 %{
208 #include "spin.h"
209 #include "y.tab.h"
210
211 int lineno=1;
212 unsigned char in_comment=0;
213 extern Symbol *Fname;
214
215 #define Token if (!in_comment) return
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216 %}
217
218 %%
219 "/*" { in_comment=1; }
220 "*/" { in_comment=0; }
221 \n { lineno++; }
222 [ \t] { /* ignore white space */ }
223 [0-9]+ { yylval.val = atoi(yytext); Token CONST; }
224 \#\ [0-9]+\ \"[ˆ\"]*\"[ 0-9]* { /* preprocessor directive */
225 int i=1;
226 while (yytext[i] == ’ ’) i++;
227 lineno = atoi(&yytext[i])-1;
228 while (yytext[i] != ’ ’) i++;
229 Fname = lookup(&yytext[i+1]);
230 }
231 \"[ˆ\"]*\" { yylval.sym = lookup(yytext); Token STRING; }
232 "never" { yylval.sym = lookup(":never:"); Token CLAIM; }
233 "init" { yylval.sym = lookup("_init"); Token INIT; }
234 "int" { yylval.val = INT; Token TYPE; }
235 "short" { yylval.val = SHORT; Token TYPE; }
236 "byte" { yylval.val = BYTE; Token TYPE; }
237 "bool" { yylval.val = BIT; Token TYPE; }
238 "bit" { yylval.val = BIT; Token TYPE; }
239 "chan" { yylval.val = CHAN; Token TYPE; }
240 "skip" { yylval.val = 1; Token CONST; }
241 [a-zA-Z_][a-zA-Z_0-9]* { Token check_name(yytext); }
242 "::" { yylval.val = lineno; Token SEP; }
243 "=" { yylval.val = lineno; Token ASGN; }
244 "!" { yylval.val = lineno; Token SND; }
245 "?" { yylval.val = lineno; Token RCV; }
246 "->" { Token ’;’; /* statement separator */ }
247 "<<" { Token LSHIFT; /* shift bits left */ }
248 ">>" { Token RSHIFT; /* shift bits right */ }
249 "<=" { Token LE; /* less than or equal to */ }
250 ">=" { Token GE; /* greater than or equal to */ }
251 "==" { Token EQ; /* equal to */ }
252 "!=" { Token NE; /* not equal to */ }
253 "&&" { Token AND; /* logical and */ }
254 "||" { Token OR; /* logical or */ }
255 . { Token yytext[0]; }
256 %%
257
258 static struct {
259 char *s; int tok;
260 } Names[] = {
261 "Symmetry", SYMMETRY,
262 "assert", ASSERT,
263 "atomic", ATOMIC,
264 "break", BREAK,
265 "do", DO,
266 "fi", FI,
267 "goto", GOTO,
268 "if", IF,
269 "len", LEN,
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270 "mtype", MTYPE,
271 "od", OD,
272 "of", OF,
273 "printf", PRINT,
274 "proctype", PROCTYPE,
275 "run", RUN,
276 "timeout", TIMEOUT,
277 0, 0,
278 };
279
280 check_name(s)
281 char *s;
282 {
283 register int i;
284 for (i = 0; Names[i].s; i++)
285 if (strcmp(s, Names[i].s) == 0)
286 { yylval.val = lineno;
287 return Names[i].tok;
288 }
289 if (yylval.val = ismtype(s))
290 return CONST;
291 yylval.sym = lookup(s); /* symbol table */
292 return NAME;
293 }
294
295 /***** spin: spin.y *****/
296
297 %{
298 #include "spin.h"
299 #define YYDEBUG 0
300 #define Stop nn(0,lineno,’@’,0,0)
301 extern Symbol *context;
302 extern int lineno, u_sync, u_async;
303 char *claimproc = (char *) 0;
304 %}
305
306 %union{
307 int val;
308 Node *node;
309 Symbol *sym;
310 Sequence *seq;
311 SeqList *seql;
312 }
313
314 %token <val> RUN LEN OF
315 %token <val> CONST TYPE ASGN
316 %token <sym> NAME CLAIM
317 %token <sym> STRING INIT
318 %token <val> ASSERT SYMMETRY
319 %token <val> GOTO BREAK MTYPE SEP
320 %token <val> IF FI DO OD ATOMIC
321 %token <val> SND RCV PRINT TIMEOUT
322 %token <val> PROCTYPE
323
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324 %type <sym> var ivar
325 %type <node> expr var_list stmnt
326 %type <node> args arg arglist typ_list decl
327 %type <node> decl_lst one_decl any_decl
328 %type <node> prargs margs varref step ch_init
329 %type <seql> options
330 %type <seq> option body
331
332 %right ASGN
333 %left SND RCV
334 %left OR
335 %left AND
336 %left ’|’
337 %left ’&’
338 %left EQ NE
339 %left ’>’ ’<’ GE LE
340 %left LSHIFT RSHIFT
341 %left ’+’ ’-’
342 %left ’*’ ’/’ ’%’
343 %right ’˜’ UMIN NEG
344 %%
345
346 /** PROMELA Grammar Rules **/
347
348 program : units { sched(); }
349 ;
350 units : unit | units unit
351 ;
352 unit : proc
353 | claim
354 | init
355 | one_decl
356 | mtype
357 ;
358 proc : PROCTYPE NAME { context = $2; }
359 ’(’ decl ’)’
360 body { ready($2, $5, $7);
361 context = (Symbol *) 0;
362 }
363 ;
364 claim : CLAIM { context = $1;
365 if (claimproc)
366 yyerror("claim %s redefined",
367 claimproc);
368 claimproc = $1->name;
369 }
370 body { ready($1, (Node *) 0, $3);
371 context = (Symbol *) 0;
372 }
373 ;
374 init : INIT { context = $1; }
375 body { runnable($3, $1);
376 context = (Symbol *) 0;
377 }



404 APPENDIX D DESIGN AND VALIDATION

378 ;
379 mtype : MTYPE ASGN ’{’ args ’}’ { setmtype($4); }
380 | SYMMETRY ASGN arglist { syms($3); }
381 | ’;’ /* optional ; as separator of units */
382 ;
383 arglist : ’{’ arg ’}’ { $$ = $2; }
384 | ’{’ arg ’}’ ’,’ arglist { $$ = nn(0, 0, ’;’, $2, $5); }
385 ;
386 body : ’{’ { open_seq(1); }
387 sequence { add_seq(Stop); }
388 ’}’ { $$ = close_seq();
389 }
390 ;
391 sequence: step { add_seq($1); }
392 | sequence ’;’ step { add_seq($3); }
393 ;
394 step : any_decl stmnt { $$ = $2; }
395 ;
396 any_decl: /* empty */ { $$ = (Node *) 0; }
397 | one_decl ’;’ any_decl { $$ = nn(0, 0, ’,’, $1, $3); }
398 ;
399 one_decl: TYPE var_list { settype($2, $1); $$ = $2; }
400 ;
401 decl_lst: one_decl { $$ = nn(0, 0, ’,’, $1, 0); }
402 | one_decl ’;’ decl_lst { $$ = nn(0, 0, ’,’, $1, $3); }
403 ;
404 decl : /* empty */ { $$ = (Node *) 0; }
405 | decl_lst { $$ = $1; }
406 ;
407 var_list: ivar { $$ = nn($1, 0, TYPE, 0, 0); }
408 | ivar ’,’ var_list { $$ = nn($1, 0, TYPE, 0, $3); }
409 ;
410 ivar : var { $$ = $1; }
411 | var ASGN expr { $1->ini = $3; $$ = $1; }
412 | var ASGN ch_init { $1->ini = $3; $$ = $1; }
413 /* for compatibility with Unix v.10: */
414 | NAME ’[’ CONST ’]’ OF ’{’ typ_list ’}’ {
415 $1->nel = 1;
416 if ($3) u_async++; else u_sync++;
417 $1->ini = nn(0, $3, CHAN, 0, $7);
418 cnt_mpars($7);
419 $$ = $1;
420 }
421 ;
422 ch_init : ’[’ CONST ’]’ OF ’{’ typ_list ’}’
423 { if ($2) u_async++; else u_sync++;
424 cnt_mpars($6);
425 $$ = nn(0, $2, CHAN, 0, $6);
426 }
427 ;
428 var : NAME { $1->nel = 1; $$ = $1; }
429 | NAME ’[’ CONST ’]’ { $1->nel = $3; $$ = $1; }
430 ;
431 varref : NAME { $$ = nn($1, 0, NAME, 0, 0); }
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432 | NAME ’[’ expr ’]’ { $$ = nn($1, 0, NAME, $3, 0); }
433 ;
434 stmnt : varref ASGN expr { $$ = nn($1->nsym, $2, ASGN, $1, $3); }
435 | varref RCV margs { $$ = nn($1->nsym, $2, ’r’, $1, $3); }
436 | varref SND margs { $$ = nn($1->nsym, $2, ’s’, $1, $3); }
437 | PRINT ’(’ STRING prargs ’)’ { $$ = nn($3, $1,PRINT, $4, 0); }
438 | ASSERT expr { $$ = nn(0, $1, ASSERT, $2, 0); }
439 | GOTO NAME { $$ = nn($2, $1, GOTO, 0, 0); }
440 | expr { $$ = nn(0, lineno, ’c’, $1, 0); }
441 | NAME ’:’ stmnt { $$ = nn($1, $3->nval,’:’,$3, 0); }
442 | IF options FI { $$ = nn(0, $1, IF, 0, 0);
443 $$->seql = $2;
444 }
445 | DO { pushbreak(); }
446 options OD { $$ = nn(0, $1, DO, 0, 0);
447 $$->seql = $3;
448 }
449 | BREAK { $$ = nn(break_dest(),$1,GOTO,0,0); }
450 | ATOMIC
451 ’{’ { open_seq(0); }
452 sequence
453 ’}’ { $$ = nn(0, $1, ATOMIC, 0, 0);
454 $$->seql = seqlist(close_seq(), 0);
455 make_atomic($$->seql->this);
456 }
457 ;
458 options : option { $$ = seqlist($1, 0); }
459 | option options { $$ = seqlist($1, $2); }
460 ;
461 option : SEP { open_seq(0); }
462 sequence { $$ = close_seq(); }
463 ;
464 expr : ’(’ expr ’)’ { $$ = $2; }
465 | expr ’+’ expr { $$ = nn(0, 0, ’+’, $1, $3); }
466 | expr ’-’ expr { $$ = nn(0, 0, ’-’, $1, $3); }
467 | expr ’*’ expr { $$ = nn(0, 0, ’*’, $1, $3); }
468 | expr ’/’ expr { $$ = nn(0, 0, ’/’, $1, $3); }
469 | expr ’%’ expr { $$ = nn(0, 0, ’%’, $1, $3); }
470 | expr ’&’ expr { $$ = nn(0, 0, ’&’, $1, $3); }
471 | expr ’|’ expr { $$ = nn(0, 0, ’|’, $1, $3); }
472 | expr ’>’ expr { $$ = nn(0, 0, ’>’, $1, $3); }
473 | expr ’<’ expr { $$ = nn(0, 0, ’<’, $1, $3); }
474 | expr GE expr { $$ = nn(0, 0, GE, $1, $3); }
475 | expr LE expr { $$ = nn(0, 0, LE, $1, $3); }
476 | expr EQ expr { $$ = nn(0, 0, EQ, $1, $3); }
477 | expr NE expr { $$ = nn(0, 0, NE, $1, $3); }
478 | expr AND expr { $$ = nn(0, 0, AND, $1, $3); }
479 | expr OR expr { $$ = nn(0, 0, OR, $1, $3); }
480 | expr LSHIFT expr { $$ = nn(0, 0,LSHIFT,$1, $3); }
481 | expr RSHIFT expr { $$ = nn(0, 0,RSHIFT,$1, $3); }
482 | ’˜’ expr { $$ = nn(0, 0, ’˜’, $2, 0); }
483 | ’-’ expr %prec UMIN { $$ = nn(0, 0, UMIN, $2, 0); }
484 | SND expr %prec NEG { $$ = nn(0, 0, ’!’, $2, 0); }
485 | RUN NAME ’(’ args ’)’ { $$ = nn($2,$1, RUN, $4, 0); }
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486 | LEN ’(’ varref ’)’ { $$ = nn($3->nsym, $1, LEN, $3, 0); }
487 | varref RCV ’[’ margs ’]’ { $$ = nn($1->nsym,$2,’R’,$1,$4); }
488 | varref { $$ = $1; }
489 | CONST { $$ = nn(0,$1, CONST, 0, 0); }
490 | TIMEOUT { $$ = nn(0,$1,TIMEOUT, 0, 0); }
491 | NAME ’[’ expr ’]’ ’.’ varref { $$ = rem_var($1, $3, $6); }
492 | NAME ’[’ expr ’]’ ’:’ NAME { $$ = rem_lab($1, $3, $6); }
493 ;
494 typ_list: TYPE { $$ = nn(0, 0, $1, 0, 0); }
495 | TYPE ’,’ typ_list { $$ = nn(0, 0, $1, 0, $3); }
496 ;
497 args : /* empty */ { $$ = (Node *) 0; }
498 | arg { $$ = $1; }
499 ;
500 arg : expr { $$ = nn(0, 0, ’,’, $1, 0); }
501 | expr ’,’ arg { $$ = nn(0, 0, ’,’, $1, $3); }
502 ;
503 prargs : /* empty */ { $$ = (Node *) 0; }
504 | ’,’ arg { $$ = $2; }
505 ;
506 margs : arg { $$ = $1; }
507 | expr ’(’ arg ’)’ { $$ = nn(0, 0, ’,’, $1, $3); }
508 ;
509 %%
510
511 /***** spin: main.c *****/
512
513 #include <stdio.h>
514 #include "spin.h"
515 #include "y.tab.h"
516
517 extern Symbol *context;
518 extern int lineno;
519 extern FILE *yyin;
520 Symbol *Fname;
521 int verbose = 0;
522 int analyze = 0;
523 int s_trail = 0;
524 int m_loss = 0;
525 int Named = 0;
526 int nr_errs = 0;
527
528 void
529 main(argc, argv)
530 char *argv[];
531 {
532 Symbol *s;
533 int T = (int) time((long *)0);
534
535 while (argc > 1 && argv[1][0] == ’-’)
536 { switch (argv[1][1]) {
537 case ’a’: analyze = 1; break;
538 case ’g’: verbose += 1; break;
539 case ’l’: verbose += 2; break;
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540 case ’m’: m_loss = 1; break;
541 case ’N’: Named = 1; break;
542 case ’n’: T = atoi(&argv[1][2]); break;
543 case ’p’: verbose += 4; break;
544 case ’r’: verbose += 8; break;
545 case ’s’: verbose += 16; break;
546 case ’v’: verbose += 32; break;
547 case ’t’: s_trail = 1; break;
548 default : printf("use: spin -[agmlpqrst] [-nN] file\n");
549 printf("\t-a produce an analyzer\n");
550 printf("\t-g print all global variables\n");
551 printf("\t-l print all local variables\n");
552 printf("\t-m lose msgs sent to full queues\n");
553 printf("\t-nN seed for random nr generator\n");
554 printf("\t-p print all statements\n");
555 printf("\t-r print receive events\n");
556 printf("\t-s print send events\n");
557 printf("\t-v verbose, more warnings\n");
558 printf("\t-t follow a simulation trail\n");
559 printf("\t-N force Naming of message types in trails\n");
560 exit(1);
561 }
562 argc--, argv++;
563 }
564 if (argc > 1)
565 { char outfile[17], cmd[64];
566 Fname = lookup(argv[1]);
567 mktemp(strcpy(outfile, "/tmp/spin.XXXXXX"));
568 sprintf(cmd, "/lib/cpp %s > %s", argv[1], outfile);
569 if (system(cmd))
570 { unlink(outfile);
571 exit(1);
572 } else if (!(yyin = fopen(outfile, "r")))
573 { printf("cannot open %s\n", outfile);
574 exit(1);
575 }
576 unlink(outfile);
577 } else
578 Fname = lookup("<stdin>");
579 srand(T);
580 s = lookup("_p"); s->type = PREDEF;
581 yyparse();
582 exit(nr_errs);
583 }
584
585 yywrap() /* dummy routine */
586 {
587 return 1;
588 }
589
590 yyerror(s1, s2)
591 char *s1, *s2;
592 {
593 extern int yychar;
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594 printf("spin: %s line %d: ", Fname->name, lineno);
595 if (s2)
596 printf(s1, s2);
597 else
598 printf(s1);
599 if (yychar) printf(" saw ’%d’.", yychar);
600 printf("\n"); fflush(stdout);
601 nr_errs++;
602 }
603
604 void
605 fatal(s1, s2)
606 char *s1, *s2;
607 {
608 yyerror(s1, s2);
609 fflush(stdout);
610 exit(1);
611 }
612
613 char *
614 emalloc(n)
615 { char *tmp = malloc(n);
616
617 if (!tmp)
618 fatal("not enough memory", (char *)0);
619 memset(tmp, 0, n);
620 return tmp;
621 }
622
623 Node *
624 nn(s, v, t, l, r)
625 Symbol *s;
626 Node *l, *r;
627 {
628 Node *n = (Node *) emalloc(sizeof(Node));
629 n->nval = v;
630 n->ntyp = t;
631 n->nsym = s;
632 n->fname = Fname;
633 n->lft = l;
634 n->rgt = r;
635 return n;
636 }
637
638 Node *
639 rem_lab(a, b, c)
640 Symbol *a, *c;
641 Node *b;
642 {
643 if (!context || strcmp(context->name, ":never:") != 0)
644 yyerror("warning: illegal use of ’:’ (outside never claim)", (char *)0);
645 return nn((Symbol *)0, 0, EQ,
646 nn(lookup("_p"), 0, ’p’, nn(a, 0, ’?’, b, (Node *)0), (Node *)0),
647 nn(c, 0, ’q’, nn(a, 0, NAME, (Node *)0, (Node *)0), (Node *)0));



OF COMPUTER PROTOCOLS SPIN VERSION 0 SIMULATOR SOURCE 409

648 }
649
650 Node *
651 rem_var(a, b, c)
652 Symbol *a;
653 Node *b, *c;
654 {
655 Node *tmp;
656 if (!context || strcmp(context->name, ":never:") != 0)
657 yyerror("warning: illegal use of ’.’ (outside never claim)", (char *)0);
658 tmp = nn(a, 0, ’?’, b, (Node *)0);
659 return nn(c->nsym, 0, ’p’, tmp, c->lft);
660 }
661
662 /***** spin: sym.c *****/
663
664 #include "spin.h"
665 #include "y.tab.h"
666
667 Symbol *symtab[Nhash+1];
668 Symbol *context = (Symbol *) 0;
669
670 hash(s)
671 char *s;
672 {
673 int h=0;
674
675 while (*s)
676 { h += *s++;
677 h <<= 1;
678 if (h&(Nhash+1))
679 h |= 1;
680 }
681 return h&Nhash;
682 }
683
684 Symbol *
685 lookup(s)
686 char *s;
687 {
688 Symbol *sp;
689 int h=hash(s);
690
691 for (sp = symtab[h]; sp; sp = sp->next)
692 if (strcmp(sp->name, s) == 0 && sp->context == context)
693 return sp; /* found */
694 if (context) /* local */
695 for (sp = symtab[h]; sp; sp = sp->next)
696 if (strcmp(sp->name, s) == 0 && !sp->context)
697 return sp; /* global */
698 sp = (Symbol *) emalloc(sizeof(Symbol)); /* add */
699 sp->name = (char *) emalloc(strlen(s) + 1);
700 strcpy(sp->name, s);
701 sp->nel = 1;
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702 sp->context = context;
703 sp->next = symtab[h];
704 symtab[h] = sp;
705
706 return sp;
707 }
708
709 void
710 settype(n, t)
711 Node *n;
712 {
713 while (n)
714 { if (n->nsym->type)
715 yyerror("redeclaration of ‘%s’", n->nsym->name);
716 n->nsym->type = t;
717 if (n->nsym->nel <= 0)
718 yyerror("bad array size for ‘%s’", n->nsym->name);
719 n = n->rgt;
720 }
721 }
722
723 Node *Mtype = (Node *) 0;
724
725 void
726 setmtype(m)
727 Node *m;
728 {
729 Node *n = m;
730 if (Mtype)
731 yyerror("mtype redeclared", (char *)0);
732
733 Mtype = n;
734 while (n) /* syntax check */
735 { if (!n->lft || !n->lft->nsym
736 || (n->lft->ntyp != NAME)
737 || n->lft->lft) /* indexed variable */
738 fatal("bad mtype definition", (char *)0);
739 n = n->rgt;
740 }
741 }
742
743 Node *Symnode = 0;
744
745 void
746 syms(m)
747 Node *m;
748 {
749 if (Symnode)
750 yyerror("Duplicate Symmetry definition", (char *)0);
751
752 Symnode = m;
753 }
754 #include <stdio.h>
755
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756 int SymCnt=0;
757 void
758 putsyms(fd, fh)
759 FILE *fd, *fh;
760 {
761 if (!Symnode || !Symnode->rgt || !Symnode->lft)
762 { fprintf(fh, "#define Normalize 0\n");
763 return;
764 }
765 fprintf(fh, "#ifndef WHICH\n");
766 fprintf(fh, "#define WHICH 1 /* must be either 1 or -1 */\n");
767 fprintf(fh, "#endif\n");
768
769 putdescend(fd, Symnode->lft, Symnode->rgt);
770
771 fprintf(fh, "#define Normalize 1 ");
772 while (SymCnt > 0)
773 fprintf(fh, "\\\n\t\t&& Symmer%d() == WHICH ", --SymCnt);
774 fprintf(fh, "\n");
775 }
776
777 void
778 putdescend(fd, a, b)
779 FILE *fd;
780 Node *a, *b;
781 {
782 if (b->ntyp != ’;’)
783 putasym(fd, a, b);
784 else
785 { putasym(fd, a, b->lft);
786 putasym(fd, a, b->rgt);
787 }
788 }
789
790 void
791 putasym(fd, m, n)
792 FILE *fd;
793 Node *m, *n;
794 {
795 Node *t1 = m;
796 Node *t2 = n;
797 fprintf(fd, "Symmer%d()\n{ long d;\n", SymCnt++);
798 for ( ; t1 && t2; t1 = t1->rgt, t2 = t2->rgt)
799 { if (!t1->lft || !t2->lft)
800 fatal("bad Symmetry list", (char *)0);
801
802 fprintf(fd, " d = ");
803 putstmnt(fd, t1->lft, 0);
804 fprintf(fd, " - ");
805 putstmnt(fd, t2->lft, 0);
806 fprintf(fd, ";\n");
807
808 fprintf(fd, " if (d < 0) return -1;\n");
809 fprintf(fd, " if (d > 0) return 1;\n\n");
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810 }
811 fprintf(fd, " return 0;\n}\n");
812 }
813
814 ismtype(str)
815 char *str;
816 {
817 Node *n;
818 int cnt = 1;
819
820 for (n = Mtype; n; n = n->rgt)
821 { if (strcmp(str, n->lft->nsym->name) == 0)
822 return cnt;
823 cnt++;
824 }
825 return 0;
826 }
827
828 /***** spin: vars.c *****/
829
830 #include <stdio.h>
831 #include "spin.h"
832 #include "y.tab.h"
833
834 extern RunList *X;
835 int Noglobal=0;
836
837 getval(s, n)
838 Symbol *s;
839 {
840 if (strcmp(s->name, "_p") == 0)
841 return (X && X->pc)?X->pc->seqno:0;
842 if (s->context && s->type)
843 return getlocal(s, n);
844 if (Noglobal)
845 return 0;
846 if (!s->type) /* not declared locally */
847 s = lookup(s->name); /* try global */
848 return getglobal(s, n);
849 }
850
851 setval(v, n)
852 Node *v;
853 {
854 if (v->nsym->context && v->nsym->type)
855 return setlocal(v, n);
856 if (!v->nsym->type)
857 v->nsym = lookup(v->nsym->name);
858 return setglobal(v, n);
859 }
860
861 checkvar(s, n)
862 Symbol *s;
863 {
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864 int i;
865
866 if (n >= s->nel || n < 0)
867 { yyerror("array indexing error, ‘%s’", s->name);
868 return 0;
869 }
870 if (s->type == 0)
871 { yyerror("undecl var ‘%s’ (assuming int)", s->name);
872 s->type = INT;
873 }
874 if (s->val == (int *) 0) /* uninitialized */
875 { s->val = (int *) emalloc(s->nel*sizeof(int));
876 for (i = 0; i < s->nel; i++)
877 { if (s->type != CHAN)
878 s->val[i] = eval(s->ini);
879 else
880 s->val[i] = qmake(s);
881 } }
882 return 1;
883 }
884
885 getglobal(s, n)
886 Symbol *s;
887 {
888 int i;
889 if (s->type == 0 && X && (i = find_lab(s, X->n)))
890 return i;
891 if (checkvar(s, n))
892 return cast_val(s->type, s->val[n]);
893 return 0;
894 }
895
896 void
897 typex(n, t)
898 Node *n;
899 {
900 if (n->ntyp == NAME && n->nsym->type != t
901 && (t == CHAN || n->nsym->type == CHAN))
902 yyerror("type clash (chan) in mesg pars", 0);
903 }
904
905 cast_val(t, v)
906 { int i=0; short s=0; unsigned char u=0;
907
908 if (t == INT || t == CHAN) i = v;
909 else if (t == SHORT) s = (short) v;
910 else if (t == BYTE) u = (unsigned char)v;
911 else if (t == BIT) u = (unsigned char)(v&1);
912
913 if (v != i+s+u)
914 yyerror("value %d truncated in assignment", v);
915 return (int)(i+s+u);
916 }
917
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918 setglobal(v, m)
919 Node *v;
920 {
921 int n = eval(v->lft);
922
923 if (checkvar(v->nsym, n))
924 v->nsym->val[n] = m;
925 return 1;
926 }
927
928 void
929 dumpglobals()
930 { extern Symbol *symtab[Nhash+1];
931 register Symbol *sp;
932 register int i, j, k, n, m;
933
934 for (i = 0; i <= Nhash; i++)
935 for (sp = symtab[i]; sp; sp = sp->next)
936 { if (!sp->type || sp->context)
937 continue;
938 for (j = 0, m = -1; j < sp->nel; j++)
939 { if (sp->type == CHAN)
940 { doq(sp, j);
941 k = 0;
942 continue;
943 }
944 n = getglobal(sp, j);
945 if (j == 0 || n != k)
946 { if (m != j-1)
947 printf("\t\t...\n");
948 if (sp->nel > 1)
949 printf("\t\t%s[%d] = %d\n",
950 sp->name, j, n);
951 else
952 printf("\t\t%s = %d\n",
953 sp->name, n);
954 m = j;
955 }
956 k = n;
957 } }
958 }
959
960 void
961 dumplocal(s)
962 Symbol *s;
963 {
964 Symbol *z;
965 int i;
966
967 for (z = s; z; z = z->next)
968 for (i = 0; i < z->nel; i++)
969 { if (z->type == CHAN)
970 doq(z, i);
971 else
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972 { if (z->nel > 1)
973 printf("\t\t%s[%d] = %d\n",
974 z->name, i, getval(z,i));
975 else
976 printf("\t\t%s = %d\n",
977 z->name, getval(z,0));
978 } }
979 }
980
981 /***** spin: mesg.c *****/
982
983 #include <stdio.h>
984 #include "spin.h"
985 #include "y.tab.h"
986
987 #define MAXQ 2500 /* default max # queues */
988
989 extern int lineno, verbose;
990 Queue *qtab = (Queue *) 0; /* linked list of queues */
991 Queue *ltab[MAXQ]; /* linear list of queues */
992 int nqs=0;
993 int Mpars=0; /* max nr of message parameters */
994
995 void
996 cnt_mpars(n)
997 Node *n;
998 {
999 Node *m;
1000 int i=0;
1001
1002 for (m=n; m; m = m->rgt)
1003 i++;
1004 Mpars = max(Mpars, i);
1005 }
1006
1007 qmake(s)
1008 Symbol *s;
1009 {
1010 Node *m;
1011 Queue *q;
1012 int i; extern int analyze;
1013
1014 if (!s->ini)
1015 return 0;
1016 if (s->ini->ntyp != CHAN)
1017 fatal("bad channel initializer for %s\n", s->name);
1018 if (nqs >= MAXQ)
1019 fatal("too many queues (%s)", s->name);
1020
1021 q = (Queue *) emalloc(sizeof(Queue));
1022 q->qid = ++nqs;
1023 q->nslots = s->ini->nval;
1024 for (m = s->ini->rgt; m; m = m->rgt)
1025 q->nflds++;
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1026 i = max(1, q->nslots); /* 0-slot qs get 1 slot minimum */
1027
1028 q->contents = (int *) emalloc(q->nflds*i*sizeof(int));
1029 q->fld_width = (short *) emalloc(q->nflds*sizeof(short));
1030 for (m = s->ini->rgt, i = 0; m; m = m->rgt)
1031 q->fld_width[i++] = m->ntyp;
1032 q->nxt = qtab;
1033 qtab = q;
1034 ltab[q->qid-1] = q;
1035
1036 return q->qid;
1037 }
1038
1039 qlen(n)
1040 Node *n;
1041 {
1042 int whichq = eval(n->lft)-1;
1043
1044 if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
1045 return ltab[whichq]->qlen;
1046 return 0;
1047 }
1048
1049 q_is_sync(n)
1050 Node *n;
1051 {
1052 int whichq = eval(n->lft)-1;
1053
1054 if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
1055 return (ltab[whichq]->nslots == 0);
1056 return 0;
1057 }
1058
1059 qsend(n)
1060 Node *n;
1061 {
1062 int whichq = eval(n->lft)-1;
1063 if (whichq == -1)
1064 { printf("Error: sending to an uninitialized chan\n");
1065 whichq = 0;
1066 }
1067 if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
1068 { if (ltab[whichq]->nslots > 0)
1069 return a_snd(ltab[whichq], n);
1070 else
1071 return s_snd(ltab[whichq], n);
1072 }
1073 return 0;
1074 }
1075
1076 qrecv(n, full)
1077 Node *n;
1078 {
1079 int whichq = eval(n->lft)-1;
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1080
1081 if (whichq == -1)
1082 { printf("Error: receiving from an uninitialized chan\n");
1083 whichq = 0;
1084 }
1085 if (whichq < MAXQ && whichq >= 0 && ltab[whichq])
1086 return a_rcv(ltab[whichq], n, full);
1087 return 0;
1088 }
1089
1090 a_snd(q, n)
1091 Queue *q;
1092 Node *n;
1093 {
1094 Node *m; extern int m_loss;
1095 int i = q->qlen*q->nflds; /* q offset */
1096 int j = 0; /* q field# */
1097
1098 if (q->nslots > 0 && q->qlen >= q->nslots)
1099 return m_loss; /* q is full */
1100
1101 for (m = n->rgt; m && j < q->nflds; m = m->rgt, j++)
1102 { q->contents[i+j] =
1103 cast_val(q->fld_width[j], eval(m->lft));
1104 typex(m->lft, q->fld_width[j]); /* after eval(m->lft) */
1105 if (verbose&16)
1106 sr_talk(n, eval(m->lft), "Send", "->", j,
1107 q->nflds, m->lft && m->lft->ntyp == CONST);
1108 }
1109 if (verbose&16)
1110 { for (i = j; i < q->nflds; i++)
1111 sr_talk(n, 0, "Send", "->", i, q->nflds, 0);
1112 if (verbose&32)
1113 { if (j < q->nflds)
1114 printf("\twarning: missing params in send\n");
1115 if (m)
1116 printf("\twarning: too many params in send\n");
1117 } }
1118 q->qlen++;
1119 return 1;
1120 }
1121
1122 a_rcv(q, n, full)
1123 Queue *q;
1124 Node *n;
1125 {
1126 Node *m;
1127 int j, k;
1128 if (q->qlen == 0)
1129 return 0; /* q is empty */
1130
1131 for (m = n->rgt, j=0; m && j < q->nflds; m = m->rgt, j++)
1132 { if (m->lft->ntyp == CONST)
1133 { if (q->contents[j] != m->lft->nval)
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1134 return 0; /* no match */
1135 } else if (m->lft->ntyp != NAME)
1136 fatal("bad arg in receive", (char *)0);
1137 }
1138 if (verbose&8 && verbose&32)
1139 { if (j < q->nflds)
1140 printf("\twarning: missing params in next recv\n");
1141 else if (m)
1142 printf("\twarning: too many params in next recv\n");
1143 }
1144 for (m = n->rgt, j=0; j<q->nflds; m = (m)?m->rgt:m, j++)
1145 { if (verbose&8)
1146 sr_talk(n, q->contents[j], (full)?"Recv":"[Recv]", "<-", j,
1147 q->nflds, m && m->lft->ntyp == CONST);
1148 if (m && m->lft->ntyp == NAME)
1149 { setval(m->lft, q->contents[j]);
1150 typex(m->lft, q->fld_width[j]);
1151 }
1152 for (k = 0; full && k < q->qlen-1; k++)
1153 q->contents[k*q->nflds+j] =
1154 q->contents[(k+1)*q->nflds+j];
1155 }
1156 if (full) q->qlen--;
1157 return 1;
1158 }
1159
1160 s_snd(q, n)
1161 Queue *q;
1162 Node *n;
1163 {
1164 Node *m;
1165 int i, j = 0; /* q field# */
1166
1167 for (m = n->rgt; m && j < q->nflds; m = m->rgt, j++)
1168 q->contents[j] = cast_val(q->fld_width[j], eval(m->lft));
1169
1170 q->qlen = 1;
1171 if (!complete_rendez())
1172 { q->qlen = 0;
1173 return 0;
1174 }
1175 if (verbose&16)
1176 { m = n->rgt;
1177 for (j = 0; m && j < q->nflds; m = m->rgt, j++)
1178 { sr_talk(n, eval(m->lft), "Sent", "->", j,
1179 q->nflds, m->lft && m->lft->ntyp == CONST);
1180 typex(m->lft, q->fld_width[j]);
1181 }
1182 for (i = j; i < q->nflds; i++)
1183 sr_talk(n, 0, "Sent", "->", i, q->nflds, 0);
1184 if (verbose&32)
1185 { if (j < q->nflds)
1186 printf("\twarning: missing params in send\n");
1187 if (m)
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1188 printf("\twarning: too many params in send\n");
1189 } }
1190 return 1;
1191 }
1192
1193 void
1194 sr_talk(n, v, s, a, j, mx, named)
1195 Node *n;
1196 char *s, *a;
1197 {
1198 extern int Named;
1199 if (j == 0)
1200 { whoruns();
1201 printf("line %3d, %s ", n->nval, s);
1202 sr_mesg(v, named||Named);
1203 } else
1204 { printf(",");
1205 sr_mesg(v, named);
1206 }
1207 if (j == mx-1)
1208 { printf("\t%s queue %d", a, eval(n->lft));
1209 if (n->nsym->type == CHAN)
1210 printf(" (%s", n->nsym->name);
1211 else
1212 printf(" (%s", lookup(n->nsym->name)->name);
1213 if (n->lft->lft)
1214 printf("[%d]", eval(n->lft->lft));
1215 printf(")\n");
1216 }
1217 fflush(stdout);
1218 }
1219
1220 void
1221 sr_mesg(v, j)
1222 { extern Node *Mtype;
1223
1224 int cnt = 1;
1225 Node *n;
1226 for (n = Mtype; n && j; n = n->rgt, cnt++)
1227 if (cnt == v)
1228 { printf("%s", n->lft->nsym->name);
1229 return;
1230 }
1231 printf("%d", v);
1232 }
1233
1234 void
1235 doq(s, n)
1236 Symbol *s;
1237 {
1238 Queue *q;
1239 int j, k;
1240 if (!s->val) /* uninitialized queue */
1241 return;
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1242 for (q = qtab; q; q = q->nxt)
1243 if (q->qid == s->val[n])
1244 { if (s->nel != 1)
1245 printf("\t\tqueue %d (%s[%d]): ", q->qid, s->name, n);
1246 else
1247 printf("\t\tqueue %d (%s): ", q->qid, s->name);
1248 for (k = 0; k < q->qlen; k++)
1249 { printf("[");
1250 for (j = 0; j < q->nflds; j++)
1251 { if (j > 0) printf(",");
1252 sr_mesg(q->contents[k*q->nflds+j], j==0);
1253 }
1254 printf("]");
1255 }
1256 printf("\n");
1257 break;
1258 }
1259 }
1260
1261 /***** spin: flow.c *****/
1262
1263 #include "spin.h"
1264 #include "y.tab.h"
1265
1266 Label *labtab = (Label *) 0;
1267 Lbreak *breakstack = (Lbreak *) 0;
1268 SeqList *cur_s = (SeqList *) 0;
1269 int Elcnt, break_id=0;
1270
1271 void
1272 open_seq(top)
1273 { SeqList *t;
1274 Sequence *s = (Sequence *) emalloc(sizeof(Sequence));
1275
1276 t = seqlist(s, cur_s);
1277 cur_s = t;
1278 if (top) Elcnt = 1;
1279 }
1280
1281 Sequence *
1282 close_seq()
1283 { Sequence *s = cur_s->this;
1284 Symbol *z;
1285
1286 if (s->frst == s->last)
1287 { if ((z = has_lab(s->frst))
1288 && (strncmp(z->name, "progress", 8) == 0
1289 || strncmp(z->name, "accept", 6) == 0
1290 || strncmp(z->name, "end", 3) == 0))
1291 { Element *y = /* insert a skip */
1292 new_el(nn((Symbol *)0, s->frst->n->nval, ’c’,
1293 nn((Symbol *)0, 1, CONST, (Node *)0,
1294 (Node *)0), (Node *)0));
1295 if (s->frst->n->ntyp == GOTO
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1296 || s->frst->n->ntyp == BREAK)
1297 { s->frst = y;
1298 y->nxt = s->last;
1299 } else
1300 { mov_lab(z, s->frst, y);
1301 s->frst->nxt = y;
1302 s->last = y;
1303 } } }
1304 cur_s = cur_s->nxt;
1305 return s;
1306 }
1307
1308 SeqList *
1309 seqlist(s, r)
1310 Sequence *s;
1311 SeqList *r;
1312 {
1313 SeqList *t = (SeqList *) emalloc(sizeof(SeqList));
1314 t->this = s;
1315 t->nxt = r;
1316 return t;
1317 }
1318
1319 Element *
1320 new_el(n)
1321 Node *n;
1322 {
1323 Element *m;
1324
1325 if (n && (n->ntyp == IF || n->ntyp == DO))
1326 return if_seq(n->seql, n->ntyp, n->nval);
1327 m = (Element *) emalloc(sizeof(Element));
1328 m->n = n;
1329 m->seqno = Elcnt++;
1330 return m;
1331 }
1332
1333 Element *
1334 if_seq(s, tok, lnno)
1335 SeqList *s;
1336 {
1337 Element *e = new_el((Node *) 0);
1338 Element *t = new_el(nn((Symbol *) 0, lnno, ’.’,
1339 (Node *)0, (Node *)0)); /* target */
1340 SeqList *z;
1341
1342 e->n = nn((Symbol *)0, lnno, tok, (Node *)0, (Node *)0);
1343 e->sub = s;
1344 for (z = s; z; z = z->nxt)
1345 add_el(t, z->this);
1346 if (tok == DO)
1347 { add_el(t, cur_s->this);
1348 t = new_el(nn((Symbol *)0, lnno, BREAK, (Node *)0, (Node *)0));
1349 set_lab(break_dest(), t);
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1350 breakstack = breakstack->nxt; /* pop stack */
1351 }
1352 add_el(e, cur_s->this);
1353 add_el(t, cur_s->this);
1354 return e; /* destination node for label */
1355 }
1356
1357 void
1358 add_el(e, s)
1359 Element *e;
1360 Sequence *s;
1361 {
1362 if (e->n->ntyp == GOTO)
1363 { Symbol *z;
1364 if ((z = has_lab(e))
1365 && (strncmp(z->name, "progress", 8) == 0
1366 || strncmp(z->name, "accept", 6) == 0
1367 || strncmp(z->name, "end", 3) == 0))
1368 { Element *y = /* insert a skip */
1369 new_el(nn((Symbol *)0, e->n->nval, ’c’,
1370 nn((Symbol *)0, 1, CONST, (Node *)0,
1371 (Node *)0), (Node *)0));
1372 mov_lab(z, e, y); /* gets its label */
1373 add_el(y, s);
1374 } }
1375 if (!s->frst)
1376 s->frst = e;
1377 else
1378 s->last->nxt = e;
1379 s->last = e;
1380 }
1381
1382 Node *innermost;
1383
1384 Element *
1385 colons(n)
1386 Node *n;
1387 {
1388 if (!n)
1389 return (Element *) 0;
1390 if (n->ntyp == ’:’)
1391 { Element *e = colons(n->lft);
1392 set_lab(n->nsym, e);
1393 return e;
1394 }
1395 innermost = n;
1396 return new_el(n);
1397 }
1398
1399 void
1400 add_seq(n)
1401 Node *n;
1402 {
1403 Element *e;
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1404 if (!n) return;
1405 innermost = n;
1406 e = colons(n);
1407 if (innermost->ntyp != IF && innermost->ntyp != DO)
1408 add_el(e, cur_s->this);
1409 }
1410
1411 void
1412 set_lab(s, e)
1413 Symbol *s;
1414 Element *e;
1415 {
1416 Label *l; extern Symbol *context;
1417 if (!s) return;
1418 l = (Label *) emalloc(sizeof(Label));
1419 l->s = s;
1420 l->c = context;
1421 l->e = e;
1422 l->nxt = labtab;
1423 labtab = l;
1424 }
1425
1426 Element *
1427 get_lab(s)
1428 Symbol *s;
1429 {
1430 Label *l;
1431 for (l = labtab; l; l = l->nxt)
1432 if (s == l->s)
1433 return (l->e);
1434 fatal("undefined label %s", s->name);
1435 return 0; /* doesn’t get here */
1436 }
1437
1438 Symbol *
1439 has_lab(e)
1440 Element *e;
1441 {
1442 Label *l;
1443 for (l = labtab; l; l = l->nxt)
1444 if (e == l->e)
1445 return (l->s);
1446 return (Symbol *) 0;
1447 }
1448
1449 void
1450 mov_lab(z, e, y)
1451 Symbol *z;
1452 Element *e, *y;
1453 {
1454 Label *l;
1455 for (l = labtab; l; l = l->nxt)
1456 if (e == l->e)
1457 { l->e = y;
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1458 return;
1459 }
1460 fatal("cannot happen - mov_lab %s", z->name);
1461 }
1462
1463 find_lab(s, c)
1464 Symbol *s, *c;
1465 {
1466 Label *l;
1467 for (l = labtab; l; l = l->nxt)
1468 { if (strcmp(s->name, l->s->name) == 0
1469 && strcmp(c->name, l->c->name) == 0)
1470 return (l->e->seqno);
1471 }
1472 return 0;
1473 }
1474
1475 void
1476 pushbreak()
1477 { Lbreak *r = (Lbreak *) emalloc(sizeof(Lbreak));
1478 Symbol *l;
1479 char buf[32];
1480
1481 sprintf(buf, ":b%d", break_id++);
1482 l = lookup(buf);
1483 r->l = l;
1484 r->nxt = breakstack;
1485 breakstack = r;
1486 }
1487
1488 Symbol *
1489 break_dest()
1490 { if (!breakstack)
1491 fatal("misplaced break statement", (char *)0);
1492 return breakstack->l;
1493 }
1494
1495 void
1496 make_atomic(s)
1497 Sequence *s;
1498 {
1499 walk_atomic(s->frst, s->last);
1500 s->last->status &= ˜ATOM;
1501 s->last->status |= L_ATOM;
1502 }
1503
1504 void
1505 walk_atomic(a, b)
1506 Element *a, *b;
1507 {
1508 Element *f;
1509 SeqList *h;
1510 for (f = a; ; f = f->nxt)
1511 { f->status |= ATOM;
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1512 for (h = f->sub; h; h = h->nxt)
1513 walk_atomic(h->this->frst, h->this->last);
1514 if (f == b)
1515 break;
1516 }
1517 }
1518
1519 /***** spin: run.c *****/
1520
1521 #include <stdio.h>
1522 #include "spin.h"
1523 #include "y.tab.h"
1524
1525 Element *
1526 eval_sub(e)
1527 Element *e;
1528 {
1529 Element *f, *g;
1530 SeqList *z;
1531 int i, j, k;
1532 extern int Rvous, lineno;
1533
1534 if (!e->n)
1535 return (Element *)0;
1536 if (e->n->ntyp == GOTO)
1537 return (!Rvous)?get_lab(e->n->nsym):(Element *)0;
1538 if (e->sub)
1539 { for (z = e->sub, j=0; z; z = z->nxt)
1540 j++;
1541 k = rand()%j; /* nondeterminism */
1542 for (i = 0, z = e->sub; i < j+k; i++)
1543 { if (i >= k && (f = eval_sub(z->this->frst)))
1544 return f;
1545 z = (z->nxt)?z->nxt:e->sub;
1546 }
1547 } else
1548 { if (e->n->ntyp == ATOMIC)
1549 { f = e->n->seql->this->frst;
1550 g = e->n->seql->this->last;
1551 g->nxt = e->nxt;
1552 if (!(g = eval_sub(f))) /* atomic guard */
1553 return (Element *)0;
1554 Rvous=0;
1555 while (g && (g->status & (ATOM|L_ATOM))
1556 && !(f->status & L_ATOM))
1557 { f = g;
1558 g = eval_sub(f);
1559 }
1560 if (!g)
1561 { wrapup();
1562 lineno = f->n->nval;
1563 fatal("atomic seq blocks", (char *)0);
1564 }
1565 return g;
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1566 } else if (Rvous)
1567 { if (eval_sync(e->n))
1568 return e->nxt;
1569 } else
1570 return (eval(e->n))?e->nxt:(Element *)0;
1571 }
1572 return (Element *)0;
1573 }
1574
1575 eval_sync(now)
1576 Node *now;
1577 { /* allow only synchronous receives
1578 /* and related node types */
1579
1580 if (now)
1581 switch (now->ntyp) {
1582 case TIMEOUT: case PRINT: case ASSERT:
1583 case RUN: case LEN: case ’s’:
1584 case ’c’: case ASGN: case BREAK:
1585 case IF: case DO: case ’.’:
1586 return 0;
1587 case ’R’:
1588 case ’r’:
1589 if (!q_is_sync(now))
1590 return 0;
1591 }
1592 return eval(now);
1593 }
1594
1595 eval(now)
1596 Node *now;
1597 {
1598 extern int Tval;
1599
1600 if (now)
1601 switch (now->ntyp) {
1602 case CONST: return now->nval;
1603 case ’!’: return !eval(now->lft);
1604 case UMIN: return -eval(now->lft);
1605 case ’˜’: return ˜eval(now->lft);
1606
1607 case ’/’: return (eval(now->lft) / eval(now->rgt));
1608 case ’*’: return (eval(now->lft) * eval(now->rgt));
1609 case ’-’: return (eval(now->lft) - eval(now->rgt));
1610 case ’+’: return (eval(now->lft) + eval(now->rgt));
1611 case ’%’: return (eval(now->lft) % eval(now->rgt));
1612 case ’<’: return (eval(now->lft) < eval(now->rgt));
1613 case ’>’: return (eval(now->lft) > eval(now->rgt));
1614 case ’&’: return (eval(now->lft) & eval(now->rgt));
1615 case ’|’: return (eval(now->lft) | eval(now->rgt));
1616 case LE: return (eval(now->lft) <= eval(now->rgt));
1617 case GE: return (eval(now->lft) >= eval(now->rgt));
1618 case NE: return (eval(now->lft) != eval(now->rgt));
1619 case EQ: return (eval(now->lft) == eval(now->rgt));
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1620 case OR: return (eval(now->lft) || eval(now->rgt));
1621 case AND: return (eval(now->lft) && eval(now->rgt));
1622 case LSHIFT: return (eval(now->lft) << eval(now->rgt));
1623 case RSHIFT: return (eval(now->lft) >> eval(now->rgt));
1624
1625 case TIMEOUT: return Tval;
1626
1627 case RUN: return enable(now->nsym, now->lft);
1628 case LEN: return qlen(now);
1629 case ’s’: return qsend(now); /* send */
1630 case ’r’: return qrecv(now, 1); /* full-receive */
1631 case ’R’: return qrecv(now, 0); /* test only */
1632 case ’c’: return eval(now->lft); /* condition */
1633 case ’p’: return remotevar(now);
1634 case ’q’: return remotelab(now);
1635 case PRINT: return interprint(now);
1636 case ASGN: return setval(now->lft, eval(now->rgt));
1637 case NAME: return getval(now->nsym, eval(now->lft));
1638 case ASSERT: if (eval(now->lft)) return 1;
1639 yyerror("assertion violated", (char *) 0);
1640 wrapup(); exit(1);
1641 case IF: case DO: case BREAK: /* compound structure */
1642 case ’.’: return 1; /* return label for compound */
1643 case ’@’: return 0; /* stop state */
1644 default : printf("spin: bad node type %d (run)\n", now->ntyp);
1645 fflush(stdout);
1646 exit(1);
1647 }
1648 return 0;
1649 }
1650
1651 interprint(n)
1652 Node *n;
1653 {
1654 Node *tmp = n->lft;
1655 char c, *s = n->nsym->name;
1656 int i, j;
1657
1658 for (i = 0; i < strlen(s); i++)
1659 switch (s[i]) {
1660 default: putchar(s[i]); break;
1661 case ’\"’: break; /* ignore */
1662 case ’\\’:
1663 switch(s[++i]) {
1664 case ’t’: putchar(’\t’); break;
1665 case ’n’: putchar(’\n’); break;
1666 default: putchar(s[i]); break;
1667 }
1668 break;
1669 case ’%’:
1670 if ((c = s[++i]) == ’%’)
1671 { putchar(’%’); /* literal */
1672 break;
1673 }
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1674 if (!tmp)
1675 { yyerror("too few print args %s", s);
1676 break;
1677 }
1678 j = eval(tmp->lft);
1679 tmp = tmp->rgt;
1680 switch(c) {
1681 case ’c’: printf("%c", j); break;
1682 case ’d’: printf("%d", j); break;
1683 case ’o’: printf("%o", j); break;
1684 case ’u’: printf("%u", j); break;
1685 case ’x’: printf("%x", j); break;
1686 default: yyerror("unrecognized print cmd %%’%c’", c);
1687 break;
1688 }
1689 break;
1690 }
1691 fflush(stdout);
1692 return 1;
1693 }
1694
1695 /***** spin: sched.c *****/
1696
1697 #include <stdio.h>
1698 #include "spin.h"
1699 #include "y.tab.h"
1700
1701 int nproc = 0;
1702 int nstop = 0;
1703 int Tval = 0;
1704 int Rvous = 0;
1705 int depth = 0;
1706
1707 RunList *X = (RunList *) 0;
1708 RunList *run = (RunList *) 0;
1709 ProcList *rdy = (ProcList *) 0;
1710 Element *eval_sub();
1711 extern int verbose, lineno, s_trail, analyze;
1712 extern Symbol *Fname;
1713 extern char *claimproc;
1714 extern int Noglobal;
1715 int Have_claim=0;
1716
1717 void
1718 runnable(s, n)
1719 Sequence *s; /* body */
1720 Symbol *n; /* name */
1721 {
1722 RunList *r = (RunList *) emalloc(sizeof(RunList));
1723 r->n = n;
1724 r->pid = nproc++;
1725 r->pc = s->frst;
1726 r->maxseq = s->last->seqno;
1727 r->nxt = run;
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1728 run = r;
1729 }
1730
1731 void
1732 ready(n, p, s)
1733 Symbol *n; /* process name */
1734 Node *p; /* formal parameters */
1735 Sequence *s; /* process body */
1736 {
1737 ProcList *r = (ProcList *) emalloc(sizeof(ProcList));
1738 r->n = n;
1739 r->p = p;
1740 r->s = s;
1741 r->nxt = rdy;
1742 rdy = r;
1743 }
1744
1745 enable(s, n)
1746 Symbol *s; /* process name */
1747 Node *n; /* actual parameters */
1748 {
1749 ProcList *p;
1750 for (p = rdy; p; p = p->nxt)
1751 if (strcmp(s->name, p->n->name) == 0)
1752 { runnable(p->s, p->n);
1753 setparams(run, p, n);
1754 return (nproc-nstop-1); /* pid */
1755 }
1756 return 0; /* process not found */
1757 }
1758
1759 void
1760 start_claim(n)
1761 { ProcList *p;
1762 int i;
1763
1764 for (p = rdy, i=1; p; p = p->nxt, i++)
1765 if (i == n)
1766 { runnable(p->s, p->n);
1767 Have_claim = 1;
1768 return;
1769 }
1770 fatal("couldn’t find claim", (char *) 0);
1771 }
1772
1773 void
1774 sched()
1775 { Element *e;
1776 RunList *Y; /* previous process in run queue */
1777 int i;
1778
1779 if (analyze)
1780 { gensrc();
1781 return;
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1782 } else if (s_trail)
1783 { match_trail();
1784 return;
1785 }
1786 if (claimproc)
1787 printf("warning: claims are ignored in simulations\n");
1788
1789 for (Tval=i=0; Tval < 2; Tval++, i=0)
1790 { while (i < nproc-nstop)
1791 for (X=run, Y=0, i=0; X; X = X->nxt)
1792 { lineno = X->pc->n->nval;
1793 Fname = X->pc->n->fname;
1794 if (e = eval_sub(X->pc))
1795 { X->pc = e; Tval=0;
1796 talk(e, X->symtab);
1797 } else
1798 { if (X->pc->n->ntyp == ’@’
1799 && X->pid == (nproc-nstop-1))
1800 { if (Y)
1801 Y->nxt = X->nxt;
1802 else
1803 run = X->nxt;
1804 nstop++; Tval=0;
1805 if (verbose&4)
1806 { whoruns();
1807 printf("terminates\n");
1808 }
1809 } else
1810 i++;
1811 }
1812 Y = X;
1813 } }
1814 wrapup();
1815 }
1816
1817 wrapup()
1818 { if (depth) /* for guided simulations, Chapter 12 */
1819 printf("step %d, ", depth);
1820 if (nproc != nstop)
1821 { printf("#processes: %d\n", nproc-nstop);
1822 dumpglobals();
1823 verbose &= ˜1; /* no more globals */
1824 verbose |= 4; /* add process states */
1825 for (X = run; X; X = X->nxt)
1826 talk(X->pc, X->symtab);
1827 }
1828 printf("%d processes created\n", nproc);
1829 }
1830
1831 complete_rendez()
1832 { RunList *orun = X;
1833 Element *e;
1834 int res=0;
1835
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1836 if (s_trail) /* for guided simulations, Chapter 12 */
1837 return 1;
1838 Rvous = 1;
1839 for (X = run; X; X = X->nxt)
1840 if (X != orun && (e = eval_sub(X->pc)))
1841 { X->pc = e;
1842 if (verbose&4)
1843 { printf("rendezvous: %s ",X->n->name);
1844 printf("<-> %s\n", orun->n->name);
1845 printf("=r==: ");
1846 talk(e, X->symtab);
1847 printf("=s==: ");
1848 X = orun;
1849 talk(X->pc, X->symtab);
1850 }
1851 res = 1;
1852 break;
1853 }
1854 Rvous = 0;
1855 X = orun;
1856 return res;
1857 }
1858
1859 /***** Runtime - Local Variables *****/
1860
1861 void
1862 addsymbol(r, s)
1863 RunList *r;
1864 Symbol *s;
1865 {
1866 Symbol *t = (Symbol *) emalloc(sizeof(Symbol));
1867 int i;
1868
1869 t->name = s->name;
1870 t->type = s->type;
1871 t->nel = s->nel;
1872 t->ini = s->ini;
1873 if (s->val) /* if initialized, copy it */
1874 { t->val = (int *) emalloc(s->nel*sizeof(int));
1875 for (i = 0; i < s->nel; i++)
1876 t->val[i] = s->val[i];
1877 } else
1878 checkvar(t, 0); /* initialize it */
1879 t->next = r->symtab; /* add it */
1880 r->symtab = t;
1881 }
1882
1883 void
1884 naddsymbol(r, s, k)
1885 RunList *r;
1886 Symbol *s;
1887 {
1888 Symbol *t = (Symbol *) emalloc(sizeof(Symbol));
1889 int i;
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1890
1891 t->name = s->name;
1892 t->type = s->type;
1893 t->nel = s->nel;
1894 t->ini = s->ini;
1895 t->val = (int *) emalloc(s->nel*sizeof(int));
1896 if (s->nel != 1)
1897 fatal("array in formal parameter list, %s", s->name);
1898 for (i = 0; i < s->nel; i++)
1899 t->val[i] = k;
1900 t->next = r->symtab;
1901 r->symtab = t;
1902 }
1903
1904 typck(n, t, s)
1905 Node *n;
1906 char *s;
1907 {
1908 if (!n || !n->lft
1909 || (n->lft->ntyp == NAME && n->lft->nsym->type != t
1910 && n->lft->nsym->type != 0
1911 && (t == CHAN || n->lft->nsym->type == CHAN))
1912 || (n->lft->ntyp == NAME && n->lft->nsym->type == 0
1913 && lookup(n->lft->nsym->name)->type != t) )
1914 { yyerror("error in parameters of run %s(...)", s);
1915 return 0;
1916 }
1917 return 1;
1918 }
1919
1920 void
1921 setparams(r, p, q)
1922 RunList *r;
1923 ProcList *p;
1924 Node *q;
1925 {
1926 Node *f, *a; /* formal and actual pars */
1927 Node *t; /* list of pars of 1 type */
1928
1929 for (f = p->p, a = q; f; f = f->rgt) /* one type at a time */
1930 for (t = f->lft; t; t = t->rgt, a = (a)?a->rgt:a)
1931 { int k;
1932 if (!a) fatal("missing actual parameters: ’%s’", p->n->name);
1933 k = eval(a->lft); /* must be initialized*/
1934 if (typck(a, t->nsym->type, p->n->name))
1935 { if (t->nsym->type == CHAN)
1936 naddsymbol(r, t->nsym, k); /* copy */
1937 else
1938 { t->nsym->ini = a->lft;
1939 addsymbol(r, t->nsym);
1940 }
1941 }
1942 }
1943 }
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1944
1945 Symbol *
1946 findloc(s, n)
1947 Symbol *s;
1948 {
1949 Symbol *r = (Symbol *) 0;
1950
1951 if (n >= s->nel || n < 0)
1952 { yyerror("array indexing error %s", s->name);
1953 return (Symbol *) 0;
1954 }
1955
1956 if (!X)
1957 { if (analyze)
1958 fatal("error, cannot evaluate variable ’%s’", s->name);
1959 else
1960 yyerror("error, cannot evaluate variable ’%s’", s->name);
1961 return (Symbol *) 0;
1962 }
1963 for (r = X->symtab; r; r = r->next)
1964 if (strcmp(r->name, s->name) == 0)
1965 break;
1966 if (!r && !Noglobal)
1967 { addsymbol(X, s);
1968 r = X->symtab;
1969 }
1970 return r;
1971 }
1972
1973 getlocal(s, n)
1974 Symbol *s;
1975 {
1976 Symbol *r;
1977
1978 r = findloc(s, n);
1979 if (r) return cast_val(r->type, r->val[n]);
1980 return 0;
1981 }
1982
1983 setlocal(p, m)
1984 Node *p;
1985 {
1986 int n = eval(p->lft);
1987 Symbol *r = findloc(p->nsym, n);
1988
1989 if (r) r->val[n] = m;
1990 return 1;
1991 }
1992
1993 void
1994 whoruns()
1995 { if (!X) return;
1996
1997 if (Have_claim && X->pid >= 1)
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1998 { if (X->pid == 1)
1999 printf("proc - (%s) ", X->n->name);
2000 else
2001 printf("proc %2d (%s) ", X->pid-1, X->n->name);
2002 } else
2003 printf("proc %2d (%s) ", X->pid, X->n->name);
2004 }
2005
2006 void
2007 talk(e, s)
2008 Element *e;
2009 Symbol *s;
2010 {
2011 if (verbose&4)
2012 { p_talk(e);
2013 if (verbose&1) dumpglobals();
2014 if (verbose&2) dumplocal(s);
2015 }
2016 }
2017
2018 void
2019 p_talk(e)
2020 Element *e;
2021 {
2022 whoruns();
2023 printf("line %d (state %d)\n",
2024 (e && e->n && e->n->nval)?e->n->nval:-1, e->seqno);
2025 }
2026
2027 remotelab(n)
2028 Node *n;
2029 {
2030 int i;
2031
2032 if (n->nsym->type)
2033 fatal("not a labelname: ‘%s’", n->nsym->name);
2034 if ((i = find_lab(n->nsym, n->lft->nsym)) == 0)
2035 fatal("unknown labelname: %s", n->nsym->name);
2036 return i;
2037 }
2038
2039 remotevar(n)
2040 Node *n;
2041 {
2042 int pno, i, j, trick=0;
2043 RunList *Y, *oX = X;
2044
2045 if (!n->lft->lft)
2046 { yyerror("missing pid in %s", n->nsym->name);
2047 return 0;
2048 }
2049 pno = eval(n->lft->lft); /* pid */
2050 TryAgain:
2051 i = nproc - nstop;
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2052 for (Y = run; Y; Y = Y->nxt)
2053 if (--i == pno)
2054 { if (strcmp(Y->n->name, n->lft->nsym->name))
2055 { if (!trick && Have_claim)
2056 { trick = 1; pno++;
2057 /* assumes user only guessed the pid */
2058 goto TryAgain;
2059 }
2060 printf("remote ref %s[%d] refers to %s\n",
2061 n->lft->nsym->name, pno, Y->n->name);
2062 yyerror("wrong proctype %s", Y->n->name);
2063 }
2064 { extern int Noglobal;
2065 Noglobal=1; /* make sure it’s not created by default */
2066 if (n->nsym->type == 0) n->nsym->type = INT;
2067 X = Y; j = getval(n->nsym, eval(n->rgt)); X = oX;
2068 Noglobal=0;
2069 }
2070 return j;
2071 }
2072 printf("remote ref: %s[%d] ", n->lft->nsym->name, pno);
2073 yyerror("variable %s not found", n->nsym->name);
2074 return 0;
2075 }
2076
2077 /***** spin: dummy.c *****/
2078
2079 gensrc()
2080 {
2081 printf("analyze: not defined\n");
2082 }
2083
2084 match_trail()
2085 {
2086 printf("trails: not defined\n");
2087 }
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The program listings that follow are the program segments that are added to the simu-
lator code described in Chapter 12 and listed in Appendix D. The code from this
appendix is used to generate a protocol-specific validator for any protocol validation
model that is described in PROMELA. The extensions are discussed in Chapter 13.

The new makefile for this version of SPIN looks as follows.

CC=cc # ANSI C compiler
CFLAGS=-O # optimizer
YFLAGS=-v -d -D # create y.output, y.debug, and y.tab.h
OFILES= spin.o lex.o sym.o vars.o main.o debug.o \

mesg.o flow.o sched.o run.o pangen1.o pangen2.o \
pangen3.o pangen4.o pangen5.o

spin: $(OFILES)
$(CC) $(CFLAGS) -o spin $(OFILES) -lm

%.o: %.c spin.h
$(CC) $(CFLAGS) -c $%.c

pangen1.o: pangen1.c pangen1.h pangen3.h
pangen2.o: pangen2.c pangen2.h

The remainder of this Appendix lists the contents of the 8 additional source files (see
Table E.1). A large part of the code is contained in header files and copied into a pro-
tocol specific validator generated with SPIN.

Two pre-processor directives are generated for optional manipulation by the user. By
default, all validators generated by SPIN perform an exhaustive search. If the name
BITSTATE is defined at compile-time, this search strategy is replaced with a super-
trace analysis (see Chapter 14 for examples). Similarly, by default there is no
predefined maximum to the amount of memory that an exhaustive analysis can use.
If, however, the name MEMCNT is defined at compile-time, it numeric value will be
used to set an upper-bound. If, for instance, MEMCNT=20 the upper-bound used is 220

bytes (see also Chapter 14 for examples).

436
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Table E.1 – Source File Index
_ ________________________ _______________________
File Line Number_ _______________________
pangen1.c 1148
pangen1.h 1
pangen2.h 909
pangen2.c 1574
pangen3.c 2096
pangen3.h 1038
pangen4.c 2201
pangen5.c 2381_ _______________________

ONLINE VERSION OF SPIN
The source code listed in Appendices D and E of this book document the version 0
sources of SPIN. These sources were originally distributed only through AT&T’s
Toolchest software distribution system, for a fee. The most recent, extended, version
of SPIN is available without fee for research and educational use from the web via
SPIN’s homepage:

http://netlib.bell-labs.com/netlib/spin/whatispin.html

More SPIN related information, about workshops, newsletters, and online documenta-
tion, is available through this page.

Table E.2 – Procedures Listed – Appendix E
_ ____________________________________________________________ ___________________________________________________________
Procedure Line Procedure Line_ ___________________________________________________________
any_proc(now) 2298 any_undo(now) 2281
blurb(fd, t, n) 2071 check_proc(now, m) 2308
d_eval_sub(s, pno, nst) 2501 do_init(sp) 1325
do_var(dowhat, s, sp) 1299 doglobal(dowhat) 1288
dolocal(dowhat, p, s) 1271 dumpskip(n, m) 2143
dumpsrc(n, m) 2167 end_labs(s, i) 1240
genaddproc() 1190 genaddqueue() 1475
genheader() 1171 genother(cnt) 1210
genunio() 2322 getweight(n) 2048
has_tau(n) 2060 huntele(f, o) 1403
huntstart(f) 1388 lost_trail() 2459
match_trail() 2395 ncases(fd, p, n, m, c) 1462
ntimes(fd, n, m, c) 1258 put_pinit(e, s, p, i) 1363
put_ptype(s, p, i, m0, m1) 1343 putnr(n) 2192
putstmnt(fd, now, m) 1825 typ2c(sp) 1432
undostmnt(now, m) 2214 walk_sub(e, pno, nst) 2469_ ___________________________________________________________
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Table E.3 – Procedures Explained – Chapter 13
_ _________________________________________ ________________________________________
Procedure Page Procedure Page_ ________________________________________
addproc() 306 assert() 307
checkchan() 309 d_hash() 300
d_hash() 307 delproc() 306
endstate() 307 gensrc() 298
gensrc() 308 hstore() 306
huntini() 308 match_trail() 298
match_trail() 310 new_state() 306
new_state() 300 new_state() 300
new_state() 305 p_restor() 306
putproc() 308 putseq() 308
putstmnt() 308 putstmnt() 309
q_restor() 305 qrecv() 305
qsend() 305 r_ck() 307
retrans() 307 s_hash() 300
s_hash() 307 settable() 307
uerror() 300 uerror() 303
undostmnt() 308 undostmnt() 309
unrecv() 306 unsend() 306_ ________________________________________
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1 /***** spin: pangen1.h *****/
2
3 char *Header[] = {
4 "#define qptr(x) (((uchar *)&now)+q_offset[x])",
5 "#define pptr(x) (((uchar *)&now)+proc_offset[x])",
6 "#define Pptr(x) ((proc_offset[x])?pptr(x):noptr)",
7 "#define q_sz(x) (((Q0 *)qptr(x))->Qlen)\n",
8 "#define MAXQ 255",
9 "#define MAXPROC 255",

10 "#define WS sizeof(long) /* word size in bytes */",
11 "#ifndef VECTORSZ",
12 "#define VECTORSZ 1024 /* sv size in bytes */",
13 "#endif",
14 "extern char *malloc(), *memcpy(), *memset();",
15 "extern void exit();",
16 "extern int abort();\n",
17 "typedef struct Stack { /* for queues and processes */",
18 " short o_delta;",
19 " short o_offset;",
20 " short o_skip;",
21 " short o_delqs;",
22 " char *body;",
23 " struct Stack *nxt;",
24 " struct Stack *lst;",
25 "} Stack;\n",
26 "typedef struct Svtack { /* for complete state vector */",
27 " short o_delta; /* current size of frame */",
28 " short m_delta; /* maximum size of frame */",
29 "#if SYNC",
30 " short o_boq;",
31 "#endif",
32 " int j1, j2; /* loop detection */",
33 " char *body;",
34 " struct Svtack *nxt;",
35 " struct Svtack *lst;",
36 "} Svtack;\n",
37 #ifdef VARSTACK
38 "typedef struct Varstack {",
39 " int val;",
40 " int cksum; /* debugging only */",
41 " struct Varstack *nxt;",
42 " struct Varstack *lst;",
43 "} Varstack;\n",
44 #endif
45 #ifdef GODEF
46 "#define UNUSED 0",
47 "#define R_LOCK 0",
48 "#define W_LOCK 1",
49 "#define Snd_LOCK 2",
50 "#define Rcv_LOCK 3",
51 "#define NLOCKS 4",
52 "#define BLOCK 1",
53 "#define REL 2",
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54 "typedef struct CS_stack {",
55 " short status; /* -1,0,1,2 = pending, unused, blocked, released */",
56 " short reason; /* 0..NLOCKS = blocked by R,W,Snd, or Rcv */",
57 " short delta; /* the amount of an increment or decrement */",
58 " short pid, stmnt, cs;",
59 " int depth;",
60 " struct CS_stack *nxt;",
61 " struct CS_stack *lst;",
62 "} CS_stack;\n",
63 #endif
64 "typedef struct Trans {",
65 " short atom; /* is this an atomic transition */",
66 " short st; /* the nextstate */",
67 " short ist; /* intermediate state */",
68 #ifdef GODEF
69 " short local; /* 1 iff this option is local */",
70 " short Local; /* 1 iff all other options are also local */",
71 #endif
72 " char *tp; /* source text of the forward move */",
73 " char ntp; /* ntyp of the state, e.g. ‘r’, ‘c’ etc */",
74 " int forw; /* index for forward transition */",
75 " int back; /* index for return transition */",
76 " struct Trans *nxt;",
77 "} Trans;\n",
78 "Trans ***trans; /* 1 ptr per state per proctype */\n",
79 "int depthfound = -1; /* loop detection */",
80 "short proc_offset[MAXPROC], proc_skip[MAXPROC];",
81 "short q_offset[MAXQ], q_skip[MAXQ];",
82 "short vsize; /* vector size in bytes */",
83 "short boq = -1; /* blocked_on_queue status */",
84 #ifdef GODEF
85 "short tratable[MAXPROC]; /* no of 1st trans of each proctype */",
86 #endif
87 "typedef struct State {",
88 " uchar _nr_pr;",
89 " uchar _nr_qs;",
90 " uchar _p_t; /* loop detection */",
91 " uchar _a_t; /* acceptance cycle dectection */",
92 0,
93 };
94
95 char *Addp0[] = {
96 /* addproc(....parlist... */ ")",
97 "{",
98 " int j, h = now._nr_pr;",
99 " if (h >= MAXPROC)",

100 " Uerror(\"too many processes\");",
101 " switch (n) {",
102 " case 0: j = sizeof(P0); break;",
103 0,
104 };
105
106 char *Addp1[] = {
107 " default: Uerror(\"bad proc - addproc\");",
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108 " }",
109 " if (vsize%%WS && (j > WS-(vsize%%WS)))",
110 " { proc_skip[h] = WS-(vsize%%WS);",
111 " vsize += proc_skip[h];",
112 " } else",
113 " proc_skip[h] = 0;",
114 " proc_offset[h] = vsize;",
115 " now._nr_pr += 1;",
116 " vsize += j;",
117 " hmax = max(hmax, vsize);",
118 " if (vsize >= VECTORSZ)",
119 " Uerror(\"VECTORSZ is too small, edit pan.h\");",
120 " memset((char *)pptr(h), 0, j);",
121 " switch (n) {",
122 0,
123 };
124
125 char *Addq0[] = {
126 "addqueue(n)",
127 "{ int j=0, i = now._nr_qs;",
128 " if (i >= MAXQ)",
129 " Uerror(\"too many queues\");",
130 " switch (n) {",
131 0,
132 };
133
134 char *Addq1[] = {
135 " default: Uerror(\"bad queue - addqueue\");",
136 " }",
137 " if (vsize%%WS && (j > WS-(vsize%%WS)))",
138 " { q_skip[i] = WS-(vsize%%WS);",
139 " vsize += q_skip[i];",
140 " } else",
141 " q_skip[i] = 0;",
142 " q_offset[i] = vsize;",
143 " now._nr_qs += 1;",
144 " vsize += j;",
145 " hmax = max(hmax, vsize);",
146 " if (vsize >= VECTORSZ)",
147 " Uerror(\"VECTORSZ is too small, edit pan.h\");",
148 " memset((char *)qptr(i), 0, j);",
149 " ((Q0 *)qptr(i))->_t = n;",
150 " return i+1;",
151 "}\n",
152 0,
153 };
154
155 char *Addq11[] = {
156 "{ int j; uchar *z;\n",
157 " if (!into--)",
158 " uerror(\"reference to uninitialized chan name (sending)\");",
159 " if (into >= now._nr_qs || into < 0)",
160 " Uerror(\"qsend bad queue#\");",
161 " z = qptr(into);",
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162 " switch (((Q0 *)qptr(into))->_t) {",
163 0,
164 };
165
166 char *Addq2[] = {
167 " case 0: printf(\"queue was deleted\\n\");",
168 " default: Uerror(\"bad queue - qsend\");",
169 " }",
170 "#endif",
171 "}\n",
172 "#if SYNC==0",
173 "q_zero(from) { /* for picky compilers */ }",
174 "#endif",
175 "#if SYNC",
176 "q_zero(from)",
177 "{",
178 " if (!from--)",
179 " uerror(\"reference to uninitialized chan name (receiving)\");",
180 " switch(((Q0 *)qptr(from))->_t) {",
181 0,
182 };
183
184 char *Addq3[] = {
185 " case 0: printf(\"queue was deleted\\n\");",
186 " }",
187 " Uerror(\"bad queue q-zero\");",
188 "}",
189 "#endif",
190 "q_len(x)",
191 "{ if (!x--) uerror(\"reference to uninitialized chan name\");",
192 " return ((Q0 *)qptr(x))->Qlen;",
193 "}\n",
194 "q_full(from)",
195 "{ if (!from--)",
196 " uerror(\"reference to uninitialized chan name (sending)\");",
197 " switch(((Q0 *)qptr(from))->_t) {",
198 0,
199 };
200
201 char *Addq4[] = {
202 " case 0: printf(\"queue was deleted\\n\");",
203 " }",
204 " Uerror(\"bad queue - q_full\");",
205 "}\n",
206 "qrecv(from, slot, fld, done)",
207 "{ uchar *z;",
208 " int j, k, r=0;",
209 " if (!from--)",
210 " uerror(\"reference to uninitialized chan name (receiving)\");",
211 " if (from >= now._nr_qs || from < 0)",
212 " Uerror(\"qrecv bad queue#\");",
213 " z = qptr(from);",
214 " switch (((Q0 *)qptr(from))->_t) {",
215 0,



OF COMPUTER PROTOCOLS SPIN VERSION 0 VALIDATOR SOURCE 443

216 };
217
218 char *Addq5[] = {
219 " case 0: printf(\"queue was deleted\\n\");",
220 " default: Uerror(\"bad queue - qrecv\");",
221 " }",
222 " return r;",
223 "}\n",
224 0,
225 };
226
227 char *Code0[] = {
228 "run()",
229 "{ memset((char *)&now, 0, sizeof(State));",
230 " vsize = sizeof(State) - VECTORSZ;",
231 " settable();",
232 0,
233 };
234 char *Code1[] = {
235 "#define CONNECT %d /* accept labels */",
236 0,
237 };
238 char *Code2[] = {
239 " UnBlock; /* disable rendez-vous */",
240 "#ifdef BITSTATE",
241 " SS = (uchar *) emalloc(1<<(ssize-3));",
242 " if (loops)",
243 " LL = (uchar *) emalloc(1<<(ssize-3));",
244 "#else",
245 " hinit();",
246 "#endif",
247 " stack = ( Stack *) emalloc(sizeof(Stack));",
248 " svtack = (Svtack *) emalloc(sizeof(Svtack));",
249 #ifdef VARSTACK
250 " varstack= (Varstack *) emalloc(sizeof(Varstack));",
251 #endif
252 #ifdef GODEF
253 " cs_stack= (CS_stack *) emalloc(sizeof(CS_stack));",
254 " cs_stack->depth = -1; /* avoid a false match */",
255 #endif
256 " /* a place to point for Pptr of non-running procs: */",
257 " noptr = (uchar *) emalloc(Maxbody * sizeof(char));",
258 " addproc(0); /* init */",
259 " depth=mreached=0;",
260 " trpt = &trail[depth];",
261 " new_state();",
262 "}\n",
263
264 "#ifdef JUMBO",
265 "/** EXPERIMENTAL **/",
266 "Trans *",
267 "jumbostep(short II)",
268 "{ register Trans *t, *T = 0; char m, ot; short tt;",
269 " /* assume this has already been set */",
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270 "#ifdef ALG3",
271 " printf(\"sorry: cannot combine -DJUMBO with -DALG3\\n\");",
272 " exit(1);",
273 "#endif",
274
275 " sv_save(); /* remember where we came from */",
276 " tt = (short) ((P0 *)this)->_p;",
277 " ot = (uchar) ((P0 *)this)->_t;",
278 "chain:",
279 " for (t = trans[ot][tt]; t; t = t->nxt)",
280 "#include \"pan.m\"",
281 "P999:",
282 " if (m == 0)",
283 " { printf(\"cannot happen - jumbostep\\n\");",
284 " return;",
285 " }",
286 " if (!T) T = t;",
287 " if (t->st)",
288 " { tt = ((P0 *)this)->_p = t->st;",
289 " reached[ot][t->st] = 1;",
290 " if (trans[ot][tt]->Local > 1)",
291 " goto chain;",
292 " }",
293 " return T;",
294 "}",
295 "/** END **/",
296 "#endif",
297
298 "new_state()",
299 "{ register Trans *t;",
300 " char n, m, ot, match_type;",
301 " short II, tt;\n",
302 " short From = now._nr_pr-1;",
303 " short To = 0;",
304 #ifdef GODEF
305 " char presel;",
306 #endif
307 "Down:",
308 #ifdef GODEF
309 " presel=0;",
310 #endif
311 " if (now._p_t && prognow()) /* loop detection */",
312 #ifdef GODEF
313 " { trpt->tau |= 16; /* pm for 1 level up */",
314 " goto Up;",
315 " }",
316 #else
317 " goto Up;",
318 #endif
319 " if (depth >= maxdepth)",
320 " { truncs++;",
321 "#if SYNC",
322 " (trpt+1)->o_n = 1; /* not a deadlock */",
323 "#endif",
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324 " goto Up;",
325 " }",
326 "#ifdef VERI",
327 " if (!(trpt->tau&4)) /* if no claim move */",
328 "#endif",
329 "#if SYNC>0",
330 " if (boq == -1) /* if not mid-rv */",
331 "#endif",
332 " if (!(trpt->tau&8)) /* if no atomic move */",
333 " {",
334 "#ifdef BITSTATE",
335 " d_hash((uchar *) &now, vsize);",
336 " j3 = (1<<(J1&7)); j1 = J1>>3;",
337 " j4 = (1<<(J2&7)); j2 = J2>>3;",
338 " if ((SS[j2]&j3) && (SS[j1]&j4))",
339 "#else",
340
341 "#ifdef CACHE",
342 " if ((match_type = nh_store((char *)&now, vsize)) != 0)",
343 "#else",
344 " if ((match_type = hstore((char *)&now, vsize)) != 0)",
345 "#endif",
346
347 "#endif",
348 " { truncs++;",
349 " if (match_type == 2)",
350 " trpt->tau |= 16; /* pm for 1 level up */",
351
352 "#if CONNECT>0",
353 " if (now._a_t && depth > A_depth)",
354 " { if (memcmp((char *)&A_Root, (char *)&now, vsize) == 0)",
355 " { if (fair_cycle())",
356 " uerror(\"acceptance cycle\");",
357 " if (depth > 0) goto Up; else return;",
358 " }",
359 " }",
360 "#endif",
361
362 "#ifdef BITSTATE",
363 " if (loops && now._p_t",
364 " && LL[j1] && LL[j2] && onstack())",
365 " { if (fair_cycle())",
366 " uerror(\"non-progress cycle\");",
367 " }",
368 "#endif",
369 " if (depth > 0) goto Up; else return;",
370 " }",
371 "#ifdef BITSTATE",
372 " SS[j2] |= j3; SS[j1] |= j4;",
373 " if (loops)",
374 " { sv_save();",
375 " LL[j1]++; LL[j2]++;",
376 " svtack->j1 = J1;",
377 " svtack->j2 = J2;",
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378 " }",
379 "#endif",
380 " nstates++;",
381 " }",
382 " if (depth > mreached)",
383 " mreached = depth;",
384 " n = 0;",
385 "#if SYNC",
386 " (trpt+1)->o_n = 0;",
387 "#endif",
388 "#ifdef VERI",
389 " if (now._nr_pr < 2",
390 " || ((P0 *)pptr(1))->_p == endclaim)",
391 " uerror(\"claim violated!\");",
392 " if (stopstate[VERI][((P0 *)pptr(1))->_p])",
393 " uerror(\"endstate in claim reached\");",
394 "Stutter:",
395 " if (trpt->tau&4) /* must make a claimmove */",
396 " { II = 1;",
397 " goto Veri0;",
398 " }",
399 "#endif",
400 #ifdef GODEF
401 " if (boq != -1) nlinks++; /* compatibility with patrice */",
402 "#ifndef NOALG2",
403 " if (boq == -1 && From != To)",
404 " for (II = From; II >= To; II -= 1) /* pre-scan */",
405 " {",
406 "Resume: /* pick up here when a first pre-selection failed */",
407 "#ifdef VERI",
408 " if (II == 1) continue;",
409 "#endif",
410 " this = pptr(II);",
411 " tt = (short) ((P0 *)this)->_p;",
412 " ot = (uchar) ((P0 *)this)->_t;",
413 " for (t = trans[ot][tt]; t; t = t->nxt)",
414 " { if (!t->local)",
415 " goto Trynext;",
416 " }",
417 " From = To = II; /* all moves are local */",
418 " presel = 1; /* in case we get stuck */",
419 " break;",
420 "Trynext: ;",
421 " }",
422 "#endif",
423 #endif
424 "\nAgain:",
425 " for (II = From; II >= To; II -= 1)",
426 " {",
427 "#ifdef VERI",
428 " if (II == 1) continue;",
429 "#endif",
430 "Veri0: this = pptr(II);",
431 " tt = (short) ((P0 *)this)->_p;",
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432 " ot = (uchar) ((P0 *)this)->_t;",
433 "#ifdef JUMBO",
434 "/** EXPERIMENTAL **/",
435 " if(trans[ot][tt]->Local > 1)",
436 " { t = jumbostep(II);",
437 " m = 3;",
438 " depth++; trpt++;",
439 " trpt->pr = II;",
440 " trpt->st = tt;",
441 " goto Q999;",
442 " }",
443 "/** END **/",
444 "#endif",
445 " for (t = trans[ot][tt]; t; t = t->nxt)",
446 " {",
447 #ifdef GODEF
448 "#ifdef ALG3",
449 " if (now._p_t == 0)",
450 " if (csets[II][t->forw] > 0)",
451 " {",
452 " continue;",
453 " }",
454 "#endif",
455 #endif
456 "#include \"pan.m\"",
457 "P999: /* jumps here when move succeeds */",
458 "#ifdef ALG3",
459 " if (Nwait > 0)",
460 " rel_all_blocks(II);",
461 "#endif",
462 "#ifdef VERBOSE",
463 " printf(\"%%3d: proc %%d exec %%d, from %%d to %%d %%s\\n\", ",
464 " depth, II, t->forw, tt, t->st, Moves[t->forw]);",
465 "#ifdef ALG3",
466 " dumpsleep(\"new_state\");",
467 "#endif",
468 "#endif",
469 " depth++; trpt++;",
470 " trpt->pr = II;",
471 " trpt->st = tt;",
472 " if (t->st)",
473 " { ((P0 *)this)->_p = t->st;",
474 #if 0
475 XXXXX WRITING _p XXXXX
476 #endif
477 " reached[ot][t->st] = 1;",
478 " }",
479 "Q999: trpt->o_t = t; trpt->o_n = n;",
480 " trpt->o_ot = ot; trpt->o_tt = tt;",
481 " trpt->o_To = To; trpt->o_m = m;",
482 " trpt->tau = 0;",
483 " if (t->atom&2)",
484 " { trpt->tau |= 8;",
485 "#ifdef VERI",
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486 " if((trpt-1)->tau&4)",
487 " trpt->tau |= 4;",
488 " else",
489 " trpt->tau &= ˜4;",
490 " } else",
491 " { if ((trpt-1)->tau&4)",
492 " trpt->tau &= ˜4;",
493 " else",
494 " trpt->tau |= 4;",
495 " }",
496 "#else",
497 " } else",
498 " trpt->tau &= ˜8;",
499 "#endif",
500 " if (boq == -1 && t->atom&2)",
501 " { From = To = II; nlinks++;",
502 " } else",
503 " { From = now._nr_pr-1; To = 0;",
504 " }",
505 #ifdef GODEF
506 " if (presel)",
507 " {",
508 " (trpt-1)->tau |= 32;",
509 " } else {",
510 " (trpt-1)->tau &= ˜32;",
511 " }",
512 #endif
513 " goto Down; /* pseudo-recursion */",
514 "Up:",
515 #ifdef GODEF
516 " presel=0;",
517 #endif
518 "#if CONNECT>0",
519 " if (now._a_t && depth <= A_depth)",
520 " {",
521 " return; /* we came from checkaccept() */",
522 " }",
523 "#endif",
524 " t = trpt->o_t; n = trpt->o_n;",
525 " ot = trpt->o_ot; II = trpt->pr;",
526 " tt = trpt->o_tt; this = pptr(II);",
527 " To = trpt->o_To; m = trpt->o_m;",
528 "#ifdef VERI",
529 "#if SYNC",
530 "/* preserve rendez-vous completion status: */",
531 "/* if the next level was a claim, copy through */",
532 " if (trpt->tau&4)",
533 " trpt->o_n = (trpt+1)->o_n;",
534 "#endif",
535 "#endif",
536
537 "#ifdef JUMBO",
538 "/** EXPERIMENTAL **/",
539 " if (trans[ot][tt]->Local > 1)",
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540 " {",
541 " sv_restor();",
542 " goto R999;",
543 " }",
544 "/** END **/",
545 "#endif",
546
547 "#include \"pan.b\"",
548 "R999: /* jumps here when done */",
549 "#ifdef VERBOSE",
550 " printf(\"%%3d: proc %%d reverses %%d, from %%d to %%d\", ",
551 " depth, II, t->forw, tt, t->st);",
552 " printf(\" %%s tau %%d tau-1 %%d\\n\", Moves[t->forw],",
553 " trpt->tau, (trpt-1)->tau);",
554 "#endif",
555 #ifdef GODEF
556 "#ifdef ALG3",
557 " unrelease(); /* undo status 2 forward releases */",
558 "#endif",
559 " /* truncated on stack or on a */",
560 " /* progress state with now._p_t==1 */",
561 " if (trpt->tau&16)",
562 " { if ((trpt-1)->tau&8) /* atomic */",
563 " { (trpt-1)->tau |= 16;",
564 " }",
565 " } else",
566 " { (trpt-1)->tau |= 64; /* remember it */",
567 " }",
568 #endif
569 " depth--; trpt--;",
570 " if (m > n) n = m;",
571 " ((P0 *)this)->_p = tt;",
572 " } /* all options */",
573 #ifdef GODEF
574 " push_commit(); /* activate process blocks */",
575 #endif
576 "#ifdef VERI",
577 " if (II == 1) break;",
578 "#endif",
579 " } /* all processes */",
580 #ifdef GODEF
581 "#ifdef ALG3",
582 " unpush(); /* unpush status 1 blocks */",
583 "#endif",
584 "#ifndef NOALG2",
585
586 " if (!(trpt->tau&64) /* no nxtstates outside stack */",
587 " && trpt->tau&32) /* last moves were preselected */",
588 " {",
589 " presel = 0;",
590 " From = now._nr_pr-1; To = 0;",
591 " II--; /* next preselection victim */",
592 " if (II >= 0)",
593 " goto Resume;",
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594 " else",
595 " goto Again;",
596 " }",
597
598 " if (presel == 1)",
599 " { if (n == 0) /* preselected process could not move */",
600 " {",
601 " presel = 0;",
602 " From = now._nr_pr-1; To = 0;",
603 " II--; /* next preselection victim */",
604 " if (II >= 0)",
605 " goto Resume;",
606 " else",
607 " goto Again;",
608 " } else if (loops && now._p_t == 0)",
609 " { /* must still run progress checker */",
610 " From = To = 1; /* it has pid 1 */",
611 " goto Again;",
612 " }",
613 " }",
614 "#endif",
615 "#ifdef ALG3",
616 " if (Nwait == nwait[CS_timeout])",
617 "#endif",
618 #endif
619 " if (n == 0)",
620 " {",
621 "#ifdef VERI",
622 " if (trpt->tau&4) goto Done; /* ok if a claim blocks */",
623 "#endif",
624 "#if SYNC",
625 " if (boq == -1)",
626 "#endif",
627 " if (!endstate() && now._nr_pr ",
628 " && depth < maxdepth-1)",
629 " { if (!((trpt->tau)&1)) /* timeout */",
630 " { trpt->tau |= 1;",
631 " push_act(0, W_LOCK, REL, 0, CS_timeout);",
632 " /* if this releases any procs - they are automatically",
633 " unreleased by the first process returning to this level",
634 " */",
635 " goto Again;",
636 " }",
637 "#ifdef VERI",
638 " if (n >= 0) /* Claim Stutter */",
639 "#ifndef NOSTUTTER",
640 " { trpt->tau |= 4;",
641 " { trpt->tau |= 128;",
642 " goto Stutter;",
643 " }",
644 "#else",
645 " goto Done; /* i.e., always */",
646 "#endif",
647 "#else",
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648 " if (loops) goto Done; /* do loop det. only */",
649 "#endif",
650 " if (!(trpt->tau&8)) /* not an atomic move */",
651 " {",
652 "#ifdef VERI",
653 " printf(\"claim at\");",
654 " xrefsrc(claimline,1,((P0 *)pptr(1))->_p);",
655 "#endif",
656 " uerror(\"invalid endstate\");",
657 " } else",
658 " Uerror(\"atomic seq blocks\");",
659 " }",
660 "#ifdef VERI",
661 "#ifndef NOSTUTTER",
662 " else",
663 " { trpt->tau |= 4;",
664 " trpt->tau |= 128; /* Stutter mark */",
665 " goto Stutter;",
666 " }",
667 "#endif",
668 "#endif",
669 " }",
670 "Done:",
671 #ifdef GODEF
672 " if (!(trpt->tau&8))",
673 #else
674 "#ifdef CACHE",
675 " if (!(trpt->tau&8))",
676 "#else",
677 " if (loops && !(trpt->tau&8))",
678 "#endif",
679 #endif
680 "#ifdef VERI",
681 " if (!(trpt->tau&4))",
682 "#endif",
683 "#if SYNC>0",
684 " if (boq == -1)",
685 "#endif",
686 " {",
687 "#ifdef BITSTATE",
688 " LL[(svtack->j1)>>3]--;",
689 " LL[(svtack->j2)>>3]--;",
690 " svtack = svtack->lst;",
691 " if (trpt->tau&2) /* state marked dirty: remove */",
692 " { SS[(svtack->j2)>>3] &= ˜(1<<((svtack->j1)&7));",
693 " SS[(svtack->j1)>>3] &= ˜(1<<((svtack->j2)&7));",
694 " }",
695 "#else",
696 " htag((char *)&now, vsize);",
697 "#endif",
698 " }",
699 "#if CONNECT>0",
700 "#ifdef VERI",
701 " if ((!(trpt->tau&4))",
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702 " || (trpt->tau&128)) /* no claim move, unless Stutter */",
703 "#endif",
704 " if (acycles /* -a option is used */",
705 " && !(trpt->tau&8)) /* not an atomic move */",
706 " checkaccept(); /* check for acceptance-cycles */",
707 "#endif",
708 " if (depth > 0) goto Up;",
709 "}\n",
710 #ifdef GODEF
711 "#ifdef ALG3",
712 "rel_all_blocks(pid) /* not thoroughly tested */",
713 "{ int kk, mm, k, s, r, F, T, Cn, effect=0;",
714 " F = tratable[((P0 *)pptr(pid))->_t];",
715 " T = tratable[((P0 *)pptr(pid))->_t+1];",
716 " for (s = F; s < T; s++)",
717 " { if (csets[pid][s] == 0) continue;",
718 " for (kk = 1; kk < 1+Csels_c[s][0]; kk++)",
719 " { if (Csels_p[s][kk] != pid) continue;",
720 " k = Csels_c[s][kk];",
721 " r = Csels_r[s][kk];",
722 " Cn = Csels_c[s][0]--;",
723 " if (Cn < 1) Uerror(\"cannot happen - rel_all\");",
724 " for (mm = kk; mm < Cn; mm++)",
725 " { Csels_c[s][mm] = Csels_c[s][mm+1];",
726 " Csels_r[s][mm] = Csels_r[s][mm+1];",
727 " Csels_p[s][mm] = Csels_p[s][mm+1];",
728 " }",
729 " csems[pid][k]--;",
730 " csets[pid][s]--;",
731 " if (nwait[k] <= 0)",
732 " { printf(\"nwait[%%d] = %%d (%%d)\\n\", ",
733 " k, nwait[k], Nwait);",
734 " Uerror(\"nWait\");",
735 " }",
736 " nwait[k]--; Nwait--; effect=1;",
737 " push_cs_el(pid,s,k,depth+1,2,r,1);",
738 " kk--;",
739 " }",
740 " }",
741 "#ifdef VERBOSE",
742 " if (effect) dumpsleep(\"rel_blocks\");",
743 "#endif",
744 "}",
745 " char *LCK[] = { \"Read\", \"Write\", \"Send\", \"Recv\" };",
746 "dumpsleep(str)",
747 " char *str;",
748 "{ int pid, xx, yy, zz, kk, F, T;",
749 " for (pid = 0; pid < now._nr_pr; pid++)",
750 " { F = tratable[((P0 *)pptr(pid))->_t];",
751 " T = tratable[((P0 *)pptr(pid))->_t+1];",
752 " for (xx = F; xx < T; xx++)",
753 " { if (csets[pid][xx] == 0) continue;",
754 " printf(\"sleepset proc %%d: \", pid);",
755 " printf(\" trans %%2d, cs { \", xx);",
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756 " for (kk = 1; kk < 1+Csels_c[xx][0]; kk++)",
757 " { yy = Csels_r[xx][kk];",
758 " zz = Csels_c[xx][kk];",
759 " if (pid == Csels_p[xx][kk])",
760 " { if (zz < MAXCONFL)",
761 " printf(\"%%s on var %%s, \",",
762 " LCK[yy], CS_names[zz]);",
763 " else if (zz == MAXCONFL)",
764 " printf(\"<local>, \");",
765 " else",
766 " printf(\"%%s on qid %%d, \",",
767 " LCK[yy], zz);",
768 " }",
769 " }",
770 " } }",
771 "}",
772 "push_cs_el(pid, stmnt, cs, dp, st, rs, dt)",
773 "{",
774 " if (stmnt == 0) return; /* timeouts map onto 0 */",
775 " if (cs_stack->depth > dp)",
776 " { push2_cs_el(pid, stmnt, cs, dp, st, rs, dt);",
777 " return;",
778 " }",
779 " if (!cs_stack->nxt)",
780 " { cs_stack->nxt = (CS_stack *)",
781 " emalloc(sizeof(CS_stack));",
782 " cs_stack->nxt->lst = cs_stack;",
783 " cs_max++;",
784 " }",
785 " cs_stack = cs_stack->nxt;",
786 " cs_stack->pid = pid;",
787 " cs_stack->stmnt = stmnt;",
788 " cs_stack->cs = cs;",
789 " cs_stack->delta = dt;",
790 " cs_stack->depth = dp;",
791 " cs_stack->status = st;",
792 " cs_stack->reason = rs;",
793 "}\n",
794 /* reach up in cs_stack and insert at correct depth */
795 "push2_cs_el(pid, stmnt, cs, dp, st, rs, dt)",
796 "{ CS_stack *k, *twiddle;",
797 " cs_max++;",
798 " twiddle = (CS_stack *) emalloc(sizeof(CS_stack));",
799 " twiddle->pid = pid;",
800 " twiddle->stmnt = stmnt;",
801 " twiddle->cs = cs;",
802 " twiddle->delta = dt;",
803 " twiddle->depth = dp;",
804 " twiddle->status = st;",
805 " twiddle->reason = rs;",
806 " for (k = cs_stack; k && k->depth > dp; k = k->lst)",
807 " ;",
808 " if (k)",
809 " { twiddle->nxt = k->nxt;",
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810 " k->nxt->lst = twiddle;",
811 " twiddle->lst = k;",
812 " k->nxt = twiddle;",
813 " } else",
814 " cs_stack = twiddle;",
815 "}\n",
816 "push_commit() /* commit to a pending lock */",
817 "{ CS_stack *k; int mv, Cn, effect=0;",
818 " for (k = cs_stack; k && k->depth == depth+1; k = k->lst)",
819 " { if (k->status != -1) continue;",
820 " k->status = 1; mv = k->stmnt;",
821 " Cn = ++Csels_c[mv][0];",
822 " if (Cn > MULT_MAXCS)",
823 " { printf(\"error: recompile with MULT>%%d\\n\",MULT);",
824 " exit(1);",
825 " }",
826 " Csels_c[mv][Cn] = k->cs;",
827 " Csels_r[mv][Cn] = k->reason;",
828 " Csels_p[mv][Cn] = k->pid;",
829 " csems[k->pid][k->cs]++;",
830 " csets[k->pid][mv]++;",
831 " nwait[k->cs]++;",
832 " Nwait++; effect=1;",
833 " }",
834 "#ifdef VERBOSE",
835 " if (effect) dumpsleep(\"push_commit\");",
836 "#endif",
837 "}\n",
838 "char Conflict[NLOCKS][NLOCKS] = { /* 1 == DEP, 0 == IND */",
839 " /* R_LOCK, W_LOCK, Snd_LOCK, Rcv_LOCK */",
840 " /* R_LOCK */ { 0, 1, 1, 1 },",
841 " /* W_LOCK */ { 1, 1, 1, 1 },",
842 " /* Snd_LOCK */ { 1, 1, 1, M_LOSS },",
843 " /* Rcv_LOCK */ { 1, 1, M_LOSS, 1 },",
844 "};",
845 "/* when m_loss is set (on SPIN’s -m flag) sends and receives",
846 " * on the same queue are really only dependent when the queue",
847 " * is full - the above version is therefore a little conservative",
848 " */",
849 "push_act(pid, what, when, stmnt, cs) /* log a global action */",
850 "{ int i, j, k, r, F, R, T, maxk, delta, kk, own; int effect=0;",
851 "",
852 " if (when == BLOCK) /* set a pending lock */",
853 "#ifndef NOPELED",
854 " { if (!(trpt->tau&16)) /* PELED’s PROVISO */",
855 "#else",
856 " {",
857 "#endif",
858 " push_cs_el(pid, stmnt, cs, depth, -1, what, 1);",
859 " return;",
860 " } /* else release */",
861 " maxk = 1+MAXCONFL+now._nr_qs;",
862 " if (nwait[cs] > 0)",
863 " for (i = 0; i < now._nr_pr; i++)",



OF COMPUTER PROTOCOLS SPIN VERSION 0 VALIDATOR SOURCE 455

864 " if (csems[i][cs] > 0)",
865 " { F = tratable[((P0 *)pptr(i))->_t];",
866 " T = tratable[((P0 *)pptr(i))->_t+1];",
867 " for (j = F; j < T; j++)",
868 " { for (kk = 1; kk < 1+Csels_c[j][0]; kk++)",
869 " { if (Csels_c[j][kk] == cs",
870 " && Conflict[what][Csels_r[j][kk]])",
871 " { /* clear all blocks on j */",
872 " for (kk = 1; kk < 1+Csels_c[j][0]; kk++)",
873 " { r = Csels_r[j][kk];",
874 " k = Csels_c[j][kk];",
875 " own = Csels_p[j][kk];",
876 " csems[own][k]--;",
877 " csets[own][j]--;",
878 " nwait[k]--;",
879 " Nwait--;",
880 " push_cs_el(own,j,k,depth+1,2,r,1);",
881 " effect = 1;",
882 " }",
883 " Csels_c[j][0] = 0;",
884 " break;",
885 " } }",
886 " }",
887 " }",
888 "out: if (nwait[cs] < 0)",
889 " Uerror(\"nwait negative\");",
890 "#ifdef VERBOSE",
891 " if (effect) dumpsleep(\"act\");",
892 "#endif",
893 "}\n",
894 "unrelease()",
895 "{ int k, p, s, dt, Cn, effect=0;",
896 " CS_stack *K;",
897 " for (K = cs_stack; K && K->depth == depth; K = K->lst)",
898 " { k = K->cs;",
899 " p = K->pid;",
900 " s = K->stmnt;",
901 " if (K->status == 2)",
902 " {",
903 " for (dt = 0; dt < K->delta; dt++)",
904 " { Cn = ++Csels_c[s][0];",
905 " if (Cn > MULT_MAXCS)",
906 " Uerror(\"cannot happen - Csels1\");",
907 " Csels_c[s][Cn] = k;",
908 " Csels_r[s][Cn] = K->reason;",
909 " Csels_p[s][Cn] = p;",
910 " csems[p][k]++;",
911 " csets[p][s]++;",
912 " nwait[k]++; Nwait++;",
913 " }",
914 " K->status = 3;",
915 " effect=1;",
916 " }",
917 " }",
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918 "#ifdef VERBOSE",
919 " if (effect) dumpsleep(\"unrelease\");",
920 "#endif",
921 "}\n",
922 "unpush()",
923 "{ int k, p, r, s, kk, mm, Cn, oCn, effect=0;",
924 " while (cs_stack && cs_stack->depth == depth+1)",
925 " { k = cs_stack->cs;",
926 " p = cs_stack->pid;",
927 " s = cs_stack->stmnt;",
928 " r = cs_stack->reason;",
929 " if (cs_stack->status == 1)",
930 " {",
931 " oCn = Csels_c[s][0];",
932 " for (kk = 1; kk < 1+Csels_c[s][0]; kk++)",
933 " if (Csels_r[s][kk] == r",
934 " && Csels_c[s][kk] == k",
935 " && Csels_p[s][kk] == p)",
936 " { Cn = Csels_c[s][0]--;",
937 " if (Cn < 1)",
938 " Uerror(\"cannot happen - Csels2\");",
939 " for (mm = kk; mm < Cn; mm++)",
940 " { Csels_c[s][mm] = Csels_c[s][mm+1];",
941 " Csels_r[s][mm] = Csels_r[s][mm+1];",
942 " Csels_p[s][mm] = Csels_p[s][mm+1];",
943 " }",
944 " break;",
945 " }",
946 " if (oCn == Csels_c[s][0])",
947 " {",
948 " printf(\"cannot find %%d,%%d in\\n\", r, k);",
949 " for (kk = 1; kk < 1+Csels_c[s][0]; kk++)",
950 " printf(\"\t%%d,%%d\\n\", Csels_r[s][kk], Csels_c[s][kk]);",
951 " Uerror(\"cannot happen Cs unpush\");",
952 " }",
953 " csems[p][k]--;",
954 " csets[p][s]--;",
955 " if (nwait[k] <= 0)",
956 " { printf(\"nwait[%%d] = %%d (%%d)\\n\", ",
957 " k, nwait[k], Nwait);",
958 " Uerror(\"nwait\");",
959 " }",
960 " nwait[k]--; Nwait--; effect=1;",
961 " } else if (cs_stack->status != 3)",
962 " { printf(\"cs = %%d, mv = %%d\\n\", ",
963 " cs_stack->cs, cs_stack->stmnt);",
964 " printf(\"Bad status: %%d\\n\", cs_stack->status);",
965 " Uerror(\"unpush\");",
966 " }",
967 " cs_stack->status = cs_stack->reason = 0;",
968 " cs_stack = cs_stack->lst;",
969 " }",
970 "#ifdef VERBOSE",
971 " if (effect) dumpsleep(\"unpush\");",
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972 "#endif",
973 "}\n",
974 "#endif",
975 #endif
976 "assert(a, s, ii, tt, t)",
977 " char *s;",
978 " Trans *t;",
979 "{ if (!a)",
980 " { printf(\"assertion violated %%s\", s);",
981 " depth++; trpt++;",
982 " trpt->pr = ii;",
983 " trpt->st = tt;",
984 " trpt->o_t = t;",
985 " uerror(\"aborted\");",
986 " depth--; trpt--;",
987 " }",
988 "}",
989 "#ifndef NOBOUNDCHECK",
990 "Boundcheck(x, y, a1, a2, a3)",
991 " Trans *a3;",
992 "{ assert((x >= 0 && x < y), \"- invalid array index\\n\", a1, a2, a3);",
993 " return x;",
994 "}",
995 "#endif",
996 "#ifdef MEMCNT",
997 "int memcnt=0;",
998 "#endif",
999 "void",
1000 "wrapup()",
1001 "{",
1002 "#ifdef BITSTATE",
1003 " double a, b;\n",
1004 " printf(\"bit statespace search \");",
1005 "#else",
1006 " printf(\"full statespace search \");",
1007 "#endif",
1008 "#ifdef VERI",
1009 " printf(\"on behavior restricted to claim \");",
1010 "#endif",
1011 " printf(\"for:\\n\tassertion violations\");",
1012 "#ifndef VERI",
1013 " if (loops)",
1014 " printf(\" and %%s non-progress loops\",",
1015 " fairness?\"FAIR\":\"\");",
1016 " else",
1017 " printf(\" and invalid endstates\");",
1018 "#endif",
1019 "#if CONNECT>0",
1020 " if (acycles && !loops)",
1021 " printf(\"\\n\\tand %%s acceptance cycles\",",
1022 " fairness?\"FAIR\":\"\");",
1023 "#endif",
1024 " if (!done) printf(\"\\nsearch was not completed\");",
1025 " printf(\"\\nvector %%d byte, depth reached %%d\", ",
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1026 " hmax, mreached);",
1027 " if (loops)",
1028 " { printf(\", non-progress loops: %%d\\n\", errors);",
1029 " } else",
1030 " printf(\", errors: %%d\\n\", errors);",
1031 " printf(\"%%8d states, stored\", nstates - recycled);",
1032 " if (recycled) printf(\" (%%d recycled)\", recycled);",
1033 " printf(\"\\n%%8d states, linked\\n\", nlinks);",
1034 " printf(\"%%8d states, matched\t total: %%8d\\n\",",
1035 " truncs, nstates+nlinks+truncs);",
1036 "#ifdef BITSTATE",
1037 " a = (double) (1<<ssize);",
1038 " b = (double) nstates+1.;",
1039 " printf(\"hash factor: %%f \", a/b);",
1040 " printf(\"(best coverage if >100)\\n\");",
1041 "#else",
1042 " printf(\"hash conflicts: %%d (resolved)\\n\", hcmp);",
1043 "#endif",
1044 " printf(\"(max size 2ˆ%%d states, \", ssize);",
1045 #ifdef VARSTACK
1046 " printf(\"varstack: %%d, \", vmax);",
1047 #endif
1048 #ifdef GODEF
1049 " printf(\"cs_stack: %%d, \", cs_max);",
1050 #endif
1051 " printf(\"stackframes: %%d/%%d)\\n\\n\", smax, svmax);",
1052 " if (M_LOSS) printf(\"total messages lost: %%d\\n\\n\", loss);",
1053 "#ifdef MEMCNT",
1054 " printf(\"memory used: %%d\\n\", memcnt);",
1055 "#endif",
1056 " if (done && !loops) do_reach();",
1057 #ifdef GODEF
1058 "#ifdef ALG3",
1059 "#ifdef VERBOSE",
1060 " if (done)",
1061 " { int i,j,k,r;",
1062 " for (j = 0; j < MAXSTATE; j++)",
1063 " { if (Csels_c[j][0] != 0)",
1064 " printf(\"Csels_c[%%d][0] = %%d\\n\",",
1065 " j, Csels_c[j][0]);",
1066 " }",
1067 " for (i = 0; i < MAXPROC; i++)",
1068 " for (k = 0; k < TOPQ; k++)",
1069 " if (csems[i][k] != 0)",
1070 " printf(\"\tcsem %%d,%%d = %%d\\n\", ",
1071 " i,k, csems[i][k]);",
1072
1073 " for (j = 0; j < TOPQ; j++)",
1074 " if (nwait[j] != 0)",
1075 " printf(\"\tnwait %%d = %%d\\n\", ",
1076 " j, nwait[j]);",
1077 " if (Nwait != 0)",
1078 " printf(\"Nwait = %%d\\n\", Nwait);",
1079 " }",
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1080 "#endif",
1081 "#endif",
1082 #endif
1083 " exit(0);",
1084 "}\n",
1085 "d_hash(cp, om)",
1086 " uchar *cp;",
1087 "{",
1088 " register long z = 0x88888EEFL;",
1089 " register long *q, *r;",
1090 " register int h;",
1091 " register m, n;\n",
1092 " h = (om+3)/4;",
1093 " m = n = -1;",
1094 " q = r = (long *) cp;",
1095 " r += (long) h;",
1096 " do {",
1097 " m += m;",
1098 " if (m < 0)",
1099 " m ˆ= z;",
1100 " m ˆ= *q++;",
1101 " n += n;",
1102 " if (n < 0)",
1103 " n ˆ= z;",
1104 " n ˆ= *--r;",
1105 " } while (--h > 0);",
1106 " J1 = (m ˆ (m>>(8*sizeof(unsigned)-ssize)))&mask;",
1107 " J2 = (n ˆ (n>>(8*sizeof(unsigned)-ssize)))&mask;",
1108 "}\n",
1109 "s_hash(cp, om)",
1110 " uchar *cp;",
1111 "{",
1112 "#ifdef ALTHASH",
1113 " d_hash(cp,om);",
1114 " j1 = (J1ˆJ2)&mask;",
1115 "#else",
1116 " register long z = 0x88888EEFL;",
1117 " register long *q;",
1118 " register int h;\n",
1119 " register m = -1;",
1120 " h = (om+3)/4;",
1121 " q = (long *) cp;",
1122 " do {",
1123 " m += m;",
1124 " if (m < 0)",
1125 " m ˆ= z;",
1126 " m ˆ= *q++;",
1127 " } while (--h > 0);",
1128 " j1 = (m ˆ (m>>(8*sizeof(unsigned)-ssize)))&mask;",
1129 "#endif",
1130 "}\n",
1131 "main(argc, argv)",
1132 " char *argv[];",
1133 "{",
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1134 " while (argc > 1 && argv[1][0] == ’-’)",
1135 " { switch (argv[1][1]) {",
1136 "#if CONNECT>0",
1137 " case ’a’: acycles = 1; break;",
1138 "#endif",
1139 " case ’c’: upto = atoi(&argv[1][2]); break;",
1140 " case ’d’: state_tables++; break;",
1141 " case ’f’: fairness = 1; break;",
1142 " case ’H’: homomorphism = 1;",
1143 " if (argc < 4) { usage(); exit(); }",
1144 " hom_target = argv[2]; hom_source = argv[3];",
1145 " printf(\"short trans;\\n\");",
1146 " break;",
1147 "#ifndef VERI",
1148 " case ’l’: loops = 1; break;",
1149 "#endif",
1150 " case ’m’: maxdepth = atoi(&argv[1][2]); break;",
1151 " case ’w’: ssize = atoi(&argv[1][2]); break;",
1152 #ifdef PAIRS
1153 " case ’t’: tree_before=1; break;",
1154 #endif
1155 " default : usage(); exit(1);",
1156 " }",
1157 " argc--; argv++;",
1158 " }",
1159 " if (acycles && loops)",
1160 " { fprintf(stderr, \"sorry: cannot combine -a and -l\\n\");",
1161 " usage(); exit(1);",
1162 " }",
1163 " if (fairness && !acycles && !loops)",
1164 " { fprintf(stderr, \"sorry: option -f only has effect when\");",
1165 " fprintf(stderr, \" combined with -a or -l\\n\");",
1166 " usage(); exit(1);",
1167 " }",
1168 " signal(SIGINT, wrapup);",
1169 " mask = ((1<<ssize)-1); /* hash init */",
1170 " trail = (Trail *) emalloc((maxdepth+2)*sizeof(Trail));",
1171 " run();",
1172 " done = 1;",
1173 " wrapup();",
1174 "}\n",
1175 "usage()",
1176 "{ fprintf(stderr, \"unknown option\\n\");",
1177 "#if CONNECT>0",
1178 " fprintf(stderr, \"-a find acceptance cycles\\n\");",
1179 "#else",
1180 " fprintf(stderr, \"-a disabled (no accept labels are defined)\\n\");",
1181 "#endif",
1182 " fprintf(stderr, \"-cN stop at Nth error \");",
1183 " fprintf(stderr, \"(default=1)\\n\");",
1184 " fprintf(stderr, \"-d print state tables and stop\\n\");",
1185 " fprintf(stderr, \"-d -d print un-optimized state tables\\n\");",
1186 " fprintf(stderr, \"-f enforce weak fairness in cycles\\n\");",
1187 " fprintf(stderr, \"-H target_proctype source_proctype\\n\");",
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1188 " fprintf(stderr, \" produce a model for proving homomorphism\\n\");",
1189 "#ifndef VERI",
1190 " fprintf(stderr, \"-l find non-progress cycles\\n\");",
1191 "#else",
1192 " fprintf(stderr, \"-l disabled (by presence of never claim)\\n\");",
1193 "#endif",
1194 " fprintf(stderr, \"-mN max depth N (default=10k)\\n\");",
1195 " fprintf(stderr, \"-wN hashtable of 2ˆN entries \");",
1196 " fprintf(stderr, \"(default=%%d)\\n\", ssize);",
1197 "}\n",
1198 #if 0
1199 "char *",
1200 "emalloc(n)",
1201 "{ char *tmp = malloc(n);",
1202 "#ifdef MEMCNT",
1203 " if (!tmp || memcnt > 1<<MEMCNT)",
1204 "#else",
1205 " if (!tmp)",
1206 "#endif",
1207 " { printf(\"pan: out of memory\\n\");",
1208 " wrapup();",
1209 " }",
1210 "#ifdef MEMCNT",
1211 " memcnt += n;",
1212 "#endif",
1213 " memset(tmp, 0, n);",
1214 " return tmp;",
1215 "}\n",
1216 #else
1217 "/* include realloc and free to keep sysV libc",
1218 " * from including them and",
1219 " * finding multiple references",
1220 " */",
1221 "char *",
1222 "realloc(s)",
1223 " char *s;",
1224 "{ printf(\"aborting: cannot happen - call on realloc()\\n\");",
1225 " wrapup();",
1226 "}",
1227 "",
1228 "free(s)",
1229 " char *s;",
1230 "{ /* never called - simply ignore it */",
1231 "}",
1232 "",
1233 "char *",
1234 "malloc(n)",
1235 " unsigned n;",
1236 "{",
1237 " char *tmp;",
1238 " extern char *sbrk();",
1239 " tmp = sbrk(n);",
1240 "#ifdef MEMCNT",
1241 " if ((int) tmp == -1 || memcnt > 1<<MEMCNT)",
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1242 "#else",
1243 " if ((int) tmp == -1)",
1244 "#endif",
1245 " { printf(\"aborting: out of memory\\n\");",
1246 " wrapup();",
1247 " }",
1248 "#ifdef MEMCNT",
1249 " memcnt += n;",
1250 "#endif",
1251 " return tmp;",
1252 "}",
1253 "",
1254 "#define CHUNK 4096",
1255 "",
1256 "char *",
1257 "emalloc(n) /* memory is never released or reallocated */",
1258 " unsigned n;",
1259 "{",
1260 " char *tmp;",
1261 " static char *have;",
1262 " static long left = 0L;",
1263 " static long fragment = 0L;",
1264 "",
1265 " if (n == 0)",
1266 " return (char *) NULL;",
1267 " if (n&3)",
1268 " n += 4-(n&3); /* for proper alignment */",
1269 " if (left < n)",
1270 " { unsigned grow = (n < CHUNK) ? CHUNK : n;",
1271 " have = malloc(grow);",
1272 " fragment += left;",
1273 " left = grow;",
1274 " }",
1275 " tmp = have;",
1276 " have += (long) n;",
1277 " left -= (long) n;",
1278 " memset(tmp, 0, n);",
1279 " return tmp;",
1280 "}",
1281 #endif
1282 "Uerror(str)",
1283 " char *str;",
1284 "{ /* always fatal */",
1285 " errors = upto-1;",
1286 " uerror(str);",
1287 " wrapup();",
1288 "}\n",
1289 "uerror(str)",
1290 " char *str;",
1291 "{",
1292 " if (++errors == upto)",
1293 " { printf(\"pan: %%s (at depth %%d)\\n\", str,",
1294 " (depthfound==-1)?depth:depthfound);",
1295 " putrail();",
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1296 " wrapup();",
1297 " }",
1298 " return 1;",
1299 "}\n",
1300 "r_ck(which, N, M, src)",
1301 " uchar *which;",
1302 " short *src;",
1303 "{ int i, m=0;\n",
1304 "#ifdef VERI",
1305 " if (M == VERI) return; /* no useful info there */",
1306 "#endif",
1307 " printf(\"unreached in proctype %%s:\\n\", procname[M]);",
1308 " for (i = 1; i < N; i++)",
1309 " if (which[i] == 0)",
1310 " xrefsrc(src[i], M, i);",
1311 " else",
1312 " m++;",
1313 " printf(\"\t(%%d of %%d states)\\n\", N-1-m, N-1);",
1314 "}\n",
1315 "xrefsrc(lno, M, i)",
1316 "{",
1317 " printf(\"\\tline %%d (state %%d)\", lno, i);",
1318 " xrefstmnt(M, i);",
1319 "}",
1320 "xrefstmnt(M, i)",
1321 "{",
1322 " if (trans[M][i] && trans[M][i]->tp)",
1323 " { if (strcmp(trans[M][i]->tp, \"\") != 0)",
1324 " printf(\", \\\"%%s\\\"\", trans[M][i]->tp);",
1325 " else if (stopstate[M][i])",
1326 " printf(\", -endstate-\");",
1327 " } else",
1328 " printf(\", ?\");",
1329 " printf(\"\\n\");",
1330 "}\n",
1331 "putrail()",
1332 "{ int fd, i, j, q;",
1333 " char snap[64];\n",
1334 " if ((fd = creat(\"pan.trail\", 0666)) <= 0)",
1335 " { printf(\"cannot create pan.trail\\n\");",
1336 " return;",
1337 " }",
1338 "#ifdef VERI",
1339 " sprintf(snap, \"-2:%%d:-2:-2\\n\", VERI);",
1340 " write(fd, snap, strlen(snap));",
1341 "#endif",
1342 " for (i = 1, j = 0; i <= depth; i++)",
1343 " { q = trail[i].pr;",
1344 " if (i == depthfound)",
1345 " write(fd, \"-1:-1:-1:-1\\n\", 12);",
1346 " if (loops)",
1347 "#ifdef VERI",
1348 " { if (q == 2) continue;",
1349 " if (q > 2) q -= 2;",



464 APPENDIX E DESIGN AND VALIDATION

1350 " }",
1351 "#else",
1352 " { if (q == 1) continue;",
1353 " if (q > 1) q--;",
1354 " }",
1355 "#endif",
1356 " if (trail[i].o_t->ist)",
1357 " { sprintf(snap, \"%%d:%%d:%%d:%%d\\n\", j++,",
1358 " q, trail[i].o_t->ist, i);",
1359 " write(fd, snap, strlen(snap));",
1360 " }",
1361 " sprintf(snap, \"%%d:%%d:%%d:%%d\\n\", j++, ",
1362 " q, trail[i].o_t->st, i);",
1363 " write(fd, snap, strlen(snap));",
1364 " }",
1365 " printf(\"pan: wrote pan.trail\\n\");",
1366 " close(fd);",
1367 "}\n",
1368 "sv_save() /* push state vector onto save stack */",
1369 "{ if (!svtack->nxt)",
1370 " { svtack->nxt = (Svtack *) emalloc(sizeof(Svtack));",
1371 " svtack->nxt->body = emalloc(vsize*sizeof(char));",
1372 " svtack->nxt->lst = svtack;",
1373 " svtack->nxt->m_delta = vsize;",
1374 " svmax++;",
1375 " } else if (vsize > svtack->nxt->m_delta)",
1376 " { svtack->nxt->body = emalloc(vsize*sizeof(char));",
1377 " svtack->nxt->lst = svtack;",
1378 " svtack->nxt->m_delta = vsize;",
1379 " svmax++;",
1380 " }",
1381 " svtack = svtack->nxt;",
1382 "#if SYNC",
1383 " svtack->o_boq = boq;",
1384 "#endif",
1385 " svtack->o_delta = vsize;",
1386 " memcpy((char *)(svtack->body), (char *)&now, vsize);",
1387 "}\n",
1388 "sv_restor() /* pop state vector from save stack */",
1389 "{ memcpy((char *)&now, svtack->body, svtack->o_delta);",
1390 "#if SYNC",
1391 " boq = svtack->o_boq;",
1392 "#endif",
1393 " if (vsize != svtack->o_delta)",
1394 " Uerror(\"sv_restor\");",
1395 " if (!svtack->lst)",
1396 " Uerror(\"error: v_restor\");",
1397 " svtack = svtack->lst;",
1398 "}\n",
1399 "p_restor(h)",
1400 "{ int i; char *z = (char *) &now;",
1401 " proc_offset[h] = stack->o_offset;",
1402 " proc_skip[h] = stack->o_skip;",
1403 " vsize += stack->o_skip;",
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1404 " memcpy(z+vsize, stack->body, stack->o_delta);",
1405 " vsize += stack->o_delta;",
1406 " i = stack->o_delqs;",
1407 " now._nr_pr += 1;",
1408 " if (!stack->lst) /* debugging */",
1409 " Uerror(\"error: p_restor\");",
1410 " stack = stack->lst;",
1411 " this = pptr(h);",
1412 " while (i-- > 0)",
1413 " q_restor();",
1414 "}\n",
1415 "q_restor()",
1416 "{ char *z = (char *) &now;",
1417 " q_offset[now._nr_qs] = stack->o_offset;",
1418 " q_skip[now._nr_qs] = stack->o_skip;",
1419 " vsize += stack->o_skip;",
1420 " memcpy(z+vsize, stack->body, stack->o_delta);",
1421 " vsize += stack->o_delta;",
1422 " now._nr_qs += 1;",
1423 " if (!stack->lst) /* debugging */",
1424 " Uerror(\"error: q_restor\");",
1425 " stack = stack->lst;",
1426 "}\n",
1427 "delproc(sav, h)",
1428 "{ int d, i=0;",
1429 "",
1430 " if (h+1 != now._nr_pr) return 0;",
1431 "",
1432 " while (now._nr_qs",
1433 " && q_offset[now._nr_qs-1] > proc_offset[h])",
1434 " { delq(sav);",
1435 " i++;",
1436 " }",
1437 " d = vsize - proc_offset[h];",
1438 " if (sav)",
1439 " { if (!stack->nxt)",
1440 " { stack->nxt = (Stack *)",
1441 " emalloc(sizeof(Stack));",
1442 " stack->nxt->body = ",
1443 " emalloc(Maxbody*sizeof(char));",
1444 " stack->nxt->lst = stack;",
1445 " smax++;",
1446 " }",
1447 " stack = stack->nxt;",
1448 " stack->o_offset = proc_offset[h];",
1449 " stack->o_skip = proc_skip[h];",
1450 " stack->o_delta = d;",
1451 " stack->o_delqs = i;",
1452 " memcpy(stack->body, (char *)pptr(h), d);",
1453 " }",
1454 " vsize = proc_offset[h];",
1455 " now._nr_pr = now._nr_pr - 1;",
1456 " memset((char *)pptr(h), 0, d);",
1457 " vsize -= proc_skip[h];",
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1458 " return 1;",
1459 "}\n",
1460 #ifdef VARSTACK
1461 "pushvarval(v, ck)",
1462 "{ if (!varstack->nxt)",
1463 " { varstack->nxt = (Varstack *)",
1464 " emalloc(sizeof(Varstack));",
1465 " varstack->nxt->lst = varstack;",
1466 " vmax++;",
1467 " }",
1468 " varstack = varstack->nxt;",
1469 " varstack->val = v;",
1470 " varstack->cksum = ck;",
1471 "}\n",
1472 "popvarval(ck)",
1473 "{ if (!varstack->lst)",
1474 " Uerror(\"error: popvar\");",
1475 " if (varstack->cksum != ck)",
1476 " { printf(\"%%d <-> %%d\\n\", varstack->cksum, ck);",
1477 " Uerror(\"mismatch varstack\");",
1478 " }",
1479 " varstack = varstack->lst;",
1480 " return varstack->nxt->val;",
1481 "}\n",
1482 #endif
1483 "delq(sav)",
1484 "{ int h = now._nr_qs - 1;",
1485 " int d = vsize - q_offset[now._nr_qs - 1];",
1486 " if (sav)",
1487 " { if (!stack->nxt)",
1488 " { stack->nxt = (Stack *)",
1489 " emalloc(sizeof(Stack));",
1490 " stack->nxt->body = ",
1491 " emalloc(Maxbody*sizeof(char));",
1492 " stack->nxt->lst = stack;",
1493 " smax++;",
1494 " }",
1495 " stack = stack->nxt;",
1496 " stack->o_offset = q_offset[h];",
1497 " stack->o_skip = q_skip[h];",
1498 " stack->o_delta = d;",
1499 " memcpy(stack->body, (char *)qptr(h), d);",
1500 " }",
1501 " vsize = q_offset[h];",
1502 " now._nr_qs = now._nr_qs - 1;",
1503 " memset((char *)qptr(h), 0, d);",
1504 " vsize -= q_skip[h];",
1505 "}\n",
1506 "prognow()",
1507 "{",
1508 " int i; P0 *ptr;",
1509 " for (i = 0; i < now._nr_pr; i++)",
1510 " { ptr = (P0 *) pptr(i);",
1511 " if (progstate[ptr->_t][ptr->_p])",
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1512 " return 1;",
1513 " }",
1514 " return 0;",
1515 "}\n",
1516 "endstate()",
1517 "{ int i; P0 *ptr;",
1518 " for (i = 0; i < now._nr_pr; i++)",
1519 " {",
1520 "#ifdef VERI",
1521 " if (i == 1) continue;",
1522 "#endif",
1523 " ptr = (P0 *) pptr(i);",
1524 " if (!stopstate[ptr->_t][ptr->_p])",
1525 " return 0;",
1526 " }",
1527 " if (loops)",
1528 " uerror(\"non progress sequence\");",
1529 " return 1;",
1530 "}\n",
1531 "onstack()",
1532 "{ register Svtack *ptr;",
1533 " register char *won = (char *)&now;",
1534 " register int j=depth;",
1535 " for (ptr = svtack; ptr; ptr = ptr->lst, j--)",
1536 " if (ptr->o_delta == vsize",
1537 " && ptr->j1 == J1 && ptr->j2 == J2",
1538 " && memcmp(ptr->body, won, vsize) == 0)",
1539 " { depthfound = j;",
1540 " return 1;",
1541 " }",
1542 " return 0;",
1543 "}\n",
1544 "fair_cycle()",
1545 "{ int i, j, q, II;",
1546 " Trans *t;",
1547 " short tt;",
1548 " char ot;",
1549 " uchar moved[MAXPROC];",
1550 "",
1551 " if (!fairness) return 1;",
1552 " memset(moved, 0, MAXPROC);",
1553 "#ifdef VERI",
1554 " moved[1] = 1;",
1555 " if (loops) moved[2] = 1;",
1556 "#else",
1557 " if (loops) moved[1] = 1;",
1558 "#endif",
1559 " for (i = depthfound; i <= depth; i++)",
1560 " { q = trail[i].pr;",
1561 "#ifdef VERI",
1562 " if (q == 1 || (loops && q == 2)) continue;",
1563 "#else",
1564 " if (loops && q == 1) continue;",
1565 "#endif",
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1566 " moved[q] = 1;",
1567 " }",
1568 " for (II = 0; II < now._nr_pr; II++)",
1569 " { if (!moved[II])",
1570 " { this = pptr(II);",
1571 " tt = (short) ((P0 *)this)->_p;",
1572 " ot = (uchar) ((P0 *)this)->_t;",
1573 " for (t = trans[ot][tt]; t; t = t->nxt)",
1574 " {",
1575 "#include \"pan.f\"",
1576 " goto not_fair;",
1577 " }",
1578 " }",
1579 " }",
1580 " /* a fair cycle was detected */",
1581 " for (i = depthfound-1; i <= depth; i++)",
1582 " trail[i].tau &= ˜2; /* unmark states in SCC */",
1583 " return 1;",
1584 "not_fair:",
1585 " /* mark all states in the SCC dirty - to avoid missing fair */",
1586 " /* traversals of the same SCC that could be generated later */",
1587 " for (i = depthfound-1; i <= depth; i++)",
1588 " trail[i].tau |= 2;",
1589 " return 0;",
1590 "}\n",
1591
1592 "#if CONNECT>0",
1593 "checkaccept()",
1594 "{ int i;",
1595 " for (i = 0; i < now._nr_pr; i++)",
1596 " { P0 *ptr = (P0 *) pptr(i);",
1597 " if (accpstate[ptr->_t][ptr->_p])",
1598 " break;",
1599 " }",
1600 " if (i == now._nr_pr)",
1601 " return;",
1602 " if (now._a_t)",
1603 " {",
1604 " return;",
1605 " }",
1606 " now._a_t = 13; /* 13 to help the hasher */",
1607 " A_depth = depth;",
1608 " memcpy((char *)&A_Root, (char *)&now, vsize);",
1609 " depthfound = depth;",
1610 " new_state(); /* the 2nd search */",
1611 " depthfound = -1;",
1612 " now._a_t = 0;",
1613 "}",
1614 "#endif\n",
1615
1616 "#ifndef BITSTATE",
1617 "struct H_el {",
1618 " struct H_el *nxt;",
1619 #if 0
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1620 "#ifdef CACHE",
1621 " struct H_el *lst, *unxt;",
1622 " unsigned hslot;", /* hash table slot */
1623 "#endif",
1624 #endif
1625 " unsigned sz;", /* state vector size */
1626 " unsigned tagged;", /* bits 30 and 31 are special */
1627 " unsigned state;",
1628 "} **H_tab;\n",
1629
1630 "hinit()",
1631 "{ H_tab = (struct H_el **)",
1632 " emalloc((1<<ssize)*sizeof(struct H_el *));",
1633 #if 0
1634 " printf(\"hash table uses %%d bytes\\n\", ",
1635 " (1<<ssize)*sizeof(struct H_el *));",
1636 " fflush(stdout);",
1637 #endif
1638 "}\n",
1639 "#ifdef CACHE",
1640 "#include \"nh_store.c\"",
1641 "#endif",
1642
1643 "struct H_el *Free_list = 0; /* recycles removed states */",
1644 "",
1645 "recycle_state(v, n)",
1646 " struct H_el *v;",
1647 " short n;",
1648 "{",
1649 " struct H_el *tmp, *last = 0;",
1650 " v->tagged = n;",
1651 " v->nxt = 0;",
1652 " for (tmp = Free_list; tmp; last = tmp, tmp = tmp->nxt)",
1653 " { if (tmp->tagged >= n)",
1654 " { if (last)",
1655 " { v->nxt = tmp->nxt;",
1656 " last->nxt = v;",
1657 " } else",
1658 " { v->nxt = Free_list;",
1659 " Free_list = v;",
1660 " }",
1661 " return;",
1662 " }",
1663 " if (!tmp->nxt)",
1664 " { tmp->nxt = v;",
1665 " return;",
1666 " } }",
1667 " Free_list = v;",
1668 "}",
1669 "",
1670 "struct H_el *",
1671 "grab_state(n)",
1672 "{ struct H_el *tmp, *last = 0;",
1673 "",
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1674 " for (tmp = Free_list; tmp; last = tmp, tmp = tmp->nxt)",
1675 " if (tmp->tagged == n)",
1676 " { if (last)",
1677 " last->nxt = tmp->nxt;",
1678 " else",
1679 " Free_list = tmp->nxt;",
1680 " tmp->nxt = 0;",
1681 " recycled++;",
1682 " return tmp;",
1683 " }",
1684 " return (struct H_el *)",
1685 " emalloc(sizeof(struct H_el)+n-sizeof(unsigned));",
1686 "}",
1687 "",
1688
1689 "htag(V, N)",
1690 " char *V;",
1691 " short N;",
1692 "{",
1693 " register struct H_el *tmp, *last = 0;",
1694 " char *v; short n;",
1695 "#ifdef COMPRESS",
1696 " n = compress(&v, V, N);",
1697 "#else",
1698 " n = N; v = V;",
1699 "#endif",
1700 " s_hash(v, n);",
1701 " for (tmp = H_tab[j1]; tmp; last = tmp, tmp = tmp->nxt)",
1702 " { if (",
1703 "#ifdef CACHE",
1704 " tmp->sz == n &&",
1705 "#endif",
1706 " memcmp(((char *)&(tmp->state)), v, n) == 0)",
1707 " {",
1708 "#ifdef CACHE",
1709 " if (tmp->tagged & (1<<31)) Uerror(\"Double Htag\");",
1710 "#endif",
1711 " tmp->tagged &= (1<<30); /* preserve only bit 30 */",
1712 "#if CONNECT==0",
1713 "#ifdef CACHE",
1714 " tmp->tagged |= (1<<31); /* set bit 31 */",
1715 "#endif",
1716 "#endif",
1717 " if (trpt->tau&2) /* state marked dirty: remove */",
1718 " { if (last)",
1719 " last->nxt = tmp->nxt;",
1720 " else",
1721 " H_tab[j1] = tmp->nxt;",
1722 " recycle_state(tmp, n);",
1723 " }",
1724 " return;",
1725 " }",
1726 " }",
1727 " for (tmp = H_tab[j1], n=0; tmp; tmp = tmp->nxt)",
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1728 " n++;",
1729 " printf(\"cannot happen, htag, length of list is %%d\\n\", n);",
1730 " fflush(stdout);",
1731 "/* Uerror(\"cannot happen, htag\"); */",
1732 "}\n",
1733 "#ifdef COMPRESS",
1734 #include "compress.h"
1735 "#endif",
1736
1737 "#ifndef CACHE",
1738 "hstore(V, N)",
1739 " char *V;",
1740 " short N;",
1741 "{",
1742 " register struct H_el *tmp;\n",
1743 " char *v; short n;",
1744 "#ifdef COMPRESS",
1745 " n = compress(&v, V, N);",
1746 "#else",
1747 " n = N; v = V;",
1748 "#endif",
1749 " if (Normalize) return 1;",
1750 " s_hash((uchar *)v, n);",
1751 " tmp = H_tab[j1];",
1752 " if (!tmp)",
1753 " { tmp = grab_state(n);",
1754 " H_tab[j1] = tmp;",
1755 " } else",
1756 " { for (;; hcmp++)",
1757 " { if (memcmp(&(tmp->state), v, n) == 0)",
1758 " { if (tmp->tagged & ˜((1<<30)|(1<<31)))",
1759 " { if (loops && now._p_t)",
1760 " { depthfound = tmp->tagged&˜(1<<30);",
1761 " if (fair_cycle())",
1762 " uerror(\"non-progress cycle\");",
1763 " }",
1764 " return 2; /* match on stack */",
1765 " } else",
1766 " return 1; /* match outside stack */",
1767 " }",
1768 " if (!tmp->nxt) break;",
1769 " tmp = tmp->nxt;",
1770 " }",
1771 " tmp->nxt = grab_state(n);",
1772 " tmp = tmp->nxt;",
1773 " }",
1774 " tmp->tagged = depth+1; /* non-zero while on stack */",
1775 " memcpy(((char *)&(tmp->state)), v, n);",
1776 #ifdef PAIRS
1777 "#ifdef PAIRS",
1778 " if (boq == -1) pairs();",
1779 "#endif",
1780 #endif
1781 " return 0;",
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1782 "}",
1783 "#endif",
1784 "#endif",
1785 "#include \"pan.t\"",
1786 "",
1787 "do_reach()",
1788 "{",
1789 0,
1790 };
1791
1792 /***** spin: pangen2.h *****/
1793
1794 char *Preamble[] = {
1795 "#include <stdio.h>",
1796 "#include <signal.h>",
1797 "#include \"pan.h\"\n",
1798 "#define max(a,b) (((a)<(b)) ? (b) : (a))",
1799 "typedef struct Trail {",
1800 " short pr; /* process id */",
1801 " short st; /* current state */",
1802 " uchar tau; /* status flags */",
1803 " char o_n, o_ot, o_m;", /* to save locals */
1804 " short o_tt, o_To;", /* used in new_state() */
1805 " Trans *o_t;", /* transition fct, next state */
1806 " int oval;", /* backup value of a variable */
1807 "} Trail;",
1808 "Trail *trail, *trpt;",
1809 "uchar *this;\n",
1810 "int maxdepth=10000;",
1811 "uchar *SS, *LL;",
1812 "char *emalloc(), *malloc(), *memset();",
1813 "int mreached=0, done=0, errors=0;",
1814 "long nstates=0, recycled=0;",
1815 "long nlinks=0, truncs=0, loss=0;",
1816 "int mask, hcmp=0, loops=0, acycles=0, upto=1;",
1817 "int state_tables=0, fairness=0, homomorphism=0;",
1818 "char *hom_target, *hom_source;",
1819 #ifdef PAIRS
1820 "int tree_before=0;",
1821 #endif
1822 "#ifdef BITSTATE",
1823 "int ssize=22;",
1824 "#else",
1825 "int ssize=18;",
1826 "#endif",
1827 "int hmax=0, svmax=0, smax=0;",
1828 #ifdef VARSTACK
1829 "int vmax=0;",
1830 #endif
1831 #ifdef GODEF
1832 "int cs_max=0;",
1833 #endif
1834 "int Maxbody=0;",
1835 "uchar *noptr; /* used by macro Pptr(x) */",
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1836 "State A_Root; /* root of acceptance cycles */",
1837 "State now; /* the full state vector */",
1838 "Stack *stack; /* for queues, processes */",
1839 "Svtack *svtack; /* for old state vectors */",
1840 #ifdef VARSTACK
1841 "Varstack *varstack; /* for old variable vals */",
1842 #endif
1843 #ifdef GODEF
1844 "CS_stack *cs_stack; /* conflict sets */",
1845 #endif
1846 "int J1, J2, j1, j2, j3, j4;",
1847 "int A_depth=0;\n",
1848 "int depth=0;\n",
1849 "#if SYNC",
1850 "#define IfNotBlocked if (boq != -1) continue;",
1851 "#define UnBlock boq = -1",
1852 "#else",
1853 "#define IfNotBlocked /* cannot block */",
1854 "#define UnBlock /* don’t bother */",
1855 "#endif\n",
1856 0,
1857 };
1858 char *Tail[] = {
1859 "Trans *",
1860 "settr(a, b, c, d, t, l, ntp)",
1861 " char *t;",
1862 "{ Trans *tmp = (Trans *) emalloc(sizeof(Trans));\n",
1863 " tmp->atom = a&6;",
1864 " tmp->st = b;",
1865 " tmp->local = l;",
1866 " tmp->tp = t;",
1867 " tmp->ntp = ntp;",
1868 " tmp->forw = c;",
1869 " tmp->back = d;",
1870 #ifdef GODEF
1871 "#ifdef VERBOSE",
1872 " Moves[c] = t;",
1873 "#endif",
1874 #endif
1875 " return tmp;",
1876 "}\n",
1877 #ifdef PAIRS
1878 "#define Visited 1<<12",
1879 "dfs(p, t, srcln)",
1880 " short srcln[];",
1881 "{ Trans *n; char *wtyp();",
1882 "",
1883 " if (t == 0 || (trans[p][t]->atom & Visited))",
1884 " { printf(\"%%dl\", t);",
1885 " return;",
1886 " }",
1887 " trans[p][t]->atom |= Visited;",
1888 " printf(\"%%d\\\"%%d%%s%%s\\\"d\", ",
1889 " t, srcln[t],",
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1890 " (trans[p][t]->atom&2)?\" *\":\" \",",
1891 " trans[p][t]->tp);",
1892 " if (trans[p][t]->st)",
1893 " dfs(p, trans[p][t]->st, srcln);",
1894 " for (n = trans[p][t]->nxt; n; n = n->nxt)",
1895 " dfs(p, n->st, srcln);",
1896 " printf(\"u\");",
1897 "}\n",
1898 "Tree(p, strt, srcln)",
1899 " short srcln[];",
1900 "{ printf(\"echo \");",
1901 " dfs(p, strt, srcln);",
1902 " printf(\" | 2.tree\\n\");",
1903 "}\n",
1904 #endif
1905 "#ifdef JUMBO",
1906 "#define Visited 1<<12",
1907 "#define Completed 1<<13",
1908 "int",
1909 "jumbo_list(p, t)",
1910 "{ int all_local; Trans *n;",
1911 " int nl, nxt_local;",
1912
1913 " if (t == 0) return 0;",
1914 " if (trans[p][t]->atom & Visited)",
1915 " { if (trans[p][t]->atom & Completed)",
1916 " return trans[p][t]->Local;",
1917 " else",
1918 " return 0;",
1919 " }",
1920 " n = trans[p][t];",
1921 " n->atom |= Visited;",
1922
1923 " nxt_local = jumbo_list(p, n->st);",
1924
1925 " if (n->nxt && n->ntp != ’c’)",
1926 " all_local = 0;",
1927 " else",
1928 " all_local = n->local;",
1929
1930 " for (n = n->nxt; n; n = n->nxt)",
1931 " { nl = jumbo_list(p, n->st);",
1932 " if (nl < nxt_local) nxt_local = nl;",
1933 " if (!n->local || n->ntp != ’c’) all_local = 0;",
1934 " }",
1935 " if (all_local != 0)",
1936 " all_local = nxt_local + 1;",
1937 " trans[p][t]->Local = all_local;",
1938 " trans[p][t]->atom |= Completed;",
1939 " return all_local;",
1940 "}",
1941 "#endif",
1942 "Trans *",
1943 "cpytr(a)",
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1944 " Trans *a;",
1945 "{ Trans *tmp = (Trans *) emalloc(sizeof(Trans));\n",
1946 " tmp->atom = a->atom;",
1947 " tmp->st = a->st;",
1948 " tmp->ist = a->ist;",
1949 " tmp->local = a->local;",
1950 " tmp->forw = a->forw;",
1951 " tmp->back = a->back;",
1952 " tmp->tp = a->tp;",
1953 " tmp->ntp = a->ntp;",
1954 " return tmp;",
1955 "}\n",
1956 "int cnt;",
1957 "retrans(n, m, is, srcln, reach) /* proc n, m states, is=initial state */",
1958 " short srcln[];",
1959 " uchar reach[];",
1960 "{ Trans *T0, *T1, *T2, *T3;",
1961 " int i, j=0;",
1962 " if (state_tables == 2)",
1963 " { printf(\"RAW proctype %%s\\n\", ",
1964 " procname[n]);",
1965 " for (i = 1; i < m; i++)",
1966 " reach[i] = 1;",
1967 "#ifdef JUMBO",
1968 " jumbo_list(n, is);",
1969 "#endif",
1970 " tagtable(n, m, is, srcln, reach);",
1971 " return;",
1972 " }",
1973 " do { j++;",
1974 " for (i = 1, cnt = 0; i < m; i++)",
1975 " { T1 = trans[n][i]->nxt;",
1976 " T2 = trans[n][i];",
1977 "/* prescan: */ for (T0 = T1; T0; T0 = T0->nxt)",
1978 "/* choice inside choice */ if (trans[n][T0->st]->nxt)",
1979 " break;",
1980 " if (T0)",
1981 " for (T0 = T1; T0; T0 = T0->nxt)",
1982 " { T3 = trans[n][T0->st];",
1983 " if (!T3->nxt)",
1984 " { T2->nxt = cpytr(T0);",
1985 " T2 = T2->nxt;",
1986 " imed(T2, T0->st, n);",
1987 " continue;",
1988 " }",
1989 " do { T3 = T3->nxt;",
1990 " T2->nxt = cpytr(T3);",
1991 " T2 = T2->nxt;",
1992 " imed(T2, T0->st, n);",
1993 " } while (T3->nxt);",
1994 " cnt++;",
1995 " }",
1996 " }",
1997 " } while (cnt);",
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1998 " for (i = 1; i < m; i++)",
1999 " if (trans[n][i]->nxt) /* optimize the list a bit */",
2000 " { T1 = trans[n][i]->nxt;",
2001 " T0 = trans[n][i] = cpytr(trans[n][T1->st]);",
2002 " imed(T0, T1->st, n);",
2003 " for (T1 = T1->nxt; T1; T1 = T1->nxt)",
2004 " { T0->nxt = cpytr(trans[n][T1->st]);",
2005 " T0 = T0->nxt;",
2006 " imed(T0, T1->st, n);",
2007 " } }",
2008 "more:",
2009 " if (state_tables",
2010 " || (homomorphism == 1 && strcmp(hom_target, procname[n]) == 0)",
2011 " || (homomorphism == 2 && strcmp(hom_source, procname[n]) == 0))",
2012 " { if (n == 0 && homomorphism == 1)",
2013 " printf(\"\");",
2014 " printf(\"proctype %%s%%s%%s%%s\",",
2015 " homomorphism==1?\"O\":\"\",",
2016 " homomorphism==2?\"R\":\"\",",
2017 " procname[n],",
2018 " homomorphism?\"()\\n{\\n\":\"\\n\");",
2019 " for (i = 1; i < m; i++)",
2020 " reach[i] = 1;",
2021 "#ifdef JUMBO",
2022 " jumbo_list(n, is);",
2023 "#endif",
2024 " tagtable(n, m, is, srcln, reach);",
2025 " if (!state_tables)",
2026 " printf(\"S0: skip\\n}\\n\");",
2027 " }",
2028 " switch (homomorphism) {",
2029 " case 1: homomorphism = 2; goto more;",
2030 " case 2: homomorphism = 1; break;",
2031 " default: break;",
2032 " }",
2033 "}",
2034 "imed(T, v, n) /* set intermediate state */",
2035 " Trans *T;",
2036 "{ static uchar warned=0;",
2037 " if (T->ist && !warned)",
2038 " { warned=1;",
2039 " printf(\"warning: %%s has \", procname[n]);",
2040 " printf(\"ambiguous flow ctl structures, \");",
2041 " printf(\"revise model\\n\");",
2042 " }",
2043 " progstate[n][T->st] |= progstate[n][v];",
2044 " accpstate[n][T->st] |= accpstate[n][v];",
2045 " stopstate[n][T->st] |= stopstate[n][v];",
2046 " T->ist = v;",
2047 "}",
2048 "tagtable(n, m, is, srcln, reach)",
2049 " short srcln[];",
2050 " uchar reach[];",
2051 "{",



OF COMPUTER PROTOCOLS SPIN VERSION 0 VALIDATOR SOURCE 477

2052 " Trans *z;",
2053 " if (is >= m || !trans[n][is]",
2054 " || is <= 0 || reach[is] == 0)",
2055 " return;",
2056 " reach[is] = 0;",
2057 " if (homomorphism)",
2058 " { if (accpstate[n][is])",
2059 " printf(\"accept_%%d:\\n\", is);",
2060 " if (stopstate[n][is])",
2061 " printf(\"end_%%d:\\n\", is);",
2062 " if (progstate[n][is])",
2063 " printf(\"progress_%%d:\\n\", is);",
2064 " printf(\"S%%d:\", is);",
2065 " if (homomorphism == 1)",
2066 " printf(\"\t!trans ->\\n\");",
2067 " printf(\"\tif\\n\");",
2068 " for (z = trans[n][is]; z; z = z->nxt)",
2069 " { printf(\"\t:: \");",
2070 " Crack(n, is, z, srcln);",
2071 " }",
2072 " printf(\"\tfi;\\n\");",
2073 " } else",
2074 " if (state_tables)",
2075 " for (z = trans[n][is]; z; z = z->nxt)",
2076 " crack(n, is, z, srcln);",
2077 " for (z = trans[n][is]; z; z = z->nxt)",
2078 " tagtable(n, m, z->st, srcln, reach);",
2079 "}",
2080 "uniq_trans(str)",
2081 " char *str;",
2082 "{ int j;",
2083 " static int n_have=0;",
2084 " typedef struct HAVE {",
2085 " char *s;",
2086 " struct HAVE *n;",
2087 " } HAVE;",
2088 " HAVE *t, *tt;",
2089 " static HAVE *h = 0;",
2090 " for (t = h, tt = 0, j = 0; t; tt = t, t = t->n, j++)",
2091 " if (strcmp(t->s, str) == 0)",
2092 " return j;",
2093 " t = (HAVE *) emalloc(sizeof(HAVE));",
2094 " t->s = str;",
2095 " if (!h)",
2096 " h = t;",
2097 " else",
2098 " tt->n = t;",
2099 " return j;",
2100 "}",
2101 "putsource(s)",
2102 " char *s;",
2103 "{ int i;",
2104 " for (i = 0; s[i]; i++)",
2105 " if (s[i] == \’\\n\’)",
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2106 " printf(\"\\\\n\");",
2107 " else",
2108 " putchar(s[i]);",
2109 "}",
2110 "Crack(n, j, z, srcln)",
2111 " Trans *z;",
2112 " short srcln[];",
2113 "{ int i;",
2114 " if (!z) return;",
2115 " i = 1+uniq_trans(z->tp);",
2116 " if (z->atom & 6) i = -i;",
2117 " if (strcmp(z->tp, \"(1)\") == 0)",
2118 " { printf(\"skip; goto S%%d \", z->st);",
2119 " printf(\"/* line %%3d */\\n\", srcln[j]);",
2120 " return;",
2121 " }",
2122 "#if 0",
2123 " if (z->local && strcmp(z->tp, \"@\") != 0)",
2124 " { putsource(z->tp);",
2125 " printf(\"; goto S%%d \", z->st);",
2126 " printf(\"/* line %%3d */\\n\", srcln[j]);",
2127 " return;",
2128 " }",
2129 "#endif",
2130 " if (homomorphism == 1)",
2131 " printf(\"atomic { trans = %%2d; \", i);",
2132 " else /* homomorphism == 2 */",
2133 " printf(\"atomic { (trans == %%2d); trans = 0; \", i);",
2134 " printf(\"goto S%%d }\", z->st);",
2135 " printf(\" /* line %%3d, \", srcln[j]);",
2136 " putsource(z->tp);",
2137 " printf(\" */\\n\");",
2138 " fflush(stdout);",
2139 "}",
2140 "crack(n, j, z, srcln)",
2141 " Trans *z;",
2142 " short srcln[];",
2143 "{ int i;",
2144 " if (!z) return;",
2145 "printf(\"\tstate %%2d --[%%2d]--> state %%2d [%%s%%s%%s%%s%%s] (%%d) line %%3d => \",",
2146 " j, z->forw, z->st,",
2147 " z->atom & 6 ?\"A\":\"-\",",
2148 " z->local?\"L\" :\"-\",",
2149 " accpstate[n][j]?\"a\" :\"-\",",
2150 " stopstate[n][j]?\"e\" : \"-\",",
2151 " progstate[n][j]?\"p\" : \"-\",",
2152 " z->Local,",
2153 " srcln[j]);",
2154 " putsource(z->tp);",
2155 " printf(\"\\n\");",
2156 " fflush(stdout);",
2157 "}",
2158 0,
2159 };
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2160
2161 /***** spin: pangen3.h *****/
2162
2163 char *R0[] = {
2164 " Maxbody = max(Maxbody, sizeof(P%d));",
2165 " reached[%d] = reached%d;",
2166 " accpstate[%d] = (uchar *) emalloc(nstates%d);",
2167 " progstate[%d] = (uchar *) emalloc(nstates%d);",
2168 " stopstate[%d] = (uchar *) emalloc(nstates%d);",
2169 " stopstate[%d][endstate%d] = 1;",
2170 0,
2171 };
2172 char *R0a[] = {
2173 #ifdef PAIRS
2174 " if (tree_before) Tree(%d, start%d, src_ln%d);",
2175 #endif
2176 " retrans(%d, nstates%d, start%d, src_ln%d, reached%d);",
2177 0,
2178 };
2179 char *R0b[] = {
2180 " if (state_tables)",
2181 " { printf(\"\\nTransition Types: \");",
2182 " printf(\"A=atomic; L=local;\\n\");",
2183 " printf(\"Source-State Labels: \");",
2184 " printf(\"p=progress; e=end; a=accept;\\n\");",
2185 " }",
2186 " if (homomorphism)",
2187 " printf(\"init { atomic { run O%%s(); run R%%s() } }\\n\",",
2188 " hom_target, hom_source);",
2189 " if (state_tables || homomorphism)",
2190 " exit();",
2191 0,
2192 };
2193 char *R1[] = {
2194 " reached[%d] = (uchar *) emalloc(4*sizeof(uchar));",
2195 " stopstate[%d] = (uchar *) emalloc(4*sizeof(uchar));",
2196 " progstate[%d] = stopstate[%d];",
2197 " accpstate[%d] = stopstate[%d];",
2198 0,
2199 };
2200 char *R2[] = {
2201 "uchar *accpstate[%d];",
2202 "uchar *progstate[%d];",
2203 "uchar *reached[%d];",
2204 "uchar *stopstate[%d];",
2205 0,
2206 };
2207 char *R3[] = {
2208 " Maxbody = max(Maxbody, sizeof(Q%d));",
2209 0,
2210 };
2211 char *R4[] = {
2212 " r_ck(reached%d, nstates%d, %d, src_ln%d);",
2213 0,
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2214 };
2215 char *R5[] = {
2216 " case %d: j = sizeof(P%d); break;",
2217 0,
2218 };
2219 char *R6[] = {
2220 " case %d: /* progress checker */",
2221 " ((P%d *)pptr(h))->_t = %d;",
2222 " ((P%d *)pptr(h))->_p = 1;",
2223 " now._p_t = 0;",
2224 " break;",
2225 " }",
2226 "#ifdef VERI",
2227 " if (h == 0 && !addproc(VERI))",
2228 " return 0;",
2229 "#endif",
2230 " if (h == 0 && loops && !addproc(%d))",
2231 " return 0;",
2232 "#ifdef VERI",
2233 " return (h>0)?h-loops-1:0;",
2234 "#else",
2235 " return (h>0)?h-loops:0;",
2236 "#endif",
2237 "}\n",
2238 0,
2239 };
2240 char *R8[] = {
2241 " case %d: j = sizeof(Q%d); break;",
2242 0,
2243 };
2244 char *R9[] = {
2245 "typedef struct Q%d {",
2246 " uchar Qlen; /* q_size */",
2247 " uchar _t; /* q_type */",
2248 " struct {",
2249 0,
2250 };
2251 char *R10[] = {
2252 "typedef struct Q0 {\t/* generic q */",
2253 " uchar Qlen, _t;",
2254 "} Q0;",
2255 0,
2256 };
2257 char *R12[] = {
2258 "\t\tcase %d: r = ((Q%d *)z)->contents[slot].fld%d; break;",
2259 0,
2260 };
2261 char *R13[] = {
2262 "unsend(into)",
2263 "{ int m=0, j; uchar *z;",
2264 " if (!into--) uerror(\"reference to uninitialized chan name\");",
2265 " z = qptr(into);",
2266 " j = ((Q0 *)z)->Qlen;",
2267 " ((Q0 *)z)->Qlen = --j;",
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2268 " switch (((Q0 *)qptr(into))->_t) {",
2269 0,
2270 };
2271 char *R14[] = {
2272 " default: Uerror(\"bad queue - unsend\");",
2273 " }",
2274 " return m;",
2275 "}",
2276 "",
2277 "unrecv(from, slot, fld, fldvar, strt)",
2278 "{ int j; uchar *z;",
2279 " if (!from--) uerror(\"reference to uninitialized chan name\");",
2280 " z = qptr(from);",
2281 " j = ((Q0 *)z)->Qlen;",
2282 " if (strt) ((Q0 *)z)->Qlen = j+1;",
2283 " switch (((Q0 *)qptr(from))->_t) {",
2284 0,
2285 };
2286 char *R15[] = {
2287 " default: Uerror(\"bad queue - qrecv\");",
2288 " }",
2289 "}",
2290 0,
2291 };
2292
2293 /***** spin: pangen1.c *****/
2294
2295 #include <stdio.h>
2296 #include <math.h>
2297 #include "spin.h"
2298 #include "y.tab.h"
2299 #include "pangen1.h"
2300 #include "pangen3.h"
2301
2302 extern FILE *tc, *th;
2303 extern Node *Mtype;
2304 extern ProcList *rdy;
2305 extern Queue *qtab;
2306 extern RunList *run;
2307 extern Symbol *symtab[Nhash+1];
2308 extern int nqs, nps, mst, Mpars;
2309 extern char *claimproc;
2310
2311 enum { INIV, PUTV };
2312
2313 short Types[] = { BIT, BYTE, CHAN, SHORT, INT };
2314 int Npars=0, u_sync=0, u_async=0;
2315 int acceptors=0;
2316
2317 void
2318 genheader()
2319 { ProcList *p;
2320 int i;
2321
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2322 fprintf(th, "#define SYNC %d\n", u_sync);
2323 fprintf(th, "#define ASYNC %d\n\n", u_async);
2324 fprintf(tc, "char *procname[] = {\n");
2325 put_ptype(run->n->name, (Node *) 0, 0, mst, nps);
2326 for (p = rdy, i = 1; p; p = p->nxt, i++)
2327 put_ptype(p->n->name, p->p, i, mst, nps);
2328 put_ptype("_progress", (Node *) 0, i, mst, nps);
2329 fprintf(tc, "};\n\n");
2330 ntimes(th, 0, 1, Header);
2331 doglobal(PUTV);
2332 fprintf(th, " uchar sv[VECTORSZ];\n");
2333 fprintf(th, "} State;\n");
2334 #ifdef GODEF
2335 { Symbol *sp; extern int uniq, Maxcs;
2336 int j, k=0;
2337 fprintf(th, "\n/*** Conflict Set Numbers ***/\n");
2338 fprintf(th, "#define CS_timeout\t%d\n", k++);
2339 for (j = 0; j < 5; j++) /* for each data type */
2340 for (i = 0; i <= Nhash; i++)
2341 for (sp = symtab[i]; sp; sp = sp->next)
2342 if (sp->type == Types[j])
2343 { if (sp->context)
2344 continue;
2345 fprintf(th, "#define CS_%s\t%d\n", sp->name, k);
2346 k += sp->nel;
2347 }
2348 fprintf(th, "\nchar *CS_names[] = {\n");
2349 fprintf(th, " \"timeout\",\n");
2350 if (k > 1)
2351 { int a=0;
2352 for (j = 0; j < 5; j++)
2353 for (i = 0; i <= Nhash; i++)
2354 for (sp = symtab[i]; sp; sp = sp->next)
2355 if (sp->type == Types[j])
2356 { if (sp->context)
2357 continue;
2358 if (sp->nel == 1)
2359 fprintf(th, " \"%s\",\n", sp->name);
2360 else
2361 for (a = 0; a < sp->nel; a++)
2362 fprintf(th, " \"%s[%d]\",\n",
2363 sp->name, a);
2364 }
2365 }
2366 fprintf(th, "};\n");
2367 fprintf(th, "#define MAXSTATE %d\n", uniq+2);
2368 /* added 2 for the two progress checker’s states */
2369 fprintf(th, "#define TOPQ (1+MAXCONFL+MAXQ)\n");
2370 fprintf(th, "/* Maxcs =\n");
2371 fprintf(th, " * max nr of cs that any 1 statement\n");
2372 fprintf(th, " * can be waiting for at any one time\n");
2373 fprintf(th, " */\n");
2374 fprintf(th, "#define MAXCS %d\n", Maxcs);
2375 fprintf(th, "#define MAXCONFL %d\n", k);
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2376 fprintf(th, "#ifndef MULT\n");
2377 fprintf(th, "#define MULT 1\t/* max nr forks of a proc */\n");
2378 fprintf(th, "#endif\n");
2379 fprintf(th, "#if SYNC == 0\n");
2380 fprintf(th, "#define MULT_MAXCS (MULT*MAXCS)\n");
2381 fprintf(th, "#else\n");
2382 fprintf(th, "#define MULT_MAXCS (2*MULT*MAXCS)\n");
2383 fprintf(th, "#endif\n");
2384
2385 fprintf(tc, "#ifdef ALG3\n");
2386 fprintf(tc, "unsigned char Csels_c[MAXSTATE][MULT_MAXCS+1];\n");
2387 fprintf(tc, "unsigned char Csels_r[MAXSTATE][MULT_MAXCS+1];\n");
2388 fprintf(tc, "unsigned char Csels_p[MAXSTATE][MULT_MAXCS+1];\n");
2389 fprintf(tc, "char csems[MAXPROC][TOPQ];\n");
2390 fprintf(tc, "short csets[MAXPROC][MAXSTATE];\n");
2391 fprintf(tc, "short Nwait=0, nwait[TOPQ];\n\n");
2392 fprintf(tc, "#endif\n");
2393 fprintf(th, "#ifdef VERBOSE\n");
2394 fprintf(th, "char *Moves[MAXSTATE];\n");
2395 fprintf(th, "#endif\n");
2396 fprintf(th, "#ifndef ALG3\n");
2397 fprintf(th, "#define push_act(p,s,w,h,t) /* skip */\n");
2398 fprintf(th, "#define unrelease() /* skip */\n");
2399 fprintf(th, "#define unpush() /* skip */\n");
2400 fprintf(th, "#define push_commit() /* skip */\n");
2401 fprintf(th, "#define un_commit(p) /* skip */\n");
2402 fprintf(th, "#endif\n");
2403 }
2404 #endif
2405 }
2406
2407 void
2408 genaddproc()
2409 { ProcList *p;
2410 int i;
2411
2412 fprintf(tc, "addproc(n");
2413 for (i = 0; i < Npars; i++)
2414 fprintf(tc, ", par%d", i);
2415
2416 ntimes(tc, 0, 1, Addp0);
2417 ntimes(tc, 1, nps, R5);
2418 ntimes(tc, 0, 1, Addp1);
2419
2420 put_pinit(run->pc, run->n, (Node *) 0, 0);
2421 for (p = rdy, i = 1; p; p = p->nxt, i++)
2422 put_pinit(p->s->frst, p->n, p->p, i);
2423
2424 ntimes(tc, i, i+1, R6);
2425 }
2426
2427 void
2428 genother(cnt)
2429 { ProcList *p;
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2430 int i;
2431
2432 ntimes(tc, 0, 1, Code0);
2433 ntimes(tc, 0, cnt, R0);
2434 ntimes(tc, cnt, cnt+1, R1);
2435 end_labs(run->n, 0);
2436 for (p = rdy, i = 1; p; p = p->nxt, i++)
2437 end_labs(p->n, i);
2438 ntimes(tc, 0, cnt, R0a);
2439 ntimes(tc, 0, 1, R0b);
2440
2441 #ifdef GODEF
2442 fprintf(tc, "\ttratable[%d] = _TRA_%d; /* progress */\n", i, i);
2443 #endif
2444 #ifdef PAIRS
2445 fprintf(tc, " if (tree_before) exit(0);\n");
2446 #endif
2447 ntimes(th, acceptors, acceptors+1, Code1);
2448 ntimes(th, i+1, i+2, R2);
2449
2450 doglobal(INIV);
2451 ntimes(tc, 1, nqs+1, R3);
2452 ntimes(tc, 0, 1, Code2);
2453 ntimes(tc, 0, i, R4);
2454 fprintf(tc, "}\n\n");
2455 #ifdef PAIRS
2456 putpairs();
2457 }
2458
2459 putpairs()
2460 { ProcList *p; int i;
2461 fprintf(tc, "#ifdef PAIRS\n");
2462 fprintf(tc, "pairs()\n");
2463 fprintf(tc, "{ int i,j; P0 *ptr;\n");
2464 fprintf(tc, " for (i=1, j=0; i < now._nr_pr; i++)\n");
2465 fprintf(tc, " { ptr = (P0 *) pptr(i);\n");
2466 fprintf(tc, "#ifdef VERI\n");
2467 fprintf(tc, " if (i == 1) continue;\n");
2468 fprintf(tc, " if (i > 2) printf(\" \");\n");
2469 fprintf(tc, "#else\n");
2470 fprintf(tc, " if (i > 1) printf(\" \");\n");
2471 fprintf(tc, " else printf(\"NEW state %%d: \", nstates);\n");
2472 fprintf(tc, "#endif\n");
2473 fprintf(tc, " switch(ptr->_t) {\n");
2474 for (p = rdy, i = 1; p; p = p->nxt, i++)
2475 { fprintf(tc, "\t\t\tcase %d:", i);
2476 fprintf(tc, " printf(\"%%d\", ptr->_p /* src_ln%d[ptr->_p] */);", i);
2477 fprintf(tc, " j++; break;\n");
2478 }
2479 fprintf(tc, " } }\n");
2480 fprintf(tc, " if (j) printf(\"\\n\");\n");
2481 fprintf(tc, "}\n");
2482 fprintf(tc, "#endif\n\n");
2483 #endif
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2484 }
2485
2486 static struct {
2487 char *s, *t; int n, m;
2488 } ln[] = {
2489 "end", "stopstate", 3, 0,
2490 "progress", "progstate", 8, 0,
2491 "accept", "accpstate", 6, 1,
2492 0, 0, 0, 0,
2493 };
2494
2495 void
2496 end_labs(s, i)
2497 Symbol *s;
2498 {
2499 extern Label *labtab;
2500 Label *l;
2501 int j;
2502 #ifdef GODEF
2503 fprintf(tc, "\ttratable[%d] = _TRA_%d; /* %s */\n", i, i, s->name);
2504 #endif
2505 for (l = labtab; l; l = l->nxt)
2506 for (j = 0; ln[j].n; j++)
2507 if (strncmp(l->s->name, ln[j].s, ln[j].n) == 0
2508 && strcmp(l->s->context->name, s->name) == 0)
2509 { fprintf(tc, "\t%s[%d][%d] = 1;\n",
2510 ln[j].t, i, l->e->seqno);
2511 acceptors += ln[j].m;
2512 }
2513 }
2514
2515 void
2516 ntimes(fd, n, m, c)
2517 FILE *fd;
2518 char *c[];
2519 {
2520 int i, j;
2521 for (j = 0; c[j]; j++)
2522 for (i = n; i < m; i++)
2523 { fprintf(fd, c[j], i, i, i, i, i);
2524 fprintf(fd, "\n");
2525 }
2526 }
2527
2528 void
2529 dolocal(dowhat, p, s)
2530 char *s;
2531 {
2532 int i, j;
2533 Symbol *sp;
2534 char buf[64];
2535
2536 for (j = 0; j < 5; j++)
2537 for (i = 0; i <= Nhash; i++)
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2538 for (sp = symtab[i]; sp; sp = sp->next)
2539 if (sp->context && sp->type == Types[j]
2540 && strcmp(s, sp->context->name) == 0)
2541 { sprintf(buf, "((P%d *)pptr(h))->", p);
2542 do_var(dowhat, buf, sp);
2543 }
2544 }
2545
2546 void
2547 doglobal(dowhat)
2548 { Symbol *sp;
2549 int i, j;
2550
2551 for (j = 0; j < 5; j++)
2552 for (i = 0; i <= Nhash; i++)
2553 for (sp = symtab[i]; sp; sp = sp->next)
2554 if (!sp->context && sp->type == Types[j])
2555 do_var(dowhat, "now.", sp);
2556 }
2557
2558 void
2559 do_var(dowhat, s, sp)
2560 char *s;
2561 Symbol *sp;
2562 {
2563 int i;
2564
2565 switch(dowhat) {
2566 case PUTV:
2567 typ2c(sp);
2568 break;
2569 case INIV:
2570 if (!sp->ini)
2571 break;
2572 if (sp->nel == 1)
2573 { fprintf(tc, "\t\t%s%s = ", s, sp->name);
2574 do_init(sp);
2575 } else
2576 for (i = 0; i < sp->nel; i++)
2577 { fprintf(tc, "\t\t%s%s[%d] = ", s, sp->name, i);
2578 do_init(sp);
2579 }
2580 break;
2581 }
2582 }
2583
2584 void
2585 do_init(sp)
2586 Symbol *sp;
2587 {
2588 int i;
2589
2590 if (sp->type == CHAN && ((i = qmake(sp)) > 0))
2591 fprintf(tc, "addqueue(%d);\n", i);
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2592 else
2593 fprintf(tc, "%d;\n", eval(sp->ini));
2594 }
2595
2596 blog(n) /* for small log2 without rounding problems */
2597 { int m=1, r=2;
2598 while (r < n) { m++; r *= 2; }
2599 return 1+m;
2600 }
2601
2602 void
2603 put_ptype(s, p, i, m0, m1)
2604 char *s;
2605 Node *p;
2606 {
2607 Node *fp, *fpt;
2608 int j;
2609 fprintf(tc, " \"%s\",\n", s);
2610 fprintf(th, "typedef struct P%d { /* %s */\n", i, s);
2611 fprintf(th, " unsigned _t : %d; /* proctype */\n", blog(m1));
2612 fprintf(th, " unsigned _p : %d; /* state */\n", blog(m0));
2613 dolocal(PUTV, i, s); /* includes pars */
2614 fprintf(th, "} P%d;\n", i);
2615
2616 for (fp = p, j = 0; fp; fp = fp->rgt)
2617 for (fpt = fp->lft; fpt; fpt = fpt->rgt)
2618 j++; /* count # of parameters */
2619 Npars = max(Npars, j);
2620 }
2621
2622 void
2623 put_pinit(e, s, p, i)
2624 Element *e;
2625 Symbol *s;
2626 Node *p;
2627 {
2628 Node *fp, *fpt;
2629 int ini, j;
2630
2631 ini = huntele(e, e->status)->seqno;
2632 fprintf(th, "#define start%d %d\n", i, ini);
2633
2634 fprintf(tc, "\tcase %d: /* %s */\n", i, s->name);
2635 fprintf(tc, "\t\t((P%d *)pptr(h))->_t = %d;\n", i, i);
2636 fprintf(tc, "\t\t((P%d *)pptr(h))->_p = %d;", i, ini);
2637 fprintf(tc, " reached%d[%d]=1;\n", i, ini);
2638 dolocal(INIV, i, s->name);
2639 for (fp = p, j=0; fp; fp = fp->rgt)
2640 for (fpt = fp->lft; fpt; fpt = fpt->rgt, j++)
2641 { if (fpt->nsym->nel != 1)
2642 fatal("array in parameter list, %s", fpt->nsym->name);
2643 fprintf(tc, "\t\t((P%d *)pptr(h))->%s = par%d;\n",
2644 i, fpt->nsym->name, j);
2645 }
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2646 fprintf(tc, "\t break;\n");
2647 }
2648
2649 huntstart(f)
2650 Element *f;
2651 {
2652 Element *e = f;
2653
2654 if (e->n)
2655 { if (e->n->ntyp==’.’ && e->nxt)
2656 e = e->nxt;
2657 else if (e->n->ntyp == ATOMIC)
2658 e->n->seql->this->last->nxt = e->nxt;
2659 }
2660 return e->seqno;
2661 }
2662
2663 Element *
2664 huntele(f, o)
2665 Element *f;
2666 {
2667 Element *g, *e = f;
2668 int cnt; /* a precaution against loops */
2669 for (cnt=0; cnt < 10 && e->n; cnt++)
2670 { switch (e->n->ntyp) {
2671 case GOTO:
2672 g = get_lab(e->n->nsym);
2673 break;
2674 case ’.’:
2675 case BREAK:
2676 if (!e->nxt)
2677 return e;
2678 g = e->nxt;
2679 break;
2680 case ATOMIC:
2681 e->n->seql->this->last->nxt = e->nxt;
2682 default: /* fall through */
2683 return e;
2684 }
2685 if ((o & ATOM) && !(g->status & ATOM))
2686 return e;
2687 e = g;
2688 }
2689 return e;
2690 }
2691
2692 void
2693 typ2c(sp)
2694 Symbol *sp;
2695 {
2696 switch (sp->type) {
2697 case BIT:
2698 if (sp->nel == 1)
2699 { fprintf(th, "\tunsigned %s : 1", sp->name);
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2700 break;
2701 } /* else fall through */
2702 case CHAN: /* good for up to 255 channels */
2703 case BYTE:
2704 fprintf(th, "\tuchar %s", sp->name);
2705 break;
2706 case SHORT:
2707 fprintf(th, "\tshort %s", sp->name);
2708 break;
2709 case INT:
2710 fprintf(th, "\tint %s", sp->name);
2711 break;
2712 case PREDEF:
2713 return;
2714 default:
2715 fatal("variable %s undeclared", sp->name);
2716 }
2717 if (sp->nel != 1)
2718 fprintf(th, "[%d]", sp->nel);
2719 fprintf(th, ";\n");
2720 }
2721
2722 void
2723 ncases(fd, p, n, m, c)
2724 FILE *fd;
2725 char *c[];
2726 {
2727 int i, j;
2728 for (j = 0; c[j]; j++)
2729 for (i = n; i < m; i++)
2730 { fprintf(fd, c[j], i, p, i);
2731 fprintf(fd, "\n");
2732 }
2733 }
2734
2735 void
2736 genaddqueue()
2737 { char *buf0;
2738 int j;
2739 Queue *q;
2740
2741 buf0 = (char *) emalloc(32);
2742 ntimes(tc, 0, 1, Addq0);
2743 for (q = qtab; q; q = q->nxt)
2744 { ntimes(tc, q->qid, q->qid+1, R8);
2745 ntimes(th, q->qid, q->qid+1, R9);
2746 for (j = 0; j < q->nflds; j++)
2747 { switch (q->fld_width[j]) {
2748 case BIT:
2749 if (q->nflds != 1)
2750 { fprintf(th, "\t\tunsigned");
2751 fprintf(th, " fld%d : 1;\n", j);
2752 break;
2753 } /* else fall through: gives smaller struct */
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2754 case CHAN:
2755 case BYTE:
2756 fprintf(th, "\t\tuchar fld%d;\n", j);
2757 break;
2758 case SHORT:
2759 fprintf(th, "\t\tshort fld%d;\n", j);
2760 break;
2761 case INT:
2762 fprintf(th, "\t\tint fld%d;\n", j);
2763 break;
2764 default:
2765 fatal("bad channel spec", "");
2766 }
2767 }
2768 fprintf(th, " } contents[%d];\n", max(1, q->nslots));
2769 fprintf(th, "} Q%d;\n", q->qid);
2770 }
2771 ntimes(th, 0, 1, R10);
2772 ntimes(tc, 0, 1, Addq1);
2773
2774 fprintf(tc, "qsend(into");
2775 for (j = 0; j < Mpars; j++)
2776 fprintf(tc, ", fld%d", j);
2777 fprintf(tc, ")\n");
2778 ntimes(tc, 0, 1, Addq11);
2779
2780 for (q = qtab; q; q = q->nxt)
2781 { sprintf(buf0, "((Q%d *)z)->", q->qid);
2782 fprintf(tc, "\tcase %d: j = %sQlen;\n", q->qid, buf0);
2783 fprintf(tc, "\t\t%sQlen = j+1;\n", buf0);
2784 if (q->nslots == 0) /* reset handshake point */
2785 fprintf(tc, "\t\t(trpt+2)->o_m = 0;\n");
2786 sprintf(buf0, "((Q%d *)z)->contents[j].fld", q->qid);
2787 for (j = 0; j < q->nflds; j++)
2788 fprintf(tc, "\t\t%s%d = fld%d;\n", buf0, j, j);
2789 fprintf(tc, "\t\tbreak;\n");
2790 }
2791 ntimes(tc, 0, 1, Addq2);
2792
2793 for (q = qtab; q; q = q->nxt)
2794 fprintf(tc, "\tcase %d: return %d;\n", q->qid, (!q->nslots));
2795
2796 ntimes(tc, 0, 1, Addq3);
2797
2798 for (q = qtab; q; q = q->nxt)
2799 fprintf(tc, "\tcase %d: return (q_sz(from) == %d);\n",
2800 q->qid, max(1, q->nslots));
2801
2802 ntimes(tc, 0, 1, Addq4);
2803 for (q = qtab; q; q = q->nxt)
2804 { sprintf(buf0, "((Q%d *)z)->", q->qid);
2805 fprintf(tc, " case %d:", q->qid);
2806 if (q->nflds == 1)
2807 { fprintf(tc, "\tif (fld == 0) r = %s", buf0);
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2808 fprintf(tc, "contents[slot].fld0;\n");
2809 } else
2810 { fprintf(tc, "\tswitch (fld) {\n");
2811 ncases(tc, q->qid, 0, q->nflds, R12);
2812 fprintf(tc, "\t\t}\n");
2813 }
2814 fprintf(tc, "\t\tif (done)\n");
2815 fprintf(tc, "\t\t{ j = %sQlen;\n", buf0);
2816 fprintf(tc, "\t\t %sQlen = --j;\n", buf0);
2817 fprintf(tc, "\t\t for (k=0; k<j; k++)\n", q->qid);
2818 fprintf(tc, "\t\t {\n");
2819
2820 sprintf(buf0, "\t\t\t((Q%d *)z)->contents", q->qid);
2821 for (j = 0; j < q->nflds; j++)
2822 { fprintf(tc, "\t%s[k].fld%d = \n", buf0, j);
2823 fprintf(tc, "\t\t%s[k+1].fld%d;\n", buf0, j);
2824 }
2825 fprintf(tc, "\t\t }\n");
2826 for (j = 0; j < q->nflds; j++)
2827 fprintf(tc, "%s[j].fld%d = 0;\n", buf0, j);
2828 fprintf(tc, "\t\t\tif (fld+1 != %d)\n\t\t\t", q->nflds);
2829 fprintf(tc, "\tuerror(\"missing pars in receive\");\n");
2830 /* incompletely received msgs cannot be unrecv’ed */
2831 fprintf(tc, "\t\t}\n");
2832 fprintf(tc, "\t\tbreak;\n");
2833 }
2834 ntimes(tc, 0, 1, Addq5);
2835 }
2836
2837 /***** spin: pangen2.c *****/
2838
2839 #include <stdio.h>
2840 #include "spin.h"
2841 #include "y.tab.h"
2842 #include "pangen2.h"
2843
2844 extern ProcList *rdy;
2845 extern RunList *run;
2846 extern Symbol *Fname;
2847 extern char *claimproc;
2848 extern int lineno;
2849 extern int Mpars;
2850 extern int m_loss;
2851 int Globalname;
2852
2853 #ifdef GODEF
2854 void push_cs();
2855 void push_loss();
2856 void putbase();
2857 void putindex();
2858 void coll_global();
2859 void coll_base();
2860 void coll_cs();
2861 void coll_indx();
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2862 int aMarked=0, Marked=0, Countm=0, Maxcs=0;
2863 #endif
2864
2865 FILE *tc, *th, *tt, *tm, *tb, *tf;
2866 int uniq=1;
2867 int nocast=0; /* to turn off casts in lvalues */
2868 int terse=0; /* terse printing of varnames */
2869 int nps=0; /* number of processes */
2870 int mst=0; /* max nr of state/process */
2871 int claimnr = -1; /* claim process, if any */
2872 int Pid; /* proc currently processed */
2873 int EVAL_runs = 0; /* used in fairness checks */
2874
2875 #ifdef VARSTACK
2876 int Cksum; /* debugging only */
2877 #endif
2878
2879 fproc(s)
2880 char *s;
2881 {
2882 ProcList *p;
2883 int i;
2884
2885 if (strcmp("_init", s) == 0)
2886 return 0;
2887 for (p = rdy, i = 1; p; p = p->nxt, i++)
2888 if (strcmp(p->n->name, s) == 0)
2889 return i;
2890 fatal("proctype %s not found", s);
2891 }
2892
2893 void
2894 gensrc()
2895 { ProcList *p;
2896 int i;
2897
2898 if (!(tc = fopen("pan.c", "w")) /* main routines */
2899 || !(th = fopen("pan.h", "w")) /* header file */
2900 || !(tt = fopen("pan.t", "w")) /* transition matrix */
2901 || !(tm = fopen("pan.m", "w")) /* forward moves */
2902 || !(tf = fopen("pan.f", "w")) /* fairness checks */
2903 || !(tb = fopen("pan.b", "w"))) /* backward moves */
2904 { printf("spin: cannot create pan.[chtmb]\n");
2905 exit(1);
2906 }
2907 fprintf(th, "/*** %s ***/\n", Fname->name);
2908 fprintf(th, "#define uchar unsigned char\n");
2909 if (claimproc)
2910 { claimnr = fproc(claimproc);
2911 fprintf(th, "#define VERI %d\n", claimnr);
2912 fprintf(th, "#define claimline");
2913 fprintf(th, " src_ln%d[((P0 *)pptr(1))->_p]\n",
2914 claimnr);
2915 }
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2916 fprintf(th, "#define M_LOSS %d\n", m_loss);
2917 fprintf(th, "#define endclaim endstate%d\n", claimnr);
2918 ntimes(tc, 0, 1, Preamble);
2919
2920 fprintf(tc, "#ifndef NOBOUNDCHECK\n");
2921 fprintf(tc, "#define Index(x, y) Boundcheck(x, y, II, tt, t)\n");
2922 fprintf(tc, "#else\n");
2923 fprintf(tc, "#define Index(x, y) x\n");
2924 fprintf(tc, "#endif\n");
2925
2926 mst = (run)?run->maxseq:0;
2927 for (p = rdy, i = 1; p; p = p->nxt, i++)
2928 mst = max(p->s->last->seqno, mst);
2929 nps = i+1; /* add progress checker */
2930
2931 fprintf(tt, "settable()\n{\tTrans *T, *settr();\n\n");
2932 fprintf(tt, "#ifdef VERBOSE\n");
2933 fprintf(tt, "\tMoves[0] = \"bad move\";\n");
2934 fprintf(tt, "#endif\n");
2935 fprintf(tt, "\ttrans = (Trans ***) ");
2936 fprintf(tt, "emalloc(%d*sizeof(Trans **));\n", nps);
2937
2938 fprintf(tm, " switch (t->forw) {\n");
2939 fprintf(tm, " default: Uerror(\"bad forward move\");\n");
2940
2941 fprintf(tb, " switch (t->back) {\n");
2942 fprintf(tb, " default: Uerror(\"bad return move\");\n");
2943 fprintf(tb, " case 0: goto R999; /* nothing to undo */\n");
2944
2945 fprintf(tf, " switch (t->forw) {\n");
2946 fprintf(tf, " default: continue;\n");
2947
2948 if (!run) fatal("no runable process", (char *)0);
2949
2950 putproc(run->n, run->pc, 0, run->maxseq);
2951 for (p = rdy, i = 1; p; p = p->nxt, i++)
2952 putproc(p->n, p->s->frst, i, p->s->last->seqno);
2953 putprogress(i, 2);
2954 #ifdef GODEF
2955 fprintf(th, "#define _TRA_%d %d /* progress */\n", i, uniq);
2956 fprintf(th, "#define _TRA_%d %d /* end */\n", i+1, uniq+2);
2957 #endif
2958 ntimes(tt, 0, 1, Tail);
2959 genheader();
2960 genaddproc();
2961 genother(i);
2962 genaddqueue();
2963 genunio();
2964
2965 putsyms(tc, th);
2966 }
2967
2968 void
2969 putproc(n, e, i, j)
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2970 Symbol *n;
2971 Element *e;
2972 {
2973 Pid = i;
2974 #ifdef GODEF
2975 fprintf(th, "#define _TRA_%d %d /* %s */\n", i, uniq, n->name);
2976 #endif
2977 fprintf(th, "\nshort nstates%d=%d;\t/* %s */\n", i,j+1,n->name);
2978 fprintf(tm, "\n /* PROC %s */\n", n->name);
2979 fprintf(tb, "\n /* PROC %s */\n", n->name);
2980 fprintf(tt, "\n /* proctype %d: %s */\n", i, n->name);
2981 fprintf(tt, "\n trans[%d] = (Trans **)", i);
2982 fprintf(tt, " emalloc(%d*sizeof(Trans *));\n\n", j+1);
2983 putseq(e, 0);
2984 dumpsrc(j, i);
2985 }
2986
2987 void
2988 putprogress(i, j) /* loop detector */
2989 {
2990 fprintf(th, "\nshort nstates%d=%d;\t/* _progress */\n", i, j+1);
2991
2992 fprintf(tt, "\n /* proctype %d: _progress */\n", i);
2993 fprintf(tt, "\n trans[%d] = (Trans **)", i);
2994 fprintf(tt, " emalloc(%d*sizeof(Trans *));\n\n", j+1);
2995 fprintf(tt, " trans[%d][1] = settr(1,2,%d,%d,\"-\",0,0);\n",
2996 i, uniq, uniq);
2997 fprintf(tt, " trans[%d][2] = settr(1,0,%d,%d,\"-\",0,0);\n",
2998 i, uniq+1, uniq+1);
2999 fprintf(tt, "}\n");
3000
3001 fprintf(tm, "\n /* _progress */\n");
3002 fprintf(tm, " case %d: /* progress */\n", uniq);
3003 fprintf(tm, " IfNotBlocked\n");
3004 fprintf(tm, " now._p_t = 13; /* 13 to help the hasher */\n");
3005 fprintf(tm, " m = 3; goto P999;\n");
3006 fprintf(tm, " case %d:\n", uniq+1);
3007 fprintf(tm, " continue;\n");
3008 fprintf(tm, " }\n\n");
3009
3010 fprintf(tb, "\n /* _progress */\n");
3011 fprintf(tb, " case %d: /* progress */\n", uniq);
3012 fprintf(tb, " now._p_t = 0;\n");
3013 fprintf(tb, " goto R999;\n");
3014 fprintf(tb, " case %d:\n", uniq+1);
3015 fprintf(tb, " goto R999;\n");
3016 fprintf(tb, " }\n\n");
3017
3018 fprintf(tf, " }\n");
3019 }
3020
3021 void
3022 putseq(f, level)
3023 Element *f;
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3024 {
3025 Element *e;
3026
3027 for (e = f; e; e = e->nxt)
3028 putseq_el(e, level+1);
3029 }
3030
3031 void
3032 putseq_lst(s, level)
3033 Sequence *s;
3034 {
3035 Element *g;
3036
3037 for (g = s->frst; ; g = g->nxt)
3038 { if (!g)
3039 { fprintf(stderr, "cannot happen seq_lst\n");
3040 exit(1);
3041 }
3042 putseq_el(g, level+1);
3043 if (g == s->last)
3044 break;
3045 }
3046 }
3047
3048 void
3049 putseq_el(e, level)
3050 Element *e;
3051 {
3052 SeqList *h;
3053 int n, a, bu;
3054
3055 if (e->status & DONE)
3056 return;
3057 e->status |= DONE;
3058 if (e->n->nval)
3059 putsrc(e->n->nval, e->seqno);
3060 if (e->sub)
3061 { int oMarked, oaMarked; atom_stack *oCS, *save_ast();
3062 fprintf(tt, "\tT = trans[%d][%d] = ",
3063 Pid, e->seqno);
3064 fprintf(tt, "settr(%d,0,0,0,\"", e->status);
3065 comment(tt, e->n, e->seqno);
3066 fprintf(tt, "\",0,%d);\t/* line %d (%d,%d) */\n",
3067 e->n->ntyp,
3068 e->n->nval, Marked, level);
3069 for (h = e->sub; h; h = h->nxt)
3070 { putskip(h->this->frst->seqno);
3071 a = huntstart(h->this->frst);
3072 fprintf(tt, "\tT = T->nxt\t= ");
3073 fprintf(tt, "settr(%d,%d,0,0,\"",
3074 e->status, a, e->n->ntyp);
3075 comment(tt, e->n, e->seqno);
3076 fprintf(tt, "\", %d, %d);\t/* line %d (%d,%d) */\n",
3077 1-Marked, e->n->ntyp,
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3078 e->n->nval, Marked, level);
3079 }
3080 #if 0
3081 oMarked = Marked;
3082 oCS = save_ast();
3083 #endif
3084 oaMarked = aMarked;
3085 for (h = e->sub; h; h = h->nxt)
3086 {
3087 aMarked = oaMarked;
3088 #if 1
3089 if (aMarked)
3090 { clear_ast();
3091 coll_global(h->this, 0);
3092 Marked = has_ast();
3093 }
3094 #else
3095 Marked = oMarked;
3096 restor_ast(oCS);
3097 #endif
3098 putseq_lst(h->this, level);
3099 }
3100 } else
3101 { if (e->n && e->n->ntyp == ATOMIC)
3102 { patch_atomic(e->n->seql->this);
3103 putskip(e->n->seql->this->frst->seqno);
3104 a = huntstart(e->n->seql->this->frst);
3105 fprintf(tt, "\tT = trans[%d][%d] = ", Pid, e->seqno);
3106 fprintf(tt, "settr(%d,0,0,0,\"", ATOM, e->n->ntyp);
3107 comment(tt, e->n, e->seqno);
3108 fprintf(tt, "\", 0, %d);\t/* line %d */\n",
3109 e->n->ntyp, e->n->nval);
3110 fprintf(tt, "\t T->nxt\t= ");
3111
3112 fprintf(tt, "settr(%d,%d,0,0,\"", ATOM, a, e->n->ntyp);
3113 comment(tt, e->n, e->seqno);
3114 fprintf(tt, "\", 0, %d);\t/* line %d (%d,%d) */\n",
3115 e->n->ntyp, e->n->nval, Marked, level);
3116 e->n->seql->this->last->nxt = e->nxt;
3117 #ifdef GODEF
3118 /*
3119 * if the statements in an atomic sequence
3120 * touch global objects, the guard(s) must
3121 * be labeled with all conflict sets touched
3122 */
3123 if (has_ast())
3124 { fprintf(stderr, "internal error: ast stack\n");
3125 pop_ast(stderr, 0);
3126 exit(1);
3127 }
3128 coll_global(e->n->seql->this, 0);
3129 Marked = has_ast();
3130 aMarked = 1;
3131 #endif
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3132 putseq_lst(e->n->seql->this, level);
3133 #ifdef GODEF
3134 Marked = 0; aMarked = 0;
3135 #endif
3136 return;
3137 }
3138 if (e->n->ntyp == GOTO)
3139 a = huntele(get_lab(e->n->nsym),
3140 e->status)->seqno;
3141 else if (e->nxt)
3142 a = huntele(e->nxt, e->status)->seqno;
3143 else
3144 a = 0;
3145 fprintf(tt, "\tT = trans[%d][%d]\t= ",
3146 Pid, e->seqno);
3147
3148 putfair(tf, e->n, e->seqno, uniq);
3149
3150 fprintf(tm, "\tcase %d: /* STATE ", uniq++);
3151 fprintf(tm, "%d, ", e->seqno);
3152 comment(tm, e->n, e->seqno);
3153 fprintf(tm, ", line %d (Marked %d, level %d, status %d/%d) */\n\t\t",
3154 e->n->nval, Marked, level, e->status, e->status&ATOM);
3155 if (e->n && e->n->ntyp != ’r’ && Pid != claimnr)
3156 fprintf(tm, "IfNotBlocked\n\t\t");
3157 putstmnt(tm, e->n, e->seqno);
3158 #ifdef VARSTACK
3159 /*
3160 * warning: checklast() in dflow.c
3161 * is an untrusted optimization
3162 * Cksum=rand();
3163 * if (Pid != claimnr)
3164 * bu = checklast(tm, e->n, e->nxt, e->seqno, 1);
3165 * else
3166 */
3167 #endif
3168 bu = 0;
3169 n = getweight(e->n);
3170 fprintf(tm, ";\n\t\tm = %d;\n\t\t", n);
3171 #ifdef GODEF
3172 Countm = 0;
3173 if (any_cs(e->n)) push_cs(tm, e->n, 0);
3174 Maxcs = max(Countm, Maxcs);
3175 #endif
3176 if (bu == 0) bu = 2;
3177 fprintf(tm, "goto P999;\n", n);
3178 if (bu || any_undo(e->n))
3179 {
3180 fprintf(tb, "\tcase %d: ", uniq-1);
3181 fprintf(tb, "/* STATE ");
3182 fprintf(tb, "%d, ", e->seqno);
3183 comment(tb, e->n, e->seqno);
3184 fprintf(tb, ", line %d (Marked %d, level %d, status %d/%d) */\n\t\t",
3185 e->n->nval, Marked, level, e->status, e->status&ATOM);
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3186 #ifdef VARSTACK
3187 if (bu == 1)
3188 checklast(tb, e->n, e->nxt, e->seqno, 0);
3189 #endif
3190 if (any_undo(e->n))
3191 undostmnt(e->n, e->seqno);
3192 fprintf(tb, ";\n\t\t");
3193 #ifdef GODEF
3194 Countm = 0;
3195 /* DO combine the conflict sets in the backward move */
3196 if (Marked) /* guard of an atomic sequence -with globals- */
3197 pop_ast(tb, 1);
3198 else
3199 { if ((e->status&ATOM) == 0 && (e->status&L_ATOM) == 0)
3200 { if (any_cs(e->n)) /* globals touched */
3201 push_cs(tb, e->n, 1);
3202 else /* locals only */
3203 { Countm++;
3204 fprintf(tb, "push_act(II, R_LOCK, BLOCK, ");
3205 fprintf(tb, "t->forw, MAXCONFL);\n\t\t");
3206 }
3207 } else if (aMarked) /* guard of local at.seq. */
3208 { Countm++;
3209 fprintf(tb, "push_act(II, R_LOCK, BLOCK, ");
3210 fprintf(tb, "t->forw, MAXCONFL);\n\t\t");
3211 }
3212 }
3213 Maxcs = max(Countm, Maxcs);
3214 #endif
3215 fprintf(tb, "goto R999;\n");
3216 fprintf(tt, "settr(%d,%d,%d,%d,\"",
3217 e->status, a, uniq-1, uniq-1, e->n->ntyp);
3218 } else
3219 fprintf(tt, "settr(%d,%d,%d,0,\"",
3220 e->status, a, uniq-1, e->n->ntyp);
3221 comment(tt, e->n, e->seqno);
3222 if (Marked) /* globals are touched later in an atomic s. */
3223 Globalname=1;
3224 fprintf(tt, "\", %d, %d);\t/* line %d (%d,%d) */\n",
3225 1-Globalname, e->n->ntyp, e->n->nval, Marked, level);
3226 Marked = 0; aMarked = 0;
3227 }
3228 }
3229
3230 void
3231 patch_atomic(s)
3232 Sequence *s;
3233 { /* catch goto’s that break the chain */
3234 Element *f, *g;
3235 SeqList *h;
3236 for (f = s->frst; ; f = f->nxt)
3237 { if (f->n && f->n->ntyp == GOTO)
3238 { g = get_lab(f->n->nsym);
3239 if ((f->status & ATOM)
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3240 && !(g->status & ATOM))
3241 { f->status &= ˜ATOM;
3242 f->status |= L_ATOM;
3243 }
3244 } else
3245 for (h = f->sub; h; h = h->nxt)
3246 patch_atomic(h->this);
3247 if (f == s->last)
3248 break;
3249 }
3250 }
3251
3252 #ifdef GODEF
3253
3254 int Mustwrite = 0;
3255
3256 any_cs(now)
3257 Node *now;
3258 {
3259 Node *v;
3260
3261 if (!now) { return; }
3262 switch (now->ntyp) {
3263
3264 case CONST: case ’q’: case ’.’:
3265 case BREAK: case GOTO: case ’@’:
3266 case ATOMIC: case IF: case DO:
3267 return 0;
3268
3269 case ’p’: /* XXXXX forbid rem ref of locals - handle _p */
3270 return 0;
3271
3272 case ’c’: case ’!’: case LEN:
3273 case UMIN: case ASSERT:
3274 case ’˜’: return any_cs(now->lft);
3275
3276 case ’/’: case ’*’: case ’-’: case ’+’:
3277 case ’%’: case ’<’: case ’>’: case ’&’:
3278 case ’|’: case LE: case GE: case NE:
3279 case EQ: case OR: case AND: case LSHIFT: case RSHIFT: case ASGN:
3280 return any_cs(now->lft)|any_cs(now->rgt);
3281
3282 case RUN:
3283 case PRINT: for (v = now->lft; v; v = v->rgt)
3284 if (any_cs(v->lft))
3285 return 1;
3286 return 0;
3287
3288 case TIMEOUT:
3289 case ’r’:
3290 case ’s’:
3291 case ’R’: return 1;
3292
3293 case NAME: if (!now->nsym->context
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3294 || now->nsym->type == CHAN) /* global or chan */
3295 return 1;
3296 if (now->nsym->nel != 1)
3297 return any_cs(now->lft);
3298 return 0;
3299 }
3300 fprintf(stderr, "cannot happen %d\n", now->ntyp);
3301 return 0;
3302 }
3303
3304 void
3305 coll_cs(now)
3306 Node *now;
3307 {
3308 Node *v;
3309
3310 if (!now) { return; }
3311 switch (now->ntyp) {
3312 case ’c’: case ’!’:
3313 case UMIN: case ASSERT:
3314 case ’˜’: coll_cs(now->lft);
3315 break;
3316
3317 case ’/’: case ’*’: case ’-’: case ’+’:
3318 case ’%’: case ’<’: case ’>’: case ’&’:
3319 case ’|’: case LE: case GE: case NE:
3320 case EQ: case OR: case AND: case LSHIFT: case RSHIFT:
3321 coll_cs(now->lft);
3322 coll_cs(now->rgt);
3323 break;
3324
3325 case PRINT:
3326 case RUN: for (v = now->lft; v; v = v->rgt)
3327 coll_cs(v->lft);
3328 break;
3329
3330 case ASGN: coll_base("W_LOCK", Direct, now->ntyp, now->lft);
3331 coll_indx(now->lft);
3332 coll_cs(now->rgt);
3333 break;
3334
3335 case ’r’: coll_base("R_LOCK", Direct, now->ntyp, now->lft);
3336 coll_base("Rcv_LOCK", Indirect, now->ntyp, now->lft);
3337 coll_indx(now->lft);
3338
3339 Mustwrite = 1;
3340 for (v = now->rgt; v; v = v->rgt)
3341 coll_cs(v->lft);
3342 Mustwrite = 0;
3343 break;
3344
3345 case ’s’: coll_base("R_LOCK", Direct, now->ntyp, now->lft);
3346
3347 coll_base("Snd_LOCK", Indirect, now->ntyp, now->lft);
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3348 coll_indx(now->lft);
3349
3350 for (v = now->rgt; v; v = v->rgt)
3351 coll_cs(v->lft);
3352 break;
3353
3354 case ’R’: coll_base("R_LOCK", Direct, now->ntyp, now->lft);
3355
3356 coll_base("R_LOCK", Indirect, now->ntyp, now->lft);
3357 coll_indx(now->lft);
3358
3359 for (v = now->rgt; v; v = v->rgt)
3360 coll_cs(v->lft);
3361 break;
3362 case TIMEOUT: coll_base("R_LOCK", Direct, now->ntyp, 0);
3363 break;
3364 case LEN: coll_base("R_LOCK", Direct, now->ntyp, now->lft);
3365
3366 coll_base("R_LOCK", Indirect, now->ntyp, now->lft);
3367 coll_indx(now->lft);
3368 break;
3369
3370 case NAME: coll_base((Mustwrite)?"W_LOCK":"R_LOCK", Direct, now->ntyp, now);
3371 coll_indx(now);
3372 break;
3373
3374 case CONST:
3375 case ’p’:
3376 case ’q’:
3377 default : break;
3378 }
3379 }
3380
3381 void
3382 push_loss(fd, now, How)
3383 FILE *fd;
3384 Node *now;
3385 {
3386 Node *v;
3387 /* special case: update the conflict sets when
3388 * a message loss on option -m occurs
3389 * it counts as a read on the channel id
3390 */
3391 putbase(fd, "R_LOCK", How, now->lft);
3392 fprintf(fd, "push_act(II, R_LOCK, %s, t->forw, ",
3393 (How == 0)?"REL":"BLOCK");
3394 putname(fd, "1+MAXCONFL+", now->lft, 0, ");\n\t\t");
3395 putindex(fd, now->lft, How);
3396 for (v = now->rgt; v; v = v->rgt)
3397 push_cs(fd, v->lft, How);
3398 }
3399
3400 void
3401 push_cs(fd, now, How) /* How = 0, before; How = 1, after */
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3402 FILE *fd;
3403 Node *now;
3404 {
3405 Node *v;
3406
3407 if (!now) { return; }
3408 switch (now->ntyp) {
3409 case ’c’: case ’!’:
3410 case UMIN: case ASSERT:
3411 case ’˜’: push_cs(fd,now->lft, How);
3412 break;
3413
3414 case ’/’: case ’*’: case ’-’: case ’+’:
3415 case ’%’: case ’<’: case ’>’: case ’&’:
3416 case ’|’: case LE: case GE: case NE:
3417 case EQ: case OR: case AND: case LSHIFT: case RSHIFT:
3418 push_cs(fd, now->lft, How);
3419 push_cs(fd, now->rgt, How);
3420 break;
3421
3422 case PRINT:
3423 case RUN: for (v = now->lft; v; v = v->rgt)
3424 push_cs(fd, v->lft, How);
3425 break;
3426
3427 case ASGN: putbase(fd, "W_LOCK", How, now->lft);
3428 if (now->lft->nsym->nel != 1)
3429 push_cs(fd, now->lft->lft, How);
3430 push_cs(fd, now->rgt, How);
3431 break;
3432
3433 case ’r’: fprintf(fd, "{ int L_typ = Rcv_LOCK;\n");
3434 fprintf(fd, "#if SYNC\n");
3435 fprintf(fd, "\t\tint od=depth;\n");
3436 fprintf(fd, "#if ASYNC\n");
3437 putname(fd, "\t\tif (q_zero(", now->lft, 0, "))\n");
3438 fprintf(fd, "#endif\n");
3439 fprintf(fd, "\t\t{ depth--; L_typ = Snd_LOCK; }\n");
3440 /*
3441 * depth is decremented here to make sure these
3442 * blocks are committed to and unpushed by the
3443 * send half of the rendezvous
3444 */
3445 fprintf(fd, "#endif\n\t\t");
3446 putbase(fd, "R_LOCK", How, now->lft);
3447 Countm++;
3448 fprintf(fd, "push_act(II, L_typ, %s, t->forw, ",
3449 (How == 0)?"REL":"BLOCK");
3450 putname(fd, "1+MAXCONFL+", now->lft, 0, ");\n\t\t");
3451 putindex(fd, now->lft, How);
3452 Mustwrite = 1;
3453 for (v = now->rgt; v; v = v->rgt)
3454 push_cs(fd, v->lft, How);
3455 Mustwrite = 0;
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3456 fprintf(fd, "\n#if SYNC\n");
3457 fprintf(fd, " depth = od;\n");
3458 fprintf(fd, "#endif\n");
3459 fprintf(fd, " }\n\t\t");
3460 break;
3461
3462 case ’s’: if (How == 1) /* lock rv’s only at receive point */
3463 { fprintf(fd, "if (SYNC == 0 || !q_zero");
3464 putname(fd, "(", now->lft, 0, ")) {\n\t\t");
3465 }
3466 putbase(fd, "R_LOCK", How, now->lft);
3467 Countm++;
3468 fprintf(fd, "push_act(II, Snd_LOCK, %s, t->forw, ",
3469 (How == 0)?"REL":"BLOCK");
3470 putname(fd, "1+MAXCONFL+", now->lft, 0, ");\n\t\t");
3471 putindex(fd, now->lft, How);
3472 for (v = now->rgt; v; v = v->rgt)
3473 push_cs(fd, v->lft, How);
3474 if (How == 1)
3475 fprintf(fd, "}\n\t\t");
3476 break;
3477
3478 case ’R’: putbase(fd, "R_LOCK", How, now->lft);
3479 Countm++;
3480 fprintf(fd, "push_act(II, R_LOCK, %s, t->forw, ",
3481 (How == 0)?"REL":"BLOCK");
3482 putname(fd, "1+MAXCONFL+", now->lft, 0, ");\n\t\t");
3483 putindex(fd, now->lft, How);
3484 for (v = now->rgt; v; v = v->rgt)
3485 push_cs(fd, v->lft, How);
3486 break;
3487
3488 case LEN: putbase(fd, "R_LOCK", How, now->lft);
3489 Countm++;
3490 fprintf(fd, "push_act(II, R_LOCK, %s, t->forw, ",
3491 (How == 0)?"REL":"BLOCK");
3492 putname(fd, "1+MAXCONFL+", now->lft, 0, ");\n\t\t");
3493 putindex(fd, now->lft, How);
3494 break;
3495
3496 case NAME: putbase(fd, (Mustwrite)?"W_LOCK":"R_LOCK", How, now);
3497 if (now->nsym->nel != 1)
3498 push_cs(fd, now->lft, How);
3499 break;
3500 case TIMEOUT: fprintf(fd, "push_act(II, R_LOCK, %s, t->forw, ",
3501 (How == 0)?"REL":"BLOCK");
3502 fprintf(fd, "CS_timeout);\n\t\t");
3503 break;
3504 case ’p’:
3505 case ’q’:
3506 case CONST:
3507 default : break;
3508 }
3509 }
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3510 #endif
3511
3512 #define cat0(x) putstmnt(fd,now->lft,m); fprintf(fd, x); \
3513 putstmnt(fd,now->rgt,m)
3514 #define cat1(x) fprintf(fd,"("); cat0(x); fprintf(fd,")")
3515 #define cat2(x,y) fprintf(fd,x); putstmnt(fd,y,m)
3516 #define cat3(x,y,z) fprintf(fd,x); putstmnt(fd,y,m); fprintf(fd,z)
3517
3518 void
3519 putstmnt(fd, now, m)
3520 FILE *fd;
3521 Node *now;
3522 {
3523 Node *v;
3524 int i, j;
3525
3526 if (!now) { fprintf(fd, "0"); return; }
3527 if (now->ntyp != CONST) lineno = now->nval;
3528 switch (now->ntyp) {
3529 case CONST: fprintf(fd, "%d", now->nval); break;
3530 case ’!’: cat3("!(", now->lft, ")"); break;
3531 case UMIN: cat3("-(", now->lft, ")"); break;
3532 case ’˜’: cat3("˜(", now->lft, ")"); break;
3533
3534 case ’/’: cat1("/"); break;
3535 case ’*’: cat1("*"); break;
3536 case ’-’: cat1("-"); break;
3537 case ’+’: cat1("+"); break;
3538 case ’%’: cat1("%%"); break;
3539 case ’<’: cat1("<"); break;
3540 case ’>’: cat1(">"); break;
3541 case ’&’: cat1("&"); break;
3542 case ’|’: cat1("|"); break;
3543 case LE: cat1("<="); break;
3544 case GE: cat1(">="); break;
3545 case NE: cat1("!="); break;
3546 case EQ: cat1("=="); break;
3547 case OR: cat1("||"); break;
3548 case AND: cat1("&&"); break;
3549 case LSHIFT: cat1("<<"); break;
3550 case RSHIFT: cat1(">>"); break;
3551
3552 case TIMEOUT: fprintf(fd, "((trpt->tau)&1)"); break;
3553
3554 case RUN: if (claimproc
3555 && strcmp(now->nsym->name, claimproc) == 0)
3556 fatal("%s is claim, not runnable",
3557 claimproc);
3558 if (EVAL_runs)
3559 { fprintf(fd, "(now._nr_pr < MAXPROC)");
3560 break;
3561 }
3562 fprintf(fd,"addproc(%d", fproc(now->nsym->name));
3563 for (v = now->lft; v; v = v->rgt)
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3564 { cat2(", ", v->lft);
3565 }
3566 fprintf(fd, ")");
3567 break;
3568 case LEN: putname(fd, "q_len(", now->lft, m, ")");
3569 break;
3570
3571 case ’s’: fprintf(fd, "\n#if (SYNC>0 && ASYNC==0)\n\t\t");
3572 putname(fd, "if (q_len(", now->lft, m, "))\n");
3573 fprintf(fd, "#else\n\t\t");
3574 putname(fd, "if (q_full(", now->lft, m, "))\n");
3575 fprintf(fd, "#endif\n");
3576 if (m_loss)
3577 { fprintf(fd, "\t\t{\n\t\tm=3; loss++;\n");
3578 push_loss(fd, now, 0);
3579 fprintf(fd, "goto P999;\n\t\t}\n\t\t");
3580 } else
3581 fprintf(fd, "\t\t\tcontinue;\n\t\t");
3582 putname(fd, "qsend(", now->lft, m, "");
3583 for (v = now->rgt, i = 0; v; v = v->rgt, i++)
3584 { cat2(", ", v->lft);
3585 }
3586 if (i > Mpars)
3587 fatal("too many pars in send", "");
3588 for ( ; i < Mpars; i++)
3589 fprintf(fd, ", 0");
3590 fprintf(fd, ");\n");
3591 fprintf(fd, "#if SYNC\n#if ASYNC==0\n");
3592 putname(fd, "\t\tboq = ", now->lft, m, ";\n");
3593 fprintf(fd, "#else\n\t\t");
3594 putname(fd, "if (q_zero(", now->lft, m, ")) ");
3595 putname(fd, "boq = ",now->lft,m,";\n");
3596 fprintf(fd, "#endif\n#endif\n\t\t");
3597 break;
3598 case ’r’: fprintf(fd, "\n#if SYNC\n#if ASYNC==0\n");
3599 putname(fd, "\t\tif (boq != ", now->lft,m,")");
3600 fprintf(fd, " continue;\n#else\n");
3601 putname(fd, "\t\tif (q_zero(", now->lft,m,"))");
3602 fprintf(fd, "\n\t\t");
3603 putname(fd, "{ if (boq != ", now->lft,m,")");
3604 fprintf(fd, " continue;\n\t\t} else\n\t\t");
3605 fprintf(fd, "{ if (boq != -1) continue;\n\t\t");
3606 fprintf(fd, "}\n#endif\n#endif\n\t\t");
3607 putname(fd, "if (q_len(", now->lft, m, ") == 0)");
3608 fprintf(fd, " continue");
3609 /* test */ for (v = now->rgt, i=j=0; v; v = v->rgt, i++)
3610 { if (v->lft->ntyp != CONST)
3611 { j++; continue;
3612 }
3613 fprintf(fd, ";\n\t\t");
3614 cat3("if (", v->lft, " != ");
3615 putname(fd, "qrecv(", now->lft, m, ", ");
3616 fprintf(fd, "0, %d, 0)) continue", i);
3617 }
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3618 if (j > 0)
3619 fprintf(fd, ";\n\t\tsv_save()");
3620 /* set */ for (v = now->rgt, i = 0; v; v = v->rgt, i++)
3621 { if (v->lft->ntyp == CONST && v->rgt)
3622 continue;
3623 fprintf(fd, ";\n\t\t");
3624 if (v->lft->ntyp != CONST)
3625 { nocast=1;
3626 putstmnt(fd, v->lft, m);
3627 nocast=0; fprintf(fd, " = ");
3628 }
3629 putname(fd, "qrecv(", now->lft, m, "");
3630 fprintf(fd, ", 0, %d, ", i);
3631 fprintf(fd, "%d)", (v->rgt)?0:1);
3632 }
3633 fprintf(fd, ";\n#if SYNC\n");
3634 putname(fd, "\t\tif (q_zero(", now->lft, m, "");
3635 fprintf(fd, ")) boq = -1;\n#endif\n\t\t");
3636 break;
3637 case ’R’: putname(fd, "(q_len(", now->lft, m, ") > 0");
3638 /* test */ for (v = now->rgt, i=j=0; v; v = v->rgt, i++)
3639 { if (v->lft->ntyp != CONST)
3640 { j++; continue;
3641 }
3642 fprintf(fd, "\n\t\t&& qrecv(");
3643 putname(fd, "", now->lft, m, "");
3644 fprintf(fd, ", 0, %d, 0) == ", i);
3645 putstmnt(fd, v->lft, m);
3646 }
3647 fprintf(fd, ")");
3648 break;
3649
3650 case ’c’: cat3("if (!(", now->lft, "))\n");
3651 fprintf(fd, "\t\t\tcontinue");
3652 break;
3653 case ASGN: cat3("(trpt+1)->oval = ", now->lft, ";\n\t\t");
3654 nocast = 1; putstmnt(fd,now->lft,m); nocast = 0;
3655 fprintf(fd," = ");
3656 putstmnt(fd,now->rgt,m);
3657 break;
3658 case PRINT: fprintf(fd, "printf(%s", now->nsym->name);
3659 for (v = now->lft; v; v = v->rgt)
3660 { cat2(", ", v->lft);
3661 }
3662 fprintf(fd, ")");
3663 break;
3664 case NAME: if (!nocast && now->nsym
3665 && now->nsym->type < SHORT)
3666 putname(fd, "((int)", now, m, ")");
3667 else
3668 putname(fd, "", now, m, "");
3669 break;
3670 case ’p’: putremote(fd, now, m);
3671 break;
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3672 case ’q’: if (terse)
3673 fprintf(fd, "%s", now->nsym->name);
3674 else
3675 fprintf(fd, "%d", remotelab(now));
3676 break;
3677 case ASSERT: cat3("assert(", now->lft, ", ");
3678 terse = nocast = 1;
3679 cat3("\"", now->lft, "\\n\", II, tt, t)");
3680 terse = nocast = 0;
3681 break;
3682 case ’.’:
3683 case BREAK:
3684 case GOTO: putskip(m);
3685 break;
3686 case ’@’: if (EVAL_runs)
3687 { fprintf(fd, "if (i+1 != now._nr_pr) continue");
3688 break;
3689 }
3690 fprintf(fd, "if (!delproc(1, II)) continue");
3691 fprintf(th, "#define endstate%d %d\n", Pid, m);
3692 break;
3693 default : printf("spin: bad node type %d (.m)\n", now->ntyp);
3694 fflush(tm); fflush(tb);
3695 fflush(tc); fflush(th); fflush(tt);
3696 exit(1);
3697 }
3698 }
3699
3700 putfair(fd, now, m, u)
3701 FILE *fd;
3702 Node *now;
3703 {
3704 Node *v;
3705 int i, j;
3706
3707
3708 if (!now) { fprintf(fd, "0"); return; }
3709 switch (now->ntyp) {
3710 default: fprintf(fd, "\tcase %d:\n\t\t", u);
3711 EVAL_runs = 1; /* don’t execute a RUN or @ */
3712 putstmnt(fd, now, m);
3713 EVAL_runs = 0;
3714 fprintf(fd, ";\n\t\tbreak;\n");
3715 break;
3716 case ASSERT:
3717 case ’.’:
3718 case BREAK:
3719 case GOTO:
3720 case ASGN:
3721 case PRINT: fprintf(fd, "\tcase %d: break;\n", u);
3722 break;
3723
3724 case ’s’: if (m_loss)
3725 { fprintf(fd, "\tcase %d: break;\n", u);
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3726 break;
3727 }
3728 fprintf(fd, "\tcase %d:", u);
3729 fprintf(fd, "\n#if (SYNC>0 && ASYNC==0)\n\t\t");
3730 putname(fd, "if (q_len(", now->lft, m, ")) ");
3731 fprintf(fd, "\n#else\n\t\t");
3732 putname(fd, "if (q_full(", now->lft, m, ")) ");
3733 fprintf(fd, "\n#endif\n\t\t\t");
3734 fprintf(fd, "continue;\n");
3735 fprintf(fd, "\t\tbreak;\n");
3736 break;
3737 case ’r’: fprintf(fd, "\tcase %d:", u);
3738 fprintf(fd, "\n#if SYNC\n#if ASYNC==0\n");
3739 putname(fd, "\t\tif (boq != ", now->lft,m,")");
3740 fprintf(fd, " continue;\n#else\n");
3741 putname(fd, "\t\tif (q_zero(", now->lft,m,"))");
3742 fprintf(fd, "\n\t\t");
3743 putname(fd, "{ if (boq != ", now->lft,m,")");
3744 fprintf(fd, " continue;\n\t\t} else\n\t\t");
3745 fprintf(fd, "{ if (boq != -1) continue;\n\t\t");
3746 fprintf(fd, "}\n#endif\n#endif\n\t\t");
3747 putname(fd, "if (q_len(", now->lft, m, ") == 0)");
3748 fprintf(fd, " continue");
3749 /* test */ for (v = now->rgt, i=j=0; v; v = v->rgt, i++)
3750 { if (v->lft->ntyp != CONST)
3751 { j++; continue;
3752 }
3753 fprintf(fd, ";\n\t\t");
3754 cat3("if (", v->lft, " != ");
3755 putname(fd, "qrecv(", now->lft, m, ", ");
3756 fprintf(fd, "0, %d, 0)) continue", i);
3757 }
3758 fprintf(fd, ";\n\t\tbreak;\n");
3759 break;
3760 }
3761 }
3762
3763 void
3764 putbase(fd, what, when, n)
3765 FILE *fd;
3766 char *what;
3767 Node *n;
3768 {
3769 if (n->nsym->context)
3770 return; /* not a global */
3771
3772 Countm++;
3773 fprintf(fd, "push_act(II, %s, %s, t->forw, CS_",
3774 what, (when == 0)?"REL":"BLOCK");
3775 fprintf(fd, "%s", n->nsym->name);
3776 if (n->nsym->nel > 1)
3777 { fprintf(fd, "+");
3778 putstmnt(fd, n->lft, 0);
3779 }
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3780 fprintf(fd, ");\n\t\t");
3781 }
3782
3783 void
3784 putindex(fd, n, How)
3785 FILE *fd;
3786 Node *n;
3787 {
3788 if (Mustwrite != 0)
3789 fprintf(stderr, "cannot happen putindex\n");
3790 if (n->nsym->nel != 1)
3791 push_cs(fd, n->lft, How);
3792
3793 }
3794
3795 void
3796 coll_indx(n)
3797 Node *n;
3798 {
3799 if (n->nsym->nel != 1)
3800 coll_cs(n->lft);
3801 }
3802
3803 void
3804 coll_base(what, when, cause, n)
3805 char *what;
3806 Node *n;
3807 {
3808 if (n && n->nsym->context)
3809 return; /* not a global */
3810 push_ast(what, when, cause, n);
3811 }
3812
3813 void
3814 putname(fd, pre, n, m, suff) /* varref */
3815 FILE *fd;
3816 Node *n;
3817 char *pre, *suff;
3818 {
3819 Symbol *s = n->nsym;
3820 if (!s)
3821 fatal("no name - putname", "");
3822 if (!s->type)
3823 yyerror("undeclared name ‘%s’", s->name);
3824
3825 if (!s->context || s->type == CHAN)
3826 Globalname = 1;
3827 fprintf(fd, pre);
3828 if (s->context || !strcmp(s->name, "_p"))
3829 { if (!terse) fprintf(fd, "((P%d *)this)->", Pid);
3830 fprintf(fd, "%s", s->name);
3831 } else
3832 { if (!terse) fprintf(fd, "now.");
3833 fprintf(fd, "%s", s->name);
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3834 }
3835 if (s->nel != 1)
3836 { cat3("[ Index(", n->lft, ", "); /* BOUNDCHECK */
3837 fprintf(fd, "%d) ]", s->nel); /* BOUNDCHECK */
3838 }
3839 fprintf(fd, suff);
3840 }
3841
3842 void
3843 putremote(fd, n, m) /* remote reference */
3844 FILE *fd;
3845 Node *n;
3846 {
3847 int promoted = 0;
3848
3849 if (terse)
3850 { fprintf(fd, "%s[", n->lft->nsym->name);
3851 putstmnt(fd, n->lft->lft, m);
3852 if (strcmp(n->nsym->name, "_p") == 0)
3853 fprintf(fd, "]:");
3854 else
3855 fprintf(fd, "].%s", n->nsym->name);
3856 } else
3857 { if (n->nsym->type < SHORT && !nocast)
3858 { promoted = 1;
3859 fprintf(fd, "((int)");
3860 }
3861 fprintf(fd, "((P%d *)Pptr(loops+",
3862 fproc(n->lft->nsym->name));
3863 if (claimproc) fprintf(fd, "1+");
3864 putstmnt(fd, n->lft->lft, m);
3865 fprintf(fd, "))->%s", n->nsym->name);
3866 #if 0
3867 if (strcmp(n->nsym->name, "_p") == 0)
3868 XXXXX READING _p XXXXX
3869 #endif
3870 }
3871 if (n->rgt)
3872 { fprintf(fd, "["); /* cannot do BOUNDCHECK */
3873 putstmnt(fd, n->rgt, m);
3874 fprintf(fd, "]");
3875 }
3876 if (promoted) fprintf(fd, ")");
3877 }
3878
3879 getweight(n)
3880 Node *n;
3881 {
3882 switch (n->ntyp) {
3883 case ’r’: return 4;
3884 case ’s’: return 2;
3885 case TIMEOUT: return 1; /* lowest priority */
3886 case ’c’: if (has_typ(n->lft, TIMEOUT)) return 1;
3887 }
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3888 return 3;
3889 }
3890
3891 has_typ(n, m)
3892 Node *n;
3893 short m;
3894 {
3895 if (!n) return 0;
3896 if (n->ntyp == m) return 1;
3897 return (has_typ(n->lft, m) || has_typ(n->rgt, m));
3898 }
3899
3900 /***** spin: pangen3.c *****/
3901
3902 #include <stdio.h>
3903 #include <ctype.h>
3904 #include "spin.h"
3905 #include "y.tab.h"
3906
3907 extern FILE *th;
3908 #ifdef GODEF
3909 extern int Globalname;
3910 extern int Countm;
3911 #endif
3912
3913 typedef struct SRC {
3914 short ln, st;
3915 struct SRC *nxt;
3916 } SRC;
3917
3918 SRC *frst = (SRC *) 0;
3919 SRC *skip = (SRC *) 0;
3920 int col;
3921
3922 void
3923 putskip(m) /* states that need not be reached */
3924 { SRC *tmp;
3925
3926 for (tmp = skip; tmp; tmp = tmp->nxt)
3927 if (tmp->st == m)
3928 return;
3929 tmp = (SRC *) emalloc(sizeof(SRC));
3930 tmp->st = (short) m;
3931 tmp->nxt = skip;
3932 skip = tmp;
3933 }
3934
3935 void
3936 putsrc(n, m) /* match states to source lines */
3937 { SRC *tmp;
3938
3939 for (tmp = frst; tmp; tmp = tmp->nxt)
3940 if (tmp->st == m)
3941 { if (tmp->ln != n)
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3942 printf("putsrc mismatch %d - %d\n");
3943 return;
3944 }
3945 tmp = (SRC *) emalloc(sizeof(SRC));
3946 tmp->ln = (short) n;
3947 tmp->st = (short) m;
3948 tmp->nxt = frst;
3949 frst = tmp;
3950 }
3951
3952 void
3953 dumpskip(n, m)
3954 { SRC *tmp, *lst;
3955 int j;
3956
3957 fprintf(th, "uchar reached%d [] = {\n\t", m);
3958 for (j = 0, col = 0; j <= n; j++)
3959 { lst = (SRC *) 0;
3960 for (tmp = skip; tmp; lst = tmp, tmp = tmp->nxt)
3961 if (tmp->st == j)
3962 { putnr(1);
3963 if (lst)
3964 lst->nxt = tmp->nxt;
3965 else
3966 skip = tmp->nxt;
3967 break;
3968 }
3969 if (!tmp)
3970 putnr(0);
3971 }
3972 fprintf(th, "};\n");
3973 skip = (SRC *) 0;
3974 }
3975
3976 void
3977 dumpsrc(n, m)
3978 { SRC *tmp, *lst;
3979 int j;
3980
3981 fprintf(th, "short src_ln%d [] = {\n\t", m);
3982 for (j = 0, col = 0; j <= n; j++)
3983 { lst = (SRC *) 0;
3984 for (tmp = frst; tmp; lst = tmp, tmp = tmp->nxt)
3985 if (tmp->st == j)
3986 { putnr(tmp->ln);
3987 if (lst)
3988 lst->nxt = tmp->nxt;
3989 else
3990 frst = tmp->nxt;
3991 break;
3992 }
3993 if (!tmp)
3994 putnr(0);
3995 }
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3996 fprintf(th, "};\n");
3997 frst = (SRC *) 0;
3998 dumpskip(n, m);
3999 }
4000
4001 void
4002 putnr(n)
4003 {
4004 if (col++ == 8)
4005 { fprintf(th, "\n\t");
4006 col = 1;
4007 }
4008 fprintf(th, "%3d, ", n);
4009 }
4010
4011 #define Cat0(x) comwork(fd,now->lft,m); fprintf(fd, x); \
4012 comwork(fd,now->rgt,m)
4013 #define Cat1(x) fprintf(fd,"("); Cat0(x); fprintf(fd,")")
4014 #define Cat2(x,y) fprintf(fd,x); comwork(fd,y,m)
4015 #define Cat3(x,y,z) fprintf(fd,x); comwork(fd,y,m); fprintf(fd,z)
4016
4017 void
4018 symbolic(fd, v)
4019 FILE *fd;
4020 {
4021 Node *n; extern Node *Mtype;
4022 int cnt = 1;
4023
4024 for (n = Mtype; n; n = n->rgt, cnt++)
4025 if (cnt == v)
4026 { fprintf(fd, "%s", n->lft->nsym->name);
4027 break;
4028 }
4029 if (!n)
4030 fprintf(fd, "%d", v);
4031 }
4032
4033 void
4034 comwork(fd, now, m)
4035 FILE *fd;
4036 Node *now;
4037 {
4038 Node *v;
4039 int i, j; extern int Mpars;
4040
4041 if (!now) { fprintf(fd, "0"); return; }
4042 switch (now->ntyp) {
4043 case CONST: fprintf(fd, "%d", now->nval); break;
4044 case ’!’: Cat3("!(", now->lft, ")"); break;
4045 case UMIN: Cat3("-(", now->lft, ")"); break;
4046 case ’˜’: Cat3("˜(", now->lft, ")"); break;
4047
4048 case ’/’: Cat1("/"); break;
4049 case ’*’: Cat1("*"); break;
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4050 case ’-’: Cat1("-"); break;
4051 case ’+’: Cat1("+"); break;
4052 case ’%’: Cat1("%%"); break;
4053 case ’<’: Cat1("<"); break;
4054 case ’>’: Cat1(">"); break;
4055 case ’&’: Cat1("&"); break;
4056 case ’|’: Cat1("|"); break;
4057 case LE: Cat1("<="); break;
4058 case GE: Cat1(">="); break;
4059 case NE: Cat1("!="); break;
4060 case EQ: Cat1("=="); break;
4061 case OR: Cat1("||"); break;
4062 case AND: Cat1("&&"); break;
4063 case LSHIFT: Cat1("<<"); break;
4064 case RSHIFT: Cat1(">>"); break;
4065
4066 case RUN: fprintf(fd, "run %s(", now->nsym->name);
4067 for (v = now->lft; v; v = v->rgt)
4068 if (v == now->lft)
4069 { Cat2("", v->lft);
4070 } else
4071 { Cat2(",", v->lft);
4072 }
4073 fprintf(fd, ")");
4074 break;
4075
4076 case LEN: putname(fd, "len(", now->lft, m, ")");
4077 break;
4078
4079 case ’s’: putname(fd, "", now->lft, m, "!");
4080 for (v = now->rgt, i = 0; v; v = v->rgt, i++)
4081 { if (v != now->rgt) fprintf(fd,",");
4082 if (v->lft->ntyp == CONST)
4083 symbolic(fd,v->lft->nval);
4084 else
4085 comwork(fd,v->lft,m);
4086 }
4087 for ( ; i < Mpars; i++)
4088 fprintf(fd, ", 0");
4089 break;
4090 case ’r’: putname(fd, "", now->lft, m, "?");
4091 for (v = now->rgt, i=j=0; v; v = v->rgt, i++)
4092 { if (v != now->rgt) fprintf(fd,",");
4093 if (v->lft->ntyp == CONST)
4094 symbolic(fd,v->lft->nval);
4095 else
4096 comwork(fd,v->lft,m);
4097 }
4098 break;
4099 case ’R’: putname(fd, "", now->lft, m, "?[");
4100 for (v = now->rgt, i=j=0; v; v = v->rgt, i++)
4101 { if (v != now->rgt) fprintf(fd,",");
4102 if (v->lft->ntyp == CONST)
4103 symbolic(fd,v->lft->nval);
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4104 else
4105 comwork(fd,v->lft,m);
4106 }
4107 fprintf(fd, "]");
4108 break;
4109
4110 case ’c’: Cat3("(", now->lft, ")");
4111 break;
4112 case ASGN: comwork(fd,now->lft,m);
4113 fprintf(fd," = ");
4114 comwork(fd,now->rgt,m);
4115 break;
4116 case PRINT: { char buf[512];
4117 strncpy(buf, now->nsym->name, 510);
4118 for (i = strlen(buf)-1; i >= 0; i--)
4119 if (buf[i] == ’\"’)
4120 buf[i] = ’\’’;
4121 fprintf(fd, "printf(%s", buf);
4122 }
4123 for (v = now->lft; v; v = v->rgt)
4124 { Cat2(",", v->lft);
4125 }
4126 fprintf(fd, ")");
4127 break;
4128 case NAME: putname(fd, "", now, m, "");
4129 break;
4130 case ’p’: putremote(fd, now, m);
4131 break;
4132 case ’q’: fprintf(fd, "%s", now->nsym->name);
4133 break;
4134 case ASSERT: Cat3("assert(", now->lft, ")");
4135 break;
4136 case ’.’:
4137 case BREAK:
4138 case GOTO: fprintf(fd, "goto", m); break;
4139 case ’@’:
4140 fprintf(fd, "@", m); break;
4141
4142 case ATOMIC:
4143 fprintf(fd, "ATOMIC");
4144 break;
4145 case IF:
4146 fprintf(fd, "IF");
4147 break;
4148 case DO:
4149 fprintf(fd, "DO");
4150 break;
4151 case TIMEOUT:
4152 #ifdef GODEF
4153 Globalname = 1; /* don’t consider this local */
4154 #endif
4155 fprintf(fd, "timeout");
4156 break;
4157 default: if (isprint(now->ntyp))
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4158 fprintf(fd, "‘%c’", now->ntyp);
4159 else
4160 fprintf(fd, "%d", now->ntyp);
4161 break;
4162 }
4163 }
4164
4165 void
4166 comment(fd, now, m)
4167 FILE *fd;
4168 Node *now;
4169 {
4170 extern int terse, nocast;
4171 #ifdef GODEF
4172 Globalname = 0;
4173 #endif
4174 terse=nocast=1;
4175 comwork(fd, now, m);
4176 terse=nocast=0;
4177 }
4178
4179 #ifdef GODEF
4180
4181 atom_stack *top_ast = 0;
4182
4183 push_ast(what, when, cause, n)
4184 char *what;
4185 Node *n;
4186 {
4187 atom_stack *tmp, *lst;
4188
4189 for (tmp = top_ast; tmp; tmp = tmp->nxt)
4190 if (strcmp(tmp->what, what) == 0
4191 && tmp->when == when
4192 && tmp->n && n
4193 && tmp->n->nsym == n->nsym)
4194 return;
4195 tmp = (atom_stack *) emalloc(sizeof(atom_stack));
4196 tmp->what = (char *) emalloc(strlen(what) + 1);
4197 strcpy(tmp->what, what);
4198 tmp->when = when;
4199 tmp->cause = cause;
4200 tmp->n = n;
4201 if (cause == ’r’ || cause == ’s’ || !top_ast)
4202 { tmp->nxt = top_ast;
4203 top_ast = tmp;
4204 } else /* tail add */
4205 { for (lst = top_ast; lst->nxt; lst = lst->nxt)
4206 ;
4207 lst->nxt = tmp;
4208 }
4209 }
4210
4211 static int rHeader;
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4212 static int sHeader;
4213
4214 lastfirst(fd, tmp)
4215 FILE *fd;
4216 atom_stack *tmp;
4217 {
4218 if (!tmp) return;
4219 lastfirst(fd, tmp->nxt);
4220 switch (tmp->cause) {
4221 case ’r’:
4222 if (!rHeader) break;
4223 rHeader = 0;
4224 fprintf(fd, "\n#if SYNC\n");
4225 fprintf(fd, " depth = od;\n");
4226 fprintf(fd, "#endif\n");
4227 fprintf(fd, " } /*rH*/\n\t\t");
4228 break;
4229 case ’s’:
4230 if (!sHeader) break;
4231 sHeader = 0;
4232 fprintf(fd, "} /*sH*/\n\t\t");
4233 default :
4234 break;
4235 }
4236 }
4237
4238 pop_ast(fd, how)
4239 FILE *fd;
4240 {
4241 atom_stack *tmp;
4242
4243 rHeader = 0;
4244 sHeader = 0;
4245 for (tmp = top_ast; tmp; tmp = tmp->nxt)
4246 { Countm++;
4247 switch (tmp->cause) {
4248 case ’r’:
4249 if (rHeader == 0)
4250 { fprintf(fd, "{ int L_typ = Rcv_LOCK;\n");
4251 fprintf(fd, "#if SYNC\n");
4252 fprintf(fd, "\t\tint od=depth;\n");
4253 fprintf(fd, "#if ASYNC\n");
4254 putname(fd, "\t\tif (q_zero(", tmp->n, 0, "))\n");
4255 fprintf(fd, "#endif\n");
4256 fprintf(fd, "\t\t{\tdepth--; L_typ = Snd_LOCK; }\n");
4257 fprintf(fd, "#endif\n\t\t");
4258 rHeader++;
4259 }
4260 pop_common(fd, tmp, how);
4261 break;
4262
4263 case ’s’:
4264 if (sHeader == 0 && how == 1)
4265 { fprintf(fd, "if (SYNC == 0 || !q_zero");
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4266 putname(fd, "(", tmp->n, 0, ")) {\n\t\t");
4267 sHeader++;
4268 }
4269 pop_common(fd, tmp, how);
4270 break;
4271 case TIMEOUT:
4272 fprintf(fd, "push_act(II, R_LOCK, %s, t->forw, ",
4273 (how == 0)?"REL":"BLOCK");
4274 fprintf(fd, "CS_timeout); /* + */\n\t\t");
4275 break;
4276 default:
4277 pop_common(fd, tmp, how);
4278 break;
4279 }
4280 }
4281 lastfirst(fd, top_ast);
4282 if (how == 1) clear_ast();
4283 }
4284
4285 pop_common(fd, tmp, how)
4286 FILE *fd;
4287 atom_stack *tmp;
4288 {
4289 if (tmp->when == Direct)
4290 { fprintf(fd, "push_act(II, %s, ", tmp->what);
4291 fprintf(fd, "%s, t->forw, CS_",
4292 (how == 0)?"REL":"BLOCK");
4293 fprintf(fd, "%s", tmp->n->nsym->name);
4294 if (tmp->n->nsym->nel > 1)
4295 { fprintf(fd, "+");
4296 putstmnt(fd, tmp->n->lft, 0);
4297 }
4298 fprintf(fd, "); /* + */\n\t\t");
4299 } else if (tmp->when == Indirect)
4300 { if (tmp->cause == ’r’)
4301 fprintf(fd, "push_act(II, L_typ, %s, t->forw, ",
4302 (how == 0)?"REL":"BLOCK");
4303 else
4304 fprintf(fd, "push_act(II, %s, %s, t->forw, ",
4305 tmp->what, (how == 0)?"REL":"BLOCK");
4306 putname(fd, "1+MAXCONFL+", tmp->n, 0, "); /* + */\n\t\t");
4307 } else
4308 { fprintf(stderr, "cannot happen pop_ast\n");
4309 abort();
4310 }
4311 }
4312
4313 has_ast()
4314 {
4315 return (top_ast != 0);
4316 }
4317
4318 clear_ast()
4319 {
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4320 /* don’t call free, avoid wasting time in malloc */
4321 top_ast = (atom_stack *) 0;
4322 }
4323
4324 atom_stack *
4325 save_ast()
4326 {
4327 return top_ast;
4328 }
4329
4330 restor_ast(oCS)
4331 atom_stack *oCS;
4332 {
4333 top_ast = oCS;
4334 }
4335
4336 coll_global(s, how)
4337 Sequence *s;
4338 {
4339 Element *f, *g;
4340 SeqList *h;
4341
4342 if (!s) return;
4343 for (f = s->frst; ; f = f->nxt)
4344 { coll_cs(f->n);
4345 for (h = f->sub; h; h = h->nxt)
4346 coll_global(h->this, how);
4347 if (f == s->last)
4348 break;
4349 }
4350 }
4351 #endif
4352
4353 /***** spin: pangen4.c *****/
4354
4355 #include <stdio.h>
4356 #include "spin.h"
4357 #include "y.tab.h"
4358
4359 extern FILE *tc, *tb;
4360 extern Queue *qtab;
4361 extern int nocast;
4362 extern int lineno;
4363 extern char *R13[], *R14[], *R15[];
4364
4365 void
4366 undostmnt(now, m)
4367 Node *now;
4368 {
4369 Node *v;
4370 int i, j; extern int m_loss;
4371
4372 if (!now)
4373 { fprintf(tb, "0");
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4374 return;
4375 }
4376 lineno = now->nval;
4377 switch (now->ntyp) {
4378 case CONST: case ’!’: case UMIN:
4379 case ’˜’: case ’/’: case ’*’:
4380 case ’-’: case ’+’: case ’%’:
4381 case ’<’: case ’>’: case ’&’:
4382 case ’|’: case LE: case GE:
4383 case NE: case EQ: case OR:
4384 case AND: case LSHIFT: case RSHIFT:
4385 case TIMEOUT: case LEN: case NAME:
4386 case ’R’: putstmnt(tb, now, m);
4387 break;
4388 case RUN: fprintf(tb, "delproc(0, now._nr_pr-1)");
4389 break;
4390 case ’s’: if (m_loss)
4391 { fprintf(tb, "if (m != 2) /* msg was lost */\n\t\t");
4392 fprintf(tb, "{\n\t\t");
4393 push_loss(tb, now, 1);
4394 fprintf(tb, "goto R999;\n\t\t");
4395 fprintf(tb, "}\n\t\t");
4396 }
4397 fprintf(tb, "m = unsend");
4398 putname(tb, "(", now->lft, m, ")");
4399 break;
4400 case ’r’: for (v = now->rgt, j = 0; v; v = v->rgt)
4401 if (v->lft->ntyp != CONST)
4402 j++;
4403 if (j > 0) /* variables were set */
4404 { fprintf(tb, "sv_restor()");
4405 break;
4406 }
4407 for (v = now->rgt, i = 0; v; v = v->rgt, i++)
4408 { fprintf(tb, "unrecv");
4409 putname(tb, "(", now->lft, m, ", 0, ");
4410 fprintf(tb, "%d, ", i);
4411 undostmnt(v->lft, m);
4412 fprintf(tb, ", %d);\n\t\t", (i==0)?1:0);
4413 }
4414 break;
4415 case ’@’: fprintf(tb, "p_restor(II)");
4416 break;
4417 case ASGN: nocast=1; putstmnt(tb,now->lft,m);
4418 nocast=0; fprintf(tb, " = trpt->oval");
4419 check_proc(now->rgt, m);
4420 break;
4421 case ’c’: check_proc(now->lft, m);
4422 break;
4423 case ’.’:
4424 case GOTO:
4425 case BREAK: break;
4426 case ASSERT:
4427 case PRINT: check_proc(now, m);
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4428 break;
4429 default: printf("spin: bad node type %d (.b)\n",
4430 now->ntyp);
4431 exit(1);
4432 }
4433 }
4434
4435 any_undo(now)
4436 Node *now;
4437 { /* is there anything to undo on a return move? */
4438
4439 if (!now) return 1;
4440 switch (now->ntyp) {
4441 case ’c’: return any_proc(now->lft);
4442 case ASSERT:
4443 case PRINT: return any_proc(now);
4444
4445 case ’.’:
4446 case GOTO:
4447 case BREAK: return 0;
4448 default: return 1;
4449 }
4450 }
4451
4452 any_proc(now)
4453 Node *now;
4454 { /* check if an expression refers to a process */
4455 if (!now) return 0;
4456 if (now->ntyp == ’@’ || now->ntyp == RUN)
4457 return 1;
4458 return (any_proc(now->lft) || any_proc(now->rgt));
4459 }
4460
4461 void
4462 check_proc(now, m)
4463 Node *now;
4464 {
4465 if (!now)
4466 return;
4467 if (now->ntyp == ’@’ || now->ntyp == RUN)
4468 { fprintf(tb, ";\n\t\t");
4469 undostmnt(now, m);
4470 }
4471 check_proc(now->lft, m);
4472 check_proc(now->rgt, m);
4473 }
4474
4475 void
4476 genunio()
4477 { char *buf1;
4478 Queue *q; int i;
4479
4480 buf1 = (char *) emalloc(128);
4481 ntimes(tc, 0, 1, R13);
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4482 for (q = qtab; q; q = q->nxt)
4483 { sprintf(buf1, "((Q%d *)z)->contents[j].fld", q->qid);
4484 fprintf(tc, " case %d:\n", q->qid);
4485 for (i = 0; i < q->nflds; i++)
4486 fprintf(tc, "\t\t%s%d = 0;\n", buf1, i);
4487 if (q->nslots==0)
4488 { /* check if rendezvous succeeded, 1 level down */
4489 fprintf(tc, "\t\tm = (trpt+1)->o_m;\n");
4490 fprintf(tc, "\t\tUnBlock;\n");
4491 } else
4492 fprintf(tc, "\t\tm = trpt->o_m;\n");
4493 fprintf(tc, "\t\tbreak;\n");
4494 }
4495 ntimes(tc, 0, 1, R14);
4496 for (q = qtab; q; q = q->nxt)
4497 { sprintf(buf1, "((Q%d *)z)->contents", q->qid);
4498 fprintf(tc, " case %d:\n", q->qid);
4499 if (q->nslots == 0)
4500 fprintf(tc, "\t\tif (strt) boq = from;\n");
4501 else if (q->nslots > 1) /* shift */
4502 { fprintf(tc, "\t\tif (strt && slot<%d)\n",
4503 q->nslots-1);
4504 fprintf(tc, "\t\t{\tfor (j--; j>=slot; j--)\n");
4505 fprintf(tc, "\t\t\t{");
4506 for (i = 0; i < q->nflds; i++)
4507 { fprintf(tc, "\t%s[j+1].fld%d =\n\t\t\t",
4508 buf1, i);
4509 fprintf(tc, "\t%s[j].fld%d;\n\t\t\t",
4510 buf1, i);
4511 }
4512 fprintf(tc, "}\n\t\t}\n");
4513 }
4514 strcat(buf1, "[slot].fld");
4515 fprintf(tc, "\t\tif (strt) {\n");
4516 for (i = 0; i < q->nflds; i++)
4517 fprintf(tc, "\t\t\t%s%d = 0;\n", buf1, i);
4518 fprintf(tc, "\t\t}\n");
4519 if (q->nflds == 1) /* set */
4520 fprintf(tc, "\t\tif (fld == 0) %s0 = fldvar;\n",
4521 buf1);
4522 else
4523 { fprintf(tc, "\t\tswitch (fld) {\n");
4524 for (i = 0; i < q->nflds; i++)
4525 { fprintf(tc, "\t\tcase %d:\t%s", i, buf1);
4526 fprintf(tc, "%d = fldvar; break;\n", i);
4527 }
4528 fprintf(tc, "\t\t}\n");
4529 }
4530 fprintf(tc, "\t\tbreak;\n");
4531 }
4532 ntimes(tc, 0, 1, R15);
4533 }
4534
4535 /***** spin: pangen5.c *****/
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4536
4537 #include <stdio.h>
4538 #include <sys/types.h>
4539 #include <sys/stat.h>
4540 #include "spin.h"
4541 #include "y.tab.h"
4542
4543 extern int nproc, nstop, Tval, Rvous, Have_claim;
4544 extern RunList *run, *X;
4545 extern int verbose, lineno;
4546 extern int depth;
4547
4548 FILE *fd;
4549
4550 void
4551 whichproc(p)
4552 { RunList *oX;
4553
4554 for (oX = run; oX; oX = oX->nxt)
4555 if (oX->pid == p)
4556 { printf("(%s) ", oX->n->name);
4557 break;
4558 }
4559 }
4560
4561 int
4562 newer(f1, f2)
4563 char *f1, *f2;
4564 {
4565 struct stat x, y;
4566
4567 if (stat(f1, (struct stat *)&x) < 0) return 0;
4568 if (stat(f2, (struct stat *)&y) < 0) return 1;
4569 if (x.st_mtime < y.st_mtime) return 0;
4570 return 1;
4571 }
4572
4573 void
4574 match_trail()
4575 { int i, pno, nst, lv0=0, lv1=0;
4576 extern Symbol *Fname;
4577
4578 if (Fname->name[0] == ’\"’)
4579 { i = strlen(Fname->name);
4580 Fname->name[i-1] = ’\0’;
4581 Fname = lookup(&Fname->name[1]);
4582 }
4583
4584 if (newer(Fname->name, "pan.trail"))
4585 printf("Warning, file %s modified since trail was written\n",
4586 Fname->name);
4587
4588 if (!(fd = fopen("pan.trail", "r")))
4589 { printf("spin -t: cannot find ‘pan.trail’\n");
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4590 exit(1);
4591 }
4592 Tval = 1; /* timeouts may be part of the trail */
4593 while (fscanf(fd, "%d:%d:%d:%d\n", &depth, &pno, &nst, &lv0)
4594 == 4)
4595 { if (lv1 >= 0 && depth > 0 && (verbose&32 || lv1 != lv0))
4596 talk(X->pc, X->symtab);
4597 lv1=lv0; /* non-verbose in intermediate steps */
4598 if (depth == -1)
4599 { if (verbose)
4600 printf("<<<<<START OF CYCLE>>>>>\n");
4601 continue;
4602 }
4603 if (depth == -2)
4604 {
4605 start_claim(pno);
4606 continue;
4607 }
4608 i = nproc - nstop;
4609 if (nst == 0)
4610 { if (pno == i-1 && run->pc->n->ntyp == ’@’)
4611 { run = run->nxt;
4612 nstop++;
4613 continue;
4614 } else
4615 { printf("step %d: stop error, %d %d %c\n",
4616 depth, pno, i, run->pc->n->ntyp);
4617 exit(1);
4618 } }
4619 for (X = run; X; X = X->nxt)
4620 {
4621 if (--i == pno)
4622 break;
4623 }
4624 if (!X)
4625 { int k=0;
4626 printf("step %d: lost trail ", depth); whichproc(pno);
4627 if (Have_claim)
4628 { if (pno == 1)
4629 printf("(state %d)\n", nst);
4630 else
4631 { if (pno > 1) k = 1;
4632 printf("(proc %d state %d)\n", pno-k, nst);
4633 }
4634 } else
4635 printf("(proc %d state %d)\n", pno-k, nst);
4636 lost_trail();
4637 wrapup();
4638 exit(1);
4639 }
4640 lineno = X->pc->n->nval;
4641 do
4642 { X->pc = d_eval_sub(X->pc, pno, nst);
4643 } while (X && X->pc && X->pc->seqno != nst);
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4644 if (!X || !X->pc)
4645 { int k = 0;
4646 printf("step %d: lost trail ", depth); whichproc(pno);
4647 if (Have_claim)
4648 { if (pno == 1)
4649 printf("(state %d)\n", nst);
4650 else
4651 { if (pno > 1) k = 1;
4652 printf("(proc %d state %d.)\n", pno-k, nst);
4653 }
4654 } else
4655 printf("(proc %d state %d.)\n", pno, nst);
4656 lost_trail();
4657 wrapup();
4658 exit(1);
4659 }
4660 }
4661 talk(X->pc, X->symtab);
4662 printf("spin: trail ends after %d steps\n", depth);
4663 wrapup();
4664 }
4665
4666 void
4667 lost_trail()
4668 { int d, p, n, l;
4669
4670 while (fscanf(fd, "%d:%d:%d:%d\n", &d, &p, &n, &l) == 4)
4671 { printf("step %d: proc %d ", d, p); whichproc(p);
4672 printf("(state %d) - d %d\n", n, l);
4673 }
4674 }
4675
4676 int Depth=0;
4677
4678 Element *
4679 walk_sub(e, pno, nst)
4680 Element *e;
4681 {
4682 SeqList *z;
4683 Element *f;
4684
4685 if (Depth > 32) /* very likely circular */
4686 return (Element *) 0;
4687 Depth++;
4688 for (z = e->sub; z; z = z->nxt)
4689 {
4690 if (z->this->frst->seqno == nst)
4691 { Depth--; return z->this->frst; }
4692 if (!z->this->frst->nxt)
4693 fatal("cannot happen", "walk_sub");
4694 if (z->this->frst->sub)
4695 { f = walk_sub(z->this->frst, pno, nst);
4696 if (f) { Depth--; return f; }
4697 }
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4698 f = huntele(z->this->frst, z->this->frst->status);
4699 if (f->seqno == nst)
4700 { Depth--; return f; }
4701 if (f->seqno == X->pc->seqno) /* looping */
4702 continue; /* fails */
4703 if (f->sub && (f = walk_sub(f, pno, nst)))
4704 { Depth--; return f; }
4705 if (f && f->n->ntyp == ATOMIC)
4706 { f = f->n->seql->this->frst;
4707 if (f->seqno == nst)
4708 { Depth--; return f; }
4709 }
4710 }
4711 Depth--;
4712 return (Element *) 0;
4713 }
4714
4715 Element *
4716 d_eval_sub(s, pno, nst)
4717 Element *s;
4718 {
4719 Element *e=s;
4720
4721 if (e->n->ntyp == GOTO)
4722 {
4723 return get_lab(e->n->nsym);
4724 }
4725 if (e->sub)
4726 { if (e = walk_sub(e, pno, nst))
4727 {
4728 return e;
4729 }
4730 } else if (e->n && e->n->ntyp == ATOMIC)
4731 { e->n->seql->this->last->nxt = e->nxt;
4732 if (e->n->seql->this->frst->seqno == nst)
4733 return e->n->seql->this->frst;
4734 return d_eval_sub(e->n->seql->this->frst, pno, nst);
4735 } else if (eval(e->n))
4736 {
4737 return e->nxt;
4738 }
4739 if (e && (nst == e->seqno))
4740 return e;
4741 if (s && (nst == s->seqno))
4742 return s;
4743 printf("step %d: lost trail ", depth);
4744 if (Have_claim)
4745 { int k=0;
4746 if (pno == 1)
4747 printf("(");
4748 else
4749 { if (pno > 1) k = 1;
4750 printf("(proc %d ", pno-k);
4751 }
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4752 } else
4753 printf("(proc %d ", pno);
4754 whichproc(pno);
4755 printf("state .%d) [stuck in %d]\n", nst, (e)?e->seqno:-1);
4756 lost_trail();
4757 wrapup();
4758 exit(1);
4759 }



PROMELA FILE TRANSFER PROTOCOL F

Here is a complete listing of the set of file transfer protocol validation models that
were developed in Chapter 7, with the modifications discussed in Chapter 14. It is an
error to retrieve fewer parameters in a message input from a channel than defined in
the corresponding channel declaration. Unused parameter fields are therefore set to
zero in sends and receives.

1 /*
2 * PROMELA Validation Model - startup script
3 */
4
5 #include "defines"
6 #include "user"
7 #include "present"
8 #include "session"
9 #include "fserver"

10 #include "flow_cl"
11 #include "datalink"
12
13 init
14 { atomic {
15 run userprc(0); run userprc(1);
16 run present(0); run present(1);
17 run session(0); run session(1);
18 run fserver(0); run fserver(1);
19 run fc(0); run fc(1);
20 run data_link()
21 }
22 }
23
24 /*
25 * Global Definitions
26 */
27
28 #define LOSS 0 /* message loss */
29 #define DUPS 0 /* duplicate msgs */
30 #define QSZ 2 /* queue size */
31

528
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32 mtype = {
33 red, white, blue,
34 abort, accept, ack, sync_ack, close, connect,
35 create, data, eof, open, reject, sync, transfer,
36 FATAL, NON_FATAL, COMPLETE
37 }
38
39 chan use_to_pres[2] = [QSZ] of { byte };
40 chan pres_to_use[2] = [QSZ] of { byte };
41 chan pres_to_ses[2] = [QSZ] of { byte };
42 chan ses_to_pres[2] = [QSZ] of { byte, byte };
43 chan ses_to_flow[2] = [QSZ] of { byte, byte };
44 chan flow_to_ses[2] = [QSZ] of { byte, byte };
45 chan dll_to_flow[2] = [QSZ] of { byte, byte };
46 chan flow_to_dll[2] = [QSZ] of { byte, byte };
47 chan ses_to_fsrv[2] = [0] of { byte };
48 chan fsrv_to_ses[2] = [0] of { byte };
49
50 /*
51 * User Layer Validation Model
52 */
53
54 proctype userprc(bit n)
55 {
56 use_to_pres[n]!transfer;
57 if
58 :: pres_to_use[n]?accept -> goto Done
59 :: pres_to_use[n]?reject -> goto Done
60 :: use_to_pres[n]!abort -> goto Aborted
61 fi;
62 Aborted:
63 if
64 :: pres_to_use[n]?accept -> goto Done
65 :: pres_to_use[n]?reject -> goto Done
66 fi;
67 Done:
68 skip
69 }
70
71 /*
72 * Presentation Layer Validation Model
73 */
74
75 proctype present(bit n)
76 { byte status, uabort;
77
78 endIDLE:
79 do
80 :: use_to_pres[n]?transfer ->
81 uabort = 0;
82 break
83 :: use_to_pres[n]?abort ->
84 skip
85 od;
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86
87 TRANSFER:
88 pres_to_ses[n]!transfer;
89 do
90 :: use_to_pres[n]?abort ->
91 if
92 :: (!uabort) ->
93 uabort = 1;
94 pres_to_ses[n]!abort
95 :: (uabort) ->
96 assert(1+1!=2)
97 fi
98 :: ses_to_pres[n]?accept,0 ->
99 goto DONE

100 :: ses_to_pres[n]?reject(status) ->
101 if
102 :: (status == FATAL || uabort) ->
103 goto FAIL
104 :: (status == NON_FATAL && !uabort) ->
105 progress: goto TRANSFER
106 fi
107 od;
108 DONE:
109 pres_to_use[n]!accept;
110 goto endIDLE;
111 FAIL:
112 pres_to_use[n]!reject;
113 goto endIDLE
114 }
115
116 /*
117 * Session Layer Validation Model
118 */
119
120 proctype session(bit n)
121 { bit toggle;
122 byte type, status;
123
124 endIDLE:
125 do
126 :: pres_to_ses[n]?type ->
127 if
128 :: (type == transfer) ->
129 goto DATA_OUT
130 :: (type != transfer) /* ignore */
131 fi
132 :: flow_to_ses[n]?type,0 ->
133 if
134 :: (type == connect) ->
135 goto DATA_IN
136 :: (type != connect) /* ignore */
137 fi
138 od;
139
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140 DATA_IN: /* 1. prepare local file fsrver */
141 ses_to_fsrv[n]!create;
142 do
143 :: fsrv_to_ses[n]?reject ->
144 ses_to_flow[n]!reject,0;
145 goto endIDLE
146 :: fsrv_to_ses[n]?accept ->
147 ses_to_flow[n]!accept,0;
148 break
149 od;
150 /* 2. Receive the data, upto eof */
151 do
152 :: flow_to_ses[n]?data,0 ->
153 ses_to_fsrv[n]!data
154 :: flow_to_ses[n]?eof,0 ->
155 ses_to_fsrv[n]!eof;
156 break
157 :: pres_to_ses[n]?transfer ->
158 ses_to_pres[n]!reject(NON_FATAL)
159 :: flow_to_ses[n]?close,0 -> /* remote user aborted */
160 ses_to_fsrv[n]!close;
161 break
162 :: timeout -> /* got disconnected */
163 ses_to_fsrv[n]!close;
164 goto endIDLE
165 od;
166 /* 3. Close the connection */
167 ses_to_flow[n]!close,0;
168 goto endIDLE;
169
170 DATA_OUT: /* 1. prepare local file fsrver */
171 ses_to_fsrv[n]!open;
172 if
173 :: fsrv_to_ses[n]?reject ->
174 ses_to_pres[n]!reject(FATAL);
175 goto endIDLE
176 :: fsrv_to_ses[n]?accept ->
177 skip
178 fi;
179 /* 2. initialize flow control */
180 ses_to_flow[n]!sync,toggle;
181 do
182 :: atomic {
183 flow_to_ses[n]?sync_ack,type ->
184 if
185 :: (type != toggle)
186 :: (type == toggle) -> break
187 fi
188 }
189 :: timeout ->
190 ses_to_fsrv[n]!close;
191 ses_to_pres[n]!reject(FATAL);
192 goto endIDLE
193 od;
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194 toggle = 1 - toggle;
195 /* 3. prepare remote file fsrver */
196 ses_to_flow[n]!connect,0;
197 if
198 :: flow_to_ses[n]?reject,0 ->
199 ses_to_fsrv[n]!close;
200 ses_to_pres[n]!reject(FATAL);
201 goto endIDLE
202 :: flow_to_ses[n]?connect,0 ->
203 ses_to_fsrv[n]!close;
204 ses_to_pres[n]!reject(NON_FATAL);
205 goto endIDLE
206 :: flow_to_ses[n]?accept,0 ->
207 skip
208 :: timeout ->
209 ses_to_fsrv[n]!close;
210 ses_to_pres[n]!reject(FATAL);
211 goto endIDLE
212 fi;
213 /* 4. Transmit the data, upto eof */
214 do
215 :: fsrv_to_ses[n]?data ->
216 ses_to_flow[n]!data,0
217 :: fsrv_to_ses[n]?eof ->
218 ses_to_flow[n]!eof,0;
219 status = COMPLETE;
220 break
221 :: pres_to_ses[n]?abort -> /* local user aborted */
222 ses_to_fsrv[n]!close;
223 ses_to_flow[n]!close,0;
224 status = FATAL;
225 break
226 od;
227 /* 5. Close the connection */
228 do
229 :: pres_to_ses[n]?abort /* ignore */
230 :: flow_to_ses[n]?close,0 ->
231 if
232 :: (status == COMPLETE) ->
233 ses_to_pres[n]!accept,0
234 :: (status != COMPLETE) ->
235 ses_to_pres[n]!reject(status)
236 fi;
237 break
238 :: timeout ->
239 ses_to_pres[n]!reject(FATAL);
240 break
241 od;
242 goto endIDLE
243 }
244
245 /*
246 * File Server Validation Model
247 */
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248
249 proctype fserver(bit n)
250 {
251 end: do
252 :: ses_to_fsrv[n]?create -> /* incoming */
253 if
254 :: fsrv_to_ses[n]!reject
255 :: fsrv_to_ses[n]!accept ->
256 do
257 :: ses_to_fsrv[n]?data
258 :: ses_to_fsrv[n]?eof -> break
259 :: ses_to_fsrv[n]?close -> break
260 od
261 fi
262 :: ses_to_fsrv[n]?open -> /* outgoing */
263 if
264 :: fsrv_to_ses[n]!reject
265 :: fsrv_to_ses[n]!accept ->
266 do
267 :: fsrv_to_ses[n]!data -> progress: skip
268 :: ses_to_fsrv[n]?close -> break
269 :: fsrv_to_ses[n]!eof -> break
270 od
271 fi
272 od
273 }
274
275 /*
276 * Flow Control Layer Validation Model
277 */
278
279 #define true 1
280 #define false 0
281
282 #define M 4 /* range sequence numbers */
283 #define W 2 /* window size: M/2 */
284
285 proctype fc(bit n)
286 { bool busy[M]; /* outstanding messages */
287 byte q; /* seq# oldest unacked msg */
288 byte m; /* seq# last msg received */
289 byte s; /* seq# next msg to send */
290 byte window; /* nr of outstanding msgs */
291 byte type; /* msg type */
292 bit received[M]; /* receiver housekeeping */
293 bit x; /* scratch variable */
294 byte p; /* seq# of last msg acked */
295 byte I_buf[M], O_buf[M]; /* message buffers */
296
297 /* sender part */
298 end: do
299 :: atomic {
300 (window < W && len(ses_to_flow[n]) > 0
301 && len(flow_to_dll[n]) < QSZ) ->
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302 ses_to_flow[n]?type,x;
303 window = window + 1;
304 busy[s] = true;
305 O_buf[s] = type;
306 flow_to_dll[n]!type,s;
307 if
308 :: (type != sync) ->
309 s = (s+1)%M
310 :: (type == sync) ->
311 window = 0;
312 s = M;
313 do
314 :: (s > 0) ->
315 s = s-1;
316 busy[s] = false
317 :: (s == 0) ->
318 break
319 od
320 fi
321 }
322 :: atomic {
323 (window > 0 && busy[q] == false) ->
324 window = window - 1;
325 q = (q+1)%M
326 }
327 #if DUPS
328 :: atomic {
329 (len(flow_to_dll[n]) < QSZ
330 && window > 0 && busy[q] == true) ->
331 flow_to_dll[n]! O_buf[q],q
332 }
333 #endif
334 :: atomic {
335 (timeout && len(flow_to_dll[n]) < QSZ
336 && window > 0 && busy[q] == true) ->
337 flow_to_dll[n]! O_buf[q],q
338 }
339
340 /* receiver part */
341 #if LOSS
342 :: dll_to_flow[n]?type,m /* lose any message */
343 #endif
344 :: dll_to_flow[n]?type,m ->
345 if
346 :: atomic {
347 (type == ack) ->
348 busy[m] = false
349 }
350 :: atomic {
351 (type == sync) ->
352 flow_to_dll[n]!sync_ack,m;
353 m = 0;
354 do
355 :: (m < M) ->
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356 received[m] = 0;
357 m = m+1
358 :: (m == M) ->
359 break
360 od
361 }
362 :: (type == sync_ack) ->
363 flow_to_ses[n]!sync_ack,m
364 :: (type != ack && type != sync && type != sync_ack)->
365 if
366 :: atomic {
367 (received[m] == true) ->
368 x = ((0<p-m && p-m<=W)
369 || (0<p-m+M && p-m+M<=W)) };
370 if
371 :: (x) -> flow_to_dll[n]!ack,m
372 :: (!x) /* else skip */
373 fi
374 :: atomic {
375 (received[m] == false) ->
376 I_buf[m] = type;
377 received[m] = true;
378 received[(m-W+M)%M] = false
379 }
380 fi
381 fi
382 :: (received[p] == true && len(flow_to_ses[n])<QSZ
383 && len(flow_to_dll[n])<QSZ) ->
384 flow_to_ses[n]!I_buf[p],0;
385 flow_to_dll[n]!ack,p;
386 p = (p+1)%M
387 od
388 }
389
390 /*
391 * Datalink Layer Validation Model
392 */
393
394 proctype data_link()
395 { byte type, seq;
396
397 end: do
398 :: flow_to_dll[0]?type,seq ->
399 if
400 :: dll_to_flow[1]!type,seq
401 :: skip /* lose message */
402 fi
403 :: flow_to_dll[1]?type,seq ->
404 if
405 :: dll_to_flow[0]!type,seq
406 :: skip /* lose message */
407 fi
408 od
409 }
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partitioning states 195
peek variables 385
peer protocol 31
perfect code 53, 65
periodic signal 371
Petri

net 186
net 162, 181-182
net restrictions 183

phase distortion 375
phase-shift 371
physical layer 29
pid 124
Ping-Pong protocol 69, 72, 74,

81
pithball telegraph 5
place synchronization 210
point-to-point 129
Poisson distribution 45, 72,

130
polynomial

complexity 193
degree 56

positive acknowledgment
22-23, 134

precedence
of operators 384
rules 247
rules 261

preprocessor 390
printf statement 244, 267
probabilistic search 224
procedure 104

rules 21, 90-91, 107, 203
rules 140

process 91, 387
algebra 14
behavior 162
body 93
deletion 94
instantiation 93
instantiation number 124
parameter 94
type 282

production rules 245
progress-state labels 118
PROMELA 91

simulator 243
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validator 297
proof by construction 203
protocol

completeness 90
conformance 187
consistency 90
conversion 89
definition 20-21
derivation 203
efficiency 136
elements 21, 90
Engines 88
format 21
grammar 40
grammar 21
hierarchy 20, 37
implementation 111, 158
incompleteness 25
interface 203
layering 37
layers 26, 325
modeling 236
phases 132
service 21, 26, 203
skeleton 203, 210
specification 91
standard 13
syntax 21
synthesis 203
test suite 187
validation 214, 297
vocabulary 21, 170
vocabulary 21

protocols introduced 12
pseudo-transitions 196
PSP protocol 41
PSPACE complexity 111, 127,

196-197, 231, 241
queue state 220
race condition 99
radio telegraph 9
railway 7

semaphore 7
random

search algorithm 226
simulation 219, 226, 238, 241

range sequence number 80
rate

control 5, 135
control 37-38, 85, 89

reachability
analysis 214, 218
analysis algorithm 221

reachable state 214, 239
reader/writer protocol 211
receive 389

statement 97
recursion 104
reduction techniques 112,

178, 236
redundancy 34, 37, 46
Reed-Solomon codes 56, 65
regular

expression 210
language 165

relative speeds 167
remote referencing 385
rendezvous 99, 103
reordering errors 46
repetition 101, 389
reset property 190
residual

error rate 56

error rate 47-48, 50, 56
retransmission 76

interval 72
timer 88

robustness 38
roundtrip delay 64
routing 89
RS232 interface 13
run operator 94, 124
rural Chinese postman problem

196
SABRE network 11
sampling theorem 376
scalars 259
scatter search 224
scheduler 285
SDL 14, 17, 41, 364
SDLC protocol 33
search

coverage 219, 221, 229-230,
315

quality 219, 221
reduction methods 236

selective
repeat 217
repeat ARQ 81

self-adapting protocol 37
self-stabilization 41, 369
self-stabilizing protocol 37
semaphore 100, 115

optical 3
semicolon 93
send 389

statement 97
sequence

number field 134
numbers 215
numbers 34, 74

serial transmission 368
service

access point 210
access point 31
primitive 210
specification 22, 26

session layer validation 337
set property 190
Shannon limit 52
Shannon-Hartley law 377
shared variable 95
shift registers 65
short datatype 92
shortest

distance 193
path algorithm 202

shutter telegraph 4, 17
signal

amplitude 371
attenuation 375, 377
distortion 368, 375
elements 370
energy 376
frequency 371
power 376
propagation 370
sampling 376
strobe 368
transmission 368

signal-to-noise ratio 51, 130,
376

signaling speed 370
signed and unsigned data 92
simple I/O sequence 201
simplex

channel 368
transmission 68

sine curve 370
skip 388

statement 94, 102, 105
sliding

window protocol 74, 217
window protocol 87

slow start protocol 85, 89
smoke signal 17
spanning

arborescence 192
tree 192

speaking tube 3
SPIN

evaluator 263, 267
macros 292
options 293
overview 244
sample run 244
statements 265

SPIN structure 246
SPIN

transition-matrix 302
validator 298
variables 255, 289

spontaneous transition 167
stable state tuple 210
stack order 221
state

invariant 214
labels 113
numbers 333
properties 113
signature 201
space explosion 214
space explosion 222
transition diagram 74, 147,

164
statement 388

separator 93
states 113
static flow control 84
status property 190
stop-and-wait

ARQ 81
protocol 69

strongly connected graph 189
structural testing 189, 201
structured programming 41
structuring method 26, 31, 34
STX

control code 40, 133
control code 33

supertrace
implementation 311
search 226, 322

symbol table 257
symmetric

augmentation 196
graph 191

synchronization 66, 83
finite state machine 166

synchronous
communication 99
coupling 169
transmission 368

system invariant 114-115, 216
systematic code 47, 54
tape symbol 165
TCP protocol 88
TCP/IP protocol 30
tele-typewriter 9
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telegraph code 370
telephone 3, 9, 43, 52, 55
telescope 3
telex code 9, 12-13
Telstar satellite 10
temporal

claims 114, 119
logic 126-127

test-and-set problem 95
thermal noise 376
three-way handshake 161
time sequence diagram 25,

73, 76
timeout 72, 75, 87-88, 125,

135, 267
statement 105

token 383
attributes 248

torch
code 16
telegraph 2, 39

TP4 protocol 63
trailer 34, 134

protocol 161
train crash 7, 17
transistor 10
transition

diagram 182
matrix 306
probability 224
rule 163, 170
table 162
tour 191
tour algorithm 192

transparency 27
Troy 1
TTCN 200
Turing machine 165
turn-around time 72
twisted

pair 367, 378
pair 43

types of transmission errors
43

UIO
sequence 194, 201
sequence derivation 195

unique input/output sequence
194-195

unreachable state 220
unreached code 333
unspecified

reception 210
reception 37, 117

upper tester 326
URP protocol 41
uucp checksum 62
validation

kernel 299
model 90
model checking 214

validator generator 297, 304,
316

validator-generator 303
value transfer 389
variable 386

declaration 92
verification

Lotos 14
SDL 14

vertical redundancy check 49
virtual channel 27
VRC code 49

Watt 376
well-formed protocol 37
Wheatstone automatic 9
white noise 51, 376
window

protocol 70
protocol invariant 217
size 217
size 76, 83
size calculation 134

X.21 protocol 13, 30
X.25 protocol 13, 30, 41
XTP protocol 85-86, 89
Z language 240


